Sample records for perovskites synthesis characterization

  1. The Synthesis and Characterization of Some Fluoride Perovskites: An Undergraduate Experiment in Solid State Chemistry.

    ERIC Educational Resources Information Center

    Langley, Richard H.; And Others

    1984-01-01

    Describes a senior-level experiment dealing with the synthesis and characterization of a perovskite. Since most perovskites are cubic, their characterization by x-ray diffraction is simplified. In addition, magnetic ordering may be observed and the effects of a Jahn-Teller distortion seen. (JN)

  2. Synthesis and luminescence of Mn-doped Cs2AgInCl6 double perovskites.

    PubMed

    K, Nila Nandha; Nag, Angshuman

    2018-05-17

    Metal halide double perovskites (DPs) are being explored as stable and non-toxic alternatives of Pb-halide perovskites. Typically DPs exhibit a wide (>2.5 eV) and/or indirect bandgap, limiting their applications in the visible region. Here we impart the visible-light emission property in direct bandgap Cs2AgInCl6 DPs by doping Mn2+ ions. Synthesis, characterization and luminescence of metal halide double perovskites are reported.

  3. One-Dimensional Perovskite Manganite Oxide Nanostructures: Recent Developments in Synthesis, Characterization, Transport Properties, and Applications

    NASA Astrophysics Data System (ADS)

    Li, Lei; Liang, Lizhi; Wu, Heng; Zhu, Xinhua

    2016-03-01

    One-dimensional nanostructures, including nanowires, nanorods, nanotubes, nanofibers, and nanobelts, have promising applications in mesoscopic physics and nanoscale devices. In contrast to other nanostructures, one-dimensional nanostructures can provide unique advantages in investigating the size and dimensionality dependence of the materials' physical properties, such as electrical, thermal, and mechanical performances, and in constructing nanoscale electronic and optoelectronic devices. Among the one-dimensional nanostructures, one-dimensional perovskite manganite nanostructures have been received much attention due to their unusual electron transport and magnetic properties, which are indispensable for the applications in microelectronic, magnetic, and spintronic devices. In the past two decades, much effort has been made to synthesize and characterize one-dimensional perovskite manganite nanostructures in the forms of nanorods, nanowires, nanotubes, and nanobelts. Various physical and chemical deposition techniques and growth mechanisms are explored and developed to control the morphology, identical shape, uniform size, crystalline structure, defects, and homogenous stoichiometry of the one-dimensional perovskite manganite nanostructures. This article provides a comprehensive review of the state-of-the-art research activities that focus on the rational synthesis, structural characterization, fundamental properties, and unique applications of one-dimensional perovskite manganite nanostructures in nanotechnology. It begins with the rational synthesis of one-dimensional perovskite manganite nanostructures and then summarizes their structural characterizations. Fundamental physical properties of one-dimensional perovskite manganite nanostructures are also highlighted, and a range of unique applications in information storages, field-effect transistors, and spintronic devices are discussed. Finally, we conclude this review with some perspectives/outlook and future researches in these fields.

  4. One-Dimensional Perovskite Manganite Oxide Nanostructures: Recent Developments in Synthesis, Characterization, Transport Properties, and Applications.

    PubMed

    Li, Lei; Liang, Lizhi; Wu, Heng; Zhu, Xinhua

    2016-12-01

    One-dimensional nanostructures, including nanowires, nanorods, nanotubes, nanofibers, and nanobelts, have promising applications in mesoscopic physics and nanoscale devices. In contrast to other nanostructures, one-dimensional nanostructures can provide unique advantages in investigating the size and dimensionality dependence of the materials' physical properties, such as electrical, thermal, and mechanical performances, and in constructing nanoscale electronic and optoelectronic devices. Among the one-dimensional nanostructures, one-dimensional perovskite manganite nanostructures have been received much attention due to their unusual electron transport and magnetic properties, which are indispensable for the applications in microelectronic, magnetic, and spintronic devices. In the past two decades, much effort has been made to synthesize and characterize one-dimensional perovskite manganite nanostructures in the forms of nanorods, nanowires, nanotubes, and nanobelts. Various physical and chemical deposition techniques and growth mechanisms are explored and developed to control the morphology, identical shape, uniform size, crystalline structure, defects, and homogenous stoichiometry of the one-dimensional perovskite manganite nanostructures. This article provides a comprehensive review of the state-of-the-art research activities that focus on the rational synthesis, structural characterization, fundamental properties, and unique applications of one-dimensional perovskite manganite nanostructures in nanotechnology. It begins with the rational synthesis of one-dimensional perovskite manganite nanostructures and then summarizes their structural characterizations. Fundamental physical properties of one-dimensional perovskite manganite nanostructures are also highlighted, and a range of unique applications in information storages, field-effect transistors, and spintronic devices are discussed. Finally, we conclude this review with some perspectives/outlook and future researches in these fields.

  5. Synthesis, stability range and characterization of Pr2Cu2O5

    NASA Astrophysics Data System (ADS)

    Fernández-Sanjulián, Javier; Morán, Emilio; Ángel Alario-Franco, Miguel

    2010-03-01

    A novel Pr2Cu2O5 phase has been prepared under high-pressure and high-temperature conditions (P ∼6 GPa and T ∼1673 K) in a Belt-type apparatus and characterized by X-ray diffraction and electron microscopy. The crystal structure appears to be an orthorhombic "oxygen-deficient perovskite" (M.T. Anderson, J.T. Vaughey, and K.R. Poeppelmeier, Structural similarities among oxygen-deficient perovskites, Chem. Mater. 5 (1993), pp. 151-165) isostructural with La2Cu2O5 (J.F. Bringley, B.A. Scott, S.J. La Placa, R.F. Boheme, T.M. Shaw, M.W. McElfresh, S.S. Trail, and D.E. Cox, Synthesis of the defect perovskite series LaCuO 3-δ with copper valence varying from 2+to 3+, Nature 347 (1990), pp. 263-265) and Nd2Cu2O5 (B.-H. Chen, D. Walker, E. Suard, B.A. Scott, B. Mercey, M. Hervieu, and B. Raveau, High pressure synthesis of NdCuO3-δ perovskites (0≤δ≤0.5). Inorg. Chem. 34 (1995), pp. 2077-2083).

  6. Three- and Two-Dimensional Tin and Lead Halide Perovskite Semiconductors: Synthesis and Application in Photovoltaics

    NASA Astrophysics Data System (ADS)

    Cao, Duyen Hanh

    Halide perovskites, AMX3 (A = monocation, B = Ge, Sn, or Pb, and X = halogen), present a versatile class of solution-processable semiconductors made from earth abundant materials with outstanding electrical and optical properties. Their solar cell efficiencies have dramatically increased from 9% to 22% in less than five years since 2012, a rate that has never been seen before in photovoltaic research. Critical to the final goal of commercializing perovskite solar cell technology is achieving device long-term stability and eliminating toxic elements in device components. This thesis uses 3D AMX 3 perovskites as a stand-in to develop a new class of lead-free, moisture stable, functional and highly tunable 2D Ruddlesden-Popper (BA) 2(MA)n-1SnnI3n+1 (n is an integer) perovskite semiconductors. Synthesis, thin film fabrication, extensive characterization, and solar cell device structure-performance relationships are presented throughout the entire thesis.

  7. New Quasi Low-Dimensional 4d and 5d Transition Metal Oxides with Correlated Electronic Properties - Synthesis and Characterizations

    DTIC Science & Technology

    2016-02-17

    high pressure (HP) and high temperature ( HT ) synthesis to find new interesting and potentially useful polar materials. As will be shown here, we have...of general formula A2BB’O6. In addition, HP and HT were also used to prepare new metastable double perovskites and quadruple perovskites with unusual...transition metals and exotic correlated electronic properties was used in parallel with the HP/ HT projects. As the results enumerated below show, a

  8. Synthesis and structural properties of Ba(1-x)LaxTiO3 perovskite nanoparticles fabricated by solvothermal synthesis route

    NASA Astrophysics Data System (ADS)

    Puli, Venkata Sreenivas; Adireddy, Shiva; Elupula, Ravinder; Molugu, Sudheer; Shipman, Josh; Chrisey, Douglas B.

    2017-05-01

    We report the successful synthesis and structural characterization of barium lanthanum titanate Ba(1-x)LaxTiO3 (x=0.003,0.006,0.010) nanoparticles. The colloidal nanoparticles were prepared with high yield by a solvothermal method at temperatures as low as 150°C for 24h. The as-prepared nanopowders were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy. The XRD studies revealed pseudo-cubic crystalline structure, with no impurity phases at room temperature. However ferroelectric tetragonal modes were clearly observed using Raman spectroscopy measurements. From TEM measurements, uniformly sized BLT nanoparticles were observed. Selected area diffraction TEM images revealed polycrystalline perovskite ring patterns, identified as corresponding to the tetragonal phase.

  9. Colloidal Nanocrystals of Lead-Free Double-Perovskite (Elpasolite) Semiconductors: Synthesis and Anion Exchange To Access New Materials.

    PubMed

    Creutz, Sidney E; Crites, Evan N; De Siena, Michael C; Gamelin, Daniel R

    2018-02-14

    Concerns about the toxicity and instability of lead-halide perovskites have driven a recent surge in research toward alternative lead-free perovskite materials, including lead-free double perovskites with the elpasolite structure and visible bandgaps. Synthetic approaches to this class of materials remain limited, however, and no examples of heterometallic elpasolites as nanomaterials have been reported. Here, we report the synthesis and characterization of colloidal nanocrystals of Cs 2 AgBiX 6 (X = Cl, Br) elpasolites using a hot-injection approach. We further show that postsynthetic modification through anion exchange and cation extraction can be used to convert these nanocrystals to new materials including Cs 2 AgBiI 6 , which was previously unknown experimentally. Nanocrystals of Cs 2 AgBiI 6 , synthesized via a novel anion-exchange protocol using trimethylsilyl iodide, have strong absorption throughout the visible region, confirming theoretical predictions that this material could be a promising photovoltaic absorber. The synthetic methodologies presented here are expected to be broadly generalizable. This work demonstrates that nanocrystal ion-exchange reactivity can be used to discover and develop new lead-free halide perovskite materials that may be difficult or impossible to access through direct synthesis.

  10. Synthesis, crystal structure and magnetic properties of a new B-site ordered double perovskite Sr{sub 2}CuIrO{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasala, Sami; Yamauchi, Hisao; Karppinen, Maarit, E-mail: maarit.karppinen@aalto.fi

    2014-12-15

    Here we synthesize and characterize a new double-perovskite oxide Sr{sub 2}CuIrO{sub 6}. The synthesis requires the use of high oxygen pressure to stabilize the VI oxidation state of iridium. The compound has a tetragonally-distorted crystal structure due to the Jahn–Teller active Cu{sup II} ion, and a high degree of B-site cation order. Magnetic transition is apparent at 15 K, but the zero-field-cooled and field-cooled susceptibilities diverge below this temperature. The high degree of cation order would exclude the possibility of a typical spin-glass, indicating that the divergence is probably due to a frustration of the magnetic interactions between Cu andmore » Ir, with a high frustration factor of f≈25. - Graphical abstract: A new member of the A{sub 2}B′B″O{sub 6} double-perovskite family with JT-active Cu{sup II} at the B′ site and Ir{sup VI} at the B″ site is synthesized through high pressure synthesis and characterized for the structural and magnetic properties. - Highlights: • New member of the A{sub 2}CuB″O{sub 6} double-perovskite family is synthesized with B″=Ir. • Stabilization of Ir{sup VI} requires the use of high oxygen pressure synthesis. • Crystal structure is tetragonally distorted due to JT-active Cu{sup II}. • Divergence of ZFC and FC curves is seen below the T{sub N} of 15 K. • This is presumably due to a frustration effect.« less

  11. Laser Direct Write Synthesis of Lead Halide Perovskites

    DOE PAGES

    Chou, Stanley S.; Swartzentruber, Brian S.; Janish, Matthew T.; ...

    2016-09-05

    Lead halide perovskites are increasingly considered for applications beyond photovoltaics, for example, light emission and detection, where an ability to pattern and prototype microscale geometries can facilitate the incorporation of this class of materials into devices. In this study, we demonstrate laser direct write of lead halide perovskites, a remarkably simple procedure that takes advantage of the inverse dependence between perovskite solubility and temperature by using a laser to induce localized heating of an absorbing substrate. We also demonstrate arbitrary pattern formation of crystalline CH 3NH 3PbBr 3 on a range of substrates and fabricate and characterize a microscale photodetectormore » using this approach. This direct write methodology provides a path forward for the prototyping and production of perovskite-based devices.« less

  12. Laser Direct Write Synthesis of Lead Halide Perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Stanley S.; Swartzentruber, Brian S.; Janish, Matthew T.

    Lead halide perovskites are increasingly considered for applications beyond photovoltaics, for example, light emission and detection, where an ability to pattern and prototype microscale geometries can facilitate the incorporation of this class of materials into devices. In this study, we demonstrate laser direct write of lead halide perovskites, a remarkably simple procedure that takes advantage of the inverse dependence between perovskite solubility and temperature by using a laser to induce localized heating of an absorbing substrate. We also demonstrate arbitrary pattern formation of crystalline CH 3NH 3PbBr 3 on a range of substrates and fabricate and characterize a microscale photodetectormore » using this approach. This direct write methodology provides a path forward for the prototyping and production of perovskite-based devices.« less

  13. Synthesis and Characterization of Methylammonium Lead Iodide Perovskite and its Application in Planar Hetero-junction Devices

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Aditi; Mohan Singh Negi, Chandra; Yadav, Anjali; Gupta, Saral K.; Singh Verma, Ajay

    2018-06-01

    The present paper reports on the synthesis and characterization of methylammonium lead iodide perovskite thin film and its applications in heterojunction devices. Perovskite thin films were deposited by a simple spin-coating method using a precursor solution including methyl ammonium iodide and lead iodide onto a glass substrate. The surface morphology study via field emission scanning electron microscopy of the perovskite thin film shows complete surface coverage on glass substrate with negligible pin-holes. UV–visible spectroscopy study revealed a broad absorption range and the exhibition of a band-gap of 1.6 eV. The dark current-voltage (I–V) characteristics of all the devices under study show rectifying behaviour similar to the Schottky diode. Various device parameters such as ideality factor and barrier height are extracted from the I–V curve. At low voltages the devices exhibit Ohmic behaviour, trap free space charge limited conduction governs the charge transport at an intermediate voltage range, while at much higher voltages the devices show trap controlled space charge limited conduction. Furthermore, impedance spectroscopy measurements enable us to extract the various internal parameters of the devices. Correlations between these parameters and I–V characteristics are discussed. The different capacitive process arising in the devices was discussed using the capacitance versus frequency curve.

  14. Obtaining and characterization of La0.8Sr0.2CrO3 perovskite by the combustion method

    NASA Astrophysics Data System (ADS)

    Morales Rivera, A. M.; Gómez Cuaspud, J. A.; López, E. Vera

    2017-01-01

    This research is focused on the synthesis and characterization of a perovskite oxide based on La0.8Sr0.2CrO3 system by the combustion method. The material was obtained in order to contribute to analyse the effect of synthesis route in the obtaining of advanced anodic materials for solid oxide fuel cells (SOFC). The obtaining of solid was achieved starting from corresponding nitrate dissolutions, which were polymerized by temperature effect in presence of citric acid. The solid precursor as a foam citrate was characterized by infrared (FTIR) and ultraviolet (UV) spectroscopy, confirming the effectiveness in synthesis process. The solid was calcined in oxygen atmosphere at 800°C and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive of X-ray spectroscopy (EDX) and solid state impedance spectroscopy (IS). Results confirm the obtaining of an orthorhombic solid with space group Pnma (62) and cell parameters a=5.4590Å, b=7.7310Å and c=5.5050Å. At morphological level the solid showed a heterogeneous distribution with an optimal correspondence with proposed and obtained stoichiometry. The electrical characterization, confirm a semiconductor behaviour with a value of 2.14eV Band-gap according with previous works.

  15. Highly Stable, New, Organic-Inorganic Perovskite (CH3 NH3 )2 PdBr4 : Synthesis, Structure, and Physical Properties.

    PubMed

    Liu, Xixia; Huang, Tang Jiao; Zhang, Liuyang; Tang, Baoshan; Zhang, Nengduo; Shi, Diwen; Gong, Hao

    2018-04-03

    Lead halide perovskites have attracted striking attention recently, due to their appealing properties. However, toxicity and stability are two main factors restricting their application. In this work, a less toxic and highly stable Pd-based hybrid perovskite was experimentally synthesized, after exploring different experimental conditions. This new hybrid organic-inorganic perovskite (CH 3 NH 3 ) 2 PdBr 4 was found to be an orthorhombic crystal (Cmce, Z=4) with lattice parameters a=8.00, b=7.99, c=18.89 Å. The Cmce symmetry and lattice parameters were confirmed using Pawley refinement and the atoms positions were confirmed based on DFT calculation. This perovskite compound was determined to be a p-type semiconductor, with a resistivity of 102.9 kΩ cm, a carrier concentration of 3.4 ×10 12  cm -3 , and a mobility of 23.4 cm 2  (V s) -1 . Interestingly, XRD and UV/Vis measurements indicated that the phase of this new perovskite was maintained with an optical gap of 1.91 eV after leaving in air with a high humidity of 60 % for 4 days, and unchanged for months in N 2 atmosphere; much more stable than most existing organic-inorganic perovskites. The synthesis and various characterizations of this work further the understanding of this (CH 3 NH 3 ) 2 PdBr 4 organic-inorganic hybrid perovskite material. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Elucidating the reaction pathways in the synthesis of organolead trihalide perovskite for high-performance solar cells.

    PubMed

    Wang, Baohua; Young Wong, King; Xiao, Xudong; Chen, Tao

    2015-05-28

    The past two years have witnessed unprecedentedly rapid development of organic-inorganic halide perovskite-based solar cells. The solution-processability and high efficiency make this technology extraordinarily attractive. The intensive investigations have accumulated rich experiences in the perovskite fabrication; while the mechanism of the chemical synthesis still remains unresolved. Here, we set up the chemical equation of the synthesis and elucidate the reactions from both thermodynamic and kinetic perspectives. Our study shows that gaseous products thermodynamically favour the reaction, while the activation energy and "collision" probability synergistically determine the reaction rate. These understandings enable us to finely tune the crystal size for high-quality perovskite film, leading to a record fill factor among similar device structures in the literature. This investigation provides a general strategy to explore the mechanism of perovskite synthesis and benefits the fabrication of high-efficiency perovskite photoactive layer.

  17. Synthesis, characterization of double perovskite Ca{sub 2}MSbO{sub 6} (M = Dy, Fe, Cr, Al) materials via sol–gel auto-combustion and their catalytic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feraru, S.; Samoila, P.; Borhan, A.I.

    2013-10-15

    Double perovskite-type oxide Ca{sub 2}MSbO{sub 6} materials, where M = Dy, Fe, Cr, and Al, were prepared by using the sol–gel auto-combustion method. The role of different B-site cations on their synthesis, structures, morphologies and catalytic properties was investigated. The progress of double-perovskite type structure formation and the disappearance of the organic phases were monitored by infrared absorption spectroscopy (FTIR). Double perovskite oxide structures were evaluated using X-ray diffraction (XRD), while the microstructure of obtained compounds was studied using scanning electron microscopy (SEM). Also, BET surface areas were measured at the liquid nitrogen temperature by nitrogen adsorption. Catalytic properties ofmore » the obtained compounds were evaluated by test reaction of hydrogen peroxide decomposition. - Highlights: • Ca{sub 2}MSbO{sub 6} double perovskites were obtained by sol–gel auto-combustion method. • Ca{sub 2}MSbO{sub 6} (M = Dy, Fe, Cr and Al) as catalysts in H{sub 2}O{sub 2} decomposition • Strong relationship between particles' shape, BET area and catalytic performance • Ca{sub 2}FeSbO{sub 6} spherical grains show superior catalytic activity.« less

  18. High efficient perovskite solar cell material CH3NH3PbI3: Synthesis of films and their characterization

    NASA Astrophysics Data System (ADS)

    Bera, Amrita Mandal; Wargulski, Dan Ralf; Unold, Thomas

    2018-04-01

    Hybrid organometal perovskites have been emerged as promising solar cell material and have exhibited solar cell efficiency more than 20%. Thin films of Methylammonium lead iodide CH3NH3PbI3 perovskite materials have been synthesized by two different (one step and two steps) methods and their morphological properties have been studied by scanning electron microscopy and optical microscope imaging. The morphology of the perovskite layer is one of the most important parameters which affect solar cell efficiency. The morphology of the films revealed that two steps method provides better surface coverage than the one step method. However, the grain sizes were smaller in case of two steps method. The films prepared by two steps methods on different substrates revealed that the grain size also depend on the substrate where an increase of the grain size was found from glass substrate to FTO with TiO2 blocking layer to FTO without any change in the surface coverage area. Present study reveals that an improved quality of films can be obtained by two steps method by an optimization of synthesis processes.

  19. An alternative gas sensor material: Synthesis and electrical characterization of SmCoO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michel, Carlos Rafael; Delgado, Emilio; Santillan, Gloria

    2007-01-18

    Single-phase perovskite SmCoO{sub 3} was prepared by a wet-chemical synthesis technique using metal-nitrates and citric acid; after its characterization by thermal analyses and X-ray diffraction, sintering at 900 deg. C in air, gave single phase and well crystallized powders. The powders were mixed with an organic solvent to prepare a slurry, which was deposited on alumina substrates as thick films, using the screen-printing technique. Electrical and gas sensing properties of sintered SmCoO{sub 3} films were investigated in air, O{sub 2} and CO{sub 2}, the results show that sensitivity reached a maximum value at 420 deg. C, for both gases. Dynamicmore » tests revealed a better behavior of SmCoO{sub 3} in CO{sub 2} than O{sub 2}, due to a fast response and a larger electrical resistance change to this gas. X-ray diffraction made on powders after electrical characterization in gases, showed that perovskite-type structure was preserved.« less

  20. Cs4PbBr6/CsPbBr3 Perovskite Composites with Near-Unity Luminescence Quantum Yield: Large-Scale Synthesis, Luminescence and Formation Mechanism, and White Light-Emitting Diode Application.

    PubMed

    Chen, Ya-Meng; Zhou, Yang; Zhao, Qing; Zhang, Jun-Ying; Ma, Ju-Ping; Xuan, Tong-Tong; Guo, Shao-Qiang; Yong, Zi-Jun; Wang, Jing; Kuroiwa, Yoshihiro; Moriyoshi, Chikako; Sun, Hong-Tao

    2018-05-09

    All-inorganic perovskites have emerged as a new class of phosphor materials owing to their outstanding optical properties. Zero-dimensional inorganic perovskites, in particular the Cs 4 PbBr 6 -related systems, are inspiring intensive research owing to the high photoluminescence quantum yield (PLQY) and good stability. However, synthesizing such perovskites with high PLQYs through an environment-friendly, cost-effective, scalable, and high-yield approach remains challenging, and their luminescence mechanisms has been elusive. Here, we report a simple, scalable, room-temperature self-assembly strategy for the synthesis of Cs 4 PbBr 6 /CsPbBr 3 perovskite composites with near-unity PLQY (95%), high product yield (71%), and good stability using low-cost, low-toxicity chemicals as precursors. A broad range of experimental and theoretical characterizations suggest that the high-efficiency PL originates from CsPbBr 3 nanocrystals well passivated by the zero-dimensional Cs 4 PbBr 6 matrix that forms based on a dissolution-crystallization process. These findings underscore the importance in accurately identifying the phase purity of zero-dimensional perovskites by synchrotron X-ray technique to gain deep insights into the structure-property relationship. Additionally, we demonstrate that green-emitting Cs 4 PbBr 6 /CsPbBr 3 , combined with red-emitting K 2 SiF 6 :Mn 4+ , can be used for the construction of WLEDs. Our work may pave the way for the use of such composite perovskites as highly luminescent emitters in various applications such as lighting, displays, and other optoelectronic and photonic devices.

  1. Synthesis and applications of nanoporous perovskite metal oxides

    PubMed Central

    Huang, Xiubing; Zhao, Guixia

    2018-01-01

    Perovskite-type metal oxides have been widely investigated and applied in various fields in the past several decades due to their extraordinary variability of compositions and structures with targeted physical and chemical properties (e.g., redox behaviour, oxygen mobility, electronic and ionic conductivity). Recently, nanoporous perovskite metal oxides have attracted extensive attention because of their special morphology and properties, as well as superior performance. This minireview aims at summarizing and reviewing the different synthesis methods of nanoporous perovskite metal oxides and their various applications comprehensively. The correlations between the nanoporous structures and the specific performance of perovskite oxides are summarized and highlighted. The future research directions of nanoporous perovskite metal oxides are also prospected. PMID:29862001

  2. Compact Layers of Hybrid Halide Perovskites Fabricated via the Aerosol Deposition Process-Uncoupling Material Synthesis and Layer Formation.

    PubMed

    Panzer, Fabian; Hanft, Dominik; Gujar, Tanaji P; Kahle, Frank-Julian; Thelakkat, Mukundan; Köhler, Anna; Moos, Ralf

    2016-04-08

    We present the successful fabrication of CH₃NH₃PbI₃ perovskite layers by the aerosol deposition method (ADM). The layers show high structural purity and compactness, thus making them suitable for application in perovskite-based optoelectronic devices. By using the aerosol deposition method we are able to decouple material synthesis from layer processing. Our results therefore allow for enhanced and easy control over the fabrication of perovskite-based devices, further paving the way for their commercialization.

  3. Low‐Temperature Combustion Synthesis of a Spinel NiCo2O4 Hole Transport Layer for Perovskite Photovoltaics

    PubMed Central

    Papadas, Ioannis T.; Ioakeimidis, Apostolos; Armatas, Gerasimos S.

    2018-01-01

    Abstract The synthesis and characterization of low‐temperature solution‐processable monodispersed nickel cobaltite (NiCo2O4) nanoparticles (NPs) via a combustion synthesis is reported using tartaric acid as fuel and the performance as a hole transport layer (HTL) for perovskite solar cells (PVSCs) is demonstrated. NiCo2O4 is a p‐type semiconductor consisting of environmentally friendly, abundant elements and higher conductivity compared to NiO. It is shown that the combustion synthesis of spinel NiCo2O4 using tartaric acid as fuel can be used to control the NPs size and provide smooth, compact, and homogeneous functional HTLs processed by blade coating. Study of PVSCs with different NiCo2O4 thickness as HTL reveals a difference on hole extraction efficiency, and for 15 nm, optimized thickness enhanced hole carrier collection is achieved. As a result, p‐i‐n structure of PVSCs with 15 nm NiCo2O4 HTLs shows reliable performance and power conversion efficiency values in the range of 15.5% with negligible hysteresis. PMID:29876223

  4. Synthesis and equation of state of post-perovskites in the (Mg,Fe)[subscript 3]Al[subscript 2]Si[subscript 3]O[subscript 12] system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shieh, Sean R.; Dorfman, Susannah M.; Kubo, Atsushi

    The formation and properties of the post-perovskite (CaIrO{sub 3}-type) phase were studied in Fe-rich compositions along the pyrope-almandine ((Mg,Fe){sub 3}Al{sub 2}Si{sub 3}O{sub 12}) join. Natural and synthetic garnet starting materials with almandine fractions from 38 to 90 mol% were studied using synchrotron X-ray diffraction in the laser-heated diamond anvil cell. Single-phase post-perovskite could be successfully synthesized from garnet compositions at pressures above 148 GPa and temperatures higher than 1600 K. In some cases, evidence for a minor amount of Al{sub 2}O{sub 3} post-perovskite was observed for Alm38 and Alm54 compositions in the perovskite + post-perovskite two-phase region. Pressure-volume data formore » the post-perovskite phases collected during decompression show that incorporation of Fe leads to a systematic increase of unit cell volume broadly similar to the variation observed in the (Mg,Fe)SiO{sub 3} system. The presence of Al{sub 2}O{sub 3} increases the stability of perovskite relative to post-perovskite, requiring higher pressures (> 148 GPa) for synthesis of pure post-perovskites. Our data together with those of Tateno et al. (2005) also suggest that in the Al-rich system the presence of Fe has no strong effect on the pressure required to synthesize the pure post-perovskite phase, but the two-phase perovskite and post-perovskite region may be broad and its width dependent on Fe content. Our results suggest that any regions highly enriched in Al{sub 2}O{sub 3} may consist of either the perovskite phase or a mixture of perovskite and post-perovskite phases throughout the entire thickness of the D* region. The observed synthesis pressures (> 148 GPa) for a pure post-perovskite phase are beyond that at the Earth's core-mantle boundary ({approx} 135 GPa).« less

  5. Direct C-H Arylation Meets Perovskite Solar Cells: Sn-Free Synthesis Shortcut to High Performance Hole-Transporting Materials.

    PubMed

    Chang, Yu-Chieh; Lee, Kun-Mu; Lai, Chia-Hsin; Liu, Ching-Yuan

    2018-03-30

    In contrast to the traditional multistep synthesis, we demonstrate herein a two-step synthesis-shortcut to triphenylamine-based hole-transporting materials (HTMs) through sequential direct C-H arylations. These hole-transporting molecules are fabricated in perovskite-based solar cells (PSCs), exhibiting promising efficiencies up to 17.69%, which is comparable to PSCs utilizing the commercially available spiro-OMeTAD as HTM. This is the first report describing the use of step-saving C-H activations/arylations in the facile synthesis of small-molecule HTMs for perovskite solar cells. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Manipulating the assembly of perovskites onto soft nanoimprinted titanium dioxide templates.

    PubMed

    Baca, Alfred J; Roberts, M Joseph; Stenger-Smith, John; Baldwin, Lawrence

    2018-06-22

    Soft nanoimprinted titanium dioxide (TiO 2 ) substrates decorated with methylammonium lead halide perovskite (MAPbI 3 ) crystals were fabricated by controlling the perovskite precursor concentration and volume during spin coat processing combined with the use of hydrophobic TiO 2 templates. The patterned growth was demonstrated with different perovskite crystallization methods. We investigated and successfully demonstrated the controlled assembly of two MAPbI 3 nanomaterials, one a nanocomposite formed between the perovskite and a hole conducting polymer poly(2,5-bis(N-methyl-N-hexylamino)phenylene vinylene) (BAMPPV), and a second formed from perovskite crystals using common solution based MAPbI 3 growth methods (1-step and 2-step processing). Both types of MAPbI 3 crystals were fabricated on hydrophobic TiO 2 nanotemplates composed of nanowells or grating patterns. Patterned areas as large as 100 μm × 100 μm were achieved. We examined and characterized the substrates using atomic force microscopy, scanning electron microscopy, x-ray diffraction, and energy dispersive spectroscopy. We present the optical properties (i.e. fluorescence and transmission) of soft nanoimprinted nanowells decorated with perovskites demonstrating the successful synthesis of MAPbI 3 perovskite nanocrystals. As an example of their use, we demonstrate a two terminal device and show photocurrent response of a perovskite patterned micro-grating. Our method is a nondestructive approach to nanopatterning perovskites, and produces patterned arrays that maintain their photo-electric properties. The results presented herein suggests an attractive route to developing nanopatterned and small area perovskite substrates for applications in photovoltaics, x-ray sensing/detection, image sensor arrays, and others.

  7. Manipulating the assembly of perovskites onto soft nanoimprinted titanium dioxide templates

    NASA Astrophysics Data System (ADS)

    Baca, Alfred J.; Roberts, M. Joseph; Stenger-Smith, John; Baldwin, Lawrence

    2018-06-01

    Soft nanoimprinted titanium dioxide (TiO2) substrates decorated with methylammonium lead halide perovskite (MAPbI3) crystals were fabricated by controlling the perovskite precursor concentration and volume during spin coat processing combined with the use of hydrophobic TiO2 templates. The patterned growth was demonstrated with different perovskite crystallization methods. We investigated and successfully demonstrated the controlled assembly of two MAPbI3 nanomaterials, one a nanocomposite formed between the perovskite and a hole conducting polymer poly(2,5-bis(N-methyl-N-hexylamino)phenylene vinylene) (BAMPPV), and a second formed from perovskite crystals using common solution based MAPbI3 growth methods (1-step and 2-step processing). Both types of MAPbI3 crystals were fabricated on hydrophobic TiO2 nanotemplates composed of nanowells or grating patterns. Patterned areas as large as 100 μm × 100 μm were achieved. We examined and characterized the substrates using atomic force microscopy, scanning electron microscopy, x-ray diffraction, and energy dispersive spectroscopy. We present the optical properties (i.e. fluorescence and transmission) of soft nanoimprinted nanowells decorated with perovskites demonstrating the successful synthesis of MAPbI3 perovskite nanocrystals. As an example of their use, we demonstrate a two terminal device and show photocurrent response of a perovskite patterned micro-grating. Our method is a nondestructive approach to nanopatterning perovskites, and produces patterned arrays that maintain their photo-electric properties. The results presented herein suggests an attractive route to developing nanopatterned and small area perovskite substrates for applications in photovoltaics, x-ray sensing/detection, image sensor arrays, and others.

  8. Synthesis of Cesium Lead Halide Perovskite Quantum Dots

    ERIC Educational Resources Information Center

    Shekhirev, Mikhail; Goza, John; Teeter, Jacob D.; Lipatov, Alexey; Sinitskii, Alexander

    2017-01-01

    Synthesis of quantum dots is a valuable experiment for demonstration and discussion of quantum phenomena in undergraduate chemistry curricula. Recently, a new class of all-inorganic perovskite quantum dots (QDs) with a formula of CsPbX[subscript 3] (X = Cl, Br, I) was presented and attracted tremendous attention. Here we adapt the synthesis of…

  9. Insight into Evolution, Processing and Performance of Multi-length-scale Structures in Planar Heterojunction Perovskite Solar Cells.

    PubMed

    Huang, Yu-Ching; Tsao, Cheng-Si; Cho, Yi-Ju; Chen, Kuan-Chen; Chiang, Kai-Ming; Hsiao, Sheng-Yi; Chen, Chang-Wen; Su, Chun-Jen; Jeng, U-Ser; Lin, Hao-Wu

    2015-09-04

    The structural characterization correlated to the processing control of hierarchical structure of planar heterojunction perovskite layer is still incomplete due to the limitations of conventional microscopy and X-ray diffraction. This present study performed the simultaneously grazing-incidence small-angle scattering and wide-angle scattering (GISAXS/GIWAXS) techniques to quantitatively probe the hierarchical structure of the planar heterojunction perovskite solar cells. The result is complementary to the currently microscopic study. Correlation between the crystallization behavior, crystal orientation, nano- and meso-scale internal structure and surface morphology of perovskite film as functions of various processing control parameters is reported for the first time. The structural transition from the fractal pore network to the surface fractal can be tuned by the chloride percentage. The GISAXS/GIWAXS measurement provides the comprehensive understanding of concurrent evolution of the film morphology and crystallization correlated to the high performance. The result can provide the insight into formation mechanism and rational synthesis design.

  10. Insight into Evolution, Processing and Performance of Multi-length-scale Structures in Planar Heterojunction Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Huang, Yu-Ching; Tsao, Cheng-Si; Cho, Yi-Ju; Chen, Kuan-Chen; Chiang, Kai-Ming; Hsiao, Sheng-Yi; Chen, Chang-Wen; Su, Chun-Jen; Jeng, U.-Ser; Lin, Hao-Wu

    2015-09-01

    The structural characterization correlated to the processing control of hierarchical structure of planar heterojunction perovskite layer is still incomplete due to the limitations of conventional microscopy and X-ray diffraction. This present study performed the simultaneously grazing-incidence small-angle scattering and wide-angle scattering (GISAXS/GIWAXS) techniques to quantitatively probe the hierarchical structure of the planar heterojunction perovskite solar cells. The result is complementary to the currently microscopic study. Correlation between the crystallization behavior, crystal orientation, nano- and meso-scale internal structure and surface morphology of perovskite film as functions of various processing control parameters is reported for the first time. The structural transition from the fractal pore network to the surface fractal can be tuned by the chloride percentage. The GISAXS/GIWAXS measurement provides the comprehensive understanding of concurrent evolution of the film morphology and crystallization correlated to the high performance. The result can provide the insight into formation mechanism and rational synthesis design.

  11. Chemical Origin of the Stability Difference between Copper(I)- and Silver(I)-Based Halide Double Perovskites.

    PubMed

    Xiao, Zewen; Du, Ke-Zhao; Meng, Weiwei; Mitzi, David B; Yan, Yanfa

    2017-09-25

    Recently, Cu I - and Ag I -based halide double perovskites have been proposed as promising candidates for overcoming the toxicity and instability issues inherent within the emerging Pb-based halide perovskite absorbers. However, up to date, only Ag I -based halide double perovskites have been experimentally synthesized; there are no reports on successful synthesis of Cu I -based analogues. Here we show that, owing to the much higher energy level for the Cu 3d 10 orbitals than for the Ag 4d 10 orbitals, Cu I atoms energetically favor 4-fold coordination, forming [CuX 4 ] tetrahedra (X=halogen), but not 6-fold coordination as required for [CuX 6 ] octahedra. In contrast, Ag I atoms can have both 6- and 4-fold coordinations. Our density functional theory calculations reveal that the synthesis of Cu I halide double perovskites may instead lead to non-perovskites containing [CuX 4 ] tetrahedra, as confirmed by our material synthesis efforts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Deciphering Halogen Competition in Organometallic Halide Perovskite Growth

    DOE PAGES

    Keum, Jong Kahk; Ovchinnikova, Olga S.; Chen, Shiyou; ...

    2016-03-01

    Organometallic halide perovskites (OHPs) hold great promise for next-generation, low-cost optoelectronic devices. During the chemical synthesis and crystallization of OHP thin films a major unresolved question is the competition between multiple halide species (e.g. I-, Cl-, Br-) in the formation of the mixed halide perovskite crystals. Whether Cl- ions are successfully incorporated into the perovskite crystal structure or alternatively, where they are located, is not yet fully understood. Here, in situ X-ray diffraction measurements of crystallization dynamics are combined with ex situ TOF-SIMS chemical analysis to reveal that Br- or Cl- ions can promote crystal growth, yet reactive I- ionsmore » prevent them from incorporating into the lattice of the final perovskite crystal structure. The Cl- ions are located in the grain boundaries of the perovskite films. These findings significantly advance our understanding of the role of halogens during synthesis of hybrid perovskites, and provide an insightful guidance to the engineering of high-quality perovskite films, essential for exploring superior-performance and cost-effective optoelectronic devices.« less

  13. Deciphering Halogen Competition in Organometallic Halide Perovskite Growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keum, Jong Kahk; Ovchinnikova, Olga S.; Chen, Shiyou

    Organometallic halide perovskites (OHPs) hold great promise for next-generation, low-cost optoelectronic devices. During the chemical synthesis and crystallization of OHP thin films a major unresolved question is the competition between multiple halide species (e.g. I-, Cl-, Br-) in the formation of the mixed halide perovskite crystals. Whether Cl- ions are successfully incorporated into the perovskite crystal structure or alternatively, where they are located, is not yet fully understood. Here, in situ X-ray diffraction measurements of crystallization dynamics are combined with ex situ TOF-SIMS chemical analysis to reveal that Br- or Cl- ions can promote crystal growth, yet reactive I- ionsmore » prevent them from incorporating into the lattice of the final perovskite crystal structure. The Cl- ions are located in the grain boundaries of the perovskite films. These findings significantly advance our understanding of the role of halogens during synthesis of hybrid perovskites, and provide an insightful guidance to the engineering of high-quality perovskite films, essential for exploring superior-performance and cost-effective optoelectronic devices.« less

  14. Synthesis of formamidinium lead iodide perovskite bulk single crystal and its optical properties

    NASA Astrophysics Data System (ADS)

    Zheng, Hongge; Duan, Junjie; Dai, Jun

    2017-07-01

    Formamidinium lead iodide (FAPbI3) is a promising hybrid perovskite material for optoelectronic devices. We synthesized bulk single crystal FAPbI3 by a rapid solution crystallization method. X-ray diffraction (XRD) was performed to characterize the crystal structure. Temperature-dependent photoluminescence (PL) spectra of the bulk single crystal FAPbI3 were measured from 10 to 300 K to explain PL recombination mechanism. It shows that near band edge emission blueshifts with the temperature increasing from 10 to 120 K and from 140 K to room temperature, a sudden emission band redshift demonstrates near 140 K because of the phase transition from orthorhombic phase to cubic phase. From the temperature-dependent PL spectra, the temperature coefficients of the bandgap and thermal activation energies of FAPbI3 perovskite are fitted.

  15. Polar-solvent-free colloidal synthesis of highly luminescent alkylammonium lead halide perovskite nanocrystals

    NASA Astrophysics Data System (ADS)

    Vybornyi, Oleh; Yakunin, Sergii; Kovalenko, Maksym V.

    2016-03-01

    A novel synthesis of hybrid organic-inorganic lead halide perovskite nanocrystals (CH3NH3PbX3, X = Br or I) that does not involve the use of dimethylformamide or other polar solvents is presented. The reaction between methylamine and PbX2 salts is conducted in a high-boiling nonpolar solvent (1-octadecene) in the presence of oleylamine and oleic acid as coordinating ligands. The resulting nanocrystals are characterized by high photoluminescence quantum efficiencies of 15-50%, outstanding phase purity and tunable shapes (nanocubes, nanowires, and nanoplatelets). Nanoplatelets spontaneously assemble into micrometer-length wires by face-to-face stacking. In addition, we demonstrate amplified spontaneous emission from thin films of green-emitting CH3NH3PbBr3 nanowires with low pumping thresholds of 3 μJ cm-2.A novel synthesis of hybrid organic-inorganic lead halide perovskite nanocrystals (CH3NH3PbX3, X = Br or I) that does not involve the use of dimethylformamide or other polar solvents is presented. The reaction between methylamine and PbX2 salts is conducted in a high-boiling nonpolar solvent (1-octadecene) in the presence of oleylamine and oleic acid as coordinating ligands. The resulting nanocrystals are characterized by high photoluminescence quantum efficiencies of 15-50%, outstanding phase purity and tunable shapes (nanocubes, nanowires, and nanoplatelets). Nanoplatelets spontaneously assemble into micrometer-length wires by face-to-face stacking. In addition, we demonstrate amplified spontaneous emission from thin films of green-emitting CH3NH3PbBr3 nanowires with low pumping thresholds of 3 μJ cm-2. Electronic supplementary information (ESI) available: Materials and methods, additional figures. See DOI: 10.1039/c5nr06890h

  16. Synthesis and Characterization of a Perovskite Barium Zirconate (BaZrO[subscript 3]): An Experiment for an Advanced Inorganic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Thananatthanachon, Todsapon

    2016-01-01

    In this experiment, the students explore the synthesis of a crystalline solid-state material, barium zirconate (BaZrO3) by two different synthetic methods: (a) the wet chemical method using BaCl[subscript 2]·2H[subscript 2]O and ZrOCl[subscript 2]·8H[subscript 2]O as the precursors, and (b) the solid-state reaction from BaCO[subscript 3] and…

  17. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications.

    PubMed

    Zhao, Yixin; Zhu, Kai

    2016-02-07

    Organic and inorganic hybrid perovskites (e.g., CH(3)NH(3)PbI(3)), with advantages of facile processing, tunable bandgaps, and superior charge-transfer properties, have emerged as a new class of revolutionary optoelectronic semiconductors promising for various applications. Perovskite solar cells constructed with a variety of configurations have demonstrated unprecedented progress in efficiency, reaching about 20% from multiple groups after only several years of active research. A key to this success is the development of various solution-synthesis and film-deposition techniques for controlling the morphology and composition of hybrid perovskites. The rapid progress in material synthesis and device fabrication has also promoted the development of other optoelectronic applications including light-emitting diodes, photodetectors, and transistors. Both experimental and theoretical investigations on organic-inorganic hybrid perovskites have enabled some critical fundamental understandings of this material system. Recent studies have also demonstrated progress in addressing the potential stability issue, which has been identified as a main challenge for future research on halide perovskites. Here, we review recent progress on hybrid perovskites including basic chemical and crystal structures, chemical synthesis of bulk/nanocrystals and thin films with their chemical and physical properties, device configurations, operation principles for various optoelectronic applications (with a focus on solar cells), and photophysics of charge-carrier dynamics. We also discuss the importance of further understanding of the fundamental properties of hybrid perovskites, especially those related to chemical and structural stabilities.

  18. A Direct Bandgap Copper-Antimony Halide Perovskite.

    PubMed

    Vargas, Brenda; Ramos, Estrella; Pérez-Gutiérrez, Enrique; Alonso, Juan Carlos; Solis-Ibarra, Diego

    2017-07-12

    Since the establishment of perovskite solar cells (PSCs), there has been an intense search for alternative materials to replace lead and improve their stability toward moisture and light. As single-metal perovskite structures have yielded unsatisfactory performances, an alternative is the use of double perovskites that incorporate a combination of metals. To this day, only a handful of these compounds have been synthesized, but most of them have indirect bandgaps and/or do not have bandgaps energies well-suited for photovoltaic applications. Here we report the synthesis and characterization of a unique mixed metal ⟨111⟩-oriented layered perovskite, Cs 4 CuSb 2 Cl 12 (1), that incorporates Cu 2+ and Sb 3+ into layers that are three octahedra thick (n = 3). In addition to being made of abundant and nontoxic elements, we show that this material behaves as a semiconductor with a direct bandgap of 1.0 eV and its conductivity is 1 order of magnitude greater than that of MAPbI 3 (MA = methylammonium). Furthermore, 1 has high photo- and thermal-stability and is tolerant to humidity. We conclude that 1 is a promising material for photovoltaic applications and represents a new type of layered perovskite structure that incorporates metals in 2+ and 3+ oxidation states, thus significantly widening the possible combinations of metals to replace lead in PSCs.

  19. Perovskite Quantum Dots with Near Unity Solution and Neat-Film Photoluminescent Quantum Yield by Novel Spray Synthesis.

    PubMed

    Dai, Shu-Wen; Hsu, Bo-Wei; Chen, Chien-Yu; Lee, Chia-An; Liu, Hsiao-Yun; Wang, Hsiao-Fang; Huang, Yu-Ching; Wu, Tien-Lin; Manikandan, Arumugam; Ho, Rong-Ming; Tsao, Cheng-Si; Cheng, Chien-Hong; Chueh, Yu-Lun; Lin, Hao-Wu

    2018-02-01

    In this study, a novel perovskite quantum dot (QD) spray-synthesis method is developed by combining traditional perovskite QD synthesis with the technique of spray pyrolysis. By utilizing this new technique, the synthesis of cubic-shaped perovskite QDs with a homogeneous size of 14 nm is demonstrated, which shows an unprecedented stable absolute photoluminescence quantum yield ≈100% in the solution and even in the solid-state neat film. The highly emissive thin films are integrated with light emission devices (LEDs) and organic light emission displays (OLEDs). The color conversion type QD-LED (ccQD-LED) hybrid devices exhibit an extremely saturated green emission, excellent external quantum efficiency of 28.1%, power efficiency of 121 lm W -1 , and extraordinary forward-direction luminescence of 8 500 000 cd m -2 . The conceptual ccQD-OLED hybrid display also successfully demonstrates high-definition still images and moving pictures with a 119% National Television System Committee 1931 color gamut and 123% Digital Cinema Initiatives-P3 color gamut. These very-stable, ultra-bright perovskite QDs have the properties necessary for a variety of useful applications in optoelectronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Generalized Self-Doping Engineering towards Ultrathin and Large-Sized Two-Dimensional Homologous Perovskites.

    PubMed

    Chen, Junnian; Wang, Yaguang; Gan, Lin; He, Yunbin; Li, Huiqiao; Zhai, Tianyou

    2017-11-20

    Two-dimensional (2D) homologous perovskites are arousing intense interest in photovoltaics and light-emitting fields, attributing to significantly improved stability and increasing optoelectronic performance. However, investigations on 2D homologous perovskites with ultrathin thickness and large lateral dimension have been seldom reported, being mainly hindered by challenges in synthesis. A generalized self-doping directed synthesis of ultrathin 2D homologous (BA) 2 (MA) n-1 Pb n Br 3n+1 (1

  1. Lead-Free, Two-Dimensional Mixed Germanium and Tin Perovskites.

    PubMed

    Cheng, Pengfei; Wu, Tao; Liu, Junxue; Deng, Wei-Qiao; Han, Keli

    2018-05-17

    Hybrid two-dimensional (2D) organic-inorganic perovskites continue to draw increased attention in view of their outstanding performance in optoelectronic devices such as solar cells and light-emitting devices. Herein, for the first time, we report the synthesis and characterization of lead-free, 2D mixed Ge-Sn halide perovskites, (PEA) 2 Ge 1- x Sn x I 4 (where PEA = C 6 H 5 CH 2 CH 2 NH 3 + ), and demonstrate that the bandgaps decrease linearly with increasing Sn content. Most importantly, among them, (PEA) 2 Ge 0.5 Sn 0.5 I 4 possesses the smallest bandgap of 1.95 eV. Density functional theory calculations confirm that Sn substitution induces a smaller bandgap and more dispersed band structure, which are desirable characteristics of light-absorbing materials. In addition, conductivity and stability of (PEA) 2 Ge 0.5 Sn 0.5 I 4 have also been assessed.

  2. Photovoltaic Properties of Two-Dimensional (CH3NH3)2Pb(SCN)2I2 Perovskite: A Combined Experimental and Density Functional Theory Study.

    PubMed

    Xiao, Zewen; Meng, Weiwei; Saparov, Bayrammurad; Duan, Hsin-Sheng; Wang, Changlei; Feng, Chunbao; Liao, Weiqiang; Ke, Weijun; Zhao, Dewei; Wang, Jianbo; Mitzi, David B; Yan, Yanfa

    2016-04-07

    We explore the photovoltaic-relevant properties of the 2D MA2Pb(SCN)2I2 (where MA = CH3NH3(+)) perovskite using a combination of materials synthesis, characterization and density functional theory calculation, and determine electronic properties of MA2Pb(SCN)2I2 that are significantly different from those previously reported in literature. The layered perovskite with mixed-anions exhibits an indirect bandgap of ∼2.04 eV, with a slightly larger direct bandgap of ∼2.11 eV. The carriers (both electrons and holes) are also found to be confined within the 2D layers. Our results suggest that the 2D MA2Pb(SCN)2I2 perovskite may not be among the most promising absorbers for efficient single-junction solar cell applications; however, use as an absorber for the top cell of a tandem solar cell may still be a possibility if films are grown with the 2D layers aligned perpendicular to the substrates.

  3. Theory and modeling of correlated ionic motions in hybrid organic-inorganic perovskites

    NASA Astrophysics Data System (ADS)

    Rappe, Andrew

    The perovskite crystal structure hosts a wealth of intriguing properties, and the renaissance of interest in halide (and hybrid organic-inorganic) perovskites (HOIPs) has further broadened the palette of exciting physical phenomena. Breakthroughs in HOIP synthesis, characterization, and solar cell design have led to remarkable increases in reported photovoltaic efficiency. However, the observed long carrier lifetime and PV performance have eluded comprehensive physical justification. The hybrid perovskites serve as an enigmatic crossroads of physics. Concepts from crystalline band theory, molecular physics, liquids, and phase transitions have been applied with some success, but the observations of HOIPs make it clear that none of these conceptual frameworks completely fits. In this talk, recent theoretical progress in understanding HOIPs will be reviewed and integrated with experimental findings. The large amplitude motions of HOIPs will be highlighted, including ionic diffusion, anharmonic phonons, and dynamic incipient order on various length and time scales. The intricate relationships between correlated structural fluctuations, polar order, and excited charge carrier dynamics will also be discussed. This work was supported by the Office of Naval Research, under Grant N00014-14-1-0761.

  4. Low-Dimensional Organic Tin Bromide Perovskites and Their Photoinduced Structural Transformation.

    PubMed

    Zhou, Chenkun; Tian, Yu; Wang, Mingchao; Rose, Alyssa; Besara, Tiglet; Doyle, Nicholas K; Yuan, Zhao; Wang, Jamie C; Clark, Ronald; Hu, Yanyan; Siegrist, Theo; Lin, Shangchao; Ma, Biwu

    2017-07-24

    Hybrid organic-inorganic metal halide perovskites possess exceptional structural tunability, with three- (3D), two- (2D), one- (1D), and zero-dimensional (0D) structures on the molecular level all possible. While remarkable progress has been realized in perovskite research in recent years, the focus has been mainly on 3D and 2D structures, with 1D and 0D structures significantly underexplored. The synthesis and characterization of a series of low-dimensional organic tin bromide perovskites with 1D and 0D structures is reported. Using the same organic and inorganic components, but at different ratios and reaction conditions, both 1D (C 4 N 2 H 14 )SnBr 4 and 0D (C 4 N 2 H 14 Br) 4 SnBr 6 can be prepared in high yields. Moreover, photoinduced structural transformation from 1D to 0D was investigated experimentally and theoretically in which photodissociation of 1D metal halide chains followed by structural reorganization leads to the formation of a more thermodynamically stable 0D structure. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Luminescence behaviour of room temperature chemical processed all-inorganic CsPbCl3 perovskite cubes

    NASA Astrophysics Data System (ADS)

    Paul, T.; Chatterjee, B. K.; Maiti, S.; Besra, N.; Thakur, S.; Sarkar, S.; Chanda, K.; Das, A.; Sarkar, P. K.; Sardar, K.; Chattopadhyay, K. K.

    2018-05-01

    All inorganic perovskites with different halide constituent have recently truncated the eyes of researchers owing to their intriguing optoelectronic features and thereby their usage perspective in photovoltaic applications, light emitting didoes and lasing devices. Here, adopting a simple, environment benign ambient conditioned chemical synthesis approach we have realized high quality cesium lead halide perovskite (CsPbCl3) cube. The crystallinity and morphological characterizations were performed by X-ray diffraction and field emission scanning electron microscope measurements respectively while the chemical composition were examined via energy-dispersive X-ray spectroscopic measurement. The as synthesized cubes crystallized in cubic phase and exhibited intense photoluminescence emission at ˜418 nm with a small FWHM value and prolonged photoluminescence decay time˜41 ns. Besides photoluminescence, these cubes displayed strong cathodoluminescence also. Accelerating voltage dependent cathodoluminescence study showed discernable differences in luminescence behaviour. We expect this synthetic strategy to be promising as it can be easily scaled up to produce bulk quantity nanoforms of different inorganic perovskites in subtle manner for the realization of several types of nanoscale devices.

  6. Synthesis of solid solutions of perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dambekalne, M.Y.; Antonova, M.K.; Perro, I.T.

    The authors carry out thermographic studies, using a derivatograph, in order to understand the nature of the processes taking place during the synthesis of solid solutions of perovskites. Based on the detailed studies on the phase transformations occurring in the charges of the PSN-PMN solid solutions and on the selection of the optimum conditions for carrying out their synthesis, the authors obtained a powder containing a minimum quantity of the undesirable pyrochlore phase and by sintering it using the hot pressing method, they produced single phase ceramic specimens containing the perovskite phase alone with a density close to the theoreticalmore » value and showing zero apparent porosity and water absorption.« less

  7. Ultrathin Two-Dimensional Organic-Inorganic Hybrid Perovskite Nanosheets with Bright, Tunable Photoluminescence and High Stability.

    PubMed

    Yang, Shuang; Niu, Wenxin; Wang, An-Liang; Fan, Zhanxi; Chen, Bo; Tan, Chaoliang; Lu, Qipeng; Zhang, Hua

    2017-04-03

    Two-dimensional (2D) organic-inorganic hybrid perovskite nanosheets (NSs) are attracting increasing research interest due to their unique properties and promising applications. Here, for the first time, we report the facile synthesis of single- and few-layer free-standing phenylethylammonium lead halide perovskite NSs, that is, (PEA) 2 PbX 4 (PEA=C 8 H 9 NH 3 , X=Cl, Br, I). Importantly, their lateral size can be tuned by changing solvents. Moreover, these ultrathin 2D perovskite NSs exhibit highly efficient and tunable photoluminescence, as well as superior stability. Our study provides a simple and general method for the controlled synthesis of 2D perovskite NSs, which may offer a new avenue for their fundamental studies and optoelectronic applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. (CH3 NH3 )2 PdCl4 : A Compound with Two-Dimensional Organic-Inorganic Layered Perovskite Structure.

    PubMed

    Huang, Tang Jiao; Thiang, Zhang Xian; Yin, Xuesong; Tang, Chunhua; Qi, Guojun; Gong, Hao

    2016-02-01

    The synthesis of previously unknown perovskite (CH 3 NH 3 ) 2 PdCl 4 is reported. Despite using an organic cation with the smallest possible alkyl group, a 2D organic-inorganic layered Pd-based perovskites was still formed. This demonstrates that Pd-based 2D perovskites can be obtained even if the size of the organic cation is below the size limit predicted by the Goldschmidt tolerance-factor formula. The (CH 3 NH 3 ) 2 PdCl 4 phase has a bulk resistivity of 1.4 Ω cm, a direct optical gap of 2.22 eV, and an absorption coefficient on the order of 10 4  cm -1 . XRD measurements suggest that the compound is moderately stable in air, an important advantage over several existing organic-inorganic perovskites that are prone to phase degradation problems when exposed to the atmosphere. Given the recent interest in organic-inorganic perovskites, the synthesis of this new Pd-based organic-inorganic perovskite may be helpful in the preparation and understanding of other organic-inorganic perovskites. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Universal two-dimensional characteristics in perovskite-type oxyhydrides ATiO2H (A = Li, Na, K, Rb, Cs)

    NASA Astrophysics Data System (ADS)

    Sato, Nobuya; Akashi, Ryosuke; Tsuneyuki, Shinji

    2017-07-01

    A series of unsynthesized perovskite-type oxyhydrides ATiO2H (A = Li, Na, K, Rb, Cs) are investigated by the density functional calculations. These oxyhydrides are stable in the sense of the formation energies for some possible synthesis reactions. They are crystallized into quite similar crystal structures with the long c-axis, and the corner-sharing TiO4H2 octahedra of the ideal perovskite-type structure are deformed into the 5-fold coordinated titanium atoms with the OH plane and the apical oxygen atoms. All of these oxyhydrides exhibit two-dimensional electronic states at the valence band maximum characterized by the in-plane oxygen 2p and the hydrogen 1s orbitals. While the c-axis becomes short as the ionic radius of the A atom becomes small and the two-dimensional characteristics are weakened, the electronic state at the valence band maximum is still characterized as the O-H in-plane state. Additionally, the Born effective charge tensors, spontaneous electric polarizations, dielectric tensors, and piezoelectric tensors are evaluated. It is found that the spontaneous electric polarizations of these oxyhydrides are much larger than that of tetragonal BaTiO3.

  10. Low Cost CaTiO3 Perovskite Synthesized from Scallop (Anadara granosa) Shell as Antibacterial Ceramic Material

    NASA Astrophysics Data System (ADS)

    Fatimah, Is; Nur Ilahi, Rico; Pratami, Rismayanti

    2018-01-01

    Research on perovskite CaTiO3 synthesis from scallop (Anadara granosa) shell and its test as material for antibacterial ceramic application have been conducted. The synthesis was performed by calcium extraction from the scallop shell followed by solid-solid reaction of obtained calcium with TiO2. Physicochemical character of the perovskite wasstudied by measurement of crystallinity using x-ray diffraction (XRD), diffuse-reflectance UV Visible spectrophotometry, scanning electrone microscope-energy dispersive x-ray (SEM-EDX) and Fourier-Transform InfraRed. Considering the future application of the perovskite as antibacterial agent, laboratory test of the peroskite as material in antibacterial ceramic preparation was also conducted. Result of research indicated that perovskite formation was obtained and the material demonstrated photocatalytic activity as identified by band gap energy (Eg) value. The significant activity was also reflected by the antibacterial action of formed ceramic.

  11. Synthesis of LaMnO3 in molten chlorides: effect of preparation conditions.

    PubMed

    Vradman, Leonid; Zana, Jonatan; Kirschner, Alon; Herskowitz, Moti

    2013-07-14

    LaMnO3 perovskite was successfully synthesized in molten chlorides. In order to explore the effect of the molten salt type, NaCl-KCl and LiCl-KCl eutectic mixtures were employed as a liquid medium for the perovskite formation process. The synthesis included heating the La-nitrate, Mn-nitrate and chlorides mixture to above the melting point of the corresponding chlorides. This procedure yielded a LaMnO3 phase integrated in the fused chloride matrix. Washing with water removed the salts completely, yielding pure LaMnO3 perovskite crystals. The synthesis without molten salt at 800 °C yielded several by-products in addition to the LaMnO3 phase, while with LiCl-KCl the pure perovskite phase was obtained at temperatures as low as 600 °C. Variation of temperature in the range 600-800 °C for LiCl-KCl and 700-800 °C for NaCl-KCl had no significant effect either on the morphology or on the particle size of the product. On the other hand, the effect of the molten salt type on the morphology and size of perovskite particles was remarkable. The synthesis in NaCl-KCl resulted in sub-micron LaMnO3 particles with shapes that range from truncated hexahedrons to spheres, while in LiCl-KCl mostly cubic particles of up to 2-microns were obtained. The effect of the molten salt type on LaMnO3 perovskite formation is explained based on the nucleation and crystal growth model and difference in the melting point of eutectic mixtures.

  12. Persistent dopants and phase segregation in organolead mixed-halide perovskites

    DOE PAGES

    Rosales, Bryan A.; Men, Long; Cady, Sarah D.; ...

    2016-07-25

    Organolead mixed-halide perovskites such as CH 3NH 3PbX 3–aX' a (X, X' = I, Br, Cl) are interesting semiconductors because of their low cost, high photovoltaic power conversion efficiencies, enhanced moisture stability, and band gap tunability. Using a combination of optical absorption spectroscopy, powder X-ray diffraction (XRD), and, for the first time, 207Pb solid state nuclear magnetic resonance (ssNMR), we probe the extent of alloying and phase segregation in these materials. Because 207Pb ssNMR chemical shifts are highly sensitive to local coordination and electronic structure, and vary linearly with halogen electronegativity and band gap, this technique can provide the truemore » chemical speciation and composition of organolead mixed-halide perovskites. We specifically investigate samples made by three different preparative methods: solution phase synthesis, thermal annealing, and solid phase synthesis. 207Pb ssNMR reveals that nonstoichiometric dopants and semicrystalline phases are prevalent in samples made by solution phase synthesis. We show that these nanodomains are persistent after thermal annealing up to 200 °C. Further, a novel solid phase synthesis that starts from the parent, single-halide perovskites can suppress phase segregation but not the formation of dopants. Our observations are consistent with the presence of miscibility gaps and spontaneous spinodal decomposition of the mixed-halide perovskites at room temperature. This underscores how strongly different synthetic procedures impact the nanostructuring and composition of organolead halide perovskites. In conclusion, better optoelectronic properties and improved device stability and performance may be achieved through careful manipulation of the different phases and nanodomains present in these materials.« less

  13. Persistent dopants and phase segregation in organolead mixed-halide perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosales, Bryan A.; Men, Long; Cady, Sarah D.

    Organolead mixed-halide perovskites such as CH 3NH 3PbX 3–aX' a (X, X' = I, Br, Cl) are interesting semiconductors because of their low cost, high photovoltaic power conversion efficiencies, enhanced moisture stability, and band gap tunability. Using a combination of optical absorption spectroscopy, powder X-ray diffraction (XRD), and, for the first time, 207Pb solid state nuclear magnetic resonance (ssNMR), we probe the extent of alloying and phase segregation in these materials. Because 207Pb ssNMR chemical shifts are highly sensitive to local coordination and electronic structure, and vary linearly with halogen electronegativity and band gap, this technique can provide the truemore » chemical speciation and composition of organolead mixed-halide perovskites. We specifically investigate samples made by three different preparative methods: solution phase synthesis, thermal annealing, and solid phase synthesis. 207Pb ssNMR reveals that nonstoichiometric dopants and semicrystalline phases are prevalent in samples made by solution phase synthesis. We show that these nanodomains are persistent after thermal annealing up to 200 °C. Further, a novel solid phase synthesis that starts from the parent, single-halide perovskites can suppress phase segregation but not the formation of dopants. Our observations are consistent with the presence of miscibility gaps and spontaneous spinodal decomposition of the mixed-halide perovskites at room temperature. This underscores how strongly different synthetic procedures impact the nanostructuring and composition of organolead halide perovskites. In conclusion, better optoelectronic properties and improved device stability and performance may be achieved through careful manipulation of the different phases and nanodomains present in these materials.« less

  14. Perovskite-Inspired Photovoltaic Materials: Toward Best Practices in Materials Characterization and Calculations

    DOE PAGES

    Hoye, Robert L. Z.; Schulz, Philip; Schelhas, Laura T.; ...

    2017-02-28

    Recently, there has been an explosive growth in research based on hybrid lead-halide perovskites for photovoltaics owing to rapid improvements in efficiency. The advent of these materials for solar applications has led to widespread interest in understanding the key enabling properties of these materials. This has resulted in renewed interest in related compounds and a search for materials that may replicate the defect-tolerant properties and long lifetimes of the hybrid lead-halide perovskites. Given the rapid pace of development of the field, the rises in efficiencies of these systems have outpaced the more basic understanding of these materials. Measuring or calculatingmore » the basic properties, such as crystal/electronic structure and composition, can be challenging because some of these materials have anisotropic structures, and/or are composed of both heavy metal cations and volatile, mobile, light elements. Some consequences are beam damage during characterization, composition change under vacuum, or compound effects, such as the alteration of the electronic structure through the influence of the substrate. These effects make it challenging to understand the basic properties integral to optoelectronic operation. Compounding these difficulties is the rapid pace with which the field progresses. This has created an ongoing need to continually evaluate best practices with respect to characterization and calculations, as well as to identify inconsistencies in reported values to determine if those inconsistencies are rooted in characterization methodology or materials synthesis. This article describes the difficulties in characterizing hybrid lead-halide perovskites and new materials and how these challenges may be overcome. The topic was discussed at a seminar at the 2015 Materials Research Society Fall Meeting & Exhibit. This article highlights the lessons learned from the seminar and the insights of some of the attendees, with reference to both recent literature and controlled experiments to illustrate the challenges discussed. The focus in this article is on crystallography, composition measurements, photoemission spectroscopy, and calculations on perovskites and new, related absorbers. We suggest how the reporting of the important artifacts could be streamlined between groups to ensure reproducibility as the field progresses.« less

  15. Perovskite-Inspired Photovoltaic Materials: Toward Best Practices in Materials Characterization and Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoye, Robert L. Z.; Schulz, Philip; Schelhas, Laura T.

    Recently, there has been an explosive growth in research based on hybrid lead-halide perovskites for photovoltaics owing to rapid improvements in efficiency. The advent of these materials for solar applications has led to widespread interest in understanding the key enabling properties of these materials. This has resulted in renewed interest in related compounds and a search for materials that may replicate the defect-tolerant properties and long lifetimes of the hybrid lead-halide perovskites. Given the rapid pace of development of the field, the rises in efficiencies of these systems have outpaced the more basic understanding of these materials. Measuring or calculatingmore » the basic properties, such as crystal/electronic structure and composition, can be challenging because some of these materials have anisotropic structures, and/or are composed of both heavy metal cations and volatile, mobile, light elements. Some consequences are beam damage during characterization, composition change under vacuum, or compound effects, such as the alteration of the electronic structure through the influence of the substrate. These effects make it challenging to understand the basic properties integral to optoelectronic operation. Compounding these difficulties is the rapid pace with which the field progresses. This has created an ongoing need to continually evaluate best practices with respect to characterization and calculations, as well as to identify inconsistencies in reported values to determine if those inconsistencies are rooted in characterization methodology or materials synthesis. This article describes the difficulties in characterizing hybrid lead-halide perovskites and new materials and how these challenges may be overcome. The topic was discussed at a seminar at the 2015 Materials Research Society Fall Meeting & Exhibit. This article highlights the lessons learned from the seminar and the insights of some of the attendees, with reference to both recent literature and controlled experiments to illustrate the challenges discussed. The focus in this article is on crystallography, composition measurements, photoemission spectroscopy, and calculations on perovskites and new, related absorbers. We suggest how the reporting of the important artifacts could be streamlined between groups to ensure reproducibility as the field progresses.« less

  16. Electrical and structural behaviour of the perovskite LaCr0.4Co0.4Fe0.2O3

    NASA Astrophysics Data System (ADS)

    Rativa-Parada, W.; Gómez-Cuaspud, J. A.; Vera-López, E.; Carda-Castelló, J. B.

    2017-12-01

    The electrical and structural properties of the LaCr0.4Co0.4Fe0.2O3 perovskite are investigated. The oxide is synthetized by polymerization-combustion method, using citric acid as a chelating agent and low calcination temperature. The X-ray diffraction, Raman spectroscopy and transmission electron microscopy analysis show conformation of a pure phase with rhombohedral (R-3c) structure and confirmed high structural crystallinity facilitated by synthesis method. The characterization by means of impedance spectroscopy is performed at room temperature. It is observed that the oxides behave as materials of the semiconductor type and that the conductivity increase in accordance to a thermal excitation phenomenon.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rioux, Robert M.

    In this work, we have primarily utilized isothermal titration calorimetry (ITC) and complimentary catalyst characterization techniques to study and assess the impact of solution conditions (i.e., solid-liquid) interface on the synthesis of heterogeneous and electro-catalysts. Isothermal titration calorimetry is well-known technique from biochemistry/physics, but has been applied to a far lesser extent to characterize buried solid-liquid interfaces in materials science. We demonstrate the utility and unique information provided by ITC for two distinct catalytic systems. We explored the thermodynamics associated catalyst synthesis for two systems: (i) ion-exchange or strong electrostatic adsorption for Pt and Pd salts on silica and aluminamore » materials (ii) adsorption to provide covalent attachment of metal and metal-oxo clusters to Dion-Jacobsen perovskite materials.« less

  18. The controlled growth of perovskite thin films: Opportunities, challenges, and synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlom, D.G.; Theis, C.D.; Hawley, M.E.

    1997-10-01

    The broad spectrum of electronic and optical properties exhibited by perovskites offers tremendous opportunities for microelectronic devices, especially when a combination of properties in a single device is desired. Molecular beam epitaxy (MBE) has achieved unparalleled control in the integration of semiconductors at the monolayer-level; its use for the integration of perovskites with similar nanoscale customization appears promising. Composition control and oxidation are often significant challenges to the growth of perovskites by MBE, but we show that these can be met through the use of purified ozone as an oxidant and real-time atomic absorption composition control. The opportunities, challenges, andmore » synthesis of oxide heterostructures by reactive MBE are described, with examples taken from the growth of oxide superconductors and oxide ferroelectrics.« less

  19. Solution-Phase Synthesis of Cesium Lead Halide Perovskite Nanowires.

    PubMed

    Zhang, Dandan; Eaton, Samuel W; Yu, Yi; Dou, Letian; Yang, Peidong

    2015-07-29

    Halide perovskites have attracted much attention over the past 5 years as a promising class of materials for optoelectronic applications. However, compared to hybrid organic-inorganic perovskites, the study of their pure inorganic counterparts, like cesium lead halides (CsPbX3), lags far behind. Here, a catalyst-free, solution-phase synthesis of CsPbX3 nanowires (NWs) is reported. These NWs are single-crystalline, with uniform growth direction, and crystallize in the orthorhombic phase. Both CsPbBr3 and CsPbI3 are photoluminescence active, with composition-dependent temperature and self-trapping behavior. These NWs with a well-defined morphology could serve as an ideal platform for the investigation of fundamental properties and the development of future applications in nanoscale optoelectronic devices based on all-inorganic perovskites.

  20. Ionic liquid-mediated synthesis of meso-scale porous lanthanum-transition-metal perovskites with high CO oxidation performance

    DOE PAGES

    Lu, Hanfeng; Zhang, Pengfei; Qiao, Zhen-An; ...

    2015-02-19

    Lanthanum-transition-metal perovskites with robust meso-scale porous frameworks (meso-LaMO 3) are synthesized through use of ionic liquids. The resultant samples demonstrate a rather high activity for CO oxidation, by taking advantage of unique nanostructure-derived benefits. This synthesis strategy opens up a new opportunity for preparing functional mesoporous complex oxides of various compositions.

  1. Ionic liquid-mediated synthesis of meso-scale porous lanthanum-transition-metal perovskites with high CO oxidation performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Hanfeng; Zhang, Pengfei; Qiao, Zhen-An

    Lanthanum-transition-metal perovskites with robust meso-scale porous frameworks (meso-LaMO 3) are synthesized through use of ionic liquids. The resultant samples demonstrate a rather high activity for CO oxidation, by taking advantage of unique nanostructure-derived benefits. This synthesis strategy opens up a new opportunity for preparing functional mesoporous complex oxides of various compositions.

  2. Solvent and Intermediate Phase as Boosters for the Perovskite Transformation and Solar Cell Performance

    PubMed Central

    Kim, Jinhyun; Hwang, Taehyun; Lee, Sangheon; Lee, Byungho; Kim, Jaewon; Jang, Gil Su; Nam, Seunghoon; Park, Byungwoo

    2016-01-01

    High power conversion efficiency and device stabilization are two major challenges for CH3NH3PbI3 (MAPbI3) perovskite solar cells to be commercialized. Herein, we demonstrate a diffusion-engineered perovskite synthesis method using MAI/ethanol dipping, and compared it to the conventional synthesis method from MAI/iso-propanol. Diffusion of MAI/C2H5OH into the PbCl2 film was observed to be more favorable than that of MAI/C3H7OH. Facile perovskite conversion from ethanol and highly-crystalline MAPbI3 with minimized impurities boosted the efficiency from 5.86% to 9.51%. Additionally, we further identified the intermediates and thereby the reaction mechanisms of PbCl2 converting into MAPbI3. Through straightforward engineering to enhance the surface morphology as well as the crystallinity of the perovskite with even faster conversion, an initial power conversion efficiency of 11.23% was obtained, in addition to superior stability after 30 days under an ambient condition. PMID:27156481

  3. Controlled synthesis of quantum confined CsPbBr3 perovskite nanocrystals under ambient conditions

    NASA Astrophysics Data System (ADS)

    He, Huimei; Tang, Bing; Ma, Ying

    2018-02-01

    Room temperature recrystallization is a simple and convenient method for synthesis of all-inorganic perovskite nanomaterials with excellent luminescent properties. However, the fast crystallization usually brings the colloidal stability and uncontrollable synthesis issues in the formation of all-inorganic perovskite. In the present study, we present a new strategy to prepare the quantum confined CsPbBr3 nanocrystals with controlled morphology under ambient condition. With the assist of fatty acid-capped precursor, the crystallization and the following growth rate can be retarded. Thanks to the retarded reaction, the morphology can be varied from nanowires to nanoplates and the thickness can be controlled from 5-7 monolayers by simply adjusting the amount of octylammonium cations and oleic acid. The nanoplates exhibit a higher photoluminescence quantum yield than the nanowires possibly due to fewer defects in the nanoplates.

  4. Synthesis and structural properties of (Y, Sr)(Ti, Fe, Nb)O3-δ perovskite nanoparticles fabricated by modified polymer precursor method

    NASA Astrophysics Data System (ADS)

    Miruszewski, T.; Gdaniec, P.; Karczewski, J.; Bochentyn, B.; Szaniawska, K.; Kupracz, P.; Prześniak-Welenc, M.; Kusz, B.

    2016-09-01

    The yttrium, iron and niobium doped-SrTiO3 powders have been successfully fabricated by a modified low-temperature synthesis method from a polymer complex. The usage of strontium hydroxide precursor instead of conventional strontium nitrate or strontium carbonate provides to the possibility of significant decrease of annealing temperature. It allows to prepare a material with sphere-shape grains of nanometric size (15-70 nm). The results of thermal analysis indicate that the crystallization of precursor takes place at different stages. The product after heat treatment at 600 °C for 3 h in air was also characterized by X-Ray diffraction method (XRD) and Fourier transform - infrared spectroscopy (FT-IR). After the crystallization and the impurity removal process, a single-phase material was obtained in case of all analyzed samples. The morphology of obtained nano-powders was also studied by a scanning electron microscopy (SEM). It can be concluded, that this method allows obtaining a perovskite phase of a metal doped SrTiO3 with nanometric particles.

  5. Efficient blue emission from ambient processed all-inorganic CsPbBr2Cl perovskite cubes

    NASA Astrophysics Data System (ADS)

    Paul, T.; Chatterjee, B. K.; Maiti, S.; Besra, N.; Thakur, S.; Sarkar, S.; Chanda, K.; Das, A.; Sardar, K.; Chattopadhyay, K. K.

    2018-04-01

    The recent resurgence of photovoltaic research has empowered all inorganic perovskite materials to take the center stage thus leading to a plethora of interesting results. Here, via a facile room-temperature synthesis protocol high quality cesium lead halide perovskite (CsPbBr2Cl) cubes has been realized. Surface morphology and crystallinity of the synthesized sample were investigated by FESEM and XRD respectively. To attain detail information of its chemical composition EDX analysis and elemental mapping were carried out. These single crystalline cubes crystallize in orthorhombic phase and exhibit strong photoluminescence emission at 482 nm with narrow FWHM value (˜18nm) and photoluminescence decay time of 10.44 ns. We believe, this facile synthesis protocol will pave the way for realization other perovskite cube and thereby their usage in several optoelectronic arena like as lasing, LEDs and photo detector etc.

  6. Clear microstructure-performance relationships in Mn-containing perovskite and hexaaluminate compounds prepared by activated reactive synthesis.

    PubMed

    Laassiri, Said; Bion, Nicolas; Duprez, Daniel; Royer, Sébastien; Alamdari, Houshang

    2014-03-07

    Microstructural properties of mixed oxides play essential roles in their oxygen mobility and consequently in their catalytic performances. Two families of mixed oxides (perovskite and hexaaluminate) with different microstructural features, such as crystal size and specific surface area, were prepared using the activated reactive synthesis (ARS) method. It was shown that ARS is a flexible route to synthesize both mixed oxides with nano-scale crystal size and high specific surface area. Redox properties and oxygen mobility were found to be strongly affected by the material microstructure. Catalytic activities of hexaaluminate and perovskite materials for methane oxidation were discussed in the light of structural, redox and oxygen mobility properties.

  7. Synthesis and Equation of State of Perovskites and Post-Perovskites in the (Mg,Fe)GeO3 System

    NASA Astrophysics Data System (ADS)

    Stan, C. V.; Dutta, R.; Krizan, J. W.; Cava, R. J.; Prakapenka, V.; Duffy, T. S.

    2016-12-01

    Knowledge of the effect of Fe on the physical and chemical properties of bridgmanite (perovskite, pv) and post-perovskite (ppv) is essential for interpreting seismic and geodynamic studies of the deep Earth. Silicate ppv is especially challenging to study due to the high pressure and temperature required for its synthesis ( 125 GPa and 2500 K in MgSiO3). This restricts the range of experiments possible and makes it very difficult to achieve well-characterized pressure-temperature conditions. Germanates have often been used as analogues because they undergo a similar sequence of phase transitions, but at lower pressures than their silicate counterparts. For example, MgGeO3 ppv can be synthesized at 63 GPa and 1800 K. In this study, polycrystalline pyroxenes (px) with compositions of (MgxFe1-x)2Ge2O6 (x = 1, 0.92, 0.78, 0.61, 0.52, 0) were synthesized and characterized using x-ray diffraction, Raman, Mössbauer, and microprobe analysis at ambient conditions. The px samples were found to exhibit a linear increase in lattice parameters and Raman mode shift with iron content. High-pressure x-ray diffraction experiments in the laser-heated diamond anvil cell were performed at beamline 13-ID-D of the Advanced Photon Source. All compositions were shown to transform to the pv ( 30 GPa and 1500 K) and ppv (> 55 GPa, 1600-1800 K) structures. Compositions with Mg# > 78 formed single-phase pv and ppv. Incorporation of Fe into the pv structure causes a decrease in octahedral distortion relative to the ideal cubic pv. Additionally, it leads to a modest decrease in bulk modulus (K0) and a modest increase in zero pressure volume (V0), and lowers the pv to ppv phase transition pressure by 10 GPa in the case of Mg#78 versus Mg#100. These novel high-pressure and -temperature analog phases can be of use for further investigation of the effect of Fe on the behavior of pv and ppv, including studies of site occupancies, spin state, and partitioning behavior.

  8. Rapid and direct synthesis of complex perovskite oxides through a highly energetic planetary milling

    PubMed Central

    Lee, Gyoung-Ja; Park, Eun-Kwang; Yang, Sun-A; Park, Jin-Ju; Bu, Sang-Don; Lee, Min-Ku

    2017-01-01

    The search for a new and facile synthetic route that is simple, economical and environmentally safe is one of the most challenging issues related to the synthesis of functional complex oxides. Herein, we report the expeditious synthesis of single-phase perovskite oxides by a high-rate mechanochemical reaction, which is generally difficult through conventional milling methods. With the help of a highly energetic planetary ball mill, lead-free piezoelectric perovskite oxides of (Bi, Na)TiO3, (K, Na)NbO3 and their modified complex compositions were directly synthesized with low contamination. The reaction time necessary to fully convert the micron-sized reactant powder mixture into a single-phase perovskite structure was markedly short at only 30–40 min regardless of the chemical composition. The cumulative kinetic energy required to overtake the activation period necessary for predominant formation of perovskite products was ca. 387 kJ/g for (Bi, Na)TiO3 and ca. 580 kJ/g for (K, Na)NbO3. The mechanochemically derived powders, when sintered, showed piezoelectric performance capabilities comparable to those of powders obtained by conventional solid-state reaction processes. The observed mechanochemical synthetic route may lead to the realization of a rapid, one-step preparation method by which to create other promising functional oxides without time-consuming homogenization and high-temperature calcination powder procedures. PMID:28387324

  9. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting

    NASA Astrophysics Data System (ADS)

    Fabbri, Emiliana; Nachtegaal, Maarten; Binninger, Tobias; Cheng, Xi; Kim, Bae-Jung; Durst, Julien; Bozza, Francesco; Graule, Thomas; Schäublin, Robin; Wiles, Luke; Pertoso, Morgan; Danilovic, Nemanja; Ayers, Katherine E.; Schmidt, Thomas J.

    2017-09-01

    The growing need to store increasing amounts of renewable energy has recently triggered substantial R&D efforts towards efficient and stable water electrolysis technologies. The oxygen evolution reaction (OER) occurring at the electrolyser anode is central to the development of a clean, reliable and emission-free hydrogen economy. The development of robust and highly active anode materials for OER is therefore a great challenge and has been the main focus of research. Among potential candidates, perovskites have emerged as promising OER electrocatalysts. In this study, by combining a scalable cutting-edge synthesis method with time-resolved X-ray absorption spectroscopy measurements, we were able to capture the dynamic local electronic and geometric structure during realistic operando conditions for highly active OER perovskite nanocatalysts. Ba0.5Sr0.5Co0.8Fe0.2O3-δ as nano-powder displays unique features that allow a dynamic self-reconstruction of the material’s surface during OER, that is, the growth of a self-assembled metal oxy(hydroxide) active layer. Therefore, besides showing outstanding performance at both the laboratory and industrial scale, we provide a fundamental understanding of the operando OER mechanism for highly active perovskite catalysts. This understanding significantly differs from design principles based on ex situ characterization techniques.

  10. Study of the B-site ion behaviour in the multiferroic perovskite bismuth iron chromium oxide

    NASA Astrophysics Data System (ADS)

    McBride, Bethany R.; Lieschke, Jonathon; Berlie, Adam; Cortie, David L.; Playford, Helen Y.; Lu, Teng; Narayanan, Narendirakumar; Withers, Ray L.; Yu, Dehong; Liu, Yun

    2018-04-01

    A simple, near-ambient pressure solid-state method was developed to nominally synthesize BiFe0.5Cr0.5O3. The procedure allowed the gram-scale production of multiferroic samples with appreciable purity and large amounts of Cr incorporation that were suitable for systematic structural investigation by neutron, X-ray, and electron diffraction in tandem with physical characterization of magnetic and ferroelectric properties. The rhombohedrally distorted perovskite phase was assigned to the space group R3c by way of X-ray and neutron powder diffraction analysis. Through a combination of magnetometry and muon spin relaxation, it is evident that there is magnetic ordering in the BFCO phase consistent with G-type antiferromagnetism and a TN ˜ 400 K. There is no clear evidence for chemical ordering of Fe and Cr in the B-site of the perovskite structure and this result is rationalized by density functional theory and bond valence simulations that show a lowered energy associated with a B-site disordered structure. We believe that our contribution of a new, low-complexity method for the synthesis of BFO type samples, and dialogue about realising certain types of ordering in oxide perovskite systems, will assist in the further development of multiferroics for next-generation devices.

  11. Unveiling the Shape Evolution and Halide-Ion-Segregation in Blue-Emitting Formamidinium Lead Halide Perovskite Nanocrystals Using an Automated Microfluidic Platform.

    PubMed

    Lignos, Ioannis; Protesescu, Loredana; Emiroglu, Dilara Börte; Maceiczyk, Richard; Schneider, Simon; Kovalenko, Maksym V; deMello, Andrew J

    2018-02-14

    Hybrid organic-inorganic perovskites and in particular formamidinium lead halide (FAPbX 3 , X = Cl, Br, I) perovskite nanocrystals (NCs) have shown great promise for their implementation in optoelectronic devices. Specifically, the Br and I counterparts have shown unprecedented photoluminescence properties, including precise wavelength tuning (530-790 nm), narrow emission linewidths (<100 meV) and high photoluminescence quantum yields (70-90%). However, the controlled formation of blue emitting FAPb(Cl 1-x Br x ) 3 NCs lags behind their green and red counterparts and the mechanism of their formation remains unclear. Herein, we report the formation of FAPb(Cl 1-x Br x ) 3 NCs with stable emission between 440 and 520 nm in a fully automated droplet-based microfluidic reactor and subsequent reaction upscaling in conventional laboratory glassware. The thorough parametric screening allows for the elucidation of parametric zones (FA-to-Pb and Br-to-Cl molar ratios, temperature, and excess oleic acid) for the formation of nanoplatelets and/or NCs. In contrast to CsPb(Cl 1-x Br x ) 3 NCs, based on online parametric screening and offline structural characterization, we demonstrate that the controlled synthesis of Cl-rich perovskites (above 60 at% Cl) with stable emission remains a challenge due to fast segregation of halide ions.

  12. Vapor Phase Synthesis of Organometal Halide Perovskite Nanowires for Tunable Room-Temperature Nanolasers.

    PubMed

    Xing, Jun; Liu, Xin Feng; Zhang, Qing; Ha, Son Tung; Yuan, Yan Wen; Shen, Chao; Sum, Tze Chien; Xiong, Qihua

    2015-07-08

    Semiconductor nanowires have received considerable attention in the past decade driven by both unprecedented physics derived from the quantum size effect and strong isotropy and advanced applications as potential building blocks for nanoscale electronics and optoelectronic devices. Recently, organic-inorganic hybrid perovskites have been shown to exhibit high optical absorption coefficient, optimal direct band gap, and long electron/hole diffusion lengths, leading to high-performance photovoltaic devices. Herein, we present the vapor phase synthesis free-standing CH3NH3PbI3, CH3NH3PbBr3, and CH3NH3PbIxCl3(-x) perovskite nanowires with high crystallinity. These rectangular cross-sectional perovskite nanowires have good optical properties and long electron hole diffusion length, which ensure adequate gain and efficient optical feedback. Indeed, we have demonstrated optical-pumped room-temperature CH3NH3PbI3 nanowire lasers with near-infrared wavelength of 777 nm, low threshold of 11 μJ/cm(2), and a quality factor as high as 405. Our research advocates the promise of optoelectronic devices based on organic-inorganic perovskite nanowires.

  13. Morphology-Controlled Synthesis of Organometal Halide Perovskite Inverse Opals.

    PubMed

    Chen, Kun; Tüysüz, Harun

    2015-11-09

    The booming development of organometal halide perovskites in recent years has prompted the exploration of morphology-control strategies to improve their performance in photovoltaic, photonic, and optoelectronic applications. However, the preparation of organometal halide perovskites with high hierarchical architecture is still highly challenging and a general morphology-control method for various organometal halide perovskites has not been achieved. A mild and scalable method to prepare organometal halide perovskites in inverse opal morphology is presented that uses a polystyrene-based artificial opal as hard template. Our method is flexible and compatible with different halides and organic ammonium compositions. Thus, the perovskite inverse opal maintains the advantage of straightforward structure and band gap engineering. Furthermore, optoelectronic investigations reveal that morphology exerted influence on the conducting nature of organometal halide perovskites. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Chitosan-Assisted Crystallization and Film Forming of Perovskite Crystals through Biomineralization.

    PubMed

    Yang, Yang; Sun, Chen; Yip, Hin-Lap; Sun, Runcang; Wang, Xiaohui

    2016-03-18

    Biomimetic mineralization is a powerful approach for the synthesis of advanced composite materials with hierarchical organization and controlled structure. Herein, chitosan was introduced into a perovskite precursor solution as a biopolymer additive to control the crystallization and to improve the morphology and film-forming properties of a perovskite film by way of biomineralization. The biopolymer additive was able to control the size and morphology of the perovskite crystals and helped to form smooth films. The mechanism of chitosan-mediated nucleation and growth of the perovskite crystals was explored. As a possible application, the chitosan-perovskite composite film was introduced into a planar heterojunction solar cell and increased power conversion efficiency relative to that observed for the pristine perovskite film was achieved. The biomimetic mineralization method proposed in this study provides an alternative way of preparing perovskite crystals with well-controlled morphology and properties and extends the applications of perovskite crystals in photoelectronic fields, including planar-heterojunction solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Advantages of barium peroxide in the powder synthesis of perovskite superconductors

    NASA Technical Reports Server (NTRS)

    Hepp, A. F.; Gaier, J. R.; Philipp, W. H.; Warner, J. D.; Garlick, R. G.; Pouch, J. J.

    1988-01-01

    This paper compares reaction chemistry, material processing, and material characteristics for the solid state reaction using BaCO3 or BaO2 in the synthesis of perovskite superconductors. Results are presented for weight loss and X-ray diffraction, sample morphology and homogeneity as monitored by SEM and EDS, and the superconductivity critical temperature and ac susceptibility. Greater mass density, increased sample homogeneity, lower resistance, and improved reproducibility for material are found when BaO32 is used.

  16. Growth of CH3NH3PbI3 Perovskite on Stainless Steel Substrate Layered by ZnO Nanoparticles Using One-Step Spin Coating Route

    NASA Astrophysics Data System (ADS)

    Fuad, A.; Fibriyanti, A. A.; Mufti, N.; Taufiq, A.; Maryam, S.; Hidayat, N.

    2018-04-01

    In this work, we report the preparation of CH3NH3PbI3 perovskite using one-step spin coating route for solar cell application. CH3NH3I• PbI2•DMF•DMSO complexes were coated on stainless steel as a subtrate layered by ZnO nanoparticles as an electron transport layer. To obtain samples with a special performance, we annealed the samples at a temperature of 100, 120, and 140°C for 10 minutes. The samples were then characterized by means of XRD, SEM/EDX, and Spectroscopic Ellipsometry. The analysis of XRD data presented that the CH3NH3PbI3 perovskites were successfully prepared and crystallized in tetragonal structure confirming from crystalline planes (110) and (220). Meanwhile, the particle size of the samples prepared at a temperature of 100, 120, and 140°C presented 42.96, 54.73, and 55.19 nm, respectively with coincide with the SEM images. The results indicated that the increase in temperature during synthesis influenced the particle growth. Furthermore, the characterization using Spectroscopic Ellipsometry exhibited that the CH3NH3PbI3 successfully layered on the substrate sizing nano metric scale that open high opportunity to be applied to solar cells with high performance.

  17. Design principles of perovskites for solar-driven thermochemical splitting of CO2† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7ta02081c

    PubMed Central

    Ezbiri, Miriam; Takacs, Michael; Stolz, Boris; Lungthok, Jeffrey; Steinfeld, Aldo

    2017-01-01

    Perovskites are attractive redox materials for thermo/electrochemical fuel synthesis. To design perovskites with balanced redox energetics for thermochemically splitting CO2, the activity of lattice oxygen vacancies and stability against crystal phase changes and detrimental carbonate formation are predicted for a representative range of perovskites by electronic structure computations. Systematic trends in these materials properties when doping with selected metal cations are described in the free energy range defined for isothermal and temperature-swing redox cycles. To confirm that the predicted materials properties root in the bulk chemical composition, selected perovskites are synthesized and characterized by X-ray diffraction, transmission electron microscopy, and thermogravimetric analysis. On one hand, due to the oxidation equilibrium, none of the investigated compositions outperforms non-stoichiometric ceria – the benchmark redox material for CO2 splitting with temperature-swings in the range of 800–1500 °C. On the other hand, certain promising perovskites remain redox-active at relatively low oxide reduction temperatures at which ceria is redox-inactive. This trade-off in the redox energetics is established for YFeO3, YCo0.5Fe0.5O3 and LaFe0.5Ni0.5O3, identified as stable against phase changes and capable to convert CO2 to CO at 600 °C and 10 mbar CO in CO2, and to being decomposed at 1400 °C and 0.1 mbar O2 with an enthalpy change of 440–630 kJ mol–1 O2. PMID:29456856

  18. Amorphous Hole-Transporting Material based on 2,2'-Bis-substituted 1,1'-Biphenyl Scaffold for Application in Perovskite Solar Cells.

    PubMed

    Magomedov, Artiom; Sakai, Nobuya; Kamarauskas, Egidijus; Jokubauskaitė, Gabrielė; Franckevičius, Marius; Jankauskas, Vygintas; Snaith, Henry J; Getautis, Vytautas

    2017-05-04

    Perovskite solar cells are considered a promising technology for solar-energy conversion, with power conversion efficiencies currently exceeding 20 %. In most of the reported devices, Spiro-OMeTAD is used for positive-charge extraction and transport layer. Although a number of alternative hole-transporting materials with different aromatic or heteroaromatic fragments have already been synthesized, a cheap and well-performing hole-transporting material is still in high demand. In this work, a two-step synthesis of a carbazole-based hole-transporting material is presented. Synthesized compounds exhibited amorphous nature, good solubility and thermal stability. The perovskite solar cells employing the newly synthesized material generated a power conversion efficiency of 16.5 % which is slightly lower than that obtained with Spiro-OMeTAD (17.5 %). The low-cost synthesis and high performance makes our hole-transport material promising for applications in perovskite-based optoelectronic devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Monolithic Perovskite Silicon Tandem Solar Cells with Advanced Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldschmidt, Jan C.; Bett, Alexander J.; Bivour, Martin

    2016-11-14

    For high efficiency monolithic perovskite silicon tandem solar cells, we develop low-temperature processes for the perovskite top cell, rear-side light trapping, optimized perovskite growth, transparent contacts and adapted characterization methods.

  20. Development of Ceramic Systems for High temperature Coatings

    NASA Technical Reports Server (NTRS)

    Eslamloo-Grami, Maryame

    2003-01-01

    Professor Eslamloo-Grami will synthesize ceramic powders of various compositions based on pyrochlore, perovskite, and magnetoplumbite structures by doping with various oxides. Sol-gel and combustion synthesis routes will be used for powder syntheses. The powders will be characterized for particle size, surface area, microstructure, sintering etc. Thermal conductivity of the hot pressed specimens will also be measured at various temperatures. At the end, a project report will be prepared describing in details the experimental methods, results, discussion, and future research.

  1. Automated microfluidic platform for systematic studies of colloidal perovskite nanocrystals: towards continuous nano-manufacturing.

    PubMed

    Epps, Robert W; Felton, Kobi C; Coley, Connor W; Abolhasani, Milad

    2017-11-21

    Colloidal organic/inorganic metal-halide perovskite nanocrystals have recently emerged as a potential low-cost replacement for the semiconductor materials in commercial photovoltaics and light emitting diodes. However, unlike III-V and IV-VI semiconductor nanocrystals, studies of colloidal perovskite nanocrystals have yet to develop a fundamental and comprehensive understanding of nucleation and growth kinetics. Here, we introduce a modular and automated microfluidic platform for the systematic studies of room-temperature synthesized cesium-lead halide perovskite nanocrystals. With abundant data collection across the entirety of four orders of magnitude reaction time span, we comprehensively characterize nanocrystal growth within a modular microfluidic reactor. The developed high-throughput screening platform features a custom-designed three-port flow cell with translational capability for in situ spectral characterization of the in-flow synthesized perovskite nanocrystals along a tubular microreactor with an adjustable length, ranging from 3 cm to 196 cm. The translational flow cell allows for sampling of twenty unique residence times at a single equilibrated flow rate. The developed technique requires an average total liquid consumption of 20 μL per spectra and as little as 2 μL at the time of sampling. It may continuously sample up to 30 000 unique spectra per day in both single and multi-phase flow formats. Using the developed plug-and-play microfluidic platform, we study the growth of cesium lead trihalide perovskite nanocrystals through in situ monitoring of their absorption and emission band-gaps at residence times ranging from 100 ms to 17 min. The automated microfluidic platform enables a systematic study of the effect of mixing enhancement on the quality of the synthesized nanocrystals through a direct comparison between single- and multi-phase flow systems at similar reaction time scales. The improved mixing characteristics of the multi-phase flow format results in high-quality perovskite nanocrystals with kinetically tunable emission wavelength, ranging as much as 25 nm at equivalent residence times. Further application of this unique platform would allow rapid parameter optimization in the colloidal synthesis of a wide range of nanomaterials (e.g., metal or semiconductor), that is directly transferable to continuous manufacturing in a numbered-up platform with a similar characteristic length scale.

  2. Synthesis, characterization, and catalytic activity of Rh-based lanthanum zirconate pyrochlores for higher alcohol synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelsayed, Victor; Shekhawat, Dushyant; Poston, James A.

    2013-05-01

    Two lanthanum zirconate pyrochlores (La{sub 2}Zr{sub 2}O{sub 7}; LZ) were prepared by Pechini method and tested for higher alcohols selectivity. In one, Rh was substituted into the pyrochlore lattice (LRZ, 1.7 wt%) while for the second, Rh was supported on an unsubstituted La{sub 2}Zr{sub 2}O{sub 7} (R/LZ, 1.8 wt%). X-ray photoelectron spectroscopy (XPS) and temperature programmed reduction (TPR) results show that the surface reducibility depends on whether the Rh is in (or supported on) the LZ pyrochlore. Rhodium in the LRZ is more reducible than rhodium supported on the R/LZ pyrochlore, likely due to the presence of a perovskite phasemore » (LaRhO{sub 3}; identified by XRD), in which rhodium is more reducible. The formation of the perovskite accompanies that of the pyrochlore. CO hydrogenation results show higher ethanol selectivity for R/LZ than LRZ, possibly due to the strong interaction between Rh and LZ on the R/LZ, forming atomically close Rh{sup +}/Rh{sup 0} sites, which have been suggested to favor ethanol production.« less

  3. Lead Halide Perovskites: Challenges and Opportunities in Advanced Synthesis and Spectroscopy

    DOE PAGES

    Rosales, Bryan A.; Hanrahan, Michael P.; Boote, Brett W.; ...

    2017-03-28

    Hybrid lead perovskites containing a mixture of organic and inorganic cations and anions have lead to solar cell devices with better performance and stability than their single halide analogs. Here, 207Pb solid-state nuclear magnetic resonance and single particle photoluminescence spectroscopies show that the structure and composition of mixed-halide and—likely—other hybrid lead perovskites is much more complex than previously thought and is highly dependent on their synthesis. While a majority of reports in the area focus on the construction of photovoltaic devices, this perspective focuses instead on achieving a better understanding of the fundamental chemistry and photophysics of these materials, asmore » this will aid not only in constructing improved devices, but also in generating new uses for these unique materials.« less

  4. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies

    DOE PAGES

    Bekenstein, Yehonadav; Koscher, Brent A.; Eaton, Samuel W.; ...

    2015-12-15

    Anisotropic colloidal quasi-two-dimensional nanoplates (NPLs) hold great promise as functional materials due to their combination of low dimensional optoelectronic properties and versatility through colloidal synthesis. Recently, lead-halide perovskites have emerged as important optoelectronic materials with excellent efficiencies in photovoltaic and light-emitting applications. Here we report the synthesis of quantum confined all inorganic cesium lead halide nanoplates in the perovskite crystal structure that are also highly luminescent (PLQY 84%). The controllable self-assembly of nanoplates either into stacked columnar phases or crystallographic-oriented thin-sheet structures is demonstrated. Furthermore, the broad accessible emission range, high native quantum yields, and ease of self-assembly make perovskitemore » NPLs an ideal platform for fundamental optoelectronic studies and the investigation of future devices.« less

  5. All-Solid-State Mechanochemical Synthesis and Post-Synthetic Transformation of Inorganic Perovskite-type Halides.

    PubMed

    Pal, Provas; Saha, Sujoy; Banik, Ananya; Sarkar, Arka; Biswas, Kanishka

    2018-02-06

    All-inorganic and hybrid perovskite type halides are generally synthesized by solution-based methods, with the help of long chain organic capping ligands, complex organometallic precursors, and high boiling organic solvents. Herein, a room temperature, solvent-free, general, and scalable all-solid-state mechanochemical synthesis is demonstrated for different inorganic perovskite type halides, with versatile structural connectivity in three (3D), two (2D), and zero (0D) dimensions. 3D CsPbBr 3 , 2D CsPb 2 Br 5 , 0D Cs 4 PbBr 6 , 3D CsPbCl 3 , 2D CsPb 2 Cl 5 , 0D Cs 4 PbCl 6 , 3D CsPbI 3 , and 3D RbPbI 3 have all been synthesized by this method. The all-solid-state synthesis is materialized through an inorganic retrosynthetic approach, which directs the decision on the solid-state precursors (e.g., CsX and PbX 2 (X=Cl/Br/I) with desired stoichiometric ratios. Moreover, post-synthetic structural transformations from 3D to 2D and 0D perovskite halides were performed by the same mechanochemical synthetic approach at room temperature. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corredor, L.T.; Programa de Pós-Graduação em Ciências de Materiais-CCEN, Universidade Federal de Pernambuco, 50670-901 Recife, PE; Grupo de Física de Nuevos Materiales, Departamento de Física, Universidad Nacional de Colombia, Bogotá D.C.

    Highlights: • We investigated the effect of the dilution of magnetic Ru sub-lattice of RuSr{sub 2}GdCu{sub 2}O{sub 8}. • We synthesized the doped compound Rui{sub x}Re{sub x}Sr{sub 2}GdCu{sub 2}O{sub y}, for 3%, 6%, 9% and 12% Re. • Re would affect the electron coupling: just 3 and 6% samples were superconductor. • Superconductivity emergence strongly affects magnetic properties of 3 and 6% samples. • A weak ferromagnetic component is consistent with a globally antiferromagnetic system. - Abstract: Despite the discovery of new superconductors classes, high-Tc oxides continue to be a current topic, because of their complex phase diagrams and doping-dependantmore » effects (allowing one to investigate the interaction between orbitals), as well as structural properties such as lattice distortion and charge ordering, among many others. Ruthenocuprates are magnetic superconductors in which the magnetic transition temperature is much higher than the critical superconducting temperature, making them unique compounds. With the aim of investigating the dilution of the magnetic Ru sub-lattice, we proposed the synthesis of the Ru{sub 1−x}Re{sub x}Sr{sub 2}GdCu{sub 2}O{sub y} ruthenocuprate-type family, adapting the known two-step process (double perovskite + CuO) by directly doping the double perovskite, thus obtaining the perovskite compound Sr{sub 2}GdRu{sub 1−x}Re{sub x}O{sub y}, which represents a new synthesis process to the best of our knowledge. Our samples were structurally characterized through X-ray diffraction, and the patterns were analysed via Rietveld refinement. A complete magnetic characterization as a function of temperature and applied field, as well as transport measurements were carried out. We discuss our results in the light of the two-lattice model for ruthenocuprates, and a relation between RuO{sub 2} (magnetic) and CuO{sub 2} (superconductor) sub-lattices can clearly be observed.« less

  7. Molten Salt Synthesis and Structural Characterization of BaTiO3 Nanocrystal Ceramics

    NASA Astrophysics Data System (ADS)

    Ahda, S.; Misfadhila, S.; Parikin, P.; Putra, T. Y. S. P.

    2017-02-01

    A new synthesis route to obtain high-purity barium titanate powder, BaTiO3, using the molten salt method by reacting the raw materials (BaCO3 and TiO2) in an atmosphere of molten NaCl and KCl, has been developed. The synthesized BaTiO3 ceramic particles have been successfully carried out at the sintering temperature 950°C for 4 hours. The Rietveld refinement of the XRD diffraction patterns was employed to characterize the structural information of the nanocrystalline BaTiO3 ceramics. The lattice parameters (a=4.0043 Å, b=4.0308Å with space group P4mm) of tetragonal perovskite structure, as an indication of piezoelectric characteristics, have been successfully determined by the Rietveld refinement. While the crystallitte particle size and strains have been obtained for the values of 110.6 nm and 0.74 % respectively

  8. Photocatalyst of Perovskite CaTiO3 Nanopowder Synthesized from CaO derived from Snail Shell in Comparison with The Use of CaO and CaCO3

    NASA Astrophysics Data System (ADS)

    Fatimah, I.; Rahmadianti, Y.; Pudiasari, R. A.

    2018-04-01

    Calcium titanate belongs to the important group of compounds with a perovskite structure having high dielectric loss for various applications including photocatalysis mechanism. Refer to the principles of green chemistry, in this work preparation of CaTiO3 was conducted by using CaO derived from snail shell. Aim of this research are to study the physicochemical character of perovskite derived from snail shell and its comparison with CaO and CaCO3 as Ca sources. Material preparation was performed by solid reaction of Ca sources with TiO2 under comparison with CaO and CaCO3 precursors. Mixture of Ca sources with TiO2 in certain proportion were ground and calcined at the temperature of 200 °C for 2 hs. Materials were characterized by using X-ray diffractometer (XRD), Fourier Transform-Infra Red (FTIR) and the photocatalytic activity was tested by using methylene blue photooxidation. Perovskite synthesized using CaO derived from snail shell exhibits the similar XRD pattern with that were prepared by using CaO and CaCO3. From the photooxidation activity test, it is proven that CaTiO3 shows similar photocatalytic activity correspond to that were prepared by CaO and CaCO3. Utilazation of shell as agricultural waste of the synthesis of CaTiO3 perovskite is the novelty of this work. Furthermore, the study on material structure and photoactivity is the main focuses for the application in industry and environment.

  9. Perovskites in catalysis and electrocatalysis

    NASA Astrophysics Data System (ADS)

    Hwang, Jonathan; Rao, Reshma R.; Giordano, Livia; Katayama, Yu; Yu, Yang; Shao-Horn, Yang

    2017-11-01

    Catalysts for chemical and electrochemical reactions underpin many aspects of modern technology and industry, from energy storage and conversion to toxic emissions abatement to chemical and materials synthesis. This role necessitates the design of highly active, stable, yet earth-abundant heterogeneous catalysts. In this Review, we present the perovskite oxide family as a basis for developing such catalysts for (electro)chemical conversions spanning carbon, nitrogen, and oxygen chemistries. A framework for rationalizing activity trends and guiding perovskite oxide catalyst design is described, followed by illustrations of how a robust understanding of perovskite electronic structure provides fundamental insights into activity, stability, and mechanism in oxygen electrocatalysis. We conclude by outlining how these insights open experimental and computational opportunities to expand the compositional and chemical reaction space for next-generation perovskite catalysts.

  10. Synthesis and characterization of oxyanion (phosphate, sulphate) doped Ba{sub 2}Sc{sub 2-y}Ga{sub y}O{sub 5}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, A.D.; Shin, J.F.; Slater, P.R., E-mail: p.r.slater@bham.ac.uk

    2013-02-15

    In this paper we examine the effect of partial substitution of Ga for Sc in the oxyanion (phosphate, sulphate) containing perovskites, Ba{sub 2}Sc{sub 2-x}P{sub x}O{sub 5+x} and Ba{sub 2}Sc{sub 2-x}S{sub x}O{sub 5+3x/2} with the samples analysed through a combination of X-ray diffraction, TGA, Raman spectroscopy and conductivity measurements. The results demonstrate that in both cases, Ga can be incorporated in place of Sc up to 40%. In order to accommodate the increasing Ga content, a reduction in the oxyanion content is required. Thus for the highest Ga content sample achieved, only 10% oxyanion incorporation was achieved giving endmember compositions ofmore » Ba{sub 2}ScGa{sub 0.8}P{sub 0.2}O{sub 5.2} and Ba{sub 2}ScGa{sub 0.8}S{sub 0.2}O{sub 5.3} for phosphate and sulphate doping respectively. While the Ga doping was shown to significantly improve the stability of the systems towards CO{sub 2} containing atmospheres, conductivity measurements showed a reduction in the conductivity with increasing Ga content. - Graphical abstract: Phosphate and sulphate doped Ba{sub 2}Sc{sub 2-x}Ga{sub x}O{sub 5} perovskites have been successfully prepared, with the highest conductivities observed for samples with the lowest Ga content. Highlights: Black-Right-Pointing-Pointer The successful synthesis of phosphate and sulphate doped Ba{sub 2}Sc{sub 2-x}Ga{sub x}O{sub 5} perovskites. Black-Right-Pointing-Pointer The demonstration of significant oxide ion and proton conduction in these perovskites. Black-Right-Pointing-Pointer The demonstration of improved CO{sub 2} stability with increasing Ga content.« less

  11. Synthesis and Characterization of the Rare-Earth Hybrid Double Perovskites: (CH3NH3)2KGdCl6 and (CH3NH3)2KYCl6.

    PubMed

    Deng, Zeyu; Wei, Fengxia; Brivio, Federico; Wu, Yue; Sun, Shijing; Bristowe, Paul D; Cheetham, Anthony K

    2017-10-19

    Two hybrid rare-earth double perovskites, (CH 3 NH 3 ) 2 KGdCl 6 and (CH 3 NH 3 ) 2 KYCl 6 , have been synthesized by a solution evaporation method and their structures determined by variable temperature single-crystal X-ray diffraction. The diffraction results show that at room temperature both perovskites adopt a rhombohedral structure with R3̅m symmetry, as found previously for (MA) 2 KBiCl 6 , and lattice parameters of a = 7.7704(5) Å and c = 20.945(2) Å for (MA) 2 KGdCl 6 and a = 7.6212(12) Å and c = 20.742(4) Å for (MA) 2 KYCl 6 . Both phases exhibit a rhombohedral-to-cubic phase transition on heating to ∼435 K for (MA) 2 KYCl 6 and ∼375 K for (MA) 2 KGdCl 6 . Density functional calculations on the rhombohedral phase indicate that both materials have large direct band gaps, are mechanically stable, and, in the case of (MA) 2 KGdCl 6 , could exhibit magnetic ordering at low temperatures.

  12. High-pressure synthesis, crystal chemistry and physics of perovskites with small cations at the A site.

    PubMed

    Belik, Alexei A; Yi, Wei

    2014-04-23

    ABO3 perovskites with small cations at the A site (A = Sc(3+), In(3+) and Mn(2+) and B = Al(3+) and transition metals) are reviewed. They extend the corresponding families of perovskites with A(3+) = Y, La-Lu, and Bi and A(2+) = Cd, Ca, Sr and Ba and exhibit the largest structural distortions. As a result of these large distortions, they show, in many cases, distinct structural and magnetic properties. These are manifested in: B-site-ordered monoclinic structures of ScMnO3 and 'InMnO3'; an unusual superstructure of ScRhO3 and InRhO3; antiferromagnetic ground states and multiferroic properties of Sc2NiMnO6 and In2NiMnO6; two magnetic transitions in ScCrO3 and InCrO3 with very close transition temperatures; a Pnma-to-P-1 structural transition and k = (½, 0, ½) magnetic ordering in ScVO3; and incommensurate magnetic ordering of Mn(2+) spins in metallic MnVO3. A large number of simple ScBO3, InBO3 and MnBO3 perovskites has not been synthesized yet, and the number of experimental and theoretical works on each known ScBO3, InBO3 and MnBO3 perovskites counts to only one or two (except for ScAlO3). The synthesis, crystal chemistry and physics of perovskites with small cations at the A site is an emerging field in perovskite science.

  13. Fabrication of Lead-Free (CH3 NH3 )3 Bi2 I9 Perovskite Photovoltaics in Ethanol Solvent.

    PubMed

    Li, Haijin; Wu, Congcong; Yan, Yongke; Chi, Bo; Pu, Jian; Li, Jian; Priya, Shashank

    2017-10-23

    The toxicity of lead present in organohalide perovskites and the hazardous solvent systems used for their synthesis hinder the deployment of perovskite solar cells (PSCs). Herein, an environmentally friendly route toward bismuth-based, lead-free (CH 3 NH 3 ) 3 Bi 2 I 9 perovskites that utilize ethanol as the solvent is described. Using this method, dense and homogeneous microstructures were obtained, compared to the porous, rough microstructures obtained using dimethylformamide. Photovoltaic performances were enhanced, with an open-circuit voltage of 0.84 V measured. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Topochemical synthesis of cation ordered double perovskite oxynitrides.

    PubMed

    Ceravola, Roberta; Oró-Solé, Judith; Black, Ashley P; Ritter, Clemens; Puente Orench, Inés; Mata, Ignasi; Molins, Elies; Frontera, Carlos; Fuertes, Amparo

    2017-04-19

    Topochemical nitridation in ammonia at moderate temperatures of cation ordered Sr 2 FeWO 6 produces new antiferromagnetic double perovskite oxynitrides Sr 2 FeWO 6-x N x with 0 < x ≤ 1. Nitrogen introduction induces the oxidation of Fe 2+ to Fe 3+ and decreases T N from 38 K (x = 0) to 13 K for Sr 2 FeWO 5 N which represents the first example of a double perovskite oxynitride with both high cationic order and nitrogen content. This synthetic approach can be extended to other cation combinations expanding the possibility of new materials in the large group of double perovskites.

  15. Synthesis of new nanocrystal materials

    NASA Astrophysics Data System (ADS)

    Hassan, Yasser Hassan Abd El-Fattah

    Colloidal semiconductor nanocrystals (NCs) have sparked great excitement in the scientific community in last two decades. NCs are useful for both fundamental research and technical applications in various fields owing to their size and shape-dependent properties and their potentially inexpensive and excellent chemical processability. These NCs are versatile fluorescence probes with unique optical properties, including tunable luminescence, high extinction coefficient, broad absorption with narrow photoluminescence, and photobleaching resistance. In the past few years, a lot of attention has been given to nanotechnology based on using these materials as building blocks to design light harvesting assemblies. For instant, the pioneering applications of NCs are light-emitting diodes, lasers, and photovoltaic devices. Synthesis of the colloidal stable semiconductor NCs using the wet method of the pyrolysis of organometallic and chalcogenide precursors, known as hot-injection approach, is the chart-topping preparation method in term of high quality and monodisperse sized NCs. The advancement in the synthesis of these artificial materials is the core step toward their applications in a broad range of technologies. This dissertation focuses on exploring various innovative and novel synthetic methods of different types of colloidal nanocrystals, both inorganic semiconductors NCs, also known as quantum dots (QDs), and organic-inorganic metal halide-perovskite materials, known as perovskites. The work presented in this thesis focuses on pursuing fundamental understanding of the synthesis, material properties, photophysics, and spectroscopy of these nanostructured semiconductor materials. This thesis contains 6 chapters and conclusions. Chapters 1?3 focus on introducing theories and background of the materials being synthesized in the thesis. Chapter 4 demonstrates our synthesis of colloidal linker--free TiO2/CdSe NRs heterostructures with CdSe QDs grown in the presence of TiO2 NRs using seeded--growth type colloidal injection approach. Chapter 5 explores a novel approach of directly synthesized CdSe NCs with electroactive ligands. The last Chapter focuses on a new class of perovskites. I describe my discovery of a (bottom-up) simple method to synthesize colloidally stable methyl ammonium lead halide perovskite nanocrystals seeded from high quality PbX2 NCs with a pre-targeted size. This chapter reports advances in preparation of both these materials (PbX2, and lead halide perovskite NCs).

  16. Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells.

    PubMed

    Zhang, Wei; Saliba, Michael; Moore, David T; Pathak, Sandeep K; Hörantner, Maximilian T; Stergiopoulos, Thomas; Stranks, Samuel D; Eperon, Giles E; Alexander-Webber, Jack A; Abate, Antonio; Sadhanala, Aditya; Yao, Shuhua; Chen, Yulin; Friend, Richard H; Estroff, Lara A; Wiesner, Ulrich; Snaith, Henry J

    2015-01-30

    To date, there have been a plethora of reports on different means to fabricate organic-inorganic metal halide perovskite thin films; however, the inorganic starting materials have been limited to halide-based anions. Here we study the role of the anions in the perovskite solution and their influence upon perovskite crystal growth, film formation and device performance. We find that by using a non-halide lead source (lead acetate) instead of lead chloride or iodide, the perovskite crystal growth is much faster, which allows us to obtain ultrasmooth and almost pinhole-free perovskite films by a simple one-step solution coating with only a few minutes annealing. This synthesis leads to improved device performance in planar heterojunction architectures and answers a critical question as to the role of the anion and excess organic component during crystallization. Our work paves the way to tune the crystal growth kinetics by simple chemistry.

  17. Acid–base catalysis over perovskites: a review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polo-Garzon, Felipe; Wu, Zili

    We present that perovskite catalysts have been extensively studied for reduction–oxidation (redox) reactions; however, their acid–base catalytic properties are still under-explored. This review collects work aiming to study the acid–base catalytic properties of perovskites. Reports regarding combined acid–base/redox catalysis over perovskites lie beyond the scope of the present review. For the characterization of acid–base properties, researchers have studied the interaction of probe molecules with perovskite surfaces by means of multiple techniques that provide information about the density, strength and type of adsorption sites. The top-surface composition of perovskites, which relates to the abundance of the acid–base sites, has been studiedmore » by means of low energy ion scattering (LEIS), and, the less surface sensitive, conventional X-ray photoelectron spectroscopy (XPS). Probe reactions, with the conversion of 2-propanol as the common choice, have also been employed for characterizing the acid–base catalytic properties of perovskites. The complex nature of perovskite surfaces, which explains the still absent fundamental relations between the structure of the catalyst and reaction rates/selectivity, encounters a great challenge due to the surface reconstruction of these materials. In this review, we devote a special section to highlight recent publications that report the impact of surface reconstruction and particle shape on acid–base catalysis over perovskites. In addition, we review promising catalytic performances of perovskite catalysts for other reactions of interest. Challenges in acid–base catalysis over perovskites focus on the development of time-resolved monolayer-sensitive characterization of surfaces under operando conditions and the discernment of combined acid–base/redox reaction mechanisms. Finally, opportunities lay on tuning the acid–base characteristics of perovskites with computation-based catalytic descriptors to achieve desired selectivities and enhanced rates.« less

  18. Acid–base catalysis over perovskites: a review

    DOE PAGES

    Polo-Garzon, Felipe; Wu, Zili

    2018-01-15

    We present that perovskite catalysts have been extensively studied for reduction–oxidation (redox) reactions; however, their acid–base catalytic properties are still under-explored. This review collects work aiming to study the acid–base catalytic properties of perovskites. Reports regarding combined acid–base/redox catalysis over perovskites lie beyond the scope of the present review. For the characterization of acid–base properties, researchers have studied the interaction of probe molecules with perovskite surfaces by means of multiple techniques that provide information about the density, strength and type of adsorption sites. The top-surface composition of perovskites, which relates to the abundance of the acid–base sites, has been studiedmore » by means of low energy ion scattering (LEIS), and, the less surface sensitive, conventional X-ray photoelectron spectroscopy (XPS). Probe reactions, with the conversion of 2-propanol as the common choice, have also been employed for characterizing the acid–base catalytic properties of perovskites. The complex nature of perovskite surfaces, which explains the still absent fundamental relations between the structure of the catalyst and reaction rates/selectivity, encounters a great challenge due to the surface reconstruction of these materials. In this review, we devote a special section to highlight recent publications that report the impact of surface reconstruction and particle shape on acid–base catalysis over perovskites. In addition, we review promising catalytic performances of perovskite catalysts for other reactions of interest. Challenges in acid–base catalysis over perovskites focus on the development of time-resolved monolayer-sensitive characterization of surfaces under operando conditions and the discernment of combined acid–base/redox reaction mechanisms. Finally, opportunities lay on tuning the acid–base characteristics of perovskites with computation-based catalytic descriptors to achieve desired selectivities and enhanced rates.« less

  19. All Inorganic Halide Perovskites Nanosystem: Synthesis, Structural Features, Optical Properties and Optoelectronic Applications.

    PubMed

    Li, Xiaoming; Cao, Fei; Yu, Dejian; Chen, Jun; Sun, Zhiguo; Shen, Yalong; Zhu, Ying; Wang, Lin; Wei, Yi; Wu, Ye; Zeng, Haibo

    2017-03-01

    The recent success of organometallic halide perovskites (OHPs) in photovoltaic devices has triggered lots of corresponding research and many perovskite analogues have been developed to look for devices with comparable performance but better stability. Upon the preparation of all inorganic halide perovskite nanocrystals (IHP NCs), research activities have soared due to their better stability, ultrahigh photoluminescence quantum yield (PL QY), and composition dependent luminescence covering the whole visible region with narrow line-width. They are expected to be promising materials for next generation lighting and display, and many other applications. Within two years, a lot of interesting results have been observed. Here, the synthesis of IHPs is reviewed, and their progresses in optoelectronic devices and optical applications, such as light-emitting diodes (LEDs), photodetectors (PDs), solar cells (SCs), and lasing, is presented. Information and recent understanding of their crystal structures and morphology modulations are addressed. Finally, a brief outlook is given, highlighting the presently main problems and their possible solutions and future development directions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. ZnO/perovskite core–shell nanorod array based monolithic catalysts with enhanced propane oxidation and material utilization efficiency at low temperature

    DOE PAGES

    Wang, Sibo; Ren, Zheng; Song, Wenqiao; ...

    2015-04-24

    Here, a hydrothermal strategy combined with colloidal deposition synthesis was successfully used to grow ZnO/perovskite (LaBO 3, B=Mn, Co, Ni) core-shell nanorod arrays within three dimensional (3-D) honeycomb cordierite substrates. A facile sonication assisted colloidal wash coating process is able to coat a uniformly dispersed perovskite nanoparticles onto the large scale ZnO nanorod arrays rooted on the channel surfaces of the 3D cordierite substrate achieved by hydrothermal synthesis. Compared to traditional wash-coated perovskite catalysts, an enhanced catalytic performance was observed for propane oxidation with 25°C lower light-off temperature than wash-coated perovskite catalyst of similar LaMnO 3 loading (4.3mg). Temperature programmedmore » reduction and desorption under H 2 and O 2 atmosphere, respectively, were used to study the reducibility and oxygen activity of these core-shell nanorod arrays based monolithic catalysts, revealing a catalytic activity sequence of LaCoO 3>LaMnO 3>La 2NiO 4 at the initial stage of catalytic reaction. The good dispersion and size control in La-based perovskite nanoparticles and their interfaces to ZnO nanorod arrays support may contribute to the enhancement of catalytic performance. Lastly, this work may provide a new type of Pt-group metals (PGM) free catalysts with improved catalytic performance for hydrocarbon oxidations at low temperatures.« less

  1. Emulsion Synthesis of Size-Tunable CH3NH3PbBr3 Quantum Dots: An Alternative Route toward Efficient Light-Emitting Diodes.

    PubMed

    Huang, Hailong; Zhao, Fangchao; Liu, Lige; Zhang, Feng; Wu, Xian-gang; Shi, Lijie; Zou, Bingsuo; Pei, Qibing; Zhong, Haizheng

    2015-12-30

    We report a facile nonaqueous emulsion synthesis of colloidal halide perovskite quantum dots by controlled addition of a demulsifier into an emulsion of precursors. The size of resulting CH3NH3PbBr3 quantum dots can be tuned from 2 to 8 nm by varying the amount of demulsifier. Moreover, this emulsion synthesis also allows the purification of these quantum dots by precipitation from the colloidal solution and obtains solid-state powder which can be redissolved for thin film coating and device fabrication. The photoluminescence quantum yields of the quantum dots is generally in the range of 80-92%, and can be well-preserved after purification (∼80%). Green light-emitting diodes fabricated comprising a spin-cast layer of the colloidal CH3NH3PbBr3 quantum dots exhibited maximum current efficiency of 4.5 cd/A, power efficiency of 3.5 lm/W, and external quantum efficiency of 1.1%. This provides an alternative route toward high efficient solution-processed perovskite-based light-emitting diodes. In addition, the emulsion synthesis is versatile and can be extended for the fabrication of inorganic halide perovskite colloidal CsPbBr3 nanocrystals.

  2. Combustion synthesis of LaFeO{sub 3} sensing nanomaterial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaza, F., E-mail: fabio.zaza@enea.it; Serra, E.; Pallozzi, V.

    2015-06-23

    Since industrial revolution, human activities drive towards unsustainable global economy due to the overexploitation of natural resources and the unacceptable emissions of pollution and greenhouse gases. In order to address that issue, engineering research has been focusing on gas sensors development for monitoring gas emissions and controlling the combustion process sustainability. Semiconductors metal oxides sensors are attractive technology because they require simple design and fabrication, involving high accessibility, small size and low cost. Perovskite oxides are the most promising sensing materials because sensitivity, selectivity, stability and speed-response can be modulated and optimized by changing the chemical composition. One of themore » most convenient synthesis process of perovskite is the citrate-nitrate auto-combustion method, in which nitrate is the oxidizing agent and citrate is the fuel and the chelating argent in the same time. Since the sensibility of perovskite oxides depends on the defective crystallographic structure and the nanomorphology, the experimental was designed in order to study the dependence of powder properties on the synthesis conditions, such as the solution acidity and the relative amount of metals, nitrates and citric acid. Crystalline structure was studied in depth for defining the effects of synthesis conditions on size, morphology and crystallographic structure of nanopowders of LaFeO{sub 3}.« less

  3. Combustion synthesis of LaFeO3 sensing nanomaterial

    NASA Astrophysics Data System (ADS)

    Zaza, F.; Pallozzi, V.; Serra, E.; Pasquali, M.

    2015-06-01

    Since industrial revolution, human activities drive towards unsustainable global economy due to the overexploitation of natural resources and the unacceptable emissions of pollution and greenhouse gases. In order to address that issue, engineering research has been focusing on gas sensors development for monitoring gas emissions and controlling the combustion process sustainability. Semiconductors metal oxides sensors are attractive technology because they require simple design and fabrication, involving high accessibility, small size and low cost. Perovskite oxides are the most promising sensing materials because sensitivity, selectivity, stability and speed-response can be modulated and optimized by changing the chemical composition. One of the most convenient synthesis process of perovskite is the citrate-nitrate auto-combustion method, in which nitrate is the oxidizing agent and citrate is the fuel and the chelating argent in the same time. Since the sensibility of perovskite oxides depends on the defective crystallographic structure and the nanomorphology, the experimental was designed in order to study the dependence of powder properties on the synthesis conditions, such as the solution acidity and the relative amount of metals, nitrates and citric acid. Crystalline structure was studied in depth for defining the effects of synthesis conditions on size, morphology and crystallographic structure of nanopowders of LaFeO3.

  4. Synthesis of a polar ordered oxynitride perovskite

    NASA Astrophysics Data System (ADS)

    Vadapoo, Rajasekarakumar; Ahart, Muhtar; Somayazulu, Maddury; Holtgrewe, Nicholas; Meng, Yue; Konopkova, Zuzana; Hemley, Russell J.; Cohen, R. E.

    2017-06-01

    For decades, numerous attempts have been made to produce polar oxynitride perovskites, where some of the oxygen is replaced by nitrogen, but a polar ordered oxynitride has never been demonstrated. Caracas and Cohen [Appl. Phys. Lett. 91, 092902 (2007), 10.1063/1.2776370] studied possible ordered polar oxynitrides within density-functional theory (DFT) and found a few candidates that were predicted to be insulating and at least metastable. YSi O2N stood out with huge predicted polarization and nonlinear optic coefficients. In this study, we demonstrate the synthesis of perovskite-structured YSi O2N by using a combination of a diamond-anvil cell and in situ laser-heating techniques. Subsequent in situ x-ray diffraction, second-harmonic generation, and Raman-scattering measurements confirm that it is polar and a strong nonlinear optical material, with structure and properties similar to those predicted by DFT.

  5. Synthesis of a polar ordered oxynitride perovskite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vadapoo, Rajasekarakumar; Ahart, Muhtar; Somayazulu, Maddury

    For decades, numerous attempts have been made to produce polar oxynitride perovskites, where some of the oxygen is replaced by nitrogen, but a polar ordered oxynitride has never been demonstrated. Caracas and Cohen [Appl. Phys. Lett. 91, 092902 (2007)] studied possible ordered polar oxynitrides within density-functional theory (DFT) and found a few candidates that were predicted to be insulating and at least metastable. YSi O 2 N stood out with huge predicted polarization and nonlinear optic coefficients. In this study, we demonstrate the synthesis of perovskite-structured YSi O 2 N by using a combination of a diamond-anvil cell and inmore » situ laser-heating techniques. Subsequent in situ x-ray diffraction, second-harmonic generation, and Raman-scattering measurements confirm that it is polar and a strong nonlinear optical material, with structure and properties similar to those predicted by DFT.« less

  6. Novel catalytic properties of quadruple perovskites

    PubMed Central

    Yamada, Ikuya

    2017-01-01

    ABSTRACT Quadruple perovskite oxides AA′3 B 4O12 demonstrate a rich variety of structural and electronic properties. A large number of constituent elements for A/A′/B-site cations can be introduced using the ultra-high-pressure synthesis method. Development of novel functional materials consisting of earth-abundant elements plays a crucial role in current materials science. In this paper, functional properties, especially oxygen reaction catalysis, for quadruple perovskite oxides CaCu3Fe4O12 and AMn7O12 (A = Ca, La) composed of earth-abundant elements are reviewed. PMID:28970864

  7. Chalcogenide Perovskites for Solar Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Perera, Samanthe

    Methylammonium Lead halide perovskites have recently emerged as a promising candidate for realizing high efficient low cost photovoltaic modules. Charge transport properties of the solution processed halide perovskites are comparable to some of the existing absorbers used in the current PV industry which require sophisticated processing techniques. Due to this simple processing required to achieve high efficiencies, halide perovskites have become an active field of research. As a result, perovskite solar cells are rapidly reaching towards theoretical efficiency limit of close to 30%. It's believed that ionicity inherent to perovskite materials is one of the contributing factors for the excellent charge transport properties of perovskites. Despite the growing interest for solar energy harvesting purposes, these halide perovskites have serious limitations such as toxicity and instability that need to be addressed in order to commercialize the solar cells incorporating them. This dissertation focuses on a new class of ionic semiconductors, chalcogenide perovskites for solar energy harvesting purposes. Coming from the family perovskites they are expected to have same excellent charge transport properties inherent to perovskites due to the ionicity. Inspired by few theoretical studies on chalcogenide perovskites, BaZrS3 and its Ti alloys were synthesized by sulfurizing the oxide counterpart. Structural characterizations have confirmed the predicted distorted perovskite phase. Optical characterizations have verified the direct band gap suitable for thin film single junction solar cells. Anion alloying was demonstrated by synthesizing oxysulfides with widely tunable band gap suitable for applications such as solid state lighting and sensing.

  8. Innovatively Continuous Mass Production Couette-taylor Flow: Pure Inorganic Green-Emitting Cs4PbBr6 Perovskite Microcrystal for display technology.

    PubMed

    Song, Young Hyun; Choi, Seung Hee; Park, Won Kyu; Yoo, Jin Sun; Kwon, Seok Bin; Kang, Bong Kyun; Park, Sang Ryul; Seo, Young Soo; Yang, Woo Seok; Yoon, Dae Ho

    2018-01-31

    We report for the first time the mass production of Cs 4 PbBr 6 perovskite microcrystal with a Couette-Taylor flow reactor in order to enhance the efficiency of the synthesis reaction. We obtained a pure Cs 4 PbBr 6 perovskite solid within 3 hrs that then realized a high photoluminescence quantum yield (PLQY) of 46%. Furthermore, the Cs 4 PbBr 6 perovskite microcrystal is applied with red emitting K 2 SiF 6 phosphor on a blue-emitting InGaN chip, achieving a high-performance luminescence characteristics of 9.79 lm/W, external quantum efficiency (EQE) of 2.9%, and correlated color temperature (CCT) of 2976 K; therefore, this perovskite is expected to be a promising candidate material for applications in optoelectronic devices.

  9. Perovskites in catalysis and electrocatalysis.

    PubMed

    Hwang, Jonathan; Rao, Reshma R; Giordano, Livia; Katayama, Yu; Yu, Yang; Shao-Horn, Yang

    2017-11-10

    Catalysts for chemical and electrochemical reactions underpin many aspects of modern technology and industry, from energy storage and conversion to toxic emissions abatement to chemical and materials synthesis. This role necessitates the design of highly active, stable, yet earth-abundant heterogeneous catalysts. In this Review, we present the perovskite oxide family as a basis for developing such catalysts for (electro)chemical conversions spanning carbon, nitrogen, and oxygen chemistries. A framework for rationalizing activity trends and guiding perovskite oxide catalyst design is described, followed by illustrations of how a robust understanding of perovskite electronic structure provides fundamental insights into activity, stability, and mechanism in oxygen electrocatalysis. We conclude by outlining how these insights open experimental and computational opportunities to expand the compositional and chemical reaction space for next-generation perovskite catalysts. Copyright © 2017, American Association for the Advancement of Science.

  10. Low-Dimensional Organic-Inorganic Halide Perovskite: Structure, Properties, and Applications.

    PubMed

    Misra, Ravi K; Cohen, Bat-El; Iagher, Lior; Etgar, Lioz

    2017-10-09

    Three-dimensional (3 D) perovskite has attracted a lot of attention owing to its success in photovoltaic (PV) solar cells. However, one of its major crucial issues lies in its stability, which has limited its commercialization. An important property of organic-inorganic perovskite is the possibility of forming a layered material by using long organic cations that do not fit into the octahedral cage. These long organic cations act as a "barrier" that "caps" 3 D perovskite to form the layered material. Controlling the number of perovskite layers could provide a confined structure with chemical and physical properties that are different from those of 3 D perovskite. This opens up a whole new batch of interesting materials with huge potential for optoelectronic applications. This Minireview presents the synthesis, properties, and structural orientation of low-dimensional perovskite. It also discusses the progress of low-dimensional perovskite in PV solar cells, which, to date, have performance comparable to that of 3 D perovskite but with enhanced stability. Finally, the use of low-dimensional perovskite in light-emitting diodes (LEDs) and photodetectors is discussed. The low-dimensional perovskites are promising candidates for LED devices, mainly because of their high radiative recombination as a result of the confined low-dimensional quantum well. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Spectral and dynamical properties of single excitons, biexcitons, and trions in cesium-lead-halide perovskite quantum dots

    DOE PAGES

    Makarov, Nikolay Sergeevich; Guo, Shaojun; Isaienko, Oleksandr; ...

    2016-02-16

    Organic–inorganic lead-halide perovskites have been the subject of recent intense interest due to their unusually strong photovoltaic performance. A new addition to the perovskite family is all-inorganic Cs–Pb-halide perovskite nanocrystals, or quantum dots, fabricated via a moderate-temperature colloidal synthesis. While being only recently introduced to the research community, these nanomaterials have already shown promise for a range of applications from color-converting phosphors and light-emitting diodes to lasers, and even room-temperature single-photon sources. Knowledge of the optical properties of perovskite quantum dots still remains vastly incomplete. Here we apply various time-resolved spectroscopic techniques to conduct a comprehensive study of spectral andmore » dynamical characteristics of single- and multiexciton states in CsPbX3 nanocrystals with X being either Br, I, or their mixture. Specifically, we measure exciton radiative lifetimes, absorption cross-sections, and derive the degeneracies of the band-edge electron and hole states. We also characterize the rates of intraband cooling and nonradiative Auger recombination and evaluate the strength of exciton–exciton coupling. The overall conclusion of this work is that spectroscopic properties of Cs–Pb-halide quantum dots are largely similar to those of quantum dots of more traditional semiconductors such as CdSe and PbSe. At the same time, we observe some distinctions including, for example, an appreciable effect of the halide identity on radiative lifetimes, considerably shorter biexciton Auger lifetimes, and apparent deviation of their size dependence from the “universal volume scaling” previously observed for many traditional nanocrystal systems. The high efficiency of Auger decay in perovskite quantum dots is detrimental to their prospective applications in light-emitting devices and lasers. Furthermore, this points toward the need for the development of approaches for effective suppression of Auger recombination in these nanomaterials, using perhaps insights gained from previous studies of II–VI nanocrystals.« less

  12. Ionic-Liquid-Assisted Microwave Synthesis of Solid Solutions of Sr 1–xBa xSnO 3 Perovskite for Photocatalytic Applications

    DOE PAGES

    Alammar, Tarek; Slowing, Igor I.; Anderegg, Jim; ...

    2017-06-06

    Nanocrystalline Sr 1–xBa xSnO 3 (x = 0, 0.2, 0.4, 0.8, 1) perovskite photocatalysts were prepared by microwave synthesis in an ionic liquid (IL) and subsequent heat-treatment. The influence of the Sr/Ba substitution on the structure, crystallization, morphology, and photocatalytic efficiency was investigated and the samples were fully characterized. On the basis of X-ray diffraction results, as the Ba content in the SrSnO 3 lattice increases, a symmetry increase was observed from the orthorhombic perovskite structure for SrSnO 3 to the cubic BaSnO 3 structure. The analysis of the sample morphology by SEM reveals that the Sr 1–xBa xSnO 3more » samples favor the formation of nanorods (500 nm–5 μm in diameter and several micrometers long). The photophysical properties were examined by UV/Vis diffuse reflectance spectroscopy. The band gap decreases from 3.85 to 3.19 eV with increasing Ba 2+ content. Furthermore, the photocatalytic properties were evaluated for the hydroxylation of terephthalic acid (TA). The order of the activities for TA hydroxylation was Sr 0.8Ba 0.2SnO 3 > SrSnO 3 > BaSnO 3 > Sr 0.6Ba 0.4SnO 3 > Sr 0.2Ba 0.8SnO 3. Here, the highest photocatalytic activity was observed for Sr 0.8Ba 0.2SnO 3, and this can be attributed to the synergistic impacts of the modification of the crystal structure and morphology, the relatively large surface area associated with the small crystallite size, and the suitable band gap and band-edge position.« less

  13. Ionic‐Liquid‐Assisted Microwave Synthesis of Solid Solutions of Sr1−xBaxSnO3 Perovskite for Photocatalytic Applications

    PubMed Central

    Alammar, Tarek; Slowing, Igor I.; Anderegg, Jim

    2017-01-01

    Abstract Nanocrystalline Sr1−xBaxSnO3 (x=0, 0.2, 0.4, 0.8, 1) perovskite photocatalysts were prepared by microwave synthesis in an ionic liquid (IL) and subsequent heat‐treatment. The influence of the Sr/Ba substitution on the structure, crystallization, morphology, and photocatalytic efficiency was investigated and the samples were fully characterized. On the basis of X‐ray diffraction results, as the Ba content in the SrSnO3 lattice increases, a symmetry increase was observed from the orthorhombic perovskite structure for SrSnO3 to the cubic BaSnO3 structure. The analysis of the sample morphology by SEM reveals that the Sr1−xBaxSnO3 samples favor the formation of nanorods (500 nm–5 μm in diameter and several micrometers long). The photophysical properties were examined by UV/Vis diffuse reflectance spectroscopy. The band gap decreases from 3.85 to 3.19 eV with increasing Ba2+ content. Furthermore, the photocatalytic properties were evaluated for the hydroxylation of terephthalic acid (TA). The order of the activities for TA hydroxylation was Sr0.8Ba0.2SnO3>SrSnO3>BaSnO3>Sr0.6Ba0.4SnO3>Sr0.2Ba0.8SnO3. The highest photocatalytic activity was observed for Sr0.8Ba0.2SnO3, and this can be attributed to the synergistic impacts of the modification of the crystal structure and morphology, the relatively large surface area associated with the small crystallite size, and the suitable band gap and band‐edge position. PMID:28589568

  14. Temperature-dependent phase transition and comparative investigation on enhanced magnetic and optical properties between sillenite and perovskite bismuth ferrite-rGO nanocomposites

    NASA Astrophysics Data System (ADS)

    Jalil, M. A.; Chowdhury, Sayeed Shafayet; Alam Sakib, Mashnoon; Enamul Hoque Yousuf, S. M.; Khan Ashik, Emran; Firoz, Shakhawat H.; Basith, M. A.

    2017-08-01

    The manuscript reports the synthesis as well as a comparative investigation of the structural, magnetic, and optical properties between sillenite and perovskite type bismuth ferrite-reduced graphene oxide nanocomposites. Graphite oxide is prepared using the modified Hummers' method, followed by hydrothermal synthesis of bismuth ferrite-reduced graphene oxide nanocomposites at different reaction temperatures. The X-ray diffraction measurements confirm the formation of perovskite type BiFeO3-rGO nanocomposites at a reaction temperature of 200 °C. This is the lowest temperature to obtain perovskite type BiFeO3-rGO nanocomposites under the reaction procedure adopted, however, a structural transition to sillenite type Bi25FeO40-rGO is observed at 180 °C. The FESEM images demonstrate that the particle size of the perovskite nanocomposite is 25-60 nm, and for the sillenite phase nanocomposite it is 10-30 nm. The as-synthesized nanocomposites exhibit significantly enhanced saturation magnetization over pure BiFeO3 nanoparticles, with the sillenite Bi25FeO40-rGO nanocomposite having higher saturation magnetization than perovskite BiFeO3-rGO. The optical characteristics of the as-synthesized nanocomposites demonstrate considerably higher absorbance in the visible range with significantly lower band gap in comparison to undoped BiFeO3. Again, the sillenite Bi25FeO40-rGO nanocomposite is shown to have a lower band gap compared to the perovskite counterpart. Our investigation provides a means of selective phase formation as desired between sillenite Bi25FeO40-rGO and perovskite BiFeO3-rGO by controlling the hydrothermal reaction temperature. The outcome of our investigation suggests that the formation of nanocomposite of sillenite bismuth ferrite with reduced graphene oxide is promising to improve the magnetic and optical properties for potential technological applications.

  15. Conducting tin halides with a layered organic-based perovskite structure

    NASA Astrophysics Data System (ADS)

    Mitzi, D. B.; Feild, C. A.; Harrison, W. T. A.; Guloy, A. M.

    1994-06-01

    THE discovery1 of high-temperature superconductivity in layered copper oxide perovskites has generated considerable fundamental and technological interest in this class of materials. Only a few other examples of conducting layered perovskites are known; these are also oxides such as (La1-xSrx)n+1 MnnO3n+1 (ref. 2), Lan+1NinO3n+1 (ref. 3) and Ban+1PbnO3n+1 (ref. 4), all of which exhibit a trend from semiconducting to metallic behaviour with increasing number of perovskite layers (n). We report here the synthesis of a family of organic-based layered halide perovskites, (C4H9NH3)2(CH3NH3)n-1Snnl3n+1 which show a similar transition from semiconducting to metallic behaviour with increasing n. The incorporation of an organic modulation layer between the conducting tin iodide sheets potentially provides greater flexibility for tuning the electrical properties of the perovskite sheets, and we suggest that such an approach will prove valuable for exploring the range of transport properties possible with layered perovskites.

  16. Synthesis of active absorber layer by dip-coating method for perovskite solar cell

    NASA Astrophysics Data System (ADS)

    Singh, Rahul; Noor, I. M.; Singh, Pramod K.; Bhattacharya, B.; Arof, A. K.

    2018-04-01

    In this paper, we develop the hybrid perovskite-based n-i-p solar cell using a simple, fast and low-cost dip-coating method. Hot solution and the pre-annealed substrate are used for coating the perovskite thin film by this method this is further used for studying its structural and electrical properties. UV-vis spectroscopy is carried out for calculating the band gap of the hybrid perovskite layer which is ∼1.6 eV. X-ray spectroscopy confirms that the formation of hybrid perovskite layer. The profilometer is used to study the surface roughness and also for measuring the thickness of the perovskite layer with varying substrate temperature. The optimized sample was further used for cross-sectional SEM image to verify the thickness measured from the profiler. The electrical parameter of JV characteristic with varying temperature is tabulated in the table. Whereas, the perovskite sensitized solar cell exhibits highest short circuit current density, Jsc of 11 mA cm-2, open circuit voltage, Voc of 0.87 V, fill factor of 0.55 and efficiency, η of >5%.

  17. Two-Dimensional CH₃NH₃PbI₃ Perovskite: Synthesis and Optoelectronic Application.

    PubMed

    Liu, Jingying; Xue, Yunzhou; Wang, Ziyu; Xu, Zai-Quan; Zheng, Changxi; Weber, Bent; Song, Jingchao; Wang, Yusheng; Lu, Yuerui; Zhang, Yupeng; Bao, Qiaoliang

    2016-03-22

    Hybrid organic-inorganic perovskite materials have received substantial research attention due to their impressively high performance in photovoltaic devices. As one of the oldest functional materials, it is intriguing to explore the optoelectronic properties in perovskite after reducing it into a few atomic layers in which two-dimensional (2D) confinement may get involved. In this work, we report a combined solution process and vapor-phase conversion method to synthesize 2D hybrid organic-inorganic perovskite (i.e., CH3NH3PbI3) nanocrystals as thin as a single unit cell (∼1.3 nm). High-quality 2D perovskite crystals have triangle and hexagonal shapes, exhibiting tunable photoluminescence while the thickness or composition is changed. Due to the high quantum efficiency and excellent photoelectric properties in 2D perovskites, a high-performance photodetector was demonstrated, in which the current can be enhanced significantly by shining 405 and 532 nm lasers, showing photoresponsivities of 22 and 12 AW(-1) with a voltage bias of 1 V, respectively. The excellent optoelectronic properties make 2D perovskites building blocks to construct 2D heterostructures for wider optoelectronic applications.

  18. Random lasing actions in self-assembled perovskite nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Shuai; Sun, Wenzhao; Li, Jiankai; Gu, Zhiyuan; Wang, Kaiyang; Xiao, Shumin; Song, Qinghai

    2016-05-01

    Solution-based perovskite nanoparticles have been intensively studied in the past few years due to their applications in both photovoltaic and optoelectronic devices. Here, based on the common ground between solution-based perovskite and random lasers, we have studied the mirrorless lasing actions in self-assembled perovskite nanoparticles. After synthesis from a solution, discrete lasing peaks have been observed from optically pumped perovskites without any well-defined cavity boundaries. We have demonstrated that the origin of the random lasing emissions is the scattering between the nanostructures in the perovskite microplates. The obtained quality (Q) factors and thresholds of random lasers are around 500 and 60 μJ/cm2, respectively. Both values are comparable to the conventional perovskite microdisk lasers with polygon-shaped cavity boundaries. From the corresponding studies on laser spectra and fluorescence microscope images, the lasing actions are considered random lasers that are generated by strong multiple scattering in random gain media. In additional to conventional single-photon excitation, due to the strong nonlinear effects of perovskites, two-photon pumped random lasers have also been demonstrated for the first time. We believe this research will find its potential applications in low-cost coherent light sources and biomedical detection.

  19. Chlorine-Incorporation-Induced Formation of the Layered Phase for Antimony-Based Lead-Free Perovskite Solar Cells.

    PubMed

    Jiang, Fangyuan; Yang, Dongwen; Jiang, Youyu; Liu, Tiefeng; Zhao, Xingang; Ming, Yue; Luo, Bangwu; Qin, Fei; Fan, Jiacheng; Han, Hongwei; Zhang, Lijun; Zhou, Yinhua

    2018-01-24

    The environmental toxicity of Pb in organic-inorganic hybrid perovskite solar cells remains an issue, which has triggered intense research on seeking alternative Pb-free perovskites for solar applications. Halide perovskites based on group-VA cations of Bi 3+ and Sb 3+ with the same lone-pair ns 2 state as Pb 2+ are promising candidates. Herein, through a joint experimental and theoretical study, we demonstrate that Cl-incorporated methylammonium Sb halide perovskites (CH 3 NH 3 ) 3 Sb 2 Cl X I 9-X show promise as efficient solar absorbers for Pb-free perovskite solar cells. Inclusion of methylammonium chloride into the precursor solutions suppresses the formation of the undesired zero-dimensional dimer phase and leads to the successful synthesis of high-quality perovskite films composed of the two-dimensional layered phase favored for photovoltaics. Solar cells based on the as-obtained (CH 3 NH 3 ) 3 Sb 2 Cl X I 9-X films reach a record-high power conversion efficiency over 2%. This finding offers a new perspective for the development of nontoxic and low-cost Sb-based perovskite solar cells.

  20. Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells

    PubMed Central

    Sanehira, Erin M.; Marshall, Ashley R.; Christians, Jeffrey A.; Harvey, Steven P.; Ciesielski, Peter N.; Wheeler, Lance M.; Schulz, Philip; Lin, Lih Y.; Beard, Matthew C.; Luther, Joseph M.

    2017-01-01

    We developed lead halide perovskite quantum dot (QD) films with tuned surface chemistry based on A-site cation halide salt (AX) treatments. QD perovskites offer colloidal synthesis and processing using industrially friendly solvents, which decouples grain growth from film deposition, and at present produce larger open-circuit voltages (VOC’s) than thin-film perovskites. CsPbI3 QDs, with a tunable bandgap between 1.75 and 2.13 eV, are an ideal top cell candidate for all-perovskite multijunction solar cells because of their demonstrated small VOC deficit. We show that charge carrier mobility within perovskite QD films is dictated by the chemical conditions at the QD-QD junctions. The AX treatments provide a method for tuning the coupling between perovskite QDs, which is exploited for improved charge transport for fabricating high-quality QD films and devices. The AX treatments presented here double the film mobility, enabling increased photocurrent, and lead to a record certified QD solar cell efficiency of 13.43%. PMID:29098184

  1. Atomically thin two-dimensional organic-inorganic hybrid perovskites

    NASA Astrophysics Data System (ADS)

    Dou, Letian; Wong, Andrew B.; Yu, Yi; Lai, Minliang; Kornienko, Nikolay; Eaton, Samuel W.; Fu, Anthony; Bischak, Connor G.; Ma, Jie; Ding, Tina; Ginsberg, Naomi S.; Wang, Lin-Wang; Alivisatos, A. Paul; Yang, Peidong

    2015-09-01

    Organic-inorganic hybrid perovskites, which have proved to be promising semiconductor materials for photovoltaic applications, have been made into atomically thin two-dimensional (2D) sheets. We report the solution-phase growth of single- and few-unit-cell-thick single-crystalline 2D hybrid perovskites of (C4H9NH3)2PbBr4 with well-defined square shape and large size. In contrast to other 2D materials, the hybrid perovskite sheets exhibit an unusual structural relaxation, and this structural change leads to a band gap shift as compared to the bulk crystal. The high-quality 2D crystals exhibit efficient photoluminescence, and color tuning could be achieved by changing sheet thickness as well as composition via the synthesis of related materials.

  2. Potassium-chemical synthesis of 3D graphene from CO 2 and its excellent performance in HTM-free perovskite solar cells

    DOE PAGES

    Wei, Wei; Hu, Baoyun; Jin, Fangming; ...

    2017-03-29

    The conversion of greenhouse gas CO 2 into novel materials is the most promising approach to solve greenhouse gas issues. In this paper, we report for the first time the reaction of potassium with CO 2 to synthesize three-dimensional honeycomb-like structured graphene (3DHG). Furthermore, 3DHG exhibited excellent performance as a counter electrode for hole transport material (HTM)-free perovskite solar cells, leading to a power conversion efficiency of 10.06%. Finally, this work constitutes a new aspect of potassium chemistry for material synthesis from a greenhouse gas and the generation of electrical energy from sunlight.

  3. Colloidal thallium halide nanocrystals with reasonable luminescence, carrier mobility and diffusion length† †Electronic supplementary information (ESI) available: Synthesis and additional characterization of nanocrystals, characterization of nanocrystal films, temperature-dependent phase transition, coefficient of volume expansion, PL decay dynamics, tabulated best fit parameters, and methodology analysis of ultrafast optical pump THz probe (OPTP) spectroscopy. See DOI: 10.1039/c7sc01219e Click here for additional data file.

    PubMed Central

    Mir, Wasim J.; Warankar, Avinash; Acharya, Ashutosh; Das, Shyamashis

    2017-01-01

    Colloidal lead halide based perovskite nanocrystals (NCs) have been recently established as an interesting class of defect-tolerant NCs with potential for superior optoelectronic applications. The electronic band structure of thallium halides (TlX, where X = Br and I) show a strong resemblance to lead halide perovskites, where both Pb2+ and Tl+ exhibit a 6s2 inert pair of electrons and strong spin–orbit coupling. Although the crystal structure of TlX is not perovskite, the similarities of its electronic structure with lead halide perovskites motivated us to prepare colloidal TlX NCs. These TlX NCs exhibit a wide bandgap (>2.5 eV or <500 nm) and the potential to exhibit a reduced density of deep defect states. Optical pump terahertz (THz) probe spectroscopy with excitation fluence in the range of 0.85–5.86 × 1013 photons per cm2 on NC films shows that the TlBr NCs possess high effective carrier mobility (∼220 to 329 cm2 V–1 s–1), long diffusion length (∼0.77 to 0.98 μm), and reasonably high photoluminescence efficiency (∼10%). This combination of properties is remarkable compared to other wide-bandgap (>2.5 eV) semiconductor NCs, which suggests a reduction in the deep-defect states in the TlX NCs. Furthermore, the ultrafast carrier dynamics and temperature-dependent reversible structural phase transition together with its influence on the optical properties of the TlX NCs are studied. PMID:28970882

  4. Probing charge transfer in a novel class of luminescent perovskite-based heterostructures composed of quantum dots bound to RE-activated CaTiO 3 phosphors

    DOE PAGES

    Crystal S. Lewis; Wong, Stanislaus S.; Liu, Haiqing; ...

    2016-01-04

    We report on the synthesis and structural characterization of novel semiconducting heterostructures composed of cadmium selenide (CdSe) quantum dots (QDs) attached onto the surfaces of novel high-surface area, porous rare-earth-ion doped alkaline earth titanate micron-scale spherical motifs, i.e. both Eu-doped and Pr-doped CaTiO 3, composed of constituent, component nanoparticles. These unique metal oxide perovskite building blocks were created by a multi-pronged synthetic strategy involving molten salt and hydrothermal protocols. Subsequently, optical characterization of these heterostructures indicated a clear behavioral dependence of charge transfer in these systems upon a number of parameters such as the nature of the dopant, the reactionmore » temperature, and particle size. Specifically, 2.7 nm diameter ligand-functionalized CdSe QDs were anchored onto sub-micron sized CaTiO 3-based spherical assemblies, prepared by molten salt protocols. We found that both the Pr- and Eu-doped CaTiO 3 displayed pronounced PL emissions, with maximum intensities observed using optimized lanthanide concentrations of 0.2 mol% and 6 mol%, respectively. Analogous experiments were performed on Eu-doped BaTiO 3 and SrTiO 3 motifs, but CaTiO 3 still performed as the most effective host material amongst the three perovskite systems tested. Furthermore, the ligand-capped CdSe QD-doped CaTiO 3 heterostructures exhibited effective charge transfer between the two individual constituent nanoscale components, an assertion corroborated by the corresponding quenching of their measured PL signals.« less

  5. Atomically thin two-dimensional organic-inorganic hybrid perovskites.

    PubMed

    Dou, Letian; Wong, Andrew B; Yu, Yi; Lai, Minliang; Kornienko, Nikolay; Eaton, Samuel W; Fu, Anthony; Bischak, Connor G; Ma, Jie; Ding, Tina; Ginsberg, Naomi S; Wang, Lin-Wang; Alivisatos, A Paul; Yang, Peidong

    2015-09-25

    Organic-inorganic hybrid perovskites, which have proved to be promising semiconductor materials for photovoltaic applications, have been made into atomically thin two-dimensional (2D) sheets. We report the solution-phase growth of single- and few-unit-cell-thick single-crystalline 2D hybrid perovskites of (C4H9NH3)2PbBr4 with well-defined square shape and large size. In contrast to other 2D materials, the hybrid perovskite sheets exhibit an unusual structural relaxation, and this structural change leads to a band gap shift as compared to the bulk crystal. The high-quality 2D crystals exhibit efficient photoluminescence, and color tuning could be achieved by changing sheet thickness as well as composition via the synthesis of related materials. Copyright © 2015, American Association for the Advancement of Science.

  6. Perovskite/Carbon Composites: Applications in Oxygen Electrocatalysis.

    PubMed

    Zhu, Yinlong; Zhou, Wei; Shao, Zongping

    2017-03-01

    Oxygen electrocatalysis, i.e., oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), plays an extremely important role in oxygen-based renewable-energy technologies such as rechargeable metal-air batteries, regenerative fuel cells and water splitting. Perovskite oxides have recently attracted increasing interest and hold great promise as efficient ORR and OER catalysts to replace noble-metal-based catalysts, owing to their high intrinsic catalytic activity, abundant variety, low cost, and rich resources. The introduction of perovskite-carbon interfaces by forming perovskite/carbon composites may bring a synergistic effect between the two phases, thus benefiting the oxygen electrocatalysis. This review provides a comprehensive overview of recent advances in perovskite/carbon composites for oxygen electrocatalysis in alkaline media, aiming to provide insights into the key parameters that influence the ORR/OER performance of the composites, including the physical/chemical properties and morphologies of the perovskites, the multiple roles of carbon, the synthetic method and the synergistic effect. A special emphasis is placed on the origin of the synergistic effect associated with the interfacial interaction between the perovskite and the carbon phases for enhanced ORR/OER performance. Finally, the existing challenges and the future directions for the synthesis and development of more efficient oxygen catalysts based on perovskite/carbon composites are proposed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning.

    PubMed

    Balachandran, Prasanna V; Kowalski, Benjamin; Sehirlioglu, Alp; Lookman, Turab

    2018-04-26

    Experimental search for high-temperature ferroelectric perovskites is a challenging task due to the vast chemical space and lack of predictive guidelines. Here, we demonstrate a two-step machine learning approach to guide experiments in search of xBi[Formula: see text]O 3 -(1 - x)PbTiO 3 -based perovskites with high ferroelectric Curie temperature. These involve classification learning to screen for compositions in the perovskite structures, and regression coupled to active learning to identify promising perovskites for synthesis and feedback. The problem is challenging because the search space is vast, spanning ~61,500 compositions and only 167 are experimentally studied. Furthermore, not every composition can be synthesized in the perovskite phase. In this work, we predict x, y, Me', and Me″ such that the resulting compositions have both high Curie temperature and form in the perovskite structure. Outcomes from both successful and failed experiments then iteratively refine the machine learning models via an active learning loop. Our approach finds six perovskites out of ten compositions synthesized, including three previously unexplored {Me'Me″} pairs, with 0.2Bi(Fe 0.12 Co 0.88 )O 3 -0.8PbTiO 3 showing the highest measured Curie temperature of 898 K among them.

  8. Control of oleylamine to perovskite ratio in synthesis of MAPbBr3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Huang, Jing; Wu, Yi-Hua; Zhu, Zhi-Gang; Shih, Wan Y.; Shih, Wei-Heng

    2018-06-01

    Methylammonium lead bromide (CH3NH3PbBr3) nanocrystals have great potentials for lighting and display applications. Previously we synthesized CH3NH3PbBr3 nanocrystals using oleylamine as capping molecule and found that by increasing the oleylamine to CH3NH3PbBr3 perovskite ratio (OPR), the photoluminescence wavelengths and morphology of CH3NH3PbBr3 nanocrystals could be varied from 530 nm (green) platelets to 460 nm (blue) particles. Here we modified the synthesis to direct injection of precursors into toluene and found that increasing OPR not only changes the wavelength and morphology of nanocrystals but also the size of the unit cells.

  9. White perovskite based lighting devices.

    PubMed

    Bidikoudi, M; Fresta, E; Costa, R D

    2018-06-28

    Hybrid organic-inorganic and all-inorganic metal halide perovskites have been one of the most intensively studied materials during the last few years. In particular, research focusing on understanding how to tune the photoluminescence features and to apply perovskites to optoelectronic applications has led to a myriad of new materials featuring high photoluminescence quantum yields covering the whole visible range, as well as devices with remarkable performances. Having already established their successful incorporation in highly efficient solar cells, the next step is to tackle the challenges in solid-state lighting (SSL) devices. Here, the most prominent is the preparation of white-emitting devices. Herein, we have provided a comprehensive view of the route towards perovskite white lighting devices, including thin film light-emitting diodes (PeLEDs) and hybrid LEDs (HLEDs), using perovskite based color down-converting coatings. While synthesis and photoluminescence features are briefly discussed, we focus on highlighting the major achievements and limitations in white devices. Overall, we expect that this review will provide the reader a general overview of the current state of perovskite white SSL, paving the way towards new breakthroughs in the near future.

  10. Enhanced mobility CsPbI 3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanehira, Erin M.; Marshall, Ashley R.; Christians, Jeffrey A.

    Here, we developed lead halide perovskite quantum dot (QD) films with tuned surface chemistry based on A-site cation halide salt (AX) treatments. QD perovskites offer colloidal synthesis and processing using industrially friendly solvents, which decouples grain growth from film deposition, and at present produce larger open-circuit voltages (V OC's) than thin-film perovskites. CsPbI 3 QDs, with a tunable bandgap between 1.75 and 2.13 eV, are an ideal top cell candidate for all-perovskite multijunction solar cells because of their demonstrated small V OC deficit. We show that charge carrier mobility within perovskite QD films is dictated by the chemical conditions atmore » the QD-QD junctions. The AX treatments provide a method for tuning the coupling between perovskite QDs, which is exploited for improved charge transport for fabricating high-quality QD films and devices. The AX treatments presented here double the film mobility, enabling increased photocurrent, and lead to a record certified QD solar cell efficiency of 13.43%.« less

  11. Enhanced mobility CsPbI 3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells

    DOE PAGES

    Sanehira, Erin M.; Marshall, Ashley R.; Christians, Jeffrey A.; ...

    2017-10-27

    Here, we developed lead halide perovskite quantum dot (QD) films with tuned surface chemistry based on A-site cation halide salt (AX) treatments. QD perovskites offer colloidal synthesis and processing using industrially friendly solvents, which decouples grain growth from film deposition, and at present produce larger open-circuit voltages (V OC's) than thin-film perovskites. CsPbI 3 QDs, with a tunable bandgap between 1.75 and 2.13 eV, are an ideal top cell candidate for all-perovskite multijunction solar cells because of their demonstrated small V OC deficit. We show that charge carrier mobility within perovskite QD films is dictated by the chemical conditions atmore » the QD-QD junctions. The AX treatments provide a method for tuning the coupling between perovskite QDs, which is exploited for improved charge transport for fabricating high-quality QD films and devices. The AX treatments presented here double the film mobility, enabling increased photocurrent, and lead to a record certified QD solar cell efficiency of 13.43%.« less

  12. Gas-to-particle conversion in the particle precipitation-aided chemical vapor deposition process II. Synthesis of the perovskite oxide yttrium chromite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dieten, V.E.J. van; Dekker, J.P.; Hurkmans, E.J.

    1993-11-01

    In the particle precipitation-aided chemical vapor deposition process, an aerosol is formed in the gas phase at elevated temperatures. The particles are deposited on a cooled substrate. Coherent layers with a controlled porosity can be obtained by a simultaneous heterogeneous reaction, which interconnects the deposited particles. The synthesis of submicrometer powder of the perovskite oxide yttrium chromite (YCrO[sub 3]) by gas to particle conversion, which is the first step of the PP-CVD process, has been investigated, and preliminary results are shown. The powders have been synthesized using yttrium trichloride vapor (YCl[sub 3]), chromium trichloride vapor (CrCl[sub 3]), and steam andmore » oxygen as reactants. The influence of the input molar ratio of the elements on the composition and characteristics of the powders has been investigated. Phase composition has been determined by X-ray diffraction (XRD). The powders have been characterized by transmission electron microscopy (TEM) and sedimentation field flow fractionation (SF[sup 3]). At a reaction temperature of 1283 K the powders consist of the chromium sesquioxide (Cr[sub 2]O[sub 3]), or a mixture of Cr[sub 2]O[sub 3] and YCrO[sub 3]. At stoichiometeric input amounts of metal chlorides and steam the formation of YCrO[sub 3] seems to be favored. 19 refs., 6 figs., 3 tabs.« less

  13. Synthesis of Nano-Polycrystalline Synroc-B Powders as a High Level Radioactive Wastes Ceramic Forms by a Solution Combustion Synthesis.

    PubMed

    Han, Young-Min; Lee, Sang-Jin; Kim, Yeon-Ku; Jung, Choong-Hwan

    2016-02-01

    Synroc (Synthetic Rock) consists of four main titanate phases: peroveskite (CaTiO3), zirconolite (CaZrTi2O7), hollandite (BaAl2Ti6O16) and rutile (TiO2). Nano-polycrystalline synroc powders were made by a synthesis combustion process. The combustion process, an externally initiated reaction is self-sustained owing to the exothermic reaction. A significant volume of gas is evolved during the combustion reaction and leads to loosely agglomerated powders. This exothermic reaction provides necessary heat to further carry the reaction in forward direction to produce nanocrystalline powders as the final product. Glycine is used as a fuel, being oxidized by nitrate ions. It is inexpensive, has high energy efficiency, fast heating rates, short reaction times and high compositional homogeneity. In this study, combustion synthesis of nano-sized synroc-B powder is introduced. The fabrication of synroc-B powder result of observation XRD were prepared for polycrystalline (perovskite, zirconolite, hollandite, rutile) structures. The characterization of the synthesized powders is conducted by using XRD, SEM/EDS and TEM.

  14. Stabilizing hybrid perovskites against moisture and temperature via non-hydrolytic atomic layer deposited overlayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, In Soo; Martinson, Alex B. F.

    2015-09-14

    We utilized a novel non-hydrolytic (nh) surface chemistry to allow the direct synthesis of pinhole-fee oxide overlayers directly on conventional hybrid perovskite halide absorbers without damage. By utilizing water- free ALD Al 2O 3 passivation, a minimum of ten-fold increase in stability against relative humidity (RH) 85% was achieved along with a dramatically improved thermal resistance (up to 250 °C). We extend this approach to synthesize nh-TiO 2 directly on hybrid perovskites to establish its potential in inverted photovoltaic devices as a dual stabilizing and electron accepting layer, as evidenced by photoluminescence (PL) quenching.

  15. Electronic structure and chemical bonding in La1-x Sr x MnO3 perovskite ceramics

    NASA Astrophysics Data System (ADS)

    Thenmozhi, N.; Sasikumar, S.; Sonai, S.; Saravanan, R.

    2017-04-01

    This study reports on the synthesis of La1-x Sr x MnO3 (x  =  0.3, 0.4 and 0.5) manganites by high temperature solid state reaction method using lanthanum oxide, strontium carbonate and manganese oxide as starting materials. The synthesized samples were characterized by XRD, UV-vis, SEM/EDS and VSM. Structural characterization shows that all the prepared samples have the perovskite rhombohedral structure. Influence of Sr doping on electron density distributions in the lattice structure of LaMnO3 were analyzed through maximum entropy method (MEM). Cell parameters are found to be decreasing with the addition of Sr content. The qualitative and quantitative analysis by MEM reveals that, incorporation of Sr into LaMnO3 lattice enhances the ionic nature between La and O ions and decreases the covalent nature between Mn and O ions. Optical band gap values are determined from the UV-visible absorption spectra. Particles with polygonal form are observed from the SEM micrographs. The elemental compositions of the synthesized samples are confirmed by EDS. The magnetic properties studied from the M-H plot taken at room temperature indicated that, the prepared samples are exhibited ferromagnetic behavior.

  16. Two-Dimensional Halide Perovskites: Tuning Electronic Activities of Defects

    DOE PAGES

    Liu, Yuanyue; Xiao, Hai; Goddard, William A.

    2016-04-21

    Two-dimensional (2D) halide perovskites are emerging as promising candidates for nanoelectronics and optoelectronics. To realize their full potential, it is important to understand the role of those defects that can strongly impact material properties. In contrast to other popular 2D semiconductors (e.g., transition metal dichalcogenides MX 2) for which defects typically induce harmful traps, we show that the electronic activities of defects in 2D perovskites are significantly tunable. For example, even with a fixed lattice orientation one can change the synthesis conditions to convert a line defect (edge or grain boundary) from electron acceptor to inactive site without deep gapmore » states. Here, we show that this difference originates from the enhanced ionic bonding in these perovskites compared with MX 2. The donors tend to have high formation energies and the harmful defects are difficult to form at a low halide chemical potential. Thus, we unveil unique properties of defects in 2D perovskites and suggest practical routes to improve them.« less

  17. Organic-Inorganic Hybrid Ruddlesden-Popper Perovskites: An Emerging Paradigm for High-Performance Light-Emitting Diodes.

    PubMed

    Liu, Xiao-Ke; Gao, Feng

    2018-05-03

    Recently, lead halide perovskite materials have attracted extensive interest, in particular, in the research field of solar cells. These materials are fascinating "soft" materials with semiconducting properties comparable to the best inorganic semiconductors like silicon and gallium arsenide. As one of the most promising perovskite family members, organic-inorganic hybrid Ruddlesden-Popper perovskites (HRPPs) offer rich chemical and structural flexibility for exploring excellent properties for optoelectronic devices, such as solar cells and light-emitting diodes (LEDs). In this Perspective, we present an overview of HRPPs on their structural characteristics, synthesis of pure HRPP compounds and thin films, control of their preferential orientations, and investigations of heterogeneous HRPP thin films. Based on these recent advances, future directions and prospects have been proposed. HRPPs are promising to open up a new paradigm for high-performance LEDs.

  18. Synthesis and characterization of novel Ce{sub 0.8}Sm{sub 0.2}Fe{sub 0.9}Ir{sub 0.03}Co{sub 0.07}O{sub 3−δ} perovskite material and possible application as a cathode for low–intermediate temperature SOFCs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Njoku, Chima Benjamin; Ndungu, Patrick Gathura, E-mail: ndungup@ukzn.ac.za

    2015-08-15

    Highlights: • Ce{sub 0.8}Sm{sub 0.2}Fe{sub 0.9}Ir{sub 0.03}Co{sub 0.07}O{sub 3−δ} was synthesized using sol–gel methods. • Material was thoroughly characterized using Raman, FTIR, XRD, HRTEM, SEM, and TGA. • Electrochemical performance showed the materials are a promising new cathode material for low temperature SOFC. - Abstract: A novel perovskite material, Ce{sub 0.8}Sm{sub 0.2}Fe{sub 0.9}Ir{sub 0.03}Co{sub 0.07}O{sub 3−δ} was synthesized using a sol–gel technique. The materials were calcined at temperatures of 800 °C, 900 °C, and 1000 °C and then characterized using X-ray diffraction, Raman and infrared spectroscopy, high resolution transmission electron microscopy and scanning electron microscopy (SEM). The particle sizes andmore » crystallite sizes increased with increasing calcination temperature and formed perovskite type materials with some separate magnetite and iridium oxide. The powders were used to assemble button cells using samarium doped ceria as the electrolyte and NiO/SDC as the anode materials. The electrochemical properties were investigated using a Fiaxell open flanges test set-up and a Nuvant™ Powerstat-05 potentiostat/galvanostat. The Ce{sub 0.8}Sm{sub 0.2}Fe{sub 0.9}Ir{sub 0.03}Co{sub 0.07}O{sub 3−δ} cathode material calcined at 1000 °C exhibited the most promising performance, with a maximum power density of 0.400 W/cm{sup 2}, a current density of 0.8 A/cm{sup 2}, and a corresponding area specific resistance of 0.247 Ωcm{sup 2} at 500 °C. The button cells were reasonably stable over15 h.« less

  19. Magnetism and the spin state in cubic perovskite CaCo O3 synthesized under high pressure

    NASA Astrophysics Data System (ADS)

    Xia, Hailiang; Dai, Jianhong; Xu, Yuanji; Yin, Yunyu; Wang, Xiao; Liu, Zhehong; Liu, Min; McGuire, Michael A.; Li, Xiang; Li, Zongyao; Jin, Changqing; Yang, Yifeng; Zhou, Jianshi; Long, Youwen

    2017-07-01

    Cubic SrCo O3 with an intermediate spin state can only be stabilized by high pressure and high temperature (HPHT) treatment. It is metallic and ferromagnetic with the highest Curie temperature of the transition-metal perovskites. The chemical substitution by Ca on Sr sites would normally lower crystal symmetry from cubic to orthorhombic as seen in the perovskite family of Ca M O3 (M =M4 + of transition metals, G e4 + , S n4 + , and Z r4 + ) at room temperature. This structural change narrows the bandwidth, so as to further enhance the Curie temperature as the crossover to the localized electronic state is approached. We report a successful synthesis of the perovskite CaCo O3 with a HPHT treatment. Surprisingly, CaCo O3 crystallizes in a simple cubic structure that remains stable down to 20 K, the lowest temperature in the structural study. The new perovskite has been thoroughly characterized by a suite of measurements including transport, magnetization, specific heat, thermal conductivity, and thermoelectric power. Metallic CaCo O3 undergoes two successive magnetic transitions at 86 K and 54 K as temperature decreases. The magnetization at 5 K is compatible with the intermediate spin state t4e1 of C o4 + at the octahedral site. The thermal expansion of the Co-O bond length indicates that the population of high spin state t3e2 increases for T >100 K . The shortest Co-O bond length in cubic CaCo O3 is responsible for delocalizing electrons in the π*-band and itinerant-electron ferromagnetism at T <54 K . A comprehensive comparison between SrCo O3 and CaCo O3 and the justification of their physical properties by first-principles calculation have also been made in this report. Partially filled π* and σ* bands would make CaCo O3 suitable to study the Hund's coupling effect in a metal.

  20. Modulating Excitonic Recombination Effects through One-Step Synthesis of Perovskite Nanoparticles for Light-Emitting Diodes.

    PubMed

    Kulkarni, Sneha A; Muduli, Subas; Xing, Guichuan; Yantara, Natalia; Li, Mingjie; Chen, Shi; Sum, Tze Chien; Mathews, Nripan; White, Tim J; Mhaisalkar, Subodh G

    2017-10-09

    The primary advantages of halide perovskites for light-emitting diodes (LEDs) are solution processability, direct band gap, good charge-carrier diffusion lengths, low trap density, and reasonable carrier mobility. The luminescence in 3 D halide perovskite thin films originates from free electron-hole bimolecular recombination. However, the slow bimolecular recombination rate is a fundamental performance limitation. Perovskite nanoparticles could result in improved performance but processability and cumbersome synthetic procedures remain challenges. Herein, these constraints are overcome by tailoring the 3 D perovskite as a near monodisperse nanoparticle film prepared through a one-step in situ deposition method. Replacing methyl ammonium bromide (CH 3 NH 3 Br, MABr) partially by octyl ammonium bromide [CH 3 (CH 2 ) 7 NH 3 Br, OABr] in defined mole ratios in the perovskite precursor proved crucial for the nanoparticle formation. Films consisting of the in situ formed nanoparticles displayed signatures associated with excitonic recombination, rather than that of bimolecular recombination associated with 3 D perovskites. This transition was accompanied by enhanced photoluminescence quantum yield (PLQY≈20.5 % vs. 3.40 %). Perovskite LEDs fabricated from the nanoparticle films exhibit a one order of magnitude improvement in current efficiency and doubling in luminance efficiency. The material processing systematics derived from this study provides the means to control perovskite morphologies through the selection and mixing of appropriate additives. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A review on photocatalytic CO2 reduction using perovskite oxide nanomaterials

    NASA Astrophysics Data System (ADS)

    Zeng, Sheng; Kar, Piyush; Thakur, Ujwal Kumar; Shankar, Karthik

    2018-02-01

    As the search for efficient catalysts for CO2 photoreduction continues, nanostructured perovskite oxides have emerged as a class of high-performance photocatalytic materials. The perovskite oxide candidates for CO2 photoreduction are primarily nanostructured forms of titanates, niobates, tantalates and cobaltates. These materials form the focus of this review article because they are much sought-after due to their nontoxic nature, adequate chemical stability, and tunable crystal structures, bandgaps and surface energies. As compared to conventional semiconductors and nanomaterial catalysts, nanostructured perovskite oxides also exhibit an extended optical-absorption edge, longer charge carrier lifetimes, and favorable band-alignment with respect to reduction potential of activated CO2 and reduction products of the same. While CO2 reduction product yields of several hundred μmol-1 h-1 are observed with many types of perovskite oxide nanomaterials in stand-alone forms, yield of such quantities are not common with semiconductor nanomaterials of other types. In this review, we present current state-of-the-art synthesis methods to form perovskite oxide nanomaterials, and procedures to engineer their bandgaps. This review also presents a comprehensive summary and discussion on crystal structures, defect distribution, morphologies and electronic properties of the perovskite oxides, and correlation of these properties to CO2 photoreduction performance. This review offers researchers key insights for developing advanced perovskite oxides in order to further improve the yields of CO2 reduction products.

  2. Optical Characterization of Tb3+:BaHfO3 Thin Films by Means of Photoacoustic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiménez Flores, Yolanda; Nogal, Uriel; Suárez Quezada, Víctor Manuel; Rojas-Trigos, José Bruno

    2018-06-01

    In this work, the synthesis and optical characterization of Al2O3/Tb3+:BaHfO3/Al2O3 heterostructure, grown by ultrasonic spray pyrolysis technique are reported. The X-ray diffraction patterns corroborate that the scintillator layer structure corresponds to perovskite structure, while the elemental chemical composition of it is close to the optimal stoichiometry, but showing barium vacancies. The empirical determination of the optical bandgap energy, achieved by means of the photoacoustic spectroscopy technique, set a principal direct band gap in 3.8 eV, but evidencing the existence of a larger indirect bandgap also. The photoluminescent spectroscopy measurements show that the heterostructure has an intense fluorescent response, congruent to the principal emission lines of trivalent terbium, as was intended to.

  3. Phase formation and UV luminescence of Gd3+ doped perovskite-type YScO3

    NASA Astrophysics Data System (ADS)

    Shimizu, Yuhei; Ueda, Kazushige

    2016-10-01

    Synthesis of pure and Gd3+doped perovskite-type YScO3 was attempted by a polymerized complex (PC) method and solid state reaction (SSR) method. Crystalline phases and UV luminescence of samples were examined with varying heating temperatures. The perovskite-type single phase was not simply formed in the SSR method, as reported in some literatures, and two cubic C-type phases of starting oxide materials remained forming slightly mixed solid solutions. UV luminescence of Gd3+ doped samples increased with an increase in heating temperatures and volume of the perovskite-type phase. In contrast, a non-crystalline precursor was crystallized to a single C-type phase at 800 °C in the PC method forming a completely mixed solid solution. Then, the phase of perovskite-type YScO3 formed at 1200 °C and its single phase was obtained at 1400 °C. It was revealed that high homogeneousness of cations was essential to generate the single perovskite-phase of YScO3. Because Gd3+ ions were also dissolved into the single C-type phase in Gd3+ doped samples, intense UV luminescence was observed above 800 °C in both C-type phase and perovskite-type phase.

  4. Laser-induced down-conversion and infrared phosphorescence emissivity of novel ligand-free perovskite nanomaterials

    NASA Astrophysics Data System (ADS)

    Ahmed, M. A.; Khafagy, Rasha M.; El-sayed, O.

    2014-03-01

    For the first time, standalone and ligand-free series of novel rare-earth-based perovskite nanomaterials are used as near infrared (NIR) and mid infrared (MIR) emitters. Nano-sized La0.7Sr0.3M0.1Fe0.9O3; where M = 0, Mn2+, Co2+ or Ni2+ were synthesized using the flash auto-combustion method and characterized using FTIR, FT-Raman, SEM and EDX. Photoluminescence spectra were spontaneously recorded during pumping the samples with 0.5 mW of green laser emitting continuously at 532 nm. La0.7Sr0.3FeO3 (where M = 0) did not result in any infrared emissivity, while intense near and mid infrared down-converted phosphorescence was released from the M-doped samples. The released phosphorescence greatly shifted among the infrared spectral region with changing the doping cation. Ni2+-doped perovskite emitted at the short-wavelength near-infrared region, while Mn2+ and Co2+-doped perovskites emitted at the mid-wavelength infrared region. The detected laser-induced spontaneous parametric down-conversion phosphorescence (SPDC) occurred through a two-photon process by emitting two NIR or MIR photons among a cooperative energy transfer between the La3+ cations and the M2+ cations. Combining SrFeO3 ceramic with both a rare earth cation (RE3+) and a transition metal cation (Mn2+, Co2+ or Ni2+), rather than introducing merely RE3+ cations, greatly improved and controlled the infrared emissivity properties of synthesized perovskites through destroying their crystal symmetry and giving rise to asymmetrical lattice vibration and the nonlinear optical character. The existence of SPDC in the M2+-doped samples verifies their nonlinear character after the absence of this character in La0.7Sr0.3FeO3. Obtained results verify that, for the first time, perovskite nanomaterials are considered as nonlinear optical crystals with intense infrared emissivity at low pumping power of visible wavelengths, which nominates them for photonic applications and requires further studies regarding their lasing ability as laser active components. Such a single infrared-emitting-perovskite nanomaterial replaced, for the first time, the need for a polymeric ligand, which was a routine approach in such an application. Also, it avoided the complicated synthesis of organic-inorganic hybrids, prevented wide spectral-range emissions usually produced by polymers, facilitated obtaining near-infrared emission spectra within certain limits of wavelengths, and is considered as a new approach for fabricating a standalone perovskite nanomaterial for phosphorescent optoelectronic components and military uses.

  5. Low-Cost Perovskite Solar Cells Employing Dimethoxydiphenylamine-Substituted Bistricyclic Aromatic Enes as Hole Transport Materials.

    PubMed

    Rakstys, Kasparas; Paek, Sanghyun; Grancini, Giulia; Gao, Peng; Jankauskas, Vygintas; Asiri, Abdullah M; Nazeeruddin, Mohammad Khaja

    2017-10-09

    The synthesis, characterization and photovoltaic performance of series of novel molecular hole transport materials (HTMs) based on bistricyclic aromatic enes (BAEs) are presented. The new derivatives were obtained following a simple and straightforward procedure from inexpensive starting reagents mimicking the synthetically challenging 9,9'-spirobifluorene moiety of the well-studied spiro-OMeTAD. The novel HTMs were tested in mixed cations and anions perovskite solar cells (PSCs) yielding a power conversion efficiency (PCE) of 19.2 % under standard global 100 mW cm -2 AM1.5G illumination using 9-{2,7-bis[bis(4-methoxyphenyl)amino]-9H-fluoren-9-ylidene}-N 2 ,N 2 ,N 7 ,N 7 -tetrakis(4-methoxyphenyl)-9H-thioxanthene-2,7-diamine (coded as KR374). The power conversion efficiency data confirms the easily attainable heteromerous fluorenylidenethioxanthene structure as valuable core for low-cost and highly efficient HTM design and paves the way towards cost-effective PSC technology. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Perovskite solid solutions with multiferroic morphotropic phase boundaries and property enhancement

    NASA Astrophysics Data System (ADS)

    Algueró, M.; Amorín, H.; Fernández-Posada, C. M.; Peña, O.; Ramos, P.; Vila, E.; Castro, A.

    2016-05-01

    Recently, large phase-change magnetoelectric response has been anticipated by a first-principles investigation of phases in the BiFeO3-BiCoO3 perovskite binary system, associated with the existence of a discontinuous morphotropic phase boundary (MPB) between multiferroic polymorphs of rhombohedral and tetragonal symmetries. This might be a general property of multiferroic phase instabilities, and a novel promising approach for room temperature magnetoelectricity. We review here our current investigations on the identification and study of additional material systems, alternative to BiFeO3-BiCoO3 that has only been obtained by high pressure synthesis. Three systems, whose phase diagrams were, in principle, liable to show multiferroic MPBs have been addressed: the BiMnO3-PbTiO3 and BiFeO3-PbTiO3 binary systems, and the BiFeO3-BiMnO3-PbTiO3 ternary one. A comprehensive study of multiferroism across different solid solutions was carried out based on electrical and magnetic characterizations, complemented with mechanical and electromechanical measurements. An in-depth structural analysis was also accomplished when necessary.

  7. Synthesis of N-doped potassium tantalate perovskite material for environmental applications

    NASA Astrophysics Data System (ADS)

    Rao, Martha Purnachander; Nandhini, Vellangattupalayam Ponnusamy; Wu, Jerry J.; Syed, Asad; Ameen, Fuad; Anandan, Sambandam

    2018-02-01

    Nitrogen containing potassium tantalate perovskite material has been synthesized by the solvothermal method using urea (CH4N2O) as a nitrogen source. The as-prepared sample was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), diffuse reflectance spectroscopy (DRS), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). The particle size of nitrogen containing KTaO3 observed from SEM images was found to be 100-150 nm. Doping KTaO3 with nitrogen causes reduction of band gap from 3.5 to 2.54 eV. The incorporation of Nitrogen into the crystal lattice of KTaO3 not only extended the absorption of light from UV (ultraviolet) region to visible region and also enhanced the photocatalytic activity. As prepared nitrogen containing KTaO3 samples exhibit cubic-like morphology and noticed efficient photocatalytic activity towards methylene blue dye degradation under visible light illumination. The intermediates formed during photodegradation were identified by mass spectrometry (GC-MS) and proposed suitable degradation pathway.

  8. Synthesis and optical characterization of SrHfO 3:Ce and SrZrO 3:Ce nanoparticles

    NASA Astrophysics Data System (ADS)

    Rétot, H.; Bessière, A.; Kahn-Harari, A.; Viana, B.

    2008-03-01

    Nanoparticles have recently found application fields in various scopes, such as imaging (luminescent nanosensors), or for the production of laser or scintillating transparent ceramics. This work is related to this last field, with the target of medical imaging (positron emission tomography). Very dense rare earth doped mixed oxides were studied: SrZrO 3:Ce and SrHfO 3:Ce, which are particularly adapted to this application. The phase transformations and the very high melting points of these materials (respectively 2646 °C and 2730 °C) led us to study their synthesis as nanoparticles. Using the combustion method we have obtained, at temperatures less than 1000 °C, particles of very small dimensions (10-100 nm) without impurities. First characterization of the optical properties (under UV irradiation) of the cerium ion in these perovskite matrixes, realized on the nanopowders (absorption, emission and lifetime of the cerium ion), is presented here: for both compounds, an emission at 430 nm is observed under UV irradiation, with a short decay time; these particles prepared by combustion are thus interesting precursors for ceramic scintillators.

  9. Nano sized La2Co2O6 double perovskite synthesized by sol gel method

    NASA Astrophysics Data System (ADS)

    Solanki, Neha; Lodhi, Pavitra Devi; Choudhary, K. K.; Kaurav, Netram

    2018-05-01

    We report here the synthesis of double perovskite La2Co2O6 (LCO) compound by a sol gel route method. The double perovskite structure of LCO system was confirmed via X-ray diffraction (XRD) analysis. Further, the lattice parameter, unit cell volume and bond length were refined by means of rietveld analysis using the full proof software. Debye Scherer formula was used to determine the particle size. The compound crystallized in triclinic structure with space group P-1 in ambient condition. We also obtained Raman modes from XRD spectra of poly-crystalline LCO sample. These results were interpreted for the observation of phonon excitations in this compound.

  10. A Facile Methodology for Engineering the Morphology of CsPbX3 Perovskite Nanocrystals under Ambient Condition

    NASA Astrophysics Data System (ADS)

    Seth, Sudipta; Samanta, Anunay

    2016-11-01

    A facile and highly reproducible room temperature, open atmosphere synthesis of cesium lead halide perovskite nanocrystals of six different morphologies is reported just by varying the solvent, ligand and reaction time. Sequential evolution of the quantum dots, nanoplates and nanobars in one medium and nanocubes, nanorods and nanowires in another medium is demonstrated. These perovskite nanoparticles are shown to be of excellent crystalline quality with high fluorescence quantum yield. A mechanism of the formation of nanoparticles of different shapes and sizes is proposed. Considering the key role of morphology in nanotechnology, this simple method of fabrication of a wide range of high quality nanocrystals of different shapes and sizes of all-inorganic lead halide perovskites, whose potential is already demonstrated in light emitting and photovoltaic applications, is likely to help widening the scope and utility of these materials in optoelectronic devices.

  11. Design Principles for the Atomic and Electronic Structure of Halide Perovskite Photovoltaic Materials: Insights from Computation.

    PubMed

    Berger, Robert F

    2018-02-09

    In the current decade, perovskite solar cell research has emerged as a remarkably active, promising, and rapidly developing field. Alongside breakthroughs in synthesis and device engineering, halide perovskite photovoltaic materials have been the subject of predictive and explanatory computational work. In this Minireview, we focus on a subset of this computation: density functional theory (DFT)-based work highlighting the ways in which the electronic structure and band gap of this class of materials can be tuned via changes in atomic structure. We distill this body of computational literature into a set of underlying design principles for the band gap engineering of these materials, and rationalize these principles from the viewpoint of band-edge orbital character. We hope that this perspective provides guidance and insight toward the rational design and continued improvement of perovskite photovoltaics. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Low temperature synthesis of hierarchical TiO 2 nanostructures for high performance perovskite solar cells by pulsed laser deposition

    DOE PAGES

    Yang, Bin; Mahjouri-Samani, Masoud; Rouleau, Christopher M.; ...

    2016-06-10

    A promising way to advance perovskite solar cells is to improve the quality of the electron transport material e.g., titanium dioxide (TiO 2) in a direction that increases electron transport and extraction. Although dense TiO 2 films are easily grown in solution, efficient electron extraction suffers due to a lack of interfacial contact area with the perovskite. Conversely, mesoporous films do offer high surface-area-to-volume ratios, thereby promoting efficient electron extraction, but their morphology is relatively difficult to control via conventional solution synthesis methods. Here, a pulsed laser deposition method was used to assemble TiO 2 nanoparticles into TiO 2 hierarchicalmore » nanoarchitectures having the anatase crystal structure, and prototype solar cells employing these structures yielded power conversion efficiencies of ~ 14%. Our approach demonstrates a way to grow high aspect-ratio TiO 2 nanostructures for improved interfacial contact between TiO 2 and perovskite materials, leading to high electron-hole pair separation and electron extraction efficiencies for superior photovoltaic performance. In addition, compared to conventional solution-processed TiO 2 films that require 500 °C to obtain a good crystallinity, our relatively low temperature (300 °C) TiO 2 processing method may promote reduced energy-consumption during device fabrication as well as enable compatibility with various flexible polymer substrates.« less

  13. Benzoyl Halides as Alternative Precursors for the Colloidal Synthesis of Lead-Based Halide Perovskite Nanocrystals

    PubMed Central

    2018-01-01

    We propose here a new colloidal approach for the synthesis of both all-inorganic and hybrid organic–inorganic lead halide perovskite nanocrystals (NCs). The main limitation of the protocols that are currently in use, such as the hot injection and the ligand-assisted reprecipitation routes, is that they employ PbX2 (X = Cl, Br, or I) salts as both lead and halide precursors. This imposes restrictions on being able to precisely tune the amount of reaction species and, consequently, on being able to regulate the composition of the final NCs. In order to overcome this issue, we show here that benzoyl halides can be efficiently used as halide sources to be injected in a solution of metal cations (mainly in the form of metal carboxylates) for the synthesis of APbX3 NCs (in which A = Cs+, CH3NH3+, or CH(NH2)2+). In this way, it is possible to independently tune the amount of both cations and halide precursors in the synthesis. The APbX3 NCs that were prepared with our protocol show excellent optical properties, such as high photoluminescence quantum yields, low amplified spontaneous emission thresholds, and enhanced stability in air. It is noteworthy that CsPbI3 NCs, which crystallize in the cubic α phase, are stable in air for weeks without any postsynthesis treatment. The improved properties of our CsPbX3 perovskite NCs can be ascribed to the formation of lead halide terminated surfaces, in which Cs cations are replaced by alkylammonium ions. PMID:29378131

  14. Benzoyl Halides as Alternative Precursors for the Colloidal Synthesis of Lead-Based Halide Perovskite Nanocrystals.

    PubMed

    Imran, Muhammad; Caligiuri, Vincenzo; Wang, Mengjiao; Goldoni, Luca; Prato, Mirko; Krahne, Roman; De Trizio, Luca; Manna, Liberato

    2018-02-21

    We propose here a new colloidal approach for the synthesis of both all-inorganic and hybrid organic-inorganic lead halide perovskite nanocrystals (NCs). The main limitation of the protocols that are currently in use, such as the hot injection and the ligand-assisted reprecipitation routes, is that they employ PbX 2 (X = Cl, Br, or I) salts as both lead and halide precursors. This imposes restrictions on being able to precisely tune the amount of reaction species and, consequently, on being able to regulate the composition of the final NCs. In order to overcome this issue, we show here that benzoyl halides can be efficiently used as halide sources to be injected in a solution of metal cations (mainly in the form of metal carboxylates) for the synthesis of APbX 3 NCs (in which A = Cs + , CH 3 NH 3 + , or CH(NH 2 ) 2 + ). In this way, it is possible to independently tune the amount of both cations and halide precursors in the synthesis. The APbX 3 NCs that were prepared with our protocol show excellent optical properties, such as high photoluminescence quantum yields, low amplified spontaneous emission thresholds, and enhanced stability in air. It is noteworthy that CsPbI 3 NCs, which crystallize in the cubic α phase, are stable in air for weeks without any postsynthesis treatment. The improved properties of our CsPbX 3 perovskite NCs can be ascribed to the formation of lead halide terminated surfaces, in which Cs cations are replaced by alkylammonium ions.

  15. Perovskite-type catalytic materials for environmental applications.

    PubMed

    Labhasetwar, Nitin; Saravanan, Govindachetty; Kumar Megarajan, Suresh; Manwar, Nilesh; Khobragade, Rohini; Doggali, Pradeep; Grasset, Fabien

    2015-06-01

    Perovskites are mixed-metal oxides that are attracting much scientific and application interest owing to their low price, adaptability, and thermal stability, which often depend on bulk and surface characteristics. These materials have been extensively explored for their catalytic, electrical, magnetic, and optical properties. They are promising candidates for the photocatalytic splitting of water and have also been extensively studied for environmental catalysis applications. Oxygen and cation non-stoichiometry can be tailored in a large number of perovskite compositions to achieve the desired catalytic activity, including multifunctional catalytic properties. Despite the extensive uses, the commercial success for this class of perovskite-based catalytic materials has not been achieved for vehicle exhaust emission control or for many other environmental applications. With recent advances in synthesis techniques, including the preparation of supported perovskites, and increasing understanding of promoted substitute perovskite-type materials, there is a growing interest in applied studies of perovskite-type catalytic materials. We have studied a number of perovskites based on Co, Mn, Ru, and Fe and their substituted compositions for their catalytic activity in terms of diesel soot oxidation, three-way catalysis, N 2 O decomposition, low-temperature CO oxidation, oxidation of volatile organic compounds, etc. The enhanced catalytic activity of these materials is attributed mainly to their altered redox properties, the promotional effect of co-ions, and the increased exposure of catalytically active transition metals in certain preparations. The recent lowering of sulfur content in fuel and concerns over the cost and availability of precious metals are responsible for renewed interest in perovskite-type catalysts for environmental applications.

  16. Perovskite-type catalytic materials for environmental applications

    PubMed Central

    Labhasetwar, Nitin; Saravanan, Govindachetty; Kumar Megarajan, Suresh; Manwar, Nilesh; Khobragade, Rohini; Doggali, Pradeep; Grasset, Fabien

    2015-01-01

    Perovskites are mixed-metal oxides that are attracting much scientific and application interest owing to their low price, adaptability, and thermal stability, which often depend on bulk and surface characteristics. These materials have been extensively explored for their catalytic, electrical, magnetic, and optical properties. They are promising candidates for the photocatalytic splitting of water and have also been extensively studied for environmental catalysis applications. Oxygen and cation non-stoichiometry can be tailored in a large number of perovskite compositions to achieve the desired catalytic activity, including multifunctional catalytic properties. Despite the extensive uses, the commercial success for this class of perovskite-based catalytic materials has not been achieved for vehicle exhaust emission control or for many other environmental applications. With recent advances in synthesis techniques, including the preparation of supported perovskites, and increasing understanding of promoted substitute perovskite-type materials, there is a growing interest in applied studies of perovskite-type catalytic materials. We have studied a number of perovskites based on Co, Mn, Ru, and Fe and their substituted compositions for their catalytic activity in terms of diesel soot oxidation, three-way catalysis, N2O decomposition, low-temperature CO oxidation, oxidation of volatile organic compounds, etc. The enhanced catalytic activity of these materials is attributed mainly to their altered redox properties, the promotional effect of co-ions, and the increased exposure of catalytically active transition metals in certain preparations. The recent lowering of sulfur content in fuel and concerns over the cost and availability of precious metals are responsible for renewed interest in perovskite-type catalysts for environmental applications. PMID:27877813

  17. Thermally evaporated methylammonium tin triiodide thin films for lead-free perovskite solar cell fabrication

    DOE PAGES

    Yu, Yue; Zhao, Dewei; Grice, Corey R.; ...

    2016-09-16

    Here, we report on the synthesis of methylammonium tin triiodide (MASnI 3) thin films at room temperature by a hybrid thermal evaporation method and their application in fabricating lead (Pb)-free perovskite solar cells. The as-deposited MASnI 3 thin films exhibit smooth surfaces, uniform coverage across the entire substrate, and strong crystallographic preferred orientation along the < 100 > direction. By incorporating this film with an inverted planar device architecture, our Pb-free perovskite solar cells are able to achieve an open-circuit voltage ( V oc) up to 494 mV. The relatively high V oc is mainly ascribed to the excellent surfacemore » coverage, the compact morphology, the good stoichiometry control of the MASnI 3 thin films, and the effective passivation of the electron-blocking and hole-blocking layers. Finally, our results demonstrate the potential capability of the hybrid evaporation method to prepare high-quality Pb-free MASnI 3 perovskite thin films which can be used to fabricate efficient Pb-free perovskite solar cells.« less

  18. Joey Luther | NREL

    Science.gov Websites

    Laboratory to study synthesis and chemical transformation of uniquely shaped colloidal nanocrystals for Advanced Solar Photophysics as well as in NREL's perovskite team. Education B.S. Electrical and Computer

  19. Control of Emission Color of High Quantum Yield CH3NH3PbBr3 Perovskite Quantum Dots by Precipitation Temperature.

    PubMed

    Huang, He; Susha, Andrei S; Kershaw, Stephen V; Hung, Tak Fu; Rogach, Andrey L

    2015-09-01

    Emission color controlled, high quantum yield CH 3 NH 3 PbBr 3 perovskite quantum dots are obtained by changing the temperature of a bad solvent during synthesis. The products for temperatures between 0 and 60 °C have good spectral purity with narrow emission line widths of 28-36 nm, high absolute emission quantum yields of 74% to 93%, and short radiative lifetimes of 13-27 ns.

  20. Nonaqueous solution synthesis process for preparing oxide powders of lead zirconate titanate and related materials

    DOEpatents

    Voigt, J.A.; Sipola, D.L.; Tuttle, B.A.; Anderson, M.T.

    1999-06-01

    A process is disclosed for producing powders of perovskite-type compounds which comprises mixing a metal alkoxide solution with a lead acetate solution to form a homogeneous, clear metal solution, adding an oxalic acid/n-propanol solution to this metal solution to form an easily filterable, free-flowing precursor powder and then calcining this powder. This process provides fine perovskite-phase powders with ferroelectric properties which are particularly useful in a variety of electronic applications. 4 figs.

  1. Nonaqueous solution synthesis process for preparing oxide powders of lead zirconate titanate and related materials

    DOEpatents

    Voigt, James A.; Sipola, Diana L.; Tuttle, Bruce A.; Anderson, Mark T.

    1999-01-01

    A process for producing powders of perovskite-type compounds which comprises mixing a metal alkoxide solution with a lead acetate solution to form a homogeneous, clear metal solution, adding an oxalic acid/n-propanol solution to this metal solution to form an easily filterable, free-flowing precursor powder and then calcining this powder. This process provides fine perovskite-phase powders with ferroelectric properties which are particularly useful in a variety of electronic applications.

  2. Effect of Water Vapor, Temperature, and Rapid Annealing on Formamidinium Lead Triiodide Perovskite Crystallization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguiar, Jeffery A.; Wozny, Sarah; Alkurd, Nooraldeen R.

    Perovskite-based solar cells are one of the emerging candidates for radically lower cost photovoltaics. Herein, we report on the synthesis and crystallization of organic-inorganic formamidinium lead triiodide perovskite films under controlled atmospheric and environmental conditions. Using in situ (scanning) transmission electron microscopy, we make observations of the crystallization process of these materials in nitrogen and oxygen gas with and without the presence of water vapor. Complementary planar samples were also fabricated in the presence of water vapor and characterized by in situ X-ray diffraction. Direct observations of the material structure and final morphology indicate that the exposure to water vapormore » results in a porous film that is metastable, regardless of the presence of argon, nitrogen, or oxygen. However, the optimal crystallization temperature of 175 degrees C is unperturbed across conditions. Rapid modulation about the annealing temperature of 175 degrees C in +/-25 degrees C steps (150-200 degrees C) promotes crystallization and significantly improves the film morphology by overcoming the presence of impregnated water trapped in the material. Following this processing protocol, we demonstrate substantial growth to micron-size grains via observation inside of an environmentally controlled transmission electron microscope. Adapting this insight from our in situ microscopy, we are able to provide an informed materials protocol to control the structure and morphology of these organic-inorganic semiconductors, which is readily applicable to benchtop device growth strategies.« less

  3. Effect of Water Vapor, Temperature, and Rapid Annealing on Formamidinium Lead Triiodide Perovskite Crystallization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguiar, Jeffery A.; Wozny, Sarah; Alkurd, Nooraldeen R.

    Perovskite-based solar cells are one of the emerging candidates for radically lower cost photovoltaics. Herein, we report on the synthesis and crystallization of organic-inorganic formamidinium lead triiodide perovskite films under controlled atmospheric and environmental conditions. Using in situ (scanning) transmission electron microscopy, we make observations of the crystallization process of these materials in nitrogen and oxygen gas with and without the presence of water vapor. Complementary planar samples were also fabricated in the presence of water vapor and characterized by in situ X-ray diffraction. Direct observations of the material structure and final morphology indicate that the exposure to water vapormore » results in a porous film that is metastable, regardless of the presence of argon, nitrogen, or oxygen. However, the optimal crystallization temperature of 175 °C is unperturbed across conditions. Rapid modulation about the annealing temperature of 175 °C in ±25 °C steps (150-200 °C) promotes crystallization and significantly improves the film morphology by overcoming the presence of impregnated water trapped in the material. Following this processing protocol, we demonstrate substantial growth to micron-size grains via observation inside of an environmentally controlled transmission electron microscope. Adapting this insight from our in situ microscopy, we are able to provide an informed materials protocol to control the structure and morphology of these organic-inorganic semiconductors, which is readily applicable to benchtop device growth strategies.« less

  4. Identification and characterization of the intermediate phase in hybrid organic-inorganic MAPbI3 perovskite.

    PubMed

    Guo, Xin; McCleese, Christopher; Kolodziej, Charles; Samia, Anna C S; Zhao, Yixin; Burda, Clemens

    2016-03-07

    Perovskite films were prepared using single step solution deposition at different annealing temperatures and annealing times. The crystal structure, phases and grain size were investigated with XRD, XPS and SEM/EDX. The prepared films show a typical orientation of tetragonal perovskite phase and a gradual transition at room temperature from the yellow intermediate phase to the black perovskite phase. Films with high purity were obtained by sintering at 100 °C. In addition, the chemical composition and crystal structure of intermediate phase were investigated in detail. FTIR, UV-vis and NMR spectra revealed the occurance of DMF complexes. Interestingly, the intermediate phase could be transformed to the black perovskite phase upon X-ray irradiation. In addition, the recovery of the aged perovskite films from a yellow intermediate phase back to the black perovskite was shown to be viable via heating and X-ray irradiation.

  5. Inkjet printable-photoactive all inorganic perovskite films with long effective photocarrier lifetimes

    NASA Astrophysics Data System (ADS)

    Ilie, C. C.; Guzman, F.; Swanson, B. L.; Evans, I. R.; Costa, P. S.; Teeter, J. D.; Shekhirev, M.; Benker, N.; Sikich, S.; Enders, A.; Dowben, P. A.; Sinitskii, A.; Yost, A. J.

    2018-05-01

    Photoactive perovskite quantum dot films, deposited via an inkjet printer, have been characterized by x-ray diffraction and x-ray photoelectron spectroscopy. The crystal structure and bonding environment are consistent with CsPbBr3 perovskite quantum dots. The current–voltage (I–V) and capacitance–voltage (C–V) transport measurements indicate that the photo-carrier drift lifetime can exceed 1 ms for some printed perovskite films. This far exceeds the dark drift carrier lifetime, which is below 50 ns. The printed films show a photocarrier density 109 greater than the dark carrier density, making these printed films ideal candidates for application in photodetectors. The successful printing of photoactive-perovskite quantum dot films of CsPbBr3, indicates that the rapid prototyping of various perovskite inks and multilayers is realizable.

  6. Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications.

    PubMed

    Fu, Yongping; Meng, Fei; Rowley, Matthew B; Thompson, Blaise J; Shearer, Melinda J; Ma, Dewei; Hamers, Robert J; Wright, John C; Jin, Song

    2015-05-06

    Understanding crystal growth and improving material quality is important for improving semiconductors for electronic, optoelectronic, and photovoltaic applications. Amidst the surging interest in solar cells based on hybrid organic-inorganic lead halide perovskites and the exciting progress in device performance, improved understanding and better control of the crystal growth of these perovskites could further boost their optoelectronic and photovoltaic performance. Here, we report new insights on the crystal growth of the perovskite materials, especially crystalline nanostructures. Specifically, single crystal nanowires, nanorods, and nanoplates of methylammonium lead halide perovskites (CH3NH3PbI3 and CH3NH3PbBr3) are successfully grown via a dissolution-recrystallization pathway in a solution synthesis from lead iodide (or lead acetate) films coated on substrates. These single crystal nanostructures display strong room-temperature photoluminescence and long carrier lifetime. We also report that a solid-liquid interfacial conversion reaction can create a highly crystalline, nanostructured MAPbI3 film with micrometer grain size and high surface coverage that enables photovoltaic devices with a power conversion efficiency of 10.6%. These results suggest that single-crystal perovskite nanostructures provide improved photophysical properties that are important for fundamental studies and future applications in nanoscale optoelectronic and photonic devices.

  7. A Review on Organic-Inorganic Halide Perovskite Photodetectors: Device Engineering and Fundamental Physics.

    PubMed

    Ahmadi, Mahshid; Wu, Ting; Hu, Bin

    2017-11-01

    The last eight years (2009-2017) have seen an explosive growth of interest in organic-inorganic halide perovskites in the research communities of photovoltaics and light-emitting diodes. In addition, recent advancements have demonstrated that this type of perovskite has a great potential in the technology of light-signal detection with a comparable performance to commercially available crystalline Si and III-V photodetectors. The contemporary growth of state-of-the-art multifunctional perovskites in the field of light-signal detection has benefited from its outstanding intrinsic optoelectronic properties, including photoinduced polarization, high drift mobilities, and effective charge collection, which are excellent for this application. Photoactive perovskite semiconductors combine effective light absorption, allowing detection of a wide range of electromagnetic waves from ultraviolet and visible, to the near-infrared region, with low-cost solution processability and good photon yield. This class of semiconductor might empower breakthrough photodetector technology in the field of imaging, optical communications, and biomedical sensing. Therefore, here, the focus is specifically on the critical understanding of materials synthesis, design, and engineering for the next-stage development of perovskite photodetectors and highlighting the current challenges in the field, which need to be further studied in the future. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Reversible Structural Swell-Shrink and Recoverable Optical Properties in Hybrid Inorganic-Organic Perovskite.

    PubMed

    Zhang, Yupeng; Wang, Yusheng; Xu, Zai-Quan; Liu, Jingying; Song, Jingchao; Xue, Yunzhou; Wang, Ziyu; Zheng, Jialu; Jiang, Liangcong; Zheng, Changxi; Huang, Fuzhi; Sun, Baoquan; Cheng, Yi-Bing; Bao, Qiaoliang

    2016-07-26

    Ion migration in hybrid organic-inorganic perovskites has been suggested to be an important factor for many unusual behaviors in perovskite-based optoelectronics, such as current-voltage hysteresis, low-frequency giant dielectric response, and the switchable photovoltaic effect. However, the role played by ion migration in the photoelectric conversion process of perovskites is still unclear. In this work, we provide microscale insights into the influence of ion migration on the microstructure, stability, and light-matter interaction in perovskite micro/nanowires by using spatially resolved optical characterization techniques. We observed that ion migration, especially the migration of MA(+) ions, will induce a reversible structural swell-shrink in perovskites and recoverably affect the reflective index, quantum efficiency, light-harvesting, and photoelectric properties. The maximum ion migration quantity in perovskites was as high as approximately 30%, resulting in lattice swell or shrink of approximately 4.4%. Meanwhile, the evidence shows that ion migration in perovskites could gradually accelerate the aging of perovskites because of lattice distortion in the reversible structural swell-shrink process. Knowledge regarding reversible structural swell-shrink and recoverable optical properties may shed light on the development of optoelectronic and converse piezoelectric devices based on perovskites.

  9. Highly efficient and stable blue-emitting CsPbBr3@SiO2 nanospheres through low temperature synthesis for nanoprinting and WLED.

    PubMed

    Shao, He; Bai, Xue; Pan, Gencai; Cui, Haining; Zhu, Jinyang; Zhai, Yue; Liu, Jingshi; Dong, Biao; Xu, Lin; Song, Hongwei

    2018-07-13

    Inorganic perovskite quantum dots (QDs) have attracted wide attention in display and solid-state lighting because of their easily tunable band-gaps and high photoluminescence quantum yields (PLQY) of green light emission. However, some drawbacks limit their practical applications, including the low PLQY of blue light emission and the instability in the moisture environment. In this work, efficient blue-light emitting CsPbBr 3 perovskite QDs with PLQY of 72% were developed through a bandgap engineering approach. The achieved blue-light emitting PLQY is much higher than the values acquired in the inorganic perovskite QDs in the literature. And the emission color of the as-prepared QDs can be facially tuned by only adjusting the reaction temperature. Further, the mono-dispersed perovskite QDs@SiO 2 composites were constructed benefiting from the low temperature synthesis. The optical performance of the QDs could be well persisted even in the moisture environment. Finally, the as-prepared QDs@SiO 2 composite was fabricated as the QD ink on the anti-counterfeit printing technology, from which the obtained pattern would emit varied color under UV lamp. And the as-prepared composites was also applied for fabricating WLED, with Commission Internationale de l'Eclairage (CIE) color coordinates of (0.33, 0.38) and power efficiency of 32.5 lm W -1 , demonstrating their promising potentials in solid-state lighting.

  10. Low-Bandgap Cs4CuSb2Cl12 Layered Double Perovskite: Synthesis, Reversible Thermal Changes, and Magnetic Interaction.

    PubMed

    Singhal, Nancy; Chakraborty, Rayan; Ghosh, Prasenjit; Nag, Angshuman

    2018-05-29

    Double perovskites (DPs) with a generic formula A2M'(I)M(III)X6 (A and M are metal ions, and X = Cl, Br, I) are now being explored as potential alternatives to Pb-halide perovskite for solar cell and other optoelectronic applications. However, these DPs typically suffer from wide (~ 3 eV) and/or indirect band gaps. In 2017, a new structural variety, namely layered DP halide Cs4CuSb2Cl12 (CCSC) with bivalent Cu(II) ion in place of M'(I) was reported exhibiting a band gap ~1 eV. Here, we report a mechanochemical synthesis of CCSC, its thermal- and chemical stability, and magnetic response of Cu(II) d9 electrons controlling optoelectronic properties. A simple grinding of precursor salts at ambient conditions provides stable and scalable product CCSC. CCSC is stable in water-acetone solvent mixture (~30% water) and many other polar solvents unlike Pb-halide perovskites. It decomposes to Cs3Sb2Cl9, Cs2CuCl4 and SbCl3 at 210 oC, but the reaction can be reversed back to produce CCSC at lower temperatures and high humidity. A long range magnetic ordering is observed in CCSC even at room temperature. Role of such magnetic ordering in controlling the dispersion of conduction band, and therefore, controlling the electronic and optoelectronic properties of CCSC has been discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Highly efficient and stable blue-emitting CsPbBr3@SiO2 nanospheres through low temperature synthesis for nanoprinting and WLED

    NASA Astrophysics Data System (ADS)

    Shao, He; Bai, Xue; Pan, Gencai; Cui, Haining; Zhu, Jinyang; Zhai, Yue; Liu, Jingshi; Dong, Biao; Xu, Lin; Song, Hongwei

    2018-07-01

    Inorganic perovskite quantum dots (QDs) have attracted wide attention in display and solid-state lighting because of their easily tunable band-gaps and high photoluminescence quantum yields (PLQY) of green light emission. However, some drawbacks limit their practical applications, including the low PLQY of blue light emission and the instability in the moisture environment. In this work, efficient blue-light emitting CsPbBr3 perovskite QDs with PLQY of 72% were developed through a bandgap engineering approach. The achieved blue-light emitting PLQY is much higher than the values acquired in the inorganic perovskite QDs in the literature. And the emission color of the as-prepared QDs can be facially tuned by only adjusting the reaction temperature. Further, the mono-dispersed perovskite QDs@SiO2 composites were constructed benefiting from the low temperature synthesis. The optical performance of the QDs could be well persisted even in the moisture environment. Finally, the as-prepared QDs@SiO2 composite was fabricated as the QD ink on the anti-counterfeit printing technology, from which the obtained pattern would emit varied color under UV lamp. And the as-prepared composites was also applied for fabricating WLED, with Commission Internationale de l’Eclairage (CIE) color coordinates of (0.33, 0.38) and power efficiency of 32.5 lm W‑1, demonstrating their promising potentials in solid-state lighting.

  12. A Dual-Phase Ceramic Membrane with Extremely High H2 Permeation Flux Prepared by Autoseparation of a Ceramic Precursor.

    PubMed

    Cheng, Shunfan; Wang, Yanjie; Zhuang, Libin; Xue, Jian; Wei, Yanying; Feldhoff, Armin; Caro, Jürgen; Wang, Haihui

    2016-08-26

    A novel concept for the preparation of multiphase composite ceramics based on demixing of a single ceramic precursor has been developed and used for the synthesis of a dual-phase H2 -permeable ceramic membrane. The precursor BaCe0.5 Fe0.5 O3-δ decomposes on calcination at 1370 °C for 10 h into two thermodynamically stable oxides with perovskite structures: the cerium-rich oxide BaCe0.85 Fe0.15 O3-δ (BCF8515) and the iron-rich oxide BaCe0.15 Fe0.85 O3-δ (BCF1585), 50 mol % each. In the resulting dual-phase material, the orthorhombic perovskite BCF8515 acts as the main proton conductor and the cubic perovskite BCF1585 as the main electron conductor. The dual-phase membrane shows an extremely high H2 permeation flux of 0.76 mL min(-1)  cm(-2) at 950 °C with 1.0 mm thickness. This auto-demixing concept should be applicable to the synthesis of other ionic-electronic conducting ceramics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Green and scalable production of colloidal perovskite nanocrystals and transparent sols by a controlled self-collection process

    NASA Astrophysics Data System (ADS)

    Liu, Shuangyi; Huang, Limin; Li, Wanlu; Liu, Xiaohua; Jing, Shui; Li, Jackie; O'Brien, Stephen

    2015-07-01

    Colloidal perovskite oxide nanocrystals have attracted a great deal of interest owing to the ability to tune physical properties by virtue of the nanoscale, and generate thin film structures under mild chemical conditions, relying on self-assembly or heterogeneous mixing. This is particularly true for ferroelectric/dielectric perovskite oxide materials, for which device applications cover piezoelectrics, MEMs, memory, gate dielectrics and energy storage. The synthesis of complex oxide nanocrystals, however, continues to present issues pertaining to quality, yield, % crystallinity, purity and may also suffer from tedious separation and purification processes, which are disadvantageous to scaling production. We report a simple, green and scalable ``self-collection'' growth method that produces uniform and aggregate-free colloidal perovskite oxide nanocrystals including BaTiO3 (BT), BaxSr1-xTiO3 (BST) and quaternary oxide BaSrTiHfO3 (BSTH) in high crystallinity and high purity. The synthesis approach is solution processed, based on the sol-gel transformation of metal alkoxides in alcohol solvents with controlled or stoichiometric amounts of water and in the stark absence of surfactants and stabilizers, providing pure colloidal nanocrystals in a remarkably low temperature range (15 °C-55 °C). Under a static condition, the nanoscale hydrolysis of the metal alkoxides accomplishes a complete transformation to fully crystallized single domain perovskite nanocrystals with a passivated surface layer of hydroxyl/alkyl groups, such that the as-synthesized nanocrystals can exist in the form of super-stable and transparent sol, or self-accumulate to form a highly crystalline solid gel monolith of nearly 100% yield for easy separation/purification. The process produces high purity ligand-free nanocrystals excellent dispersibility in polar solvents, with no impurity remaining in the mother solution other than trace alcohol byproducts (such as isopropanol). The afforded stable and transparent suspension/solution can be treated as inks, suitable for printing or spin/spray coating, demonstrating great capabilities of this process for fabrication of high performance dielectric thin films. The simple ``self-collection'' strategy can be described as green and scalable due to the simplified procedure from synthesis to separation/purification, minimum waste generation, and near room temperature crystallization of nanocrystal products with tunable sizes in extremely high yield and high purity.Colloidal perovskite oxide nanocrystals have attracted a great deal of interest owing to the ability to tune physical properties by virtue of the nanoscale, and generate thin film structures under mild chemical conditions, relying on self-assembly or heterogeneous mixing. This is particularly true for ferroelectric/dielectric perovskite oxide materials, for which device applications cover piezoelectrics, MEMs, memory, gate dielectrics and energy storage. The synthesis of complex oxide nanocrystals, however, continues to present issues pertaining to quality, yield, % crystallinity, purity and may also suffer from tedious separation and purification processes, which are disadvantageous to scaling production. We report a simple, green and scalable ``self-collection'' growth method that produces uniform and aggregate-free colloidal perovskite oxide nanocrystals including BaTiO3 (BT), BaxSr1-xTiO3 (BST) and quaternary oxide BaSrTiHfO3 (BSTH) in high crystallinity and high purity. The synthesis approach is solution processed, based on the sol-gel transformation of metal alkoxides in alcohol solvents with controlled or stoichiometric amounts of water and in the stark absence of surfactants and stabilizers, providing pure colloidal nanocrystals in a remarkably low temperature range (15 °C-55 °C). Under a static condition, the nanoscale hydrolysis of the metal alkoxides accomplishes a complete transformation to fully crystallized single domain perovskite nanocrystals with a passivated surface layer of hydroxyl/alkyl groups, such that the as-synthesized nanocrystals can exist in the form of super-stable and transparent sol, or self-accumulate to form a highly crystalline solid gel monolith of nearly 100% yield for easy separation/purification. The process produces high purity ligand-free nanocrystals excellent dispersibility in polar solvents, with no impurity remaining in the mother solution other than trace alcohol byproducts (such as isopropanol). The afforded stable and transparent suspension/solution can be treated as inks, suitable for printing or spin/spray coating, demonstrating great capabilities of this process for fabrication of high performance dielectric thin films. The simple ``self-collection'' strategy can be described as green and scalable due to the simplified procedure from synthesis to separation/purification, minimum waste generation, and near room temperature crystallization of nanocrystal products with tunable sizes in extremely high yield and high purity. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02351c

  14. Double perovskites overtaking the single perovskites: A set of new solar harvesting materials with much higher stability and efficiency

    NASA Astrophysics Data System (ADS)

    Kangsabanik, Jiban; Sugathan, Vipinraj; Yadav, Anuradha; Yella, Aswani; Alam, Aftab

    2018-05-01

    Solar energy plays an important role in substituting the ever declining source of fossil fuel energy. Finding novel materials for solar cell applications is an integral part of photovoltaic research. Hybrid lead halide perovskites are one of, if not the most, well sought material in the photovoltaic research community. Its unique intrinsic properties, flexible synthesis techniques, and device fabrication architecture made the community highly buoyant over the past few years. Yet, there are two fundamental issues that still remain a concern, i.e., the stability in external environment and the toxicity due to Pb. This led to a search for alternative materials. More recently, double perovskite [A2B B'X6 (X =Cl, Br, I)] materials have emerged as a promising choice. Few experimental synthesis and high throughput computational studies have been carried out to check for promising candidates of this class. The main outcome from these studies, however, can essentially be summarized into two categories: (i) either they have an indirect band gap or (ii) a direct but large optical band gap, which is not suitable for solar devices. Here we propose a large set of stable double perovskite materials, Cs2B B 'X6 (X =Cl, Br, I), which show indirect to direct band gap transition via small Pb+2 doping at both B and B'sites. This is done by careful band (orbital) engineering using first-principles calculations. This kind of doping has helped to change the topology of the band structure, triggering an indirect to direct transition that is optically allowed. It also reduces the band gap significantly, bringing it well into the visible region. We also simulated the optical absorption spectra of these systems and found a comparable/higher absorption coefficient and solar efficiency with respect to the state of the art photovoltaic absorber material CH3NH3PbI3 . A number of materials Cs2(B0.75Pb0.25) (B0.75'Pb0.25) X6 (for various combinations of B ,B ', and X ) are found to be promising, some with better stability and solar efficiency than CH3NH3PbI3 , but with much less toxicity. Experimental characterization of one of the materials, Cs2(Ag0.75Pb0.25) (Bi0.75Pb0.25) Br6 , is carried out. The measured properties such as band gap and chemical stability agree fairly well with the theoretical predictions. This material is shown to be even more stable than CH3NH3PbI3 , both under sufficient humidity (˜55 %) and temperature (T =338 K), and hence has the potential to become a better candidate than the state of the art materials.

  15. Synthesis of Freestanding Single-crystal Perovskite Films and Heterostructures by Etching of Sacrificial Water-soluble Layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Di; Baek, David J.; Hong, Seung Sae

    2016-08-22

    The ability to create and manipulate materials in two-dimensional (2D) form has repeatedly had transformative impact on science and technology. In parallel with the exfoliation and stacking of intrinsically layered crystals, atomic-scale thin film growth of complex materials has enabled the creation of artificial 2D heterostructures with novel functionality and emergent phenomena, as seen in perovskite heterostructures. However, separation of these layers from the growth substrate has proven challenging, limiting the manipulation capabilities of these heterostructures with respect to exfoliated materials. Here we present a general method to create freestanding perovskite membranes. The key is the epitaxial growth of water-solublemore » Sr 3Al 2O 6 on perovskite substrates, followed by in situ growth of films and heterostructures. Millimetre-size single-crystalline membranes are produced by etching the Sr 3Al 2O 6 layer in water, providing the opportunity to transfer them to arbitrary substrates and integrate them with heterostructures of semiconductors and layered compounds.« less

  16. Synthesis and Structure of A New Perovskite, SrCuO 2.5

    NASA Astrophysics Data System (ADS)

    Chen, Bai-Hao; Walker, Dave; Scott, Bruce A.; Mitzi, David B.

    1996-02-01

    A new oxygen-deficient perovskite, SrCuO2.5, was prepared at 950°C and 100 kbar pressure in a multianvil apparatus. Rietveld profile analysis, using X-ray powder diffraction data, was employed for the structural determination. SrCuO2.5is orthorhombic,Pbam(No. 55),Z= 4,a= 5.424(2) Â,b= 10.837(4) Â, andc= 3.731(1) Â, which is related to the perovskite subcell by root{2}ap× 2root{2}ap×ap, whereapis the simple cubic perovskite lattice parameter. It consists of corner-shared CuO5square pyramids with oxygen vacancy ordering in the CuO2layers. The ordered oxygen vacancies create parallel pseudo-hexagonal tunnels where the Sr atoms reside, forming SrO10polyhedra. Structural features with respect to oxygen vacancies, superstructures, and distortions are analogous to the type of ordering observed in Sr2CuO3+δ. Superconductivity was not observed in SrCuO2.5down to 5 K.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yuanyue; Xiao, Hai; Goddard, William A.

    Two-dimensional (2D) halide perovskites are emerging as promising candidates for nanoelectronics and optoelectronics. To realize their full potential, it is important to understand the role of those defects that can strongly impact material properties. In contrast to other popular 2D semiconductors (e.g., transition metal dichalcogenides MX 2) for which defects typically induce harmful traps, we show that the electronic activities of defects in 2D perovskites are significantly tunable. For example, even with a fixed lattice orientation one can change the synthesis conditions to convert a line defect (edge or grain boundary) from electron acceptor to inactive site without deep gapmore » states. Here, we show that this difference originates from the enhanced ionic bonding in these perovskites compared with MX 2. The donors tend to have high formation energies and the harmful defects are difficult to form at a low halide chemical potential. Thus, we unveil unique properties of defects in 2D perovskites and suggest practical routes to improve them.« less

  18. Inkjet printable-photoactive all inorganic perovskite films with long effective photocarrier lifetimes.

    PubMed

    Ilie, C C; Guzman, F; Swanson, B L; Evans, I R; Costa, P S; Teeter, J D; Shekhirev, M; Benker, N; Sikich, S; Enders, A; Dowben, P A; Sinitskii, A; Yost, A J

    2018-05-10

    Photoactive perovskite quantum dot films, deposited via an inkjet printer, have been characterized by x-ray diffraction and x-ray photoelectron spectroscopy. The crystal structure and bonding environment are consistent with CsPbBr 3 perovskite quantum dots. The current-voltage (I-V) and capacitance-voltage (C-V) transport measurements indicate that the photo-carrier drift lifetime can exceed 1 ms for some printed perovskite films. This far exceeds the dark drift carrier lifetime, which is below 50 ns. The printed films show a photocarrier density 10 9 greater than the dark carrier density, making these printed films ideal candidates for application in photodetectors. The successful printing of photoactive-perovskite quantum dot films of CsPbBr 3 , indicates that the rapid prototyping of various perovskite inks and multilayers is realizable.

  19. In Situ Preparation of Metal Halide Perovskite Nanocrystal Thin Films for Improved Light-Emitting Devices.

    PubMed

    Zhao, Lianfeng; Yeh, Yao-Wen; Tran, Nhu L; Wu, Fan; Xiao, Zhengguo; Kerner, Ross A; Lin, YunHui L; Scholes, Gregory D; Yao, Nan; Rand, Barry P

    2017-04-25

    Hybrid organic-inorganic halide perovskite semiconductors are attractive candidates for optoelectronic applications, such as photovoltaics, light-emitting diodes, and lasers. Perovskite nanocrystals are of particular interest, where electrons and holes can be confined spatially, promoting radiative recombination. However, nanocrystalline films based on traditional colloidal nanocrystal synthesis strategies suffer from the use of long insulating ligands, low colloidal nanocrystal concentration, and significant aggregation during film formation. Here, we demonstrate a facile method for preparing perovskite nanocrystal films in situ and that the electroluminescence of light-emitting devices can be enhanced up to 40-fold through this nanocrystal film formation strategy. Briefly, the method involves the use of bulky organoammonium halides as additives to confine crystal growth of perovskites during film formation, achieving CH 3 NH 3 PbI 3 and CH 3 NH 3 PbBr 3 perovskite nanocrystals with an average crystal size of 5.4 ± 0.8 nm and 6.4 ± 1.3 nm, respectively, as confirmed through transmission electron microscopy measurements. Additive-confined perovskite nanocrystals show significantly improved photoluminescence quantum yield and decay lifetime. Finally, we demonstrate highly efficient CH 3 NH 3 PbI 3 red/near-infrared LEDs and CH 3 NH 3 PbBr 3 green LEDs based on this strategy, achieving an external quantum efficiency of 7.9% and 7.0%, respectively, which represent a 40-fold and 23-fold improvement over control devices fabricated without the additives.

  20. Perovskite Materials: Solar Cell and Optoelectronic Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Bin; Geohegan, David B; Xiao, Kai

    2017-01-01

    Hybrid organometallic trihalide perovskites are promising candidates in the applications for next-generation, high-performance, low-cost optoelectronic devices, including photovoltaics, light emitting diodes, and photodetectors. Particularly, the solar cells based on this type of materials have reached 22% lab scale power conversion efficiency in only about seven years, comparable to the other thin film photovoltaic technologies. Hybrid perovskite materials not only exhibit superior optoelectronic properties, but also show many interesting physical properties such as ion migration and defect physics, which may allow the exploration of more device functionalities. In this article, the fundamental understanding of the interrelationships between crystal structure, electronic structure,more » and material properties is discussed. Various chemical synthesis and processing methods for superior device performance in solar cells and optoelectronic devices are reviewed.« less

  1. Magnetism and the spin state in cubic perovskite CaCo O 3 synthesized under high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Hailiang; Dai, Jianhong; Xu, Yuanji

    Cubic SrCo O 3 with an intermediate spin state can only be stabilized by high pressure and high temperature (HPHT) treatment. It is metallic and ferromagnetic with the highest Curie temperature of the transition-metal perovskites. The chemical substitution by Ca on Sr sites would normally lower crystal symmetry from cubic to orthorhombic as seen in the perovskite family of Ca M O 3 ( M = M 4 + of transition metals, G e 4 + , S n 4 + , and Z r 4 +) at room temperature. This structural change narrows the bandwidth, so as to furthermore » enhance the Curie temperature as the crossover to the localized electronic state is approached. Here, we report a successful synthesis of the perovskite CaCo O 3 with a HPHT treatment. Surprisingly, CaCo O 3 crystallizes in a simple cubic structure that remains stable down to 20 K, the lowest temperature in the structural study. The new perovskite has been thoroughly characterized by a suite of measurements including transport, magnetization, specific heat, thermal conductivity, and thermoelectric power. Furthermore, metallic CaCo O 3 undergoes two successive magnetic transitions at 86 K and 54 K as temperature decreases. The magnetization at 5 K is compatible with the intermediate spin state t 4 e 1 of C o 4 + at the octahedral site. The thermal expansion of the Co-O bond length indicates that the population of high spin state t 3 e 2 increases for T > 100 K . The shortest Co-O bond length in cubic CaCo O 3 is responsible for delocalizing electrons in the π * -band and itinerant-electron ferromagnetism at T < 54 K . In our comprehensive comparison between SrCo O 3 and CaCo O 3 and the justification of their physical properties by first-principles calculation were made in this report. Partially filled π * and σ * bands would make CaCo O 3 suitable to study the Hund's coupling effect in a metal.« less

  2. Magnetism and the spin state in cubic perovskite CaCo O 3 synthesized under high pressure

    DOE PAGES

    Xia, Hailiang; Dai, Jianhong; Xu, Yuanji; ...

    2017-07-17

    Cubic SrCo O 3 with an intermediate spin state can only be stabilized by high pressure and high temperature (HPHT) treatment. It is metallic and ferromagnetic with the highest Curie temperature of the transition-metal perovskites. The chemical substitution by Ca on Sr sites would normally lower crystal symmetry from cubic to orthorhombic as seen in the perovskite family of Ca M O 3 ( M = M 4 + of transition metals, G e 4 + , S n 4 + , and Z r 4 +) at room temperature. This structural change narrows the bandwidth, so as to furthermore » enhance the Curie temperature as the crossover to the localized electronic state is approached. Here, we report a successful synthesis of the perovskite CaCo O 3 with a HPHT treatment. Surprisingly, CaCo O 3 crystallizes in a simple cubic structure that remains stable down to 20 K, the lowest temperature in the structural study. The new perovskite has been thoroughly characterized by a suite of measurements including transport, magnetization, specific heat, thermal conductivity, and thermoelectric power. Furthermore, metallic CaCo O 3 undergoes two successive magnetic transitions at 86 K and 54 K as temperature decreases. The magnetization at 5 K is compatible with the intermediate spin state t 4 e 1 of C o 4 + at the octahedral site. The thermal expansion of the Co-O bond length indicates that the population of high spin state t 3 e 2 increases for T > 100 K . The shortest Co-O bond length in cubic CaCo O 3 is responsible for delocalizing electrons in the π * -band and itinerant-electron ferromagnetism at T < 54 K . In our comprehensive comparison between SrCo O 3 and CaCo O 3 and the justification of their physical properties by first-principles calculation were made in this report. Partially filled π * and σ * bands would make CaCo O 3 suitable to study the Hund's coupling effect in a metal.« less

  3. Organometal Halide Perovskite Solar Absorbers and Ferroelectric Nanocomposites for Harvesting Solar Energy

    NASA Astrophysics Data System (ADS)

    Hettiarachchi, Chaminda Lakmal

    Organometal halide perovskite absorbers such as methylammonium lead iodide chloride (CH3NH3PbI3-xClx), have emerged as an exciting new material family for photovoltaics due to its appealing features that include suitable direct bandgap with intense light absorbance, band gap tunability, ultra-fast charge carrier generation, slow electron-hole recombination rates, long electron and hole diffusion lengths, microsecond-long balanced carrier mobilities, and ambipolarity. The standard method of preparing CH3NH3PbI3-xClx perovskite precursors is a tedious process involving multiple synthesis steps and, the chemicals being used (hydroiodic acid and methylamine) are quite expensive. This work describes a novel, single-step, simple, and cost-effective solution approach to prepare CH3NH3PbI3-xClx thin films by the direct reaction of the commercially available CH3NH 3Cl (or MACl) and PbI2. A detailed analysis of the structural and optical properties of CH3NH3PbI3-xCl x thin films deposited by aerosol assisted chemical vapor deposition is presented. Optimum growth conditions have been identified. It is shown that the deposited thin films are highly crystalline with intense optical absorbance. Charge carrier separation of these thin films can be enhanced by establishing a local internal electric field that can reduce electron-hole recombination resulting in increased photo current. The intrinsic ferroelectricity in nanoparticles of Barium Titanate (BaTiO3 -BTO) embedded in the solar absorber can generate such an internal field. A hybrid structure of CH3NH 3PbI3-xClx perovskite and ferroelectric BTO nanocomposite FTO/TiO2/CH3NH3PbI3-xClx : BTO/P3HT/Cu as a new type of photovoltaic device is investigated. Aerosol assisted chemical vapor deposition process that is scalable to large-scale manufacturing was used for the growth of the multilayer structure. TiO 2 and P3HT with additives were used as ETL and HTL respectively. The growth process of the solar absorber layer includes the nebulization of a mixture of PbI2 and CH3NH3Cl perovskite precursors and BTO nanoparticles dissolved in DMF, and injection of the aerosol into the growth chamber and subsequent deposition on TiO2. While high percentage of BTO in the film increases the carrier separation, it also leads to reduced carrier generation. A model was developed to guide the optimum BTO nanoparticle concentration in the nanocomposite films. Characterization of perovskite solar cells indicated that ferroelectric polarization of BTO nanoparticles leads to the increase of the width of depletion regions in the perovskite layer hence the photo current was increased by one order of magnitude after poling the devices. The ferroelectric polarization of BTO nanoparticles within the perovskite solar absorber provides a new perspective for tailoring the working mechanism and photovoltaic performance of perovskite solar cells.

  4. Enhancing the Performance of Perovskite Solar Cells by Hybridizing SnS Quantum Dots with CH3 NH3 PbI3.

    PubMed

    Han, Jianhua; Yin, Xuewen; Nan, Hui; Zhou, Yu; Yao, Zhibo; Li, Jianbao; Oron, Dan; Lin, Hong

    2017-08-01

    The combination of perovskite solar cells and quantum dot solar cells has significant potential due to the complementary nature of the two constituent materials. In this study, solar cells (SCs) with a hybrid CH 3 NH 3 PbI 3 /SnS quantum dots (QDs) absorber layer are fabricated by a facile and universal in situ crystallization method, enabling easy embedding of the QDs in perovskite layer. Compared with SCs based on CH 3 NH 3 PbI 3 , SCs using CH 3 NH 3 PbI 3 /SnS QDs hybrid films as absorber achieves a 25% enhancement in efficiency, giving rise to an efficiency of 16.8%. The performance improvement can be attributed to the improved crystallinity of the absorber, enhanced photo-induced carriers' separation and transport within the absorber layer, and improved incident light utilization. The generality of the methods used in this work paves a universal pathway for preparing other perovskite/QDs hybrid materials and the synthesis of entire nontoxic perovskite/QDs hybrid structure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. High-Pressure Study of Perovskite-Like Organometal Halide: Band-Gap Narrowing and Structural Evolution of [NH 3 -(CH 2 ) 4 -NH 3 ]CuCl 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Qian; Li, Shourui; Wang, Kai

    Searching for nontoxic and stable perovskite-like alternatives to lead-based halide perovskites for photovoltaic application is one urgent issue in photoelectricity science. Such exploration inevitably requires an effective method to accurately control both the crystalline and electronic structures. This work applies high pressure to narrow the band gap of perovskite-like organometal halide, [NH 3-(CH 2) 4-NH 3]CuCl 4 (DABCuCl4), through the crystalline-structure tuning. The band gap keeps decreasing below ~12 GPa, involving the shrinkage and distortion of CuCl 4 2–. Inorganic distortion determines both band-gap narrowing and phase transition between 6.4 and 10.5 GPa, and organic chains function as the springmore » cushion, evidenced by the structural transition at ~0.8 GPa. The supporting function of organic chains protects DABCuCl 4 from phase transition and amorphization, which also contributes to the sustaining band-gap narrowing. This work combines crystal structure and macroscopic property together and offers new strategies for the further design and synthesis of hybrid perovskite-like alternatives.« less

  6. A Photonic Crystal Laser from Solution Based Organo-Lead Iodide Perovskite Thin Films.

    PubMed

    Chen, Songtao; Roh, Kwangdong; Lee, Joonhee; Chong, Wee Kiang; Lu, Yao; Mathews, Nripan; Sum, Tze Chien; Nurmikko, Arto

    2016-04-26

    Perovskite semiconductors are actively investigated for high performance solar cells. Their large optical absorption coefficient and facile solution-based, low-temperature synthesis of thin films make perovskites also a candidate for light-emitting devices across the visible and near-infrared. Specific to their potential as optical gain medium for lasers, early work has demonstrated amplified spontaneous emission and lasing at attractively low thresholds of photoexcitation. Here, we take an important step toward practically usable perovskite lasers where a solution-processed thin film is embedded within a two-dimensional photonic crystal resonator. We demonstrate high degree of temporally and spatially coherent lasing whereby well-defined directional emission is achieved near 788 nm wavelength at optical pumping energy density threshold of 68.5 ± 3.0 μJ/cm(2). The measured power conversion efficiency and differential quantum efficiency of the perovskite photonic crystal laser are 13.8 ± 0.8% and 35.8 ± 5.4%, respectively. Importantly, our approach enables scalability of the thin film lasers to a two-dimensional multielement pixelated array of microlasers which we demonstrate as a proof-of-concept for possible projection display applications.

  7. Layered-structural monoclinic–orthorhombic perovskite La{sub 2}Ti{sub 2}O{sub 7} to orthorhombic LaTiO{sub 3} phase transition and their microstructure characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera, G., E-mail: manuel.herrera@enp.unam.mx; Departamento de Química Inorgánica, Universidad de Valencia, 46100 Burjasot, Valencia; Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, 04510 México D. F.

    2014-03-01

    The layered-structural ceramics, such as lanthanum titanate (La{sub 2}Ti{sub 2}O{sub 7}), have been known for their good temperature and low dielectric loss at microwave frequencies that make them good candidate materials for high frequency applications. However, few studies have been conducted on the synthesis optimization by sol gel reaction, in particular by acrylamide polymerization route. The interest in La{sub 2}Ti{sub 2}O{sub 7} ceramic has been greatly increased recently due to the effect of oriented grains. This anisotropy of the microstructure leads to anisotropy in dielectric, electrical and mechanical properties. In this study, grain oriented lanthanum titanate was produced by themore » sol–gel acrylamide polymerization route. The characterizations of the samples were achieved by thermal analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM). X-ray diffraction indicates that the formation of monoclinic perovskite La{sub 2}Ti{sub 2}O{sub 7} nanocrystals is a necessary first step to obtain orthorhombic LaTiO{sub 3} nanocomposites (with space group Pbnm). In this work we identified that the monoclinic perovskite La{sub 2}Ti{sub 2}O{sub 7} with space group P2{sub 1} transforms its structure into one with the orthorhombic space group Cmc2{sub 1} at approximately 1073 K. The microstructure associated consisted of flaky monoclinic La{sub 2}Ti{sub 2}O{sub 7} nanocomposites in comparison with round-shaped LaTiO{sub 3} nanocomposites. - Highlights: • The flaky-like La{sub 2}Ti{sub 2}O{sub 7} compound was synthesized by sol–gel acrylamide route. • Simultaneous monitoring of the DTA and XRD with temperature was performed. • Phase transformation characterization of La{sub 2}Ti{sub 2}O{sub 7} has been carried out. • The variation of the La{sub 2}Ti{sub 2}O{sub 7} and LaTiO{sub 3} grain morphology has been compared.« less

  8. Selective self-assembly and light emission tuning of layered hybrid perovskites on patterned graphene.

    PubMed

    Guerra, Valentino L P; Kovaříček, Petr; Valeš, Václav; Drogowska, Karolina; Verhagen, Tim; Vejpravova, Jana; Horák, Lukáš; Listorti, Andrea; Colella, Silvia; Kalbáč, Martin

    2018-02-15

    The emission of light in two-dimensional (2-D) layered hybrid organic lead halide perovskites, namely (R-NH 3 ) 2 PbX 4 , can be effectively tuned using specific building blocks for the perovskite formation. Herein this behaviour is combined with a non-covalent graphene functionalization allowing excellent selectivity and spatial resolution of the perovskite film growth, promoting the formation of hybrid 2-D perovskite : graphene heterostructures with uniform coverage of up to centimeter scale graphene sheets and arbitrary shapes down to 5 μm. Using cryo-Raman microspectroscopy, highly resolved spectra of the perovskite phases were obtained and the Raman mapping served as a convenient spatially resolved technique for monitoring the distribution of the perovskite and graphene constituents on the substrate. In addition, the stability of the perovskite phase with respect to the thermal variation was inspected in situ by X-ray diffraction. Finally, time-resolved photoluminescence characterization demonstrated that the optical properties of the perovskite films grown on graphene are not hampered. Our study thus opens the door to smart fabrication routes for (opto)-electronic devices based on 2-D perovskites in contact with graphene with complex architectures.

  9. Microwave-Assisted Synthesis of Perovskite SrSnO 3 Nanocrystals in Ionic Liquids for Photocatalytic Applications

    DOE PAGES

    Alammar, Tarek; Hamm, Ines; Grasmik, Viktoria; ...

    2017-06-05

    Nanosized SrSnO 3 photocatalysts have been successfully synthesized by microwave synthesis in various ionic liquids (ILs) followed by a heat treatment process to optimize the materials’ crystallinity. The influence of the ILs with various cations such as 1-butyl-3-methylimidazolium ([C 4mim] +), 6-bis(3-methylimidazolium-1-yl)hexane ([C 6(mim) 2] 2+), butylpyridinium ([C 4Py] +), and tetradecyltrihexylphosphonium ([P 66614] +) and bis(trifluoromethanesulfonyl)amide ([Tf 2N] -) as the anion on the structure, crystallization, and morphology of the products was investigated. The samples were characterized by X-ray diffraction (XRD), thermogravimetry (TG), scanning electron microscopy (SEM), surface area analysis by gas adsorption, X-ray photoelectron spectroscopy (XPS), diffuse reflectancemore » UV–vis spectroscopy, and Raman and IR spectroscopy. According to structure characterization by XRD and Raman spectroscopy all samples crystallized phase-pure in the orthorhombic GdFeO 3 perovskite structure type. SEM reveals that, on the basis of the IL, the obtained SrSnO 3 nanoparticles exhibit different morphologies and sizes. Rod-shaped particles are formed in [C 4mim][Tf 2N], [C 6(mim) 2][Tf 2N] 2, and [P 66614][Tf 2N]. However, the particle dimensions and size distribution vary depending on the IL and range from quite thin and long needlelike particles with a narrow size distribution obtained in [P 66614][Tf 2N] to relatively larger particles with a broader size distribution obtained in [C 6(mim) 2][Tf 2N] 2. In contrast, in [C 4Py][Tf 2N] nanospheres with a diameter of about 50 nm form. For these particles the highest photocatalytic activity was observed. Our investigations indicate that the improved photocatalytic activity of this material results from the synergistic effect of the relatively large surface area associated with nanosize and an appropriate energy band structure.« less

  10. Effects of Light and Electron Beam Irradiation on Halide Perovskites and Their Solar Cells.

    PubMed

    Klein-Kedem, Nir; Cahen, David; Hodes, Gary

    2016-02-16

    Hybrid alkylammonium lead halide perovskite solar cells have, in a very few years of research, exceeded a light-to-electricity conversion efficiency of 20%, not far behind crystalline silicon cells. These perovskites do not contain any rare element, the amount of toxic lead used is very small, and the cells can be made with a low energy input. They therefore already conform to two of the three requirements for viable, commercial solar cells-efficient and cheap. The potential deal-breaker is their long-term stability. While reasonable short-term (hours) and even medium term (months) stability has been demonstrated, there is concern whether they will be stable for the two decades or more expected from commercial cells in view of the intrinsically unstable nature of these materials. In particular, they have a tendency to be sensitive to various types of irradiation, including sunlight, under certain conditions. This Account focuses on the effect of irradiation on the hybrid (and to a small degree, all-inorganic) lead halide perovskites and their solar cells. It is split up into two main sections. First, we look at the effect of electron beams on the materials. This is important, since such beams are used for characterization of both the perovskites themselves and cells made from them (electron microscopy for morphological and compositional characterization; electron beam-induced current to study cell operation mechanism; cathodoluminescence for charge carrier recombination studies). Since the perovskites are sensitive to electron beam irradiation, it is important to minimize beam damage to draw valid conclusions from such measurements. The second section treats the effect of visible and solar UV irradiation on the perovskites and their cells. As we show, there are many such effects. However, those affecting the perovskite directly need not necessarily always be detrimental to the cells, while those affecting the solar cells, which are composed of several other phases as well as the perovskite light absorber, are not always due to the perovskite itself. While we cannot yet say whether perovskite solar cells will or will not be stable over the long-term, the information in this Account should be a useful source to help achieve this goal.

  11. Synthesis, characterization and study of magnetic, electrical and dielectric properties of La1-xDyxCo1-yFeyO3 nanoparticles prepared by wet chemical route

    NASA Astrophysics Data System (ADS)

    Choudhry, Qurshia; Azhar Khan, Muhammad; Nasar, Gulfam; Mahmood, Azhar; Shahid, Muhammad; Shakir, Imran; Farooq Warsi, Muhammad

    2015-11-01

    Dy3+ and Fe3+ co-doped LaCoO3 perovskite nanoparticles were prepared by chemical co-precipitation route. Structural elucidation was carried out by thermo gravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. The data of all these characterization techniques confirmed the orthorhombic phase with particles size in the range of 20-60 nm. The magnetic parameters, DC-resistivity and dielectric properties were measured for La1-xDyxCo1-yFeyO3 nanoparticles. The purpose of all these application studies was to evaluate the prepared materials for practical applications. The substitution of Dy3+ and Fe3+ with La3+ and Co3+ respectively greatly influenced the magnetic, DC-resistivity and dielectric parameters.

  12. Novel perovskite coating of strontium zirconate in Inconel substrate

    NASA Astrophysics Data System (ADS)

    Venkatesh, G.; Blessto, B.; Rao, C. Santhosh Kumar; Subramanian, R.; Berchmans, L. John

    2018-02-01

    Thermal Barrier Coatings (TBC) provides a low thermal conductivity barrier to heat transfer from the hot gas in the engine to the surface of the coated alloy component. SrZrO3 powder are prepared by Sol Gel synthesis method. The synthesized powder sample is characterized by X Ray Diffraction Technique (XRD), Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) and the results are interpreted. The Polycrystalline nature of SrZrO3 is confirmed and lattice spacing are determined in XRD. SEM shows sub-micron sized particles and a fringed pattern is observed in TEM. The IN718 specimen is Wire Cut and Sand Blasted. A SrZrO3 double layer is coated over the Inconel specimen through a Bond Coat made of NiCoCrAlY by Plasma spraying Process and also characterized. SEM analysis of the Coating shows diffusion of Fe, Sr into the substrate.

  13. Dry (Mg,Fe)SiO 3 perovskite in the Earth's lower mantle

    DOE PAGES

    Panero, Wendy R.; Pigott, Jeffrey S.; Reaman, Daniel M.; ...

    2015-02-26

    Combined synthesis experiments and first-principles calculations show that MgSiO 3-perovskite with minor Al or Fe does not incorporate significant OH under lower mantle conditions. Perovskite, stishovite, and residual melt were synthesized from natural Bamble enstatite samples (Mg/(Fe+Mg) = 0.89 and 0.93; Al 2O 3 < 0.1 wt% with 35 and 2065 ppm wt H 2O, respectively) in the laser-heated diamond anvil cell at 1600-2000 K and 25-65 GPa. Combined Fourier transform infrared (FTIR) spectroscopy, x-ray diffraction, and ex-situ transmission electron microscopy (TEM) analysis demonstrates little difference in the resulting perovskite as a function of initial water content. Four distinct OHmore » vibrational stretching bands are evident upon cooling below 100 K (3576, 3378, 3274, and 3078 cm -1), suggesting 4 potential bonding sites for OH in perovskite with a maximum water content of 220 ppm wt H 2O, and likely no more than 10 ppm wt H 2O. Complementary, Fe-free, first-principles calculations predict multiple potential bonding sites for hydrogen in perovskite, each with significant solution enthalpy (0.2 eV/defect). We calculate that perovskite can dissolve less than 37 ppm wt H 2O (400 ppm H/Si) at the top of the lower mantle, decreasing to 31 ppm wt H 2O (340 ppm H/Si) at 125 GPa and 3000 K in the absence of a melt or fluid phase. Here, we propose that these results resolve a long-standing debate of the perovskite melting curve and explain the order of magnitude increase in viscosity from upper to lower mantle.« less

  14. Epitaxial strain effect in perovskite RENiO3 films (RE = La-Eu) prepared by metal organic decomposition

    NASA Astrophysics Data System (ADS)

    Ikeda, Ai; Manabe, Takaaki; Naito, Michio

    2014-10-01

    We report the synthesis of perovskite RENiO3 films (RE = La, Pr, Nd, Sm, and Eu) by metal organic decomposition (MOD). The RENiO3 family is an ideal system for studying the metal-insulator transition due to the simplicity of the materials. One of the drawbacks is that the bulk synthesis of the RENiO3 requires processing at high oxygen pressures to stabilize Ni3+. Fundamentally, MOD is similar to solid-state reaction, but it turned out that the MOD synthesis tends to stabilize RENiO3 without the need for high oxygen pressure. The films prepared by MOD show high crystallinity and low resistivity. Furthermore, we have investigated the epitaxial strain effect and observed a dramatic effect in PrNiO3 and NdNiO3 films on LaAlO3 substrates. The metal-insulator transition in the PrNiO3 films on LaAlO3 is fully suppressed, whereas the metal-insulator transition temperature is considerably lowered in the NdNiO3 films on LaAlO3.

  15. Formation of sodium bismuth titanate-barium titanate during solid-state synthesis

    DOE PAGES

    Hou, Dong; Aksel, Elena; Fancher, Chris M.; ...

    2017-01-12

    Phase formation of sodium bismuth titanate (Na 0.5Bi 0.5TiO 3 or NBT) and its solid solution with barium titanate (BaTiO 3 or BT) during the calcination process is studied using in situ high-temperature diffraction. The reactant powders were mixed and heated to 1000°C, while X-ray diffraction patterns were recorded continuously. Phase evolutions from starting materials to final perovskite products are observed, and different transient phases are identified. The formation mechanism of NBT and NBT–xBT perovskite structures is discussed, and a reaction sequence is suggested based on the observations. The in situ study leads to a new processing approach, which ismore » the use of nano-TiO 2, and gives insights to the particle size effect for solid-state synthesis products. Lastly, it was found that the use of nano-TiO 2 as reactant powder accelerates the synthesis process, decreases the formation of transient phases, and helps to obtain phase-pure products using a lower thermal budget.« less

  16. Low temperature synthesis & characterization of lead-free BCZT ceramics using molten salt method

    NASA Astrophysics Data System (ADS)

    Jai Shree, K.; Chandrakala, E.; Das, Dibakar

    2018-04-01

    Piezoelectric properties are greatly influenced by the synthesis route, microstructure, stoichiometry of the chemical composition, purity of the starting materials. In this study, molten salt method was used to prepare lead-free BCZT ceramics. Molten salt method is one of the simplestmethods to prepare chemically-purified, single phase powders in high yield often at lower temperatures and shorten reaction time. Calcination of the molten salt synthesized powders resulted in asingle-phase perovskite structure at 1000 °C which is ˜ 350 °C less than the conventional solid-sate reaction method. With increasing calcination temperature the average template size was increased (˜ 0.5-2 µm). Formation of well dispersive templates improves the sinterability at lower temperatures. Lead-free BCZT ceramics sintered at 1500 °C for 2 h resulted in homogenous and highly dense microstructure with ˜92% of the theoretical density and a grain size of ˜ 35 µm. This highly dense microstructure could enhance the piezoelectric properties of the system.

  17. Predictions of new AB O3 perovskite compounds by combining machine learning and density functional theory

    NASA Astrophysics Data System (ADS)

    Balachandran, Prasanna V.; Emery, Antoine A.; Gubernatis, James E.; Lookman, Turab; Wolverton, Chris; Zunger, Alex

    2018-04-01

    We apply machine learning (ML) methods to a database of 390 experimentally reported A B O3 compounds to construct two statistical models that predict possible new perovskite materials and possible new cubic perovskites. The first ML model classified the 390 compounds into 254 perovskites and 136 that are not perovskites with a 90% average cross-validation (CV) accuracy; the second ML model further classified the perovskites into 22 known cubic perovskites and 232 known noncubic perovskites with a 94% average CV accuracy. We find that the most effective chemical descriptors affecting our classification include largely geometric constructs such as the A and B Shannon ionic radii, the tolerance and octahedral factors, the A -O and B -O bond length, and the A and B Villars' Mendeleev numbers. We then construct an additional list of 625 A B O3 compounds assembled from charge conserving combinations of A and B atoms absent from our list of known compounds. Then, using the two ML models constructed on the known compounds, we predict that 235 of the 625 exist in a perovskite structure with a confidence greater than 50% and among them that 20 exist in the cubic structure (albeit, the latter with only ˜50 % confidence). We find that the new perovskites are most likely to occur when the A and B atoms are a lanthanide or actinide, when the A atom is an alkali, alkali earth, or late transition metal atom, or when the B atom is a p -block atom. We also compare the ML findings with the density functional theory calculations and convex hull analyses in the Open Quantum Materials Database (OQMD), which predicts the T =0 K ground-state stability of all the A B O3 compounds. We find that OQMD predicts 186 of 254 of the perovskites in the experimental database to be thermodynamically stable within 100 meV/atom of the convex hull and predicts 87 of the 235 ML-predicted perovskite compounds to be thermodynamically stable within 100 meV/atom of the convex hull, including 6 of these to be in cubic structures. We suggest these 87 as the most promising candidates for future experimental synthesis of novel perovskites.

  18. Integrating Copper Nanowire Electrodes for Low Temperature Perovskite Photovoltaic Cells

    NASA Astrophysics Data System (ADS)

    Mankowski, Trent

    Recent advances in third generation photovoltaics, particularly the rapid increase in perovskite power conversion efficiencies, may provide a cheap alternative to silicon solar cells in the near future. A key component to these devices is the transparent front electrode, and in the case of Dye Sensitized Solar Cells, it is the most expensive part. A lightweight, cost-effective, robust, and easy-to-fabricate new generation TCE is required to enable competition with silicon. Indium Tin Oxide, commonly used in touchscreen devices, Organic Light Emitting Diodes (OLEDs), and thin film photovoltaics, is widely used and commonly referred to as the industry standard. As the global supply of indium decreases and the demand for this TCE increases, a similar alternative TCE is required to accompany the next generation solar cells that promise energy with lighter and significantly cheaper modules. This alternative TCE needs to provide similar sheet resistance and optical transmittance to ITO, while also being mechanically and chemically robust. The work in this thesis begins with an exploration of several synthesized ITO replacement materials, such as copper nanowires, conductive polymer PEDOT:PSS, zinc oxide thin films, reduced graphene oxide and combinations of the above. A guiding philosophy to this work was prioritizing cheap, easy deposition methods and overall scalability. Shortcomings of these TCEs were investigated and different materials were hybridized to take advantage of each layers strengths for development of an ideal ITO replacement. For CuNW-based composite electrodes, 85% optical transmittance and 25 O/sq were observed and characterized to understand the underlying mechanisms for optimization. The second half of this work is an examination of many different perovskite synthesis methods first to achieve highest performance, and then to integrate compatible methods with our CuNW TCEs. Several literature methods investigated were irreproducible, and those that were successful posed difficulties integrating with CuNW-based TCEs. Those shortcomings are discussed, and how future work might skirt the issues revealed here to produce a very low cost, high performance perovskite solar cell.

  19. STUDY OF BIFERROIC PROPERTIES IN THE La0.37Ca0.17Ba0.43Mn0.52Ti0.44Zr0.04O3 COMPLEX PEROVSKITE

    NASA Astrophysics Data System (ADS)

    Cardona-Vásquez, J. A.; Gómez, M. E.; Landínez-Téllez, D. A.; Roa-Rojas, J.

    2013-10-01

    In this paper, details of synthesis and structural, morphological, electrical, and magnetic characterization of the new La0.37Ca0.17Ba0.43Mn0.52Ti0.44Zr0.04O3 multiferroic complex perovskite are reported. Mixtures with 50% mass of ferromagnetic lanthanum calcium manganite La0.67Ca0.33MnO3 and ferroelectric barium-lanthanum zirconate titanate Ba0.9La0.067Ti0.91Zr0.09 O3 were prepared by the solid state reaction technique. Patterns of X-ray diffraction showed that the materials have reacted resulting in a new perovskite-like structure with tetragonal symmetry, space group P4mm(#99). The structure of the material was refined using the Rietveld method through the GSAS code. ZFC and FC magnetization curves show the occurrence of two phase transitions at 42.25 K and 203.9 K which have been associated with two different magnetic regimes. Hysteresis curves measured confirm that the relationship between the applied field and the magnetization does not evidence a linear behavior. These curves also show that in the low temperature regime the magnetic memory of the material is greater than in the high temperature region. AC impedance as a function of temperature measurements show the same two regions observed in the magnetization curves. The ferroelectric behavior with relative permittivity of 153.12 is observed by polarization curves performed at room temperature in the synthesized materials.

  20. Synthesis of layered perovskite oxides, ACa[sub 2-x]La[sub x]Nb[sub 3-x]Ti[sub x]O[sub 10] (A = K, Rb, Cs), and characterization of new solid acids, HCa[sub 2-x]La[sub x]Nb[sub 3-x]Ti[sub x]O[sub 10] (O < x [le] 2), exhibiting variable Bronsted acidity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gopalakrishnan, J.; Uma, S.; Bhat, V.

    1993-01-01

    Layered perovskite oxides of the formula ACa[sub 2-x]La[sub x]Nb[sub 3-x]Ti[sub x]O[sub 10] (A = K, Rb, Cs and 0 , x [le] 2) have been prepared. The members adopt the structures of the parent ACa[sub 2]Nb[sub 3]O[sub 10]. Interlayer alkali cations in the niobium-titanium oxide series can be ion-exchanged with Li[sup +], Na[sup +], NG[sub 4][sup +], of H[sup +] to give new derivatives. Intercalation of the protonated derivatives with organic bases reveals that the Bronsted acidity of the solid solution series, HCa[sub 2-x]La[sub x]Nb[sub 3-x]Ti[sub x]O[sub 10], depends on the titanium content. While the x = 1 member (HCaLaNb[submore » 2]TiO[sub 10]) is nearly as acidic as the parent HCa[sub 2]Nb[sub 3]O[sub 10], the x = 2 member (HLA[sub 2]NbTi[sub 2]O[sub 10]) is a weak acid hardly intercalating organic bases with pK[sub a] [approximately] 11.3. The variation of acidity is probably due to an ordering of Nb/Ti atoms in the triple octahedral perovskite slabs, [Ca[sub 2-x]La[sub x]Nb[sub 3-x]Ti[sub x]O[sub 10

  1. Single component Mn-doped perovskite-related CsPb2ClxBr5-x nanoplatelets with a record white light quantum yield of 49%: a new single layer color conversion material for light-emitting diodes.

    PubMed

    Wu, Hao; Xu, Shuhong; Shao, Haibao; Li, Lang; Cui, Yiping; Wang, Chunlei

    2017-11-09

    Single component nanocrystals (NCs) with white fluorescence are promising single layer color conversion media for white light-emitting diodes (LED) because the undesirable changes of chromaticity coordinates for the mixture of blue, green and red emitting NCs can be avoided. However, their practical applications have been hindered by the relative low photoluminescence (PL) quantum yield (QY) for traditional semiconductor NCs. Though Mn-doped perovskite nanocube is a potential candidate, it has been unable to realize a white-light emission to date. In this work, the synthesis of Mn-doped 2D perovskite-related CsPb 2 Cl x Br 5-x nanoplatelets with a pure white emission from a single component is reported. Unlike Mn-doped perovskite nanocubes with insufficient energy transfer efficiency, the current reported Mn-doped 2D perovskite-related CsPb 2 Cl x Br 5-x nanoplatelets show a 10 times higher energy transfer efficiency from perovskite to Mn impurities at the required emission wavelengths (about 450 nm for perovskite emission and 580 nm for Mn emission). As a result, the Mn/perovskite dual emission intensity ratio surprisingly elevates from less than 0.25 in case of Mn-doped nanocubes to 0.99 in the current Mn-doped CsPb 2 Cl x Br 5-x nanoplatelets, giving rise to a pure white light emission with Commission Internationale de l'Eclairage (CIE) color coordinates of (0.35, 0.32). More importantly, the highest PL QY for Mn-doped perovskite-related CsPb 2 Cl x Br 5-x nanoplatelets is up to 49%, which is a new record for white-emitting nanocrystals with single component. These highly luminescent nanoplatelets can be blended with polystyrene (PS) without changing the white light emission but dramatically improving perovskite stability. The perovskite-PS composites are available not only as a good solution processable coating material for assembling LED, but also as a superior conversion material for achieving white light LED with a single conversion layer.

  2. Low-voltage all-inorganic perovskite quantum dot transistor memory

    NASA Astrophysics Data System (ADS)

    Chen, Zhiliang; Zhang, Yating; Zhang, Heng; Yu, Yu; Song, Xiaoxian; Zhang, Haiting; Cao, Mingxuan; Che, Yongli; Jin, Lufan; Li, Yifan; Li, Qingyan; Dai, Haitao; Yang, Junbo; Yao, Jianquan

    2018-05-01

    An all-inorganic cesium lead halide quantum dot (QD) based Au nanoparticle (NP) floating-gate memory with a solution processed layer-by-layer method is demonstrated. Easy synthesis at room temperature and excellent stability make all-inorganic CsPbBr3 perovskite QDs suitable as a semiconductor layer in low voltage nonvolatile transistor memory. The bipolarity of QDs has both electrons and holes stored in the Au NP floating gate, resulting in bidirectional shifts of initial threshold voltage according to the applied programing and erasing pulses. Under low operation voltage (±5 V), the memory achieved a great memory window (˜2.4 V), long retention time (>105 s), and stable endurance properties after 200 cycles. So the proposed memory device based on CsPbBr3 perovskite QDs has a great potential in the flash memory market.

  3. High-pressure synthesis, crystal structure and magnetic properties of TlCrO3 perovskite.

    PubMed

    Yi, Wei; Matsushita, Yoshitaka; Katsuya, Yoshio; Yamaura, Kazunari; Tsujimoto, Yoshihiro; Presniakov, Igor A; Sobolev, Alexey V; Glazkova, Yana S; Lekina, Yuliya O; Tsujii, Naohito; Nimori, Shigeki; Takehana, Kanji; Imanaka, Yasutaka; Belik, Alexei A

    2015-06-21

    TlMO(3) perovskites (M(3+) = transition metals) are exceptional members of trivalent perovskite families because of the strong covalency of Tl(3+)-O bonds. Here we report on the synthesis, crystal structure and properties of TlCrO(3) investigated by Mössbauer spectroscopy, specific heat, dc/ac magnetization and dielectric measurements. TlCrO(3) perovskite is prepared under high pressure (6 GPa) and high temperature (1500 K) conditions. The crystal structure of TlCrO(3) is refined using synchrotron X-ray powder diffraction data: space group Pnma (no. 62), Z = 4 and lattice parameters a = 5.40318(1) Å, b = 7.64699(1) Å and c = 5.30196(1) Å at 293 K. No structural phase transitions are found between 5 and 300 K. TlCrO(3) crystallizes in the GdFeO(3)-type structure similar to other members of the perovskite chromite family, ACrO(3) (A(3+) = Sc, In, Y and La-Lu). The unit cell volume and Cr-O-Cr bond angles of TlCrO(3) are close to those of DyCrO(3); however, the Néel temperature of TlCrO(3) (TN≈ 89 K) is much smaller than that of DyCrO(3) and close to that of InCrO(3). Isothermal magnetization studies show that TlCrO(3) is a fully compensated antiferromagnet similar to ScCrO(3) and InCrO(3), but different from RCrO(3) (R(3+) = Y and La-Lu). Ac and dc magnetization measurements with a fine step of 0.2 K reveal the existence of two Néel temperatures with very close values at T(N2) = 87.0 K and T(N1) = 89.3 K. Magnetic anomalies near T(N2 )are suppressed by static magnetic fields and by 5% iron doping.

  4. Making and Breaking of Lead Halide Perovskites.

    PubMed

    Manser, Joseph S; Saidaminov, Makhsud I; Christians, Jeffrey A; Bakr, Osman M; Kamat, Prashant V

    2016-02-16

    A new front-runner has emerged in the field of next-generation photovoltaics. A unique class of materials, known as organic metal halide perovskites, bridges the gap between low-cost fabrication and exceptional device performance. These compounds can be processed at low temperature (typically in the range 80-150 °C) and readily self-assemble from the solution phase into high-quality semiconductor thin films. The low energetic barrier for crystal formation has mixed consequences. On one hand, it enables inexpensive processing and both optical and electronic tunability. The caveat, however, is that many as-formed lead halide perovskite thin films lack chemical and structural stability, undergoing rapid degradation in the presence of moisture or heat. To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice of solvent treatment. Proper characterization and tuning of processing parameters can aid in rational optimization of perovskite devices. Likewise, gaining a comprehensive understanding of the degradation mechanism and identifying components of the perovskite structure that may be particularly susceptible to attack by moisture are vital to mitigate device degradation under operating conditions. This Account provides insight into the lifecycle of organic-inorganic lead halide perovskites, including (i) the nature of the precursor solution, (ii) formation of solid-state perovskite thin films and single crystals, and (iii) transformation of perovskites into hydrated phases upon exposure to moisture. In particular, spectroscopic and structural characterization techniques shed light on the thermally driven evolution of the perovskite structure. By tuning precursor stoichiometry and chemistry, and thus the lead halide charge-transfer complexes present in solution, crystallization kinetics can be tailored to yield improved thin film homogeneity. Because degradation of the as-formed perovskite film is in many ways analogous to its initial formation, the same suite of monitoring techniques reveals the moisture-induced transformation of low band gap methylammonium lead iodide (CH3NH3PbI3) to wide band gap hydrate compounds. The rate of degradation is increased upon exposure to light. Interestingly, the hydration process is reversible under certain conditions. This facile formation and subsequent chemical lability raises the question of whether CH3NH3PbI3 and its analogues are thermodynamically stable phases, thus posing a significant challenge to the development of transformative perovskite photovoltaics. Adequately addressing issues of structural and chemical stability under real-world operating conditions is paramount if perovskite solar cells are to make an impact beyond the benchtop. Expanding our fundamental knowledge of lead halide perovskite formation and degradation pathways can facilitate fabrication of stable, high-quality perovskite thin films for the next generation of photovoltaic and light emitting devices.

  5. Making and Breaking of Lead Halide Perovskites

    DOE PAGES

    Manser, Joseph S.; Saidaminov, Makhsud I.; Christians, Jeffrey A.; ...

    2016-01-20

    A new front-runner has emerged in the field of next-generation photovoltaics. A unique class of materials, known as organic metal halide perovskites, bridges the gap between low-cost fabrication and exceptional device performance. These compounds can be processed at low temperature (typically in the range 80-150 °C) and readily self-assemble from the solution phase into high-quality semiconductor thin films. The low energetic barrier for crystal formation has mixed consequences. On one hand, it enables inexpensive processing and both optical and electronic tunability. The caveat, however, is that many as-formed lead halide perovskite thin films lack chemical and structural stability, undergoing rapidmore » degradation in the presence of moisture or heat. To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice of solvent treatment. Proper characterization and tuning of processing parameters can aid in rational optimization of perovskite devices. Likewise, gaining a comprehensive understanding of the degradation mechanism and identifying components of the perovskite structure that may be particularly susceptible to attack by moisture are vital to mitigate device degradation under operating conditions. This Account provides insight into the lifecycle of organic-inorganic lead halide perovskites, including (i) the nature of the precursor solution, (ii) formation of solid-state perovskite thin films and single crystals, and (iii) transformation of perovskites into hydrated phases upon exposure to moisture. In particular, spectroscopic and structural characterization techniques shed light on the thermally driven evolution of the perovskite structure. By tuning precursor stoichiometry and chemistry, and thus the lead halide charge-transfer complexes present in solution, crystallization kinetics can be tailored to yield improved thin film homogeneity. Because degradation of the as-formed perovskite film is in many ways analogous to its initial formation, the same suite of monitoring techniques reveals the moisture-induced transformation of low band gap methylammonium lead iodide (CH 3NH 3PbI 3) to wide band gap hydrate compounds. The rate of degradation is increased upon exposure to light. Interestingly, the hydration process is reversible under certain conditions. This facile formation and subsequent chemical lability raises the question of whether CH 3NH 3PbI 3 and its analogues are thermodynamically stable phases, thus posing a significant challenge to the development of transformative perovskite photovoltaics. Adequately addressing issues of structural and chemical stability under real-world operating conditions is paramount if perovskite solar cells are to make an impact beyond the benchtop. Expanding our fundamental knowledge of lead halide perovskite formation and degradation pathways can facilitate fabrication of stable, high-quality perovskite thin films for the next generation of photovoltaic and light emitting devices.« less

  6. Two-Dimensional Lead Halide Perovskites Templated by a Conjugated Asymmetric Diammonium.

    PubMed

    Hautzinger, Matthew P; Dai, Jun; Ji, Yujin; Fu, Yongping; Chen, Jie; Guzei, Ilia A; Wright, John C; Li, Youyong; Jin, Song

    2017-12-18

    We report novel two-dimensional lead halide perovskite structures templated by a unique conjugated aromatic dication, N,N-dimethylphenylene-p-diammonium (DPDA). The asymmetrically substituted primary and tertiary ammoniums in DPDA facilitate the formation of two-dimensional network (2DN) perovskite structures incorporating a conjugated dication between the PbX 4 2- (X = Br, I) layers. These 2DN structures of (DPDA)PbI 4 and (DPDA)PbBr 4 were characterized by single-crystal X-ray diffraction, showing uniquely low distortions in the Pb-X-Pb bond angle for 2D perovskites. The Pb-I-Pb bond angle is very close to ideal (180°) for a 2DN lead iodide perovskite, which can be attributed to the ability of the rigid diammonium DPDA to insert into the PbX 6 2- octahedral pockets. Optical characterization of (DPDA)PbI 4 shows an excitonic absorption peak at 2.29 eV (541 nm), which is red-shifted in comparison to similar 2DN lead iodide structures. Temperature-dependent photoluminescence of both compounds reveals both a self-trapped exciton and free exciton emission feature. The reduced exciton absorption energy and emission properties are attributed to the dication-induced structural order of the inorganic PbX 4 2- layers. DFT calculation results suggest mixing of the conjugated organic orbital component in the valence band of these 2DN perovskites. These results demonstrate a rational new strategy to incorporate conjugated organic dications into hybrid perovskites and will spur spectroscopic investigations of these compounds as well as optoelectronic applications.

  7. Controlled synthesis of the antiperovskite oxide superconductor Sr3‑x SnO

    NASA Astrophysics Data System (ADS)

    Hausmann, J. N.; Oudah, M.; Ikeda, A.; Yonezawa, S.; Maeno, Y.

    2018-05-01

    A large variety of perovskite oxide superconductors are known, including some of the most prominent high-temperature and unconventional superconductors. However, superconductivity among the oxidation state inverted material class, the antiperovskite oxides, was recently reported for the first time. In this superconductor, Sr3‑x SnO, the unconventional ionic state Sn4‑ is realized and possible unconventional superconductivity due to a band inversion has been discussed. Here, we discuss an improved facile synthesis method, making it possible to control the strontium deficiency in Sr3‑x SnO. Additionally, a synthesis method above the melting point of Sr3SnO is presented. We show temperature dependence of magnetization and electrical resistivity for superconducting strontium deficient Sr3‑x SnO (T c ∼ 5 K) and for Sr3SnO without a superconducting transition in alternating current susceptibility down to 0.15 K. Further, we reveal a significant effect of strontium raw material purity on the superconductivity and achieve substantially increased M/M Meissner (∼1) compared to the highest value reported so far. More detailed characterizations utilizing powder x-ray diffraction and energy-dispersive x-ray spectroscopy show that a minor cubic phase, previously suggested to be another Sr3‑x SnO phase with a slightly larger lattice parameter, is SrO. The improved characterization and controlled synthesis reported herein enable detailed investigations on the superconducting nature and its dependency on the strontium deficiency in Sr3‑x SnO.

  8. Recent patents on perovskite ferroelectric nanostructures.

    PubMed

    Zhu, Xinhua

    2009-01-01

    Ferroelectric oxide materials with a perovskite structure have promising applications in electronic devices such as random access memories, sensors, actuators, infrared detectors, and so on. Recent advances in science and technology of ferroelectrics have resulted in the feature sizes of ferroelectric-based electronic devices entering into nanoscale dimensions. At nanoscale perovskite ferroelectric materials exhibit a pronounced size effect manifesting itself in a significant deviation of the properties of low-dimensional structures from the bulk and film counterparts. One-dimensional perovskite ferroelectric nanotube/nanowire systems, offer fundamental scientific opportunities for investigating the intrinsic size effects in ferroelectrics. In the past several years, much progress has been made both in fabrication and physical property testing of perovskite ferroelectric nanostructures. In the first part of this paper, the recent patents and literatures for fabricating ferroelectric nanowires, nanorods, nanotubes, and nanorings with promising features, are reviewed. The second part deals with the recent advances on the physical property testing of perovskite ferroelectric nanostructures. The third part summarizes the recently patents and literatures about the microstructural characterizations of perovskite ferroelectric nanostructures, to improve their crystalline quality, morphology and uniformity. Finally, we conclude this review with personal perspectives towards the potential future developments of perovskite ferroelectric nanostructures.

  9. Crystalline orientation dependent photoresponse and heterogeneous behaviors of grain boundaries in perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Jiang, Chuanpeng; Zhang, Pengpeng

    2018-02-01

    Using photoconductive atomic force microscopy and Kelvin probe force microscopy, we characterize the local electrical properties of grains and grain boundaries of organic-inorganic hybrid perovskite (CH3NH3PbI3) thin films on top of a poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS)/ITO substrate. Three discrete photoconductivity levels are identified among perovskite grains, likely corresponding to the crystal orientation of each grain. Local J-V curves recorded on these grains further suggest an anti-correlation behavior between the short circuit current (JSC) and open circuit voltage (VOC). This phenomenon can be attributed to diffusion-limited surface recombination at the non-selective perovskite-tip contact, where a higher carrier mobility established in the perovskite grain results in an enhanced surface recombination and thus a lower VOC. In addition, the photoresponse of perovskite films displays a pronounced heterogeneity across the grain boundaries, with the boundaries formed between grains of the same photoconductivity level displaying even enhanced photocurrent and open circuit voltage compared to those of the adjacent grain interiors. These observations highlight the significance of controlling the microstructure of perovskite thin films, which will be a necessary route for further improving the efficiency of perovskite solar cells.

  10. Low-Pressure Vapor-Assisted Solution Process for Thiocyanate-Based Pseudohalide Perovskite Solar Cells.

    PubMed

    Chiang, Yu-Hsien; Cheng, Hsin-Min; Li, Ming-Hsien; Guo, Tzung-Fang; Chen, Peter

    2016-09-22

    In this report, we fabricated thiocyanate-based perovskite solar cells with low-pressure vapor-assisted solution process (LP-VASP) method. Photovoltaic performances are evaluated with detailed materials characterizations. Scanning electron microscopy images show that SCN-based perovskite films fabricated using LP-VASP have long-range uniform morphology and large grain sizes up to 1 μm. The XRD and Raman spectra were employed to observe the characteristic peaks for both SCN-based and pure CH 3 NH 3 PbI 3 perovskite. We observed that the Pb(SCN) 2 film transformed to PbI 2 before the formation of perovskite film. X-ray photoemission spectra (XPS) show that only a small amount of S remained in the film. Using LP-VASP method, we fabricated SCN-based perovskite solar cells and achieved a power conversion efficiency of 12.72 %. It is worth noting that the price of Pb(SCN) 2 is only 4 % of PbI 2 . These results demonstrate that pseudo-halide perovskites are promising materials for fabricating low-cost perovskite solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers

    DOE PAGES

    Lu, Di; Baek, David J.; Hong, Seung Sae; ...

    2016-09-12

    Here, the ability to create and manipulate materials in two-dimensional (2D) form has repeatedly had transformative impact on science and technology. In parallel with the exfoliation and stacking of intrinsically layered crystals 1, 2, 3, 4, 5, atomic-scale thin film growth of complex materials has enabled the creation of artificial 2D heterostructures with novel functionality 6, 7, 8, 9 and emergent phenomena, as seen in perovskite heterostructures 10, 11, 12. However, separation of these layers from the growth substrate has proved challenging, limiting the manipulation capabilities of these heterostructures with respect to exfoliated materials. Here we present a general methodmore » to create freestanding perovskite membranes. The key is the epitaxial growth of water-soluble Sr 3Al 2O 6 on perovskite substrates, followed by in situ growth of films and heterostructures. Millimetre-size single-crystalline membranes are produced by etching the Sr 3Al 2O 6 layer in water, providing the opportunity to transfer them to arbitrary substrates and integrate them with heterostructures of semiconductors and layered compounds 13, 14.« less

  12. Synthesis of Cesium Lead Halide Perovskite Nanocrystals in a Droplet-Based Microfluidic Platform: Fast Parametric Space Mapping.

    PubMed

    Lignos, Ioannis; Stavrakis, Stavros; Nedelcu, Georgian; Protesescu, Loredana; deMello, Andrew J; Kovalenko, Maksym V

    2016-03-09

    Prior to this work, fully inorganic nanocrystals of cesium lead halide perovskite (CsPbX3, X = Br, I, Cl and Cl/Br and Br/I mixed halide systems), exhibiting bright and tunable photoluminescence, have been synthesized using conventional batch (flask-based) reactions. Unfortunately, our understanding of the parameters governing the formation of these nanocrystals is still very limited due to extremely fast reaction kinetics and multiple variables involved in ion-metathesis-based synthesis of such multinary halide systems. Herein, we report the use of a droplet-based microfluidic platform for the synthesis of CsPbX3 nanocrystals. The combination of online photoluminescence and absorption measurements and the fast mixing of reagents within such a platform allows the rigorous and rapid mapping of the reaction parameters, including molar ratios of Cs, Pb, and halide precursors, reaction temperatures, and reaction times. This translates into enormous savings in reagent usage and screening times when compared to analogous batch synthetic approaches. The early-stage insight into the mechanism of nucleation of metal halide nanocrystals suggests similarities with multinary metal chalcogenide systems, albeit with much faster reaction kinetics in the case of halides. Furthermore, we show that microfluidics-optimized synthesis parameters are also directly transferrable to the conventional flask-based reaction.

  13. Grain Boundary Engineering of Lithium-Ion-Conducting Lithium Lanthanum Titanate for Lithium-Air Batteries

    DTIC Science & Technology

    2015-01-01

    Tojo T, Sakurai Y. Synthesis and lithium - ion conductivity for perovskite-type Li3/8Sr7/16Ta3/4Zr1/4O3 solid electrolyte by powder-bed sintering...battery performance is limited by the electrolytic membrane, which needs high Li-ionic conductivity. Lithium lanthanum titanate (Li3xLa(2/3)-xTiO3, or...of the A-site ions and lithium ion conductivity in the perovskite solid solution La0.67-xLi3xTiO3 (x=0.11). Journal of Solid State Ionics. 1999;121

  14. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals

    NASA Astrophysics Data System (ADS)

    Akkerman, Quinten A.; Rainò, Gabriele; Kovalenko, Maksym V.; Manna, Liberato

    2018-05-01

    Lead halide perovskites (LHPs) in the form of nanometre-sized colloidal crystals, or nanocrystals (NCs), have attracted the attention of diverse materials scientists due to their unique optical versatility, high photoluminescence quantum yields and facile synthesis. LHP NCs have a `soft' and predominantly ionic lattice, and their optical and electronic properties are highly tolerant to structural defects and surface states. Therefore, they cannot be approached with the same experimental mindset and theoretical framework as conventional semiconductor NCs. In this Review, we discuss LHP NCs historical and current research pursuits, challenges in applications, and the related present and future mitigation strategies explored.

  15. Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics.

    PubMed

    Wang, Gongming; Li, Dehui; Cheng, Hung-Chieh; Li, Yongjia; Chen, Chih-Yen; Yin, Anxiang; Zhao, Zipeng; Lin, Zhaoyang; Wu, Hao; He, Qiyuan; Ding, Mengning; Liu, Yuan; Huang, Yu; Duan, Xiangfeng

    2015-10-01

    Methylammonium lead iodide perovskite has attracted intensive interest for its diverse optoelectronic applications. However, most studies to date have been limited to bulk thin films that are difficult to implement for integrated device arrays because of their incompatibility with typical lithography processes. We report the first patterned growth of regular arrays of perovskite microplate crystals for functional electronics and optoelectronics. We show that large arrays of lead iodide microplates can be grown from an aqueous solution through a seeded growth process and can be further intercalated with methylammonium iodide to produce perovskite crystals. Structural and optical characterizations demonstrate that the resulting materials display excellent crystalline quality and optical properties. We further show that perovskite crystals can be selectively grown on prepatterned electrode arrays to create independently addressable photodetector arrays and functional field effect transistors. The ability to grow perovskite microplates and to precisely place them at specific locations offers a new material platform for the fundamental investigation of the electronic and optical properties of perovskite materials and opens a pathway for integrated electronic and optoelectronic systems.

  16. Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics

    PubMed Central

    Wang, Gongming; Li, Dehui; Cheng, Hung-Chieh; Li, Yongjia; Chen, Chih-Yen; Yin, Anxiang; Zhao, Zipeng; Lin, Zhaoyang; Wu, Hao; He, Qiyuan; Ding, Mengning; Liu, Yuan; Huang, Yu; Duan, Xiangfeng

    2015-01-01

    Methylammonium lead iodide perovskite has attracted intensive interest for its diverse optoelectronic applications. However, most studies to date have been limited to bulk thin films that are difficult to implement for integrated device arrays because of their incompatibility with typical lithography processes. We report the first patterned growth of regular arrays of perovskite microplate crystals for functional electronics and optoelectronics. We show that large arrays of lead iodide microplates can be grown from an aqueous solution through a seeded growth process and can be further intercalated with methylammonium iodide to produce perovskite crystals. Structural and optical characterizations demonstrate that the resulting materials display excellent crystalline quality and optical properties. We further show that perovskite crystals can be selectively grown on prepatterned electrode arrays to create independently addressable photodetector arrays and functional field effect transistors. The ability to grow perovskite microplates and to precisely place them at specific locations offers a new material platform for the fundamental investigation of the electronic and optical properties of perovskite materials and opens a pathway for integrated electronic and optoelectronic systems. PMID:26601297

  17. Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics

    DOE PAGES

    Wang, Gongming; Li, Dehui; Cheng, Hung -Chieh; ...

    2015-10-02

    Methylammonium lead iodide perovskite has attracted intensive interest for its diverse optoelectronic applications. However, most studies to date have been limited to bulk thin films that are difficult to implement for integrated device arrays because of their incompatibility with typical lithography processes. We report the first patterned growth of regular arrays of perovskite microplate crystals for functional electronics and optoelectronics. We show that large arrays of lead iodide microplates can be grown from an aqueous solution through a seeded growth process and can be further intercalated with methylammonium iodide to produce perovskite crystals. Structural and optical characterizations demonstrate that themore » resulting materials display excellent crystalline quality and optical properties. We further show that perovskite crystals can be selectively grown on prepatterned electrode arrays to create independently addressable photodetector arrays and functional field effect transistors. Furthermore, the ability to grow perovskite microplates and to precisely place them at specific locations offers a new material platform for the fundamental investigation of the electronic and optical properties of perovskite materials and opens a pathway for integrated electronic and optoelectronic systems.« less

  18. Atmospheric Processing of Perovskite Solar Cells Using Intense Pulsed Light Sintering

    NASA Astrophysics Data System (ADS)

    Ankireddy, Krishnamraju; Lavery, Brandon W.; Druffel, Thad

    2018-02-01

    Atmospheric processing of metal-organic halide perovskite materials is highly desirable for large-scale manufacturing of solar cells. Atmospheric deposition and thermal processing of perovskite thin films for photovoltaic applications facilitated via rapid intense pulsed light (IPL) processing have been carried out. The interplay between the deposition chemistry, process, and IPL parameters to produce a functional photoactive thin film is discussed. Further addition of polyvinylpyrrolidone (PVP) as functional surfactant is explored to influence grain growth during the IPL process. Structural analysis by x-ray diffraction revealed formation of mixed-phase perovskite crystals from methylammonium chloride and lead iodide precursors. Ultraviolet-visible (UV-Vis) spectroscopy indicated that the light absorption by the perovskite films lay within a narrow band of the visible spectrum with bandgap of 2.9 eV. Scanning electron microscopy characterization of the surface morphology of the perovskite films revealed that addition of PVP to the ink chemistry assisted the IPL process in forming a fully covered surface with clearly defined grains. Functional devices with perovskite thin film processed by IPL under fully atmospheric conditions were demonstrated.

  19. Transition Metal-Oxide Free Perovskite Solar Cells Enabled by a New Organic Charge Transport Layer.

    PubMed

    Chang, Sehoon; Han, Ggoch Ddeul; Weis, Jonathan G; Park, Hyoungwon; Hentz, Olivia; Zhao, Zhibo; Swager, Timothy M; Gradečak, Silvija

    2016-04-06

    Various electron and hole transport layers have been used to develop high-efficiency perovskite solar cells. To achieve low-temperature solution processing of perovskite solar cells, organic n-type materials are employed to replace the metal oxide electron transport layer (ETL). Although PCBM (phenyl-C61-butyric acid methyl ester) has been widely used for this application, its morphological instability in films (i.e., aggregation) is detrimental. Herein, we demonstrate the synthesis of a new fullerene derivative (isobenzofulvene-C60-epoxide, IBF-Ep) that serves as an electron transporting material for methylammonium mixed lead halide-based perovskite (CH3NH3PbI(3-x)Cl(x)) solar cells, both in the normal and inverted device configurations. We demonstrate that IBF-Ep has superior morphological stability compared to the conventional acceptor, PCBM. IBF-Ep provides higher photovoltaic device performance as compared to PCBM (6.9% vs 2.5% in the normal and 9.0% vs 5.3% in the inverted device configuration). Moreover, IBF-Ep devices show superior tolerance to high humidity (90%) in air. By reaching power conversion efficiencies up to 9.0% for the inverted devices with IBF-Ep as the ETL, we demonstrate the potential of this new material as an alternative to metal oxides for perovskite solar cells processed in air.

  20. A laser-deposition approach to compositional-spread discovery of materials on conventional sample sizes

    NASA Astrophysics Data System (ADS)

    Christen, Hans M.; Ohkubo, Isao; Rouleau, Christopher M.; Jellison, Gerald E., Jr.; Puretzky, Alex A.; Geohegan, David B.; Lowndes, Douglas H.

    2005-01-01

    Parallel (multi-sample) approaches, such as discrete combinatorial synthesis or continuous compositional-spread (CCS), can significantly increase the rate of materials discovery and process optimization. Here we review our generalized CCS method, based on pulsed-laser deposition, in which the synchronization between laser firing and substrate translation (behind a fixed slit aperture) yields the desired variations of composition and thickness. In situ alloying makes this approach applicable to the non-equilibrium synthesis of metastable phases. Deposition on a heater plate with a controlled spatial temperature variation can additionally be used for growth-temperature-dependence studies. Composition and temperature variations are controlled on length scales large enough to yield sample sizes sufficient for conventional characterization techniques (such as temperature-dependent measurements of resistivity or magnetic properties). This technique has been applied to various experimental studies, and we present here the results for the growth of electro-optic materials (SrxBa1-xNb2O6) and magnetic perovskites (Sr1-xCaxRuO3), and discuss the application to the understanding and optimization of catalysts used in the synthesis of dense forests of carbon nanotubes.

  1. Physical, mechanical and electrochemical characterization of all-perovskite intermediate temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Mohammadi, Alidad

    Strontium- and magnesium-doped lanthanum gallate (LSGM) has been considered as a promising electrolyte for solid oxide fuel cell (SOFC) systems in recent years due to its high ionic conductivity and chemical stability over a wide range of oxygen partial pressures and temperatures. This research describes synthesis, physical and mechanical behavior, electrochemical properties, phase evolution, and microstructure of components of an all-perovskite anode-supported intermediate temperature solid oxide fuel cell (ITSOFC), based on porous La 0.75Sr0.25Cr0.5Mn0.5O3 (LSCM) anode, La0.8Sr0.2Ga0.8Mg0.2O 2.8 (LSGM) electrolyte, and porous La0.6Sr0.4Fe 0.8Co0.2O3 (LSCF) cathode. The phase evolution of synthesized LSGM and LSCM powders has been investigated, and it has been confirmed that there is no reaction between LSGM and LSCM at sintering temperature. Using different amounts of poreformers and binders as well as controlling firing temperature, porosity of the anode was optimized while still retaining good mechanical integrity. The effect of cell operation conditions under dry hydrogen fuel on the SOFC open circuit voltage (OCV) and cell performance were also investigated. Characterization study of the synthesized LSGM indicates that sintering at 1500°C obtains higher electrical conductivity compared to the currently published results, while conductivity of pellets sintered at 1400°C and 1450°C would be slightly lower. The effect of sintering temperature on bulk and grain boundary resistivities was also discussed. The mechanical properties, such as hardness, Young's modulus, fracture toughness and modulus of rupture of the electrolyte were determined and correlated with scanning electron microscopy (SEM) morphological characterization. Linear thermal expansion and thermal expansion coefficient of LSGM were also measured.

  2. Structure-property relationships: Synthesis and characterization of Perovskite-related transition metal oxides

    NASA Astrophysics Data System (ADS)

    Whaley, Louis

    The fundamental structural component of perovskite-related phases is the octahedrally coordinated transition metal ion, symbolized as BO6 . Corner-sharing networks of BO6 octahedra are present in perovskites and related Ruddlesden-Popper Phases, ABO3 and AO(ABO 3)n, respectively. Face-sharing octahedra arranged into columns are characteristic of hexagonal, perovskite-related phases, and the relationship will be described in detail in Chapter 1. Edge sharing octahedra are characteristic of Keggin- and Lindquist-type polyoxometallates, which at first glance, seem unconnected from perovskites. However, Chapter 1 will show the deep connections among all of the phases mentioned above, by starting with perovskite phases. Temperature- and field-dependent, magnetic and electronic transitions are linked to the structure by overlap of metal d-orbitals with oxygen 2p orbitals, and (in special cases) direct d-d overlap. A mixed-transition metal oxide with two or more type of B ions provides an environment in which dissimilar B-ion orbitals can interact via exchange of charge carriers (hole or electron transport). The general goal in choosing two B ions is to provide an opportunity for the large combined magnetic moment and a low barrier to hopping of charge carriers, achieved by pairing a 3d-ion having 3 to 5 unpaired d-electrons, with a 4d or 5d transition metal ion, having 1 or 2 unpaired electrons, such as Fe(III) and Mo(V), which have compatible reduction potentials (i.e., they can co-exist in the same oxide, and exchange takes place with a low barrier). This research includes the following systems: an n = 2 Ruddlesden-Popper (RP) phase, Sr3Fe5/4Mo3/4O6.9, containing 3-7% Sr2FeMoO6, as intergrowths (not separate crystal grains, by high-resolution transmission electron microscopy), and G-type antiferromagnetism below 150°K and a "partial spin-reorientation transition" by powder neutron diffraction (PND), not previously reported for n = 2 RP phases in the Sr-Fe-Mo-O system; A B-site ordered double perovskite with an unusual a+b+c+ Glazer octahedral tilt system was synthesized, SrFe1/4Re3/4O 3; single crystals of two anhydrous 1-ethyl-3-methylimidazolium (EMI) salts, EMI octamolybdate, (C6H11N2) 4Mo8O26; and EMI decatungstate, (C6H 11N2)4W10O32; and single crystals of an incommensurate modulated phase, "Sr3CoRh2O 9-delta", with a structure comprising two interpenetrating modulated lattices. Properties of the phases are also reported.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manser, Joseph S.; Saidaminov, Makhsud I.; Christians, Jeffrey A.

    A new front-runner has emerged in the field of next-generation photovoltaics. A unique class of materials, known as organic metal halide perovskites, bridges the gap between low-cost fabrication and exceptional device performance. These compounds can be processed at low temperature (typically in the range 80-150 °C) and readily self-assemble from the solution phase into high-quality semiconductor thin films. The low energetic barrier for crystal formation has mixed consequences. On one hand, it enables inexpensive processing and both optical and electronic tunability. The caveat, however, is that many as-formed lead halide perovskite thin films lack chemical and structural stability, undergoing rapidmore » degradation in the presence of moisture or heat. To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice of solvent treatment. Proper characterization and tuning of processing parameters can aid in rational optimization of perovskite devices. Likewise, gaining a comprehensive understanding of the degradation mechanism and identifying components of the perovskite structure that may be particularly susceptible to attack by moisture are vital to mitigate device degradation under operating conditions. This Account provides insight into the lifecycle of organic-inorganic lead halide perovskites, including (i) the nature of the precursor solution, (ii) formation of solid-state perovskite thin films and single crystals, and (iii) transformation of perovskites into hydrated phases upon exposure to moisture. In particular, spectroscopic and structural characterization techniques shed light on the thermally driven evolution of the perovskite structure. By tuning precursor stoichiometry and chemistry, and thus the lead halide charge-transfer complexes present in solution, crystallization kinetics can be tailored to yield improved thin film homogeneity. Because degradation of the as-formed perovskite film is in many ways analogous to its initial formation, the same suite of monitoring techniques reveals the moisture-induced transformation of low band gap methylammonium lead iodide (CH 3NH 3PbI 3) to wide band gap hydrate compounds. The rate of degradation is increased upon exposure to light. Interestingly, the hydration process is reversible under certain conditions. This facile formation and subsequent chemical lability raises the question of whether CH 3NH 3PbI 3 and its analogues are thermodynamically stable phases, thus posing a significant challenge to the development of transformative perovskite photovoltaics. Adequately addressing issues of structural and chemical stability under real-world operating conditions is paramount if perovskite solar cells are to make an impact beyond the benchtop. Expanding our fundamental knowledge of lead halide perovskite formation and degradation pathways can facilitate fabrication of stable, high-quality perovskite thin films for the next generation of photovoltaic and light emitting devices.« less

  4. Computational Discovery of Two Lead Free Halide Double Perovskites with Band Gaps in the Visible Range: Cs2BiAgCl6 and Cs2BiAgBr6

    NASA Astrophysics Data System (ADS)

    Filip, Marina; Volonakis, George; Haghighirad, Amir Abbas; Hillman, Samuel; Sakai, Nobuya; Wenger, Bernard; Snaith, Henry; Giustino, Feliciano

    The perovskite solar cell is emerging as one of the most promising solution processable photovoltaic technologies, with an efficiency that now exceeds the performance of thin-film silicon devices. This performance is exclusively due to the optimum optoelectronic properties of the prototypical methylammonium lead-iodide perovskite (MAPI). However, the presence of lead in MAPI, and its problematic stability in ambient conditions poses concerns for its potential environmental impact. These concerns are motivating the search for novel non-toxic halide perovskites with similar optoelectronic properties to MAPI. In this work we will present the computational search for the homovalent and the heterovalent replacement of Pb in lead-halide perovskites. This search has lead to the computational discovery and experimental synthesis of two stable lead-free halide double perovskites based on Bi and Ag: Cs2BiAgCl6 and Cs2BiAgBr6. These new compounds are highly stable, they are semiconducting and absorb light in the visible range. In this talk we will present the electronic and optical properties of Cs2BiAgCl6 and Cs2BiAgBr6 calculated within DFT and GW and discuss the stability and formability of the entire Cs2BB'X6 family of semiconductors (B = Bi, Sb, B = Cu, Ag, Au, X = Cl, Br, I). This work was supported by the and the Leverhulme Trust (RL-2012-001).

  5. Advances in the Synthesis of Small Molecules as Hole Transport Materials for Lead Halide Perovskite Solar Cells.

    PubMed

    Rodríguez-Seco, Cristina; Cabau, Lydia; Vidal-Ferran, Anton; Palomares, Emilio

    2018-04-17

    Over hundreds of new organic semiconductor molecules have been synthesized as hole transport materials (HTMs) for perovskite solar cells. However, to date, the well-known N 2 , N 2 , N 2' , N 2' , N 7 , N 7 , N 7' , octakis-(4-methoxyphenyl)-9,9-spirobi-[9,9'-spirobi[9 H-fluorene]-2,2',7,7'-tetramine (spiro-OMeTAD) is still the best choice for the best perovskite device performance. Nevertheless, there is a consensus that spiro-OMeTAD by itself is not stable enough for long-term stable devices, and its market price makes its use in large-scale production costly. Novel synthetic routes for new HTMs have to be sought that can be carried out in fewer synthetic steps and can be easily scaled up for commercial purposes. On the one hand, synthetic chemists have taken, as a first approach, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of the spiro-OMeTAD molecule as a reference to synthesize molecules with similar energy levels, although these HOMO and LUMO energy levels often have been measured indirectly in solution using cyclic voltammetry. On the other hand, the "spiro" chemical core has also been studied as a structural motif for novel HTMs. However, only a few molecules incorporated as HTMs in complete functional perovskite solar cells have been capable of matching the performance of the best-performing perovskite solar cells made using spiro-OMeTAD. In this Account, we describe the advances in the synthesis of HTMs that have been tested in perovskite solar cells. The comparison of solar cell efficiencies is of course very challenging because the solar cell preparation conditions may differ from laboratory to laboratory. To extract valuable information about the HTM molecular structure-device function relationship, we describe those examples that always have used spiro-OMeTAD as a control device and have always used identical experimental conditions (e.g., the use of the same chemical dopant for the HTM or the lack of it). The pioneering work was focused on well-understood organic semiconductor moieties such as arylamine, carbazole, and thiophene. Those chemical structures have been largely employed and studied as HTMs, for instance, in organic light-emitting devices. Interestingly, most research groups have reported the hole mobility values for their novel HTMs. However, only a few examples have been found that have measured the HOMO and LUMO energy levels using advanced spectroscopic techniques to determine these reference energy values directly. Moreover, it has been shown that those molecules, upon interacting with the perovskite layer, often have different HOMO and LUMO energies than the values estimated indirectly using solution-based electrochemical methods. Last but not least, porphyrins and phthalocyanines have also been synthesized as potential HTMs for perovskite solar cells. Their optical and physical properties, such as high absorption and good energy transfer capabilities, open new possibilities for HTMs in perovskite solar cells.

  6. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells.

    PubMed

    Chen, Qi; Zhou, Huanping; Song, Tze-Bin; Luo, Song; Hong, Ziruo; Duan, Hsin-Sheng; Dou, Letian; Liu, Yongsheng; Yang, Yang

    2014-07-09

    To improve the performance of the polycrystalline thin film devices, it requires a delicate control of its grain structures. As one of the most promising candidates among current thin film photovoltaic techniques, the organic/inorganic hybrid perovskites generally inherit polycrystalline nature and exhibit compositional/structural dependence in regard to their optoelectronic properties. Here, we demonstrate a controllable passivation technique for perovskite films, which enables their compositional change, and allows substantial enhancement in corresponding device performance. By releasing the organic species during annealing, PbI2 phase is presented in perovskite grain boundaries and at the relevant interfaces. The consequent passivation effects and underlying mechanisms are investigated with complementary characterizations, including scanning electron microscopy (SEM), X-ray diffraction (XRD), time-resolved photoluminescence decay (TRPL), scanning Kelvin probe microscopy (SKPM), and ultraviolet photoemission spectroscopy (UPS). This controllable self-induced passivation technique represents an important step to understand the polycrystalline nature of hybrid perovskite thin films and contributes to the development of perovskite solar cells judiciously.

  7. Fabrication and characterization of perovskite-based CH{sub 3}NH{sub 3}Pb{sub 1-x}Ge{sub x}I{sub 3}, CH{sub 3}NH{sub 3}Pb{sub 1-x}Tl{sub x}I{sub 3} and CH{sub 3}NH{sub 3}Pb{sub 1-x}In{sub x}I{sub 3} photovoltaic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohishi, Yuya; Oku, Takeo, E-mail: oku@mat.usp.ac.jp; Suzuki, Atsushi

    2016-02-01

    Perovskite-type CH{sub 3}NH{sub 3}PbI{sub 3}-based photovoltaic devices were fabricated and characterized. Doping effects of thallium (Tl), indium (In), or germanium (Ge) element on the photovoltaic properties and surface structures of the perovskite phase were investigated. The open circuit voltage increased by Ge addition, and fill factors were improved by adding a small amount of Ge, Tl or In. In addition, the wavelength range of incident photon conversion efficiencies was expanded by the Tl addition.

  8. Perovskite- and Heusler based materials for thermoelectric converters

    NASA Astrophysics Data System (ADS)

    Weidenkaff, Anke

    2015-03-01

    The broad application of thermoelectric converters in future energy technologies requires the development of active, stable, low cost and sustainable materials. Semiconductors based on perovskite and heusler structures show substantial potential for thermoelectric energy conversion processes. Their good performance can be explained based on their suitable band structure, adjusted charge carrier density, mass and mobility, limited phonon transport, electron filtering possibilities, strongly correlated electronic systems, etc. These properties are widely tuneable by following theoretical concepts and a deep composition-structure-property understanding to change the composition, structure and size of the crystallites in innovative scalable synthesis procedures. Improved thermoelectric materials are developed, synthesised and tested in diverse high temperature applications to improve the efficiency and energy density of the thermoelectric conversion process. The lecture will provide a summary on the field of advanced perovskite-type ceramics and Heusler compounds gaining importance for a large number of future energy technologies.

  9. ZnO-Assisted Growth of CH3NH3PbI3- xCl x Film and Efficient Planar Perovskite Solar Cells with a TiO2/ZnO/C60 Electron Transport Trilayer.

    PubMed

    Xu, Jia; Fang, Mingde; Chen, Jing; Zhang, Bing; Yao, Jianxi; Dai, Songyuan

    2018-06-06

    Appropriate electron transport layers (ETL) are essential in perovskite solar cells (PSCs) with high power conversion efficiency (PCE). Herein, a TiO 2 /ZnO/C 60 trilayer fabricated on a transparent fluorine-doped tin oxide (FTO) glass substrate is used as a compound ETL in planar PSCs. The trilayer shows positive effects on both perovskite synthesis and device performance. The ZnO layer assists growth of CH 3 NH 3 PbI 3- x Cl x ( x ≈ 0) annealed at a lower temperature and with a shorter time, which is due to a more rapid and easier decomposition of the intermediate CH 3 NH 3 PbCl 3 phase in the growth of CH 3 NH 3 PbI 3- x Cl x . All three materials in the trilayer are important for obtaining PSCs with a high PCE. ZnO is critical for enhancing the open circuit voltage by ensuring proper energy alignment with the TiO 2 and C 60 layers. C 60 enhances carrier extraction from the CH 3 NH 3 PbI 3- x Cl x layer. TiO 2 eliminates charge recombination at the FTO surface and ensures efficient electron collection. The best-performing PSC based on the TiO 2 /ZnO/C 60 electron transport trilayer features a PCE of 18.63% with a fill factor of 79.12%. These findings help develop an understanding of the effects of ZnO-containing ETLs on perovskite film synthesis and show promise for the future development of high-performance PSCs with compound ETLs.

  10. Lead-Free MA2CuCl(x)Br(4-x) Hybrid Perovskites.

    PubMed

    Cortecchia, Daniele; Dewi, Herlina Arianita; Yin, Jun; Bruno, Annalisa; Chen, Shi; Baikie, Tom; Boix, Pablo P; Grätzel, Michael; Mhaisalkar, Subodh; Soci, Cesare; Mathews, Nripan

    2016-02-01

    Despite their extremely good performance in solar cells with efficiencies approaching 20% and the emerging application for light-emitting devices, organic-inorganic lead halide perovskites suffer from high content of toxic, polluting, and bioaccumulative Pb, which may eventually hamper their commercialization. Here, we present the synthesis of two-dimensional (2D) Cu-based hybrid perovskites and study their optoelectronic properties to investigate their potential application in solar cells and light-emitting devices, providing a new environmental-friendly alternative to Pb. The series (CH3NH3)2CuCl(x)Br(4-x) was studied in detail, with the role of Cl found to be essential for stabilization. By exploiting the additional Cu d-d transitions and appropriately tuning the Br/Cl ratio, which affects ligand-to-metal charge transfer transitions, the optical absorption in this series of compounds can be extended to the near-infrared for optimal spectral overlap with the solar irradiance. In situ formation of Cu(+) ions was found to be responsible for the green photoluminescence of this material set. Processing conditions for integrating Cu-based perovskites into photovoltaic device architectures, as well as the factors currently limiting photovoltaic performance, are discussed: among them, we identified the combination of low absorption coefficient and heavy mass of the holes as main limitations for the solar cell efficiency. To the best of our knowledge, this is the first demonstration of the potential of 2D copper perovskite as light harvesters and lays the foundation for further development of perovskite based on transition metals as alternative lead-free materials. Appropriate molecular design will be necessary to improve the material's properties and solar cell performance filling the gap with the state-of-the-art Pb-based perovskite devices.

  11. Phase formation and UV luminescence of Gd{sup 3+} doped perovskite-type YScO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimizu, Yuhei; Ueda, Kazushige, E-mail: kueda@che.kyutech.ac.jp

    Synthesis of pure and Gd{sup 3+}doped perovskite-type YScO{sub 3} was attempted by a polymerized complex (PC) method and solid state reaction (SSR) method. Crystalline phases and UV luminescence of samples were examined with varying heating temperatures. The perovskite-type single phase was not simply formed in the SSR method, as reported in some literatures, and two cubic C-type phases of starting oxide materials remained forming slightly mixed solid solutions. UV luminescence of Gd{sup 3+} doped samples increased with an increase in heating temperatures and volume of the perovskite-type phase. In contrast, a non-crystalline precursor was crystallized to a single C-type phasemore » at 800 °C in the PC method forming a completely mixed solid solution. Then, the phase of perovskite-type YScO{sub 3} formed at 1200 °C and its single phase was obtained at 1400 °C. It was revealed that high homogeneousness of cations was essential to generate the single perovskite-phase of YScO{sub 3}. Because Gd{sup 3+} ions were also dissolved into the single C-type phase in Gd{sup 3+} doped samples, intense UV luminescence was observed above 800 °C in both C-type phase and perovskite-type phase. - Graphical abstract: A pure perovskite-type YScO{sub 3} phase was successfully synthesized by a polymerized complex (PC) method. The perovskite-type YScO{sub 3} was generated through a solid solution of C-type (Y{sub 0.5}Sc{sub 0.5}){sub 2}O{sub 3} with drastic change of morphology. The PC method enabled a preparation of the single phase of the perovskite-type YScO{sub 3} at lower temperature and in shorter heating time. Gd{sup 3+} doped perovskite-type YScO{sub 3} was found to show a strong sharp UV emission at 314 nm. - Highlights: • Pure YScO{sub 3} phase was successfully synthesized by polymerized complex (PC) method. • Pure perovskite-type YScO{sub 3} phase was generated from pure C-type (Y{sub 0.5}Sc{sub 0.5}){sub 2}O{sub 3} one. • YScO{sub 3} was obtained at lower temperature and in shorter heating time by PC method. • Perovskite-type YScO{sub 3}:Gd{sup 3+} was found to show strong sharp UV emission at 314 nm.« less

  12. 2D Perovskites with Short Interlayer Distance for High-Performance Solar Cell Application.

    PubMed

    Ma, Chunqing; Shen, Dong; Ng, Tsz-Wai; Lo, Ming-Fai; Lee, Chun-Sing

    2018-05-01

    2D perovskites have emerged as one of the most promising photovoltaic materials owing to their excellent stability compared with their 3D counterparts. However, in typical 2D perovskites, the highly conductive inorganic layers are isolated by large organic cations leading to quantum confinement and thus inferior electrical conductivity across layers. To address this issue, the large organic cations are replaced with small propane-1,3-diammonium (PDA) cations to reduce distance between the inorganic perovskite layers. As shown by optical characterizations, quantum confinement is no longer dominating in the PDA-based 2D perovskites. This leads to considerable enhancement of charge transport as confirmed with electrochemical impedance spectroscopy, time-resolved photoluminescence, and mobility measurements. The improved electric properties of the interlayer-engineered 2D perovskites yield a power conversion efficiency of 13.0%. Furthermore, environmental stabilities of the PDA-based 2D perovskites are improved. PDA-based 2D perovskite solar cells (PSCs) with encapsulation can retain over 90% of their efficiency upon storage for over 1000 h, and PSCs without encapsulation can maintain their initial efficiency at 70 °C for over 100 h, which exhibit promising stabilities. These results reveal excellent optoelectronic properties and intrinsic stabilities of the layered perovskites with reduced interlayer distance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Low-temperature route to metal titanate perovskite nanoparticles for photocatalytic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alammar, Tarek; Hamm, Ines; Wark, Michael

    MTiO 3 (M = Ca, Sr, Ba) nanoparticles were synthesized by a one-step room-temperature ultrasound synthesis in ionic liquid. The samples we gathered are characterized by X-ray diffraction, scanning electron microscopy, nitrogen adsorption, UV–vis diffuse reflectance, Raman and IR spectroscopy and their capability in photocatalytic hydrogen evolution and methylene blue degradation was tested. Powder X-ray diffraction and Raman spectroscopic investigations revealed the products to crystallize in the cubic perovskite structure. SEM observations showed that the obtained CaTiO 3 consists of nanospheres, BaTiO 3 of raspberry-like shaped particles of 20 nm in diameter. SrTiO 3 particles have cubic-like morphology with anmore » edge length varying from 100 to 300 nm. SrTiO 3 exhibited the highest catalytic activity for photocatalytic H 2 evolution using only 0.025 wt.% Rh as co-catalyst and for the degradation of methylene blue under UV irradiation. The influence of parameters such as synthesis method, calcination temperature, and doping with nitrogen on the morphology, crystallinity, chemical composition, and photocatalytic acivity of SrTiO 3 was studied. Heating the as-prepared SrTiO 3 to 700 °C for extended time leads to a decrease in surface area and catalytic activity. Ionothermal prepared SrTiO 3 exhibits a higher activity than sonochemically prepared one without co-catalyst due to a synergistic effect of anatase which is present in small amount as a by-phase. Furthermore, after photodeposition of Rh, however, the activity is lower than that of the sonochemically prepared SrTiO 3. Nitrogen-doped SrTiO 3 showed photocatalytic acivity under visible light irradiation.« less

  14. Low-temperature route to metal titanate perovskite nanoparticles for photocatalytic applications

    DOE PAGES

    Alammar, Tarek; Hamm, Ines; Wark, Michael; ...

    2014-11-13

    MTiO 3 (M = Ca, Sr, Ba) nanoparticles were synthesized by a one-step room-temperature ultrasound synthesis in ionic liquid. The samples we gathered are characterized by X-ray diffraction, scanning electron microscopy, nitrogen adsorption, UV–vis diffuse reflectance, Raman and IR spectroscopy and their capability in photocatalytic hydrogen evolution and methylene blue degradation was tested. Powder X-ray diffraction and Raman spectroscopic investigations revealed the products to crystallize in the cubic perovskite structure. SEM observations showed that the obtained CaTiO 3 consists of nanospheres, BaTiO 3 of raspberry-like shaped particles of 20 nm in diameter. SrTiO 3 particles have cubic-like morphology with anmore » edge length varying from 100 to 300 nm. SrTiO 3 exhibited the highest catalytic activity for photocatalytic H 2 evolution using only 0.025 wt.% Rh as co-catalyst and for the degradation of methylene blue under UV irradiation. The influence of parameters such as synthesis method, calcination temperature, and doping with nitrogen on the morphology, crystallinity, chemical composition, and photocatalytic acivity of SrTiO 3 was studied. Heating the as-prepared SrTiO 3 to 700 °C for extended time leads to a decrease in surface area and catalytic activity. Ionothermal prepared SrTiO 3 exhibits a higher activity than sonochemically prepared one without co-catalyst due to a synergistic effect of anatase which is present in small amount as a by-phase. Furthermore, after photodeposition of Rh, however, the activity is lower than that of the sonochemically prepared SrTiO 3. Nitrogen-doped SrTiO 3 showed photocatalytic acivity under visible light irradiation.« less

  15. Temperature-dependent impedance spectroscopy of La0.8Sr0.2FeO3 nano-crystalline material

    NASA Astrophysics Data System (ADS)

    Kafa, C. A.; Triyono, D.; Laysandra, H.

    2017-04-01

    LaFeO3 is a material with perovskite structure which electrical properties frequently investigated. Research are done due to the exhibition of excellent gas sensing behavior through resistivity comparison from the p-type semiconductor. Sr doping on LaFeO3 or La1-xSrxFeO3 are able to improve the electrical conductivity through structural modification. Using Sr dopant concentration (x) of 0.2, La0.8Sr0.2FeO3 nano-crystal pellet was synthesized. The synthesis used sol-gel method, followed by gradual heat treatment and uniaxial compaction. XRD characterization shows that the structure of the sample is Orthorhombic Perovskite. Topography of the sample by SEM reveals grain and grain boundary existence with emerging agglomeration. The electrical properties of the material, as functions of temperature and frequency, were measured by Impedance Spectroscopy method using RLC meter, for temperatures of 303-373K. Through the Nyquist plot and Bode plot, the electrical conductivity of La0.8Sr0.2FeO3 is contributed by the grain and grain boundary. Finally, the electrical permittivities of La0.8Sr0.2FeO3 are increasing with temperature increase, with the highest achieved when measured at 1 kHz frequency.

  16. Electro-hydrodynamic spray synthesis and low temperature spectroscopic characterization of Perovskite thin films

    NASA Astrophysics Data System (ADS)

    Sarang, Som; Ishihara, Hidetaka; Tung, Vincent; Ghosh, Sayantani

    Utilizing a Marangoni flow inspired electrospraying technique, we synthesize hybrid perovskite (PVSK) thin films with broad absorption spectrum and high crystallinity. The precursor solvents are electrosprayed onto an indium tin oxide (ITO) substrate, resulting in a gradient force developing between the droplet surface and the bulk due to the varying vapor pressure in the bi-solvent system. This gradient force helps the droplets propagate and merge with surrounding ones, forming a uniform thin film with excellent morphological and topological characteristics, as evident from the average power conversion efficiency (PCE) of 16%. In parallel, we use low temperature static and dynamic photoluminescence spectroscopy to probe the grain boundaries and defects in the synthesized PVSK thin films. At 120 K, the emergence of the low temperature orthorhombic phase is accompanied by reduction in lifetimes by an order of magnitude, a result attributed to charge transfer between the orthorhombic and tetragonal domains, as well as due to a crossover from free charge carrier to excitonic recombination. Our fabrication technique and optical studies help in advancement of PVSK based technology by providing unique insights into the fundamental physics of these novel materials. This research was supported by National Aeronautics and Space administration (NASA) Grant No: NNX15AQ01A.

  17. Perovskite LaFeO3/montmorillonite nanocomposites: synthesis, interface characteristics and enhanced photocatalytic activity

    PubMed Central

    Peng, Kang; Fu, Liangjie; Yang, Huaming; Ouyang, Jing

    2016-01-01

    Perovskite LaFeO3/montmorillonite nanocomposites (LaFeO3/MMT) have been successfully prepared via assembling LaFeO3 nanoparticles on the surface of montmorillonite with citric acid assisted sol-gel method. The results indicated that the uniform LaFeO3 nanoparticles were densely deposited onto the surface of montmorillonite, mainly ranging in diameter from 10 nm to 15 nm. The photocatalytic activity of LaFeO3/MMT was evaluated by the degradation of Rhodamine B (RhB) under visible light irradiation, indicating that LaFeO3/MMT exhibited remarkable adsorption efficiency and excellent photocatalytic activity with the overall removal rate of RhB up to 99.34% after visible light irradiation lasting for 90 min. The interface characteristic and possible degradation mechanism were explored. The interface characterization of LaFeO3/MMT suggested that LaFeO3 nanoparticles could be immobilized on the surface of montmorillonite with the Si-O-Fe bonds. The abundant hydroxyl groups of montmorillonite, semiconductor photocatalysis of LaFeO3 and Fenton-like reaction could enhance the photocatalytic degradation through a synergistic effect. Therefore, the LaFeO3/MMT is a very promising photocatalyst in future industrial application to treat effectively wastewater of dyes. PMID:26778180

  18. Scalable fabrication of perovskite solar cells

    DOE PAGES

    Li, Zhen; Klein, Talysa R.; Kim, Dong Hoe; ...

    2018-03-27

    Perovskite materials use earth-abundant elements, have low formation energies for deposition and are compatible with roll-to-roll and other high-volume manufacturing techniques. These features make perovskite solar cells (PSCs) suitable for terawatt-scale energy production with low production costs and low capital expenditure. Demonstrations of performance comparable to that of other thin-film photovoltaics (PVs) and improvements in laboratory-scale cell stability have recently made scale up of this PV technology an intense area of research focus. Here, we review recent progress and challenges in scaling up PSCs and related efforts to enable the terawatt-scale manufacturing and deployment of this PV technology. We discussmore » common device and module architectures, scalable deposition methods and progress in the scalable deposition of perovskite and charge-transport layers. We also provide an overview of device and module stability, module-level characterization techniques and techno-economic analyses of perovskite PV modules.« less

  19. Substrate effects on photoluminescence and low temperature phase transition of methylammonium lead iodide hybrid perovskite thin films

    NASA Astrophysics Data System (ADS)

    Shojaee, S. A.; Harriman, T. A.; Han, G. S.; Lee, J.-K.; Lucca, D. A.

    2017-07-01

    We examine the effects of substrates on the low temperature photoluminescence (PL) spectra and phase transition in methylammonium lead iodide hybrid perovskite (CH3NH3PbI3) thin films. Structural characterization at room temperature with X-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy indicated that while the chemical structure of films deposited on glass and quartz was similar, the glass substrate induced strain in the perovskite films and suppressed the grain growth. The luminescence response and phase transition of the perovskite thin films were studied by PL spectroscopy. The induced strain was found to affect both the room temperature and low temperature PL spectra of the hybrid perovskite films. In addition, it was found that the effects of the glass substrate inhibited a tetragonal to orthorhombic phase transition such that it occurred at lower temperatures.

  20. Thermally Induced Structural Evolution and Performance of Mesoporous Block Copolymer-Directed Alumina Perovskite Solar Cells

    PubMed Central

    2015-01-01

    Structure control in solution-processed hybrid perovskites is crucial to design and fabricate highly efficient solar cells. Here, we utilize in situ grazing incidence wide-angle X-ray scattering and scanning electron microscopy to investigate the structural evolution and film morphologies of methylammonium lead tri-iodide/chloride (CH3NH3PbI3–xClx) in mesoporous block copolymer derived alumina superstructures during thermal annealing. We show the CH3NH3PbI3–xClx material evolution to be characterized by three distinct structures: a crystalline precursor structure not described previously, a 3D perovskite structure, and a mixture of compounds resulting from degradation. Finally, we demonstrate how understanding the processing parameters provides the foundation needed for optimal perovskite film morphology and coverage, leading to enhanced block copolymer-directed perovskite solar cell performance. PMID:24684494

  1. C60 as an Efficient n-Type Compact Layer in Perovskite Solar Cells.

    PubMed

    Wojciechowski, Konrad; Leijtens, Tomas; Siprova, Svetlana; Schlueter, Christoph; Hörantner, Maximilian T; Wang, Jacob Tse-Wei; Li, Chang-Zhi; Jen, Alex K-Y; Lee, Tien-Lin; Snaith, Henry J

    2015-06-18

    Organic-inorganic halide perovskite solar cells have rapidly evolved over the last 3 years. There are still a number of issues and open questions related to the perovskite material, such as the phenomenon of anomalous hysteresis in current-voltage characteristics and long-term stability of the devices. In this work, we focus on the electron selective contact in the perovskite solar cells and physical processes occurring at that heterojunction. We developed efficient devices by replacing the commonly employed TiO2 compact layer with fullerene C60 in a regular n-i-p architecture. Detailed spectroscopic characterization allows us to present further insight into the nature of photocurrent hysteresis and charge extraction limitations arising at the n-type contact in a standard device. Furthermore, we show preliminary stability data of perovskite solar cells under working conditions, suggesting that an n-type organic charge collection layer can increase the long-term performance.

  2. Flash microwave synthesis and sintering of nanosized La{sub 0.75}Sr{sub 0.25}Cr{sub 0.93}Ru{sub 0.07}o{sub 3-{delta}} for fuel cell application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Combemale, L., E-mail: lionel.combemale@u-bourgogne.f; Caboche, G.; Stuerga, D.

    2009-10-15

    Perovskite-oxide nanocrystals of La{sub 0.75}Sr{sub 0.25}Cr{sub 0.93}Ru{sub 0.07}O{sub 3-{delta}} with a mean size around 10 nm were prepared by microwave flash synthesis. This reaction was performed in alcoholic solution using metallic salts, sodium ethoxide and microwave autoclave. The obtained powder was characterised after purification by energy dispersive X-ray analysis (EDX), X-ray powder diffraction (XRD), BET adsorption technique, photon correlation spectroscopy (PCS) and transmission electron microscopy (TEM). The results show that integrated perovskite-type phase and uniform particle size were obtained in the microwave treated samples. At last the synthesised powder was directly used in a sintering process. A porous solid, inmore » accordance with the expected applications, was then obtained at low sintering temperature (1000 deg. C) without use of pore forming agent. - Graphical abstract: TEM photograph of La{sub 0.75}Sr{sub 0.25}Cr{sub 0.93}Ru{sub 0.07}O{sub 3-{delta}} obtained by microwave flash synthesis. This picture confirms the nanometric size of the ceramic particles.« less

  3. Perovskites for Photovoltaics in the Spotlight: Photoinduced Physical Changes and Their Implications.

    PubMed

    Gottesman, Ronen; Zaban, Arie

    2016-02-16

    Organic-inorganic halide perovskites are in consensus to revolutionize the field of photovoltaics and optoelectronic devices due to their superior optical and electronic properties which are unprecedented in comparison to those of other solution processed semiconductors. These hybrid materials are used as light absorbers and also as charge carriers which makes them very versatile to be implemented and studied in a multitude of fields. Traditionally, the working paradigm in solar cells and optoelectronic devices' characterization has been that the properties of photovoltaic materials remain stable following illumination of varying times and intensities. However, recently there has been a growing number of reports on prolonged illumination-dependent physical changes in perovskite films and perovskite based devices. The changes are reversible and range from structural transformations and differences in optical characteristics, to an increase in optoelectronic properties and physical parameters. In this Account, we review the physical changes in three reported model systems which display changes under prolonged illumination of light intensities of ∼0.01-1 sun. The three systems are (i) a free-standing perovskite film on a glass substrate, (ii) a symmetrical system with nonselective electrical contacts, and (iii) a working perovskite solar cell (either a planar or a porous structure). We examine each model system and discuss its photoinduced physical changes and conclude with the implications on future experimentation design, data analysis, and characterization that involve organic-inorganic halide perovskites illumination. Since hybrid perovskites are considered to be mixed ionic-electronic conductors in nature, ions that migrate in the perovskite under electrical fields can influence its properties. Therefore, an important distinction is made between photoinduced effects and photo and electric field induced effects. Thus, photoinduced effects are designated as observed effects in illuminated free-standing films or symmetrical devices without selective contacts. In contrast, photo- and electric field induced effects are designated as observed effects under open-circuit potential or during voltage scanning (internal electrical field exists across the device). In the latter case, the two effects are superimposed and it is difficult to evaluate the relative influence of each one (light or electric field). However, we show that the magnitude and the importance of the photoinduced effect are substantial.

  4. High-pressure crystal growth and electromagnetic properties of 5d double-perovskite Ca3OsO6

    NASA Astrophysics Data System (ADS)

    Feng, Hai Luke; Shi, Youguo; Guo, Yanfeng; Li, Jun; Sato, Akira; Sun, Ying; Wang, Xia; Yu, Shan; Sathish, Clastin I.; Yamaura, Kazunari

    2013-05-01

    Single crystals of the osmium-containing compound Ca3OsO6 have been successfully grown under high-pressure conditions, for the first time. The crystal structure of Ca3OsO6 were characterized as an ordered double-perovskite structure of space group P21/n with the Ca and Os atoms being fully ordered at the perovskite B-site. The electromagnetic analysis shows that the crystal exhibits a semiconductor-like behavior below 300 K and undergoes an antiferromagnetic transition at 50 K.

  5. Exploration and engineering of physical properties in high-quality Sr2CrReO6 epitaxial films

    NASA Astrophysics Data System (ADS)

    Lucy, Jeremy Matthew

    Double perovskites have proven to be highly interesting materials, particularly in the past two decades, with many materials in this family exhibiting strong correlations. These materials are some of many novel complex oxides with potential spintronics application. Sr2CrReO6, in particular, is a double perovskite with one of the highest Curie temperatures of its class (> 620 K in bulk and ~510-600 K in thin films), as well as high spin polarization, ferrimagnetic behavior, and semiconducting properties. This dissertation covers recent work in exploring and tuning physical properties in epitaxial films of Sr2CrReO6. It starts by providing a background for the field of spintronics and double perovskites, bulk and thin film synthesis of Sr2CrReO6, and standard and specialized characterization techniques utilized in both university and national laboratories, and then provides reports of work on Sr2CrReO6 epitaxial films. Examples of exploration and engineering of properties of Sr2CrReO 6 include: (1) tuning of electrical resistivity, such as at T= 7 K by a factor of 18,000%, via control of oxygen partial pressure during film growth; (2) enhancement of interfacial double perovskite ordering, demonstrated with high-angle annular dark-field scanning transmission electron microscopy, via the use of double perovskite buffer layer substrates; (3) measurement of magnetization suppression near film/substrate interfaces via polarized neutron reflectometry, which reveals a reduction of thickness (from 5.6 nm to 3.6 nm) of the magnetically suppressed interface region due to buffer layer enhancement; (4) strain tunability of atomic spin and orbital moments of Cr, Re, and O atoms probed with x-ray magnetic circular dichroism, which demonstrates ferrimagnetic behavior and reveals important magnetic contributions of the oxygen sites (~0.02 muB/site); (5) strain tunability of large magnetocrystalline anisotropy via applied epitaxial strain, revealing anisotropy fields of up to 10s of tesla; and (6) depth-resolved synchrotron x-ray studies of correlated magnetic and structural relaxation in a thick relaxing film. The utilized techniques and demonstrated results for Sr2CrReO6 will hopefully benefit researchers of complex oxide materials and perhaps stimulate further work on this and other related materials.

  6. Photoluminescence characterisations of a dynamic aging process of organic-inorganic CH3NH3PbBr3 perovskite

    NASA Astrophysics Data System (ADS)

    Sheng, R.; Wen, X.; Huang, S.; Hao, X.; Chen, S.; Jiang, Y.; Deng, X.; Green, M. A.; Ho-Baillie, A. W. Y.

    2016-01-01

    After unprecedented development of organic-inorganic lead halide perovskite solar cells over the past few years, one of the biggest barriers towards their commercialization is the stability of the perovskite material. It is thus important to understand the interaction between the perovskite material and oxygen and/or humidity and the associated degradation process in order to improve device and encapsulation design for better durability. Here we characterize the dynamic aging process in vapour-assisted deposited (VASP) CH3NH3PbBr3 perovskite thin films using advanced optical techniques, such as time-resolved photoluminescence and fluorescence lifetime imaging microscopy (FLIM). Our investigation reveals that the perovskite grains grow spontaneously and the larger grains are formed at room temperature in the presence of moisture and oxygen. This crystallization process leads to a higher density of defects and a shorter carrier lifetime, specifically in the larger grains. Excitation-intensity-dependent steady-state photoluminescence shows both N2 stored and aged perovskite exhibit a super-linear increase of photoluminescence intensity with increasing excitation intensity; and the larger slope in aged sample suggests a larger density of defects is generated, consistent with time-resolved PL measurements.

  7. Interfacial characteristics and leakage current transfer mechanisms in organometal trihalide perovskite gate-controlled devices via doping of PCBM

    NASA Astrophysics Data System (ADS)

    Wang, Yucheng; Zhang, Yuming; Liu, Yintao; Pang, Tiqiang; Hu, Ziyang; Zhu, Yuejin; Luan, Suzhen; Jia, Renxu

    2017-11-01

    Two types of perovskite (with and without doping of PCBM) based metal-oxide-semiconductor (MOS) gate-controlled devices were fabricated and characterized. The study of the interfacial characteristics and charge transfer mechanisms by doping of PCBM were analyzed by material and electrical measurements. Doping of PCBM does not affect the size and crystallinity of perovskite films, but has an impact on carrier extraction in perovskite MOS devices. The electrical hysteresis observed in capacitance-voltage and current-voltage measurements can be alleviated by doping of PCBM. Experimental results demonstrate that extremely low trap densities are found for the perovskite device without doping, while the doped sample leads to higher density of interface state. Three mechanisms including Ohm’s law, trap-filled-limit (TFL) emission, and child’s law were used to analyze possible charge transfer mechanisms. Ohm’s law mechanism is well suitable for charge transfer of both the perovskite MOS devices under light condition at large voltage, while TFL emission well addresses the behavior of charge transfer under dark at small voltage. This change of charge transfer mechanism is attributed to the impact of the ion drift within perovskites.

  8. Synthesis and re-investigation of the elastic properties of single-crystal magnesium silicate perovskite

    NASA Astrophysics Data System (ADS)

    Yeganeh-Haeri, Amir

    1994-12-01

    Single crystals of MgSiO3 in the perovskite structure have been grown at a peak pressure of 26 GPa and temperature of approximately 1600 K using a 2000 ton uniaxial split-sphere high-pressure apparatus (USSA-2000). The specimens were subsequently utilized to re-investigate the single-crystal elastic properties of this phase at ambient conditions using laser Brillouin spectroscopy. The nine adiabatic single-crystal elastic stiffness coefficients, in units of GPa, are: C11 = 482, C22 = 537, C33 = 485, C44 = 204, C55 = 186, C66 = 147, C12 = 144, C13 = 147, C23 = 146. The resulting estimated Voigt-Reuss-Hill (VRH) aggregate isotropic elastic moduli are: K=264.0 and mu = 177.3 GPa, respectively. The single-crystal elastic moduli of MgSiO3 perovskite display a pattern that is elastically somewhat anisotropic. The maximum shear and compressional velocities are 18% and 7% greater than the minimum. The (010) crystallographic direction contains both the fastest and the slowest shear wave velocities. If, under lower mantle conditions, magnesium silicate perovskite grains were to become preferentially oriented, a shear wave propagating in the Earth's lower mantle could become polarized with two distinct velocities. The observed density and seismic parameter of the lower mantle over the depth range of 1000-2700 km are compared with the calculated profiles for a model mantle consisting of pure perovskite (Mg(0.89)Fe(0.11))SiO3 and for a mixture composed of silicate perovskite and magnesiowuestite using our new elasticity results. At present, literature values of thermoelastic properties for silicate perovskite, in particular, the coefficient of thermal expansion and the temperature derivative of the isothermal bulk modulus, vary widely. Because of this disparity, we find that mantle models ranging from pure perovskite to 'pyrolitic'-type compositions provide acceptable fits to the seismically observed density and velocity profiles of the Earth's lower mantle.

  9. Novel high volumetric energy density nanostructured electrode materials for biomedical applications

    NASA Astrophysics Data System (ADS)

    Tong, Wei

    A definitive focus is being made to develop cathode materials of higher energy and good power for primary and rechargeable lithium batteries upon the development of implantable biomedical devices (cardiac defibrillators). In this thesis, novel electroactive nanostructured silver metal oxyfluoride perovskites, Ag1+3Mo6+(O3F 3) and Ag1+3Nb5+(O2F 4) have been successfully synthesized by a mechanochemical reaction. The formation of these perovskites was investigated throughout the Ag-Mo / Nb composition range with the use of either Ag1+ or Ag 2+ in the form of AgF and AgF2 as the reactant, respectively. The compositional study combined with XRD and extensive Raman investigation was utilized to determine structure and cation distribution and infer oxidation state. An electrochemical characterization of these silver metal oxyfluoride perovskite positive electrodes for Li batteries was investigated for the first time as a function of synthesis condition, stoichiometry and effect of Mo and Ag derived second phases. A detailed in-situ electrochemical study by XAS, Raman and XRD was performed, revealing a 3 electron silver displacement or conversion reaction at > 3 V and a 2 electron reduction of Mo6+ to Mo4+ in the region < 3 V. To further improve the rate capability of silver metal oxyfluorides, metallic Ag2F phase has been successfully synthesized through the mechanochemical reaction of Ag and AgF. Its unique metallic character within Ag layers lead to a very good electronic conductivity (7.89x10 -2 S/cm). The efficacy of SMOF composites consisting of conducting matrix (carbon black, Ag2F and Ag phase) for lithium battery was investigated through discharge rate studies. Results indicated that Ag 2F phase could be utilized as an alternative conductive additive with exceptional density.

  10. Radio Frequency Magnetron Sputtering Deposition of TiO2 Thin Films and Their Perovskite Solar Cell Applications

    PubMed Central

    Chen, Cong; Cheng, Yu; Dai, Qilin; Song, Hongwei

    2015-01-01

    In this work, we report a physical deposition based, compact (cp) layer synthesis for planar heterojunction perovskite solar cells. Typical solution-based synthesis of cp layer for perovskite solar cells involves low-quality of thin films, high-temperature annealing, non-flexible devices, limitation of large-scale production and that the effects of the cp layer on carrier transport have not been fully understood. In this research, using radio frequency magnetron sputtering (RFMS), TiO2 cp layers were fabricated and the thickness could be controlled by deposition time; CH3NH3PbI3 films were prepared by evaporation & immersion (E & I) method, in which PbI2 films made by thermal evaporation technique were immersed in CH3NH3I solution. The devices exhibit power conversion efficiency (PCE) of 12.1% and the photovoltaic performance can maintain 77% of its initial PCE after 1440 h. The method developed in this study has the capability of fabricating large active area devices (40 × 40 mm2) showing a promising PCE of 4.8%. Low temperature and flexible devices were realized and a PCE of 8.9% was obtained on the PET/ITO substrates. These approaches could be used in thin film based solar cells which require high-quality films leading to reduced fabrication cost and improved device performance. PMID:26631493

  11. Rational design of mixed ionic and electronic conducting perovskite oxides for solid oxide fuel cell anode materials: A case study for doped SrTiO3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suthirakun, Suwit; Xiao, Guoliang; Ammal, Salai Cheettu

    2014-01-01

    The effect of p- and n-type dopants on ionic and electronic conductivity of SrTiO3 based perovskites were investigated both computationally and experimentally. Specifically, we performed density functional theory (DFT) calculations of Na- and La-doped SrTiO3 and Na- and Nb-doped SrTiO3 systems. Constrained ab initio thermodynamic calculations were used to evaluate the phase stability and reducibility of doped SrTiO3 under both oxidizing and reducing synthesis conditions, as well as under anodic solid oxide fuel cell (SOFC) conditions. The density of states (DOS) of these materials was analyzed to study the effects of p- and n-doping on the electronic conductivity. Furthermore, Na-more » and La-doped SrTiO3 and Na- and Nb-doped SrTiO3 samples were experimentally prepared and the conductivity was measured to confirm our computational predictions. The experimental observations are in very good agreement with the theoretical predictions that doping n-doped SrTiO3 with small amounts of p-type dopants promotes both the ionic and electronic conductivity of the material. This doping strategy is valid independent of p- and n-doping site and permits the synthesis of perovskite based mixed ionic/electronic conductors.« less

  12. Antiferromagnetic interaction between A'-site Mn spins in A-site-ordered perovskite YMn3Al4O12.

    PubMed

    Tohyama, Takenori; Saito, Takashi; Mizumaki, Masaichiro; Agui, Akane; Shimakawa, Yuichi

    2010-03-01

    The A-site-ordered perovskite YMn(3)Al(4)O(12) was prepared by high-pressure synthesis. Structural analysis with synchrotron powder X-ray diffraction data and the Mn L-edges X-ray absorption spectrum revealed that the compound has a chemical composition Y(3+)Mn(3+)(3)Al(3+)(4)O(2-)(12) with magnetic Mn(3+) at the A' site and non-magnetic Al(3+) at the B site. An antiferromagnetic interaction between the A'-site Mn(3+) spins is induced by the nearest neighboring Mn-Mn direct exchange interaction and causes an antiferromagnetic transition at 34.3 K.

  13. High-pressure synthesis of the cubic perovskite BaRuO3 and evolution of ferromagnetism in ARuO3 (A = Ca, Sr, Ba) ruthenates

    PubMed Central

    Jin, C.-Q.; Zhou, J.-S.; Goodenough, J. B.; Liu, Q. Q.; Zhao, J. G.; Yang, L. X.; Yu, Y.; Yu, R. C.; Katsura, T.; Shatskiy, A.; Ito, E.

    2008-01-01

    The cubic perovskite BaRuO3 has been synthesized under 18 GPa at 1,000°C. Rietveld refinement indicates that the new compound has a stretched Ru–O bond. The cubic perovskite BaRuO3 remains metallic to 4 K and exhibits a ferromagnetic transition at Tc = 60 K, which is significantly lower than the Tc ≈ 160 K for SrRuO3. The availability of cubic perovskite BaRuO3 not only makes it possible to map out the evolution of magnetism in the whole series of ARuO3 (A = Ca, Sr, Ba) as a function of the ionic size of the A-site rA, but also completes the polytypes of BaRuO3. Extension of the plot of Tc versus rA in perovskites ARuO3 (A = Ca, Sr, Ba) shows that Tc does not increase as the cubic structure is approached, but has a maximum for orthorhombic SrRuO3. Suppressing Tc by Ca and Ba doping in SrRuO3 is distinguished by sharply different magnetic susceptibilities χ(T) of the paramagnetic phase. This distinction has been interpreted in the context of a Griffiths' phase on the (Ca Sr)RuO3 side and bandwidth broadening on the (Sr,Ba)RuO3 side. PMID:18480262

  14. Highly Luminescent Phase-Stable CsPbI3 Perovskite Quantum Dots Achieving Near 100% Absolute Photoluminescence Quantum Yield.

    PubMed

    Liu, Feng; Zhang, Yaohong; Ding, Chao; Kobayashi, Syuusuke; Izuishi, Takuya; Nakazawa, Naoki; Toyoda, Taro; Ohta, Tsuyoshi; Hayase, Shuzi; Minemoto, Takashi; Yoshino, Kenji; Dai, Songyuan; Shen, Qing

    2017-10-24

    Perovskite quantum dots (QDs) as a new type of colloidal nanocrystals have gained significant attention for both fundamental research and commercial applications owing to their appealing optoelectronic properties and excellent chemical processability. For their wide range of potential applications, synthesizing colloidal QDs with high crystal quality is of crucial importance. However, like most common QD systems such as CdSe and PbS, those reported perovskite QDs still suffer from a certain density of trapping defects, giving rise to detrimental nonradiative recombination centers and thus quenching luminescence. In this paper, we show that a high room-temperature photoluminescence quantum yield of up to 100% can be obtained in CsPbI 3 perovskite QDs, signifying the achievement of almost complete elimination of the trapping defects. This is realized with our improved synthetic protocol that involves introducing organolead compound trioctylphosphine-PbI 2 (TOP-PbI 2 ) as the reactive precursor, which also leads to a significantly improved stability for the resulting CsPbI 3 QD solutions. Ultrafast kinetic analysis with time-resolved transient absorption spectroscopy evidence the negligible electron or hole-trapping pathways in our QDs, which explains such a high quantum efficiency. We expect the successful synthesis of the "ideal" perovskite QDs will exert profound influence on their applications to both QD-based light-harvesting and -emitting devices.

  15. Synthesis of One-Dimensional and Hyperbranched Nanomaterials for Lithium-Ion Battery Solid Electrolytes

    NASA Astrophysics Data System (ADS)

    Yang, Ting

    Lithium-ion batteries can fail and catch fire when overcharged, exposed to high temperatures or short-circuited due to the highly flammable organic liquid used in the electrolyte. Using inorganic solid electrolyte materials can potentially improve the safety factor. Additionally, nanostructured electrolyte materials may further enhanced performance by taking advantage of their large aspect ratio. In this work, the synthesis of two promising nanostructured solid electrolyte materials was explored. Amorphous lithium niobate nanowires were synthesized through the decomposition of a niobium-containing complex in a structure-directing solvent using a reflux method. Lithium lanthanum titanate was obtained via solid state reaction with titanium oxide nanowires as the titanium precursor, but the nanowire morphology could not be preserved due to high temperature sintering. Hyperbranched potassium lanthanum titanate was synthesized through hydrothermal route. This was the first time that hyperbranched nanowires with perovskite structure were made without any catalyst or substrate. This result has the potential to be applied to other perovskite materials.

  16. YAlO3:Ce3+ powders: Synthesis, characterization, thermoluminescence and optical studies

    NASA Astrophysics Data System (ADS)

    Parganiha, Yogita; Kaur, Jagjeet; Dubey, Vikas; Shrivastava, Ravi

    2015-09-01

    Yttrium aluminum perovskite (YAP) is a promising high temperature ceramic material, known for its mechanical, structural and optical properties. YAP's also known as an ideal host material for solid-state lasers and phosphors. In this work, Ce3+ doped YAlO3 phosphors were synthesized by solid state reaction method, which is very suitable technique for large scale production. A prepared phosphor was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), Photoluminescence spectra and Thermoluminescence (TL) glow curve study. The starting reagents used for sample preparation are Y2O3, Al2O3 and CeO2, boric acid used as a flux. Ratio of Y:Al was 1:1 which shows perovskite structure confirmed by the X-ray diffraction (XRD) study. The entire prepared sample was studied by PL excitation and emission spectra. Prominent peak at 446 nm (blue emission) which shows broad emission spectra of photoluminescence. It proves that prepared phosphor can act as a single host for blue emission of light and can be used for display applications. Commission Internationale de I'Eclairage (CIE) techniques proves the blue emission of light (x = .148, y = .117). TL glow curve analysis of prepared phosphor shows the prominent peak at 189 °C for the variable UV exposure time and high temperature peak shows the more stability and less fading in the prepared phosphor. Kinetic data of prepared phosphor were evaluated by peak shape method for variable UV exposure time (5-25 min).

  17. Synthesis, Resistivity, and Thermal Properties of the Cubic Perovskite NH 2CH=NH 2SnI 3and Related Systems

    NASA Astrophysics Data System (ADS)

    Mitzi, D. B.; Liang, K.

    1997-12-01

    Combining concentrated hydriodic acid solutions of tin(II) iodide and formamidine acetate in an inert atmosphere results in the precipitation of a new conducting organic-inorganic compound, NH 2CH=NH 2SnI 3, which at room temperature adopts a cubic perovskite structure. The lattice constant for NH 2CH=NH 2SnI 3is found to be a=6.316(1) Å, which is approximately 1.2% larger than that for the isostructural compound CH 3NH 3SnI 3. The electrical resistivity of a pressed pellet of the new compound exhibits semimetallic temperature dependence from 10 to 300 K, with evidence of a structural transition at approximately 75 K. NH 2CH=NH 2SnI 3begins to slowly decompose in an inert atmosphere at temperatures as low as 200°C, with bulk decomposition/melting occurring above 300°C. The properties of the formamidinium-based perovskite are compared with those of the related cubic (at room temperature) perovskite CH 3NH 3SnI 3and the mixed-cation system (CH 3NH 3) 1- x(NH 2CH=NH 2) xSnI 3.

  18. Low-Temperature Presynthesized Crystalline Tin Oxide for Efficient Flexible Perovskite Solar Cells and Modules.

    PubMed

    Bu, Tongle; Shi, Shengwei; Li, Jing; Liu, Yifan; Shi, Jielin; Chen, Li; Liu, Xueping; Qiu, Junhao; Ku, Zhiliang; Peng, Yong; Zhong, Jie; Cheng, Yi-Bing; Huang, Fuzhi

    2018-05-02

    Organic-inorganic metal halide perovskite solar cells (PSCs) have been emerging as one of the most promising next generation photovoltaic technologies with a breakthrough power conversion efficiency (PCE) over 22%. However, aiming for commercialization, it still encounters challenges for the large-scale module fabrication, especially for flexible devices which have attracted intensive attention recently. Low-temperature processed high-performance electron-transporting layers (ETLs) are still difficult. Herein, we present a facile low-temperature synthesis of crystalline SnO 2 nanocrystals (NCs) as efficient ETLs for flexible PSCs including modules. Through thermal and UV-ozone treatments of the SnO 2 ETLs, the electron transporting resistance of the ETLs and the charge recombination at the interface of ETL/perovskite were decreased. Thus, the hysteresis-free highly efficient rigid and flexible PSCs were obtained with PCEs of 19.20 and 16.47%, respectively. Finally, a 5 × 5 cm 2 flexible PSC module with a PCE of 12.31% (12.22% for forward scan and 12.40% for reverse scan) was fabricated with the optimized perovskite/ETL interface. Thus, employing presynthesized SnO 2 NCs to fabricate ETLs has showed promising for future manufacturing.

  19. Crystal Engineering for Low Defect Density and High Efficiency Hybrid Chemical Vapor Deposition Grown Perovskite Solar Cells.

    PubMed

    Ng, Annie; Ren, Zhiwei; Shen, Qian; Cheung, Sin Hang; Gokkaya, Huseyin Cem; So, Shu Kong; Djurišić, Aleksandra B; Wan, Yangyang; Wu, Xiaojun; Surya, Charles

    2016-12-07

    Synthesis of high quality perovskite absorber is a key factor in determining the performance of the solar cells. We demonstrate that hybrid chemical vapor deposition (HCVD) growth technique can provide high level of versatility and repeatability to ensure the optimal conditions for the growth of the perovskite films as well as potential for batch processing. It is found that the growth ambient and degree of crystallization of CH 3 NH 3 PbI 3 (MAPI) have strong impact on the defect density of MAPI. We demonstrate that HCVD process with slow postdeposition cooling rate can significantly reduce the density of shallow and deep traps in the MAPI due to enhanced material crystallization, while a mixed O 2 /N 2 carrier gas is effective in passivating both shallow and deep traps. By careful control of the perovskite growth process, a champion device with power conversion efficiency of 17.6% is achieved. Our work complements the existing theoretical studies on different types of trap states in MAPI and fills the gap on the theoretical analysis of the interaction between deep levels and oxygen. The experimental results are consistent with the theoretical predictions.

  20. Degradation of Methylammonium Lead Iodide Perovskite Structures through Light and Electron Beam Driven Ion Migration

    PubMed Central

    2016-01-01

    Organometal halide perovskites show promising features for cost-effective application in photovoltaics. The material instability remains a major obstacle to broad application because of the poorly understood degradation pathways. Here, we apply simultaneous luminescence and electron microscopy on perovskites for the first time, allowing us to monitor in situ morphology evolution and optical properties upon perovskite degradation. Interestingly, morphology, photoluminescence (PL), and cathodoluminescence of perovskite samples evolve differently upon degradation driven by electron beam (e-beam) or by light. A transversal electric current generated by a scanning electron beam leads to dramatic changes in PL and tunes the energy band gaps continuously alongside film thinning. In contrast, light-induced degradation results in material decomposition to scattered particles and shows little PL spectral shifts. The differences in degradation can be ascribed to different electric currents that drive ion migration. Moreover, solution-processed perovskite cuboids show heterogeneity in stability which is likely related to crystallinity and morphology. Our results reveal the essential role of ion migration in perovskite degradation and provide potential avenues to rationally enhance the stability of perovskite materials by reducing ion migration while improving morphology and crystallinity. It is worth noting that even moderate e-beam currents (86 pA) and acceleration voltages (10 kV) readily induce significant perovskite degradation and alter their optical properties. Therefore, attention has to be paid while characterizing such materials using scanning electron microscopy or transmission electron microscopy techniques. PMID:26804213

  1. Effect of A-site deficiency in LaMn{sub 0.9}Co{sub 0.1}O{sub 3} perovskites on their catalytic performance for soot combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinamarca, Robinson; Garcia, Ximena; Jimenez, Romel

    Highlights: • A-site defective perovskites increases the oxidation state of the B-cation. • Not always non-stoichiometric perovskites exhibit higher catalytic activity in soot combustion. • The highly symmetric cubic crystalline structure diminishes the redox properties of perovskites. - Abstract: The influence of lanthanum stoichiometry in Ag-doped (La{sub 1-x}Ag{sub x}Mn{sub 0.9}Co{sub 0.1}O{sub 3}) and A-site deficient (La{sub 1-x}Mn{sub 0.9}Co{sub 0.1}O{sub 3-δ}) perovskites with x equal to 10, 20 and 30 at.% has been investigated in catalysts for soot combustion. The catalysts were prepared by the amorphous citrate method and characterized by XRD, nitrogen adsorption, XPS, O{sub 2}-TPD and TPR. The formationmore » of a rhombohedral excess-oxygen perovskite for Ag-doped and a cubic perovskite structure for an A-site deficient series is confirmed. The efficient catalytic performance of the larger Ag-doped perovskite structure is attributed to the rhombohedral crystalline structure, Ag{sub 2}O segregated phases and the redox pair Mn{sup 4+}/Mn{sup 3+}. A poor catalytic activity for soot combustion was observed with A-site deficient perovskites, despite the increase in the redox pair Mn{sup 4+}/Mn{sup 3+}, which is attributed to the cubic crystalline structure.« less

  2. Vapor and healing treatment for CH3NH3PbI3-xClx films toward large-area perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Gouda, Laxman; Gottesman, Ronen; Tirosh, Shay; Haltzi, Eynav; Hu, Jiangang; Ginsburg, Adam; Keller, David A.; Bouhadana, Yaniv; Zaban, Arie

    2016-03-01

    Hybrid methyl-ammonium lead trihalide perovskites are promising low-cost materials for use in solar cells and other optoelectronic applications. With a certified photovoltaic conversion efficiency record of 20.1%, scale-up for commercial purposes is already underway. However, preparation of large-area perovskite films remains a challenge, and films of perovskites on large electrodes suffer from non-uniform performance. Thus, production and characterization of the lateral uniformity of large-area films is a crucial step towards scale-up of devices. In this paper, we present a reproducible method for improving the lateral uniformity and performance of large-area perovskite solar cells (32 cm2). The method is based on methyl-ammonium iodide (MAI) vapor treatment as a new step in the sequential deposition of perovskite films. Following the MAI vapor treatment, we used high throughput techniques to map the photovoltaic performance throughout the large-area device. The lateral uniformity and performance of all photovoltaic parameters (Voc, Jsc, Fill Factor, Photo-conversion efficiency) increased, with an overall improved photo-conversion efficiency of ~100% following a vapor treatment at 140 °C. Based on XRD and photoluminescence measurements, We propose that the MAI treatment promotes a ``healing effect'' to the perovskite film which increases the lateral uniformity across the large-area solar cell. Thus, the straightforward MAI vapor treatment is highly beneficial for large scale commercialization of perovskite solar cells, regardless of the specific deposition method.Hybrid methyl-ammonium lead trihalide perovskites are promising low-cost materials for use in solar cells and other optoelectronic applications. With a certified photovoltaic conversion efficiency record of 20.1%, scale-up for commercial purposes is already underway. However, preparation of large-area perovskite films remains a challenge, and films of perovskites on large electrodes suffer from non-uniform performance. Thus, production and characterization of the lateral uniformity of large-area films is a crucial step towards scale-up of devices. In this paper, we present a reproducible method for improving the lateral uniformity and performance of large-area perovskite solar cells (32 cm2). The method is based on methyl-ammonium iodide (MAI) vapor treatment as a new step in the sequential deposition of perovskite films. Following the MAI vapor treatment, we used high throughput techniques to map the photovoltaic performance throughout the large-area device. The lateral uniformity and performance of all photovoltaic parameters (Voc, Jsc, Fill Factor, Photo-conversion efficiency) increased, with an overall improved photo-conversion efficiency of ~100% following a vapor treatment at 140 °C. Based on XRD and photoluminescence measurements, We propose that the MAI treatment promotes a ``healing effect'' to the perovskite film which increases the lateral uniformity across the large-area solar cell. Thus, the straightforward MAI vapor treatment is highly beneficial for large scale commercialization of perovskite solar cells, regardless of the specific deposition method. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08658b

  3. Synthesis of Sr0.9K0.1FeO3-δ electrocatalysts by mechanical activation

    NASA Astrophysics Data System (ADS)

    Monteiro, J. F.; Waerenborgh, J. C.; Kovalevsky, A. V.; Yaremchenko, A. A.; Frade, J. R.

    2013-02-01

    Potassium-substituted SrFeO3-δ for possible application as oxygen evolution electrode in alkaline or molten salt media was prepared by mechanical activation and characterized by X-ray diffraction, dilatometric and thermogravimetric analysis, Mössbauer spectroscopy, and electrical conductivity measurements. Room temperature mechanical activation of a mixture of oxide precursors with subsequent thermal treatments at 700-900 °C results in the formation of Sr0.9K0.1FeO3-δ with tetragonal perovskite-like structure. Such allows to decrease the synthesis temperature, if compared to the conventional solid-state route, and to prevent possible volatilization of potassium. The results of Mössbauer spectroscopy studies indicate that the oxygen nonstoichiometry in the samples annealed in air at 900-1100 °C with subsequent rapid cooling vary in the range δ=0.30-0.32. The electrical conductivity in air exhibits a metal-like behaviour at temperatures above 400 °C and semiconductor behaviour in the low-temperature range, reaching 13-30 S/cm under prospective operation conditions for alkaline electrolyzers (≤90 °C).

  4. Phase equilibria and velocity discontinuities across the post-perovskite transition in (Mg,Fe)SiO3

    NASA Astrophysics Data System (ADS)

    Wentzcovitch, Renata; Shukla, Gaurav; Sarkar, Kanchan

    The enigmatic nature of the region above the Earth's core-mantle boundary known as the D'' region, is often characterized by a significant contrast in seismic wave velocities. The perovskite (Pv) to post-perovskite (PPv) transition in bridgmanite ((Mg,Fe)SiO3 perovskite) is one of the keys for understanding this region. In this study, we present DFT + USC calculations of phase equilibria in bridgmanite across the post-perovskite transition. Thermal effects are addressed within the quasi-harmonic approximation. By computing high-pressure and high-temperatures elastic/acoustic properties of Pv and PPv phases, we also investigate seismic signature of the PPv-transition, believed to cause the D'' discontinuity. Aggregate elastic moduli and sound velocities for the Mg-end member are successfully compared with limited experimental data available. Predicted velocity discontinuities across the PPv transition are consistent with seismic observations in some places of the global D'' discontinuity. Our robust estimates of the phase boundary and elastic properties of the perovskite and post-perovskite phases will help to clarify the origin of lateral velocity variations in the deep lower mantle region and constrain its composition and thermal structure. 1This research was supported primarily by NSF Grants EAR 1348066 and DMR 1503084. Computations are performed at the Minnesota Su- percomputing Institute (MSI).

  5. The low temperature synthesis, characterization and properties of ferroelectrics

    NASA Astrophysics Data System (ADS)

    Xu, Jie

    2000-10-01

    PZT 50:50 xerogels prepared by two different sol-gel routes crystallized in a similar fashion to give a mixture of tetragonal and rhombohedral at high temperature (1000°C). Both the diffraction and EXAFS data suggest that the compositional inhomogeneity of the samples prepared by the two routes is similar. The crystallization of CZT gels is complicated. Crystalline CaCO 3 was always detected in the dry gels regardless of the sample composition and preparation methods. At intermediate temperatures a fluorite related phase was always formed and it transformed to perovskite at higher temperatures. The EXAFS data suggest that perovskite CZT samples prepared using alkoxide sol-gel chemistry may not be random solid solutions. All the solution processed ZrTiO4 materials crystallized in the range 600--700°C. The KTN samples prepared using a conventional alkoxide sol-gel route crystallized completely to perovskite at lower temperatures than those prepared using prehydrolyzed precursors. The EXAFS data for the KTN samples prepared using a conventional alkoxide sol-gel route are consistent with a random distribution of tantalum and niobium in the solid solution. However, materials prepared using the inhomogeneous sol-gel route and by the direct reaction of mixed oxides were shown to be compositionally inhomogeneous. The heterogeneity could not be removed by regrinding and heating the mixed oxide samples several times. K2Ta4-xNbxO11 (x = 0, 2, 4) samples were prepared using alkoxide sol-gel chemistry and their crystallization was examined by powder X-ray diffraction. A Rietveld structure analysis of the pyrochlore formed from a gel with bulk composition K2Ta 2Nb2O11 indicated that it was rich in potassium relative to the bulk sample. On heating to high temperatures tetragonal tungsten bronzes were formed. A Rietveld analysis was also performed for K2Ta 2Nb2O11 with tetragonal tungsten bronze structure. The defect pyrochlores "AgTaO3" and GaTaO 3 were synthesized by ion-exchange using pyrochlore KTaO3 as a starting material. The structures of the pyrochlores were examined using the Rietveld method. The pyrochlore-to-perovskite transformations were also explored.

  6. Molten salt synthesis of La0.8Sr0.2MnO3 powders for SOFC cathode electrode

    NASA Astrophysics Data System (ADS)

    Gu, Sin-il; Shin, Hyo-soon; Hong, Youn-woo; Yeo, Dong-hun; Kim, Jong-hee; Nahm, Sahn; Yoon, Sang-ok

    2012-08-01

    For La0.8Sr0.2MnO3 (LSM) perovskite, used as the cathode material for solid oxide fuel cells (SOFC), it is known that the formation of a triple-phase-boundary is restrained due to the formation of a second phase at the YSZ/electrode interface at high temperature. To decrease the 2nd phase, lowering the sintering temperature has been used. LSM powder was synthesized by molten salt synthesis method to control its particle size, shape, and agglomeration. We have characterized the phase formation, particle size, shape, and sintering behavior of LSM in the synthesis using the variation of KCl, LiCl, KF and its mixed salts as raw materials. In the case of KCl and KCl-KF salts, the particle size and shape of the LSM was well controlled and synthesized. However, in the case of LiCl and KCl-LiCl salts, LiMnOx as 2nd phase and LSM were synthesized simultaneously. In the case of the mixed salt of KCl-KF, the growth mechanism of the LSM particle was changed from `diffusion-controlled' to `reaction-controlled' according to the amount of mixed salt. The sintering temperature can be decreased below 1000 °C by using the synthesized LSM powder.

  7. Enhancing Efficiency of Perovskite Solar Cells via Surface Passivation with Graphene Oxide Interlayer.

    PubMed

    Li, Hao; Tao, Leiming; Huang, Feihong; Sun, Qiang; Zhao, Xiaojuan; Han, Junbo; Shen, Yan; Wang, Mingkui

    2017-11-08

    Perovskite solar cells have been demonstrated as promising low-cost and highly efficient next-generation solar cells. Enhancing V OC by minimization the interfacial recombination kinetics can further improve device performance. In this work, we for the first time reported on surface passivation of perovskite layers with chemical modified graphene oxides, which act as efficient interlayer to reduce interfacial recombination and enhance hole extraction as well. Our modeling points out that the passivation effect mainly comes from the interaction between functional group (4-fluorophenyl) and under-coordinated Pb ions. The resulting perovskite solar cells achieved high efficient power conversion efficiency of 18.75% with enhanced high open circuit V OC of 1.11 V. Ultrafast spectroscopy, photovoltage/photocurrent transient decay, and electronic impedance spectroscopy characterizations reveal the effective passivation effect and the energy loss mechanism. This work sheds light on the importance of interfacial engineering on the surface of perovskite layers and provides possible ways to improve device efficiency.

  8. High Performance of Perovskite Solar Cells via Catalytic Treatment in Two-Step Process: The Case of Solvent Engineering.

    PubMed

    Li, Wenzhe; Fan, Jiandong; Li, Jiangwei; Niu, Guangda; Mai, Yaohua; Wang, Liduo

    2016-11-09

    Currently, the potential mechanism of the solvent-assisted crystallization for mixed cations perovskite thin film (FA x MA 1-x PbI 3 ) prepared via two-step solution-process still remains obscure. Here, we clarified the molecular-competing-reacted process of NH 2 CH═NH 2 I (FAI) and CH 3 NH 3 I (MAI) with PbI 2 (DMSO) x complex in dimethyl sulfoxide (DMSO) and diethyl ether (DE) catalytic solvent system in the sequential two-step solution-process. The microscopic dynamics was characterized via the characterizations of in situ photoluminescence spectra. In addition, we found that the thermal stability of the perovskite films suffered from the residual solvent with high boiling point, for example, DMSO. The further DE treatment could promote the volatility process of DMSO and accelerate the crystallization process of perovskite films. The highest PCE over 19% with slight hysteresis effect was eventually obtained with a reproducible FA 0.88 MA 0.12 PbI 3 solar cell, which displayed a constant power output within 100 s upon light soaking and stable PCE output within 30 d in the thermal stability test.

  9. Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films

    DOE PAGES

    Yang, Ye; Yang, Mengjin; Moore, David T.; ...

    2017-01-23

    Carrier recombination at defects is detrimental to the performance of solar energy conversion systems, including solar cells and photoelectrochemical devices. Point defects are localized within the bulk crystal while extended defects occur at surfaces and grain boundaries. If not properly managed, surfaces can be a large source of carrier recombination. Separating surface carrier dynamics from bulk and/or grain-boundary recombination in thin films is challenging. Here, we employ transient reflection spectroscopy to measure the surface carrier dynamics in methylammonium lead iodide perovskite polycrystalline films. We find that surface recombination limits the total carrier lifetime in perovskite polycrystalline thin films, meaning thatmore » recombination inside grains and/or at grain boundaries is less important than top and bottom surface recombination. As a result, the surface recombination velocity in polycrystalline films is nearly an order of magnitude smaller than that in single crystals, possibly due to unintended surface passivation of the films during synthesis.« less

  10. One-dimensional organic lead halide perovskites with efficient bluish white-light emission

    NASA Astrophysics Data System (ADS)

    Yuan, Zhao; Zhou, Chenkun; Tian, Yu; Shu, Yu; Messier, Joshua; Wang, Jamie C.; van de Burgt, Lambertus J.; Kountouriotis, Konstantinos; Xin, Yan; Holt, Ethan; Schanze, Kirk; Clark, Ronald; Siegrist, Theo; Ma, Biwu

    2017-01-01

    Organic-inorganic hybrid metal halide perovskites, an emerging class of solution processable photoactive materials, welcome a new member with a one-dimensional structure. Herein we report the synthesis, crystal structure and photophysical properties of one-dimensional organic lead bromide perovskites, C4N2H14PbBr4, in which the edge sharing octahedral lead bromide chains [PbBr4 2-]∞ are surrounded by the organic cations C4N2H14 2+ to form the bulk assembly of core-shell quantum wires. This unique one-dimensional structure enables strong quantum confinement with the formation of self-trapped excited states that give efficient bluish white-light emissions with photoluminescence quantum efficiencies of approximately 20% for the bulk single crystals and 12% for the microscale crystals. This work verifies once again that one-dimensional systems are favourable for exciton self-trapping to produce highly efficient below-gap broadband luminescence, and opens up a new route towards superior light emitters based on bulk quantum materials.

  11. One-dimensional organic lead halide perovskites with efficient bluish white-light emission

    PubMed Central

    Yuan, Zhao; Zhou, Chenkun; Tian, Yu; Shu, Yu; Messier, Joshua; Wang, Jamie C.; van de Burgt, Lambertus J.; Kountouriotis, Konstantinos; Xin, Yan; Holt, Ethan; Schanze, Kirk; Clark, Ronald; Siegrist, Theo; Ma, Biwu

    2017-01-01

    Organic-inorganic hybrid metal halide perovskites, an emerging class of solution processable photoactive materials, welcome a new member with a one-dimensional structure. Herein we report the synthesis, crystal structure and photophysical properties of one-dimensional organic lead bromide perovskites, C4N2H14PbBr4, in which the edge sharing octahedral lead bromide chains [PbBr4 2−]∞ are surrounded by the organic cations C4N2H14 2+ to form the bulk assembly of core-shell quantum wires. This unique one-dimensional structure enables strong quantum confinement with the formation of self-trapped excited states that give efficient bluish white-light emissions with photoluminescence quantum efficiencies of approximately 20% for the bulk single crystals and 12% for the microscale crystals. This work verifies once again that one-dimensional systems are favourable for exciton self-trapping to produce highly efficient below-gap broadband luminescence, and opens up a new route towards superior light emitters based on bulk quantum materials. PMID:28051092

  12. One-dimensional organic lead halide perovskites with efficient bluish white-light emission.

    PubMed

    Yuan, Zhao; Zhou, Chenkun; Tian, Yu; Shu, Yu; Messier, Joshua; Wang, Jamie C; van de Burgt, Lambertus J; Kountouriotis, Konstantinos; Xin, Yan; Holt, Ethan; Schanze, Kirk; Clark, Ronald; Siegrist, Theo; Ma, Biwu

    2017-01-04

    Organic-inorganic hybrid metal halide perovskites, an emerging class of solution processable photoactive materials, welcome a new member with a one-dimensional structure. Herein we report the synthesis, crystal structure and photophysical properties of one-dimensional organic lead bromide perovskites, C 4 N 2 H 14 PbBr 4 , in which the edge sharing octahedral lead bromide chains [PbBr 4   2- ] ∞ are surrounded by the organic cations C 4 N 2 H 14   2+ to form the bulk assembly of core-shell quantum wires. This unique one-dimensional structure enables strong quantum confinement with the formation of self-trapped excited states that give efficient bluish white-light emissions with photoluminescence quantum efficiencies of approximately 20% for the bulk single crystals and 12% for the microscale crystals. This work verifies once again that one-dimensional systems are favourable for exciton self-trapping to produce highly efficient below-gap broadband luminescence, and opens up a new route towards superior light emitters based on bulk quantum materials.

  13. CH3 NH3 PbI3 and HC(NH2 )2 PbI3 Powders Synthesized from Low-Grade PbI2 : Single Precursor for High-Efficiency Perovskite Solar Cells.

    PubMed

    Zhang, Yong; Kim, Seul-Gi; Lee, Do-Kyoung; Park, Nam-Gyu

    2018-05-09

    High-efficiency perovskite solar cells are generally fabricated by using highly pure (>99.99 %) PbI 2 mixed with an organic iodide in polar aprotic solvents. However, the use of such an expensive chemical may impede progress toward large-scale industrial applications. Here, we report on the synthesis of perovskite powders by using inexpensive low-grade (99 %) PbI 2 and on the photovoltaic performance of perovskite solar cells prepared from a powder-based single precursor. Pure APbI 3 [A=methylammonium (MA) or formamidinium (FA)] perovskite powders were synthesized by treating low-grade PbI 2 with MAI or FAI in acetonitrile at ambient temperature. The structural phase purity was confirmed by X-ray diffraction. The solar cell with a MAPbI 3 film prepared from the synthesized perovskite powder demonstrated a power conversion efficiency (PCE) of 17.14 %, which is higher than the PCE of MAPbI 3 films prepared by using both MAI and PbI 2 as precursors (PCE=13.09 % for 99 % pure PbI 2 and PCE=16.39 % for 99.9985 % pure PbI 2 ). The synthesized powder showed better absorption and photoluminescence, which were responsible for the better photovoltaic performance. For the FAPbI 3 powder, a solution with a yellow non-perovskite δ-FAPbI 3 powder synthesized at room temperature was found to lead to a black perovskite film, whereas a solution with the black perovskite α-FAPbI 3 powder synthesized at 150 °C was not transformed into a black perovskite film. The α↔δ transition between the powder and film was assumed to correlate with the difference in the iodoplumbates in the powder-dissolved solution. An average PCE of 17.21 % along with a smaller hysteresis [ΔPCE=PCE reverse -PCE forward )=1.53 %] was demonstrated from the perovskite solar cell prepared by using δ-FAPbI 3 powder; this PCE is higher than the average PCE of 17.05 % with a larger hysteresis (ΔPCE=2.71 %) for a device based on a conventional precursor solution dissolving MAI with high-purity PbI 2 . The smaller hysteresis was indicative of fewer defects in the resulting FAPbI 3 film prepared by using the δ-FAPbI 3 powder. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Synthesis, structural and optical properties of (ALa)(FeMn)O6 (A = Ba and Sr) double perovskites

    NASA Astrophysics Data System (ADS)

    Kumar, Dinesh; Sudarshan, V.; Singh, Akhilesh Kumar

    2018-05-01

    Here, we report structural and optical properties of ALaFeMnO6 (A = Ba and Sr) double perovskite synthesized via auto-combustion followed by calcinations process. Rietveld refinement of structure using x-ray diffraction data reveals that BaLaFeMnO6 crystallizes into cubic crystal structure with space group Pm-3m while SrLaFeMnO6 crystallizes into rhombohedral crystal structure having space group R-3c. The absorption spectrum measurement using UV-Vis spectroscopy reveals that these samples are prefect insulator having energy band gap between conduction and valence band of the order of 6 eV.

  15. Cation Ordering within the Perovskite Block of a Six-layer Ruddlesden-Popper Oxide from Layer-by-layer Growth

    NASA Astrophysics Data System (ADS)

    Yan, Lei; Niu, H. J.; Rosseinsky, M. J.

    2011-03-01

    The (AO)(A BO3)n Ruddlesden-Popper structure is an archetypal complex oxide consisting of two distinct structural units, an (AO) rock salt layer separating an n-octahedra thick perovskite block. Conventional high-temperature oxide synthesis methods cannot access members with n > 3 , butlowtemperaturelayer - by - layerthinfilmmethodsallowthepreparationofmaterialswiththickerperovskiteblocks , exploitinghighsurfacemobilityandlatticematchingwiththesubstrate . Thispresentationdescribesthegrowthofann = 6 memberCaO / (ABO 3)n (ABO 3 : CaMnO 3 , La 0.67 Ca 0.33 MnO 3 orCa 0.85 Sm 0.15 MnO 3) epitaxialsinglecrystalfilmsonthe (001) SrTiO 3 substrates by pulsed laser deposition with the assistance of a reflection high energy electron diffraction (RHEED).

  16. High-pressure synthesis and structural, physical properties of CaIr1-xPtxO3 and CaIr1-xRhxO3

    NASA Astrophysics Data System (ADS)

    Hirai, S.; Bromiley, G. D.; Klemme, S.; Irifune, T.; Ohfuji, H.; Attfield, P.; Nishiyama, N.

    2010-12-01

    Since the discovery of the perovskite to post-perovskite transition in MgSiO3 in a laser-heated DAC, wide attention has been focussed on the post-perovskite phase of MgSiO3. This is because the post-perovskite phase is likely to play a key role in Earth’s lowermost mantle, and because the perovskite to post-perovskite transition can explain many features of the D” seismic discontinuity. While it is meaningful to conduct further studies of MgSiO3, the post-perovskite phase of MgSiO3 cannot be quenched to ambient pressure/temperature conditions. Thus, further studies must be conducted using analogue compounds of MgSiO3 post-perovskite, which are quenchable to ambient pressure/temperature conditions. The post-perovskite phase of MgSiO3 crystallizes in a layered structure with CaIrO3-structure. Therefore, it is useful to investigate compounds with CaIrO3-structure. There are only four quenchable oxides with CaIrO3-structure reported to date: CaIrO3, CaPtO3, CaRhO3 and CaRuO3. CaIrO3 can be synthesized at ambient pressure, whilst the other three oxides can only be obtained at high pressure/temperature conditions using a multi-anvil apparatus. Further studies on these materials have revealed structural phase transitions at high P-T and a metal-insulator transition by hole doping. In the case of CaIrO3, The post-perovskite phase of CaIrO3 synthesized at 2GPa, 1373K transforms into a perovskite phase at 2GPa, 1673K. In other words, the perovskite phase can be synthesized at temperatures higher than those needed for synthesizing the post-perovskite phase. This is also the case for CaRhO3 (6GPa, 1873K) and CaRuO3 (23GPa, 1343K), while CaPtO3 remained post-perovskite at higher temperatures. We have succeeded in synthesizing solid solutions between CaIrO3, CaPtO3 and CaRhO3. We have found the systematic change in structural and physical properties of post-perovskite oxides, with composition and P-T, which broadens the future opportunity for studying post-perovskite systems in terms of materials science applications. To our knowledge, this will be the first report on structural, magnetic and charge-transport properties of B-site substituted solid solutions of post-perovskite oxides with 4d/5d transition metals. High-quality polycrystalline samples of CaIr1-xPtxO3 and CaIr1-xRhxO3 have been obtained at high pressures, and structural, magnetic and charge-transport properties of the compounds will be reported. ODF analysis reveals that solutions of CaIrO3, CaPtO3 and CaRhO3 exhibit similar grain growth features to the mother compound, although growth in [0 1 0] plays a more dominant role than the growth in [0 0 1] for the solid solutions. CaIrO3 is a characteristic hard magnet suitable for applications such as magnetic recording, with TN = 108K. A new phase of CaIr1-xPtxO3 synthesized at a high P/T condition has Raman modes which resemble those of CaIrO3 perovskite, suggesting this phase has a perovskite structure.The instability of the perovskite phase of CaIr1-xPtxO3 reveals why the post-perovskite to peovskite phase transition has not been observed for CaPtO3 unlike the case for CaIrO3, CaRhO3 and CaRuO3.

  17. Sound velocity measurements of CaSiO3 perovskite under lower mantle pressures

    NASA Astrophysics Data System (ADS)

    Kudo, Y.; Hirose, K.

    2010-12-01

    The chemical composition of the lower mantle and the distribution of subducted crustal materials in the lower mantle can be constrained by the comparison of seismological observations with laboratory measurements of sound velocities of expected constituent minerals in lower mantle conditions. To date, sound velocities of two major constituent minerals of the lower mantle, namely magnesium silicate perovskite and ferropericlase have been well studied although the data are mostly limited to low temperature (300 K). On the other hand, another major mineral, CaSiO3-perovskite appears in both peridtite (~7 wt.%) and subducted basaltic crusts (~23 wt.%) at the lower mantle pressure-temperature conditions. In spite of its abundance in those rocks, little is known about acoustic velocity, mostly because it cannot be quenched to the ambient pressure. Synthesis and measurement should be made under pressure, which has been a challenging project for the current experimental techniques. We have conducted sound velocity measurements of polycrystalline CaSiO3 perovskite by a combination of a diamond anvil cell (DAC) and Brillouin scattering spectroscopy. High-pressure was generated by the DAC with a pair of 300-micron culet diamond anvils. Calcium silicate perovskite was synthesized from gel by laser annealing in the DAC with the CO2 laser. A tetragonal perovskite structure was confirmed by the X-ray diffraction at the station BL10XU, SPring-8. Brillouin scattering measurements were made at 300 K under pressures corresponding to the middle lower mantle conditions. Results demonstrate that the S-wave velocity is significantly lower than previous theoretical results. We will discuss the possible source for this discrepancy and resulting implications for the lower mantle materials.

  18. Dilution-Induced Formation of Hybrid Perovskite Nanoplatelets.

    PubMed

    Tong, Yu; Ehrat, Florian; Vanderlinden, Willem; Cardenas-Daw, Carlos; Stolarczyk, Jacek K; Polavarapu, Lakshminarayana; Urban, Alexander S

    2016-12-27

    Perovskite nanocrystals (NCs) are an important extension to the fascinating field of hybrid halide perovskites. Showing significantly enhanced photoluminescence (PL) efficiency and emission wavelengths tunable through halide content and size, they hold great promise for light-emitting applications. Despite the rapid advancement in this field, the physical nature and size-dependent excitonic properties have not been well investigated due to the challenges associated with their preparation. Herein we report the spontaneous formation of highly luminescent, quasi-2D organic-inorganic hybrid perovskite nanoplatelets (NPls) upon dilution of a dispersion of bulk-like NCs. The fragmentation of the large NCs is attributed to osmotic swelling induced by the added solvent. An excess of organic ligands in the solvent quickly passivates the newly formed surfaces, stabilizing the NPls in the process. The thickness of the NPls can be controlled both by the dilution level and by the ligand concentration. Such colloidal NPls and their thin films were found to be extremely stable under continuous UV light irradiation. Full tunability of the NPl emission wavelength is achieved by varying the halide ion used (bromide, iodide). Additionally, time-resolved PL measurements reveal an increasing radiative decay rate with decreasing thickness of the NPls, likely due to an increasing exciton binding energy. Similarly, measurements on iodide-containing NPls show a transformation from biexponential to monoexponential PL decay with decreasing thickness, likely due to an increasing fraction of excitonic recombination. This interesting phenomenon of change in fluorescence upon dilution is a result of the intricate nature of the perovskite material itself and is uncommon in inorganic materials. Our findings enable the synthesis of halide perovskite NCs with high quantum efficiency and good stability as well as a tuning of both their optical and morphological properties.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimura, Gen, E-mail: shimura.gen@b.mbox.nagoya-u.ac.jp; Shirako, Yuichi; Niwa, Ken

    ABSTRACT: The synthesis of multicomponent perovskites (Ln{sub 0.25}Mn{sub 0.75})(Al{sub 0.25}Ti{sub 0.75})O{sub 3} (Ln=La, Pr, Nd, Sm, Gd, Tb, Dy, Y) have been investigated using a high-pressure and high-temperature (6 GPa, 1175 °C) technique. When Ln{sup 3+} is larger La{sup 3+}, Pr{sup 3+}, Nd{sup 3+}, the A-site ordered perovskites, LnMn{sub 3}(Al{sub 0.25}Ti{sub 0.75}){sub 4}O{sub 12} in Im-3, have been successfully synthesized. The A-site partially disordered one, (Sm{sub 0.80}Mn{sub 0.20})(Sm{sub 0.07}Mn{sub 0.93}){sub 3}(Al{sub 0.25}Ti{sub 0.75}){sub 4}O{sub 12} is also obtained. In the case of smaller Gd{sup 3+}, Tb{sup 3+}, Dy{sup 3+}, we have obtained no single phase but two decomposed perovskite phases.more » When Ln{sup 3+} is much smaller Y{sup 3+}, it is crystallized as an A-site disorder one in Pnma. The Rietveld structural refinements of the A-site ordered and partially disordered perovskites indicate that the tilting of (Al/Ti)O{sub 6} octahedrons for the A-site ions ordering is correlated with the (Al/Ti)–O and Ln–O bond lengths to optimize the coordination of the A- and A′-sites. The phase stability of the A-site ordered perovskites is discussed from the viewpoint of this correlation. - Graphical abstract: Ln{sup 3+} (VIII) ionic radius dependence of BO{sub 6} octahedron tilt angle and A/B–O distance of Im-3 perovskites (Ln{sub 0.25}Mn{sub 0.75})(Al{sub 0.25}Ti{sub 0.75})O{sub 3} (Ln=La-Sm).« less

  20. High-pressure synthesis of the cubic perovskite BaRuO3 and evolution of ferromagnetism in ARuO3 (A = Ca, Sr, Ba) ruthenates.

    PubMed

    Jin, C-Q; Zhou, J-S; Goodenough, J B; Liu, Q Q; Zhao, J G; Yang, L X; Yu, Y; Yu, R C; Katsura, T; Shatskiy, A; Ito, E

    2008-05-20

    The cubic perovskite BaRuO(3) has been synthesized under 18 GPa at 1,000 degrees C. Rietveld refinement indicates that the new compound has a stretched Ru-O bond. The cubic perovskite BaRuO(3) remains metallic to 4 K and exhibits a ferromagnetic transition at T(c) = 60 K, which is significantly lower than the T(c) approximately = 160 K for SrRuO(3). The availability of cubic perovskite BaRuO(3) not only makes it possible to map out the evolution of magnetism in the whole series of ARuO(3) (A = Ca, Sr, Ba) as a function of the ionic size of the A-site r(A,) but also completes the polytypes of BaRuO(3). Extension of the plot of T(c) versus r(A) in perovskites ARuO(3) (A = Ca, Sr, Ba) shows that T(c) does not increase as the cubic structure is approached, but has a maximum for orthorhombic SrRuO(3). Suppressing T(c) by Ca and Ba doping in SrRuO(3) is distinguished by sharply different magnetic susceptibilities chi(T) of the paramagnetic phase. This distinction has been interpreted in the context of a Griffiths' phase on the (Ca Sr)RuO(3) side and bandwidth broadening on the (Sr,Ba)RuO(3) side.

  1. Highly Efficient and Stable Sn-Rich Perovskite Solar Cells by Introducing Bromine.

    PubMed

    Lee, Seojun; Kang, Dong-Won

    2017-07-12

    Compositional engineering of recently arising methylammonium (MA) lead (Pb) halide based perovskites is an essential approach for finding better perovskite compositions to resolve still remaining issues of toxic Pb, long-term instability, etc. In this work, we carried out crystallographic, morphological, optical, and photovoltaic characterization of compositional MASn 0.6 Pb 0.4 I 3-x Br x by gradually introducing bromine (Br) into parental Pb-Sn binary perovskite (MASn 0.6 Pb 0.4 I 3 ) to elucidate its function in Sn-rich (Sn:Pb = 6:4) perovskites. We found significant advances in crystallinity and dense coverage of the perovskite films by inserting the Br into Sn-rich perovskite lattice. Furthermore, light-intensity-dependent open circuit voltage (V oc ) measurement revealed much suppressed trap-assisted recombination for a proper Br-added (x = 0.4) device. These contributed to attaining the unprecedented power conversion efficiency of 12.1% and V oc of 0.78 V, which are, to the best of our knowledge, the highest performance in the Sn-rich (≥60%) perovskite solar cells reported so far. In addition, impressive enhancement of photocurrent-output stability and little hysteresis were found, which paves the way for the development of environmentally benign (Pb reduction), stable monolithic tandem cells using the developed low band gap (1.24-1.26 eV) MASn 0.6 Pb 0.4 I 3-x Br x with suggested composition (x = 0.2-0.4).

  2. New Type of 2D Perovskites with Alternating Cations in the Interlayer Space, (C(NH 2 ) 3 )(CH 3 NH 3 ) n Pb n I 3n+1 : Structure, Properties, and Photovoltaic Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soe, Chan Myae Myae; Stoumpos, Constantinos C.; Kepenekian, Mikaël

    We present the new homologous series (C(NH2)3)(CH3NH3)nPbnI3n+1 (n = 1, 2, 3) of layered 2D perovskites. Structural characterization by single-crystal X-ray diffraction reveals that these compounds adopt an unprecedented structure type, which is stabilized by the alternating ordering of the guanidinium and methylammonium cations in the interlayer space (ACI). Compared to the more common Ruddlesden–Popper (RP) 2D perovskites, the ACI perovskites have a different stacking motif and adopt a higher crystal symmetry. The higher symmetry of the ACI perovskites is expressed in their physical properties, which show a characteristic decrease of the bandgap with respect to their RP perovskite counterpartsmore » with the same perovskite layer thickness (n). The compounds show a monotonic decrease in the optical gap as n increases: Eg = 2.27 eV for n = 1 to Eg = 1.99 eV for n = 2 and Eg = 1.73 eV for n = 3, which show slightly narrower gaps compared to the corresponding RP perovskites. First-principles theoretical electronic structure calculations confirm the experimental optical gap trends suggesting that the ACI perovskites are direct bandgap semiconductors with wide valence and conduction bandwidths. To assess the potential of the ACI perovskites toward solar cell applications, we studied the (C(NH2)3)(CH3NH3)3Pb3I10 (n = 3) compound. Compact thin films from the (C(NH2)3)(CH3NH3)3Pb3I10 compound with excellent surface coverage can be obtained from the antisolvent dripping method. Planar photovoltaic devices from optimized ACI perovskite films yield a power-conversion-efficiency of 7.26% with a high open-circuit voltage of ~1 V and a striking fill factor of ~80%.« less

  3. Modulating crystal grain size and optoelectronic properties of perovskite films for solar cells by reaction temperature

    NASA Astrophysics Data System (ADS)

    Ren, Xiaodong; Yang, Zhou; Yang, Dong; Zhang, Xu; Cui, Dong; Liu, Yucheng; Wei, Qingbo; Fan, Haibo; Liu, Shengzhong (Frank)

    2016-02-01

    Regulating the temperature during the direction contact and intercalation process (DCIP) for the transition from PbI2 to CH3NH3PbI3 modulated the crystallinity, crystal grain size and crystal grain orientation of the perovskite films. Higher temperatures produced perovskite films with better crystallinity, larger grain size, and better photovoltaic performance. The best cell, which had a PCE of 12.9%, was obtained on a film prepared at 200 °C. Further open circuit voltage decay and film resistance characterization revealed that the larger grain size contributed to longer carrier lifetime and smaller carrier transport resistance, both of which are beneficial for solar cell devices.Regulating the temperature during the direction contact and intercalation process (DCIP) for the transition from PbI2 to CH3NH3PbI3 modulated the crystallinity, crystal grain size and crystal grain orientation of the perovskite films. Higher temperatures produced perovskite films with better crystallinity, larger grain size, and better photovoltaic performance. The best cell, which had a PCE of 12.9%, was obtained on a film prepared at 200 °C. Further open circuit voltage decay and film resistance characterization revealed that the larger grain size contributed to longer carrier lifetime and smaller carrier transport resistance, both of which are beneficial for solar cell devices. Electronic supplementary information (ESI) available: XRD patterns and statistic results of solar cell performance. See DOI: 10.1039/c5nr08935b

  4. Garden-like perovskite superstructures with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Ye, Meidan; Wang, Mengye; Zheng, Dajiang; Zhang, Nan; Lin, Changjian; Lin, Zhiqun

    2014-03-01

    By subjecting amorphous flower-like TiO2 to a facile hydrothermal synthesis in the presence of Sr2+, garden-like perovskite SrTiO3 superstructures were achieved. The amorphous TiO2 was preformed using ZnO flowers as templates. Different three-dimensional SrTiO3 architectures were coexisted in the garden, including SrTiO3 flowers composed of several hollow sword-shaped petals, many sheet-shaped petals or numerous flake-shaped petals, and SrTiO3 grass consisting of a number of long blades. These SrTiO3 superstructures were simultaneously grown on fluorine-doped tin oxide (FTO) substrates. On the basis of a comprehensive study on the effects of growth time, temperature, initial concentrations of precursor, and pH, the formation of these various hierarchical architectures was attributed primarily to the dissolution of amorphous TiO2 and precipitation of perovskite crystals, followed by the Ostwald ripening process of perovskite nanocrystals and self-organization of perovskite building blocks. Interestingly, this approach can be readily extended to create other perovskite structures, including dendritic BaTiO3 and nest-like CaTiO3, as well as PbTiO3 transformed from plate-like pyrochlore Pb2Ti2O6 after post-thermal treatment. Garden-like SrTiO3 superstructures showed a superior photocatalytic performance when compared to other as-prepared semiconductors and perovskite materials (i.e., ZnO, TiO2, BaTiO3, CaTiO3 and PbTiO3), probably due to their intrinsic photocatalytic activity and special garden-like features with a coexistence of various structures that significantly facilitated the adsorption and diffusion of methyl blue (MB) molecules and oxygen species in the photochemical reaction of MB degradation.By subjecting amorphous flower-like TiO2 to a facile hydrothermal synthesis in the presence of Sr2+, garden-like perovskite SrTiO3 superstructures were achieved. The amorphous TiO2 was preformed using ZnO flowers as templates. Different three-dimensional SrTiO3 architectures were coexisted in the garden, including SrTiO3 flowers composed of several hollow sword-shaped petals, many sheet-shaped petals or numerous flake-shaped petals, and SrTiO3 grass consisting of a number of long blades. These SrTiO3 superstructures were simultaneously grown on fluorine-doped tin oxide (FTO) substrates. On the basis of a comprehensive study on the effects of growth time, temperature, initial concentrations of precursor, and pH, the formation of these various hierarchical architectures was attributed primarily to the dissolution of amorphous TiO2 and precipitation of perovskite crystals, followed by the Ostwald ripening process of perovskite nanocrystals and self-organization of perovskite building blocks. Interestingly, this approach can be readily extended to create other perovskite structures, including dendritic BaTiO3 and nest-like CaTiO3, as well as PbTiO3 transformed from plate-like pyrochlore Pb2Ti2O6 after post-thermal treatment. Garden-like SrTiO3 superstructures showed a superior photocatalytic performance when compared to other as-prepared semiconductors and perovskite materials (i.e., ZnO, TiO2, BaTiO3, CaTiO3 and PbTiO3), probably due to their intrinsic photocatalytic activity and special garden-like features with a coexistence of various structures that significantly facilitated the adsorption and diffusion of methyl blue (MB) molecules and oxygen species in the photochemical reaction of MB degradation. Electronic supplementary information (ESI) available: FESEM images and the XRD pattern of SrTiO3 films (effects of growth temperature, initial precursor concentration, and pH value), EDS analysis of ZnO, TiO2 and SrTiO3, the XRD pattern and PL spectra of PbTiO3, UV-vis spectra of different films, and UV photo-degradation of MB. See DOI: 10.1039/c3nr05564g

  5. A[Bi(3)Ti(4)O(13)] and A[Bi(3)PbTi(5)O(16)] (A = K, Cs): New n = 4 and n = 5 Members of the Layered Perovskite Series, A[A'(n)()(-)(1)B(n)()O(3)(n)()(+1)], and Their Hydrates.

    PubMed

    Gopalakrishnan, J.; Sivakumar, T.; Thangadurai, V.; Subbanna, G. N.

    1999-06-14

    We describe the synthesis and structural characterization of new layered bismuth titanates, A[Bi(3)Ti(4)O(13)] and A[Bi(3)PbTi(5)O(16)] for A = K, Cs, corresponding to n = 4 and 5 members of the Dion-Jacobson series of layered perovskites of the general formula, A[A'(n)()(-)(1)B(n)()O(3)(n)()(+1)]. These materials have been prepared by solid state reaction of the constituents containing excess alkali, which is required to suppress the formation of competitive Aurivillius phases. Unlike the isostructural niobates and niobium titanates of the same series, the new phases reported here are spontaneously hydrated-a feature which could make them potentially useful as photocatalysts for water splitting reaction. On hydration of the potassium compounds, the c axis expands by ca. 2 Å and loses its doubling [for example, the tetragonal lattice parameters of K[Bi(3)Ti(4)O(13)] and its dihydrate are respectively a = 3.900(1) Å, c = 37.57(2) Å; a = 3.885(1) Å, c = 20.82(4) Å]; surprisingly, the cesium analogues do not show a similar change on hydration.

  6. Emerging of Inorganic Hole Transporting Materials For Perovskite Solar Cells.

    PubMed

    Rajeswari, Ramireddy; Mrinalini, Madoori; Prasanthkumar, Seelam; Giribabu, Lingamallu

    2017-07-01

    Hole transporting material (HTM) is a significant component to achieve the high performance perovskite solar cells (PSCs). Over the years, inorganic, organic and hybrid (organic-inorganic) material based HTMs have been developed and investigated successfully. Today, perovskite solar cells achieved the efficiency of 22.1 % with with 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenyl-amine) 9,9-spirobifluorene (spiro-OMeTAD) as HTM. Nevertheless, synthesis and cost of organic HTMs is a major challenging issue and therefore alternative materials are required. From the past few years, inorganic HTMs showed large improvement in power conversion efficiency (PCE) and stability. Recently CuO x reached the PCE of 19.0% with better stability. These developments affirms that inorganic HTMs are better alternativesto the organic HTMs for next generation PSCs. In this report, we mainly focussed on the recent advances of inorganic and hybrid HTMs for PSCs and highlighted the efficiency and stability of PSCs improved by changing metal oxides as HTMs. Consequently, we expect that energy levels of these inorganic HTMs matches very well with the valence band of perovskites and improved efficiency helps in future practical deployment of low cost PSCs. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Effects of sintering temperature on the pyrochlore phase in PZT nanotubes and their transformation to the perovskite phase by coating with PbO multilayers.

    PubMed

    Han, Jin Kyu; Choi, Yong Chan; Jeon, Do Hyen; Lee, Min Ku; Bu, Sang Don

    2014-11-01

    We report the phase evolution of Pb(Zr0.52Ti0.48)O3 nanotubes (PZT-NTs), from the pyrochlore to perovskite phase, with an outer diameter of about 420 nm and a wall thickness of about 10 nm. The PZT-NTs were fabricated in pores of porous anodic alumina membrane (PAM) using a spin coating of PZT sol-gel solution and subsequent annealing at 500-700 degrees C in oxygen gas. The pyrochlore phase was found to be formed at 500 degrees C, and also found not to be transformed into the perovskite phase, even though annealing was performed at higher temperatures to 700 degrees C. Elementary distribution analysis of PZT-NTs embedded in PAM reveal that Pb diffusion from nanotubes into pore walls of PAM is one of the main reasons. By employing firstly an additional PbO coating on the pyrochlore nanotubes and then subsequent annealing at 700 degrees C, we have successfully achieved an almost pure perovskite phase in nanotubes. These results suggest that PbO acts as a Pb-compensation agent in the Pb- deficient PZT-NTs. Moreover, our method can be used in the synthesis of all metal-oxide materials, including volatile elements.

  8. Synthesis of Defect Perovskites (He 2–x⟂ x)(CaZr)F 6 by Inserting Helium into the Negative Thermal Expansion Material CaZrF 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hester, Brett R.; dos Santos, António M.; Molaison, Jamie J.

    Defect perovskites (He 2–x⟂ x)(CaZr)F 6 can be prepared by inserting helium into CaZrF 6 at high pressure. They can be recovered to ambient pressure at low temperature. There are no prior examples of perovskites with noble gases on the A-sites. The insertion of helium gas into CaZrF 6 both elastically stiffens the material and reduces the magnitude of its negative thermal expansion. It also suppresses the onset of structural disorder, which is seen on compression in other media. Measurements of the gas released on warming to room temperature and Rietveld analyses of neutron diffraction data at low temperature indicatemore » that exposure to helium gas at 500 MPa leads to a stoichiometry close to (He 1⟂ 1)(CaZr)F 6. Helium has a much higher solubility in CaZrF 6 than silica glass or crystobalite. An analogue with composition (H 2) 2(CaZr)F 6 would have a volumetric hydrogen storage capacity greater than current US DOE targets. We anticipate that other hybrid perovskites with small neutral molecules on the A-site can also be prepared and that they will display a rich structural chemistry.« less

  9. Real-Time Observation of Iodide Ion Migration in Methylammonium Lead Halide Perovskites.

    PubMed

    Li, Cheng; Guerrero, Antonio; Zhong, Yu; Gräser, Anna; Luna, Carlos Andres Melo; Köhler, Jürgen; Bisquert, Juan; Hildner, Richard; Huettner, Sven

    2017-11-01

    Organic-inorganic metal halide perovskites (e.g., CH 3 NH 3 PbI 3- x Cl x ) emerge as a promising optoelectronic material. However, the Shockley-Queisser limit for the power conversion efficiency (PCE) of perovskite-based photovoltaic devices is still not reached. Nonradiative recombination pathways may play a significant role and appear as photoluminescence (PL) inactive (or dark) areas on perovskite films. Although these observations are related to the presence of ions/defects, the underlying fundamental physics and detailed microscopic processes, concerning trap/defect status, ion migration, etc., still remain poorly understood. Here correlated wide-field PL microscopy and impedance spectroscopy are utilized on perovskite films to in situ investigate both the spatial and the temporal evolution of these PL inactive areas under external electric fields. The formation of PL inactive domains is attributed to the migration and accumulation of iodide ions under external fields. Hence, we are able to characterize the kinetic processes and determine the drift velocities of these ions. In addition, it is shown that I 2 vapor directly affects the PL quenching of a perovskite film, which provides evidence that the migration/segregation of iodide ions plays an important role in the PL quenching and consequently limits the PCE of organometal halide-based perovskite photovoltaic devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Phase Segregation in Potassium-Doped Lead Halide Perovskites from 39K Solid-State NMR at 21.1 T.

    PubMed

    Kubicki, Dominik J; Prochowicz, Daniel; Hofstetter, Albert; Zakeeruddin, Shaik M; Grätzel, Michael; Emsley, Lyndon

    2018-06-13

    Organic-inorganic lead halide perovskites are a promising family of light absorbers for a new generation of solar cells, with reported efficiencies currently exceeding 22%. A common problem of solar cells fabricated using these materials is that their efficiency depends on their cycling history, an effect known as current-voltage ( J- V) hysteresis. Potassium doping has recently emerged as a universal way to overcome this adverse phenomenon. While the atomistic origins of J- V hysteresis are still not fully understood, it is essential to rationalize the atomic-level effect of protocols that lead to its suppression. Here, using 39 K MAS NMR at 21.1 T we provide for the first time atomic-level characterization of the potassium-containing phases that are formed upon KI doping of multication and multianion lead halide perovskites. We find no evidence of potassium incorporation into 3D perovskite lattices of the recently reported materials. Instead, we observe formation of a mixture of potassium-rich phases and unreacted KI. In the case of Br-containing lead halide perovskites doped with KI, a mixture of KI and KBr ensues, leading to a change in the Br/I ratio in the perovskite phase with respect to the undoped perovskite. Simultaneous Cs and K doping leads to the formation of nonperovskite Cs/K lead iodide phases.

  11. Dense Membranes for Anode Supported all Perovskite IT-SOFCs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rambabu Bobba

    2006-09-14

    During this first year of the project, a post doctoral fellow (Dr. Hrudananda Jena), and two graduate students (Mr. Vinay B. V. Sivareddy, Aswin Somuru), were supported through this project funds. Also, partial support was provided to three undergraduate students (Jonthan Dooley, India Snowden, Jeremy Gilmore) majoring in Chemistry, Physics, and Engineering disciplines. Various wet chemical methods of synthesis have been attempted to prepare perovskite oxide powders with a hope to improve and engineer its properties to meet the requirements of Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFCs) components. Various compounds were synthesized, characterized by XRD, TEM, SEM, XPS, electronmore » microprobe and their electrical transport properties were measured by EIS at elevated temperatures and compared. Sonochemical technique (power of ultra sonic probe 750 watt) combined with hydrothermal treatment of precursors for the preparation of calcium hydroxy apatites (Ca-HAp) was used for the first time. Ca-HAp was substituted with Sr and Mg (50% replacement of Ca in Ca-HAp) to study the effect of substitution on Ca-HAp. Calcium hydroxy apatite is a bioceramic and has potential applications as artificial bone, enamel materials. In this study we tried to investigate its use as proton conductors in PC-SOFC. The properties like electrical conductivity, crystal structure, compositions of CaHAp were studied and compared with the natural bone material. The comparison found to be excellent indicating the efficiency of the preparation techniques. The typical value of conductivity measured is 0.091 x 10{sup -6} Scm{sup -1} at 25 C and 19.26 x 10{sup -6} Scm{sup -1} at 850 C with an applied frequency of 100 kHz. The conductivity increases on increasing frequency and temperature and reaches 0.05mS/cm at 500 C. The crystal structure and phase stability of perovskites as well as apatites were investigated with respect to substitution of various iso-valent and alivalent ions to determine the % of solubility in the crystal lattice of perovskite, apatites. Various electrode and electrolyte material compositions were prepared and characterized by XRD, SEM, XPS and electron microprobe. The material compositions were selected based on their thermo-physical properties to achieve compatibility with each other in ideal fuel cell operating conditions. The series of electrode materials investigated are LaGa{sub 1-x}M{sub x}O{sub 3} (M = Mn, Mg, x = 0.1), LaCr{sub 1-x}M{sub x}O{sub 3} (M = Mn, Mg, Co, x=0.1), LaNi{sub 1-x}Fe{sub x}O{sub 3} (0 < x < 0.6) and Gd{sub 1-x}M{sub x}CoO{sub 3} (M=Ca, x=0.1). Attempts were made to prepare proton-conducting perovskites of SrCe{sub 1-x} M{sub x}O{sub 3} (M= Dy, Eu, Er, Tb, x=0.1) by using sonochemical and hydrothermal technique followed by microwave sintering processes. These compositions were prepared characterized by XRD, TEM, SEM and electrical conductivity of the pellets was measured. The interest of low temperature proton conducting electrolyte is to replace the well known oxide ion conducting solid electrolyte in SOFCs, thereby reducing the operating temperature of SOFC to lower temperature (i.e 400-600 C) and named it as PC-SOFC (proton conducting-solid oxide fuel cell).« less

  12. Towards Lead-Free Piezoceramics: Facing a Synthesis Challenge

    PubMed Central

    Villafuerte-Castrejón, María Elena; Morán, Emilio; Reyes-Montero, Armando; Vivar-Ocampo, Rodrigo; Peña-Jiménez, Jesús-Alejandro; Rea-López, Salvador-Oliver; Pardo, Lorena

    2016-01-01

    The search for electroceramic materials with enhanced ferro-pyro-piezoelectric properties and revealing the perovskite type structure has been the objective of a significant number of manuscripts reported in the literature. This has been usually carried out by proposing the synthesis and processing of new compounds and solid solution series. In this work, several methods to obtain ferro-pyro-piezoelectric families of materials featuring the well-known ABO3 perovskite structure (or related) such as BaTiO3, Ba1–xCaxTi1–yZryO3, (Bi0.5Na0.5)TiO3, (K0.5Na0.5)NbO3 and their solid solutions with different cations either in the A or B positions, are presented. For this kind of materials, the challenge for obtaining a single phase compound with a specific grain size and morphology and, most importantly, with the adequate stoichiometry, will also be discussed. The results reviewed herein will be discussed in terms of the tendency of working with softer conditions, i.e., lower temperature and shorter reaction times, also referred to as soft-chemistry. PMID:28787822

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhen; Klein, Talysa R.; Kim, Dong Hoe

    Perovskite materials use earth-abundant elements, have low formation energies for deposition and are compatible with roll-to-roll and other high-volume manufacturing techniques. These features make perovskite solar cells (PSCs) suitable for terawatt-scale energy production with low production costs and low capital expenditure. Demonstrations of performance comparable to that of other thin-film photovoltaics (PVs) and improvements in laboratory-scale cell stability have recently made scale up of this PV technology an intense area of research focus. Here, we review recent progress and challenges in scaling up PSCs and related efforts to enable the terawatt-scale manufacturing and deployment of this PV technology. We discussmore » common device and module architectures, scalable deposition methods and progress in the scalable deposition of perovskite and charge-transport layers. We also provide an overview of device and module stability, module-level characterization techniques and techno-economic analyses of perovskite PV modules.« less

  14. Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Domanski, Konrad; Alharbi, Essa A.; Hagfeldt, Anders; Grätzel, Michael; Tress, Wolfgang

    2018-01-01

    Perovskite solar cells have achieved power-conversion efficiency values approaching those of established photovoltaic technologies, making the reliable assessment of their operational stability the next essential step towards commercialization. Although studies increasingly often involve a form of stability characterization, they are conducted in non-standardized ways, which yields data that are effectively incomparable. Furthermore, stability assessment of a novel material system with its own peculiarities might require an adjustment of common standards. Here, we investigate the effects of different environmental factors and electrical load on the ageing behaviour of perovskite solar cells. On this basis, we comment on our perceived relevance of the different ways these are currently aged. We also demonstrate how the results of the experiments can be distorted and how to avoid the common pitfalls. We hope this work will initiate discussion on how to age perovskite solar cells and facilitate the development of consensus stability measurement protocols.

  15. Effect of fluorine doped TiO2 on the property of perovskite solar cell

    NASA Astrophysics Data System (ADS)

    Zhang, X. Q.; Wu, Y. P.; Huang, Y.; Zhou, Z. H.; Shen, S.

    2017-03-01

    Anatase TiO2 nanoparticles with different amounts of fluorine doping were synthesized by a hydrothermal method using hydrogen titanate nanotubes as a precursor and applied as mesoporous layer for preparing perovskite solar cell. The morphology and structures were characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD), meanwhile, the properties and performances were tested by photoluminescence spectrum (PL) and current density and voltage (J-V) curve. It was found that doping fluorine into TiO2 made the photoelectric conversion efficiency (PCE) of perovskite solar cell (PSC) to be improved. The best PCE of PSC based on a F-doped TiO2 was 13.06% and increased by 51% compared to an un-doped TiO2. The study provided a direction for the exploration of high performance electron transport layer of perovskite solar cell.

  16. Probing Photocurrent Nonuniformities in the Subcells of Monolithic Perovskite/Silicon Tandem Solar Cells.

    PubMed

    Song, Zhaoning; Werner, Jérémie; Shrestha, Niraj; Sahli, Florent; De Wolf, Stefaan; Niesen, Björn; Watthage, Suneth C; Phillips, Adam B; Ballif, Christophe; Ellingson, Randy J; Heben, Michael J

    2016-12-15

    Perovskite/silicon tandem solar cells with high power conversion efficiencies have the potential to become a commercially viable photovoltaic option in the near future. However, device design and optimization is challenging because conventional characterization methods do not give clear feedback on the localized chemical and physical factors that limit performance within individual subcells, especially when stability and degradation is a concern. In this study, we use light beam induced current (LBIC) to probe photocurrent collection nonuniformities in the individual subcells of perovskite/silicon tandems. The choices of lasers and light biasing conditions allow efficiency-limiting effects relating to processing defects, optical interference within the individual cells, and the evolution of water-induced device degradation to be spatially resolved. The results reveal several types of microscopic defects and demonstrate that eliminating these and managing the optical properties within the multilayer structures will be important for future optimization of perovskite/silicon tandem solar cells.

  17. Investigations on the role of mixed-solvent for improved efficiency in perovskite solar cell

    NASA Astrophysics Data System (ADS)

    Singh, Ranbir; Suranagi, Sanjaykumar R.; Kumar, Manish; Shukla, Vivek Kumar

    2017-12-01

    The morphology of the spin-coated photoactive layer is one of the major factors affecting the performance of perovskite solar cells. In this work, we have employed a mixed-solvent strategy to obtain a high quality MAPbI3 (MA = CH3NH3) perovskite film, without pinholes and reduced grain boundaries. Perovskite films formed with single and mixed-solvents are systematically characterized for their optical, structural, and morphological properties using UV-vis absorption, photoluminescence (PL), X-ray diffraction (XRD), atomic force microscopy (AFM), and scanning electron microscopy (SEM) tools. The power conversion efficiency (PCE) of the devices fabricated using the mixed-solvent showed better performance than the devices made using the single solvent. The best-optimized mixed-solvent perovskite film exhibited a PCE of 15.2% with uniform film coverage on the substrate, better charge generation, and a high hole mobility of 1.16 × 10-4cm2/V s. The disparities in photovoltaic properties have been analyzed with the intensity dependent current density-voltage (J-V), transient photovoltage (TPV), and relationship between photocurrent (Jph) and effective voltage (Veff).

  18. Carrier separation and transport in perovskite solar cells studied by nanometre-scale profiling of electrical potential

    PubMed Central

    Jiang, Chun-Sheng; Yang, Mengjin; Zhou, Yuanyuan; To, Bobby; Nanayakkara, Sanjini U.; Luther, Joseph M.; Zhou, Weilie; Berry, Joseph J.; van de Lagemaat, Jao; Padture, Nitin P.; Zhu, Kai; Al-Jassim, Mowafak M.

    2015-01-01

    Organometal–halide perovskite solar cells have greatly improved in just a few years to a power conversion efficiency exceeding 20%. This technology shows unprecedented promise for terawatt-scale deployment of solar energy because of its low-cost, solution-based processing and earth-abundant materials. We have studied charge separation and transport in perovskite solar cells—which are the fundamental mechanisms of device operation and critical factors for power output—by determining the junction structure across the device using the nanoelectrical characterization technique of Kelvin probe force microscopy. The distribution of electrical potential across both planar and porous devices demonstrates p–n junction structure at the TiO2/perovskite interfaces and minority-carrier diffusion/drift operation of the devices, rather than the operation mechanism of either an excitonic cell or a p-i-n structure. Combining the potential profiling results with solar cell performance parameters measured on optimized and thickened devices, we find that carrier mobility is a main factor that needs to be improved for further gains in efficiency of the perovskite solar cells. PMID:26411597

  19. Carrier Separation and Transport in Perovskite Solar Cells Studied by Nanometre-Scale Profiling of Electrical Potential

    DOE PAGES

    Jiang, Chun-Sheng; Yang, Mengjin; Zhou, Yuanyuan; ...

    2015-09-28

    Organometal–halide perovskite solar cells have greatly improved in just a few years to a power conversion efficiency exceeding 20%. This technology shows unprecedented promise for terawatt-scale deployment of solar energy because of its low-cost, solution-based processing and earth-abundant materials. We have studied charge separation and transport in perovskite solar cells—which are the fundamental mechanisms of device operation and critical factors for power output—by determining the junction structure across the device using the nanoelectrical characterization technique of Kelvin probe force microscopy. Moreover, the distribution of electrical potential across both planar and porous devices demonstrates p–n junction structure at the TiO2/perovskite interfacesmore » and minority-carrier diffusion/drift operation of the devices, rather than the operation mechanism of either an excitonic cell or a p-i-n structure. When we combined the potential profiling results with solar cell performance parameters measured on optimized and thickened devices, we find that carrier mobility is a main factor that needs to be improved for further gains in efficiency of the perovskite solar cells.« less

  20. Light-induced lattice expansion leads to high-efficiency perovskite solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Hsinhan; Asadpour, Reza; Blancon, Jean-Christophe

    Hybrid-perovskite based high-performance optoelectronic devices and clues from their operation has led to the realization that light-induced structural dynamics play a vital role on their physical properties, device performance and stability. Here, we report that continuous light illumination leads to a uniform lattice expansion in hybrid perovskite thin-films, which is critical for obtaining high-efficiency photovoltaic devices. Correlated, in-situ structural and device characterizations reveal that light-induced lattice expansion significantly benefits the performances of a mixed-cation pure-halide planar device, boosting the power conversion efficiency from 18.5% to 20.5%. This is a direct consequence of the relaxation of local lattice strains during latticemore » expansion, which results in the reduction of the energetic barriers at the perovskite/contact interfaces in devices, thus improving the open circuit voltage and fill factor. The light-induced lattice expansion stabilizes these high-efficiency photovoltaic devices under continuous operation of full-spectrum 1-Sun illumination for over 1500 hours. One Sentence Summary: Light-induced lattice expansion improves crystallinity, relaxes lattice strain, which enhances photovoltaic performance in hybrid perovskite device.« less

  1. Two Regimes of Bandgap Red Shift and Partial Ambient Retention in Pressure-Treated Two-Dimensional Perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Gang; Kong, Lingping; Guo, Peijun

    The discovery of elevated environmental stability in two-dimensional (2D) Ruddlesden–Popper hybrid perovskites represents a significant advance in low-cost, high-efficiency light absorbers. In comparison to 3D counterparts, 2D perovskites of organo-lead-halides exhibit wider, quantum-confined optical bandgaps that reduce the wavelength range of light absorption. Here, we characterize the structural and optical properties of 2D hybrid perovskites as a function of hydrostatic pressure. We observe bandgap narrowing with pressure of 633 meV that is partially retained following pressure release due to an atomic reconfiguration mechanism. We identify two distinct regimes of compression dominated by the softer organic and less compressible inorganic sublattices.more » Our findings, which also include PL enhancement, correlate well with density functional theory calculations and establish structure–property relationships at the atomic scale. These concepts can be expanded into other hybrid perovskites and suggest that pressure/strain processing could offer a new route to improved materials-by-design in applications.« less

  2. Electrochemical sensing of modified ABO3 perovskite: LaFe0.8 R0.2O3(R= Cr, Co, Al)

    NASA Astrophysics Data System (ADS)

    Vidya Rajan, N.; Alexander, L. K.

    2017-06-01

    Perovskite LaFeO3 with orthorhombic structure has been synthesized by citric acid mediated solution method. The effectiveness of ionic radii and Oxidation state of the doping material on ionic conductivity of the host matrix was evaluated by B-site (Fe) doping on LaFeO3 with Cr, Co and Al, resulting LaFe0.8 R0.2O3 (R = Cr, Co, Al). XRD with Rietveld refinement and Raman spectroscopic analysis demonstrate successful synthesis. The effect of the 20% B site doping on electrochemical activity is reported. The doped materials exhibit a decrease in sensing activity towards the non enzymatic detection of H2O2.

  3. Application of CaCu3Ti4O12 based quadruple perovskites as a promising candidate for optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Pal, Kamalesh; Jana, Rajkumar; Dey, Arka; Ray, Partha P.; Seikh, Md Motin; Gayen, Arup

    2018-05-01

    We report the synthesis of nanosized (40-50 nm) CaCu3-xMnxTi4-xMnxO12 (x = 0, 0.5 and 1) quadruple perovskite (QP) semiconductor via a modified combustion method for use as Schottky barrier diode (SBD) at the Al/QP junction. The fabricated SBD is analysed on the basis of thermionic emission theory to observe its quality and some important diode parameters. For insight analysis of charge transport mechanism through metal-semiconductor junction, theory of space charge limited currents is applied and discussed in the light of parameters like carrier concentration, mobility-lifetime product and diffusion length. The Mn-doped exhibit better device performance compared to parent material.

  4. Synthesis and thermal stability studies of a series of metastable Dion-Jacobson double-layered neodymium-niobate perovskites

    NASA Astrophysics Data System (ADS)

    Josepha, Elisha A.; Farooq, Sara; Mitchell, Cinnamon M.; Wiley, John B.

    2014-08-01

    The Dion-Jacobson double-layered perovskite, RbNdNb2O7, is used as a precursor to synthesize the series ANdNb2O7 (A=H, Li, Na, K, NH4, Ag), and (MCl)NdNb2O7 (M=Mn, Fe, Cu) through ion-exchange reactions ≤400 °C. Thermal stability studies indicated that most of these compounds are metastable. A combination of X-ray powder diffraction and differential thermal analysis were used to determine various low temperature decomposition pathways; these pathways were very dependent on the interlayer species. Overall the ANdNb2O7 series was found to be less stable than the corresponding lanthanides, ALaNb2O7.

  5. Low temperature sintered giant dielectric permittivity CaCu3Ti4O12 sol-gel synthesized nanoparticle capacitors

    NASA Astrophysics Data System (ADS)

    Puli, Venkata Sreenivas; Adireddy, Shiva; Kothakonda, Manish; Elupula, Ravinder; Chrisey, Douglas B.

    This paper reports on synthesis of polycrystalline complex perovskite CaCu3Ti4O12 (as CCTO) ceramic powders prepared by a sol-gel auto combustion method at different sintering temperatures and sintering times, respectively. The effect of sintering time on the structure, morphology, dielectric and electrical properties of CCTO ceramics is investigated. Tuning the electrical properties via different sintering times is demonstrated for ceramic samples. X-ray diffraction (XRD) studies confirm perovskite-like structure at room temperature. Abnormal grain growth is observed for ceramic samples. Giant dielectric permittivity was realized for CCTO ceramics. High dielectric permittivity was attributed to the internal barrier layer capacitance (IBLC) model associated with the Maxwell-Wagner (MW) polarization mechanism.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosales, Bryan A.; Hanrahan, Michael P.; Boote, Brett W.

    Hybrid lead perovskites containing a mixture of organic and inorganic cations and anions have lead to solar cell devices with better performance and stability than their single halide analogs. Here, 207Pb solid-state nuclear magnetic resonance and single particle photoluminescence spectroscopies show that the structure and composition of mixed-halide and—likely—other hybrid lead perovskites is much more complex than previously thought and is highly dependent on their synthesis. While a majority of reports in the area focus on the construction of photovoltaic devices, this perspective focuses instead on achieving a better understanding of the fundamental chemistry and photophysics of these materials, asmore » this will aid not only in constructing improved devices, but also in generating new uses for these unique materials.« less

  7. Real-Time Nanoscale Open-Circuit Voltage Dynamics of Perovskite Solar Cells.

    PubMed

    Garrett, Joseph L; Tennyson, Elizabeth M; Hu, Miao; Huang, Jinsong; Munday, Jeremy N; Leite, Marina S

    2017-04-12

    Hybrid organic-inorganic perovskites based on methylammonium lead (MAPbI 3 ) are an emerging material with great potential for high-performance and low-cost photovoltaics. However, for perovskites to become a competitive and reliable solar cell technology their instability and spatial variation must be understood and controlled. While the macroscopic characterization of the devices as a function of time is very informative, a nanoscale identification of their real-time local optoelectronic response is still missing. Here, we implement a four-dimensional imaging method through illuminated heterodyne Kelvin probe force microscopy to spatially (<50 nm) and temporally (16 s/scan) resolve the voltage of perovskite solar cells in a low relative humidity environment. Local open-circuit voltage (V oc ) images show nanoscale sites with voltage variation >300 mV under 1-sun illumination. Surprisingly, regions of voltage that relax in seconds and after several minutes consistently coexist. Time-dependent changes of the local V oc are likely due to intragrain ion migration and are reversible at low injection level. These results show for the first time the real-time transient behavior of the V oc in perovskite solar cells at the nanoscale. Understanding and controlling the light-induced electrical changes that affect device performance are critical to the further development of stable perovskite-based solar technologies.

  8. Phase transitions of BaTi{sub 0.9}Rh{sub 0.1}O{sub 3±δ} perovskite-type oxides under reducing environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodríguez, G.C.Mondragón, E-mail: guillermo.mondragon-rodriguez@dlr.de; Gönüllü, Y.; Ferri, Davide

    2015-01-15

    Highlights: • Solid solution formation BaTi{sub 0.9}Rh{sub 0.1}O{sub 3±δ} with a new wet chemical synthesis method. • Rhodium in the BaTiO{sub 3} perovskite stabilizes the hexagonal structure. • New Rh segregation mechanism for hexagonal BaTi{sub 0.9}Rh{sub 0.1}O{sub 3±δ} upon reduction. - Abstract: Perovskite-type oxides of composition BaTi{sub 0.9}Rh{sub 0.1}O{sub 3±δ} were prepared following a new chemical route that avoids the formation of hydroxyl species and precipitation, and allows the homogeneous distribution of Rh in the final mixed metal oxide. The high dispersion of Rh and the formation of the solid solution between Rh and the BaTiO{sub 3} perovskite is confirmedmore » by means of X-ray diffraction (XRD) and extended X-ray absorption fine structure spectroscopy (EXAFS). The presence of Rh stabilized the hexagonal BaTi{sub 0.9}Rh{sub 0.1}O{sub 3±δ} phase, which decomposes into barium orthotitanate (BaTi{sub 2}O{sub 4}) and metallic Rh° in reducing environment. This phase transition starts already at 700 °C and is only partially completed at 900 °C suggesting that part of the Rh present in the perovskite lattice might not be easily reduced by hydrogen. These aspects and further open questions are discussed.« less

  9. Spectral Features and Charge Dynamics of Lead Halide Perovskites: Origins and Interpretations.

    PubMed

    Sum, Tze Chien; Mathews, Nripan; Xing, Guichuan; Lim, Swee Sien; Chong, Wee Kiang; Giovanni, David; Dewi, Herlina Arianita

    2016-02-16

    Lead halide perovskite solar cells are presently the forerunner among the third generation solution-processed photovoltaic technologies. With efficiencies exceeding 20% and low production costs, they are prime candidates for commercialization. Critical insights into their light harvesting, charge transport, and loss mechanisms have been gained through time-resolved optical probes such as femtosecond transient absorption spectroscopy (fs-TAS), transient photoluminescence spectroscopy, and time-resolved terahertz spectroscopy. Specifically, the discoveries of long balanced electron-hole diffusion lengths and gain properties in halide perovskites underpin their significant roles in uncovering structure-function relations and providing essential feedback for materials development and device optimization. In particular, fs-TAS is becoming increasingly popular in perovskite characterization studies, with commercial one-box pump-probe systems readily available as part of a researcher's toolkit. Although TAS is a powerful probe in the study of charge dynamics and recombination mechanisms, its instrumentation and data interpretation can be daunting even for experienced researchers. This issue is exacerbated by the sensitive nature of halide perovskites where the kinetics are especially susceptible to pump fluence, sample preparation and handling and even degradation effects that could lead to disparate conclusions. Nonetheless, with end-users having a clear understanding of TAS's capabilities, subtleties, and limitations, cutting-edge work with deep insights can still be performed using commercial setups as has been the trend for ubiquitous spectroscopy instruments like absorption, fluorescence, and transient photoluminescence spectrometers. Herein, we will first briefly examine the photophysical processes in lead halide perovskites, highlighting their novel properties. Next, we proceed to give a succinct overview of the fundamentals of pump-probe spectroscopy in relation to the spectral features of halide perovskites and their origins. In the process, we emphasize some key findings of seminal photophysical studies and draw attention to the interpretations that remain divergent and the open questions. This is followed by a general description into how we prepare and conduct the TAS characterization of CH3NH3PbI3 thin films in our laboratory with specific discussions into the potential pitfalls and the influence of thin film processing on the kinetics. Lastly, we conclude with our views on the challenges and opportunities from the photophysical perspective for the field and our expectations for systems beyond lead halide perovskites.

  10. CaMn(1-x)Nb(x)O3 (x < or = 0.08) perovskite-type phases as promising new high-temperature n-type thermoelectric materials.

    PubMed

    Bocher, L; Aguirre, M H; Logvinovich, D; Shkabko, A; Robert, R; Trottmann, M; Weidenkaff, A

    2008-09-15

    Perovskite-type CaMn(1-x)Nb(x)O(3+/-delta) (x = 0.02, 0.05, and 0.08) compounds were synthesized by applying both a "chimie douce" (SC) synthesis and a classical solid state reaction (SSR) method. The crystallographic parameters of the resulting phases were determined from X-ray, electron, and neutron diffraction data. The manganese oxidations states (Mn(4+)/Mn(3+)) were investigated by X-ray photoemission spectroscopy. The orthorhombic CaMn(1-x)Nb(x)O(3+/-delta) (x = 0.02, 0.05, and 0.08) phases were studied in terms of their high-temperature thermoelectric properties (Seebeck coefficient, electrical resistivity, and thermal conductivity). Differences in electrical transport and thermal properties can be correlated with different microstructures obtained by the two synthesis methods. In the high-temperature range, the electron-doped manganate phases exhibit large absolute Seebeck coefficient and low electrical resistivity values, resulting in a high power factor, PF (e.g., for x = 0.05, S(1000K) = -180 microV K(-1), rho(1000K) = 16.8 mohms cm, and PF > 1.90 x 10(-4) W m(-1) K(-2) for 450 K < T < 1070 K). Furthermore, lower thermal conductivity values are achieved for the SC-derived phases (kappa < 1 W m(-1) K(-1)) compared to the SSR compounds. High power factors combined with low thermal conductivity (leading to ZT values > 0.3) make these phases the best perovskitic candidates as n-type polycrystalline thermoelectric materials operating in air at high temperatures.

  11. Solid-state synthesis in the system Na 0.8Nb yW 1-yO 3 with 0⩽ y⩽0.4: A new phase, Na 0.5NbO 2.75, with perovskite-type structure

    NASA Astrophysics Data System (ADS)

    Debnath, Tapas; Rüscher, Claus H.; Gesing, Thorsten M.; Koepke, Jürgen; Hussain, Altaf

    2008-04-01

    Series of compounds in the system Na xNb yW 1-yO 3 were prepared according to the appropriate molar ratio of Na 2WO 4, WO 3, WO 2 and Nb 2O 5 with x=0.80 and 0.0⩽ y⩽0.4 at 600 °C in evacuated silica glass tubes. These compounds were investigated by X-ray powder diffraction, optical microscopy, microprobe analysis, Raman and optical microspectroscopy. A y-dependent separation into three distinct coloured crystallites with cubic perovskite-type structures is observed: (i) red-orange crystallites with composition Na xWO 3 with slightly decreasing x (i.e. 0.8-0.72) with increasing nominal y, (ii) bluish solid solution of composition Na xNb yW 1-yO 3 and (iii) white crystallites of a new phase having defect perovskite-type structure with composition Na 0.5NbO 2.75.

  12. Rational Design and Nanoscale Integration of Multi-Heterostructures as Highly Efficient Photocatalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Xiangfeng

    2017-11-03

    The central goal of this project is to design and synthesize complex multi-hetero-nanostructures and fundamental investigation of their potential as efficient and robust photocatalysts. Specifically, the project aims to develop a nanoscale light-harvesting antenna that can efficiently convert solar photon energy into excited electrons and holes, and integrate such antenna with efficient redox nanocatalysts that can harness the photo-generated carriers for productive electrochemical processes. Focusing on this central goal, we have investigated several potential light-harvesting antennas including: silicon nanowires, nitrogen-doped TiO2 nanowires and the emerging perovskite materials. We also devoted considerable effort in developing electrocatalysts including: hydrogen evolution reaction (HER)more » catalysts, oxygen evolution reaction (OER) catalysts and oxygen reduction reaction catalysts (ORR). In previous annual reports, we have described our effort in the synthesis and photoelectrochemical properties of silicon, TiO2, perovskite-based materials and heterostructures. Here, we focus our discussion on the recent effort in investigating charge transport dynamics in organolead halide perovskites, as well as carbon nanostructure and platinum nanostructure-based electrocatalysts for energy conversion and storage.« less

  13. Electrical and Optical Tunability in All-Inorganic Halide Perovskite Alloy Nanowires.

    PubMed

    Lei, Teng; Lai, Minliang; Kong, Qiao; Lu, Dylan; Lee, Woochul; Dou, Letian; Wu, Vincent; Yu, Yi; Yang, Peidong

    2018-06-13

    Alloying different semiconductors is a powerful approach to tuning the optical and electronic properties of semiconductor materials. In halide perovskites (ABX 3 ), alloys with different anions have been widely studied, and great band gap tunability in the visible range has been achieved. However, perovskite alloys with different cations at the "B" site are less understood due to the synthetic challenges. Herein, we first have developed the synthesis of single-crystalline CsPb x Sn 1- x I 3 nanowires (NWs). The electronic band gaps of CsPb x Sn 1- x I 3 NWs can be tuned from 1.3 to 1.78 eV by varying the Pb/Sn ratio, which leads to the tunable photoluminescence (PL) in the near-infrared range. More importantly, we found that the electrical conductivity increases as more Sn 2+ is alloyed with Pb 2+ , possibly due to the increase of charge carrier concentration when more Sn 2+ is introduced. The wide tunability of the optical and electronic properties makes CsPb x Sn 1- x I 3 alloy NWs promising candidates for future optoelectronic device applications.

  14. PTFE-based microreactor system for the continuous synthesis of full-visible-spectrum emitting cesium lead halide perovskite nanocrystals.

    PubMed

    Zhang, Chengxi; Luan, Weiling; Yin, Yuhang; Yang, Fuqian

    2017-01-01

    Colloidal perovskite nanocrystals comprised of all inorganic cesium lead halide (CsPbX 3 , X = Cl, Br, I or a mixture thereof) have potential as optical gain materials due to their high luminescence efficiency. In this work, cesium lead halide nanocrystals are continuously synthesized via a microreactor system consisting of poly(tetrafluoroethylene) (PTFE) capillaries. The synthesized nanocrystals possess excellent optical properties, including a full width at half maximum of 19-35 nm, high fluorescence quantum yield of 47.8-90.55%, and photoluminescence emission in the range of 450-700 nm. For the same precursor concentrations, the photoluminescence emission peak generally increases with increasing reaction temperature, revealing a controllable temperature effect on the photoluminescence characteristics of the synthesized nanocrystals. For quantum dots synthesized with a Br/I ratio of 1:3, a slight blue shift was observed for reaction temperatures greater than 100 °C. This PTFE-based microreactor system provides the unique capability of continuously synthesizing high-quality perovskite nanocrystals that emit over the full visible spectrum with applications ranging from displays and optoelectronic devices.

  15. PTFE-based microreactor system for the continuous synthesis of full-visible-spectrum emitting cesium lead halide perovskite nanocrystals

    PubMed Central

    Zhang, Chengxi; Yin, Yuhang

    2017-01-01

    Colloidal perovskite nanocrystals comprised of all inorganic cesium lead halide (CsPbX3, X = Cl, Br, I or a mixture thereof) have potential as optical gain materials due to their high luminescence efficiency. In this work, cesium lead halide nanocrystals are continuously synthesized via a microreactor system consisting of poly(tetrafluoroethylene) (PTFE) capillaries. The synthesized nanocrystals possess excellent optical properties, including a full width at half maximum of 19–35 nm, high fluorescence quantum yield of 47.8–90.55%, and photoluminescence emission in the range of 450–700 nm. For the same precursor concentrations, the photoluminescence emission peak generally increases with increasing reaction temperature, revealing a controllable temperature effect on the photoluminescence characteristics of the synthesized nanocrystals. For quantum dots synthesized with a Br/I ratio of 1:3, a slight blue shift was observed for reaction temperatures greater than 100 °C. This PTFE-based microreactor system provides the unique capability of continuously synthesizing high-quality perovskite nanocrystals that emit over the full visible spectrum with applications ranging from displays and optoelectronic devices. PMID:29259867

  16. Methoxydiphenylamine-substituted fluorene derivatives as hole transporting materials: role of molecular interaction on device photovoltaic performance.

    PubMed

    Tiazkis, Robertas; Paek, Sanghyun; Daskeviciene, Maryte; Malinauskas, Tadas; Saliba, Michael; Nekrasovas, Jonas; Jankauskas, Vygintas; Ahmad, Shahzada; Getautis, Vytautas; Khaja Nazeeruddin, Mohammad

    2017-03-10

    The molecular structure of the hole transporting material (HTM) play an important role in hole extraction in a perovskite solar cells. It has a significant influence on the molecular planarity, energy level, and charge transport properties. Understanding the relationship between the chemical structure of the HTM's and perovskite solar cells (PSCs) performance is crucial for the continued development of the efficient organic charge transporting materials. Using molecular engineering approach we have constructed a series of the hole transporting materials with strategically placed aliphatic substituents to investigate the relationship between the chemical structure of the HTMs and the photovoltaic performance. PSCs employing the investigated HTMs demonstrate power conversion efficiency values in the range of 9% to 16.8% highlighting the importance of the optimal molecular structure. An inappropriately placed side group could compromise the device performance. Due to the ease of synthesis and moieties employed in its construction, it offers a wide range of possible structural modifications. This class of molecules has a great potential for structural optimization in order to realize simple and efficient small molecule based HTMs for perovskite solar cells application.

  17. Pick a Color MARIA: Adaptive Sampling Enables the Rapid Identification of Complex Perovskite Nanocrystal Compositions with Defined Emission Characteristics.

    PubMed

    Bezinge, Leonard; Maceiczyk, Richard M; Lignos, Ioannis; Kovalenko, Maksym V; deMello, Andrew J

    2018-06-06

    Recent advances in the development of hybrid organic-inorganic lead halide perovskite (LHP) nanocrystals (NCs) have demonstrated their versatility and potential application in photovoltaics and as light sources through compositional tuning of optical properties. That said, due to their compositional complexity, the targeted synthesis of mixed-cation and/or mixed-halide LHP NCs still represents an immense challenge for traditional batch-scale chemistry. To address this limitation, we herein report the integration of a high-throughput segmented-flow microfluidic reactor and a self-optimizing algorithm for the synthesis of NCs with defined emission properties. The algorithm, named Multiparametric Automated Regression Kriging Interpolation and Adaptive Sampling (MARIA), iteratively computes optimal sampling points at each stage of an experimental sequence to reach a target emission peak wavelength based on spectroscopic measurements. We demonstrate the efficacy of the method through the synthesis of multinary LHP NCs, (Cs/FA)Pb(I/Br) 3 (FA = formamidinium) and (Rb/Cs/FA)Pb(I/Br) 3 NCs, using MARIA to rapidly identify reagent concentrations that yield user-defined photoluminescence peak wavelengths in the green-red spectral region. The procedure returns a robust model around a target output in far fewer measurements than systematic screening of parametric space and additionally enables the prediction of other spectral properties, such as, full-width at half-maximum and intensity, for conditions yielding NCs with similar emission peak wavelength.

  18. Characterization and thermal behavior of PrMO{sub 3} (M = Co or Ni) ceramic materials obtained from gelatin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aquino, F.M., E-mail: flavyma@hotmail.com; Melo, D.M.A.; Pimentel, P.M.

    2012-09-15

    Graphical abstract: The micrograph in figure shows sample calcined at temperature 900 °C. The sample exhibits morphology with considerable porosity and the formation of agglomerated nanometric particles. Gelatin provides the system with a large amount of organic matter, which is then removed during calcinations, favoring the appearance of pores in the material. Highlights: ► Oxides with PrNiO{sub 3} and PrCoO{sub 3} were prepared by new method synthesis. ► The gelatin, through its carboxylate groups and amine, is an efficient director. ► The obtained materials have magnetic properties and application in catalysis. ► The decomposition kinetic study of bonding groups ofmore » gelatin with metallic ions that takes part in the synthesis of PrMO{sub 3}. -- Abstract: Metal oxides with perovskite-type structure have attracted considerable interest in recent years due to their magnetic and electrical properties, as well as their catalytic activity. In this study, oxides with PrNiO{sub 3} and PrCoO{sub 3} composition were prepared by using gelatin powder as a precursor agent for its use as a catalyst. The powders obtained were calcined at 700 °C and 900 °C and characterized using the X-ray diffraction, thermal analysis (thermogravimetry and differential thermal analysis), infrared spectroscopy, temperature programed reduction and scanning electron microscopy techniques. Thermogravimetric data using the non-isothermal kinetic models of Flynn and Wall and “Model-free Kinetics” were used to determine the activation energy to study the decomposition kinetics of the ligand groups with system's metallic ions that takes part in the synthesis of PrMO{sub 3} (M = Ni or Co).« less

  19. Synthesis of praseodymium-ion-doped perovskite nanophosphor in supercritical water

    NASA Astrophysics Data System (ADS)

    Hakuta, Yukiya; Sue, Kiwamu; Takashima, Hiroshi

    2018-05-01

    We report the synthesis of praseodymium-doped calcium strontium titanate nanoparticles, (Ca0.6Sr0.4)0.997Pr0.002TiO3 (PCSTO), using hydrothermal synthesis under supercritical water conditions and the production of red luminescence. Starting solutions were prepared by dissolving calcium nitrate, strontium nitrate, titanium hydroxide sols, and praseodymium nitrate in distilled water. We investigated the effect of the reaction temperature, concentration, and pH of the starting solution on the luminescence properties. Synthesis was conducted at temperatures of 200 °C–400 °C, a reaction pressure of 30 MPa, and for reaction times of 4–20 s. The Pr concentration was set to 0.2 mol% relative to the (Ca0.6Sr0.4) ions. We also investigated the effect of high temperature annealing on the luminescence properties of the PCSTO nanoparticles. Particle characteristics were evaluated using x-ray diffraction, a scanning transmission electron microscope (STEM) equipped with an energy-dispersive x-ray spectrometer, and a fluorometer. Single-phase perovskite particles were obtained at hydrothermal reaction temperatures of over 300 °C even for a reaction time of several seconds. STEM images showed that the particles had cubic-like shapes with diameters of 8–13 nm and that they were chemically homogeneous. The PCSTO nanoparticles exhibited sharp red luminescence at 612 nm corresponding to the f–f transition of Pr3+ ions. Moreover, annealing at 1000 °C led to particle growth, achieving diameters of 40 nm and an increase in the quantum efficiency to around 12.0%.

  20. Structural, optical and morphological studies of Cd2+ doping in CH3NH3PbI3 perovskite semiconductor at Pb2+ site for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Parrey, Khursheed; Warish, Mohd.; Devi, Nisha; Niazi, A.; Aziz, A.; Ansari, S. G.

    2018-05-01

    Doping of semiconductors in a controlled mannner have paramount technological importance as far as the optical and electronic properties of the devices are concerned. Hybrid organic-inorganic perovskites (HOPs) as intrinsic semiconductors have sensational properties required for both the solar photovoltaics and perovskite light emitting diodes. However, undoped and complexity in the dpoing process of HOPs have limited their exploitation in the field of elcronics. In this papper we present the synthesis of HOP semiconductor (CH3NH3PbI3) doped in Pb2+ position by Cd2+. We studied the effect of the incorporation of Cd2+ into the crystalline structure and analysed the changes in the properties like crystal structure, optical absorption and the surface morphology. The structure of HOPs confirmed by X-ray diffraction analysis is tetragonal perovskite type. It can be found that the crystallinity of the samples was enhanced with the doping concentration as the intensity of diffraction peaks were observed to increase with doping. The absorption spectra as obtained from UV-Visible spectrophotometry and Tauc plot analysis indicated that the band gap observed (1.73 eV) is direct type and gets reduced to 1.67 eV with the doping concentration. The red shift may be due to the increase in the size of nanocrystalline material with doping.

  1. Lattice effects on ferromagnetism in perovskite ruthenates

    PubMed Central

    Cheng, J.-G.; Zhou, J.-S.; Goodenough, John B.

    2013-01-01

    Ferromagnetism and its evolution in the orthorhombic perovskite system Sr1–xCaxRuO3 have been widely believed to correlate with structural distortion. The recent development of high-pressure synthesis of the Ba-substituted Sr1–yBayRuO3 makes it possible to study ferromagnetism over a broader phase diagram, which includes the orthorhombic Imma and the cubic phases. However, the chemical substitutions introduce the A-site disorder effect on Tc, which complicates determination of the relationship between ferromagnetism and structural distortion. By clarifying the site disorder effect on Tc in several unique series of ruthenates in which the average bond length 〈A–O〉 remains the same but the bond-length variance varies, we are able to demonstrate a parabolic curve of Tc versus mean bond length 〈A–O〉. A much higher Tc ∼ 177 K than that found in orthorhombic SrRuO3 can be obtained from the curve at a bond length 〈A–O〉, which makes the geometric factor t = 〈A–O〉/(√2〈Ru–O〉) ∼ 1. This result reveals not only that the ferromagnetism in the ruthenates is extremely sensitive to the lattice strain, but also that it has an important implication for exploring the structure–property relationship in a broad range of oxides with perovskite or a perovskite-related structure. PMID:23904477

  2. Overcoming the Photovoltage Plateau in Large Bandgap Perovskite Photovoltaics.

    PubMed

    Rajagopal, Adharsh; Stoddard, Ryan J; Jo, Sae Byeok; Hillhouse, Hugh W; Jen, Alex K-Y

    2018-05-09

    Development of large bandgap (1.80-1.85 eV E g ) perovskite is crucial for perovskite-perovskite tandem solar cells. However, the performance of 1.80-1.85 eV E g perovskite solar cells (PVKSCs) are significantly lagging their counterparts in the 1.60-1.75 eV E g range. This is because the photovoltage ( V oc ) does not proportionally increase with E g due to lower optoelectronic quality of conventional (MA,FA,Cs)Pb(I,Br) 3 and results in a photovoltage plateau ( V oc limited to 80% of the theoretical limit for ∼1.8 eV E g ). Here, we incorporate phenylethylammonium (PEA) in a mixed-halide perovskite composition to solve the inherent material-level challenges in 1.80-1.85 eV E g perovskites. The amount of PEA incorporation governs the topography and optoelectronic properties of resultant films. Detailed structural and spectroscopic characterization reveal the characteristic trends in crystalline size, orientation, and charge carrier recombination dynamics and rationalize the origin of improved material quality with higher luminescence. With careful interface optimization, the improved material characteristics were translated to devices and V oc values of 1.30-1.35 V were achieved, which correspond to 85-87% of the theoretical limit. Using an optimal amount of PEA incorporation to balance the increase in V oc and the decrease in charge collection, a highest power conversion efficiency of 12.2% was realized. Our results clearly overcome the photovoltage plateau in the 1.80-1.85 eV E g range and represent the highest V oc achieved for mixed-halide PVKSCs. This study provides widely translatable insights, an important breakthrough, and a promising platform for next-generation perovskite tandems.

  3. Porous LaCo1-xNixO3-δ Nanostructures as an Efficient Electrocatalyst for Water Oxidation and for a Zinc-Air Battery.

    PubMed

    Vignesh, Ahilan; Prabu, Moni; Shanmugam, Sangaraju

    2016-03-09

    Perovskites have emerged as promising earth-abundant alternatives to precious metals for catalyzing the oxygen evolution reaction (OER). Herein, we report the synthesis of a series of porous perovskite nanostructures, LaCo0.97O3-δ, with systematic Ni substitution in Co octahedral sites. Their electrocatalytic activity during the water oxidation reaction was studied in alkaline electrolytes. The electrocatalytic OER activity and stability of the perovskite nanostructure was evaluated using the rotating disk electrode technique. We show that the progressive replacement of Co by Ni in the LaCo0.97O3-δ perovskite structure greatly altered the electrocatalytic activity and that the La(Co0.71Ni0.25)0.96O3-δ composition exhibited the lowest OER overpotential of 324 and 265 mV at 10 mA cm(-2) in 0.1 M KOH and 1 M KOH, respectively. This value was much lower than that of the noble metal catalysts, IrO2, Ru/C, and Pt/C. Furthermore, the La(Co0.71Ni0.25)0.96O3-δ nanostructure showed outstanding electrode stability, with no observable decrease in performance up to 114th cycle in the auxiliary linear sweep voltammetry that lasted for 10 h in chronoamperometry studies. The excellent oxygen evolution activity of the La(Co0.71Ni0.25)0.96O3-δ perovskite nanostructure can be attributed to its intrinsic structure, interconnected particle arrangement, and unique redox characteristics. The enhanced intrinsic electrocatalytic activity of the La(Co0.71Ni0.25)0.96O3-δ catalyst was correlated with several parameters, such as the electrochemical surface area, the roughness factor, and the turnover frequency, with respect to variation in the transition metals of the perovskite structure. Subsequently, La(Co0.71Ni0.25)0.96O3-δ was utilized as the air cathode in a zinc-air battery application.

  4. Synthesis and Thermodynamic Stability of Ba2B‧B″O6 and Ba3B*B″2O9 Perovskites Using the Molten Salt Method

    NASA Astrophysics Data System (ADS)

    Meng, Wei; Virkar, Anil V.

    1999-12-01

    A number of mixed perovskites of the types Ba2B‧B″O6 (BaB‧1/2B″1/2O3) and Ba3B*B″2O9 (BaB*1/3B″2/3O3) where B‧=Gd, La, Nd, Sm, or Y; B″=Nb and B*=Ca were synthesized by a conventional calcination process, as well as by the molten salt method. The former consists of calcining appropriate mixtures of oxide or carbonate precursors in air at elevated temperatures (∼1250°C). The latter method consists of adding appropriate mixtures of oxide or carbonate precursors to a molten salt bath at relatively low temperatures (on the order of 300 to 500°C) so that the requisite compound is formed by dissolution-reprecipitation. X-ray diffraction confirmed the formation of a single-phase perovskite in each case with calcination at 1250°C. In a molten salt bath, however, all except Ba2LaNbO6 and Ba2NdNbO6 formed the perovskite structure. On the contrary, powders of Ba2LaNbO6 and Ba2NdNbO6 formed by a high-temperature calcination process readily decomposed when introduced into the molten salt bath. The formation of the requisite perovskite at a temperature as low as 350°C in a molten salt suggests that: (a) The perovskite is stable at 350°C. (b) The molten salt exhibits sufficient precursor solubility for the dissolution-reprecipitation process to occur in a reasonable time. Similarly, the decomposition of Ba2LaNbO6 and Ba2NdNbO6 in a molten salt bath shows that these materials are thermodynamically unstable at the temperature of the molten salt bath.

  5. μ+SR Study on Layered Chromium Perovskites: Srn+1CrnO3n+1 (n = 1-3)

    NASA Astrophysics Data System (ADS)

    Nozaki, Hiroshi; Sakurai, Hiroya; Umegaki, Izumi; Ansaldo, Eduardo J.; Morris, Gerald D.; Hitti, Bassam; Arseneau, Donald J.; Andreica, Daniel; Amato, Alex; Månsson, Martin; Sugiyama, Jun

    The magnetic nature of layered chromium perovskites, Srn+1CrnO3n+1 (n = 1-3) was studied by μ+SR using powder samples prepared by a high pressure synthesis technique. According to the weak transverse field measurements, each sample entered a magnetically ordered state below 110, 200, and 90 K for the n = 1, 2, and 3 samples, respectively. Zero field (ZF) spectra below the transition temperature exhibited a clear oscillation due to the formation of quasi-static magnetic order. The Fourier transform frequency-spectrum for the ZF time-spectrum indicated the existence of the multiple oscillation components. The frequencies for the multiple oscillatory signals showed a complex temperature dependence, implying the occurrence of structural change/transitions below TN.

  6. Flexible, cathodoluminescent and free standing mesoporous silica films with entrapped quasi-2D perovskites

    NASA Astrophysics Data System (ADS)

    Vassilakopoulou, Anastasia; Papadatos, Dionysios; Koutselas, Ioannis

    2017-04-01

    The effective entrapment of hybrid organic-inorganic semiconductors (HOIS) into mesoporous polymer-silica hybrid matrices, formed as free standing flexible films, is presented for the first time. A blend of quasi-2D HOIS, simply synthesized by mixing two-dimensional (2D) and three dimensional (3D) HOIS, exhibiting strong photoluminescence, is embedded into porous silica matrices during the sol-gel synthesis, using tetraethylorthosilicate as precursor and Pluronic F-127 triblock copolymer as structure directing agent, under acidic conditions. The final nanostructure hybrid forms flexible, free standing films, presenting high cathodoluminescence and long stable excitonic luminescence, indicating the protective character of the hybrid matrix towards the entrapped perovskite. A significant result is that the photoluminescence of the entrapped HOIS is not affected even after films' prolonged exposure to water.

  7. Reversible air-induced optical and electrical modulation of methylammonium lead bromide (MAPbBr3) single crystals

    NASA Astrophysics Data System (ADS)

    Zhang, Huotian; Liu, Yiting; Lu, Haizhou; Deng, Wan; Yang, Kang; Deng, Zunyi; Zhang, Xingmin; Yuan, Sijian; Wang, Jiao; Niu, Jiaxin; Zhang, Xiaolei; Jin, Qingyuan; Feng, Hongjian; Zhan, Yiqiang; Zheng, Lirong

    2017-09-01

    The photoluminescence (PL) variations of organic-inorganic hybrid lead halide perovskites in different atmospheres are well documented, while the fundamental mechanism still lacks comprehensive understandings. This study reports the reversible optical and electrical properties of methylammonium lead bromide (MAPbBr3 or CH3NH3PbBr3) single crystals caused by air infiltration. With the change in the surrounding atmosphere from air to vacuum, the PL intensity of perovskite single crystals decreases, while the conductivity increases. By means of first-principles computational studies, the shallow trap states are considered as key elements in PL and conductivity changes. These results have important implications for the characterization and application of organic-inorganic hybrid lead halide perovskites in vacuum.

  8. Modeling defects and plasticity in MgSiO3 post-perovskite: Part 2-screw and edge [100] dislocations.

    PubMed

    Goryaeva, Alexandra M; Carrez, Philippe; Cordier, Patrick

    In this study, we propose a full atomistic study of [100] dislocations in MgSiO 3 post-perovskite based on the pairwise potential parameterized by Oganov et al. (Phys Earth Planet Inter 122:277-288, 2000) for MgSiO 3 perovskite. We model screw dislocations to identify planes where they glide easier. We show that despite a small tendency to core spreading in {011}, [100] screw dislocations glide very easily (Peierls stress of 1 GPa) in (010) where only Mg-O bonds are to be sheared. Crossing the Si-layers results in a higher lattice friction as shown by the Peierls stress of [100](001): 17.5 GPa. Glide of [100] screw dislocations in {011} appears also to be highly unfavorable. Whatever the planes, (010), (001) or {011}, edge dislocations are characterized by a wider core (of the order of 2 b ). Contrary to screw character, they bear negligible lattice friction (0.1 GPa) for each slip system. The layered structure of post-perovskite results in a drastic reduction in lattice friction opposed to the easiest slip systems compared to perovskite.

  9. ZnO nanostructures as electron extraction layers for hybrid perovskite thin films

    NASA Astrophysics Data System (ADS)

    Nikolaidou, Katerina; Sarang, Som; Tung, Vincent; Lu, Jennifer; Ghosh, Sayantani

    Optimum interaction between light harvesting media and electron transport layers is critical for the efficient operation of photovoltaic devices. In this work, ZnO layers of different morphologies are implemented as electron extraction and transport layers for hybrid perovskite CH3NH3PbI3 thin films. These include nanowires, nanoparticles, and single crystalline film. Charge transfer at the ZnO/perovskite interface is investigated and compared through ultra-fast characterization techniques, including temperature and power dependent spectroscopy, and time-resolved photoluminescence. The nanowires cause an enhancement in perovskite emission, which may be attributed to increased scattering and grain boundary formation. However, the ZnO layers with decreasing surface roughness exhibit better electron extraction, as inferred from photoluminescence quenching, reduction in the number of bound excitons, and reduced exciton lifetime in CH3NH3PbI3 samples. This systematic study is expected to provide an understanding of the fundamental processes occurring at the ZnO-CH3NH3PbI3 interface and ultimately, provide guidelines for the ideal configuration of ZnO-based hybrid Perovskite devices. This research was supported by National Aeronautics and Space administration (NASA) Grant No: NNX15AQ01A.

  10. On the novel double perovskites A2Fe(Mn0.5W0.5)O6 (A= Ca, Sr, Ba). Structural evolution and magnetism from neutron diffraction data

    NASA Astrophysics Data System (ADS)

    García-Ramos, Crisanto A.; Larrégola, Sebastián; Retuerto, María; Fernández-Díaz, María Teresa; Krezhov, Kiril; Alonso, José Antonio

    2018-06-01

    New A2Fe(Mn0.5W0.5)O6 (A = Ca, Sr, Ba) double perovskite oxides have been prepared by ceramic techniques. X-ray diffraction (XRD) complemented with neutron powder diffraction (NPD) indicate a structural evolution from monoclinic (space group P21/n) for A = Ca to cubic (Fm-3m) for A = Sr and finally to hexagonal (P63/mmc) for A = Ba as the perovskite tolerance factor increases with the A2+ ionic size. The three oxides present different tilting schemes of the FeO6 and (Mn,W)O6 octahedra. NPD data also show evidence in all cases of a considerable anti-site disordering, involving the partial occupancy of Fe positions by Mn atoms, and vice-versa. Magnetic susceptibility data show magnetic transitions below 50 K characterized by a strong irreversibility between ZFC and FC susceptibility curves. The A = Ca perovskite shows a G-type magnetic structure, with weak ordered magnetic moments due to the mentioned antisite disordering. Interesting magnetostrictive effects are observed for the Sr perovskite below 10 K.

  11. High Photoluminescence Quantum Yield in Band Gap Tunable Bromide Containing Mixed Halide Perovskites.

    PubMed

    Sutter-Fella, Carolin M; Li, Yanbo; Amani, Matin; Ager, Joel W; Toma, Francesca M; Yablonovitch, Eli; Sharp, Ian D; Javey, Ali

    2016-01-13

    Hybrid organic-inorganic halide perovskite based semiconductor materials are attractive for use in a wide range of optoelectronic devices because they combine the advantages of suitable optoelectronic attributes and simultaneously low-cost solution processability. Here, we present a two-step low-pressure vapor-assisted solution process to grow high quality homogeneous CH3NH3PbI3-xBrx perovskite films over the full band gap range of 1.6-2.3 eV. Photoluminescence light-in versus light-out characterization techniques are used to provide new insights into the optoelectronic properties of Br-containing hybrid organic-inorganic perovskites as a function of optical carrier injection by employing pump-powers over a 6 orders of magnitude dynamic range. The internal luminescence quantum yield of wide band gap perovskites reaches impressive values up to 30%. This high quantum yield translates into substantial quasi-Fermi level splitting and high "luminescence or optically implied" open-circuit voltage. Most importantly, both attributes, high internal quantum yield and high optically implied open-circuit voltage, are demonstrated over the entire band gap range (1.6 eV ≤ Eg ≤ 2.3 eV). These results establish the versatility of Br-containing perovskite semiconductors for a variety of applications and especially for the use as high-quality top cell in tandem photovoltaic devices in combination with industry dominant Si bottom cells.

  12. High-Throughput Design of Two-Dimensional Electron Gas Systems Based on Polar/Nonpolar Perovskite Oxide Heterostructures

    PubMed Central

    Yang, Kesong; Nazir, Safdar; Behtash, Maziar; Cheng, Jianli

    2016-01-01

    The two-dimensional electron gas (2DEG) formed at the interface between two insulating oxides such as LaAlO3 and SrTiO3 (STO) is of fundamental and practical interest because of its novel interfacial conductivity and its promising applications in next-generation nanoelectronic devices. Here we show that a group of combinatorial descriptors that characterize the polar character, lattice mismatch, band gap, and the band alignment between the perovskite-oxide-based band insulators and the STO substrate, can be introduced to realize a high-throughput (HT) design of SrTiO3-based 2DEG systems from perovskite oxide quantum database. Equipped with these combinatorial descriptors, we have carried out a HT screening of all the polar perovskite compounds, uncovering 42 compounds of potential interests. Of these, Al-, Ga-, Sc-, and Ta-based compounds can form a 2DEG with STO, while In-based compounds exhibit a strain-induced strong polarization when deposited on STO substrate. In particular, the Ta-based compounds can form 2DEG with potentially high electron mobility at (TaO2)+/(SrO)0 interface. Our approach, by defining materials descriptors solely based on the bulk materials properties, and by relying on the perovskite-oriented quantum materials repository, opens new avenues for the discovery of perovskite-oxide-based functional interface materials in a HT fashion. PMID:27708415

  13. Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability

    DOE PAGES

    Christians, Jeffrey A.; Schulz, Philip; Tinkham, Jonathan S.; ...

    2017-11-28

    Long-term device stability is the most pressing issue that impedes perovskite solar cell commercialization, given the achieved 22.7% efficiency. The perovskite absorber material itself has been heavily scrutinized for being prone to degradation by water, oxygen and ultraviolet light. To date, most reports characterize device stability in the absence of these extrinsic factors. Here we show that, even under the combined stresses of light (including ultraviolet light), oxygen and moisture, perovskite solar cells can retain 94% of peak efficiency despite 1,000 hours of continuous unencapsulated operation in ambient air conditions (relative humidity of 10-20%). Each interface and contact layer throughoutmore » the device stack plays an important role in the overall stability which, when appropriately modified, yields devices in which both the initial rapid decay (often termed burn-in) and the gradual slower decay are suppressed. This extensively modified device architecture and the understanding developed will lead towards durable long-term device performance.« less

  14. Towards stable and commercially available perovskite solar cells

    DOE PAGES

    Park, Nam-Gyu; Grätzel, Michael; Miyasaka, Tsutomu; ...

    2016-10-17

    Solar cells employing a halide perovskite with an organic cation now show power conversion efficiency of up to 22%. But, these cells are facing issues towards commercialization, such as the need to achieve long-term stability and the development of a manufacturing method for the reproducible fabrication of high-performance devices. We propose a strategy to obtain stable and commercially viable perovskite solar cells. A reproducible manufacturing method is suggested, as well as routes to manage grain boundaries and interfacial charge transport. Electroluminescence is regarded as a metric to gauge theoretical efficiency. We highlight how optimizing the design of device architectures ismore » important not only for achieving high efficiency but also for hysteresis-free and stable performance. Here, we argue that reliable device characterization is needed to ensure the advance of this technology towards practical applications. We believe that perovskite-based devices can be competitive with silicon solar modules, and discuss issues related to the safe management of toxic material.« less

  15. Cross-plane coherent acoustic phonons in two-dimensional organic-inorganic hybrid perovskites.

    PubMed

    Guo, Peijun; Stoumpos, Constantinos C; Mao, Lingling; Sadasivam, Sridhar; Ketterson, John B; Darancet, Pierre; Kanatzidis, Mercouri G; Schaller, Richard D

    2018-05-22

    Two-dimensional Ruddlesden-Popper organic-inorganic hybrid layered perovskites (2D RPs) are solution-grown semiconductors with prospective applications in next-generation optoelectronics. The heat-carrying, low-energy acoustic phonons, which are important for heat management of 2D RP-based devices, have remained unexplored. Here we report on the generation and propagation of coherent longitudinal acoustic phonons along the cross-plane direction of 2D RPs, following separate characterizations of below-bandgap refractive indices. Through experiments on single crystals of systematically varied perovskite layer thickness, we demonstrate significant reduction in both group velocity and propagation length of acoustic phonons in 2D RPs as compared to the three-dimensional methylammonium lead iodide counterpart. As borne out by a minimal coarse-grained model, these vibrational properties arise from a large acoustic impedance mismatch between the alternating layers of perovskite sheets and bulky organic cations. Our results inform on thermal transport in highly impedance-mismatched crystal sub-lattices and provide insights towards design of materials that exhibit highly anisotropic thermal dissipation properties.

  16. Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability

    NASA Astrophysics Data System (ADS)

    Christians, Jeffrey A.; Schulz, Philip; Tinkham, Jonathan S.; Schloemer, Tracy H.; Harvey, Steven P.; Tremolet de Villers, Bertrand J.; Sellinger, Alan; Berry, Joseph J.; Luther, Joseph M.

    2018-01-01

    Long-term device stability is the most pressing issue that impedes perovskite solar cell commercialization, given the achieved 22.7% efficiency. The perovskite absorber material itself has been heavily scrutinized for being prone to degradation by water, oxygen and ultraviolet light. To date, most reports characterize device stability in the absence of these extrinsic factors. Here we show that, even under the combined stresses of light (including ultraviolet light), oxygen and moisture, perovskite solar cells can retain 94% of peak efficiency despite 1,000 hours of continuous unencapsulated operation in ambient air conditions (relative humidity of 10-20%). Each interface and contact layer throughout the device stack plays an important role in the overall stability which, when appropriately modified, yields devices in which both the initial rapid decay (often termed burn-in) and the gradual slower decay are suppressed. This extensively modified device architecture and the understanding developed will lead towards durable long-term device performance.

  17. Morphology Analysis and Optimization: Crucial Factor Determining the Performance of Perovskite Solar Cells.

    PubMed

    Zeng, Wenjin; Liu, Xingming; Guo, Xiangru; Niu, Qiaoli; Yi, Jianpeng; Xia, Ruidong; Min, Yong

    2017-03-24

    This review presents an overall discussion on the morphology analysis and optimization for perovskite (PVSK) solar cells. Surface morphology and energy alignment have been proven to play a dominant role in determining the device performance. The effect of the key parameters such as solution condition and preparation atmosphere on the crystallization of PVSK, the characterization of surface morphology and interface distribution in the perovskite layer is discussed in detail. Furthermore, the analysis of interface energy level alignment by using X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy is presented to reveals the correlation between morphology and charge generation and collection within the perovskite layer, and its influence on the device performance. The techniques including architecture modification, solvent annealing, etc. were reviewed as an efficient approach to improve the morphology of PVSK. It is expected that further progress will be achieved with more efforts devoted to the insight of the mechanism of surface engineering in the field of PVSK solar cells.

  18. Preparation and catalytic activities of LaFeO3 and Fe2O3 for HMX thermal decomposition.

    PubMed

    Wei, Zhi-Xian; Xu, Yan-Qing; Liu, Hai-Yan; Hu, Chang-Wen

    2009-06-15

    Perovskite-type LaFeO(3) and alpha-Fe(2)O(3) with high specific surface areas were directly prepared with appropriate stearic acid-nitrates ratios by a novel stearic acid solution combustion method. The obtained powders were characterized by XRD, FT-IR and XPS techniques. The catalytic activities of perovskite-type LaFeO(3) and alpha-Fe(2)O(3) for the thermal decomposition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) were investigated by TG and TG-EGA techniques. The experimental results show that the catalytic activity of perovskite-type LaFeO(3) was much higher than that of alpha-Fe(2)O(3) because of higher concentration of surface-adsorbed oxygen (O(ad)) and hydroxyl of LaFeO(3). The study points out a potential way to develop new and more active perovskite-type catalysts for the HMX thermal decomposition.

  19. Synthesis and structural characterization of the hexagonal anti-perovskite Na{sub 2}CaVO{sub 4}F

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Robert L., E-mail: rgreen@flpoly.org; Avdeev, Maxim; School of Chemistry, The University of Sydney, Sydney, NSW 2006

    The structural details of the ordered hexagonal oxyfluoride Na{sub 2}CaVO{sub 4}F prepared by solid-state synthesis using stoichiometric amounts of V{sub 2}O{sub 5}, CaCO{sub 3}, Na{sub 2}CO{sub 3} and NaF were characterized using high-resolution neutron powder diffraction. The structural changes between 25 °C and 750 °C revealed that the two structural subunits in this material behave different when heated: there is an expansion of the face-shared FNa{sub 4}Ca{sub 2} octahedra while the VO{sub 4} tetrahedra due to increased thermal disorder reveal marginal bond contractions. Bond valences and the global instability index point to significant structural disorder at 750 °C. - Graphicalmore » abstract: The structure of the novel oxyfluoride Na{sub 2}CaVO{sub 4}F is studied at room temperature and high-temperatures. The structure can be viewed as layers of compression and elongation of polyhedral subunits, which change as a function of temperature. - Highlights: • The novel oxyfluoride, Na{sub 2}CaVO{sub 4}F, is synthesized via solid-state method. • High-resolution neutron diffraction data is used to analyze the structure of Na{sub 2}CaVO{sub 4}F. • Structural subunits exhibit expansion and contraction with increasing temperature. • Higher temperatures increase instability within the structure of Na{sub 2}CaVO{sub 4}F.« less

  20. Hydroxide precursors to produce nanometric YCrO{sub 3}: Characterization and conductivity analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durán, A., E-mail: dural@cnyn.unam.mx; Meza F, C.; Arizaga, Gregorio Guadalupe Carbajal, E-mail: gregoriocarbajal@yahoo.com.mx

    2012-06-15

    Highlights: ► Y/Cr mixed hydroxide was precipitated with gaseous ammonia. ► The hydroxide treated at 1373 K formed YCrO{sub 3} crystals with 20 nm diameter. ► Electrical properties were different than those found in other methods of synthesis. ► E{sub act} suggests small-polarons as conduction mechanisms. -- Abstract: A precursor to produce perovskite-type YCrO{sub 3} was precipitated by bubbling gaseous ammonia into an yttrium/chromium salts solution. X-ray diffraction showed that the as-prepared powders were amorphous. Thermal treatment between 1273 and 1373 K, leads to formation of polycrystalline YCrO{sub 3} with crystal sizes around 20 nm. High resolution X-ray photoelectron spectramore » showed uniform chemical environment for yttrium and chromium in the amorphous hydroxide and crystalline YCrO{sub 3}. Shifts between Y 3d{sub 5/2} and Cr 2p{sub 3/2} binding energy suggest redistribution or charge transfer between yttrium and chromium ions in the YCrO{sub 3} structure. The electrical properties of YCrO{sub 3}, whose precursors were precipitated with gaseous ammonia are different than those prepared by combustion synthesis. Electrical conductivity presents a sudden increase at ∼473 K, which is associated to the grain size and morphology of the crystallites. The redistribution of charge between Y(III) and Cr(III) is thermally activated by the hopping of small-polarons, which are characterized by the Arrhenius law as the conductive mechanism.« less

  1. The Importance of Moisture in Hybrid Lead Halide Perovskite Thin Film Fabrication.

    PubMed

    Eperon, Giles E; Habisreutinger, Severin N; Leijtens, Tomas; Bruijnaers, Bardo J; van Franeker, Jacobus J; deQuilettes, Dane W; Pathak, Sandeep; Sutton, Rebecca J; Grancini, Giulia; Ginger, David S; Janssen, Rene A J; Petrozza, Annamaria; Snaith, Henry J

    2015-09-22

    Moisture, in the form of ambient humidity, has a significant impact on methylammonium lead halide perovskite films. In particular, due to the hygroscopic nature of the methylammonium component, moisture plays a significant role during film formation. This issue has so far not been well understood and neither has the impact of moisture on the physical properties of resultant films. Herein, we carry out a comprehensive and well-controlled study of the effect of moisture exposure on methylammonium lead halide perovskite film formation and properties. We find that films formed in higher humidity atmospheres have a less continuous morphology but significantly improved photoluminescence, and that film formation is faster. In photovoltaic devices, we find that exposure to moisture, either in the precursor solution or in the atmosphere during formation, results in significantly improved open-circuit voltages and hence overall device performance. We then find that by post-treating dry films with moisture exposure, we can enhance photovoltaic performance and photoluminescence in a similar way. The enhanced photoluminescence and open-circuit voltage imply that the material quality is improved in films that have been exposed to moisture. We determine that this improvement stems from a reduction in trap density in the films, which we postulate to be due to the partial solvation of the methylammonium component and "self-healing" of the perovskite lattice. This work highlights the importance of controlled moisture exposure when fabricating high-performance perovskite devices and provides guidelines for the optimum environment for fabrication. Moreover, we note that often an unintentional water exposure is likely responsible for the high performance of solar cells produced in some laboratories, whereas careful synthesis and fabrication in a dry environment will lead to lower-performing devices.

  2. A new route of synthesizing perovskite nanotubes by templating approach

    NASA Astrophysics Data System (ADS)

    Habiballah, Anisah Shafiqah; Osman, Nafisah; Jani, Abdul Mutalib Md

    2017-09-01

    A perovskite oxide for example Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) has attracted growing attention due to its high catalytic activity and mixed ionic/electronic conductivity. Recent research of BSCF is more comprehensively based on a remarkable trajectory of innovation, in particular with regards to the synthesis of perovskite structures in one-dimensional (1-D) nanometric scales as they promote not only to increase an active electrode area for the oxygen reduction reaction, but also allow the tailoring of electrode's architecture. Nevertheless, achieving the desired 1-D structure by a conventional method such as hydrothermal, solvothermal, or sonochemical are far from satisfactory. Herein, the aim of this work is to synthesize the BSCF perovskite nanotubes via soft templating approach, particularly using anodic aluminium oxide (AAO) as a template, focusing on the morphology, composition and structural properties were demonstrated. After the AAO template was anodized at 80 V, the fabricated template was clamped between apair of spectroscopic cells containing BSCF sol and deionized water (with a hole of both sides) for 24 hours. After that, the sample was removed from the cells followed by heat treatment process. The FESEM images showed that BSCF nanotubes were successfully achieved, with the diameter of the nanotubes' approximately 80 nm. The EDX result also confirmed the nominal stoichiometry of Ba0.5Sr0.5Co0.8Fe0.2O3-δ. Meanwhile, the XRD pattern confirmed a single crystalline phase of BSCF nanotubes was successfully obtained and congruent to a cubic perovskite structure of BSCF. Possible formation mechanism,as well as the schematic illustration of BSCF nanotubes inside the template was also discussed in this paper.

  3. Synthesis of single-crystal perovskite PbCrO3 through a new reaction route at high pressure

    NASA Astrophysics Data System (ADS)

    Han, Yunxia; Wang, Shanmin; Liu, Yinjuan; Ma, Dejiang; He, Duanwei; Zhao, Yusheng

    2018-04-01

    As a new member in the family of Mott system, perovskite PbCrO3 has recently been uncovered to exhibit fantastic structural transition under pressure, coupled with magnetic, electronic, and ferromagnetic transitions, which provide many opportunities for understanding of correlated system. However, it is still challenging to synthesize high-quality single-crystal PbCrO3, leading to the limited exploration of this Mott compound. In this work, we formulate a new high-pressure reaction route for preparation of high-quality PbCrO3 crystals between PbCl2 and Na2CrO4 at high pressure of 5-10 GPa and at high temperature of 750-1500°C. Because of the formation of reaction byproduct NaCl, the final product can readily be separated by washing with water. The obtained sample is in the form of single crystal with crystallite size up to 200 μm. In addition, combined with X-ray diffraction measurement, a tentative pressure-temperature synthesis diagram of PbCrO3 is mapped out from the reaction between PbCl2 and Na2CrO4 and the reaction mechanism is also explored in detail.

  4. Al2 O3 Underlayer Prepared by Atomic Layer Deposition for Efficient Perovskite Solar Cells.

    PubMed

    Zhang, Jinbao; Hultqvist, Adam; Zhang, Tian; Jiang, Liangcong; Ruan, Changqing; Yang, Li; Cheng, Yibing; Edoff, Marika; Johansson, Erik M J

    2017-10-09

    Perovskite solar cells, as an emergent technology for solar energy conversion, have attracted much attention in the solar cell community by demonstrating impressive enhancement in power conversion efficiencies. However, the high temperature and manually processed TiO 2 underlayer prepared by spray pyrolysis significantly limit the large-scale application and device reproducibility of perovskite solar cells. In this study, lowtemperature atomic layer deposition (ALD) is used to prepare a compact Al 2 O 3 underlayer for perovskite solar cells. The thickness of the Al 2 O 3 layer can be controlled well by adjusting the deposition cycles during the ALD process. An optimal Al 2 O 3 layer effectively blocks electron recombination at the perovskite/fluorine-doped tin oxide interface and sufficiently transports electrons through tunneling. Perovskite solar cells fabricated with an Al 2 O 3 layer demonstrated a highest efficiency of 16.2 % for the sample with 50 ALD cycles (ca. 5 nm), which is a significant improvement over underlayer-free PSCs, which have a maximum efficiency of 11.0 %. Detailed characterization confirms that the thickness of the Al 2 O 3 underlayer significantly influences the charge transfer resistance and electron recombination processes in the devices. Furthermore, this work shows the feasibility of using a high band-gap semiconductor such as Al 2 O 3 as the underlayer in perovskite solar cells and opens up pathways to use ALD Al 2 O 3 underlayers for flexible solar cells. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Optical characterization and bandgap engineering of flat and wrinkle-textured FA0.83Cs0.17Pb(I1-xBrx)3 perovskite thin films

    NASA Astrophysics Data System (ADS)

    Tejada, A.; Braunger, S.; Korte, L.; Albrecht, S.; Rech, B.; Guerra, J. A.

    2018-05-01

    The complex refractive indices of formamidinium cesium lead mixed-halide [FA0.83Cs0.17Pb(I1- xBrx)3] perovskite thin films of compositions ranging from x = 0 to 0.4, with both flat and wrinkle-textured surface topographies, are reported. The films are characterized using a combination of variable angle spectroscopic ellipsometry and spectral transmittance in the wavelength range of 190 nm to 850 nm. Optical constants, film thicknesses and roughness layers are obtained point-by-point by minimizing a global error function, without using optical dispersion models, and including topographical information supplied by a laser confocal microscope. To evaluate the bandgap engineering potential of the material, the optical bandgaps and Urbach energies are then accurately determined by applying a band fluctuation model for direct semiconductors, which considers both the Urbach tail and the fundamental band-to-band absorption region in a single equation. With this information, the composition yielding the optimum bandgap of 1.75 eV for a Si-perovskite tandem solar cell is determined.

  6. Fabrication of SrTiO3 Layer on Pt Electrode for Label-Free Capacitive Biosensors

    PubMed Central

    Carapella, Giovanni; Pilloton, Roberto; Di Matteo, Marisa

    2018-01-01

    Due to their interesting ferroelectric, conductive and dielectric properties, in recent years, perovskite-structured materials have begun to attract increasing interest in the biosensing field. In this study, a strontium titanate perovskite layer (SrTiO3) has been synthesized on a platinum electrode and exploited for the development of an impedimetric label-free immunosensor for Escherichia coli O157:H7 detection. The electrochemical characterization of the perovskite-modified electrode during the construction of the immunosensor, as well as after the interaction with different E. coli O157:H7 concentrations, showed a reproducible decrease of the total capacitance of the system that was used for the analytical characterization of the immunosensor. Under optimized conditions, the capacitive immunosensor showed a linear relationship from to 1 to 7 log cfu/mL with a low detection limit of 1 log cfu/mL. Moreover, the atomic force microscopy (AFM) technique underlined the increase in roughness of the SrTiO3-modified electrode surface after antibody immobilization, as well as the effective presence of cells with the typical size of E. coli. PMID:29547521

  7. Composition-dependent surface chemistry of colloidal Ba xSr 1-xTiO 3 perovskite nanocrystals

    DOE PAGES

    Margossian, Tigran; Culver, Sean P.; Larmier, Kim; ...

    2016-11-01

    Ba xSr 1-xTiO 3 perovskite nanocrystals, prepared by the vapor diffusion sol-gel method and characterized by state of the art surface techniques, display significantly different O-H stretching frequencies and adsorption properties towards CO 2 as a function of the alkaline earth composition (Ba vs. Sr). Lastly, the difference of properties can be associated with the more basic nature of BaO-rich than SrO-rich surfaces.

  8. Growth and characterization of metal halide perovskite crystals: Benzyltributyl ammonium tetrachloro manganate(II) monohydrate

    NASA Astrophysics Data System (ADS)

    Dhandapani, M.; Sugandhi, K.; Nithya, S.; Muthuraja, P.; Balachandar, S.; Aranganayagam, K. R.

    2018-05-01

    The perovskite type organic-inorganic hybrid benzyltributyl ammoniumtetrachloro manganate (II) monohydrates (BTBA-Mn) are synthesized and the single crystals are grown by slow evaporation solution growth technique. The structure of the grown crystals are confirmed by using X-ray diffraction (XRD), unit cell parameter analysis, Fourier transform Infrared (FTIR), elemental analysis and 13C-NMR spectral studies. Thermogravimetry (TG), differential thermal analysis (DTA) and differential scanning colorimetric (DSC) analysis were carried out to understand thermal stability and occurrence of phase transition.

  9. Phase transition in organic-inorganic perovskite (C9H19NH3)2 PbI2Br2 of long-chain alkylammonium

    NASA Astrophysics Data System (ADS)

    Abid, H.; Trigui, A.; Mlayah, A.; Hlil, E. K.; Abid, Y.

    2012-01-01

    Single perovskite slab alkylammonium lead iodides bromides (C9H19NH3)2PbI2Br2 is a new member of the family of hybrid organic-inorganic perovskite compounds. It exhibits a single structural phase transition with changes in the conformation of alkylammonium chains below room temperature. Differential scanning calorimetry (DSC), powder X-ray diffraction and FT-Raman spectroscopy were used to investigate this phase transition. These changes were characterized by a decreased conformational disorder of the methylene units of the alkyl chains. Phase transition was examined in light of the interesting optical properties of this material, as well as the relevance of this system as models for phase transitions in lipid bilayers.

  10. Lead halide perovskites: Crystal-liquid duality, phonon glass electron crystals, and large polaron formation

    PubMed Central

    Miyata, Kiyoshi; Atallah, Timothy L.; Zhu, X.-Y.

    2017-01-01

    Lead halide perovskites have been demonstrated as high performance materials in solar cells and light-emitting devices. These materials are characterized by coherent band transport expected from crystalline semiconductors, but dielectric responses and phonon dynamics typical of liquids. This “crystal-liquid” duality implies that lead halide perovskites belong to phonon glass electron crystals, a class of materials believed to make the most efficient thermoelectrics. We show that the crystal-liquid duality and the resulting dielectric response are responsible for large polaron formation and screening of charge carriers, leading to defect tolerance, moderate charge carrier mobility, and radiative recombination properties. Large polaron formation, along with the phonon glass character, may also explain the marked reduction in hot carrier cooling rates in these materials. PMID:29043296

  11. Efficient planar n-i-p type heterojunction flexible perovskite solar cells with sputtered TiO2 electron transporting layers.

    PubMed

    Mali, Sawanta S; Hong, Chang Kook; Inamdar, A I; Im, Hyunsik; Shim, Sang Eun

    2017-03-02

    The development of hybrid organo-lead trihalide perovskite solar cells (PSCs) comprising an electron transporting layer (ETL), a perovskite light absorber and a hole transporting layer (HTL) has received significant attention for their potential in efficient PSCs. However, the preparation of a compact and uniform ETL and the formation of a uniform light absorber layer suffer from a high temperature processing treatment and the formation of unwanted perovskite islands, respectively. A low temperature/room temperature processed ETL is one of the best options for the fabrication of flexible PSCs. In the present work, we report the implementation of a room temperature processed compact TiO 2 ETL and the synthesis of extremely uniform flexible planar PSCs based on methylammonium lead mixed halides MAPb(I 1-x Br x ) 3 (x = 0.1) via RF-magnetron sputtering and a toluene dripping treatment, respectively. The compact TiO 2 ETLs with different thicknesses (30 to 100 nm) were directly deposited on a flexible PET coated ITO substrate by varying the RF-sputtering time and used for the fabrication of flexible PSCs. The photovoltaic properties revealed that flexible PSC performance is strongly dependent on the TiO 2 ETL thickness. The open circuit voltage (V OC ) and fill factor (FF) are directly proportional to the TiO 2 ETL thickness while the 50 nm thick TiO 2 ETL shows the highest current density (J SC ) of 20.77 mA cm -2 . Our controlled results reveal that the room temperature RF-magnetron sputtered 50 nm-thick TiO 2 ETL photoelectrode exhibits a power conversion efficiency (PCE) in excess of 15%. The use of room temperature synthesis of the compact TiO 2 ETL by RF magnetron sputtering results in an enhancement of the device performance for cells prepared on flexible substrates. The champion flexible planar PSC based on this architecture exhibited a promising power conversion efficiency as high as 15.88%, featuring a high FF of 0.69 and V OC of 1.108 V with a negligible hysteresis under AM 1.5 G illumination. Furthermore, the mechanical bending stability revealed that the fabricated devices show stable PCE up to 200 bending cycles. The interface properties revealed that the 50 nm thick TiO 2 ETL provides superior charge injection characteristics and low internal resistance. The present work provides a simplistic and reliable approach for the fabrication of highly efficient stable flexible perovskite solar cells.

  12. Lasing in robust cesium lead halide perovskite nanowires

    PubMed Central

    Eaton, Samuel W.; Lai, Minliang; Gibson, Natalie A.; Wong, Andrew B.; Dou, Letian; Ma, Jie; Wang, Lin-Wang; Leone, Stephen R.; Yang, Peidong

    2016-01-01

    The rapidly growing field of nanoscale lasers can be advanced through the discovery of new, tunable light sources. The emission wavelength tunability demonstrated in perovskite materials is an attractive property for nanoscale lasers. Whereas organic–inorganic lead halide perovskite materials are known for their instability, cesium lead halides offer a robust alternative without sacrificing emission tunability or ease of synthesis. Here, we report the low-temperature, solution-phase growth of cesium lead halide nanowires exhibiting low-threshold lasing and high stability. The as-grown nanowires are single crystalline with well-formed facets, and act as high-quality laser cavities. The nanowires display excellent stability while stored and handled under ambient conditions over the course of weeks. Upon optical excitation, Fabry–Pérot lasing occurs in CsPbBr3 nanowires with an onset of 5 μJ cm−2 with the nanowire cavity displaying a maximum quality factor of 1,009 ± 5. Lasing under constant, pulsed excitation can be maintained for over 1 h, the equivalent of 109 excitation cycles, and lasing persists upon exposure to ambient atmosphere. Wavelength tunability in the green and blue regions of the spectrum in conjunction with excellent stability makes these nanowire lasers attractive for device fabrication. PMID:26862172

  13. Composition-Graded Cesium Lead Halide Perovskite Nanowires with Tunable Dual-Color Lasing Performance.

    PubMed

    Huang, Ling; Gao, Qinggang; Sun, Ling-Dong; Dong, Hao; Shi, Shuo; Cai, Tong; Liao, Qing; Yan, Chun-Hua

    2018-05-21

    Cesium lead halide (CsPbX 3 ) perovskite has emerged as a promising low-threshold multicolor laser material; however, realizing wavelength-tunable lasing output from a single CsPbX 3 nanostructure is still constrained by integrating different composition. Here, the direct synthesis of composition-graded CsPbBr x I 3- x nanowires (NWs) is reported through vapor-phase epitaxial growth on mica. The graded composition along the NW, with an increased Br/I from the center to the ends, comes from desynchronized deposition of cesium lead halides and temperature-controlled anion-exchange reaction. The graded composition results in varied bandgaps along the NW, which induce a blueshifted emission from the center to the ends. As an efficient gain media, the nanowire exerts position-dependent lasing performance, with a different color at the ends and center respectively above the threshold. Meanwhile, dual-color lasing with a wavelength separation of 35 nm is activated simultaneously at a site with an intermediate composition. This position-dependent dual-color lasing from a single nanowire makes these metal halide perovskites promising for applications in nanoscale optical devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. In Situ Crystallization Synthesis of CsPbBr3 Perovskite Quantum Dot-Embedded Glasses with Improved Stability for Solid-State Lighting and Random Upconverted Lasing.

    PubMed

    Yuan, Shuo; Chen, Daqin; Li, Xinyue; Zhong, Jiasong; Xu, Xuhui

    2018-06-06

    All-inorganic cesium lead bromide CsPbBr 3 perovskite quantum dots (QDs) are emerging as potential candidates for their applications in optoelectronic devices but they suffer from poor long-term stability due to their high sensitivity to UV irradiation, heat, and especially to moisture. Although great advances in improving stability of perovskite QDs have been achieved by surface modification or encapsulation in polymer and silica, they are not sufficiently refrained from external environment due to nondense structures of these protective layers. In this work, in situ nanocrystallization strategy is developed to directly grow CsPbBr 3 QDs among a specially designed TeO 2 -based glass matrix. As a result, QD-embedded glass shows typical bright green emission assigned to exciton recombination radiation and significant improvement of photon/thermal stability and water resistance due to the effective protecting role of dense structural glass. Particularly, ∼90% of emission intensity is even remained after immersing QD-embedded glass in water up to 120 h, enabling them to find promising applications in white-light-emitting device with superior color stability and low-threshold random upconverted laser under ambient air condition.

  15. Interplay of local structure, charge, and spin in bilayered manganese perovskites

    NASA Astrophysics Data System (ADS)

    Rybicki, Damian; Sikora, Marcin; Przewoznik, Janusz; Kapusta, Czesław; Mitchell, John F.

    2018-03-01

    Chemical doping is a reliable method of modification of the electronic properties of transition metal compounds. In manganese perovskites, it leads to charge transfer and peculiar ordering phenomena. However, depending on the interplay of the local crystal structure and electronic properties, synthesis of stable compounds in the entire doping range is often impossible. Here, we show results of high-energy resolution x-ray absorption and emission spectroscopies on a La2 -2 xSr1 +2 xMn2O7 family of bilayered manganites in a broad doping range (0.5 ≤x ≤1 ). We established a relation between local Mn charge and Mn-O distances as a function of doping. Based on a comparison of such relation with other manganites, we suggest why stable structures cannot be realized for certain doping levels of bilayered compounds.

  16. High Efficiency Inverted Planar Perovskite Solar Cells with Solution-Processed NiOx Hole Contact.

    PubMed

    Yin, Xuewen; Yao, Zhibo; Luo, Qiang; Dai, Xuezeng; Zhou, Yu; Zhang, Ye; Zhou, Yangying; Luo, Songping; Li, Jianbao; Wang, Ning; Lin, Hong

    2017-01-25

    NiO x is a promising hole-transporting material for perovskite solar cells due to its high hole mobility, good stability, and easy processability. In this work, we employed a simple solution-processed NiO x film as the hole-transporting layer in perovskite solar cells. When the thickness of the perovskite layer increased from 270 to 380 nm, the light absorption and photogenerated carrier density were enhanced and the transporting distance of electron and hole would also increase at the same time, resulting in a large charge transfer resistance and a long hole-extracted process in the device, characterized by the UV-vis, photoluminescence, and electrochemical impedance spectroscopy spectra. Combining both of these factors, an optimal thickness of 334.2 nm was prepared with the perovskite precursor concentration of 1.35 M. Moreover, the optimal device fabrication conditions were further achieved by optimizing the thickness of NiO x hole-transporting layer and PCBM electron selective layer. As a result, the best power conversion efficiency of 15.71% was obtained with a J sc of 20.51 mA·cm -2 , a V oc of 988 mV, and a FF of 77.51% with almost no hysteresis. A stable efficiency of 15.10% was caught at the maximum power point. This work provides a promising route to achieve higher efficiency perovskite solar cells based on NiO or other inorganic hole-transporting materials.

  17. Globularity-Selected Large Molecules for a New Generation of Multication Perovskites.

    PubMed

    Gholipour, Somayeh; Ali, Abdollah Morteza; Correa-Baena, Juan-Pablo; Turren-Cruz, Silver-Hamill; Tajabadi, Fariba; Tress, Wolfgang; Taghavinia, Nima; Grätzel, Michael; Abate, Antonio; De Angelis, Filippo; Gaggioli, Carlo Alberto; Mosconi, Edoardo; Hagfeldt, Anders; Saliba, Michael

    2017-10-01

    Perovskite solar cells (PSCs) use perovskites with an APbX 3 structure, where A is a monovalent cation and X is a halide such as Cl, Br, and/or I. Currently, the cations for high-efficiency PSCs are Rb, Cs, methylammonium (MA), and/or formamidinium (FA). Molecules larger than FA, such as ethylammonium (EA), guanidinium (GA), and imidazolium (IA), are usually incompatible with photoactive "black"-phase perovskites. Here, novel molecular descriptors for larger molecular cations are introduced using a "globularity factor", i.e., the discrepancy of the molecular shape and an ideal sphere. These cationic radii differ significantly from previous reports, showing that especially ethylammonium (EA) is only slightly larger than FA. This makes EA a suitable candidate for multication 3D perovskites that have potential for unexpected and beneficial properties (suppressing halide segregation, stability). This approach is tested experimentally showing that surprisingly large quantities of EA get incorporated, in contrast to most previous reports where only small quantities of larger molecular cations can be tolerated as "additives". MA/EA perovskites are characterized experimentally with a band gap ranging from 1.59 to 2.78 eV, demonstrating some of the most blue-shifted PSCs reported to date. Furthermore, one of the compositions, MA 0.5 EA 0.5 PbBr 3 , shows an open circuit voltage of 1.58 V, which is the highest to date with a conventional PSC architecture. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. High Photoluminescence Quantum Yield in Band Gap Tunable Bromide Containing Mixed Halide Perovskites

    DOE PAGES

    Sutter-Fella, Carolin M.; Li, Yanbo; Amani, Matin; ...

    2015-12-21

    Hybrid organic-inorganic halide perovskite based semiconductor materials are attractive for use in a wide range of optoelectronic devices because they combine the advantages of suitable optoelectronic attributes and simultaneously low-cost solution processability. Here, we present a two-step low-pressure vapor-assisted solution process to grow high quality homogeneous CH 3NH 3PbI 3-xBr x perovskite films over the full band gap range of 1.6-2.3 eV. Photoluminescence light-in versus light-out characterization techniques are used to provide new insights into the optoelectronic properties of Br-containing hybrid organic-inorganic perovskites as a function of optical carrier injection by employing pump-powers over a 6 orders of magnitude dynamicmore » range. The internal luminescence quantum yield of wide band gap perovskites reaches impressive values up to 30%. This high quantum yield translates into substantial quasi-Fermi level splitting and high "luminescence or optically implied" open-circuit voltage. Most importantly, both attributes, high internal quantum yield and high optically implied open-circuit voltage, are demonstrated over the entire band gap range (1.6 eV ≤ E g ≤ 2.3 eV). These results establish the versatility of Br-containing perovskite semiconductors for a variety of applications and especially for the use as high-quality top cell in tandem photovoltaic devices in combination with industry dominant Si bottom cells. (Figure Presented).« less

  19. Overcoming the Photovoltage Plateau in Large Bandgap Perovskite Photovoltaics

    DOE PAGES

    Rajagopal, Adharsh; Stoddard, Ryan J.; Jo, Sae Byeok; ...

    2018-05-07

    Development of large bandgap (1.80−1.85 eV Eg) perovskite is crucial for perovskite−perovskite tandem solar cells. However, the performance of 1.80−1.85 eV Eg perovskite solar cells (PVKSCs) are significantly lagging their counterparts in the 1.60−1.75 eV Eg range. This is because the photovoltage (Voc) does not proportionally increase with Eg due to lower optoelectronic quality of conventional (MA,FA,Cs)Pb(I,Br)3 and results in a photovoltage plateau (Voc limited to 80% of the theoretical limit for ∼1.8 eV Eg). Here, we incorporate phenyl- ethylammonium (PEA) in a mixed-halide perovskite composition to solve the inherent material-level challenges in 1.80−1.85 eV Eg perovskites. The amount ofmore » PEA incorporation governs the topography and optoelectronic properties of resultant films. Detailed structural and spectroscopic characterization reveal the characteristic trends in crystalline size, orientation, and charge carrier recombination dynamics and rationalize the origin of improved material quality with higher luminescence. With careful interface optimization, the improved material characteristics were translated to devices and Voc values of 1.30−1.35 V were achieved, which correspond to 85−87% of the theoretical limit. Using an optimal amount of PEA incorporation to balance the increase in Voc and the decrease in charge collection, a highest power conversion efficiency of 12.2% was realized. Our results clearly overcome the photovoltage plateau in the 1.80−1.85 eV Eg range and represent the highest Voc achieved for mixed-halide PVKSCs. This study provides widely translatable insights, an important breakthrough, and a promising platform for next- generation perovskite tandems.« less

  20. Overcoming the Photovoltage Plateau in Large Bandgap Perovskite Photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajagopal, Adharsh; Stoddard, Ryan J.; Jo, Sae Byeok

    Development of large bandgap (1.80−1.85 eV Eg) perovskite is crucial for perovskite−perovskite tandem solar cells. However, the performance of 1.80−1.85 eV Eg perovskite solar cells (PVKSCs) are significantly lagging their counterparts in the 1.60−1.75 eV Eg range. This is because the photovoltage (Voc) does not proportionally increase with Eg due to lower optoelectronic quality of conventional (MA,FA,Cs)Pb(I,Br)3 and results in a photovoltage plateau (Voc limited to 80% of the theoretical limit for ∼1.8 eV Eg). Here, we incorporate phenyl- ethylammonium (PEA) in a mixed-halide perovskite composition to solve the inherent material-level challenges in 1.80−1.85 eV Eg perovskites. The amount ofmore » PEA incorporation governs the topography and optoelectronic properties of resultant films. Detailed structural and spectroscopic characterization reveal the characteristic trends in crystalline size, orientation, and charge carrier recombination dynamics and rationalize the origin of improved material quality with higher luminescence. With careful interface optimization, the improved material characteristics were translated to devices and Voc values of 1.30−1.35 V were achieved, which correspond to 85−87% of the theoretical limit. Using an optimal amount of PEA incorporation to balance the increase in Voc and the decrease in charge collection, a highest power conversion efficiency of 12.2% was realized. Our results clearly overcome the photovoltage plateau in the 1.80−1.85 eV Eg range and represent the highest Voc achieved for mixed-halide PVKSCs. This study provides widely translatable insights, an important breakthrough, and a promising platform for next- generation perovskite tandems.« less

  1. ZnO nanorods/AZO photoanode for perovskite solar cells fabricated in ambient air

    NASA Astrophysics Data System (ADS)

    La Ferrara, Vera; De Maria, Antonella; Rametta, Gabriella; Della Noce, Marco; Vittoria Mercaldo, Lucia; Borriello, Carmela; Bruno, Annalisa; Delli Veneri, Paola

    2017-08-01

    ZnO nanorods are a good candidate for replacing standard photoanodes, such as TiO2, in perovskite solar cells and in principle superseding the high performances already obtained. This is possible because ZnO nanorods have a fast electron transport rate due to their large surface area. An array of ZnO nanorods is grown by chemical bath deposition starting from Al-doped ZnO (AZO) used both as a seed layer and as an efficient transparent anode in the visible spectral range. In particular, in this work we fabricate methylammonium lead iodide (CH3NH3PbI3) perovskite solar cells using glass/AZO/ZnO nanorods/perovskite/Spiro-OMeTAD/Au as the architecture. The growth of ZnO nanorods has been optimized by varying the precursor concentrations, growth time and solution temperature. All the fabrication process and photovoltaic characterizations have been carried out in ambient air and the devices have not been encapsulated. Power conversion efficiency as high as 7.0% has been obtained with a good stability over 20 d. This is the highest reported value to the best of our knowledge and it is a promising result for the development of perovskite solar cells based on ZnO nanorods and AZO.

  2. Distinguishing crystallization stages and their influence on quantum efficiency during perovskite solar cell formation in real-time.

    PubMed

    Wagner, Lukas; Mundt, Laura E; Mathiazhagan, Gayathri; Mundus, Markus; Schubert, Martin C; Mastroianni, Simone; Würfel, Uli; Hinsch, Andreas; Glunz, Stefan W

    2017-11-02

    Relating crystallization of the absorber layer in a perovskite solar cell (PSC) to the device performance is a key challenge for the process development and in-depth understanding of these types of high efficient solar cells. A novel approach that enables real-time photo-physical and electrical characterization using a graphite-based PSC is introduced in this work. In our graphite-based PSC, the device architecture of porous monolithic contact layers creates the possibility to perform photovoltaic measurements while the perovskite crystallizes within this scaffold. The kinetics of crystallization in a solution based 2-step formation process has been analyzed by real-time measurement of the external photon to electron quantum efficiency as well as the photoluminescence emission spectra of the solar cell. With this method it was in particular possible to identify a previously overlooked crystallization stage during the formation of the perovskite absorber layer. This stage has significant influence on the development of the photocurrent, which is attributed to the formation of electrical pathways between the electron and hole contact, enabling efficient charge carrier extraction. We observe that in contrast to previously suggested models, the perovskite layer formation is indeed not complete with the end of crystal growth.

  3. Characterization of perovskite layer on various nanostructured silicon wafer

    NASA Astrophysics Data System (ADS)

    Rostan, Nur Fairuz Mohd; Sepeai, Suhaila; Ramli, Noor Fadhilah; Azhari, Ayu Wazira; Ludin, Norasikin Ahmad; Teridi, Mohd Asri Mat; Ibrahim, Mohd Adib; Zaidi, Saleem H.

    2017-05-01

    Crystalline silicon (c-Si) solar cell dominates 90% of photovoltaic (PV) market. The c-Si is the most mature of all PV technologies and expected to remain leading the PV technology by 2050. The attractive characters of Si solar cell are stability, long lasting and higher lifetime. Presently, the efficiency of c-Si solar cell is still stuck at 25% for one and half decades. Tandem approach is one of the attempts to improve the Si solar cell efficiency with higher bandgap layer is stacked on top of Si bottom cell. Perovskite offers a big potential to be inserted into a tandem solar cell. Perovskite with bandgap of 1.6 to 1.9 eV will be able to absorb high energy photons, meanwhile c-Si with bandgap of 1.124 eV will absorb low energy photons. The high carrier mobility, high carrier lifetime, highly compatible with both solution and evaporation techniques makes perovskite an eligible candidate for perovskite-Si tandem configuration. The solution of methyl ammonium lead iodide (MAPbI3) was prepared by single step precursor process. The perovskite layer was deposited on different c-Si surface structure, namely planar, textured and Si nanowires (SiNWs) by using spin-coating technique at different rotation speeds. The nanostructure of Si surface was textured using alkaline based wet chemical etching process and SiNW was grown using metal assisted etching technique. The detailed surface morphology and absorbance of perovskite were studied in this paper. The results show that the thicknesses of MAPbI3 were reduced with the increasing of rotation speed. In addition, the perovskite layer deposited on the nanostructured Si wafer became rougher as the etching time and rotation speed increased. The average surface roughness increased from ˜24 nm to ˜38 nm for etching time range between 5-60 min at constant low rotation speed (2000 rpm) for SiNWs Si wafer.

  4. Process for production of solution-derived (Pb,La)(Nb,Sn,Zr,Ti)O{sub 3} thin films and powders

    DOEpatents

    Boyle, T.J.

    1999-01-12

    A simple and rapid process for synthesizing (Pb,La)(Nb,Sn,Zr,Ti)O{sub 3} precursor solutions and subsequent ferroelectric thin films and powders of the perovskite phase of these materials has been developed. This process offers advantages over standard methods, including: rapid solution synthesis (<10 minutes), use of commercially available materials, film production under ambient conditions, ease of lanthanum dissolution at high concentrations, and no heating requirements during solution synthesis. For lanthanum-doped ferroelectric materials, the lanthanum source can be added with total synthesis time less than 10 minutes. Films and powders are crystallized at approximately 650 C and exhibit ferroelectric properties comparable to films and powders produced by other techniques which require higher crystallization temperatures. 2 figs.

  5. Process for production of solution-derived (Pb,La)(Nb,Sn,Zr,Ti)O.sub.3 thin films and powders

    DOEpatents

    Boyle, Timothy J.

    1999-01-01

    A simple and rapid process for synthesizing (Pb,La)(Nb,Sn,Zr,Ti)O.sub.3 precursor solutions and subsequent ferroelectric thin films and powders of the perovskite phase of these materials has been developed. This process offers advantages over standard methods, including: rapid solution synthesis (<10 minutes), use of commercially available materials, film production under ambient conditions, ease of lanthanum dissolution at high concentrations, and no heating requirements during solution synthesis. For lanthanum-doped ferroelectric materials, the lanthanum source can be added with total synthesis time less than 10 minutes. Films and powders are crystallized at approximately 650.degree. C. and exhibit ferroelectric properties comparable to films and powders produced by other techniques which require higher crystallization temperatures.

  6. Understanding and Eliminating Hysteresis for Highly Efficient Planar Perovskite Solar Cells

    DOE PAGES

    Wang, Changlei; Xiao, Chuanxiao; Yu, Yue; ...

    2017-05-11

    Through detailed device characterization using cross-sectional Kelvin probe force microscopy (KPFM) and trap density of states measurements, we identify that the J-V hysteresis seen in planar organic-inorganic hybrid perovskite solar cells (PVSCs) using SnO 2 electron selective layers (ESLs) synthesized by low-temperature plasma-enhanced atomic-layer deposition (PEALD) method is mainly caused by the imbalanced charge transportation between the ESL/perovskite and the hole selective layer/perovskite interfaces. We find that this charge transportation imbalance is originated from the poor electrical conductivity of the low-temperature PEALD SnO 2 ESL. We further discover that a facile low-temperature thermal annealing of SnO 2 ESLs can effectivelymore » improve the electrical mobility of low-temperature PEALD SnO 2 ESLs and consequently significantly reduce or even eliminate the J-V hysteresis. With the reduction of J-V hysteresis and optimization of deposition process, planar PVSCs with stabilized output powers up to 20.3% are achieved. Here, the results of this study provide insights for further enhancing the efficiency of planar PVSCs.« less

  7. Light-induced lattice expansion leads to high-efficiency perovskite solar cells.

    PubMed

    Tsai, Hsinhan; Asadpour, Reza; Blancon, Jean-Christophe; Stoumpos, Constantinos C; Durand, Olivier; Strzalka, Joseph W; Chen, Bo; Verduzco, Rafael; Ajayan, Pulickel M; Tretiak, Sergei; Even, Jacky; Alam, Muhammad Ashraf; Kanatzidis, Mercouri G; Nie, Wanyi; Mohite, Aditya D

    2018-04-06

    Light-induced structural dynamics plays a vital role in the physical properties, device performance, and stability of hybrid perovskite-based optoelectronic devices. We report that continuous light illumination leads to a uniform lattice expansion in hybrid perovskite thin films, which is critical for obtaining high-efficiency photovoltaic devices. Correlated, in situ structural and device characterizations reveal that light-induced lattice expansion benefits the performances of a mixed-cation pure-halide planar device, boosting the power conversion efficiency from 18.5 to 20.5%. The lattice expansion leads to the relaxation of local lattice strain, which lowers the energetic barriers at the perovskite-contact interfaces, thus improving the open circuit voltage and fill factor. The light-induced lattice expansion did not compromise the stability of these high-efficiency photovoltaic devices under continuous operation at full-spectrum 1-sun (100 milliwatts per square centimeter) illumination for more than 1500 hours. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  8. Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites

    PubMed Central

    Yang, Jianfeng; Wen, Xiaoming; Xia, Hongze; Sheng, Rui; Ma, Qingshan; Kim, Jincheol; Tapping, Patrick; Harada, Takaaki; Kee, Tak W.; Huang, Fuzhi; Cheng, Yi-Bing; Green, Martin; Ho-Baillie, Anita; Huang, Shujuan; Shrestha, Santosh; Patterson, Robert; Conibeer, Gavin

    2017-01-01

    The hot-phonon bottleneck effect in lead-halide perovskites (APbX3) prolongs the cooling period of hot charge carriers, an effect that could be used in the next-generation photovoltaics devices. Using ultrafast optical characterization and first-principle calculations, four kinds of lead-halide perovskites (A=FA+/MA+/Cs+, X=I−/Br−) are compared in this study to reveal the carrier-phonon dynamics within. Here we show a stronger phonon bottleneck effect in hybrid perovskites than in their inorganic counterparts. Compared with the caesium-based system, a 10 times slower carrier-phonon relaxation rate is observed in FAPbI3. The up-conversion of low-energy phonons is proposed to be responsible for the bottleneck effect. The presence of organic cations introduces overlapping phonon branches and facilitates the up-transition of low-energy modes. The blocking of phonon propagation associated with an ultralow thermal conductivity of the material also increases the overall up-conversion efficiency. This result also suggests a new and general method for achieving long-lived hot carriers in materials. PMID:28106061

  9. Structural and Dielectric Study of (Dy,Er,Ho) CrO 3 Biferroic Compounds

    NASA Astrophysics Data System (ADS)

    Meza, Cesar; Siqueiros, Jesus; Duran, Alejandro

    2011-03-01

    Technological progress, especially in electronic applications, demands increasingly advanced substances, capable of performing a variety of tasks while simultaneously occupying less space than their predecessors. An answer to this demand lies within the realm of multiferroics. Multiferroic materials are defined as those single phase compounds where more than one ferroic order coexists; they generally belong to the perovskite group. One manifestation of multiferroicity, magnetoelectricity, requires the coexistence of spontaneous electric polarization and magnetic ordering. It is for this reason that rare-earth chromites have been selected as suitable candidates. This work is concerned with synthesis, characterization and dielectric response of the DyCr O3 , ErCr O3 and HoCr O3 ceramic compounds. The samples were synthesized by both the traditional solid state ceramic method, and the self-propagating combustion method. The resultant chromites were characterized by TG, DTA and XRD, which confirms the Pbnm space group. Additionally, conductivity analysis was performed and the associated activation energy determined for each system using experimental values and Arrhenius law. Thanks are due to DGAPA-UNAM for financial support through projects no. IN112909 and IN105711.

  10. Solvothermal synthesis and controlled self-assembly of monodisperse titanium-based perovskite colloidal nanocrystals

    NASA Astrophysics Data System (ADS)

    Caruntu, Daniela; Rostamzadeh, Taha; Costanzo, Tommaso; Salemizadeh Parizi, Saman; Caruntu, Gabriel

    2015-07-01

    The rational design of monodisperse ferroelectric nanocrystals with controlled size and shape and their organization into hierarchical structures has been a critical step for understanding the polar ordering in nanoscale ferroelectrics, as well as the design of nanocrystal-based functional materials which harness the properties of individual nanoparticles and the collective interactions between them. We report here on the synthesis and self-assembly of aggregate-free, single-crystalline titanium-based perovskite nanoparticles with controlled morphology and surface composition by using a simple, easily scalable and highly versatile colloidal route. Single-crystalline, non-aggregated BaTiO3 colloidal nanocrystals, used as a model system, have been prepared under solvothermal conditions at temperatures as low as 180 °C. The shape of the nanocrystals was tuned from spheroidal to cubic upon changing the polarity of the solvent, whereas their size was varied from 16 to 30 nm for spheres and 5 to 78 nm for cubes by changing the concentration of the precursors and the reaction time, respectively. The hydrophobic, oleic acid-passivated nanoparticles exhibit very good solubility in non-polar solvents and can be rendered dispersible in polar solvents by a simple process involving the oxidative cleavage of the double bond upon treating the nanopowders with the Lemieux-von Rudloff reagent. Lattice dynamic analysis indicated that regardless of their size, BaTiO3 nanocrystals present local disorder within the perovskite unit cell, associated with the existence of polar ordering. We also demonstrate for the first time that, in addition to being used for fabricating large area, crack-free, highly uniform films, BaTiO3 nanocubes can serve as building blocks for the design of 2D and 3D mesoscale structures, such as superlattices and superparticles. Interestingly, the type of superlattice structure (simple cubic or face centered cubic) appears to be determined by the type of solvent in which the nanocrystals were dispersed. This approach provides an excellent platform for the synthesis of other titanium-based perovskite colloidal nanocrystals with controlled chemical composition, surface structure and morphology and for their assembly into complex architectures, therefore opening the door for the design of novel mesoscale functional materials/nanocomposites with potential applications in energy conversion, data storage and the biomedical field.The rational design of monodisperse ferroelectric nanocrystals with controlled size and shape and their organization into hierarchical structures has been a critical step for understanding the polar ordering in nanoscale ferroelectrics, as well as the design of nanocrystal-based functional materials which harness the properties of individual nanoparticles and the collective interactions between them. We report here on the synthesis and self-assembly of aggregate-free, single-crystalline titanium-based perovskite nanoparticles with controlled morphology and surface composition by using a simple, easily scalable and highly versatile colloidal route. Single-crystalline, non-aggregated BaTiO3 colloidal nanocrystals, used as a model system, have been prepared under solvothermal conditions at temperatures as low as 180 °C. The shape of the nanocrystals was tuned from spheroidal to cubic upon changing the polarity of the solvent, whereas their size was varied from 16 to 30 nm for spheres and 5 to 78 nm for cubes by changing the concentration of the precursors and the reaction time, respectively. The hydrophobic, oleic acid-passivated nanoparticles exhibit very good solubility in non-polar solvents and can be rendered dispersible in polar solvents by a simple process involving the oxidative cleavage of the double bond upon treating the nanopowders with the Lemieux-von Rudloff reagent. Lattice dynamic analysis indicated that regardless of their size, BaTiO3 nanocrystals present local disorder within the perovskite unit cell, associated with the existence of polar ordering. We also demonstrate for the first time that, in addition to being used for fabricating large area, crack-free, highly uniform films, BaTiO3 nanocubes can serve as building blocks for the design of 2D and 3D mesoscale structures, such as superlattices and superparticles. Interestingly, the type of superlattice structure (simple cubic or face centered cubic) appears to be determined by the type of solvent in which the nanocrystals were dispersed. This approach provides an excellent platform for the synthesis of other titanium-based perovskite colloidal nanocrystals with controlled chemical composition, surface structure and morphology and for their assembly into complex architectures, therefore opening the door for the design of novel mesoscale functional materials/nanocomposites with potential applications in energy conversion, data storage and the biomedical field. Electronic supplementary information (ESI) available: FE-SEM image of 12 nm BaTiO3 nanocubes deposited onto a silicon wafer (Fig. SI1), the X-ray diffraction pattern of a superlattice structure formed by monodisperse 10 nm BaTiO3 cuboidal nanocrystals (Fig. SI2) and TEM images of a BaTiO3 superparticle (Fig. SI3). See DOI: 10.1039/c5nr00737b

  11. Synthesis and Characterization of Ferromagnetic/Antiferromagnetic Perovskite Oxide Superlattices

    NASA Astrophysics Data System (ADS)

    Jia, Yue

    Perovskite oxides span a diverse range of functional properties such as ferromagnetism, superconductivity, and ferroelectricity, which makes them promising candidate materials for applications such as sensors, energy conversion and data storage devices. With recent advances in thin film deposition techniques, the precise manipulation of atomic layers on the unit cell level make it possible to synthesize epitaxial thin film heterostructures consisting of layers with different properties. The structural compatibility of perovskite oxides allows them to be epitaxially grown in complex heterostructures such as superlattices with a large density of interfaces where the interplay between spin, charge, orbital, and lattice degrees of freedom gives rise to new behaviors. The ferromagnetic (FM)/antiferromagnetic (AF) interface is particularly interesting due to exchange coupling which is not only of interest for fundamental research but also is of great significance for industrial applications. Unlike metallic systems that have been studied for decades with wide ranges of applications in devices such as hard disk drives, thin films of complex metal oxides is a relatively new field. Perovskite oxides show much more diverse functional properties than metals and open new pathways for tailoring propertiestowards specific device applications. Epitaxial La0.7Sr0.3MnO3 (LSMO)/La 0.7Sr0.3FeO3 (LSFO) superlattices serve as model systems to explore the magnetic structure and exchange coupling at perovskite oxide interfaces. Earlier work suggested that (001)-oriented LSMO/LSFO superlattices with compensated AF spins at the interface display spin-flop coupling characterized by perpendicular alignment between the AF spin axes and the FM moments at a sublayer thickness of 6 unit cells (u.c.). Changing the crystallographic orientation of the interface from (001) to (111) introduces changes to factors such as the charge density of each stacking layer, the magnetic iiistructure of the AF layer at the interface, the symmetry of the lattice, and the orbital degeneracy. Therefore, different properties and exchange coupling mechanisms are expected. (111)-oriented LSMO/LSFO superlattices with sublayer thicknesses ranging from 3 to 60 u.c. were synthesized and characterized. Detailed analysis of their structural, electronic, and magnetic properties were performed using synchrotron radiation based resonant x-ray reflectivity, soft x-ray magnetic spectroscopy, and photoemission electron microscopy to explore the effect of sublayer thickness on the magnetic structure and exchange coupling at (111)-oriented perovskite oxide interfaces. Interfacial effects and ultrathin superlattice sublayers can stabilize orientations of the LSFO AF spin axis which differ from that of LSFO films and LSMO/LSFO bilayers. In the ultrathin limit (3 to 6 u.c.), it was found that the AF properties of the LSFO sublayers are preserved with an out-of-plane canting of the AF spin axis, while the FM properties of the LSMO sublayers are significantly depressed. For thicker LSFO layers (> 9 u.c.), the out-of-plane canting of the AF spin axis is only present in superlattices with thick LSMO sublayers. As a result, exchange coupling in the form of spin-flop coupling exists only in superlattices which display both robust ferromagnetism and out-of-plane canting of the AF spin axis. A portion of the AF moments can be reoriented by a moderate external magnetic field through spin-flop coupling with the FM LSMO sublayers that have low magnetocrystalline anisotropy in the (111) plane. The AF order in the spin-flop coupled superlattices was studied using angle-dependent x-ray magnetic linear dichroism. The AF order can be categorized into two types: majority of the AF moments cant out-of-the-plane of the film along the or directions depending on the LSFO layer thickness, while a minority portion lies within the (111) plane in different AF domains. The energy difference between domains with their spin axes along the in-plane or out-of-plane directions is small, and the magnetic order of AF thin films is far ivmore complex than in bulk LSFO. The complex AF structure in these (111)-oriented LSMO/LSFO superlattices illustrates that complex metal oxide heterostructures can serve as fertile ground for discovery of new magnetic phases, which have potential applications in next generation information technology devices.

  12. Nanoparticles of spinel and perovskite ferromagnets and prospects for their application in medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belous, A. G., E-mail: belous@ionc.kar.net, E-mail: solopan@ukr.net, E-mail: yelenicho@ukr.net; Solopan, S. O., E-mail: belous@ionc.kar.net, E-mail: solopan@ukr.net, E-mail: yelenicho@ukr.net; Yelenich, O. V., E-mail: belous@ionc.kar.net, E-mail: solopan@ukr.net, E-mail: yelenicho@ukr.net

    In this work, nanoparticles of La{sub 0.75}Sr{sub 0.25}MnO{sub 3} compounds with perovskite structure and AFe{sub 2}O{sub 4} (A = Mn, Fe, Co, Ni, Zn) with spinel structure have been synthesized by precipitation from diethylene glycol and microemulsion using Triton X-100 surfactant. Comparative X-ray diffraction and magnetic studies of the synthesized nanoparticles have been carried out. Magnetic fluids prepared from synthesized nanopowders have been characterized by calorimetric measurements of specific loss power (SLP)

  13. Determination of the structural phase and octahedral rotation angle in halide perovskites

    NASA Astrophysics Data System (ADS)

    dos Reis, Roberto; Yang, Hao; Ophus, Colin; Ercius, Peter; Bizarri, Gregory; Perrodin, Didier; Shalapska, Tetiana; Bourret, Edith; Ciston, Jim; Dahmen, Ulrich

    2018-02-01

    A key to the unique combination of electronic and optical properties in halide perovskite materials lies in their rich structural complexity. However, their radiation sensitive nature limits nanoscale structural characterization requiring dose efficient microscopic techniques in order to determine their structures precisely. In this work, we determine the space-group and directly image the Br halide sites of CsPbBr3, a promising material for optoelectronic applications. Based on the symmetry of high-order Laue zone reflections of convergent-beam electron diffraction, we identify the tetragonal (I4/mcm) structural phase of CsPbBr3 at cryogenic temperature. Electron ptychography provides a highly sensitive phase contrast measurement of the halide positions under low electron-dose conditions, enabling imaging of the elongated Br sites originating from the out-of-phase octahedral rotation viewed along the [001] direction of I4/mcm persisting at room temperature. The measurement of these features and comparison with simulations yield an octahedral rotation angle of 6.5°(±1.5°). The approach demonstrated here opens up opportunities for understanding the atomic scale structural phenomena applying advanced characterization tools on a wide range of radiation sensitive halide-based all-inorganic and hybrid organic-inorganic perovskites.

  14. “Ba{sub 6}Nb{sub 4}RuO{sub 18}” and “LaBa{sub 4}Nb{sub 3}RuO{sub 15}” – The structural consequences of substituting paramagnetic cations into A{sub n}B{sub n−1}O{sub 3n} cation-deficient perovskite oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamil, Elynor L.; Morgan, Harry W.T.; Hayward, Michael A., E-mail: michael.hayward@chem.ox.ac.uk

    The B-cation deficient perovskite phases Ba{sub 6}Nb{sub 4}RuO{sub 18} and LaBa{sub 4}Nb{sub 3}RuO{sub 15} were prepared by ceramic synthesis. Neutron powder diffraction analysis indicates that rather than the 6-layer and 5-layer cation-deficient perovskite structures expected for these phases (by analogy to the known structures of Ba{sub 6}Nb{sub 4}TiO{sub 18} and LaBa{sub 4}Nb{sub 3}TiO{sub 15}) they adopt 5-layer and 4-layer B-cation deficient perovskite structures respectively, and are better described as Ba{sub 5}Nb{sub 3.33}Ru{sub 0.81}O{sub 15} and Ba{sub 3.16}La{sub 0.84}Nb{sub 2.36}Ru{sub 0.72}O{sub 12}. The factors that lead to the compositionally analogous Nb/Ru and Nb/Ti phases adopting different structures are discussed on themore » basis of the difference between d{sup 0} and non-d{sup 0} transition metal cations. - Graphical abstract: The ruthenium-containing B-cation deficient perovskite phases, Ba{sub 5}Nb{sub 3.33}Ru{sub 0.81}O{sub 15} and Ba{sub 3.16}La{sub 0.84}Nb{sub 2.36}Ru{sub 0.72}O{sub 12}, adopt 5-layer and 4-layer structures respectively, rather than the 6-layer and 5-layer cation-deficient structures adopted by the analogous titanium-containing phases Ba{sub 6}Nb{sub 4}TiO{sub 18} and LaBa{sub 4}Nb{sub 3}TiO{sub 15}. Display Omitted - Highlights: • B-cation deficient perovskite containing paramagnetic cations. • B-cation deficient structure determined by neutron powder diffraction. • Low ‘solubility’ of BaRuO{sub 3} in Ba{sub 5}Nb{sub 4}O{sub 15} leads to novel structure.« less

  15. Synthesis and Characterization of Polyether Adducts of Barium and Strontium Carboxylates and Their Use in the Formation of MTiO(3) Films.

    PubMed

    Wojtczak, William A.; Atanassova, Paolina; Hampden-Smith, Mark J.; Duesler, Eileen

    1996-11-20

    The synthesis, characterization, and reactivity of new polyether adducts of strontium and barium carboxylates of general composition M(O(2)CCF(3))(n)()(L) (M = Ba, L = 15-crown-5, (1); M = Ba (2), Sr (3), respectively, with L = tetraglyme are reported. The compounds were synthesized by reaction of BaCO(3) or MH(2) (M = Sr or Ba) with organic acids in the presence of the polyether ligands. These compounds have been characterized by IR and (13)C and (1)H NMR spectroscopies, elemental analyses, and thermogravimetric analysis. The species Ba(2)(O(2)CCF(3))(4)(15-crown-5)(2) (1) and [Ba(2)(O(2)CCF(3))(4)(tetraglyme)](infinity) (2), were also characterized by single-crystal X-ray diffraction. Ba(2)(O(2)CCF(3))(4)(15-crown-5)(2) (1) crystallizes in the orthorhombic space group Cccm with cell dimensions of a = 13.949(1) Å, b = 19.376(2) Å, c = 16.029(1) Å, and Z = 8. [Ba(2)(O(2)CCF(3))(4)(tetraglyme)](infinity) (2) crystallizes in the monoclinic space group C2/c with cell dimensions of a = 12.8673(12) Å, b = 16.6981(13) Å, c = 15.1191(12) Å, beta = 99.049(8) degrees, and Z = 4. Compounds 1-3 thermally decompose at high temperatures in the solid state to give MF(2). However, solutions of compounds 1-3 dissolved in ethanol with Ti(O-i-Pr)(4) give crystalline perovskite phase MTiO(3) films, or in the case of mixtures of 2 and 3, Ba(1)(-)(x)()Sr(x)()TiO(3) films below 600 degrees C when spin coated onto silicon substrates and thermally treated. The crystallinity, purity, and elemental composition of the films was determined by glancing angle X-ray diffraction and Auger electron spectroscopy.

  16. Band Tailing and Deep Defect States in CH 3NH 3Pb(I 1–xBr x) 3 Perovskites As Revealed by Sub-Bandgap Photocurrent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutter-Fella, Carolin M.; Miller, D. Westley; Ngo, Quynh P.

    Organometal halide perovskite semiconductors have emerged as promising candidates for optoelectronic applications because of the outstanding charge carrier transport properties, achieved with low-temperature synthesis. In this paper, we present highly sensitive sub-bandgap external quantum efficiency (EQE) measurements of Au/spiro-OMeTAD/CH 3NH 3Pb(I 1–xBr x) 3/TiO 2/FTO/glass photovoltaic devices. The room-temperature spectra show exponential band tails with a sharp onset characterized by low Urbach energies (E u) over the full halide composition space. The Urbach energies are 15–23 meV, lower than those for most semiconductors with similar bandgaps (especially with E g > 1.9 eV). Intentional aging of CH 3NH 3Pb(I 1–xBrmore » x) 3 for up to 2300 h, reveals no change in E u, despite the appearance of the PbI 2 phase due to decomposition, and confirms a high degree of crystal ordering. Moreover, sub-bandgap EQE measurements reveal an extended band of sub-bandgap electronic states that can be fit with one or two point defects for pure CH 3NH 3PbI 3 or mixed CH 3NH 3Pb(I 1–xBr x) 3 compositions, respectively. Finally, the study provides experimental evidence of defect states close to the midgap that could impact photocarrier recombination and energy conversion efficiency in higher bandgap CH 3NH 3Pb(I 1–xBr x) 3 alloys.« less

  17. Band Tailing and Deep Defect States in CH 3NH 3Pb(I 1–xBr x) 3 Perovskites As Revealed by Sub-Bandgap Photocurrent

    DOE PAGES

    Sutter-Fella, Carolin M.; Miller, D. Westley; Ngo, Quynh P.; ...

    2017-02-15

    Organometal halide perovskite semiconductors have emerged as promising candidates for optoelectronic applications because of the outstanding charge carrier transport properties, achieved with low-temperature synthesis. In this paper, we present highly sensitive sub-bandgap external quantum efficiency (EQE) measurements of Au/spiro-OMeTAD/CH 3NH 3Pb(I 1–xBr x) 3/TiO 2/FTO/glass photovoltaic devices. The room-temperature spectra show exponential band tails with a sharp onset characterized by low Urbach energies (E u) over the full halide composition space. The Urbach energies are 15–23 meV, lower than those for most semiconductors with similar bandgaps (especially with E g > 1.9 eV). Intentional aging of CH 3NH 3Pb(I 1–xBrmore » x) 3 for up to 2300 h, reveals no change in E u, despite the appearance of the PbI 2 phase due to decomposition, and confirms a high degree of crystal ordering. Moreover, sub-bandgap EQE measurements reveal an extended band of sub-bandgap electronic states that can be fit with one or two point defects for pure CH 3NH 3PbI 3 or mixed CH 3NH 3Pb(I 1–xBr x) 3 compositions, respectively. Finally, the study provides experimental evidence of defect states close to the midgap that could impact photocarrier recombination and energy conversion efficiency in higher bandgap CH 3NH 3Pb(I 1–xBr x) 3 alloys.« less

  18. Novel chromium doped perovskites A2ZnTiO6 (A = Pr, Gd): Synthesis, crystal structure and photocatalytic activity under simulated solar light irradiation

    NASA Astrophysics Data System (ADS)

    Zhu, Hekai; Fang, Minghao; Huang, Zhaohui; Liu, Yan'gai; Chen, Kai; Guan, Ming; Tang, Chao; Zhang, Lina; Wang, Meng

    2017-01-01

    Double perovskite related oxides A2ZnTiO6 (A = Pr, Gd) have been successfully synthesized by solid state reaction and investigated as photocatalysts for the first time. The two layered titanates mainly demonstrate absorbances under UV irradiation, except for several sharp absorption bands above 400 nm for Pr2ZnTiO6. Therefore, a series of photocatalysts by doping A2ZnTiO6 (A = Pr, Gd) with Cr have been developed in the hope to improve their absorption in the visible light region. The successful incorporation of Cr was detected by XRD and XPS, and the prepared samples have also been characteriazed by SEM, UV-vis DRS and PL. The characterization results suggested that Cr was present mainly in the form of Cr3+, with only a small amount of Cr6+ species. It served as an efficient dopant for the extension of visible light absorbance and improved photocatalytic activities under solar light irradiation. For both Pr2ZnTiO6 and Gd2ZnTiO6, the valence band (VB) was composed of hybridized states of the Zn 3d, O 2p and the conduction band (CB) has major contribution from Zn 4s, Ti 3d orbitals. For Cr doped samples, the newly formed spin-polarized valence band in the middle of the band gap that primarily arises from Cr 3d orbitals was responsible for the improved optical and photocatalytic properties.

  19. Synthesis and characterization of substituted garnet and perovskite-based lithium-ion conducting solid electrolytes

    DOE PAGES

    Abreu-Sepúlveda, Maria; Huq, Ashfia; Dhital, Chetan; ...

    2015-09-30

    In this study, titanium, tantalum-substituted Li 7La 3Z r2-xA xO 12 (LLZO, A = Ta, Ti) garnets, and chromium-substituted La (2/3)-xLi 3xTi 1-yCr yO 3 (LLTO) perovskites were prepared by a conventional solid-state reaction and the Pechini processes. The desired crystal phases were obtained by varying the calcination temperature and time, as well as the substitution concentration. All samples indicated decomposition of the precursors when heated above 750 °C and formation of the desired phase after heat treatment at higher temperatures. Neutron diffraction data shows the formation of a predominant cubic phase in the case of Ta-LLZO, and monoclinic phasemore » with minor impurity phases for Cr-LLTO. Ionic conductivity for Ti-LLZO (Li 7La 3Zr 1.4Ti 0.6O 12), Ta-LLZO (Li 6.03La 3Zr 1.533Ta 0.46O 12), and Cr-LLTO (La (2/3)-xLi 3xTi 0.9Cr 0.1O 3) at room temperature were found to be 5.21 × 10 –6, 1.01 ×10 –6, and 1.2 × 10 –4 S cm –1, respectively. The activation energies of the compounds were determined from the Arrhenius plot and were 0.44 eV (Ti 0.6-LLZO), 0.54 eV (Ta 0.5-LLZO), and 0.20 eV (Cr 0.1-LLTO).« less

  20. Synthesis of CaCu3Ti4O12 by modified Sol-gel method with Hydrothermal process

    NASA Astrophysics Data System (ADS)

    Masingboon, C.; Rungruang, S.

    2017-09-01

    CaCu3Ti4O12 powders were synthesized by modified Sol-gel method with Hydrothermal process using Ca(NO3)2· 4H2O, Cu(NO3)2·3H2O, Ti(OC3H7)4 and freshly extracted egg white (ovalbumin) in aqueous medium. The precursor was calcined at 800, 900 and 1000 °C in air for 8 h to obtain nanocrystalline powders of CaCu3Ti4O12. The calcined CaCu3Ti4O12 powders were characterized by XRD, TEM and EDX. The XRD results indicated that all calcined samples have a typical perovskite CaCu3Ti4O12 structure and a small amount of CaTiO3, CuO and TiO2. TEM micrographs showed particle size 100 - 500 nm and EDX results showed elements of CaCu3Ti4O12 powders have calcium, copper, titanium and oxygen.

  1. Connecting the solution chemistry of PbI2 and MAI: a cyclodextrin-based supramolecular approach to the formation of hybrid halide perovskites† †Electronic supplementary information (ESI) available: Experimental section; Section 1: solution characterization; Section 2: solar cell optimization and characterization; Section 3: thin film characterization; Section 4: advanced structural characterization. See DOI: 10.1039/c7sc05095j

    PubMed Central

    Masi, Sofia; Aiello, Federica; Listorti, Andrea; Balzano, Federica; Altamura, Davide; Giannini, Cinzia; Caliandro, Rocco; Uccello-Barretta, Gloria

    2018-01-01

    The evolution from solvated precursors to hybrid halide perovskite films dictates most of the photophysical and optoelectronic properties of the final polycrystalline material. Specifically, the complex equilibria and the importantly different solubilities of lead iodide (PbI2) and methylammonium iodide (MAI) induce inhomogeneous crystal growth, often leading to a defect dense film showing non-optimal optoelectronic properties and intrinsic instability. Here, we explore a supramolecular approach based on the use of cyclodextrins (CDs) to modify the underlying solution chemistry. The peculiar phenomenon demonstrated is a tunable complexation between different CDs and MA+ cations concurrent to an out of cage PbI2 intercalation, representing the first report of a connection between the solvation equilibria of the two perovskite precursors. The optimal conditions in terms of CD cavity size and polarity translate to a neat enhancement of PbI2 solubility in the reaction media, leading to an equilibration of the availability of the precursors in solution. The macroscopic result of this is an improved nucleation process, leading to a perovskite material with higher crystallinity, better optical properties and improved moisture resistance. Remarkably, the use of CDs presents a great potential for a wide range of device-related applications, as well as for the development of tailored composite materials. PMID:29732103

  2. SYNTHESIS AND Zn2+ ION CONDUCTION OF A PEROVSKITE (La, Zn)TiO3

    NASA Astrophysics Data System (ADS)

    Mashiko, W.; Katsumata, T.; Inaguma, Y.

    (La,Zn)TiO3 was synthesized by an ion exchange method using ZnCl2 molten salt. By a powder X-ray diffraction, it was confirmed that perovskite structure was retained after ion exchange. The composition of ion exchanged sample was determined to be La0.55(6)Li0.064(4)Zn0.13(1)Ti1.0(1)O2.97 by ICP analysis, and the homogeneous distribution of Zn in this sample was confirmed by the scanning electron microscope (SEM). The bulk and total conductivity of the sample at the room temperature was measured to be 6.9 × 10-7 S·cm-1, 1.7 × 10-7 S·cm-1, respectively. The mobile species was confirmed to be Zn2+ by the electrolysis at 500°C.

  3. Interplay of local structure, charge, and spin in bilayered manganese perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rybicki, Damian; Sikora, Marcin; Przewoznik, Janusz

    Chemical doping is a reliable method of modification of the electronic properties of transition metal compounds. In manganese perovskites, it leads to charge transfer and peculiar ordering phenomena. However, depending on the interplay of the local crystal structure and electronic properties, synthesis of stable compounds in the entire doping range is often impossible. In this paper, we show results of high-energy resolution x-ray absorption and emission spectroscopies on amore » $${\\mathrm{La}}_{2{-}2x}{\\mathrm{Sr}}_{1+2x}{\\mathrm{Mn}}_{2}{\\mathrm{O}}_{7}$$ family of bilayered manganites in a broad doping range $$(0.5{\\le}x{\\le}1)$$. We established a relation between local Mn charge and Mn-O distances as a function of doping. Finally, based on a comparison of such relation with other manganites, we suggest why stable structures cannot be realized for certain doping levels of bilayered compounds.« less

  4. Interplay of local structure, charge, and spin in bilayered manganese perovskites

    DOE PAGES

    Rybicki, Damian; Sikora, Marcin; Przewoznik, Janusz; ...

    2018-03-27

    Chemical doping is a reliable method of modification of the electronic properties of transition metal compounds. In manganese perovskites, it leads to charge transfer and peculiar ordering phenomena. However, depending on the interplay of the local crystal structure and electronic properties, synthesis of stable compounds in the entire doping range is often impossible. In this paper, we show results of high-energy resolution x-ray absorption and emission spectroscopies on amore » $${\\mathrm{La}}_{2{-}2x}{\\mathrm{Sr}}_{1+2x}{\\mathrm{Mn}}_{2}{\\mathrm{O}}_{7}$$ family of bilayered manganites in a broad doping range $$(0.5{\\le}x{\\le}1)$$. We established a relation between local Mn charge and Mn-O distances as a function of doping. Finally, based on a comparison of such relation with other manganites, we suggest why stable structures cannot be realized for certain doping levels of bilayered compounds.« less

  5. Diesel particulate abatement via wall-flow traps based on perovskite catalysts.

    PubMed

    Fino, Debora; Russo, Nunzio; Saracco, Guido; Specchia, Vito

    2003-01-01

    It is probably redundant to stress how extensive are nowadays the attempts to reduce the diesel particulate emissions from automotive and stationary sources. The present paper looks into a technology relied on a catalytic trap based on a SiC wall-flow monolith lined with suitable catalysts for the sake of promoting a more complete and faster regeneration after particulate capture. All the major steps of the catalytic filter preparation are dealt with, including: the synthesis and choice of the proper catalyst and trap materials, the development of an in situ catalyst deposition technique, the bench testing of the derived catalytic wall-flow. The best catalyst selected was the perovskite La0.9K0.1Cr0.9O3-delta. The filtration efficiency and the pressure drop of the catalytic and non-catalytic monoliths were evaluated on a diesel engine bench under various operating conditions.

  6. Topological Oxide Insulator in Cubic Perovskite Structure

    PubMed Central

    Jin, Hosub; Rhim, Sonny H.; Im, Jino; Freeman, Arthur J.

    2013-01-01

    The emergence of topologically protected conducting states with the chiral spin texture is the most prominent feature at the surface of topological insulators. On the application side, large band gap and high resistivity to distinguish surface from bulk degrees of freedom should be guaranteed for the full usage of the surface states. Here, we suggest that the oxide cubic perovskite YBiO3, more than just an oxide, defines itself as a new three-dimensional topological insulator exhibiting both a large bulk band gap and a high resistivity. Based on first-principles calculations varying the spin-orbit coupling strength, the non-trivial band topology of YBiO3 is investigated, where the spin-orbit coupling of the Bi 6p orbital plays a crucial role. Taking the exquisite synthesis techniques in oxide electronics into account, YBiO3 can also be used to provide various interface configurations hosting exotic topological phenomena combined with other quantum phases. PMID:23575973

  7. Synthesis and single crystal growth of perovskite semiconductor CsPbBr3

    NASA Astrophysics Data System (ADS)

    Zhang, Mingzhi; Zheng, Zhiping; Fu, Qiuyun; Chen, Zheng; He, Jianle; Zhang, Sen; Chen, Cheng; Luo, Wei

    2018-02-01

    As a typical representative of all-inorganic lead halide perovskites, cesium lead bromine (CsPbBr3) has attracted significant attention in recent years. The direct band gap semiconductor CsPbBr3 has a wide band gap of 2.25 eV and high average atomic number (Cs: 55, Pb: 82 and Br: 35), which meet most of the requirements for detection of X- and γ-ray radiation, such as high attenuation, high resistivity, and significant photoconductivity response. However, the growth of large volume CsPbBr3 single crystals remains a challenge. In this paper, the synthesis of CsPbBr3 polycrystalline powders by a chemical co-precipitation method was investigated and the optimum synthesis conditions were obtained. A large CsPbBr3 single crystal of 8 mm diameter and 60 mm length was obtained by a creative electronic dynamic gradient (EDG) method. X-ray diffraction (XRD) patterns and X-ray rocking curve showed that the CsPbBr3 crystal preferentially oriented in the (1 1 0) direction and had a low dislocation density and small residual stress in the crystal. The IR and UV-Vis transmittance and temperature-dependent photoluminescence (PL) spectra showed the crystal had a good basic optical performance. The almost linear current-voltage (I-V) curves implied good ohmic contact between the electrodes and crystal surfaces. The resistivity of the crystal was calculated 109-1010 Ω cm. The above results showed that the quality of the obtained crystal had met the demand of optoelectronic applications.

  8. The photocurrent response in the perovskite device based on coordination polymers: structure, topology, band gap and matched energy levels.

    PubMed

    Luo, Hai-Qiang; Xing, Xiao-Han; Zhang, Pan; Yan, Zhi-Shuo; Zhou, Qing-Feng; Gong, Yun; Lin, Jian-Hua

    2017-06-28

    Using a rigid ditopic ligand, 4,5-di(4'-carboxylphenyl)benzene (H 2 L), three coordination polymers (CPs) formulated as MnL(H 2 O) 2 (1), CdL(H 2 O) (2) and Mn 2 L 2 (DMF) 3 (3) have been synthesized and structurally characterized by single-crystal X-ray diffraction. These three CPs display 2D architectures but with different topologies. The experimental data and DFT calculation indicate that CP 2 is a semiconductor, and its CB/VB energy levels match with those of the perovskite CH 3 NH 3 PbI 3 . A FTO/TiO 2 /CH 3 NH 3 PbI 3 /CP 2 device is fabricated and the CP-based device shows much larger photoresponse under visible light illumination (650 nm > λ > 350 nm, 100 mW cm -2 ) than the individual CP 2. At 0 V vs. AgCl/Ag, the largest photocurrent density yielded by the CP-based perovskite device is ca. 200 times that of CP 2, which is due to the matched energy levels of all the materials in the device, leading the photogenerated electron-hole pairs to be separated effectively. Meanwhile, the coverage of the insoluble CP on the surface of the perovskite CH 3 NH 3 PbI 3 can improve the stability of the perovskite against water.

  9. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX₃, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut.

    PubMed

    Protesescu, Loredana; Yakunin, Sergii; Bodnarchuk, Maryna I; Krieg, Franziska; Caputo, Riccarda; Hendon, Christopher H; Yang, Ruo Xi; Walsh, Aron; Kovalenko, Maksym V

    2015-06-10

    Metal halides perovskites, such as hybrid organic-inorganic CH3NH3PbI3, are newcomer optoelectronic materials that have attracted enormous attention as solution-deposited absorbing layers in solar cells with power conversion efficiencies reaching 20%. Herein we demonstrate a new avenue for halide perovskites by designing highly luminescent perovskite-based colloidal quantum dot materials. We have synthesized monodisperse colloidal nanocubes (4-15 nm edge lengths) of fully inorganic cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I or mixed halide systems Cl/Br and Br/I) using inexpensive commercial precursors. Through compositional modulations and quantum size-effects, the bandgap energies and emission spectra are readily tunable over the entire visible spectral region of 410-700 nm. The photoluminescence of CsPbX3 nanocrystals is characterized by narrow emission line-widths of 12-42 nm, wide color gamut covering up to 140% of the NTSC color standard, high quantum yields of up to 90%, and radiative lifetimes in the range of 1-29 ns. The compelling combination of enhanced optical properties and chemical robustness makes CsPbX3 nanocrystals appealing for optoelectronic applications, particularly for blue and green spectral regions (410-530 nm), where typical metal chalcogenide-based quantum dots suffer from photodegradation.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutter-Fella, Carolin M.; Li, Yanbo; Amani, Matin

    Hybrid organic-inorganic halide perovskite based semiconductor materials are attractive for use in a wide range of optoelectronic devices because they combine the advantages of suitable optoelectronic attributes and simultaneously low-cost solution processability. Here, we present a two-step low-pressure vapor-assisted solution process to grow high quality homogeneous CH 3NH 3PbI 3-xBr x perovskite films over the full band gap range of 1.6-2.3 eV. Photoluminescence light-in versus light-out characterization techniques are used to provide new insights into the optoelectronic properties of Br-containing hybrid organic-inorganic perovskites as a function of optical carrier injection by employing pump-powers over a 6 orders of magnitude dynamicmore » range. The internal luminescence quantum yield of wide band gap perovskites reaches impressive values up to 30%. This high quantum yield translates into substantial quasi-Fermi level splitting and high "luminescence or optically implied" open-circuit voltage. Most importantly, both attributes, high internal quantum yield and high optically implied open-circuit voltage, are demonstrated over the entire band gap range (1.6 eV ≤ E g ≤ 2.3 eV). These results establish the versatility of Br-containing perovskite semiconductors for a variety of applications and especially for the use as high-quality top cell in tandem photovoltaic devices in combination with industry dominant Si bottom cells. (Figure Presented).« less

  11. Perovskite LaTiO₃-Ag0.2 nanomaterials for nonenzymatic glucose sensor with high performance.

    PubMed

    Wang, Yin-zhu; Zhong, Hui; Li, Xiao-mo; Jia, Fei-fei; Shi, Yi-xiang; Zhang, Wei-guang; Cheng, Zhi-peng; Zhang, Li-li; Wang, Ji-kui

    2013-10-15

    In this paper, a nonenzymatic glucose biosensor based on perovskite LaTiO3-Ag0.2(LTA) modified electrode was presented. The morphology and the composition of the perovskite LaTiO₃-Ag0.2 nanomaterials were characterized by using scanning electron microscopy (SEM) and X-ray diffraction (XRD) respectively. The LaTiO₃-Ag0.2(LTA) composite was investigated by electrochemical characterization using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Under optimal conditions, CV and chronoamperometry (I-t) study revealed that, compared with the bare glassy carbon electrode (GCE), the modified electrode showed a remarkable increase in the efficiency of the electrocatalytic oxidation of glucose, starting at around +0.70 V (vs. Ag/AgCl). The prepared sensor exhibited a high sensitivity of 784.14 µAmM⁻¹ cm⁻², a low detection limit of 2.1×10⁻⁷ M and a wide linear range from 2.5 µM to 4 mM (R=0.9997). More importantly, the LTA modified electrode was also relatively insensitive to commonly interfering species such as ascorbic acid (AA), uric acid (UA), dopamine (DA) in high potential. Moreover, the nonenzymatic sensor was applied to the determination of glucose in human serum samples and the results were in good agreement with clinical data. Electrodes modified with perovskite nanomaterials are highly promising for nonenzymatic electrochemical detection of glucose because of their high sensitivity, fast response, excellent stability and good reproducibility. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Extending the applicability of the Goldschmidt tolerance factor to arbitrary ionic compounds

    PubMed Central

    Sato, Toyoto; Takagi, Shigeyuki; Deledda, Stefano; Hauback, Bjørn C.; Orimo, Shin-ichi

    2016-01-01

    Crystal structure determination is essential for characterizing materials and their properties, and can be facilitated by various tools and indicators. For instance, the Goldschmidt tolerance factor (T) for perovskite compounds is acknowledged for evaluating crystal structures in terms of the ionic packing. However, its applicability is limited to perovskite compounds. Here, we report on extending the applicability of T to ionic compounds with arbitrary ionic arrangements and compositions. By focussing on the occupancy of constituent spherical ions in the crystal structure, we define the ionic filling fraction (IFF), which is obtained from the volumes of crystal structure and constituent ions. Ionic compounds, including perovskites, are arranged linearly by the IFF, providing consistent results with T. The linearity guides towards finding suitable unit cell and composition, thus tackling the main obstacle for determining new crystal structures. We demonstrate the utility of the IFF by solving the structure of three hydrides with new crystal structures. PMID:27032978

  13. Extending the applicability of the Goldschmidt tolerance factor to arbitrary ionic compounds.

    PubMed

    Sato, Toyoto; Takagi, Shigeyuki; Deledda, Stefano; Hauback, Bjørn C; Orimo, Shin-ichi

    2016-04-01

    Crystal structure determination is essential for characterizing materials and their properties, and can be facilitated by various tools and indicators. For instance, the Goldschmidt tolerance factor (T) for perovskite compounds is acknowledged for evaluating crystal structures in terms of the ionic packing. However, its applicability is limited to perovskite compounds. Here, we report on extending the applicability of T to ionic compounds with arbitrary ionic arrangements and compositions. By focussing on the occupancy of constituent spherical ions in the crystal structure, we define the ionic filling fraction (IFF), which is obtained from the volumes of crystal structure and constituent ions. Ionic compounds, including perovskites, are arranged linearly by the IFF, providing consistent results with T. The linearity guides towards finding suitable unit cell and composition, thus tackling the main obstacle for determining new crystal structures. We demonstrate the utility of the IFF by solving the structure of three hydrides with new crystal structures.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christians, Jeffrey A.; Schulz, Philip; Tinkham, Jonathan S.

    Long-term device stability is the most pressing issue that impedes perovskite solar cell commercialization, given the achieved 22.7% efficiency. The perovskite absorber material itself has been heavily scrutinized for being prone to degradation by water, oxygen and ultraviolet light. To date, most reports characterize device stability in the absence of these extrinsic factors. Here we show that, even under the combined stresses of light (including ultraviolet light), oxygen and moisture, perovskite solar cells can retain 94% of peak efficiency despite 1,000 hours of continuous unencapsulated operation in ambient air conditions (relative humidity of 10-20%). Each interface and contact layer throughoutmore » the device stack plays an important role in the overall stability which, when appropriately modified, yields devices in which both the initial rapid decay (often termed burn-in) and the gradual slower decay are suppressed. This extensively modified device architecture and the understanding developed will lead towards durable long-term device performance.« less

  15. Local structural distortion and electrical transport properties of Bi(Ni 1/2Ti 1/2)O 3 perovskite under high pressure

    DOE PAGES

    Zhu, Jinlong; Yang, Liuxiang; Wang, Hsiu -Wen; ...

    2015-12-16

    Perovskite-structure materials generally exhibit local structural distortions that are distinct from long-range, average crystal structure. The characterization of such distortion is critical to understanding the structural and physical properties of materials. In this work, we combined Pair Distribution Function (PDF) technique with Raman spectroscopy and electrical resistivity measurement to study Bi(Ni 1/2Ti 1/2)O 3 perovskite under high pressure. PDF analysis reveals strong local structural distortion at ambient conditions. As pressure increases, the local structure distortions are substantially suppressed and eventually vanish around 4 GPa, leading to concurrent changes in the electronic band structure and anomalies in the electrical resistivity. Wemore » find, consistent with PDF analysis, Raman spectroscopy data suggest that the local structure changes to a higher ordered state at pressures above 4 GPa.« less

  16. Nanostructured Perovskite LaCo1-xMnxO3 as Bifunctional Catalysts for Rechargeable Metal-Air Batteries

    NASA Astrophysics Data System (ADS)

    Ge, Xiaoming; Li, Bing; Wuu, Delvin; Sumboja, Afriyanti; An, Tao; Hor, T. S. Andy; Zong, Yun; Liu, Zhaolin

    2015-09-01

    Bifunctional catalyst that is active for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is one of the most important components of rechargeable metal-air batteries. Nanostructured perovskite bifunctional catalysts comprising La, Co and Mn(LaCo1-xMnxO3, LCMO) are synthesized by hydrothermal methods. The morphology, structure and electrochemical activity of the perovskite bifunctional catalysts are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and rotating disk electrode (RDE) techniques. Nanorod, nanodisc and nanoparticle are typical morphologies of LCMO. The electrocatalytic activity of LCMO is significantly improved by the addition of conductive materials such as carbon nanotube. To demonstrate the practical utilization, LCMO in the composition of LaCo0.8Mn0.2O3(LCMO82) is used as air cathode catalysts for rechargeable zinc-air batteries. The battery prototype can sustain 470 h or 40 discharge-charge cycles equivalent.

  17. Local structural distortion and electrical transport properties of Bi(Ni1/2Ti1/2)O3 perovskite under high pressure.

    PubMed

    Zhu, Jinlong; Yang, Liuxiang; Wang, Hsiu-Wen; Zhang, Jianzhong; Yang, Wenge; Hong, Xinguo; Jin, Changqing; Zhao, Yusheng

    2015-12-16

    Perovskite-structure materials generally exhibit local structural distortions that are distinct from long-range, average crystal structure. The characterization of such distortion is critical to understanding the structural and physical properties of materials. In this work, we combined Pair Distribution Function (PDF) technique with Raman spectroscopy and electrical resistivity measurement to study Bi(Ni1/2Ti1/2)O3 perovskite under high pressure. PDF analysis reveals strong local structural distortion at ambient conditions. As pressure increases, the local structure distortions are substantially suppressed and eventually vanish around 4 GPa, leading to concurrent changes in the electronic band structure and anomalies in the electrical resistivity. Consistent with PDF analysis, Raman spectroscopy data suggest that the local structure changes to a higher ordered state at pressures above 4 GPa.

  18. Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency

    NASA Astrophysics Data System (ADS)

    Braly, Ian L.; deQuilettes, Dane W.; Pazos-Outón, Luis M.; Burke, Sven; Ziffer, Mark E.; Ginger, David S.; Hillhouse, Hugh W.

    2018-06-01

    Reducing non-radiative recombination in semiconducting materials is a prerequisite for achieving the highest performance in light-emitting and photovoltaic applications. Here, we characterize both external and internal photoluminescence quantum efficiency and quasi-Fermi-level splitting of surface-treated hybrid perovskite (CH3NH3PbI3) thin films. With respect to the material bandgap, these passivated films exhibit the highest quasi-Fermi-level splitting measured to date, reaching 97.1 ± 0.7% of the radiative limit, approaching that of the highest performing GaAs solar cells. We confirm these values with independent measurements of internal photoluminescence quantum efficiency of 91.9 ± 2.7% under 1 Sun illumination intensity, setting a new benchmark for these materials. These results suggest hybrid perovskite solar cells are inherently capable of further increases in power conversion efficiency if surface passivation can be combined with optimized charge carrier selective interfaces.

  19. Light-induced lattice expansion leads to high-efficiency perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Tsai, Hsinhan; Asadpour, Reza; Blancon, Jean-Christophe; Stoumpos, Constantinos C.; Durand, Olivier; Strzalka, Joseph W.; Chen, Bo; Verduzco, Rafael; Ajayan, Pulickel M.; Tretiak, Sergei; Even, Jacky; Alam, Muhammad Ashraf; Kanatzidis, Mercouri G.; Nie, Wanyi; Mohite, Aditya D.

    2018-04-01

    Light-induced structural dynamics plays a vital role in the physical properties, device performance, and stability of hybrid perovskite–based optoelectronic devices. We report that continuous light illumination leads to a uniform lattice expansion in hybrid perovskite thin films, which is critical for obtaining high-efficiency photovoltaic devices. Correlated, in situ structural and device characterizations reveal that light-induced lattice expansion benefits the performances of a mixed-cation pure-halide planar device, boosting the power conversion efficiency from 18.5 to 20.5%. The lattice expansion leads to the relaxation of local lattice strain, which lowers the energetic barriers at the perovskite-contact interfaces, thus improving the open circuit voltage and fill factor. The light-induced lattice expansion did not compromise the stability of these high-efficiency photovoltaic devices under continuous operation at full-spectrum 1-sun (100 milliwatts per square centimeter) illumination for more than 1500 hours.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Nam-Gyu; Grätzel, Michael; Miyasaka, Tsutomu

    Solar cells employing a halide perovskite with an organic cation now show power conversion efficiency of up to 22%. But, these cells are facing issues towards commercialization, such as the need to achieve long-term stability and the development of a manufacturing method for the reproducible fabrication of high-performance devices. We propose a strategy to obtain stable and commercially viable perovskite solar cells. A reproducible manufacturing method is suggested, as well as routes to manage grain boundaries and interfacial charge transport. Electroluminescence is regarded as a metric to gauge theoretical efficiency. We highlight how optimizing the design of device architectures ismore » important not only for achieving high efficiency but also for hysteresis-free and stable performance. Here, we argue that reliable device characterization is needed to ensure the advance of this technology towards practical applications. We believe that perovskite-based devices can be competitive with silicon solar modules, and discuss issues related to the safe management of toxic material.« less

  1. Anticorrelated seismic velocity anomalies from post-perovskite in the lowermost mantle

    USGS Publications Warehouse

    Hutko, Alexander R.; Lay, T.; Revenaugh, Justin; Garnero, E.J.

    2008-01-01

    Earth's lowermost mantle has thermal, chemical, and mineralogical complexities that require precise seismological characterization. Stacking, migration, and modeling of over 10,000 P and S waves that traverse the deep mantle under the Cocos plate resolve structures above the core-mantle boundary. A small -0.07 ?? 0.15% decrease of P wave velocity (Vp) is accompanied by a 1.5 ?? 0.5% increase in S wave velocity (Vs) near a depth of 2570 km. Bulk-sound velocity [Vb = (V p2 - 4/3Vs2)1/2] decreases by -1.0 ?? 0.5% at this depth. Transition of the primary lower-mantle mineral, (Mg1-x-y FexAly)(Si,Al) O3 perovskite, to denser post-perovskite is expected to have a negligible effect on the bulk modulus while increasing the shear modulus by ???6%, resulting in local anticorrelation of Vb and Vs anomalies; this behavior explains the data well.

  2. CsPbBr 3 Solar Cells: Controlled Film Growth through Layer-by-Layer Quantum Dot Deposition

    DOE PAGES

    Hoffman, Jacob B.; Zaiats, Gary; Wappes, Isaac; ...

    2017-10-25

    All inorganic cesium lead bromide (CsPbBr 3) perovskite is a more stable alternative to methylammonium lead bromide (MAPbBr 3) for designing high open-circuit voltage solar cells and display devices. Poor solubility of CsBr in organic solvents makes typical solution deposition methods difficult to adapt for constructing CsPbBr 3 devices. Our layer-by-layer methodology, which makes use of CsPbBr 3 quantum dot (QD) deposition followed by annealing, provides a convenient way to cast stable films of desired thickness. The transformation from QDs into bulk during thermal annealing arises from the resumption of nanoparticle growth and not from sintering as generally assumed. Additionally,more » a large loss of organic material during the annealing process is mainly from 1-octadecene left during the QD synthesis. Utilizing this deposition approach for perovskite photovoltaics is examined using typical planar architecture devices. Devices optimized to both QD spin-casting concentration and overall CsPbBr 3 thickness produce champion devices that reach power conversion efficiencies of 5.5% with a V oc value of 1.4 V. Finally, the layered QD deposition demonstrates a controlled perovskite film architecture for developing efficient, high open-circuit photovoltaic devices.« less

  3. Luminescent manganese-doped CsPbCl3 perovskite quantum dots

    NASA Astrophysics Data System (ADS)

    Lin, Chun Che; Xu, Kun Yuan; Wang, Da; Meijerink, Andries

    2017-04-01

    Nanocrystalline cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I) form an exciting new class of semiconductor materials showing quantum confinement. The emission color can be tuned over the full visible spectral region making them promising for light‒emitting applications. Further control over the optical and magnetic properties of quantum dots (QDs) can be achieved through doping of transition metal (TM) ions such as Mn2+ or Co2+. Here we demonstrate how, following QD synthesis in the presence of a Mn‒precursor, dropwise addition of silicon tetrachloride (SiCl4) to the QDs in toluene results in the formation of Mn‒doped CsPbCl3 QDs showing bright orange Mn2+ emission around 600 nm. Evidence for successful doping is provided by excitation spectra of the Mn2+ emission, with all features of the CsPbCl3 QD absorption spectrum and a decrease of the 410 nm excitonic emission life time with increasing Mn‒concentration, giving evidence for enhanced exciton to Mn2+ energy transfer. As a doping mechanism we propose a combination of surface etching and reconstruction and diffusion doping. The presently reported approach provides a promising avenue for doping TM ions into perovskites QDs enabling a wider control over optical and magnetic properties for this new class of QDs.

  4. Luminescent manganese-doped CsPbCl3 perovskite quantum dots.

    PubMed

    Lin, Chun Che; Xu, Kun Yuan; Wang, Da; Meijerink, Andries

    2017-04-12

    Nanocrystalline cesium lead halide perovskites (CsPbX 3 , X = Cl, Br, and I) form an exciting new class of semiconductor materials showing quantum confinement. The emission color can be tuned over the full visible spectral region making them promising for light‒emitting applications. Further control over the optical and magnetic properties of quantum dots (QDs) can be achieved through doping of transition metal (TM) ions such as Mn 2+ or Co 2+ . Here we demonstrate how, following QD synthesis in the presence of a Mn‒precursor, dropwise addition of silicon tetrachloride (SiCl 4 ) to the QDs in toluene results in the formation of Mn‒doped CsPbCl 3 QDs showing bright orange Mn 2+ emission around 600 nm. Evidence for successful doping is provided by excitation spectra of the Mn 2+ emission, with all features of the CsPbCl 3 QD absorption spectrum and a decrease of the 410 nm excitonic emission life time with increasing Mn‒concentration, giving evidence for enhanced exciton to Mn 2+ energy transfer. As a doping mechanism we propose a combination of surface etching and reconstruction and diffusion doping. The presently reported approach provides a promising avenue for doping TM ions into perovskites QDs enabling a wider control over optical and magnetic properties for this new class of QDs.

  5. Perovskites Bi0.8La0.2FeO3 and Bi0.8La0.2Fe0.95Cr0.05O3: Crystal structure and magnetic and charge states of iron ions

    NASA Astrophysics Data System (ADS)

    Sigov, A. S.; Pokatilov, V. S.; Makarova, A. O.; Pokatilov, V. V.

    2014-06-01

    Perovskites of the Bi0.8La0.2Fe1 - x Cr x O3 system ( x = 0, 0.05) were investigated by Mössbauer spectroscopy in the temperature range of 298-800 K. The samples were fabricated by solid-state synthesis and had a rhombic structure. Iron ions in Bi0.8La0.2FeO3 and Bi0.8La0.2Fe0.95Cr0.05O3 are situated in trivalent states. The magnetic transition temperatures (the Néel temperatures T N ) T N = 677.5 ± 2.5 K for Bi0.8La0.2FeO3 and T N = 647.6 ± 2.5 K for Bi0.8La0.2Fe0.95Cr0.05O3 are measured. The substitution of trivalent iron ions from trivalent chromium ions in the amount x = 0.05 in Bi0.8La0.2Fe0.95Cr0.05O3 perovskite decreases the hyperfine magnetic field at nuclei 57Fe in Fe+3-O-Cr+3 chains by 30 kOe.

  6. Design Principles of Perovskites for Thermochemical Oxygen Separation

    PubMed Central

    Ezbiri, Miriam; Allen, Kyle M.; Gàlvez, Maria E.; Steinfeld, Aldo

    2015-01-01

    Abstract Separation and concentration of O2 from gas mixtures is central to several sustainable energy technologies, such as solar‐driven synthesis of liquid hydrocarbon fuels from CO2, H2O, and concentrated sunlight. We introduce a rationale for designing metal oxide redox materials for oxygen separation through “thermochemical pumping” of O2 against a pO2 gradient with low‐grade process heat. Electronic structure calculations show that the activity of O vacancies in metal oxides pinpoints the ideal oxygen exchange capacity of perovskites. Thermogravimetric analysis and high‐temperature X‐ray diffraction for SrCoO3−δ, BaCoO3−δ and BaMnO3−δ perovskites and Ag2O and Cu2O references confirm the predicted performance of SrCoO3−δ, which surpasses the performance of state‐of‐the‐art Cu2O at these conditions with an oxygen exchange capacity of 44 mmol O 2 mol SrCoO 3−δ −1 exchanged at 12.1 μmol O 2 min−1 g−1 at 600–900 K. The redox trends are understood due to lattice expansion and electronic charge transfer. PMID:25925955

  7. Design Principles of Perovskites for Thermochemical Oxygen Separation.

    PubMed

    Ezbiri, Miriam; Allen, Kyle M; Gàlvez, Maria E; Michalsky, Ronald; Steinfeld, Aldo

    2015-06-08

    Separation and concentration of O2 from gas mixtures is central to several sustainable energy technologies, such as solar-driven synthesis of liquid hydrocarbon fuels from CO2 , H2 O, and concentrated sunlight. We introduce a rationale for designing metal oxide redox materials for oxygen separation through "thermochemical pumping" of O2 against a pO2 gradient with low-grade process heat. Electronic structure calculations show that the activity of O vacancies in metal oxides pinpoints the ideal oxygen exchange capacity of perovskites. Thermogravimetric analysis and high-temperature X-ray diffraction for SrCoO3-δ , BaCoO3-δ and BaMnO3-δ perovskites and Ag2 O and Cu2 O references confirm the predicted performance of SrCoO3-δ , which surpasses the performance of state-of-the-art Cu2 O at these conditions with an oxygen exchange capacity of 44 mmol O 2 mol SrCoO 3-δ(-1) exchanged at 12.1 μmol O 2 min(-1)  g(-1) at 600-900 K. The redox trends are understood due to lattice expansion and electronic charge transfer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Lasing in robust cesium lead halide perovskite nanowires

    DOE PAGES

    Eaton, Samuel W.; Lai, Minliang; Gibson, Natalie A.; ...

    2016-02-09

    The rapidly growing field of nanoscale lasers can be advanced through the discovery of new, tunable light sources. The emission wavelength tunability demonstrated in perovskite materials is an attractive property for nanoscale lasers. Whereas organic-inorganic lead halide perovskite materials are known for their instability, cesium lead halides offer a robust alternative without sacrificing emission tunability or ease of synthesis. Here, we report the low-temperature, solution-phase growth of cesium lead halide nanowires exhibiting low-threshold lasing and high stability. The as-grown nanowires are single crystalline with well-formed facets, and act as high-quality laser cavities. The nanowires display excellent stability while stored andmore » handled under ambient conditions over the course of weeks. Upon optical excitation, Fabry-Pérot lasing occurs in CsPbBr 3 nanowires with an onset of 5 μJ cm -2 with the nanowire cavity displaying a maximum quality factor of 1,009 ± 5. Lasing under constant, pulsed excitation can be maintained for over 1 h, the equivalent of 10 9 excitation cycles, and lasing persists upon exposure to ambient atmosphere. Wavelength tunability in the green and blue regions of the spectrum in conjunction with excellent stability makes these nanowire lasers attractive for device fabrication.« less

  9. CsPbBr 3 Solar Cells: Controlled Film Growth through Layer-by-Layer Quantum Dot Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, Jacob B.; Zaiats, Gary; Wappes, Isaac

    All inorganic cesium lead bromide (CsPbBr 3) perovskite is a more stable alternative to methylammonium lead bromide (MAPbBr 3) for designing high open-circuit voltage solar cells and display devices. Poor solubility of CsBr in organic solvents makes typical solution deposition methods difficult to adapt for constructing CsPbBr 3 devices. Our layer-by-layer methodology, which makes use of CsPbBr 3 quantum dot (QD) deposition followed by annealing, provides a convenient way to cast stable films of desired thickness. The transformation from QDs into bulk during thermal annealing arises from the resumption of nanoparticle growth and not from sintering as generally assumed. Additionally,more » a large loss of organic material during the annealing process is mainly from 1-octadecene left during the QD synthesis. Utilizing this deposition approach for perovskite photovoltaics is examined using typical planar architecture devices. Devices optimized to both QD spin-casting concentration and overall CsPbBr 3 thickness produce champion devices that reach power conversion efficiencies of 5.5% with a V oc value of 1.4 V. Finally, the layered QD deposition demonstrates a controlled perovskite film architecture for developing efficient, high open-circuit photovoltaic devices.« less

  10. Encapsulation of CH3NH3PbBr3 Perovskite Quantum Dots in MOF-5 Microcrystals as a Stable Platform for Temperature and Aqueous Heavy Metal Ion Detection.

    PubMed

    Zhang, Diwei; Xu, Yan; Liu, Quanlin; Xia, Zhiguo

    2018-04-16

    The stability issue of organometallic halide perovskites remains a great challenge for future research as to their applicability in different functional material fields. Herein, a novel and facile two-step synthesis procedure is reported for encapsulation of CH 3 NH 3 PbBr 3 perovskite quantum dots (QDs) in MOF-5 microcrystals, where PbBr 2 and CH 3 NH 3 Br precursors are added stepwise to fabricate stable CH 3 NH 3 PbBr 3 @MOF-5 composites. In comparison to CH 3 NH 3 PbBr 3 QDs, CH 3 NH 3 PbBr 3 @MOF-5 composites exhibited highly improved water resistance and thermal stability, as well as better pH adaptability over a wide range. Luminescent investigations demonstrate that CH 3 NH 3 PbBr 3 @MOF-5 composites not only featured excellent sensing properties with respect to temperature changes from 30 to 230 °C but also exhibited significant selective luminescent response to several different metal ions in aqueous solution. These outstanding characteristics indicate that the stable CH 3 NH 3 PbBr 3 @MOF-5 composites are potentially interesting for application in fluorescence sensors or detectors.

  11. Film growth and structure design in the barium oxide-strontium oxide-titanium dioxide system

    NASA Astrophysics Data System (ADS)

    Fisher, Patrick J.

    This thesis describes the growth and characterization of thin films in the SrO-BaO-TiO2 system. The films are grown by molecular beam cpitaxy (MBE) and pulsed laser deposition (PLD) on ceramic substrates, and characterized using X-ray diffraction (XRD), atomic force microscopy (AFM), reflection-high energy electron diffraction (RHEED), and transmission electron microscopy (TEM). Films are grown with varied global and initial local stoichiometries, with the goal of determining the stability of specific cation organizations. Simple oxides, TiO2 (anatase) and SrO (rock salt) were grown on oxide substrates using MBE. Growth conditions, including substrate material, substrate temperature, O3 flux, and metal flux, are varied in each case. It is observed that the growth morphology of anatase is highly dependent on the ozone flux, with fluxes of 1.00 sccm and greater resulting in flat anatase surfaces. Increased roughness at higher substrate was determined to be a result of rutile inclusions. Growth oscillations are observed in the RHEED intensity for both TiO2 and SrO in overlapping regions of growth space, indicating 2D growth modes. Varied shuttering sequences were used during MBE growth of perovskites: globally non-stoichiometric films, as well as locally non-stoichiometric but globally stoichiometric perovskite. Films were grown within a (SrO) m(TiO2)n framework, where growth cycles involved m monolayers of SrO followed by n monolayers of TiO2. XRD results indicate that Ruddlesden-Popper defects, that is, rock salt double layers, enable incorporation of all levels of Sr excess, whereas excess Ti is observed to incorporate into the perovskite structure only at extreme excesses. A series of films with m equal to n were grown; that is, multiple monolayers of SrO deposited followed by multiple monolayers of TiO2. These initially locally non-stoichiometric arrangements interreact to form highly crystalline perovskite, even with layer thicknesses of up to 33 monolayers. The Ba0.6Sr0.4TiO3 films were characterized for their microwave dielectric properties, and were found to have high dielectric constants (epsilonr ˜1300 in each case, implying high tunabilities) but high tan delta values as well. The mechanisms by which the perovskite structure incorporates cation excesses is discussed, and it is argued that two probable mechanisms, one involving plane-sharing of Ti and Sr cations and the other involving rock salt multilayers, also enable the observed transport necessary for multilayer reaction. Working under the argument that these mechanisms involve low-energy architectures, a novel homologous series of phases based on rock salt multilayers is grown using monotayer control: the SrmTiO2+ m series, with each TiO2 monolayer followed by m SrO monolayers (m = 1-5). The phases in this series were characterized structurally, and an in-plane contraction was observed between the m = 2 and m = 3 phases, which is argued to be a relaxation of the SrO monolayers. Considering Ti-excess organizations, the BaTi2O5 structure is grown and observed to nucleate over a narrow window of growth conditions and substrates. LaAlO 3(100) promotes the nucleation of anatasc and ejection of perovskite; SrTiO3(100) promotes the nucleation of perovskite and ejection of TiO2; importantly, MgO(100) promotes the nucleation (010)-oriented BaTi2O5 growing with multiple domains. A BaTi2 O5 buffer layer was then used to promote the inclusion of Sr into (Ba,SOTi205 epilayers. Sr incorporation into a perovskite-related structure was observed to occur over the full range of (Ba,Sr)Ti2O 5 compositions.

  12. High temperature electrical properties study of Sr{sub 2}(Fe,Ti)O{sub 6} double perovskite materials using impedance spectroscopy method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Triyono, D., E-mail: djoko.triyono@sci.ui.ac.id; Laysandra, Heidi

    2016-04-19

    The structure, thermal, and electrical properties of double perovskite material Sr{sub 2}(Fe,Ti)O{sub 6} at high temperature have been studied. This material was synthesized by a solid state reaction method. X-ray diffraction characterization at room temperature for all samples shows a single phase and having a structure of cubic double perovskite with Pm3m space group. The variation of Fe and Ti atoms are seen in an increasing of lattice parameter and grain size which is found between 30 nm and 80 nm. The electrical properties as a function of temperature and frequency are characterized by using RLC-meter with impedance spectroscopy method. The impedancemore » data are presented in Nyquist and Bode plot resulting in the equivalent circuit and its parameters. The equivalent circuit shows the effect of grain and grain boundary in the electrical properties of materials. DC conductivity of Sr{sub 2}(Fe,Ti)O{sub 6} as a function of temperature was explained by using Arrhenius equation. The value of the activation energy which is evaluated from dc conductivity as a function of temperature shows the effect of grain and grain boundary. The activation energy exhibits of oxygen vacancy in Sr{sub 2}(Fe,Ti)O{sub 6} which is also supported by morphology of Sr{sub 2}(Fe,Ti)O{sub 6} is characterized by field emission scanning electron microscopy (FESEM).« less

  13. Structural characterization of a new vacancy ordered perovskite modification found for Ba{sub 3}Fe{sub 3}O{sub 7}F (BaFeO{sub 2.333}F{sub 0.333}): Towards understanding of vacancy ordering for different perovskite-type ferrites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clemens, Oliver, E-mail: oliver.clemens@kit.edu; Karlsruher Institut für Technologie, Institut für Nanotechnologie, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen

    2015-05-15

    The new vacancy ordered perovskite-type compound Ba{sub 3}Fe{sub 3}O{sub 7}F (BaFeO{sub 2.33}F{sub 0.33}) was prepared by topochemical low-temperature fluorination of Ba{sub 2}Fe{sub 2}O{sub 5} (BaFeO{sub 2.5}) using stoichiometric amounts of polyvinylidene difluoride (PVDF). The vacancy order was found to be unique so far for perovskite compounds, and the connectivity pattern can be explained by the formula Ba{sub 3}(FeX{sub 6/2}) (FeX{sub 5/2}) (FeX{sub 3/2}X{sub 1/1}), with X=O/F. Mössbauer measurements were used to confirm the structural analysis and agree with the presence of Fe{sup 3+} in the above mentioned coordination environments. Group–subgroup relationships were used to build a starting model for themore » structure solution and to understand the relationship to the cubic perovskite structure. Furthermore, a comparison of a variety of vacancy-ordered iron-containing perovskite-type structures is given, highlighting the factors which favour one structure type over the other depending on the composition. - Graphical abstract: The crystal structure of Ba{sub 3}Fe{sub 3}O{sub 7}F in comparison to other perovskite type ferrites. - Highlights: • The crystal structure of Ba{sub 3}Fe{sub 3}O{sub 7}F in comparison to other perovskite type ferrites. • Ba{sub 3}Fe{sub 3}O{sub 7}F was synthesized by low temperature fluorination of Ba{sub 2}Fe{sub 2}O{sub 5}. • Ba{sub 3}Fe{sub 3}O{sub 7}F shows a unique vacancy order not found for other perovskite type compounds. • The structure of Ba{sub 3}Fe{sub 3}O{sub 7}F was solved using group–subgroup relationships. • A systematic comparison to other ferrite type compounds reveals structural similarities and differences. • The A-site coordination of the cation is shown to play an important role for the type of vacancy order found.« less

  14. Towards 3D mapping of BO₆ octahedron rotations at perovskite heterointerfaces, unit cell by unit cell

    DOE PAGES

    He, Qian; Ishikawa, Ryo; Lupini, Andrew R.; ...

    2015-07-15

    The rich functionalities in the ABO₃ perovskite oxides originate at least partly from the ability of the corner-connected BO₆ octahedral network to host a large variety of cations through distortions and rotations. Characterizing these rotations, which significantly affect both fundamental aspects of materials behavior and possible applications, remains a major challenge. In this work, we have developed a unique method of investigating BO₆ rotation patterns in complex oxides ABO₃ with unit cell resolution at heterointerfaces, where novel properties often emerge. Our method involves column shape analysis in annular bright field - scanning transmission electron microscope images of the ABO₃ heterointerfacesmore » taken in specific orientations. The rotating phase of BO₆ octahedra can be identified for all three spatial dimensions without the need of case-by-case simulation. In several common rotation systems, it is now possible to quantitatively measure all three rotation angles. With this method, we examined interfaces between perovskites with distinct tilt systems as well as interfaces between tilted and untilted perovskites, identifying an unusual coupling behavior at the CaTiO₃/LSAT interface. We believe this unique method will significantly improve our knowledge of the complex oxide heterointerfaces.« less

  15. Influence of different TiO2 blocking films on the photovoltaic performance of perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Chenxi; Luo, Yudan; Chen, Xiaohong; Ou-Yang, Wei; Chen, Yiwei; Sun, Zhuo; Huang, Sumei

    2016-12-01

    Organolead trihalide perovskite materials have been successfully used as light absorbers in efficient photovoltaic (PV) cells. Cell structures based on mesoscopic metal oxides and planar heterojunctions have already demonstrated very impressive and brisk advances, holding great potential to grow into a mature PV technology. High power conversion efficiency (PCE) values have been obtained from the mesoscopic configuration in which a few hundred nano-meter thick mesoporous scaffold (e.g. TiO2 or Al2O3) infiltrated by perovskite absorber was sandwiched between the electron and hole transport layers. A uniform and compact hole-blocking layer is necessary for high efficient perovskite-based thin film solar cells. In this study, we investigated the characteristics of TiO2 compact layer using various methods and its effects on the PV performance of perovskite solar cells. TiO2 compact layer was prepared by a sol-gel method based on titanium isopropoxide and HCl, spin-coating of titanium diisopropoxide bis (acetylacetonate), screen-printing of Dyesol's bocking layer titania paste, and a chemical bath deposition (CBD) technique via hydrolysis of TiCl4, respectively. The morphological and micro-structural properties of the formed compact TiO2 layers were characterized by scanning electronic microscopy and X-ray diffraction. The analyses of devices performance characteristics showed that surface morphologies of TiO2 compact films played a critical role in affecting the efficiencies. The nanocrystalline TiO2 film deposited via the CBD route acts as the most efficient hole-blocking layer and achieves the best performance in perovskite solar cells. The CBD-based TiO2 compact and dense layer offers a small series resistance and a large recombination resistance inside the device, and makes it possible to achieve a high power conversion efficiency of 12.80%.

  16. Spinel Co3O4 nanomaterials for efficient and stable large area carbon-based printed perovskite solar cells.

    PubMed

    Bashir, Amna; Shukla, Sudhanshu; Lew, Jia Haur; Shukla, Shashwat; Bruno, Annalisa; Gupta, Disha; Baikie, Tom; Patidar, Rahul; Akhter, Zareen; Priyadarshi, Anish; Mathews, Nripan; Mhaisalkar, Subodh G

    2018-02-01

    Carbon based perovskite solar cells (PSCs) are fabricated through easily scalable screen printing techniques, using abundant and cheap carbon to replace the hole transport material (HTM) and the gold electrode further reduces costs, and carbon acts as a moisture repellent that helps in maintaining the stability of the underlying perovskite active layer. An inorganic interlayer of spinel cobaltite oxides (Co 3 O 4 ) can greatly enhance the carbon based PSC performance by suppressing charge recombination and extracting holes efficiently. The main focus of this research work is to investigate the effectiveness of Co 3 O 4 spinel oxide as the hole transporting interlayer for carbon based perovskite solar cells (PSCs). In these types of PSCs, the power conversion efficiency (PCE) is restricted by the charge carrier transport and recombination processes at the carbon-perovskite interface. The spinel Co 3 O 4 nanoparticles are synthesized using the chemical precipitation method, and characterized by X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and UV-Vis spectroscopy. A screen printed thin layer of p-type inorganic spinel Co 3 O 4 in carbon PSCs provides a better-energy level matching, superior efficiency, and stability. Compared to standard carbon PSCs (PCE of 11.25%) an improved PCE of 13.27% with long-term stability, up to 2500 hours under ambient conditions, is achieved. Finally, the fabrication of a monolithic perovskite module is demonstrated, having an active area of 70 cm 2 and showing a power conversion efficiency of >11% with virtually no hysteresis. This indicates that Co 3 O 4 is a promising interlayer for efficient and stable large area carbon PSCs.

  17. Structure of 18R shifted hexagonal perovskite La{sub 6}MgTi{sub 4}O{sub 18} revisited by neutron diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Fengqi; Kuang, Xiaojun, E-mail: kuangxj@glut.edu.cn

    The structure of 18-layer shifted B-site deficient hexagonal perovskite La{sub 6}MgTi{sub 4}O{sub 18} compound has been re-examined by neutron powder diffraction. Structural analysis reveals that La{sub 6}MgTi{sub 4}O{sub 18} compound adopts a 18R octahedral-tilted structure with LaO{sub 3} layer stacking sequence of (hhcccc){sub 3} in space group R{sup {sup -}}3, in contrast with the previously proposed R3m. La{sub 6}MgTi{sub 4}O{sub 18} demonstrates partially ordered Mg cation distribution with a preference on the central octahedral sites over the outer octahedral sites in the cubic perovskite blocks isolated by the single vacant octahedral layers between the two consecutive hexagonal layers. The instabilitymore » of the La{sub 6}MgTi{sub 4}O{sub 18} on alumina ceramic substrate at high temperature and its dependencies of cell parameters and permittivity were characterized as well. - Graphical abstract: 18-layer shifted hexagonal perovskite La{sub 6}MgTi{sub 4}O{sub 18} adopts octahedral-tilted structure in R{sup {sup -}}3 and demonstrates partially ordered Mg distribution in the cubic perovskite blocks isolated by the vacant octahedral layers. - Highlights: • Neutron diffraction reveals an octahedra-tilted structure in R{sup {sup -}}3 for La{sub 6}MgTi{sub 4}O{sub 18}. • Mg/Ti distribution in La{sub 6}MgTi{sub 4}O{sub 18} is partially ordered in the perovskite blocks. • Instability of La{sub 6}MgTi{sub 4}O{sub 18} on alumina ceramic at high temperature is demonstrated.« less

  18. Mechanochemical synthesis of nanostructured Sr(Ti{sub 1-x}Fe{sub x})O{sub 3-{delta}} solid-solution powders and their surface photovoltage responses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Xiaofeng; Luo Qiong; GlobalFoundries Singapore Pte Ltd, 60 Woodlands Industrial Park D Street 2, Singapore 738406

    2012-05-15

    A series of nanostructure Sr(Ti{sub 1-x}Fe{sub x})O{sub 3-{delta}} (STFx, x=0.4, 0.6, 0.8) solid-solution powders were synthesized by mechanochemical approach milling from the mixture of SrO, Fe{sub 2}O{sub 3} and TiO{sub 2} metal oxides at room temperature. The XRD results revealed that the perovskite STFx nanoparticles were finally formed with few residual {alpha}-Fe{sub 2}O{sub 3} detected dependent on the milling conditions. The structure evolution suggested that the mechanochemical synthesis underwent via a solid-state reaction route to initially form Ti-rich perovskite and then incorporate with the residual {alpha}-Fe{sub 2}O{sub 3} to achieve the estimated composition. The synthesized STF08 powders exhibited the significantmore » Surface Photovoltage (SPV) spectrum response both in UV and in visible-light region with p-type semiconductor behavior. This finding suggested that the synthesized STF nanopowders could potentially utilize more solar spectrum energy effectively for photo-oxidation and photo-catalysis applications. - Graphical abstract: It is demonstrated that Sr(Ti{sub 1-x}Fe{sub x})O{sub 3-{delta}} perovskite nanopowders were successfully synthesized by mechanochemical reaction approach at room temerpature, and the synthesized STF08 powders showed the significant SPV response in UV-VIS region with p-type semiconductor behaviors. Highlights: Black-Right-Pointing-Pointer Sr(Ti{sub 1-x}Fe{sub x})O{sub 3-{delta}} nanopowders synthesized by mechanochemical reaction approach. Black-Right-Pointing-Pointer The reaction process was shorten by introduce high impact energy. Black-Right-Pointing-Pointer Synthesized STF08 powders show the significant SPV response in UV-VIS region. Black-Right-Pointing-Pointer Synthesized STFx powders show p-type semiconductor behaviors.« less

  19. Determination of the structural phase and octahedral rotation angle in halide perovskites

    DOE PAGES

    dos Reis, Roberto; Yang, Hao; Ophus, Colin; ...

    2018-02-12

    A key to the unique combination of electronic and optical properties in halide perovskite materials lies in their rich structural complexity. However, their radiation sensitive nature limits nanoscale structural characterization requiring dose efficient microscopic techniques in order to determine their structures precisely. In this work, we determine the space-group and directly image the Br halide sites of CsPbBr 3, a promising material for optoelectronic applications. Based on the symmetry of high-order Laue zone reflections of convergent-beam electron diffraction, we identify the tetragonal (I4/mcm) structural phase of CsPbBr 3 at cryogenic temperature. Electron ptychography provides a highly sensitive phase contrast measurementmore » of the halide positions under low electron-dose conditions, enabling imaging of the elongated Br sites originating from the out-of-phase octahedral rotation viewed along the [001] direction of I4/mcm persisting at room temperature. The measurement of these features and comparison with simulations yield an octahedral rotation angle of 6.5°(±1.5°). Finally, the approach demonstrated here opens up opportunities for understanding the atomic scale structural phenomena applying advanced characterization tools on a wide range of radiation sensitive halide-based all-inorganic and hybrid organic-inorganic perovskites.« less

  20. p-i-n heterojunctions with BiFeO3 perovskite nanoparticles and p- and n-type oxides: photovoltaic properties.

    PubMed

    Chatterjee, Soumyo; Bera, Abhijit; Pal, Amlan J

    2014-11-26

    We formed p-i-n heterojunctions based on a thin film of BiFeO3 nanoparticles. The perovskite acting as an intrinsic semiconductor was sandwiched between a p-type and an n-type oxide semiconductor as hole- and electron-collecting layer, respectively, making the heterojunction act as an all-inorganic oxide p-i-n device. We have characterized the perovskite and carrier collecting materials, such as NiO and MoO3 nanoparticles as p-type materials and ZnO nanoparticles as the n-type material, with scanning tunneling spectroscopy; from the spectrum of the density of states, we could locate the band edges to infer the nature of the active semiconductor materials. The energy level diagram of p-i-n heterojunctions showed that type-II band alignment formed at the p-i and i-n interfaces, favoring carrier separation at both of them. We have compared the photovoltaic properties of the perovskite in p-i-n heterojunctions and also in p-i and i-n junctions. From current-voltage characteristics and impedance spectroscopy, we have observed that two depletion regions were formed at the p-i and i-n interfaces of a p-i-n heterojunction. The two depletion regions operative at p-i-n heterojunctions have yielded better photovoltaic properties as compared to devices having one depletion region in the p-i or the i-n junction. The results evidenced photovoltaic devices based on all-inorganic oxide, nontoxic, and perovskite materials.

  1. In Situ X-Ray Studies of Crystallization Kinetics and Ordering in Functional Organic and Hybrid Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Bin; Keum, Jong K.; Geohegan, David B.

    In-Situ and time-resolved X-ray scattering and diffraction is dedicated to yielding the change of structural information as the materials are processed or grown in a controlled environment. In this chapter, we introduce the use of in situ and time-resolved X-ray techniques to understand molecular packing, crystal orientation, and phase transformation during the synthesis and processing of functional organic semiconductors, organic nanowires, and hybrid perovskite materials.

  2. In situ investigation of the formation and metastability of formamidinium lead tri-iodide perovskite solar cells

    DOE PAGES

    Aguiar, Jeffery A.; Wozny, Sarah; Holesinger, Terry George; ...

    2016-05-23

    Organic–inorganic perovskites have emerged as an important class of next generation solar cells due to their remarkably low cost, band gap, and sub-900 nm absorption onset. Here, we show a series of in situ observations inside electron microscopes and X-ray diffractometers under device-relevant synthesis conditions focused on revealing the crystallization process of the formamidinium lead-triiodide perovskite at the optimum temperature of 175 °C. Direct in situ observations of the structure and chemistry over relevant spatial, temporal, and temperature scales enabled identification of key perovskite formation and degradation mechanisms related to grain evolution and interface chemistry. The lead composition was observedmore » to fluctuate at grain boundaries, indicating a mobile lead-containing species, a process found to be partially reversible at a key temperature of 175 °C. Using low energy electron microscopy and valence electron energy loss spectroscopy, lead is found to be bonded in the grain interior with iodine in a tetrahedral configuration. At the grain boundaries, the binding energy associated with lead is consequently shifted by nearly 2 eV and a doublet peak is resolved due presumably to a greater degree of hybridization and the potential for several different bonding configurations. At the grain boundaries there is adsorption of hydrogen and OH¯ ions as a result of residual water vapor trapped as a non-crystalline material during formation. Lastly, insights into the relevant formation and decomposition reactions of formamidinium lead iodide at low to high temperatures, observed metastabilities, and relationship with the photovoltaic performance were obtained and used to optimize device processing resulting in conversion efficiencies of up to 17.09% within the stability period of the devices.« less

  3. CsPbBr3 perovskites: Theoretical and experimental investigation on water-assisted transition from nanowire formation to degradation

    NASA Astrophysics Data System (ADS)

    Akbali, B.; Topcu, G.; Guner, T.; Ozcan, M.; Demir, M. M.; Sahin, H.

    2018-03-01

    Recent advances in colloidal synthesis methods have led to an increased research focus on halide perovskites. Due to the highly ionic crystal structure of perovskite materials, a stability issue pops up, especially against polar solvents such as water. In this study, we investigate water-driven structural evolution of CsPbBr3 by performing experiments and state-of-the-art first-principles calculations. It is seen that while an optical image shows the gradual degradation of the yellowish CsPbBr3 structure under daylight, UV illumination reveals that the degradation of crystals takes place in two steps: transition from a blue-emitting to green-emitting structure and and then a transition from a green-emitting phase to complete degradation. We found that as-synthesized CsPbBr3 nanowires (NWs) emit blue light under a 254 nm UV source. Before the degradation, first, CsPbBr3 NWs undergo a water-driven structural transition to form large bundles. It is also seen that formation of such bundles provides longer-term environmental stability. In addition theoretical calculations revealed the strength of the interaction of water molecules with ligands and surfaces of CsPbBr3 and provide an atomistic-level explanation to a transition from ligand-covered NWs to bundle formation. Further interaction of green-light-emitting bundles with water causes complete degradation of CsPbBr3 and the photoluminescence signal is entirely quenched. Moreover, Raman and x-ray-diffraction measurements revealed that completely degraded regions are decomposed to PbBr2 and CsBr precursors. We believe that the findings of this study may provide further insight into the degradation mechanism of CsPbBr3 perovskite by water.

  4. In situ investigation of the formation and metastability of formamidinium lead tri-iodide perovskite solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguiar, Jeffery A.; Wozny, Sarah; Holesinger, Terry G.

    2016-01-01

    Organic-inorganic perovskites have emerged as an important class of next generation solar cells due to their remarkably low cost, band gap, and sub-900 nm absorption onset. Here, we show a series of in situ observations inside electron microscopes and X-ray diffractometers under device-relevant synthesis conditions focused on revealing the crystallization process of the formamidinium lead-triiodide perovskite at the optimum temperature of 175 degrees C. Direct in situ observations of the structure and chemistry over relevant spatial, temporal, and temperature scales enabled identification of key perovskite formation and degradation mechanisms related to grain evolution and interface chemistry. The lead composition wasmore » observed to fluctuate at grain boundaries, indicating a mobile lead-containing species, a process found to be partially reversible at a key temperature of 175 degrees C. Using low energy electron microscopy and valence electron energy loss spectroscopy, lead is found to be bonded in the grain interior with iodine in a tetrahedral configuration. At the grain boundaries, the binding energy associated with lead is consequently shifted by nearly 2 eV and a doublet peak is resolved due presumably to a greater degree of hybridization and the potential for several different bonding configurations. At the grain boundaries there is adsorption of hydrogen and OH- ions as a result of residual water vapor trapped as a non-crystalline material during formation. Insights into the relevant formation and decomposition reactions of formamidinium lead iodide at low to high temperatures, observed metastabilities, and relationship with the photovoltaic performance were obtained and used to optimize device processing resulting in conversion efficiencies of up to 17.09% within the stability period of the devices.« less

  5. Ferroelectric KNbO3 nanofibers: synthesis, characterization and their application as a humidity nanosensor

    NASA Astrophysics Data System (ADS)

    Ganeshkumar, Rajasekaran; Sopiha, Kostiantyn V.; Wu, Ping; Cheah, Chin Wei; Zhao, Rong

    2016-09-01

    By virtue of its non-toxicity, high T c, and non-linear optical and ferroelectric properties, one-dimensional (1D) potassium niobate (KNbO3) may enable the development of numerous nanoscale devices. Despite the progress in 1D perovskite materials, preparing high aspect ratio KNbO3 nanostructures is still a concern. This report presents the successful synthesis of ultra-long KNbO3 nanofibers using a simple sol-gel assisted far-field electrospinning process. At optimized conditions, centimeters long, orthorhombic KNbO3 nanofibers with an average diameter of 100 nm have been obtained. The nanofibers are composed of uniform grains densely stacked along the direction of the nanofiber axis. Due to large surface-volume ratio, a high sensitive humidity nanosensor based on KNbO3 nanofibers displaying a logarithmic-linear dependence behavior of the conductance with the relative humidity (RH) was demonstrated. The conductance increases dramatically from 10-10 ℧ to 10-6 ℧ while RH varies from 15% to 95% at room temperature. In addition, the nanosensor exhibits excellent sensing performance, including ultrafast response (≤2 s) and recovery times (≤10 s), good linearity and reproducibility. Furthermore, the change in ferroelectric coercivity with respect to the RH and its effect in the sensing behavior were unveiled. This work could enable broad applications in the fields of environmental sensing and nano-electrical-mechanical systems.

  6. Room-Temperature Synthesis of Mn-Doped Cesium Lead Halide Quantum Dots with High Mn Substitution Ratio.

    PubMed

    Zhu, Jingrun; Yang, Xiaoling; Zhu, Yihua; Wang, Yuanwei; Cai, Jin; Shen, Jianhua; Sun, Luyi; Li, Chunzhong

    2017-09-07

    Here we report the room-temperature, atmospheric synthesis of Mn-doped cesium lead halide (CsPbX 3 ) perovskite quantum dots (QDs). The synthesis is performed without any sort of protection, and the dual-color emission mechanism is revealed by density functional theory. The Mn concentration reaches a maximum atomic percentage of 37.73 at%, which is significantly higher in comparison to those achieved in earlier reports via high temperature hot injection method. The optical properties of as-prepared nanocrystals (NCs) remain consistent even after several months. Therefore, red-orange LEDs were fabricated by coating the composite of PS and as-prepared QDs onto ultraviolet LED chips. Additionally, the present approach may open up new methods for doping other ions in CsPbX 3 QDs under room temperature, the capability of which is essential for applications such as memristors and other devices.

  7. Synthesis of hierarchically porous perovskite-carbon aerogel composite catalysts for the rapid degradation of fuchsin basic under microwave irradiation and an insight into probable catalytic mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Yin; Wang, Jiayuan; Du, Baobao; Wang, Yun; Xiong, Yang; Yang, Yiqiong; Zhang, Xiaodong

    2018-05-01

    3D hierarchically porous perovskites LaFe0.5M0.5O3-CA (M = Mn, Cu) were synthesized by a two-step method using PMMA as template and supporting with carbon aerogel, which were characterized with SEM, TEM, XRD, XPS and FT-IR spectroscopy. The as-prepared composites were used in microwave (MW) catalytic degradation of fuchsin basic (FB) dye wastewater. Batch experiment results showed that the catalytic degradation of FB could be remarkably improved by coating with CA. And LaFe0.5Cu0.5O3-CA exhibited higher catalytic performance than LaFe0.5Mn0.5O3-CA, which had a close connection with the activity of substitution metal ion in B site of the catalysts. The FB removal fit pseudo-first-order model and the degradation rate constant increased with initial pH value and MW powder while decreases with initial FB concentration. All catalysts presented favorable recycling and stability in the repeated experiment. Radical scavenger measurements indicated that hydroxyl radicals rather than surface peroxide and hole played an important role in the catalytic process, and its quantity determined the degradation of FB. Furthermore, both Cu and Fe species were involved in the formation of active species, which were responsible to the excellent performance of the LaFe0.5Cu0.5O3-CA/MW system. Therefore, LaFe0.5Cu0.5O3-CA/MW showed to be a promising technology for the removal of organic pollutants in wastewater treatment applications.

  8. Structure comparison of PMN-PT and PMN-PZT nanocrystals prepared by gel-combustion method at optimized temperatures

    NASA Astrophysics Data System (ADS)

    Ghasemifard, M.; Hosseini, S. M.; Bagheri-Mohagheghi, M. M.; Shahtahmasbi, N.

    2009-09-01

    We have synthesized and were performed a comparison of structures and optical properties between relaxor ferroelectric PMN-PT and PMN-PZT nanopowders. A gel-combustion method has been used to synthesize PMN-PT and PMN-PZT nanocrystalline with the perovskite structure. The precursors employed in the gel-combustion process were lead nitrate, magnesium acetate, niobium ammonium oxalate and zirconium nitrate. The nanopowders were characterized using the X-ray diffraction (XRD) and transmission electron microscopy (TEM) observation. Fourier transform infrared (FTIR) spectroscopy was employed to monitor the transformation of precursor solutions during the thermal reactions leading to the formation of perovskite phase.

  9. Heterostructured WS2 /CH3 NH3 PbI3 Photoconductors with Suppressed Dark Current and Enhanced Photodetectivity.

    PubMed

    Ma, Chun; Shi, Yumeng; Hu, Weijin; Chiu, Ming-Hui; Liu, Zhixiong; Bera, Ashok; Li, Feng; Wang, Hong; Li, Lain-Jong; Wu, Tom

    2016-05-01

    Heterostructured photoconductors based on hybrid perovskites and 2D transition-metal dichalcogenides are fabricated and characterized. Due to the superior properties of CH3 NH3 PbI3 and WS2 , as well as the efficient interfacial charge transfer, such photoconductors show high performance with on/off ratio of ≈10(5) and responsivity of ≈17 A W(-1) . Furthermore, the response times of the heterostructured photoconductors are four orders of magnitude faster compared to the counterpart of a perovskite single layer. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A Methoxydiphenylamine-Substituted Carbazole Twin Derivative: An Efficient Hole-Transporting Material for Perovskite Solar Cells.

    PubMed

    Gratia, Paul; Magomedov, Artiom; Malinauskas, Tadas; Daskeviciene, Maryte; Abate, Antonio; Ahmad, Shahzada; Grätzel, Michael; Getautis, Vytautas; Nazeeruddin, Mohammad Khaja

    2015-09-21

    The small-molecule-based hole-transporting material methoxydiphenylamine-substituted carbazole was synthesized and incorporated into a CH3NH3PbI3 perovskite solar cell, which displayed a power conversion efficiency of 16.91%, the second highest conversion efficiency after that of Spiro-OMeTAD. The investigated hole-transporting material was synthesized in two steps from commercially available and relatively inexpensive starting reagents. Various electro-optical measurements (UV/Vis, IV, thin-film conductivity, hole mobility, DSC, TGA, ionization potential) have been carried out to characterize the new hole-transporting material. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Spontaneous Self-Assembly of Perovskite Nanocrystals into Electronically Coupled Supercrystals: Toward Filling the Green Gap.

    PubMed

    Tong, Yu; Yao, En-Ping; Manzi, Aurora; Bladt, Eva; Wang, Kun; Döblinger, Markus; Bals, Sara; Müller-Buschbaum, Peter; Urban, Alexander S; Polavarapu, Lakshminarayana; Feldmann, Jochen

    2018-06-05

    Self-assembly of nanoscale building blocks into ordered nanoarchitectures has emerged as a simple and powerful approach for tailoring the nanoscale properties and the opportunities of using these properties for the development of novel optoelectronic nanodevices. Here, the one-pot synthesis of CsPbBr 3 perovskite supercrystals (SCs) in a colloidal dispersion by ultrasonication is reported. The growth of the SCs occurs through the spontaneous self-assembly of individual nanocrystals (NCs), which form in highly concentrated solutions of precursor powders. The SCs retain the high photoluminescence (PL) efficiency of their NC subunits, however also exhibit a redshifted emission wavelength compared to that of the individual nanocubes due to interparticle electronic coupling. This redshift makes the SCs pure green emitters with PL maxima at ≈530-535 nm, while the individual nanocubes emit a cyan-green color (≈512 nm). The SCs can be used as an emissive layer in the fabrication of pure green light-emitting devices on rigid or flexible substrates. Moreover, the PL emission color is tunable across the visible range by employing a well-established halide ion exchange reaction on the obtained CsPbBr 3 SCs. These results highlight the promise of perovskite SCs for light emitting applications, while providing insight into their collective optical properties. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Luminescent manganese-doped CsPbCl3 perovskite quantum dots

    PubMed Central

    Lin, Chun Che; Xu, Kun Yuan; Wang, Da; Meijerink, Andries

    2017-01-01

    Nanocrystalline cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I) form an exciting new class of semiconductor materials showing quantum confinement. The emission color can be tuned over the full visible spectral region making them promising for light‒emitting applications. Further control over the optical and magnetic properties of quantum dots (QDs) can be achieved through doping of transition metal (TM) ions such as Mn2+ or Co2+. Here we demonstrate how, following QD synthesis in the presence of a Mn‒precursor, dropwise addition of silicon tetrachloride (SiCl4) to the QDs in toluene results in the formation of Mn‒doped CsPbCl3 QDs showing bright orange Mn2+ emission around 600 nm. Evidence for successful doping is provided by excitation spectra of the Mn2+ emission, with all features of the CsPbCl3 QD absorption spectrum and a decrease of the 410 nm excitonic emission life time with increasing Mn‒concentration, giving evidence for enhanced exciton to Mn2+ energy transfer. As a doping mechanism we propose a combination of surface etching and reconstruction and diffusion doping. The presently reported approach provides a promising avenue for doping TM ions into perovskites QDs enabling a wider control over optical and magnetic properties for this new class of QDs. PMID:28401894

  13. Modeling of thermal expansion coefficient of perovskite oxide for solid oxide fuel cell cathode

    NASA Astrophysics Data System (ADS)

    Heydari, F.; Maghsoudipour, A.; Alizadeh, M.; Khakpour, Z.; Javaheri, M.

    2015-09-01

    Artificial intelligence models have the capacity to eliminate the need for expensive experimental investigation in various areas of manufacturing processes, including the material science. This study investigates the applicability of adaptive neuro-fuzzy inference system (ANFIS) approach for modeling the performance parameters of thermal expansion coefficient (TEC) of perovskite oxide for solid oxide fuel cell cathode. Oxides (Ln = La, Nd, Sm and M = Fe, Ni, Mn) have been prepared and characterized to study the influence of the different cations on TEC. Experimental results have shown TEC decreases favorably with substitution of Nd3+ and Mn3+ ions in the lattice. Structural parameters of compounds have been determined by X-ray diffraction, and field emission scanning electron microscopy has been used for the morphological study. Comparison results indicated that the ANFIS technique could be employed successfully in modeling thermal expansion coefficient of perovskite oxide for solid oxide fuel cell cathode, and considerable savings in terms of cost and time could be obtained by using ANFIS technique.

  14. First-principles study of band gap engineering via oxygen vacancy doping in perovskite ABB'O₃ solid solutions

    DOE PAGES

    Qi, Tingting; Curnan, Matthew T.; Kim, Seungchul; ...

    2011-12-15

    Oxygen vacancies in perovskite oxide solid solutions are fundamentally interesting and technologically important. However, experimental characterization of the vacancy locations and their impact on electronic structure is challenging. We have carried out first-principles calculations on two Zr-modified solid solutions, Pb(Zn 1/3Nb 2/3)O₃ and Pb(Mg 1/3Nb 2/3)O₃, in which vacancies are present. We find that the vacancies are more likely to reside between low-valent cation-cation pairs than high-valent cation-cation pairs. Based on the analysis of our results, we formulate guidelines that can be used to predict the location of oxygen vacancies in perovskite solid solutions. Our results show that vacancies canmore » have a significant impact on both the conduction and valence band energies, in some cases lowering the band gap by ≈0.5 eV. The effects of vacancies on the electronic band structure can be understood within the framework of crystal field theory.« less

  15. Surface Plasmon Resonance Effect in Inverted Perovskite Solar Cells.

    PubMed

    Cui, Jin; Chen, Cheng; Han, Junbo; Cao, Kun; Zhang, Wenjun; Shen, Yan; Wang, Mingkui

    2016-03-01

    This work reports on incorporation of spectrally tuned gold/silica (Au/SiO 2 ) core/shell nanospheres and nanorods into the inverted perovskite solar cells (PVSC). The band gap of hybrid lead halide iodide (CH 3 NH 3 PbI 3 ) can be gradually increased by replacing iodide with increasing amounts of bromide, which can not only offer an appreciate solar radiation window for the surface plasmon resonance effect utilization, but also potentially result in a large open circuit voltage. The introduction of localized surface plasmons in CH 3 NH 3 PbI 2.85 Br 0.15 -based photovoltaic system, which occur in response to electromagnetic radiation, has shown dramatic enhancement of exciton dissociation. The synchronized improvement in photovoltage and photocurrent leads to an inverted CH 3 NH 3 PbI 2.85 Br 0.15 planar PVSC device with power conversion efficiency of 13.7%. The spectral response characterization, time resolved photoluminescence, and transient photovoltage decay measurements highlight the efficient and simple method for perovskite devices.

  16. Mesoscopic Perovskite Light-Emitting Diodes.

    PubMed

    Palma, Alessandro Lorenzo; Cinà, Lucio; Busby, Yan; Marsella, Andrea; Agresti, Antonio; Pescetelli, Sara; Pireaux, Jean-Jacques; Di Carlo, Aldo

    2016-10-03

    Solution-processed hybrid bromide perovskite light-emitting-diodes (PLEDs) represent an attractive alternative technology that would allow overcoming the well-known severe efficiency drop in the green spectrum related to conventional LEDs technologies. In this work, we report on the development and characterization of PLEDs fabricated using, for the first time, a mesostructured layout. Stability of PLEDs is a critical issue; remarkably, mesostructured PLEDs devices tested in ambient conditions and without encapsulation showed a lifetime well-above what previously reported with a planar heterojunction layout. Moreover, mesostructured PLEDs measured under full operative conditions showed a remarkably narrow emission spectrum, even lower than what is typically obtained by nitride- or phosphide-based green LEDs. A dynamic analysis has shown fast rise and fall times, demonstrating the suitability of PLEDs for display applications. Combined electrical and advanced structural analyses (Raman, XPS depth profiling, and ToF-SIMS 3D analysis) have been performed to elucidate the degradation mechanism, the results of which are mainly related to the degradation of the hole-transporting material (HTM) and to the perovskite-HTM interface.

  17. Hexamethylenetetramine-mediated growth of grain-boundary-passivation CH3NH3PbI3 for highly reproducible and stable perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Zheng, Yan-Zhen; Li, Xi-Tao; Zhao, Er-Fei; Lv, Xin-Ding; Meng, Fan-Li; Peng, Chao; Lai, Xue-Sen; Huang, Meilan; Cao, Guozhong; Tao, Xia; Chen, Jian-Feng

    2018-02-01

    Simultaneously achieving the long-term device stability and reproducibility has proven challenging in perovskite solar cells because solution-processing produced perovskite film with grain boundary is sensitive to moisture. Herein, we develop a hexamethylenetetramine (HMTA)-mediated one-step solution-processing deposition strategy that leads to the formation of high-purity and grain-boundary-passivation CH3NH3PbI3 film and thereby advances cell optoelectronic performance. Through morphological and structural characterizations and theoretical calculations, we demonstrate that HMTA fully occupies the moisture-exposed surface to build a bridge across grain boundary and coordinates with Pb ions to inhibit the formation of detrimental PbI2. Such HMTA-mediated grown CH3NH3PbI3 films achieves a decent augmentation of power conversion efficiency (PCE) from 12.70% to 17.87%. A full coverage of PbI2-free CH3NH3PbI3 surface on ZnO also boosts the device's stability and reproducibility.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Changlei; Xiao, Chuanxiao; Yu, Yue

    Through detailed device characterization using cross-sectional Kelvin probe force microscopy (KPFM) and trap density of states measurements, we identify that the J-V hysteresis seen in planar organic-inorganic hybrid perovskite solar cells (PVSCs) using SnO 2 electron selective layers (ESLs) synthesized by low-temperature plasma-enhanced atomic-layer deposition (PEALD) method is mainly caused by the imbalanced charge transportation between the ESL/perovskite and the hole selective layer/perovskite interfaces. We find that this charge transportation imbalance is originated from the poor electrical conductivity of the low-temperature PEALD SnO 2 ESL. We further discover that a facile low-temperature thermal annealing of SnO 2 ESLs can effectivelymore » improve the electrical mobility of low-temperature PEALD SnO 2 ESLs and consequently significantly reduce or even eliminate the J-V hysteresis. With the reduction of J-V hysteresis and optimization of deposition process, planar PVSCs with stabilized output powers up to 20.3% are achieved. Here, the results of this study provide insights for further enhancing the efficiency of planar PVSCs.« less

  19. Charge Carrier Dynamics in Cs2AgBiBr6 Double Perovskite

    PubMed Central

    2018-01-01

    Double perovskites, comprising two different cations, are potential nontoxic alternatives to lead halide perovskites. Here, we characterized thin films and crystals of Cs2AgBiBr6 by time-resolved microwave conductance (TRMC), which probes formation and decay of mobile charges upon pulsed irradiation. Optical excitation of films results in the formation of charges with a yield times mobility product, φΣμ > 1 cm2/Vs. On excitation of millimeter-sized crystals, the TRMC signals show, apart from a fast decay, a long-lived tail. Interestingly, this tail is dominant when exciting close to the bandgap, implying the presence of mobile charges with microsecond lifetimes. From the temperature and intensity dependence of the TRMC signals, we deduce a shallow trap state density of around 1016/cm3 in the bulk of the crystal. Despite this high concentration, trap-assisted recombination of charges in the bulk appears to be slow, which is promising for photovoltaic applications. PMID:29545908

  20. Imaging electronic trap states in perovskite thin films with combined fluorescence and femtosecond transient absorption microscopy

    DOE PAGES

    Xiao, Kai; Ma, Ying -Zhong; Simpson, Mary Jane; ...

    2016-04-22

    Charge carrier trapping degrades the performance of organometallic halide perovskite solar cells. To characterize the locations of electronic trap states in a heterogeneous photoactive layer, a spatially resolved approach is essential. Here, we report a comparative study on methylammonium lead tri-iodide perovskite thin films subject to different thermal annealing times using a combined photoluminescence (PL) and femtosecond transient absorption microscopy (TAM) approach to spatially map trap states. This approach coregisters the initially populated electronic excited states with the regions that recombine radiatively. Although the TAM images are relatively homogeneous for both samples, the corresponding PL images are highly structured. Themore » remarkable variation in the PL intensities as compared to transient absorption signal amplitude suggests spatially dependent PL quantum efficiency, indicative of trapping events. Furthermore, detailed analysis enables identification of two trapping regimes: a densely packed trapping region and a sparse trapping area that appear as unique spatial features in scaled PL maps.« less

  1. Hysteresis Analysis Based on the Ferroelectric Effect in Hybrid Perovskite Solar Cells.

    PubMed

    Wei, Jing; Zhao, Yicheng; Li, Heng; Li, Guobao; Pan, Jinlong; Xu, Dongsheng; Zhao, Qing; Yu, Dapeng

    2014-11-06

    The power conversion efficiency (PCE) of CH3NH3PbX3 (X = I, Br, Cl) perovskite solar cells has been developed rapidly from 6.5 to 18% within 3 years. However, the anomalous hysteresis found in I-V measurements can cause an inaccurate estimation of the efficiency. We attribute the phenomena to the ferroelectric effect and build a model based on the ferroelectric diode to explain it. The ferroelectric effect of CH3NH3PbI3-xClx is strongly suggested by characterization methods and the E-P (electrical field-polarization) loop. The hysteresis in I-V curves is found to greatly depend on the scan range as well as the velocity, which is well explained by the ferroelectric diode model. We also find that the current signals show exponential decay in ∼10 s under prolonged stepwise measurements, and the anomalous hysteresis disappears using these stabilized current values. The experimental results accord well with the model based on ferroelectric properties and prove that prolonged stepwise measurement is an effective way to evaluate the real efficiency of perovskite solar cells. Most importantly, this work provides a meaningful perspective that the ferroelectric effect (if it really exists) should be paid special attention in the optimization of perovskite solar cells.

  2. Enhancement of thermoelectric power factor of Sr2CoMoO6 double perovskite by annealing in reducing atmosphere

    NASA Astrophysics Data System (ADS)

    Tanwar, Khagesh; Saxena, Mandvi; Maiti, Tanmoy

    2017-10-01

    In general, n-type thermoelectric materials are rather difficult to design. This study particularly pivoted on designing potential environmentally benign oxides based n-type thermoelectric material. We synthesized Sr2CoMoO6 (SCMO) polycrystalline ceramics via the solid-state synthesis route. XRD, SEM, and thermoelectric measurements were carried out for phase constitution, microstructure analysis, and to determine its potential for thermoelectric applications. As-sintered SCMO sample showed an insulator like behavior till 640 °C after which it exhibited an n-type non-degenerate semiconductor behavior followed by a p-n type conduction switching. To stabilize a high temperature n-type behavior, annealing of SCMO in reducing atmosphere (H2) at 1000 °C was carried out. After annealing, the SCMO demonstrated an n-type semiconductor behavior throughout the temperature range of measurement. The electrical conductivity (σ) and the power factor (S2σ) were found to be increased manifold in the annealed SCMO double perovskite.

  3. Transport Properties of La- doped SrTiO3 Ceramics Prepared Using Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Mehdizadeh Dehkordi, Arash; Bhattacharya, Sriparna; Tritt, Terry M.; Alshareef, Husam N.

    2012-02-01

    In this work, thermoelectric transport properties of La-doped SrTiO3 ceramics prepared using conventional solid state reaction and spark plasma sintering have been investigated. Room temperature power factor of single crystal strontium titanate (SrTiO3), comparable to that of Bi2Te3, has brought new attention to this perovskite-type transition metal-oxide as a potential n-type thermoelectric for high temperature applications. Electronic properties of this model complex oxide, SrTiO3 (ABO3), can be tuned in a wide range through different doping mechanisms. In addition to A site (La-doped) or B site (Nb-doped) substitutional doping, introducing oxygen vacancies plays an important role in electrical and thermal properties of these structures. Having multiple doping mechanisms makes the transport properties of these perovskites more dependent on preparation parameters. The effect of these synthesis parameters and consolidation conditions on the transport properties of these materials has been studied.

  4. Anisotropic plasticity of MgSiO3 post-perovskite from atomic scale modeling

    NASA Astrophysics Data System (ADS)

    Goryaeva, Alexandra; Carrez, Philippe; Cordier, Patrick

    2016-04-01

    In contrast to the lower mantle, the D″ layer exhibits significant seismic anisotropy both at the global and local scale [1]. Located right above the CMB, the D'' represents a very complex region and the causes of its pronounced anisotropy are still debated (CPO, oriented inclusions, layering, thermo-chemical heterogeneities etc). Among them, contribution of the post-perovskite rheology is commonly considered to be substantial. However, for this high-pressure phase, information about mechanical properties, probable slip systems, dislocations and their behavior under stress are still extremely challenging to obtain directly from experiments [3, 4]. Thus, we propose employing full atomistic modeling (based on the pairwise potential previously derived by [2]) to access the ability of MgSiO3 post-perovskite to deform by dislocation glide at 120 GPa. Lattice friction opposed to the dislocation glide in MgSiO3 post-perovskite is shown to be highly anisotropic. Thus, remarkably low values of Peierls stress (1 GPa) are found for the glide of [100] screw dislocations in (010), while glide in (001) requires almost 18 times larger stress values. In general, (010) plane is characterized by the lowest lattice friction which suggests (010) deformation textures. Comparison of our results with previous study of MgSiO3 perovskite (bridgmanite) [5], based on similar simulation approach, clearly shows that monotonous increase in Peierls stress of bridgmanite will be followed by a dramatic drop after the phase transition to the post-perovskite phase, which consequently suggests the D'' located at the CMB to be weaker than the overlying mantle. In addition to that, the observed evolution of CRSS with temperature clearly demonstrates that post-perovskite deforms in the athermal regime which backs up it to be a very weak phase and indicates its deformation by dislocation glide in contrast to high-lattice friction perovskite (bridgmanite) phase deformed by climb only. References [1] Panning M. and Romanowicz B., Geophys. J. Int., (2006), 167:361-379. [2] Oganov A. et al., Phys. Earth Planet. Int. (2000), 122:277-288. [3] Merkel S. et al. Science (2007), 316:1729-1732. [4] Miyagi L. et al. Science (2010), 329:1639-1641. [5] Hirel P. et al., Acta Mater (2014), 79:117-125.

  5. LaFe 0.9Ni 0.1O 3 perovskite catalyst with enhanced activity and coke-resistance for dry reforming of ethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Baohuai; Yan, Binhang; Yao, Siyu

    In this work, a LaFe 0.9Ni 0.1O 3 perovskite catalyst was evaluated for dry reforming of ethane (DRE), with two conventional oxide supported Ni catalysts (Ni/La 2O 3 and NiFe/La 2O 3) being used as references. LaFe 0.9Ni 0.1O 3 showed the best activity and high coke-/sintering-resistance. TEM, TGA, and Raman characterizations confirmed that the deactivation of Ni/La 2O 3 was owing to the growth of Ni particles and the accumulation of coke, although the formation of La 2O 2CO 3 was able to remove part of the coke during the reaction. The introduction of Fe-related species inhibited the cokemore » formation while decreased the activity due to the loss of active sites. A portion of Ni ions in the perovskite lattice could be reduced to form highly dispersed and stable Ni nanoparticles on the surface during the reaction and oxygen vacancies were left in the perovskite lattice. Pulse reactor studies revealed that the oxygen vacancies in the perovskite could facilitate the activation and dissociation of CO 2 to form CO and reactive oxygen species. Additionally, C 2H 6 was activated with the assistance of oxygen from the surface or subsurface of LaFe 0.9Ni 0.1O 3 to form CO, rather than directly dissociated to surface carbon species as observed over Ni/La 2O 3.« less

  6. Interfacial Engineering of Perovskite Solar Cells by Employing a Hydrophobic Copper Phthalocyanine Derivative as Hole-Transporting Material with Improved Performance and Stability.

    PubMed

    Jiang, Xiaoqing; Yu, Ze; Lai, Jianbo; Zhang, Yuchen; Hu, Maowei; Lei, Ning; Wang, Dongping; Yang, Xichuan; Sun, Licheng

    2017-04-22

    In high-performance perovskite solar cells (PSCs), hole-transporting materials (HTMs) play an important role in extracting and transporting the photo-generated holes from the perovskite absorber to the cathode, thus reducing unwanted recombination losses and enhancing the photovoltaic performance. Herein, solution-processable tetra-4-(bis(4-tert-butylphenyl)amino)phenoxy-substituted copper phthalocyanine (CuPc-OTPAtBu) was synthesized and explored as a HTM in PSCs. The optical, electrochemical, and thermal properties were fully characterized for this organic metal complex. The photovoltaic performance of PSCs employing this CuPc derivative as a HTM was further investigated, in combination with a mixed-ion perovskite as a light absorber and a low-cost vacuum-free carbon as cathode. The optimized devices [doped with 6 % (w/w) tetrafluoro-tetracyano-quinodimethane (F4TCNQ)] showed a decent power conversion efficiency of 15.0 %, with an open-circuit voltage of 1.01 V, a short-circuit current density of 21.9 mA cm -2 , and a fill factor of 0.68. Notably, the PSC devices studied also exhibited excellent long-term durability under ambient condition for 720 h, mainly owing to the introduction of the hydrophobic HTM interlayer, which prevents moisture penetration into the perovskite film. The present work emphasizes that solution-processable CuPc holds a great promise as a class of alternative HTMs that can be further explored for efficient and stable PSCs in the future. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Characterization of ordering in A-site deficient perovskite Ca 1–xLa 2x/3TiO 3 using STEM/EELS

    DOE PAGES

    Danaie, Mohsen; Kepaptsoglou, Demie; Ramasse, Quentin M.; ...

    2016-09-15

    The vacancy ordering behavior of an A-site deficient perovskite system, Ca 1–xLa 2x/3TiO 3, was studied using atomic resolution scanning transmission electron microscopy (STEM) in conjunction with electron energy-loss spectroscopy (EELS), with the aim of determining the role of A-site composition changes. At low La content (x = 0.2), adopting Pbnm symmetry, there was no indication of long-range ordering. Domains, with clear boundaries, were observed in bright-field (BF) imaging, but were not immediately visible in the corresponding high-angle annular dark-field (HAADF) image. These boundaries, with the aid of displacement maps from A-site cations in the HAADF signal, are shown tomore » be tilt boundaries. At the La-rich end of the composition (x = 0.9), adopting Cmmm symmetry, long-range ordering of vacancies and La 3+ ions was observed, with alternating La-rich and La-poor layers on (001)p planes, creating a double perovskite lattice along the c axis. These highly ordered domains can be found isolated within a random distribution of vacancies/La 3+, or within a large population, encompassing a large volume. In regions with a high number density of double perovskite domains, these highly ordered domains were separated by twin boundaries, with 90° or 180° lattice rotations across boundaries. In conclusion, the occurrence and characteristics of these ordered structures are discussed and compared with similar perovskite systems.« less

  8. LaFe 0.9Ni 0.1O 3 perovskite catalyst with enhanced activity and coke-resistance for dry reforming of ethane

    DOE PAGES

    Zhao, Baohuai; Yan, Binhang; Yao, Siyu; ...

    2017-12-29

    In this work, a LaFe 0.9Ni 0.1O 3 perovskite catalyst was evaluated for dry reforming of ethane (DRE), with two conventional oxide supported Ni catalysts (Ni/La 2O 3 and NiFe/La 2O 3) being used as references. LaFe 0.9Ni 0.1O 3 showed the best activity and high coke-/sintering-resistance. TEM, TGA, and Raman characterizations confirmed that the deactivation of Ni/La 2O 3 was owing to the growth of Ni particles and the accumulation of coke, although the formation of La 2O 2CO 3 was able to remove part of the coke during the reaction. The introduction of Fe-related species inhibited the cokemore » formation while decreased the activity due to the loss of active sites. A portion of Ni ions in the perovskite lattice could be reduced to form highly dispersed and stable Ni nanoparticles on the surface during the reaction and oxygen vacancies were left in the perovskite lattice. Pulse reactor studies revealed that the oxygen vacancies in the perovskite could facilitate the activation and dissociation of CO 2 to form CO and reactive oxygen species. Additionally, C 2H 6 was activated with the assistance of oxygen from the surface or subsurface of LaFe 0.9Ni 0.1O 3 to form CO, rather than directly dissociated to surface carbon species as observed over Ni/La 2O 3.« less

  9. Low Pressure Vapor-assisted Solution Process for Tunable Band Gap Pinhole-free Methylammonium Lead Halide Perovskite Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutter-Fella, Carolin M.; Li, Yanbo; Cefarin, Nicola

    Organo-lead halide perovskites have recently attracted great interest for potential applications in thin-film photovoltaics and optoelectronics. Herein, we present a protocol for the fabrication of this material via the low-pressure vapor assisted solution process (LP-VASP) method, which yields ~19% power conversion efficiency in planar heterojunction perovskite solar cells. First, we report the synthesis of methylammonium iodide (CH 3NH 3I) and methylammonium bromide (CH 3NH 3Br) from methylamine and the corresponding halide acid (HI or HBr). Then, we describe the fabrication of pinhole-free, continuous methylammonium-lead halide perovskite (CH 3NH 3PbX 3 with X = I, Br, Cl and their mixture) filmsmore » with the LP-VASP. This process is based on two steps: i) spin-coating of a homogenous layer of lead halide precursor onto a substrate, and ii) conversion of this layer to CH 3NH 3PbI 3-xBr x by exposing the substrate to vapors of a mixture of CH 3NH 3I and CH 3NH 3Br at reduced pressure and 120 °C. Through slow diffusion of the methylammonium halide vapor into the lead halide precursor, we achieve slow and controlled growth of a continuous, pinhole-free perovskite film. The LP-VASP allows synthetic access to the full halide composition space in CH 3NH 3PbI 3-xBr x with 0 ≤ x ≤ 3. Depending on the composition of the vapor phase, the bandgap can be tuned between 1.6 eV ≤ E g ≤ 2.3 eV. In addition, by varying the composition of the halide precursor and of the vapor phase, we can also obtain CH 3NH 3PbI 3-xCl x. Films obtained from the LP-VASP are reproducible, phase pure as confirmed by X-ray diffraction measurements, and show high photoluminescence quantum yield. The process does not require the use of a glovebox.« less

  10. Tunable thermodynamic activity of La x Sr1-x Mn y Al1-y O3-δ (0 ≤ x ≤ 1, 0 ≤ y ≤ 1) perovskites for solar thermochemical fuel synthesis.

    PubMed

    Ezbiri, M; Takacs, M; Theiler, D; Michalsky, R; Steinfeld, A

    2017-02-28

    Nonstoichiometric metal oxides with variable valence are attractive redox materials for thermochemical and electrochemical fuel processing. To guide the design of advanced redox materials for solar-driven splitting of CO 2 and/or H 2 O to produce CO and/or H 2 (syngas), we investigate the equilibrium thermodynamics of the La x Sr 1- x Mn y Al 1- y O 3- δ perovskite family (0 ≤ x ≤ 1, 0 ≤ y ≤ 1) and La 0.6 Ca 0.4 Mn 0.8 Al 0.2 O 3- δ , and compare them to those of CeO 2 as the baseline. Oxygen nonstoichiometry measurements from 1573 to 1773 K and from 0.206 to 180 mbar O 2 show a tunable reduction extent, increasing with increasing Sr content. Maximal nonstoichiometry of 0.32 is established with La 0.2 Sr 0.8 Mn 0.8 Al 0.2 O 3- δ at 1773 K and 2.37 mbar O 2 . As a trend, we find that oxygen capacities are most sensitive to the A-cation composition. Partial molar enthalpy, entropy and Gibbs free energy changes for oxide reduction are extracted from the experimental data using defect models for Mn 4+ /Mn 3+ and Mn 3+ /Mn 2+ redox couples. We find that perovskites exhibit typically decreasing enthalpy changes with increasing nonstoichiometries. This desirable characteristic is most pronounced by La 0.6 Sr 0.4 Mn 0.4 Al 0.6 O 3- δ , rendering it attractive for CO 2 and H 2 O splitting. Generally, perovskites show lower enthalpy and entropy changes than ceria, resulting in more favorable reduction but less favorable oxidation equilibria. The energy penalties due to larger temperature swings and excess oxidants are discussed in particular. Using electronic structure theory, we conclude with a practical methodology estimating thermodynamic activity to rationally design perovskites with variable stoichiometry and valence.

  11. Low Pressure Vapor-assisted Solution Process for Tunable Band Gap Pinhole-free Methylammonium Lead Halide Perovskite Films

    DOE PAGES

    Sutter-Fella, Carolin M.; Li, Yanbo; Cefarin, Nicola; ...

    2017-09-08

    Organo-lead halide perovskites have recently attracted great interest for potential applications in thin-film photovoltaics and optoelectronics. Herein, we present a protocol for the fabrication of this material via the low-pressure vapor assisted solution process (LP-VASP) method, which yields ~19% power conversion efficiency in planar heterojunction perovskite solar cells. First, we report the synthesis of methylammonium iodide (CH 3NH 3I) and methylammonium bromide (CH 3NH 3Br) from methylamine and the corresponding halide acid (HI or HBr). Then, we describe the fabrication of pinhole-free, continuous methylammonium-lead halide perovskite (CH 3NH 3PbX 3 with X = I, Br, Cl and their mixture) filmsmore » with the LP-VASP. This process is based on two steps: i) spin-coating of a homogenous layer of lead halide precursor onto a substrate, and ii) conversion of this layer to CH 3NH 3PbI 3-xBr x by exposing the substrate to vapors of a mixture of CH 3NH 3I and CH 3NH 3Br at reduced pressure and 120 °C. Through slow diffusion of the methylammonium halide vapor into the lead halide precursor, we achieve slow and controlled growth of a continuous, pinhole-free perovskite film. The LP-VASP allows synthetic access to the full halide composition space in CH 3NH 3PbI 3-xBr x with 0 ≤ x ≤ 3. Depending on the composition of the vapor phase, the bandgap can be tuned between 1.6 eV ≤ E g ≤ 2.3 eV. In addition, by varying the composition of the halide precursor and of the vapor phase, we can also obtain CH 3NH 3PbI 3-xCl x. Films obtained from the LP-VASP are reproducible, phase pure as confirmed by X-ray diffraction measurements, and show high photoluminescence quantum yield. The process does not require the use of a glovebox.« less

  12. Fabrication of Semiconducting Methylammonium Lead Halide Perovskite Particles by Spray Technology

    NASA Astrophysics Data System (ADS)

    Ahmadian-Yazdi, Mohammad-Reza; Eslamian, Morteza

    2018-01-01

    In this "nano idea" paper, three concepts for the preparation of methylammonium lead halide perovskite particles are proposed, discussed, and tested. The first idea is based on the wet chemistry preparation of the perovskite particles, through the addition of the perovskite precursor solution to an anti-solvent to facilitate the precipitation of the perovskite particles in the solution. The second idea is based on the milling of a blend of the perovskite precursors in the dry form, in order to allow for the conversion of the precursors to the perovskite particles. The third idea is based on the atomization of the perovskite solution by a spray nozzle, introducing the spray droplets into a hot wall reactor, so as to prepare perovskite particles, using the droplet-to-particle spray approach (spray pyrolysis). Preliminary results show that the spray technology is the most successful method for the preparation of impurity-free perovskite particles and perovskite paste to deposit perovskite thin films. As a proof of concept, a perovskite solar cell with the paste prepared by the sprayed perovskite powder was successfully fabricated.

  13. Fabrication of Semiconducting Methylammonium Lead Halide Perovskite Particles by Spray Technology.

    PubMed

    Ahmadian-Yazdi, Mohammad-Reza; Eslamian, Morteza

    2018-01-10

    In this "nano idea" paper, three concepts for the preparation of methylammonium lead halide perovskite particles are proposed, discussed, and tested. The first idea is based on the wet chemistry preparation of the perovskite particles, through the addition of the perovskite precursor solution to an anti-solvent to facilitate the precipitation of the perovskite particles in the solution. The second idea is based on the milling of a blend of the perovskite precursors in the dry form, in order to allow for the conversion of the precursors to the perovskite particles. The third idea is based on the atomization of the perovskite solution by a spray nozzle, introducing the spray droplets into a hot wall reactor, so as to prepare perovskite particles, using the droplet-to-particle spray approach (spray pyrolysis). Preliminary results show that the spray technology is the most successful method for the preparation of impurity-free perovskite particles and perovskite paste to deposit perovskite thin films. As a proof of concept, a perovskite solar cell with the paste prepared by the sprayed perovskite powder was successfully fabricated.

  14. The synthesis of SrTiO3 nanocubes and the analysis of nearly ideal diode application of Ni/SrTiO3 nanocubes/n-Si heterojunctions

    NASA Astrophysics Data System (ADS)

    Bilal Taşyürek, Lütfi; Sevim, Melike; Çaldıran, Zakir; Aydogan, Sakir; Metin, Önder

    2018-01-01

    A perovskite type of strontium titanate (SrTiO3) nanocubes (NCs) were synthesized by using a hydrothermal process and the thin films of these NCs were deposited on an n-type silicon wafer by spin coating technique. As-synthesized SrTiO3 NCs were characterized by transmission electron microscope, scanning electron microscope, energy dispersive x-ray, x-ray diffraction and Raman spectroscopy. After evaporation of 12 Ni dots on the SrTiO3 NCs thin films deposited on n-Si, the Ni/SrTiO3 NCs/n-Si heterojunction devices were fabricated for the first time. The ideality factors of the twelve fabricated devices were vary from 1.05 to 1.22 and the barrier height values varied from 0.64 to 0.68 eV. Furthermore, since all devices yielded similar characteristics, only the current-voltage and the capacitance-voltage of one selected device (named H1) were investigated in detailed. The series resistance of this device was calculated as 96 Ω.

  15. Ag loading induced visible light photocatalytic activity for pervoskite SrTiO3 nanofibers

    NASA Astrophysics Data System (ADS)

    Wu, Yeqiu; He, Tao

    2018-06-01

    The synthesis and photocatalytic activities of Ag-SrTiO3 nanofibers were reported in this work. The fabricated Ag-SrTiO3 nanofibers were characterized by TG-DSC, XRD, IR, XPS, SEM, TEM, DRS and ESR techniques. The XRD and IR results show that Ag-SrTiO3 nanofibers have a perovskite structure after the heat treatment at 700 °C. The XPS result shows that Ag element exists as Ag0 in the fabricated Ag-SrTiO3 nanofibers. The SEM and TEM images indicate the obtaining of nanofibers with porous structure. The photocatalytic activity of Ag-SrTiO3 nanofibers was evaluated by degrading RhB and MB under visible light irradiation. The Ag-SrTiO3 nanofibers show excellent photocatalytic activity under visible light irradiation because of the surface plasmon resonance effect of Ag0. In the photocatalysis process of RhB and MB, lots of hydroxyl radicals were generated, which plays the key role in the decomposition of organic pollutants.

  16. Ag loading induced visible light photocatalytic activity for pervoskite SrTiO3 nanofibers.

    PubMed

    Wu, Yeqiu; He, Tao

    2018-06-15

    The synthesis and photocatalytic activities of Ag-SrTiO 3 nanofibers were reported in this work. The fabricated Ag-SrTiO 3 nanofibers were characterized by TG-DSC, XRD, IR, XPS, SEM, TEM, DRS and ESR techniques. The XRD and IR results show that Ag-SrTiO 3 nanofibers have a perovskite structure after the heat treatment at 700°C. The XPS result shows that Ag element exists as Ag 0 in the fabricated Ag-SrTiO 3 nanofibers. The SEM and TEM images indicate the obtaining of nanofibers with porous structure. The photocatalytic activity of Ag-SrTiO 3 nanofibers was evaluated by degrading RhB and MB under visible light irradiation. The Ag-SrTiO 3 nanofibers show excellent photocatalytic activity under visible light irradiation because of the surface plasmon resonance effect of Ag 0 . In the photocatalysis process of RhB and MB, lots of hydroxyl radicals were generated, which plays the key role in the decomposition of organic pollutants. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Synthesis and characterization of thick PZT films via sol-gel dip coating method

    NASA Astrophysics Data System (ADS)

    Shakeri, Amid; Abdizadeh, Hossein; Golobostanfard, Mohammad Reza

    2014-09-01

    Thick films of lead zirconate titanate (PZT) offer possibilities for micro-electro-mechanical systems such as high frequency ultrasonic transducers. In this paper, crack-free thick films of PZT have been prepared up to 45 μm thickness via modified sol-gel dip coating method. In this procedure, acetic acid-alcoholic based sol is used by applying diethanolamine (DEA) and deionized water as additives. The effects of DEA and water on the crystal structure and surface morphology of the films are investigated. The mechanisms of acetic acid and DEA complexations are introduced by using FTIR spectrometer which illustrates suitable substitution of complexing agents with alkoxide groups. DEA/(Ti + Zr) = 0.5 or water/(Ti + Zr) = 0.5 are determined as the optimum molar ratio of additives, which lead to the formation of almost pure perovskite phase with the tetragonal lattice parameters of ct = 4.16 Ǻ and at = 4.02 Ǻ and a distortion of 2%. Values of remanent polarization and dielectric constant of 7.8 μC cm-2 and 1630 were obtained for 45 μm thick films, respectively.

  18. Exploration of Near-Infrared-Emissive Colloidal Multinary Lead Halide Perovskite Nanocrystals Using an Automated Microfluidic Platform.

    PubMed

    Lignos, Ioannis; Morad, Viktoriia; Shynkarenko, Yevhen; Bernasconi, Caterina; Maceiczyk, Richard M; Protesescu, Loredana; Bertolotti, Federica; Kumar, Sudhir; Ochsenbein, Stefan T; Masciocchi, Norberto; Guagliardi, Antonietta; Shih, Chih-Jen; Bodnarchuk, Maryna I; deMello, Andrew J; Kovalenko, Maksym V

    2018-05-22

    Hybrid organic-inorganic and fully inorganic lead halide perovskite nanocrystals (NCs) have recently emerged as versatile solution-processable light-emitting and light-harvesting optoelectronic materials. A particularly difficult challenge lies in warranting the practical utility of such semiconductor NCs in the red and infrared spectral regions. In this context, all three archetypal A-site monocationic perovskites-CH 3 NH 3 PbI 3 , CH(NH 2 ) 2 PbI 3 , and CsPbI 3 -suffer from either chemical or thermodynamic instabilities in their bulk form. A promising approach toward the mitigation of these challenges lies in the formation of multinary compositions (mixed cation and mixed anion). In the case of multinary colloidal NCs, such as quinary Cs x FA 1- x Pb(Br 1- y I y ) 3 NCs, the outcome of the synthesis is defined by a complex interplay between the bulk thermodynamics of the solid solutions, crystal surface energies, energetics, dynamics of capping ligands, and the multiple effects of the reagents in solution. Accordingly, the rational synthesis of such NCs is a formidable challenge. Herein, we show that droplet-based microfluidics can successfully tackle this problem and synthesize Cs x FA 1- x PbI 3 and Cs x FA 1- x Pb(Br 1- y I y ) 3 NCs in both a time- and cost-efficient manner. Rapid in situ photoluminescence and absorption measurements allow for thorough parametric screening, thereby permitting precise optical engineering of these NCs. In this showcase study, we fine-tune the photoluminescence maxima of such multinary NCs between 700 and 800 nm, minimize their emission line widths (to below 40 nm), and maximize their photoluminescence quantum efficiencies (up to 89%) and phase/chemical stabilities. Detailed structural analysis revealed that the Cs x FA 1- x Pb(Br 1- y I y ) 3 NCs adopt a cubic perovskite structure of FAPbI 3 , with iodide anions partially substituted by bromide ions. Most importantly, we demonstrate the excellent transference of reaction parameters from microfluidics to a conventional flask-based environment, thereby enabling up-scaling and further implementation in optoelectronic devices. As an example, Cs x FA 1- x Pb(Br 1- y I y ) 3 NCs with an emission maximum at 735 nm were integrated into light-emitting diodes, exhibiting a high external quantum efficiency of 5.9% and a very narrow electroluminescence spectral bandwidth of 27 nm.

  19. CSP ELEMENTS: High-Temperature Thermochemical Storage with Redox-Stable Perovskites for Concentrating Solar Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Gregory S; Braun, Robert J; Ma, Zhiwen

    This project was motivated by the potential of reducible perovskite oxides for high-temperature, thermochemical energy storage (TCES) to provide dispatchable renewable heat for concentrating solar power (CSP) plants. This project sought to identify and characterize perovskites from earth-abundant cations with high reducibility below 1000 °C for coupling TCES of solar energy to super-critical CO2 (s-CO2) plants that operate above temperature limits (< 600 °C) of current molten-salt storage. Specific TCES > 750 kJ/kg for storage cycles between 500 and 900 °C was targeted with a system cost goal of $15/kWhth. To realize feasibility of TCES systems based on reducible perovskites,more » our team focused on designing and testing a lab-scale concentrating solar receiver, wherein perovskite particles capture solar energy by fast O2 release and sensible heating at a thermal efficiency of 90% and wall temperatures below 1100 °C. System-level models of the receiver and reoxidation reactor coupled to validated thermochemical materials models can assess approaches to scale-up a full TCES system based on reduction/oxidation cycles of perovskite oxides at large scales. After characterizing many Ca-based perovskites for TCES, our team identified strontium-doped calcium manganite Ca1-xSrxMnO3-δ (with x ≤ 0.1) as a composition with adequate stability and specific TCES capacity (> 750 kJ/kg for Ca0.95Sr0.05MnO3-δ) for cycling between air at 500 °C and low-PO2 (10-4 bar) N2 at 900 °C. Substantial kinetic tests demonstrated that resident times of several minutes in low-PO2 gas were needed for these materials to reach the specific TCES goals with particles of reasonable size for large-scale transport (diameter dp > 200 μm). On the other hand, fast reoxidation kinetics in air enables subsequent rapid heat release in a fluidized reoxidation reactor/ heat recovery unit for driving s-CO2 power plants. Validated material thermochemistry coupled to radiation and convective particle-gas transport models facilitated full TCES system analysis for CSP and results showed that receiver efficiencies approaching 85% were feasible with wall-to-particle heat transfer coefficients observed in laboratory experiments. Coupling these reactive particle-gas transport models to external SolTrace and CFD models drove design of a reactive-particle receiver with indirect heating through flux spreading. A lab-scale receiver using Ca0.9Sr0.1MnO3-δ was demonstrated at NREL’s High Flux Solar Furnace with particle temperatures reaching 900 °C while wall temperatures remained below 1100 °C and approximately 200 kJ/kg of chemical energy storage. These first demonstrations of on-sun perovskite reduction and the robust modeling tools from this program provide a basis for going forward with improved receiver designs to increase heat fluxes and solar-energy capture efficiencies. Measurements and modeling tools from this project provide the foundations for advancing TCES for CSP and other applications using reducible perovskite oxides from low-cost, earth-abundant elements. A perovskite composition has been identified that has the thermodynamic potential to meet the targeted TCES capacity of 750 kJ/kg over a range of temperatures amenable for integration with s-CO2 cycles. Further research needs to explore ways of accelerating effective particle kinetics through variations in composition and/or reactor/receiver design. Initial demonstrations of on-sun particle reduction for TCES show a need for testing at larger scales with reduced heat losses and improved particle-wall heat transfer. The gained insight into particle-gas transport and reactor design can launch future development of cost-effective, large-scale particle-based TCES as a technology for enabling increased renewable energy penetration.« less

  20. It Takes Two to Tango-Double-Layer Selective Contacts in Perovskite Solar Cells for Improved Device Performance and Reduced Hysteresis.

    PubMed

    Kegelmann, Lukas; Wolff, Christian M; Awino, Celline; Lang, Felix; Unger, Eva L; Korte, Lars; Dittrich, Thomas; Neher, Dieter; Rech, Bernd; Albrecht, Steve

    2017-05-24

    Solar cells made from inorganic-organic perovskites have gradually approached market requirements as their efficiency and stability have improved tremendously in recent years. Planar low-temperature processed perovskite solar cells are advantageous for possible large-scale production but are more prone to exhibiting photocurrent hysteresis, especially in the regular n-i-p structure. Here, a systematic characterization of different electron selective contacts with a variety of chemical and electrical properties in planar n-i-p devices processed below 180 °C is presented. The inorganic metal oxides TiO 2 and SnO 2 , the organic fullerene derivatives C 60 , PCBM, and ICMA, as well as double-layers with a metal oxide/PCBM structure are used as electron transport materials (ETMs). Perovskite layers deposited atop the different ETMs with the herein applied fabrication method show a similar morphology according to scanning electron microscopy. Further, surface photovoltage spectroscopy measurements indicate comparable perovskite absorber qualities on all ETMs, except TiO 2 , which shows a more prominent influence of defect states. Transient photoluminescence studies together with current-voltage scans over a broad range of scan speeds reveal faster charge extraction, less pronounced hysteresis effects, and higher efficiencies for devices with fullerene compared to those with metal oxide ETMs. Beyond this, only double-layer ETM structures substantially diminish hysteresis effects for all performed scan speeds and strongly enhance the power conversion efficiency up to a champion stabilized value of 18.0%. The results indicate reduced recombination losses for a double-layer TiO 2 /PCBM contact design: First, a reduction of shunt paths through the fullerene to the ITO layer. Second, an improved hole blocking by the wide band gap metal oxide. Third, decreased transport losses due to an energetically more favorable contact, as implied by photoelectron spectroscopy measurements. The herein demonstrated improvements of multilayer selective contacts may serve as a general design guideline for perovskite solar cells.

  1. Pin-Hole Free Perovskite Film for Solar Cells Application Prepared by Controlled Two-Step Spin-Coating Method

    NASA Astrophysics Data System (ADS)

    Bahtiar, A.; Rahmanita, S.; Inayatie, Y. D.

    2017-05-01

    Morphology of perovskite film is a key important for achieving high performance perovskite solar cells. Perovskite films are commonly prepared by two-step spin-coating method. However, pin-holes are frequently formed in perovskite films due to incomplete conversion of lead-iodide (PbI2) into perovskite CH3NH3PbI3. Pin-holes in perovskite film cause large hysteresis in current-voltage curve of solar cells due to large series resistance between perovskite layer-hole transport material. Moreover, crystal structure and grain size of perovskite crystal are also other important parameters for achieving high performance solar cells, which are significantly affected by preparation of perovskite film. We studied the effect of preparation of perovskite film using controlled spin-coating parameters on crystal structure and morphological properties of perovskite film. We used two-step spin-coating method for preparation of perovskite film with varied spinning speed, spinning time and temperature of spin-coating process to control growth of perovskite crystal aimed to produce high quality perovskite crystal with pin-hole free and large grain size. All experiment was performed in air with high humidity (larger than 80%). The best crystal structure, pin-hole free with large grain crystal size of perovskite film was obtained from film prepared at room temperature with spinning speed 1000 rpm for 20 seconds and annealed at 100°C for 300 seconds.

  2. The effect of strontium and barium doping on perovskite-structured energy materials for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Chung; Chen, Wei-Cheng; Chan, Shun-Hsiang; Su, Wei-Fang

    2018-01-01

    Perovskite solar cell is a novel photovoltaic technology with the superior progress in efficiency and the simple solution processes. Develop lead-free or lead-reduced perovskite materials is a significant concern for high-performance perovskite solar cell. Among the alkaline earth metals, the Sr2+ and Ba2+ are suitable for Pb2+ replacement in perovskite film due to fitting Goldschmidt's tolerance factor. In this study, we adopted Ba-doped and Sr-doped perovskite structured materials with different doping levels, including 1.0, 5.0, and 10.0 mol%, to prepare perovskite solar cells. Both Ba-doped and Sr-doped perovskite structured materials have a related tendency in absorption behavior and surface morphology. At 10.0 mol% doping level, the power conversion efficiency (PCE) of Sr-doped perovskite solar cells is only ∼0.5%, but the PCE of Ba-doped perovskite solar cells can be achieved to ∼9.7%. Ba-doped perovskite solar cells showed the acceptable photovoltaic characteristics than Sr-doped perovskite solar cells. Ba dopant can partially replace the amount of lead in the perovskite solar cells, and it could be a potential candidate in the field of lead-free or lead-reduced perovskite energy materials.

  3. Adsorption of molecular additive onto lead halide perovskite surfaces: A computational study on Lewis base thiophene additive passivation

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Yu, Fengxi; Chen, Lihong; Li, Jingfa

    2018-06-01

    Organic additives, such as the Lewis base thiophene, have been successfully applied to passivate halide perovskite surfaces, improving the stability and properties of perovskite devices based on CH3NH3PbI3. Yet, the detailed nanostructure of the perovskite surface passivated by additives and the mechanisms of such passivation are not well understood. This study presents a nanoscopic view on the interfacial structure of an additive/perovskite interface, consisting of a Lewis base thiophene molecular additive and a lead halide perovskite surface substrate, providing insights on the mechanisms that molecular additives can passivate the halide perovskite surfaces and enhance the perovskite-based device performance. Molecular dynamics study on the interactions between water molecules and the perovskite surfaces passivated by the investigated additive reveal the effectiveness of employing the molecular additives to improve the stability of the halide perovskite materials. The additive/perovskite surface system is further probed via molecular engineering the perovskite surfaces. This study reveals the nanoscopic structure-property relationships of the halide perovskite surface passivated by molecular additives, which helps the fundamental understanding of the surface/interface engineering strategies for the development of halide perovskite based devices.

  4. Theoretical design and discovery of the most-promising, previously overlooked hybrid perovskite compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zunger, Alex; Kazmerski, Lawrence L.; Dalpian, Gustavo M.

    The material class of hybrid organic-inorganic perovskites (AMX3) has risen rapidly from a virtually unknown material in photovoltaic applications a short 8-years ago into 20-23% efficient thin-film solar cell devices. As promising as this class of materials is, however, there are limitations associated with its poor long-term stability, non-optimal band gap, and the presence of toxic Pb atom on the metalloid site. An Edisonian laboratory exploration (i.e., growth + characterization) via trial-and-error processes of all other candidate materials, is unpractical. Our approach uses high speed computational design and discovery to screen the ‘best of class” candidates based upon optimal functionalities.

  5. Hybrid lead halide perovskites for light energy conversion: Excited state properties and photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Manser, Joseph S.

    The burgeoning class of metal halide perovskites constitutes a paradigm shift in the study and application of solution-processed semiconductors. Advancements in thin film processing and our understanding of the underlying structural, photophysical, and electronic properties of these materials over the past five years have led to development of perovskite solar cells with power conversion efficiencies that rival much more mature first and second-generation commercial technologies. It seems only a matter of time before the real-world impact of these compounds is put to the test. Like oxide perovskites, metal halide perovskites have ABX3 stoichiometry, where typically A is a monovalent cation, B a bivalent post-transition metal, and X a halide anion. Characterizing the behavior of photogenerated charges in metal halide perovskites is integral for understanding the operating principles and fundamental limitations of perovskite optoelectronics. The majority of studies outlined in this dissertation involve fundamental study of the prototypical organic-inorganic compound methylammonium lead iodide (CH3NH3PbI 3). Time-resolved pump-probe spectroscopy serves as a principle tool in these investigations. Excitation of a semiconductor can lead to formation of a number different excited state species and electronic complexes. Through analysis of excited state decay kinetics and optical nonlinearities in perovskite thin films, we identify spontaneous formation of a large fraction of free electrons and holes, whose presence is requisite for efficient photovoltaic operation. Following photogeneration of charge carriers in a semiconductor absorber, these species must travel large distances across the thickness of the material to realize large external quantum efficiencies and efficient carrier extraction. Using a powerful technique known as transient absorption microscopy, we directly image long-range carrier diffusion in a CH3NH3PbI 3 thin film. Charges are unambiguously shown to travel 220 nm over the course of 2 ns after photoexcitation, with an extrapolated diffusion length greater than one micrometer over the full excited state lifetime. The solution-processability of metal halide perovskites necessarily raises questions as to the properties of the solvated precursors and their connection to the final solid-state perovskite phase. Through structural and steady-state and time-resolved absorption studies, the important link between the excited state properties of the precursor components, composed of solvated and solid-state halometallate complexes, and CH3NH3PbI3 is evinced. This connection provides insight into optical nonlinearities and electronic properties of the perovskite phase. Fundamental studies of CH 3NH3PbI3 ultimately serve as a foundation for application of this and other related materials in high-performance devices. In the final chapter, the operation of CH3NH3PbI 3 solar cells in a tandem architecture is presented. The quest for economic, large scale hydrogen production has motivated the search for new materials and device designs capable of splitting water using only energy from the sun. In light of this, we introduce an all solution-processed tandem water splitting assembly composed of a BiVO4 photoanode and a single-junction CH3NH3PbI3 hybrid perovskite solar cell. This unique configuration allows efficient solar photon management, with the metal oxide photoanode selectively harvesting high energy visible photons and the underlying perovskite solar cell capturing lower energy visible-near IR wavelengths in a single-pass excitation. Operating without external bias under standard terrestrial one sun illumination, the photoanode-photovoltaic architecture, in conjunction with an earthabundant cobalt phosphate catalyst, exhibits a solar-to-hydrogen conversion efficiency of 2.5% at neutral pH. The design of low-cost tandem water splitting assemblies employing single-junction hybrid perovskite materials establishes a potentially promising new frontier for solar water splitting research.

  6. The review of various synthesis methods of barium titanate with the enhanced dielectric properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    More, S. P., E-mail: smitalomte@gmail.com; Topare, R. J., E-mail: r-topare@yahoo.com

    2016-05-06

    The Barium Titanate is a very well known dielectric ceramic belongs to perovskite structure. It has very wide applications in the field of electronic, electro ceramic, electromechanical and electro-optical applications. Barium Titanate has very high dielectric constant as well as low dielectric loss. Substituted dielectrics are one of the most important technological compounds in modern electro ceramics. Its electrical properties can be tuned flexibly by a simple substitution technique. This has encouraged researchers to select a typical cation to be substituted at cationic sites. In the present paper, the review of various synthesis methods of Barium Titanate compound with themore » effect of different dopants, the grain size on the dielectric properties at various temperatures is discussed.« less

  7. Synthetic Development of Low Dimensional Materials

    DOE PAGES

    Men, Long; White, Miles A.; Andaraarachchi, Himashi; ...

    2016-11-02

    Here, in this invited paper, we highlight some of our most recent work on the synthesis of low dimensional nanomaterials. Current graduate students and members of our group present four specific case systems: Nowotny-Juza phases, nickel phosphides, germanium-based core/shells, and organolead mixed-halide perovskites. Each system is accompanied by commentary from the student involved, which explains our motivation behind our work, as well as by a protocol detailing the key experimental considerations involved in their synthesis. We trust these and similar efforts by others and us will help further advance our understanding of the broader field of synthetic nanomaterials chemistry, while,more » at the same time, highlighting how important this area is to the development of new materials for technologically relevant applications.« less

  8. Recent advances of flexible hybrid perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Shin, Dong Hee; Heo, Jin Hyuck; Im, Sang Hyuk

    2017-11-01

    Recently, hybrid perovskite solar cells have attracted great interest because they can be fabricated to low cost, flexible, and highly efficient solar cells. Here, we introduced recent advances of flexible hybrid perovskite solar cells. We introduced research background of flexible perovskite solar cells in introduction part. Then we composed the main body to i) structure and properties of hybrid perovskite solar cells, ii) why flexible hybrid perovskite solar cells are important?, iii) transparent conducting oxide (TCO) based flexible hybrid perovskite solar cells, and iv) TCO-free transparent conducting electrode (TCE) based flexible hybrid perovskite solar cells. Finally, we summarized research outlook of flexible hybrid perovskite solar cells.

  9. First Principles Study of Electronic and Magnetic Structures in Double Perovskites

    NASA Astrophysics Data System (ADS)

    Ball, Molly

    At present, electronic devices are reaching their storage and processing limit causing a major push to find materials that can be used in the next generation of devices. Double perovskites with A2BB'O 6 stoichiometry form one of the leading classes of materials currently being studied as a potential candidate because of their extremely wide range and tunability of functional properties, along with economic and highly scalable synthesis routes. Having a thorough understanding of their electronic and magnetic structure and their dependence on composition and local structure is the basis for targeted development of novel and optimized double perovskites. While the body of knowledge and rules within the field of materials chemistry has enabled many previous discoveries, recent developments within density functional theory (DFT) allow by now a rather realistic description of the electronic and magnetic properties of materials and especially identification of their origin from geometry and orbital structure. This thesis details computational work based on DFT within several collaborative studies to better understand the electronic and magnetic properties of double perovskites and related materials that show promise for future use in multifunctional devices. First, we will begin with a general introduction to the double perovskite structure, their properties, and the computational methods used to study them. In the next section, we will look at the case of the antiferromagnetic, insulating double perovskite Sr2CoOsO6, where measurements showed that the transition metal ions in the two sublattices undergo magnetic ordering independently of each other, indicating weak magnetic short-range coupling and a dominance of longer-range interactions, which has previously not been observed. Here, we performed DFT calculations to extract the exchange strengths between the ions and explain this unique dominance of the long-range interactions. Then, we will look at studies done on thin films of Sr2CrReO 6, where our experimental collaborators found extraordinarily large anisotropy fields and record-breaking strain-tunable magnetocrystalline anisotropy (MCA). We employed first principles calculations that examine the dependence of MCA on strain and could identify orbital magnetism on the Re atoms as the origin of this unique phenomenon. In the last section, we introduce double perovskites as novel lead-free halide solar cell materials, with current focus on Cs2AgBiBr 6 and Cs2AgBiCl6. While organic Pb based halides that can be synthesized without expensive clean rooms have achieved within record time efficiencies that rival that of traditional semiconductor based materials, creating quite a buzz within the field of photovoltaics, their Pb content and lacking air stability represented severe roadblocks towards market introduction. Here, we show with band structure calculations that spin-orbit coupling is a much more dominant interaction than in traditional semiconductors and thus needs to be considered when designing novel materials for maximum efficiency. The results of this study have given momentum to investigate additional halides double perovskites. Finally, we will summarize and discuss the importance of computational modeling in order to explore the wide and to date little explored composition space of double perovskites, one of the currently most promising materials classes for novel devices with unique and extremely tunable properties.

  10. Compositional engineering of perovskite oxides for highly efficient oxygen reduction reactions.

    PubMed

    Chen, Dengjie; Chen, Chi; Zhang, Zhenbao; Baiyee, Zarah Medina; Ciucci, Francesco; Shao, Zongping

    2015-04-29

    Mixed conducting perovskite oxides are promising catalysts for high-temperature oxygen reduction reaction. Pristine SrCoO(3-δ) is a widely used parent oxide for the development of highly active mixed conductors. Doping a small amount of redox-inactive cation into the B site (Co site) of SrCoO(3-δ) has been applied as an effective way to improve physicochemical properties and electrochemical performance. Most findings however are obtained only from experimental observations, and no universal guidelines have been proposed. In this article, combined experimental and theoretical studies are conducted to obtain fundamental understanding of the effect of B-site doping concentration with redox-inactive cation (Sc) on the properties and performance of the perovskite oxides. The phase structure, electronic conductivity, defect chemistry, oxygen reduction kinetics, oxygen ion transport, and electrochemical reactivity are experimentally characterized. In-depth analysis of doping level effect is also undertaken by first-principles calculations. Among the compositions, SrCo0.95Sc0.05O(3-δ) shows the best oxygen kinetics and corresponds to the minimum fraction of Sc for stabilization of the oxygen-vacancy-disordered structure. The results strongly support that B-site doping of SrCoO(3-δ) with a small amount of redox-inactive cation is an effective strategy toward the development of highly active mixed conducting perovskites for efficient solid oxide fuel cells and oxygen transport membranes.

  11. Stability assessments on luminescent down-shifting molecules for UV-protection of perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Gheno, Alexandre; Trigaud, Thierry; Bouclé, Johann; Audebert, Pierre; Ratier, Bernard; Vedraine, Sylvain

    2018-01-01

    In this work the use of a S-tetrazine (NITZ) molecule with down-shifting capability to improve the stability of perovskite solar cells is reported. Indeed perovskite solar cells are known to present a high sensitivity to UV light and one strategy to overcome this issue is to actually supress the UV from the illumination light. The NITZ down-shifting molecule is well suited for this application since it has the particularity to be excited in the near-UV region and to emit into the visible light spectrum, giving the possibility to recycle UV photons for additional current generation. Through current-voltage curves, incident-photon-to-electron conversion efficiency, and photoluminescence spectroscopy characterization we show that NITZ presents an emission quantum yield of 30% which allows to reduce the loss of JSC induced by the use of a conventional UV filter, even if a net gain in photocurrent is not achieved in our case. We also present a simple prediction of the ability of a down-shifting molecule to efficiently perform for a specific active material. Moreover, we finally discuss the possibility to improve using such down-shifting strategy, the performance of some perovskite solar cells based on alternatives electron-transporting layers such as WO3, which are known to alter the active layer performance following UV light absorption.

  12. Anharmonicity and Disorder in the Black Phases of Cesium Lead Iodide Used for Stable Inorganic Perovskite Solar Cells.

    PubMed

    Marronnier, Arthur; Roma, Guido; Boyer-Richard, Soline; Pedesseau, Laurent; Jancu, Jean-Marc; Bonnassieux, Yvan; Katan, Claudine; Stoumpos, Constantinos C; Kanatzidis, Mercouri G; Even, Jacky

    2018-04-24

    Hybrid organic-inorganic perovskites emerged as a new generation of absorber materials for high-efficiency low-cost solar cells in 2009. Very recently, fully inorganic perovskite quantum dots also led to promising efficiencies, making them a potentially stable and efficient alternative to their hybrid cousins. Currently, the record efficiency is obtained with CsPbI 3 , whose crystallographical characterization is still limited. Here, we show through high-resolution in situ synchrotron XRD measurements that CsPbI 3 can be undercooled below its transition temperature and temporarily maintained in its perovskite structure down to room temperature, stabilizing a metastable perovskite polytype (black γ-phase) crucial for photovoltaic applications. Our analysis of the structural phase transitions reveals a highly anisotropic evolution of the individual lattice parameters versus temperature. Structural, vibrational, and electronic properties of all the experimentally observed black phases are further inspected based on several theoretical approaches. Whereas the black γ-phase is shown to behave harmonically around equilibrium, for the tetragonal phase, density functional theory reveals the same anharmonic behavior, with a Brillouin zone-centered double-well instability, as for the cubic phase. Using total energy and vibrational entropy calculations, we highlight the competition between all the low-temperature phases of CsPbI 3 (γ, δ, β) and show that avoiding the order-disorder entropy term arising from double-well instabilities is key to preventing the formation of the yellow perovskitoid phase. A symmetry-based tight-binding model, validated by self-consistent GW calculations including spin-orbit coupling, affords further insight into their electronic properties, with evidence of Rashba effect for both cubic and tetragonal phases when using the symmetry-breaking structures obtained through frozen phonon calculations.

  13. Interface Play between Perovskite and Hole Selective Layer on the Performance and Stability of Perovskite Solar Cells.

    PubMed

    Salado, Manuel; Idigoras, Jesus; Calio, Laura; Kazim, Samrana; Nazeeruddin, Mohammad Khaja; Anta, Juan A; Ahmad, Shahzada

    2016-12-21

    Perovskite solar cells with variety of hole selective contacts such as 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (Spiro-OMeTAD), poly(3-hexylthiophene-2,5-diyl), poly[bis(4-phenyl)(2,5,6-trimentlyphenyl)amine], 5,10,15-trihexyl-3,8,13-tris(4-methoxyphenyl)-10,15-dihydro-5H-diindolo[3,2-a:3',2'-c]carbazole (HMPDI), and 2',7'-bis(bis(4-methoxyphenyl)amino)spiro[cyclopenta[2,1-b:3,4-b']dithiophene-4,9'-fluorene] were employed to elucidate its role at the interface of perovskite and metallic cathode. Microscopy images revealed Spiro-OMeTAD and HMPDI produce smoother and intimate contact between perovskite/hole transporting materials (HTM) interfaces among others evaluated here. This morphological feature appears to be connected with three fundamental facts: (1) hole injection to the HTM is much more efficient as evidenced by photoluminescence measurements, (2) recombination losses are less important as evidenced by intensity-modulated photovoltage spectroscopy and impedance spectroscopy measurements, and (3) fabricated solar cells are much more robust against degradation by moisture. Devices with higher open-circuit photovoltages are characterized by higher values of the recombination resistance extracted from the impedance data. The variation in device hysteresis behavior can be ascribed mainly due to the molecular interaction and the core of HTM employed. In all cases, this fact is related with a larger value of the low-frequency capacitance, which indicates that the HTM can induce specific slow processes of ion accumulation at the interface. Notably, these processes tend to slowly relax in time, as hysteresis is substantially reduced for aged devices.

  14. Pb(B{sup {prime}}{sub 1/2}B{sup {prime}{prime}}{sub 1/2})O{sub 3}-type perovskites: Part II. Short-range order parameter as a criterion of the distinction between relaxor and normal ferroelectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, S.; Jang, H.M.

    1997-08-01

    A classification scheme of Pb(B{sup {prime}}{sub 1/2}B{sup {prime}{prime}}{sub 1/2})O{sub 3}-type perovskites with respect to the B-site order parameters was proposed based on the theoretical calculation of the short-range order parameter ({sigma}) using the pair-correlation model. The calculated order parameters predict that a Pb(B{sup {prime}}{sub 1/2}B{sup {prime}{prime}}{sub 1/2})O{sub 3}-type perovskite without any charge difference between B{sup {prime}} and B{sup {prime}{prime}} cations [e.g., Pb(Zr{sub 1/2}Ti{sub 1/2})O{sub 3} (PZT)] is represented by a completely disordered state with the absence of a finite coherence length. On the other hand, a Pb(B{sup {prime}}{sub 1/2}B{sup {prime}{prime}}{sub 1/2})O{sub 3} type perovskite system having different ionic charges ismore » characterized either by the short-range ordering with a nanoscale coherence length or by the macroscopic long-range ordering, depending on the magnitude of ionic charge difference between B{sup {prime}} and B{sup {prime}{prime}} ions. The normal ferroelectricity in Pb(B{sup {prime}}{sub 1/2}B{sup {prime}{prime}}{sub 1/2})O{sub 3}-type complex perovskites was then correlated either with a completely disordered state ({sigma}=0) or with a perfectly ordered state ({sigma}=1), whereas the relaxor behavior was attributed to the nanoscale short-range ordering (0{lt}{sigma}{lt}1) in the configuration of the B-site cations. {copyright} {ital 1997 Materials Research Society.}« less

  15. Strain-sensitive spin-state ordering in thin films of perovskite LaCoO3

    NASA Astrophysics Data System (ADS)

    Fujioka, J.; Yamasaki, Y.; Doi, A.; Nakao, H.; Kumai, R.; Murakami, Y.; Nakamura, M.; Kawasaki, M.; Arima, T.; Tokura, Y.

    2015-11-01

    We have investigated the lattice distortion coupled to the Co 3 d -spin-state ordering in thin films of perovskite LaCoO3 with various epitaxial strains by measurements of the magnetization, x-ray diffraction, and optical spectra. In the system with tensile strain about 0.5%, a lattice distortion characterized by the modulation vector q =(1 /6 ,1 /6 ,1 /6 ) emerges at 40 K, followed by a ferromagnetic ordering at 24 K. Alternatively, in systems with tensile strain exceeding 1%, the lattice distortion characterized by q =(1 /4 ,1 /4 ,1 /4 ) emerges at 120 K or higher, and subsequently the ferromagnetic or ferrimagnetic ordering occurs around 90 K. The evolution of infrared phonon spectra and resonant x-ray scattering at the Co K edge suggests that the population change in the Co 3 d spin state causes the strain-induced switching of spin-state ordering as well as of magnetic ordering in this canonical spin-state crossover system.

  16. Symmetry mismatch-driven perpendicular magnetic anisotropy for perovskite/brownmillerite heterostructures.

    PubMed

    Zhang, Jing; Zhong, Zhicheng; Guan, Xiangxiang; Shen, Xi; Zhang, Jine; Han, Furong; Zhang, Hui; Zhang, Hongrui; Yan, Xi; Zhang, Qinghua; Gu, Lin; Hu, Fengxia; Yu, Richeng; Shen, Baogen; Sun, Jirong

    2018-05-15

    Grouping different transition metal oxides together by interface engineering is an important route toward emergent phenomenon. While most of the previous works focused on the interface effects in perovskite/perovskite heterostructures, here we reported on a symmetry mismatch-driven spin reorientation toward perpendicular magnetic anisotropy in perovskite/brownmillerite heterostructures, which is scarcely seen in tensile perovskite/perovskite heterostructures. We show that alternately stacking perovskite La 2/3 Sr 1/3 MnO 3 and brownmillerite LaCoO 2.5 causes a strong interface reconstruction due to symmetry discontinuity at interface: neighboring MnO 6 octahedra and CoO 4 tetrahedra at the perovskite/brownmillerite interface cooperatively relax in a manner that is unavailable for perovskite/perovskite interface, leading to distinct orbital reconstructions and thus the perpendicular magnetic anisotropy. Moreover, the perpendicular magnetic anisotropy is robust, with an anisotropy constant two orders of magnitude greater than the in-plane anisotropy of the perovskite/perovskite interface. The present work demonstrates the great potential of symmetry engineering in designing artificial materials on demand.

  17. Polyvinyl alcohol: an efficient fuel for synthesis of superparamagnetic LSMO nanoparticles for biomedical application.

    PubMed

    Thorat, N D; Shinde, K P; Pawar, S H; Barick, K C; Betty, C A; Ningthoujam, R S

    2012-03-14

    La(0.7)Sr(0.3)MnO(3) (LSMO) nanoparticles have been prepared using glycine and polyvinyl alcohol (PVA) as fuels. Their crystal structure, particle morphology and compositions are characterized using X-ray diffraction, transmission electron microscopy, field-emission electron microscopy and energy dispersive analysis of X-ray. They show a pseudo-cubic perovskite structure. The spherical particle sizes of 30 and 20 nm have been obtained from samples prepared by glycine and PVA respectively. The field cooled (FC) and zero field cooled (ZFC) magnetizations have been recorded from 5 to 375 K at 500 Oe and superparamagnetic blocking temperatures (T(B)) of 75 and 30 K are obtained from samples prepared by glycine and PVA respectively. Particle size distribution is observed from dynamic light scattering measurements. Dispersion stability of the particles in water is studied by measuring the Zeta potential with varying the pH of the medium from 1 to 12. Under induction heating experiments, a hyperthermia temperature (42-43 °C) is achieved by both the samples (3-6 mg mL(-1)) at magnetic fields of 167-335 Oe and at a frequency of 267 kHz. The bio-compatibility of the LSMO nanoparticles is studied on the L929 and HeLa cell lines by MTT assay for up to 48 h. The present work reveals the importance of synthesis technique and fuel choice on structural, morphological, magnetic, hyperthermia and biocompatible properties of LSMO and predicts the suitability for biomedical applications.

  18. Structure, stability, and photoluminescence in the anti-perovskites Na{sub 3}W{sub 1−x}Mo{sub x}O{sub 4}F (0≤x≤1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Eirin, E-mail: esulliv@ilstu.edu; Avdeev, Maxim; Blom, Douglas A.

    2015-10-15

    Single-phase ordered oxyfluorides Na{sub 3}WO{sub 4}F, Na{sub 3}MoO{sub 4}F and their mixed members Na{sub 3}W{sub 1−x}Mo{sub x}O{sub 4}F can be prepared via facile solid state reaction of Na{sub 2}MO{sub 4}·2H{sub 2}O (M=W, Mo) and NaF. Phases produced from incongruent melts are metastable, but lower temperatures allow for a facile one-step synthesis. In polycrystalline samples of Na{sub 3}W{sub 1−x}Mo{sub x}O{sub 4}F, the presence of Mo stabilizes the structure against decomposition to spinel phases. Photoluminescence studies show that upon excitation with λ=254 nm and λ=365 nm, Na{sub 3}WO{sub 4}F and Na{sub 3}MoO{sub 4}F exhibit broad emission maxima centered around 485 nm. Thesemore » materials constitute new members of the family of self-activating ordered oxyfluoride phosphors with anti-perovskite structures which are amenable to doping with emitters such as Eu{sup 3+}. - Graphical abstract: Directed synthesis of the ordered oxyfluorides Na{sub 3}W{sub 1−x}Mo{sub x}O{sub 4}F (0≤x≤1) has shown that a complete solid solution is attainable and provides the first example of photoluminescence in these materials. - Highlights: • Na{sub 3}W{sub 1−x}Mo{sub x}O{sub 4}F is a complete solid solution with hexagonal anti-perovskite structure. • The presence of even small amounts of Mo stabilizes the structure against decomposition. • Na{sub 3}W{sub 1−x}Mo{sub x}O{sub 4}F has broad emissions centered ≈485 nm (λ{sub ex}=254 nm and λ{sub ex}=365 nm). • These materials constitute a new family of self-activated oxyfluoride phosphors. • Na{sub 3}W{sub 1−x}Mo{sub x}O{sub 4}F materials are amenable to doping with emitters such as Eu{sup 3+}.« less

  19. Sintering of BaCe(sub 0.85)Y(sub 0.15)O(sub 3-delta) with/without SrTiO3 Dopant

    NASA Technical Reports Server (NTRS)

    Dynys, F.; Sayir, A.; Heimann, P. J.

    2004-01-01

    The perovskite composition, BaCe(sub 0.85)Y(sub 0.15)O(sub 3-delta), displays excellent protonic conduction at high temperatures making it a desirable candidate for hydrogen separation membranes. This paper reports on the sintering behavior of BaCe(sub 0.85)Y(sub 0.15)O(sub 3-delta) powders doped with SrTiO3. Two methods were used to synthesize BaCe(sub 0.85)Y(sub 0.15)O(sub 3-delta) powders: (1) solid state reaction and (2) wet chemical co-precipitation. Co-precipitated powder crystallized into the perovskite phase at 1000 C for 4 hrs. Complete reaction and crystallization of the perovskite phase by solid state was achieved by calcining at 1200 C for 24 hrs. Solid state synthesis produced a coarser powder with an average particle size of 1.3 microns and surface area of 0.74 sq m/g. Co-precipitation produced a finer powder with a average particle size of 65 nm and surface area of 14.9 sq m/g. Powders were doped with 1, 2, 5, and 10 mole % SrTiO3. Samples were sintered at 1450 C, 1550 C and 1650 C. SrTiO3 enhances sintering, optimal dopant level is different for powders synthesized by solid state and co-precipitation. Both powders exhibit similar grain growth behavior. Dopant levels of 5 and 10 mole % SrTiO3 significantly enhances the grain size.

  20. Curtailing Perovskite Processing Limitations via Lamination at the Perovskite/Perovskite Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Hest, Marinus F; Moore, David; Klein, Talysa

    Standard layer-by-layer solution processing methods constrain lead-halide perovskite device architectures. The layer below the perovskite must be robust to the strong organic solvents used to form the perovskite while the layer above has a limited thermal budget and must be processed in nonpolar solvents to prevent perovskite degradation. To circumvent these limitations, we developed a procedure where two transparent conductive oxide/transport material/perovskite half stacks are independently fabricated and then laminated together at the perovskite/perovskite interface. Using ultraviolet-visible absorption spectroscopy, external quantum efficiency, X-ray diffraction, and time-resolved photoluminesence spectroscopy, we show that this procedure improves photovoltaic properties of the perovskite layer.more » Applying this procedure, semitransparent devices employing two high-temperature oxide transport layers were fabricated, which realized an average efficiency of 9.6% (maximum: 10.6%) despite series resistance limitations from the substrate design. Overall, the developed lamination procedure curtails processing constraints, enables new device designs, and affords new opportunities for optimization.« less

  1. Perovskite-Perovskite Homojunctions via Compositional Doping.

    PubMed

    Dänekamp, Benedikt; Müller, Christian; Sendner, Michael; Boix, Pablo P; Sessolo, Michele; Lovrincic, Robert; Bolink, Henk J

    2018-05-11

    One of the most important properties of semiconductors is the possibility of controlling their electronic behavior via intentional doping. Despite the unprecedented progress in the understanding of hybrid metal halide perovskites, extrinsic doping of perovskite remains nearly unexplored and perovskite-perovskite homojunctions have not been reported. Here we present a perovskite-perovskite homojunction obtained by vacuum deposition of stoichiometrically tuned methylammonium lead iodide (MAPI) films. Doping is realized by adjusting the relative deposition rates of MAI and PbI 2 , obtaining p-type (MAI excess) and n-type (MAI defect) MAPI. The successful stoichiometry change in the thin films is confirmed by infrared spectroscopy, which allows us to determine the MA content in the films. We analyzed the resulting thin-film junction by cross-sectional scanning Kelvin probe microscopy (SKPM) and found a contact potential difference (CPD) of 250 mV between the two differently doped perovskite layers. Planar diodes built with the perovskite-perovskite homojunction show the feasibility of our approach for implementation in devices.

  2. Thermal engineering of lead-free nanostructured CH3NH3SnCl3 perovskite material for thin-film solar cell

    NASA Astrophysics Data System (ADS)

    Moyez, Sk Abdul; Roy, Subhasis

    2018-01-01

    Perovskite solar cell is a kind of revolutionary investigation in the field of renewable energy which is capable of mitigates the deficiencies of silicon solar cell and its uprising efficiency can bring blessing to society. The presence of lead (Pb) in perovskite solar cell can make worst and negative impact on environment and is not desirable for our society. In this paper, general plans are anticipated by replacement of Pb with tin (Sn) in open atmosphere to fabricate the CH3NH3SnCl3 photovoltaic cells in chlorine (Cl)-rich environment. Excess uses of Cl has positive influences on morphological growth of the film and it also suppresses the oxidation tendency of tin (Sn) with existing oxygen in atmosphere and maintains same chemical atmosphere as bulk. Various characterization tools like X-ray diffraction, scanning electron microscope (SEM) have been used to study the effect of annealing temperature on crystal stricture, phase formation, impurities, and morphologies of the film. Finally, photovoltaic performance was reported using the solar simulator under 1.5 sun illumination.

  3. Characterization of perovskite solar cells: Towards a reliable measurement protocol

    NASA Astrophysics Data System (ADS)

    Zimmermann, Eugen; Wong, Ka Kan; Müller, Michael; Hu, Hao; Ehrenreich, Philipp; Kohlstädt, Markus; Würfel, Uli; Mastroianni, Simone; Mathiazhagan, Gayathri; Hinsch, Andreas; Gujar, Tanaji P.; Thelakkat, Mukundan; Pfadler, Thomas; Schmidt-Mende, Lukas

    2016-09-01

    Lead halide perovskite solar cells have shown a tremendous rise in power conversion efficiency with reported record efficiencies of over 20% making this material very promising as a low cost alternative to conventional inorganic solar cells. However, due to a differently severe "hysteretic" behaviour during current density-voltage measurements, which strongly depends on scan rate, device and measurement history, preparation method, device architecture, etc., commonly used solar cell measurements do not give reliable or even reproducible results. For the aspect of commercialization and the possibility to compare results of different devices among different laboratories, it is necessary to establish a measurement protocol which gives reproducible results. Therefore, we compare device characteristics derived from standard current density-voltage measurements with stabilized values obtained from an adaptive tracking of the maximum power point and the open circuit voltage as well as characteristics extracted from time resolved current density-voltage measurements. Our results provide insight into the challenges of a correct determination of device performance and propose a measurement protocol for a reliable characterisation which is easy to implement and has been tested on varying perovskite solar cells fabricated in different laboratories.

  4. Strong room-temperature ultraviolet to red excitons from inorganic organic-layered perovskites, (MX4 (M=Pb, Sn, Hg; X=I-, Br-)

    NASA Astrophysics Data System (ADS)

    Ahmad, Shahab; Prakash, G. Vijaya

    2014-01-01

    Many varieties of layered inorganic-organic (IO) perovskite of type (MX4 (where R: organic moiety, M: divalent metal, and X: halogen) were successfully fabricated and characterized. X-ray diffraction data suggest that these inorganic and organic structures are alternatively stacked up along c-axis, where inorganic mono layers are of extended corner-shared MX6 octahedra and organic spacers are the bi-layers of organic entities. These layered perovskites show unusual room-temperature exciton absorption and photoluminescence due to the quantum and dielectric confinement-induced enhancement in the exciton binding energies. A wide spectral range of optical exciton tunability (350 to 600 nm) was observed experimentally from systematic compositional variation in (i) divalent metal ions (M=Pb, Sn, Hg), (ii) halides (X=I and Br-), and (iii) organic moieties (R). Specific photoluminescence features are due to the structure of the extended MX42- network and the eventual electronic band structure. The compositionally dependent photoluminescence of these IO hybrids could be useful in various photonic and optoelectronic devices.

  5. Fabrication & characterization of thin film Perovskite solar cells under ambient conditions

    NASA Astrophysics Data System (ADS)

    Shah, Vivek T.

    High efficiency solar cells based on inorganic materials such as silicon have been commercialized and used to harness energy from the sun and convert it into electrical energy. However, they are energy-intensive and rigid. Thin film solar cells based on inorganic-organic hybrid lead halide perovskite compounds have the potential to be a disruptive technology in the field of renewable energy sector of the economy. Perovskite solar cell (PSC) technology is a viable candidate for low-cost large scale production as it is solution processable at low temperature on a flexible substrate. However, for commercialization, PSCs need to compete with the cost and efficiency of crystalline silicon solar cells. High efficiency PSCs have been fabricated under highly controlled conditions in what is known as a glove-box, which adds to the cost of fabrication of PSCs. This additional cost can be significantly reduced by eliminating the use of glove-box for fabrication. Therefore, in this work, thin film PSCs were fabricated at ambient conditions on glass substrates. A power conversion efficiency of 5.6% was achieved with optimum fabrication control and minimal exposure to moisture.

  6. High-Quality (CH3NH3)3Bi2I9 Film-Based Solar Cells: Pushing Efficiency up to 1.64.

    PubMed

    Zhang, Zheng; Li, Xiaowei; Xia, Xiaohong; Wang, Zhuo; Huang, Zhongbing; Lei, Binglong; Gao, Yun

    2017-09-07

    Bismuth-based solar cells have exhibited some advantages over lead perovskite solar cells for nontoxicity and superior stability, which are currently two main concerns in the photovoltaic community. As for the perovskite-related compound (CH 3 NH 3 ) 3 Bi 2 I 9 applied for solar cells, the conversion efficiency is severely restricted by the unsatisfactory photoactive film quality. Herein we report a novel two-step approach- high-vacuum BiI 3 deposition and low-vacuum homogeneous transformation of BiI 3 to (CH 3 NH 3 ) 3 Bi 2 I 9 -for highly compact, pinhole-free, large-grained films, which are characterized with absorption coefficient, trap density of states, and charge diffusion length comparable to those of some lead perovskite analogues. Accordingly, the solar cells have realized a record power conversion of efficiency of 1.64% and also a high external quantum efficiency approaching 60%. Our work demonstrates the potential of (CH 3 NH 3 ) 3 Bi 2 I 9 for highly efficient and long-term stable solar cells.

  7. A novel cobalt-free layered GdBaFe 2O 5+ δ cathode for proton conducting solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Ding, Hanping; Xue, Xingjian

    While cobalt-containing perovskite-type cathode materials facilitate the activation of oxygen reduction, they also suffer from problems like poor chemical stability in CO 2 and high thermal expansion coefficients. In this research, a cobalt-free layered GdBaFe 2O 5+ δ (GBF) perovskite was developed as a cathode material for protonic ceramic membrane fuel cells (PCMFCs) based on proton conducting electrolyte of stable BaZr 0.1Ce 0.7Y 0.2O 3- δ (BZCY7). The button cells of Ni-BZCY7|BZCY7|GBF were fabricated and characterized using complex impedance technique from 600 to 700 °C. An open-circuit potential of 1.007 V, maximum power density of 417 mW cm -2, and a low electrode polarization resistance of 0.18 Ω cm 2 were achieved at 700 °C. The results indicate that layered GBF perovskite is a good candidate for cobalt-free cathode material, while the developed Ni-BZCY7|BZCY7|GBF cell is a promising functional material system for solid oxide fuel cells.

  8. Ag modified LaCoO3 perovskite oxide for photocatalytic application

    NASA Astrophysics Data System (ADS)

    Jayapandi, S.; Prakasini, V. Anitha; Anitha, K.

    2018-04-01

    The present investigation has been carried out to develop a novel photocatalytic material based on lanthanum cobaltite (LaCoO3) and silver (Ag) doped LaCoO3 perovskite oxide. Pure LaCoO3 and 5 Mol% Ag doped LaCoO3 (Ag-LaCoO3) have been synthesized by simple co-precipitation method and characterized by X-ray diffraction (XRD), ultraviolet-visible (UV-Vis) and photoluminescence (PL) techniques and its photocatalytic activity was evaluated by photodegradation of methylene blue under sunlight irradiation. The observed XRD, UV and PL results indicate that Ag influences on the crystallite size and absorption coefficient of LaCoO3 perovskite oxide. The percentage of dye degradations was calculated as 60% and 99 % for LaCoO3 and 5 Mol% Ag-LaCoO3 pervoskite oxides respectively for 10 minutes (10 min) exposure to sunlight, which indicates that 5 mol% of Ag-LaCoO3, has better photodegradation activity. Hence, the present investigation confirms that Ag influences the photocatalytic activity of a material and the observations will be helpful for further developing new photocatalytic materials.

  9. Structure and Growth Control of Organic-Inorganic Halide Perovskites for Optoelectronics: From Polycrystalline Films to Single Crystals.

    PubMed

    Chen, Yani; He, Minhong; Peng, Jiajun; Sun, Yong; Liang, Ziqi

    2016-04-01

    Recently, organic-inorganic halide perovskites have sparked tremendous research interest because of their ground-breaking photovoltaic performance. The crystallization process and crystal shape of perovskites have striking impacts on their optoelectronic properties. Polycrystalline films and single crystals are two main forms of perovskites. Currently, perovskite thin films have been under intensive investigation while studies of perovskite single crystals are just in their infancy. This review article is concentrated upon the control of perovskite structures and growth, which are intimately correlated for improvements of not only solar cells but also light-emitting diodes, lasers, and photodetectors. We begin with the survey of the film formation process of perovskites including deposition methods and morphological optimization avenues. Strategies such as the use of additives, thermal annealing, solvent annealing, atmospheric control, and solvent engineering have been successfully employed to yield high-quality perovskite films. Next, we turn to summarize the shape evolution of perovskites single crystals from three-dimensional large sized single crystals, two-dimensional nanoplates, one-dimensional nanowires, to zero-dimensional quantum dots. Siginificant functions of perovskites single crystals are highlighted, which benefit fundamental studies of intrinsic photophysics. Then, the growth mechanisms of the previously mentioned perovskite crystals are unveiled. Lastly, perspectives for structure and growth control of perovskites are outlined towards high-performance (opto)electronic devices.

  10. Novel Solvent-free Perovskite Deposition in Fabrication of Normal and Inverted Architectures of Perovskite Solar Cells

    PubMed Central

    Nejand, Bahram Abdollahi; Gharibzadeh, Saba; Ahmadi, Vahid; Shahverdi, H. Reza

    2016-01-01

    We introduced a new approach to deposit perovskite layer with no need for dissolving perovskite precursors. Deposition of Solution-free perovskite (SFP) layer is a key method for deposition of perovskite layer on the hole or electron transport layers that are strongly sensitive to perovskite precursors. Using deposition of SFP layer in the perovskite solar cells would extend possibility of using many electron and hole transport materials in both normal and invert architectures of perovskite solar cells. In the present work, we synthesized crystalline perovskite powder followed by successful deposition on TiO2 and cuprous iodide as the non-sensitve and sensitive charge transport layers to PbI2 and CH3NH3I solution in DMF. The post compressing step enhanced the efficiency of the devices by increasing the interface area between perovskite and charge transport layers. The 9.07% and 7.71% cell efficiencies of the device prepared by SFP layer was achieved in respective normal (using TiO2 as a deposition substrate) and inverted structure (using CuI as deposition substrate) of perovskite solar cell. This method can be efficient in large-scale and low cost fabrication of new generation perovskite solar cells. PMID:27640991

  11. Hybrid Lead Halide Layered Perovskites with Silsesquioxane Interlayers.

    PubMed

    Kataoka, Sho; Kaburagi, Wako; Mochizuki, Hiroyuki; Kamimura, Yoshihiro; Sato, Kazuhiko; Endo, Akira

    2018-01-01

    Hybrid organic-lead halide perovskites exhibit remarkable properties as semiconductors and light absorbers. Here, we report the formation of silsesquioxane-lead halide hybrid layered perovskites. We prepared silsesquioxane with a cubic cage-like structure and fabricated hybrid silsesquioxane-lead halide layered perovskites in a self-assembled manner. It is demonstrated that the silsesquioxane maintain their cage-like structure between lead halide perovskite layers. The silsesquioxane-lead halide perovskites also show excitonic absorption and emission in the visible light region similar to typical lead halide layered perovskites.

  12. Synthesis, structures, and phase transitions of barium bismuth iridium oxide perovskites Ba{sub 2}BiIrO{sub 6} and Ba{sub 3}BiIr{sub 2}O{sub 9}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ling, Chris D., E-mail: c.ling@chem.usyd.edu.a; Bragg Institute, ANSTO, PMB 1, Menai 2234; Kennedy, Brendan J.

    The Ba-Bi-Ir-O system is found to contain two distinct perovskite-type phases: a rock-salt ordered double perovskite Ba{sub 2}BiIrO{sub 6}; and a 6H-type hexagonal perovskite Ba{sub 3}BiIr{sub 2}O{sub 9}. Ba{sub 2}BiIrO{sub 6} undergoes a series of symmetry-lowering phase transitions on cooling Fm3-barm->R3-barc->12/m(C2/m)->I1-bar(P1-bar), all of which are second order except the rhombohedral->monoclinic one, which is first order. The monoclinic phase is only observed in a 2-phase rhombohedral+monoclinic regime. The transition and 2-phase region lie very close to 300 K, making the room-temperature X-ray diffraction patterns extremely complex and potentially explaining why Ba{sub 2}BiIrO{sub 6} had not previously been identified and reported. Amore » solid solution Ba{sub 2}Bi{sub 1+x}Ir{sub 1-x}O{sub 6}, analogous to Ba{sub 2}Bi{sub 1+x}Ru{sub 1-x}O{sub 6}, 0<=x<=2/3, was not observed. The 6H-type phase Ba{sub 3}BiIr{sub 2}O{sub 9} undergoes a clean second-order phase transition P6{sub 3}/mmc->C2/c at 750 K, unlike 6H-type Ba{sub 3}LaIr{sub 2}O{sub 9}, the P6{sub 3}/mmc structure of which is highly strained below {approx}750 K but fails to distort coherently to the monoclinic phase. - Graphical abstract: Structure of Ba{sub 3}BiIr{sub 2}O{sub 9} at 300 K. BiO{sub 6} octahedra are purple, IrO{sub 6} octahedra are gold, and Ba atoms are green. Thermal ellipsoids at 90% probability.« less

  13. Single Crystal Elasticity of Iron Bearing Perovskite and Post Perovskite Analog

    NASA Astrophysics Data System (ADS)

    Yoneda, A.; Fukui, H.; Baron, A. Q. R.

    2014-12-01

    We measured single crystal elasticity of (1) pure and iron bearing MgSiO3 perovskite, and (2) Pbnm-CaIrO3 and Cmcm-CaIrO3, a representative analog of MgSiO3 perovskite and post perovskite, respectively, by means of inelastic X ray scattering at BL35XU, SPring-8. The present results for MgSiO3 perovskite demonstrate that elastic anisotropy of magnesium perovskite is highly enhanced by iron incorporation. Furthermore anti-correlation between bulk sound velocity and shear wave velocity was confirmed with iron content, which is against the theoretical prediction. The anti-correlation found in this study is important, because it enables us to interpret the recent seismological observation of the anti-correlation in the deep lower mantle by means of iron content difference in perovskite. On the other hand, we can learn difference of elasticity between perovskite and post perovskite thorough measurement on CaIrO3, as analog of MgSiO3 perovskite and post perovskite. From a characteristics of the single crystal elasticity of CaIrO3 compounds, we interpreted the texture pattern in the D" layer consistent with recent seismic observation.

  14. Effect of non-stoichiometric solution chemistry on improving the performance of wide-bandgap perovskite solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Mengjin; Kim, Dong Hoe; Yu, Yue

    A high-efficiency wide-bandgap (WBG) perovskite solar cell is critical for developing perovskite-related (e.g., all-perovskite, perovskite/Si, or perovskite/Cu(In,Ga)Se 2) tandem devices. Here, we demonstrate the use of non-stoichiometric precursor chemistry with excess methylammonium halides (MAX; X = I, Br, or Cl) for preparing high-quality ~1.75-eV FA 0.83Cs 0.17Pb(I 0.6Br 0.4) 3 perovskite solar cells. Among various methylammonium halides, using excess MABr in the non-stoichiometric precursor exhibits the strongest effect on improving perovskite crystallographic properties and device characteristics without affecting the perovskite composition. In contrast, using excess MAI significantly reduces the bandgap of perovskite due to the replacement of Br with I.more » Using 40% excess MABr, we demonstrate a single-junction WBG perovskite solar cell with stabilized efficiency of 16.4%. We further demonstrate a 20.3%-efficient 4-terminal tandem device by using a 14.7%-efficient semi-transparent WBG perovskite top cell and an 18.6%-efficient unfiltered (5.6%-efficient filtered) Si bottom cell.« less

  15. Effect of non-stoichiometric solution chemistry on improving the performance of wide-bandgap perovskite solar cells

    DOE PAGES

    Yang, Mengjin; Kim, Dong Hoe; Yu, Yue; ...

    2017-10-02

    A high-efficiency wide-bandgap (WBG) perovskite solar cell is critical for developing perovskite-related (e.g., all-perovskite, perovskite/Si, or perovskite/Cu(In,Ga)Se 2) tandem devices. Here, we demonstrate the use of non-stoichiometric precursor chemistry with excess methylammonium halides (MAX; X = I, Br, or Cl) for preparing high-quality ~1.75-eV FA 0.83Cs 0.17Pb(I 0.6Br 0.4) 3 perovskite solar cells. Among various methylammonium halides, using excess MABr in the non-stoichiometric precursor exhibits the strongest effect on improving perovskite crystallographic properties and device characteristics without affecting the perovskite composition. In contrast, using excess MAI significantly reduces the bandgap of perovskite due to the replacement of Br with I.more » Using 40% excess MABr, we demonstrate a single-junction WBG perovskite solar cell with stabilized efficiency of 16.4%. We further demonstrate a 20.3%-efficient 4-terminal tandem device by using a 14.7%-efficient semi-transparent WBG perovskite top cell and an 18.6%-efficient unfiltered (5.6%-efficient filtered) Si bottom cell.« less

  16. Hybrid Organic-Inorganic Perovskite Photodetectors.

    PubMed

    Tian, Wei; Zhou, Huanping; Li, Liang

    2017-11-01

    Hybrid organic-inorganic perovskite materials garner enormous attention for a wide range of optoelectronic devices. Due to their attractive optical and electrical properties including high optical absorption coefficient, high carrier mobility, and long carrier diffusion length, perovskites have opened up a great opportunity for high performance photodetectors. This review aims to give a comprehensive summary of the significant results on perovskite-based photodetectors, focusing on the relationship among the perovskite structures, device configurations, and photodetecting performances. An introduction of recent progress in various perovskite structure-based photodetectors is provided. The emphasis is placed on the correlation between the perovskite structure and the device performance. Next, recent developments of bandgap-tunable perovskite and hybrid photodetectors built from perovskite heterostructures are highlighted. Then, effective approaches to enhance the stability of perovskite photodetector are presented, followed by the introduction of flexible and self-powered perovskite photodetectors. Finally, a summary of the previous results is given, and the major challenges that need to be addressed in the future are outlined. A comprehensive summary of the research status on perovskite photodetectors is hoped to push forward the development of this field. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Synthesis and characterization of micro/nanoscopic Pb(Zr0.52Ti0.48)O3 fibers by electrospinning

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Furlan, R.; Ramos, I.; Santiago-Aviles, J. J.

    Micro/nanoscopic Pb(Zr0.52Ti0.48)O3 fibers were synthesized from commercially available zirconium n-pro-poxide, titanium isopropoxide, and lead 2-ethylhexanoate. Using xylene as a solvent, they were mixed to form a precursor solution with a suitable viscosity for electrospinning. The solution was analyzed using thermo-gravimetric and differential thermal methods. Ultra-fine fibers and mats were electrostatically drawn from the precursor solution. The as-deposited materials were sintered for 2 h at 400, 500, 600, 700 and 800 °C, respectively. Sintered mats or fibers were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Auger electron spectroscopy (AES), Raman micro-spectrometry and scanning-probe microscopy (SPM). The SEM results revealed that the fibers had diameters varying from hundreds of nanometers to 10 μm. Using AES, the elements Pb, Zr, Ti and O, as well as residual C, were detected on the surface of the fibers. Raman and XRD spectra indicated that the precursors began to transform into the intermediate pyrochlore phase at 400 °C, followed by the perovskite Pb(Zr0.52Ti0.48)O3 phase above 600 °C. Scanning-probe microscopy (SPM), operated in the piezo-response imaging mode, revealed spontaneous polarization domains in the fibers, with diameters ranging from 100 to 500 nm.

  18. Exciton-Dominated Core-Level Absorption Spectra of Hybrid Organic-Inorganic Lead Halide Perovskites.

    PubMed

    Vorwerk, Christian; Hartmann, Claudia; Cocchi, Caterina; Sadoughi, Golnaz; Habisreutinger, Severin N; Félix, Roberto; Wilks, Regan G; Snaith, Henry J; Bär, Marcus; Draxl, Claudia

    2018-04-19

    In a combined theoretical and experimental work, we investigate X-ray absorption near-edge structure spectroscopy of the I L 3 and the Pb M 5 edges of the methylammonium lead iodide (MAPbI 3 ) hybrid inorganic-organic perovskite and its binary phase PbI 2 . The absorption onsets are dominated by bound excitons with sizable binding energies of a few hundred millielectronvolts and pronounced anisotropy. The spectra of both materials exhibit remarkable similarities, suggesting that the fingerprints of core excitations in MAPbI 3 are essentially given by its inorganic component, with negligible influence from the organic groups. The theoretical analysis complementing experimental observations provides the conceptual insights required for a full characterization of this complex material.

  19. Two-dimensional limit of crystalline order in perovskite membrane films

    PubMed Central

    Hong, Seung Sae; Yu, Jung Ho; Lu, Di; Marshall, Ann F.; Hikita, Yasuyuki; Cui, Yi; Hwang, Harold Y.

    2017-01-01

    Long-range order and phase transitions in two-dimensional (2D) systems—such as magnetism, superconductivity, and crystallinity—have been important research topics for decades. The issue of 2D crystalline order has reemerged recently, with the development of exfoliated atomic crystals. Understanding the dimensional limit of crystalline phases, with different types of bonding and synthetic techniques, is at the foundation of low-dimensional materials design. We study ultrathin membranes of SrTiO3, an archetypal perovskite oxide with isotropic (3D) bonding. Atomically controlled membranes are released after synthesis by dissolving an underlying epitaxial layer. Although all unreleased films are initially single-crystalline, the SrTiO3 membrane lattice collapses below a critical thickness (5 unit cells). This crossover from algebraic to exponential decay of the crystalline coherence length is analogous to the 2D topological Berezinskii-Kosterlitz-Thouless (BKT) transition. The transition is likely driven by chemical bond breaking at the 2D layer-3D bulk interface, defining an effective dimensional phase boundary for coherent crystalline lattices. PMID:29167822

  20. Polar Cation Ordering: A Route to Introducing >10% Bond Strain Into Layered Oxide Films

    DOE PAGES

    Nelson-Cheeseman, Brittany B.; Zhou, Hua; Balachandran, Prasanna V.; ...

    2014-09-05

    The 3d transition metal (M) perovskite oxides exhibit a remarkable array of properties, including novel forms of superconductivity, magnetism and multiferroicity. Strain can have a profound effect on many of these properties. This is due to the localized nature of the M 3d orbitals, where even small changes in the M–O bond lengths and M–O–M bond angles produced by strain can be used to tune the 3d– O 2p hybridization, creating large changes in electronic structure. We present a new route to strain the M–O bonds in epitaxial two-dimensional perovskite films by tailoring local electrostatic dipolar interactions within every formulamore » unit via atomic layer-by-layer synthesis. The response of the O anions to the resulting dipole electric fields distorts the M–O bonds by more than 10%, without changing substrate strain or chemical composition. We found that this distortion is largest for the apical oxygen atoms (O ap), and alters the transition metal valence state via self-doping without chemical substitution.« less

Top