Satar, Rukhsana; Husain, Qayyum
2009-03-01
This paper demonstrates the direct immobilization of peroxidase from ammonium sulfate fractionated white radish proteins on an inorganic support, Celite 545. The adsorbed peroxidase was crosslinked by using glutaraldehyde. The activity yield for white radish peroxidase was adsorbed on Celite 545 was 70% and this activity was decreased and remained 60% of the initial activity after crosslinking by glutaraldehyde. The pH and temperature-optima for both soluble and immobilized peroxidase was at pH 5.5 and 40 degrees C. Immobilized peroxidase retained higher stability against heat and water-miscible organic solvents. In the presence of 5.0 mM mercuric chloride, immobilized white radish peroxidase retained 41% of its initial activity while the free enzyme lost 93% activity. Soluble enzyme lost 61% of its initial activity while immobilized peroxidase retained 86% of the original activity when exposed to 0.02 mM sodium azide for 1 h. The K(m) values were 0.056 and 0.07 mM for free and immobilized enzyme, respectively. Immobilized white radish peroxidase exhibited lower V(max) as compared to the soluble enzyme. Immobilized peroxidase preparation showed better storage stability as compared to its soluble counterpart.
Johansson, T; Nyman, P O
1993-01-01
The basidiomycete Trametes versicolor is a white-rot fungus and a potent degrader of lignin. The development of extracellular enzyme activities in the fungal culture under physiological conditions of secondary metabolism was investigated. Using the culture medium as starting material a large number of peroxidase forms were purified by the use of chromatographic techniques. Sixteen forms of lignin peroxidase and five forms of manganese(II) peroxidase were separated and the majority of these enzymes was characterized with respect to isoelectric point, molecular mass, and specific enzyme activity. The manganese(II) peroxidases showed a lower isoelectric point (pI 3.2-2.9) and a slightly higher molecular mass (44-45 kDa) than the lignin peroxidases (pI 3.7-3.1, and 41-43 kDa). Specific enzyme activities for the forms of lignin peroxidase, using veratryl alcohol as the substrate, were found to differ considerably. Certain differences in the specific enzyme activity were also observed among the forms of manganese(II) peroxidase. A multitude of peroxidase forms has previously been encountered in another white-rot fungus, Phanerochaete chrysosporium. The discovery that it also occurs in T. versicolor would suggest that this multiplicity could be a common feature among white-rot fungi and may be essential for the biodegradation of lignin.
Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana.
Rao, M V; Paliyath, G; Ormrod, D P
1996-01-01
Earlier studies with Arabidopsis thaliana exposed to ultraviolet B (UV-B) and ozone (O3) have indicated the differential responses of superoxide dismutase and glutathione reductase. In this study, we have investigated whether A. thaliana genotype Landsberg erecta and its flavonoid-deficient mutant transparent testa (tt5) is capable of metabolizing UV-B- and O3-induced activated oxygen species by invoking similar antioxidant enzymes. UV-B exposure preferentially enhanced guaiacol-peroxidases, ascorbate peroxidase, and peroxidases specific to coniferyl alcohol and modified the substrate affinity of ascorbate peroxidase. O3 exposure enhanced superoxide dismutase, peroxidases, glutathione reductase, and ascorbate peroxidase to a similar degree and modified the substrate affinity of both glutathione reductase and ascorbate peroxidase. Both UV-B and O3 exposure enhanced similar Cu,Zn-superoxide dismutase isoforms. New isoforms of peroxidases and ascorbate peroxidase were synthesized in tt5 plants irradiated with UV-B. UV-B radiation, in contrast to O3, enhanced the activated oxygen species by increasing membrane-localized NADPH-oxidase activity and decreasing catalase activities. These results collectively suggest that (a) UV-B exposure preferentially induces peroxidase-related enzymes, whereas O3 exposure invokes the enzymes of superoxide dismutase/ascorbate-glutathione cycle, and (b) in contrast to O3, UV-B exposure generated activated oxygen species by increasing NADPH-oxidase activity. PMID:8587977
Enzyme Technology of Peroxidases: Immobilization, Chemical and Genetic Modification
NASA Astrophysics Data System (ADS)
Longoria, Adriana; Tinoco, Raunel; Torres, Eduardo
An overview of enzyme technology applied to peroxidases is made. Immobilization on organic, inorganic, and hybrid supports; chemical modification of amino acids and heme group; and genetic modification by site-directed and random mutagenesis are included. Different strategies that were carried out to improve peroxidase performance in terms of stability, selectivity, and catalytic activity are analyzed. Immobilization of peroxidases on inorganic and organic materials enhances the tolerance of peroxidases toward the conditions normally found in many industrial processes, such as the presence of an organic solvent and high temperature. In addition, it is shown that immobilization helps to increase the Total Turnover Number at levels high enough to justify the use of a peroxidase-based biocatalyst in a synthesis process. Chemical modification of peroxidases produces modified enzymes with higher thermostability and wider substrate variability. Finally, through mutagenesis approaches, it is possible to produce modified peroxidases capable of oxidizing nonnatural substrates with high catalytic activity and affinity.
Posmyk, M M; Kontek, R; Janas, K M
2009-02-01
The phenolics: anthocyanin (ATH), sinapoyl esters and activity of antioxidant enzymes: superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (POX), ascorbate peroxidase (APX), glutathione peroxidase (GPX) and glutathione reductase (GR), in red cabbage seedlings subjected to Cu2+ stress were investigated. Cu2+ at low doses (0.5 mM), increased the levels of ATH and sinapoyl derivatives in red cabbage. High Cu2+ concentration (2.5 mM) provoked oxidative stress and enhanced thiobarbituric acid reactive substances (TBARS) content in tissues. A lower level of TBARS was correlated with high ATH content. It seems that synthesis of these isoflavonoids is an effective strategy against reactive oxygen species (ROS). The analysis of the antioxidant enzymes activity suggested that peroxidases were the most active enzymes in red cabbage seedlings exposed to Cu2+ stress. It could results from the fact that phenolic compounds (PhC), which could be also substrates for different peroxidases, were the first line of defence against metal stress.
Tekere, M; Zvauya, R; Read, J S
2001-01-01
Lignin peroxidase (LiP), manganese peroxidase (MnP) and laccase activities in selected sub-tropical white rot fungal species from Zimbabwe were determined. The enzyme activities were assayed at varying concentrations of C, N and Mn2+. Manganese peroxidase and laccase activities were the only expressed activities in the fungi under the culture conditions tested. Trametes species, T. cingulata, T. elegans and T. pocas produced the highest manganese peroxidase activities in a medium containing high carbon and low nitrogen conditions. High nitrogen conditions favoured high manganese peroxidase activity in DSPM95, L. velutinus and Irpex spp. High manganese peroxidase activity was notable for T. versicolor when both carbon and nitrogen in the medium were present at high levels. Laccase production by the isolates was highest under conditions of high nitrogen and those conditions with both nitrogen and carbon at high concentration. Mn2+ concentrations between 11-25 ppm gave the highest manganese peroxidase activity compared to a concentration of 40 ppm or when there was no Mn2+ added. Laccase activity was less influenced by Mn2+ levels. While some laccase activity was produced in the absence of Mn2+, the enzyme levels were higher when Mn2+ was added to the culture medium.
NASA Astrophysics Data System (ADS)
Dalui, Amit; Pradhan, Bapi; Thupakula, Umamahesh; Khan, Ali Hossain; Kumar, Gundam Sandeep; Ghosh, Tanmay; Satpati, Biswarup; Acharya, Somobrata
2015-05-01
Artificial enzyme mimetics have attracted immense interest recently because natural enzymes undergo easy denaturation under environmental conditions restricting practical usefulness. We report for the first time chalcopyrite CuZnFeS (CZIS) alloyed nanocrystals (NCs) as novel biomimetic catalysts with efficient intrinsic peroxidase-like activity. Novel peroxidase activities of CZIS NCs have been evaluated by catalytic oxidation of the peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2). CZIS NCs demonstrate the synergistic effect of elemental composition and photoactivity towards peroxidase-like activity. The quaternary CZIS NCs show enhanced intrinsic peroxidase-like activity compared to the binary NCs with the same constituent elements. Intrinsic peroxidase-like activity has been correlated with the energy band position of CZIS NCs extracted using scanning tunneling spectroscopy and ultraviolet photoelectron spectroscopy. Kinetic analyses indicate Michaelis-Menten enzyme kinetic model catalytic behavior describing the rate of the enzymatic reaction by correlating the reaction rate with substrate concentration. Typical color reactions arising from the catalytic oxidation of TMB over CZIS NCs with H2O2 have been utilized to establish a simple and sensitive colorimetric assay for detection of H2O2 and glucose. CZIS NCs are recyclable catalysts showing high efficiency in multiple uses. Our study may open up the possibility of designing new photoactive multi-component alloyed NCs as enzyme mimetics in biotechnology applications.Artificial enzyme mimetics have attracted immense interest recently because natural enzymes undergo easy denaturation under environmental conditions restricting practical usefulness. We report for the first time chalcopyrite CuZnFeS (CZIS) alloyed nanocrystals (NCs) as novel biomimetic catalysts with efficient intrinsic peroxidase-like activity. Novel peroxidase activities of CZIS NCs have been evaluated by catalytic oxidation of the peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2). CZIS NCs demonstrate the synergistic effect of elemental composition and photoactivity towards peroxidase-like activity. The quaternary CZIS NCs show enhanced intrinsic peroxidase-like activity compared to the binary NCs with the same constituent elements. Intrinsic peroxidase-like activity has been correlated with the energy band position of CZIS NCs extracted using scanning tunneling spectroscopy and ultraviolet photoelectron spectroscopy. Kinetic analyses indicate Michaelis-Menten enzyme kinetic model catalytic behavior describing the rate of the enzymatic reaction by correlating the reaction rate with substrate concentration. Typical color reactions arising from the catalytic oxidation of TMB over CZIS NCs with H2O2 have been utilized to establish a simple and sensitive colorimetric assay for detection of H2O2 and glucose. CZIS NCs are recyclable catalysts showing high efficiency in multiple uses. Our study may open up the possibility of designing new photoactive multi-component alloyed NCs as enzyme mimetics in biotechnology applications. Electronic supplementary information (ESI) available: Fig. S1-S13. See DOI: 10.1039/c5nr01728a
Horseradish peroxidase-nanoclay hybrid particles of high functional and colloidal stability.
Pavlovic, Marko; Rouster, Paul; Somosi, Zoltan; Szilagyi, Istvan
2018-08-15
Highly stable dispersions of enzyme-clay nanohybrids of excellent horseradish peroxidase activity were developed. Layered double hydroxide nanoclay was synthesized and functionalized with heparin polyelectrolyte to immobilize the horseradish peroxidase enzyme. The formation of a saturated heparin layer on the platelets led to charge inversion of the positively charged bare nanoclay and to highly stable aqueous dispersions. Great affinity of the enzyme to the surface modified platelets resulted in strong horseradish peroxidase adsorption through electrostatic and hydrophobic interactions as well as hydrogen bonding network and prevented enzyme leakage from the obtained material. The enzyme kept its functional integrity upon immobilization and showed excellent activity in decomposition of hydrogen peroxide and oxidation of an aromatic compound in the test reactions. In addition, remarkable long term functional stability of the enzyme-nanoclay hybrid was observed making the developed colloidal system a promising antioxidant candidate in biomedical treatments and industrial processes. Copyright © 2018 Elsevier Inc. All rights reserved.
In silico studies on tryparedoxin peroxidase of Leishmania infantum: structural aspects.
Singh, Bishal Kumar; Dubey, Vikash Kumar
2009-09-01
Tryparedoxin peroxidase (TryP) is a key enzyme of the trypanothione-dependent metabolism for removal of oxidative stress in leishmania. These enzymes function as antioxidants through their peroxidase and peroxynitrite reductase activities. Inhibitors of this enzyme are presumed to be antilesihmania drugs and structural studies are prerequisite of rational drug design. We have constructed three dimensional structure of TryP of Leishmania infantum using comparative modeling. Structural analysis reveals several interesting features. Moreover, it shows remarkable structural difference with human host glutathione peroxidase, an enzyme involved in similar function and TryP from Leishmania major.
Nonsteroidal anti-inflammatory drugs inhibit gastric peroxidase activity.
Banerjee, R K
1990-06-20
The peroxidase activity of the mitochondrial fraction of rat gastric mucosa was inhibited with various nonsteroidal anti-inflammatory drugs (NSAIDs) in vitro. Indomethacin was found to be more effective than phenylbutazone (PB) or acetylsalicylic acid (ASA). Mouse gastric peroxidase was also very sensitive to indomethacin inhibition. Indomethacin has no significant effect on submaxillary gland peroxidase activity of either of the species studied. Purified rat gastric peroxidase activity was inhibited 75% with 0.15 mM indomethacin showing half-maximal inhibition at 0.04 mM. The inhibition could be withdrawn by increasing the concentration of iodide but not by H2O2. NSAIDs inhibit gastric peroxidase activity more effectively at acid pH (pH 5.2) than at neutral pH. Spectral studies showed a bathochromic shift of the Soret band of the enzyme with indomethacin indicating its interaction at or near the heme part of the enzyme.
Barteri, Mario; De Carolis, Roberta; Marinelli, Fiorenzo; Tomassetti, Goliardo; Montemiglio, Linda Celeste
2016-01-01
This work shows the effects of exposure to an electromagnetic field at 900 MHz on the catalytic activity of the enzymes lactoperoxidase (LPO) and horseradish peroxidase (HRP). Experimental evidence that irradiation causes conformational changes of the active sites and influences the formation and stability of the intermediate free radicals is documented by measurements of enzyme kinetics, circular dichroism spectroscopy (CD) and cyclic voltammetry.
Halide peroxidase in tissues that interact with bacteria in the host squid Euprymna scolopes.
Small, A L; McFall-Ngai, M J
1999-03-15
An enzyme with similarities to myeloperoxidase, the antimicrobial halide peroxidase in mammalian neutrophils, occurs abundantly in the light organ tissue of Euprymna scolopes, a squid that maintains a beneficial association with the luminous bacterium Vibrio fischeri. Using three independent assays typically applied to the analysis of halide peroxidase enzymes, we directly compared the activity of the squid enzyme with that of human myeloperoxidase. One of these methods, the diethanolamine assay, confirmed that the squid peroxidase requires halide ions for its activity. The identification of a halide peroxidase in a cooperative bacterial association suggested that this type of enzyme can function not only to control pathogens, but also to modulate the interactions of host animals with their beneficial partners. To determine whether the squid peroxidase functions under both circumstances, we examined its distribution in a variety of host tissues, including those that typically interact with bacteria and those that do not. Tissues interacting with bacteria included those that have specific cooperative associations with bacteria (i.e., the light organ and accessory nidamental gland) and those that have transient nonspecific interactions with bacteria (i.e., the gills, which clear the cephalopod circulatory system of invading microorganisms). These bacteria-associated tissues were compared with the eye, digestive gland, white body, and ink-producing tissues, which do not typically interact directly with bacteria. Peroxidase enzyme assays, immunocytochemical localization, and DNA-RNA hybridizations showed that the halide-dependent peroxidase is consistently expressed in high concentration in tissues that interact bacteria. Elevated levels of the peroxidase were also found in the ink-producing tissues, which are known to have enzymatic pathways associated with antimicrobial activity. Taken together, these data suggest that the host uses a common biochemical response to the variety of types of associations that it forms with microorganisms.
DeNichilo, Mark O; Shoubridge, Alexandra J; Panagopoulos, Vasilios; Liapis, Vasilios; Zysk, Aneta; Zinonos, Irene; Hay, Shelley; Atkins, Gerald J; Findlay, David M; Evdokiou, Andreas
2016-03-01
The early recruitment of inflammatory cells to sites of bone fracture and trauma is a critical determinant in successful fracture healing. Released by infiltrating inflammatory cells, myeloperoxidase (MPO) and eosinophil peroxidase (EPO) are heme-containing enzymes, whose functional involvement in bone repair has mainly been studied in the context of providing a mechanism for oxidative defense against invading microorganisms. We report here novel findings that show peroxidase enzymes have the capacity to stimulate osteoblastic cells to secrete collagen I protein and generate a mineralized extracellular matrix in vitro. Mechanistic studies conducted using cultured osteoblasts show that peroxidase enzymes stimulate collagen biosynthesis at a post-translational level in a prolyl hydroxylase-dependent manner, which does not require ascorbic acid. Our studies demonstrate that osteoblasts rapidly bind and internalize both MPO and EPO, and the catalytic activity of these peroxidase enzymes is essential to support collagen I biosynthesis and subsequent release of collagen by osteoblasts. We show that EPO is capable of regulating osteogenic gene expression and matrix mineralization in culture, suggesting that peroxidase enzymes may play an important role not only in normal bone repair, but also in the progression of pathological states where infiltrating inflammatory cells are known to deposit peroxidases.
Loewen, Peter C; Villanueva, Jacylyn; Switala, Jacek; Donald, Lynda J; Ivancich, Anabella
2015-05-01
Heme-containing catalases and catalase-peroxidases catalyze the dismutation of hydrogen peroxide as their predominant catalytic activity, but in addition, individual enzymes support low levels of peroxidase and oxidase activities, produce superoxide, and activate isoniazid as an antitubercular drug. The recent report of a heme enzyme with catalase, peroxidase and penicillin oxidase activities in Bacillus pumilus and its categorization as an unusual catalase-peroxidase led us to investigate the enzyme for comparison with other catalase-peroxidases, catalases, and peroxidases. Characterization revealed a typical homotetrameric catalase with one pentacoordinated heme b per subunit (Tyr340 being the axial ligand), albeit in two orientations, and a very fast catalatic turnover rate (kcat = 339,000 s(-1) ). In addition, the enzyme supported a much slower (kcat = 20 s(-1) ) peroxidatic activity utilizing substrates as diverse as ABTS and polyphenols, but no oxidase activity. Two binding sites, one in the main access channel and the other on the protein surface, accommodating pyrogallol, catechol, resorcinol, guaiacol, hydroquinone, and 2-chlorophenol were identified in crystal structures at 1.65-1.95 Å. A third site, in the heme distal side, accommodating only pyrogallol and catechol, interacting with the heme iron and the catalytic His and Arg residues, was also identified. This site was confirmed in solution by EPR spectroscopy characterization, which also showed that the phenolic oxygen was not directly coordinated to the heme iron (no low-spin conversion of the Fe(III) high-spin EPR signal upon substrate binding). This is the first demonstration of phenolic substrates directly accessing the heme distal side of a catalase. © 2015 Wiley Periodicals, Inc.
Bhagat, Stuti; Srikanth Vallabani, NV; Shutthanandan, Vaithiyalingam; ...
2017-12-02
Catalytically active individual gold (Au) and cerium oxide (CeO 2) nanoparticles (NPs) are well known to exhibit specific enzyme-like activities, such as natural catalase, oxidase, superoxide dismutase, and peroxidase enzymes. Our activities have been maneuvered to design several biological applications such as immunoassays, glucose detection, radiation and free radical protection and tissue engineering. In biological systems, multienzyme complexes are involved in catalyzing important reactions of essential metabolic processes such as respiration, biomolecule synthesis, and photosynthesis. It is well known that metabolic processes linked with multienzyme complexes offer several advantages over reactions catalyzed by individual enzymes. A functional nanozyme depicting multienzymemore » like properties has eluded the researchers in the nanoscience community for the past few decades. Here, we have designed a functional multienzyme in the form of Gold (core)-CeO 2 (shell) nanoparticles (Au/CeO 2 CSNPs) exhibiting excellent peroxidase, catalase, and superoxide dismutase enzyme-like activities that are controlled simply by tuning the pH. The reaction kinetic parameters reveal that the peroxidase-like activity of this core-shell nanozyme is comparable to natural horseradish peroxidase (HRP) enzyme. Unlike peroxidase-like activity exhibited by other nanomaterials, Au/CeO 2 CSNPs showed a decrease in hydroxyl radical formation, suggesting that the biocatalytic reactions are performed by efficient electron transfers. A significant enzyme-like activity of this core-shell nanoparticle was conserved at extreme pH (2 – 11) and temperatures (up to 90 °C), clearly suggesting the superiority over natural enzymes. Further, the utility of peroxidase-like activity of this core-shell nanoparticles was extended for the detection of glucose, which showed a linear range of detection between (100 µM – 1 mM). It is hypothesized that the proximity of the redox potentials of Au+/Au and Ce (III)/Ce (IV) may result in a redox couple promoting the multienzyme activity of core-shell nanoparticles. Au/CeO 2 CSNPs may open new directions for development of single platform sensors in multiple biosensing applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhagat, Stuti; Srikanth Vallabani, NV; Shutthanandan, Vaithiyalingam
Catalytically active individual gold (Au) and cerium oxide (CeO 2) nanoparticles (NPs) are well known to exhibit specific enzyme-like activities, such as natural catalase, oxidase, superoxide dismutase, and peroxidase enzymes. Our activities have been maneuvered to design several biological applications such as immunoassays, glucose detection, radiation and free radical protection and tissue engineering. In biological systems, multienzyme complexes are involved in catalyzing important reactions of essential metabolic processes such as respiration, biomolecule synthesis, and photosynthesis. It is well known that metabolic processes linked with multienzyme complexes offer several advantages over reactions catalyzed by individual enzymes. A functional nanozyme depicting multienzymemore » like properties has eluded the researchers in the nanoscience community for the past few decades. Here, we have designed a functional multienzyme in the form of Gold (core)-CeO 2 (shell) nanoparticles (Au/CeO 2 CSNPs) exhibiting excellent peroxidase, catalase, and superoxide dismutase enzyme-like activities that are controlled simply by tuning the pH. The reaction kinetic parameters reveal that the peroxidase-like activity of this core-shell nanozyme is comparable to natural horseradish peroxidase (HRP) enzyme. Unlike peroxidase-like activity exhibited by other nanomaterials, Au/CeO 2 CSNPs showed a decrease in hydroxyl radical formation, suggesting that the biocatalytic reactions are performed by efficient electron transfers. A significant enzyme-like activity of this core-shell nanoparticle was conserved at extreme pH (2 – 11) and temperatures (up to 90 °C), clearly suggesting the superiority over natural enzymes. Further, the utility of peroxidase-like activity of this core-shell nanoparticles was extended for the detection of glucose, which showed a linear range of detection between (100 µM – 1 mM). It is hypothesized that the proximity of the redox potentials of Au+/Au and Ce (III)/Ce (IV) may result in a redox couple promoting the multienzyme activity of core-shell nanoparticles. Au/CeO 2 CSNPs may open new directions for development of single platform sensors in multiple biosensing applications.« less
Wang, Xiaoyu; Cao, Wen; Qin, Li; Lin, Tingsheng; Chen, Wei; Lin, Shichao; Yao, Jia; Zhao, Xiaozhi; Zhou, Min; Hang, Cheng; Wei, Hui
2017-01-01
Catalytic nanomaterials with intrinsic enzyme-like activities, called nanozymes, have recently attracted significant research interest due to their unique advantages relative to natural enzymes and conventional artificial enzymes. Among the nanozymes developed, particular interests have been devoted to nanozymes with peroxidase mimicking activities because of their promising applications in biosensing, bioimaging, biomedicine, etc. Till now, lots of functional nanomaterials have been used to mimic peroxidase. However, few studies have focused on the Ni-based nanomaterials for peroxidase mimics. In this work, we obtained the porous LaNiO 3 nanocubes with high peroxidase-like activity by inducing its 3+ oxidation state in LaNiO 3 perovskite and optimizing the morphology of LaNiO 3 perovskite. The peroxidase mimicking activity of the porous LaNiO 3 nanocubes with Ni 3+ was about 58~fold and 22~fold higher than that of NiO with Ni 2+ and Ni nanoparticles with Ni 0 . More, the porous LaNiO 3 nanocubes exhibited about 2-fold higher activity when compared with LaNiO 3 nanoparticles. Based on the superior peroxidase-like activity of porous LaNiO 3 nanocubes, facile colorimetric assays for H 2 O 2 , glucose, and sarcosine detection were developed. Our present work not only demonstrates a useful strategy for modulating nanozymes' activities but also provides promising bioassays for clinical diagnostics.
Wang, Xiaoyu; Cao, Wen; Qin, Li; Lin, Tingsheng; Chen, Wei; Lin, Shichao; Yao, Jia; Zhao, Xiaozhi; Zhou, Min; Hang, Cheng; Wei, Hui
2017-01-01
Catalytic nanomaterials with intrinsic enzyme-like activities, called nanozymes, have recently attracted significant research interest due to their unique advantages relative to natural enzymes and conventional artificial enzymes. Among the nanozymes developed, particular interests have been devoted to nanozymes with peroxidase mimicking activities because of their promising applications in biosensing, bioimaging, biomedicine, etc. Till now, lots of functional nanomaterials have been used to mimic peroxidase. However, few studies have focused on the Ni-based nanomaterials for peroxidase mimics. In this work, we obtained the porous LaNiO3 nanocubes with high peroxidase-like activity by inducing its 3+ oxidation state in LaNiO3 perovskite and optimizing the morphology of LaNiO3 perovskite. The peroxidase mimicking activity of the porous LaNiO3 nanocubes with Ni3+ was about 58~fold and 22~fold higher than that of NiO with Ni2+ and Ni nanoparticles with Ni0. More, the porous LaNiO3 nanocubes exhibited about 2-fold higher activity when compared with LaNiO3 nanoparticles. Based on the superior peroxidase-like activity of porous LaNiO3 nanocubes, facile colorimetric assays for H2O2, glucose, and sarcosine detection were developed. Our present work not only demonstrates a useful strategy for modulating nanozymes' activities but also provides promising bioassays for clinical diagnostics. PMID:28740550
Linke, Diana; Leonhardt, Robin; Eisele, Nadine; Petersen, Laura M; Riemer, Stephanie; Nimtz, Manfred; Berger, Ralf G
2015-06-01
Four extracellular enzymes, a versatile peroxidase, a manganese peroxidase, a dye-decolorizing peroxidase and a lignin peroxidase were discovered in liquid cultures of the basidiomycete Bjerkandera adusta. All of them cleaved β-carotene effectively. Expression was enhanced in the presence of β-carotene or Coomassie Brilliant Blue and peaked after 7-9 days. The monomeric proteins were purified by ion exchange and size exclusion chromatography and exhibited molecular masses of 41, 43, 51 and 43 kDa, respectively. The coding sequences showed homologies from 61 to 89 % to peroxidases from other basidiomycetes. The novel enzymes retained strong activity even in the absence of hydrogen peroxide and at alkaline pH. De-staining of fabrics using detergent-tolerant enzymes may help to save the most important bio-resources, energy and water, in washing processes and led to green processes in textile cleaning.
Peroxidase enzymes regulate collagen extracellular matrix biosynthesis.
DeNichilo, Mark O; Panagopoulos, Vasilios; Rayner, Timothy E; Borowicz, Romana A; Greenwood, John E; Evdokiou, Andreas
2015-05-01
Myeloperoxidase and eosinophil peroxidase are heme-containing enzymes often physically associated with fibrotic tissue and cancer in various organs, without any direct involvement in promoting fibroblast recruitment and extracellular matrix (ECM) biosynthesis at these sites. We report herein novel findings that show peroxidase enzymes possess a well-conserved profibrogenic capacity to stimulate the migration of fibroblastic cells and promote their ability to secrete collagenous proteins to generate a functional ECM both in vitro and in vivo. Mechanistic studies conducted using cultured fibroblasts show that these cells are capable of rapidly binding and internalizing both myeloperoxidase and eosinophil peroxidase. Peroxidase enzymes stimulate collagen biosynthesis at a post-translational level in a prolyl 4-hydroxylase-dependent manner that does not require ascorbic acid. This response was blocked by the irreversible myeloperoxidase inhibitor 4-amino-benzoic acid hydrazide, indicating peroxidase catalytic activity is essential for collagen biosynthesis. These results suggest that peroxidase enzymes, such as myeloperoxidase and eosinophil peroxidase, may play a fundamental role in regulating the recruitment of fibroblast and the biosynthesis of collagen ECM at sites of normal tissue repair and fibrosis, with enormous implications for many disease states where infiltrating inflammatory cells deposit peroxidases. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhagat, Stuti; Srikanth Vallabani, N. V.; Shutthanandan, Vaithiyalingam
Catalytically active individual gold (Au) and cerium oxide (CeO2) nanoparticles are well known to exhibit specific enzyme-like activities, such as natural catalase, oxidase, superoxide dismutase, and peroxidase enzymes. These activities have been maneuvered to design several biological applications such as immunoassays, glucose detection, radiation and free radical protection and tissue engineering. A functional nanozyme depicting multienzyme like properties that functions as a synthetic super enzyme has eluded the researchers in the nanoscience community for past decade. In current report, we have designed a functional multienzyme in the form of Gold (core)-CeO2 (shell) nanoparticles (Au@CeO2 CSNPs) exhibiting excellent peroxidase, catalase andmore » superoxide dismutase enzyme-like activities that are controlled simply by tuning the pH. The reaction kinetic parameters reveal that the peroxidase-like activity of this core shell nanozyme is comparable to natural HRP enzyme. Unlike peroxidase-like activity exhibited by other nanomaterials, Au@CeO2 CSNPs showed decrease in hydroxyl radical formation, suggesting that the bio catalytic reactions are performed by efficient electron transfers. A significant enzyme-like activity of this core shell nanoparticle was conserved at extreme pH (2 – 11) and temperatures (up to 90 °C), clearly suggesting the superiority over natural enzymes. Further, the utility of peroxidase-like activity of this core shell nanoparticles was extended for the detection of glucose, which showed a linear range of detection between (100 µM – 1 mM). It is hypothesized that the proximity of the redox potentials of Au+/Au and Ce (III)/Ce (IV) may result in a redox couple promoting the multienzyme activity of core shell nanoparticles. Au@CeO2 CSNPs may open new directions for development of single platform sensors in multiple biosensing applications.« less
Wound-induced expression of horseradish peroxidase.
Kawaoka, A; Kawamoto, T; Ohta, H; Sekine, M; Takano, M; Shinmyo, A
1994-01-01
Peroxidases have been implicated in the responses of plants to physiological stress and to pathogens. Wound-induced peroxidase of horseradish (Armoracia rusticana) was studied. Total peroxidase activity was increased by wounding in cell wall fractions extracted from roots, stems and leaves of horseradish. On the other hand, wounding decreased the peroxidase activity in the soluble fraction from roots. The enzyme activities of the basic isozymes were induced by wounding in horseradish leaves based on data obtained by fractionation of crude enzyme in isoelectric focusing gel electrophoresis followed by activity staining. We have previously isolated genomic clones for four peroxidase genes, namely, prxC1a, prxC1b, prxC2 and prxC3. Northern blot analysis using gene-specific probes showed that mRNA of prxC2, which encodes a basic isozyme, accumulated by wounding, while the mRNAs for other peroxidase genes were not induced. Tobacco (Nicotiana tabacum) plants were transformed with four chimeric gene constructs, each consisting of a promoter from one of the peroxidase genes and the β-glucuronidase (GUS) structural gene. High level GUS activity induced in response to wounding was observed in tobacco plants containing the prxC2-GUS construct.
A manganese catalase from Thermomicrobium roseum with peroxidase and catecholase activity.
Baginski, Robin; Sommerhalter, Monika
2017-01-01
An enzyme with catechol oxidase activity was identified in Thermomicrobium roseum extracts via solution assays and activity-stained SDS-PAGE. Yet, the genome of T. roseum does not harbor a catecholase gene. The enzyme was purified with two anion exchange chromatography steps and ultimately identified to be a manganese catalase with additional peroxidase and catecholase activity. Catalase activity (6280 ± 430 IU/mg) clearly dominated over pyrogallol peroxidase (231 ± 53 IU/mg) and catecholase (3.07 ± 0.56 IU/mg) activity as determined at 70 °C. Most enzyme kinetic properties were comparable to previously characterized manganese catalase enzymes. Catalase activity was highest at alkaline pH values and showed inhibition by excess substrate and chloride. The apparent K m and k cat values were 20 mM and 2.02 × 10 4 s -1 subunit -1 at 25 °C and pH 7.0.
Expression and refolding of tobacco anionic peroxidase from E. coli inclusion bodies.
Hushpulian, D M; Savitski, P A; Rojkova, A M; Chubar, T A; Fechina, V A; Sakharov, I Yu; Lagrimini, L M; Tishkov, V I; Gazaryan, I G
2003-11-01
Coding DNA of the tobacco anionic peroxidase gene was cloned in pET40b vector. The problem of 11 arginine codons, rare in procaryotes, in the tobacco peroxidase gene was solved using E. coli BL21(DE3) Codon Plus strain. The expression level of the tobacco apo-peroxidase in the above strain was approximately 40% of the total E. coli protein. The tobacco peroxidase refolding was optimized based on the earlier developed protocol for horseradish peroxidase. The reactivation yield of recombinant tobacco enzyme was about 7% with the specific activity of 1100-1200 U/mg towards 2,2;-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS). It was shown that the reaction of ABTS oxidation by hydrogen peroxide catalyzed by recombinant tobacco peroxidase proceeds via the ping-pong kinetic mechanism as for the native enzyme. In the presence of calcium ions, the recombinant peroxidase exhibits a 2.5-fold decrease in the second order rate constant for hydrogen peroxide and 1.5-fold decrease for ABTS. Thus, calcium ions have an inhibitory effect on the recombinant enzyme like that observed earlier for the native tobacco peroxidase. The data demonstrate that the oligosaccharide part of the enzyme has no effect on the kinetic properties and calcium inhibition of tobacco peroxidase.
Antioxidant enzymes expression in Pseudomonas aeruginosa exposed to UV-C radiation.
Salma, Kloula Ben Ghorbal; Lobna, Maalej; Sana, Khefacha; Kalthoum, Chourabi; Imene, Ouzari; Abdelwaheb, Chatti
2016-07-01
It was well known that, UV-C irradiation increase considerably the reactive oxygen species (ROS) levels in eukaryotic and prokaryotic organisms. In the enzymatic ROS-scavenging pathways, superoxide dismutase (SOD), Catalase (CAT), and peroxidase (POX) were developed to deal with oxidative stress. In this study, we investigated the effects of UV-C radiations on antioxidant enzymes (catalase, superoxide dismutase, and peroxidases) expression in Pseudomonas aeruginosa. Catalase, superoxide dismutase, and peroxidases activities were determined spectrophotometrically. Isozymes of superoxide dismutase were revealed by native gel activity staining method. Lipid peroxidation was determined by measuring malondialdehyde formation. Our results showed that superoxide dismutase, catalase and peroxidase activities exhibited a gradual increase during the exposure time (30 min). However, the superoxide dismutase activity was maximized at 15 min. Native gel activity staining assays showed the presence of three superoxide dismutase isozymes. The iron-cofactored isoform activity was altered after exposure to UV-C stress. These finding suggest that catalase and peroxidase enzymes have the same importance toward UV-C rays at shorter and longer exposure times and this may confer additional protection to superoxide dismutase from damage caused by lipid peroxidation. Moreover, our data demonstrate the significant role of the antioxidant system in the resistance of this important human pathogen. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Jia, Huimin; Yang, Dongfang; Han, Xiangna; Cai, Junhui; Liu, Haiying; He, Weiwei
2016-03-01
Nanostructured enzyme mimics are of great interest as promising alternatives to artificial enzymes for biomedical and catalytic applications. Studying the chemical interactions between antioxidants and nano-enzymes may result in a better understanding of the antioxidant capability of antioxidants and may help improve the function of artificial enzymes to better mimic natural enzymes. In this study, using Co3O4 nanoparticles (NPs) as peroxidase mimics to catalyze the oxidation of chromophoric substrates by H2O2, we developed a platform that acts as a biosensor for hydrogen peroxide and glucose and that can study the inhibitory effects of natural antioxidants on peroxidase mimics. This method can be applied specifically to glucose detection in real samples. Three natural antioxidants, gallic acid (GA), tannic acid (TA), and ascorbic acid (AA), were compared for their antioxidant capabilities. We found that these three antioxidants efficiently inhibit peroxidase-like activity with concentration dependence. The antioxidants showed different efficiencies, in the following order: tannic acid > gallic acid > ascorbic acid. They also showed distinct modes of inhibition based on different interaction mechanisms. This study serves as a proof-of-concept that nano-enzyme mimics can be used to evaluate antioxidant capabilities and to screen enzyme inhibitors.Nanostructured enzyme mimics are of great interest as promising alternatives to artificial enzymes for biomedical and catalytic applications. Studying the chemical interactions between antioxidants and nano-enzymes may result in a better understanding of the antioxidant capability of antioxidants and may help improve the function of artificial enzymes to better mimic natural enzymes. In this study, using Co3O4 nanoparticles (NPs) as peroxidase mimics to catalyze the oxidation of chromophoric substrates by H2O2, we developed a platform that acts as a biosensor for hydrogen peroxide and glucose and that can study the inhibitory effects of natural antioxidants on peroxidase mimics. This method can be applied specifically to glucose detection in real samples. Three natural antioxidants, gallic acid (GA), tannic acid (TA), and ascorbic acid (AA), were compared for their antioxidant capabilities. We found that these three antioxidants efficiently inhibit peroxidase-like activity with concentration dependence. The antioxidants showed different efficiencies, in the following order: tannic acid > gallic acid > ascorbic acid. They also showed distinct modes of inhibition based on different interaction mechanisms. This study serves as a proof-of-concept that nano-enzyme mimics can be used to evaluate antioxidant capabilities and to screen enzyme inhibitors. Electronic supplementary information (ESI) available: Fig. S1-S6. See DOI: 10.1039/c6nr00860g
Enzyme Analysis to Determine Glucose Content
NASA Astrophysics Data System (ADS)
Carpenter, Charles; Ward, Robert E.
Enzyme analysis is used for many purposes in food science and technology. Enzyme activity is used to indicate adequate processing, to assess enzyme preparations, and to measure constituents of foods that are enzyme substrates. In this experiment, the glucose content of corn syrup solids is determined using the enzymes, glucose oxidase and peroxidase. Glucose oxidase catalyzes the oxidation of glucose to form hydrogen peroxide (H2O2), which then reacts with a dye in the presence of peroxidase to give a stable colored product.
Ziaebrahimi, L; Khavari-Nejad, R A; Fahimi, H; Nejadsatari, T
2007-10-01
Evaluation of allelopathic effects of this plant on other near cultivations especially wheat is the aim of this study. Effects of water extracts of eucalyptus leaves examined on germination and growth of three wheat cultivar seeds and seedlings. Results showed that: germination percentage strongly decreased, leaf and root lengths also affected and dry and wet weights of both roots and shoots showed similar change patterns. Activities of peroxidase and polyphenoloxidase as antioxidant enzymes in roots and shoots measured. Activity of peroxidases increased in stress conditions and roots showed more increased enzyme activity than leaves. Activity of polyphenoloxidases increased only in one of three cultivars and again roots showed more activity of this enzyme in response to eucalyptus extract. Suggest that detoxification process were conducted mainly in roots of seedlings.
NASA Astrophysics Data System (ADS)
Sahare, Padmavati; Ayala, Marcela; Vazquez-Duhalt, Rafael; Agrawal, Vivechana
2014-08-01
In this work, a commercial peroxidase was immobilized onto porous silicon (PS) support functionalized with 3-aminopropyldiethoxysilane (APDES) and the performance of the obtained catalytic microreactor was studied. The immobilization steps were monitored and the activity of the immobilized enzyme in the PS pores was spectrophotometrically determined. The enzyme immobilization in porous silicon has demonstrated its potential as highly efficient enzymatic reactor. The effect of a polar organic solvent (acetonitrile) and the temperature (up to 50°C) on the activity and stability of the biocatalytic microreactor were studied. After 2-h incubation in organic solvent, the microreactor retained 80% of its initial activity in contrast to the system with free soluble peroxidase that lost 95% of its activity in the same period of time. Peroxidase immobilized into the spaces of the porous silicon support would be perspective for applications in treatments for environmental security such as removal of leached dye in textile industry or in treatment of different industrial effluents. The system can be also applied in the field of biomedicine.
Freitag, M; Morrell, J J
1992-04-01
Two filamentous fungi, the white-rot fungus Trametes versicolor and the soil fungus and potential biocontrol organism Trichoderma harzianum, have been grown in pure and mixed cultures on low-N (0.4 mM) and high-N (4 mM) defined synthetic media to determine the activities of selected wood-degrading enzymes such as cellobiase, cellulase, laccase, and peroxidases. Growth characteristics and enzyme activities were examined for potential correlations. Such correlations would allow the use of simple enzyme assays for measuring biomass development and would facilitate predictions about competitiveness of species in mixed fungal cultures. Our results show that while laccase and Poly Red-478 peroxidase activities indicate survival of the decay fungus, none of the monitored extracellular enzymes can serve as a quantitative indicator for biomass accumulation. As expected, the level of available nitrogen affected the production of the enzymes monitored: in low-N media, specific cellobiase, specific cellulase, and peroxidase activities were enhanced, while laccase activities were reduced. Most importantly, laccase activities of Trametes versicolor, and to a smaller extent, cellobiase activities of both fungi, were significantly induced in mixed cultures of Trametes versicolor and Trichoderma harzianum.
Bödeker, Inga T M; Clemmensen, Karina E; de Boer, Wietse; Martin, Francis; Olson, Åke; Lindahl, Björn D
2014-07-01
In northern forests, belowground sequestration of nitrogen (N) in complex organic pools restricts nutrient availability to plants. Oxidative extracellular enzymes produced by ectomycorrhizal fungi may aid plant N acquisition by providing access to N in macromolecular complexes. We test the hypotheses that ectomycorrhizal Cortinarius species produce Mn-dependent peroxidases, and that the activity of these enzymes declines at elevated concentrations of inorganic N. In a boreal pine forest and a sub-arctic birch forest, Cortinarius DNA was assessed by 454-sequencing of ITS amplicons and related to Mn-peroxidase activity in humus samples with- and without previous N amendment. Transcription of Cortinarius Mn-peroxidase genes was investigated in field samples. Phylogenetic analyses of Cortinarius peroxidase amplicons and genome sequences were performed. We found a significant co-localization of high peroxidase activity and DNA from Cortinarius species. Peroxidase activity was reduced by high ammonium concentrations. Amplification of mRNA sequences indicated transcription of Cortinarius Mn-peroxidase genes under field conditions. The Cortinarius glaucopus genome encodes 11 peroxidases - a number comparable to many white-rot wood decomposers. These results support the hypothesis that some ectomycorrhizal fungi--Cortinarius species in particular--may play an important role in decomposition of complex organic matter, linked to their mobilization of organically bound N. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
A novel extracellular multicopper oxidase from Phanerochaete chrysosporium with ferroxidase activity
Luis F. Larrondo; Loreto Salas; Francisco Melo; Rafael Vicuna; Daniel Cullen
2003-01-01
Lignin degradation by the white rot basidiomycete Phanerochaete chrysosporium involves various extracellular oxidative enzymes, including lignin peroxidase, manganese peroxidase, and a peroxide-generating enzyme, glyoxal oxidase. Recent studies have suggested that laccases also may be produced by this fungus, but these conclusions have been controversial. We identified...
Zhou, Ying; Yang, Zhenming; Gao, Lingling; Liu, Wen; Liu, Rongkun; Zhao, Junting; You, Jiangfeng
2017-07-01
Red-skin root disease has seriously decreased the quality and production of Panax ginseng (ginseng). To explore the disease's origin, comparative analysis was performed in different parts of the plant, particularly the epidermis, cortex, and/or fibrous roots of 5-yr-old healthy and diseased red-skin ginseng. The inorganic element composition, phenolic compound concentration, reactive oxidation system, antioxidant concentrations such as ascorbate and glutathione, activities of enzymes related to phenolic metabolism and oxidation, and antioxidative system particularly the ascorbate-glutathione cycle were examined using conventional methods. Aluminum (Al), iron (Fe), magnesium, and phosphorus were increased, whereas manganese was unchanged and calcium was decreased in the epidermis and fibrous root of red-skin ginseng, which also contained higher levels of phenolic compounds, higher activities of the phenolic compound-synthesizing enzyme phenylalanine ammonia-lyase and the phenolic compound oxidation-related enzymes guaiacol peroxidase and polyphenoloxidase. As the substrate of guaiacol peroxidase, higher levels of H 2 O 2 and correspondingly higher activities of superoxide dismutase and catalase were found in red-skin ginseng. Increased levels of ascorbate and glutathione; increased activities of l-galactose 1-dehydrogenase, ascorbate peroxidase, ascorbic acid oxidase, and glutathione reductase; and lower activities of dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione peroxidase were found in red-skin ginseng. Glutathione- S -transferase activity remained constant. Hence, higher element accumulation, particularly Al and Fe, activated multiple enzymes related to accumulation of phenolic compounds and their oxidation. This might contribute to red-skin symptoms in ginseng. It is proposed that antioxidant and antioxidative enzymes, especially those involved in ascorbate-glutathione cycles, are activated to protect against phenolic compound oxidation.
Guaiacol peroxidase zymography for the undergraduate laboratory.
Wilkesman, Jeff; Castro, Diana; Contreras, Lellys M; Kurz, Liliana
2014-01-01
This laboratory exercise presents a novel way to introduce undergraduate students to the specific detection of enzymatic activity by electrophoresis. First, students prepare a crude peroxidase extract and then analyze the homogenate via electrophoresis. Zymography, that is, a SDS-PAGE method to detect enzyme activity, is used to specifically detect peroxidase activity and furthermore, to analyze the total protein profile. After the assay, students may estimate the apparent molecular mass of the enzyme and discuss its structure. After the 4-h experiment, students gain knowledge concerning biological sample preparation, gel preparation, electrophoresis, and the importance of specific staining procedures for the detection of enzymatic activity. Copyright © 2014 The International Union of Biochemistry and Molecular Biology.
Cong, Bailin; Wang, Nengfei; Liu, Shenghao; Liu, Feng; Yin, Xiaofei; Shen, Jihong
2017-05-30
With the growing demand for fossil fuels and the severe energy crisis, lignocellulose is widely regarded as a promising cost-effective renewable resource for ethanol production, and the use of lignocellulose residues as raw material is remarkable. Polar organisms have important value in scientific research and development for their novelty, uniqueness and diversity. In this study, a fungus Aspergillus sydowii MS-19, with the potential for lignocellulose degradation was screened out and isolated from an Antarctic region. The growth profile of Aspergillus sydowii MS-19 was measured, revealing that Aspergillus sydowii MS-19 could utilize lignin as a sole carbon source. Its ability to synthesize low-temperature lignin peroxidase (Lip) and manganese peroxidase (Mnp) enzymes was verified, and the properties of these enzymes were also investigated. High-throughput sequencing was employed to identify and characterize the transcriptome of Aspergillus sydowii MS-19. Carbohydrate-Active Enzymes (CAZyme)-annotated genes in Aspergillus sydowii MS-19 were compared with those in the brown-rot fungus representative species, Postia placenta and Penicillium decumbens. There were 701CAZymes annotated in Aspergillus sydowii MS-19, including 17 cellulases and 19 feruloyl esterases related to lignocellulose-degradation. Remarkably, one sequence annotated as laccase was obtained, which can degrade lignin. Three peroxidase sequences sharing a similar structure with typical lignin peroxidase and manganese peroxidase were also found and annotated as haem-binding peroxidase, glutathione peroxidase and catalase-peroxidase. In this study, the fungus Aspergillus sydowii MS-19 was isolated and shown to synthesize low-temperature lignin-degrading enzymes: lignin peroxidase (Lip) and manganese peroxidase (Mnp). These findings provide useful information to improve our understanding of low-temperature lignocellulosic enzyme production by polar microorganisms and to facilitate research and applications of the novel Antarctic Aspergillus sydowii strain MS-19 as a potential lignocellulosic enzyme source.
Intrinsic Peroxidase-like Activity of Ficin
NASA Astrophysics Data System (ADS)
Yang, Yufang; Shen, Dongjun; Long, Yijuan; Xie, Zhixiong; Zheng, Huzhi
2017-02-01
Ficin is classified as a sulfhydryl protease isolated from the latex of fig trees. In most cases, a particular enzyme fits a few types of substrate and catalyzes one type of reaction. In this investigation, we found sufficient proofs for the intrinsic peroxidase-like activity of ficin and designed experiments to examine its effectiveness in a variety of scenarios. Ficin can transform peroxidase substrates to colored products in the existence of H2O2. Our results also indicate that the active sites of peroxidase-like activity of ficin are different from that of protease, which reveals that one enzyme may catalyze more than one kind of substrate to perform different types of reactions. On the basis of these findings, H2O2 releasing from MCF-7 cells was detected successfully. Our findings support a wider application of ficin in biochemistry and open up the possibility of utilizing ficin as enzymatic mimics in biotechnology and environmental monitoring.
NASA Astrophysics Data System (ADS)
Liang, Hao; Jiang, Shuhui; Yuan, Qipeng; Li, Guofeng; Wang, Feng; Zhang, Zijie; Liu, Juewen
2016-03-01
Preserving enzyme activity and promoting synergistic activity via co-localization of multiple enzymes are key topics in bionanotechnology, materials science, and analytical chemistry. This study reports a facile method for co-immobilizing multiple enzymes in metal coordinated hydrogel nanofibers. Specifically, four types of protein enzymes, including glucose oxidase, Candida rugosa lipase, α-amylase, and horseradish peroxidase, were respectively encapsulated in a gel nanofiber made of Zn2+ and adenosine monophosphate (AMP) with a simple mixing step. Most enzymes achieved quantitative loading and retained full activity. At the same time, the entrapped enzymes were more stable against temperature variation (by 7.5 °C), protease attack, extreme pH (by 2-fold), and organic solvents. After storing for 15 days, the entrapped enzyme still retained 70% activity while the free enzyme nearly completely lost its activity. Compared to nanoparticles formed with AMP and lanthanide ions, the nanofiber gels allowed much higher enzyme activity. Finally, a highly sensitive and selective biosensor for glucose was prepared using the gel nanofiber to co-immobilize glucose oxidase and horseradish peroxidase for an enzyme cascade system. A detection limit of 0.3 μM glucose with excellent selectivity was achieved. This work indicates that metal coordinated materials using nucleotides are highly useful for interfacing with biomolecules.Preserving enzyme activity and promoting synergistic activity via co-localization of multiple enzymes are key topics in bionanotechnology, materials science, and analytical chemistry. This study reports a facile method for co-immobilizing multiple enzymes in metal coordinated hydrogel nanofibers. Specifically, four types of protein enzymes, including glucose oxidase, Candida rugosa lipase, α-amylase, and horseradish peroxidase, were respectively encapsulated in a gel nanofiber made of Zn2+ and adenosine monophosphate (AMP) with a simple mixing step. Most enzymes achieved quantitative loading and retained full activity. At the same time, the entrapped enzymes were more stable against temperature variation (by 7.5 °C), protease attack, extreme pH (by 2-fold), and organic solvents. After storing for 15 days, the entrapped enzyme still retained 70% activity while the free enzyme nearly completely lost its activity. Compared to nanoparticles formed with AMP and lanthanide ions, the nanofiber gels allowed much higher enzyme activity. Finally, a highly sensitive and selective biosensor for glucose was prepared using the gel nanofiber to co-immobilize glucose oxidase and horseradish peroxidase for an enzyme cascade system. A detection limit of 0.3 μM glucose with excellent selectivity was achieved. This work indicates that metal coordinated materials using nucleotides are highly useful for interfacing with biomolecules. Electronic supplementary information (ESI) available: Additional methods, IR and XRD spectroscopy, enzyme loading capacity, enzyme kinetic parameters, and enzyme stability data. See DOI: 10.1039/c5nr08734a
Suravajjala, Sreekanth; Cohenford, Menashi; Frost, Leslie R; Pampati, Praveen K; Dain, Joel A
2013-06-05
Glutathione peroxidase (GPx) is a significant antioxidant enzyme that plays a key role in protecting the body from reactive oxygen species (ROS) and their toxicity. As a biocatalyst, the enzyme has been shown to reduce hydrogen peroxide to water and lipid hydroperoxides to their respective alcohols. The increased levels of ROS in patients with diabetes have been speculated to arise, in part, from alterations in the activity of glutathione antioxidant enzymes, perhaps, by mechanisms such as the glycation of the protein, in vivo. Under physiological conditions of temperature and pH, we investigated the susceptibility of human glutathione peroxidase to glycation, determined the effects of glycation on the physical and kinetic properties of the enzyme, and identified the protein's vulnerable amino acid sites of glycation. Circular dichroism, UV and mass spectrometry studies revealed that methylglyoxal and DL-glyceraldehyde are potent glycators of glutathione peroxidase; destabilizing its structure, altering its pH activity and stability profiles and increasing its Km value. In comparison to DL-glyceraldehyde, methylglyxol was a more potent glycator of the enzyme and was found to nonenzymatically condense with Arg-177, located near the glutathione binding site of GPx. Copyright © 2013 Elsevier B.V. All rights reserved.
Liers, Christiane; Arnstadt, Tobias; Ullrich, René; Hofrichter, Martin
2011-10-01
The degradation of lignocellulose and the secretion of extracellular oxidoreductases were investigated in beech-wood (Fagus sylvatica) microcosms using 11 representative fungi of four different ecophysiological and taxonomic groups causing: (1) classic white rot of wood (e.g. Phlebia radiata), (2) 'nonspecific' wood rot (e.g. Agrocybe aegerita), (3) white rot of leaf litter (Stropharia rugosoannulata) or (4) soft rot of wood (e.g. Xylaria polymorpha). All strong white rotters produced manganese-oxidizing peroxidases as the key enzymes of ligninolysis (75-2200 mU g(-1)), whereas lignin peroxidase activity was not detectable in the wood extracts. Interestingly, activities of two recently discovered peroxidases - aromatic peroxygenase and a manganese-independent peroxidase of the DyP-type - were detected in the culture extracts of A. aegerita (up to 125 mU g(-1)) and Auricularia auricula-judae (up to 400 mU g(-1)), respectively. The activity of classic peroxidases correlated to some extent with the removal of wood components (e.g. Klason lignin) and the release of small water-soluble fragments (0.5-1.0 kDa) characterized by aromatic constituents. In contrast, laccase activity correlated with the formation of high-molecular mass fragments (30-200 kDa). The differences observed in the degradation patterns allow to distinguish the rot types caused by basidiomycetes and ascomycetes and may be suitable for following the effects of oxidative key enzymes (ligninolytic peroxidases vs. laccases, role of novel peroxidases) during wood decay. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Habib, Darima; Chaudhary, Muhammad Fayyaz; Zia, Muhammad
2014-01-01
Here, we demonstrate the micropropagation protocol of Argyrolobium roseum (Camb.), an endangered herb exhibiting anti-diabetic and immune-suppressant properties, and antioxidant enzymes pattern is evaluated. Maximum callogenic response (60 %) was observed from leaf explant at 1.0 mg L(-1) 1-nephthalene acetic acid (NAA) and 0.5 mg L(-1) 6-benzyl aminopurine (BA) in Murashige and Skoog (MS) medium using hypocotyl and root explants (48 % each). Addition of AgNO3 and PVP in the culture medium led to an increase in callogenic response up to 86 % from leaf explant and 72 % from hypocotyl and root explants. The best shooting response was observed in the presence of NAA, while maximum shoot length and number of shoots were achieved based on BA-supplemented MS medium. The regenerated shoots were rooted and successfully acclimatized under greenhouse conditions. Catalase and peroxidase enzymes showed ascending pattern during in vitro plant development from seed while ascorbate peroxidase showed descending pattern. Totally reverse response of these enzymes was observed during callus induction from three different explants. During shoot induction, catalase and peroxidase increased at high rate while there was a mild reduction in ascorbate peroxidase activity. Catalase and peroxidase continuously increased; on the other hand, ascorbate peroxidase activity decreased during root development and acclimatization states. The protocol described here can be employed for the mass propagation and genetic transformation of this rare herb. This study also highlights the importance and role of ascorbate peroxidase, catalase, and peroxidase in the establishment of A. roseum in vitro culture through callogenesis and organogenesis.
Not so monofunctional--a case of thermostable Thermobifida fusca catalase with peroxidase activity.
Lončar, Nikola; Fraaije, Marco W
2015-03-01
Thermobifida fusca is a mesothermophilic organism known for its ability to degrade plant biomass and other organics, and it was demonstrated that it represents a rich resource of genes encoding for potent enzymes for biocatalysis. The thermostable catalase from T. fusca has been cloned and overexpressed in Escherichia coli with a yield of 400 mg/L. Heat treatment of disrupted cells at 60 °C for 1 h resulted in enzyme preparation of high purity; hence, no chromatography steps are needed for large-scale production. Except for catalyzing the dismutation of hydrogen peroxide, TfuCat was also found to catalyze oxidations of phenolic compounds. The catalase activity was comparable to other described catalases while peroxidase activity was quite remarkable with a k obs of nearly 1000 s(-1) for catechol. Site directed mutagenesis was used to alter the ratio of peroxidase/catalase activity. Resistance to inhibition by classic catalase inhibitors and an apparent melting temperature of 74 °C classifies this enzyme as a robust biocatalyst. As such, it could compete with other commercially available catalases while the relatively high peroxidase activity also offers new biocatalytic possibilities.
Shukla, Dharmendra; Patel, Bhavesh; Modi, Hasmukh; Vyas, Bharat Rajiv Manuel
2011-11-01
Solid-state fermentation of wheat straw was carried out by a native white rot basidiomycete Daedaleopsis flavida strain 5A. Extract prepared from the 12-day decayed wheat straw contained extracellular ligninolytic enzymes like manganese peroxidase (MnP), manganese-independent peroxidase (MIP), lignin peroxidase (LiP) and laccase along with straw-degraded products and pigments. Sephacryl S-200 size exclusion chromatography in 16/100 column was used for the separation of these ligninolytic enzymes and straw-degraded products and pigments. Recovery of pigment-free ligninolytic enzyme activities as protein was 40% of the total proteins loaded and specific LiP activity increased 34 fold after size exclusion chromatography. Thus accurate estimation of LiP by veratryl alcohol oxidation assay was possible only after the removal of interfering pigments. The reproducibility of size exclusion chromatography is adjudged satisfactory from the consistent results obtained after seven repetitive uses of matrices.
Luffa aegyptiaca (Gourd) Fruit Juice as a Source of Peroxidase
Yadav, R. S. S.; Yadav, K. S.; Yadav, H. S.
2011-01-01
Peroxidases have turned out to be potential biocatalyst for a variety of organic reactions. The research work reported in this communication was done with the objective of finding a convenient rich source of peroxidase which could be used as a biocatalyst for organic synthetic reactions. The studies made have shown that Luffa aegyptiaca (gourd) fruit juice contains peroxidase activity of the order of 180 enzyme unit/mL. The Km values of this peroxidase for the substrates guaiacol and hydrogen peroxide were 2.0 and 0.2 mM, respectively. The pH and temperature optima were 6.5 and 60°C, respectively. Like other peroxidases, it followed double displacement type mechanism. Sodium azide inhibited the enzyme competitively with Ki value of 3.35 mM. PMID:21804936
Luffa aegyptiaca (Gourd) Fruit Juice as a Source of Peroxidase.
Yadav, R S S; Yadav, K S; Yadav, H S
2011-01-01
Peroxidases have turned out to be potential biocatalyst for a variety of organic reactions. The research work reported in this communication was done with the objective of finding a convenient rich source of peroxidase which could be used as a biocatalyst for organic synthetic reactions. The studies made have shown that Luffa aegyptiaca (gourd) fruit juice contains peroxidase activity of the order of 180 enzyme unit/mL. The K(m) values of this peroxidase for the substrates guaiacol and hydrogen peroxide were 2.0 and 0.2 mM, respectively. The pH and temperature optima were 6.5 and 60°C, respectively. Like other peroxidases, it followed double displacement type mechanism. Sodium azide inhibited the enzyme competitively with K(i) value of 3.35 mM.
Superactivity of peroxidase solubilized in reversed micellar systems.
Setti, L; Fevereiro, P; Melo, E P; Pifferi, P G; Cabral, J M; Aires-Barros, M R
1995-12-01
Vaccinium mirtyllus peroxidase solubilized in reversed micelles was used for the oxidation of guaiacol. Some relevant parameters for the enzymatic activity, such as pH, w(o) (molar ratio water/surfactant), surfactant type and concentration, and cosurfactant concentration, were investigated. The peroxidase showed higher activities in reversed micelles than in aqueous solution. The stability of the peroxidase in reversed micelles was also studied, namely, the effect of w(o) and temperature on enzyme deactivation. The peroxidase displayed higher stabilities in CTAB/hexanol in isooctane reversed micelles, with half-life times higher than 500 h.
Maji, Swarup Kumar; Mandal, Amal Kumar; Nguyen, Kim Truc; Borah, Parijat; Zhao, Yanli
2015-05-13
Development of efficient artificial enzymes is an emerging field in nanobiotechnology, since these artificial enzymes could overcome serious disadvantages of natural enzymes. In this work, a new nanostructured hybrid was developed as a mimetic enzyme for in vitro detection and therapeutic treatment of cancer cells. The hybrid (GSF@AuNPs) was prepared by the immobilization of gold nanoparticles (AuNPs) on mesoporous silica-coated nanosized reduced graphene oxide conjugated with folic acid, a cancer cell-targeting ligand. The GSF@AuNPs hybrid showed unprecedented peroxidase-like activity, monitored by catalytic oxidation of a typical peroxidase substrate, 3,3',5,5'-tetramethylbenzidine (TMB), in the presence of H2O2. On basis of this peroxidase activity, the hybrid was utilized as a selective, quantitative, and fast colorimetric detection probe for cancer cells. Finally, the hybrid as a mimetic enzyme was employed for H2O2- and ascorbic acid (AA)-mediated therapeutics of cancer cells. In vitro experiments using human cervical cancer cells (HeLa cells) exhibited the formation of reactive oxygen species (OH(•) radical) in the presence of peroxidase-mimic GSF@AuNPs with either exogenous H2O2 or endogenous H2O2 generated from AA, leading to an enhanced cytotoxicity to HeLa cells. In the case of normal cells (human embryonic kidney HEK 293 cells), the treatment with the hybrid and H2O2 or AA showed no obvious damage, proving selective killing effect of the hybrid to cancer cells.
Antioxidant response to metal pollution in Phragmites australis from Anzali wetland.
Esmaeilzadeh, Marjan; Karbassi, Abdolreza; Bastami, Kazem Darvish
2017-06-15
This research was conducted to examine variations of antioxidant enzyme activity in Phragmites australis as a biomarker for metals such as As, Pb, Cu, and Cd. Samples of sediment and plants were collected from 7 stations located in Anzali wetland. Biochemical parameters including Catalase, Peroxidase and Ascorbate Peroxidase activity were analyzed in the roots, stems and leaves of P. australis. The obtained results indicated that there were significant differences among activities of antioxidant enzymes in three organs (p<0.05). Antioxidant enzyme activities in the organs for all studied stations were as the following order: stem
Effect of pulsed light on activity and structural changes of horseradish peroxidase
USDA-ARS?s Scientific Manuscript database
The objective of this research was to investigate the effects of pulsed light (PL) on the activity and structure of horseradish peroxidase (HRP) in buffer solution. Enzyme residual activities were measured after PL. Surface topography, secondary, and tertiary structures of HRP were determined using ...
Purification and characterization of a melanin biodegradation enzyme from Geotrichum sp.
Kim, B S; Blaghen, M; Hong, H-S; Lee, K-M
2016-12-01
Melanin is a black or brown phenolic polymer present mainly in skin and hair. Although melanin can be degraded by some microbial species, the melanin degradation capacity of Geotrichum sp. is unknown. The aim of this study was to characterize a melanin biodegradation enzyme from Geotrichum sp. In this study, we assessed the melanin degradation activity of Geotrichum sp. in comparison with the major melanin-degrading enzymes, manganese-dependent peroxidase (MnP), manganese-independent peroxidase, lignin peroxidase and laccase. Furthermore, the effect of several carbohydrates on melanin degradation by Geotrichum sp. was determined. The MnP enzyme was purified using ammonium sulphate precipitation and Sephadex G-200 column chromatography, and then the conditions for optimal enzymatic activity were determined by adjusting the pH, temperature and Tween-80 concentration. Compared with extracellular ligninolytic enzymes of Geotrichum sp., MnP had the highest ligninolytic enzyme activity; and the highest enzymatic activity was observed in the presence of glucose. The final purified MnP enzyme exhibited 6 U mL -1 activity and had a molecular weight of 54.2 kDa. The enzymatic activity was highest at pH 4.5 and 25-35°C in the absence of Tween-80. These results indicate the potential of MnP purified from Geotrichum sp. as a skin-lightening agent in the cosmetic industry. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Szabo, Orsolya Erzsebet; Csiszar, Emilia; Toth, Karolina; Szakacs, George; Koczka, Bela
2015-01-01
Ligninolytic and hydrolytic enzymes were produced with six selected fungi on flax substrate by solid state fermentation (SSF). The extracellular enzyme production of the organisms in two SSF media was evaluated by measuring the soluble protein concentration and the filter paper, endoxylanase, 1,4-β-d-glucosidase, 1,4-β-d-endoglucanase, polygalacturonase, lignin peroxidase, manganese peroxidase and laccase activities of the clear culture solutions produced by conventional extraction from the SSF materials. The SSF material of the best enzyme producer (Trichoderma virens TUB F-498) was further investigated to enhance the enzyme recovery by low frequency ultrasound treatment. Performance of both the original and ultrasound macerated crude enzyme mixtures was evaluated in degradation of the colored lignin-containing and waxy materials of raw linen fabric. Results proved that sonication (at 40%, 60% and 80% amplitudes, for 60min) did not result in reduction in the filter paper, lignin peroxidase and laccase activities of the crude enzyme solution, but has a significant positive effect on the efficiency of enzyme extraction from the SSF material. Depending on the parameters of sonication, the enzyme activities in the extracts obtained can be increased up to 129-413% of the original activities measured in the control extracts recovered by a common magnetic stirrer. Sonication also has an effect on both the enzymatic removal of the lignin-containing color materials and hydrophobic surface layer from the raw linen. Copyright © 2014 Elsevier B.V. All rights reserved.
Long, Lin; Liu, Jianbo; Lu, Kaishun; Zhang, Tao; Xie, Yunqing; Ji, Yinglu; Wu, Xiaochun
2018-05-02
As a promising candidate for artificial enzymes, catalytically active nanomaterials show several advantages over natural enzymes, such as controlled synthesis at low cost, tunability of catalytic activities, and high stability under stringent conditions. Rod-shaped Au-Pt core/shell nanoparticles (Au@Pt NRs), prepared by Au nanorod-mediated growth, exhibit peroxidase-like activities and could serve as an inexpensive replacement for horseradish peroxidase, with potential applications in various bio-detections. The determination of measles virus is accomplished by a capture-enzyme-linked immunosorbent assay (ELISA) using Au@Pt NR-antigen conjugates. Based on the enhanced catalytic properties of this nanozyme probe, a linear response was observed up to 10 ng/mL measles IgM antibodies in human serum, which is 1000 times more sensitive than commercial ELISA. Hence, these findings provide positive proof of concept for the potential of Au@Pt NR-antigen conjugates in the development of colorimetric biosensors that are simple, robust, and cost-effective.
Electroenzymatic oxidation of veratryl alcohol by lignin peroxidase.
Lee, KiBeom; Moon, Seung-Hyeon
2003-05-08
This paper reports the formation of veratraldehyde by electroenzymatic oxidation of veratryl alcohol (3,4-dimethoxybenzyl alcohol) hybridizing both electrochemical and enzymatic reactions and using lignin peroxidase. The novel electroenzymatic method was found to be effective for replacement of hydrogen peroxide by an electrochemical reactor, which is essential for enzyme activity of lignin peroxidase. The effects of operating parameters such as enzyme dosage, pH, and electric potential were investigated. Further, the kinetics of veratryl alcohol oxidation in an electrochemical reactor were compared to oxidation when hydrogen peroxide was supplied externally.
NASA Technical Reports Server (NTRS)
Nematollahi, W. P.; Roux, S. J.
1999-01-01
Plants have a variety of glycosidic conjugates of hormones, defense compounds, and other molecules that are hydrolyzed by beta-glucosidases (beta-D-glucoside glucohydrolases, E.C. 3.2.1.21). Workers have reported several beta-glucosidases from maize (Zea mays L.; Poaceae), but have localized them mostly by indirect means. We have purified and partly characterized a 58-Ku beta-glucosidase from maize, which we conclude from a partial sequence analysis, from kinetic data, and from its localization is not identical to any of those already reported. A monoclonal antibody, mWP 19, binds this enzyme, and localizes it in the cell walls of maize coleoptiles. An earlier report showed that mWP19 inhibits peroxidase activity in crude cell wall extracts and can immunoprecipitate peroxidase activity from these extracts, yet purified preparations of the 58 Ku protein had little or no peroxidase activity. The level of sequence similarity between beta-glucosidases and peroxidases makes it unlikely that these enzymes share epitopes in common. Contrary to a previous conclusion, these results suggest that the enzyme recognized by mWP19 is not a peroxidase, but there is a wall peroxidase closely associated with the 58 Ku beta-glucosidase in crude preparations. Other workers also have co-purified distinct proteins with beta-glucosidases. We found no significant charge in the level of immunodetectable beta-glucosidase in mesocotyls or coleoptiles that precedes the red light-induced changes in the growth rate of these tissues.
Lin, Youhui; Li, Zhenhua; Chen, Zhaowei; Ren, Jinsong; Qu, Xiaogang
2013-04-01
A significant challenge in chemistry is to create synthetic structures that mimic the complexity and function of natural systems. Here, a self-activated, enzyme-mimetic catalytic cascade has been realized by utilizing expanded mesoporous silica-encapsulated gold nanoparticles (EMSN-AuNPs) as both glucose oxidase- and peroxidase-like artificial enzymes. Specifically, EMSN helps the formation of a high degree of very small and well-dispersed AuNPs, which exhibit an extraordinarily stability and dual enzyme-like activities. Inspired by these unique and attractive properties, we further piece them together into a self-organized artificial cascade reaction, which is usually completed by the oxidase-peroxidase coupled enzyme system. Our finding may pave the way to use matrix as the structural component for the design and development of biomimetic catalysts and to apply enzyme mimics for realizing higher functions. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Kim, S. H.; Terry, M. E.; Hoops, P.; Dauwalder, M.; Roux, S. J.
1988-01-01
A library of 22 hybridomas, which make antibodies to soluble wall antigens from the coleoptiles and primary leaves of etiolated corn (Zea mays L.) seedlings, was raised and cloned three times by limit dilution to assure monoclonal growth and stability. Two of these hybridomas made immunoglobulin G antibodies, designated mWP3 and mWP19, which both effectively immunoprecipitated peroxidase activity from crude and partially purified preparations of wall peroxidases. Direct peroxidase-binding assays revealed that both antibodies bound enzymes with peroxidase activity. As judged by immunoblot analyses, mWP3 recognized a Mr 98,000 wall peroxidase with an isoelectric point near 4.2, and mWP19 recognized a Mr 58,000 wall peroxidase. Immunogold localization studies showed both peroxidases are predominately in cell walls.
Bucić-Kojić, Ana; Šelo, Gordana; Zelić, Bruno; Planinić, Mirela; Tišma, Marina
2017-03-01
Corn silage is used as high-energy forage for dairy cows and more recently for biogas production in a process of anaerobic co-digestion with cow manure. In this work, fresh corn silage after the harvest was used as a substrate in solid-state fermentations with T. versicolor with the aim of phenolic acid recovery and enzyme (laccase and manganese peroxidase) production. During 20 days of fermentation, 10.4-, 3.4-, 3.0-, and 1.8-fold increments in extraction yield of syringic acid, vanillic acid, p-hydroxybenzoic acid, and caffeic acid, respectively, were reached when compared to biologically untreated corn silage. Maximal laccase activity was gained on the 4th day of fermentation (V.A. = 180.2 U/dm 3 ), and manganese peroxidase activity was obtained after the 3rd day of fermentation (V.A. = 30.1 U/dm 3 ). The addition of copper(II) sulfate as inducer during solid state fermentation resulted in 8.5- and 7-fold enhancement of laccase and manganese peroxidase activities, respectively. Furthermore, the influence of pH and temperature on enzyme activities was investigated. Maximal activity of laccase was obtained at T = 50 °C and pH = 3.0, while manganese peroxidase is active at temperature range T = 45-70 °C with the maximal activity at pH = 4.5.
Triebwasser, Daniella J; Tharayil, Nishanth; Preston, Caroline M; Gerard, Patrick D
2012-12-01
By inhibiting soil enzymes, tannins play an important role in soil carbon (C) and nitrogen (N) mineralization. The role of tannin chemistry in this inhibitory process, in conjunction with enzyme classes and isoforms, is less well understood. Here, we compared the inhibition efficiencies of mixed tannins (MTs, mostly limited to angiosperms) and condensed tannins (CTs, produced mostly by gymnosperms) against the potential activity of β-glucosidase (BG), N-acetyl-glucosaminidase (NAG), and peroxidase in two soils that differed in their vegetation histories. Compared with CTs, MTs exhibited 50% more inhibition of almond (Prunus dulcis) BG activity and greater inhibition of the potential NAG activity in the gymnosperm-acclimatized soils. CTs exhibited lower BG inhibition in the angiosperm-acclimated soils, whereas both types of tannins exhibited higher peroxidase inhibition in the angiosperm soils than in gymnosperm soils. At all of the tested tannin concentrations, irrespective of the tannin type and site history, the potential peroxidase activity was inhibited two-fold more than the hydrolase activity and was positively associated with the redox-buffering efficiency of tannins. Our finding that the inhibitory activities and mechanisms of MTs and CTs are dependent on the vegetative history and enzyme class is novel and furthers our understanding of the role of tannins and soil isoenzymes in decomposition. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
Amara, Sawsan; Perrot, Thomas; Navarro, David; Deroy, Aurélie; Benkhelfallah, Amine; Chalak, Amani; Daou, Marianne; Chevret, Didier; Faulds, Craig B; Berrin, Jean-Guy; Morel-Rouhier, Mélanie; Gelhaye, Eric; Record, Eric
2018-04-15
Trametes versicolor is a wood-inhabiting agaricomycete known for its ability to cause strong white-rot decay on hardwood and for its high tolerance of phenolic compounds. The goal of the present work was to gain insights into the molecular biology and biochemistry of the heme-including class II and dye-decolorizing peroxidases secreted by this fungus. Proteomic analysis of the secretome of T. versicolor BRFM 1218 grown on oak wood revealed a set of 200 secreted proteins, among which were the dye-decolorizing peroxidase Tv DyP1 and the versatile peroxidase Tv VP2. Both peroxidases were heterologously produced in Escherichia coli , biochemically characterized, and tested for the ability to oxidize complex substrates. Both peroxidases were found to be active against several substrates under acidic conditions, and Tv DyP1 was very stable over a relatively large pH range of 2.0 to 6.0, while Tv VP2 was more stable at pH 5.0 to 6.0 only. The thermostability of both enzymes was also tested, and Tv DyP1 was globally found to be more stable than Tv VP2. After 180 min of incubation at temperatures ranging from 30 to 50°C, the activity of Tv VP2 drastically decreased, with 10 to 30% of the initial activity retained. Under the same conditions, Tv DyP1 retained 20 to 80% of its enzyme activity. The two proteins were catalytically characterized, and Tv VP2 was shown to accept a wider range of reducing substrates than Tv DyP1. Furthermore, both enzymes were found to be active against two flavonoids, quercetin and catechin, found in oak wood, with Tv VP2 displaying more rapid oxidation of the two compounds. They were tested for the ability to decolorize five industrial dyes, and Tv VP2 presented a greater ability to oxidize and decolorize the dye substrates than Tv DyP1. IMPORTANCE Trametes versicolor is a wood-inhabiting agaricomycete known for its ability to cause strong white-rot decay on hardwood and for its high tolerance of phenolic compounds. Among white-rot fungi, the basidiomycete T. versicolor has been extensively studied for its ability to degrade wood, specifically lignin, thanks to an extracellular oxidative enzymatic system. The corresponding oxidative system was previously studied in several works for classical lignin and manganese peroxidases, and in this study, two new components of the oxidative system of T. versicolor , one dye-decolorizing peroxidase and one versatile peroxidase, were biochemically characterized in depth and compared to other fungal peroxidases. Copyright © 2018 American Society for Microbiology.
Insights into lignin degradation and its potential industrial applications.
Abdel-Hamid, Ahmed M; Solbiati, Jose O; Cann, Isaac K O
2013-01-01
Lignocellulose is an abundant biomass that provides an alternative source for the production of renewable fuels and chemicals. The depolymerization of the carbohydrate polymers in lignocellulosic biomass is hindered by lignin, which is recalcitrant to chemical and biological degradation due to its complex chemical structure and linkage heterogeneity. The role of fungi in delignification due to the production of extracellular oxidative enzymes has been studied more extensively than that of bacteria. The two major groups of enzymes that are involved in lignin degradation are heme peroxidases and laccases. Lignin-degrading peroxidases include lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), and dye-decolorizing peroxidase (DyP). LiP, MnP, and VP are class II extracellular fungal peroxidases that belong to the plant and microbial peroxidases superfamily. LiPs are strong oxidants with high-redox potential that oxidize the major non-phenolic structures of lignin. MnP is an Mn-dependent enzyme that catalyzes the oxidation of various phenolic substrates but is not capable of oxidizing the more recalcitrant non-phenolic lignin. VP enzymes combine the catalytic activities of both MnP and LiP and are able to oxidize Mn(2+) like MnP, and non-phenolic compounds like LiP. DyPs occur in both fungi and bacteria and are members of a new superfamily of heme peroxidases called DyPs. DyP enzymes oxidize high-redox potential anthraquinone dyes and were recently reported to oxidize lignin model compounds. The second major group of lignin-degrading enzymes, laccases, are found in plants, fungi, and bacteria and belong to the multicopper oxidase superfamily. They catalyze a one-electron oxidation with the concomitant four-electron reduction of molecular oxygen to water. Fungal laccases can oxidize phenolic lignin model compounds and have higher redox potential than bacterial laccases. In the presence of redox mediators, fungal laccases can oxidize non-phenolic lignin model compounds. In addition to the peroxidases and laccases, fungi produce other accessory oxidases such as aryl-alcohol oxidase and the glyoxal oxidase that generate the hydrogen peroxide required by the peroxidases. Lignin-degrading enzymes have attracted the attention for their valuable biotechnological applications especially in the pretreatment of recalcitrant lignocellulosic biomass for biofuel production. The use of lignin-degrading enzymes has been studied in various applications such as paper industry, textile industry, wastewater treatment and the degradation of herbicides. Copyright © 2013 Elsevier Inc. All rights reserved.
Salano, F; Iborra, J L; Lozano, J A
1981-09-01
Studied for measuring the peroxidase activity from thyroid gland have usually been achieved on the basis of the H2O2 oxidation of I- to I3- catalyzed by peroxidase. The activity assay has been found to depend on several factors such as the relative order of reagent addition, protein content of the enzyme preparation, presence of detergent and the pH of the reaction medium. At below 7.0 pH, the contribution of the non-enzymic transformation of I- to total activity became quite significant, to the extent that at below 6.5 pH, the chemical reaction predominates over the enzymic one. At values above 7.0 pH, a very rapid decomposition of the product was observed. Guaiacol oxidation has been considered to be a more reliable method than the iodide one, especially when the substrate concentration and temperature vary, and when the activity of relatively rich in protein samples, as well as of some other substances that might interfere with the I3- formation, are going to be measured.
Liang, Hao; Jiang, Shuhui; Yuan, Qipeng; Li, Guofeng; Wang, Feng; Zhang, Zijie; Liu, Juewen
2016-03-21
Preserving enzyme activity and promoting synergistic activity via co-localization of multiple enzymes are key topics in bionanotechnology, materials science, and analytical chemistry. This study reports a facile method for co-immobilizing multiple enzymes in metal coordinated hydrogel nanofibers. Specifically, four types of protein enzymes, including glucose oxidase, Candida rugosa lipase, α-amylase, and horseradish peroxidase, were respectively encapsulated in a gel nanofiber made of Zn(2+) and adenosine monophosphate (AMP) with a simple mixing step. Most enzymes achieved quantitative loading and retained full activity. At the same time, the entrapped enzymes were more stable against temperature variation (by 7.5 °C), protease attack, extreme pH (by 2-fold), and organic solvents. After storing for 15 days, the entrapped enzyme still retained 70% activity while the free enzyme nearly completely lost its activity. Compared to nanoparticles formed with AMP and lanthanide ions, the nanofiber gels allowed much higher enzyme activity. Finally, a highly sensitive and selective biosensor for glucose was prepared using the gel nanofiber to co-immobilize glucose oxidase and horseradish peroxidase for an enzyme cascade system. A detection limit of 0.3 μM glucose with excellent selectivity was achieved. This work indicates that metal coordinated materials using nucleotides are highly useful for interfacing with biomolecules.
Guaiacol Peroxidase Zymography for the Undergraduate Laboratory
ERIC Educational Resources Information Center
Wilkesman, Jeff; Castro, Diana; Contreras, Lellys M.; Kurz, Liliana
2014-01-01
This laboratory exercise presents a novel way to introduce undergraduate students to the specific detection of enzymatic activity by electrophoresis. First, students prepare a crude peroxidase extract and then analyze the homogenate via electrophoresis. Zymography, that is, a SDS-PAGE method to detect enzyme activity, is used to specifically…
[Activity of antioxidative enzymes of the myocardium during ischemia].
Gutkin, D V; Petrovich, Iu A
1982-01-01
Activation of lipid peroxidation during myocardial ischemia may be determined by the reduction of the enzymatic antioxidant cell protection. Such a conclusion has been drawn on the basis of an analysis of variation in the activity of superoxide dismutase, glutathion peroxidase and catalase in experimental myocardial ischemia in rats, induced by ligation of the left descending artery of the heart. In the early period of ischemia (1-3 h) the activity of superoxide dismutase and glutation peroxidase markedly decreases. In the periischemic zone, the fall in the enzymatic activity is not so pronounced. The activity of the enzymes does not reach the basic level 5 days after the operation.
Applications and Prospective of Peroxidase Biocatalysis in the Environmental Field
NASA Astrophysics Data System (ADS)
Torres-Duarte, Cristina; Vazquez-Duhalt, Rafael
Environmental protection is, doubtless, one of the most important challenges for the human kind. The huge amount of pollutants derived from industrial activities represents a threat for the environment and ecologic equilibrium. Phenols and halogenated phenols, polycyclic aromatic hydrocarbons, endocrine disruptive chemicals, pesticides, dioxins, polychlorinated biphenyls, industrial dyes, and other xenobiotics are among the most important pollutants. A large variety of these xenobiotics are substrates for peroxidases and thus susceptible to enzymatic transformation. The literature reports mainly the use of horseradish peroxidase, manganese peroxidase, lignin peroxidase, and chloroperoxidase on the transformation of these pollutants. Peroxidases are enzymes able to transform a variety of compounds following a free radical mechanism, giving oxidized or polymerized products. The peroxidase transformation of these pollutants is accompanied by a reduction in their toxicity, due to a biological activity loss, a reduction in the bioavailability or due to the removal from aqueous phase, especially when the pollutant is found in water. In addition, when the pollutants are present in soil, peroxidases catalyze a covalent binding to soil organic matter. In most of cases, oxidized products are less toxic and easily biodegradable than the parent compounds. In spite of their versatility and potential use in environmental processes, peroxidases are not applied at large scale yet. Diverse challenges, such as stability, redox potential, and the production of large amounts, should be solved in order to apply peroxidases in the pollutant transformation. In this chapter, we critically review the transformation of different xenobiotics by peroxidases, with special attention on the identified transformation products, the probable reaction mechanisms, and the toxicity reports. Finally, the design and development of an environmental biocatalyst is discussed. The design challenges are mainly focused on the enzyme stability in the presence of hydrogen peroxide and operational conditions, an enzyme with high redox potential to be able to oxidize a wide range of xenobiotics or pollutants, and the protein overexpression at large-scale in industrial microorganisms is discussed.
Aliahmat, Nor Syahida; Noor, Mohd Razman Mohd; Yusof, Wan Junizam Wan; Makpol, Suzana; Ngah, Wan Zurinah Wan; Yusof, Yasmin Anum Mohd
2012-12-01
The aim of this study was to determine the erythrocyte antioxidant enzyme activity and the superoxide dismutase, catalase, glutathione peroxidase, and plasma malondialdehyde levels in aging mice and to evaluate how these measures are modulated by potential antioxidants, including the tocotrienol-rich fraction, Piper betle, and Chlorella vulgaris. One hundred and twenty male C57BL/6 inbred mice were divided into three age groups: young (6 months old), middle-aged (12 months old), and old (18 months old). Each age group consisted of two control groups (distilled water and olive oil) and three treatment groups: Piper betle (50 mg/kg body weight), tocotrienol-rich fraction (30 mg/kg), and Chlorella vulgaris (50 mg/kg). The duration of treatment for all three age groups was two months. Blood was withdrawn from the orbital sinus to determine the antioxidant enzyme activity and the malondialdehyde level. Piper betle increased the activities of catalase, glutathione peroxidase, and superoxide dismutase in the young, middle, and old age groups, respectively, when compared to control. The tocotrienol-rich fraction decreased the superoxide dismutase activity in the middle and the old age groups but had no effect on catalase or glutathione peroxidase activity for all age groups. Chlorella vulgaris had no effect on superoxide dismutase activity for all age groups but increased glutathione peroxidase and decreased catalase activity in the middle and the young age groups, respectively. Chlorella vulgaris reduced lipid peroxidation (malondialdehyde levels) in all age groups, but no significant changes were observed with the tocotrienol-rich fraction and the Piper betle treatments. We found equivocal age-related changes in erythrocyte antioxidant enzyme activity when mice were treated with Piper betle, the tocotrienol-rich fraction, and Chlorella vulgaris. However, Piper betle treatment showed increased antioxidant enzymes activity during aging.
Aliahmat, Nor Syahida; Noor, Mohd Razman Mohd; Yusof, Wan Junizam Wan; Makpol, Suzana; Ngah, Wan Zurinah Wan; Yusof, Yasmin Anum Mohd
2012-01-01
OBJECTIVE: The aim of this study was to determine the erythrocyte antioxidant enzyme activity and the superoxide dismutase, catalase, glutathione peroxidase, and plasma malondialdehyde levels in aging mice and to evaluate how these measures are modulated by potential antioxidants, including the tocotrienol-rich fraction, Piper betle, and Chlorella vulgaris. METHOD: One hundred and twenty male C57BL/6 inbred mice were divided into three age groups: young (6 months old), middle-aged (12 months old), and old (18 months old). Each age group consisted of two control groups (distilled water and olive oil) and three treatment groups: Piper betle (50 mg/kg body weight), tocotrienol-rich fraction (30 mg/kg), and Chlorella vulgaris (50 mg/kg). The duration of treatment for all three age groups was two months. Blood was withdrawn from the orbital sinus to determine the antioxidant enzyme activity and the malondialdehyde level. RESULTS: Piper betle increased the activities of catalase, glutathione peroxidase, and superoxide dismutase in the young, middle, and old age groups, respectively, when compared to control. The tocotrienol-rich fraction decreased the superoxide dismutase activity in the middle and the old age groups but had no effect on catalase or glutathione peroxidase activity for all age groups. Chlorella vulgaris had no effect on superoxide dismutase activity for all age groups but increased glutathione peroxidase and decreased catalase activity in the middle and the young age groups, respectively. Chlorella vulgaris reduced lipid peroxidation (malondialdehyde levels) in all age groups, but no significant changes were observed with the tocotrienol-rich fraction and the Piper betle treatments. CONCLUSION: We found equivocal age-related changes in erythrocyte antioxidant enzyme activity when mice were treated with Piper betle, the tocotrienol-rich fraction, and Chlorella vulgaris. However, Piper betle treatment showed increased antioxidant enzymes activity during aging. PMID:23295600
Peroxisomal Proteostasis Involves a Lon Family Protein That Functions as Protease and Chaperone*
Bartoszewska, Magdalena; Williams, Chris; Kikhney, Alexey; Opaliński, Łukasz; van Roermund, Carlo W. T.; de Boer, Rinse; Veenhuis, Marten; van der Klei, Ida J.
2012-01-01
Proteins are subject to continuous quality control for optimal proteostasis. The knowledge of peroxisome quality control systems is still in its infancy. Here we show that peroxisomes contain a member of the Lon family of proteases (Pln). We show that Pln is a heptameric protein and acts as an ATP-fueled protease and chaperone. Hence, Pln is the first chaperone identified in fungal peroxisomes. In cells of a PLN deletion strain peroxisomes contain protein aggregates, a major component of which is catalase-peroxidase. We show that this enzyme is sensitive to oxidative damage. The oxidatively damaged, but not the native protein, is a substrate of the Pln protease. Cells of the pln strain contain enhanced levels of catalase-peroxidase protein but reduced catalase-peroxidase enzyme activities. Together with the observation that Pln has chaperone activity in vitro, our data suggest that catalase-peroxidase aggregates accumulate in peroxisomes of pln cells due to the combined absence of Pln protease and chaperone activities. PMID:22733816
Lignocellulolytic enzyme production of Pleurotus ostreatus growth in agroindustrial wastes
da Luz, José Maria Rodrigues; Nunes, Mateus Dias; Paes, Sirlaine Albino; Torres, Denise Pereira; de Cássia Soares da Silva, Marliane; Kasuya, Maria Catarina Megumi
2012-01-01
The mushroom Pleurotus ostreatus has nutritional and medicinal characteristics that depend on the growth substrate. In nature, this fungus grows on dead wood, but it can be artificially cultivated on agricultural wastes (coffee husks, eucalyptus sawdust, corncobs and sugar cane bagasse). The degradation of agricultural wastes involves some enzyme complexes made up of oxidative (laccase, manganese peroxidase and lignin peroxidase) and hydrolytic enzymes (cellulases, xylanases and tanases). Understanding how these enzymes work will help to improve the productivity of mushroom cultures and decrease the potential pollution that can be caused by inadequate discharge of the agroindustrial residues. The objective of this work was to assess the activity of the lignocellulolytic enzymes produced by two P. ostreatus strains (PLO 2 and PLO 6). These strains were used to inoculate samples of coffee husks, eucalyptus sawdust or eucalyptus bark add with or without 20 % rice bran. Every five days after substrate inoculation, the enzyme activity and soluble protein concentration were evaluated. The maximum activity of oxidative enzymes was observed at day 10 after inoculation, and the activity of the hydrolytic enzymes increased during the entire period of the experiment. The results show that substrate composition and colonization time influenced the activity of the lignocellulolytic enzymes. PMID:24031982
NASA Astrophysics Data System (ADS)
Zhang, Yifei; Tsitkov, Stanislav; Hess, Henry
2016-12-01
A proximity effect has been invoked to explain the enhanced activity of enzyme cascades on DNA scaffolds. Using the cascade reaction carried out by glucose oxidase and horseradish peroxidase as a model system, here we study the kinetics of the cascade reaction when the enzymes are free in solution, when they are conjugated to each other and when a competing enzyme is present. No proximity effect is found, which is in agreement with models predicting that the rapidly diffusing hydrogen peroxide intermediate is well mixed. We suggest that the reason for the activity enhancement of enzymes localized by DNA scaffolds is that the pH near the surface of the negatively charged DNA nanostructures is lower than that in the bulk solution, creating a more optimal pH environment for the anchored enzymes. Our findings challenge the notion of a proximity effect and provide new insights into the role of DNA scaffolds.
Liu, Ching-Ping; Wu, Te-Haw; Lin, Yu-Lung; Liu, Chia-Yeh; Wang, Sabrina; Lin, Shu-Yi
2016-08-01
The cytotoxicity of nanozymes has drawn much attention recently because their peroxidase-like activity can decompose hydrogen peroxide (H2 O2 ) to produce highly toxic hydroxyl radicals (•OH) under acidic conditions. Although catalytic activities of nanozymes are highly associated with their surface properties, little is known about the mechanism underlying the surface coating-mediated enzyme-like activities. Herein, it is reported for the first time that amine-terminated PAMAM dendrimer-entrapped gold nanoclusters (AuNCs-NH2 ) unexpectedly lose their peroxidase-like activity while still retaining their catalase-like activity in physiological conditions. Surprisingly, the methylated form of AuNCs-NH2 (i.e., MAuNCs-N(+) R3 , where R = H or CH3 ) results in a dramatic recovery of the intrinsic peroxidase-like activity while blocking most primary and tertiary amines (1°- and 3°-amines) of dendrimers to form quaternary ammonium ions (4°-amines). However, the hidden peroxidase-like activity is also found in hydroxyl-terminated dendrimer-encapsulated AuNCs (AuNCs-OH, inside backbone with 3°-amines), indicating that 3°-amines are dominant in mediating the peroxidase-like activity. The possible mechanism is further confirmed that the enrichment of polymeric 3°-amines on the surface of dendrimer-encapsulated AuNCs provides sufficient suppression of the critical mediator •OH for the peroxidase-like activity. Finally, it is demonstrated that AuNCs-NH2 with diminished cytotoxicity have great potential for use in primary neuronal protection against oxidative damage. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dubrovskaya, Ekaterina; Pozdnyakova, Natalia; Golubev, Sergey; Muratova, Anna; Grinev, Vyacheslav; Bondarenkova, Anastasiya; Turkovskaya, Olga
2017-02-01
Peroxidases from root exudates of sorghum (Sorghum bicolor L. Moench) and alfalfa (Medicago sativa L.) were purified and characterized, and their ability to oxidize native PAHs and PAH-derivatives was evaluated. The obtained data confirm that peroxidases are involved in the rhizosphere degradation of PAHs. Nondenaturing PAGE showed that the peroxidases of both plants were represented by a range of isoforms/isoenzymes (five to eight). Minor forms were lost during further purification, and as a result, the major anionic form from alfalfa root exudates and the major cationic form from those of sorghum were obtained. Both electrophoretically homogeneous peroxidases were monomeric proteins with a molecular weight of about 46-48 kDa. The pH optima and the main catalytic constants for the test substrates were determined. On the basis of their molecular and catalytic properties, the obtained enzymes were found to be typical plant peroxidases. Derivatives of PAHs and potential products of their microbial degradation (9-phenanthrol and 9,10-phenanthrenequinone), unlike the parent PAH (phenanthrene), inhibited the catalytic activity of the peroxidases, possibly indicating greater availability of the enzymes' active centers to these substances. Peroxidase-catalyzed decreases in the concentrations of a number of PAHs and their derivatives were observed. Sorghum peroxidase oxidized anthracene and phenanthrene, while alfalfa peroxidase oxidized only phenanthrene. 1-Hydroxy-2-naphthoic acid was best oxidized by peroxidase of alfalfa. However, quinone derivatives of PAHs were unavailable to sorghum peroxidase, but were oxidized by alfalfa peroxidase. These results indicate that the major peroxidases from root exudates of alfalfa and sorghum can have a role in the rhizosphere degradation of PAHs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mechanism of iodide-dependent catalatic activity of thyroid peroxidase and lactoperoxidase.
Magnusson, R P; Taurog, A; Dorris, M L
1984-01-10
Mechanisms that have been proposed for peroxidase-catalyzed iodination require the utilization of 1 mol of H2O2 for organic binding of 1 mol of iodide. When we measured the stoichiometry of this reaction using thyroid peroxidase or lactoperoxidase at pH 7.0, we consistently obtained a ratio less than 1.0. This was shown to be attributable to catalase-like activity of these enzymes, resulting in unproductive cleavage of H2O2. This catalatic activity was completely iodide-dependent. To elucidate the mechanism of the iodide-dependent catalatic activity, the effects of various agents were investigated. The major observations may be summarized as follows: 1) The catalatic activity was inhibited in the presence of an iodine acceptor such as tyrosine. 2) The pseudohalide, SCN-, could not replace I- as a promoter of catalatic activity. 3) The inhibitory effects of the thioureylene drugs, methimazole and carbimazole, on the iodide-dependent catalatic activity were very similar to those reported previously for thyroid peroxidase-catalyzed iodination. 4) High concentrations of I- inhibited the catalatic activity of thyroid peroxidase and lactoperoxidase in a manner similar to that described previously for peroxidase-catalyzed iodination. On the basis of these observations and other findings, we have proposed a scheme which offers a possible explanation for iodide-dependent catalatic activity of thyroid peroxidase and lactoperoxidase. Compound I of the peroxidases is represented as EO, and oxidation of I- by EO is postulated to form enzyme-bound hypoiodite, represented in our scheme as [EOI]-. We suggest that the latter can react with H2O2 in a catalase-like reaction, with evolution of O2. We postulate further that the same form of oxidized iodine is also involved in iodination of tyrosine, oxidation of thioureylene drugs, and oxidation of I-, and that inhibition of catalatic activity by these agents occurs through competition with H2O2 for oxidized iodine.
Lignin Peroxidase from Streptomyces viridosporus T7A: Enzyme Concentration Using Ultrafiltration
NASA Astrophysics Data System (ADS)
Gottschalk, Leda M. F.; Bon, Elba P. S.; Nobrega, Ronaldo
It is well known that lignin degradation is a key step in the natural process of biomass decay whereby oxidative enzymes such as laccases and high redox potential ligninolytic peroxidases and oxidases play a central role. More recently, the importance of these enzymes has increased because of their prospective industrial use for the degradation of the biomass lignin to increase the accessibility of the cellulose and hemicellulose moieties to be used as renewable material for the production of fuels and chemicals. These biocatalysts also present potential application on environmental biocatalysis for the degradation of xenobiotics and recalcitrant pollutants. However, the cost for these enzymes production, separation, and concentration must be low to permit its industrial use. This work studied the concentration of lignin peroxidase (LiP), produced by Streptomyces viridosporus T7A, by ultrafiltration, in a laboratory-stirred cell, loaded with polysulfone (PS) or cellulose acetate (CA) membranes with molecular weight cutoffs (MWCO) of 10, 20, and 50 KDa. Experiments were carried out at 25 °C and pH 7.0 in accordance to the enzyme stability profile. The best process conditions and enzyme yield were obtained using a PS membrane with 10 KDa MWCO, whereby it was observed a tenfold LiP activity increase, reaching 1,000 U/L and 90% enzyme activity upholding.
ERIC Educational Resources Information Center
Ordonez, F. J.; Rosety-Rodriguez, M.
2007-01-01
Since we have recently found that regular exercise increased erythrocyte antioxidant enzyme activities such as glutathione peroxidase (GPX) in adolescents with Down syndrome, these programs may be recommended. This study was designed to assess the role of anthropometrical parameters as easy, economic and non-invasive biomarkers of GPX. Thirty-one…
Cancel, A M; Orth, A B; Tien, M
1993-01-01
Phanerochaete chrysosporium is a white rot fungus which secretes a family of lignin-degrading enzymes under nutrient limitation. In this work, we investigated the roles of veratryl alcohol and lignin in the ligninolytic system of P. chrysosporium BKM-F-1767 cultures grown under nitrogen-limited conditions. Cultures supplemented with 0.4 to 2 mM veratryl alcohol showed increased lignin peroxidase activity. Addition of veratryl alcohol had no effect on Mn-dependent peroxidase activity and inhibited glyoxal oxidase activity. Azure-casein analysis of acidic proteases in the extracellular fluid showed that protease activity decreased during the early stages of secondary metabolism while lignin peroxidase activity was at its peak, suggesting that proteolysis was not involved in the regulation of lignin peroxidase activity during early secondary metabolism. In cultures supplemented with lignin or veratryl alcohol, no induction of mRNA coding for lignin peroxidase H2 or H8 was observed. Veratryl alcohol protected lignin peroxidase isozymes H2 and H8 from inactivation by H2O2. We conclude that veratryl alcohol acts as a stabilizer of lignin peroxidase activity and not as an inducer of lignin peroxidase synthesis. Images PMID:8215363
Peroxidase Release Induced by Ozone in Sedum album Leaves
Castillo, Federico J.; Penel, Claude; Greppin, Hubert
1984-01-01
The effect of ozone was studied on the peroxidase activity from various compartments of Sedum album leaves (epidermis, intercellular fluid, residual cell material, and total cell material). The greatest increase following a 2-hour ozone exposure (0.4 microliters O3 per liter) was observed in extracellular peroxidases. Most of the main bands of peroxidase activity separated by isoelectric focusing exhibited an increase upon exposure to ozone. Incubation experiments with isolated peeled or unpeeled leaves showed that leaves from ozone-treated plants release much more peroxidases in the medium than untreated leaves. The withdrawal of Ca2+ ions reduced the level of extracellular peroxidase activity either in whole plants or in incubation experiments. This reduction and the activation obtained after addition of Ca2+ resulted from a direct requirement of Ca2+ by the enzyme and from an effect of Ca2+ on peroxidase secretion. The ionophore A23187 promoted an increase of extracellular peroxidase activity only in untreated plants. The release of peroxidases by untreated and ozone-treated leaves is considerably lowered by metabolic inhibitors (3-(3,4-dichlorophenyl)-1,1-dimethylurea and sodium azide) and by puromycin. Images Fig. 1 PMID:16663520
Li, Xin; Ma, Rui-ping; An, Shao-shan; Zeng, Quan-chao; Li, Ya-yun
2015-08-01
In order to explore the distribution characteristics of organic carbon of different forms and the active enzymes in soil aggregates with different particle sizes, soil samples were chosen from forest zone, forest-grass zone and grass zone in the Yanhe watershed of Loess Plateau to study the content of organic carbon, easily oxidized carbon, and humus carbon, and the activities of cellulase, β-D-glucosidase, sucrose, urease and peroxidase, as well as the relations between the soil aggregates carbon and its components with the active soil enzymes were also analyzed. It was showed that the content of organic carbon and its components were in order of forest zone > grass zone > forest-grass zone, and the contents of three forms of organic carbon were the highest in the diameter group of 0.25-2 mm. The content of organic carbon and its components, as well as the activities of soil enzymes were higher in the soil layer of 0-10 cm than those in the 10-20 cm soil layer of different vegetation zones. The activities of cellulase, β-D-glucosidase, sucrose and urease were in order of forest zone > grass zone > forest-grass zone. The peroxidase activity was in order of forest zone > forest-grass zone > grass zone. The activities of various soil enzymes increased with the decreasing soil particle diameter in the three vegetation zones. The activities of cellulose, peroxidase, sucrose and urease had significant positive correlations with the contents of various forms of organic carbon in the soil aggregates.
Activation energy of extracellular enzymes in soils from different biomes.
Steinweg, J Megan; Jagadamma, Sindhu; Frerichs, Joshua; Mayes, Melanie A
2013-01-01
Enzyme dynamics are being incorporated into soil carbon cycling models and accurate representation of enzyme kinetics is an important step in predicting belowground nutrient dynamics. A scarce number of studies have measured activation energy (Ea) in soils and fewer studies have measured Ea in arctic and tropical soils, or in subsurface soils. We determined the Ea for four typical lignocellulose degrading enzymes in the A and B horizons of seven soils covering six different soil orders. We also elucidated which soil properties predicted any measurable differences in Ea. β-glucosidase, cellobiohydrolase, phenol oxidase and peroxidase activities were measured at five temperatures, 4, 21, 30, 40, and 60°C. Ea was calculated using the Arrhenius equation. β-glucosidase and cellobiohydrolase Ea values for both A and B horizons in this study were similar to previously reported values, however we could not make a direct comparison for B horizon soils because of the lack of data. There was no consistent relationship between hydrolase enzyme Ea and the environmental variables we measured. Phenol oxidase was the only enzyme that had a consistent positive relationship between Ea and pH in both horizons. The Ea in the arctic and subarctic zones for peroxidase was lower than the hydrolases and phenol oxidase values, indicating peroxidase may be a rate limited enzyme in environments under warming conditions. By including these six soil types we have increased the number of soil oxidative enzyme Ea values reported in the literature by 50%. This study is a step towards better quantifying enzyme kinetics in different climate zones.
Determination Hypoiodous Acid (HIO) By Peroxidase System Using Peroxidase Enzyme
NASA Astrophysics Data System (ADS)
Al-Baarri, A. N.; Legowo, A. M.; Widayat; Abduh, S. B. M.; Hadipernata, M.; Wisnubroto; Ardianti, D. K.; Susanto, M. N.; Yusuf, M.; Demasta, E. K.
2018-02-01
It has been understood that peroxidase enzyme including peroxidase serves as catalyzer to enzymatic reaction among hydrogen peroxide and halides, therefore this research was done for generating hypoiodous acid (HIO) from peroxidase system using peroxidase enzyme. Hydrogen peroxide, potassium iodide, and peroxidase enzyme were used to produce HIO. Determination the amount of formed HIO was done using 2,2'-azino-bis(3- ethylbenzothiazoline-6-sulphonic acid) or ABTS as substrate through the colorimetric measurement of hydrogen peroxide residue during reaction process using at 412 nm. The result indicated that residual hydrogen peroxide showed the minimum concentration after 60 minutes reaction time. Because the reaction started at the beginning time of mixing, hydrogen peroxide was unable to be eliminated totally to produce HIO. The reaction of peroxidase system was able to determine the beginning of mixing process but the reaction process could not eliminate the initial concentration of hydrogen peroxide indicating the maximum amount of production of HIO could be determined. In conclusion, the less of H2O2, higher HIO obtained and peroxidase enzymes can accelerate the formation of HIO.
Yokchom, Ruchuon; Laiwejpithaya, Somsak; Maneeprakorn, Weerakanya; Tapaneeyakorn, Satita; Rabablert, Jundee; Dharakul, Tararaj
2018-04-01
The aim of this study was to develop a paper-based immunosensor for cervical cancer screening, with signal amplification by multifunctionalized gold nanoparticles (AuNPs). The AuNPs were functionalized with a highly specific antibody to the p16 INK4a cancer biomarker. The signal was amplified using a combination of the peroxidase activity of horseradish peroxidase (HRP) enzyme-antibody conjugate and the peroxidase-like activity of the AuNPs. The immune complex of p16 INK4a protein and multifunctionalized AuNPs was deposited on the nitrocellulose membrane, and a positive result was generated by catalytic oxidation of peroxidase enzyme substrate 3,3',5,5'-Tetramethylbenzidine (TMB). The entire reaction occurred on the membrane within 30 min. Evaluation in clinical samples revealed 85.2% accuracy with a kappa coefficient of 0.69. This proof of concept study demonstrates the successful development of a highly accurate, paper-based immunosensor that is easy to interpret using the naked eye and that is suitable for cervical cancer screening in low-resource settings. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoff, T.; Liu, S.Y.; Bollag, J.M.
1985-05-01
The lactase of the fungus Trametes versicolor was able to polymerize various halogen-, alkyl-, and alkoxy-substituted anilines, showing substrate specificity similar to that of horseradish peroxidase, whereas the lactase of Rhizoctonia praticola was active only with p-methoxyaniline. The substrate specificities of the enzymes were determined by using gas chromatography to measure the decrease in substrate concentration during incubation. With p-chloroaniline as the substrate, the peroxidase and the Trametes lactase showed maximum activity near pH 4.2. The transformation of this substrate gave rise to a number of oligomers, ranging from dimers to pentamers, as determined by mass spectrometry. The product profilesmore » obtained by high-pressure liquid chromatography were similar for the two enzymes. A chemical reaction was observed between p-chloroaniline and an enzymatically formed dimer, resulting in the formation of a trimer. All three enzymes oxidized p-methoxyaniline to 2-amino-5-p-anisidinobenzoquinone di-p-methoxyphenylimine, but only the T. versicolor lactase and the peroxidase caused the formation of a pentamer (2,5-di-p-anisidinobenzoquinone di-p-methoxyphenylimine). These results demonstrate that in addition to horseradish peroxidase, a T. versicolor lactase can also polymerize aniline derivatives.« less
Musa paradisiaca stem juice as a source of peroxidase and ligninperoxidase.
Vernwal, S K; Yadav, R S; Yadav, K D
2000-10-01
Musa paradisiaca stem juice has been shown to contain peroxidase activity of the order of 0.1 enzyme unit/ml. The Km values of this peroxidase for the substrates guaiacol and hydrogen peroxide are 2.4 and 0.28 mM respectively. The pH and temperature optima are 4.5 and 62.5 degrees C respectively. Like other peroxidases, it follows double displacement type mechanism. At low pH, Musa paradisiaca stem juice exhibits ligninperoxidase type activity. The pH optimum for ligninperoxidase type activity is 2.0 and the temperature optimum is 24 degrees C. The Km values for veratryl alcohol and n-propanol are 66 and 78 microM respectively.
Huerta-Miranda, G A; Arrocha-Arcos, A A; Miranda-Hernández, M
2018-08-01
Hydrogen peroxide electrochemical detection by horseradish peroxidase has been widely studied. The use of gold nanoparticles to prepare electrode/enzyme bioconjugates has attracted attention due to their catalytic properties. In this work, it is reported the use of gold nanoparticles and 4-aminothiophenol as a scaffold to obtain a suitable matrix for enzyme bioconjugation with horseradish peroxidase. A critical factor in biosensors design and development is the enzymatic electrochemical activity understanding. Comparison of voltammetric studies of the heme prosthetic group showed a reversible electrochemical behavior when the enzymes were immobilized in a well-dispersed gold deposit; on the other hand, a discrete redox response was observed on a randomly deposited gold electrode. These results show that the distance between enzymes is essential. Hydrogen peroxide catalysis and the enzymatic behavior were analyzed considering two types of nanoparticles dispositions. The catalytic behavior observed in the well-dispersed nanoparticles configuration suggests a preserved enzyme folding, a decrease of steric impediments, and appears to be a better immobilization strategy. In contrast, the randomly electrodeposited gold electrode decreased the enzyme orientation and the electrochemical activity. The advantages of this methodology are the electrode fabrication affordable cost and the enzymatic direct electron transfer response improvement. Copyright © 2018 Elsevier B.V. All rights reserved.
Miller, Charles D; Rangel, Drauzio; Braga, Gilberto U L; Flint, Stephan; Kwon, Sun-Il; Messias, Claudio L; Roberts, Donald W; Anderson, Anne J
2004-01-01
Metarhizium anisopliae isolates have a wide insect host range, but an impediment to their commercial use as a biocontrol agent of above-ground insects is the high susceptibility of spores to the near-UV present in solar irradiation. To understand stress responses in M. anisopliae, we initiated studies of enzymes that protect against oxidative stress in two strains selected because their spores differed in sensitivity to UV-B. Spores of the more near-UV resistant strain in M. anisopliae 324 displayed different isozyme profiles for catalase-peroxidase, glutathione reductase, and superoxide dismutase when compared with the less resistant strain 2575. A transient loss in activity of catalase-peroxidase and glutathione reductase was observed during germination of the spores, whereas the intensity of isozymes displaying superoxide dismutase did not change as the mycelium developed. Isozyme composition for catalase-peroxidases and glutathione reductase in germlings changed with growth phase. UV-B exposure from lamps reduced the activity of isozymes displaying catalase-peroxidase and glutathione reductase activities in 2575 more than in 324. The major effect of solar UV-A plus UV-B also was a reduction in catalase-peroxidases isozyme level, a finding confirmed by measurement of catalase specific activity. Impaired growth of M. anisopliae after near-UV exposure may be related to reduced abilities to handle oxidative stress.
Delenian, N V; Markin, A A
1989-01-01
Rats flown for 7 days on Cosmos-1667 were for the first time used to measure antioxidative enzymes (superoxide dismutase, glutathione peroxidase, glutathione reductase, catalase), lipid peroxidation products (diene conjugates, malonic dialdehyde, Schiff bases) and tocopherol. Enhanced lipid peroxidation in the heart was completely compensated by activation of antioxidative enzymes. The content of all lipid peroxidation products measured in the liver increased; this was accompanied by a decrease of glutathione peroxidase and an increase of superoxide dismutase activities. It is suggested that lipid peroxidation was activated in response to altered gravity.
Purification and characterization of peroxidase from avocado (Persea americana Mill, cv. Hass).
Rojas-Reyes, José O; Robles-Olvera, Victor; Carvajal-Zarrabal, Octavio; Castro Matinez, Claudia; Waliszewski, Krzysztof N; Aguilar-Uscanga, María Guadalupe
2014-07-01
Avocado (Persea americana Mill, cv. Hass) fruit ranks tenth in terms of the most important products for Mexico. Avocado products are quite unstable due to the presence of oxidative enzymes such as polyphenol oxidase and peroxidase. The present study is to characterize the activity of purified avocado peroxidase from avocado in order to ascertain the biochemical and kinetic properties and their inhibition conditions. Purification was performed by Sephacryl S 200 HR gel filtration chromatography and its estimated molecular weight was 40 kDa. The zymogram showed an isoelectric point of 4.7. Six substrates were tested in order to ascertain the affinity of the enzyme for these substrates. The purified peroxidase was found to have low Km (0.296 mM) and high catalytic efficiency (2688 mM(-1) s(-1)) using 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), optimum activity being reached at 51°C, pH 3.8. The addition of dithiothreitol, β-mercaptoethanol, ascorbic acid, sodium azide, L-cysteine and Tween-20 had high inhibitory effects, while metals ions such as Cu(+), Fe(2+) and Mn(2+) had weak inhibitory activity on purified avocado peroxidase. The purified avocado peroxidase exhibits high inhibition (Ki = 0.37 µM) with 1.97 µM n-propyl gallate using ABTS as substrate at 51°C, pH 3.8 for 10 min. © 2013 Society of Chemical Industry.
Zou, Ping; Li, Kecheng; Liu, Song; He, Xiaofei; Zhang, Xiaoqian; Xing, Ronge; Li, Pengcheng
2016-04-13
In this study, sulfated chitooligosaccharide (SCOS) was applied to wheat seedlings to investigate its effect on the plants' defense response under salt stress. The antioxidant enzyme activities, chlorophyll contents, and fluorescence characters of wheat seedlings were determined at a certain time. The results showed that treatment with exogenous SCOS could decrease the content of malondialdehyde, increase the chlorophyll contents, and modulate fluorescence characters in wheat seedlings under salt stress. In addition, SCOS was able to regulate the activities of antioxidant enzymes containing superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, glutathione reductase, and dehydroascorbate reductase. Similarly, the mRNA expression levels of several antioxidant enzymes were efficiently modulated by SCOS. The results indicated that SCOS could alleviate the damage of salt stress by adjusting the antioxidant enzyme activities of plant. The effect of SCOS on the photochemical efficiency of wheat seedlings was associated with its enhanced capacity for antioxidant enzymes, which prevented structure degradation of the photosynthetic apparatus under NaCl stress. Furthermore, the effective activities of alleviating salt stress indicated the activities of SCOS were closely related with the sulfate group.
Gaikwad, Nilesh W; Bodell, William J
2012-01-15
Tamoxifen (TAM) is extensively used for the treatment and prevention of breast cancer. Associated with TAM treatment is a two- to eightfold increase in risk of endometrial cancer. To understand the mechanisms associated with this increased risk several pathways for TAM metabolism and DNA adduct formation have been studied. The purpose of this study was to investigate the role of peroxidase enzymes in the metabolism of TAM and its activation to form DNA adducts. Using advanced tandem mass spectrometry we have investigated the peroxidase-mediated metabolism of TAM. Incubation of TAM with horseradish peroxidase (HRP) and H(2)O(2) produced multiple metabolites. Electrospray ionization-MS/MS analysis of the metabolites demonstrated a peak at 301.3m/z with daughter ions at 183.0, 166.9, 128.9, and 120.9m/z, which identified the metabolite as metabolite E (ME). The levels of ME were significantly inhibited by the addition of ascorbic acid to the incubation mixture. Co-incubation of either TAM or ME and DNA with HRP and H(2)O(2) produced three DNA adducts with a RAL of 1.97±0.01×10(-7) and 8.45±2.7×10(-7). Oxidation of ME with MnO(2) produced metabolite E quinone methide (MEQM). Furthermore, incubation of either TAM or ME with HRP and H(2)O(2) resulted in formation of MEQM. Reaction of calf thymus DNA with MEQM produced three DNA adducts with a RAL of 9.8±1.0×10(-7). Rechromatography analyses indicated that DNA adducts 1, 2, and 3 formed in the HRP activation of either TAM or ME were the same as those formed by the chemical reaction of DNA with MEQM. The results of these studies demonstrate that peroxidase enzymes can both metabolize TAM to form the primary metabolite ME and activate ME to a quinone methide intermediate, which reacts with DNA to form adducts. It is possible that peroxidase enzymes or peroxidase-like activity in endometrium could contribute to the formation of DNA damage and genotoxic effects in endometrium after TAM administration. Published by Elsevier Inc.
Zhu, Bao Ting
2010-01-01
Background Recent studies showed that some of the dietary bioflavonoids can strongly stimulate the catalytic activity of cyclooxygenase (COX) I and II in vitro and in vivo, presumably by facilitating enzyme re-activation. In this study, we sought to understand the structural basis of COX activation by these dietary compounds. Methodology/Principal Findings A combination of molecular modeling studies, biochemical analysis and site-directed mutagenesis assay was used as research tools. Three-dimensional quantitative structure-activity relationship analysis (QSAR/CoMFA) predicted that the ability of bioflavonoids to activate COX I and II depends heavily on their B-ring structure, a moiety known to be associated with strong antioxidant ability. Using the homology modeling and docking approaches, we identified the peroxidase active site of COX I and II as the binding site for bioflavonoids. Upon binding to this site, bioflavonoid can directly interact with hematin of the COX enzyme and facilitate the electron transfer from bioflavonoid to hematin. The docking results were verified by biochemical analysis, which reveals that when the cyclooxygenase activity of COXs is inhibited by covalent modification, myricetin can still stimulate the conversion of PGG2 to PGE2, a reaction selectively catalyzed by the peroxidase activity. Using the site-directed mutagenesis analysis, we confirmed that Q189 at the peroxidase site of COX II is essential for bioflavonoids to bind and re-activate its catalytic activity. Conclusions/Significance These findings provide the structural basis for bioflavonoids to function as high-affinity reducing co-substrates of COXs through binding to the peroxidase active site, facilitating electron transfer and enzyme re-activation. PMID:20808785
Novel choline esterase based sensor for monitoring of organophosphorus pollutants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkins, E.S.; Ghindilis, A.L.; Atanasov, P.
1996-12-31
Organophosphorus compounds are significant major environmental pollutants due to their intensive use as pesticides. The modern techniques based on inhibition of choline esterase enzyme activity are discussed. Potentiometric electrodes based on detection of choline esterase inhibition by analytes has been developed. The detection of choline esterase activity is based on the novel principle of molecular transduction. Immobilized peroxidase acting as the molecular transducer, catalyzes the electroreduction of hydrogen peroxide by direct (mediatorless) electron transfer. The sensing element consists of a carbon based electrode containing an assembly of co-immobilized enzymes: choline esterase, choline oxidase and peroxidase.
Blood antioxidant enzymes as markers of exposure or effect in coal miners.
Perrin-Nadif, R; Auburtin, G; Dusch, M; Porcher, J M; Mur, J M
1996-01-01
OBJECTIVE--To investigate if blood Cu++/Zn++ superoxide dismutase, glutathione peroxidase, catalase, and total plasma antioxidant activities could be markers of biological activity resulting from exposure to respirable coal mine dust in active miners, and of pneumoconiosis in retired miners. METHODS--Blood samples were randomly obtained from active surface workers (n = 30) and underground miners (n = 34), and from retired miners without (n = 21), and with (n = 33) pneumoconiosis. Antioxidant enzyme activities and total plasma antioxidants were measured in erythrocytes and plasma. Non-parametric tests were completed by analyses of covariance to compare antioxidants between groups, taking into account potential confounding factors (age, smoking history (pack-years)). RESULTS--Erythrocyte Cu++/Zn++ superoxide dismutase activity was significantly higher in the group of underground miners than the group of surface workers. The differences in total plasma antioxidants and plasma glutathione peroxidase activity between both groups were related to age. Glutathione peroxidase activity increased in the plasma of retired miners with pneumoconiosis, compared with retired miners without pneumoconiosis. No differences were found either in erythrocyte antioxidant enzyme activities or in total plasma antioxidants between the groups of retired miners without and with pneumoconiosis. CONCLUSIONS--In this study, erythrocyte Cu++/Zn++ superoxide dismutase activity may be considered as a marker of effect of respirable coal mine dust in exposed workers. This result is in agreement with the hypothesis that reactive oxygen species are involved in cell injury induced by coal mine dust, and may be predictive of the degree of inflammation and pneumoconiosis induced by coal mine dust. The increase in glutathione peroxidase activity in the plasma of retired miners with pneumoconiosis may be the result of a response to the increasing hydrogen peroxide (H2O2) production due to the disease process. PMID:8563856
The kinetics of the oxidation of cytochrome c by Paracoccus cytochrome c peroxidase.
Gilmour, R; Goodhew, C F; Pettigrew, G W; Prazeres, S; Moura, J J; Moura, I
1994-06-15
In work that is complementary to our investigation of the spectroscopic features of the cytochrome c peroxidase from Paracoccus denitrificans [Gilmour, Goodhew, Pettigrew, Prazeres, Moura and Moura (1993) Biochem. J. 294, 745-752], we have studied the kinetics of oxidation of cytochrome c by this enzyme. The enzyme, as isolated, is in the fully oxidized form and is relatively inactive. Reduction of the high-potential haem at pH 6 with ascorbate results in partial activation of the enzyme. Full activation is achieved by addition of 1 mM CaCl2. Enzyme activation is associated with formation of a high-spin state at the oxidized low-potential haem. EGTA treatment of the oxidized enzyme prevents activation after reduction with ascorbate, while treatment with EGTA of the reduced, partially activated, form abolishes the activity. We conclude that the active enzyme is a mixed-valence form with the low-potential haem in a high-spin state that is stabilized by Ca2+. Dilution of the enzyme results in a progressive loss of activity, the extent of which depends on the degree of dilution. Most of the activity lost upon dilution can be recovered after reconcentration. The M(r) of the enzyme on molecular-exclusion chromatography is concentration-dependent, with a shift to lower values at lower concentrations. Values of M(r) obtained are intermediate between those of a monomer (39,565) and a dimer. We propose that the active form of the enzyme is a dimer which dissociates at high dilution to give inactive monomers. From the activity of the enzyme at different dilutions, a KD of 0.8 microM can be calculated for the monomerdimer equilibrium. The cytochrome c peroxidase oxidizes horse ferrocytochrome c with first-order kinetics, even at high ferrocytochrome c concentrations. The maximal catalytic-centre activity ('turnover number') under the assay conditions used is 62,000 min-1, with a half-saturating ferrocytochrome c concentration of 3.3 microM. The corresponding values for the Paracoccus cytochrome c-550 (presumed to be the physiological substrate) are 85,000 min-1 and 13 microM. However, in this case, the kinetics deviate from first-order progress curves at all ferrocytochrome c concentrations. Consideration of the periplasmic environment in Paracoccus denitrificans leads us to propose that the enzyme will be present as the fully active dimer supplied with saturating ferrocytochrome c-550.
Franson, J. Christian; Hoffman, David J.; Flint, Paul L.
2011-01-01
The relationships of selenium (Se) concentrations in whole blood with plasma activities of total glutathione peroxidase, Se-dependent glutathione peroxidase, and glutathione reductase were studied in long-tailed ducks (Clangula hyemalis) and common eiders (Somateria mollissima) sampled along the Beaufort Sea coast of Alaska, USA. Blood Se concentrations were >8 μg/g wet weight in both species. Linear regression revealed that the activities of total and Se-dependent glutathione peroxidase were significantly related to Se concentrations only in long-tailed ducks, raising the possibility that these birds were experiencing early oxidative stress.
Njuma, Olive J; Ndontsa, Elizabeth N; Goodwin, Douglas C
2014-02-15
Catalase-peroxidase (KatG) is found in eubacteria, archaea, and lower eukaryotae. The enzyme from Mycobacterium tuberculosis has received the greatest attention because of its role in activation of the antitubercular pro-drug isoniazid, and the high frequency with which drug resistance stems from mutations to the katG gene. Generally, the catalase activity of KatGs is striking. It rivals that of typical catalases, enzymes with which KatGs share no structural similarity. Instead, catalatic turnover is accomplished with an active site that bears a strong resemblance to a typical peroxidase (e.g., cytochrome c peroxidase). Yet, KatG is the only member of its superfamily with such capability. It does so using two mutually dependent cofactors: a heme and an entirely unique Met-Tyr-Trp (MYW) covalent adduct. Heme is required to generate the MYW cofactor. The MYW cofactor allows KatG to leverage heme intermediates toward a unique mechanism for H2O2 oxidation. This review evaluates the range of intermediates identified and their connection to the diverse catalytic processes KatG facilitates, including mechanisms of isoniazid activation. Copyright © 2013 Elsevier Inc. All rights reserved.
Biobleaching of industrial important dyes with peroxidase partially purified from garlic.
Osuji, Akudo Chigozirim; Eze, Sabinus Oscar O; Osayi, Emmanuel Emeka; Chilaka, Ferdinand Chiemeka
2014-01-01
An acidic peroxidase was extracted from garlic (Allium sativum) and was partially purified threefold by ammonium sulphate precipitation, dialysis, and gel filtration chromatography using sephadex G-200. The specific activity of the enzyme increased from 4.89 U/mg after ammonium sulphate precipitation to 25.26 U/mg after gel filtration chromatography. The optimum temperature and pH of the enzyme were 50°C and 5.0, respectively. The Km and V max for H2O2 and o-dianisidine were 0.026 mM and 0.8 U/min, and 25 mM and 0.75 U/min, respectively. Peroxidase from garlic was effective in decolourizing Vat Yellow 2, Vat Orange 11, and Vat Black 27 better than Vat Green 9 dye. For all the parameters monitored, the decolourization was more effective at a pH range, temperature, H2O2 concentration, and enzyme concentration of 4.5-5.0, 50°C, 0.6 mM, and 0.20 U/mL, respectively. The observed properties of the enzyme together with its low cost of extraction (from local sources) show the potential of this enzyme for practical application in industrial wastewater treatment especially with hydrogen peroxide. These Vat dyes also exhibited potentials of acting as peroxidase inhibitors at alkaline pH range.
Yadav, Shiv Shankar; Shukla, Rajni; Sharma, Y K
2009-05-01
Effect of various concentrations of nickel (100, 200, 500 and 1000 microM) and recovery treatments of boron (50 and 100 microM) and copper (15 and 75 microM) each with 200 microM and 500 microM of nickel on germination, growth, biomass, chlorophyll, carotenoids, pheophytin, amylase, protein, sugar as well as activity of catalase and peroxidase were studied in radish (Raphanus sativus cv. Early menu) seedlings. Nickel treatments caused a considerable reduction in germination percentage, growth and biomass. The different pigments were also decreased with nickel treatments. However boron addition with nickel recovered the negative effect on pigment contents. Among biochemical estimations, amylase activity and total proteins were found to be reduced in nickel treatments. Peroxidase and catalase activity were induced other than higher total sugar with nickel treatments. The combination of nickel with boron resulted into increased protein contents. This combination also reduced the catalase and peroxidase activity. The influence of nickel with copper failed to produce significant recovery except 200 microM nickel in combination with 15 microM copper with regard to catalase and peroxidase activity. The effect of nickel on hydrolyzing enzyme amylase was observed to be inhibitory resulting into poor germination followed by poor seedlings growth. The stress protecting enzymes peroxidase and catalase seem to be induced under the influence of nickel, and providing protection to the seedlings. The application of boron with nickel showed improved germination and growth. The level of catalase and peroxidase were found to be significantly reduced showing normal growth and biomass of seedlings.
Glutathione peroxidase: fact and fiction.
Flohé, L
The present knowledge of glutathione (GSH) peroxidase is briefly reviewed: GSH peroxidase has a molecular weight of about 85,000, consists of four apparently-identical subunits and contains four g atom of selenium/mol. The enzyme-bound selenium can undergo a substrate-induced redox change and is obviously essential for activity. In accordance with the assumption that a selenol group is reversibly oxidized during catalysis, ping-pong kinetics are observed. Limiting maximum velocities and Michaelis constants, indicating the formation of an enzyme-substrate complex, are not detectable. The enzyme is highly specific for GSH but reacts with many hydroperoxides. It can be deduced from the kinetic analysis of GSH peroxidase that in physiological conditions removal of hydroperoxide is largely independent of fluctuations in the cellular concentration of GSH. However, the system will abruptly collapse if the rate of hydroperoxide formation exceeds that of regeneration of GSH. By these considerations, the pathophysiological manifestation of disorders in GSH metabolism and pentose-phosphate shunt may be explained. With regard to its low specificity for hydroperoxides, GSH peroxidase could be involved in various metabolic events such as H2O2 removal in compartments low in catalase, hydroperoxide-mediated mutagenesis, protection of unsaturated lipids in biomembranes, prostaglandin biosynthesis, and regulation of prostacyclin formation.
An investigation of the mimetic enzyme activity of two-dimensional Pd-based nanostructures
NASA Astrophysics Data System (ADS)
Wei, Jingping; Chen, Xiaolan; Shi, Saige; Mo, Shiguang; Zheng, Nanfeng
2015-11-01
In this work, we investigated the mimetic enzyme activity of two-dimensional (2D) Pd-based nanostructures (e.g. Pd nanosheets, Pd@Au and Pd@Pt nanoplates) and found that they possess intrinsic peroxidase-, oxidase- and catalase-like activities. These nanostructures were able to activate hydrogen peroxide or dissolved oxygen for catalyzing the oxidation of organic substrates, and decompose hydrogen peroxide to generate oxygen. More systematic investigations revealed that the peroxidase-like activities of these Pd-based nanomaterials were highly structure- and composition-dependent. Among them, Pd@Pt nanoplates displayed the highest peroxidase-like activity. Based on these findings, Pd-based nanostructures were applied for the colorimetric detection of H2O2 and glucose, and also the electro-catalytic reduction of H2O2. This work offers a promising prospect for the application of 2D noble metal nanostructures in biocatalysis.In this work, we investigated the mimetic enzyme activity of two-dimensional (2D) Pd-based nanostructures (e.g. Pd nanosheets, Pd@Au and Pd@Pt nanoplates) and found that they possess intrinsic peroxidase-, oxidase- and catalase-like activities. These nanostructures were able to activate hydrogen peroxide or dissolved oxygen for catalyzing the oxidation of organic substrates, and decompose hydrogen peroxide to generate oxygen. More systematic investigations revealed that the peroxidase-like activities of these Pd-based nanomaterials were highly structure- and composition-dependent. Among them, Pd@Pt nanoplates displayed the highest peroxidase-like activity. Based on these findings, Pd-based nanostructures were applied for the colorimetric detection of H2O2 and glucose, and also the electro-catalytic reduction of H2O2. This work offers a promising prospect for the application of 2D noble metal nanostructures in biocatalysis. Electronic supplementary information (ESI) available: TEM images, EDX and dispersion stability of Pd-based nanomaterials, mimic enzymatic activity and reaction mechanism for TMB oxidation with H2O2 catalyzed by Pd-based nanoplates, time-dependent absorbance changes at 652 nm with different H2O2 concentrations, comparison of peroxidase activities of Pd@Pt-a (Pt/Pd = 1.3) and Pd@Pt-e (Pt/Pd = 12) with their corresponding monometallic components, reaction between a hydroxyl radical (&z.rad;OH) and terephthalic acid (TA), comparison of the peroxidase- and oxidase-like activities of Pd@Pt before and after centrifugation, relative catalytic activity of the Pd@Pt nanoplates after incubation in a range of values of pH, temperatures or after storing in water for one week, UV-Vis absorption spectra of TMB under different conditions, steady-state kinetic assay of Pd and the catalytic mechanism of Pd@Pt, detailed calculation process for Km and Vmax, and experimental condition optimization of Pd@Pt peroxidase-like catalytic reaction. See DOI: 10.1039/c5nr05675f
The Peroxidase-Glucose Oxidase Enzyme System in the Undergraduate Laboratory.
ERIC Educational Resources Information Center
Woolridge, Elisa; And Others
1986-01-01
Offers a series of experiments which introduce students to the general principles of enzymology. The experiment demonstrates several basic enzyme properties and the chromatographic exercises provide an analysis of each enzymatic activity. Questions are also presented for extending discussion on the activities. (ML)
Kis, Mihaly; Burbridge, Emma; Brock, Ian W; Heggie, Laura; Dix, Philip J; Kavanagh, Tony A
2004-03-01
Native horseradish (Armoracia rusticana) peroxidase, HRP (EC 1.11.1.7), isoenzyme C is synthesized with N-terminal and C-terminal peptide extensions, believed to be associated with protein targeting. This study aimed to explore the specific functions of these extensions, and to generate transgenic plants with expression patterns suitable for exploring the role of peroxidase in plant development and defence. Transgenic Nicotiana tabacum (tobacco) plants expressing different versions of a synthetic horseradish peroxidase, HRP, isoenzyme C gene were constructed. The gene was engineered to include additional sequences coding for either the natural N-terminal or the C-terminal extension or both. These constructs were placed under the control of a constitutive promoter (CaMV-35S) or the tobacco RUBISCO-SSU light inducible promoter (SSU) and introduced into tobacco using Agrobacterium-mediated transformation. To study the effects of the N- and C-terminal extensions, the localization of recombinant peroxidase was determined using biochemical and molecular techniques. Transgenic tobacco plants can exhibit a ten-fold increase in peroxidase activity compared with wild-type tobacco levels, and the majority of this activity is located in the symplast. The N-terminal extension is essential for the production of high levels of recombinant protein, while the C-terminal extension has little effect. Differences in levels of enzyme activity and recombinant protein are reflected in transcript levels. There is no evidence to support either preferential secretion or vacuolar targeting of recombinant peroxidase in this heterologous expression system. This leads us to question the postulated targeting roles of these peptide extensions. The N-terminal extension is essential for high level expression and appears to influence transcript stability or translational efficiency. Plants have been generated with greatly elevated cytosolic peroxidase activity, and smaller increases in apoplastic activity. These will be valuable for exploring the role of these enzymes in stress amelioration and plant development.
KIS, MIHALY; BURBRIDGE, EMMA; BROCK, IAN W.; HEGGIE, LAURA; DIX, PHILIP J.; KAVANAGH, TONY A.
2004-01-01
• Background and Aims Native horseradish (Armoracia rusticana) peroxidase, HRP (EC 1.11.1.7), isoenzyme C is synthesized with N‐terminal and C‐terminal peptide extensions, believed to be associated with protein targeting. This study aimed to explore the specific functions of these extensions, and to generate transgenic plants with expression patterns suitable for exploring the role of peroxidase in plant development and defence. • Methods Transgenic Nicotiana tabacum (tobacco) plants expressing different versions of a synthetic horseradish peroxidase, HRP, isoenzyme C gene were constructed. The gene was engineered to include additional sequences coding for either the natural N‐terminal or the C‐terminal extension or both. These constructs were placed under the control of a constitutive promoter (CaMV‐35S) or the tobacco RUBISCO‐SSU light inducible promoter (SSU) and introduced into tobacco using Agrobacterium‐mediated transformation. To study the effects of the N‐ and C‐terminal extensions, the localization of recombinant peroxidase was determined using biochemical and molecular techniques. • Key Results Transgenic tobacco plants can exhibit a ten‐fold increase in peroxidase activity compared with wild‐type tobacco levels, and the majority of this activity is located in the symplast. The N‐terminal extension is essential for the production of high levels of recombinant protein, while the C‐terminal extension has little effect. Differences in levels of enzyme activity and recombinant protein are reflected in transcript levels. • Conclusions There is no evidence to support either preferential secretion or vacuolar targeting of recombinant peroxidase in this heterologous expression system. This leads us to question the postulated targeting roles of these peptide extensions. The N‐terminal extension is essential for high level expression and appears to influence transcript stability or translational efficiency. Plants have been generated with greatly elevated cytosolic peroxidase activity, and smaller increases in apoplastic activity. These will be valuable for exploring the role of these enzymes in stress amelioration and plant development. PMID:14749254
D’Antonio, Jennifer; Ghiladi, Reza A.
2011-01-01
Dehaloperoxidase (DHP) from the terebellid polychaete Amphitrite ornata is a bifunctional enzyme that possesses both hemoglobin and peroxidase activities. The bifunctional nature of DHP as a globin-peroxidase appears to be at odds with the traditional starting oxidation state for each individual activity. Namely, reversible oxygen-binding is only mediated via a ferrous heme in globins, and peroxidase activity is initiated from ferric centers and to the exclusion of the oxyferrous oxidation state from the peroxidase cycle. Thus, to address what appears to be a paradox, herein we report the details of our investigations into the DHP catalytic cycle when initiated from the deoxy- and oxyferrous states using biochemical assays, stopped-flow UV-visible and rapid-freeze-quench electron paramagnetic resonance spectroscopies, and anaerobic methods. We demonstrate the formation of Compound II directly from deoxyferrous DHP B upon its reaction with hydrogen peroxide, and show that this occurs both in the presence and absence of trihalophenol. Prior to Compound II formation, we have identified a new species which we have preliminarily attributed to a ferrous-hydroperoxide precursor that undergoes heterolysis to generate the aforementioned ferryl intermediate. Taken together, the results demonstrate that the oxyferrous state in DHP is a peroxidase competent starting species, and an updated catalytic cycle for DHP is proposed in which the ferric oxidation state is not an obligatory starting point for the peroxidase catalytic cycle of dehaloperoxidase. The data presented herein provide a link between the peroxidase and oxygen transport activities which furthers our understanding of how this bifunctional enzyme is able to unite its two inherent functions in one system. PMID:21619067
Nagvenkar, Anjani P; Gedanken, Aharon
2016-08-31
Nanomaterial-based enzyme mimetics (nanozymes) is an emerging field of research that promises to produce alternatives to natural enzymes for a variety of applications. The search for the most cost-effective and efficient inorganic nanomaterials, such as metal oxides, cannot be won by pristine CuO. However, unlike CuO, the Zn-doped CuO (Zn-CuO) nanoparticles reported in this paper reveal superior peroxidase-like enzyme activity. This places Zn-CuO in a good position to participate in a range of activities aimed at developing diverse enzyme applications. The peroxidase-like activity was tested and confirmed against various chromogenic substrates in the presence of H2O2 and obeyed the Michaelis-Menten enzymatic pathway. The mechanism of enhanced enzymatic activity was proved by employing terephthalic acid as a fluorescence probe and by electron spin resonance. The nanozyme, when tested for the detection of glucose, showed a substantial enhancement in the detection selectivity. The limit of detection (LOD) was also decreased reaching a limit as low as 0.27 ppm. Such a low LOD has not been reported so far for the metal oxides without any surface modifications. Moreover, the nanozyme (Zn-CuO) was utilized to detect the three antioxidants tannic acid, tartaric acid, and ascorbic acid and the relative strength of their antioxidant capacity was compared.
Castro, Helena; Teixeira, Filipa; Romao, Susana; Santos, Mariana; Cruz, Tânia; Flórido, Manuela; Appelberg, Rui; Oliveira, Pedro; Ferreira-da-Silva, Frederico; Tomás, Ana M.
2011-01-01
Two-cysteine peroxiredoxins are ubiquitous peroxidases that play various functions in cells. In Leishmania and related trypanosomatids, which lack catalase and selenium-glutathione peroxidases, the discovery of this family of enzymes provided the molecular basis for peroxide removal in these organisms. In this report the functional relevance of one of such enzymes, the mitochondrial 2-Cys peroxiredoxin (mTXNPx), was investigated along the Leishmania infantum life cycle. mTXNPx null mutants (mtxnpx−) produced by a gene replacement strategy, while indistinguishable from wild type promastigotes, were found unable to thrive in a murine model of infection. Unexpectedly, however, the avirulent phenotype of mtxnpx− was not due to lack of the peroxidase activity of mTXNPx as these behaved like controls when exposed to oxidants added exogenously or generated by macrophages during phagocytosis ex vivo. In line with this, mtxnpx− were also avirulent when inoculated into murine hosts unable to mount an effective oxidative phagocyte response (B6.p47phox−/− and B6.RAG2−/− IFN-γ−/− mice). Definitive conclusion that the peroxidase activity of mTXNPx is not required for parasite survival in mice was obtained by showing that a peroxidase-inactive version of this protein was competent in rescuing the non-infective phenotype of mtxnpx−. A novel function is thus proposed for mTXNPx, that of a molecular chaperone, which may explain the impaired infectivity of the null mutants. This premise is based on the observation that the enzyme is able to suppress the thermal aggregation of citrate synthase in vitro. Also, mtxnpx− were more sensitive than controls to a temperature shift from 25°C to 37°C, a phenotype reminiscent of organisms lacking specific chaperone genes. Collectively, the findings reported here change the paradigm which regards all trypanosomatid 2-Cys peroxiredoxins as peroxide-eliminating devices. Moreover, they demonstrate, for the first time, that these 2-Cys peroxiredoxins can be determinant for pathogenicity independently of their peroxidase activity. PMID:22046130
A catalytic approach to estimate the redox potential of heme-peroxidases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayala, Marcela; Roman, Rosa; Vazquez-Duhalt, Rafael
2007-06-08
The redox potential of heme-peroxidases varies according to a combination of structural components within the active site and its vicinities. For each peroxidase, this redox potential imposes a thermodynamic threshold to the range of oxidizable substrates. However, the instability of enzymatic intermediates during the catalytic cycle precludes the use of direct voltammetry to measure the redox potential of most peroxidases. Here we describe a novel approach to estimate the redox potential of peroxidases, which directly depends on the catalytic performance of the activated enzyme. Selected p-substituted phenols are used as substrates for the estimations. The results obtained with this catalyticmore » approach correlate well with the oxidative capacity predicted by the redox potential of the Fe(III)/Fe(II) couple.« less
Ultrafast infrared spectroscopy reveals water-mediated coherent dynamics in an enzyme active site.
Adamczyk, Katrin; Simpson, Niall; Greetham, Gregory M; Gumiero, Andrea; Walsh, Martin A; Towrie, Michael; Parker, Anthony W; Hunt, Neil T
2015-01-01
Understanding the impact of fast dynamics upon the chemical processes occurring within the active sites of proteins and enzymes is a key challenge that continues to attract significant interest, though direct experimental insight in the solution phase remains sparse. Similar gaps in our knowledge exist in understanding the role played by water, either as a solvent or as a structural/dynamic component of the active site. In order to investigate further the potential biological roles of water, we have employed ultrafast multidimensional infrared spectroscopy experiments that directly probe the structural and vibrational dynamics of NO bound to the ferric haem of the catalase enzyme from Corynebacterium glutamicum in both H 2 O and D 2 O. Despite catalases having what is believed to be a solvent-inaccessible active site, an isotopic dependence of the spectral diffusion and vibrational lifetime parameters of the NO stretching vibration are observed, indicating that water molecules interact directly with the haem ligand. Furthermore, IR pump-probe data feature oscillations originating from the preparation of a coherent superposition of low-frequency vibrational modes in the active site of catalase that are coupled to the haem ligand stretching vibration. Comparisons with an exemplar of the closely-related peroxidase enzyme family shows that they too exhibit solvent-dependent active-site dynamics, supporting the presence of interactions between the haem ligand and water molecules in the active sites of both catalases and peroxidases that may be linked to proton transfer events leading to the formation of the ferryl intermediate Compound I. In addition, a strong, water-mediated, hydrogen bonding structure is suggested to occur in catalase that is not replicated in peroxidase; an observation that may shed light on the origins of the different functions of the two enzymes.
Xu, Hua; Ruan, Wei-Bin; Gao, Yu-Bao; Song, Xiao-Yan; Wei, Yu-Kun
2010-08-01
A pot experiment was conducted to study the effects of inoculation with root-knot nematodes on the cucumber leaf N and P contents, and the rhizospheric and non-rhizospheric soil pH and enzyme activities. The rhizospheric soil pH didn't have a significant decrease until the inoculation rate reached 6000 eggs per plant. With the increase of inoculation rate, the leaf N and P contents, rhizospheric soil peroxidase activity, and rhizospheric and non-rhizospheric soil polyphenol oxidase activity all decreased gradually, rhizospheric soil catalase activity was in adverse, non-rhizospheric soil pH decreased after an initial increase, and non-rhizospheric soil catalase activity had no regular change. After inoculation, rhizospheric soil urease activity decreased significantly, but rhizospheric and non-rhizospheric soil phosphatase activity and non-rhizospheric soil peroxidase activity only had a significant decrease under high inoculation rate. In most cases, there existed significant correlations between rhizospheric soil pH, enzyme activities, and leaf N and P contents; and in some cases, there existed significant correlations between non-rhizospheric soil pH, enzyme activities, and leaf N and P contents.
Effect of Low and Very Low Doses of Simple Phenolics on Plant Peroxidase Activity
Malarczyk, Elżbieta; Kochmańska-Rdest, Janina; Paździoch-Czochra, Marzanna
2004-01-01
Changes in the activity of horseradish peroxidase resulting from an addition of ethanol water dilutions of 19 phenolic compounds were observed. For each compound, the enzyme activity was plotted against the degree of dilution expressed as n = –log100 (mol/L) in the range 0 ≤ n ≥ 20. All the curves showed sinusoidal activity, more or less regular, with two to four peaks on average. Each analyzed compound had a characteristic sinusoidal shape, which was constant for samples of peroxidase from various commercial firms. This was clearly visible after function fitting to experimental results based on the Marquadt–Levenberg algorithm using the least-squares method. Among the 19 phenolics, the highest amplitudes were observed for phenol and iso- and vanillate acids and aldehydes. The specific character of each of the analyzed curves offers a possibility of choosing proper dilutions of phenolic compound for activating or inhibiting of peroxidase activity. PMID:19330128
NASA Astrophysics Data System (ADS)
Wakabayashi, Kazuyuki; Nakano, Saho; Soga, Kouichi; Hoson, Takayuki
Lignin is a component of cell walls of terrestrial plants, which provides cell walls with the mechanical rigidity. Lignin is a phenolic polymer with high molecular mass and formed by the polymerization of phenolic substances on a cellulosic matrix. The polymerization is catalyzed by cell wall-bound peroxidase, and thus the activity of this enzyme regulates the rate of formation of lignin. In the present study, the changes in the lignin content and the activity of cell wall peroxidase were investigated along epicotyls of azuki bean seedlings grown under hypergravity conditions. The endogenous growth occurred primarily in the upper regions of the epicotyl and no growth was detected in the middle or basal regions. The amounts of acetyl bromide-soluble lignin increased from the upper to the basal regions of epicotyls. The lignin content per unit length in the basal region was three times higher than that in the upper region. Hypergravity treatment at 300 g for 6 h stimulated the increase in the lignin content in all regions of epicotyls, particularly in the basal regions. The peroxidase activity in the protein fraction extracted from the cell wall preparation with a high ionic strength buffer also increased gradually toward the basal region, and hypergravity treatment clearly increased the activity in all regions. There was a close correlation between the lignin content and the enzyme activity. These results suggest that gravity stimuli modulate the activity of cell wall-bound peroxidase, which, in turn, causes the stimulation of the lignin formation in stem organs.
Palanisamy, Senthilkumar; Mandal, Abul Kalam Azad
2014-01-01
Reactive oxygen species (ROS) production is the first level of response by a host during stress. Even though the ROS are toxic to cell, when present in a limited amount, they act as a signalling molecule for the expression of defence-related genes and later are scavenged by either enzymatic or non-enzymatic mechanisms of the host. The different anti-oxidative enzymes like glutathione reductase (GR), superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APO), peroxidase (POD) and polyphenol oxidase (PPO) were estimated, and their activities were compared between infected and healthy leaves of the tolerant and susceptible cultivars of tea. The infected leaves of the susceptible cultivars registered higher amount of enzyme activity when compared with the tolerant cultivars. The study reveals that the more anti-oxidative enzymes, the more susceptible the cultivar will be.
Pan, Yadi; Yang, Yufang; Pang, Yanjiao; Shi, Ying; Long, Yijuan; Zheng, Huzhi
2018-08-01
Ficin, a classical sulfhydryl protease, was found to possess intrinsic peroxidase-like activity. In this paper, we have put forward a novel strategy to improving the peroxidase-like activity of ficin through binding heme. Heme-ficin complexes were successfully obtained by simple one-step syntheticism. The results demonstrated that the catalytic activity and efficiency of heme-ficin complexes were about 1.7 times and 3 times higher than those of native ficin, respectively. Taking advantages of the high peroxidase-like activity, the heme-ficin complexes were used for colorimetric determination of uric acid with a low detection limit of 0.25 μM. Based on the excellent selectivity and sensitivity, we detected the concentration of uric acid in human serum successfully. On the basis of these findings, the heme-ficin complexes are promising for wide applications in various fields. Thus we not only optimized the peroxidase-like activity of the ficin, but also established a new strategy for development of artificial enzyme mimics by mimicking the architecture of the active site in horseradish peroxidase. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tatsumi, Y.; Chachin, K.; Ogata, K.
The purpose of the experiment was to determine the changes of o- diphenol, ascorbic acid, and activities of polyphenol oxidase and peroxidase, accompanied with the browning by the low dose of gamma ray, in three parts of tuber tissue (cortex, vascular bundle, and pith), and to observe the relation between the browning and the changes of ihose compounds and enzyme activities. The odiphenol content increased in irradiated tabers and the increasing rate was greater in cortex and vascular bundle than in pith. The ascorbic acid content decreased with higher doses, and the decreasing rate was greater in cortex and vascularmore » bundle than in pith. The activities of polyphenol oxidase and peroxidase also increased in irradiated tubers. The activity of polyphenol oxidase increased more in cortex than in vascular bundle and pith and the activity of peroxidase increased more in vascular bundle than in cortex and pith. ln the potato tubers in which irradiation was conducted immediately after harvest, the browning was induced within several days after irradiation. However, in the potato tubers in which irradiation was conducted about 3 months, the browning did not occur after irradiation. The former showed the increase of o-diphenol content and the activities of these enzymes, and the decrease of ascorbic acid content, the latter did not show the changes of o-diphenol and ascorbic acid and activities of the enzymes. (auth)« less
Biobleaching of Industrial Important Dyes with Peroxidase Partially Purified from Garlic
Osuji, Akudo Chigozirim; Eze, Sabinus Oscar O.; Osayi, Emmanuel Emeka; Chilaka, Ferdinand Chiemeka
2014-01-01
An acidic peroxidase was extracted from garlic (Allium sativum) and was partially purified threefold by ammonium sulphate precipitation, dialysis, and gel filtration chromatography using sephadex G-200. The specific activity of the enzyme increased from 4.89 U/mg after ammonium sulphate precipitation to 25.26 U/mg after gel filtration chromatography. The optimum temperature and pH of the enzyme were 50°C and 5.0, respectively. The Km and V max for H2O2 and o-dianisidine were 0.026 mM and 0.8 U/min, and 25 mM and 0.75 U/min, respectively. Peroxidase from garlic was effective in decolourizing Vat Yellow 2, Vat Orange 11, and Vat Black 27 better than Vat Green 9 dye. For all the parameters monitored, the decolourization was more effective at a pH range, temperature, H2O2 concentration, and enzyme concentration of 4.5–5.0, 50°C, 0.6 mM, and 0.20 U/mL, respectively. The observed properties of the enzyme together with its low cost of extraction (from local sources) show the potential of this enzyme for practical application in industrial wastewater treatment especially with hydrogen peroxide. These Vat dyes also exhibited potentials of acting as peroxidase inhibitors at alkaline pH range. PMID:25401128
Daniel, G; Volc, J; Kubatova, E
1994-07-01
The production of the H(2)O(2)-generating enzyme pyranose oxidase (POD) (EC 1.1.3.10) (synonym, glucose 2-oxidase), two ligninolytic peroxidases, and laccase in wood decayed by three white rot fungi was investigated by correlated biochemical, immunological, and transmission electron microscopic techniques. Enzyme activities were assayed in extracts from decayed birch wood blocks obtained by a novel extraction procedure. With the coupled peroxidase-chromogen (3-dimethylaminobenzoic acid plus 3-methyl-2-benzothiazolinone hydrazone hydrochloride) spectrophotometric assay, the highest POD activities were detected in wood blocks degraded for 4 months and were for Phanerochaete chrysosporium (149 mU g [dry weight] of decayed wood), Trametes versicolor (45 mU g), and Oudemansiella mucida (1.2 mU g), corresponding to wood dry weight losses of 74, 58, and 13%, respectively. Mn-dependent peroxidase activities in the same extracts were comparable to those of POD, while lignin peroxidase activity was below the detection limit for all fungi with the veratryl alcohol assay. Laccase activity was high with T. versicolor (422 mU g after 4 months), in trace levels with O. mucida, and undetectable in P. chrysosporium extracts. Evidence for C-2 specificity of POD was shown by thin-layer chromatography detection of 2-keto-d-glucose as the reaction product. By transmission electron microscopy-immunocytochemistry, POD was found to be preferentially localized in the hyphal periplasmic space of P. chrysosporium and O. mucida and associated with membranous materials in hyphae growing within the cell lumina or cell walls of partially and highly degraded birch fibers. An extracellular distribution of POD associated with slime coating wood cell walls was also noted. The periplasmic distribution in hyphae and extracellular location of POD are consistent with the reported ultrastructural distribution of H(2)O(2)-dependent Mn-dependent peroxidases. This fact and the dominant presence of POD and Mn-dependent peroxidase in extracts from degraded wood suggest a cooperative role of the two enzymes during white rot decay by the test fungi.
2014-01-01
Background The genome of Pleurotus ostreatus, an important edible mushroom and a model ligninolytic organism of interest in lignocellulose biorefineries due to its ability to delignify agricultural wastes, was sequenced with the purpose of identifying and characterizing the enzymes responsible for lignin degradation. Results Heterologous expression of the class II peroxidase genes, followed by kinetic studies, enabled their functional classification. The resulting inventory revealed the absence of lignin peroxidases (LiPs) and the presence of three versatile peroxidases (VPs) and six manganese peroxidases (MnPs), the crystal structures of two of them (VP1 and MnP4) were solved at 1.0 to 1.1 Å showing significant structural differences. Gene expansion supports the importance of both peroxidase types in the white-rot lifestyle of this fungus. Using a lignin model dimer and synthetic lignin, we showed that VP is able to degrade lignin. Moreover, the dual Mn-mediated and Mn-independent activity of P. ostreatus MnPs justifies their inclusion in a new peroxidase subfamily. The availability of the whole POD repertoire enabled investigation, at a biochemical level, of the existence of duplicated genes. Differences between isoenzymes are not limited to their kinetic constants. Surprising differences in their activity T50 and residual activity at both acidic and alkaline pH were observed. Directed mutagenesis and spectroscopic/structural information were combined to explain the catalytic and stability properties of the most interesting isoenzymes, and their evolutionary history was analyzed in the context of over 200 basidiomycete peroxidase sequences. Conclusions The analysis of the P. ostreatus genome shows a lignin-degrading system where the role generally played by LiP has been assumed by VP. Moreover, it enabled the first characterization of the complete set of peroxidase isoenzymes in a basidiomycete, revealing strong differences in stability properties and providing enzymes of biotechnological interest. PMID:24387130
Bacterial extracellular lignin peroxidase
Crawford, Donald L.; Ramachandra, Muralidhara
1993-01-01
A newly discovered lignin peroxidase enzyme is provided. The enzyme is obtained from a bacterial source and is capable of degrading the lignin portion of lignocellulose in the presence of hydrogen peroxide. The enzyme is extracellular, oxidative, inducible by lignin, larch wood xylan, or related substrates and capable of attacking certain lignin substructure chemical bonds that are not degradable by fungal lignin peroxidases.
Combined Effects of Lanthanum (III) and Acid Rain on Antioxidant Enzyme System in Soybean Roots.
Zhang, Xuanbo; Du, Yuping; Wang, Lihong; Zhou, Qing; Huang, Xiaohua; Sun, Zhaoguo
2015-01-01
Rare earth element pollution (REEs) and acid rain (AR) pollution simultaneously occur in many regions, which resulted in a new environmental issue, the combined pollution of REEs and AR. The effects of the combined pollution on the antioxidant enzyme system of plant roots have not been reported. Here, the combined effects of lanthanum ion (La3+), one type of REE, and AR on the antioxidant enzyme system of soybean roots were investigated. In the combined treatment of La3+ (0.08 mM) and AR, the cell membrane permeability and the peroxidation of cell membrane lipid of soybean roots increased, and the superoxide dismutase, catalase, peroxidase and reduced ascorbic acid served as scavengers of reactive oxygen species. In other combined treatments of La3+ (0.40 mM, 1.20 mM) and AR, the membrane permeability, malonyldialdehyde content, superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content increased, while the catalase activity decreased. The increased superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content were inadequate to scavenge the excess hydrogen peroxide and superoxide, leading to the damage of the cell membrane, which was aggravated with the increase in the concentration of La3+ and the level of AR. The deleterious effects of the combined treatment of La3+ and AR were stronger than those of the single treatment of La3+ or AR. Moreover, the activity of antioxidant enzyme system in the combined treatment group was affected directly and indirectly by mineral element content in soybean plants.
Combined Effects of Lanthanum (III) and Acid Rain on Antioxidant Enzyme System in Soybean Roots
Zhang, Xuanbo; Du, Yuping; Wang, Lihong; Zhou, Qing; Huang, Xiaohua; Sun, Zhaoguo
2015-01-01
Rare earth element pollution (REEs) and acid rain (AR) pollution simultaneously occur in many regions, which resulted in a new environmental issue, the combined pollution of REEs and AR. The effects of the combined pollution on the antioxidant enzyme system of plant roots have not been reported. Here, the combined effects of lanthanum ion (La3+), one type of REE, and AR on the antioxidant enzyme system of soybean roots were investigated. In the combined treatment of La3+ (0.08 mM) and AR, the cell membrane permeability and the peroxidation of cell membrane lipid of soybean roots increased, and the superoxide dismutase, catalase, peroxidase and reduced ascorbic acid served as scavengers of reactive oxygen species. In other combined treatments of La3+ (0.40 mM, 1.20 mM) and AR, the membrane permeability, malonyldialdehyde content, superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content increased, while the catalase activity decreased. The increased superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content were inadequate to scavenge the excess hydrogen peroxide and superoxide, leading to the damage of the cell membrane, which was aggravated with the increase in the concentration of La3+ and the level of AR. The deleterious effects of the combined treatment of La3+ and AR were stronger than those of the single treatment of La3+ or AR. Moreover, the activity of antioxidant enzyme system in the combined treatment group was affected directly and indirectly by mineral element content in soybean plants. PMID:26230263
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lagrimini, L.M.
Tobacco (Nicotiana tabacum) plants transformed with a chimeric tobacco anionic peroxidase gene have previously been shown to synthesize high levels of peroxidase in all tissues throughout the plant. One of several distinguishable phenotypes of transformed plants is the rapid browning of pith tissue upon wounding. Pith tissue from plants expressing high levels of peroxidase browned within 24 hours of wounding, while tissue from control plants did not brown as late as 7 days after wounding. A correlation between peroxidase activity and wound-induced browning was observed, whereas no relationship between polyphenol oxidase activity and browning was found. The purified tobacco anionicmore » peroxidase was subjected to kinetic analysis with substrates which resemble the precursors of lignin or polyphenolic acid. The purified enzyme was found to readily polymerize phenolic acids in the presence of H{sub 2}O{sub 2} via a modified ping-pong mechanism. The percentage of lignin and lignin-related polymers in cell walls was nearly twofold greater in pith tissue isolated from peroxidase-overproducer plants compared to control plants. Lignin deposition in wounded pith tissue from control plants closely followed the induction of peroxidase activity. However, wound-induced lignification occurred 24 to 48 hours sooner in plants overexpressing the anionic peroxidase. This suggests that the availability of peroxidase rather than substrate may delay polyphenol deposition in wounded tissue.« less
Gut-based antioxidant enzymes in a polyphagous and a graminivorous grasshopper.
Barbehenn, Raymond V
2002-07-01
Graminivorous species of grasshoppers develop lethal lesions in their midgut epithelia when they ingest tannic acid, whereas polyphagous grasshoppers are unaffected by ingested tannins. This study tests the hypothesis that polyphagous species are defended by higher activities of antioxidant enzymes (constitutive or inducible) in their guts than are graminivorous species. Comparisons were made between four antioxidant enzymes: superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APOX), and glutathione transferase peroxidase (GSTPX). Enzyme activities were measured in the gut lumens and midgut tissues of Melanoplus sanguinipes (polyphagous) and Aulocara ellioti (graminivorous). The results of this study do not support the hypothesis that M. sanguinipes is better defended by antioxidant enzymes than is A. ellioti, nor are these enzymes more inducible in M. sanguinipes than in A. ellioti when insects consume food containing 15% dry weight tannic acid. Instead, tannic acid consumption reduced SOD, APOX, and GSTPX activities in both species. This study reports the first evidence that SOD is secreted into the midgut lumen in insects, with activities two- to fourfold higher than those found in midgut tissues. The spatial distribution of GSTPX and APOX activities observed in both species suggests that ingested plant antioxidant enzymes may function as acquired defenses in grasshoppers. In addition, the results of this study permit the first comparison between the antioxidant enzyme defenses of Orthoptera and Lepidoptera. Most notably, grasshoppers have higher SOD activities than caterpillars, but completely lack APOX in their midgut tissues.
Polsky, Ronen; Harper, Jason C; Dirk, Shawn M; Arango, Dulce C; Wheeler, David R; Brozik, Susan M
2007-01-16
A simple one-step procedure is introduced for the preparation of diazonium-enzyme adducts. The direct electrically addressable deposition of diazonium-modified enzymes is examined for electrochemical sensor applications. The deposition of diazonium-horseradish peroxidase leads to the direct electron transfer between the enzyme and electrode exhibiting a heterogeneous rate constant, ks, of 10.3 +/- 0.7 s-1 and a DeltaEp of 8 mV (v = 150 mV/s). The large ks and low DeltaEp are attributed to the intimate contact between enzyme and electrode attached by one to three phenyl molecules. Such an electrode shows high nonmediated catalytic activity toward H2O2 reduction. Future generations of arrayed electrochemical sensors and studies of direct electron transfer of enzymes can benefit from protein electrodes prepared by this method.
[Isolation and purification of Mn-peroxidase from Azospirillum brasilense Sp245].
Kupriashina, M A; Selivanov, N Iu; Nikitina, V E
2012-01-01
Homogenous Mn-peroxidase of a 26-fold purity grade was isolated from a culture of Azospirillum brasilense Sp245 cultivated on a medium containing 0.1 mM pyrocatechol. The molecular weight of the enzyme is 43 kD as revealed by electrophoresis in SDS-PAAG. It was shown that the use of pyrocatechol and 2,2'-azino-bis(3-ethylbenzotiazoline-6-sulfonate) at concentrations of 0.1 and I mM as inductors increased the Mn-peroxidase activity by a factor of 3.
Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by an enzyme preparation from Zea mays
NASA Technical Reports Server (NTRS)
Reinecke, D. M.; Bandurski, R. S.
1988-01-01
Indole-3-acetic acid is oxidized to oxindole-3-acetic acid by Zea mays tissue extracts. Shoot, root, and endosperm tissues have enzyme activities of 1 to 10 picomoles per hour per milligram protein. The enzyme is heat labile, is soluble, and requires oxygen for activity. Cofactors of mixed function oxygenase, peroxidase, and intermolecular dioxygenase are not stimulatory to enzymic activity. A heat-stable, detergent-extractable component from corn enhances enzyme activity 6- to 10-fold. This is the first demonstration of the in vitro enzymic oxidation of indole-3-acetic acid to oxindole-3-acetic acid in higher plants.
Han, Lu; Li, Ying; Fan, Aiping
2018-06-01
Peroxidase is a commonly used catalyst in luminol-H 2 O 2 chemiluminescence (CL) reactions. Natural peroxidase has a sophisticated separation process, short shelf life and unstable activity, therefore it is important to develop peroxidases that have both high catalytic activity and good stability as alternatives to the natural enzyme. Gold nanoclusters (Au NCs) are an alternative peroxidase with catalytic activity in the luminol-H 2 O 2 CL reaction. In the present study, ethanediamine was modified on the surface of Au NCs forming cationic Au NCs. The zeta potential of the cationic Au NCs maintained its positive charge when the pH of the solution was between 4 and 9. The cationic Au NCs showed higher catalytic activity in the luminol-H 2 O 2 CL reaction than did unmodified Au NCs. A mechanism study showed that the better performance of cationic Au NCs may be attributed to the generation of 1 O 2 on the surface of cationic Au NCs and a positive surface charge, for better affinity to luminol. Cationic Au NC, acting as a peroxidase mimic, has much better stability than horseradish peroxidase over a wide range of temperatures. We believe that cationic Au NCs may be useful as an artificial peroxidase for a wide range of potential applications in CL and bioanalysis. Copyright © 2018 John Wiley & Sons, Ltd.
Dolores Linde; Francisco J. Ruiz-Dueñas; Elena Fernández-Fueyo; Victor Guallar; Kenneth E. Hammel; Rebecca Pogni; Angel T. Martínez
2015-01-01
The first enzyme with dye-decolorizing peroxidase (DyP) activity was described in 1999 from an arthroconidial culture of the fungus Bjerkandera adusta. However, the first DyP sequence had been deposited three years before, as a peroxidase gene from a culture of an unidentified fungus of the family Polyporaceae (probably Irpex lacteus...
Kinetic study of the inactivation of ascorbate peroxidase by hydrogen peroxide.
Hiner, A N; Rodríguez-López, J N; Arnao, M B; Lloyd Raven, E; García-Cánovas, F; Acosta, M
2000-01-01
The activity of ascorbate peroxidase (APX) has been studied with H(2)O(2) and various reducing substrates. The activity decreased in the order pyrogallol>ascorbate>guaiacol>2, 2'-azino-bis-(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS). The inactivation of APX with H(2)O(2) as the sole substrate was studied. The number of H(2)O(2) molecules required for maximal inactivation of the enzyme was determined as approx. 2.5. Enzymic activity of approx. 20% of the original remained at the end of the inactivation process (i.e. approx. 20% resistance) when ascorbate or ABTS was used as the substrate in activity assays. With pyrogallol or guaiacol no resistance was seen. Inactivation by H(2)O(2) followed over time with ascorbate or pyrogallol assays exhibited single-exponential decreases in enzymic activity. Hyperbolic saturation kinetics were observed in both assay systems; a similar dissociation constant (0.8 microM) for H(2)O(2) was obtained in each case. However, the maximum rate constant (lambda(max)) obtained from the plots differed depending on the assay substrate. The presence of reducing substrate in addition to H(2)O(2) partly or completely protected the enzyme from inactivation, depending on how many molar equivalents of reducing substrate were added. An oxygen electrode system has been used to confirm that APX does not exhibit a catalase-like oxygen-releasing reaction. A kinetic model was developed to interpret the experimental results; both the results and the model are compared and contrasted with previously obtained results for horseradish peroxidase C. The kinetic model has led us to the conclusion that the inactivation of APX by H(2)O(2) represents an unusual situation in which no enzyme turnover occurs but there is a partition of the enzyme between two forms, one inactive and the other with activity towards reducing substrates such as ascorbate and ABTS only. The partition ratio is less than 1. PMID:10816425
A study on the activities of a few free radicals scavenging enzymes present in five roadside plants.
Mandal, M; Mukherji, S
2001-10-01
The road side plants are continuously exposed to the high levels of oxides of nitrogen and sulphur dioxide, emitted from automobile. Resistance to automobile exhaust pollution was studied with Nerium indicum Mill, Boerhaavia diffusa L., Amaranthus spinosus L., Cephalandra indica Naud., and Tabernaemontana divaricata L., growing on the edges of Delhi Road, National Highway 2 (NH 2) near Dankuni, West Bengal. By analysing the activities of a few enzymes like superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase and phenolic peroxidase, it appears that among the five plants examined,Amaranthus and Cephalandra are equipped with a very good scavenging system to combat effects of air pollution.
Fungal biodegradation and enzymatic modification of lignin
Dashtban, Mehdi; Schraft, Heidi; Syed, Tarannum A.; Qin, Wensheng
2010-01-01
Lignin, the most abundant aromatic biopolymer on Earth, is extremely recalcitrant to degradation. By linking to both hemicellulose and cellulose, it creates a barrier to any solutions or enzymes and prevents the penetration of lignocellulolytic enzymes into the interior lignocellulosic structure. Some basidiomycetes white-rot fungi are able to degrade lignin efficiently using a combination of extracellular ligninolytic enzymes, organic acids, mediators and accessory enzymes. This review describes ligninolytic enzyme families produced by these fungi that are involved in wood decay processes, their molecular structures, biochemical properties and the mechanisms of action which render them attractive candidates in biotechnological applications. These enzymes include phenol oxidase (laccase) and heme peroxidases [lignin peroxidase (LiP), manganese peroxidase (MnP) and versatile peroxidase (VP)]. Accessory enzymes such as H2O2-generating oxidases and degradation mechanisms of plant cell-wall components in a non-enzymatic manner by production of free hydroxyl radicals (·OH) are also discussed. PMID:21968746
Wound-Induced Deposition of Polyphenols in Transgenic Plants Overexpressing Peroxidase 1
Lagrimini, L. Mark
1991-01-01
Tobacco (Nicotiana tabacum) plants transformed with a chimeric tobacco anionic peroxidase gene have previously been shown to synthesize high levels of peroxidase in all tissues throughout the plant. One of several distinguishable phenotypes of transformed plants is the rapid browning of pith tissue upon wounding. Pith tissue from plants expressing high levels of peroxidase browned within 24 hours of wounding, while tissue from control plants did not brown as late as 7 days after wounding. A correlation between peroxidase activity and wound-induced browning was observed, whereas no relationship between polyphenol oxidase activity and browning was found. The purified tobacco anionic peroxidase was subjected to kinetic analysis with substrates which resemble the precursors of lignin or polyphenolic acid. The purified enzyme was found to readily polymerize phenolic acids in the presence of H2O2 via a modified ping-pong mechanism. The percentage of lignin and lignin-related polymers in cell walls was nearly twofold greater in pith tissue isolated from peroxidase-overproducer plants compared to control plants. Lignin deposition in wounded pith tissue from control plants closely followed the induction of peroxidase activity. However, wound-induced lignification occurred 24 to 48 hours sooner in plants overexpressing the anionic peroxidase. This suggests that the availability of peroxidase rather than substrate may delay polyphenol deposition in wounded tissue. ImagesFigure 1Figure 2Figure 3 PMID:16668224
Mika, Angela; Boenisch, Marike Johanne; Hopff, David; Lüthje, Sabine
2010-01-01
Plant peroxidases are involved in numerous cellular processes in plant development and stress responses. Four plasma membrane-bound peroxidases have been identified and characterized in maize (Zea mays L.) roots. In the present study, maize seedlings were treated with different stresses and signal compounds, and a functional analysis of these membrane-bound class III peroxidases (pmPOX1, pmPOX2a, pmPOX2b, and pmPOX3) was carried out. Total guaiacol peroxidase activities from soluble and microsomal fractions of maize roots were compared and showed weak changes. By contrast, total plasma membrane and washed plasma membrane peroxidase activities, representing peripheral and integral membrane proteins, revealed strong changes after all of the stresses applied. A proteomic approach using 2D-PAGE analysis showed that pmPOX3 was the most abundant class III peroxidase at plasma membranes of control plants, followed by pmPOX2a >pmPOX2b >pmPOX1. The molecular mass (63 kDa) and the isoelectric point (9.5) of the pmPOX2a monomer were identified for the first time. The protein levels of all four enzymes changed in response to multiple stresses. While pmPOX2b was the only membrane peroxidase down-regulated by wounding, all four enzymes were differentially but strongly stimulated by methyl jasmonate, salicylic acid, and elicitors (Fusarium graminearum and Fusarium culmorum extracts, and chitosan) indicating their function in pathogen defence. Oxidative stress applied as H2O2 treatment up-regulated pmPOX2b >pmPOX2a, while pmPOX3 was down-regulated. Treatment with the phosphatase inhibitor chantharidin resulted in distinct responses. PMID:20032108
Pham, Le Thanh Mai; Kim, Yong Hwan
2014-11-01
Free-hydroxyl phenolic units can decrease or even abort the catalytic activity of lignin peroxidase H8 during oxidation of veratryl alcohol and model lignin dimers, resulting in slow and inefficient lignin degradation. In this study we applied engineered 4-O-methyltransferase from Clarkia breweri to detoxify the inhibiting free-hydroxyl phenolic groups by converting them to methylated phenolic groups. The multistep, enzyme-catalyzed process that combines 4-O-methyltransferase and lignin peroxidase H8 suggested in this work can increase the efficiency of lignin-degradation. This study also suggests approaching the field of multi-enzyme in vitro systems to improve the understanding and development of plant biomass in biorefinery operations. Copyright © 2014 Elsevier Inc. All rights reserved.
Franson, J. Christian; Hoffman, David J.; Schmutz, Joel A.
2002-01-01
In 1998, we collected blood samples from 63 emperor geese (Chen canagica) on their breeding grounds on the Yukon-Kuskokwim Delta (YKD) in western Alaska, USA. We studied the relationship between selenium concentrations in whole blood and the activities of glutathione peroxidase and glutathione reductase in plasma. Experimental studies have shown that plasma activities of these enzymes are useful biomarkers of selenium-induced oxidative stress, but little information is available on their relationship to selenium in the blood of wild birds. Adult female emperor geese incubating their eggs in mid-June had a higher mean concentration of selenium in their blood and a greater activity of glutathione peroxidase in their plasma than adult geese or goslings that were sampled during the adult flight feathermolting period in late July and early August. Glutathione peroxidase activity was positively correlated with the concentration of selenium in the blood of emperor geese, and the rate of increase relative to selenium was greater in goslings than in adults. The activity of glutathione reductase was greatest in the plasma of goslings and was greater in molting adults than incubating females but was not significantly correlated with selenium in the blood of adults or goslings. Incubating female emperor geese had high selenium concentrations in their blood, accompanied by increased glutathione peroxidase activity consistent with early oxidative stress. These findings indicate that further study of the effects of selenium exposure, particularly on reproductive success, is warranted in this species.
Peroxidase(s) in Environment Protection
Bansal, Neelam; Kanwar, Shamsher S.
2013-01-01
Industrial discharges of untreated effluents into water bodies and emissions into air have deteriorated the quality of water and air, respectively. The huge amount of pollutants derived from industrial activities represents a threat for the environment and ecologic equilibrium. Phenols and halogenated phenols, polycyclic aromatic hydrocarbons (PAH), endocrine disruptive chemicals (EDC), pesticides, dioxins, polychlorinated biphenyls (PCB), industrial dyes, and other xenobiotics are among the most important pollutants. Peroxidases are enzymes that are able to transform a variety of compounds following a free radical mechanism, thereby yielding oxidized or polymerized products. The peroxidase transformation of these pollutants is accompanied by a reduction in their toxicity, due to loss of biological activity, reduction in the bioavailability, or the removal from aqueous phase, especially when the pollutant is found in water. The review describes the sources of peroxidases, the reactions catalyzed by them, and their applications in the management of pollutants in the environment. PMID:24453894
Peroxidase(s) in environment protection.
Bansal, Neelam; Kanwar, Shamsher S
2013-01-01
Industrial discharges of untreated effluents into water bodies and emissions into air have deteriorated the quality of water and air, respectively. The huge amount of pollutants derived from industrial activities represents a threat for the environment and ecologic equilibrium. Phenols and halogenated phenols, polycyclic aromatic hydrocarbons (PAH), endocrine disruptive chemicals (EDC), pesticides, dioxins, polychlorinated biphenyls (PCB), industrial dyes, and other xenobiotics are among the most important pollutants. Peroxidases are enzymes that are able to transform a variety of compounds following a free radical mechanism, thereby yielding oxidized or polymerized products. The peroxidase transformation of these pollutants is accompanied by a reduction in their toxicity, due to loss of biological activity, reduction in the bioavailability, or the removal from aqueous phase, especially when the pollutant is found in water. The review describes the sources of peroxidases, the reactions catalyzed by them, and their applications in the management of pollutants in the environment.
Nicergoline reverts haloperidol-induced loss of detoxifying-enzyme activity.
Vairetti, Mariapia; Ferrigno, Andrea; Canonico, Pier Luigi; Battaglia, Angelo; Bertè, Francantonio; Richelmi, Plinio
2004-11-28
We evaluated the effects of nicergoline on antioxidant defense enzymes (detoxifying enzymes), during chronic treatment with haloperidol in rats. Chronic use of haloperidol (10 weeks, 1.5 mg/kg/day) induces a significant decrease in glutathione reductase, glutathione peroxidase and superoxide dismutase activity, in selected areas of the brain. Co-administration of nicergoline (20 days, 10 mg/kg/day) significantly restored the activity of these enzymes to levels comparable to those observed in control rats. These observations suggest beneficial effects of nicergoline in the prevention and in the treatment of haloperidol-induced side effects.
Connon, Richard; Dewhurst, Rachel E; Crane, Mark; Callaghan, Amanda
2003-10-01
A novel biomarker was developed in Daphnia magna to detect organic pollution in groundwater. The haem peroxidase assay, which is an indirect means of measuring oxidase activity, was particularly sensitive to kerosene contamination. Exposure to sub-lethal concentrations of kerosene-contaminated groundwater resulted in a haem peroxidase activity increase by dose with a two-fold activity peak at 25%. Reproduction in D. magna remained unimpaired when exposed to concentrations below 25% for 21 days, and a decline in fecundity was only observed at concentrations above the peak in enzyme activity. The measurement of haem peroxidase activity in D. magna detected sublethal effects of kerosene in just 24 h, whilst offering information on the health status of the organisms. The biomarker may be useful in determining concentrations above which detrimental effects would occur from long-term exposure for fuel hydrocarbons. Moreover, this novel assay detects exposure to chemicals in samples that would normally be classified as non-toxic by acute toxicity tests.
Fuerst, E Patrick; James, Matthew S; Pollard, Anne T; Okubara, Patricia A
2017-01-01
Seeds have well-established passive physical and chemical defense mechanisms that protect their food reserves from decay-inducing organisms and herbivores. However, there are few studies evaluating potential biochemical defenses of dormant seeds against pathogens. Caryopsis decay by the pathogenic Fusarium avenaceum strain F.a .1 was relatively rapid in wild oat ( Avena fatua L.) isoline "M73," with >50% decay after 8 days with almost no decay in wheat ( Triticum aestivum L.) var. RL4137. Thus, this fungal strain has potential for selective decay of wild oat relative to wheat. To study defense enzyme activities, wild oat and wheat caryopses were incubated with F.a .1 for 2-3 days. Whole caryopses were incubated in assay reagents to measure extrinsic defense enzyme activities. Polyphenol oxidase, exochitinase, and peroxidase were induced in whole caryopses, but oxalate oxidase was reduced, in response to F.a .1 in both species. To evaluate whether defense enzyme activities were released from the caryopsis surface, caryopses were washed with buffer and enzyme activity was measured in the leachate. Significant activities of polyphenol oxidase, exochitinase, and peroxidase, but not oxalate oxidase, were leached from caryopses. Defense enzyme responses were qualitatively similar in the wild oat and wheat genotypes evaluated. Although the absolute enzyme activities were generally greater in whole caryopses than in leachates, the relative degree of induction of polyphenol oxidase, exochitinase, and peroxidase by F.a .1 was greater in caryopsis leachates, indicating that a disproportionate quantity of the induced activity was released into the environment from the caryopsis surface, consistent with their assumed role in defense. It is unlikely that the specific defense enzymes studied here play a key role in the differential susceptibility to decay by F.a .1 in these two genotypes since defense enzyme activities were greater in the more susceptible wild oat, compared to wheat. Results are consistent with the hypotheses that (1) dormant seeds are capable of mounting complex responses to pathogens, (2) a diversity of defense enzymes are involved in responses in multiple plant species, and (3) it is possible to identify fungi capable of selective decay of weed seeds without damaging crop seeds, a concept that may be applicable to weed management in the field. While earlier work on seed defenses demonstrated the presence of passive defenses, this work shows that dormant seeds are also quite responsive and capable of activating and releasing defense enzymes in response to a pathogen.
Fuerst, E. Patrick; James, Matthew S.; Pollard, Anne T.; Okubara, Patricia A.
2018-01-01
Seeds have well-established passive physical and chemical defense mechanisms that protect their food reserves from decay-inducing organisms and herbivores. However, there are few studies evaluating potential biochemical defenses of dormant seeds against pathogens. Caryopsis decay by the pathogenic Fusarium avenaceum strain F.a.1 was relatively rapid in wild oat (Avena fatua L.) isoline “M73,” with >50% decay after 8 days with almost no decay in wheat (Triticum aestivum L.) var. RL4137. Thus, this fungal strain has potential for selective decay of wild oat relative to wheat. To study defense enzyme activities, wild oat and wheat caryopses were incubated with F.a.1 for 2–3 days. Whole caryopses were incubated in assay reagents to measure extrinsic defense enzyme activities. Polyphenol oxidase, exochitinase, and peroxidase were induced in whole caryopses, but oxalate oxidase was reduced, in response to F.a.1 in both species. To evaluate whether defense enzyme activities were released from the caryopsis surface, caryopses were washed with buffer and enzyme activity was measured in the leachate. Significant activities of polyphenol oxidase, exochitinase, and peroxidase, but not oxalate oxidase, were leached from caryopses. Defense enzyme responses were qualitatively similar in the wild oat and wheat genotypes evaluated. Although the absolute enzyme activities were generally greater in whole caryopses than in leachates, the relative degree of induction of polyphenol oxidase, exochitinase, and peroxidase by F.a.1 was greater in caryopsis leachates, indicating that a disproportionate quantity of the induced activity was released into the environment from the caryopsis surface, consistent with their assumed role in defense. It is unlikely that the specific defense enzymes studied here play a key role in the differential susceptibility to decay by F.a.1 in these two genotypes since defense enzyme activities were greater in the more susceptible wild oat, compared to wheat. Results are consistent with the hypotheses that (1) dormant seeds are capable of mounting complex responses to pathogens, (2) a diversity of defense enzymes are involved in responses in multiple plant species, and (3) it is possible to identify fungi capable of selective decay of weed seeds without damaging crop seeds, a concept that may be applicable to weed management in the field. While earlier work on seed defenses demonstrated the presence of passive defenses, this work shows that dormant seeds are also quite responsive and capable of activating and releasing defense enzymes in response to a pathogen. PMID:29410673
Weis, V M; Small, A L; McFall-Ngai, M J
1996-11-26
Many animal-bacteria cooperative associations occur in highly modified host organs that create a unique environment for housing and maintaining the symbionts. It has been assumed that these specialized organs develop through a program of symbiosis-specific or -enhanced gene expression in one or both partners, but a clear example of this process has been lacking. In this study, we provide evidence for the enhanced production of an enzyme in the symbiotic organ of the squid Euprymna scolopes, which harbors a culture of the luminous bacterium Vibrio fischeri. Our data show that this enzyme has a striking biochemical similarity to mammalian myeloperoxidase (MPO; EC 1.11.17), an antimicrobial dianisidine peroxidase that occurs in neutrophils. MPO and the squid peroxidase catalyze the same reaction, have similar apparent subunit molecular masses, and a polyclonal antibody to native human MPO specifically localized a peroxidase-like protein to the bacteria-containing regions of the symbiotic organ. We also provide evidence that a previously described squid cDNA encodes the protein (LO4) that is responsible for the observed dianisidine peroxidase activity. An antibody made against a fragment of LO4 immunoprecipiated dianisidine peroxidase activity from extracts of the symbiotic organ, and reacted against these extracts and human MPO in Western blot analysis. These data suggest that related biochemical mechanisms for the control of bacterial number and growth operate in associations that are as functionally diverse as pathogenesis and mutualism, and as phylogenetically distant as molluscs and mammals.
Purification of peroxidase from Horseradish (Armoracia rusticana) roots.
Lavery, Christopher B; Macinnis, Morgan C; Macdonald, M Jason; Williams, Joanna Bassey; Spencer, Colin A; Burke, Alicia A; Irwin, David J G; D'Cunha, Godwin B
2010-08-11
Peroxidase (EC 1.11.1.7) from horseradish ( Armoracia rusticana ) roots was purified using a simple, rapid, three-step procedure: ultrasonication, ammonium sulfate salt precipitation, and hydrophobic interaction chromatography on phenyl Sepharose CL-4B. The preparation gave an overall yield of 71%, 291-fold purification, and a high specific activity of 772 U mg(-1) protein. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the purified enzyme was homogeneous and had a molecular weight of approximately 40 kDa. The isolated enzyme had an isoelectric point of 8.8 and a Reinheitszahl value of 3.39 and was stable when stored in the presence of glycerol at -20 degrees C, with >95% retention of original enzyme activity for at least 6 months. Maximal activity of purified horseradish peroxidase (HRP) was obtained under different optimized conditions: substrate (guaiacol and H(2)O(2)) concentrations (0.5 and 0.3 mM, respectively), type of buffer (50 mM phosphate buffer), pH (7.0), time (1.0 min), and temperature of incubation (30 degrees C). In addition, the effect of HRP and H(2)O(2) in a neutral-buffered aqueous solution for the oxidation of phenol and 2-chlorophenol substrates was also studied. Different conditions including concentrations of phenol/2-chlorophenol, H(2)O(2), and enzyme, time, pH, and temperature were standardized for the maximal activity of HRP with these substrates; under these optimal conditions 89.6 and 91.4% oxidations of phenol and 2-chlorophenol were obtained, respectively. The data generated from this work could have direct implications in studies on the commercial production of this biotechnologically important enzyme and its stability in different media.
Kutsuki, H; Higuchi, T
1981-07-01
The activities of the following five enzymes which are involved in the formation of lignin have been compared in reaction wood and in opposite wood: phenylalanine ammonia lyase (EC 4.3.1.5), caffeate 3-O-methyltransferase (EC 2.1.1.-), p-hydroxycinnamate: CoA ligase (EC 6.2.1.12), cinnamyl alcohol dehydrogenase (EC 1.1.1.-) and peroxidase (EC 1.11.1.7). The activities of the four first-named enzymes in the compression wood of Thuja orientalis L. and Metasequoia glyptostroboides Hu et Cheng were 2.8±1.4-fold and 2.6±1.5-fold higher than those in opposite wood, respectively, whereas peroxidase had the same level of activity in either type of wood. On the other hand, no differences were observed in the activities of the five enzymes between tension and opposite woods of Robinia pseudoacacia L. These findings are well in accord with the chemical structure of lignin in the compression and tension woods of the three species studied: high content of lignin rich in condensed units in compression wood, and little difference in lignin between tension and opposite woods.
Study of Horseradish Peroxidase Fixed on Mesoporous Materials as a Chemical Reaction Catalyst
NASA Astrophysics Data System (ADS)
Gao, Mengdan; Dai, Rongji
2017-12-01
Nanostructured mesoporous materials is a new type of porous materials, which has been widely used. It has excellent capability in enzymes immobilization, but modification on the chemical bonds of the enzyme reduce the enzymatic activity and rarely used in chemical reactions. The horseradish peroxidase was immobilized on the mesoporous materials with appropriate aperture and its activity and stability was evaluated when catalyzing the nitration reaction of amines and oxidation reaction of thiourea. The optimum mesoporous material to fix the horseradish peroxidase can be obtained by mixing polyoxyethylene - polyoxypropylene-pol, yoxyethylene(P123), 1,3,5-trimethylbenzene(TMB), and tetramethoxysilane (TMOS) at a ratio of 10:1:1, whose surface area and pore volume and pore diameter calculated by BET and BJH model were 402.903m2/g, 1.084cm2/g, 1.084cm2/g respectively. The horseradish peroxidase, immobilized on the mesoporous materials, was applied for catalyzing the nitration reaction of anilines and oxidation reaction of thiourea, produced a high product yield and can be recycled. Thus, it is a strong candidate as a catalysts for oxidation reactions, to be produced at industral scale, due to its high efficiency and low cost.
Abd-Elrazik, A; Darweish, F A; Rushdi, M H
1978-01-01
Isolates of Cephalosporium maydis varied in their pathogenicity to D.C. 67 maize cultivar from highly to weakly pathogenic. Highly pathogenic isolates showed lower activity of polyphenol oxidase, peroxidase, cytochrome oxidase, and beta-glucosidase enzymes and higher activity of catalase and dehydrogenase than weakly pathogenic isolates. Enzymes production by the tested isolates increased as the culture age increased; except in case of catalase enzyme, the reverse action was detected. The role of these enzymes in the virulence of C. maydis is suggested and discussed.
Lignin degradation by selected fungal species.
Knežević, Aleksandar; Milovanović, Ivan; Stajić, Mirjana; Lončar, Nikola; Brčeski, Ilija; Vukojević, Jelena; Cilerdžić, Jasmina
2013-06-01
As biological decomposition of plant biomass represents a popular alternative environmental-friendly and economically justified process, screening of ligninolytic enzyme systems of various fungal species is a topical study area. The goal of the study was to obtain clear insight into the dynamics of laccase, Mn-dependent peroxidase, and Mn-independent peroxidase activity and levels of wheat straw lignin degradation in seven wood-rotting fungi. The best laccase producers were Pleurotus ostreatus and Pleurotus eryngii. Lenzites betulinus and Fomitopsis pinicola were the best Mn-dependent peroxidase producers, and P. ostreatus the weakest one. The peak of Mn-independent peroxidase was noted in Dichomytus squalens, and the minimum value in P. ostreatus. The profiles of the three enzymes, obtained by isoelectric focusing, were variable depending on the species and cultivation period. D. squalens was the best lignin degrader (34.1% of total lignin amount), and P. ostreatus and P. eryngii the weakest ones (7.1% and 14.5%, respectively). Copyright © 2013 Elsevier Ltd. All rights reserved.
Characterization of structure and activity of garlic peroxidase (POX(1B)).
El Ichi, Sarra; Miodek, Anna; Sauriat-Dorizon, Hélène; Mahy, Jean-Pierre; Henry, Céline; Marzouki, Mohamed Nejib; Korri-Youssoufi, Hafsa
2011-01-01
Structural characterization and study of the activity of new POX(1B) protein from garlic which has a high peroxidase activity and can be used as a biosensor for the detection of hydrogen peroxide and phenolic compounds were performed and compared with the findings for other heme peroxidases. The structure-function relationship was investigated by analysis of the spectroscopic properties and correlated to the structure determined by a new generation of high-performance hybrid mass spectrometers. The reactivity of the enzyme was analyzed by studies of the redox activity toward various ligands and the reactivity with various substrates. We demonstrated that, in the case of garlic peroxidase, the heme group is pentacoordinated, and has an histidine as a proximal ligand. POX(1B) exhibited a high affinity for hydrogen peroxide as well as various reducing cosubstrates. In addition, high enzyme specificity was demonstrated. The k(cat) and K(M) values were 411 and 400 mM(-1) s(-1) for 3,3',5,5'-tetramethylbenzidine and 2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid), respectively. Furthermore, the reduction of nitro compounds in the presence of POX(1B) was demonstrated by iron(II) nitrosoalkane complex assay. In addition, POX(1B) showed a great potential for application for drug metabolism since its ability to react with 1-nitrohexane in the presence of sodium dithionite was demonstrated by the appearance of a characteristic Soret band at 411 nm. The high catalytic efficiency obtained in the case of the new garlic peroxidase (POX(1B)) is suitable for the monitoring of different analytes and biocatalysis.
Zhao, Yunchen; Li, Jianlong; Chen, Yuru; Huang, Haixia; Yu, Zui
2009-08-01
To study the effect of exogenous oxygen, we added water solution of paraquat to 7 d cultures of Coriolus versicolor for the next 148 h. Enzyme exudation and biochemical process were investigated on the addition of paraquat. We found that compared with the control (without paraquat), the addition of 30 micromol/L paraquat stimulated the activity of manganese dependent peroxidase (MnP), lignin peroxidase (LiP), and laccases (Lac) 7, 2.5 and 1.3 times, respectively. Also, addition of paraquat enhanced activity of superoxide dismutase (SOD) and catalase (CAT) in the first 48 h. Impact of paraquat on ligninolytic enzymes was significant than that on antioxidant enzyme. Addition of paraquat enhanced phenolic compounds and formaldehyde of cultures too. And concentration of malondialdehyde was increased in the first 24 h. The results showed that addition of paraquat promoted oxidative stress, but the antioxidant systems of the fungal strain are sufficient to prevent mycelia from oxidative stress. As exogenous oxygen, paraquat might be a useful substrate in degradation of lignocellulose.
Silva, José; Pastorello, Mariella; Arzola, Jorge; Zavala, Lida E; De Jesús, Sara; Varela, Maider; Matos, María Gabriela; del Rosario Garrido, María; Israel, Anita
2010-12-01
Angiotensin II (AngII) regulates blood pressure and water and electrolyte metabolism through the stimulation of NAD(P)H oxidase and production of reactive oxygen species (ROS) such as O₂⁻, which is metabolised by superoxide dismutase, catalase and glutathione peroxidase. We assessed the role of AT₁ and AT₂ receptors, NAD(P)H oxidase and protein kinase C (PKC) in Ang II-induced sodium and water excretion and their capacity to stimulate antioxidant enzymes in the rat hypothalamus, a brain structure known to express a high density of AngII receptors. Male Sprague-Dawley rats were intracerebroventricularly (ICV) injected with AngII and urinary sodium and water excretion was assessed. Urine sodium concentration was determined using flame photometry. After decapitation the hypothalamus was microdissected under stereomicroscopic control. Superoxide dismutase, catalase and glutathione peroxidase activity were determined spectrophotometrically and extracellular signal-regulated kinase (ERK1/2) activation was analysed by Western blot. AngII-ICV resulted in antidiuresis and natriuresis. ICV administration of losartan, PD123319, apocynin and chelerythrine blunted natriuresis. In hypothalamus, AngII increased catalase, superoxide dismutase and glutation peroxidase activity and ERK1/2 phosphorylation. These actions were prevented by losartan, apocynin and chelerythrine, and increased by PD123319. AT₁ and AT₂ receptors, NAD(P)H oxidase and PKC pathway are involved in the regulation of hydromineral metabolism and antioxidant enzyme activity induced by AngII.
Martinez, Christelle; Blanc, Frédéric; Le Claire, Emilie; Besnard, Olivier; Nicole, Michel; Baccou, Jean-Claude
2001-01-01
Infiltration of cellulase (EC 3.2.1.4) from Trichoderma longibrachiatum into melon (Cucumis melo) cotyledons induced several key defense mechanisms and hypersensitive reaction-like symptoms. An oxidative burst was observed 3 hours after treatment and was followed by activation of ethylene and salicylic acid (SA) signaling pathways leading to marked induction of peroxidase and chitinase activities. The treatment of cotyledons by heat-denatured cellulase also led to some induction of peroxidase and chitinase activities, but the oxidative burst and SA production were not observed. Co-infiltration of aminoethoxyvinil-glycine (an ethylene inhibitor) with the active cellulase did not affect the high increase of peroxidase and chitinase activities. In contrast, co-infiltration of aminoethoxyvinil-glycine with the denatured enzyme blocked peroxidase and chitinase activities. Our data suggest that the SA pathway (induced by the cellulase activity) and ethylene pathway (induced by heat-denatured and active protein) together coordinate the activation of defense mechanisms. We found a partial interaction between both signaling pathways since SA caused an inhibition of the ethylene production and a decrease in peroxidase activity when co-infiltrated with denatured cellulase. Treatments with active or denatured cellulase caused a reduction in powdery mildew (Sphaerotheca fuliginea) disease. PMID:11553761
NASA Astrophysics Data System (ADS)
Liu, Jianguo; Zhang, Xiaoli; Sun, Yanhong; Lin, Wei
2010-01-01
The antioxidative capacity of astaxanthin and enzyme activity of reactive oxygen eliminating enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) were studied in three cell types of Haematococcus pluvialis exposed to high concentrations of a superoxide anion radical (O{2/-}). The results show that defensive enzymes and astaxanthin-related mechanisms were both active in H. pluvialis during exposure to reactive oxygen species (ROS) such as O{2/-}. Astaxanthin reacted with ROS much faster than did the protective enzymes, and had the strongest antioxidative capacity to protect against lipid peroxidation. The defensive mechanisms varied significantly between the three cell types and were related to the level of astaxanthin that had accumulated in those cells. Astaxanthin-enriched red cells had the strongest antioxidative capacity, followed by brown cells, and astaxanthin-deficient green cells. Although there was no significant increase in expression of protective enzymes, the malondialdehyde (MDA) content in red cells was sustained at a low level because of the antioxidative effect of astaxanthin, which quenched O{2/-} before the protective enzymes could act. In green cells, astaxanthin is very low or absent; therefore, scavenging of ROS is inevitably reliant on antioxidative enzymes. Accordingly, in green cells, these enzymes play the leading role in scavenging ROS, and the expression of these enzymes is rapidly increased to reduce excessive ROS. However, because ROS were constantly increased in this study, the enhance enzyme activity in the green cells was not able to repair the ROS damage, leading to elevated MDA content. Of the four defensive enzymes measured in astaxanthin-deficient green cells, SOD eliminates O{2/-}, POD eliminates H2O2, which is a by-product of SOD activity, and APX and CAT are then initiated to scavenge excessive ROS.
Protecting peroxidase activity of multilayer enzyme-polyion films using outer catalase layers.
Lu, Haiyun; Rusling, James F; Hu, Naifei
2007-12-27
Films constructed layer-by-layer on electrodes with architecture {protein/hyaluronic acid (HA)}n containing myoglobin (Mb) or horseradish peroxidase (HRP) were protected against protein damage by H2O2 by using outer catalase layers. Peroxidase activity for substrate oxidation requires activation by H2O2, but {protein/HA}n films without outer catalase layers are damaged slowly and irreversibly by H2O2. The rate and extent of damage were decreased dramatically by adding outer catalase layers to decompose H2O2. Comparative studies suggest that protection results from catalase decomposing a fraction of the H2O2 as it enters the film, rather than by an in-film diffusion barrier. The outer catalase layers controlled the rate of H2O2 entry into inner regions of the film, and they biased the system to favor electrocatalytic peroxide reduction over enzyme damage. Catalase-protected {protein/HA}n films had an increased linear concentration range for H2O2 detection. This approach offers an effective way to protect biosensors from damage by H2O2.
[Enzymatic characteristics of peroxidase from Chrysanthemum morifolium cv. Bo-ju].
Zhu, Yu-Yun; Lyu, Xin-Lin; Li, Xiang-Wei; Zhang, Dong; Dong, Li-Hua; Zhu, Jing-Jing; Wang, Zhi-Min; Zhang, Jin-Zhen
2018-04-01
The enzymatic browning is one of the main reasons for affecting the quality of medicinal flowers. In the process of chrysanthemum harvesting and processing, improper treatment will lead to the browning and severely impact the appearance and quality of chrysanthemum. Peroxidase enzyme is one of the oxidoreductases that cause enzymatic browning of fresh chrysanthemum. The enzymatic characteristics of peroxidase (POD) in chrysanthemum were studied in this paper. In this experiment, the effects of different reaction substrates and their concentrations, PH value of buffer and reaction temperatures on the activity of POD enzyme were investigated. The results showed that the optimal substrate of POD was guaiacol, and the optimal concentration of POD was 50 mmol·L⁻¹. The optimal pH value and reaction temperature were 4.4 and 30-35 °C, respectively. Michaelis-Menten equation was obtained to express the kinetics of enzyme-catalyzed reaction of POD, Km=0.193 mol·L⁻¹, Vmax=0.329 D·min⁻¹. In addition, the results of POD enzyme thermal stability test showed that the POD enzyme activity was inhibited when being treated at 80 °C for 4 min or at 100 °C for 2 min. The above results were of practical significance to reveal the enzymatic browning mechanism, control the enzymatic browning and improve the quality of chrysanthemum, and can also provide the basis for the harvesting and processing of medicinal materials containing polyphenols. Copyright© by the Chinese Pharmaceutical Association.
Characterization of Antisense Transformed Plants Deficient in the Tobacco Anionic Peroxidase.
Lagrimini, L. M.; Gingas, V.; Finger, F.; Rothstein, S.; Liu, TTY.
1997-01-01
On the basis of the biological compounds that they metabolize, plant peroxidases have long been implicated in plant growth, cell wall biogenesis, lignification, and host defenses. Transgenic tobacco (Nicotiana tabacum L.) plants that underexpress anionic peroxidase were generated using antisense RNA. The antisense RNA was found to be specific for the anionic isoenzyme and highly effective, reducing endogenous transcript levels and total peroxidase activity by as much as 1600-fold. Antisense-transformed plants appeared normal at initial observation; however, growth studies showed that plants with reduced peroxidase activity grow taller and flower sooner than control plants. In contrast, previously transformed plants overproducing anionic peroxidase were shorter and flowered later than controls. Axillary buds were more developed in antisense-transformed plants and less developed in plants overproducing this enzyme. It was found that the lignin content in leaf, stem, and root was unchanged in antisense-transformed plants, which does not support a role for anionic peroxidase in the lignification of secondary xylem vessels. However, studies of wounded tissue show some reduction in wound-induced deposition of lignin-like polymers. The data support a possible role for tobacco anionic peroxidase in host defenses but not without a reduction in growth potential. PMID:12223765
Characterization of Antisense Transformed Plants Deficient in the Tobacco Anionic Peroxidase.
Lagrimini, L. M.; Gingas, V.; Finger, F.; Rothstein, S.; Liu, TTY.
1997-08-01
On the basis of the biological compounds that they metabolize, plant peroxidases have long been implicated in plant growth, cell wall biogenesis, lignification, and host defenses. Transgenic tobacco (Nicotiana tabacum L.) plants that underexpress anionic peroxidase were generated using antisense RNA. The antisense RNA was found to be specific for the anionic isoenzyme and highly effective, reducing endogenous transcript levels and total peroxidase activity by as much as 1600-fold. Antisense-transformed plants appeared normal at initial observation; however, growth studies showed that plants with reduced peroxidase activity grow taller and flower sooner than control plants. In contrast, previously transformed plants overproducing anionic peroxidase were shorter and flowered later than controls. Axillary buds were more developed in antisense-transformed plants and less developed in plants overproducing this enzyme. It was found that the lignin content in leaf, stem, and root was unchanged in antisense-transformed plants, which does not support a role for anionic peroxidase in the lignification of secondary xylem vessels. However, studies of wounded tissue show some reduction in wound-induced deposition of lignin-like polymers. The data support a possible role for tobacco anionic peroxidase in host defenses but not without a reduction in growth potential.
Stiborova, Marie; Schmeiser, Heinz H; Frei, Eva; Hodek, Petr; Martinek, Vaclav
2014-01-01
Sudan I [1-(phenylazo)-2-naphthol, C.I. Solvent Yellow 14] is an industrial dye, which was found as a contaminant in numerous foods in several European countries. Because Sudan I has been assigned by the IARC as a Category 3 carcinogen, the European Union decreed that it cannot be utilized as food colorant in any European country. Sudan I induces the malignancies in liver and urinary bladder of rats and mice. This carcinogen has also been found to be a potent mutagen, contact allergen and sensitizer, and exhibits clastogenic properties. The oxidation of Sudan I increases its toxic effects and leads to covalent adducts in DNA. Identification of enzymatic systems that contribute to Sudan I oxidative metabolism to reactive intermediates generating such covalent DNA adducts on the one hand, and to the detoxification of this carcinogen on the other, is necessary to evaluate susceptibility to this toxicant. This review summarizes the identification of such enzymes and the molecular mechanisms of oxidation reactions elucidated to date. Human and animal cytochrome P450 (CYP) and peroxidases are capable of oxidizing Sudan I. Of the CYP enzymes, CYP1A1 is most important both in Sudan I detoxification and its bio-activation. Ring-hydroxylated metabolites and a dimer of this carcinogen were found as detoxification products of Sudan I generated with CYPs and peroxidases, respectively. Oxidative bio-activation of this azo dye catalyzed by CYPs and peroxidases leads to generation of proximate genotoxic metabolites (the CYP-catalyzed formation of the benzenediazonium cation and the peroxidase-mediated generation of one-electron oxidation products), which covalently modify DNA both in vitro and in vivo. The predominant DNA adduct generated with the benzenediazonium cation was characterized to be 8-(phenylazo)guanine. The Sudan I radical species mediated by peroxidases reacts with the -NH2 group in (deoxy)guanosine, generating the 4-[(deoxy)guanosin-N(2)-yl]Sudan I product. Sudan I was also found to be a strong inducer of CYP1A1 and its enzyme activity mediated by the aryl hydrocarbon receptor, thereby increasing its own genotoxic potential and the cancer risk for humans.
Decolorization of RBBR by plant cells and correlation with the transformation of PCBs.
Chroma, Ludmila; Macek, Tomas; Demnerova, Katerina; Macková, Martina
2002-11-01
An extracellular H2O2-requiring Remazol Brilliant Blue R (RBBR) decolorizing enzyme activity was detected after cultivation of cells of various plant species both in liquid medium and when growing on agar plates containing RBBR. Level of the enzyme activity was compared with the ability to metabolize polychlorinated biphenyls (PCBs). The ability to decolorize RBBR was tested in the presence and absence of PCBs. The cultures with high PCB-transforming activity proved to exhibit RBBR oxidase much more resistant towards the influence of PCBs. In addition low activities of lignin peroxidase (LiP) and manganese dependent peroxidase (MnP) were detected in medium and in plant cells. No correlation of MnP and LiP activities with PCB degradation could be found. The RBBR decolorization could be used as a rough screening method for plant cultures able to metabolize PCBs.
van Dalen, Christine J.; Winterbourn, Christine C.; Kettle, Anthony J.
2005-01-01
Eosinophil peroxidase is a haem enzyme of eosinophils that is implicated in oxidative tissue injury in asthma. It uses hydrogen peroxide to oxidize thiocyanate and bromide to their respective hypohalous acids. Nitrite is also a substrate for eosinophil peroxidase. We have investigated the mechanisms by which the enzyme oxidizes nitrite. Nitrite was very effective at inhibiting hypothiocyanous acid (‘cyanosulphenic acid’) and hypobromous acid production. Spectral studies showed that nitrite reduced the enzyme to its compound II form, which is a redox intermediate containing FeIV in the haem active site. Compound II does not oxidize thiocyanate or bromide. These results demonstrate that nitrite is readily oxidized by compound I, which contains FeV at the active site. However, it reacts more slowly with compound II. The observed rate constant for reduction of compound II by nitrite was determined to be 5.6×103 M−1·s−1. Eosinophils were at least 4-fold more effective at promoting nitration of a heptapeptide than neutrophils. This result is explained by our finding that nitrite reacts 10-fold faster with compound II of eosinophil peroxidase than with the analogous redox intermediate of myeloperoxidase. Nitration by eosinophils was increased 3-fold by superoxide dismutase, which indicates that superoxide interferes with nitration. We propose that at sites of eosinophilic inflammation, low concentrations of nitrite will retard oxidant production by eosinophil peroxidase, whereas at higher concentrations nitrogen dioxide will be a major oxidant formed by these cells. The efficiency of protein nitration will be decreased by the diffusion-controlled reaction of superoxide with nitrogen dioxide. PMID:16336215
The Molecular Mechanism of the Catalase-like Activity in Horseradish Peroxidase.
Campomanes, Pablo; Rothlisberger, Ursula; Alfonso-Prieto, Mercedes; Rovira, Carme
2015-09-02
Horseradish peroxidase (HRP) is one of the most relevant peroxidase enzymes, used extensively in immunochemistry and biocatalysis applications. Unlike the closely related catalase enzymes, it exhibits a low activity to disproportionate hydrogen peroxide (H2O2). The origin of this disparity remains unknown due to the lack of atomistic information on the catalase-like reaction in HRP. Using QM(DFT)/MM metadynamics simulations, we uncover the mechanism for reduction of the HRP Compound I intermediate by H2O2 at atomic detail. The reaction begins with a hydrogen atom transfer, forming a peroxyl radical and a Compound II-like species. Reorientation of the peroxyl radical in the active site, concomitant with the transfer of the second hydrogen atom, is the rate-limiting step, with a computed free energy barrier (18.7 kcal/mol, ∼ 6 kcal/mol higher than the one obtained for catalase) in good agreement with experiments. Our simulations reveal the crucial role played by the distal pocket residues in accommodating H2O2, enabling formation of a Compound II-like intermediate, similar to catalases. However, out of the two pathways for Compound II reduction found in catalases, only one is operative in HRP. Moreover, the hydrogen bond network in the distal side of HRP compensates less efficiently than in catalases for the energetic cost required to reorient the peroxyl radical at the rate-determining step. The distal Arg and a water molecule in the "wet" active site of HRP have a substantial impact on the reaction barrier, compared to the "dry" active site in catalase. Therefore, the lower catalase-like efficiency of heme peroxidases compared to catalases can be directly attributed to the different distal pocket architecture, providing hints to engineer peroxidases with a higher rate of H2O2 disproportionation.
Purkan; Ihsanawati; Natalia, D; Syah, Y M; Retnoningrum, D S; Kusuma, H S
2016-01-01
Mutations in katG gene are often associated with isoniazid (INH) resistance in Mycobacterium tuberculosis strain. This research was perfomed to identify the katG mutation in clinical isolate (L8) that is resistant to INH at 1 μg/ml. In addition to characterize the catalase-peroxidase of KatG L8 and perform the ab initio structural study of the protein to get a more complete understanding in drug activation and the resistance mechanism. The katG gene was cloned and expressed in Escherichia coli, then followed by characterization of catalase-peroxidase of KatG. The structure modelling was performed to know a basis of alterations in enzyme activity. A substitution of A713G that correspond to Asn238Ser replacement was found in the L8 katG. The Asn238Ser modification leads to a decline in the activity of catalase-peroxidase and INH oxidation of the L8 KatG protein. The catalytic efficiency (Kcat/KM) of mutant KatGAsn238Ser respectively decreases to 41 and 52% for catalase and peroxidase. The mutant KatGAsn238Ser also shows a decrease of 62% in INH oxidation if compared to a wild type KatG (KatGwt). The mutant Asn238Ser might cause instability in the substrate binding site of KatG, because of removal of a salt bridge connecting the amine group of Asn238 to the carboxyl group of Glu233, which presents in KatGwt. The lost of the salt bridge in the substrate binding site in mutant KatGAsn238Ser created changes unfavorable for enzyme activities, which in turn emerge as INH resistance in the L8 isolate of M. tuberculosis.
Toxicity of textile dyes and their degradation by the enzyme horseradish peroxidase (HRP).
Ulson de Souza, Selene Maria Arruda Guelli; Forgiarini, Eliane; Ulson de Souza, Antônio Augusto
2007-08-25
The enzyme peroxidase is known for its capacity to remove phenolic compounds and aromatic amines from aqueous solutions and also to decolorize textile effluents. This study evaluates the potential of the enzyme horseradish peroxidase (HRP) in the decolorization of textile dyes and effluents. Some factors such as pH and the amount of H(2)O(2) and the enzyme were evaluated in order to determine the optimum conditions for the enzyme performance. For the dyes tested, the results indicated that the decolorization of the dye Remazol Turquoise Blue G 133% was approximately 59%, and 94% for the Lanaset Blue 2R; for the textile effluent, the decolorization was 52%. The tests for toxicity towards Daphnia magna showed that there was a reduction in toxicity after the enzymatic treatment. However, the toxicity of the textile effluent showed no change towards Artemia salina after the enzyme treatment. This study verifies the viability of the use of the enzyme horseradish peroxidase in the biodegradation of textile dyes.
Erden, Emre; Ucar, M. Cigdem; Gezer, Tekin; Pazarlioglu, Nurdan Kasikara
2009-01-01
This study presents new and alternative fungal strains for the production of ligninolytic enzymes which have great potential to use in industrial and biotechnological processes. Thirty autochthonous fungal strains were harvested from Bornova-Izmir in Turkiye. In the fresh fruitbody extracts laccase, manganese peroxidase and lignin peroxidase activities, which are the principal enzymes responsible for ligninocellulose degradation by Basidiomycetes, were screened. Spores of some of the basidiomycetes species such as Cortinarius sp., Trametes versicolor, Pleurotus ostreatus, Abortiporus biennis, Lyophyllum subglobisporium, Ramaria stricta, Ganoderma carnosum, Lactarius delicious ve Lepista nuda were isolated and investigated optimum cultivation conditions in submerged fermentation for high yields of ligninolytic enzyme production. In addition, isolated fungal strains were monitored on agar plates whether having the capability of decolorization of a textile dye Remazol Marine Blue. PMID:24031371
Rup, Pushpinder J; Sohal, S K; Kaur, H
2006-07-01
The activity of catalase, glutathione peroxidase, superoxide dismutase, O-demethylase, ATPase and succinate dehydrogenase, belonging to two main classes of detoxification enzymes (i.e. hydrolases and oxido-reductases), mostly involved in metabolism and degradation of xenobiotics in insects, were assessed under the influence of kinetin, a plant growth regulator (PGR). The nymphs (48-52 hr old) of Lipaphis erysimi (Kalt.) were permitted to feed on radish plant, Raphanus sativus L. treated with kinetin (400 ppm) for 13, 25 and 37 hr. It was found that the activity of catalase, glutathione peroxidase and superoxide dismutase increased significantly when compared with the control of the same age group, which indicated that these enzymes might be playing a significant role in the metabolism of kinetin in this insect. The activity of O-demethylase showed an increase up to 25 hr of the treatment but it decreased under prolonged treatment whereas the activity of succinate dehydrogenase fluctuated insignificantly. ATPase showed a decrease in the activity with the treatment suggesting kinetin's interference in synthesis of ATPase.
Bach, P H; Bridges, J W
1984-08-01
There has been no cogent hypothesis to explain the molecular basis of analgesic and non-steroidal anti-inflammatory drug (NSAID) associated renal papillary necrosis (RPN) and upper urothelial carcinoma (UUC). The microsomal cytochrome P-450 enzyme system may generate reactive intermediates which promote pathophysiological effects in the lung, liver and renal cortex, but the absence of P-450 activity in the medulla suggests that it is unlikely that similar events lead to RPN and UUC. Other enzymes (eg. peroxidases) convert substituted aromatics into benzoquinoneimines (an intermediate that has previously been defined in P-450-mediated toxicity). The medulla is rich in fatty acid peroxidases involved in the metabolism of arachidonic acid. NSAID and analgesics interact with key enzymes in this pathway, which could lead to the co-oxygenation of exogenous and endogenous compounds via the peroxidase, lipoxygenase, or prostaglandin hydroperoxidase enzymes. The generation of reactive molecules in the medulla could explain both RPN and UUC via the alkylation of macromolecules. The formation of free radicals would give rise to extensive lipid peroxidation, (there are large quantities of free polyunsaturated fatty acids in the medullary interstitial cells), an event of major potential importance to local cell destruction and genotoxic effects. At present this proposed mechanism of co-oxygenation offers the most attractive working hypothesis to explain the molecular pathogenesis of both RPN and UUC.
Liposomes as protective capsules for active silica sol-gel biocomposite synthesis.
Li, Ye; Yip, Wai Tak
2005-09-21
Using liposome to shield an enzyme from hostile chemical environments during the sol-gel formation process has resulted in a novel approach to synthesizing silica sol-gel biocomposite materials. By reporting the encapsulation of horseradish peroxidase and firefly luciferase, we demonstrate that this new protocol can produce silica biocomposites that are more active than trapping the enzymes directly into hydrogels.
Capone, Simona; Ćorajević, Lejla; Bonifert, Günther; Murth, Patrick; Maresch, Daniel; Altmann, Friedrich; Herwig, Christoph; Spadiut, Oliver
2015-01-01
Horseradish peroxidase (HRP), conjugated to antibodies and lectins, is widely used in medical diagnostics. Since recombinant production of the enzyme is difficult, HRP isolated from plant is used for these applications. Production in the yeast Pichia pastoris (P. pastoris), the most promising recombinant production platform to date, causes hyperglycosylation of HRP, which in turn complicates conjugation to antibodies and lectins. In this study we combined protein and strain engineering to obtain an active and stable HRP variant with reduced surface glycosylation. We combined four mutations, each being beneficial for either catalytic activity or thermal stability, and expressed this enzyme variant as well as the unmutated wildtype enzyme in both a P. pastoris benchmark strain and a strain where the native α-1,6-mannosyltransferase (OCH1) was knocked out. Considering productivity in the bioreactor as well as enzyme activity and thermal stability, the mutated HRP variant produced in the P. pastoris benchmark strain turned out to be interesting for medical diagnostics. This variant shows considerable catalytic activity and thermal stability and is less glycosylated, which might allow more controlled and efficient conjugation to antibodies and lectins. PMID:26404235
Caseoperoxidase, Mixed β-Casein-SDS-Hemin-Imidazole Complex: A Nano Artificial Enzyme
Moosavi-Movahedi, Zainab; Gharibi, Hussein; Hadi-Alijanvand, Hamid; Akbarzadeh, Mohammad; Esmaili, Mansoore; Atri, Maliheh S.; Sefidbakht, Yahya; Bohlooli, Mousa; Nazari, Khodadad; Javadian, Soheila; Hong, Jun; Saboury, Ali A.; Sheibani, Nader; Moosavi-Movahedi, Ali A.
2016-01-01
A novel peroxidase-like artificial enzyme, named “caseoperoxidase”, was biomimetically designed using a nano artificial amino acid apo-protein hydrophobic pocket. This four-component nano artificial enzyme containing heme-imidazole-β-casein-SDS exhibited high activity growth and kcat performance towards the native horseradish peroxidase (HRP) demonstrated by the steady state kinetics using UV-Vis spectrophotometry. The hydrophobicity and secondary structure of the caseoperoxidase were studied by ANS fluorescence and circular dichroism spectroscopy. Camel β-casein (Cβ-casein), with a flexible structure and exalted hydrophobicity, was selected as an appropriate apo-protein for the heme active site using a homology modeling method. Heme docking into the newly obtained Cβ-casein structure indicated one heme was mainly incorporated with Cβ-casein. The presence of a main electrostatic site for the active site in the Cβ-casein was also confirmed by experimental methods through Wyman binding potential and isothermal titration calorimetry. The existence of Cβ-casein protein in this biocatalyst lowered the suicide inactivation, and indicated that the obtained structure has a good protective role for the heme active-site. Additional further experiments confirmed the retention of caseoperoxidase structure and function as an artificial enzyme. PMID:25562503
Caseoperoxidase, mixed β-casein-SDS-hemin-imidazole complex: a nano artificial enzyme.
Moosavi-Movahedi, Zainab; Gharibi, Hussein; Hadi-Alijanvand, Hamid; Akbarzadeh, Mohammad; Esmaili, Mansoore; Atri, Maliheh S; Sefidbakht, Yahya; Bohlooli, Mousa; Nazari, Khodadad; Javadian, Soheila; Hong, Jun; Saboury, Ali A; Sheibani, Nader; Moosavi-Movahedi, Ali A
2015-01-01
A novel peroxidase-like artificial enzyme, named "caseoperoxidase", was biomimetically designed using a nano artificial amino acid apo-protein hydrophobic pocket. This four-component nano artificial enzyme containing heme-imidazole-β-casein-SDS exhibited high activity growth and k(cat) performance toward the native horseradish peroxidase demonstrated by the steady state kinetics using UV-vis spectrophotometry. The hydrophobicity and secondary structure of the caseoperoxidase were studied by ANS fluorescence and circular dichroism spectroscopy. Camel β-casein (Cβ-casein) was selected as an appropriate apo-protein for the heme active site because of its innate flexibility and exalted hydrophobicity. This selection was confirmed by homology modeling method. Heme docking into the newly obtained Cβ-casein structure indicated one heme was mainly incorporated with Cβ-casein. The presence of a main electrostatic site for the active site in the Cβ-casein was also confirmed by experimental methods through Wyman binding potential and isothermal titration calorimetry. The existence of Cβ-casein protein in this biocatalyst lowered the suicide inactivation and provided a suitable protective role for the heme active-site. Additional experiments confirmed the retention of caseoperoxidase structure and function as an artificial enzyme.
Kohler, Amanda C; Simmons, Blake A; Sale, Kenneth L
2018-04-28
In an age of ever-increasing biotechnological and industrial demand for new and specialized biocatalysts, rational protein engineering offers a direct approach to enzyme design and innovation. Heme peroxidases, as indispensable oxidative biocatalysts, provide a relatively mild alternative to the traditional harsh, and often toxic, chemical catalysts, and subsequently, have found widespread application throughout industry. However, the potential for these enzymes is far greater than their present use, as processes are currently restricted to the more stable, but less catalytically powerful, subset of peroxidases. Here we describe the structure-guided, rational engineering of a plant-fungal hybrid peroxidase built to overcome the application barrier of these high-reduction potential peroxidases. This engineered enzyme has the catalytic versatility and oxidative ability of a high-reduction potential versatile peroxidase, with enhanced temperature and pH tolerance similar to that of a highly stable plant peroxidase. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bouacem, Khelifa; Rekik, Hatem; Jaouadi, Nadia Zaraî; Zenati, Bilal; Kourdali, Sidali; El Hattab, Mohamed; Badis, Abdelmalek; Annane, Rachid; Bejar, Samir; Hacene, Hocine; Bouanane-Darenfed, Amel; Jaouadi, Bassem
2018-01-01
Two extracellular peroxidases from Bjerkandera adusta strain CX-9, namely a lignin peroxidase (called LiP BA45) and manganese peroxidase (called MnP BA30), were purified simultaneously by applying successively, ammonium sulfate precipitation-dialysis, Mono-S Sepharose anion-exchange and Sephacryl S-200 gel filtration and biochemically characterized. The sequence of their NH 2 -terminal amino acid residues showed high homology with those of fungi peroxidases. Matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis revealed that the purified enzymes MnP BA30 and LiP BA45 were a monomers with a molecular masses 30125.16 and 45221.10Da, respectively. While MnP BA30 was optimally active at pH 3 and 70°C, LiP BA45 showed optimum activity at pH 4 and 50°C. The two enzymes were inhibited by sodium azide and potassium cyanide, suggesting the presence of heme-components in their tertiary structures. The K m and V max for LiP BA45 toward 2,4-Dichlorolphenol (2,4-DCP) were 0.099mM and 9.12U/mg, respectively and for MnP BA30 toward 2,6-Dimethylphenol (2,6-DMP), they were 0.151mM and 18.60U/mg, respectively. Interestingly, MnP BA30 and LiP BA45 demonstrated higher catalytic efficiency than that of other tested peroxidases (MnP, LiP, HaP4, and LiP-SN) and marked organic solvent-stability and dye-decolorization efficiency. Data suggest that these peroxidases may be considered as potential candidates for future applications in distaining synthetic-dyes. Copyright © 2017 Elsevier B.V. All rights reserved.
Shine, M B; Guruprasad, K N; Anand, Anjali
2012-07-01
Our previous investigation reported the beneficial effect of pre-sowing magnetic treatment for improving germination parameters and biomass accumulation in soybean. In this study, soybean seeds treated with static magnetic fields of 150 and 200 mT for 1 h were evaluated for reactive oxygen species (ROS) and activity of antioxidant enzymes. Superoxide and hydroxyl radicals were measured in embryos and hypocotyls of germinating seeds by electron paramagnetic resonance spectroscopy and kinetics of superoxide production; hydrogen peroxide and antioxidant activities were estimated spectrophotometrically. Magnetic field treatment resulted in enhanced production of ROS mediated by cell wall peroxidase while ascorbic acid content, superoxide dismutase and ascorbate peroxidase activity decreased in the hypocotyl of germinating seeds. An increase in the cytosolic peroxidase activity indicated that this antioxidant enzyme had a vital role in scavenging the increased H(2)O(2) produced in seedlings from the magnetically treated seeds. Hence, these studies contribute to our first report on the biochemical basis of enhanced germination and seedling growth in magnetically treated seeds of soybean in relation to increased production of ROS. Copyright © 2012 Wiley Periodicals, Inc.
Chen, Ming; Zeng, Guangming; Tan, Zhongyang; Jiang, Min; Li, Hui; Liu, Lifeng; Zhu, Yi; Yu, Zhen; Wei, Zhen; Liu, Yuanyuan; Xie, Gengxin
2011-01-01
Previous works have demonstrated that ligninolytic enzymes mediated effective degradation of lignin wastes. The degrading ability greatly relied on the interactions of ligninolytic enzymes with lignin. Ligninolytic enzymes mainly contain laccase (Lac), lignin peroxidase (LiP) and manganese peroxidase (MnP). In the present study, the binding modes of lignin to Lac, LiP and MnP were systematically determined, respectively. Robustness of these modes was further verified by molecular dynamics (MD) simulations. Residues GLU460, PRO346 and SER113 in Lac, residues ARG43, ALA180 and ASP183 in LiP and residues ARG42, HIS173 and ARG177 in MnP were most crucial in binding of lignin, respectively. Interactional analyses showed hydrophobic contacts were most abundant, playing an important role in the determination of substrate specificity. This information is an important contribution to the details of enzyme-catalyzed reactions in the process of lignin biodegradation, which can be used as references for designing enzyme mutants with a better lignin-degrading activity. PMID:21980516
Kaur, Harsimran; Kapoor, Shammi; Kaur, Gaganjyot
2016-10-01
Lindane, a broad-spectrum organochlorine pesticide, has caused a widespread environmental contamination along with other pesticides due to wrong agricultural practices. The high efficiency, sustainability and eco-friendly nature of the bioremediation process provide an edge over traditional physico-chemical remediation for managing pesticide pollution. In the present study, lindane degradation was studied by using a white-rot fungus, Ganoderma lucidum GL-2 strain, grown on rice bran substrate for ligninolytic enzyme induction at 30 °C and pH 5.6 after incorporation of 4 and 40 ppm lindane in liquid as well as solid-state fermentation. The estimation of lindane residue was carried out by gas chromatography coupled to mass spectrometry (GC-MS) in the selected ion monitoring mode. In liquid-state fermentation, 100.13 U/ml laccase, 50.96 U/ml manganese peroxidase and 17.43 U/ml lignin peroxidase enzymes were obtained with a maximum of 75.50 % lindane degradation on the 28th day of incubation period, whereas under the solid-state fermentation system, 156.82 U/g laccase, 80.11 U/g manganese peroxidase and 18.61 U/g lignin peroxidase enzyme activities with 37.50 % lindane degradation were obtained. The lindane incorporation was inhibitory to the production of ligninolytic enzymes and its own degradation but was stimulatory for extracellular protein production. The dialysed crude enzyme extracts of ligninolytic enzymes were though efficient in lindane degradation during in vitro studies, but their efficiencies tend to decrease with an increase in the incubation period. Hence, lindane-degrading capabilities of G. lucidum GL-2 strain make it a potential candidate for managing lindane bioremediation at contaminated sites.
Salway, Kurtis D; Tattersall, Glenn J; Stuart, Jeffrey A
2010-11-01
Estivation is an adaptive response to environments characterized by elevated temperatures and desiccative stress, as may occur during summer dry seasons. Similar to diapause and hibernation, it is characterized by low levels of activity, a drastically suppressed metabolic rate and enhanced stress resistance. We tested the hypothesis that Achatina fulica, a pulmonate land snail, enhances stress resistance during estivation and/or arousal by upregulating intracellular antioxidant defenses in the heart, kidney, hepatopancreas and foot tissues. No statistically significant changes in mitochondrial or cytosolic superoxide dismutase levels or activities, or glutathione peroxidase, glutathione reductase or catalase activities were associated with estivation in any tissue, however. In contrast, during arousal from estivation, activities of several antioxidant enzymes increased in heart, hepatopancreas and foot. In heart, a rapid increase in MnSOD protein levels was observed that peaked at 2h post arousal, but no such change was observed in CuZnSOD protein levels. Glutathione peroxidase activity was upregulated at 1h post arousal and remained elevated until 8h post arousal in heart tissue. Glutathione peroxidase was also upregulated at 24h post arousal in foot tissue. Glutathione reductase activity was upregulated at 4h post arousal in heart and foot tissues whereas catalase activity showed no changes. Markers of lipid peroxidation and protein damage revealed no significant increases during estivation or arousal. Therefore, antioxidant enzymes may play a role in oxidative stress defense specifically during arousal from estivation in A. fulica. Copyright 2010 Elsevier Inc. All rights reserved.
Logical regulation of the enzyme-like activity of gold nanoparticles by using heavy metal ions.
Lien, Chia-Wen; Chen, Ying-Chieh; Chang, Huan-Tsung; Huang, Chih-Ching
2013-09-07
In this study we employed self-deposition and competitive or synergistic interactions between metal ions and gold nanoparticles (Au NPs) to develop OR, AND, INHIBIT, and XOR logic gates through regulation of the enzyme-like activity of Au NPs. In the presence of various metal ions (Ag(+), Bi(3+), Pb(2+), Pt(4+), and Hg(2+)), we found that Au NPs (13 nm) exhibited peroxidase-, oxidase-, or catalase-like activity. After Ag(+), Bi(3+), or Pb(2+) ions had been deposited on the Au NPs, the particles displayed strong peroxidase-like activity; on the other hand, they exhibited strong oxidase- and catalase-like activities after reactions with Ag(+)/Hg(2+) and Hg(2+)/Bi(3+) ions, respectively. The catalytic activities of these Au NPs arose mainly from the various oxidation states of the surface metal atoms/ions. Taking advantage of this behavior, we constructed multiplex logic operations-OR, AND, INHIBIT, and XOR logic gates-through regulation of the enzyme-like activity after the introduction of metal ions into the Au NP solution. When we deposited Hg(2+) and/or Bi(3+) ions onto the Au NPs, the catalase-like activities of the Au NPs were strongly enhanced (>100-fold). Therefore, we could construct an OR logic gate by using Hg(2+)/Bi(3+) as inputs and the catalase-like activity of the Au NPs as the output. Likewise, we constructed an AND logic gate by using Pt(4+) and Hg(2+) as inputs and the oxidase-like activity of the Au NPs as the output; the co-deposition of Pt and Hg atoms/ions on the Au NPs was responsible for this oxidase-like activity. Competition between Pb(2+) and Hg(2+) ions for the Au NPs allowed us to develop an INHIBIT logic gate-using Pb(2+) and Hg(2+) as inputs and the peroxidase-like activity of the Au NPs as the output. Finally, regulation of the peroxidase-like activity of the Au NPs through the two inputs Ag(+) and Bi(3+) enabled us to construct an XOR logic gate.
Fernández-Fueyo, Elena; Ruiz-Dueñas, Francisco J.; Miki, Yuta; Martínez, María Jesús; Hammel, Kenneth E.; Martínez, Angel T.
2012-01-01
The white-rot fungus Ceriporiopsis subvermispora delignifies lignocellulose with high selectivity, but until now it has appeared to lack the specialized peroxidases, termed lignin peroxidases (LiPs) and versatile peroxidases (VPs), that are generally thought important for ligninolysis. We screened the recently sequenced C. subvermispora genome for genes that encode peroxidases with a potential ligninolytic role. A total of 26 peroxidase genes was apparent after a structural-functional classification based on homology modeling and a search for diagnostic catalytic amino acid residues. In addition to revealing the presence of nine heme-thiolate peroxidase superfamily members and the unexpected absence of the dye-decolorizing peroxidase superfamily, the search showed that the C. subvermispora genome encodes 16 class II enzymes in the plant-fungal-bacterial peroxidase superfamily, where LiPs and VPs are classified. The 16 encoded enzymes include 13 putative manganese peroxidases and one generic peroxidase but most notably two peroxidases containing the catalytic tryptophan characteristic of LiPs and VPs. We expressed these two enzymes in Escherichia coli and determined their substrate specificities on typical LiP/VP substrates, including nonphenolic lignin model monomers and dimers, as well as synthetic lignin. The results show that the two newly discovered C. subvermispora peroxidases are functionally competent LiPs and also suggest that they are phylogenetically and catalytically intermediate between classical LiPs and VPs. These results offer new insight into selective lignin degradation by C. subvermispora. PMID:22437835
Endothelial Targeting of Semi-permeable Polymer Nanocarriers for Enzyme Therapies
Dziubla, Thomas D; Shuvaev, Vladimir V.; Hong, Nan Kang; Hawkins, Brian; Muniswamy, Madesh; Takano, Hajime; Simone, Eric; Nakada, Marian T.; Fisher, Aron; Albelda, Steven M.; Muzykantov, Vladimir R.
2007-01-01
The medical utility of proteins, e.g. therapeutic enzymes, is greatly restricted by their liable nature and inadequate delivery. Most therapeutic enzymes do not accumulate in their targets and are inactivated by proteases. Targeting of enzymes encapsulated into substrate-permeable Polymeric Nano-Carriers (PNC) impermeable for proteases might overcome these limitations. To test this hypothesis, we designed endothelial targeted PNC loaded with catalase, the H2O2-detoxifying enzyme, and tested if this approach protects against vascular oxidative stress, a pathological process implicated in ischemia-reperfusion and other disease conditions. Encapsulation of catalase (MW 240KD), peroxidase (MW 42kD) and xanthine oxidase (XO, MW 300 kD) into ~300nm diameter PNC composed of co-polymers of PEG-PLGA (polyethylene glycol and poly-lactic/poly-glycolic acid) was in the range ~10% for all enzymes. PNC/catalase and PNC/peroxidase were protected from external proteolysis and exerted the enzymatic activity on their PNC diffusible substrates, H2O2 and ortho-phenylendiamine, whereas activity of encapsulated XO was negligible due to polymer impermeability to the substrate. PNC targeted to platelet-endothelial cell adhesion molecule-1 delivered active encapsulated catalase to endothelial cells and protected the endothelium against oxidative stress in cell culture and animal studies. Vascular targeting of PNC-loaded detoxifying enzymes may find wide medical applications including management of oxidative stress and other toxicities. PMID:17950837
Kim, Jihoon; Chang, Ji-Youn; Kim, Yoon-Young; Kim, Moon-Jong; Kho, Hong-Seop
2018-05-01
To investigate the effects of the molecular weight of hyaluronic acid on its viscosity and enzymatic activities of lysozyme and peroxidase in solution and on the hydroxyapatite surface. Hyaluronic acids of four different molecular weights (10 kDa, 100 kDa, 1 MDa, and 2 MDa), hen egg-white lysozyme, bovine lactoperoxidase, and human whole saliva were used. Viscosity values of hyaluronic acids were measured using a cone-and-plate viscometer at six different concentrations (0.1-5.0 mg/mL). Enzymatic activities of lysozyme and peroxidase were examined by hydrolysis of fluorescein-labeled Micrococcus lysodeikticus and oxidation of fluorogenic 2',7'-dichlorofluorescein to fluorescing 2',7'-dichlorofluorescein, respectively. In solution assays, only 2 MDa-hyaluronic acid significantly inhibited lysozyme activities in saliva. In surface assays, hyaluronic acids inhibited lysozyme and peroxidase activities; the inhibitory activities were more apparent with high-molecular-weight ones in saliva than in purified enzymes. The 100 kDa-hyaluronic acid at 5.0 mg/mL, 1 MDa-one at 0.5 mg/mL, and 2 MDa-one at 0.2 mg/mL showed viscosity values similar to those of human whole saliva at a shear rate range required for normal oral functions. The differences among the influences of the three conditions on the enzymatic activities were not statistically significant. High-molecular-weight hyaluronic acids at low concentration and low-molecular-weight ones at high concentration showed viscosity values similar to those of human whole saliva. Inhibitory effects of hyaluronic acids on lysozyme and peroxidase activities were more significant with high-molecular-weight ones on the surface and in saliva compared with in solution and on purified enzymes. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bhau, B S; Borah, Bitupon; Ahmed, Reshma; Phukon, P; Gogoi, Barbi; Sarmah, D K; Lal, M; Wann, S B
2016-04-01
Plants adapt themselves to overcome adverse environmental conditions, and this involves a plethora of concurrent cellular activities. Physiological experiments or metabolic profiling can quantify this response. Among several diseases of Pogostemon cablin (Blanco) Benth. (Patchouli), root-knot nematode infection caused by Meloidogyne incognita (Kofoid and White) Chitwood causes severe damage to the plant and hence, the oil production. In the present study, we identified M. incognita morphologically and at molecular level using sequenced characterized amplified region marker (SCAR). M. incognita was artificially inoculated at different levels of second stage juveniles (J₂) to examine the effect on Patchouli plant growth parameters. Peroxidase and polyphenol oxidase enzyme activity and changes in the total phenol and chlorophyll contents in M. incognita was also evaluated in response to infection. The results have demonstrated that nematode infestation leads to increased peroxidase activities in the leaves of the patchouli plants and thereby, increase in phenolic content as a means of defence against nematode infestation. Chlorophyll content was also found decreased but no changes in polyphenol oxidase enzyme activity.
Kergaravat, Silvina V; Pividori, Maria Isabel; Hernandez, Silvia R
2012-01-15
The electrochemical detection for horseradish peroxidase-cosubstrate-H(2)O(2) systems was optimized. o-Phenilendiamine, phenol, hydroquinone, pyrocatechol, p-chlorophenol, p-aminophenol and 3,3'-5,5'-tetramethylbenzidine were evaluated as cosubstrates of horseradish peroxidase (HRP) enzyme. Therefore, the reaction time, the addition sequence of the substrates, the cosubstrate:H(2)O(2) ratio and the electrochemical techniques were elected by one-factor optimization assays while the buffer pH, the enzymatic activity and cosubstrate and H(2)O(2) concentrations for each system were selected simultaneously by response surface methodology. Then, the calibration curves for seven horseradish peroxidase-cosubstrate-H(2)O(2) systems were built and the analytic parameters were analyzed. o-Phenilendiamine was selected as the best cosubstrate for the HRP enzyme. For this system the reaction time of 60s, the phosphate buffer pH 6.0, and the concentrations of 2.5×10(-4)molL(-1) o-phenilendiamine and of 1.25×10(-4)molL(-1) H(2)O(2) were chosen as the optimal conditions. In these conditions, the calibration curve of horseradish peroxidase by square wave voltammetry showed a linearity range from 9.5×10(-11) to 1.9×10(-8)molL(-1) and the limit of detection of 3.8×10(-11)molL(-1) with RSD% of 0.03% (n=3). Copyright © 2011 Elsevier B.V. All rights reserved.
Hoffman, D.J.; Ohlendorf, H.M.; Marn, C.M.; Pendleton, G.W.
1998-01-01
Adult male greater scaup (Aythya marila) (GS), surf scoters (Melanitta perspicillata)(SS), and ruddy ducks (Oxyura jamaicensis) (RD) were collected from Suisun Bay and coastal Tomales Bay in the greater San Francisco Bay area to assess exposure to inorganic contaminants. Hepatic selenium (Se) concentrations were highest in GS (geometric mean = 67 ppm, dw) and SS (119 ppm) in Suisun Bay, whereas hepatic mercury (Hg) was highest (19 ppm) in GS and SS from Tomales Bay. Hepatic Se and Hg were lower in RD and did not differ between locations. Hepatic supernatants were assayed for enzymes related to glutathione metabolism and antioxidant activity including: glucose-6-phosphate dehydrogenase (G-6-PDH), glutathione peroxidase (GSH-peroxidase), glutathione reductase (GSSG-reductase), and glutathione-S-transferase (GSH-transferase). GSH-peroxidase activity was higher in SS and RD, and G-6-PDH higher in GS and SS from Suisun Bay than Tomales Bay. GSSG-reductase was higher in SS from Suisun Bay. The ratio of oxidized glutathione (GSSG) to reduced glutathione (GSH) was greater in all species from Tomales Bay. The following significant relationships were found in one or more species with increasing hepatic Hg concentration: lower body, liver and heart weights; decreased hepatic GSH concentration, G-6-PDH and GSH-peroxidase activities; increased ratio of GSSG to GSH, and increased GSSG-reductase activity. With increasing hepatic Se concentration, GSH-peroxidase increased but GSH decreased. It is concluded that measurement of associated enzymes in conjunction with thiol status may be a useful bioindicator to discriminate between Hg and Se effects. Concentrations of mercury and selenium and variable affected have been associated with adverse effects on reproduction and neurological function in experimental studies with mallards.
Fomenko, Dmitri E.; Koc, Ahmet; Agisheva, Natalia; Jacobsen, Michael; Kaya, Alaattin; Malinouski, Mikalai; Rutherford, Julian C.; Siu, Kam-Leung; Jin, Dong-Yan; Winge, Dennis R.; Gladyshev, Vadim N.
2011-01-01
Hydrogen peroxide is thought to regulate cellular processes by direct oxidation of numerous cellular proteins, whereas antioxidants, most notably thiol peroxidases, are thought to reduce peroxides and inhibit H2O2 response. However, thiol peroxidases have also been implicated in activation of transcription factors and signaling. It remains unclear if these enzymes stimulate or inhibit redox regulation and whether this regulation is widespread or limited to a few cellular components. Herein, we found that Saccharomyces cerevisiae cells lacking all eight thiol peroxidases were viable and withstood redox stresses. They transcriptionally responded to various redox treatments, but were unable to activate and repress gene expression in response to H2O2. Further studies involving redox transcription factors suggested that thiol peroxidases are major regulators of global gene expression in response to H2O2. The data suggest that thiol peroxidases sense and transfer oxidative signals to the signaling proteins and regulate transcription, whereas a direct interaction between H2O2 and other cellular proteins plays a secondary role. PMID:21282621
Heterologous Production and Characterization of Two Glyoxal Oxidases from Pycnoporus cinnabarinus
Daou, Marianne; Piumi, François; Cullen, Daniel; Record, Eric
2016-01-01
ABSTRACT The genome of the white rot fungus Pycnoporus cinnabarinus includes a large number of genes encoding enzymes implicated in lignin degradation. Among these, three genes are predicted to encode glyoxal oxidase, an enzyme previously isolated from Phanerochaete chrysosporium. The glyoxal oxidase of P. chrysosporium is physiologically coupled to lignin-oxidizing peroxidases via generation of extracellular H2O2 and utilizes an array of aldehydes and α-hydroxycarbonyls as the substrates. Two of the predicted glyoxal oxidases of P. cinnabarinus, GLOX1 (PciGLOX1) and GLOX2 (PciGLOX2), were heterologously produced in Aspergillus niger strain D15#26 (pyrG negative) and purified using immobilized metal ion affinity chromatography, yielding 59 and 5 mg of protein for PciGLOX1 and PciGLOX2, respectively. Both proteins were approximately 60 kDa in size and N-glycosylated. The optimum temperature for the activity of these enzymes was 50°C, and the optimum pH was 6. The enzymes retained most of their activity after incubation at 50°C for 4 h. The highest relative activity and the highest catalytic efficiency of both enzymes occurred with glyoxylic acid as the substrate. The two P. cinnabarinus enzymes generally exhibited similar substrate preferences, but PciGLOX2 showed a broader substrate specificity and was significantly more active on 3-phenylpropionaldehyde. IMPORTANCE This study addresses the poorly understood role of how fungal peroxidases obtain an in situ supply of hydrogen peroxide to enable them to oxidize a variety of organic and inorganic compounds. This cooperative activity is intrinsic in the living organism to control the amount of toxic H2O2 in its environment, thus providing a feed-on-demand scenario, and can be used biotechnologically to supply a cheap source of peroxide for the peroxidase reaction. The secretion of multiple glyoxal oxidases by filamentous fungi as part of a lignocellulolytic mechanism suggests a controlled system, especially as these enzymes utilize fungal metabolites as the substrates. Two glyoxal oxidases have been isolated and characterized to date, and the differentiation of the substrate specificity of the two enzymes produced by Pycnoporus cinnabarinus illustrates the alternative mechanisms existing in a single fungus, together with the utilization of these enzymes to prepare platform chemicals for industry. PMID:27260365
Noble, N A; Cabalum, T C; Nathanielsz, P W; Tanaka, K R
1982-01-01
Hematological data and the activities of 21 red cell enzymes were measured in 8 nonpregnant ewes, 13 chronically catheterized fetuses at 125-135 days of gestation, and 8 of their mothers. In addition, 7 lambs were followed from birth to 17 days of age. Fetal sheep red cells have dramatically increased activities for 17 of 21 enzymes measured compared with adult nonpregnant ewes. The pattern of decline of enzyme activities with development varies considerably among enzymes. The activity of seven enzymes showed an orderly decline from fetal to adult life. For seven enzymes very little or no decline in activity was observed between 125 and 135 days of gestation and birth. Pyruvate kinase activity declined to adult levels by birth. Phosphoglucose isomerase and nucleoside phosphorylase activity increased, and glutathione peroxidase activity decreased in newborn lamb red cells compared to fetal cells. Differences in blood cell variables were also found among these groups.
Guo, W L; Chen, R G; Gong, Z H; Yin, Y X; Ahmed, S S; He, Y M
2012-11-28
To elucidate how physiological and biochemical mechanisms of chilling stress are regulated by abscisic acid (ABA) pretreatment, pepper variety (cv. 'P70') seedlings were pretreated with 0.57 mM ABA for 72 h and then subjected to chilling stress at 10°/6°C (day/night). Chilling stress caused severe necrotic lesions on the leaves and increased malondialdehyde and H(2)O(2) levels. Activities of monodehydroascorbate reductase (DHAR), dehydroascorbate reductase, glutathione reductase, guaiacol peroxidase, ascorbate peroxidase, ascorbate, and glutathione increased due to chilling stress during the 72 h, while superoxide dismutase and catalase activities decreased during 24 h, suggesting that chilling stress activates the AsA-GSH cycle under catalase deactivation in pepper leaves. ABA pretreatment induced significant increases in the above-mentioned enzyme activities and progressive decreases in ascorbate and glutathione levels. On the other hand, ABA-pretreated seedlings under chilling stress increased superoxide dismutase and guaiacol peroxidase activities and lowered concentrations of other antioxidants compared with untreated chilling-stressed plants. These seedlings showed concomitant decreases in foliage damage symptoms, and levels of malondialdehyde and H(2)O(2). Induction of Mn-SOD and POD was observed in chilling-stressed plants treated with ABA. The expression of DHAR1 and DHAR2 was altered by chilling stress, but it was higher in the presence than in the absence of ABA at 24 h. Overall, the results indicate that exogenous application of ABA increases tolerance of plants to chilling-induced oxidative damage, mainly by enhancing superoxide dismutase and guaiacol peroxidase activities and related gene expression.
Rigsby, Chad M; Herms, Daniel A; Bonello, Pierluigi; Cipollini, Don
2016-08-01
Emerald ash borer (EAB) is an invasive beetle native to Asia that infests and kills ash (Fraxinus spp.) in North America. Previous experiments indicated that larvae feeding on co-evolved, resistant Manchurian ash (F. mandshurica) have increased antioxidant and quinone-protective enzyme activities compared to larvae feeding on susceptible North American species. Here, we examined mechanisms of host-generated oxidative and quinone-based stress and other putative defenses in Manchurian ash and the closely related and chemically similar, but susceptible, black ash (F. nigra), with and without exogenous application of methyl jasmonate (MeJA) to induce resistance mechanisms. Peroxidase activities were 4.6-13.3 times higher in Manchurian than black ash, although both species appeared to express the same three peroxidase isozymes. Additionally, peroxidase-mediated protein cross-linking activity was stronger in Manchurian ash. Polyphenol oxidase, β-glucosidase, chitinase, and lipoxygenase activities also were greater in Manchurian ash, but only lipoxygenase activity increased with MeJA application. Phloem H 2 O 2 levels were similar and were increased by MeJA application in both species. Lastly, trypsin inhibitor activity was detected in methanol and water extracts that were not allowed to oxidize, indicating the presence of phenolic-based trypsin inhibitors. However, no proteinaceous trypsin inhibitor activity was detected in either species. In response to MeJA application, Manchurian ash had higher trypsin inhibitor activity than black ash using the unoxidized water extracts, but no treatment effects were detected using methanol extracts. Based on these results we hypothesize that peroxidases, lignin polymerization, and quinone generation contribute to the greater resistance to EAB displayed by Manchurian ash.
Wyrwicka, Anna; Urbaniak, Magdalena
2016-01-01
The present study investigates the effect of soil amended with sewage sludge on oxidative changes in zucchini and cucumber plants (Cucurbitaceae) and the consequent activation of their antioxidative systems and detoxification mechanisms. The plants were grown in pots containing soil amended with three concentrations of sewage sludge (1.8 g, 5.4 g and 10.8 g per pot), while controls were potted with vegetable soil. The activities of three antioxidative enzymes, ascorbate peroxidase (APx), catalase (CAT) and guaiacol peroxidase (POx), were assessed, as well as of the detoxifying enzyme S-glutathione transferase (GST). Lipid peroxidation was evaluated by measuring the extent of oxidative damage; α-tocopherol content, the main lipophilic antioxidant, was also measured. Visible symptoms of leaf blade damage after sewage sludge application occurred only on the zucchini plants. The zucchini and cucumber plants showed a range of enzymatic antioxidant responses to sewage sludge application. While APx and POx activities increased significantly with increasing sludge concentration in the zucchini plants, they decreased in the cucumber plants. Moreover, although the activity of these enzymes increased gradually with increasing doses of sewage sludge, these levels fell at the highest dose. An inverse relationship between peroxidases activity and CAT activity was observed in both investigated plant species. In contrast, although GST activity increased progressively with sludge concentration in both the zucchini and cucumber leaves, the increase in GST activity was greater in the zucchini plants, being visible at the lowest dose used. The results indicate that signs of sewage sludge toxicity were greater in zucchini than cucumber, and its defense reactions were mainly associated with increases in APx, POx and GST activity.
Wyrwicka, Anna; Urbaniak, Magdalena
2016-01-01
The present study investigates the effect of soil amended with sewage sludge on oxidative changes in zucchini and cucumber plants (Cucurbitaceae) and the consequent activation of their antioxidative systems and detoxification mechanisms. The plants were grown in pots containing soil amended with three concentrations of sewage sludge (1.8 g, 5.4 g and 10.8 g per pot), while controls were potted with vegetable soil. The activities of three antioxidative enzymes, ascorbate peroxidase (APx), catalase (CAT) and guaiacol peroxidase (POx), were assessed, as well as of the detoxifying enzyme S-glutathione transferase (GST). Lipid peroxidation was evaluated by measuring the extent of oxidative damage; α-tocopherol content, the main lipophilic antioxidant, was also measured. Visible symptoms of leaf blade damage after sewage sludge application occurred only on the zucchini plants. The zucchini and cucumber plants showed a range of enzymatic antioxidant responses to sewage sludge application. While APx and POx activities increased significantly with increasing sludge concentration in the zucchini plants, they decreased in the cucumber plants. Moreover, although the activity of these enzymes increased gradually with increasing doses of sewage sludge, these levels fell at the highest dose. An inverse relationship between peroxidases activity and CAT activity was observed in both investigated plant species. In contrast, although GST activity increased progressively with sludge concentration in both the zucchini and cucumber leaves, the increase in GST activity was greater in the zucchini plants, being visible at the lowest dose used. The results indicate that signs of sewage sludge toxicity were greater in zucchini than cucumber, and its defense reactions were mainly associated with increases in APx, POx and GST activity. PMID:27327659
Hou, Chen; Wang, Yang; Ding, Qinghua; Jiang, Long; Li, Ming; Zhu, Weiwei; Pan, Duo; Zhu, Hao; Liu, Mingzhu
2015-11-28
This work reports a facile and easily-achieved approach for enzyme immobilization by embedding glucose oxidase (GOx) in magnetic zeolitic imidazolate framework 8 (mZIF-8) via a de novo approach. As a demonstration of the power of such materials, the resulting GOx embedded mZIF-8 (mZIF-8@GOx) was utilized as a colorimetric sensor for rapid detection of glucose. This method was constructed on the basis of metal-organic frameworks (MOFs), which possessed very fascinating peroxidase-like properties, and the cascade reaction for the visual detection of glucose was combined into one step through the mZIF-8@GOx based mimic multi-enzyme system. After characterization by electron microscopy, X-ray diffraction, nitrogen sorption, fourier transform infrared spectroscopy and vibrating sample magnetometry, the as-prepared mZIF-8@GOx was confirmed with the robust core-shell structure, the monodisperse nanoparticle had an average diameter of about 200 nm and displayed superparamagnetism with a saturation magnetization value of 40.5 emu g(-1), it also exhibited a large surface area of 396.10 m(2) g(-1). As a peroxidase mimic, mZIF-8 was verified to be highly stable and of low cost, and showed a strong affinity towards H2O2. Meanwhile, the mZIF-8 embedded GOx also exhibited improved activity, stability and greatly enhanced selectivity in glucose detection. Moreover, the mZIF-8@GOx had excellent recyclability with high activity (88.7% residual activity after 12 times reuse).
Argenti, L E; Parmeggiani, B S; Leipnitz, G; Weber, A; Pereira, G R; Bustamante-Filho, I C
2018-02-01
Although boar semen productivity is affected by seasonality, its effects are not equal among different regions which raise concerns regarding the profitability of boar stud farms. Therefore, the goals of this study were (i) to evaluate the seasonal effect on semen production in a commercial boar stud farm located in a subtropical climate region and (ii) to verify whether the activities of superoxide dismutase and glutathione peroxidase in spermatozoa and seminal plasma were associated with seminal traits of fresh and cooled semen. Nine boars were collected twice per season, and routine seminal parameter analyses were performed together with superoxide dismutase and glutathione peroxidase activities in seminal plasma and spermatozoa. Despite a reduction in sperm concentration in spring and summer, most seminal parameters were constant year-round. Temperature-humidity index was higher in the summer compared to spring, autumn and winter (p < .05). Superoxide dismutase activity in spermatozoa was increased in summer compared to autumn and winter (p < .05). The activities of both enzymes in seminal plasma and spermatozoa glutathione peroxidase remained unaltered throughout the seasons. In conclusion, seasonality showed little influence in overall boar seminal parameters despite microclimatic differences among seasons, and spermatozoa collected during summer increased superoxide dismutase activity. © 2018 Blackwell Verlag GmbH.
Knop, Doriv; Yarden, Oded; Hadar, Yitzhak
2015-02-01
Mushrooms of the genus Pleurotus are comprised of cultivated edible ligninolytic fungi with medicinal properties and a wide array of biotechnological and environmental applications. Like other white-rot fungi (WRF), they are able to grow on a variety of lignocellulosic biomass substrates and degrade both natural and anthropogenic aromatic compounds. This is due to the presence of the non-specific oxidative enzymatic systems, which are mainly consisted of lacasses, versatile peroxidases (VPs), and short manganese peroxidases (short-MnPs). Additional, less studied, peroxidase are dye-decolorizing peroxidases (DyPs) and heme-thiolate peroxidases (HTPs). During the past two decades, substantial information has accumulated concerning the biochemistry, structure and function of the Pleurotus ligninolytic peroxidases, which are considered to play a key role in many biodegradation processes. The production of these enzymes is dependent on growth media composition, pH, and temperature as well as the growth phase of the fungus. Mn(2+) concentration differentially affects the expression of the different genes. It also severs as a preferred substrate for these preoxidases. Recently, sequencing of the Pleurotus ostreatus genome was completed, and a comprehensive picture of the ligninolytic peroxidase gene family, consisting of three VPs and six short-MnPs, has been established. Similar enzymes were also discovered and studied in other Pleurotus species. In addition, progress has been made in the development of molecular tools for targeted gene replacement, RNAi-based gene silencing and overexpression of genes of interest. These advances increase the fundamental understanding of the ligninolytic system and provide the opportunity for harnessing the unique attributes of these WRF for applied purposes.
Salicylic acid and calcium-induced protection of wheat against salinity.
Al-Whaibi, Mohamed H; Siddiqui, Manzer H; Basalah, Mohammed O
2012-07-01
Soil salinity is one of the important environmental factors that produce serious agricultural problems. The objective of the present study was to determine the interactive effect of salicylic acid (SA) and calcium (Ca) on plant growth, photosynthetic pigments, proline (Pro) concentration, carbonic anhydrase (CA) activity and activities of antioxidant enzymes of Triticum aestivum L. (cv. Samma) under salt stress. Application of 90 mM of NaCl reduced plant growth (plant height, fresh weight (FW) and dry weight (DW), chlorophyll (Chl) a, Chl b, CA activity) and enhanced malondialdehyde (MDA) and Pro concentration. However, the application of SA or Ca alone as well as in combination markedly improved plant growth, photosynthetic pigments, Pro concentration, CA activity and activities of antioxidant enzymes peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR) and ascorbate peroxidase (APX) under salt stress. It was, therefore, concluded that application of SA and Ca alone as well as in combination ameliorated the adverse effect of salinity, while combined application proved more effective to reduce the oxidative stress generated by NaCl through reduced MDA accumulation, Chl a/b ratio and Chls degradation and enhanced activities of antioxidant enzymes.
Induced resistance enzymes in wild plants-do 'early birds' escape from pathogen attack?
Heil, Martin; Ploss, Kerstin
2006-09-01
Systemic acquired resistance (SAR) of plants to pathogens is a well-defined phenomenon. The underlying signalling pathways and its application in crop protection are intensively studied. However, most studies are conducted on crop plants or on Arabidopsis as a model plant. The taxonomic distribution of this phenomenon and its dependence on life history are thus largely unknown. We quantified activities of three classes of resistance-related enzymes in 18 plant species to investigate whether plants with varying life histories differ in their investment in disease resistance. Enzyme activities were quantified in untreated plants, and in plants induced with BION, a chemical resistance elicitor. All species showed constitutive activities of chitinase, peroxidase, or glucanase. However, constitutive chitinase activities varied by 30 times, and peroxidase by 50 times, among species. Several species did not respond to the induction treatment, while enzyme activities in other species increased more than threefold after BION application. Plant species differ dramatically in the presence and inducibility of resistance enzymes. This variation could be related to life history: While all resistance enzymes were significantly induced in larger perennial plants that flower during summer, spring geophytes hardly showed inducible resistance. These plants grow in an environment that is characterised by a low-pathogen pressure, and thus may simply 'escape' from infection. Our study presents the first comparative data set on resistance-related enzymes in noncultivated plants. The current view on SAR-narrowed by the concentration on cultivated crops-is not sufficient to understand the ecological and evolutionary relevance of this widespread plant trait.
Manuka honey protects middle-aged rats from oxidative damage
Jubri, Zakiah; Rahim, Noor Baitee Abdul; Aan, Goon Jo
2013-01-01
OBJECTIVE: This study aimed to determine the effect of manuka honey on the oxidative status of middle-aged rats. METHOD: Twenty-four male Sprague-Dawley rats were divided into young (2 months) and middle-aged (9 months) groups. They were further divided into two groups each, which were either fed with plain water (control) or supplemented with 2.5 g/kg body weight of manuka honey for 30 days. The DNA damage level was determined via the comet assay, the plasma malondialdehyde level was determined using high performance liquid chromatography, and the antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase, glutathione peroxidase and catalase) were determined spectrophotometrically in the erythrocytes and liver. The antioxidant activities were measured using 1,1-diphenyl-2-picrylhydrazyl and ferric reducing/antioxidant power assays, and the total phenolic content of the manuka was analyzed using UV spectrophotometry and the Folin-Ciocalteu method, respectively. RESULTS: Supplementation with manuka honey reduced the level of DNA damage, the malondialdehyde level and the glutathione peroxidase activity in the liver of both the young and middle-aged groups. However, the glutathione peroxidase activity was increased in the erythrocytes of middle-aged rats given manuka honey supplementation. The catalase activity was reduced in the liver and erythrocytes of both young and middle-aged rats given supplementation. Manuka honey was found to have antioxidant activity and to have a high total phenolic content. These findings showed a strong correlation between the total phenolic content and antioxidant activity. CONCLUSIONS: Manuka honey reduces oxidative damage in young and middle-aged rats; this effect could be mediated through the modulation of its antioxidant enzyme activities and its high total phenolic content. Manuka honey can be used as an alternative supplement at an early age to improve the oxidative status. PMID:24270958
Manuka honey protects middle-aged rats from oxidative damage.
Jubri, Zakiah; Rahim, Noor Baitee Abdul; Aan, Goon Jo
2013-11-01
This study aimed to determine the effect of manuka honey on the oxidative status of middle-aged rats. Twenty-four male Sprague-Dawley rats were divided into young (2 months) and middle-aged (9 months) groups. They were further divided into two groups each, which were either fed with plain water (control) or supplemented with 2.5 g/kg body weight of manuka honey for 30 days. The DNA damage level was determined via the comet assay, the plasma malondialdehyde level was determined using high performance liquid chromatography, and the antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase, glutathione peroxidase and catalase) were determined spectrophotometrically in the erythrocytes and liver. The antioxidant activities were measured using 1,1-diphenyl-2-picrylhydrazyl and ferric reducing/antioxidant power assays, and the total phenolic content of the manuka was analyzed using UV spectrophotometry and the Folin-Ciocalteu method, respectively. Supplementation with manuka honey reduced the level of DNA damage, the malondialdehyde level and the glutathione peroxidase activity in the liver of both the young and middle-aged groups. However, the glutathione peroxidase activity was increased in the erythrocytes of middle-aged rats given manuka honey supplementation. The catalase activity was reduced in the liver and erythrocytes of both young and middle-aged rats given supplementation. Manuka honey was found to have antioxidant activity and to have a high total phenolic content. These findings showed a strong correlation between the total phenolic content and antioxidant activity. Manuka honey reduces oxidative damage in young and middle-aged rats; this effect could be mediated through the modulation of its antioxidant enzyme activities and its high total phenolic content. Manuka honey can be used as an alternative supplement at an early age to improve the oxidative status.
Development of the radical-stable Coprinus cinereus peroxidase (CiP) by blocking the radical attack.
Kim, Su Jin; Joo, Jeong Chan; Kim, Han Sang; Kwon, Inchan; Song, Bong Keun; Yoo, Young Je; Kim, Yong Hwan
2014-11-10
Despite the potential use of peroxidases as industrial biocatalysts, their practical application is often impeded due to suicide inactivation by radicals generated in oxidative reactions. Using a peroxidase from Coprinus cinereus (CiP) as a model enzyme, we revealed a dominant factor for peroxidase inactivation during phenol oxidation, and we engineered radical-stable mutants by site-directed mutagenesis of an amino acid residue susceptible to modification by phenoxyl radical. Mass spectrometry analysis of inactivated CiP identified an adduct between F230 and a phenoxyl radical, and subsequently, the F230 residue was mutated to amino acids that resisted radical coupling. Of the F230 mutants, the F230A mutant showed the highest stability against radical inactivation, retaining 80% of its initial activity, while the wild-type protein was almost completely inactivated. The F230A mutant also exhibited a 16-fold higher turnover of the phenol substrate compared with the wild-type enzyme. Furthermore, the F230A mutant was stable during the oxidation of other phenolic compounds, including m-cresol and 3-methoxyphenol. No structural changes were observed by UV-vis and CD spectra of CiP after radical coupling, implying that the F230-phenol radical adduct inactivated CiP by blocking substrate access to the active site. Our novel strategy can be used to improve the stability of other peroxidases inactivated by radicals. Copyright © 2014 Elsevier B.V. All rights reserved.
Production of ligninolytic enzymes by solid-state fermentation using Pleurotus eryngii.
Akpinar, Merve; Urek, Raziye Ozturk
2012-01-01
Pleurotus eryngii (DC.) Gillet (MCC58) was investigated for its ability to produce various ligninolytic enzymes such as laccase (Lac), manganese peroxidase (MnP), aryl alcohol oxidase (AAO), and lignin peroxidase (LiP) by solid-state fermentation (SSF), which was carried out using a support substrate from the fruit juice industry. The chemical content of grape waste from this industry was studied. Also, the production patterns of these extracellular enzymes were researched during the growth of the organism for a period of 20 days and the protein, reducing sugar, and nitrogen levels were monitored during the stationary cultivation. The highest Lac activity was obtained as 2247.62 ± 75 U/L on day 10 in the presence of 750 µM Mn²⁺, while the highest MnP activity was attained as 2198.44 ± 65 U/L on day 15 in the presence of 500 µM Mn²⁺. Decolorization of methyl orange and reactive red 2 azo dyes was also achieved with ligninolytic enzymes, produced in SSF of P. eryngii.
Antifungal effects of peroxidase systems.
Lehrer, R I
1969-08-01
In the presence of hydrogen peroxide and either potassium iodide, sodium chloride, or potassium bromide, purified human myeloperoxidase was rapidly lethal to several species of Candida. Its candidacidal activity was inhibited by cyanide, fluoride, and azide, and by heat inactivation of the enzyme. A hydrogen peroxidegenerating system consisting of d-amino acid oxidase, flavine-adenine dinucleotide, and d-alanine could replace hydrogen peroxide in the candidacidal system. Horseradish peroxidase and human eosinophil granules also exerted candidacidal activity in the presence of iodide and hydrogen peroxide; however, unlike myeloperoxidase or neutrophil granules, these peroxidase sources were inactive when chloride replaced iodide. Cells of Saccharomyces, Geotrichum, and Rhodotorula species, and spores of Aspergillus fumigatus and A. niger were also killed by the combination of myeloperoxidase, iodide, and hydrogen peroxide. Peroxidases, functionally linked to hydrogen peroxide-generating systems, could provide phagocytic cells with the ability to kill many fungal species.
The antioxidant enzymes activity in the conditions of systemic hypersilicemia.
Najda, J; Goss, M; Gmínski, J; Weglarz, L; Siemianowicz, K; Olszowy, Z
1994-07-01
The effect of an excessive inorganic silicon oral intake on the activity of basic antioxidant enzymes was studied in rats. Activities of superoxide dismutase, catalase, and glutathione peroxidase were measured in liver and kidney tissues of animals receiving per os sodium metasilicate nonahydrate (Na2SiO3.9H2O) (Sigma, [St. Louis, MO]) dissolved in their drinking water. A decrease of the activity of all the studied enzymes was found in the samples derived from the experimental group. The results obtained indicate the free oxygen radicals participation in the potential pathologic events in the conditions of systemic hypersilicemia.
Petukhov, V I; Kumerova, A O; Letse, A G; Silova, A A; Shkesters, A P; Krishchuna, M A; Mironova, N A
1997-01-01
Concentration of malonic dialdehyde (MDA) and activity of antioxidant enzymes G-6-PD, glutation peroxidase (GP), glutation reductase, catalase, superoxide dismutase were measured in red cells of patients with polycythemia vera. Plasmic ions Fe3+ were estimated by means of electron-paramagnetic resonance. MDA concentration and antioxidant enzymes (except GP) in polycythemia red cells were found increased, while the activity of selenium-dependent GP was reduced, the inhibition being greatest in severe iron deficiency. It is suggested that GP activity in red cells depends on both selenium levels in the body and concentrations of non-hematic iron.
Donadelli, Jorge A; García Einschlag, Fernando S; Laurenti, Enzo; Magnacca, Giuliana; Carlos, Luciano
2018-01-01
Peroxidase immobilization onto magnetic supports is considered an innovative strategy for the development of technologies that involves enzymes in wastewater treatment. In this work, magnetic biocatalysts were prepared by immobilization of soybean peroxidase (SBP) onto different silica-coated superparamagnetic iron oxide nanoparticles. The obtained magnetic biocatalysts were tested for the degradation of malachite green (MG), a pollutant often found in industrial wastewaters and with significant drawbacks for the human and environmental health. A deep physicochemical characterization of the materials was performed by means of X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), High Resolution-Transmission Electron Microscope (HR-TEM) and magnetization measurements among others techniques. Results showed high immobilization yield of SBP onto nanomaterials with excellent properties for magnetic recoverability. A partial loss of activity with respect to free SBP was observed, compatible with the modification of the conformational structure of the enzyme after immobilization. The structural modification depended on the amount (and thickness) of silica present in the hybrid materials and the activity yield of 43% was obtained for the best biocatalyst. Thermal stability and reusability capacity were also evaluated. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Hsin-Yi; Wu, Si-Han; Chen, Chien-Tsu; Chen, Yi-Ping; Chang, Feng-Peng; Chien, Fan-Ching; Mou, Chung-Yuan
2018-04-01
Reactive oxygen species (ROS) have crucial roles in cell signaling and homeostasis. Overproduction of ROS can induce oxidative damage to various biomolecules and cellular structures. Therefore, developing an approach capable of monitoring and quantifying ROS in living cells is significant for physiology and clinical diagnoses. Some cell-permeable fluorogenic probes developed are useful for the detection of ROS while in conjunction with horseradish peroxidase (HRP). Their intracellular scenario is however hindered by the membrane-impermeable property of enzymes. Herein, a new approach for intracellular sensing of ROS by using horseradish peroxidase-encapsulated hollow silica nanospheres (designated HRP@HSNs), with satisfactory catalytic activity, cell membrane permeability, and biocompatibility, was prepared via a microemulsion method. These HRP@HSNs, combined with selective probes or targeting ligands, could be foreseen as ROS-detecting tools in specific organelles or cell types. As such, dihydrorhodamine 123-coupled HRP@HSNs were used for the qualitative and semi-quantitative analysis of physiological H2O2 levels in activated RAW 264.7 macrophages. We envision that this HSNs encapsulating active enzymes can be conjugated with selective probes and targeting ligands to detect ROS in specific organelles or cell types of interest.
Purification and Characterization of a Novel Thermo-Alkali-Stable Catalase from Thermus brockianus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Vicki Sue; Schaller, Kastli Dianne; Apel, William Arnold
2003-10-01
A novel thermo-alkali-stable catalase from Thermus brockianus was purified and characterized. The protein was purified from a T. brockianus cell extract in a three-step procedure that resulted in 65-fold purification to a specific activity of 5300 U/mg. The enzyme consisted of four identical subunits of 42.5 kDa as determined by SDS-PAGE and a total molecular mass measured by gel filtration of 178 kDa. The catalase was active over a temperature range from 30 to 94 C and a pH range from 6 to 10, with optimum activity occurring at 90 C and pH 8. At pH 8, the enzyme wasmore » extremely stable at elevated temperatures with half-lives of 330 h at 80 C and 3 h at 90 C. The enzyme also demonstrated excellent stability at 70 C and alkaline pH with measured half-lives of 510 h and 360 h at pHs of 9 and 10, respectively. The enzyme had an unusual pyridine hemochrome spectrum and appears to utilize eight molecules of heme c per tetramer rather than protoheme IX present in the majority of catalases studied to date. The absorption spectrum suggested that the heme iron of the catalase was in a 6-coordinate low spin state rather than the typical 5-coordinate high spin state. A Km of 35.5 mM and a Vmax of 20.3 mM/min·mg protein for hydrogen peroxide was measured, and the enzyme was not inhibited by hydrogen peroxide at concentrations up to 450 mM. The enzyme was strongly inhibited by cyanide and the traditional catalase inhibitor 3-amino-1,2,4-triazole. The enzyme also showed no peroxidase activity to peroxidase substrates o-dianisidine and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), a trait of typical monofunctional catalases. However, unlike traditional monofunctional catalases, the T. brockianus catalase was easily reduced by dithionite, a characteristic of catalase-peroxidases. The above properties indicate that this catalase has potential for applications in industrial bleaching processes to remove residual hydrogen peroxide from process streams.« less
Liu, Weiyan; Yang, Hongmei; Ma, Chao; Ding, Ya-nan; Ge, Shenguang; Yu, Jinghua; Yan, Mei
2014-12-10
We proposed an electrochemical DNA sensor by using peroxidase-like magnetic ZnFe2O4-graphene quantum dots (ZnFe2O4/GQDs) nanohybrid as a mimic enzymatic label. Aminated graphene and Pd nanowires were successively modified on glassy carbon electrode, which improved the electronic transfer rate as well as increased the amount of immobilized capture ssDNA (S1). The nanohybrid ZnFe2O4/GQDs was prepared by assembling the GQDs on the surface of ZnFe2O4 through a photo-Fenton reaction, which was not only used as a mimic enzyme but also as a carrier to label complementary ssDNA (S3). By synergistically integrating highly catalytically activity of nano-sized GQDs and ZnFe2O4, the nanohybrid possessed highly-efficient peroxidase-like catalytic activity which could produce a large current toward the reduction of H2O2 for signal amplification. Thionine was used as an excellent electron mediator. Compared with traditional enzyme labels, the mimic enzyme ZnFe2O4/GQDs exhibited many advantages such as environment friendly and better stability. Under the optimal conditions, the approach provided a wide linear range from 10(-16) to 5×10(-9) M and low detection limit of 6.2×10(-17) M. The remarkable high catalytic capability could allow the nanohybrid to replace conventional peroxidase-based assay systems. The new, robust and convenient assay systems can be widely utilized for the identification of other target molecules. Copyright © 2014 Elsevier B.V. All rights reserved.
Madhavan, N D; Naidu, K A
2000-01-01
Peroxidase (Donor: H(2)O(2)oxidoreductase EC 1.11.1.7) from human term placentae of non-smokers was purified to homogeneity by a combination of NH(4)Cl extraction, affinity chromatography, (NH(4))(2)SO(4)precipitation, ion-exchange and gel filtration chromatography. The homogeneity of purified human placental peroxidase (HTPP) was confirmed by gel filtration, reverse phase high performance liquid chromatography (HPLC) and SDS-PAGE. Peroxidase was found to be a membrane bound enzyme. A high concentration of NH(4)Cl (1.2 m) was needed to extract and solublize the enzyme. Removal of the salt resulted in irreversible precipitation of the enzyme. The protein exhibited a molecular mass of 126 000 kDa according to gel filtration and approximately 60 000 kDa by SDS-PAGE, indicating that the peroxidase is a homodimer. The purified peroxidase showed an optimum pH range of 7 to 8.5 and the K(m)for H(2)O(2)and guaiacol were found to be 0.08 m m and 10.0 m m, respectively. The purified peroxidase oxidized several substrates, namely potassium iodide, tetramethyl benzidine, guaiacol, ortho dianisidne and tyrosine. The enzyme was resistant to thermal denaturation up to 70 degrees C and also to chaotropic agents, guanidinium chloride and urea. Spectral properties indicated the presence of Soret band at 433 which shifted to 451 nm on complexation with cyanide. The circular dichroism studies showed that HTPP has a predominantly helical secondary structure. The enzyme showed similarities to the myeloperoxidase with regard to spectral and catalytical properties but differed significantly in amino acid composition, the R(z)value and molecular mass. Purified HTPP differed from eosinophil peroxidase in all physico-chemical properties indicating that it is not of eosinophil origin, but may represent a distinct, constitutive peroxidase in human placenta. Further, purified peroxidase catalyzed oxidation of benzo(a)pyrene-7, 8-dihydrodiol in presence of tyrosine and hydrogen peroxide to BP-tetrols, the hydrolytic products of BP-diol-epoxides, demonstrating the ability of peroxidase in bioactivation of benzo(a)pyrene in human placenta. Copyright 2000 Harcourt Publishers Ltd.
Wang, Xuewei; Qin, Wei
2013-07-22
The determination of peroxidase activities is the basis for enzyme-labeled bioaffinity assays, peroxidase-mimicking DNAzymes- and nanoparticles-based assays, and characterization of the catalytic functions of peroxidase mimetics. Here, a facile, sensitive, and cost-effective solvent polymeric membrane-based peroxidase detection platform is described that utilizes reaction intermediates with different pKa values from those of substrates and final products. Several key but long-debated intermediates in the peroxidative oxidation of o-phenylenediamine (o-PD) have been identified and their charge states have been estimated. By using a solvent polymeric membrane functionalized by an appropriate substituted tetraphenylborate as a receptor, those cationic intermediates could be transferred into the membrane from the aqueous phase to induce a large cationic potential response. Thus, the potentiometric indication of the o-PD oxidation catalyzed by peroxidase or its mimetics can be fulfilled. Horseradish peroxidase has been detected with a detection limit at least two orders of magnitude lower than those obtained by spectrophotometric techniques and traditional membrane-based methods. As an example of peroxidase mimetics, G-quadruplex DNAzymes were probed by the intermediate-sensitive membrane and a label-free thrombin detection protocol was developed based on the catalytic activity of the thrombin-binding G-quadruplex aptamer. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kjellander, Marcus; Götz, Kathrin; Liljeruhm, Josefine; Boman, Mats; Johansson, Gunnar
2013-04-01
Alcohol oxidase from Pichia pastoris was immobilized on nanoporous aluminium oxide membranes by silanization and activation by carbonyldiimidazole to create a flow-through enzyme reactor. Kinetic analysis of the hydrogen peroxide generation was carried out for a number of alcohols using a subsequent reaction with horseradish peroxidase and ABTS. The activity data for the immobilized enzyme showed a general similarity with literature data in solution, and the reactor could generate 80 mmol H2O2/h per litre reactor volume. Horseradish peroxidase was immobilized by the same technique to construct bienzymatic modular reactors. These were used in both single pass mode and circulating mode. Pulsed injections of methanol resulted in a linear relation between response and concentration, allowing quantitative concentration measurement. The immobilized alcohol oxidase retained 58 % of initial activity after 3 weeks of storage and repeated use.
Calcium protects Trifolium repens L. seedlings against cadmium stress.
Wang, Chang Quan; Song, Heng
2009-09-01
The effect of calcium (Ca(2+)) on Trifolium repens L. seedlings subjected to cadmium (Cd(2+)) stress was studied by investigating plant growth and changes in activity of antioxidative enzymes. Physiological analysis was carried out on seedlings cultured for 2 weeks on half-strength Hoagland medium with Cd(2+) concentrations of 0, 400 and 600 microM, and on corresponding medium supplied with CaCl(2) (5 mM). Exposure to increasing Cd(2+) reduced the fresh weight of the upper part (stems + leaves) of the seedlings more strongly than that of the root system. In both parts of T. repens seedlings H(2)O(2) level and lipid peroxidation increased. In the upper part, Cd(2+) exposure led to a significant decrease in the activity of superoxide dismutase, catalase and glutathione peroxidase and an increase in ascorbate peroxidase activity. In contrast, the roots showed an increase in the activity of antioxidative enzymes under Cd(2+) stress. Ca(2+) addition to medium reduced the Cd(2+) accumulation, and considerably reversed the Cd(2+)-induced decrease in fresh mass as well as the changes in lipid peroxidation in the both parts of T. repens seedlings. Ca(2+) application diminished the Cd(2+) effect on the activity of antioxidative enzymes in the upper part, even though it did not significantly affect these enzymes in the roots. So the possible mechanisms for the action of Ca(2+) in Cd(2+) stress were considered to reduce Cd(2+) accumulation, alleviate lipid peroxidation and promote activity of antioxidative enzymes.
Chen, T M; Tian, X M; Huang, L; Xiao, J; Yang, G W
2017-10-19
Nanodiamonds (NDs) have recently become a focus of interest from the viewpoints of both science and technology. Their intriguing properties make them suitable as biologically active substrates, in biosensor applications as well as diagnostic and therapeutic biomedical imaging probes. Here, we demonstrate that NDs, as oxidation and reduction catalysts, possess intrinsic enzyme mimetic properties of oxidase, peroxidase and catalase, and these behaviors can be switched by modulating the pH value. NDs not only catalyze the reduction of oxygen (O 2 ) and hydrogen peroxide (H 2 O 2 ) at acidic pH, but also catalyze the dismutation decomposition of H 2 O 2 to produce O 2 at alkaline pH. It was proposed that the molecular mechanism of their peroxidase-like activity is electron-transfer acceleration, the source of which is likely derived from oxygen containing functional groups on their surface. Based on the color reaction, a nanodiamond-based enzyme linked immunosorbent assay (ELISA) was established for the detection of immunoglobulin G (IgG). Surprisingly, NDs display an excellent antioxidant activity due to the protective effect against H 2 O 2 -induced cellular oxidative damage. These findings make NDs a promising enzyme mimetic candidate and expand their applications in biocatalysis, bioassays and nano-biomedicine.
2013-01-01
Background Human diploid fibroblasts (HDFs) undergo a limited number of cellular divisions in culture and progressively reach a state of irreversible growth arrest, a process termed cellular ageing. Even though beneficial effects of Piper betle, Chlorella vulgaris and tocotrienol-rich fraction (TRF) have been reported, ongoing studies in relation to ageing is of interest to determine possible protective effects that may reverse the effect of ageing. The aim of this study was to evaluate the effect of P. betle, C. vulgaris and TRF in preventing cellular ageing of HDFs by determining the activity of antioxidant enzymes viz.; catalase, superoxide dismutase (SOD) and glutathione peroxidase. Methods Different passages of HDFs were treated with P. betle, C. vulgaris and TRF for 24 h prior to enzymes activity determination. Senescence-associated beta-galactosidase (SA β-gal) expression was assayed to validate cellular ageing. Results In cellular ageing of HDFs, catalase and glutathione peroxidase activities were reduced, but SOD activity was heightened during pre-senescence. P. betle exhibited the strongest antioxidant activity by reducing SA β-gal expression, catalase activities in all age groups, and SOD activity. TRF exhibited a strong antioxidant activity by reducing SA β-gal expression, and SOD activity in senescent HDFs. C. vulgaris extract managed to reduce SOD activity in senescent HDFs. Conclusion P. betle, C. vulgaris, and TRF have the potential as anti-ageing entities which compensated the role of antioxidant enzymes in cellular ageing of HDFs. PMID:23948056
Makpol, Suzana; Yeoh, Thong Wei; Ruslam, Farah Adilah Che; Arifin, Khaizurin Tajul; Yusof, Yasmin Anum Mohd
2013-08-16
Human diploid fibroblasts (HDFs) undergo a limited number of cellular divisions in culture and progressively reach a state of irreversible growth arrest, a process termed cellular ageing. Even though beneficial effects of Piper betle, Chlorella vulgaris and tocotrienol-rich fraction (TRF) have been reported, ongoing studies in relation to ageing is of interest to determine possible protective effects that may reverse the effect of ageing. The aim of this study was to evaluate the effect of P. betle, C. vulgaris and TRF in preventing cellular ageing of HDFs by determining the activity of antioxidant enzymes viz.; catalase, superoxide dismutase (SOD) and glutathione peroxidase. Different passages of HDFs were treated with P. betle, C. vulgaris and TRF for 24 h prior to enzymes activity determination. Senescence-associated beta-galactosidase (SA β-gal) expression was assayed to validate cellular ageing. In cellular ageing of HDFs, catalase and glutathione peroxidase activities were reduced, but SOD activity was heightened during pre-senescence. P. betle exhibited the strongest antioxidant activity by reducing SA β-gal expression, catalase activities in all age groups, and SOD activity. TRF exhibited a strong antioxidant activity by reducing SA β-gal expression, and SOD activity in senescent HDFs. C. vulgaris extract managed to reduce SOD activity in senescent HDFs. P. betle, C. vulgaris, and TRF have the potential as anti-ageing entities which compensated the role of antioxidant enzymes in cellular ageing of HDFs.
Anithajothi, R.; Duraikannu, K.; Umagowsalya, G.; Ramakritinan, C. M.
2014-01-01
The health and existence of coral reefs are in danger by an increasing range of environmental and anthropogenic impacts. The causes of coral reef decline include worldwide climate change, shoreline development, habitat destruction, pollution, sedimentation and overexploitation. These disasters have contributed to an estimated loss of 27% of the reefs. If the current pressure continues unabated, the estimated loss of coral reef will be about 60% by the year 2030. Therefore, the present study was aimed to analyze the enzymes involved in stress induced by coral pathogen and its resistance. We focused on the enzymes involved in melanin synthesis pathway (phenoloxidase (PO) and peroxidases (POD)) and free radical scavenging enzymes (super oxide dismutase (SOD), catalase (CAT)) and glutathione peroxidase (Gpx) in selected scleractinian corals such as Acropora formosa, Echinopora lamellosa, Favia favus, Favites halicora, Porites sp., and Anacropora forbesi. Overall, PO activity of coral was significantly lower than that of zooxanthellae except for Favia favus. Coral colonies with lower PO and POD activities are prone to disease. Maximum antioxidant defensive enzymes were observed in Favia favus followed by Echinopora lamellose. It is concluded that assay of these enzymes can be used as biomarkers for identifying the susceptibility of corals towards coral bleaching induced by pathogen. PMID:25215288
Anithajothi, R; Duraikannu, K; Umagowsalya, G; Ramakritinan, C M
2014-01-01
The health and existence of coral reefs are in danger by an increasing range of environmental and anthropogenic impacts. The causes of coral reef decline include worldwide climate change, shoreline development, habitat destruction, pollution, sedimentation and overexploitation. These disasters have contributed to an estimated loss of 27% of the reefs. If the current pressure continues unabated, the estimated loss of coral reef will be about 60% by the year 2030. Therefore, the present study was aimed to analyze the enzymes involved in stress induced by coral pathogen and its resistance. We focused on the enzymes involved in melanin synthesis pathway (phenoloxidase (PO) and peroxidases (POD)) and free radical scavenging enzymes (super oxide dismutase (SOD), catalase (CAT)) and glutathione peroxidase (Gpx) in selected scleractinian corals such as Acropora formosa, Echinopora lamellosa, Favia favus, Favites halicora, Porites sp., and Anacropora forbesi. Overall, PO activity of coral was significantly lower than that of zooxanthellae except for Favia favus. Coral colonies with lower PO and POD activities are prone to disease. Maximum antioxidant defensive enzymes were observed in Favia favus followed by Echinopora lamellose. It is concluded that assay of these enzymes can be used as biomarkers for identifying the susceptibility of corals towards coral bleaching induced by pathogen.
NASA Astrophysics Data System (ADS)
Almaz, Züleyha; Öztekin, Aykut; Özdemir, Hasan
2017-04-01
Peroxidases (EC: 1.11.1.7) are haem proteins and contain iron (III) protoporphyrin IX (ferriprotoporphyrin IX) as the prosthetic group [1]. They are found in all cells and play a critical role in many biological processes, such as the host-defense mechanism [2]. Peroxidases (PODs) are widely used in clinical biochemistry, enzyme immunoassays, synthesis of various aromatic chemicals, treatment of waste water containing phenolic compounds [3, 4]. In this study, peroxidase enzyme was purified with Para amino benzohydrazide (PABH)-L-Tyrosine Sepharose 4B affinity chromatography to investigate the inhibitory effect of hydrazide derivatives on Turnip (Brassica rapa L.). IC50 values and Ki constants were calculated for the molecules of 6-Amino nicotinic hydrazide, 6-Amino-5-bromo nicotinic hydrazide, 2-Amino-5-hydroxy benzohydrazide, 4-Amino-3-hydroxy benzohydrazide on purified enzyme and inhibition type of these molecules were determined.
Hering, D M; Lecewicz, M; Kordan, W; Kamiński, S
2015-02-01
The aim of this study was to determine whether C/T missense mutation within the ETFA gene is associated with sperm antioxidant enzymatic activity. One hundred and twenty Holstein-Friesian bulls were genotyped by the PCR-RFLP technique (MwoI). Commercial straws of frozen-thawed semen were used to evaluate the activity of three antioxidant enzymes: superoxide dismutase, catalase and glutathione peroxidase. Among all bulls investigated, genotype CT was the most frequent (44.2%), in comparison with CC (42.5%) and TT (13.3%). Significant differences in glutathione peroxidase activity were observed between homozygous individuals (CC vs TT) with heterozygous CT having intermediate values. Dismutase activity was significantly associated with ETFA genotype, although only bulls with the CT genotype were significantly different from bulls carrying the CC genotype. The activity of catalase showed a similar trend (but was not statistically significant). In conclusion, we found that bulls with the ETFA TT genotype produce sperm with the highest glutathione peroxidase activity and can therefore be more efficiently protected from reactive oxygen. The mechanism of this interaction needs to be elucidated in future research. © 2014 Blackwell Verlag GmbH.
Bamdad, Kourosh; Ranjbar, Bijan; Naderi-Manesh, Hossein; Sadeghi, Mehdi
2014-01-01
Horseradish peroxidase is an all alpha-helical enzyme, which widely used in biochemistry applications mainly because of its ability to enhance the weak signals of target molecules. This monomeric heme-containing plant peroxidase is also used as a reagent for the organic synthesis, biotransformation, chemiluminescent assays, immunoassays, bioremediation, and treatment of wastewaters as well. Accordingly, enhancing stability and catalytic activity of this protein for biotechnological uses has been one of the important issues in the field of biological investigations in recent years. In this study, pH-induced structural alterations of native (HRP), and modified (MHRP) forms of Horseradish peroxidase have been investigated. Based on the results, dramatic loss of the tertiary structure and also the enzymatic activity for both forms of enzymes recorded at pH values lower than 6 and higher than 8. Ellipticiy measurements, however, indicated very slight variations in the secondary structure for MHRP at pH 5. Spectroscopic analysis also indicated that melting of the tertiary structure of MHRP at pH 5 starts at around 45 °C, which is associated to the pKa of His 42 that has a serious role in keeping of the heme prostethic group in its native position through natural hydrogen bond network in the enzyme structure. According to our data, a molten globule like structure of a chemically modified form of Horseradish peroxidase at pH 5 with initial steps of conformational transition in tertiary structure with almost no changes in the secondary structure has been detected. Despite of some conformational changes in the tertiary structure of MHRP at pH 5, this modified form still keeps its catalytic activity to some extent besides enhanced thermal stability. These findings also indicated that a molten globular state does not necessarily preclude efficient catalytic activity. PMID:26417287
Jahangoshaei, Parisa; Hassani, Leila; Mohammadi, Fakhrossadat; Hamidi, Akram; Mohammadi, Khosro
2015-10-01
Curcumin has a wide spectrum of biological and pharmacological activities including anti-inflammatory, antioxidant, antiproliferative, antimicrobial and anticancer activities. Complexation of curcumin with metals has gained attention in recent years for improvement of its stability. In this study, the effect of gallium curcumin and gallium diacetylcurcumin on the structure, function and oxidative stability of horseradish peroxidase (HRP) enzyme were evaluated by spectroscopic techniques. In addition to the enzymatic investigation, the cytotoxic effect of the complexes was assessed on bladder, MCF-7 breast cancer and LNCaP prostate carcinoma cell lines by MTT assay. Furthermore, antibacterial activity of the complexes against S. aureus and E. coli was explored by dilution test method. The results showed that the complexes improve activity of HRP and also increase its tolerance against the oxidative condition. After addition of the complexes, affinity of HRP for hydrogen peroxide substrate decreases, while the affinity increases for phenol substrate. Circular dichroism, intrinsic and synchronous fluorescence spectra showed that the enzyme structure around the catalytic heme group becomes less compact and also the distance between the heme group and tryptophan residues increases due to binding of the complexes to HRP. On the whole, it can be concluded that the change in the enzyme structure upon binding to the gallium curcumin and gallium diacetylcurcumin complexes results in an increase in the antioxidant efficiency and activity of the peroxidise enzyme. The result of anticancer and antibacterial activities suggested that the complexes exhibit the potential for cancer treatment, but they have no significant antibacterial activity.
Luo, Ling; Gu, Ji-Dong
2016-11-01
Biochar has attracted more and more attention due to its essential role in adsorbing pollutants, improving soil fertility, and modifying greenhouse gas emission. However, the influences of biochar on extracellular enzyme activity and microbial abundance are still lack and debatable. Currently, there is no information about the impact of biochar on the function of mangrove ecosystems. Therefore, we explored the effects of biochar on extracellular enzyme activity and microbial abundance in subtropical mangrove sediment, and further estimated the contribution of biochar to C sequestration. In this study, sediments were amended with 0 (control), 0.5, 1.0 and 2.0% of biochar and incubated at 25 °C for 90 days. After incubation, enzyme activities, microbial abundance and the increased percentage of sediment organic C content were determined. Both increase (phenol oxidase and β-glucosidase) and decrease (peroxidase, N-acetyl-glucosaminidase and acid phosphatase) of enzyme activities were observed in biochar treatments, but only peroxidase activity showed statistical significance (at least p < 0.01) compared to the control. Moreover, the activities of all enzymes tested were significantly related to the content of biochar addition (at least p < 0.05). On the other hand, bacterial and fungal abundance in biochar treatments were remarkably lower than control (p < 0.001), and the significantly negative relationship (p < 0.05) between bacterial abundance and the content of biochar was found. Additionally, the increased percentage of organic C gradually increased with biochar addition rate, which provided evidence for applying biochar to mitigate climate change. Given the importance of microorganisms and enzyme activities in sediment organic matter decomposition, the increased C sequestration might be explained by the large decrease of microbial abundance and enzyme activity after biochar intervention. Copyright © 2016 Elsevier Ltd. All rights reserved.
Duan, Peipei; Cai, Feng; Luo, Yongting; Chen, Yangxi; Zou, Shujuan
2015-09-01
Isoenzyme c of horseradish peroxidase (HRP-C) is widely used in enzyme immunoassay combined with chemiluminescence (CL) detection. For this application, HRP-C activity measurement is usually based on luminol oxidation in the presence of hydrogen peroxide (H2O2). However, this catalysis reaction was enhancer dependent. In this study, we demonstrated that Jatropha curcas peroxidase (JcGP1) showed high efficiency in catalyzing luminol oxidation in the presence of H2O2. Compared with HRP-C, the JcGP1-induced reaction was enhancer independent, which made the enzyme-linked immunosorbent assay (ELISA) simpler. In addition, the JcGP1 catalyzed reaction showed a long-term stable CL signal. We optimized the conditions for JcGP1 catalysis and determined the favorable conditions as follows: 50 mM Tris buffer (pH 8.2) containing 10 mM H2 O2, 14 mM luminol and 0.75 M NaCl. The optimum catalysis temperature was 30°C. The detection limit of JcGP1 under optimum condition was 0.2 pM. Long-term stable CL signal combined with enhancer-independent property indicated that JcGP1 might be a valuable candidate peroxidase for clinical diagnosis and enzyme immunoassay with CL detection. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Hou, Chen; Wang, Yang; Ding, Qinghua; Jiang, Long; Li, Ming; Zhu, Weiwei; Pan, Duo; Zhu, Hao; Liu, Mingzhu
2015-11-01
This work reports a facile and easily-achieved approach for enzyme immobilization by embedding glucose oxidase (GOx) in magnetic zeolitic imidazolate framework 8 (mZIF-8) via a de novo approach. As a demonstration of the power of such materials, the resulting GOx embedded mZIF-8 (mZIF-8@GOx) was utilized as a colorimetric sensor for rapid detection of glucose. This method was constructed on the basis of metal-organic frameworks (MOFs), which possessed very fascinating peroxidase-like properties, and the cascade reaction for the visual detection of glucose was combined into one step through the mZIF-8@GOx based mimic multi-enzyme system. After characterization by electron microscopy, X-ray diffraction, nitrogen sorption, fourier transform infrared spectroscopy and vibrating sample magnetometry, the as-prepared mZIF-8@GOx was confirmed with the robust core-shell structure, the monodisperse nanoparticle had an average diameter of about 200 nm and displayed superparamagnetism with a saturation magnetization value of 40.5 emu g-1, it also exhibited a large surface area of 396.10 m2 g-1. As a peroxidase mimic, mZIF-8 was verified to be highly stable and of low cost, and showed a strong affinity towards H2O2. Meanwhile, the mZIF-8 embedded GOx also exhibited improved activity, stability and greatly enhanced selectivity in glucose detection. Moreover, the mZIF-8@GOx had excellent recyclability with high activity (88.7% residual activity after 12 times reuse).This work reports a facile and easily-achieved approach for enzyme immobilization by embedding glucose oxidase (GOx) in magnetic zeolitic imidazolate framework 8 (mZIF-8) via a de novo approach. As a demonstration of the power of such materials, the resulting GOx embedded mZIF-8 (mZIF-8@GOx) was utilized as a colorimetric sensor for rapid detection of glucose. This method was constructed on the basis of metal-organic frameworks (MOFs), which possessed very fascinating peroxidase-like properties, and the cascade reaction for the visual detection of glucose was combined into one step through the mZIF-8@GOx based mimic multi-enzyme system. After characterization by electron microscopy, X-ray diffraction, nitrogen sorption, fourier transform infrared spectroscopy and vibrating sample magnetometry, the as-prepared mZIF-8@GOx was confirmed with the robust core-shell structure, the monodisperse nanoparticle had an average diameter of about 200 nm and displayed superparamagnetism with a saturation magnetization value of 40.5 emu g-1, it also exhibited a large surface area of 396.10 m2 g-1. As a peroxidase mimic, mZIF-8 was verified to be highly stable and of low cost, and showed a strong affinity towards H2O2. Meanwhile, the mZIF-8 embedded GOx also exhibited improved activity, stability and greatly enhanced selectivity in glucose detection. Moreover, the mZIF-8@GOx had excellent recyclability with high activity (88.7% residual activity after 12 times reuse). Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04994f
Pettersson, Par L; Johansson, Ann-Sofie; Mannervik, Bengt
2002-08-16
A major goal in protein engineering is the tailor-making of enzymes for specified chemical reactions. Successful attempts have frequently been based on directed molecular evolution involving libraries of random mutants in which variants with desired properties were identified. For the engineering of enzymes with novel functions, it would be of great value if the necessary changes of the active site could be predicted and implemented. Such attempts based on the comparison of similar structures with different substrate selectivities have previously met with limited success. However, the present work shows that the knowledge-based redesign restricted to substrate-binding residues in human glutathione transferase A2-2 can introduce high steroid double-bond isomerase activity into the enzyme originally characterized by glutathione peroxidase activity. Both the catalytic center activity (k(cat)) and catalytic efficiency (k(cat)/K(m)) match the values of the naturally evolved glutathione transferase A3-3, the most active steroid isomerase known in human tissues. The substrate selectivity of the mutated glutathione transferase was changed 7000-fold by five point mutations. This example demonstrates the functional plasticity of the glutathione transferase scaffold as well as the potential of rational active-site directed mutagenesis as a complement to DNA shuffling and other stochastic methods for the redesign of proteins with novel functions.
Phospholipid-templated silica nanocapsules as efficient polyenzymatic biocatalysts.
Phuoc, Lai Truong; Laveille, Paco; Chamouleau, Françoise; Renard, Gilbert; Drone, Jullien; Coq, Bernard; Fajula, François; Galarneau, Anne
2010-09-28
Solid polyenzymatic biocatalysts have been designed by combining two immobilized enzymes, the first one allowing the in situ generation of H(2)O(2) from air and the second one performing an oxidation reaction. The in situ H(2)O(2) generation system is based on the reaction of glucose with air using a glucose oxidase (GOx). The optimization of the encapsulation of GOx into phospholipids-templated silica capsules (NPS) was performed. A bienzymatic system made of GOx and horseradish peroxidase (HRP) was studied. Optimal conditions for the activity of the GOx/HRP bienzymatic system have been determined for both homogeneous and heterogeneous conditions. The encapsulation in NPS materials increases the stability of both enzymes. The performance of the encapsulated bienzymatic GOx/HRP system in the model reaction of 4-aminoantipyridine with phenol is similar when the enzymes are immobilized separately in two NPS or coencapsulated in the same NPS. An excess of peroxidase compared to GOx ([HRP]/[GOx] = 5-10) is necessary to obtain the optimal activity. To show the potentiality of bienzymatic systems in real applications, HRP has been replaced by hemoglobin, which is known for its ability to oxidize polycyclic aromatic hydrocarbons (PAH) pollutants through a pseudoperoxidase pathway. A larger excess of Hb compared to GOx ([Hb]/[GOx] = 1000) was necessary to obtain the maximum PAH removal, as Hb is not a real peroxidase as HRP but a hemoprotein with some pseudoperoxidase activity. In opposite to real enzymes, the immobilization of Hb by adsorption in mesoporous silica is preferable as its encapsulation. Therefore, the bienzymatic system made of GOx encapsulated in NPS and Hb adsorbed in mesoporous silica has been used for the removal of 11 PAH from water. This heterogeneous bienzymatic system allows 64% of PAH removal from water using simple air as oxidant.
Effect of soya lecithin on the enzymatic system of the white-rot fungi Anthracophyllum discolor.
Bustamante, M; González, M E; Cartes, A; Diez, M C
2011-01-01
The present work optimized the initial pH of the medium and the incubation temperature for ligninolytic enzymes produced by the white-rot fungus Anthracophyllum discolor. Additionally, the effect of soya lecithin on mycelial growth and the production of ligninolytic enzymes in static batch cultures were evaluated. The critical micelle concentration of soya lecithin was also studied by conductivity. The effects of the initial pH (3, 4, and 5) and incubation temperature (20, 25, and 30°C) on different enzymatic activities revealed that the optimum conditions to maximize ligninolytic activity were 26°C and pH 5.5 for laccase and manganese peroxidase (MnP) and 30°C and pH 5.5 for manganese-independent peroxidase (MiP). Under these culture conditions, the maximum enzyme production was 10.16, 484.46, and 112.50 U L(-1) for laccase, MnP, and manganese-independent peroxidase MiP, respectively. During the study of the effect of soya lecithin on A. discolor, we found that the increase in soya lecithin concentration from 0 to 10 g L(-1) caused an increase in mycelial growth. On the other hand, in the presence of soya lecithin, A. discolor produced mainly MnP, which reached a maximum concentration of 30.64 ± 4.61 U L(-1) after 25 days of incubation with 1 g L(-1) of the surfactant. The other enzymes were produced but to a lesser extent. The enzymatic activity of A. discolor was decreased when Tween 80 was used as a surfactant. The critical micelle concentration of soya lecithin calculated in our study was 0.61 g L(-1).
Immobilization of enzymes by bioaffinity layering.
Singh, Veena; Sardar, Meryam; Gupta, Munishwar Nath
2013-01-01
Bioaffinity immobilization exploits the affinity of the enzyme to a macro-(affinity ligand). Such a macro-(affinity ligand) could be a lectin, a water-soluble polymer, or a bioconjugate of a water-soluble polymer and the appropriate affinity ligand. Successive layering of the enzyme and the macro-(affinity ligand) on a matrix allows deposition of a large amount of enzyme activity on a small surface. Illustrative protocols show affinity layering of a pectinase and horseradish peroxidase on Concanavalin A-agarose and Concanavalin A-Sephadex matrices, respectively.
Chen, Lu Lu; Wang, Xiu Feng; Liu, Mei; Yang, Feng Juan; Shi, Qing Hua; Wei, Min; Li, Qing Ming
2016-12-01
To investigate the effect of calcium and ABA on photosynthesis and the activities of antioxidant enzymes in cucumber seedlings under drought stress, the cucumber was used as the expe-riment materials, normal nutrient solution culture was considered as the control, and PEG-6000 application in the nutrient solution simulated the drought stress. There were five different treatments which were spraying water, ABA, CaCl 2 +ABA, LaCl 3 (calcium channel inhibitor)+ABA and EGTA (calcium ion chelating agent)+ABA under drought stress. The results showed that drought stress inhibited the growth of cucumber seedlings, and reduced the activities of antioxidant enzymes, nitrate reductase, net photosynthetic rate and fluorescence parameters of the cucumber seedlings leaves. The application of ABA reduced the inhibition of activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX), photosynthesis (P n , g s ) and the fluorescence parameters (F v '/F m ', q P and ETR), and decreased the damage of drought stress on plant. Spraying CaCl 2 +ABAsignificantly promoted the positive effect of ABA, while EGTA+ABA and LaCl 3 +ABA didn't show the promoting effect.
1993-05-20
statements regarding acid phosphatase activity are not possible because of the inconsistency of labeling. Morphometric analysis were conducted on ratios of...may result from the combining of TCE and other toxic substances. The two enzyme systems selected for examination, acid phosphatase and peroxidase are...administration of DENA have demonstrated altered activity of several enzymes, including acid phosphatase (Fischer et al., 1983). Long term treatment of rodents
NASA Astrophysics Data System (ADS)
Chen, Sihui; Chi, Maoqiang; Zhu, Yun; Gao, Mu; Wang, Ce; Lu, Xiaofeng
2018-05-01
Superaramagnetic Fe3O4 nanomaterials are good candidates as enzyme mimics due to their excellent catalytic activity, high stability and facile synthesis. However, the morphology of Fe3O4 nanomaterials has much influence on their enzyme-like catalytic activity. In this work, we have developed a simple polymer-assisted thermochemical reduction approach to prepare Fe3O4 nanofibers for peroxidase-like catalytic applications. The as-prepared Fe3O4 nanofibers show a higher catalytic activity than commercial Fe3O4 nanoparticles. The steady-state kinetic assay result shows that the Michaelis-Menten constant value of the as-obtained Fe3O4 nanofibers is similar to that of horseradish peroxidase (HRP), indicating their superior affinity to the 3,3‧,5,5‧-tetramethylbenzidine (TMB) and H2O2 substrate. Based on the outstanding catalytic activity, a sensing platform for the detection of L-cysteine has been performed and the limit of detection is as low as 0.028 μM. In addition, an excellent selectivity toward L-cysteine over other types of amino acids, glucose and metal ions has been achieved as well. This work offers an original means for the fabrication of superparamagnetic Fe3O4 nanofibers and demonstrates their delightful potential applications in the fields of biosensing, environmental monitoring, and medical diagnostics.
Recycling of the High Valence States of Heme Proteins by Cysteine Residues of Thimet-Oligopeptidase
Ferreira, Juliana C.; Icimoto, Marcelo Y.; Marcondes, Marcelo F.; Oliveira, Vitor; Nascimento, Otaciro R.; Nantes, Iseli L.
2013-01-01
The peptidolytic enzyme THIMET-oligopeptidase (TOP) is able to act as a reducing agent in the peroxidase cycle of myoglobin (Mb) and horseradish peroxidase (HRP). The TOP-promoted recycling of the high valence states of the peroxidases to the respective resting form was accompanied by a significant decrease in the thiol content of the peptidolytic enzyme. EPR (electron paramagnetic resonance) analysis using DBNBS spin trapping revealed that TOP also prevented the formation of tryptophanyl radical in Mb challenged by H2O2. The oxidation of TOP thiol groups by peroxidases did not promote the inactivating oligomerization observed in the oxidation promoted by the enzyme aging. These findings are discussed towards a possible occurrence of these reactions in cells. PMID:24223886
Controlled immobilisation of active enzymes on the cowpea mosaic virus capsid
NASA Astrophysics Data System (ADS)
Aljabali, Alaa A. A.; Barclay, J. Elaine; Steinmetz, Nicole F.; Lomonossoff, George P.; Evans, David J.
2012-08-01
Immobilisation of horseradish peroxidase (HRP) and glucose oxidase (GOX) via covalent attachment of modified enzyme carbohydrate to the exterior of the cowpea mosaic virus (CPMV) capsid gave high retention of enzymatic activity. The number of enzymes bound per virus was determined to be about eleven for HRP and 2-3 for GOX. This illustrates that relatively large biomacromolecules can be readily coupled to the virus surface using simple conjugation strategies. Virus-biomacromolecule hybrids have great potential for uses in catalysis, diagnostic assays or biosensors.Immobilisation of horseradish peroxidase (HRP) and glucose oxidase (GOX) via covalent attachment of modified enzyme carbohydrate to the exterior of the cowpea mosaic virus (CPMV) capsid gave high retention of enzymatic activity. The number of enzymes bound per virus was determined to be about eleven for HRP and 2-3 for GOX. This illustrates that relatively large biomacromolecules can be readily coupled to the virus surface using simple conjugation strategies. Virus-biomacromolecule hybrids have great potential for uses in catalysis, diagnostic assays or biosensors. Electronic supplementary information (ESI) available: Alternative conjugation strategies, agarose gel electrophoresis of CPMV and CPMV-HRP conjugates, UV-vis spectrum of HRP-ADHCPMV, agarose gel electrophoresis of GOX-ADHCPMV particles and corresponding TEM image, calibration curves for HRP-ADHCPMV and GOX-ADHCPMV, DLS data for GOX-ADHCPMV are made available. See DOI: 10.1039/c2nr31485a
Xu, Hui; Guo, Meng-Yuan; Gao, Yan-Hua; Bai, Xiao-Hui; Zhou, Xuan-Wei
2017-02-23
Manganese peroxidase (MnP) of white rot basidiomycetes, an extracellular heme enzyme, is part of a peroxidase superfamily that is capable of degrading the different phenolic compounds. Ganoderma, a white rot basidiomycete widely distributed worldwide, could secrete lignin-modifying enzymes (LME), including laccase (Lac), lignin peroxidases (LiP) and MnP. After the selection of a G. lucidum strain from five Ganoderma strains, the 1092 bp full-length cDNA of the MnP gene, designated as G. lucidum MnP (GluMnP1), was cloned from the selected strain. We subsequently constructed an eukaryotic expression vector, pAO815:: GlMnP, and transferred it into Pichia pastoris SMD116. Recombinant GluMnP1 (rGluMnP1) was with a yield of 126 mg/L and a molecular weight of approximately 37.72 kDa and a specific enzyme activity of 524.61 U/L. The rGluMnP1 could be capable of the decolorization of four types of dyes and the degradation of phenol. Phenol and its principal degradation products including hydroquinone, pyrocatechol, resorcinol, benzoquinone, were detected successfully in the experiments. The rGluMnP1 could be effectively expressed in Pichia pastoris and with a higher oxidation activity. We infer that, in the initial stages of the reaction, the catechol-mediated cycle should be the principal route of enzymatic degradation of phenol and its oxidation products. This study highlights the potential industrial applications associated with the production of MnP by genetic engineering methods, and the application of industrial wastewater treatment.
Zhou, Yue; Yang, Bing; Yang, Yang; Jia, Rong
2014-03-01
Manganese peroxidase (MnP), a crucial enzyme in lignin degradation, has wide potential applications in environmental protection. However, large-scale industrial application of this enzyme is limited due to several factors primarily related to cost and availability. Special attention has been paid to the production of MnP from inexpensive sources, such as lignocellulosic residues, using solid-state fermentation (SSF) systems. In the present study, a suitable SSF medium for the production of MnP by Schizophyllum sp. F17 from agro-industrial residues has been optimized. The mixed solid medium, comprising pine sawdust, rice straw, and soybean powder at a ratio of 0.52:0.15:0.33, conferred a maximum enzyme activity of 11.18 U/g on the sixth day of SSF. The results show that the use of wastes such as pine sawdust and rice straw makes the enzyme production more economical as well as helps solve environmental problems.
Rojas, Meliza Lindsay; Trevilin, Júlia Hellmeister; Funcia, Eduardo Dos Santos; Gut, Jorge Andrey Wilhelms; Augusto, Pedro Esteves Duarte
2017-05-01
Green coconut water has unique nutritional and sensorial qualities. Despite the different technologies already studied, its enzymatic stability is still challenging. This study evaluated the use of ultrasound technology (US) for inactivating/sensitizing coconut water peroxidase (POD). The effect of both US application alone and as a pre-treatment to thermal processing was evaluated. The enzyme activity during US processing was reduced 27% after 30min (286W/L, 20kHz), demonstrating its high resistance. The thermal inactivation was described by the Weibull model under non-isothermal conditions. The enzyme became sensitized to heat after US pre-treatment. Further, the use of US resulted in more uniform heat resistance. The results suggest that US is a good technology for sensitizing enzymes before thermal processing (even for an enzyme with high thermal resistance). Therefore, the use of this technology could decrease the undesirable effects of long times and/or the high temperatures of the conventional thermal processing. Copyright © 2016 Elsevier B.V. All rights reserved.
Reddy, Y Amarnath; Chalamaiah, M; Ramesh, B; Balaji, G; Indira, P
2014-05-01
Lead poisoning has been known to be associated with structural and functional abnormalities of multiple organ systems of human body. The aim of this investigation was to study the renal protective effects of ginger (Zingiber officinale) extract in lead induced toxicity rats. In this study renal glutathione (GSH) level, glutathione peroxidase (GPX), glutathione-s-transferase (GST), and catalase enzymes were measured in lead nitrate (300 mg/kg BW), and lead nitrate plus ginger extract (150 mg/kg BW) treated rat groups for 1 week and 3 weeks respectively. The glutathione level and GSH dependent antioxidant enzymes such as glutathione peroxidase, glutathione-s-transferase, and catalase significantly (P < 0.05) increased in ginger extract treated rat groups. In addition, histological studies showed lesser renal changes in lead plus ginger extract treated rat groups than that of lead alone treated rat groups. These results indicate that ginger extract alleviated lead toxic effects by enhancing the levels of glutathione, glutathione peroxidase, glutathione-s-transferase and catalase.
2012-01-01
In this study manganese peroxidase (MnP) enzymes from selected white-rot fungi were isolated and compared for potential future recombinant production. White-rot fungi were cultivated in small-scale in liquid media and a simplified process was established for the purification of extracellular enzymes. Five lignin degrading organisms were selected (Bjerkandera sp., Phanerochaete (P.) chrysosporium, Physisporinus (P.) rivulosus, Phlebia (P.) radiata and Phlebia sp. Nf b19) and studied for MnP production in small-scale. Extracellular MnP activity was followed and cultivations were harvested at proximity of the peak activity. The production of MnPs varied in different organisms but was clearly regulated by inducing liquid media components (Mn2+, veratryl alcohol and malonate). In total 8 different MnP isoforms were purified. Results of this study reinforce the conception that MnPs from distinct organisms differ substantially in their properties. Production of the extracellular enzyme in general did not reach a substantial level. This further suggests that these native producers are not suitable for industrial scale production of the enzyme. The highest specific activities were observed with MnPs from P. chrysosporium (200 U mg-1), Phlebia sp. Nf b19 (55 U mg-1) and P. rivulosus (89 U mg-1) and these MnPs are considered as the most potential candidates for further studies. The molecular weight of the purified MnPs was estimated to be between 45–50 kDa. PMID:23190610
Versatile peroxidase of Bjerkandera fumosa: substrate and inhibitor specificity.
Pozdnyakova, Natalia; Makarov, Oleg; Chernyshova, Marina; Turkovskaya, Olga; Jarosz-Wilkolazka, Anna
2013-01-10
The inhibitor and substrate specificities of versatile peroxidase from Bjerkandera fumosa (VPBF) were studied. Two different effects were found: NaN(3), Tween-80, anthracene, and fluorene decreased the activity of VPBF, but p-aminobenzoic acid increased it. A mixed mechanism of effector influence on the activity of this enzyme was shown. The catalytic properties of VPBF in the oxidation of mono- and polycyclic aromatic compounds were studied also. 2,7-Diaminofluorene, ABTS, veratryl alcohol, and syringaldazine can be oxidized by VPBF in two ways: either directly by the enzyme or by diffusible chelated Mn(3+) as an oxidizing agent. During VPBF oxidation of 2,7-diaminofluorene, both with and without Mn(2+), biphasic kinetics with apparent saturation in both micromolar and millimolar ranges were obtained. In the case of ABTS, inhibition of VPBF activity by an excess of substrate was observed. Direct oxidation of p-aminobenzoic acid by versatile peroxidase was found for the first time. The oxidation of three- and four-ring PAHs by VPBF was investigated, and the oxidation of anthracene, phenanthrene, fluorene, pyrene, chrysene, and fluoranthene was shown. The products of PAH oxidation (9,10-anthraquinone, 9,10-phenanthrenequinone, and 9-fluorenone) catalyzed by VPBF were identified. Copyright © 2012 Elsevier Inc. All rights reserved.
Jiang, Wei; Pan, Yue; Yang, Jiebing; Liu, Yong; Yang, Yan; Tang, Jun; Li, Quanshun
2018-07-01
Atom transfer radical polymerization (ATRP) has been considered to be an efficient strategy for constructing functional macromolecules owing to its simple operation and versatile monomers, and thus it is of great significance to develop ideal catalysts with higher activity and perfect reusability. We constructed a peroxidase mimic through the grafting of heme onto metal-organic frameworks UiO-66-NH 2 (ZrMOF), namely Heme-ZrMOF. After the systematic characterization of structure, the composite Heme-ZrMOF was demonstrated to possess high peroxidase activity using 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) and 3,3',5,5'-tetramethylbenzidine as substrates. The enzyme mimic was then used as catalysts in the ATRP reactions of different monomers, in which favorable monomer conversion (44.6-98.0%) and product molecular weight (8600-25,600 g/mol) could be obtained. Compared to free heme, Heme-ZrMOF could efficiently achieve the easy separation of heme from the catalytic system and facilitate the ATRP reaction in an aqueous environment to avoid the utilization of organic solvents. In conclusion, the enzyme mimic Heme-ZrMOF could be potentially used as an effective catalyst for preparing well-defined polymers with biomedical applications. Copyright © 2018 Elsevier Inc. All rights reserved.
Gao, Xueyan; Wang, Congyan; Dai, Wei; Ren, Shenrong; Tao, Fang; He, Xingbing; Han, Guomin; Wang, Wei
2017-06-20
A recent algicidal mode indicates that fungal mycelia can wrap and eliminate almost all co-cultivated algal cells within a short time span. However, the underlying molecular mechanism is rarely understood. We applied proteomic analysis to investigate the algicidal process of Trametes versicolor F21a and identified 3,754 fungal proteins. Of these, 30 fungal enzymes with endo- or exoglycosidase activities such as β-1,3-glucanase, α-galactosidase, α-glucosidase, alginate lyase and chondroitin lyase were significantly up-regulated. These proteins belong to Glycoside Hydrolases, Auxiliary Activities, Carbohydrate Esterases and Polysaccharide Lyases, suggesting that these enzymes may degrade lipopolysaccharides, peptidoglycans and alginic acid of algal cells. Additionally, peptidase, exonuclease, manganese peroxidase and cytochrome c peroxidase, which decompose proteins and DNA or convert other small molecules of algal cells, could be other major decomposition enzymes. Gene Ontology and KEGG pathway enrichment analysis demonstrated that pyruvate metabolism and tricarboxylic acid cycle pathways play a critical role in response to adverse environment via increasing energy production to synthesize lytic enzymes or uptake molecules. Carbon metabolism, selenocompound metabolism, sulfur assimilation and metabolism, as well as several amino acid biosynthesis pathways could play vital roles in the synthesis of nutrients required by fungal mycelia.
Ganaja, Kirsten A; Chaplan, Cory A; Zhang, Jingyi; Martinez, Nathaniel W; Martinez, Andres W
2017-05-16
Paper microzone plates in combination with a noncontact liquid handling robot were demonstrated as tools for studying the stability of enzymes stored on paper. The effect of trehalose and SU-8 epoxy novolac resin (SU-8) on the stability of horseradish peroxidase (HRP) was studied in both a short-term experiment, where the activity of various concentrations of HRP dried on paper were measured after 1 h, and a long-term experiment, where the activity of a single concentration of HRP dried and stored on paper was monitored for 61 days. SU-8 was found to stabilize HRP up to 35 times more than trehalose in the short-term experiment for comparable concentrations of the two reagents, and a 1% SU-8 solution was found to stabilize HRP approximately 2 times more than a 34% trehalose solution in both short- and long-term experiments. The results suggest that SU-8 is a promising candidate for use as an enzyme-stabilizing reagent for paper-based diagnostic devices and that the short-term experiment could be used to quickly evaluate the capacity of various reagents for stabilizing enzymes to identify and characterize new enzyme-stabilizing reagents.
IONIC EFFECTS ON LIGNIFICATION AND PEROXIDASE IN TISSUE CULTURES
Lipetz, Jacques; Garro, Anthony J.
1965-01-01
Crown-gall tumor tissue cultures release peroxidase into the medium in response to the concentration of specific ions in the medium. This release is not due to diffusion from cut surfaces or injured cells. Calcium, magnesium, and ammonium were, in that order, most effective in increasing peroxidase release. The enzyme was demonstrated cytochemically on the cell walls and in the cytoplasm. Cell wall fractions, exhaustively washed in buffer, still contained bound peroxidase. This bound peroxidase could be released by treating the wall fractions with certain divalent cations or ammonium. The order of effectiveness for removing the enzyme from the washed cell walls is: Ca++ ≈ Sr++ > Ba++ > Mg++ > NH4 +. These data support the thesis presented that specific ions can control the deposition of lignin on cell walls by affecting the peroxidase levels on these walls. PMID:19866650
Singh, Aishwarya; Singh, Aditi; Grover, Sonam; Pandey, Bharati; Kumari, Anchala; Grover, Abhinav
2018-01-30
Mycobacterium tuberculosis katG gene is responsible for production of an enzyme catalase peroxidase that peroxidises and activates the prodrug Isoniazid (INH), a first-line antitubercular agent. INH interacts with catalase peroxidase enzyme within its heme pocket and gets converted to an active form. Mutations occurring in katG gene are often linked to reduced conversion rates for INH. This study is focussed on one such mutation occurring at residue 279, where glycine often mutates to aspartic acid (G279D). In the present study, several structural analyses were performed to study the effect of this mutation on functionality of KatG protein. On comparison, mutant protein exhibited a lower docking score, smaller binding cavity and reduced affinity towards INH. Molecular dynamics analysis revealed the mutant to be more rigid and less compact than the native protein. Essential dynamics analysis determined correlated motions of residues within the protein structure. G279D mutant was found to have many residues that showed related motions and an undesirable effect on the functionality of protein. Copyright © 2017 Elsevier B.V. All rights reserved.
Salvachúa, Davinia; Prieto, Alicia
2013-01-01
Irpex lacteus is a white rot basidiomycete proposed for a wide spectrum of biotechnological applications which presents an interesting, but still scarcely known, enzymatic oxidative system. Among these enzymes, the production, purification, and identification of a new dye-decolorizing peroxidase (DyP)-type enzyme, as well as its physico-chemical, spectroscopic, and catalytic properties, are described in the current work. According to its N-terminal sequence and peptide mass fingerprinting analyses, I. lacteus DyP showed high homology (>95%) with the hypothetical (not isolated or characterized) protein cpop21 from an unidentified species of the family Polyporaceae. The enzyme had a low optimal pH, was very stable to acid pH and temperature, and showed improved activity and stability at high H2O2 concentrations compared to other peroxidases. Other attractive features of I. lacteus DyP were its high catalytic efficiency oxidizing the recalcitrant anthraquinone and azo dyes assayed (kcat/Km of 1.6 × 106 s-1 M-1) and its ability to oxidize nonphenolic aromatic compounds like veratryl alcohol. In addition, the effect of this DyP during the enzymatic hydrolysis of wheat straw was checked. The results suggest that I. lacteus DyP displayed a synergistic action with cellulases during the hydrolysis of wheat straw, increasing significantly the fermentable glucose recoveries from this substrate. These data show a promising biotechnological potential for this enzyme. PMID:23666335
Makwana, Pooja; Pradeep, Appukuttan Nair R; Hungund, Shambhavi P; Ponnuvel, Kangayam M; Trivedy, Kanika
2017-02-01
Hymenopteran parasitoids inject various factors including polydnaviruses along with their eggs into their host insects that suppress host immunity reactions to the eggs and larvae. Less is known about the mechanisms evolved in dipteran parasitoids that suppress host immunity. Here we report that the dipteran, Exorista bombycis, parasitization leads to pro-oxidative reactions and activation of anti-oxidative enzymes in the silkworm Bombyx mori larva. We recorded increased activity of oxidase, superoxide dismutase, thioredoxin peroxidase, catalase, glutathione-S-transferase (GST), and peroxidases in the hemolymph plasma, hemocytes, and fat body collected from B. mori after E. bombycis parasitization. Microarray and qPCR showed differential expression of genes encoding pro- and anti-oxidant enzymes in the hemocytes. The significance of this work lies in increased understanding of dipteran parasitoid biology. © 2017 Wiley Periodicals, Inc.
Nguyen-Deroche, Thi Le Nhung; Caruso, Aurore; Le, Thi Trung; Bui, Trang Viet; Schoefs, Benoît; Tremblin, Gérard; Morant-Manceau, Annick
2012-01-01
Zinc-supplementation (20 μM) effects on growth, photosynthesis, antioxidant enzyme activities (superoxide dismutase, ascorbate peroxidase, catalase), and the expression of phytochelatin synthase gene were investigated in four marine diatoms (Amphora acutiuscula, Nitzschia palea, Amphora coffeaeformis and Entomoneis paludosa). Zn-supplementation reduced the maximum cell density. A linear relationship was found between the evolution of gross photosynthesis and total chlorophyll content. The Zn treatment decreased the electron transport rate except in A. coffeaeformis and in E. paludosa at high irradiance. A linear relationship was found between the efficiency of light to evolve oxygen and the size of the light-harvesting antenna. The external carbonic anhydrase activity was stimulated in Zn-supplemented E. paludosa but was not correlated with an increase of photosynthesis. The total activity of the antioxidant enzymes did not display any clear increase except in ascorbate peroxidase activity in N. palea. The phytochelatin synthase gene was identified in the four diatoms, but its expression was only revealed in N. palea, without a clear difference between control and Zn-supplemented cells. Among the four species, A. paludosa was the most sensitive and A. coffeaeformis, the most tolerant. A. acutiuscula seemed to be under metal starvation, whereas, to survive, only N. palea developed several stress responses.
Nguyen-Deroche, Thi Le Nhung; Caruso, Aurore; Le, Thi Trung; Bui, Trang Viet; Schoefs, Benoît; Tremblin, Gérard; Morant-Manceau, Annick
2012-01-01
Zinc-supplementation (20 μM) effects on growth, photosynthesis, antioxidant enzyme activities (superoxide dismutase, ascorbate peroxidase, catalase), and the expression of phytochelatin synthase gene were investigated in four marine diatoms (Amphora acutiuscula, Nitzschia palea, Amphora coffeaeformis and Entomoneis paludosa). Zn-supplementation reduced the maximum cell density. A linear relationship was found between the evolution of gross photosynthesis and total chlorophyll content. The Zn treatment decreased the electron transport rate except in A. coffeaeformis and in E. paludosa at high irradiance. A linear relationship was found between the efficiency of light to evolve oxygen and the size of the light-harvesting antenna. The external carbonic anhydrase activity was stimulated in Zn-supplemented E. paludosa but was not correlated with an increase of photosynthesis. The total activity of the antioxidant enzymes did not display any clear increase except in ascorbate peroxidase activity in N. palea. The phytochelatin synthase gene was identified in the four diatoms, but its expression was only revealed in N. palea, without a clear difference between control and Zn-supplemented cells. Among the four species, A. paludosa was the most sensitive and A. coffeaeformis, the most tolerant. A. acutiuscula seemed to be under metal starvation, whereas, to survive, only N. palea developed several stress responses. PMID:22645501
Peters, J L; Castillo, F J; Heath, R L
1989-01-01
Diamine oxidase and peroxidase, associated with the wall in pinto bean (Phaseolus vulgaris L. var Pinto) leaves, can be washed out by vacuum infiltration and assayed without grinding the leaf. The diamine oxidase activity is inhibited in vivo by exposure of the plants to ozone (dose of 0.6 microliters per liter x hour), whereas the peroxidase activity associated with the wall space is stimulated. This dose does not cause obvious necrosis or chlorosis of the leaf. These alterations are greater when the dose of ozone exposure is given as a triangular pulse (a slow rise to a peak of 0.24 microliters per liter followed by a slow fall) compared to that given as a constant square wave pulse of 0.15 microliters per liter for the same 4 hour period. Exposure of the plants to sulfur dioxide (at a concentration of 0.4 microliters per liter for 4 hours) does not result in any change in the diamine oxidase or peroxidase activities, yet the total sulfhydryl content of the leaf is increased, demonstrating the entry of sulfur dioxide. These two pollutants, with different chemical reactivities, affect the activities of the extracellular enzymes in different manners. In the case of ozone exposure, the inhibition of extracellular diamine oxidase could profoundly alter the movements of polyamines from cell to cell.
Antagonists' impact on enzymatic response in wilt infected cotton plants
USDA-ARS?s Scientific Manuscript database
A number of PR-proteins possess enzymatic activity. As such, these proteins maybe indicators of defensive response of plants. Thus, we have conducted a comparative analysis of beta-1,3-glucanase, peroxidase and xylanase activity in cotton plants to determine how these enzymes are affected by the pat...
Torres-Farradá, Giselle; Manzano León, Ana M.; Rineau, François; Ledo Alonso, Lucía L.; Sánchez-López, María I.; Thijs, Sofie; Colpaert, Jan; Ramos-Leal, Miguel; Guerra, Gilda; Vangronsveld, Jaco
2017-01-01
White-rot fungi (WRF) and their ligninolytic enzymes (laccases and peroxidases) are considered promising biotechnological tools to remove lignin related Persistent Organic Pollutants from industrial wastewaters and contaminated ecosystems. A high diversity of the genus Ganoderma has been reported in Cuba; in spite of this, the diversity of ligninolytic enzymes and their genes remained unexplored. In this study, 13 native WRF strains were isolated from decayed wood in urban ecosystems in Havana (Cuba). All strains were identified as Ganoderma sp. using a multiplex polymerase chain reaction (PCR)-method based on ITS sequences. All Ganoderma sp. strains produced laccase enzymes at higher levels than non-specific peroxidases. Native-PAGE of extracellular enzymatic extracts revealed a high diversity of laccase isozymes patterns between the strains, suggesting the presence of different amino acid sequences in the laccase enzymes produced by these Ganoderma strains. We determined the diversity of genes encoding laccases and peroxidases using a PCR and cloning approach with basidiomycete-specific primers. Between two and five laccase genes were detected in each strain. In contrast, only one gene encoding manganese peroxidase or versatile peroxidase was detected in each strain. The translated laccases and peroxidases amino acid sequences have not been described before. Extracellular crude enzymatic extracts produced by the Ganoderma UH strains, were able to degrade model chromophoric compounds such as anthraquinone and azo dyes. These findings hold promises for the development of a practical application for the treatment of textile industry wastewaters and also for bioremediation of polluted ecosystems by well-adapted native WRF strains. PMID:28588565
Graças, J P; Ruiz-Romero, R; Figueiredo, L D; Mattiello, L; Peres, L E P; Vitorello, V A
2016-07-01
Low pH (<5.0) can significantly decrease root growth but whether this is a direct effect of H(+) or an active plant response is examined here. Tomato (Solanum lycopersicum cv Micro-Tom) roots were exposed directly or gradually to low pH through step-wise changes in pH over periods ranging from 4 to 24 h. Roots exposed gradually to pH 4.5 grew even less than those exposed directly, indicating a plant-coordinated response. Direct exposure to pH 4.0 suppressed root growth and caused high cell mortality, in contrast to roots exposed gradually, in which growth remained inhibited but cell viability was maintained. Total class III peroxidase activity increased significantly in all low pH treatments, but was not correlated with the observed differential responses. Use of the enzyme inhibitors salicylhydroxamic acid (SHAM) or diphenyleneiodonium chloride (DPI) suggest that peroxidase and, to a lesser extent, NADPH oxidase were required to prevent or reduce injury in all low pH treatments. However, a role for other enzymes, such as the alternative oxidase is also possible. The results with SHAM, but not DPI, were confirmed in tobacco BY-2 cells. Our results indicate that root growth inhibition from low pH can be part of an active plant response, and suggest that peroxidases may have a critical early role in reducing loss of cell viability and in the observed root growth constraint. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.
Kavitha, P; Ramesh, R; Bupesh, G; Stalin, A; Subramanian, P
2011-12-01
The potential protective role of Tribulus terrestris in acetaminophen-induced hepatotoxicity in Oreochromis mossambicus was investigated. The effect of oral exposure of acetaminophen (500 mg/kg) in O. mossambicus at 24-h duration was evaluated. The plant extract (250 mg/kg) showed a remarkable hepatoprotective activity against acetaminophen-induced hepatotoxicity. It was judged from the tissue-damaging level and antioxidant levels in liver, gill, muscle and kidney tissues. Further acetaminophen impact induced a significant rise in the tissue-damaging level, and the antioxidant level was discernible from the enzyme activity modulations such as glutamate oxaloacetic transaminase, glutamate pyruvic transaminase, alkaline phosphatase, acid phosphatase, glucose-6-phosphate dehydrogenase, lactate dehydrogenase, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione S-transferase, lipid peroxidase and reduced glutathione. The levels of all these enzymes have significantly (p < 0.05) increased in acetaminophen-treated fish tissues. The elevated levels of these enzymes were significantly controlled by the treatment of T. terrestris extract (250 kg/mg). Histopathological changes of liver, gill and muscle samples were compared with respective controls. The results of the present study specify the hepatoprotective and antioxidant properties of T. terrestris against acetaminophen-induced toxicity in freshwater fish, O. mossambicus.
Sereflioglu, Seda; Dinler, Burcu Seckin; Tasci, Eda
2017-03-01
In this paper, we describe the alleviated effects of alpha-tocopherol (α-T) on oxidative damage and its possible role as a signal transmitter in plants during salt stress. The results show that exogenously applied α-T under salt stress increased root length and weight, but reduced hydrogen peroxide (H 2 O 2 ), superoxide anion radical (O 2 . -) and malondialdehyde (MDA) content in soybean roots. The proline content was reduced by α-T treatment. Interestingly, endogenous auxin (IAA) level was significantly increased after α-T application as compared to salt stress alone. Moreover, α-T reduced significantly superoxide dismutase (SOD) enzyme and isoenzyme activity but upregulated peroxidase (POX) 2, 3 and glutathione-s-transferase (GST) 1, 3 isoenzyme expression. However, ascorbate peroxidase (APX) enzyme activity was not affected at all. Consequently, the results show that α-T serves as a signal molecule under salinity from leaves to roots by increasing remarkably endogenous IAA levels and increasing partially antioxidant activity in roots.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta,K.; Selinsky, B.; Loll, P.
2006-01-01
Prostaglandin H{sub 2} synthase (EC 1.14.99.1) is a clinically important drug target that catalyzes two key steps in the biosynthesis of the eicosanoid hormones. The enzyme contains spatially distinct cyclooxygenase and peroxidase active sites, both of which require a heme cofactor. Substitution of ferric heme by Mn{sup III} protoporphyrin IX greatly diminishes the peroxidase activity, but has little effect on the cyclooxygenase activity. Here, the 2.0 Angstrom resolution crystal structure of the Mn{sup III} form of ovine prostaglandin H{sub 2} synthase-1 is described (R = 21.8%, R{sub free} = 23.7%). Substitution of Mn{sup III} for Fe{sup III} causes no structuralmore » perturbations in the protein. However, the out-of-plane displacement of the manganese ion with respect to the porphyrin is greater than that of the iron by approximately 0.2 Angstroms. This perturbation may help to explain the altered catalytic properties of the manganese enzyme.« less
Krainer, Florian W; Glieder, Anton
2015-02-01
Horseradish peroxidase has been the subject of scientific research for centuries. It has been used exhaustively as reporter enzyme in diagnostics and histochemistry and still plays a major role in these applications. Numerous studies have been conducted on the role of horseradish peroxidase in the plant and its catalytic mechanism. However, little progress has been made in its recombinant production. Until now, commercial preparations of horseradish peroxidase are still isolated from plant roots. These preparations are commonly mixtures of various isoenzymes of which only a small fraction has been described so far. The composition of isoenzymes in these mixed isolates is subjected to uncontrollable environmental conditions. Nowadays, horseradish peroxidase regains interest due to its broad applicability in the fields of medicine, life sciences, and biotechnology in cancer therapy, biosensor systems, bioremediation, and biocatalysis. These medically and commercially relevant applications, the recent discovery of new natural isoenzymes with different biochemical properties, as well as the challenges in recombinant production render this enzyme particularly interesting for future biotechnological solutions. Therefore, we reviewed previous studies as well as current developments with biotechnological emphasis on new applications and the major remaining biotechnological challenge-the efficient recombinant production of horseradish peroxidase enzymes.
Panagopoulos, Vasilios; Leach, Damien A; Zinonos, Irene; Ponomarev, Vladimir; Licari, Giovanni; Liapis, Vasilios; Ingman, Wendy V; Anderson, Peter; DeNichilo, Mark O; Evdokiou, Andreas
2017-04-01
Myeloperoxidase (MPO) and eosinophil peroxidase (EPO) are heme-containing enzymes, well known for their antimicrobial activity, are released in high quantities by infiltrating immune cells in breast cancer. However, the functional importance of their presence within the tumour microenvironment is unclear. We have recently described a new role for peroxidases as key regulators of fibroblast and endothelial cell functionality. In the present study, we investigate for the first time, the ability of peroxidases to promote breast cancer development and progression. Using the 4T1 syngeneic murine orthotopic breast cancer model, we examined whether increased levels of peroxidases in developing mammary tumours influences primary tumour growth and metastasis. We showed that MPO and EPO stimulation increased mammary tumour growth and enhanced lung metastases, effects that were associated with reduced tumour necrosis, increased collagen deposition and neo-vascularisation within the primary tumour. In vitro, peroxidase treatment, robustly stimulated human mammary fibroblast migration and collagen type I and type VI secretion. Mechanistically, peroxidases induced the transcription of pro-tumorigenic and metastatic MMP1, MMP3 and COX-2 genes. Taken together, these findings identify peroxidases as key contributors to cancer progression by augmenting pro-tumorigenic collagen production and angiogenesis. Importantly, this identifies inflammatory peroxidases as therapeutic targets in breast cancer therapy.
Gomes, Eleni; Aguiar, Ana Paula; Carvalho, Caio César; Bonfá, Maricy Raquel B.; da Silva, Roberto; Boscolo, Mauricio
2009-01-01
Wood rotting Basidiomycetes collected in the “Estação Ecológica do Noroeste Paulista”, São José do Rio Preto, São Paulo State, Brazil, concerning Aphyllophorales order and identified as Coriolopsis byrsina SXS16, Lentinus strigellus SXS355, Lentinus sp SXS48, Picnoporus sanguineus SXS 43 and Phellinus rimosus SXS47 were tested for ligninases production by solid state fermentation (SSF) using wheat bran or rice straw as culture media. C. byrsina produced the highest laccase (200 U mL-1) and Lentinus sp produced the highest activities of manganese peroxidase (MnP) and lignin peroxidase (LiP) (7 and 8 U mL-1, respectively), when cultivated on wheat bran. The effect of N addition on enzyme production was studied in medium containing rice straw and the data showed an increase of 3 up to 4-fold in the laccase production compared to that obtained in SSF on wheat bran. The laccases presented optimum pH at 3.0-3.5 and were stable at neutral pH values. Optimum pH for MnP and LiP activities was at 3.5 and between 4.5 and 6.0, respectively. All the strains produced laccase with optimum activities between 55-60ºC while the peroxidases presented maximum activity at temperatures of 30 to 55ºC. The crude enzymes promoted decolorization of chemically different dyes with around 70% of decolorization of RBBR and cybacron blue 3GA in 6h of treatment. The data indicated that enzymes from these basidiomycetes strains are able to decolorize synthetic dyes. PMID:24031314
Peroxidase extraction from jicama skin peels for phenol removal
NASA Astrophysics Data System (ADS)
Chiong, T.; Lau, S. Y.; Khor, E. H.; Danquah, M. K.
2016-06-01
Phenol and its derivatives exist in various types of industrial effluents, and are known to be harmful to aquatic lives even at low concentrations. Conventional treatment technologies for phenol removal are challenged with long retention time, high energy consumption and process cost. Enzymatic treatment has emerged as an alternative technology for phenol removal from wastewater. These enzymes interact with aromatic compounds including phenols in the presence of hydrogen peroxide, forming free radicals which polymerize spontaneously to produce insoluble phenolic polymers. This work aims to extract peroxidase from agricultural wastes materials and establish its application for phenol removal. Peroxidase was extracted from jicama skin peels under varying extraction conditions of pH, sample-to-buffer ratio (w/v %) and temperature. Experimental results showed that extraction process conducted at pH 10, 40% w/v and 25oC demonstrated a peroxidase activity of 0.79 U/mL. Elevated temperatures slightly enhanced the peroxidase activities. Jicama peroxidase extracted at optimum extraction conditions demonstrated a phenol removal efficiency of 87.5% at pH 7. Phenol removal efficiency was ∼ 97% in the range of 30 - 40oC, and H2O2 dosage has to be kept below 100 mM for maximum removal under phenol concentration tested.
Vasina, Daria V.; Moiseenko, Konstantin V.; Fedorova, Tatiana V.; Tyazhelova, Tatiana V.
2017-01-01
Ligninolytic heme peroxidases comprise an extensive family of enzymes, which production is characteristic for white-rot Basidiomycota. The majority of fungal heme peroxidases are encoded by multigene families that differentially express closely related proteins. Currently, there were very few attempts to characterize the complete multigene family of heme peroxidases in a single fungus. Here we are focusing on identification and characterization of peroxidase genes, which are transcribed and secreted by basidiomycete Trametes hirsuta 072, an efficient lignin degrader. The T. hirsuta genome contains 18 ligninolytic peroxidase genes encoding 9 putative lignin peroxidases (LiP), 7 putative short manganese peroxidases (MnP) and 2 putative versatile peroxidases (VP). Using ddPCR method we have quantified the absolute expression of the 18 peroxidase genes under different culture conditions and on different growth stages of basidiomycete. It was shown that only two genes (one MnP and one VP) were prevalently expressed as well as secreted into cultural broth under all conditions investigated. However their transcriptome and protein profiles differed in time depending on the effector used. The expression of other peroxidase genes revealed a significant variability, so one can propose the specific roles of these enzymes in fungal development and lifestyle. PMID:28301519
Karn, Santosh K.; Fang, Guan; Duan, Jizhou
2017-01-01
Present work investigated the role of five different bacteria species as a corrosion inducer as well as corrosion inhibitor with carbon steel (CS). We observed the ability of different bacteria species on the metal surface attachment, biofilm formation, and determined Peroxidase, Catalase enzyme activity in the detached biofilm from the CS surface. We found that each strain has diverse conduct for surface attachment like DS1 3.3, DS2 2.5, DS3 4.3, DS4 4.0, and DS5 4.71 log cfu/cm2 and for biofilm 8.3 log cfu/cm2. The enzyme Peroxidase, Catalase was found in huge concentration inside the biofilm Peroxidase was maximum for DS4 36.0 U/ml and least for DS3 19.54 U/ml. Whereas, Catalase was highest for DS4, DS5 70.14 U/ml and least 57.2 U/ml for DS2. Scanning electron microscopy (SEM) was conducted to examine the biofilm and electrochemical impedance spectroscopy (EIS) were utilized to observe corrosion in the presence of bacteria. The electrochemical results confirmed that DS1, DS3, DS4, and DS5 strains have statistically significant MIC-factors (Microbially Influenced Corrosion) of 5.46, 8.51, 2.36, and 1.04, while DS2 protective effect factor of 0.89. Weight reduction results with carbon steel likewise supports that corrosion was initiated by DS1 and DS3, while DS2 and DS5 have no any impact though with DS4 we watched less weight reduction however assumed no role in the corrosion. We established the relation of Peroxidase enzyme activity of the isolates. DS1, DS3 and having Peroxidase in the range 22.18, 19.54 U/ml which induce the corrosion whereas DS2 and DS5 having 28.57 and 27.0 U/ml has no any effect and DS4 36 U/ml has inhibitory effect, increasing concentration inhibiting the corrosion. For Catalase DS1, DS3 have 67.28, 61.57 U/ml which induce corrosion while DS2 and DS5 57.71 and 59.14 U/ml also has no effect whereas DS4 70.14 U/ml can inhibit corrosion. Results clearly express that in a specific range both enzymes can induce the corrosion. Our goals are to pursuit and locate the potential role of the enzyme in corrosion induction and inhibition. There is still further work is proceeded for the more profound perception. PMID:29114242
NASA Astrophysics Data System (ADS)
Öztekin, Aykut; Almaz, Züleyha; Özdemir, Hasan
2016-04-01
Peroxidases (E.C.1.11.1.7) catalyze the one electron oxidation of wide range of substrates. They are used in synthesis reaction, removal of peroxide from industrial wastes, clinical biochemistry and immunoassays. In this study, the white cabbage (Brassica Oleracea var. capitata f. alba) and red cabbage (Brassica oleracea L. var. capitata f. rubra) peroxidase enzymes were purified for investigation of inhibitory effect of some aromatic compounds on these enzymes. IC50 values and Ki constants were calculated for the molecules of 6-Amino nicotinic hydrazide, 6-Amino-5-bromo nicotinic hydrazide, 2-Amino-5-hydroxy benzohydrazide, 4-Amino-3-hydroxy benzohydrazide on purified enzymes and inhibition type of these molecules were determined. (This research was supported by Ataturk University. Project Number: BAP-2015/98).
2001-07-26
antioxidant enzymes: SOD, catalase ( CAT ), and glutathione peroxidase (GPO).2 ° SOD converts superoxide radical into hydrogen peroxide, while CAT and GPO convert...in endometriosis and adenomyosis. Fertility and Sterility 1999; 1:129-134. 45. Muse KE, Oberley TD, Sempf JM, Oberley LW. Immunolocalization of antioxidant enzymes in adult hamster kidney. Histochem J 1994;9:734-753. 43
Characterization of lignocellulolytic enzymes from white-rot fungi.
Manavalan, Tamilvendan; Manavalan, Arulmani; Heese, Klaus
2015-04-01
The development of alternative energy sources by applying lignocellulose-based biofuel technology is critically important because of the depletion of fossil fuel resources, rising fossil fuel prices, security issues regarding the fossil fuel supply, and environmental issues. White-rot fungi have received much attention in recent years for their valuable enzyme systems that effectively degrade lignocellulosic biomasses. These fungi have powerful extracellular oxidative and hydrolytic enzymes that degrade lignin and cellulose biopolymers, respectively. Lignocellulosic biomasses from either agricultural or forestry wastes are abundant, low-cost feedstock alternatives in nature but require hydrolysis into simple sugars for biofuel production. This review provides a complete overview of the different lignocellulose biomasses and their chemical compositions. In addition, a complete list of the white-rot fungi-derived lignocellulolytic enzymes that have been identified and their molecular structures, mechanism of action in lignocellulose hydrolysis, and biochemical properties is summarized in detail. These enzymes include ligninolytic enzymes (laccase, manganese peroxidase, lignin peroxidase, and versatile peroxidase) and cellulolytic enzymes (endo-glucanase, cellobiohydrolase, and beta-glucosidase). The use of these fungi for low-cost lignocellulolytic enzyme production might be attractive for biofuel production.
He, Yanfang; Qi, Fei; Niu, Xiangheng; Zhang, Wenchi; Zhang, Xifeng; Pan, Jianming
2018-08-27
In clinical diagnosis, monitoring of uric acid (UA) is generally realized by combining uricase with natural peroxidase. The use of bio-enzymes, however, shadows some highlights of these methods due to their vulnerable activities against environments. Herein, we report a novel biosensor for the natural enzyme-free colorimetric detection of UA by using CoP nanosheet arrays grown on Ni foam (NF) as a monolithic peroxidase mimic. The integrated nanozyme can be put into and taken out from reaction systems conveniently with only tweezers, making it possible for on-demand analysis. As demonstrated, the obtained CoP/NF exhibits outstanding peroxidase-like activity to trigger the oxidation reaction of colorless 3,3'5,5'-tetramethylbenzidine (TMB) to a blue product (TMBox) mediated by H 2 O 2 . It is found that the blue TMBox can be reduced to colorless TMB again by UA selectively, thus the presence of UA in solutions will suppress the color reaction of TMB. Based on this principle, an uricase-free biosensor is developed for the photometric determination of UA, providing a wide detection range of 1-200 μM and a limit of detection down to 1.0 μM. In addition, the fabricated biosensor can be applied for measuring UA in clinical samples with merits of simple operation and good reliability, exhibiting its great promise in clinical diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.
Decolorization of acid, disperse and reactive dyes by Trametes versicolor CBR43.
Yang, Seung-Ok; Sodaneath, Hong; Lee, Jung-In; Jung, Hyekyeng; Choi, Jin-Hee; Ryu, Hee Wook; Cho, Kyung-Suk
2017-07-29
The mycoremediation has been considered as a promising method for decolorizing dye wastewater. To explore new bioresource for mycoremediation, a new white-rot fungus that could decolorize various dyes commonly used in textile industries was isolated, and its ligninolytic enzyme activity and decolorization capacity were characterized. The isolated CBR43 was identified as Trametes versicolor based on the morphological properties of its fruit body and spores, as well as through partial 18S rDNA gene sequences. Isolated CBR43 displayed high activities of laccase and Mn-dependent peroxidase, whereas its lignin peroxidase activity was relatively low. These ligninolytic enzyme activities in potato dextrose broth (PDB) medium were enhanced by the addition of yeast extract (1-10 g L -1 ). In particular, lignin peroxidase activity was increased more than 5 times in the PDB medium amended with 10 g L -1 of yeast extract. The CBR43 decolorized more than 90% of 200 mg L -1 acid dyes (red 114, blue 62 and black 172) and reactive dyes (red 120, blue 4, orange 16 and black 5) within 6 days in the PDB medium. CBR43 decolorized 67% of 200 mg L -1 acid orange 7 within 9 days. The decolorization efficiencies for disperse dyes (red 1, orange 3 and black 1) were 51-80% within 9 days. The CBR43 could effectively decolorize high concentrations of acid blue 62 and acid black 172 (500-700 mg L -1 ). The maximum dye decolorization rate was obtained at 28°C, pH 5, and 150 rpm in the PDB medium. T. versicolor CBR43 had high laccase and Mn-dependent peroxidase activities, and could decolorize a wide variety of dyes such as acid, disperse and reactive textile dyes. This fungus had decolorizing activities of azo-type dyes as well as anthraquinone-type dyes. T. versicolor CBR43 is one of promising bioresources for the decolorization of textile wastewater including various dyes.
Ramiro, Daniel Alves; Guerreiro-Filho, Oliveiro; Mazzafera, Paulo
2006-09-01
We examined the role of phenolic compounds, and the enzymes peroxidase and polyphenol oxidase, in the expression of resistance of coffee plants to Leucoptera coffeella (Lepidoptera: Lyonetiidae). The concentrations of total soluble phenols and chlorogenic acid (5-caffeoylquinic acid), and the activities of the oxidative enzymes peroxidase (POD) and polyphenol oxidase (PPO), were estimated in leaves of Coffea arabica, C. racemosa, and progenies of crosses between these species, which have different levels of resistance, before and after attack by this insect. The results indicate that phenols do not play a central role in resistance to the coffee leaf miner. Differences were detected between the parental species in terms of total soluble phenol concentrations and activities of the oxidative enzymes. However, resistant and susceptible hybrid plants did not differ in any of these characteristics. Significant induction of chlorogenic acid and PPO was only found in C. racemosa, the parental donator of the resistance genes against L. coffeella. High-performance liquid chromatography (HPLC) analysis also showed qualitative similarity between hybrids and the susceptible C. arabica. These results suggest that the phenolic content and activities of POD and PPO in response to the attack by the leaf miner may not be a strong evidence of their participation in direct defensive mechanisms.
Properties of a cationic peroxidase from Citrus jambhiri cv. Adalia.
Mohamed, Saleh A; El-Badry, Mohamed O; Drees, Ehab A; Fahmy, Afaf S
2008-08-01
The major pool of peroxidase activity is present in the peel of some Egyptian citrus species and cultivars compared to the juice and pulp. Citrus jambhiri cv. Adalia had the highest peroxidase activity among the examined species. Four anionic and one cationic peroxidase isoenzymes from C. jambhiri were detected using the purification procedure including ammonium sulfate precipitation, chromatography on diethylaminoethanol-cellulose, carboxymethyl-cellulose, and Sephacryl S-200 columns. Cationic peroxidase POII is proved to be pure, and its molecular weight was 56 kDa. A study of substrate specificity identified the physiological role of POII, which catalyzed the oxidation of some phenolic substrates in the order of o-phenylenediamine > guaiacol > o-dianisidine > pyrogallol > catechol. The kinetic parameters (K (m), V (max), and V (max)/K (m)) of POII for hydrolysis toward H2O2 and electron donor substrates were studied. The enzyme had pH and temperature optima at 5.5 and 40 degrees C, respectively. POII was stable at 10-40 degrees C and unstable above 50 degrees C. The thermal inactivation profile of POII is biphasic and characterized by a rapid decline in activity on exposure to heat. The most of POII activity (70-80%) was lost at 50, 60, and 70 degrees C after 15, 10, and 5 min of incubation, respectively. Most of the examined metal ions had a very slight effect on POII except of Li+, Zn2+, and Hg2+, which had partial inhibitory effects. In the present study, the instability of peroxidase above 50 degrees C makes the high temperature short time treatment very efficient for the inactivation of peel peroxidase contaminated in orange juice to avoid the formation of off-flavors.
Size-dependent tuning of horseradish peroxidase bioreactivity by gold nanoparticles
NASA Astrophysics Data System (ADS)
Wu, Haohao; Liu, Yi; Li, Meng; Chong, Yu; Zeng, Mingyong; Lo, Y. Martin; Yin, Jun-Jie
2015-02-01
Molecules with diverse biological functions, such as heme peroxidases, can be useful tools for identifying potential biological effects of gold nanoparticles (AuNPs) at the molecular level. Here, using UV-Vis, circular dichroism, dynamic light scattering, and electron spin resonance spectroscopy, we report tuning of horseradish peroxidase (HRP) bioactivity by reactant-free AuNPs with diameters of 5, 10, 15, 30 and 60 nm (Au-5 nm, Au-10 nm, Au-15 nm, Au-30 nm and Au-60 nm). HRP conjugation to AuNPs was observed with only Au-5 nm and Au-10 nm prominently increasing the α-helicity of the enzyme to extents inversely related to their size. Au-5 nm inhibited both HRP peroxidase activity toward 3,3',5,5'-tetramethylbenzidine and HRP compound I/II reactivity toward 5,5-dimethyl-1-pyrroline N-oxide. Au-5 nm enhanced the HRP peroxidase activity toward ascorbic acid and the HRP compound I/II reactivity toward redox-active residues in the HRP protein moiety. Further, Au-5 nm also decreased the catalase- and oxidase-like activities of HRP. Au-10 nm showed similar, but weaker effects, while Au-15 nm, Au-30 nm and Au-60 nm had no effect. Results suggest that AuNPs can size-dependently enhance or inhibit HRP bioreactivity toward substrates with different redox potentials via a mechanism involving extension of the HRP substrate access channel and decline in the redox potentials of HRP catalytic intermediates.Molecules with diverse biological functions, such as heme peroxidases, can be useful tools for identifying potential biological effects of gold nanoparticles (AuNPs) at the molecular level. Here, using UV-Vis, circular dichroism, dynamic light scattering, and electron spin resonance spectroscopy, we report tuning of horseradish peroxidase (HRP) bioactivity by reactant-free AuNPs with diameters of 5, 10, 15, 30 and 60 nm (Au-5 nm, Au-10 nm, Au-15 nm, Au-30 nm and Au-60 nm). HRP conjugation to AuNPs was observed with only Au-5 nm and Au-10 nm prominently increasing the α-helicity of the enzyme to extents inversely related to their size. Au-5 nm inhibited both HRP peroxidase activity toward 3,3',5,5'-tetramethylbenzidine and HRP compound I/II reactivity toward 5,5-dimethyl-1-pyrroline N-oxide. Au-5 nm enhanced the HRP peroxidase activity toward ascorbic acid and the HRP compound I/II reactivity toward redox-active residues in the HRP protein moiety. Further, Au-5 nm also decreased the catalase- and oxidase-like activities of HRP. Au-10 nm showed similar, but weaker effects, while Au-15 nm, Au-30 nm and Au-60 nm had no effect. Results suggest that AuNPs can size-dependently enhance or inhibit HRP bioreactivity toward substrates with different redox potentials via a mechanism involving extension of the HRP substrate access channel and decline in the redox potentials of HRP catalytic intermediates. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07056a
Lubovská, Zuzana; Dobrá, Jana; Storchová, Helena; Wilhelmová, Naďa; Vanková, Radomíra
2014-11-01
Cytokinins (CKs) as well as the antioxidant enzyme system (AES) play important roles in plant stress responses. The expression and activity of antioxidant enzymes (AE) were determined in drought, heat and combination of both stresses, comparing the response of tobacco plants overexpressing the main cytokinin degrading enzyme, cytokinin oxidase/dehydrogenase, under the control of root-specific WRKY6 promoter (W6:CKX1 plants) or constitutive promoter (35S:CKX1 plants) and the corresponding wild-type (WT). Expression levels as well as activities of cytosolic ascorbate peroxidase, catalase 3, and cytosolic superoxide dismutase were low under optimal conditions and increased after heat and combined stress in all genotypes. Unlike catalase 3, two other peroxisomal enzymes, catalase 1 and catalase 2, were transcribed extensively under control conditions. Heat stress, in contrast to drought or combined stress, increased catalase 1 and reduced catalase 2 expression in WT and W6:CKX1 plants. In 35S:CKX1, catalase 1 expression was enhanced by heat or drought, but not under combined stress conditions. Mitochondrial superoxide dismutase expression was generally higher in 35S:CKX1 plants than in WT. Genes encoding for chloroplastic AEs, stromatal ascorbate peroxidase, thylakoidal ascorbate peroxidase and chloroplastic superoxide dismutase, were strongly transcribed under control conditions. All stresses down-regulated their expression in WT and W6:CKX1, whereas more stress-tolerant 35S:CKX1 plants maintained high expression during drought and heat. The achieved data show that the effect of down-regulation of CK levels on AES may be mediated by altered habit, resulting in improved stress tolerance, which is associated with diminished stress impact on photosynthesis, and changes in source/sink relations. Copyright © 2014 Elsevier GmbH. All rights reserved.
Erinle, Kehinde Olajide; Jiang, Zhao; Ma, Bingbing; Li, Jinmei; Chen, Yukun; Ur-Rehman, Khalil; Shahla, Andleeb; Zhang, Ying
2016-10-01
Calcium (Ca) has been reported to lessen oxidative damages in plants by upregulating the activities of antioxidant enzymes. However, atrazine mediated reactive oxygen species (ROS) reduction by Ca is limited. This study therefore investigated the effect of exogenously applied Ca on ROS, antioxidants activity and gene transcripts, the D1 protein (psbA gene), and chlorophyll contents in Pennisetum seedlings pre-treated with atrazine. Atrazine toxicity increased ROS production and enzyme activities (ascorbate peroxidase APX, peroxidase POD, Superoxide dismutase SOD, glutathione-S-transferase GST); but decreased antioxidants (APX, POD, and Cu/Zn SOD) and psbA gene transcripts. Atrazine also decreased the chlorophyll contents, but increased chlorophyll (a/b) ratio. Contrarily, Ca application to atrazine pre-treated seedlings lowered the harmful effects of atrazine by reducing ROS levels, but enhancing the accumulation of total chlorophyll contents. Ca-protected seedlings in the presence of atrazine manifested reduced APX and POD activity, whereas SOD and GST activity was further increased with Ca application. Antioxidant gene transcripts that were down-regulated by atrazine toxicity were up-regulated with the application of Ca. Calcium application also resulted in up-regulation of the D1 protein. In conclusion, ability of calcium to reverse atrazine-induced oxidative damage and calcium regulatory role on GST in Pennisetum was presented. Copyright © 2016 Elsevier Inc. All rights reserved.
Myeloperoxidase as an Active Disease Biomarker: Recent Biochemical and Pathological Perspectives.
Khan, Amjad A; Alsahli, Mohammed A; Rahmani, Arshad H
2018-04-18
Myeloperoxidase (MPO) belongs to the family of heme-containing peroxidases, produced mostly from polymorphonuclear neutrophils. The active enzyme (150 kDa) is the product of the MPO gene located on long arm of chromosome 17. The primary gene product undergoes several modifications, such as the removal of introns and signal peptides, and leads to the formation of enzymatically inactive glycosylated apoproMPO which complexes with chaperons, producing inactive proMPO by the insertion of a heme moiety. The active enzyme is a homodimer of heavy and light chain protomers. This enzyme is released into the extracellular fluid after oxidative stress and different inflammatory responses. Myeloperoxidase is the only type of peroxidase that uses H₂O₂ to oxidize several halides and pseudohalides to form different hypohalous acids. So, the antibacterial activities of MPO involve the production of reactive oxygen and reactive nitrogen species. Controlled MPO release at the site of infection is of prime importance for its efficient activities. Any uncontrolled degranulation exaggerates the inflammation and can also lead to tissue damage even in absence of inflammation. Several types of tissue injuries and the pathogenesis of several other major chronic diseases such as rheumatoid arthritis, cardiovascular diseases, liver diseases, diabetes, and cancer have been reported to be linked with MPO-derived oxidants. Thus, the enhanced level of MPO activity is one of the best diagnostic tools of inflammatory and oxidative stress biomarkers among these commonly-occurring diseases.
Hsieh, Yu-Shan; Hsu, Chin-Yuan
2013-08-01
Trophocytes and fat cells of queen honeybees have been used for delayed cellular senescence studies, but their oxidative stress and anti-oxidant enzyme activities with advancing age are unknown. In this study, we assayed reactive oxygen species (ROS) and anti-oxidant enzymes in the trophocytes and fat cells of young and old queens. Young queens had lower ROS levels, lower superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities, and higher thioredoxin reductase (TR) activity compared to old queens. These results show that oxidative stress and anti-oxidant enzyme activities in trophocytes and fat cells increase with advancing age in queens and suggest that an increase in oxidative stress and a consequent increase in stress defense mechanisms are associated with the longevity of queen honeybees.
Shi, Ying; Liu, Li; Yu, Yuanyuan; Long, Yijuan; Zheng, Huzhi
2018-08-05
Nanomaterials have triggered tremendous interest to mimick peroxidase but rarely attention has been paid to small molecules. Herein we first found that acidic amino acids including l-glutamic acid (L-Glu) and l-aspartic acid (L-Asp) exhibited an intrinsic peroxidase-like activity, endowing acidic amino acids with the capability of catalysing the oxidation of the peroxidase substrates 3,3',5,5'-tetramethylbenzidine (TMB) to produce color reaction in the presence of H 2 O 2 . Reaction mechanism was further investigated by means of electron spin resonance spectroscopy (ESR), enzyme kinetics assay and quantum theoretical calculations, to verify and provide a good deal of insight into the catalytic process. Based on the above discovery, a colorimetric platform was successfully developed for sensing glucose in the range of 0.10 μM to 10 μM with a detection limit of 40 nM, as well as evaluating the inhibitory effect of antioxidants on reactive oxygen species. This extraordinary finding not only extends the new biological function of acidic amino acids, but also opens new opportunities to deepen the knowledge of the new class of small molecule enzymes. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ambatkar, Mugdha; Mukundan, Usha
2015-12-01
The decolourisation of Methyl Orange (MO) and Bismarck Brown (BB) by crude peroxidase from Armoracia rusticana (Horseradish) was studied by varying different reaction parameters. The pH of the reaction mixture, initial dye concentration, amount of enzyme and hydrogen peroxide concentration were optimised for ambient temperatures (30 ± 2 °C). The optimum pH for decolourisation was 4.0 (72.95 %) and 3.0 (79.24 %) for MO and BB, respectively. Also it was found that the Chemical Oxygen Demand of the enzyme-treated sample was significantly lower than that of the untreated controls for both dyes. The addition of a complex iron salt like Ferric EDTA was found to enhance the decolourisation of both dyes at pH 6.0, showing an increase of 8.69 % and 14.17 % in the decolourisation of MO and of BB, respectively. The present study explores the potential of crude peroxidase from horseradish to decolourise representative monoazo and diazo dyes, MO and BB, respectively. An attempt has been made to utilise a crude enzyme with appreciable activity obtained after minimal processing for the decolourisation of the aforesaid dyes. The findings of this study would find application in the enzymatic treatment of wastewater containing azo dyes.
Low glutathione peroxidase activity levels in patients with vitiligo.
Zedan, Hatem; Abdel-Motaleb, Amira Ali; Kassem, Nahed Mahmoud Ali; Hafeez, Heba Ahmed Abdel; Hussein, Mahmoud Rezk Abdelwhahed
2015-01-01
Vitiligo is an idiopathic skin disease characterized by white areas on the skin due to loss of the functional melanocytes, with possible involvement of oxidative stress. Glutathione peroxidase (GPx) is an antioxidant enzyme that protects cells against oxidative damage. To examine serum GPx levels in patients with vitiligo and to relate the findings to the clinical features. The study group included 60 patients with vitiligo and 30 matching healthy controls. GPx activity was evaluated using enzyme-linked immunosorbent assay. We found a significant decrease in serum GPx activity level in the patients with vitiligo compared to the healthy controls (0.29 ± 0.14 versus 0.47 ± 0.13, p < .001). The levels were significantly low in skin phenotypes III and IV (p < .001). Higher levels were also observed with increasing age (≥ 14 years), prolonged disease duration (≥ 3 years), and generalized and extensive vitiligo (< 50%). However, these variations were statistically insignificant. Low levels of serum GPx activity, indicative of a disturbed oxidant-antioxidant system, may contribute to the development of vitiligo. © 2014 Canadian Dermatology Association.
Kawano, T; Pinontoan, R; Uozumi, N; Morimitsu, Y; Miyake, C; Asada, K; Muto, S
2000-11-01
In the previous paper [Kawano et al. (2000a) Plant Cell Physiol. 41: 1251], we demonstrated that addition of phenylethylamine (PEA) and benzylamine can induce an immediate and transient burst of active oxygen species (AOS) in tobacco suspension culture. Detected AOS include H2O2, superoxide anion and hydroxyl radicals. Use of several inhibitors suggested the presence of monoamine oxidase-like H2O2-generating activity in the cellular soluble fraction. It was also suggested that peroxidase(s) or copper amine oxidase(s) are involved in the extracellular superoxide production as a consequence of H2O2 production. Since more than 85% of the PEA-dependent AOS generating activity was localized in the extracellular space (extracellular fluid + cell wall), extracellularly secreted enzymes, probably peroxidases, may largely contribute to the oxidative burst induced by PEA. The PEA-induced AOS generation was also observed in the horseradish peroxidase (HRP) reaction mixture, supporting the hypothesis that peroxidases catalyze the oxidation of PEA leading to AOS generation. In addition to AOS production, we observed that PEA induced an increase in monodehydroascorbate radicals (MDA) in the cell suspension culture and in HRP reaction mixture using electron spin resonance spectroscopy and the newly invented MDA reductase-coupled method. Here we report that MDA production is an indicator of peroxidase-mediated generation of PEA radical species in tobacco suspension culture.
Šekuljica, Nataša Ž.; Prlainović, Nevena Ž.; Stefanović, Andrea B.; Žuža, Milena G.; Čičkarić, Dragana Z.; Mijin, Dušan Ž.; Knežević-Jugović, Zorica D.
2015-01-01
Two anthraquinonic dyes, C.I. Acid Blue 225 and C.I. Acid Violet 109, were used as models to explore the feasibility of using the horseradish peroxidase enzyme (HRP) in the practical decolorization of anthraquinonic dyes in wastewater. The influence of process parameters such as enzyme concentration, hydrogen peroxide concentration, temperature, dye concentration, and pH was examined. The pH and temperature activity profiles were similar for decolorization of both dyes. Under the optimal conditions, 94.7% of C.I. Acid Violet 109 from aqueous solution was decolorized (treatment time 15 min, enzyme concentration 0.15 IU/mL, hydrogen peroxide concentration 0.4 mM, dye concentration 30 mg/L, pH 4, and temperature 24°C) and 89.36% of C.I. Acid Blue 225 (32 min, enzyme concentration 0.15 IU/mL, hydrogen peroxide concentration 0.04 mM, dye concentration 30 mg/L, pH 5, and temperature 24°C). The mechanism of both reactions has been proven to follow the two substrate ping-pong mechanism with substrate inhibition, revealing the formation of a nonproductive or dead-end complex between dye and HRP or between H2O2 and the oxidized form of the enzyme. Both chemical oxygen demand and total organic carbon values showed that there was a reduction in toxicity after the enzymatic treatment. This study verifies the viability of use of horseradish peroxidase for the wastewaters treatment of similar anthraquinonic dyes. PMID:25685837
DOE Office of Scientific and Technical Information (OSTI.GOV)
Öztekin, Aykut, E-mail: aoztekin@agri.edu.tr; Agri Ibrahim Cecen University Faculty of Arts and Sciences, Department of Chemistry, 04100-Agri; Almaz, Züleyha, E-mail: zturkoglu-2344@hotmail.com
2016-04-18
Peroxidases (E.C.1.11.1.7) catalyze the one electron oxidation of wide range of substrates. They are used in synthesis reaction, removal of peroxide from industrial wastes, clinical biochemistry and immunoassays. In this study, the white cabbage (Brassica Oleracea var. capitata f. alba) and red cabbage (Brassica oleracea L. var. capitata f. rubra) peroxidase enzymes were purified for investigation of inhibitory effect of some aromatic compounds on these enzymes. IC{sub 50} values and Ki constants were calculated for the molecules of 6-Amino nicotinic hydrazide, 6-Amino-5-bromo nicotinic hydrazide, 2-Amino-5-hydroxy benzohydrazide, 4-Amino-3-hydroxy benzohydrazide on purified enzymes and inhibition type of these molecules were determined. (Thismore » research was supported by Ataturk University. Project Number: BAP-2015/98).« less
Enzymatic antioxidant system of endotheliocytes.
Sharapov, M G; Goncharov, R G; Gordeeva, A E; Novoselov, V I; Antonova, O A; Tikhaze, A K; Lankin, V Z
2016-11-01
It is shown that endothelial cells from human umbilical vein have a reduced activity and gene expression of the "classic" antioxidant enzymes (Cu,Zn-superoxide dismutase, catalase, and Se-containing glutathione peroxidase). At the same time, a high expression level of peroxiredoxin genes was identified in the same endothelial cells, which obviously indicates the predominant involvement of these enzymes in protecting the endothelium from the damaging effect of free radical peroxidation.
Mäkinen, Mari A; Risulainen, Netta; Mattila, Hans; Lundell, Taina K
2018-05-04
Previously identified twelve plant cell wall degradation-associated genes of the white rot fungus Phlebia radiata were studied by RT-qPCR in semi-aerobic solid-state cultures on lignocellulose waste material, and on glucose-containing reference medium. Wood-decay-involved enzyme activities and ethanol production were followed to elucidate both the degradative and fermentative processes. On the waste lignocellulose substrate, P. radiata carbohydrate-active enzyme (CAZy) genes encoding cellulolytic and hemicellulolytic activities were significantly upregulated whereas genes involved in lignin modification displayed a more complex response. Two lignin peroxidase genes were differentially expressed on waste lignocellulose compared to glucose medium, whereas three manganese peroxidase-encoding genes were less affected. On the contrary, highly significant difference was noticed for three cellulolytic genes (cbhI_1, eg1, bgl1) with higher expression levels on the lignocellulose substrate than on glucose. This indicates expression of the wood-attacking degradative enzyme system by the fungus also on the recycled, waste core board material. During the second week of cultivation, ethanol production increased on the core board to 0.24 g/L, and extracellular activities against cellulose, xylan, and lignin were detected. Sugar release from the solid lignocellulose resulted with concomitant accumulation of ethanol as fermentation product. Our findings confirm that the fungus activates its white rot decay system also on industrially processed lignocellulose adopted as growth substrate, and under semi-aerobic cultivation conditions. Thus, P. radiata is a good candidate for lignocellulose-based renewable biotechnology to make biofuels and biocompounds from materials with less value for recycling or manufacturing.
Sadi, Gökhan; Bozan, Davut; Yildiz, Huseyin Bekir
2014-08-01
Resveratrol is a strong antioxidant that exhibits blood glucose-lowering effects, which might contribute to its usefulness in preventing complications associated with diabetes. The present study aimed to investigate resveratrol effects on catalase (CAT) and glutathione peroxidase (GPx) gene and protein expression, their phosphorylation states and activities in rat liver of STZ-induced diabetes. Diabetes increased the levels of total protein phosphorylation and p-CAT, while mRNA expression, protein levels, and activity were reduced. Although diabetes induced transcriptional repression over GPx, it did not affect the protein levels and activity. When resveratrol was administered to diabetic rats, an increase in activity was associated with an increase in p-GPx levels. Decrease in Sirtuin1 (SIRT1) and nuclear factor erythroid 2-related factor (Nrf2) and increase in nuclear factor kappa B (NFκB) gene expression in diabetes were associated with a decrease in CAT and GPx mRNA expression. A possible compensatory mechanism for reduced gene expression of antioxidant enzymes is proved to be nuclear translocation of redox-sensitive Nrf2 and NFκB in diabetes which is confirmed by the increase in nuclear and decrease in cytoplasmic protein levels of Nrf2 and NFκB. Taken together, these findings revealed that an increase in the oxidized state in diabetes intricately modified the cellular phosphorylation status and regulation of antioxidant enzymes. Gene regulation of antioxidant enzymes was accompanied by nuclear translocation of Nrf2 and NFκB. Resveratrol administration also activated a coordinated cytoprotective response against diabetes-induced changes in liver tissues.
Su, Hua; Liu, Dan-Dan; Zhao, Meng; Hu, Wei-Liang; Xue, Shan-Shan; Cao, Qian; Le, Xue-Yi; Ji, Liang-Nian; Mao, Zong-Wan
2015-04-22
Polyvinylpyrrolidone-stabilized iridium nanoparticles (PVP-IrNPs), synthesized by the facile alcoholic reduction method using abundantly available PVP as protecting agents, were first reported as enzyme mimics showing intrinsic catalase- and peroxidase-like activities. The preparation procedure was much easier and more importantly, kinetic studies found that the catalytic activity of PVP-IrNPs was comparable to previously reported platinum nanoparticles. Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) characterization indicated that PVP-IrNPs had the average size of approximately 1.5 nm and mainly consisted of Ir(0) chemical state. The mechanism of PVP-IrNPs' dual-enzyme activities was investigated using XPS, Electron spin resonance (ESR) and cytochrome C-based electron transfer methods. The catalase-like activity was related to the formation of oxidized species Ir(0)@IrO2 upon reaction with H2O2. The peroxidase-like activity originated from their ability acting as electron transfer mediators during the catalysis cycle, without the production of hydroxyl radicals. Interestingly, the protective effect of PVP-IrNPs against H2O2-induced cellular oxidative damage was investigated in an A549 lung cancer cell model and PVP-IrNPs displayed excellent biocompatibility and antioxidant activity. Upon pretreatment of cells with PVP-IrNPs, the intracellular reactive oxygen species (ROS) level in response to H2O2 was decreased and the cell viability increased. This work will facilitate studies on the mechanism and biomedical application of nanomaterials-based enzyme mimic.
Arora, Rohit; Bhushan, Sakshi; Kumar, Rakesh; Mannan, Rahul; Kaur, Pardeep; Singh, Bikram; Sharma, Ritika; Vig, Adarsh Pal; Singh, Balbir; Singh, Amrit Pal; Arora, Saroj
2016-01-01
Phenobarbital is a commonly employed antidepressant and anti-epileptic drug. The cancer promoting activity of this genotoxic xenobiotic is often ignored. It is responsible for oxidative stress leading to modulation in xenobiotic and antioxidative enzymes. Glucosinolates and more specifically their hydrolytic products are known for their antioxidative and anticancer activities. The present study involves the analysis of hepatoprotective effect of erucin (isolated from Eruca sativa (Mill.) Thell.) against phenobarbital mediated hepatic damage in male wistar rats. The liver homogenate was analyzed for oxidative stress (superoxide dismutase, catalase, guaiacol peroxidase, ascorbate peroxidase, glutathione reductase and lactate dehydrogenase), other oxidative parameters (thiobarbituric acid reactive species, conjugated dienes and lipid hydroperoxide), phase I enzymes (NADPH-cytochrome P450 reductase, NADH-cytochrome b5 reductase, cytochrome P420, cytochrome P450 and cytochrome b5), phase II enzymes (γ-glutamyl transpeptidase, DT-diaphorase and glutathione-S-transferase), serum parameters (alkaline phosphatase, serum glutamic oxaloacetic transaminase, serum glutamic pyruvic transaminase, direct bilirubin and total bilirubin) and certain histological parameters. Erucin accorded protection from phenobarbital induced hepatic damage by normalizing antioxidative enzymes, other oxidative parameters, phase I, II, and serum parameters. Erucin, an analogue of sulforaphane has the potential to act as an anticancer agent by regulating various biochemical parameters.
Jin, Guofeng; He, Lichao; Yu, Xiang; Zhang, Jianhao; Ma, Meihu
2013-12-01
Fresh pork bacon belly was used as material and manufactured into dry-salted bacon through salting and drying-ripening. During processing both oxidative stability and antioxidant enzyme stability were evaluated by assessing peroxide value (PV), thiobarbituric acid reactive substances (TBARS) and activities of catalase, glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD), and their correlations were also analysed. The results showed that all antioxidant enzyme activities decreased (p<0.05) until the end of process; GSH-Px was the most unstable one followed by catalase. Antioxidant enzyme activities were negatively correlated with TBARS (p<0.05), but the correlations were decreased with increasing process temperature. Salt showed inhibitory effect on all antioxidant enzyme activities and was concentration dependent. These results indicated that when process temperature and salt content were low at the same time during dry-salted bacon processing, antioxidant enzymes could effectively control lipid oxidation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Degradation of polyethylene by Trichoderma harzianum--SEM, FTIR, and NMR analyses.
Sowmya, H V; Ramalingappa; Krishnappa, M; Thippeswamy, B
2014-10-01
Trichoderma harzianum was isolated from local dumpsites of Shivamogga District for use in the biodegradation of polyethylene. Soil sample of that dumpsite was used for isolation of T. harzianum. Degradation was carried out using autoclaved, UV-treated, and surface-sterilized polyethylene. Degradation was monitored by observing weight loss and changes in physical structure by scanning electron microscopy, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy. T. harzianum was able to degrade treated polyethylene (40%) more efficiently than autoclaved (23%) and surface-sterilized polyethylene (13%). Enzymes responsible for polyethylene degradation were screened from T. harzianum and were identified as laccase and manganese peroxidase. These enzymes were produced in large amount, and their activity was calculated using spectrophotometric method and crude extraction of enzymes was carried out. Molecular weight of laccase was determined as 88 kDa and that of manganese peroxidase was 55 kDa. The capacity of crude enzymes to degrade polyethylene was also determined. By observing these results, we can conclude that this organism may act as solution for the problem caused by polyethylene in nature.
A deletion mutation at the ep locus causes low seed coat peroxidase activity in soybean.
Gijzen, M
1997-11-01
The Ep locus severely affects the amount of peroxidase enzyme in soybean seed coats. Plants containing the dominant Ep allele accumulate large amounts of peroxidase in the hourglass cells of the sub-epidermis. Homozygous recessive epep genotypes do not accumulate peroxidase in the hourglass cells and are much reduced in total seed coat peroxidase activity. To isolate the gene encoding the seed coat peroxidase and to determine whether it corresponds to the Ep locus, a cDNA library was constructed from developing seed coats and an abundant 1.3 kb peroxidase transcript was cloned. The corresponding structural gene was also isolated from a genomic library. Sequence analysis shows that the seed coat peroxidase is translated as a 352 amino acid precursor protein of 38 kDa. Processing of a putative 26 amino acid signal sequence results in a mature protein of 326 residues with a calculated mass of 35 kDa and a pl of 4.4. Using probes derived from the cDNA, genomic DNA blot hybridization and polymerase chain reaction analysis detected polymorphisms that distinguished EpEp and epep genotypes. Co-segregation of the polymorphisms in an F2 population from a cross of EpEp and epep plants shows that the Ep locus encodes the seed coat peroxidase protein. Comparison of Ep and ep alleles indicates that the recessive gene lacks 87 bp of sequence encompassing the translation start codon. Analysis by RNA blot hybridization shows that epep plants have drastically reduced amounts of peroxidase transcript compared with EpEp plants. The peroxidase mRNA is abundant in seed coat tissues of EpEp plants during the late stages of seed maturation, and could also be detected in root tissues, but not in the flower, embryo, pod or leaf. The results indicate that the lack of peroxidase accumulation in seed coats of homozygous recessive epep plants is due to a mutation of the structural gene that reduces transcript abundance.
Early response of wheat antioxidant system with special reference to Fusarium head blight stress.
Spanic, Valentina; Viljevac Vuletic, Marija; Abicic, Ivan; Marcek, Tihana
2017-06-01
Fusarium head blight (FHB) is a destructive fungal disease of wheat (Triticum aestivum L.) that causes significant grain yield losses and end-use quality reduction associated with contamination by the mycotoxin deoxynivalenol (DON). Three winter wheat varieties ('Vulkan', 'Kraljica' and 'Golubica') were screened for FHB resistance using artificial inoculation technique under field conditions. The aim of this study was to examine a relationship between FHB resistance and the effectiveness of enzyme antioxidant system of wheat varieties under different sampling times (3, 15, 24, 48, 96, 120 and 336 hai). In the time-course experiments FHB-resistant variety 'Vulkan' showed rapid induction of ascorbate peroxidase (APX) and polyphenol oxidase (PPO) activity in the early stages after infection (3 hai) and it seems that in 'Vulkan' FHB-resistance is associated with antioxidative enzymes activity. Moderately FHB resistant variety 'Kraljica' showed the higher guaiacol peroxidase (POD) activity and higher H 2 O 2 content after 24 hai, increased malondialdehyde (MDA) content at the beginning of infection (3, 15 hai) while induction of catalase (CAT), APX and PPO was delayed. FHB-susceptible variety 'Golubica' involved antioxidant enzymes in defense response much later. Based on our results the activity of antioxidant enzymes (APX and PPO) was more pronounced in 'Vulkan' than in FHB-medium resistant variety 'Kraljica' and FHB-susceptible 'Golubica'. The differences in antioxidant response of wheat varieties under Fusarium infestation could be the result of genetic properties. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Capel, I D; Jenner, M; Williams, D C; Donaldson, D; Nath, A
1981-08-01
A clinical study was undertaken to determine whether oral contraceptives (OCs) affect the activity of the enzyme glutathione peroxidase. OC users recruited for the study were volunteers attending the Redhill Family Planning Clinic in England. Their demographic characteristics were noted. Pre- and postmenopausal comparative subjects were also used. The laboratory procedures involved in the study are described. Findings are tabulated. The average erythrocyte glutathione peroxidase levels of women using OCs for more than 7 months were significantly higher than those of the pre- and postmenopausal subjects. These levels increased progressively with duration of OC use. These levels did not fluctuate with the menstrual cycle in either OC or non-OC users. Levels of erythrocyte selenium and plasma pyridoxal were not significantly altered by OC use. Riboflavin status, however, as estimated by glutathione reductase activity was substantially lower in OC users and was lowest in women who had used OCs for the longest amount of time. Riboflavin status was found to be directly correlated with erythrocyte glutathione peroxidase levels. These findings may be important because selenium is currently believed to offer protective benefits against carcinogenesis, especially breast cancer. All the OCs studied produced the same effects.
Schoonheere, N; Dotreppe, O; Pincemail, J; Istasse, L; Hornick, J L
2009-06-01
Selenium is a trace element of importance for animal health. It is essential for adequate functioning of many enzymes such as, the antioxidant enzyme, glutathione peroxidase, which protects the cell against free radicals. A muscular effort induces a rise in reactive oxygen species production which, in turn, can generate an oxidative stress. Two groups of eight racing pigeons were fed respectively with a diet containing 30.3 (control group) and 195.3 (selenium group) microg selenium/kg diet. The pigeons were submitted to a standardised simulation of a flying effort during 2 h. Blood was taken before and after the effort to measure antioxidant markers and blood parameters related to muscle metabolism. Plasma selenium concentration and glutathione peroxidase activity were significantly higher in the selenium group. There were no significant differences for the other measured parameters. As a consequence of the effort, the pigeons of the selenium group showed a higher increase of glutathione peroxidase activity and a smaller increase of plasma lactate concentration. Variations because of the effort in the other markers were not significantly different between the two groups. It is concluded that the selenium status was improved with the feeding of feedstuffs high in Selenium.
Foliar and Seed Application of Amino Acids Affects the Antioxidant Metabolism of the Soybean Crop.
Teixeira, Walquíria F; Fagan, Evandro B; Soares, Luís H; Umburanas, Renan C; Reichardt, Klaus; Neto, Durval D
2017-01-01
In recent years, the application of natural substances on crops has been intensified in order to increase the resistance and yield of the soybean crop. Among these products are included plant biostimulants that may contain algae extracts, amino acids, and plant regulators in their composition. However, there is little information on the isolated effect of each of these constituents. The objective of this research was to evaluate the effect of the application of isolated amino acids on the antioxidant metabolism of the soybean crop. Experiments were carried out in a greenhouse and in the field with the application of the amino acids glutamate, phenylalanine, cysteine, glycine in seed treatment, and foliar application at V 4 growth stage. Antioxidant metabolism constituents evaluated were superoxide dismutase, catalase, peroxidase, hydrogen peroxide content, proline, and lipid peroxidation. In addition, resistance enzymes as polyphenol oxidase and phenylalanine ammonia-lyase (PAL) were evaluated. In both experiments, the use of cysteine, only in seed treatment and in both seed treatment and foliar application increased the activity of the enzyme PAL and catalase. Also in both experiments, the use of phenylalanine increased the activity of the enzyme PAL when the application was carried out as foliar application or both in seed treatment and foliar application. In the field experiment, the application of glutamate led to an increase in the activity of the catalase and PAL enzymes for seed treatment and foliar application. The use of the set of amino acids was only efficient in foliar application, which led to a greater activity of the enzymes peroxidase, PAL, and polyphenol oxidase. The other enzymes as well as lipid peroxidation and hydrogen peroxide presented different results according to the experiment. Therefore, glutamate, cysteine, phenylalanine, and glycine can act as signaling amino acids in soybean plants, since small doses are enough to increase the activity of the antioxidant enzymes.
Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway.
Viswanathan, Vasanthi S; Ryan, Matthew J; Dhruv, Harshil D; Gill, Shubhroz; Eichhoff, Ossia M; Seashore-Ludlow, Brinton; Kaffenberger, Samuel D; Eaton, John K; Shimada, Kenichi; Aguirre, Andrew J; Viswanathan, Srinivas R; Chattopadhyay, Shrikanta; Tamayo, Pablo; Yang, Wan Seok; Rees, Matthew G; Chen, Sixun; Boskovic, Zarko V; Javaid, Sarah; Huang, Cherrie; Wu, Xiaoyun; Tseng, Yuen-Yi; Roider, Elisabeth M; Gao, Dong; Cleary, James M; Wolpin, Brian M; Mesirov, Jill P; Haber, Daniel A; Engelman, Jeffrey A; Boehm, Jesse S; Kotz, Joanne D; Hon, Cindy S; Chen, Yu; Hahn, William C; Levesque, Mitchell P; Doench, John G; Berens, Michael E; Shamji, Alykhan F; Clemons, Paul A; Stockwell, Brent R; Schreiber, Stuart L
2017-07-27
Plasticity of the cell state has been proposed to drive resistance to multiple classes of cancer therapies, thereby limiting their effectiveness. A high-mesenchymal cell state observed in human tumours and cancer cell lines has been associated with resistance to multiple treatment modalities across diverse cancer lineages, but the mechanistic underpinning for this state has remained incompletely understood. Here we molecularly characterize this therapy-resistant high-mesenchymal cell state in human cancer cell lines and organoids and show that it depends on a druggable lipid-peroxidase pathway that protects against ferroptosis, a non-apoptotic form of cell death induced by the build-up of toxic lipid peroxides. We show that this cell state is characterized by activity of enzymes that promote the synthesis of polyunsaturated lipids. These lipids are the substrates for lipid peroxidation by lipoxygenase enzymes. This lipid metabolism creates a dependency on pathways converging on the phospholipid glutathione peroxidase (GPX4), a selenocysteine-containing enzyme that dissipates lipid peroxides and thereby prevents the iron-mediated reactions of peroxides that induce ferroptotic cell death. Dependency on GPX4 was found to exist across diverse therapy-resistant states characterized by high expression of ZEB1, including epithelial-mesenchymal transition in epithelial-derived carcinomas, TGFβ-mediated therapy-resistance in melanoma, treatment-induced neuroendocrine transdifferentiation in prostate cancer, and sarcomas, which are fixed in a mesenchymal state owing to their cells of origin. We identify vulnerability to ferroptic cell death induced by inhibition of a lipid peroxidase pathway as a feature of therapy-resistant cancer cells across diverse mesenchymal cell-state contexts.
Hernández Anzaldo, Samuel; Arroyo Abad, Uriel; León García, Armando; Ramírez Rosales, Daniel; Zamorano Ulloa, Rafael; Reyes Ortega, Yasmi
2016-06-27
The spectroscopic and kinetic characterization of two intermediates from the H₂O₂ oxidation of three dimethyl ester [(proto), (meso), (deuteroporphyrinato) (picdien)]Fe(III) complexes ([FePPPic], [FeMPPic] and [FeDPPic], respectively) pinch-porphyrin peroxidase enzyme models, with s = 5/2 and 3/2 Fe(III) quantum mixed spin (qms) ground states is described herein. The kinetic study by UV/Vis at λmax = 465 nm showed two different types of kinetics during the oxidation process in the guaiacol test for peroxidases (1-3 + guaiacol + H₂O₂ → oxidation guaiacol products). The first intermediate was observed during the first 24 s of the reaction. When the reaction conditions were changed to higher concentration of pinch-porphyrins and hydrogen peroxide only one type of kinetics was observed. Next, the reaction was performed only between pinch-porphyrins-Fe(III) and H₂O₂, resulting in only two types of kinetics that were developed during the first 0-4 s. After this time a self-oxidation process was observed. Our hypotheses state that the formation of the π-cation radicals, reaction intermediates of the pinch-porphyrin-Fe(III) family with the ligand picdien [N,N'-bis-pyridin-2-ylmethyl-propane-1,3-diamine], occurred with unique kinetics that are different from the overall process and was involved in the oxidation pathway. UV-Vis, ¹H-NMR and ESR spectra confirmed the formation of such intermediates. The results in this paper highlight the link between different spectroscopic techniques that positively depict the kinetic traits of artificial compounds with enzyme-like activity.
Liu, Hui; Cao, Xiaodan; Wang, Ping; Ma, Xingyuan
2017-07-01
This work examines the feasibility of using a pH-sensitive fluorescent protein as a molecular reporter for enzyme-catalyzed prodrug activation reaction. Specifically, a ratiometric pHluorins was examined for detection of the activity of horseradish peroxidase (HRP) for the activation of indole-3-acetic acid. The pHluorins and HRP were conjugated chemically, forming a biocatalyst with a self-reporting function. Results showed that the characteristic fluorescence intensity ratio of the conjugate shifted from 1.47 to 1.40 corresponding to the progress of the prodrug activation reaction. The effectiveness of applying the conjugate for inhibition of the growth of Bcap-37 cells was also demonstrated simultaneously with reaction monitoring. The results reveal a very promising approach to realizing in situ monitoring of enzyme activities based on pH shifting for enzyme-based prodrug therapy applications. © 2016 International Union of Biochemistry and Molecular Biology, Inc.
Batcabe, J P; MacGill, R S; Zaman, K; Ahmad, S; Pardini, R S
1994-05-01
1. An insect species, the southern armyworm Spodoptera eridania, was used as an in vivo model to examine mitomycin C's (MMC) pro-oxidant effect reflected in alterations of antioxidant enzymes. 2. Following a 2-day exposure to 0.01 and 0.05% w/w dietary concentrations, MMC only induced superoxide dismutase activity. All other enzyme activities were not affected, indicating oxidative stress was mild. 3. Following a 5-day exposure to 0.05% w/w dietary MMC, the activities of superoxide dismutase, glutathione-S-transferase and its peroxidase activity and DT-diaphorase were induced. GR activity was not altered. The high constitutive catalase activity was also not affected. These responses of S. eridania's antioxidant enzymes are analogous to those of mammalian systems in alleviating MMC-induced oxidative stress. 4. S. eridania emerges as an appropriate non-mammalian model for initial and cost-effective screening of drug-induced oxidative stress.
Fernandez, Maria C; O'Flaherty, Cristian
2018-06-15
Are all components of the peroxiredoxins (PRDXs) system important to control the levels of reactive oxygen species (ROS) to maintain viability and DNA integrity in spermatozoa? PRDX6 is the primary player of the PRDXs system for maintaining viability and DNA integrity in human spermatozoa. Mammalian spermatozoa are sensitive to high levels of ROS and PRDXs are antioxidant enzymes proven to control the levels of ROS generated during sperm capacitation to avoid oxidative damage in the spermatozoon. Low amounts of PRDXs are associated with male infertility. The absence of PRDX6 promotes sperm oxidative damage and infertility in mice. Semen samples were obtained over a period of one year from a cohort of 20 healthy non-smoking volunteers aged 22-30 years old. Sperm from healthy donors was incubated for 2 h in the absence or presence of inhibitors for the 2-Cys PRDXs system (peroxidase, reactivation system and NADPH-enzymes suppliers) or the 1-Cys PRDX system (peroxidase and calcium independent-phospholipase A2 (Ca2+-iPLA2) activity). Sperm viability, DNA oxidation, ROS levels, mitochondrial membrane potential and 4-hydroxynonenal production were determined by flow cytometry. We observed a significant decrease in viable cells due to inhibitors of the 2-Cys PRDXs, PRDX6 Ca2+-iPLA2 activity or the PRDX reactivation system compared to controls (P ≤ 0.05). PRDX6 Ca2+-iPLA2 activity inhibition had the strongest detrimental effect on sperm viability and DNA oxidation compared to controls (P ≤ 0.05). The 2-Cys PRDXs did not compensate for the inhibition of PRDX6 peroxidase and Ca2+-iPLA2 activities. Not applicable. Players of the reactivation systems may differ among mammalian species. The Ca2+-iPLA2 activity of PRDX6 is the most important and first line of defense against oxidative stress in human spermatozoa. Peroxynitrite is scavenged mainly by the PRDX6 peroxidase activity. These findings can help to design new diagnostic tools and therapies for male infertility. This research was supported by The Canadian Institutes of Health Research (MOP 133661 to C.O.), and by RI MUHC-Desjardins Studentship in Child Health Research awarded to M.C.F. The authors have nothing to disclose.
Coelho, Fernando R.; Iqbal, Asif; Linares, Edlaine; Silva, Daniel F.; Lima, Filipe S.; Cuccovia, Iolanda M.; Augusto, Ohara
2014-01-01
The role of oxidative post-translational modifications of human superoxide dismutase 1 (hSOD1) in the amyotrophic lateral sclerosis (ALS) pathology is an attractive hypothesis to explore based on several lines of evidence. Among them, the remarkable stability of hSOD1WT and several of its ALS-associated mutants suggests that hSOD1 oxidation may precede its conversion to the unfolded and aggregated forms found in ALS patients. The bicarbonate-dependent peroxidase activity of hSOD1 causes oxidation of its own solvent-exposed Trp32 residue. The resulting products are apparently different from those produced in the absence of bicarbonate and are most likely specific for simian SOD1s, which contain the Trp32 residue. The aims of this work were to examine whether the bicarbonate-dependent peroxidase activity of hSOD1 (hSOD1WT and hSOD1G93A mutant) triggers aggregation of the enzyme and to comprehend the role of the Trp32 residue in the process. The results showed that Trp32 residues of both enzymes are oxidized to a similar extent to hSOD1-derived tryptophanyl radicals. These radicals decayed to hSOD1-N-formylkynurenine and hSOD1-kynurenine or to a hSOD1 covalent dimer cross-linked by a ditryptophan bond, causing hSOD1 unfolding, oligomerization, and non-amyloid aggregation. The latter process was inhibited by tempol, which recombines with the hSOD1-derived tryptophanyl radical, and did not occur in the absence of bicarbonate or with enzymes that lack the Trp32 residue (bovine SOD1 and hSOD1W32F mutant). The results support a role for the oxidation products of the hSOD1-Trp32 residue, particularly the covalent dimer, in triggering the non-amyloid aggregation of hSOD1. PMID:25237191
Catalase-like activity of horseradish peroxidase: relationship to enzyme inactivation by H2O2.
Hernández-Ruiz, J; Arnao, M B; Hiner, A N; García-Cánovas, F; Acosta, M
2001-01-01
H2O2 is the usual oxidizing substrate of horseradish peroxidase C (HRP-C). In the absence in the reaction medium of a one-electron donor substrate, H2O2 is able to act as both oxidizing and reducing substrate. However, under these conditions the enzyme also undergoes a progressive loss of activity. There are several pathways that maintain the activity of the enzyme by recovering the ferric form, one of which is the decomposition of H2O2 to molecular oxygen in a similar way to the action of catalase. This production of oxygen has been kinetically characterized with a Clark-type electrode coupled to an oxygraph. HRP-C exhibits a weak catalase-like activity, the initial reaction rate of which is hyperbolically dependent on the H2O2 concentration, with values for K(2) (affinity of the first intermediate, compound I, for H2O2) and k(3) (apparent rate constant controlling catalase activity) of 4.0 +/- 0.6 mM and 1.78 +/- 0.12 s(-1) respectively. Oxygen production by HRP-C is favoured at pH values greater than approx. 6.5; under similar conditions HRP-C is also much less sensitive to inactivation during incubations with H2O2. We therefore suggest that this pathway is a major protective mechanism of HRP-C against such inactivation. PMID:11171085
Ling, Pinghua; Zhang, Qiang; Cao, Tingting; Gao, Feng
2018-06-04
A facile strategy is presented to form 3D porous Cu@Cu 2 O aerogel networks by self-assembling Cu@Cu 2 O nanoparticles with the diameters of ca. 40 nm for constructing catalytic interfaces. Unexpectedly, the prepared Cu@Cu 2 O aerogel networks display excellent electrocatalytic activity to glucose oxidation at a low onset potential of ca. 0.25 V. Moreover, the Cu@Cu 2 O aerogels also can act as mimicking-enzymes including horseradish peroxidase and NADH peroxidase, and show obvious enzymatic catalytic activities to the oxidation of dopamine (DA), o-phenyldiamine (OPD), 3,3,5,5-tetramethylbenzidine (TMB), and dihydronicotinamide adenine dinucleotide (NADH) in the presence of H 2 O 2 . These 3D Cu@Cu 2 O aerogel networks are a new class of porous catalytic materials as mimic peroxidases and electrocatalysts and offer a novel platform to construct catalytic interfaces for promising applications in electrochemical sensors and artificial enzymatic catalytic systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Malar, Srinivasan; Manikandan, Rajendiran; Favas, Paulo J C; Vikram Sahi, Shivendra; Venkatachalam, Perumal
2014-10-01
The present study was aimed at evaluating phytotoxicity of various concentrations of lead nitrate (0, 100, 200, 400, 600, 800 and 1000mgL(-1)) in Sesbania grandiflora. The seedling growth was significantly affected (46%) at 1000mgL(-1) lead (Pb) treatment. Accumulation of Pb content was high in root (118mgg(-1) dry weight) than in shoot (23mgg(-1) dry weight). The level of photosynthetic pigment contents was gradually increased with increasing concentrations of Pb. Malondialdehyde (MDA) content increased in both the leaves as well as roots at 600mgL(-1) Pb treatment and decreased at higher concentrations. The activity of antioxidative enzymes such as superoxide dismutase and peroxidase were positively correlated with Pb treatment while catalase and ascorbate peroxidase activities increased up to 600mgL(-1) Pb treatment and then slightly decreased at higher concentrations. Isozyme banding pattern revealed the appearance of additional isoforms of superoxide dismutase and peroxidase in Pb treated leaf tissues. Isozyme band intensity was more consistent with the respective changes in antioxidative enzyme activities. Random amplified polymorphic DNA results indicated that genomic template stability (GTS) was significantly affected based on Pb concentrations. The present results suggest that higher concentrations of Pb enhanced the oxidative damage by over production of ROS in S. grandiflora that had potential tolerance mechanism to Pb as evidenced by increased level of photosynthetic pigments, MDA content, and the level of antioxidative enzymes. Retention of high levels of Pb in root indicated that S. grandiflora has potential for phytoextracting heavy metals by rhizofiltration. Copyright © 2014 Elsevier Inc. All rights reserved.
Improving the oxidative stability of a high redox potential fungal peroxidase by rational design.
Sáez-Jiménez, Verónica; Acebes, Sandra; Guallar, Victor; Martínez, Angel T; Ruiz-Dueñas, Francisco J
2015-01-01
Ligninolytic peroxidases are enzymes of biotechnological interest due to their ability to oxidize high redox potential aromatic compounds, including the recalcitrant lignin polymer. However, different obstacles prevent their use in industrial and environmental applications, including low stability towards their natural oxidizing-substrate H2O2. In this work, versatile peroxidase was taken as a model ligninolytic peroxidase, its oxidative inactivation by H2O2 was studied and different strategies were evaluated with the aim of improving H2O2 stability. Oxidation of the methionine residues was produced during enzyme inactivation by H2O2 excess. Substitution of these residues, located near the heme cofactor and the catalytic tryptophan, rendered a variant with a 7.8-fold decreased oxidative inactivation rate. A second strategy consisted in mutating two residues (Thr45 and Ile103) near the catalytic distal histidine with the aim of modifying the reactivity of the enzyme with H2O2. The T45A/I103T variant showed a 2.9-fold slower reaction rate with H2O2 and 2.8-fold enhanced oxidative stability. Finally, both strategies were combined in the T45A/I103T/M152F/M262F/M265L variant, whose stability in the presence of H2O2 was improved 11.7-fold. This variant showed an increased half-life, over 30 min compared with 3.4 min of the native enzyme, under an excess of 2000 equivalents of H2O2. Interestingly, the stability improvement achieved was related with slower formation, subsequent stabilization and slower bleaching of the enzyme Compound III, a peroxidase intermediate that is not part of the catalytic cycle and leads to the inactivation of the enzyme.
Vault Nanoparticles Packaged with Enzymes as an Efficient Pollutant Biodegradation Technology.
Wang, Meng; Abad, Danny; Kickhoefer, Valerie A; Rome, Leonard H; Mahendra, Shaily
2015-11-24
Vault nanoparticles packaged with enzymes were synthesized as agents for efficiently degrading environmental contaminants. Enzymatic biodegradation is an attractive technology for in situ cleanup of contaminated environments because enzyme-catalyzed reactions are not constrained by nutrient requirements for microbial growth and often have higher biodegradation rates. However, the limited stability of extracellular enzymes remains a major challenge for practical applications. Encapsulation is a recognized method to enhance enzymatic stability, but it can increase substrate diffusion resistance, lower catalytic rates, and increase the apparent half-saturation constants. Here, we report an effective approach for boosting enzymatic stability by single-step packaging into vault nanoparticles. With hollow core structures, assembled vault nanoparticles can simultaneously contain multiple enzymes. Manganese peroxidase (MnP), which is widely used in biodegradation of organic contaminants, was chosen as a model enzyme in the present study. MnP was incorporated into vaults via fusion to a packaging domain called INT, which strongly interacts with vaults' interior surface. MnP fused to INT and vaults packaged with the MnP-INT fusion protein maintained peroxidase activity. Furthermore, MnP-INT packaged in vaults displayed stability significantly higher than that of free MnP-INT, with slightly increased Km value. Additionally, vault-packaged MnP-INT exhibited 3 times higher phenol biodegradation in 24 h than did unpackaged MnP-INT. These results indicate that the packaging of MnP enzymes in vault nanoparticles extends their stability without compromising catalytic activity. This research will serve as the foundation for the development of efficient and sustainable vault-based bioremediation approaches for removing multiple contaminants from drinking water and groundwater.
Camassola, Marli; da Rosa, Letícia O.; Calloni, Raquel; Gaio, Tamara A.; Dillon, Aldo J.P.
2013-01-01
Pleurotus species secrete phenol oxidase enzymes: laccase (Lcc) and manganese peroxidase (MnP). New genotypes of these species show potential to be used in processes aiming at the degradation of phenolic compounds, polycyclic aromatic hydrocarbons and dyes. Hence, a screening of some strains of Pleurotus towards Lcc and MnP production was performed in this work. Ten strains were grown through solid-state fermentation on a medium based on Pinus spp. sawdust, wheat bran and calcium carbonate. High Lcc and MnP activities were found with these strains. Highest Lcc activity, 741 ± 245 U gdm−1 of solid state-cultivation medium, was detected on strain IB11 after 32 days, while the highest MnP activity occurred with strains IB05, IB09, and IB11 (5,333 ± 357; 4,701 ± 652; 5,999 ± 1,078 U gdm−1, respectively). The results obtained here highlight the importance of further experiments with lignocellulolytic enzymes present in different strains of Pleurotus species. Such results also indicate the possibility of selecting more valuable strains for future biotechnological applications, in soil bioremediation and biological biomass pre-treatment in biofuels production, for instance, as well as obtaining value-added products from mushrooms, like phenol oxidase enzymes. PMID:24159307
USDA-ARS?s Scientific Manuscript database
In most eukaryotic systems, antioxidants provide protection when cells are exposed to stressful environmental conditions. Antioxidants, such as superoxide dismutase (SOD), glutathione peroxidase (GPX) and catalase, function in a stepwise series with SOD initially preventing oxidative damage by conve...
NASA Astrophysics Data System (ADS)
Tsikrika, Konstantina; Lemos, M. Adília; Chu, Boon-Seang; Bremner, David H.; Hungerford, Graham
2017-02-01
The application of ultrasound to a solution can induce cavitional phenomena and generate high localised temperatures and pressures. These are dependent of the frequency used and have enabled ultrasound application in areas such as synthetic, green and food chemistry. High frequency (100 kHz to 1 MHz) in particular is promising in food chemistry as a means to inactivate enzymes, replacing the need to use periods of high temperature. A plant enzyme, horseradish peroxidase, was studied using time-resolved fluorescence techniques as a means to assess the effect of high frequency (378 kHz and 583 kHz) ultrasound treatment at equivalent acoustic powers. This uncovered the fluorescence emission from a newly formed species, attributed to the formation of di-tyrosine within the horseradish peroxidase structure caused by auto-oxidation, and linked to enzyme inactivation.
Molecular consequences of genetic variations in the glutathione peroxidase 1 selenoenzyme.
Zhuo, Pin; Goldberg, Marci; Herman, Lauren; Lee, Bao-Shiang; Wang, Hengbing; Brown, Rhonda L; Foster, Charles B; Peters, Ulrike; Diamond, Alan M
2009-10-15
Accumulating data have implicated the selenium-containing cytosolic glutathione peroxidase, GPx-1, as a determinant of cancer risk and a mediator of the chemopreventive properties of selenium. Genetic variants of GPx-1 have been shown to be associated with cancer risk for several types of malignancies. To investigate the relationship between GPx-1 enzyme activity and genotype, we measured GPx-1 enzyme activity and protein levels in human lymphocytes as a function of the presence of two common variations: a leucine/proline polymorphism at codon 198 and a variable number of alanine-repeat codons. Differences in GPx activity among these cell lines, as well as in the response to the low-level supplementation of the media with selenium, indicated that factors other than just genotype are significant in determining activity. To restrict the study to genotypic effects, human MCF-7 cells were engineered to exclusively express allelic variants representing a combination of either a codon 198 leucine or proline and either 5 or 7 alanine-repeat codons following transfection of GPx-1 expression constructs. Transfectants were selected and analyzed for GPx-1 enzyme activity and protein levels. GPx-1 with 5 alanines and a leucine at codon 198 showed a significantly higher induction when cells were incubated with selenium and showed a distinct pattern of thermal denaturation as compared with GPx-1 encoded by the other examined alleles. The collective data obtained using both lymphocytes and MCF-7 indicate that both intrinsic and extrinsic factors cooperate to ultimately determine the levels of this enzyme available to protect cells against DNA damage and mutagenesis.
Isozvme specificity during germination and early growth of knobcone pine
M. Thompson Conkle
1971-01-01
Five enzyme classes from 11 developmental stages of germinating embryos were separated by starch gel electrophoresis. Alcohol dehydrogenase isozymes found in embryos of dry seed were most active at the time of radicle emergence; activity decreased thereafter, fading below the level of detection when seed coats were shed. Peroxidase isozymes were absent and esterase...
Mikashinovich, Z I; Nagornaia, G Iu; Kovalenko, T D; Zvereva, E A
2011-02-01
Age individuality is characterized by an imbalance of the molecular mechanisms of antioxidant defense in adolescents with arterial hypertension and biliary dyskinesia, as documented by an enzyme imbalance of the first line of antioxidant defense and H2O, accumulation, by a substantial increase in glutathione peroxidase activity, and by inhibition of the activity of glutathione-dependent enzymes. The considerable rise of 2,3-diphosphoglycerate suggests tissue hypoxia. With this, enhanced neutrophil elastase activity causes damage to the structural components of vascular wall connective tissue, resulting in the development of endothelial dysfunction.
Toxic reactivity of wheat (Triticum aestivum) plants to herbicide isoproturon.
Yin, Xiao Le; Jiang, Lei; Song, Ning Hui; Yang, Hong
2008-06-25
The herbicide isoproturon is widely used for controlling weed/grass in agricultural practice. However, the side effect of isoproturon as contaminants on crops is unknown. In this study, we investigated isoproturon-induced oxidative stress in wheat ( Triticum aestivum). The plants were grown in soils with isoproturon at 0-20 mg/kg and showed negative biological responses. The growth of wheat seedlings with isoproturon was inhibited. Chlorophyll content significantly decreased at the low concentration of isoproturon (2 mg/kg), suggesting that chlorophyll was rather sensitive to isoproturon exposure. The level of thiobarbituric acid reactive substances (TBARS), an indicator of cellular peroxidation, showed an increase, indicating oxidative damage to plants. The isoproturon-induced oxidative stress resulted in a substantial change in activities of the majority of antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX). Activities of the antioxidant enzymes showed a general increase at low isoproturon concentrations and a decrease at high isoproturon concentrations. Activities of CAT in leaves showed progressive suppression under the isoproturon exposure. Analysis of nondenaturing polyacrylamide gel electrophoresis (PAGE) confirmed these results. We also tested the activity of glutathione S-transferase (GST) and observed the activity stimulated by isoproturon at 2-10 mg/kg.
Alleviation of iron toxicity in Schinus terebinthifolius Raddi (Anacardiaceae) by humic substances.
Dobbss, Leonardo Barros; Dos Santos, Tamires Cruz; Pittarello, Marco; de Souza, Sávio Bastos; Ramos, Alessandro Coutinho; Busato, Jader Galba
2018-04-01
One of the industrial pillars of Espírito Santo state, South East of Brazil, is iron-mining products processing. This activity brings to a high level of coastal pollution due to deposition of iron particulate on fragile ecosystems as mangroves and restinga. Schinus therebinthifolius (aroeira) is a widespread restinga species. This work tested iron toxicity alleviation by vermicompost humic substances (HS) added to aroeira seedlings in hydroponic conditions. Catalase, peroxidase, and ascorbate peroxidase are antioxidant enzymes that work as reactive oxygen species (ROS) scavengers: they increase their activity as an answer to ROS concentration rise that is the consequence of metal accumulation or humic substance stimulation. S. terebinthifolius seedlings treated with HS and Fe augmented their antioxidant enzyme activities significantly less than seedlings treated separately with HS and Fe; their significantly lower Fe accumulation and the slight increase of root and leaf area confirm the biostimulating effect of HS and their role in blocking Fe excess outside the roots. The use of HS can be useful for the recovery of areas contaminated by heavy metals.
Effect of balneotherapy on the antioxidant system--a controlled pilot study.
Bender, Tamás; Bariska, János; Vághy, Richárd; Gomez, Roberto; Imre Kovács
2007-01-01
Balneotherapy is among the most widely used modalities of physical therapy in countries rich in mineral waters. This trial was intended to ascertain whether balneotherapy (i.e., therapeutic bath in mineral water) has any influence on the antioxidant system and whether there are any differences compared to bathing in tap water. The ten subjects in Group I bathed in alkaline thermal water, Group II used alkaline, chlorine-containing mineral water, whereas Group III bathed in tap water. Catalase, superoxide dismutase, malondialdehyde protein and glutathione peroxidase levels were measured at baseline and after concluding the course of balneotherapy. Balneotherapy with either of the two mineral waters reduced the activity of all four enzymes studied. Using tap water, however, had no influence on either catalase or superoxide dismutase activity after one session or glutathione peroxidase levels after a course of ten balneotherapy treatments. Thermal water may have a beneficial effect on the formation of free radicals. The therapeutic efficacy of mineral vs. tap water is different, although bathing in hot water itself reduces enzyme activity.
Ultrastructural Localization of Peroxidase Activity in Human Platelets and Megakaryocytes
Breton-Gorius, Janine; Guichard, Josette
1972-01-01
Normal human platelets and megakaryocytes were examined for peroxidase activity by the diaminobenzidine (DAB) cytochemical technic. When the fixation and the incubation were adequate, a strong reaction was present in the dense tubular system of platelets suspended in plasma or spread on carbon. The black reaction product was ascribed to enzyme activity, since the reaction was completely eliminated when H2O2 or DAB were omitted, or when H2O2 was in excess. In addition, the reaction was inhibited by aminotriazole, cyanide and azide. In the human megakaryocytes, the reaction was localized in the endoplasmic reticulum including the perinuclear envelope. The Golgi complex and the clear vacuolar system were negative for the reaction. After platelet release, the reaction was always seen in the perinuclear space. The nature and function of the enzyme, as well as its possible relationships with catalase, are discussed. ImagesFig 3Fig 4Fig 5Fig 6Fig 7Fig 8Fig 9Fig 10Fig 11Fig 1Fig 2Fig 12Fig 13Fig 14Fig 15Fig 16 PMID:5009974
The effect of chronic alcohol intoxication and smoking on the activity of oral peroxidase.
Waszkiewicz, Napoleon; Zalewska, Anna; Szajda, Sławomir Dariusz; Szulc, Agata; Kępka, Alina; Minarowska, Alina; Wojewódzka-Żelezniakowicz, Marzena; Konarzewska, Beata; Chojnowska, Sylwia; Supronowicz, Zbigniew Bronisław; Ladny, Jerzy Robert; Zwierz, Krzysztof
2012-10-08
Peroxidase is the most important antioxidant enzyme in saliva. Through peroxidation of thiocyanate in the presence of H₂O₂, peroxidase catalyses the formation of bacteriocidic compounds such as hypothiocyanate.The purpose of this study was to evaluate the effect of chronic alcohol intoxication and smoking on the activity of oral peroxidase (OPO). A total of 37 volunteers participated in the study. This cohort consisted of 17 male alcohol-dependent smoking patients after chronic alcohol intoxication (AS group, alcohol + smoking) (mean age: 42 years; range: 26-55) (100-700 g/day of alcohol; 10-20 cigarettes/day) and 20 control male social drinkers(CNS group, control non-smokers) with no history of alcohol abuse or smoking (mean age: 42 years; range:30-53). Salivary peroxidase activity was measured by the colorimetric method. The differences between groups were evaluated using the Mann-Whitney U test. There was significantly higher activity of OPO (p = 0.00001)and significantly lower salivary flow (SF) (p = 0.007) in alcohol-dependent smokers after chronic alcohol intoxication compared to the control group. OPO activity significantly correlated with the number of days of alcohol intoxication, but not with smoking. Gingival index (GI) was significantly higher in smoking alcohol-dependent persons than in the control group, and correlated with OPO activity. The sensitivity of the OPO test was 70% in smoking alcoholics, while specificity was 95%. The increased activity of OPO suggests chronic oxidative stress is more likely due to ethanol action than to smoking. Smoking alcohol-dependent persons have a worse periodontal status than controls. OPO activity as a marker of chronic alcohol abuse may help in the diagnosis of alcoholism.
Grim, Jeffrey M.; Hyndman, Kelly A.; Kriska, Tamas; Girotti, Albert W.; Crockett, Elizabeth L.
2011-01-01
SUMMARY Biological membranes can be protected from lipid peroxidation by antioxidant enzymes including catalase (CAT) and selenium-dependent glutathione peroxidases 1 and 4 (GPx1 and GPx4). Unlike GPx1, GPx4 can directly detoxify lipid hydroperoxides in membranes without prior action of phospholipase A2. We hypothesized that (1) GPx4 is enhanced in species that contain elevated levels of highly oxidizable polyunsaturated fatty acids (PUFA) and (2) activities of antioxidant enzymes are prioritized to meet species-specific oxidative stresses. In this study we examined (i) activities of the oxidative enzyme citrate synthase (CS) and antioxidant (CAT, GPx1 and GPx4) enzymes, (ii) GPx4 protein expression, and (iii) phospholipid composition in livers of five species of marine fish (Myxine glutinosa, Petromyzon marinus, Squalus acanthias, Fundulus heteroclitus and Myoxocephalus octodecemspinosus) that contain a range of PUFA. GPx4 activity was, on average, 5.8 times higher in F. heteroclitus and S. acanthias than in the other three marine fish species sampled. Similarly, activities of CAT and GPx1 were highest in S. acanthias and F. heteroclitus, respectively. GPx4 activity for all species correlates with membrane unsaturation, as well as oxidative activity as indicated by CS. These data support our hypothesis that GPx4 level in marine fish is a function, at least in part, of high PUFA content in these animals. GPx1 activity was also correlated with membrane unsaturation, indicating that marine species partition resources among glutathione-dependent defenses for protection from the initial oxidative insult (e.g. H2O2) and to repair damaged lipids within biological membranes. PMID:22031739
Movafeghi, Ali; Khataee, Alireza; Abedi, Mahboubeh; Tarrahi, Roshanak; Dadpour, Mohammadreza; Vafaei, Fatemeh
2018-02-01
Plants are essential components of all ecosystems and play a critical role in environmental fate of nanoparticles. However, the toxicological impacts of nanoparticles on plants are not well documented. Titanium dioxide nanoparticles (TiO 2 -NPs) are produced worldwide in large quantities for a wide range of purposes. In the present study, the uptake of TiO 2 -NPs by the aquatic plant Spirodela polyrrhiza and the consequent effects on the plant were evaluated. Initially, structural and morphological characteristics of the used TiO 2 -NPs were determined using XRD, SEM, TEM and BET techniques. As a result, an anatase structure with the average crystalline size of 8nm was confirmed for the synthesized TiO 2 -NPs. Subsequently, entrance of TiO 2 -NP S to plant roots was verified by fluorescence microscopic images. Activity of a number of antioxidant enzymes, as well as, changes in growth parameters and photosynthetic pigment contents as physiological indices were assessed to investigate the effects of TiO 2 -NPs on S. polyrrhiza. The increasing concentration of TiO 2 -NPs led to the significant decrease in all of the growth parameters and changes in antioxidant enzyme activities. The activity of superoxide dismutase enhanced significantly by the increasing concentration of TiO 2 -NPs. Enhancement of superoxide dismutase activity could be explained as promoting antioxidant system to scavenging the reactive oxygen species. In contrast, the activity of peroxidase was notably decreased in the treated plants. Reduced peroxidase activity could be attributed to either direct effect of these particles on the molecular structure of the enzyme or plant defense system damage due to reactive oxygen species. Copyright © 2017. Published by Elsevier B.V.
Rúa, Megan A; Moore, Becky; Hergott, Nicole; Van, Lily; Jackson, Colin R; Hoeksema, Jason D
2015-08-28
Extracellular enzymes degrade macromolecules into soluble substrates and are important for nutrient cycling in soils, where microorganisms, such as ectomycorrhizal (ECM) fungi, produce these enzymes to obtain nutrients. Ecotones between forests and fields represent intriguing arenas for examining the effect of the environment on ECM community structure and enzyme activity because tree maturity, ECM composition, and environmental variables may all be changing simultaneously. We studied the composition and enzymatic activity of ECM associated with loblolly pine (Pinus taeda) across an ecotone between a forest where P. taeda is established and an old field where P. taeda saplings had been growing for <5 years. ECM community and environmental characteristics influenced enzyme activity in the field, indicating that controls on enzyme activity may be intricately linked to the ECM community, but this was not true in the forest. Members of the Russulaceae were associated with increased phenol oxidase activity and decreased peroxidase activity in the field. Members of the Atheliaceae were particularly susceptible to changes in their abiotic environment, but this did not mediate differences in enzyme activity. These results emphasize the complex nature of factors that dictate the distribution of ECM and activity of their enzymes across a habitat boundary.
Garcia, Sabrina O; Feltrin, Ana Carla P; Garda-Buffon, Jaqueline
2018-06-11
The peroxidase (POD) enzyme, obtained from different sources, has been described in the literature regarding its good results of reduction in concentration or degradation levels of mycotoxins, such as aflatoxin B1, deoxynivalenol and zearalenone. This study aimed at evaluating the action of commercial peroxidase and peroxidase from soybean bran (SB) and rice bran (RB) in zearalenone (ZEA) reduction in a model solution and the characterization of the mechanism of enzyme action. POD was extracted from SB and RB in phosphate buffer by orbital agitation. Evaluation of the action of commercial POD and POD from SB and RB in ZEA reduction was carried out in phosphate buffer and aqueous solution, respectively. Parameters of K M and V max were determined in the concentration range from 0.16 to 6 µg mL -1 . ZEA reduction was determined and the mechanism of enzyme action was characterized by Fourier transform infrared spectroscopy and high-pressure liquid chromatography-electrospray tandem mass spectrometry. Commercial POD and POD from RB and SB reduced ZEA concentration by 69.9, 47.4 and 30.6% in 24 h, respectively. K M values were 39.61 and 8.90 µM whereas V max values were 0.170 and 0.011 µM min -1 for commercial POD and POD from RB, respectively. The characterization of the mechanism of enzyme action showed the oxidoreductive action of commercial POD in the mycotoxin. The use of commercial POD and POD from agro-industrial by-products, such as SB and RB, could be a promising alternative for ZEA biodegradation.
Role of fungal peroxidases in biological ligninolysis
Kenneth E. Hammel; Dan Cullen
2008-01-01
The degradation of lignin by filamentous fungi is a major route for the recycling of photosynthetically fixed carbon, and the oxidative mechanisms employed have potential biotechnological applications. The lignin peroxidases (LiPs), manganese peroxidases (MnPs), and closely related enzymes of white rot basidiomycetes are likely contributors to fungal ligninolysis. Many...
Biochemical characterization of sap (latex) of a few Indian mango varieties.
John, K Saby; Bhat, S G; Prasada Rao, U J S
2003-01-01
Mango sap (latex) from four Indian varieties was studied for its composition. Sap was separated into non-aqueous and aqueous phases. Earlier, we reported that the non-aqueous phase contained mainly mono-terpenes having raw mango aroma (Phytochemistry 52 (1999) 891). In the present study biochemical composition of the aqueous phase was studied. Aqueous phase contained little amount of protein (2.0-3.5 mg/ml) but showed high polyphenol oxidase (147-214 U/mg protein) and peroxidase (401-561 U/mg protein) activities. It contained low amounts of polyphenols and protease activities. On native PAGE, all the major protein bands exhibited both polyphenol oxidase and peroxidase activities. Both polyphenol oxidase and peroxidase activities were found to be stable in the aqueous phase of sap at 4 degrees C. Sap contained large amount of non-dialyzable and non-starchy carbohydrate (260-343 mg/ml sap) which may be responsible for maintaining a considerable pressure of fluid in the ducts. Thus, the mango sap could be a valuable by-product in the mango industry as it contains some of the valuable enzymes and aroma components.
Mifune, Masaki; Kamiguchi, Hidenori; Tai, Taka-Aki; Kuremoto, Seigo; Yamamoto, Makiko; Tsukamoto, Ikuko; Saito, Madoka; Kitamura, Youji; Saito, Yutaka
2007-01-15
To reveal an enzyme-like catalytic activity of metal-octabromo-tetrakis(sulfophenyl)porphines (M-OBPSs), their peroxidease-like catalytic activity on linoleate hydroperoxide (LOOH) were evaluated on the basis of dye-formation in the coloring reaction between N,N-diethylaniline and 4-aminoantipyrine that yields a quinoid-type dye. Among M-OBPSs tested, Mn(3+)-OBPS allowed to produce the largest amount of dye. The optimal conditions of the coloring reaction catalyzed by Mn(3+)-OBPS for the determination of LOOH were determined. A good linear calibration curve was obtained in the concentration range of 0.025-0.4mumole LOOH with good reproducibility (coefficient of variance=1.23%), suggesting that Mn(3+)-OBPS is a good artificial mimesis of the peroxidase for LOOH. In addition, Mn(3+)-OBPS was highly specific for LOOH even in the presence of cumene hydroxyperoxide or hydrogen peroxide. It was revealed that the peroxidase-like activity of Mn(3+)-OBTP is attributable to the redox cycle of Mn(3+)<-->Mn(4+).
Lignolytic enzymes produced by Trametes villosa ccb176 under different culture conditions
Yamanaka, Renata; Soares, Clarissa F.; Matheus, Dácio R.; Machado, Kátia M.G.
2008-01-01
The expression of the enzymatic system produced by basidiomycetous fungi, which is involved in the degradation of xenobiotics, mainly depends on culture conditions, especially of the culture medium composition. Trametes villosa is a strain with a proven biotechnological potential for the degradation of organochlorine compounds and for the decolorization of textile dyes. The influence of glucose concentration, addition of a vegetable oil-surfactant emulsion, nature of the surfactant and the presence of manganese and copper on the growth, pH and production of laccase, total peroxidase and manganese-dependent peroxidase activities were evaluated. In general, acidification of the medium was observed, with the pH reaching a value close to 3.5 within the first days of growth. Laccase was the main activity detected under the different conditions and was produced throughout the culture period of the fungus, irrespective of the growth phase. Supplementation of the medium with vegetable oil emulsified with a surfactant induced manganese-dependent peroxidase activity in T. villosa. Higher specific yields of laccase activity were obtained with the addition of copper. PMID:24031184
Benhamdi, Asma; Bentellis, Alima; Rached, Oualida; Du Laing, Gijs; Mechakra, Aicha
2014-04-01
The present work was undertaken to determine strategies and antioxidant enzyme activities involved in the adaptation of two wild steppic plants (Hedysarum pallidum Desf. and Lygeum spartum L.) to the toxic environment of the abandoned antimony mining area of Djebel Hamimat (Algeria). For this purpose, soils and plants were collected in different zones coinciding with a Sb and As concentrations gradient in the soil. Antimony (Sb) and arsenic (As) were analyzed by ICP-OES in the soils and the aboveground parts and roots of the plants. Malondialdehyde (MDA) and antioxidant enzyme activities were measured by spectrometry. Results show levels of Sb and As exceptionally high in most soil and plant samples. The two species accumulate differently Sb and As in their above and belowground parts. MDA levels, in the two parts of both species, increase significantly with increasing soil Sb and As concentrations, but they are significantly higher in H. pallidum than in L. spartum. The activities of antioxidant enzymes differ significantly according to the soil metalloid concentrations, the plant species considered and the plant part. Apart from superoxide dismutase (SOD) whose activity is, overall, higher in H. pallidum than in L. spartum, the activities of all the other enzymes studied (glutathione S-transferase (GST), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX)) are generally higher in L. spartum than in H. pallidum. For both species, APX and GST are overall more active in the upper parts than in the roots, while it is the reverse for SOD and CAT. POD is more active in the upper parts than in the roots of L. spartum and the reverse applies to H. pallidum. It appears that the two studied plant species use different tolerance strategies to protect themselves against elevated As and Sb concentrations.
Glutathione Peroxidase Enzyme Activity in Aging
Espinoza, Sara E.; Guo, Hongfei; Fedarko, Neal; DeZern, Amy; Fried, Linda P.; Xue, Qian-Li; Leng, Sean; Beamer, Brock; Walston, Jeremy D.
2010-01-01
Background It is hypothesized that free radical damage contributes to aging. Age-related decline in activity of the antioxidant enzyme glutathione peroxidase (GPx) may contribute to increased free radicals. We hypothesized that GPx activity decreases with age in a population of older women with disability. Methods Whole blood GPx activity was measured in baseline stored samples from participants in the Women's Health and Aging Study I, a cohort of disabled community-dwelling older women. Linear regression was used to determine cross-sectional associations between GPx activity and age, adjusting for hemoglobin, coronary disease, diabetes, selenium, and body mass index. Results Six hundred one participants had complete demographic, disease, and laboratory information. An inverse association was observed between GPx and age (regression coefficient = −2.9, p < .001), indicating that for each 1-year increase in age, GPx activity decreased by 2.9 μmol/min/L. This finding remained significant after adjustment for hemoglobin, coronary disease, diabetes, and selenium, but not after adjustment for body mass index and weight loss. Conclusion This is the first study to examine the association between age and GPx activity in an older adult cohort with disability and chronic disease. These findings suggest that, after age 65, GPx activity declines with age in older women with disability. This decline does not appear to be related to diseases that have been previously reported to alter GPx activity. Longitudinal examination of GPx activity and other antioxidant enzymes in diverse populations of older adults will provide additional insight into age- and disease-related changes in these systems. PMID:18511755
Description of the first fungal dye-decolorizing peroxidase oxidizing manganese(II)
Fernandez-Fueyo, Elena; Linde, Dolores; Almendral, David; ...
2015-05-13
Two phylogenetically divergent genes of the new family of dye-decolorizing peroxidases (DyPs) were found during comparison of the four DyP genes identified in the Pleurotus ostreatus genome with over 200 DyP genes from other basidiomycete genomes. The heterologously expressed enzymes ( Pleos-DyP1 and Pleos-DyP4, following the genome nomenclature) efficiently oxidize anthraquinoid dyes (such as Reactive Blue 19), which are characteristic DyP substrates, as well as low redox-potential dyes (such as 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)) and substituted phenols. However, only Pleos-DyP4 oxidizes the high redox-potential dye Reactive Black 5, at the same time that it displays high thermal and pH stability. Unexpectedly, bothmore » enzymes also oxidize Mn 2+ to Mn 3+, albeit with very different catalytic efficiencies. Pleos-DyP4 presents a Mn 2+ turnover (56 s –1) nearly in the same order of the two other Mn 2+-oxidizing peroxidase families identified in the P. ostreatus genome: manganese peroxidases (100 s–1 average turnover) and versatile peroxidases (145 s –1 average turnover), whose genes were also heterologously expressed. Oxidation of Mn 2+ has been reported for an Amycolatopsis DyP (24 s –1) and claimed for other bacterial DyPs, albeit with lower activities, but this is the first time that Mn 2+ oxidation is reported for a fungal DyP. Interestingly, Pleos-DyP4 (together with ligninolytic peroxidases) is detected in the secretome of P. ostreatus grown on different lignocellulosic substrates. In conclusion, it is suggested that generation of Mn 3+ oxidizers plays a role in the P. ostreatus white-rot lifestyle since three different families of Mn 2+-oxidizing peroxidase genes are present in its genome being expressed during lignocellulose degradation.« less
Description of the first fungal dye-decolorizing peroxidase oxidizing manganese(II)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez-Fueyo, Elena; Linde, Dolores; Almendral, David
Two phylogenetically divergent genes of the new family of dye-decolorizing peroxidases (DyPs) were found during comparison of the four DyP genes identified in the Pleurotus ostreatus genome with over 200 DyP genes from other basidiomycete genomes. The heterologously expressed enzymes ( Pleos-DyP1 and Pleos-DyP4, following the genome nomenclature) efficiently oxidize anthraquinoid dyes (such as Reactive Blue 19), which are characteristic DyP substrates, as well as low redox-potential dyes (such as 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)) and substituted phenols. However, only Pleos-DyP4 oxidizes the high redox-potential dye Reactive Black 5, at the same time that it displays high thermal and pH stability. Unexpectedly, bothmore » enzymes also oxidize Mn 2+ to Mn 3+, albeit with very different catalytic efficiencies. Pleos-DyP4 presents a Mn 2+ turnover (56 s –1) nearly in the same order of the two other Mn 2+-oxidizing peroxidase families identified in the P. ostreatus genome: manganese peroxidases (100 s–1 average turnover) and versatile peroxidases (145 s –1 average turnover), whose genes were also heterologously expressed. Oxidation of Mn 2+ has been reported for an Amycolatopsis DyP (24 s –1) and claimed for other bacterial DyPs, albeit with lower activities, but this is the first time that Mn 2+ oxidation is reported for a fungal DyP. Interestingly, Pleos-DyP4 (together with ligninolytic peroxidases) is detected in the secretome of P. ostreatus grown on different lignocellulosic substrates. In conclusion, it is suggested that generation of Mn 3+ oxidizers plays a role in the P. ostreatus white-rot lifestyle since three different families of Mn 2+-oxidizing peroxidase genes are present in its genome being expressed during lignocellulose degradation.« less
Esterhuizen-Londt, M; Pflugmacher, S; Downing, T G
2011-04-01
Cyanobacteria are known to produce bioactive secondary metabolites such as hepatotoxins, cytotoxins and neurotoxins. The newly recognized neurotoxin β-N-methylamino-L-alanine (BMAA) is a naturally occurring non-protein amino acid found in the majority of cyanobacterial genera tested. Evidence that exists for implication of BMAA in neurodegenerative disorders relies on bioaccumulation and biomagnification from symbiotic cyanobacteria. Uptake and accumulation of free BMAA by various non-symbiotic organisms, including aquatic macrophytes, has been documented but to date limited evidence of ecotoxicology exists. We therefore investigated the effect of BMAA on the oxidative stress responses of the macrophyte, Ceratophyllum demersum. Markers for oxidative stress in this study are the antioxidative enzymes superoxide dismutase, catalase, guaiacol peroxidase, glutathione peroxidase and glutathione reductase. We found that BMAA had an inhibitory effect on all the oxidative stress response enzymes tested in plants exposed to BMAA. However enzymes not related to oxidative stress response were not affected by BMAA in in vitro experiments. Binding studies in the presence of BMAA showed reduced enzyme specific activity over time compared to the control. This study shows that BMAA causes oxidative stress indirectly as it inhibits antioxidant enzymes required to combat reactive oxygen species that cause damage to cells. Further investigations are required to fully understand the inhibitory effect of BMAA on these enzymes. Copyright © 2011 Elsevier Ltd. All rights reserved.
Guan, Tuchen; Song, Jian; Wang, Yanan; Guo, Liying; Yuan, Lin; Zhao, Yingding; Gao, Yuan; Lin, Liangru; Wang, Yali; Wei, Jingyan
2017-09-01
To balance the production and decomposition of reactive oxygen species, living organisms have generated antioxidant enzymes and non-enzymatic antioxidant defense systems. Glutathione peroxidase (GPx) and superoxide dismutase (SOD) are two important antioxidant enzymes. Apart from their catalytic functions, they protect each other, resulting in more efficient removal of reactive oxygen species, protection of cells against injury, and maintenance of the normal metabolism of reactive oxygen species. SOD catalyzes the dismutation of the superoxide anion (O 2 •- ) to oxygen (O 2 ) and hydrogen peroxide (H 2 O 2 ). H 2 O 2 is then detoxified to water by GPx. In this study, human GPx1 Ser and the Alvinella pompejana SOD (ApSOD) gene were used to design and generate several recombinant proteins with both GPx and SOD activities by combining traditional fusion protein technology, a cysteine auxotrophic expression system, and a single protein production (SPP) system. Among the fusion proteins, Se-hGPx1 Ser -L-ApSOD exhibited the highest SOD and GPx activities. Additional research was conducted to better understand the properties of Se-hGPx1 Ser -L-ApSOD. The synergism of Se-hGPx1 Ser -L-ApSOD was evaluated by using an in vitro model. This research may facilitate future studies on the cooperation and catalytic mechanisms of GPx and SOD. We believe that the bifunctional enzyme has potential applications as a potent antioxidant. Copyright © 2017 Elsevier Inc. All rights reserved.
Ullrich, René; Nüske, Jörg; Scheibner, Katrin; Spantzel, Jörg; Hofrichter, Martin
2004-01-01
Agrocybe aegerita, a bark mulch- and wood-colonizing basidiomycete, was found to produce a peroxidase (AaP) that oxidizes aryl alcohols, such as veratryl and benzyl alcohols, into the corresponding aldehydes and then into benzoic acids. The enzyme also catalyzed the oxidation of typical peroxidase substrates, such as 2,6-dimethoxyphenol (DMP) or 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS). A. aegerita peroxidase production depended on the concentration of organic nitrogen in the medium, and highest enzyme levels were detected in the presence of soybean meal. Two fractions of the enzyme, AaP I and AaP II, which had identical molecular masses (46 kDa) and isoelectric points of 4.6 to 5.4 and 4.9 to 5.6, respectively (corresponding to six different isoforms), were identified after several steps of purification, including anion- and cation-exchange chromatography. The optimum pH for the oxidation of aryl alcohols was found to be around 7, and the enzyme required relatively high concentrations of H2O2 (2 mM) for optimum activity. The apparent Km values for ABTS, DMP, benzyl alcohol, veratryl alcohol, and H2O2 were 37, 298, 1,001, 2,367 and 1,313 μM, respectively. The N-terminal amino acid sequences of the main AaP II spots blotted after two-dimensional gel electrophoresis were almost identical and exhibited almost no homology to the sequences of other peroxidases from basidiomycetes, but they shared the first three amino acids, as well as two additional amino acids, with the heme chloroperoxidase (CPO) from the ascomycete Caldariomyces fumago. This finding is consistent with the fact that AaP halogenates monochlorodimedone, the specific substrate of CPO. The existence of haloperoxidases in basidiomycetous fungi may be of general significance for the natural formation of chlorinated organic compounds in forest soils. PMID:15294788
Snajdr, J; Baldrian, P
2007-01-01
Enzyme activity was determined in cultures of Pleurotus ostreatus and Trametes versicolor with cellulose as a sole C source and high C/N ratio. The fungi were able to grow and produce laccase and Mn-peroxidase (MnP) at 5-35 degrees C, the highest production being recorded at 25-30 degrees C in P. ostreatus and at 35 degrees C in T. versicolor. Production of both enzymes at 10 degrees C accounted only for 4-20% of the maximum value. Temperature optima for enzyme activity were 50 and 55 degrees C for P. ostreatus and T. versicolor laccases, respectively, and 60 degrees C for MnP. Temperatures causing 50% loss of activity after 24 h were 32 and 47 degrees C for laccases and 36 and 30 degrees C for MnP from P. ostreatus and T. versicolor, respectively.
Soil enzymes as biodiagnostics indicator of heavy metal pollution of urbanozem
NASA Astrophysics Data System (ADS)
Novosyolova, E. I.; Volkova, O. O.; Turyanova, R. R.
2018-01-01
The article presents a comparative analysis of the impact of the introduction of different doses of copper and cadmium on the activity of redox enzymes of urbanozem, collected from different territories of Ufa. The studies established the inverse relationship of the activity of catalase and polyphenol oxidase, and the direct one of the activity of peroxidase that depends on the doses of heavy metals, that allows to recommend their use as bioindicator of pollution of urbanozem with these metals. The reaction of the studied enzymes on the introduction of heavy metals is an indicator of their toxicity to living things at the molecular level. Comparative analysis of the impact of cadmium and copper in different doses on the activity of soil enzymes did not reveal a uniform regularity. Each of the metals showed their toxicity in different ways depending on the duration of their impact.
A novel paramagnetic substrate for detecting myeloperoxidase activity in vivo.
Shazeeb, Mohammed S; Xie, Yang; Gupta, Suresh; Bogdanov, Alexei A
2012-01-01
Bis-phenylamides and bis-hydroxyindolamides of diethylenetriaminepentaacetic acid-gadolinium (DTPA(Gd)) are paramagnetic reducing substrates of peroxidases that enable molecular imaging of peroxidase activity in vivo. Specifically, gadolinium chelates of bis-5-hydroxytryptamide-DTPA (bis-5HT-DTPA(Gd)) have been used to image localized inflammation in animal models by detecting neutrophil-derived myeloperoxidase (MPO) activity at the inflammation site. However, in other preclinical disease models, bis-5HT-DTPA(Gd) presents technical challenges due to its limited solubility in vivo. Here we report a novel MPO-sensing probe obtained by replacing the reducing substrate serotonin (5-HT) with 5-hydroxytryptophan (HTrp). Characterization of the resulting probe (bis-HTrp-DTPA(Gd)) in vitro using nuclear magnetic resonance spectroscopy and enzyme kinetic analysis showed that bis-HTrp-DTPA(Gd) (1) improves solubility in water; (2) acts as a substrate for both horseradish peroxidase and MPO enzymes; (3) induces cross-linking of proteins in the presence of MPO; (4) produces oxidation products, which bind to plasma proteins; and (5) unlike bis-5HT-DTPA(Gd), does not follow first-order reaction kinetics. In vivo magnetic resonance imaging (MRI) in mice demonstrated that bis-HTrp-DTPA(Gd) was retained for up to 5 days in MPO-containing sites and cleared faster than bis-5HT-DTPA(Gd) from MPO-negative sites. Bis-HTrp-DTPA(Gd) should offer improvements for MRI of MPO-mediated inflammation in vivo, especially in high-field MRI, which requires a higher dose of contrast agent.
Njuma, Olive J; Davis, Ian; Ndontsa, Elizabeth N; Krewall, Jessica R; Liu, Aimin; Goodwin, Douglas C
2017-11-10
KatG is a bifunctional, heme-dependent enzyme in the front-line defense of numerous bacterial and fungal pathogens against H 2 O 2 -induced oxidative damage from host immune responses. Contrary to the expectation that catalase and peroxidase activities should be mutually antagonistic, peroxidatic electron donors (PxEDs) enhance KatG catalase activity. Here, we establish the mechanism of synergistic cooperation between these activities. We show that at low pH values KatG can fully convert H 2 O 2 to O 2 and H 2 O only if a PxED is present in the reaction mixture. Stopped-flow spectroscopy results indicated rapid initial rates of H 2 O 2 disproportionation slowing concomitantly with the accumulation of ferryl-like heme states. These states very slowly returned to resting ( i.e. ferric) enzyme, indicating that they represented catalase-inactive intermediates. We also show that an active-site tryptophan, Trp-321, participates in off-pathway electron transfer. A W321F variant in which the proximal tryptophan was replaced with a non-oxidizable phenylalanine exhibited higher catalase activity and less accumulation of off-pathway heme intermediates. Finally, rapid freeze-quench EPR experiments indicated that both WT and W321F KatG produce the same methionine-tyrosine-tryptophan (MYW) cofactor radical intermediate at the earliest reaction time points and that Trp-321 is the preferred site of off-catalase protein oxidation in the native enzyme. Of note, PxEDs did not affect the formation of the MYW cofactor radical but could reduce non-productive protein-based radical species that accumulate during reaction with H 2 O 2 Our results suggest that catalase-inactive intermediates accumulate because of off-mechanism oxidation, primarily of Trp-321, and PxEDs stimulate KatG catalase activity by preventing the accumulation of inactive intermediates. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Peña-Estévez, María E; Gómez, Perla A; Artés, Francisco; Aguayo, Encarna; Martínez-Hernández, Ginés Benito; Galindo, Alejandro; Torecillas, Arturo; Artés-Hernández, Francisco
2016-12-01
The effect of postharvest vapor heat treatments at 95℃ (4, 7, and 10 s) regarding a conventional sanitizing treatment with 100 mg NaClO l -1 on enzyme activities (phenylalanine ammonia lyase, polyphenol oxidase, and peroxidase), phenolic content, and total antioxidant capacity of fresh-cut pomegranates arils throughout 18 days at 5℃ was studied. Furthermore, the effect of two sustained deficit irrigation (SDI) strategies, compared to a standardly irrigated control (CTRL), was also studied on such quality parameters throughout storage. Arils from CTRL-irrigated fruit registered phenylalanine ammonia lyase, peroxidase, and polyphenol oxidase initial activities of 60.6, 382, and 14.4 U g -1 fw, respectively. Arils from sustained deficit irrigation fruit registered 46-58% lower phenylalanine ammonia lyase values while polyphenol oxidase and peroxidase activities did not register great variants (<9%) among both sustained deficit irrigation treatments. Postharvest vapor heat treatments enhanced phenylalanine ammonia lyase activity in those samples from sustained deficit irrigation fruit although no great peroxidase and polyphenol oxidase (<2-5%) increases were observed. Arils from SDI 1 fruit registered higher phenolic content than those values reported for CTRL samples. However, phenolic compounds decreased during storage, in a greater extent for sustained deficit irrigation samples, although 7 s arils achieved better phenolic compounds retention in sustained deficit irrigation samples. Vapor heat treatments reduced up to twofold the total antioxidant capacity losses observed in samples sanitized by conventional NaOCl treatment during shelf life. Conclusively, postharvest vapor heat treatment for 7 and 10 s used to extend the shelf life of pomegranate arils up to 18 days at 5℃ reduced the losses of health-promoting compounds during storage compared to conventional NaOCl sanitizing treatment. © The Author(s) 2016.
Pham, Le Thanh Mai; Kim, Su Jin; Kim, Yong Hwan
2016-01-01
Although lignin peroxidase is claimed as a key enzyme in enzyme-catalyzed lignin degradation, in vitro enzymatic degradation of lignin was not easily observed in lab-scale experiments. It implies that other factors may hinder the enzymatic degradation of lignin. Irreversible interaction between phenolic compound and lignin peroxidase was hypothesized when active enzyme could not be recovered after the reaction with degradation product (guaiacol) of lignin phenolic dimer. In the study of lignin peroxidase isozyme H8 from white-rot fungi Phanerochaete chrysosporium (LiPH8), W251 site was revealed to make the covalent coupling with one moiety of monolignolic radical (guaiacol radical) by LC-MS/MS analysis. Hypothetical electron-relay containing W251 residue was newly suggested based on the observation of repressed radical coupling and remarkably lower electron transfer rate for W215A mutant. Furthermore, the retardation of the suicidal radical coupling between the W251 residue and the monolignolic radical was attempted by supplementing the acidic microenvironment around the W251 residue to engineer radical-robust LiPH8. Among many mutants, mutant A242D showed exceptional catalytic performances by yielding 21.1- and 4.9-fold higher increases of k cat and k cat /K M values, respectively, in the oxidation of non-phenolic model lignin dimer. A mechanism-based suicide inhibition of LiPH8 by phenolic compounds was firstly revealed and investigated in this work. Radical-robust LiPH8 was also successfully engineered by manipulating the transient radical state of radical-susceptible electron-relay. Radical-robust LiPH8 will play an essential role in degradation of lignin, which will be consequently linked with improved production of sugars from lignocellulose biomass.
USDA-ARS?s Scientific Manuscript database
We determined the effect of exogenous indole-3-acetic acid, a-naphthylene-3-acetic acid and gibberellic acid (GA3) on the enzymatic activity of glucansynthase, peroxidase and cellulase in ovule development of naked L-70 and linted AN-Bayaut-2 cotton (Gossypium hirsutum L.) seeds. We isolated a prote...
Peroxiredoxins: Guardians Against Oxidative Stress and Modulators of Peroxide Signaling
Perkins, Arden; Nelson, Kimberly J.; Parsonage, Derek; Poole, Leslie B.; Karplus, P. Andrew
2015-01-01
Peroxiredoxins (Prxs) are a ubiquitous family of cysteine-dependent peroxidase enzymes that play dominant roles in regulating peroxide levels within cells. These enzymes, often present at high levels and capable of rapidly clearing peroxides, display a remarkable array of variations in their oligomeric states and susceptibility to regulation by hyperoxidative inactivation and other post-translational modifications. Key conserved residues within the active site promote catalysis by stabilizing the transition state required for transferring the terminal oxygen of hydroperoxides to the active site (peroxidatic) cysteine residue. Extensive investigations continue to expand our understanding of the scope of their importance as well as the structures and forces at play within these critical defense and regulatory enzymes. PMID:26067716
Resende, C F; Pacheco, V S; Dornellas, F F; Oliveira, A M S; Freitas, J C E; Peixoto, P H P
2018-03-22
In this study, the activities of antioxidant enzymes, photosynthetic pigments, proline and carbohydrate contents in Pitcairnia encholirioides under ex vitro conditions of water deficit were evaluated. Results show that plants under progressive water stress, previously in vitro cultured in media supplemented with 30 g L-1 sucrose and GA3, accumulated more proline and increased peroxidase (POD) activity and the contents of photosynthetic pigments and carbohydrates. For plants previously in vitro cultured with 15 g L-1 sucrose and NAA, no differences were found for proline content and there were reductions in activities of peroxidase (POD), catalase (CAT) and poliphenoloxidase (PPO), and in contents of carbohydrates, with progress of ex vitro water deficit. After rehydration, plants showed physiological recovery, with enzymatic activities and contents of metabolites similar to those found in the controls not submitted to dehydration, regardless of the previous in vitro culture conditions. These results show that micropropagated P. encholirioides has high tolerance to dehydration once in ex vitro conditions, which can ensure the survival of plants from tissue culture when transferred to its natural environment, emphasizing the importance of such biotechnology for the propagation of endangered species.
Pérez, J.; de la Rubia, T.; Hamman, O. Ben; Martínez, J.
1998-01-01
Lignin-degrading enzymes were partially purified from supernatant solutions obtained from Phanerochaete flavido-alba-decolorized olive oil mill wastewaters (OMW). The dominant enzymes, manganese peroxidases, exhibited different isoform patterns in decolorized OMW-containing cultures than in residue-free samples. Laccase induction was also detected in OMW-containing cultures but not in control cultures. PMID:9647858
Lungu, Cristina; Stănescu, Irina; Cojocaru, Sabina Ioana; Ciobanu, C; Ivănescu, Bianca; Miron, Anca
2015-01-01
This study aimed to investigate the histo-anatomical features of the long shoots and leaves (young and mature) of Pinus cembra L.. The activity of antioxidant enzymatic systems and the content of heavy metals were also evaluated. For the histo-anatomical study, the cross-sections were performed by usual techniques. The activity of antioxidant enzymatic systems (superoxide dismutase, catalase and peroxidase) was evaluated by spectrophotometric methods. The content of heavy metals was determined by atomic absorption spectroscopy. The cross-section through the long shoots shows many resiniferous canals and a periderm of variable thickness. The leaf has a triangular shape and only two vascular bundles in the inferior and upper levels. The highest level of superoxide dismutase activity (344.90 U/mg protein) was determined in the long shoots collected from a cembran pine in Vatra Dornei, while the highest level of peroxidase activity (7611.11 U/mg protein) was found in the leaves collected in Calimani Mountains. Cd level in all samples was under the quantification limit. Higher levels of Pb were determined in the long shoots (3 μg/g dry weight for the vegetal material collected in Vatra Dornei and 2.86 μg/g dry weight for the vegetal material collected in Calimani Mountains). Pinus cembra L. leaves show specific elements of subgenus Strobus (a triangular shape of the cross section, one single vascular bundle and two resiniferous canals). The results obtained for the superoxide dismutase and peroxidase activities corroborated with those obtained for the heavy metal contents indicate that antioxidant enzymes play an important role in the protection of Pinus cembra L. against exogenous stress factors.
USDA-ARS?s Scientific Manuscript database
Effects of cyclic lipopeptides obtained from B. subtilis ABS-S14 on eliciting defense-related gene transcription and activity of defense-related enzymes glucanase (GLU), chitinase (CHI), peroxidase (POX) and lipoxygenase (LOX) in Citrus sinensis cv. Valencia fruit were determined. The maximum level ...
Effects of pH and Temperature on Recombinant Manganese Peroxidase Production and Stability
NASA Astrophysics Data System (ADS)
Jiang, Fei; Kongsaeree, Puapong; Schilke, Karl; Lajoie, Curtis; Kelly, Christine
The enzyme manganese peroxidase (MnP) is produced by numerous white-rot fungi to overcome biomass recalcitrance caused by lignin. MnP acts directly on lignin and increases access of the woody structure to synergistic wood-degrading enzymes such as cellulases and xylanases. Recombinant MnP (rMnP) can be produced in the yeast Pichia pastoris αMnP1-1 in fed-batch fermentations. The effects of pH and temperature on recombinant manganese peroxidase (rMnP) production by P. pastoris αMnP1-1 were investigated in shake flask and fed-batch fermentations. The optimum pH and temperature for a standardized fed-batch fermentation process for rMnP production in P. pastoris ctMnP1-1 were determined to be pH 6 and 30 °C, respectively. P. pastoris αMnP1-1 constitutively expresses the manganese peroxidase (mnp1) complementary DNA from Phanerochaete chrysosporium, and the rMnP has similar kinetic characteristics and pH activity and stability ranges as the wild-type MnP (wtMnP). Cultivation of P. chrysosporium mycelia in stationary flasks for production of heme peroxidases is commonly conducted at low pH (pH 4.2). However, shake flask and fed-batch fermentation experiments with P. pastoris αMnP1-1 demonstrated that rMnP production is highest at pH 6, with rMnP concentrations in the medium declining rapidly at pH less than 5.5, although cell growth rates were similar from pH 4-7. Investigations of the cause of low rMnP production at low pH were consistent with the hypothesis that intracellular proteases are released from dead and lysed yeast cells during the fermentation that are active against rMnP at pH less than 5.5.
Voeikov, Vladimir L; Yablonskaya, Olga I
2015-01-01
Hydrated fullerene (HyFnC60) is a highly hydrophilic supra-molecular complex consisting of unmodified С60 fullerene molecule enclosed into a hydrated shell. It has been shown in numerous experiments that aqueous solutions of HyFnC60 manifest a wide range of biological activities both in vivo and in vitro even at very low concentrations of HyFnC60. We used a spectrophotometric method and a method of biochemoluminescence to demonstrate that HyFnC60 in concentrations below 10(-9) M down to 10(-23) M stabilizes peroxidase, alkaline phosphatase, and bacterial luciferase against inactivation due to long-term incubation of the enzymes at room temperature and also against heat inactivation. In addition, HyFnC60 was able to "revive" heat inactivated enzymes. These effects cannot be explained by the direct action of the fullerene molecules upon the enzymes. We suggest that the effects of HyFnC60 on the enzymes are related to the ability of hydrated fullerene C60 molecules to organize thick aqueous shells around them. One of the specific properties of water phase in these shells is its ability to optimize redox reactions, which can support enzyme stability against factors deteriorating their structure.
Influence of dicarbonyls on kinetic characteristics of glutathione peroxidase.
Lankin, V Z; Shumaev, K B; Tikhaze, A K; Kurganov, B I
2017-07-01
Se-containing glutathione peroxidase (GSH-Px) is one of the key enzymes of the body's antioxidant system. The kinetic characteristics of GSH-Px (substrate is tert-butyl hydroperoxide) after modification of the enzyme by various concentrations of natural dicarbonyls (glyoxal, methylglyoxal, malonic dialdehyde) were studied. It was shown that dicarbonyls affected both K m and V max for GSH-Px. It is suggested that the effect of various dicarbonyls on GSH-Px depends on the molecular mechanisms of their interaction with the amino acid residues of the enzyme.
Role of N-acetylcysteine on fibrosis and oxidative stress in cirrhotic rats.
Pereira-Filho, Gustavo; Ferreira, Clarissa; Schwengber, Alex; Marroni, Cláudio; Zettler, Cláudio; Marroni, Norma
2008-01-01
Hepatic cirrhosis is the final stage of liver dysfunction, characterized by diffuse fibrosis which is the main response to the liver injury. The inhalatory carbon tetrachloride is an effective experimental model that triggers cirrhosis and allows to obtain histological and physiological modifications similar to the one seen in humans. To investigate the effects of N-acetylcysteine (NAC) on the fibrosis and oxidative stress in the liver of cirrhotic rats, analyzing liver function tests, lipoperoxidation, activity of glutathione peroxidase enzyme, collagen quantification, histopathology, as well as the nitric oxide role. The animals were randomly in three experimental groups: control (CO); cirrhotic (CCl4) and CCl4 + NAC. Evaluate the lipid peroxidation, the glutathione peroxidase enzyme, the collagen and the expression of inducible nitric oxide synthase (iNOS). The cirrhotic group treated with N-acetylcysteine showed trough the histological analysis and collagen quantification lower degrees of fibrosis. This group has also shown less damage to the cellular membranes, less decrease on the glutathione peroxidase levels and less expression of inducible nitric oxide synthase when matched with the cirrhotic group without treatment. N-acetylcysteine seams to offer protection against hepatic fibrosis and oxidative stress in cirrhotic rat livers.
Leite, Oldair D; Lupetti, Karina O; Fatibello-Filho, Orlando; Vieira, Iolanda C; Barbosa, Aneli de M
2003-04-10
Several bi-enzymatic carbon paste biosensors modified with enzymes laccase from Pleurotus ostreatus fungi and peroxidase from zucchini (Cucurbita pepo) were constructed for evaluating the synergic effect of the two enzymes on the voltammetric biosensor response for various catecholamines. Initially was investigated the effect of pH from 5.0 to 7.5, temperature from 25 to 50 degrees C, initial stirring time from 30 to 150 s, scan rate from 10 to 60 mVs(-1) and potential pulse amplitude from 10 to 60 mV on the biosensor response for several catecholamines such as dopamine, adrenaline, isoprenaline and l-dopa. It was observed a biosensor signal increase employing both enzymes, indicating thus there is a synergic effect between laccase and peroxidase, verified also in spectrophotometric studies, in the determination of these catecholamines.
Impact assessment of bisphenol A on lignin-modifying enzymes by basidiomycete Trametes versicolor.
Takamiya, Minako; Magan, Naresh; Warner, Philip J
2008-06-15
The impact of different concentrations of bisphenol A (BPA) was evaluated on growth of the white-rot basidiomycete, Trametes versicolor, and on the expression of genes encoding lignin-modifying enzyme (LME) activities. Effective doses (EDs) were obtained from fungal growth rate to monitor LME activities and the expression levels of their encoding genes. The fungus showed mycelial growth at concentrations of up to 300 microg ml(-1) of BPA with an ED50 value of 185 microg ml(-1). The LME activities were stimulated by BPA concentrations up to 300 microg ml(-1). The lignin peroxidase (LIP) encoding gene may be sensitive to BPA stress.
Peroxidase-like activity of apoferritin paired gold clusters for glucose detection.
Jiang, Xin; Sun, Cuiji; Guo, Yi; Nie, Guangjun; Xu, Li
2015-02-15
The discovery and application of noble metal nanoclusters have received considerable attention. In this paper, we reported that apoferritin paired gold clusters (Au-Ft) could efficiently catalyze oxidation of 3.3',5.5'-tetramethylbenzidine (TMB) by H2O2 to produce a blue color reaction. Compared with natural enzyme, Au-Ft exhibited higher activity near acidic pH and could be used over a wide range of temperatures. Apoferritin nanocage enhanced the reaction activity of substrate TMB by H2O2. The reaction catalyzed by Au-Ft was found to follow a typical Michaelis-Menten kinetics. The kinetic parameters exhibited a lower K(m) value (0.097 mM) and a higher K(cat) value (5.8 × 10(4) s(-1)) for TMB than that of horse radish peroxidase (HRP). Base on these findings, Au-Ft, acting as a peroxidase mimetic, performed enzymatic spectrophotometric analysis of glucose. This system exhibited acceptable reproducibility and high selectivity in biosening, suggesting that it could have promising applications in the future. Copyright © 2014 Elsevier B.V. All rights reserved.
Alleviation of salt-induced oxidative damage by 5-aminolevulinic acid in wheat seedlings
NASA Astrophysics Data System (ADS)
Genişel, Mucip; Erdal, Serkan
2016-04-01
The aim of this study was to elucidate how 5-aminolevulinic acid (ALA), the precursor of chlorophyll compounds, affects the defence mechanisms of wheat seedlings induced by salt stress. To determine the possible stimulative effects of ALA against salinity, 11-day old wheat seedlings were sprayed with ALA at two different concentrations (10 and 20 mg.l-1) and then stressed by exposure to salt (150 mM NaCl). The salt stress led to significant changes in the antioxidant activity. While guaiacol peroxidase activity decreased, the activities of superoxide dismutase, catalase, and ascorbate peroxidase markedly increased under salt stress. Compared to the salt stress alone, the application of ALA beforehand further increased the activity of these enzymes. This study is the first time the effects of ALA have been monitored with regard to protein content and the isoenzyme profiles of the antioxidant enzymes. Although the salt stress reduced both the soluble protein content and protein band intensities, pre-treating with ALA significantly mitigated these stress-induced reductions. The data for the isoenzyme profiles of the antioxidant enzymes paralleled that of the ALA-induced increases in antioxidant activity. As a consequence of the high antioxidant activity in the seedlings pre-treated with ALA, the stress-induced elevations in the reactive oxygen species, superoxide anion, and hydrogen peroxide contents and lipid peroxidation levels were markedly diminished. Taken together, this data demonstrated that pre-treating with ALA confers resistance to salt stress by modulating the protein synthesis and antioxidant activity in wheat seedlings.
Sathiavelu, Jayanthi; Senapathy, Giftson Jebakkan; Devaraj, Rajkumar; Namasivayam, Nalini
2009-06-01
To evaluate the effect of chrysin, a natural, biologically active compound extracted from many plants, honey and propolis, on the tissue and circulatory antioxidant status, and lipid peroxidation in ethanol-induced hepatotoxicity in rats. Rats were divided into four groups. Groups 1 and 2 received isocaloric glucose. Groups 3 and 4 received 20% ethanol, equivalent to 5 g/kg bodyweight every day. Groups 2 and 4 received chrysin (20 mg/kg bodyweight) dissolved in 0.5% dimethylsulfoxide. The results showed significantly elevated levels of tissue and circulatory thiobarbituric acid reactive substances, conjugated dienes and lipid hydroperoxides, and significantly lowered enzymic and non-enzymic antioxidant activity of superoxide dismutase, catalase and glutathione-related enzymes such as glutathione peroxidase, glutathione reductase, glutathione-S-transferase, reduced glutathione, vitamin C and vitamin E in ethanol-treated rats compared with the control. Chrysin administration to rats with ethanol-induced liver injury significantly decreased the levels of thiobarbituric acid reactive substances, lipid hydroperoxides and conjugated dienes, and significantly elevated the activity of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase and the levels of reduced glutathione, vitamin C and vitamin E in the tissues and circulation compared with those of the unsupplemented ethanol-treated rats. The histological changes observed in the liver and kidney correlated with the biochemical findings. Chrysin offers protection against free radical-mediated oxidative stress in rats with ethanol-induced liver injury.
Liao, Lin Yu; Chung, Wei Sheng; Chen, Kuei Min
2017-01-01
The aim of this study was to pilot test the effects of regular senior elastic band exercises on the generation of free radicals and antioxidant enzyme activities in older adults. Long-term regular exercises have positive health promotion outcomes. On the contrary, high-intensity, high-speed and short-term exercises in older adults may increase free radicals and cause chronic disease and ageing effect. A prospective randomized controlled pilot study. Data were collected during 2012. Twenty-five older adults were recruited from a community care centre, southern Taiwan and were randomly assigned to either an experimental or control group. Twenty-two participants completed the study: experimental group (n = 10) and control group (n = 12). The experimental group performed 6-month senior elastic band exercises while the control group kept regular daily routines. Both groups received blood tests (thiobarbituric acid-reacting substances and glutathione peroxidase) 30 minutes before the study began and 1 hour after the final intervention treatment. At the end of the 6-month senior elastic band exercises, no statistically significant differences in thiobarbituric acid-reacting substances and glutathione peroxidase values between the experimental and control groups. No significant differences existed in both thiobarbituric acid-reacting substances and glutathione peroxidase values before and after the 6-month senior elastic band exercises either. Regular senior elastic band exercises did not increase the generation of free radicals and antioxidant enzyme activities. Senior elastic band exercises have the potential to be promoted among older adults in the community as an exercise option without adverse effects on free radicals and have potential for mitigating ageing and increasing disease control. © 2016 John Wiley & Sons Ltd.
Rúa, Megan A.; Moore, Becky; Hergott, Nicole; Van, Lily; Jackson, Colin R.; Hoeksema, Jason D.
2015-01-01
Extracellular enzymes degrade macromolecules into soluble substrates and are important for nutrient cycling in soils, where microorganisms, such as ectomycorrhizal (ECM) fungi, produce these enzymes to obtain nutrients. Ecotones between forests and fields represent intriguing arenas for examining the effect of the environment on ECM community structure and enzyme activity because tree maturity, ECM composition, and environmental variables may all be changing simultaneously. We studied the composition and enzymatic activity of ECM associated with loblolly pine (Pinus taeda) across an ecotone between a forest where P. taeda is established and an old field where P. taeda saplings had been growing for <5 years. ECM community and environmental characteristics influenced enzyme activity in the field, indicating that controls on enzyme activity may be intricately linked to the ECM community, but this was not true in the forest. Members of the Russulaceae were associated with increased phenol oxidase activity and decreased peroxidase activity in the field. Members of the Atheliaceae were particularly susceptible to changes in their abiotic environment, but this did not mediate differences in enzyme activity. These results emphasize the complex nature of factors that dictate the distribution of ECM and activity of their enzymes across a habitat boundary. PMID:29376908
Zhang, Tingting; Lu, Qianqian; Su, Chunlei; Yang, Yaru; Hu, Dan; Xu, Qinsong
2017-09-01
Mercury uptake and its effects on physiology, biochemistry and genomic stability were investigated in Lemna minor after 2 and 6d of exposure to 0-30μM Hg. The accumulation of Hg increased in a concentration- and duration-dependent manner, and was positively correlated with the leaf damage. Oxidative stress after Hg exposure was evidenced in L. minor by a significant decrease in photosynthetic pigments, an increase in malondialdehyde and lipoxygenase activities (total enzyme activity and isoenzymes activity). Fronds of L. minor exposed to Hg showed an induction of peroxidase, catalase, and ascorbate peroxidase activities (total enzyme activity and some isoenzymes activities). Exposure of L. minor to Hg reduced the activity (total enzyme activity and some isoenzymes activities) of glutathione reductase, and superoxide dismutase. Exposure to Hg produced a transient increase in the content of glutathione and ascorbic acid. The content of dehydroascorbate and oxidized glutathione in L. minor were high during the entire exposure period. Exposure of L. minor to Hg also caused the accumulation of proline and soluble sugars. The amplification of new bands and the absence of normal DNA amplicons in treated plants in the random amplified polymorphic DNA (RAPD) profile indicated that genomic template stability (GTS) was affected by Hg treatment. The accumulation of Hsp70 indicated the occurrence of a heat shock response at all Hg concentrations. These results suggest that L. minor plants were able to cope with Hg toxicity through the activation of various mechanisms involving enzymatic and non-enzymatic antioxidants, up-regulation of proline, and induction of Hsp70. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Zhiwen; Wu, Hong J.; Zhang, Youyu
Ferritins are nano-scale globular protein cages encapsulating a ferric core. They widely exist in animals, plants, and microbes, playing indispensable roles in iron homeostasis. Interestingly, our study clearly demonstrates that ferritin has an enzyme-mimic activity derived from its ferric nano-core, but not the protein cage. Further study revealed that the mimic-enzyme activity of ferritin is more thermally stable and pH-tolerant compared with horseradish peroxidase. Considering the abundance of ferritin in numerous organisms, this finding may indicate a new role of ferritin in antioxidant and detoxification metabolisms. In addition, as a natural protein-caged nanoparticle with an enzyme-mimic activity, ferritin is readilymore » conjugated with biomolecules to construct nano-biosensors, thus holds promising potential for facile and biocompatible labeling for sensitive and robust bioassays in biomedical applications.« less
Peroxidase activity as an indicator of exposure of wetland seedlings to metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, H.D.; Klaine, S.J.
1995-12-31
The enzyme peroxidase has been found to increase quantitatively in several aquatic plant species in response to increasing exposure to various contaminants. In this study, a number of wetland species are tested for their usefulness as bioindicators of metal exposure using the peroxidase assay. Woody species tested include Liquidambar styraciflua (sweetgum), Fraxinus pennsylvanica (green ash), and Cephalanthus occidentalis (buttonbush), while herbaceous species include Saururus cernuus (lizard`s tail) and Sparganium americanum (bur-reed). The assay has been optimized for all of these species. In all cases the pH optimum has been found to be either 5.5 or 6.0 and the substrate optimummore » is 2.8 or 1.4mM hydrogen peroxide. There is considerable variation in baseline peroxidase activity among the species when tested under their optimal assay conditions. These species are being dosed with copper, nickel, and cadmium in order to determine whether a response elicited. Seedlings will be dosed using both petri dish culture conditions and test tubes filled with vermiculite and sand combinations. The peroxidase response will be compared to germination and root elongation endpoints. Lettuce (Lactuca saliva) and radish (Raphanus sativus) are being tested alongside the wetland species as reference organisms for which background data is available. The wetland species tested in the present study have rarely if ever been used in toxicological studies.« less
Petriccione, Milena; Mastrobuoni, Francesco; Pasquariello, Maria Silvia; Zampella, Luigi; Nobis, Elvira; Capriolo, Giuseppe; Scortichini, Marco
2015-01-01
The effectiveness of chitosan fruit coating to delay the qualitative and nutraceutical traits of three strawberry cultivars, namely “Candonga”, “Jonica” and “Sabrina”, as well as the effects of chitosan on antioxidant enzymes were evaluated. The fruits were coated with 1% and 2% chitosan solution and stored at 2 °C for nine days. Samples were taken every three days. Physico-chemical (weight loss, soluble solid content and titratable acidity) and nutraceutical (total polyphenol, anthocyanin, flavonoid, ascorbic acid content and antioxidant capacity) properties along with the enzymatic activity (catalase (CAT), ascorbate peroxidase (APX), polyphenol oxidase (PPO), guaiacol peroxidase (GPX) and lipoxygenase (LOX)) were evaluated. Chitosan treatment significantly reduced water loss and delayed the qualitative changes in color, titratable acidity and ascorbic acid content in dose- and cultivar-dependent manners. Additionally, changes in the total polyphenol, anthocyanin and flavonoid contents and the antioxidant capacity of chitosan-coated strawberry fruits were delayed. Chitosan coating enhanced the activity of some antioxidant enzymes, preventing flesh browning and reducing membrane damage. A global view of the responses of the three strawberry cultivars to chitosan coating and storage temperature was obtained using principal component analysis. Chitosan-coated fruit exhibited a slower rate of deterioration, compared to uncoated fruit in all tested cultivars. PMID:28231220
Myburgh, Caitlynd; Huisman, Hugo W; Mels, Catharina M C
2018-04-01
Oxidative stress has been implicated in the development of hypertension, arterial stiffness and atherosclerosis. Optimal functioning of the enzymatic antioxidant system is central to prevent increased oxidative stress and its consequences. We aimed to investigate the relationships of ambulatory blood pressure and carotid intima-media thickness with enzyme activities of the glutathione cycle in 396 young, black and white South Africans of the African-PREDICT study. Ambulatory blood pressure and carotid intima-media thickness were measured and glutathione peroxidase and glutathione reductase activities were analyzed. Black participants had higher reactive oxygen species (men: p = 0.019; women: borderline p = 0.064) and total glutathione (both p < 0.001), but lower glutathione peroxidase activity and total antioxidant status (all p < 0.001). In black men, ambulatory pulse pressure was negatively associated with glutathione peroxidase activity (R 2 = 0.19; β = -0.25; p = 0.06). Black and white women displayed positive associations of ambulatory systolic blood pressure (black: R 2 = 0.25; β = 0.21; p = 0.048; white: R 2 = 0.44; β = 0.18; p = 0.016) with glutathione reductase activity, whereas white men displayed a positive association of ambulatory pulse pressure with glutathione reductase activity (R 2 = 0.25; β = 0.29; p = 0.01). The lower glutathione peroxidase activity and total antioxidant status, the higher reactive oxygen species, as well as the negative association between ambulatory pulse pressure and glutathione peroxidase activity in the black men suggest that oxidative stress may be associated with early vascular changes in this group. In the other three groups, the positive associations of blood pressure with glutathione reductase activity suggest a possible role for adequate glutathione reductase activity in preventing or delaying the development of hypertension.
Mishra, Vartika; Jana, Asim K
2017-09-01
Sweet sorghum (Sorghum sp.) has high biomass yield. Hydrolysis of lignocellulosic sweet sorghum bagasse (SSB) to fermentable sugar could be useful for manufacture of biofuel or other fermentation products. Pretreatment of lignocellulosic biomass to degrade lignin before enzymatic hydrolysis is a key step. Fungal pretreatment of SSB with combined CuSO 4 -gallic acid supplements in solid-state fermentation (SSF) to achieve higher lignin degradation, selectivity value (SV), and enzymatic hydrolysis to sugar was studied. Coriolus versicolor was selected due to high activities of ligninolytic enzymes laccase, lignin peroxidase (LiP), manganese peroxidase (MnP), polyphenol oxidase (PPO), and arylalcohol oxidase (AAO) and low activities of cellulolytic enzymes CMCase, FPase, and β-glucosidase with high lignin degradation and SV in 20 days. CuSO 4 /gallic acid increased the activities of ligninolytic enzymes resulting in enhanced lignin degradations and SVs. Cumulative/synergistic effect of combined supplements further increased the activities of laccase, LiP, MnP, PPO, and AAO by 7.6, 14.6, 2.67, 2.06, and 2.15-folds, respectively (than control), resulting in highest lignin degradation 31.1 ± 1.4% w/w (1.56-fold) and SV 2.33 (3.58-fold). Enzymatic hydrolysis of pretreated SSB yielded higher (~2.2 times) fermentable sugar. The study showed combined supplements can improve fungal pretreatment of lignocellulosic biomass. XRD, SEM, FTIR, and TGA/DTG of SSB confirmed the results.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Wang, Yuzhen; Qi, Wenjin; Song, Yujun
2016-06-28
Platinum and carbon dot hybrid nanomaterials are prepared for visualized detection of phosphoproteins without the need for antibodies or enzymes. This new strategy can be used for colorimetric detection of phosphoproteins induced by protein kinase as well as protein phosphorylation sites on cell membranes.
Yin, Juxin; Wang, Bingmei; Zhu, Xuejun; Qu, Xiaonan; Huang, Yi; Lv, Shaowu; Mu, Ying; Luo, Guimin
2017-09-08
Glutathione peroxidase (GPx) is an antioxidant protein containing selenium. Owing to the limitations of native GPx, considerable efforts have been made to develop GPx mimics. Here, a short 5-mer peptides (5P) was synthesized and characterized using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Enzyme coupled assays were used to evaluate GPx activity. The cell viability and apoptosis of H22 cells were tested, and mice bearing H22 cell-derived tumors were used to determine the effects of 5P on tumor inhibition. In comparison with other enzyme models, 5P provided a suitable substrate with proper catalytic site positions, resulting in enhanced catalytic activity. In our mouse model, 5P showed excellent inhibition of tumor growth and improved immunity. In summary, our findings demonstrated the design and synthesis of the small 5P molecule, which inhibited tumor growth and improved immunity. Notably, 5P could inhibit tumor growth without affecting normal growth. Based on these advantages, the novel mimic may have several clinical applications.
Masood, Amjad; Zeeshan, M; Abraham, G
2008-06-01
Effect of ultravilolet-B (0.4 Wm(-2)) irradiation on growth, flavonoid content, lipid peroxidation, proline accumulation and activities of superoxide dismutase and peroxidase was comparatively analysed in Azolla pinnata and Azolla filiculoides. Growth measured as increment in dry weight reduced considerably due to all UV-B treatments. However, the reduction was found to be severe in A. filiculoides as compared to A. pinnata. The level of UV-absorbing compound flavonoids increased significantly in A. pinnata plants whereas only a slight increase in the flavonoid content was observed in A. filiculoides. UV-B exposure led to enhanced production of malondialdehyde (MDA) and electrolyte leakage in A. filiculoides than A. pinnata. Proline accumulation also showed a similar trend. Marked differences in the activity of antioxidant enzymes such as superoxide dismutase (SOD) and peroxidase (POD) was noticed in both the plants exposed to UV-B. Our comparative studies indicate A. pinnata to be better tolerant to UV-B as compared with A. filiculoides which appears to be sensitive.
Wang, Wenya; Zhang, Chao; Sun, Xinxiao; Su, Sisi; Li, Qiang; Linhardt, Robert J
2017-06-01
Lignin is the second most abundant bio-resource in nature. It is increasingly important to convert lignin into high value-added chemicals to accelerate the development of the lignocellulose biorefinery. Over the past several decades, physical and chemical methods have been widely explored to degrade lignin and convert it into valuable chemicals. Unfortunately, these developments have lagged because of several difficulties, of which high energy consumption and non-specific cleavage of chemical bonds in lignin remain the greatest challenges. A large number of enzymes have been discovered for lignin degradation and these are classified as radical lignolytic enzymes and non-radical lignolytic enzymes. Radical lignolytic enzymes, including laccases, lignin peroxidases, manganese peroxidases and versatile peroxidases, are radical-based bio-catalysts, which degrade lignins through non-specific cleavage of chemical bonds but can also catalyze the radical-based re-polymerization of lignin fragments. In contrast, non-radical lignolytic enzymes selectively cleave chemical bonds in lignin and lignin model compounds and, thus, show promise for use in the preparation of high value-added chemicals. In this mini-review, recent developments on non-radical lignolytic enzymes are discussed. These include recently discovered non-radical lignolytic enzymes, their metabolic pathways for lignin conversion, their recent application in the lignin biorefinery, and the combination of bio-catalysts with physical/chemical methods for industrial development of the lignin refinery.
Zhang, Liyan; Li, Shuai; Dong, Minmin; Jiang, Yao; Li, Ru; Zhang, Shuo; Lv, Xiaoxia; Chen, Lijun; Wang, Hua
2017-01-15
A facile and efficient enzymatic reconstitution methodology has been proposed for high-catalysis peroxidase mimics by remolding the redox active centers of heme-containing proteins with the in-site biomineralized gold using hemoglobin (Hb) as a model. Catalytic hemin (Hem) was extracted from the active centers of Hb for the gold biomineralization and then reconstituted into apoHb to yield the Hem-Au@apoHb nanocomposites showing dramatically improved intrinsic catalysis and electrocatalysis over natural Hb and Hem. The biomineralized gold, on the one hand, would act as "nanowires" to promote the electron transferring of the nanocomposites. On the other hand, it would create a reactivity pathway to pre-organize and accumulate more substrates towards the active sites of the peroxidase mimics. Steady-state kinetics studies indicate that Hem-Au@apoHb could present much higher substrate affinity (lower Michaelis constants) and intrinsic catalysis even than some natural peroxidases. Moreover, the application feasibility of the prepared artificial enzymes was demonstrated by colorimetric assays and direct electrocatalysis for H 2 O 2 sensing, showing a detection limitation low as 0.45μM. Importantly, such a catalysis active-center reconstitution protocol may circumvent the substantial improvement of the intrinsic catalysis and electrocatalysis of diverse heme-containing proteins or enyzmes toward the extensive applications in the chemical, enviromental, and biomedical catalysis fields. Copyright © 2016 Elsevier B.V. All rights reserved.
Gomes, Melissa M; Coimbra, Janine B; Clara, Renan O; Dörr, Felipe A; Moreno, Ana Carolina R; Chagas, Jair R; Tufik, Sérgio; Pinto, Ernani; Catalani, Luiz H; Campa, Ana
2014-04-01
Tryptophan (TRP) is essential for many physiological processes, and its metabolism changes in some diseases such as infection and cancer. The most studied aspects of TRP metabolism are the kynurenine and serotonin pathways. A minor metabolic route, tryptamine and N,N-dimethyltryptamine (DMT) biosynthesis, has received far less attention, probably because of the very low amounts of these compounds detected only in some tissues, which has led them to be collectively considered as trace amines. In a previous study, we showed a metabolic interrelationship for TRP in melanoma cell lines. Here, we identified DMT and N,N-dimethyl-N-formyl-kynuramine (DMFK) in the supernatant of cultured SK-Mel-147 cells. Furthermore, when we added DMT to the cell culture, we found hydroxy-DMT (OH-DMT) and indole acetic acid (IAA) in the cell supernatant at 24 h. We found that SK-Mel-147 cells expressed mRNA for myeloperoxidase (MPO) and also had peroxidase activity. We further found that DMT oxidation was catalyzed by peroxidases. DMT oxidation by horseradish peroxidase, H2O2 and MPO from PMA-activated neutrophils produced DMFK, N,N-dimethyl-kynuramine (DMK) and OH-DMT. Oxidation of DMT by peroxidases apparently uses the common peroxidase cycle involving the native enzyme, compound I and compound II. In conclusion, this study describes a possible alternative metabolic pathway for DMT involving peroxidases that has not previously been described in humans and identifies DMT and metabolites in a melanoma cell line. The extension of these findings to other cell types and the biological effects of DMT and its metabolites on cell proliferation and function are key questions for future studies. Copyright © 2014 Elsevier Inc. All rights reserved.
Du, Jing; Huang, Xiao; Sun, Shengfang; Wang, Chunxue; Lebioda, Lukasz; Dawson, John H
2011-09-27
Dehaloperoxidase (DHP), discovered in the marine terebellid polychaete Amphitrite ornata, is the first heme-containing globin with a peroxidase activity. The sequence and crystal structure of DHP argue that it evolved from an ancient O(2) transport and storage globin. Thus, DHP retains an oxygen carrier function but also has the ability to degrade halophenol toxicants in its living environment. Sperm whale myoglobin (Mb) in the ferric state has a peroxidase activity ∼10 times lower than that of DHP. The catalytic activity enhancement observed in DHP appears to have been generated mainly by subtle changes in the positions of the proximal and distal histidine residues that appeared during DHP evolution. Herein, we report investigations into the mechanism of action of DHP derived from examination of "peroxidase-like" Mb mutants and "Mb-like" DHP mutants. The dehalogenation ability of wild-type Mb is augmented in the peroxidase-like Mb mutants (F43H/H64L, G65T, and G65I Mb) but attenuated in the Mb-like T56G DHP variant. X-ray crystallographic data show that the distal His residues in G65T Mb and G65I are positioned ∼0.3 and ∼0.8 Å, respectively, farther from the heme iron compared to that in the wild-type protein. The H93K/T95H double mutant Mb with the proximal His shifted to the "DHP-like" position has an increased peroxidase activity. In addition, a better dehaloperoxidase (M86E DHP) was generated by introducing a negative charge near His89 to enhance the imidazolate character of the proximal His. Finally, only minimal differences in dehalogenation activities are seen among the exogenous ligand-free DHP, the acetate-bound DHP, and the distal site blocker L100F DHP mutant. Thus, we conclude that binding of halophenols in the internal binding site (i.e., distal cavity) is not essential for catalysis. This work provides a foundation for a new structure-function paradigm for peroxidases and for the molecular evolution of the dual-function enzyme DHP.
2013-01-01
Lactobacillus panis strain PM1 is an obligatory heterofermentative and aerotolerant microorganism that also produces 1,3-propanediol from glycerol. This study investigated the metabolic responses of L. panis PM1 to oxidative stress under aerobic conditions. Growth under aerobic culture triggered an early entrance of L. panis PM1 into the stationary phase along with marked changes in end-product profiles. A ten-fold higher concentration of hydrogen peroxide was accumulated during aerobic culture compared to microaerobic culture. This H2O2 level was sufficient for the complete inhibition of L. panis PM1 cell growth, along with a significant reduction in end-products typically found during anaerobic growth. In silico analysis revealed that L. panis possessed two genes for NADH oxidase and NADH peroxidase, but their expression levels were not significantly affected by the presence of oxygen. Specific activities for these two enzymes were observed in crude extracts from L. panis PM1. Enzyme assays demonstrated that the majority of the H2O2 in the culture media was the product of NADH: H2O2 oxidase which was constitutively-active under both aerobic and microaerobic conditions; whereas, NADH peroxidase was positively-activated by the presence of oxygen and had a long induction time in contrast to NADH oxidase. These observations indicated that a coupled NADH oxidase - NADH peroxidase system was the main oxidative stress resistance mechanism in L. panis PM1, and was regulated by oxygen availability. Under aerobic conditions, NADH is mainly reoxidized by the NADH oxidase - peroxidase system rather than through the production of ethanol (or 1,3-propanediol or succinic acid production if glycerol or citric acid is available). This system helped L. panis PM1 directly use oxygen in its energy metabolism by producing extra ATP in contrast to homofermentative lactobacilli. PMID:23369580
Hachicha Hbaieb, Rim; Kotti, Faten; García-Rodríguez, Rosa; Gargouri, Mohamed; Sanz, Carlos; Pérez, Ana G
2015-05-01
The ability of olive endogenous enzymes β-glucosidase, polyphenol oxidase (PPO) and peroxidase (POX), to determine the phenolic profile of virgin olive oil was investigated. Olives used for oil production were stored for one month at 20 °C and 4 °C and their phenolic content and enzymatic activities were compared to those of ripening olive fruits. Phenolic and volatile profiles of the corresponding oils were also analysed. Oils obtained from fruits stored at 4 °C show similar characteristics to that of freshly harvested fruits. However, the oils obtained from fruits stored at 20 °C presented the lowest phenolic content. Concerning the enzymatic activities, results show that the β-glucosidase enzyme is the key enzyme responsible for the determination of virgin olive oil phenolic profile as the decrease in this enzyme activity after 3 weeks of storage at 20 °C was parallel to a dramatic decrease in the phenolic content of the oils. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cryoprotective ability of betaine-type metabolite analogs during freezing denaturation of enzymes.
Nakagawa, Yuichi; Sota, Masahiro; Koumoto, Kazuya
2015-08-01
To evaluate an analog library of betaine-type cellular metabolites, which are naturally found in polar fish for survival in subzero temperatures, for preventing denaturation of enzymes during freezing. Comparison of the cryoprotective ability of reported cryoprotectants, such as dimethylsulfoxide, glycerol, ectoine, hydroxyectoine, and trehalose, with betaine-type analogs using α-glucosidase revealed that analogs introducing C3-C6 alkyl chains into an ammonium cation retained 20 % higher activity than the control cryoprotectants at the same concentration. In particular, the analog possessing triplicate n-butyl chains showed a profound effect. It allowed retention of enzyme activity to 95 % even after 100 freeze-thaw cycles, while addition of the control cryoprotectants decreased the activity to 10-20 %. The cryoprotective ability of betaine-type analogs can be applied not only to α-glucosidase but also other enzymes such as β-glucosidase, alkaline phosphatase, lactose dehydrogenase, sulfatase, and horseradish peroxidase. Synthetic betaine-type metabolite analogs possess practicable cryoprotective ability for various enzymes, and are considerably superior to previously reported cryoprotectants.
De Zoysa, Mahanama; Whang, Ilson; Nikapitiya, Chamilani; Oh, Chulhong; Choi, Cheol Young; Lee, Jehee
2011-07-01
Diverse antioxidant enzymes are essential for marine organisms to overcome oxidative stress as well as for the fine-tuning of immune reactions through activating different signal transduction pathways. This study describes the transcriptional analysis of antioxidant enzymes of disk abalone by challenging with bacteria (Vibrio alginolyticus, Vibrio parahemolyticus, and Listeria monocytogenes) and viral hemorrhagic septicemia virus (VHSV). Upon bacteria and VHSV challenge, Manganese superoxide dismutase (MnSOD), Copper, Zinc superoxide dismutase (CuZnSOD), catalase, thioredoxin peroxidase (TPx), Selenium-dependent glutathione peroxidase (SeGPx), and thioredoxin-2 (TRx-2) expression levels were altered in gills, and hemocytes at different magnitudes. In gills, only MnSOD, catalase, and SeGPx genes were completely upregulated by post-challenge of bacterial and VHSV. Among them, SeGPx demonstrated strong upregulation by 16-fold (bacteria) and 2-fold (VHSV) in gills, and 5-fold (bacteria) and 3.0-fold (VHSV) in hemocytes. None of the genes examined were downregulated (in gills and hemocytes) by bacteria challenge even though CuZnSOD and TPx showed downregulation (completely) in hemocytes by VHSV. In general, abalone hemocytes had lower potential to induce antioxidant enzyme transcripts upon bacteria and VHSV challenge than gills. Based upon these results, we suggest that abalones induce oxidative stress in tissues during the bacteria and VHSV challenge, and the identified response of antioxidant enzymes could be supported for maintaining a low-level of reactive oxygen species (ROS) that may serve as a signal for activating immune reactions against pathogenic conditions. Copyright © 2011 Elsevier Ltd. All rights reserved.
Antioxidant status of interval-trained athletes in various sports.
Dékány, M; Nemeskéri, V; Györe, I; Harbula, I; Malomsoki, J; Pucsok, J
2006-02-01
Muscular exercise results in an increased production of free radicals and other forms of reactive oxygen species (ROS). Further, developing evidence implicates cytotoxins as an underlying etiology of exercise-induced stimuli in muscle redox status, which could result in muscle fatigue and/or injury. Two major classes of endogenous protective mechanisms (enzymatic and nonenzymatic antioxidants) work together to reduce the harmful effects of oxidants in the cell. This study examined the effects of acute physical exercise on the enzymatic antioxidant systems of different athletes and comparison was made to the mechanism of action of three main antioxidant enzymes in the blood. Handball players (n = 6), water-polo players (n = 20), hockey players (n = 22), basketball players (n = 24), and a sedentary control group (n = 10 female and n = 9 male) served as the subjects of this study. The athletes were divided into two groups according to the observed changes of activity of superoxide dismutase enzyme. The antioxidant enzyme systems were characterized by catalase (CAT), glutathione-peroxidase (GPX), and superoxide-dismutase (SOD) and measured by spectrophotometry. An important finding in the present investigation is that when the activities of SOD increased, the activities of GPX and CAT increased also and this finding related to the physical status of interval-trained athletes. Positive correlation between SOD and GPX activities was observed (r = 0.38 females, r = 0.56 males; p < 0.05). We have observed that the changes in the primary antioxidant enzyme systems of athletes are sport specific, and different from control subjects. Presumably, with interval-trained athletes, hydrogen-peroxide is significantly eliminated by glutathione-peroxidase. From these results it can be concluded that the blood redox status should be taken into consideration when establishing a fitness level for individual athletes.
Gao, Hui; Chai, HongKang; Cheng, Ni; Cao, Wei
2017-02-15
Fresh-cut lotus root slices were treated with 80nM 24-epibrassinolide (EBR) and then stored at 4°C for 8days to investigate the effects on cut surface browning. The results showed that EBR treatment reduced cut surface browning in lotus root slices and alleviated membrane lipid peroxidation as reflected by low malondialdehyde content and lipoxygenase activity. EBR treatment inhibited the activity of phenylalanine ammonia lyase and polyphenol oxidase, and subsequently decreased phenolics accumulation and soluble quniones formation. The treatment also stimulated the activity of peroxidase, catalase and ascorbate peroxidase and delayed the loss of ascorbic acid, which would help prevent membrane lipid peroxidation, as a consequence, reducing decompartmentation of enzymes and substrates causing enzymatic browning. These results indicate that EBR treatment is a promising attempt to control browning at cut surface of fresh-cut lotus root slices. Copyright © 2016 Elsevier Ltd. All rights reserved.
Perazzini, Raffaella; Saladino, Raffaele; Guazzaroni, Melissa; Crestini, Claudia
2011-01-01
Horseradish peroxidase (HRP) was chemically immobilised onto alumina particles and coated by polyelectrolytes layers, using the layer-by-layer technique. The reactivity of the immobilised enzyme was studied in the oxidative functionalisation of softwood milled wood and residual kraft lignins and found higher than the free enzyme. In order to investigate the chemical modifications in the lignin structure, quantitative (31)P NMR was used. The immobilised HRP showed a higher reactivity with respect to the native enzyme yielding extensive depolymerisation of lignin. Copyright © 2010 Elsevier Ltd. All rights reserved.
Hildén, Kristiina; Mäkelä, Miia R; Steffen, Kari T; Hofrichter, Martin; Hatakka, Annele; Archer, David B; Lundell, Taina K
2014-11-01
Agrocybe praecox is a litter-decomposing Basidiomycota species of the order Agaricales, and is frequently found in forests and open woodlands. A. praecox grows in leaf-litter and the upper soil and is able to colonize bark mulch and wood chips. It produces extracellular manganese peroxidase (MnP) activities and mineralizes synthetic lignin. In this study, the A. praecox MnP1 isozyme was purified, cloned and enzymatically characterized. The enzyme catalysed the oxidation of Mn(2+) to Mn(3+), which is the specific reaction for manganese-dependent class II heme-peroxidases, in the presence of malonate as chelator with an activity maximum at pH 4.5; detectable activity was observed even at pH 7.0. The coding sequence of the mnp1 gene demonstrates a short-type of MnP protein with a slightly modified Mn(2+) binding site. Thus, A. praecox MnP1 may represent a novel group of atypical short-MnP enzymes. In lignocellulose-containing cultures composed of cereal bran or forest litter, transcription of mnp1 gene was followed by quantitative real-time RT-PCR. On spruce needle litter, mnp1 expression was more abundant than on leaf litter after three weeks cultivation. However, the expression was constitutive in wheat and rye bran cultures. Our data show that the atypical MnP of A. praecox is able to catalyse Mn(2+) oxidation, which suggests its involvement in lignocellulose decay by this litter-decomposer. Copyright © 2014 Elsevier Inc. All rights reserved.
Kudalkar, Shalley N; Njuma, Olive J; Li, Yongjiang; Muldowney, Michelle; Fuanta, N Rene; Goodwin, Douglas C
2015-03-03
Catalase-peroxidases (KatGs), the only catalase-active members of their superfamily, all possess a 35-residue interhelical loop called large loop 2 (LL2). It is essential for catalase activity, but little is known about its contribution to KatG function. LL2 shows weak sequence conservation; however, its length is nearly identical across KatGs, and its apex invariably makes contact with the KatG-unique C-terminal domain. We used site-directed and deletion mutagenesis to interrogate the role of LL2 and its interaction with the C-terminal domain in KatG structure and catalysis. Single and double substitutions of the LL2 apex had little impact on the active site heme [by magnetic circular dichroism or electron paramagnetic resonance (EPR)] and activity (catalase or peroxidase). Conversely, deletion of a single amino acid from the LL2 apex reduced catalase activity by 80%. Deletion of two or more apex amino acids or all of LL2 diminished catalase activity by 300-fold. Peroxide-dependent but not electron donor-dependent kcat/KM values for deletion variant peroxidase activity were reduced 20-200-fold, and kon for cyanide binding diminished by 3 orders of magnitude. EPR spectra for deletion variants were all consistent with an increase in the level of pentacoordinate high-spin heme at the expense of hexacoordinate high-spin states. Together, these data suggest a shift in the distribution of active site waters, altering the reactivity of the ferric state, toward, among other things, compound I formation. These results identify the importance of LL2 length conservation for maintaining an intersubunit interaction that is essential for an active site water distribution that facilitates KatG catalytic activity.
Do heavy metals and metalloids influence the detoxification of organic xenobiotics in plants?
Schröder, Peter; Lyubenova, Lyudmila; Huber, Christian
2009-11-01
Mixed pollution with trace elements and organic industrial compounds is characteristic for many spill areas and dumping sites. The danger for the environment and human health from such sites is large, and sustainable remediation strategies are urgently needed. Phytoremediation seems to be a cheap and environmentally sound option for the removal of unwanted compounds, and the hyperaccumulation of trace elements and toxic metals is seemingly independent from the metabolism of organic xenobiotics. However, stress reactions, ROS formation and depletion of antioxidants will also cause alterations in xenobiotic detoxification. Here, we investigate the capability of plants to detoxify chlorophenols via glutathione conjugation in a mixed pollution situation. Typha latifolia and Phragmites australis plants for the present study were grown under greenhouse conditions in experimental ponds. A Picea abies L. suspension culture was grown in a growth chamber. Cadmium sulphate, sodium arsenate and lead chloride in concentrations from 10 to 500 microM were administered to plants. Enzymes of interest for the present study were: glutathione transferase (GST), glutathione reductase, ascorbate peroxidase and peroxidase. Measurements were performed according to published methods. GST spectrophotometric assays included the model substrates CDNB, DCNB, NBC, NBoC and the herbicide Fluorodifen. Heavy metals lead to visible stress symptoms in higher plants. Besides one long-term experiment of 72 days duration, the present study shows time and concentration-dependent plant alterations already after 24 and 72 h Cd incubation. P. abies spruce cell cultures react to CdSO(4) and Na(2)HAsO(4) with an oxidative burst, similar to that observed after pathogen attack or elicitor treatment. Cd application resulted in a reduction in GSH and GSSG contents. When a heavy metal mixture containing Na(2)HAsO(4), CdSO(4) and PbCl(2) was applied to cultures, both GSH and GSSG levels declined. Incubation with 80 microM arsenic alone doubled GSSG values. Based on these results, further experiments were performed in whole plants of cattail and reed, using cadmium in Phragmites and cadmium and arsenic in Typha as inducers of stress. In Phragmites australis, GST activities for CDNB and DCNB were significantly reduced after short-term Cd exposure (24 h). In the same samples, all antioxidant enzymes increased with rising heavy metal concentrations. Typha latifolia rhizome incubation with Cd and As leads to an increase in glutathione reductase and total peroxidase activity and to a decrease in ascorbate peroxidase activity. Measurements of the same enzymes in leaves of the same plants show increased GR activities, but no change in peroxidases. GST conjugation for CDNB was depressed in both cattail rhizomes and leaves treated with Cd. After As application increased, DCNB enzyme activities were detected. T. latifolia and P. australis are powerful species for phytoremediation because they penetrate a large volume of soil with their extensive root and rhizome systems. However, an effective remediation process will depend on active detoxifying enzymes, and also on the availability of conjugation partners, e.g. glutathione and its analogues. Species-specific differences seem to exist between the regulations of primary defence enzymes like SOD, catalase, peroxidases, whereas others prefer to induce the glutathione-dependent enzymes. As long as the pollutant mix encountered is simple and dominated by heavy metals, plant defence might be sufficient. When pollution plumes contain heavy metals and organic xenobiotics at the same time, this means that part of the detoxification capacity, at least of glutathione-conjugating reactions, is withdrawn from the heavy metal front to serve other purposes. In fact, glutathione S-transferases show strong reactions in stressed plants or in the presence of heavy metals. The spruce cell culture was a perfect model system to study short-term responses on heavy metal impact. Overall, and on the canopy level, this inhibitory effect might result in a lower detoxification capacity for organic pollutants and thus interfere with phytoremediation. We present evidence that pollution with heavy metals will interfere with both the oxidative stress defence in plants, and with their ability to conjugate organic xenobiotics. Despite plant-species-dependent differences, the general reactions seem to include oxidative stress and an induction of antioxidative enzymes. Several processes seem to depend on direct binding of heavy metals to enzyme proteins, but effects on transcription are also observed. Induction of xenobiotic metabolism will be obtained at high heavy metal concentrations, when plant stress is elevated. Plants for phytoremediation of complex pollution mixtures have to be selected according to three major issues: uptake/accumulation capacity, antioxidative stress management, and detoxification/binding properties for both the trace elements and the organic xenobiotics. By way of this, it might be possible to speed up the desired remediation process and/or to obtain the desired end products. And, amongst the end products, emphasis should be laid on industrial building materials, biomass for insulation or biogas production, but not for feed and fodder. Each of these attempts would increase the chances for publicly accepted use of phytoremediation and help to cure the environment.
Anh, Dau Hung; Ullrich, René; Benndorf, Dirk; Svatoś, Aleś; Muck, Alexander; Hofrichter, Martin
2007-01-01
Coprophilous and litter-decomposing species (26 strains) of the genus Coprinus were screened for peroxidase activities by using selective agar plate tests and complex media based on soybean meal. Two species, Coprinus radians and C. verticillatus, were found to produce peroxidases, which oxidized aryl alcohols to the corresponding aldehydes at pH 7 (a reaction that is typical for heme-thiolate haloperoxidases). The peroxidase of Coprinus radians was purified to homogeneity and characterized. Three fractions of the enzyme, CrP I, CrP II, and CrP III, with molecular masses of 43 to 45 kDa as well as isoelectric points between 3.8 and 4.2, were identified after purification by anion-exchange and size exclusion chromatography. The optimum pH of the major fraction (CrP II) for the oxidation of aryl alcohols was around 7, and an H2O2 concentration of 0.7 mM was most suitable regarding enzyme activity and stability. The apparent Km values for ABTS [2,2′-azinobis(3-ethylbenzthiazolinesulfonic acid)], 2,6-dimethoxyphenol, benzyl alcohol, veratryl alcohol, and H2O2 were 49, 342, 635, 88, and 1,201 μM, respectively. The N terminus of CrP II showed 29% and 19% sequence identity to Agrocybe aegerita peroxidase (AaP) and chloroperoxidase, respectively. The UV-visible spectrum of CrP II was highly similar to that of resting-state cytochrome P450 enzymes, with the Soret band at 422 nm and additional maxima at 359, 542, and 571 nm. The reduced carbon monoxide complex showed an absorption maximum at 446 nm, which is characteristic of heme-thiolate proteins. CrP brominated phenol to 2- and 4-bromophenols and selectively hydroxylated naphthalene to 1-naphthol. Hence, after AaP, CrP is the second extracellular haloperoxidase-peroxygenase described so far. The ability to extracellularly hydroxylate aromatic compounds seems to be the key catalytic property of CrP and may be of general significance for the biotransformation of poorly available aromatic substances, such as lignin, humus, and organopollutants in soil litter and dung environments. Furthermore, aromatic peroxygenation is a promising target of biotechnological studies. PMID:17601809
Anh, Dau Hung; Ullrich, René; Benndorf, Dirk; Svatos, Ales; Muck, Alexander; Hofrichter, Martin
2007-09-01
Coprophilous and litter-decomposing species (26 strains) of the genus Coprinus were screened for peroxidase activities by using selective agar plate tests and complex media based on soybean meal. Two species, Coprinus radians and C. verticillatus, were found to produce peroxidases, which oxidized aryl alcohols to the corresponding aldehydes at pH 7 (a reaction that is typical for heme-thiolate haloperoxidases). The peroxidase of Coprinus radians was purified to homogeneity and characterized. Three fractions of the enzyme, CrP I, CrP II, and CrP III, with molecular masses of 43 to 45 kDa as well as isoelectric points between 3.8 and 4.2, were identified after purification by anion-exchange and size exclusion chromatography. The optimum pH of the major fraction (CrP II) for the oxidation of aryl alcohols was around 7, and an H2O2 concentration of 0.7 mM was most suitable regarding enzyme activity and stability. The apparent Km values for ABTS [2,2'-azinobis(3-ethylbenzthiazolinesulfonic acid)], 2,6-dimethoxyphenol, benzyl alcohol, veratryl alcohol, and H2O2 were 49, 342, 635, 88, and 1,201 microM, respectively. The N terminus of CrP II showed 29% and 19% sequence identity to Agrocybe aegerita peroxidase (AaP) and chloroperoxidase, respectively. The UV-visible spectrum of CrP II was highly similar to that of resting-state cytochrome P450 enzymes, with the Soret band at 422 nm and additional maxima at 359, 542, and 571 nm. The reduced carbon monoxide complex showed an absorption maximum at 446 nm, which is characteristic of heme-thiolate proteins. CrP brominated phenol to 2- and 4-bromophenols and selectively hydroxylated naphthalene to 1-naphthol. Hence, after AaP, CrP is the second extracellular haloperoxidase-peroxygenase described so far. The ability to extracellularly hydroxylate aromatic compounds seems to be the key catalytic property of CrP and may be of general significance for the biotransformation of poorly available aromatic substances, such as lignin, humus, and organopollutants in soil litter and dung environments. Furthermore, aromatic peroxygenation is a promising target of biotechnological studies.
NASA Astrophysics Data System (ADS)
Ni, Yuyang; Li, Jun; Huang, Zhenzhen; He, Ke; Zhuang, Jiaqi; Yang, Wensheng
2013-11-01
The using of macromolecular additives is known to be a simple and effective way to improve the activity of immobilized enzymes on solid support, yet the mechanism has not been well understood. Taking horseradish peroxidase (HRP) as an example, only 30 % of its catalytic activity was kept after being immobilized on the surface of 25-nm Au nanoparticles, mainly attributed to the conformational change of the heme-containing active site. The catalytic activity of HRP was significantly improved to 80 % when a certain amount of bovine serum albumin (BSA) was added at the initial stage of the immobilization. Systematic spectral investigation indicated that the addition of BSA inhibited the tertiary structure change around the active site, which was a prerequisite for improved activity of the immobilized HRP. Steady-state kinetic analyses revealed that the introduction of BSA could effectively improve the turnover rate of substrate to product in spite of slight reduced affinity to substrates, which also contributed to the improved catalytic activity.
2014-01-01
Background Natural antioxidant products are increasingly being used to treat various pathological liver conditions considering the role of oxidative stress in their pathogenesis. Rosemary essential oil has already being used as a preservative in food industry due to its antioxidant and antimicrobial activities, but it was shown to possess additional health benefits. The aim of our study was to evaluate the protective effect of rosemary essential oil on carbon tetrachloride - induced liver injury in rats and to explore whether its mechanism of action is associated with modulation of hepatic oxidative status. Methods Chemical composition of isolated rosemary essential oil was determined by gas chromatography and mass spectrometry. Antioxidant activity was determined in vitro using DPPH assay. Activities of enzyme markers of hepatocellular damage in serum and antioxidant enzymes in the liver homogenates were measured using the kinetic spectrophotometric methods. Results In this research, we identified 29 chemical compounds of the studied rosemary essential oil, and the main constituents were 1,8-cineole (43.77%), camphor (12.53%), and α-pinene (11.51%). Investigated essential oil was found to exert hepatoprotective effects in the doses of 5 mg/kg and 10 mg/kg by diminishing AST and ALT activities up to 2-fold in serum of rats with carbon tetrachloride - induced acute liver damage. Rosemary essential oil prevented carbon tetrachloride - induced increase of lipid peroxidation in liver homogenates. Furthermore, pre-treatment with studied essential oil during 7 days significantly reversed the activities of antioxidant enzymes catalase, peroxidase, glutathione peroxidase and glutathione reductase in liver homogenates, especially in the dose of 10 mg/kg. Conclusions Our results demonstrate that rosemary essential oil, beside exhibiting free radical scavenging activity determined by DPPH assay, mediates its hepatoprotective effects also through activation of physiological defense mechanisms. PMID:25002023
Rašković, Aleksandar; Milanović, Isidora; Pavlović, Nebojša; Ćebović, Tatjana; Vukmirović, Saša; Mikov, Momir
2014-07-07
Natural antioxidant products are increasingly being used to treat various pathological liver conditions considering the role of oxidative stress in their pathogenesis. Rosemary essential oil has already being used as a preservative in food industry due to its antioxidant and antimicrobial activities, but it was shown to possess additional health benefits. The aim of our study was to evaluate the protective effect of rosemary essential oil on carbon tetrachloride - induced liver injury in rats and to explore whether its mechanism of action is associated with modulation of hepatic oxidative status. Chemical composition of isolated rosemary essential oil was determined by gas chromatography and mass spectrometry. Antioxidant activity was determined in vitro using DPPH assay. Activities of enzyme markers of hepatocellular damage in serum and antioxidant enzymes in the liver homogenates were measured using the kinetic spectrophotometric methods. In this research, we identified 29 chemical compounds of the studied rosemary essential oil, and the main constituents were 1,8-cineole (43.77%), camphor (12.53%), and α-pinene (11.51%). Investigated essential oil was found to exert hepatoprotective effects in the doses of 5 mg/kg and 10 mg/kg by diminishing AST and ALT activities up to 2-fold in serum of rats with carbon tetrachloride-induced acute liver damage. Rosemary essential oil prevented carbon tetrachloride-induced increase of lipid peroxidation in liver homogenates. Furthermore, pre-treatment with studied essential oil during 7 days significantly reversed the activities of antioxidant enzymes catalase, peroxidase, glutathione peroxidase and glutathione reductase in liver homogenates, especially in the dose of 10 mg/kg. Our results demonstrate that rosemary essential oil, beside exhibiting free radical scavenging activity determined by DPPH assay, mediates its hepatoprotective effects also through activation of physiological defense mechanisms.
Paumann-Page, Martina; Katz, Romy-Sophie; Bellei, Marzia; Schwartz, Irene; Edenhofer, Eva; Sevcnikar, Benjamin; Soudi, Monika
2017-01-01
Human peroxidasin 1 is a homotrimeric multidomain peroxidase that is secreted to the extracellular matrix. The heme enzyme was shown to release hypobromous acid that mediates the formation of specific covalent sulfilimine bonds to reinforce collagen IV in basement membranes. Maturation by proteolytic cleavage is known to activate the enzyme. Here, we present the first multimixing stopped-flow study on a fully functional truncated variant of human peroxidasin 1 comprising four immunoglobulin-like domains and the catalytically active peroxidase domain. The kinetic data unravel the so far unknown substrate specificity and mechanism of halide oxidation of human peroxidasin 1. The heme enzyme is shown to follow the halogenation cycle that is induced by the rapid H2O2-mediated oxidation of the ferric enzyme to the redox intermediate compound I. We demonstrate that chloride cannot act as a two-electron donor of compound I, whereas thiocyanate, iodide, and bromide efficiently restore the ferric resting state. We present all relevant apparent bimolecular rate constants, the spectral signatures of the redox intermediates, and the standard reduction potential of the Fe(III)/Fe(II) couple, and we demonstrate that the prosthetic heme group is post-translationally modified and cross-linked with the protein. These structural features provide the basis of human peroxidasin 1 to act as an effective generator of hypobromous acid, which mediates the formation of covalent cross-links in collagen IV. PMID:28154175
Mishra, Vartika; Jana, Asim K; Jana, Mithu Maiti; Gupta, Antriksh
2017-06-01
Sweet sorghum bagasse (SSB) from food processing and agricultural industry has attracted the attention for uses in production of biofuel, enzymes and other products. The alteration in lignocellulolytic enzymes by use of supplements in fungal pretreatment of SSB to achieve higher lignin degradation, selectivity value and enzymatic hydrolysis to fermentable sugar was studied. Fungal strain Coriolus versicolor was selected for pretreatment due to high ligninolytic and low cellulolytic enzyme production resulting in high lignin degradation and selectivity value. SSB was pretreated with supplements of veratryl alcohol, syringic acid, catechol, gallic acid, vanillin, guaiacol, CuSO 4 and MnSO 4 . The best results were obtained with CuSO 4 , gallic acid and syringic acid supplements. CuSO 4 increased the activities of laccase (4.9-fold) and polyphenol oxidase (1.9-fold); gallic acid increased laccase (3.5-fold) and manganese peroxidase (2.5-fold); and syringic acid increased laccase (5.6-fold), lignin peroxidase (13-fold) and arylalcohol oxidase (2.8-fold) resulting in enhanced lignin degradations and selectivity values than the control. Reduced cellulolytic enzyme activities resulted in high cellulose recovery. Enzymatic hydrolysis of pretreated SSB yielded higher sugar due to degradation of lignin and reduced the crystallinity of cellulose. The study showed that supplements could be used to improve the pretreatment process. The results were confirmed by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and thermogravimetric/differential thermogravimetric analysis of SSB.
Paumann-Page, Martina; Katz, Romy-Sophie; Bellei, Marzia; Schwartz, Irene; Edenhofer, Eva; Sevcnikar, Benjamin; Soudi, Monika; Hofbauer, Stefan; Battistuzzi, Gianantonio; Furtmüller, Paul G; Obinger, Christian
2017-03-17
Human peroxidasin 1 is a homotrimeric multidomain peroxidase that is secreted to the extracellular matrix. The heme enzyme was shown to release hypobromous acid that mediates the formation of specific covalent sulfilimine bonds to reinforce collagen IV in basement membranes. Maturation by proteolytic cleavage is known to activate the enzyme. Here, we present the first multimixing stopped-flow study on a fully functional truncated variant of human peroxidasin 1 comprising four immunoglobulin-like domains and the catalytically active peroxidase domain. The kinetic data unravel the so far unknown substrate specificity and mechanism of halide oxidation of human peroxidasin 1. The heme enzyme is shown to follow the halogenation cycle that is induced by the rapid H 2 O 2 -mediated oxidation of the ferric enzyme to the redox intermediate compound I. We demonstrate that chloride cannot act as a two-electron donor of compound I, whereas thiocyanate, iodide, and bromide efficiently restore the ferric resting state. We present all relevant apparent bimolecular rate constants, the spectral signatures of the redox intermediates, and the standard reduction potential of the Fe(III)/Fe(II) couple, and we demonstrate that the prosthetic heme group is post-translationally modified and cross-linked with the protein. These structural features provide the basis of human peroxidasin 1 to act as an effective generator of hypobromous acid, which mediates the formation of covalent cross-links in collagen IV. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Yang, Shuman; Jensen, Majken K; Rimm, Eric B; Willett, Walter; Wu, Tianying
2014-11-01
Erythrocyte antioxidant enzymes are major circulating antioxidant enzymes in the oxidative stress defense system. Few prospective studies have assessed the association between these enzymes and the risk of coronary heart disease (CHD) in generally healthy adults. We conducted a prospective nested case-control study of CHD among 32,826 women at baseline with 15 years of follow-up from 1989 to 2004 in the Nurses' Health Study. We investigated the association of baseline erythrocyte superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) activities with the risk of CHD. A total of 365 cases and 728 controls were included in the analysis. Overall, the relative risks of CHD associated with 1-standard deviation higher SOD, GPx, and CAT activities were 1.07 (95% confidence interval (CI): 0.94, 1.22), 1.04 (95% CI: 0.91, 1.18), and 1.04 (95% CI: 0.92, 1.17), respectively. Multivariable adjustments did not change the associations appreciably. Fasting status did not modify the associations, with the exception that SOD activity was positively associated with the risk of CHD among participants who provided blood samples within 12 hours of fasting. Overall, activities of SOD, GPx, and CAT were not associated with CHD among women who were generally healthy at the time of blood collection. © The Author 2014. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Different Gene Expression and Activity Pattern of Antioxidant Enzymes in Bladder Cancer.
Wieczorek, Edyta; Jablonowski, Zbigniew; Tomasik, Bartlomiej; Gromadzinska, Jolanta; Jablonska, Ewa; Konecki, Tomasz; Fendler, Wojciech; Sosnowski, Marek; Wasowicz, Wojciech; Reszka, Edyta
2017-02-01
The aim of this study was to evaluate the possible role in and contribution of antioxidant enzymes to bladder cancer (BC) etiology and recurrence after transurethral resection (TUR). We enrolled 40 patients with BC who underwent TUR and 100 sex- and age-matched healthy controls. The analysis was performed at diagnosis and recurrence, taking into account the time of recurrence. Gene expression of catalase (CAT), glutathione peroxidase 1 (GPX1) and manganese superoxide dismutase (SOD2) was determined in peripheral blood leukocytes. The activity of glutathione peroxidase 3 (GPX3) was examined in plasma, and GPX1 and copper-zinc containing superoxide dismutase 1 (SOD1) in erythrocytes. SOD2 and GPX1 expression and GPX1 and SOD1 activity were significantly higher in patients at diagnosis of BC in comparison to controls. In patients who had recurrence earlier than 1 year from TUR, CAT and SOD2 expression was lower (at diagnosis p=0.024 and p=0.434, at recurrence p=0.022 and p=0.010), while the GPX1 and GPX3 activity was higher (at diagnosis p=0.242 and p=0.394, at recurrence p=0.019 and p=0.025) compared to patients with recurrence after 1 year from TUR. This study revealed that the gene expression and activity of the antioxidant enzymes are elevated in blood of patients with BC, although a low expression of CAT might contribute to the recurrence of BC, in early prognosis. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Smith, Andrew T; Doyle, Wendy A; Dorlet, Pierre; Ivancich, Anabella
2009-09-22
The surface oxidation site (Trp-171) in lignin peroxidase (LiP) required for the reaction with veratryl alcohol a high-redox-potential (1.4 V) substrate, was engineered into Coprinus cinereus peroxidase (CiP) by introducing a Trp residue into a heme peroxidase that has similar protein fold but lacks this activity. To create the catalytic activity toward veratryl alcohol in CiP, it was necessary to reproduce the Trp site and its negatively charged microenvironment by means of a triple mutation. The resulting D179W+R258E+R272D variant was characterized by multifrequency EPR spectroscopy. The spectra unequivocally showed that a new Trp radical [g values of g(x) = 2.0035(5), g(y) = 2.0027(5), and g(z) = 2.0022(1)] was formed after the [Fe(IV)=O Por(*+)] intermediate, as a result of intramolecular electron transfer between Trp-179 and the porphyrin. Also, the EPR characterization crucially showed that [Fe(IV)=O Trp-179(*)] was the reactive intermediate with veratryl alcohol. Accordingly, our work shows that it is necessary to take into account the physicochemical properties of the radical, fine-tuned by the microenvironment, as well as those of the preceding [Fe(IV)=O Por(*+)] intermediate to engineer a catalytically competent Trp site for a given substrate. Manipulation of the microenvironment of the Trp-171 site in LiP allowed the detection by EPR spectroscopy of the Trp-171(*), for which direct evidence has been missing so far. Our work also highlights the role of Trp residues as tunable redox-active cofactors for enzyme catalysis in the context of peroxidases with a unique reactivity toward recalcitrant substrates that require oxidation potentials not realized at the heme site.
Morales-González, José A.; Gutiérrez-Salinas, José; García-Ortiz, Liliana; del Carmen Chima-Galán, María; Madrigal-Santillán, Eduardo; Esquivel-Soto, Jaime; Esquivel-Chirino, César; González-Rubio, Manuel García-Luna y
2010-01-01
Fluoride intoxication has been shown to produce diverse deleterious metabolic alterations within the cell. To determine the effects of sodium fluoride (NaF) treatment on malondialdehyde (MDA) levels and on the activity of antioxidant enzymes in rat erythrocytes, Male Wistar rats were treated with 50 ppm of NaF or were untreated as controls. Erythrocytes were obtained from rats sacrificed weekly for up to eight weeks and the concentration of MDA in erythrocyte membrane was determined. In addition, the activity of the enzymes superoxide, dismutase, catalase, and glutathione peroxidase were determined. Treatment with NaF produces an increase in the concentration of malondialdehyde in the erythrocyte membrane only after the eight weeks of treatment. On the other hand, antioxidant enzyme activity was observed to increase after the fourth week of NaF treatment. In conclusion, intake of NaF produces alterations in the erythrocyte of the male rat, which indicates induction of oxidative stress. PMID:20640162
Govarthanan, Muthusamy; Kamala-Kannan, Seralathan; Kim, Seol Ah; Seo, Young-Seok; Park, Jung-Hee; Oh, Byung-Taek
2016-10-01
Phytoremediation is an in situ, low-cost strategy for cleanup of the sites contaminated with heavy metals. Experiments were conducted to assess the impact of synthetic chelators and plant growth-promoting rhizosphere bacteria (Herbaspirillum sp. GW103) on heavy metal lead (Pb) uptake in Z. mays cultivated in Pb-contaminated soil. The present study investigated the Pb phytoaccumulation rate and plant antioxidant enzyme activities in Z. mays exposed to 100 mg/kg of PbNO3. The combination of gluconic acid (GA) with Herbaspirillum sp. GW103 treatment showed higher Pb solubility (18.9 mg/kg) compared with other chelators. The chemical chelators showed the significant difference in phytoaccumulation as well as antioxidant enzyme activities. The antioxidant enzymes such as catalase, peroxidase and superoxide dismutase activities changed under Pb stress. The study indicated that increased activity of antioxidant enzymes may play as signal inducers to fight against Pb.
Chen, Yigen; Ni, Xinzhi; Cottrell, Ted E; Wood, Bruce W; Buntin, G David
2009-06-01
The black pecan aphid, Melanocallis caryaefoliae (Davis) (Hemiptera: Aphididae), is a foliar feeder of pecan, Carya illinoinensis (Wangenh.) K. Koch (Juglandaceae). The pest causes chlorosis of leaflet lamina, physiological damage to foliage and trees, and commonly limits the profitability of commercial pecan orchard enterprises. However, key aspects of this host-pest interaction are poorly understood. We report here the effects of M. caryaefoliae feeding on the foliar activity of oxidative (i.e., catalase, lipoxygenase [LOX]-1 and 3, and peroxidase) and hydrolytic (i.e., esterase) enzymes in relation to the degree of aphid resistance among pecan varieties. The 2-yr study showed that M. caryaefoliae-infested foliage exhibited elevated peroxidase activity only in susceptible ('Desirable', 'Sumner', and 'Schley'), but not in resistant ('Cape Fear', 'Gloria Grande', and 'Money Maker') genotypes. Susceptible genotypes also exhibited more severe leaf chlorosis in response to M. caryaefoliae feeding than the resistant genotypes; however, the aphid feeding did not influence catalase or esterase activity in all varieties, except the increase of esterase activity in Desirable and Gloria Grande. Melanocallis caryaefoliae feeding also influences activity of two lipoxygenase isozymes, with LOX3 being more frequently induced than LOX1. Foliar LOX3 activity was more frequently induced by M. caryaefoliae feeding in the moderately resistant 'Oconee' and highly resistant Money Maker and Cape Fear than in the susceptible genotypes. Therefore, the elevation of peroxidase is likely to be associated with aphid susceptibility and contributed to the severe leaf chlorosis, whereas the increase of LOX3 activity might be associated with aphid resistance in pecan. These findings contribute to our understanding of the etiology of M. caryaefoliae-elicited leaf chlorosis on pecan foliage. Such information may also be used to develop enzyme markers for identifying black pecan aphid resistance and/or susceptibility in pecan germplasm.
[Lipid peroxidation in thyroid tissue of people with diffuse toxic goiter].
Rom-Boguslavskaia, E S; Somova, E V; Ovsiannikova, T N; Diageleva, E A; Karachentsev, Iu I; Asaula, V A
1997-01-01
The processes of lipids free-radical oxidation in euthyroid and thyrotoxic tissue samples of human thyroid gland were studied. It was shown, that the content of TBA-active lipid peroxidation products was considerably increased in thyrotoxic tissue of the thyroid, and the activity of antioxidant enzymes (catalase, glutation peroxidase) was decreased in it. Possible mechanism of the tissue lipoperoxide alternation under conditions of the thyroid hyperfunction is discussed.
Kato, T; Liu, J K; Yamamoto, K; Osborne, P G; Niwa, O
1996-06-28
To determine the basal acetylcholine level in the dialysate of rat frontal cortex, a horseradish peroxidase-osmium redox polymer-modified glassy carbon electrode (HRP-GCE) was employed instead of the conventional platinum electrode used in high-performance liquid chromatography-electrochemical detection (HPLC-ED). In initial experiments, an oxidizable unknown compound interfered with the detection of basal acetylcholine release on HPLC-HRP-GCE. An immobilized peroxidase-choline oxidase precolumn (pre-reactor) was included in the HPLC system, to eliminate the interference from the unknown compound. This combination could detect less than 10 fmol of standard acetylcholine and basal acetylcholine levels in the dialysate from a conventional concentric design microdialysis probe, without the use of cholinesterase inhibitor, and may facilitate physiological investigation of cholinergic neuronal activity in the central nervous system.
Köksal, Ekrem; Gülçin, Ilhami
2008-01-01
Peroxidases (EC 1.11.1.7; donor: hydrogen peroxide oxidoreductase) are part of a large group of enzymes. In this study, peroxidase, a primer antioxidant enzyme, was purified with 19.3 fold and 0.2% efficiency from cauliflower (Brassica oleracea L.) by ammonium sulphate precipitation, dialysis, CM-Sephadex ion-exchange chromatography and Sephadex G-25 purification steps. The substrate specificity of peroxidase was investigated using 2,2'-azino-bis(3-ethylbenz-thiazoline-6-sulphonic acid) (ABTS), 2-methoxyphenol (guaiacol), 1,2-dihydroxybenzene (catechol), 1,2,3-trihyidroxybenzene (pyrogallol) and 4-methylcatechol. Also, optimum pH, optimum temperature, optimum ionic strength, stable pH, stable temperature, thermal inactivation conditions were determined for guaiacol/H(2)O(2), pyrogallol/H(2)O(2), ABTS/H(2)O(2), catechol/H(2)O(2) and 4-methyl catechol/H(2)O(2) substrate patterns. The molecular weight (M(w)) of this enzyme was found to be 44 kDa by gel filtration chromatography method. Native polyacrylamide gel electrophoresis (PAGE) was performed for isoenzyme determination and a single band was observed. K(m) and V(max) values were calculated from Lineweaver-Burk graph for each substrate patterns.
Turnover capacity of Coprinus cinereus peroxidase for phenol and monosubstituted phenols
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aitken, M.D.; Heck, P.E.
Coprinus cinereus peroxidase (CIP) and other peroxidases are susceptible to mechanism-based inactivation during the oxidation of phenolic substrates. The turnover capacity of CIP was quantified for phenol and 11 monosubstituted phenols under conditions in which enzyme inactivation by mechanisms involving hydrogen peroxide alone were minimized. Turnover capacities varied by nearly 2 orders of magnitude, depending on the substituent. On a mass basis, the enzyme consumption corresponding to the lowest turnover capacities is considerable and may influence the economic feasibility of proposed industrial applications of peroxidases. Within a range of substituent electronegativity values, molar turnover capacities correlated well (r{sup 2} =more » 0.89) with substituent effects quantified by radical {sigma} values and semiquantitatively with homolytic O-H bond dissociation energies of the phenolic substrates, suggesting that phenoxyl radical intermediates are probably involved in the suicide inactivation of CIP. The correlation range in each case did not include phenols with highly electron-withdrawing (nitro and cyano) substituents because they are not oxidized by CIP, nor phenols with highly electron-donating (hydroxy and amino) substituents because they led to virtually complete inactivation of the enzyme with minimal substrate removal.« less
Sofo, Adriano; Scopa, Antonio; Nuzzaci, Maria; Vitti, Antonella
2015-06-12
Hydrogen peroxide (H2O2), an important relatively stable non-radical reactive oxygen species (ROS) is produced by normal aerobic metabolism in plants. At low concentrations, H2O2 acts as a signal molecule involved in the regulation of specific biological/physiological processes (photosynthetic functions, cell cycle, growth and development, plant responses to biotic and abiotic stresses). Oxidative stress and eventual cell death in plants can be caused by excess H2O2 accumulation. Since stress factors provoke enhanced production of H2O2 in plants, severe damage to biomolecules can be possible due to elevated and non-metabolized cellular H2O2. Plants are endowed with H2O2-metabolizing enzymes such as catalases (CAT), ascorbate peroxidases (APX), some peroxiredoxins, glutathione/thioredoxin peroxidases, and glutathione sulfo-transferases. However, the most notably distinguished enzymes are CAT and APX since the former mainly occurs in peroxisomes and does not require a reductant for catalyzing a dismutation reaction. In particular, APX has a higher affinity for H2O2 and reduces it to H2O in chloroplasts, cytosol, mitochondria and peroxisomes, as well as in the apoplastic space, utilizing ascorbate as specific electron donor. Based on recent reports, this review highlights the role of H2O2 in plants experiencing water deficit and salinity and synthesizes major outcomes of studies on CAT and APX activity and genetic regulation in drought- and salt-stressed plants.
Sofo, Adriano; Scopa, Antonio; Nuzzaci, Maria; Vitti, Antonella
2015-01-01
Hydrogen peroxide (H2O2), an important relatively stable non-radical reactive oxygen species (ROS) is produced by normal aerobic metabolism in plants. At low concentrations, H2O2 acts as a signal molecule involved in the regulation of specific biological/physiological processes (photosynthetic functions, cell cycle, growth and development, plant responses to biotic and abiotic stresses). Oxidative stress and eventual cell death in plants can be caused by excess H2O2 accumulation. Since stress factors provoke enhanced production of H2O2 in plants, severe damage to biomolecules can be possible due to elevated and non-metabolized cellular H2O2. Plants are endowed with H2O2-metabolizing enzymes such as catalases (CAT), ascorbate peroxidases (APX), some peroxiredoxins, glutathione/thioredoxin peroxidases, and glutathione sulfo-transferases. However, the most notably distinguished enzymes are CAT and APX since the former mainly occurs in peroxisomes and does not require a reductant for catalyzing a dismutation reaction. In particular, APX has a higher affinity for H2O2 and reduces it to H2O in chloroplasts, cytosol, mitochondria and peroxisomes, as well as in the apoplastic space, utilizing ascorbate as specific electron donor. Based on recent reports, this review highlights the role of H2O2 in plants experiencing water deficit and salinity and synthesizes major outcomes of studies on CAT and APX activity and genetic regulation in drought- and salt-stressed plants. PMID:26075872
Enzymatic oxidative biodegradation of nanoparticles: Mechanisms, significance and applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlasova, Irina I.
Biopersistence of carbon nanotubes, graphene oxide (GO) and several other types of carbonaceous nanomaterials is an essential determinant of their health effects. Successful biodegradation is one of the major factors defining the life span and biological responses to nanoparticles. Here, we review the role and contribution of different oxidative enzymes of inflammatory cells – myeloperoxidase, eosinophil peroxidase, lactoperoxidase, hemoglobin, and xanthine oxidase – to the reactions of nanoparticle biodegradation. We further focus on interactions of nanomaterials with hemoproteins dependent on the specific features of their physico-chemical and structural characteristics. Mechanistically, we highlight the significance of immobilized peroxidase reactive intermediates vsmore » diffusible small molecule oxidants (hypochlorous and hypobromous acids) for the overall oxidative biodegradation process in neutrophils and eosinophils. We also accentuate the importance of peroxynitrite-driven pathways realized in macrophages via the engagement of NADPH oxidase- and NO synthase-triggered oxidative mechanisms. We consider possible involvement of oxidative machinery of other professional phagocytes such as microglial cells, myeloid-derived suppressor cells, in the context of biodegradation relevant to targeted drug delivery. We evaluate the importance of genetic factors and their manipulations for the enzymatic biodegradation in vivo. Finally, we emphasize a novel type of biodegradation realized via the activation of the “dormant” peroxidase activity of hemoproteins by the nano-surface. This is exemplified by the binding of GO to cyt c causing the unfolding and ‘unmasking’ of the peroxidase activity of the latter. We conclude with the strategies leading to safe by design carbonaceous nanoparticles with optimized characteristics for mechanism-based targeted delivery and regulatable life-span of drugs in circulation. - Highlights: • Nanoparticles can be degraded by oxidative enzymatic machinery of inflammatory cells. • Peroxidase-generated oxidants are the reactive species executing the biodegradation. • Unmasked by GO binding peroxidase activity of cyt c biodegrades GO. • Professional phagocytes are accountable for the clearance of nanoparticles in vivo. • Carbonaceous nano-carriers of drugs protect against degradation of payloads.« less
Diverse effects of arsenic on selected enzyme activities in soil-plant-microbe interactions.
Lyubun, Yelena V; Pleshakova, Ekaterina V; Mkandawire, Martin; Turkovskaya, Olga V
2013-11-15
Under the influence of pollutants, enzyme activities in plant-microbe-soil systems undergo changes of great importance in predicting soil-plant-microbe interactions, regulation of metal and nutrient uptake, and, ultimately, improvement of soil health and fertility. We evaluated the influence of As on soil enzyme activities and the effectiveness of five field crops for As phytoextraction. The initial As concentration in soil was 50mg As kg(-1) soil; planted clean soil, unplanted polluted soil, and unplanted clean soil served as controls. After 10 weeks, the growth of the plants elevated soil dehydrogenase activity relative to polluted but unplanted control soils by 2.4- and 2.5-fold for sorghum and sunflower (respectively), by 3-fold for ryegrass and sudangrass, and by 5.2-fold for spring rape. Soil peroxidase activity increased by 33% with ryegrass and rape, while soil phosphatase activity was directly correlated with residual As (correlation coefficient R(2)=0.7045). We conclude that soil enzyme activities should be taken into account when selecting plants for phytoremediation. Copyright © 2013 Elsevier B.V. All rights reserved.
Ren, Lin-Ling; Liu, Yan-Jing; Liu, Hai-Jing; Qian, Ting-Ting; Qi, Li-Wang; Wang, Xiao-Ru; Zeng, Qing-Yin
2014-01-01
Gene duplication is the primary source of new genes and novel functions. Over the course of evolution, many duplicate genes lose their function and are eventually removed by deletion. However, some duplicates have persisted and evolved diverse functions. A particular challenge is to understand how this diversity arises and whether positive selection plays a role. In this study, we reconstructed the evolutionary history of the class III peroxidase (PRX) genes from the Populus trichocarpa genome. PRXs are plant-specific enzymes that play important roles in cell wall metabolism and in response to biotic and abiotic stresses. We found that two large tandem-arrayed clusters of PRXs evolved from an ancestral cell wall type PRX to vacuole type, followed by tandem duplications and subsequent functional specification. Substitution models identified seven positively selected sites in the vacuole PRXs. These positively selected sites showed significant effects on the biochemical functions of the enzymes. We also found that positive selection acts more frequently on residues adjacent to, rather than directly at, a critical active site of the enzyme, and on flexible regions rather than on rigid structural elements of the protein. Our study provides new insights into the adaptive molecular evolution of plant enzyme families. PMID:24934172
Hermann, Katia L; Costa, Alessandra; Helm, Cristiane V; De Lima, Edson A; Tavares, Lorena B B
2013-09-01
The production of ethanol from lignocellulosic biomass is referred as a second generation biofuel, whose processing is one of the most promising technologies under development. There are few available studies on the use of enzymes produced by fungi as active for the biodegradation of lignocellulosic biomass. However, the manganese peroxidase (MnP) enzyme presents high potential to degrade lignin and the basidiomycetes are the major producers of this oxidase. Thus, this study aimed at evaluating the ability of fungi Lentinula edodes and Lentinula boryana to produce this enzyme when cultivated in submerged fermentation system (SS) and also in solid-state fermentation system (SSF) containing Eucalyptus benthamii sawdust with or without corn cob meal. In the SS the greatest MnP expression occurred on the 25th day, being of 70 UI.L-1 for L. boryana and of 20 UI.L-1 for L. edodes. In the SSF, the best results were obtained on the 10th day for L. edodes, while for L. boryana it happened between the 20th and the 25th days, despite both species presented values close to 110 UI.L-1. Therefore, the results indicated that the studied fungi express the enzyme of interest and that its production is enhanced when cultivated in solid system.
Konovalova, G G; Lankin, V Z; Tikhaze, A K; Nezhdanova, I B; Lisina, M O; Kukharchuk, V V
2003-08-01
We studied the effect of a complex containing antioxidant vitamins C and E, provitamin A, and antioxidant element selenium on the contents of primary (lipid peroxides) and secondary products (malonic dialdehyde) of free radical lipid oxidation in low-density lipoproteins isolated from the plasma of patients with coronary heart disease and hypercholesterolemia by means of preparative ultracentrifugation. Activity of key antioxidant enzymes in the blood was measured during treatment with the antioxidant preparation. Combination treatment with antioxidant vitamins and antioxidant element selenium sharply decreased the contents of primary and secondary free radical oxidation products in circulating low-density lipoproteins and increased activity of antioxidant enzymes in erythrocytes. Activities of superoxide dismutase and selenium-containing glutathione peroxidase increased 1 and 2 months after the start of therapy, respectively.
Muñoz, V; Ibáñez, F; Figueredo, M S; Fabra, A
2016-07-01
The main purpose of this study was to determine whether the Arachis hypogaea L. root oxidative burst, produced at early stages of its symbiotic interaction with Bradyrhizobium sp. SEMIA 6144, and the bacterial antioxidant system are required for the successful development of this interaction. Pharmacological approaches were used to reduce both plant oxidative burst and bacterial peroxidase enzyme activity. In plants whose H2 O2 levels were decreased, a low nodule number, a reduction in the proportion of red nodules (%) and an increase in the bacteroid density were found. The symbiotic phenotype of plants inoculated with a Bradyrhizobium sp. SEMIA 6144 culture showing decreased peroxidase activity was also affected, since the biomass production, nodule number and percentage of red nodules in these plants were lower than in plants inoculated with Bradyrhizobium sp. control cultures. We demonstrated for the first time that the oxidative burst triggered at the early events of the symbiotic interaction in peanut, is a prerequisite for the efficient development of root nodules, and that the antioxidant system of bradyrhizobial peanut symbionts, particularly the activity of peroxidases, is counteracting this oxidative burst for the successful establishment of the symbiosis. Our results provide new insights into the mechanisms involved in the development of the symbiotic interaction established in A. hypogaea L. a legume infected in an intercellular way. © 2016 The Society for Applied Microbiology.
Potato Peroxidase for the Study of Enzyme Properties.
ERIC Educational Resources Information Center
Shamaefsky, Brian R.
1993-01-01
Explains how the surface of a freshly sliced potato can be used for a variety of enzyme action experiments including the influence of pH on enzyme action, the enzyme denaturation potential of boiling water, the inhibition of enzymes by heavy metals, and the effects of salt concentration on enzyme effectiveness. (PR)
Fang, Ge; Li, Weifeng; Shen, Xiaomei; Perez-Aguilar, Jose Manuel; Chong, Yu; Gao, Xingfa; Chai, Zhifang; Chen, Chunying; Ge, Cuicui; Zhou, Ruhong
2018-01-09
Noble metal-based nanomaterials have shown promise as potential enzyme mimetics, but the facet effect and underlying molecular mechanisms are largely unknown. Herein, with a combined experimental and theoretical approach, we unveil that palladium (Pd) nanocrystals exhibit facet-dependent oxidase and peroxidase-like activities that endow them with excellent antibacterial properties via generation of reactive oxygen species. The antibacterial efficiency of Pd nanocrystals against Gram-positive bacteria is consistent with the extent of their enzyme-like activity, that is {100}-faceted Pd cubes with higher activities kill bacteria more effectively than {111}-faceted Pd octahedrons. Surprisingly, a reverse trend of antibacterial activity is observed against Gram-negative bacteria, with Pd octahedrons displaying stronger penetration into bacterial membranes than Pd nanocubes, thereby exerting higher antibacterial activity than the latter. Our findings provide a deeper understanding of facet-dependent enzyme-like activities and might advance the development of noble metal-based nanomaterials with both enhanced and targeted antibacterial activities.
NASA Astrophysics Data System (ADS)
Stănciuc, Nicoleta; Aprodu, Iuliana; Ioniță, Elena; Bahrim, Gabriela; Râpeanu, Gabriela
2015-08-01
Given the importance of peroxidase as an indicator for the preservation of vegetables by heat treatment, the present study is focused on enzyme behavior under different pH and temperature conditions, in terms of process-structure-function relationships. Thus, the process-structure-function relationship of peroxidase was investigated by combining fluorescence spectroscopy, in silico prediction methods and inactivation kinetic studies. The fluorescence spectra indicated that at optimum pH value, the Trp117 residue is not located in the hydrophobic core of the protein. Significant blue- and red-shifts were obtained at different pH values, whereas the heat-treatment did not cause significant changes in Trp and Tyr environment. The ANS and quenching experiments demonstrated a more flexible conformation at lower pH and respectively at higher temperature. On the other hand molecular dynamics simulations at different temperatures highlighted that the secondary structure appeared better preserved against temperature, whereas the tertiary structure around the heme was more affected. Temperature dependent changes in the hydrogen bonding and ion paring involving amino acids from the heme-binding region (His170 and Asp247) might trigger miss-coordination of the heme iron atom by His170 residue and further enzyme activity loss.
Zhang, Jinsong; Wang, Huali; Bao, Yongping; Zhang, Lide
2004-05-28
We previous reported that a nano red elemental selenium (Nano-Se) in the range from 20 approximately 60 nm had similar bioavailability to sodium selenite (BioFactors 15 (2001) 27). We recently found that Nano-Se with different size had marked difference in scavenging an array of free radicals in vitro, the smaller the particle, the better scavenging activity (Free Radic. Biol. Med. 35 (2003) 805). In order to examine whether there is a size effect of Nano-Se in the induction of Se-dependent enzymes, a range of Nano-Se (5 approximately 200 nm) have been prepared based on the control of elemental Se atom aggregation. The sizes of Nano-Se particles were inversely correlated with protein levels in the redox system of selenite and glutathione. Different sizes of red elemental Se were prepared by adding varying amount of bovine serum albumin (BSA). Three different sizes of Nano-Se (5 approximately 15 nm, 20 approximately 60 nm, and 80 approximately 200 nm) have been chosen for the comparison of biological activity in terms of the induction of seleno-enzyme activities. Results showed that there was no significant size effect of Nano-Se from 5 to 200 nm in the induction of glutathione peroxidase (GPx), phospholipid hydroperoxide glutathione peroxidase (PHGPx) and thioredoxin reductase-1 (TrxR-1) in human hepatoma HepG2 cells and the livers of mice.
Identification of a Third Mn(II) Oxidase Enzyme in Pseudomonas putida GB-1
Smesrud, Logan; Tebo, Bradley M.
2016-01-01
ABSTRACT The oxidation of soluble Mn(II) to insoluble Mn(IV) is a widespread bacterial activity found in a diverse array of microbes. In the Mn(II)-oxidizing bacterium Pseudomonas putida GB-1, two Mn(II) oxidase genes, named mnxG and mcoA, were previously identified; each encodes a multicopper oxidase (MCO)-type enzyme. Expression of these two genes is positively regulated by the response regulator MnxR. Preliminary investigation into putative additional regulatory pathways suggested that the flagellar regulators FleN and FleQ also regulate Mn(II) oxidase activity; however, it also revealed the presence of a third, previously uncharacterized Mn(II) oxidase activity in P. putida GB-1. A strain from which both of the Mn(II) oxidase genes and fleQ were deleted exhibited low levels of Mn(II) oxidase activity. The enzyme responsible was genetically and biochemically identified as an animal heme peroxidase (AHP) with domain and sequence similarity to the previously identified Mn(II) oxidase MopA. In the ΔfleQ strain, P. putida GB-1 MopA is overexpressed and secreted from the cell, where it actively oxidizes Mn. Thus, deletion of fleQ unmasked a third Mn(II) oxidase activity in this strain. These results provide an example of an Mn(II)-oxidizing bacterium utilizing both MCO and AHP enzymes. IMPORTANCE The identity of the Mn(II) oxidase enzyme in Pseudomonas putida GB-1 has been a long-standing question in the field of bacterial Mn(II) oxidation. In the current work, we demonstrate that P. putida GB-1 employs both the multicopper oxidase- and animal heme peroxidase-mediated pathways for the oxidation of Mn(II), rendering this model organism relevant to the study of both types of Mn(II) oxidase enzymes. The presence of three oxidase enzymes in P. putida GB-1 deepens the mystery of why microorganisms oxidize Mn(II) while providing the field with the tools necessary to address this question. The initial identification of MopA as a Mn(II) oxidase in this strain required the deletion of FleQ, a regulator involved in both flagellum synthesis and biofilm synthesis in Pseudomonas aeruginosa. Therefore, these results are also an important step toward understanding the regulation of Mn(II) oxidation. PMID:27084014
Xu, Xiangqun; Xu, Zhiqi; Shi, Song; Lin, Mengmeng
2017-10-01
This study examined the white rot fungus I. obliquus on the degradation of three types of straw biomass and the production of extracellular lignocellulolytic enzymes under submerged fermentation. The fungus process resulted in a highest lignin loss of 72%, 39%, and 47% in wheat straw, rice straw, and corn stover within 12days, respectively. In merely two days, the fungus selectively degraded wheat straw lignin by 37%, with only limited cellulose degradation (13%). Fourier transform infrared spectroscopy revealed that the fungus most effectively degraded the wheat straw lignin and rice straw crystalline cellulose. Scanning electronic microscopy showed the most pronounced structural changes in wheat straw. High activities of manganese peroxidase (159.0U/mL) and lignin peroxidase (123.4U/mL) were observed in wheat straw culture on Day 2 and 4, respectively. Rice straw was the best substrate to induce the production of cellulase and xylanase. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tan, Thuan-Chew; Cheng, Lai-Hoong; Bhat, Rajeev; Rusul, Gulam; Easa, Azhar Mat
2014-01-01
Composition, physicochemical properties and enzyme inactivation kinetics of coconut water were compared between immature (IMC), mature (MC) and overly-mature coconuts (OMC). Among the samples studied, pH, turbidity and mineral contents for OMC water was the highest, whereas water volume, titratable acidity, total soluble solids and total phenolics content for OMC water were the lowest. Maturity was found to affect sugar contents. Sucrose content was found to increase with maturity, and the reverse trend was observed for fructose and glucose. Enzyme activity assessment showed that polyphenol oxidase (PPO) in all samples was more heat resistant than peroxidase (POD). Compared to IMC and MC, PPO and POD from OMC water showed the lowest thermal resistance, with D83.3°C=243.9s (z=27.9°C), and D83.3°C=129.9s (z=19.5°C), respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.
Production and purification of the multifunctional enzyme horseradish peroxidase
Spadiut, Oliver; Herwig, Christoph
2014-01-01
The oxidoreductase horseradish peroxidase (HRP) is used in numerous industrial and medical applications. In this review, we briefly describe this well-studied enzyme and focus on its promising use in targeted cancer treatment. In combination with a plant hormone, HRP can be used in specific enzyme–prodrug therapies. Despite this outstanding application, HRP has not found its way as a biopharmaceutical into targeted cancer therapy yet. The reasons therefore lie in the present low-yield production and cumbersome purification of this enzyme from its natural source. However, surface glycosylation renders the recombinant production of HRP difficult. Here, we compare different production hosts for HRP and summarize currently used production and purification strategies for this enzyme. We further present our own strategy of glycoengineering this powerful enzyme to allow recombinant high-yield production in Pichia pastoris and subsequent simple downstream processing. PMID:24683473
Sola-Rabada, Anna; Sahare, Padma; Hickman, Graham J; Vasquez, Marco; Canham, Leigh T; Perry, Carole C; Agarwal, Vivechana
2018-06-01
Porous silica-based materials are attractive for biomedical applications due to their biocompatibility and biodegradable character. In addition, inorganic supports such as porous silicon are being developed due to integrated circuit chip compatibility and tunable properties leading to a wide range of multidisciplinary applications. In this contribution, biosilica extracted from a rarely studied plant material (Equisetum Myriochaetum), its conversion to silicon and the potential for both materials to be used as supports for enzyme immobilization are investigated. E. myriochaetum was subject to conventional acid digestion to extract biogenic silica with a% yield remarkably higher (up to 3 times) than for other Equisetum sp. (i.e. E. Arvense). The surface area of the isolated silica was ∼400 m 2 /g, suitable for biotechnological applications. Biogenic silicon was obtained by magnesiothermic reduction. The materials were characterized by SEM-EDX, XRD, FT-IR, ICP-OES, TGA and BET analysis and did not contain significant levels of class 1 heavy elements (such as Pb, Cd, Hg and As). Two commercial peroxidases, horseradish peroxidase (HRP) and Coprinus cinereus peroxidase (CiP) were immobilized onto the biogenic materials using three different functionalization routes: (A) carbodiimide, (B) amine + glutaraldehyde and (C) amine + carbodiimide. Although both biogenic silica and porous silicon could be used as supports differences in behaviour were observed for the two enzymes. For HRP, loading onto biogenic silica via the glutaraldehyde immobilization technique (route B) was most effective. The loading of CiP showed a much higher peroxidase activity onto porous silicon than silica functionalized by the carbodiimide method (route A). From the properties of the extracted materials obtained from Equisetum Myriochaetum and the immobilization results observed, these materials appear to be promising for industrial and biomedical applications. Copyright © 2018 Elsevier B.V. All rights reserved.
Thai Fruits Exhibit Antioxidant Activity and Induction of Antioxidant Enzymes in HEK-293 Cells.
Anantachoke, Natthinee; Lomarat, Pattamapan; Praserttirachai, Wasin; Khammanit, Ruksinee; Mangmool, Supachoke
2016-01-01
The cellular antioxidant enzymes play the important role of protecting the cells and organisms from the oxidative damage. Natural antioxidants contained in fruits have attracted considerable interest because of their presumed safety and potential nutritional value. Even though antioxidant activities of many fruits have been reported, the effects of phytochemicals contained in fruits on the induction of antioxidant enzymes in the cells have not been fully defined. In this study, we showed that extracts from Antidesma ghaesembilla , Averrhoa bilimbi , Malpighia glabra , Mangifera indica, Sandoricum koetjape , Syzygium malaccense, and Ziziphus jujuba inhibited H 2 O 2 -induced intracellular reactive oxygen species production in HEK-293 cells. Additionally, these Thai fruit extracts increased the mRNA and protein expressions of antioxidant enzymes, catalase, glutathione peroxidase-1, and manganese superoxide dismutase. The consumption of Thai fruits rich in phenolic compounds may reduce the risk of oxidative stress.
Thai Fruits Exhibit Antioxidant Activity and Induction of Antioxidant Enzymes in HEK-293 Cells
Anantachoke, Natthinee; Lomarat, Pattamapan; Praserttirachai, Wasin; Khammanit, Ruksinee
2016-01-01
The cellular antioxidant enzymes play the important role of protecting the cells and organisms from the oxidative damage. Natural antioxidants contained in fruits have attracted considerable interest because of their presumed safety and potential nutritional value. Even though antioxidant activities of many fruits have been reported, the effects of phytochemicals contained in fruits on the induction of antioxidant enzymes in the cells have not been fully defined. In this study, we showed that extracts from Antidesma ghaesembilla, Averrhoa bilimbi, Malpighia glabra, Mangifera indica, Sandoricum koetjape, Syzygium malaccense, and Ziziphus jujuba inhibited H2O2-induced intracellular reactive oxygen species production in HEK-293 cells. Additionally, these Thai fruit extracts increased the mRNA and protein expressions of antioxidant enzymes, catalase, glutathione peroxidase-1, and manganese superoxide dismutase. The consumption of Thai fruits rich in phenolic compounds may reduce the risk of oxidative stress. PMID:28074103
Wei, Hui; Li, Hui; Wan, Shu-Ping; Zeng, Qiu-Tang; Cheng, Long-Xian; Jiang, Li-Li; Peng, Yu-Dong
2017-01-01
Background Malvidin (alvidin-3-glucoside) is a polyphenol that belongs to the class of natural anthocyanin, which is abundantly found in red wines, colored fruits, and the skin of red grapes. Therefore, the current investigation was intended to evaluate the effect of malvidin against myocardial infarction induced by isoproterenol in the rats. Material/Methods The cardioprotective effects was assessed by determining the effect of malvidin on the activities of endogenous antioxidants – catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH) – and on the levels of lipid peroxidation and serum marker enzymes. The serum levels of IL-6 and TNF-α were also determined using an enzyme-linked immunosorbent assay (ELISA) kit. Result The present study demonstrated a significant cardioprotective effect of malvidin by restoring the defensive activities of endogenous antioxidants – catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH) – and by reducing the levels of lipid peroxidation and serum marker enzymes lactate dehydrogenase (LD) and creatine kinase (CK). Malvidin significantly ameliorated the histopathological changes and impaired mitochondria in the cardiac necrosis stimulated with isoproterenol. Additionally, the results also demonstrated that nuclear translocation of Nrf-2 and subsequent HO-1 expression might be associated with nuclear factor kappa B (NF-κB) pathway activation. Conclusions Our findings suggest that malvidin exerts cardioprotective effects that might be due to possible strong antioxidant and anti-inflammatory activities. Therefore, this study provides the basis for the development of malvidin as a safe and effective treatment of myocardial infarction. PMID:28445445
Khan, Rahmat Ali; Khan, Muhammad Rashid; Shah, Naseer Ali; Sahreen, Sumaira; Siddiq, Pakiza
2015-10-01
Sonchus asper is traditionally used in the treatment of renal dysfunction. In the present study, protective effects of S. asper against carbon tetrachloride (CCl4)-induced nephrotoxicity of rats were determined. In this study, 24 male albino rats (190-200 g) were equally divided into four groups. Group I (control group) was given saline (1 ml/kg body weight (b.w.), 0.85% NaCl) and dimethyl sulfoxide (1 ml/kg b.w.); group II was treated with CCl4 (1 ml/kg b.w. intraperitoneally); groups III and IV were administered with CCl4 and after 48 h with S. asper n-hexane extract (SHE; 100 and 200 mg/kg b.w.). All the treatments were given twice a week for 4 weeks. The results revealed that CCl4-induced oxidative stress as evidenced by the significant depletion of antioxidant enzymes, namely, superoxide dismutase, catalase, peroxidase, glutathione-S-transferase, glutathione peroxidase, glutathione reductase, and glutathione contents, while increased lipid peroxidation (thiobarbituric acid-reactive substances contents). Administration of SHE significantly ameliorated (p < 0.01) the activity of antioxidant enzymes and reduced lipid peroxides. Coadministration revealed that S. asper extract can protect the kidney against CCl4-mediated oxidative damage by restoring the activity of antioxidant enzyme, due to the presence of plant bioactive constituents. © The Author(s) 2013.
Yonekura, Lina; Martins, Carolina Aguiar; Sampaio, Geni Rodrigues; Monteiro, Marcela Piedade; César, Luiz Antônio Machado; Mioto, Bruno Mahler; Mori, Clara Satsuki; Mendes, Thaíse Maria Nogueira; Ribeiro, Marcelo Lima; Arçari, Demetrius Paiva; Torres, Elizabeth Aparecida Ferraz da Silva
2016-07-13
We assessed the effects of guaraná (Paullinia cupana) consumption on plasma catechins, erythrocyte antioxidant enzyme activity (superoxide dismutase, catalase and glutathione peroxidase) and biomarkers of oxidative stress (ex vivo LDL oxidation, plasma total antioxidant status and ORAC, and lymphocyte single cell gel electrophoresis) in healthy overweight subjects. Twelve participants completed a 15-day run-in period followed by a 15-day intervention with a daily intake of 3 g guaraná seed powder containing 90 mg (+)-catechin and 60 mg (-)-epicatechin. Blood samples were taken on the first and last day of the intervention period, fasting and 1 h post-dose. The administration of guaraná increased plasma ORAC, while reducing ex vivo LDL oxidation (only in the first study day) and hydrogen peroxide-induced DNA damage in lymphocytes, at 1 h post-dose. Plasma catechin (0.38 ± 0.12 and 0.44 ± 0.18 nmol mL(-1)), epicatechin (0.59 ± 0.18 and 0.64 ± 0.25 nmol mL(-1)) and their methylated metabolites were observed at 1 h post-dose but were almost negligible after overnight fasting. The activities of catalase (in both study days) and glutathione peroxidase (in the last intervention day) increased at 1 h post-dose. Furthermore, the activity of both enzymes remained higher than the basal levels in overnight-fasting individuals on the last intervention day, suggesting a prolonged effect of guaraná that continues even after plasma catechin clearance. In conclusion, guaraná catechins are bioavailable and contribute to reduce the oxidative stress of clinically healthy individuals, by direct antioxidant action of the absorbed phytochemicals and up-regulation of antioxidant/detoxifying enzymes.
A virus-based single-enzyme nanoreactor
NASA Astrophysics Data System (ADS)
Comellas-Aragonès, Marta; Engelkamp, Hans; Claessen, Victor I.; Sommerdijk, Nico A. J. M.; Rowan, Alan E.; Christianen, Peter C. M.; Maan, Jan C.; Verduin, Benedictus J. M.; Cornelissen, Jeroen J. L. M.; Nolte, Roeland J. M.
2007-10-01
Most enzyme studies are carried out in bulk aqueous solution, at the so-called ensemble level, but more recently studies have appeared in which enzyme activity is measured at the level of a single molecule, revealing previously unseen properties. To this end, enzymes have been chemically or physically anchored to a surface, which is often disadvantageous because it may lead to denaturation. In a natural environment, enzymes are present in a confined reaction space, which inspired us to develop a generic method to carry out single-enzyme experiments in the restricted spatial environment of a virus capsid. We report here the incorporation of individual horseradish peroxidase enzymes in the inner cavity of a virus, and describe single-molecule studies on their enzymatic behaviour. These show that the virus capsid is permeable for substrate and product and that this permeability can be altered by changing pH.
Arakawa, Hidetoshi; Nakabayashi, Shigeo; Ohno, Ken-Ichi; Maeda, Masako
2012-04-01
Horseradish peroxidase (HRP) is generally used as a label enzyme in enzyme immunoassay (EIA). The procedure used for HRP detection in EIA is critical for sensitivity and precision. This paper describes a novel fluorimetric assay for horseradish peroxidase (HRP) using sesamol as substrate. The principle of the assay is as follow: sesamol (3,4-methylenedioxy phenol) is reacted enzymatically in the presence of hydrogen peroxide to produce dimeric sesamol. The dimer is fluorescent and can be detected sensitively at ex. 347 nm, em. 427 nm. The measurable range of HRP was 1.0×10 -18 to 1.0×10 -15 mol/assay, with a detection limit of 1.0×10 -18 mol/assay. The coefficient of variation (CV, n =8) was examined at each point on the standard curve, with a mean CV percentage of 3.8%. This assay system was applied to thyroid stimulating hormone (TSH) EIA using HRP as the label enzyme.
Chen, Chao; Shrestha, Ruben; Jia, Kaimin; Gao, Philip F.; Geisbrecht, Brian V.; Bossmann, Stefan H.; Shi, Jishu; Li, Ping
2015-01-01
Dye-decolorizing peroxidases (DyPs) comprise a new family of heme peroxidases, which has received much attention due to their potential applications in lignin degradation. A new DyP from Thermomonospora curvata (TcDyP) was identified and characterized. Unlike other A-type enzymes, TcDyP is highly active toward a wide range of substrates including model lignin compounds, in which the catalytic efficiency with ABTS (kcatapp/Kmapp = (1.7 × 107) m−1 s−1) is close to that of fungal DyPs. Stopped-flow spectroscopy was employed to elucidate the transient intermediates as well as the catalytic cycle involving wild-type (wt) and mutant TcDyPs. Although residues Asp220 and Arg327 are found necessary for compound I formation, His312 is proposed to play roles in compound II reduction. Transient kinetics of hydroquinone (HQ) oxidation by wt-TcDyP showed that conversion of the compound II to resting state is a rate-limiting step, which will explain the contradictory observation made with the aspartate mutants of A-type DyPs. Moreover, replacement of His312 and Arg327 has significant effects on the oligomerization and redox potential (E°′) of the enzyme. Both mutants were found to promote the formation of dimeric state and to shift E°′ to a more negative potential. Not only do these results reveal the unique catalytic property of the A-type DyPs, but they will also facilitate the development of these enzymes as lignin degraders. PMID:26205819
NASA Astrophysics Data System (ADS)
Semsang, Nuananong; Yu, LiangDeng
2013-07-01
Low-energy ion beam bombardment has been used to mutate a wide variety of plant species. To explore the indirect effects of low-energy ion beam on biological damage due to the free radical production in plant cells, the increase in antioxidant enzyme activities and lipid peroxidation level was investigated in ion-bombarded rice seeds. Local rice seeds were bombarded with nitrogen or argon ion beams at energies of 29-60 keV and ion fluences of 1 × 1016 ions cm-2. The activities of the antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST) and lipid peroxidation level were assayed in the germinated rice seeds after ion bombardment. The results showed most of the enzyme activities and lipid peroxidation levels in both the argon and nitrogen bombarded samples were higher than those in the natural control. N-ion bombardment could induce higher levels of antioxidant enzyme activities in the rice samples than the Ar-ion bombardment. Additional effects due to the vacuum condition were found to affect activities of some antioxidant enzymes and lipid peroxidation level. This study demonstrates that ion beam bombardment and vacuum condition could induce the antioxidant enzyme activity and lipid peroxidation level which might be due to free radical production in the bombarded rice seeds.
Jian, Siyang; Li, Jianwei; Chen, Ji; ...
2016-07-08
Nitrogen (N) fertilization affects the rate of soil organic carbon (SOC) decomposition by regulating extracellular enzyme activities (EEA). Extracellular enzymes have not been represented in global biogeochemical models. Understanding the relationships among EEA and SOC, soil N (TN), and soil microbial biomass carbon (MBC) under N fertilization would enable modeling of the influence of EEA on SOC decomposition. Based on 65 published studies, we synthesized the activities of α-1,4-glucosidase (AG), β-1,4-glucosidase (BG), β-d-cellobiosidase (CBH), β-1,4-xylosidase (BX), β-1,4-N-acetyl-glucosaminidase (NAG), leucine amino peptidase (LAP), urease (UREA), acid phosphatase (AP), phenol oxidase (PHO), and peroxidase (PEO) in response to N fertilization. Here, themore » proxy variables for hydrolytic C acquisition enzymes (C-acq), N acquisition (N-acq), and oxidative decomposition (OX) were calculated as the sum of AG, BG, CBH and BX; AG and LAP; PHO and PEO, respectively.« less
Effects of mercury and selenium on glutathione metabolism and oxidative stress in mallard ducks
Hoffman, D.J.; Heinz, G.H.
1998-01-01
Earlier studies reported on the toxicity and related oxidative stress of different forms of Se, including seleno-D,L-methionine, in mallards (Anas platyrhynchos). This study compares the effects of Se (seleno-D,L-methionine) and Hg (methylmercury chloride) separately and in combination. Mallard drakes received one of the following diets: untreated feed (controls), or feed containing 10 ppm Se, 10 ppm Hg, or 10 ppm Se in combination with 10 ppm Hg. After 10 weeks, blood, liver, and brain samples were collected for biochemical assays. The following clinical and biochemical alterations occurred in response to mercury exposure: hematocrit and hemoglobin concentrations decreased; activities of the enzymes glutathione (GSH) peroxidase (plasma and liver), glutathione-S-transferase (liver), and glucose-6-phosphate dehydrogenase (G-6-PDH) (liver and brain) decreased; hepatic oxidized glutathione (GSSG) concentration increased relative to reduced glutathione (GSH); and lipid peroxidation in the brain was evident as detected by increased thiobarbituric reactive substances (TBARS). Effects of Se alone included increased hepatic GSSG reductase activity and brain TBARS concentration. Se in combination with Hg partially or totally alleviated effects of Hg on GSH peroxidase, G-6-PDH, and GSSG. These findings are compared in relation to field observations for diving ducks and other aquatic birds. It is concluded that since both Hg and excess Se can affect thiol status, measurement of associated enzymes in conjunction with thiol status may be a useful bioindicator to discriminate between Hg and Se effects. The ability of Se to restore the activities of G-6-PDH, GSH peroxidase, and glutathione status involved in antioxidative defense mechanisms may be crucial to biological protection from the toxic effects of methyl mercury.
Uranium and cadmium provoke different oxidative stress responses in Lemna minor L.
Horemans, N; Van Hees, M; Van Hoeck, A; Saenen, E; De Meutter, T; Nauts, R; Blust, R; Vandenhove, H
2015-01-01
Common duckweed (Lemna minor L.) is ideally suited to test the impact of metals on freshwater vascular plants. Literature on cadmium (Cd) and uranium (U) oxidative responses in L. minor are sparse or, for U, non-existent. It was hypothesised that both metals impose concentration-dependent oxidative stress and growth retardation on L. minor. Using a standardised 7-day growth inhibition test, the adverse impact of these metals on L. minor growth was confirmed, with EC50 values for Cd and U of 24.1 ± 2.8 and 29.5 ± 1.9 μm, respectively, and EC10 values of 1.5 ± 0.2 and 6.5 ± 0.9 μm, respectively. The metal-induced oxidative stress response was compared through assessing the activity of different antioxidative enzymes [catalase, glutathione reductase, superoxide dismutase (SOD), ascorbate peroxidase (APOD), guaiacol peroxidase (GPOD) and syringaldizyne peroxidase (SPOD)]. Significant changes in almost all antioxidative enzymes indicated their importance in counteracting the U- and Cd-imposed oxidative burden. However, some striking differences were also observed. For activity of APODs and SODs, a biphasic but opposite response at low Cd compared to U concentrations was found. In addition, Cd (0.5-20 μm) strongly enhanced plant GPOD activity, whereas U inhibited it. Finally, in contrast to Cd, U up to 10 μm increased the level of chlorophyll a and b and carotenoids. In conclusion, although U and Cd induce similar growth arrest in L. minor, the U-induced oxidative stress responses, studied here for the first time, differ greatly from those of Cd. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.
Pires, Liliane Viana; Siviero-Miachon, Adriana Aparecida; Spinola-Castro, Angela Maria; Pimentel, José Alexandre Coelho; Nishimura, Luciana Sigueta; Maia, Carla Soraya Costa; Cozzolino, Silvia Maria Franciscato
2017-04-01
Studies about selenium status in patients with Turner syndrome (TS) are non-existent in the literature. The aim of this study was to evaluate selenium status in patients with TS, while considering the different ages of the studied population and the relation with body composition. In total, 33 patients with TS were evaluated and grouped according to their developmental stages (children, adolescents, and adults). Selenium concentrations in their plasma, erythrocytes, urine, and nails were determined by using hydride generation atomic absorption spectrometry and erythrocyte glutathione peroxidase activity were measured by using Randox commercial kits. Additionally, height, weight, body fat percentage, waist circumference, and waist-height ratio were measured to characterize the patients. No differences in the selenium concentrations in the plasma, erythrocyte, urine, and nails or in the glutathione peroxidase activity were observed among the age groups (p > 0.05). The evaluated selenium levels were less than the established normal ones. The patients with larger waist circumference, body fat percentage, body mass index, and waist-height ratio showed lower glutathione peroxidase enzyme activity (p = 0.023). The present study shows that most patients with TS are deficient in selenium and that those with a greater accumulation of body fat have a lower GPx activity.
Shin, Oon Ha; Kim, Dae Yeon; Seo, Yong Weon
2017-07-01
The importance of the effect of phytochemical accumulation in wheat grain on grain physiology has been recognised. In this study, we tracked phytochemical concentration in the seed coat of purple wheat during the water-imbibition phase and also hypothesised that the speed of germination was only relevant to its initial phytochemical concentration. The results indicate that the speed of germination was significantly reduced in the darker grain groups within the purple wheat. Total phenol content was slightly increased in all groups compared to their initial state, but the levels of other phytochemicals varied among groups. It is revealed that anthocyanin was significantly degraded during the water imbibition stage. Also, the activities of peroxidase, ascorbate peroxidase, catalase, glutathione S-transferase, glutathione reductase, and glutathione peroxidase in each grain colour group did not correlated with germination speed. Overall antioxidant activity was reduced as imbibition progressed in each group. Generally, darker grain groups showed higher total antioxidant activities than did lighter grain groups. These findings suggested that the reduced activity of reactive oxygen species, as controlled by internal antioxidant enzymes and phytochemicals, related with germination speed during the water imbibition stage in grains with greater depth of purple colouring. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Estupiñán, Mónica; Álvarez-García, Daniel; Barril, Xavier; Diaz, Pilar; Manresa, Angeles
2015-01-01
As previously reported, P. aeruginosa genes PA2077 and PA2078 code for 10S-DOX (10S-Dioxygenase) and 7,10-DS (7,10-Diol Synthase) enzymes involved in long-chain fatty acid oxygenation through the recently described oleate-diol synthase pathway. Analysis of the amino acid sequence of both enzymes revealed the presence of two heme-binding motifs (CXXCH) on each protein. Phylogenetic analysis showed the relation of both proteins to bacterial di-heme cytochrome c peroxidases (Ccps), similar to Xanthomonas sp. 35Y rubber oxidase RoxA. Structural homology modelling of PA2077 and PA2078 was achieved using RoxA (pdb 4b2n) as a template. From the 3D model obtained, presence of significant amino acid variations in the predicted heme-environment was found. Moreover, the presence of palindromic repeats located in enzyme-coding regions, acting as protein evolution elements, is reported here for the first time in P. aeruginosa genome. These observations and the constructed phylogenetic tree of the two proteins, allow the proposal of an evolutionary pathway for P. aeruginosa oleate-diol synthase operon. Taking together the in silico and in vivo results obtained we conclude that enzymes PA2077 and PA2078 are the first described members of a new subfamily of bacterial peroxidases, designated as Fatty acid-di-heme Cytochrome c peroxidases (FadCcp). PMID:26154497
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Haihang; Yang, Kuikun; Tao, Jing
Enzyme-based colorimetric assays have been widely used in research labs and clinical diagnosis for decades. Nevertheless, as constrained by the performance of enzymes, their detection sensitivity has not been substantially improved in recent years, which inhibits many critical applications such as early detection of cancers. In this work, we demonstrate an enzyme-free signal amplification technique, based on gold vesicles encapsulated with Pd-Ir nanoparticles as peroxidase mimics, for colorimetric assay of disease biomarkers with significantly enhanced sensitivity. This technique overcomes the intrinsic limitations of enzymes, thanks to the superior catalytic efficiency of peroxidase mimics and the efficient loading and release ofmore » these mimics. Using human prostate surface antigen as a model biomarker, we demonstrated that the enzyme-free assay could reach a limit of detection at the femtogram/mL level, which is over 10 3-fold lower than that of conventional enzyme-based assay when the same antibodies and similar procedure were used.« less
Ye, Haihang; Yang, Kuikun; Tao, Jing; ...
2017-01-30
Enzyme-based colorimetric assays have been widely used in research labs and clinical diagnosis for decades. Nevertheless, as constrained by the performance of enzymes, their detection sensitivity has not been substantially improved in recent years, which inhibits many critical applications such as early detection of cancers. In this work, we demonstrate an enzyme-free signal amplification technique, based on gold vesicles encapsulated with Pd-Ir nanoparticles as peroxidase mimics, for colorimetric assay of disease biomarkers with significantly enhanced sensitivity. This technique overcomes the intrinsic limitations of enzymes, thanks to the superior catalytic efficiency of peroxidase mimics and the efficient loading and release ofmore » these mimics. Using human prostate surface antigen as a model biomarker, we demonstrated that the enzyme-free assay could reach a limit of detection at the femtogram/mL level, which is over 10 3-fold lower than that of conventional enzyme-based assay when the same antibodies and similar procedure were used.« less
Baldrian, Petr; in der Wiesche, Carsten; Gabriel, Jiří; Nerud, František; Zadražil, František
2000-01-01
The white-rot fungus Pleurotus ostreatus was able to degrade the polycyclic aromatic hydrocarbons (PAHs) benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[a,h]anthracene, and benzo[ghi]perylene in nonsterile soil both in the presence and in the absence of cadmium and mercury. During 15 weeks of incubation, recovery of individual compounds was 16 to 69% in soil without additional metal. While soil microflora contributed mostly to degradation of pyrene (82%) and benzo[a]anthracene (41%), the fungus enhanced the disappearance of less-soluble polycyclic aromatic compounds containing five or six aromatic rings. Although the heavy metals in the soil affected the activity of ligninolytic enzymes produced by the fungus (laccase and Mn-dependent peroxidase), no decrease in PAH degradation was found in soil containing Cd or Hg at 10 to 100 ppm. In the presence of cadmium at 500 ppm in soil, degradation of PAHs by soil microflora was not affected whereas the contribution of fungus was negligible, probably due to the absence of Mn-dependent peroxidase activity. In the presence of Hg at 50 to 100 ppm or Cd at 100 to 500 ppm, the extent of soil colonization by the fungus was limited. PMID:10831426
Xue, Beibei; Zhang, Aying; Jiang, Mingyi
2009-03-01
Using pharmacological and biochemical approaches, the role of maize polyamine oxidase (MPAO) in abscisic acid (ABA)-induced antioxidant defense in leaves of maize (Zea mays L.) plants was investigated. Exogenous ABA treatment enhanced the expression of the MPAO gene and the activities of apoplastic MPAO. Pretreatment with two different inhibitors for apoplastic MPAO partly reduced hydrogen peroxide (H2O2) accumulation induced by ABA and blocked the ABA-induced expression of the antioxidant genes superoxide dismutase 4 and cytosolic ascorbate peroxidase and the activities of the cytosolic antioxidant enzymes. Treatment with spermidine, the optimum substrate of MPAO, also induced the expression and the activities of the antioxidant enzymes, and the upregulation of the antioxidant enzymes was prevented by two inhibitors of MPAO and two scavengers of H2O2. These results suggest that MPAO contributes to ABA-induced cytosolic antioxidant defense through H2O2, a Spd catabolic product.
Glucocorticoid Regulation of Rat Renal Sodium Potassium Adenosine Triphosphatase
1990-03-29
sequences; restriction enzymes fluorescein isothiocyanate glomerular filtration rate Horseradish Peroxidase immunoglobulin G kllodalton Magnesium...studies were conducted, in this project , to determine whether the observed changes in NaK-ATPase activity occurred after, and possibly as the result of...excitable tissue required for nerve impulse transmission and 6 muscle contraction (Skou, 1957), the functioning of hepatic amino acid and bile acid
Li, Yanchun; Wang, Zhi; Xu, Xudong; Jin, Liqiang
2015-12-01
For improving stability of immobilized white-rot fungus to treat various effluents, Phanerochaete chrysosporium cells and the combined cross-link enzyme aggregates (combi-CLEAs) prepared from Trametes versicolor were co-immobilized into the Ca-alginate gel particles in this paper. The activity yields of obtained combi-CLEAs were 42.7% for lignin peroxidases (LiPs), 31.4% for manganese peroxidases (MnPs) and 40.4% for laccase (Lac), respectively. And their specific activities were 30.2U/g as combi-CLEAs-LiPs, 9.5 U/g as combi-CLEAs-MnPs and 28.4 U/g as combi-CLEAs-Lac. Further, the present of the combi-CLEAs in the particles extremely improved their ability to degrade the dyes. Compared to the immobilized Ph. chrysosporium without the combi-CLEAs, the co-immobilized particles enhanced the decolorized rate of Acid Violet 7 (from 45.2% to 93.4%) and Basic Fuchsin (from 12.1% to 67.9%). In addition, the addition of the combi-CLEAs improved the adaptability of the white-rot fungal particles to adverse environmental conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Platinum nanozymes recover cellular ROS homeostasis in an oxidative stress-mediated disease model
NASA Astrophysics Data System (ADS)
Moglianetti, Mauro; de Luca, Elisa; Pedone, Deborah; Marotta, Roberto; Catelani, Tiziano; Sartori, Barbara; Amenitsch, Heinz; Retta, Saverio Francesco; Pompa, Pier Paolo
2016-02-01
In recent years, the use of nanomaterials as biomimetic enzymes has attracted great interest. In this work, we show the potential of biocompatible platinum nanoparticles (Pt NPs) as antioxidant nanozymes, which combine abundant cellular internalization and efficient scavenging activity of cellular reactive oxygen species (ROS), thus simultaneously integrating the functions of nanocarriers and antioxidant drugs. Careful toxicity assessment and intracellular tracking of Pt NPs proved their cytocompatibility and high cellular uptake, with compartmentalization within the endo/lysosomal vesicles. We have demonstrated that Pt NPs possess strong and broad antioxidant properties, acting as superoxide dismutase, catalase, and peroxidase enzymes, with similar or even superior performance than natural enzymes, along with higher adaptability to the changes in environmental conditions. We then exploited their potent activity as radical scavenging materials in a cellular model of an oxidative stress-related disorder, namely human Cerebral Cavernous Malformation (CCM) disease, which is associated with a significant increase in intracellular ROS levels. Noteworthily, we found that Pt nanozymes can efficiently reduce ROS levels, completely restoring the cellular physiological homeostasis.In recent years, the use of nanomaterials as biomimetic enzymes has attracted great interest. In this work, we show the potential of biocompatible platinum nanoparticles (Pt NPs) as antioxidant nanozymes, which combine abundant cellular internalization and efficient scavenging activity of cellular reactive oxygen species (ROS), thus simultaneously integrating the functions of nanocarriers and antioxidant drugs. Careful toxicity assessment and intracellular tracking of Pt NPs proved their cytocompatibility and high cellular uptake, with compartmentalization within the endo/lysosomal vesicles. We have demonstrated that Pt NPs possess strong and broad antioxidant properties, acting as superoxide dismutase, catalase, and peroxidase enzymes, with similar or even superior performance than natural enzymes, along with higher adaptability to the changes in environmental conditions. We then exploited their potent activity as radical scavenging materials in a cellular model of an oxidative stress-related disorder, namely human Cerebral Cavernous Malformation (CCM) disease, which is associated with a significant increase in intracellular ROS levels. Noteworthily, we found that Pt nanozymes can efficiently reduce ROS levels, completely restoring the cellular physiological homeostasis. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08358c
Tong, Ying; Jiao, Xiangyu; Yang, Hankun; Wen, Yongqiang; Su, Lei; Zhang, Xueji
2016-04-01
Herein we report for the first time fabrication of reverse bumpy ball (RBB)-type-nanoreactor-based flexible peroxidase-mimic membrane reactors (MRs). The RBB-type nanoreactors with gold nanoparticles embedded in the inner walls of carbon shells were loaded on nylon membranes through a facile filtration approach. The as-prepared flexible catalytic membrane was studied as a peroxidase-mimic MR. It was found that the obtained peroxidase-mimic MR could exhibit several advantages over natural enzymes, such as facile and good recyclability, long-term stability and easy storage. Moreover, the RBB NS-modified nylon MRs as a peroxidase mimic provide a useful colorimetric assay for H₂O₂.
Plotnikov, Evgeny V; Glukhova, Lubov B; Sokolyanskaya, Ludmila O; Karnachuk, Olga V; Solioz, Marc
2016-01-01
We compared cold and hot wood extracts of 3 endemic Siberian trees-namely, Prunus padus (bird cherry), Populus tremula (aspen), and Betula sp. (birch)-on biomass production and laccase and peroxidase secretion in submerged cultures by the medicinal mushroom Lentinus edodes. Of the conditions tested, only hot Prunus extracts stimulated biomass production, whereas all extracts stimulated laccase and peroxidase secretion, albeit to different extents. A large, differential stimulation of manganese peroxidase was observed by hot Prunus extracts. The results highlight important differences between tree species in the stimulation of biomass and enzyme production by L. edodes and point to potentially interesting stimulatory factors present in hot Prunus extracts. These findings are of relevance in the use of L. edodes for medicinal or biotechnological applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paice, M.G.; Reid, I.D.; Bourbonnais, R.
1993-01-01
The white rot fungus Trametes (Coriolus) versicolor delignifies and bleaches kraft pulp. However, the process is slow compared with chemical bleaching and the cellulose is also attacked. This study attempts to determine the enzymology of fungal delignification and then applies the relevant enzymes directly to the pulp. Lignin peroxidase and manganese peroxidase (MnP) have both been implicated in lignin biodegradations. However, the researchers show that MnP is the critical enzyme. It is produced by bleaching cultures of T. versicolor; its peak production occurs at the same time as the maximum rate of fungal culture bleaching, and the manganese-and peroxide-dependent demethylationmore » and delignification of kraft pulp occurs in vitro. 50 refs., 4 figs., 7 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Jing; Huang, Xiao; Sun, Shengfang
2012-05-14
Dehaloperoxidase (DHP), discovered in the marine terebellid polychaete Amphitrite ornata, is the first heme-containing globin with a peroxidase activity. The sequence and crystal structure of DHP argue that it evolved from an ancient O{sub 2} transport and storage globin. Thus, DHP retains an oxygen carrier function but also has the ability to degrade halophenol toxicants in its living environment. Sperm whale myoglobin (Mb) in the ferric state has a peroxidase activity {approx}10 times lower than that of DHP. The catalytic activity enhancement observed in DHP appears to have been generated mainly by subtle changes in the positions of the proximalmore » and distal histidine residues that appeared during DHP evolution. Herein, we report investigations into the mechanism of action of DHP derived from examination of 'peroxidase-like' Mb mutants and 'Mb-like' DHP mutants. The dehalogenation ability of wild-type Mb is augmented in the peroxidase-like Mb mutants (F43H/H64L, G65T, and G65I Mb) but attenuated in the Mb-like T56G DHP variant. X-ray crystallographic data show that the distal His residues in G65T Mb and G65I are positioned {approx}0.3 and {approx}0.8 {angstrom}, respectively, farther from the heme iron compared to that in the wild-type protein. The H93K/T95H double mutant Mb with the proximal His shifted to the 'DHP-like' position has an increased peroxidase activity. In addition, a better dehaloperoxidase (M86E DHP) was generated by introducing a negative charge near His89 to enhance the imidazolate character of the proximal His. Finally, only minimal differences in dehalogenation activities are seen among the exogenous ligand-free DHP, the acetate-bound DHP, and the distal site blocker L100F DHP mutant. Thus, we conclude that binding of halophenols in the internal binding site (i.e., distal cavity) is not essential for catalysis. This work provides a foundation for a new structure-function paradigm for peroxidases and for the molecular evolution of the dual-function enzyme DHP.« less
Energetic and Informative Interaction of Microwaves with Neurons and Enzymes
NASA Astrophysics Data System (ADS)
Maharramov, A. A.; Babazade, S. N.; Yusifov, E. Yu.; Gajiyev, A. M.
2007-04-01
Besides Purkinje Cells (PC) in cat cerebellum, experiments on Microwave-Living System interaction have been performed on some antioxidant enzymes - Super oxide dismutase (SOD), Catalase (C) and Glutathione peroxidase (GP) in the eye structures (pigment epithelium and neuronal structure - retina) in frogs, and on Glucose-6-Phosphatedehydrogenase (GPD) and Pyruvate-kinase (PK) in different organs - cerebellum, hypothalamus, liver and erythrocytes - of wistar albino rats. Exposure parameters of Microwaves of decimetre range (DRM) - total exposure, λ=65 cm, duration of exposition 10-20 minutes. According to the data obtained it may be concluded that, PC increasing their impulse activity irregularity, may react to the energetic (thermal) component of DRM action, whereas the result of informative (subtle) interaction between DRM and PC leads to the increase of regularity in electrophysiological activity of the latter. In the case of enzymes, in identification of the character of interactions, the type of the enzymes, the structure where an enzyme activity is studied and the physiological conditions related to such a factor as hunger, for example, take places. In this paper the effects of DRM on PC, G6PD and PK have been presented.
Zhou, Suiping; Sorokina, Elena M; Harper, Sandra; Li, Haitao; Ralat, Luis; Dodia, Chandra; Speicher, David W; Feinstein, Sheldon I; Fisher, Aron B
2016-05-01
Peroxiredoxin 6 (Prdx6) is a unique 1-Cys member of the peroxiredoxin family with both GSH peroxidase and phospholipase A2 (PLA2) activities. It is highly expressed in the lung where it plays an important role in antioxidant defense and lung surfactant metabolism. Glutathionylation of Prdx6 mediated by its heterodimerization with GSH S-transferase π (πGST) is required for its peroxidatic catalytic cycle. Recombinant human Prdx6 crystallizes as a homodimer and sedimentation equilibrium analysis confirmed that this protein exists as a high affinity dimer in solution. Based on measurement of molecular mass, dimeric Prdx6 that was oxidized to the sulfenic acid formed a sulfenylamide during storage. After examination of the dimer interface in the crystal structure, we postulated that the hydrophobic amino acids L145 and L148 play an important role in homodimerization of Prdx6 as well as in its heterodimerization with πGST. Oxidation of Prdx6 also was required for its heterodimerization. Sedimentation equilibrium analysis and the Duolink proximity ligation assay following mutation of the L145 and L148 residues of Prdx6 to Glu indicated greatly decreased dimerization propensity reflecting the loss of hydrophobic interactions between the protein monomers. Peroxidase activity was markedly reduced by mutation at either of the Leu sites and was essentially abolished by the double mutation, while PLA2 activity was unaffected. Decreased peroxidase activity following mutation of the interfacial leucines presumably is mediated via impaired heterodimerization of Prdx6 with πGST that is required for reduction and re-activation of the oxidized enzyme. Copyright © 2016 Elsevier Inc. All rights reserved.
Balsano, Evelyn; Esterhuizen-Londt, Maranda; Hoque, Enamul; Lima, Stephan Pflugmacher
2017-08-01
To investigate antioxidative and biotransformation enzyme responses in Mucor hiemalis towards cyanotoxins considering its use in mycoremediation applications. Catalase (CAT), glutathione reductase (GR), and glutathione peroxidase (GPx) in M. hiemalis maintained their activities at all tested microcystin-LR (MC-LR) exposure concentrations. Cytosolic glutathione S-transferase (GST) activity decreased with exposure to 100 µg MC-LR l -1 while microsomal GST remained constant. Cylindrospermopsin (CYN) at 100 µg l -1 led to an increase in CAT activity and inhibition of GR, as well as to a concentration-dependent GPx inhibition. Microsomal GST was inhibited at all concentrations tested. β-N-methylamino-L-alanine (BMAA) inhibited GR activity in a concentration-dependent manner, however, CAT, GPx, and GST remained unaffected. M. hiemalis showed enhanced oxidative stress tolerance and intact biotransformation enzyme activity towards MC-LR and BMAA in comparison to CYN, confirming its applicability in bioreactor technology in terms of viability and survival in their presence.
Zhang, Yu; Chen, Bingxian; Xu, Zhenjiang; Shi, Zhaowan; Chen, Shanli; Huang, Xi; Chen, Jianxun; Wang, Xiaofeng
2014-01-01
Endosperm cap (CAP) weakening and embryo elongation growth are prerequisites for the completion of lettuce seed germination. Although it has been proposed that the cell wall loosening underlying these processes results from an enzymatic mechanism, it is still unclear which enzymes are involved. Here it is shown that reactive oxygen species (ROS), which are non-enzymatic factors, may be involved in the two processes. In Guasihong lettuce seeds imbibed in water, O2·– and H2O2 accumulated and peroxidase activity increased in the CAP, whereas its puncture force decreased. In addition, in the radicle, the increase in embryo growth potential was accompanied by accumulation of O2·– and an increase in peroxidase activity. Imbibing seeds in 0.3% sodium dichloroisocyanurate (SDIC) reduced endosperm viability and the levels of O2·–, H2O2, and peroxidase activity in the CAP, whereas the decrease in its puncture force was inhibited. However, in the embryo, SDIC did not affect the accumulation of O2·–, peroxidase activity, and the embryo growth potential. As a result, SDIC caused atypical germination, in which the endosperm ruptured at the boundary between the CAP and lateral endosperm. ROS scavengers and ROS generation inhibitors inhibited the CAP weakening and also decreased the embryo growth potential, thus decreasing the percentage of seed germination. Exogenous ROS and ROS generation inducers increased the percentage of CAP rupture to some extent, and the addition of H2O2 to 0.3% SDIC enabled some seeds to undergo typical germination. PMID:24744430
Kuuskeri, Jaana; Häkkinen, Mari; Laine, Pia; Smolander, Olli-Pekka; Tamene, Fitsum; Miettinen, Sini; Nousiainen, Paula; Kemell, Marianna; Auvinen, Petri; Lundell, Taina
2016-01-01
The white-rot Agaricomycetes species Phlebia radiata is an efficient wood-decaying fungus degrading all wood components, including cellulose, hemicellulose, and lignin. We cultivated P. radiata in solid state cultures on spruce wood, and extended the experiment to 6 weeks to gain more knowledge on the time-scale dynamics of protein expression upon growth and wood decay. Total proteome and transcriptome of P. radiata were analyzed by peptide LC-MS/MS and RNA sequencing at specific time points to study the enzymatic machinery on the fungus' natural growth substrate. According to proteomics analyses, several CAZy oxidoreductase class-II peroxidases with glyoxal and alcohol oxidases were the most abundant proteins produced on wood together with enzymes important for cellulose utilization, such as GH7 and GH6 cellobiohydrolases. Transcriptome additionally displayed expression of multiple AA9 lytic polysaccharide monooxygenases indicative of oxidative cleavage of wood carbohydrate polymers. Large differences were observed for individual protein quantities at specific time points, with a tendency of enhanced production of specific peroxidases on the first 2 weeks of growth on wood. Among the 10 class-II peroxidases, new MnP1-long, characterized MnP2-long and LiP3 were produced in high protein abundances, while LiP2 and LiP1 were upregulated at highest level as transcripts on wood together with the oxidases and one acetyl xylan esterase, implying their necessity as primary enzymes to function against coniferous wood lignin to gain carbohydrate accessibility and fungal growth. Majority of the CAZy encoding transcripts upregulated on spruce wood represented activities against plant cell wall and were identified in the proteome, comprising main activities of white-rot decay. Our data indicate significant changes in carbohydrate-active enzyme expression during the six-week surveillance of P. radiata growing on wood. Response to wood substrate is seen already during the first weeks. The immediate oxidative enzyme action on lignin and wood cell walls is supported by detected lignin substructure sidechain cleavages, release of phenolic units, and visual changes in xylem cell wall ultrastructure. This study contributes to increasing knowledge on fungal genetics and lignocellulose bioconversion pathways, allowing us to head for systems biology, development of biofuel production, and industrial applications on plant biomass utilizing wood-decay fungi.
Zhang, Zhengke; Huber, Donald J; Qu, Hongxia; Yun, Ze; Wang, Hui; Huang, Zihui; Huang, Hua; Jiang, Yueming
2015-03-15
'Guiwei' litchi fruit were treated with 5 ga.i. L(-1) apple polyphenols (APP) and then stored at 25°C to investigate the effects on pericarp browning. APP treatment effectively reduced pericarp browning and retarded the loss of red colour. APP-treated fruit exhibited higher levels of anthocyanins and cyanidin-3-rutinoside, which correlated with suppressed anthocyanase activity. APP treatment also maintained membrane integrity and reduced oxidative damage, as indicated by a lower relative leakage rate, malondialdehyde content, and reactive oxygen species (ROS) generation. The data suggest that decompartmentalisation of peroxidase and polyphenoloxidase and respective browning substrates was reduced. In addition, APP treatment enhanced the activities of antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase), as well as non-enzymatic antioxidant capacity (DPPH radical-scavenging activity and reducing power), which might be beneficial in scavenging ROS. We propose that APP treatment is a promising safe strategy for controlling postharvest browning of litchi fruit. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ntougias, Spyridon; Baldrian, Petr; Ehaliotis, Constantinos; Nerud, Frantisek; Antoniou, Theodoros; Merhautová, Věra; Zervakis, Georgios I
2012-07-01
Thirty-nine white-rot fungi belonging to nine species of Agaricomycotina (Basidiomycota) were initially screened for their ability to decrease olive-mill wastewater (OMW) phenolics. Four strains of Ganoderma australe, Ganoderma carnosum, Pleurotus eryngii and Pleurotus ostreatus, were selected and further examined for key-aspects of the OMW biodegradation process. Fungal growth in OMW-containing batch cultures resulted in significant decolorization (by 40-46% and 60-65% for Ganoderma and Pleurotus spp. respectively) and reduction of phenolics (by 64-67% and 74-81% for Ganoderma and Pleurotus spp. respectively). COD decrease was less pronounced (12-29%). Cress-seeds germination increased by 30-40% when OMW was treated by Pleurotus strains. Toxicity expressed as inhibition of Aliivibrio fischeri luminescence was reduced in fungal-treated OMW samples by approximately 5-15 times compared to the control. As regards the pertinent enzyme activities, laccase and Mn-independent peroxidase were detected for Ganoderma spp. during the entire incubation period. In contrast, Pleurotus spp. did not exhibit any enzyme activities at early growth stages; instead, high laccase (five times greater than those of Ganoderma spp.) and Mn peroxidases activities were determined at the end of treatment. OMW decolorization by Ganoderma strains was strongly correlated to the reduction of phenolics, whereas P. eryngii laccase activity was correlated with the effluent's decolorization. Copyright © 2012 Elsevier Ltd. All rights reserved.
Purification and characterization of Mn-peroxidase from Musa paradisiaca (banana) stem juice.
Yadav, Pratibha; Singh, V K; Yadav, Meera; Singh, Sunil Kumar; Yadava, Sudha; Yadav, K D S
2012-02-01
Mn-peroxidase (MnP), a biotechnologically important enzyme was purified for the first time from a plant source Musa paradisiaca (banana) stem, which is an agro-waste easily available after harvest of banana fruits. MnP was earlier purified only from the fungal sources. The enzyme was purified from stem juice by ultrafiltration and anion-exchange column chromatography on diethylamino ethylcellulose with 8-fold purification and purification yield of 65%. The enzyme gave a single protein band in SDS-PAGE corresponding to molecular mass 43 kDa. The Native-PAGE of the enzyme also gave a single protein band, confirming the purity of the enzyme. The UV/VIS spectrum of the purified enzyme differed from the other heme peroxidases, as the Soret band was shifted towards lower wavelength and the enzyme had an intense absorption band around 250 nm. The K(m) values using MnSO4 and H2O2 as the substrates of the purified enzyme were 21.0 and 9.5 microM, respectively. The calculated k(cat) value of the purified enzyme using Mn(II) as the substrate in 50 mM lactate buffer (pH 4.5) at 25 degrees C was 6.7s(-1), giving a k(cat)/K(m) value of 0.32 microM(-1)s(-1). The k(cat) value for the MnP-catalyzed reaction was found to be dependent of the Mn(III) chelator molecules malonate, lactate and oxalate, indicating that the enzyme oxidized chelated Mn(II) to Mn(III). The pH and temperature optima of the enzyme were 4.5 and 25 degrees C, respectively. The enzyme in combination with H2O2 liberated bromine and iodine in presence of KBr and KI respectively. All these enzymatic characteristics were similar to those of fungal MnP. The enzyme has the potential as a green brominating and iodinating agent in combination with KBr/KI and H2O2.
Biotechnological advances towards an enhanced peroxidase production in Pichia pastoris.
Krainer, Florian W; Gerstmann, Michaela A; Darnhofer, Barbara; Birner-Gruenberger, Ruth; Glieder, Anton
2016-09-10
Horseradish peroxidase (HRP) is a high-demand enzyme for applications in diagnostics, bioremediation, biocatalysis and medicine. Current HRP preparations are isolated from horseradish roots as mixtures of biochemically diverse isoenzymes. Thus, there is a strong need for a recombinant production process enabling a steady supply with enzyme preparations of consistent high quality. However, most current recombinant production systems are limited at titers in the low mg/L range. In this study, we used the well-known yeast Pichia pastoris as host for recombinant HRP production. To enhance recombinant enzyme titers we systematically evaluated engineering approaches on the secretion process, coproduction of helper proteins, and compared expression from the strong methanol-inducible PAOX1 promoter, the strong constitutive PGAP promoter, and a novel bidirectional promoter PHTX1. Ultimately, coproduction of HRP and active Hac1 under PHTX1 control yielded a recombinant HRP titer of 132mg/L after 56h of cultivation in a methanol-independent and easy-to-do bioreactor cultivation process. With regard to the many versatile applications for HRP, the establishment of a microbial host system suitable for efficient recombinant HRP production was highly overdue. The novel HRP production platform in P. pastoris presented in this study sets a new benchmark for this medically relevant enzyme. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Xue, Renfeng; Wu, Xingbo; Wang, Yingjie; Zhuang, Yan; Chen, Jian; Wu, Jing; Ge, Weide; Wang, Lanfen; Wang, Shumin; Blair, Matthew W
2017-07-01
Plant peroxidases (POXs) are one of the most important redox enzymes in the defense responses. However, the large number of different plant POX genes makes it necessary to carefully confirm the function of each paralogous POX gene in specific tissues and disease interactions. Fusarium wilt is a devastating disease of common bean caused by Fusarium oxysporum f. sp. phaseoli. In this study, we evaluated a peroxidase gene, PvPOX1, from a resistant common bean genotype, CAAS260205 and provided direct evidence for PvPOX1's role in resistance by transforming the resistant allele into a susceptible common bean genotype, BRB130, via hairy root transformation using Agrobacterium rhizogenes. Analysis of PvPOX1 gene over-expressing hairy roots showed it increased resistance to Fusarium wilt both in the roots and the rest of transgenic plants. Meanwhile, the PvPOX1 expressive level, the peroxidase activity and hydrogen peroxide (H 2 O 2 ) accumulation were also enhanced in the interaction. The result showed that the PvPOX1 gene played an essential role in Fusarium wilt resistance through the occurrence of reactive oxygen species (ROS) induced hypersensitive response. Therefore, PvPOX1 expression was proven to be a valuable gene for further analysis which can strengthen host defense response against Fusarium wilt through a ROS activated resistance mechanism. Copyright © 2017 Elsevier B.V. All rights reserved.
Defense reactions of bean genotypes to bacterial pathogens in controlled conditions
NASA Astrophysics Data System (ADS)
Uysal, B.; Bastas, K. K.
2018-03-01
This study was focused on the role of antioxidant enzymes and total protein in imparting resistance against common bacterial blight caused by Xanthomonas axonopodis pv. phaseoli (Xap) and halo blight caused by Pseudomonas syringae pv. phaseolicola (Psp) in bean. Activities of Ascorbate peroxidase (APX), Catalase (CAT) and total protein were studied in resistant and susceptible bean genotypes. Five-day-old seedlings were inoculated with a bacterial suspension (108 CFU ml-1) and harvested at different time intervals (0, 12, 24 and 36 up to 72 h) under controlled growing conditions and assayed for antioxidant enzymes and total protein. Temporal increase of CAT, APX enzymes activities showed maximum activity at 12 h after both pathogens inoculation (hpi) in resistant cultivar, whereas in susceptible it increased at 72 h after both pathogens inoculation for CAT and 12, 24 h for APX enzymes. Maximum total protein activities were observed at 12 h and 24 h respectively after Xap, Psp inoculation (hpi) in resistant and maximum activities were observed at 24 h and 72 h respectively after Xap, Psp inoculation (hpi) in susceptible. Increase of antioxidant enzyme and total protein activities might be an important component in the defense strategy of resistance and susceptible bean genotypes against the bacterial infection. These findings suggest that disease protection is proportional to the amount of enhanced CAT, APX enzyme and total protein activity.
Zhu, Hongfang; Li, Xiaofeng; Zhai, Wen; Liu, Yang; Gao, Qianqian; Liu, Jinping; Ren, Li; Chen, Huoying; Zhu, Yuying
2017-01-01
Anthocyanins are secondary metabolites that contribute to red, blue, and purple colors in plants and are affected by light, but the effects of low light on the physiological responses of purple pak-choi plant leaves are still unclear. In this study, purple pak-choi seedlings were exposed to low light by shading with white gauze and black shading in a phytotron. The responses in terms of photosynthetic properties, carbohydrate metabolism, antioxidant enzyme activity, anthocyanin biosynthetic enzyme activity, and the relative chlorophyll and anthocyanin content of leaves were measured. The results showed that chlorophyll b, intracellular CO2 content, stomatal conductance and antioxidant activities of guaiacol peroxidase, catalase and superoxide dismutase transiently increased in the shade treatments at 5 d. The malondialdehyde content also increased under low light stress, which damages plant cells. With the extension of shading time (at 15 d), the relative chlorophyll a, anthocyanin and soluble protein contents, net photosynthetic rate, transpiration rate, stomata conductance, antioxidant enzyme activities, and activities of four anthocyanin biosynthetic enzymes decreased significantly. Thus, at the early stage of low light treatment, the chlorophyll b content increased to improve photosynthesis. When the low light treatment was extended, antioxidant enzyme activity and the activity of anthocyanin biosynthesis enzymes were inhibited, causing the purple pak-choi seedlings to fade from purple to green. This study provides valuable information for further deciphering genetic mechanisms and improving agronomic traits in purple pak-choi under optimal light requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hua; Li, Shuai; Si, Yanmei
Fe3O4 nanoparticles as nanocatalysts may present peroxidase-like catalysis activities and high electrocatalysis if loaded on conductive carbon nanotube (CNT) supports; however, their catalysis performances in an aqueous system might still be challenged by the poor aqueous dispersion of hydrophobic carbon supports and/or low stability of loaded iron catalysts. In this work, amphiphilic graphene oxide nanosheets were employed as “surfactant” to disperse CNTs to create stable graphene oxide-dispersed CNT (GCNT) supports in water for covalently loading cubic Fe3O4 nanoparticles with improved distribution and binding efficiency. Compared with original Fe3O4 nanos and CNT-loaded Fe3O4 nanocomplex, the prepared GCNT–Fe3O4 nanocomposite could achieve highermore » aqueous stability and, especially, much stronger peroxidase-like catalysis and electrocatalysis to H2O2, presumably resulting from the synergetic effects of two conductive carbon supports and cubic Fe3O4 nanocatalysts effectively loaded. Colorimetric and direct electrochemical detections of H2O2 and glucose using the GCNT–Fe3O4 nanocomposite were conducted with high detection sensitivities, demonstrating the feasibility of practical sensing applications. Such a magnetically recyclable “enzyme mimic” may circumvent some disadvantages of natural protein enzymes and common inorganic catalysts, featuring the multi-functions of high peroxidase-like catalysis, strong electrocatalysis, magnetic separation/recyclability, environmental stability, and direct H2O2 electrochemistry.« less
Gold nanoparticles bound on microgel particles and their application as an enzyme support
NASA Astrophysics Data System (ADS)
Xu, Jing; Zeng, Fang; Wu, Shuizhu; Liu, Xinxing; Hou, Chao; Tong, Zhen
2007-07-01
Submicron-sized poly(N-isopropyl acrylamide)/polyethyleneimine core-shell microgels were prepared in aqueous media by using tert-butyl hydroperoxide (TBHP) as an initiator, and then the gold nanoparticles (~8 nm) were formed on the surface of the microgels. The amino groups on the polyethyleneimine (PEI) chains act as the binder for the assembly of the gold nanoparticles/microgel complex. In aqueous media the microgels are highly stable with the gold nanoparticles on their extended PEI chains, and this multi-scale nanoparticle complex can be recovered from water and redispersed in water. The nanogold/microgel particles were conjugated with the enzymes horseradish peroxidase (HRP) and urease. It is found that under identical assay conditions the enzyme/nanogold/microgel systems exhibit enhanced biocatalytic activity over free enzymes in solution, especially at lower enzyme concentrations. In addition, compared to free HRP, the HRP/nanogold/microgel systems show higher activity at varied pHs and temperatures, as well as higher storage stability. Thus the novel nanogold/microgel particles can serve as an excellent support for enzymes.
Clough, Richard C; Pappu, Kameshwari; Thompson, Kevin; Beifuss, Katherine; Lane, Jeff; Delaney, Donna E; Harkey, Robin; Drees, Carol; Howard, John A; Hood, Elizabeth E
2006-01-01
Manganese peroxidase (MnP) has been implicated in lignin degradation and thus has potential applications in pulp and paper bleaching, enzymatic remediation and the textile industry. Transgenic plants are an emerging protein expression platform that offer many advantages over traditional systems, in particular their potential for large-scale industrial enzyme production. Several plant expression vectors were created to evaluate the accumulation of MnP from the wood-rot fungus Phanerochaete chrysosporium in maize seed. We showed that cell wall targeting yielded full-length MnP, whereas cytoplasmic localization resulted in multiple truncated peroxidase polypeptides as detected by immunoblot analysis. In addition, the use of a seed-preferred promoter dramatically increased the expression levels and reduced the negative effects on plant health. Multiple independent transgenic lines were backcrossed with elite inbred corn lines for several generations with the maintenance of high-level expression, indicating genetic stability of the transgene.
Ando, M; Katagiri, K; Yamamoto, S; Wakamatsu, K; Kawahara, I; Asanuma, S; Usuda, M; Sasaki, K
1997-01-01
To evaluate the age-related response of essential cell functions against peroxidative damage in hyperthermia, we studied the biochemical response to heat stress in both young and aged rats. Passive hyperthermia was immediately observed in rats after exposure to hot environments. In aged rats, the rectal temperature maintained thermal homeostasis and increased to the same degree as in young rats. In these aged animals, the damage from heat stress was more serious than in young animals. In aged rats under normal environmental conditions, hepatic cytosolic glutathione peroxidase (GSH peroxidase) activities were markedly higher than those activities in younger rats. Hepatic cytosolic GSH peroxidase activities were induced by heat stress in young rats but were decreased by hot environments in aged rats. Hepatic catalase activities in young rats were not affected by hot environments, whereas in aged rats, hepatic catalase activities were seriously decreased. Catalase activities in the kidney of aged rats were also reduced by hot environments. Lipid peroxidation in the liver was markedly induced in both young and aged rats. Because the protective enzymes for oxygen radicals in aged rats were decreased by hot environments, lipid peroxidation in the liver was highly induced. In aged rats, lipid peroxidation in intracellular structures such as mitochondria and microsomes was also markedly induced by hot environments. In both young and aged rats, hyperthermia greatly increased the development of hypertrophy and vacuolated degeneration in hepatic cells. In aged rats, both mitochondria and endoplasmic reticulum of the hepatic cells showed serious distortion in shape as a result of exposures to hot environments. Microsomal electron transport systems, such as cytochrome P450 monooxygenase activities, were seriously decreased by heat stress in aged rats but not in young rats. Although the mitochondrial electron transport systems were not affected by acute heat stress in young rats, their activities were simultaneously inhibited after long-lasting heat exposure. In isolated hepatic cells and polymorphonuclear leukocytes in animals, the 70-kDa heat shock-induced proteins were markedly increased by heat stress. In conclusion, the heat stress-inducible oxygen radical damage becomes more severe according to the age of rats. Because aging and hyperthermia have a synergistic effect on lipid peroxidation, protective enzyme activities for oxygen radicals may be essential for surviving and recovering from thermal injury in aged animals and also in humans. Images Figure 1. Figure 2. A Figure 2. B Figure 2. C Figure 2. D Figure 3. Figure 4. Figure 5. Figure 6. A Figure 6. B Figure 7. A Figure 7. B PMID:9294719
Yang, Jiali; Sun, Cui; Zhang, Yangyang; Fu, Da; Zheng, Xiaodong; Yu, Ting
2017-04-15
The study investigated the effect of γ-aminobutyric acid (GABA) on the control of alternaria rot in tomato fruit and the possible mechanism involved. Our results showed exogenous GABA could stimulate remarkable resistance to the alternaria rot, while it had no direct antifungal activity against Alternaria alternata. Moreover, the activities of antioxidant enzymes, including peroxidase, superoxide dismutase and catalase, along with the expression of these corresponding genes, were significantly induced in the GABA treatment. The obtained data suggested GABA induced resistance against the necrotrophic pathogen A. alternata, at least in part by activating antioxidant enzymes, restricting the levels of cell death caused by reactive oxygen species. Meanwhile, the key enzyme genes of GABA shunt, GABA transaminase and succinic-semialdehyde dehydrogenase, were found up-regulated in the GABA treatment. The activation of the GABA shunt might play a vital role in the resistance mechanism underpinning GABA-induced plant immunity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Steffen, K T; Hofrichter, M; Hatakka, A
2000-12-01
Within a screening program, 27 soil litter-decomposing basidiomycetes were tested for ligninolytic enzyme activities using agar-media containing 2,2'-azinobis(3-ethylbenzthiazoline-6-sulphonate), a humic acid or Mn2+ ions as indicator substrates. Most active species were found within the family Strophariaceae (Agrocybe praecox, Stropharia coronilla, S. rugosoannulata) and used for mineralisation experiments with a 14C-ring-labelled synthetic lignin (14C-DHP). The fungi mineralised around 25% of the lignin to 14CO2 within 12 weeks of incubation in a straw environment; about 20% of the lignin was converted to water-soluble fragments. Mn-peroxidase was found to be the predominant ligninolytic enzyme of all three fungi in liquid culture and its production was strongly enhanced in the presence of Mn2+ ions. The results of this study demonstrate that certain ubiquitous litter-decomposing basidiomycetes possess ligninolytic activities similar to the wood-decaying white-rot fungi, the most efficient lignin degraders in nature.
Factors contributing to enhanced freezing tolerance in wheat during frost hardening in the light.
Janda, Tibor; Szalai, Gabriella; Leskó, Kornélia; Yordanova, Rusina; Apostol, Simona; Popova, Losanka Petrova
2007-06-01
The interaction between light and temperature during the development of freezing tolerance was studied in winter wheat (Triticum aestivum L. var. Mv Emese). Ten-day-old plants were cold hardened at 5 degrees C for 12 days under normal (250 micromol m(-2)s(-1)) or low light (20 micromol m(-2)s(-1)) conditions. Some of the plants were kept at 20/18 degrees C for 12 days at high light intensity (500 micromol m(-2)s(-1)), which also increased the freezing tolerance of winter wheat. The freezing survival rate, the lipid composition, the antioxidant activity, and the salicylic acid content were investigated during frost hardening. The saturation level of hexadecanoic acid decreased not only in plants hardened at low temperature, but also, to a lesser extent, in plants kept under high light irradiation at normal growth temperature. The greatest induction of the enzymes glutathione reductase (EC 1.6.4.2.) and ascorbate peroxidase (EC 1.11.1.11.) occurred when the cold treatment was carried out in normal light, but high light intensity at normal, non-hardening temperature also increased the activity of these enzymes. The catalase (EC 1.11.1.6.) activity was also higher in plants grown at high light intensity than in the controls. The greatest level of induction in the activity of the guaiacol peroxidase (EC 1.11.1.7.) enzyme occurred under cold conditions with low light. The bound ortho-hydroxy-cinnamic acid increased by up to two orders of magnitude in plants that were cold hardened in normal light. Both high light intensity and low temperature hardening caused an increase in the free and bound salicylic acid content of the leaves. This increase was most pronounced in plants that were cold treated in normal light.
Canli, Esin G; Atli, Gülüzar; Canli, Mustafa
2017-03-01
In this study, Al 2 O 3 , CuO and TiO 2 nanoparticles (NPs) were administered to mature female rats (Rattus norvegicus var. albinos) via oral gavage (0, 0.5, 5, 50mg/kg b.w./day) for 14days to investigate their effects on 14 serum biomarkers and 4 antioxidant enzyme (catalase, superoxide dismutase, glutathione peroxidase, glutathione S-transferase) activities in the erythrocyte. Data showed that Al 2 O 3 did not cause any significant (P>0.05) change in the parameters, except few cases, while CuO and TiO 2 caused significant alterations in antioxidant system parameters of the erythrocytes. Activities of catalase and superoxide dismutase significantly decreased in CuO and TiO 2 administered rats. Oppositely, glutathione peroxidase activity increased in CuO and TiO 2 administered rats. There were no significant alterations in the activity of glutathione S-transferase in the erythrocytes. Levels of glucose, cholesterol, bilirubin, triglyceride, triiodothyronine (T3), estradiol, prolactin and immunoglobulin M (IgM) in the serum altered after some of NP administrations, whereas cortisol, protein, creatinine, blood urea nitrogen (BUN), thyroxine (T4) and immunoglobulin G (IgG) levels in the serum did not change significantly after any of NP administration. There were outstanding increases in the levels of bilirubin and prolactin and decreases in the levels of triglyceride and estradiol. The present study demonstrated that the antioxidant enzymes in the erythrocyte were generally affected from copper and titanium NPs, while aluminium and copper NPs caused more significant alterations in serum biomarkers. Copyright © 2017 Elsevier B.V. All rights reserved.
Acute toxicity and sublethal effects of gallic and pelargonic acids on the zebrafish Danio rerio.
Techer, Didier; Milla, Sylvain; Fontaine, Pascal; Viot, Sandrine; Thomas, Marielle
2015-04-01
Gallic and pelargonic acids are naturally found in a variety of plants and food products. Despite their extensive use in man-made applications, little is known regarding their potential risks to aquatic vertebrates. The aim of this work was to assess the acute toxicity of these polyphenolic and fatty acid compounds to the zebrafish. In order to get insights into sublethal effects, the enzyme activity of usual biomarkers related to oxidative stress and biotransformation were also assessed in fish. These latter included total superoxide dismutase, catalase as well as total glutathione peroxidase for antioxidant defence mechanisms and glutathione S-transferase for biotransformation related enzyme. Gallic acid was practically non-toxic (96-h lethal concentration (LC50) > 100 mg/L) whereas pelargonic acid was slightly toxic (96-h LC50 of 81.2 mg/L). Moreover, biomarker analyses indicated enhanced superoxide dismutase activity in fish exposed to 20, 40 and 100 mg/L of gallic acid compared to control. A dose-dependent induction of glutathione peroxidase and glutathione S-transferase was reported following gallic acid exposure at the tested concentrations of 10, 20 and 40 mg/L, with the exception of 100 mg/L of substance where basal activity levels were reported. In the case of pelargonic acid, there was no change in antioxidant enzyme activity while an inhibition of glutathione S-transferase was observed from organisms exposed to 45, 58 and 76 mg/L of test solution. The results concerning sublethal effects on biological parameters of zebrafish highlighted thereby the need for further investigations following chronic exposure to both organic acids.
Isolation of Thermophilic Lignin Degrading Bacteria from Oil-Palm Empty Fruit Bunch (EFB) Compost
NASA Astrophysics Data System (ADS)
Lai, C. M. T.; Chua, H. B.; Danquah, M. K.; Saptoro, A.
2017-06-01
Empty Fruit Bunch (EFB) is a potential and sustainable feedstock for bioethanol production due to its high cellulosic content and availability in Malaysia. Due to high lignin content of EFB and the lack of effective delignification process, commercial bioethanol production from EFB is presently not viable. Enzymatic delignification has been identified as one of the key steps in utilising EFB as a feedstock for bioethanol conversion. To date, limited work has been reported on the isolation of lignin degrading bacteria. Hence, there is a growing interest to search for new lignin degrading bacteria with greater tolerance to temperature and high level of ligninolytic enzymes for more effective lignin degradation. This study aimed to isolate and screen thermophilic ligninolytic microorganisms from EFB compost. Ten isolates were successfully isolated from EFB compost. Although they are not capable of decolorizing Methylene Blue (MB) dye under agar plate assay method, they are able to utilize lignin mimicked compound - guaiacol as a sole carbon on the agar plate assay. This infers that there is no correlation of ligninolytic enzymes with dye decolourization for all the isolates that have been isolated. However, they are able to produce ligninolytic enzymes (Lignin peroxidase, Manganese peroxidase, Laccase) in Minimal Salt Medium with Kraft Lignin (MSM-KL) with Lignin Peroxidase (LiP) as the predominant enzyme followed by Manganese Peroxidase (MnP) and Laccase (Lac). Among all the tested isolates, CLMT 29 has the highest LiP production up to 8.7673 U/mL following 24 h of growth.
Rioja, R; García, M T; Peña, M; González, G
2008-06-01
Continuous decolourisation of wastewater from molasses fermentation using mycelium of Trametes versicolor in pellets shape was performed in an airlift bioreactor (semi-pilot scale) with the aim of operating steadily for a long period, maintaining the colour removal activity. The influences of influent flow and glucose feed rate were tested. Induction of peroxidases secretion by Mn(2+) addition was also studied. The efficiency of the decolourisation process was followed by monitoring colour and enzymatic activities. The experimental results showed that continuous decolourisation in an airlift bioreactor can be considered a suitable alternative for treating molasses fermentation wastewater. A colour removal yield around 60% remained practically constant during 23 days under continuous operation. Laccase was found to be the main enzyme secreted by the strain, being responsible for the decolourisation process. Mn(2+) addition was not likely to induct manganese-dependent peroxidase secretion.
Enzyme dehydration using Microglassification™ preserves the protein's structure and function.
Aniket; Gaul, David A; Bitterfield, Deborah L; Su, Jonathan T; Li, Victoria M; Singh, Ishita; Morton, Jackson; Needham, David
2015-02-01
Controlled enzyme dehydration using a new processing technique of Microglassification™ has been investigated. Aqueous solution microdroplets of lysozyme, α-chymotrypsin, catalase, and horseradish peroxidase were dehydrated in n-pentanol, n-octanol, n-decanol, triacetin, or butyl lactate, and changes in their structure and function were analyzed upon rehydration. Water solubility and microdroplet dissolution rate in each solvent decreased in the order: butyl lactate > n-pentanol > triacetin > n-octanol > n-decanol. Enzymes Microglassified™ in n-pentanol retained higher activity (93%-98%) than n-octanol (78%-85%) or n-decanol (75%-89%), whereas those Microglassified™ in triacetin (36%-75%) and butyl lactate (48%-79%) retained markedly lower activity. FTIR spectroscopy analyses showed α-helix to β-sheet transformation for all enzymes upon Microglassification™, reflecting a loss of bound water in the dried state; however, the enzymes reverted to native-like conformation upon rehydration. Accelerated stressed-storage tests using Microglassified™ lysozyme showed a significant (p < 0.01) decrease in enzymatic activity from 46,560 ± 2736 to 31,060 ± 4327 units/mg after 3 months of incubation; however, it was comparable to the activity of the lyophilized formulation throughout the test period. These results establish Microglassification™ as a viable technique for enzyme preservation without affecting its structure or function. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Barsukova, M E; Tokareva, A I; Buslova, T S; Malinina, L I; Veselova, I A; Shekhovtsova, T N
2017-01-01
The kinetics of oxidation reactions of flavonoids, quercetin, dihydroquercetin, and epicatechin has been studied in the presence of biocatalysts of different natures: horseradish peroxidase, mushroom tyrosinase, and hemoglobin from bull blood. Comparison of the kinetic parameters of the oxidation reaction showed that peroxidase appeared to be the most effective biocatalyst in these processes. The specificity of the enzyme for quercetin increased with increasing the polarity of the solvent in a series of ethanol–acetonitrile–dimethyl sulfoxide.
Camillo, Luciana Rodrigues; Filadelfo, Ciro Ribeiro; Monzani, Paulo Sérgio; Corrêa, Ronan Xavier; Gramacho, Karina Peres; Micheli, Fabienne; Pirovani, Carlos Priminho
2013-12-01
The level of hydrogen peroxide (H2O2) in plants signalizes the induction of several genes, including that of ascorbate peroxidase (APX-EC 1.11.1.11). APX isoenzymes play a central role in the elimination of intracellular H2O2 and contribute to plant responses to diverse stresses. During the infection process in Theobroma cacao by Moniliophthora perniciosa oxidative stress is generated and the APX action recruited from the plant. The present work aimed to characterize the T. cacao APX involved in the molecular interaction of T. cacao-M. perniciosa. The peroxidase activity was analyzed in protein extracts from cocoa plants infected by M. perniciosa and showed the induction of peroxidases like APX in resistant cocoa plants. The cytosolic protein of T. cacao (GenBank: ABR68691.2) was phylogenetically analyzed in relation to other peroxidases from the cocoa genome and eight genes encoding APX proteins with conserved domains were also analyzed. The cDNA from cytosolic APX was cloned in pET28a and the recombinant protein expressed and purified (rTc-cAPX). The secondary structure of the protein was analyzed by Circular Dichroism (CD) displaying high proportion of α-helices when folded. The enzymatic assay shows stable activity using ascorbate and guaiacol as an electron donor for H2O2 reduction. The pH 7.5 is the optimum for enzyme activity. Chromatographic analysis suggests that rTc-cAPX is a homodimer in solution. Results indicate that the rTc-cAPX is correctly folded, stable and biochemically active. The purified rTc-cAPX presented biotechnological potential and is adequate for future structural and functional studies. Copyright © 2013 The Authors. Published by Elsevier Masson SAS.. All rights reserved.
Gajewska, Beata; Kaźmierczak, Beata; Kuźma-Kozakiewicz, Magdalena; Jamrozik, Zygmunt; Barańczyk-Kuźma, Anna
2015-01-01
Glutathione S-transferase pi (GSTP1) is a crucial enzyme in detoxification of electrophilic compounds and organic peroxides. Together with Se-dependent glutathione peroxidase (Se-GSHPx) it protects cells against oxidative stress which may be a primary factor implicated in motor neuron disease (MND) pathogenesis. We investigated GSTP1 polymorphisms and their relationship with GST and Se-GSTPx activities in a cohort of Polish patients with MND. Results were correlated with clinical phenotypes. The frequency of genetic variants for GSTP1 exon 5 (I105V) and exon 6 (A114V) was studied in 104 patients and 100 healthy controls using real-time polymerase chain reaction. GST transferase activity was determined in serum with 1-chloro-2,4-dinitrobenzene, its peroxidase activity with cumene hydroperoxide, and Se-GSHPx activity with hydrogen peroxide. There were no differences in the prevalence of GSTP1 polymorphism I105V and A114V between MND and controls, however the occurrence of CT variant in codon 114 was associated with a higher risk for MND. GSTP1 polymorphisms were less frequent in classic ALS than in progressive bulbar palsy. In classic ALS C* (heterozygous I /V and A /V) all studied activities were significantly lower than in classic ALS A* (homozygous I /I and A/A). GST peroxidase activity and Se-GSHPx activity were lower in classic ALS C* than in control C*, but in classic ALS A* Se-GSHPx activity was significantly higher than in control A*. It can be concluded that the presence of GSTP1 A114V but not I105V variant increases the risk of MND, and combined GSTP1 polymorphisms in codon 105 and 114 may result in lower protection of MND patients against the toxicity of electrophilic compounds, organic and inorganic hydroperoxides.
Olfactory cytochrome P-450. Studies with suicide substrates of the haemoprotein.
Reed, C J; Lock, E A; De Matteis, F
1988-01-01
1. The olfactory epithelium of male hamsters has been found to be extremely active in the cumene hydroperoxide-supported oxidation of tetramethylphenylenediamine, and this peroxidase activity has been shown to be cytochrome P-450-dependent. 2. The interaction of a series of suicide substrates of cytochrome P-450 with the hepatic and olfactory mono-oxygenase systems has been assessed by determination of peroxidase, 7-ethoxycoumarin O-de-ethylase (ECOD) and 7-ethoxyresorufin O-de-ethylase (EROD) activities after treatment in vivo with these compounds. Chloramphenicol, OOS-trimethylphosphorothiolate and two dihydropyridines [DDC (3,5-diethoxycarbonyl-1,4-dihydrocollidine) and 4-ethyl DDC (3,5-diethoxycarbonyl-4-ethyl-1,4-dihydro-2,6-dimethylpyridine)] all caused similar percentage inhibitions of hepatic and olfactory activities, but the absolute amounts of enzymic activity lost were considerably greater in the latter tissue. In contrast, halothane had little effect upon hepatic cytochrome P-450-dependent reactions, whereas it severely inhibited those of the olfactory epithelium. 3. The time course of loss and recovery of hepatic and olfactory peroxidase, ECOD and EROD activities after a single dose of 4-ethyl DDC was studied. The rates of loss of activity observed were very similar, irrespective of tissue or reaction examined. In the olfactory epithelium, all three activities recovered concurrently and at a rate similar to that of the hepatic peroxidase activity. In contrast, the hepatic de-ethylation of 7-ethoxycoumarin and 7-ethoxy-resorufin recovered significantly more rapidly. 4. It is suggested that this behaviour is due to 4-ethyl DDC acting not only as a suicidal inhibitor but also as an inducer of certain forms of cytochrome P-450 in the liver; in the olfactory epithelium, however, inactivation, but not induction, occurs. Classical inducing agents were reported to have no effect upon olfactory cytochrome P-450, and in the present study neither phenobarbitone nor beta-naphthoflavone treatment had any effect upon olfactory cytochrome P-450-dependent reactions, although it induced those of the liver. PMID:3263118
Rekik, Hatem; Nadia, Zaraî Jaouadi; Bejar, Wacim; Kourdali, Sidali; Belhoul, Mouna; Hmidi, Maher; Benkiar, Amina; Badis, Abdelmalek; Sallem, Naim; Bejar, Samir; Jaouadi, Bassem
2015-02-01
A novel extracellular lignin peroxidase (called LiP-SN) was produced and purified from a newly isolated Streptomyces griseosporeus strain SN9. The findings revealed that the pure enzyme was a monomeric protein with an estimated molecular mass of 43 kDa and a Reinheitzahl value of 1.63. The 19 N-terminal residue sequence of LiP-SN showed high homology with those of Streptomyces peroxidases. Its optimum pH and temperature were pH 8.5 and 65 °C, respectively. The enzyme was inhibited by sodium azide and potassium cyanide, suggesting the presence of heme components in its tertiary structure. Its catalytic efficiency was higher than that of the peroxidase from Streptomyces albidoflavus strain TN644. Interestingly, LiP-SN showed marked dye-decolorization efficiency and stability toward denaturing, oxidizing, and bleaching agents, and compatibility with EcoVax and Dipex as laundry detergents for 48 h at 40 °C. These properties make LiP-SN a potential candidate for future applications in distaining synthetic dyes and detergent formulations. Copyright © 2014 Elsevier B.V. All rights reserved.
Protective effects of Sonchus asper against KBrO3 induced lipid peroxidation in rats
2012-01-01
Background Sonchus asper is traditionally used in Pakistan for the treatment of reproductive dysfunction and oxidative stress. The present investigation was aimed to evaluate chloroform extract of Sonchus asper (SACE) against potassium bromate-induced reproductive stress in male rats. Methods 20 mg/kg body weight (b.w.) potassium bromate (KBrO3) was induced in 36 rats for four weeks and checked the protective efficacy of SACE at various hormonal imbalances, alteration of antioxidant enzymes, and DNA fragmentation levels. High performance chromatography (HPLC) was used for determination of bioactive constituents responsible. Results The level of hormonal secretion was significantly altered by potassium bromate. DNA fragmentation%, activity of antioxidant enzymes; catalase (CAT), peroxidase (POD), superoxide dismutase (SOD) and phase II metabolizing enzymes viz; glutathione reductase (GSR), glutathione peroxidase (GSHpx), glutathione-S-tansase (GST) and reduced glutathione (GSH) was decreased while hydrogen per oxide contents and thiobarbituric acid reactive substances (TBARS) were increased with KBrO3 treatment. Treatment with SACE effectively ameliorated the alterations in the biochemical markers; hormonal and molecular levels while HPLC characterization revealed the presence of catechin, kaempferol, rutin and quercetin. Conclusion Protective effects of Sonchus asper vs. KBrO3 induced lipid peroxidation might be due to bioactive compound present in SACE. PMID:23186106
Protective effects of Sonchus asper against KBrO3 induced lipid peroxidation in rats.
Khan, Rahmat Ali; Khan, Muhammad Rashid; Sahreen, Sumaira
2012-11-27
Sonchus asper is traditionally used in Pakistan for the treatment of reproductive dysfunction and oxidative stress. The present investigation was aimed to evaluate chloroform extract of Sonchus asper (SACE) against potassium bromate-induced reproductive stress in male rats. 20 mg/kg body weight (b.w.) potassium bromate (KBrO3) was induced in 36 rats for four weeks and checked the protective efficacy of SACE at various hormonal imbalances, alteration of antioxidant enzymes, and DNA fragmentation levels. High performance chromatography (HPLC) was used for determination of bioactive constituents responsible. The level of hormonal secretion was significantly altered by potassium bromate. DNA fragmentation%, activity of antioxidant enzymes; catalase (CAT), peroxidase (POD), superoxide dismutase (SOD) and phase II metabolizing enzymes viz; glutathione reductase (GSR), glutathione peroxidase (GSHpx), glutathione-S-tansase (GST) and reduced glutathione (GSH) was decreased while hydrogen per oxide contents and thiobarbituric acid reactive substances (TBARS) were increased with KBrO3 treatment. Treatment with SACE effectively ameliorated the alterations in the biochemical markers; hormonal and molecular levels while HPLC characterization revealed the presence of catechin, kaempferol, rutin and quercetin. Protective effects of Sonchus asper vs. KBrO3 induced lipid peroxidation might be due to bioactive compound present in SACE.
Galperin, Ilya; Javeed, Aysha; Luig, Hanno; Lochnit, Günter; Rühl, Martin
2016-09-01
Aryl-alcohol oxidases (AAOs) are enzymes supporting the degradation of lignin by fungal derived class II peroxidases produced by white-rot fungi. AAOs are able to generate H2O2 as a by-product via oxidation of an aryl-alcohol into its correspondent aldehyde. In this study, an AAO was heterologously expressed in a basidiomycete host for the first time. The gene for an AAO of the white-rot fungus Pleurotus sapidus, a close relative to the oyster mushroom Pleurotus ostreatus, was cloned into an expression vector and put under control of the promotor of the glyceraldehyde-3-phosphate dehydrogenase gene 2 (gpdII) of the button mushroom Agaricus bisporus. The expression vector was transformed into the model basidiomycete Coprinopsis cinerea, and several positive transformants were obtained. The best producing transformants were grown in shake-flasks and in a stirred tank reactor reaching enzymatic activities of up to 125 U L(-1) using veratryl alcohol as a substrate. The purified AAO was biochemically characterized and compared to the previously described native and recombinant AAOs from other Pleurotus species. In addition, a two-enzyme system comprising a dye-decolorizing peroxidase (DyP) from Mycetinis scorodonius and the P. sapidus AAO was successfully employed to bleach the anthraquinone dye Reactive Blue 5.
Lincomycin Biosynthesis Involves a Tyrosine Hydroxylating Heme Protein of an Unusual Enzyme Family
Novotna, Jitka; Olsovska, Jana; Novak, Petr; Mojzes, Peter; Chaloupkova, Radka; Kamenik, Zdenek; Spizek, Jaroslav; Kutejova, Eva; Mareckova, Marketa; Tichy, Pavel; Damborsky, Jiri; Janata, Jiri
2013-01-01
The gene lmbB2 of the lincomycin biosynthetic gene cluster of Streptomyces lincolnensis ATCC 25466 was shown to code for an unusual tyrosine hydroxylating enzyme involved in the biosynthetic pathway of this clinically important antibiotic. LmbB2 was expressed in Escherichia coli, purified near to homogeneity and shown to convert tyrosine to 3,4-dihydroxyphenylalanine (DOPA). In contrast to the well-known tyrosine hydroxylases (EC 1.14.16.2) and tyrosinases (EC 1.14.18.1), LmbB2 was identified as a heme protein. Mass spectrometry and Soret band-excited Raman spectroscopy of LmbB2 showed that LmbB2 contains heme b as prosthetic group. The CO-reduced differential absorption spectra of LmbB2 showed that the coordination of Fe was different from that of cytochrome P450 enzymes. LmbB2 exhibits sequence similarity to Orf13 of the anthramycin biosynthetic gene cluster, which has recently been classified as a heme peroxidase. Tyrosine hydroxylating activity of LmbB2 yielding DOPA in the presence of (6R)-5,6,7,8-tetrahydro-L-biopterin (BH4) was also observed. Reaction mechanism of this unique heme peroxidases family is discussed. Also, tyrosine hydroxylation was confirmed as the first step of the amino acid branch of the lincomycin biosynthesis. PMID:24324587
Palma, C; Lloret, L; Sepúlveda, L; Contreras, E
2016-01-01
Interest in production of ligninolytic enzymes has been growing over recent years for their use in various applications such as recalcitrant pollutants bioremediation; specifically, versatile peroxidase (VP) presents a great potential due to its catalytic versatility. The proper selection of the fermentation mode and the culture medium should be an imperative to ensure a successful production by an economic and available medium that favors the process viability. VP was produced by solid-state fermentation (SSF) of Pleurotus eryngii, using the agricultural residue banana peel as growth medium; an enzymatic activity of 10,800 U L(-1) (36 U g(-1) of substrate) was detected after 18 days, whereas only 1800 U L(-1) was reached by conventional submerged fermentation (SF) with glucose-based medium. The kinetic parameters were determined by evaluating the H2O2 and Mn(2+) concentration effects on the Mn(3+)-tartrate complex formation. The results indicated that although the H2O2 inhibitory effect was observed for the enzyme produced by both media, the reaction rates for VP obtained by SSF were less impacted. This outcome suggests the presence of substances released from banana peel during the fermentation, which might exhibit a protective effect resulting in an improved kinetic behavior of the enzyme.
NASA Astrophysics Data System (ADS)
Xiaoyan, Zhou; Yuanyuan, Jiang; Zaijun, Li; Zhiguo, Gu; Guangli, Wang
2016-08-01
Graphene quantum dots (GQDs) have received extensive concern in many fields such as optical probe, bioimaging and biosensor. However, few reports refer on the influence of GQDs on enzyme performance. The paper reports two kinds of graphene quantum dots (termed as GO-GQDs and N,S-GQDs) that were prepared by cutting of graphene oxide and pyrolysis of citric acid and L-cysteine, and their use for the horse radish peroxidase (HRP) modification. The study reveals that GO-GQDs and N,S-GQDs exhibit an opposite effect on the HRP performance. Only HRP modified with GO-GQDs offers an enhanced activity (more than 1.9 times of pristine enzyme) and thermo-stability. This is because GO-GQDs offer a larger conjugate rigid plane and fewer hydrophilic groups compared to N,S-GQDs. The characteristics can make GO-GQDs induce a proper conformational change in the HRP for the catalytic performance, improving the enzyme activity and thermo-stability. The HRP modified with green luminescent GO-GQDs was also employed as a biocatalyst for sensing of H2O2 by a fluorometric sensor. The colorless tetramethylbenzidine (TMB) is oxidized into blue oxidized TMB in the presence of H2O2 by the assistance of HRP/GO-GQDs, leading to an obvious fluorescence quenching. The fluorescence intensity linearly decreases with the increase of H2O2 concentration in the range from 2 × 10 - 9 to 2 × 10 - 4 M with the detection limit of 6.8 × 10 - 10 M. The analytical method provides the advantage of sensitivity, stability and accuracy compared with present H2O2 sensors based on the pristine HRP. It has been successfully applied in the determination of H2O2 in real water samples. The study also opens a new avenue for modification of enzyme activity and stability that offers great promise in applications such as biological catalysis, biosensing and enzyme engineering.
[Decolorization of skin and hair-derived melanin by three ligninolytic enzymes].
Miao, F; Lei, T C; Su, M Y; Yi, W J; Jiang, S; Xu, S Z
2017-11-21
Objective: To compare the decolorization efficiency of lignin peroxidase (LiP), manganese peroxidase (MnP) and laccase on eumelanin and pheomelanin, and to investigate the effect of topical administration of LiP solution on hyperpigmented guinea pigs skin induced by 308 nm excimer light. Methods: Pheomelanin-enriched specimens were prepared from human hair and cutaneous melanoma tissue using alkaline lysis method.Synthetic eumelanin was purchased from a commercial supplier.The same amount (0.02%) of melanin was incubated with the equal enzyme activity (0.2 U/ml) of ligninolytic enzymes for 3 h respectively.The absorbance at 475 nm ( A (475)) in the enzyme-catalyzed solution was measured using ELISA microplate reader.The experimental hyperpigmentation model was established in the dorsal skin of brownish guinea pigs using 308 nm excimer light radiation.LiP and heat-inactivated LiP solution were topically applied at each site.Meanwhile, 3% hydroquinone and vehicle cream were used as control.The skin color (L value) was recorded using a CR-10 Minolta chromameter.Corneocytes were collected using adhesive taping method.The amount and distribution of melanin in the corneocytes and skin tissues was visualized by Fontana-Masson staining. Results: All three ligninolytic enzymes showed various degree of eumelanin and pheomelanin decolorization activity.The decolorization activity of LiP, MnP and laccase was 40%-70%, 22%-42% and 9%-21%, respectively.The similar lightening was shown in the skin treated with LiP solution and 3% hydroquinone.The amount of melanin granules in the corneocytes was 199±11 by LiP, which was less than that in untreated control (923±12) and heat-inactive control (989±13). The amount of melanin was decreased in the whole epidermis treated with hydroquinone, the epidermis thickness was increased as well. In contrast, melanin of LiP group was decreased only in the superficial epidermis, the epidermis thickness seemed to be normal. Conclusion: LiP exerts a potent decolorization activity for hair- or skin-derived pheomelanin as well as eumelanin.It remains to be further investigated whether LiP serves as a substitute for hydroquinone in skin lightening products.
NASA Astrophysics Data System (ADS)
Peng, Ye; Ling-Ling, Hu; Yu-Zhi, Du; Yong-Juan, Xu; Hua-Gang, Ni; Cong, Chen; Xiao-Lin, Lu; Xiao-Jun, Huang
2017-05-01
A novel method of oriented immobilization was presented: affinity Langmuir-Blodgett (LB) technique. Firstly, a long carbon chain was bond to a ligand of Horseradish Peroxidase (HRP). The ligand derivative appears surface activity with the hydrophobic carbon chain oriented to air and the hydrophilic ligand faced to water. Then, this derivative was put onto the water/air surface to assemble a LB film and formed the affinity interaction with the active site of HRP. After that, the affinity LB film with the enzyme was transferred onto the support to obtain the oriented immobilized HRP. The specific activity of HRP immobilized by affinity LB (182.1 ± 14 U/mg) was higher than that by adsorption (40.5 ± 5 U/mg). HRP immobilized by affinity LB could maintain a more native conformation, compared to that by adsorption. This method could be effectively used to immobilize protein with orientation and show widely promising applications in many fields including biosensor and bioreactor.
Lead phytotoxicity on wheat (Triticum aestivum L.) seed germination and seedlings growth.
Lamhamdi, Mostafa; Bakrim, Ahmed; Aarab, Ahmed; Lafont, René; Sayah, Fouad
2011-02-01
Lead (Pb) is an environmental pollutant extremely toxic to plants and other living organisms including humans. To assess Pb phytotoxicity, experiments focusing on germination of wheat seeds were germinated in a solution containing Pb (NO(3))(2) (0.05; 0.1; 0.5; 1g/L) during 6 days. Lead accumulation in seedlings was positively correlated with the external concentrations, and negatively correlated with morphological parameters of plant growth. Lead increased lipid peroxidation, enhanced soluble protein concentrations and induced a significant accumulation of proline in roots. Esterase activity was enhanced in the presence of lead, whereas α-amylase activity was significantly inhibited. Antioxidant enzymes activities, such as, ascorbate peroxidase, peroxidase, superoxide dismutase, catalase and glutathione S-transferase were generally significantly increased in the presence of lead in a dose-dependent manner. The present results thus provide a model system to screen for natural compounds able to counteract the deleterious effects of lead. Copyright © 2010 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Vora, Shreya R; Patil, Rahul B; Pillai, Meena M
2009-05-01
With an aim to examine the effect of ethanolic extract of P. crispum (Parsley) leaves on the D-galactose-induced oxidative stress in the brain of mouse, the activities of antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) involved in oxygen radical (OR)-detoxification and antiperoxidative defense were measured in conjunction with an index of lipid peroxidation in mitochondrial fraction of various regions of the mouse brain. A significant decrease in superoxide dismutase and glutathione peroxidase activity was observed in D-galactose-stressed mice, while catalase activity was increased. Treatment of D-galactose-stressed mice with the ethanolic extract of P. crispum showed protection against the induced oxidative stress in brain regions. Concentration of thiobarbituric acid-reactive product was greatly elevated in D-galactose stress-induced mice and was significantly reduced in the brain regions of these mice upon treatment with P. crispum. It is postulated that parsley shows a protective effect against mitochondrial oxidative damage in the mouse brain.
Hamurcu, Mehmet; Hakki, Erdogan E; Demiral Sert, Tijen; Özdemir, Canan; Minareci, Ersin; Avsaroglu, Zuhal Z; Gezgin, Sait; Ali Kayis, Seyit; Bell, Richard W
Recent studies indicate an extremely high level of tolerance to boron (B) toxicity in Puccinellia distans (Jacq.) Parl. but the mechanistic basis is not known. Puccinellia distans was exposed to B concentrations of up to 1000 mg B L-1 and root B uptake, growth parameters, B and N contents, H2O2 accumulation and ·OH-scavenging activity were measured. Antioxidant enzyme activities including superoxide dismutase (SOD), ascorbate peroxidase, catalase, peroxidase and glutathione reductase, and lipid peroxidation products were determined. B appears to be actively excluded from roots. Excess B supply caused structural deformations in roots and leaves, H2O2 accumulation and simultaneous up-regulation of the antioxidative system, which prevented lipid peroxidation even at the highest B concentrations. Thus, P. distans has an efficient root B-exclusion capability and, in addition, B tolerance in shoots is achieved by a well-regulated antioxidant defense system.
Jelodar, Gholamali; Akbari, Abolfazl; Nazifi, Saeed
2013-02-01
This study was conducted to evaluate the effect of radiofrequency wave (RFW)-induced oxidative stress in the eye and the prophylactic effect of vitamin C on this organ by measuring the antioxidant enzymes activity including: glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT), and malondialdehyde (MDA). Thirty-two adult male Sprague-Dawley rats were randomly divided into four experimental groups and treated daily for 45 days as follows: Control, vitamin C (L-ascorbic acid 200 mg/kg of body weight/day by gavage), test (exposed to 900 MHz RFW) and the treated group (received vitamin C in addition to exposure to RFW). At the end of the experiment all animals were sacrificed, their eyes were removed and were used for measurement of antioxidant enzymes and MDA activity. The results indicate that exposure to RFW in the test group decreased antioxidant enzymes activity and increased MDA compared with the control groups (P < 0.05). In the treated group vitamin C improved antioxidant enzymes activity and reduced MDA compared to the test group (P < 0.05). It can be concluded that RFW causes oxidative stress in the eyes and vitamin C improves the antioxidant enzymes activity and decreases MDA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thrower, S.J.; Andrewartha, K.A.
1981-01-01
Studies have been reported using experimental animals and synthetic diets containing selenium and mercury compounds to demonstrate detoxification of mercury by selenium. The mechanism of detoxification remains obscure. Most experiments have involved the use of high levels of both elements and relied on the observation of gross symptoms. The measurement of enzyme systems may be useful in detecting effects of mercury at a lower, subclinical level and in elucidating the biochemistry of mercury/selenium interactions. The activity of the selenoenzyme glutathione peroxidase (GSH-Px) in rats is dependent on dietary selenium and attempts have been made to use this enzyme as anmore » indicator of mercury/selenium interactions. The research described in this paper was designed to investigate the effect of mercury, in the form and amounts which occur naturally in seafood, on the availability of selenium at levels approximating the nutritional requirement. In anticipation of mercury lowering the GSH-Px response a range of selenium concentrations was used, from nutritional deficiency to three times the nutritional requirement.« less
Thermal and high pressure inactivation kinetics of blueberry peroxidase.
Terefe, Netsanet Shiferaw; Delon, Antoine; Versteeg, Cornelis
2017-10-01
This study for the first time investigated the stability and inactivation kinetics of blueberry peroxidase in model systems (McIlvaine buffer, pH=3.6, the typical pH of blueberry juice) during thermal (40-80°C) and combined high pressure-thermal processing (0.1-690MPa, 30-90°C). At 70-80°C, the thermal inactivation kinetics was best described by a biphasic model with ∼61% labile and ∼39% stable fractions at temperature between 70 and 75°C. High pressure inhibited the inactivation of the enzyme with no inactivation at pressures as high as 690MPa and temperatures less than 50°C. The inactivation kinetics of the enzyme at 60-70°C, and pressures higher than 500MPa was best described by a first order biphasic model with ∼25% labile fraction and 75% stable fraction. The activation energy values at atmospheric pressure were 548.6kJ/mol and 324.5kJ/mol respectively for the stable and the labile fractions. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Hepatoprotective effects of raspberry (Rubus coreanus Miq.) seed oil and its major constituents.
Teng, Hui; Lin, Qiyang; Li, Kang; Yuan, Benyao; Song, Hongbo; Peng, Hongquan; Yi, Lunzhao; Wei, Ming-Chi; Yang, Yu-Chiao; Battino, Maurizio; Cespedes Acuña, Carlos L; Chen, Lei; Xiao, Jianbo
2017-12-01
Raspberry seed is a massive byproduct of raspberry juice and wine but usually discarded. The present study employed a microwave-assisted method for extraction of raspberry seed oil (RSO). The results revealed that omega-6 fatty acids (linoleic acid and γ-linolenic acid) were the major constituents in RSO. Cellular antioxidant enzyme activity such as superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) were investigated in HepG2 cells treated with RSO. Induction of the synthesis of several antioxidants in H 2 O 2 -exposed HepG2 cells was found. RSO increased the enzyme activity of SOD, CAT, and GPx in H 2 O 2 -exposed HepG2. Furthermore, RSO inhibited the phosphorylation of upstream mitogen-activated protein kinases (MAPK) such as c-Jun N-terminal kinase (c-JNK) and extracellular signal-regulated kinase (ERK). Taken together, the possible mechanisms to increase antioxidant enzyme activities in HepG2 may through the suppression of ERK and JNK phosphorylation. Raspberry seed oil exhibited good effects on the activities of the intracellular antioxidant enzymes and seems to protect the liver from oxidative stress through the inhibition of MAPKs. Copyright © 2017. Published by Elsevier Ltd.
Yakovlev, Igor A; Hietala, Ari M; Courty, Pierre-Emmanuel; Lundell, Taina; Solheim, Halvor; Fossdal, Carl Gunnar
2013-07-01
The pathogenic white-rot basidiomycete Heterobasidion irregulare is able to remove lignin and hemicellulose prior to cellulose during the colonization of root and stem xylem of conifer and broadleaf trees. We identified and followed the regulation of expression of genes belonging to families encoding ligninolytic enzymes. In comparison with typical white-rot fungi, the H. irregulare genome has exclusively the short-manganese peroxidase type encoding genes (6 short-MnPs) and thereby a slight contraction in the pool of class II heme-containing peroxidases, but an expansion of the MCO laccases with 17 gene models. Furthermore, the genome shows a versatile set of other oxidoreductase genes putatively involved in lignin oxidation and conversion, including 5 glyoxal oxidases, 19 quinone-oxidoreductases and 12 aryl-alcohol oxidases. Their genetic multiplicity and gene-specific regulation patterns on cultures based on defined lignin, cellulose or Norway spruce lignocellulose substrates suggest divergent specificities and physiological roles for these enzymes. While the short-MnP encoding genes showed similar transcript levels upon fungal growth on heartwood and reaction zone (RZ), a xylem defense tissue rich in phenolic compounds unique to trees, a subset of laccases showed higher gene expression in the RZ cultures. In contrast, other oxidoreductases depending on initial MnP activity showed generally lower transcript levels on RZ than on heartwood. These data suggest that the rate of fungal oxidative conversion of xylem lignin differs between spruce RZ and heartwood. It is conceivable that in RZ part of the oxidoreductase activities of laccases are related to the detoxification of phenolic compounds involved in host-defense. Expression of the several short-MnP enzymes indicated an important role for these enzymes in effective delignification of wood by H. irregulare. Copyright © 2013 Elsevier Inc. All rights reserved.
Graham-Acquaah, Seth; Ayernor, George Sodah; Bediako-Amoa, Betty; Saalia, Firibu Kwesi; Afoakwa, Emmanuel Ohene
2014-10-01
Browning in raw and processed yams resulting from enzymes, polyphenol oxidase (PPO) and peroxidase (POD), activities is a major limitation to the industrial utilization of Dioscorea varieties of yams. Two elite cultivars of D. rotundata species were selected to study the spatial distribution of total phenols and enzymes (PPO and POD) activities. The intensities of tissue darkening in fresh yam chips prepared from the tuber sections of cultivars during frozen storage were also studied. Total phenolic content was observed to be highest in the head and mid sections of the cultivars than at the tail end. PPO activity did not have any specific distribution pattern whereas POD activity was found to be more concentrated in the head than in the middle and tail regions. Browning was found to be most intense in the head regions of the two cultivars studied; and was observed to correlate with total phenol and dry matter contents of tubers. Between the two enzymes, POD activity appeared to be more related to browning than PPO.
A novel paramagnetic substrate for detecting myeloperoxidase activity in vivo
Shazeeb, Mohammed S.; Xie, Yang; Gupta, Suresh; Bogdanov, Alexei A.
2013-01-01
Bis-phenylamides and bis-hydroxyindolamides of DTPA(Gd) are paramagnetic reducing substrates of peroxidases that enable molecular imaging of peroxidase activity in vivo. Specifically, bis-5HT-DTPA(Gd) has been used to image localized inflammation in animal models by detecting neutrophil derived myeloperoxidase (MPO) activity at the inflammation site. However, in other pre-clinical disease models, bis-5HT-DTPA(Gd) presents technical challenges due to its limited solubility in vivo. Here, we report a novel MPO sensing probe obtained by replacing the reducing substrate serotonin (5HT) with 5-hydroxytryptophan (HTrp). Characterization of the resulting probe (bis-HTrp-DTPA(Gd)) in vitro using NMR spectroscopy and enzyme kinetic analysis showed that bis-HTrp-DTPA(Gd): 1) improves solubility in water; 2) acts as a substrate for both HRP and MPO enzymes; 3) induces cross linking of proteins in the presence of MPO; 4) produces oxidation products which bind to plasma proteins and; 5) unlike bis-5HT-DTPA(Gd), does not follow first order reaction kinetics. In vivo MR imaging in mice demonstrated that bis-HTrp-DTPA(Gd) was retained for up to five days in MPO-containing sites and cleared faster than bis-5HT-DTPA(Gd) from MPO-negative sites. In conclusion, bis-HTrp-DTPA(Gd) should offer improvements for MR imaging of MPO-mediated inflammation in vivo especially in high-field MRI, which requires higher dose of contrast agent. PMID:22954188
Gajera, H P; Katakpara, Zinkal A; Patel, S V; Golakiya, B A
2016-02-01
The study was conducted to examine the antioxidant enzymes induced by Trichoderma viride JAU60 as initial defense response during invasion of rot pathogen Aspergillus niger Van Tieghem in five groundnut varieties under pot culture. Seed treatment of T. viride JAU60 reduced 51-58% collar rot disease incidence in different groundnut varieties under pathogen infected soil culture. The activities of the antioxidant enzymes, viz., superoxide dismutase (SOD, EC 1.15.1.1), guaiacol peroxidase (GPX, EC 1.11.1.7) and ascorbate peroxidase (APX, EC 1.11.1.11), elevated in response to pathogen infection, in higher rate by tolerant varieties (J-11 and GG-2) compared with susceptible (GAUG-10, GG-13, GG-20) and further induced by T. viride treatment. Trichoderma treatment remarkably increased the 2.3 fold SOD, 5 fold GPX and 2.5 fold APX activities during disease development in tolerant varieties and the same was found about 1.2, 1.5 and 2.0 folds, respectively, in susceptible varieties. Overall, T. viride JAU60 treated seedlings (T3) witnessed higher activities of SOD (1.5 fold), GPX (3.25 fold) and APX (1.25 fold) than pathogen treatment (T2) possibly suggest the induction of antioxidant defense response by Trichoderma bio-controller to combat oxidative burst produced by invading pathogen. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jian, Siyang; Li, Jianwei; Chen, Ji
Nitrogen (N) fertilization affects the rate of soil organic carbon (SOC) decomposition by regulating extracellular enzyme activities (EEA). Extracellular enzymes have not been represented in global biogeochemical models. Understanding the relationships among EEA and SOC, soil N (TN), and soil microbial biomass carbon (MBC) under N fertilization would enable modeling of the influence of EEA on SOC decomposition. Based on 65 published studies, we synthesized the activities of α-1,4-glucosidase (AG), β-1,4-glucosidase (BG), β-d-cellobiosidase (CBH), β-1,4-xylosidase (BX), β-1,4-N-acetyl-glucosaminidase (NAG), leucine amino peptidase (LAP), urease (UREA), acid phosphatase (AP), phenol oxidase (PHO), and peroxidase (PEO) in response to N fertilization. Here, themore » proxy variables for hydrolytic C acquisition enzymes (C-acq), N acquisition (N-acq), and oxidative decomposition (OX) were calculated as the sum of AG, BG, CBH and BX; AG and LAP; PHO and PEO, respectively.« less
Rahmanpour, Rahman; Rea, Dean; Jamshidi, Shirin; Fülöp, Vilmos; Bugg, Timothy D H
2016-03-15
A Dyp-type peroxidase enzyme from thermophilic cellulose degrader Thermobifida fusca (TfuDyP) was investigated for catalytic ability towards lignin oxidation. TfuDyP was characterised kinetically against a range of phenolic substrates, and a compound I reaction intermediate was observed via pre-steady state kinetic analysis at λmax 404 nm. TfuDyP showed reactivity towards Kraft lignin, and was found to oxidise a β-aryl ether lignin model compound, forming an oxidised dimer. A crystal structure of TfuDyP was determined, to 1.8 Å resolution, which was found to contain a diatomic oxygen ligand bound to the heme centre, positioned close to active site residues Asp-203 and Arg-315. The structure contains two channels providing access to the heme cofactor for organic substrates and hydrogen peroxide. Site-directed mutant D203A showed no activity towards phenolic substrates, but reduced activity towards ABTS, while mutant R315Q showed no activity towards phenolic substrates, nor ABTS. Copyright © 2016 Elsevier Inc. All rights reserved.
Feidantsis, Konstantinos; Anestis, Andreas; Michaelidis, Basile
2013-10-01
In the present work we investigated the seasonal variations of apoptotic and antioxidant proteins in the heart and gastrocnemius muscle of the amphibian Pelophylax ridibundus. Particularly processes studied included the evaluation of hypoxia through the levels of transcriptional factor Hif-1α, of apoptosis through the determination of Bcl-2 and Bax, ubiquitin conjugates levels and the antioxidant defense through the determination of the activity of enzymes such as superoxide dismutase, catalase and glutathione peroxidase. Due to a general metabolic depression during overwintering, levels of the above mentioned proteins and enzymes are generally retained at low levels of expression and activity in the examined tissues of P. ridibundus. On the other hand recovery from overwintering induces oxidative stress, followed by increased levels of the specific proteins and enzymes. A milder up-regulation of antioxidant enzymes during overwintering probably prepares P. ridibundus for oxidative stress during arousal. The seasonal activation of these mechanisms seems to protect this species from these unfavourable conditions. Copyright © 2013 Elsevier Inc. All rights reserved.
Stability of the anti-oxidative enzymes in aqueous and detergent solution.
Mailer, K; Del Maestro, R F
1991-09-18
Activities of the anti-oxidative enzymes, superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase were studied in rat tissues to determine the ability of detergents both to solubilize the enzymes and also to stabilize enzyme activity. Rat brain, heart and liver were homogenized in 0.1M KCl, 0.1% sodium dodecyl sulfate, 0.1% lubrol, or 0.1% cetyl-trimethylammonium bromide. In general lubrol was more effective than the other solutions in solubilizing GPx and catalase. Lubrol and 0.1M KCl were equally effective in solubilizing SOD. The highest enzyme activities were (1) SOD: 2484 ng/mg (brain), 2501 ng/mg (heart), and 5586 ng/mg (liver); (2) GPx: 224 mU/mg (brain), 1870 mU/mg (heart), and 7332 mU/mg (liver); (3) catalase: 2.8 mU/mg (brain), 10.6 mU/mg (heart), and 309 mU/mg (liver). While cetyl trimethylammonium bromide is marginally better than sodium dodecyl sulfate in solubilizing active enzyme, neither ionic detergent has any advantage over lubrol or 0.1M KCl. For catalase and GPx, enzyme activity loss with time is biphasic. After initial, rapid activity loss (1-5 days for GPx and 7-10 days for catalase) the differences noted among the homogenizing solutions disappear and very little if any activity loss is noted over the next 2-3 weeks. For catalase and GPx, only baseline enzyme activity from t = 0-3 weeks is found in the most chaotropic solution, 0.1% sodium dodecyl sulfate while biphasic activity loss is most pronounced in 0.1% lubrol. These results may indicate active GPx and catalase species stabilized by a lipid-like environment. Correlating in vitro catalase or GPx measurements with in vivo anti-oxidative protection may underestimate tissue defences.
Srivastava, Ayan; Verma, Neeraj; Mistri, Arup; Ranjan, Brijesh; Nigam, Ashwini Kumar; Kumari, Usha; Mittal, Swati; Mittal, Ajay Kumar
2017-03-01
Histopathological changes and alterations in the activity of certain metabolic and antioxidant enzymes were analyzed in the head skin of Labeo rohita, exposed to sublethal test concentrations of the azo dye, Eriochrome black T for 4 days, using 24 h renewal bioassay method. Hypertrophied epithelial cells, increased density of mucous goblet cells, and profuse mucous secretion at the surface were considered to protect the skin from toxic impact of the azo dye. Degenerative changes including vacuolization, shrinkage, decrease in dimension, and density of club cells with simultaneous release of their contents in the intercellular spaces were associated to plug them, preventing indiscriminate entry of foreign matter. On exposure of fish to the dye, significant decline in the activity of enzymes-alkaline phosphatase, acid phosphatase, carboxylesterase, succinate dehydrogenase, catalase, and peroxidase-was associated with the binding of dye to the enzymes. Gradual increase in the activity of lactate dehydrogenase was considered to reflect a shift from aerobic to anaerobic metabolism. On transfer of azo dye exposed fish to freshwater, skin gradually recovers and, by 8 days, density and area of mucous goblet cells, club cells, and activity of the enzymes appear similar to that of controls. Alteration in histopathology and enzyme activity could be considered beneficial tool in monitoring environmental toxicity, valuable in the sustenance of fish populations.
Morales Urrea, Diego Alberto; Haure, Patricia Mónica; García Einschlag, Fernando Sebastián; Contreras, Edgardo Martín
2018-05-09
Enzymatic decolourization of azo-dyes could be a cost-competitive alternative compared to physicochemical or microbiological methods. Stoichiometric and kinetic features of peroxidase-mediated decolourization of azo-dyes by hydrogen peroxide (P) are central for designing purposes. In this work, a modified version of the Dunford mechanism of peroxidases was developed. The proposed model takes into account the inhibition of peroxidases by high concentrations of P, the substrate-dependant catalatic activity of peroxidases (e.g. the decomposition of P to water and oxygen), the generation of oxidation products (OP) and the effect of pH on the decolourization kinetics of the azo-dye Orange II (OII). To obtain the parameters of the proposed model, two series of experiments were performed. In the first set, the effects of initial P concentration (0.01-0.12 mM) and pH (5-10) on the decolourization degree were studied at a constant initial OII concentration (0.045 mM). Obtained results showed that at pH 9-10 and low initial P concentrations, the consumption of P was mainly to oxidize OII. From the proposed model, an expression for the decolourization degree was obtained. In the second set of experiments, the effect of the initial concentrations of OII (0.023-0.090 mM), P (0.02-4.7 mM), HRP (34-136 mg/L) and pH (5-10) on the initial specific decolourization rate (q 0 ) was studied. As a general rule, a noticeable increase in q 0 was observed for pHs higher than 7. For a given pH, q 0 increased as a function of the initial OII concentration. Besides, there was an inhibitory effect of high P concentrations on q 0 . To asses the possibility of reusing the enzyme, repeated additions of OII and P were performed. Results showed that the enzyme remained active after six reuse cycles. A satisfactory accordance between the change of the absorbance during these experiments and absorbances calculated using the proposed model was obtained. Considering that this set of data was not used during the fitting procedure of the model, the agreement between predicted and experimental absorbances provides a powerful validation of the model developed in the present work.
Nicholls, P
2007-10-01
Alexander Bach was both revolutionary politician and biochemist. His earliest significant publication, "Tsar-golod" ("The Tsar of Hunger"), introduced Marxist thought to Russian workers. In exile for 30 years, he moved to study the dialectic of the oxidases. When his theory of oxidases as combinations of oxygenases and peroxidases was developed (circa 1900) the enzyme concept was not fully formulated, and the enzyme/substrate distinction not yet made. Peroxides however were then and remain now significant intermediates, when either free or bound, in oxidase catalyses. The aerobic dehydrogenase/peroxidase/catalase coupled systems which were studied slightly later clarified the Bach model and briefly became an oxidase paradigm. Identification of peroxidase as a metalloprotein, a key step in understanding oxidase and peroxidase mechanisms, postdated Bach's major work. Currently we recognize catalytic organic peroxides in flavoprotein oxygenases; such organic peroxides are also involved in lipid oxidation and tryptophan radical decay. But most physiologically important peroxides are now known to be bound to transition metals (either Fe or Cu) and formed both directly and indirectly (from oxygen). The typical stable metalloprotein peroxide product is the ferryl state. When both peroxide oxidizing equivalents are retained the second equivalent is held as a protein or porphyrin radical. True metal peroxide complexes are unstable. But often water molecules mark the spot where the original peroxide decayed. The cytochrome c oxidase Fe-Cu center can react with either peroxide or oxygen to form the intermediate higher oxidation states P and F. In its resting state water molecules and hydroxyl ions can be seen marking the original location of the oxygen or peroxide molecule.
Diao, Qian-Nan; Song, Yong-Jun; Shi, Dong-Mei; Qi, Hong-Yan
Polyamines (PAs) and nitric oxide (NO) are vital signals in modulating plant response to abiotic stress. However, to our knowledge, studies on the relationship between NO and PAs in response to cold stress in tomato are limited. Accordingly, in this study, we investigated the effects of putrescine (Put) and spermidine (Spd) on NO generation and the function of Spd-induced NO in the tolerance of tomato seedling under chilling stress. Spd increased NO release via the nitric oxide synthase (NOS)-like and nitrate reductase (NR) enzymatic pathways in the seedlings, whereas Put had no such effect. Moreover, H 2 O 2 might act as an upstream signal to stimulate NO production. Both exogenous NO donor (sodium nitroprusside (SNP)) and Spd enhanced chilling tolerance in tomato, thereby protecting the photosynthetic system from damage. Compared to chilling treatment alone, Spd enhanced the gene expressions of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), and their enzyme activities in tomato leaves. However, a scavenger or inhibitor of NO abolished Spd-induced chilling tolerance and blocked the increased expression and activity due to Spd of these antioxidant enzymes in tomato leaves under chilling stress. The results showed that NO induced by Spd plays a crucial role in tomato's response to chilling stress.
Diao, Qian-Nan; Song, Yong-Jun; Shi, Dong-Mei; Qi, Hong-Yan
2016-01-01
Polyamines (PAs) and nitric oxide (NO) are vital signals in modulating plant response to abiotic stress. However, to our knowledge, studies on the relationship between NO and PAs in response to cold stress in tomato are limited. Accordingly, in this study, we investigated the effects of putrescine (Put) and spermidine (Spd) on NO generation and the function of Spd-induced NO in the tolerance of tomato seedling under chilling stress. Spd increased NO release via the nitric oxide synthase (NOS)-like and nitrate reductase (NR) enzymatic pathways in the seedlings, whereas Put had no such effect. Moreover, H2O2 might act as an upstream signal to stimulate NO production. Both exogenous NO donor (sodium nitroprusside (SNP)) and Spd enhanced chilling tolerance in tomato, thereby protecting the photosynthetic system from damage. Compared to chilling treatment alone, Spd enhanced the gene expressions of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), and their enzyme activities in tomato leaves. However, a scavenger or inhibitor of NO abolished Spd-induced chilling tolerance and blocked the increased expression and activity due to Spd of these antioxidant enzymes in tomato leaves under chilling stress. The results showed that NO induced by Spd plays a crucial role in tomato’s response to chilling stress. PMID:27921397
Sathiyaraj, Gayathri; Srinivasan, Sathiyaraj; Kim, Yu-Jin; Lee, Ok Ran; Parvin, Shonana; Balusamy, Sri Renuka Devi; Khorolragchaa, Atlanzul; Yang, Deok Chun
2014-06-01
The effect of exogenously applied hydrogen peroxide on salt stress tolerance was investigated in Panax ginseng. Pretreatment of ginseng seedlings with 100 μM H2O2 increased the physiological salt tolerance of the ginseng plant and was used as the optimum concentration to induce salt tolerance capacity. Treatment with exogenous H2O2 for 2 days significantly enhanced salt stress tolerance in ginseng seedlings by increasing the activities of ascorbate peroxidase, catalase and guaiacol peroxidase and by decreasing the concentrations of malondialdehyde (MDA) and endogenous H2O2 as well as the production rate of superoxide radical (O2(-)). There was a positive physiological effect on the growth and development of salt-stressed seedlings by exogenous H2O2 as measured by ginseng dry weight and both chlorophyll and carotenoid contents. Exogenous H2O2 induced changes in MDA, O2(-), antioxidant enzymes and antioxidant compounds, which are responsible for increases in salt stress tolerance. Salt treatment caused drastic declines in ginseng growth and antioxidants levels; whereas, acclimation treatment with H2O2 allowed the ginseng seedlings to recover from salt stress by up-regulation of defense-related proteins such as antioxidant enzymes and antioxidant compounds.
A Novel Extracellular Multicopper Oxidase from Phanerochaete chrysosporium with Ferroxidase Activity
Larrondo, Luis F.; Salas, Loreto; Melo, Francisco; Vicuña, Rafael; Cullen, Daniel
2003-01-01
Lignin degradation by the white rot basidiomycete Phanerochaete chrysosporium involves various extracellular oxidative enzymes, including lignin peroxidase, manganese peroxidase, and a peroxide-generating enzyme, glyoxal oxidase. Recent studies have suggested that laccases also may be produced by this fungus, but these conclusions have been controversial. We identified four sequences related to laccases and ferroxidases (Fet3) in a search of the publicly available P. chrysosporium database. One gene, designated mco1, has a typical eukaryotic secretion signal and is transcribed in defined media and in colonized wood. Structural analysis and multiple alignments identified residues common to laccase and Fet3 sequences. A recombinant MCO1 (rMCO1) protein expressed in Aspergillus nidulans had a molecular mass of 78 kDa, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the copper I-type center was confirmed by the UV-visible spectrum. rMCO1 oxidized various compounds, including 2,2′-azino(bis-3-ethylbenzthiazoline-6-sulfonate) (ABTS) and aromatic amines, although phenolic compounds were poor substrates. The best substrate was Fe2+, with a Km close to 2 μM. Collectively, these results suggest that the P. chrysosporium genome does not encode a typical laccase but rather encodes a unique extracellular multicopper oxidase with strong ferroxidase activity. PMID:14532088
Progress and obstacles in the production and application of recombinant lignin-degrading peroxidases
Lambertz, Camilla; Ece, Selin; Fischer, Rainer; Commandeur, Ulrich
2016-01-01
ABSTRACT Lignin is 1 of the 3 major components of lignocellulose. Its polymeric structure includes aromatic subunits that can be converted into high-value-added products, but this potential cannot yet been fully exploited because lignin is highly recalcitrant to degradation. Different approaches for the depolymerization of lignin have been tested, including pyrolysis, chemical oxidation, and hydrolysis under supercritical conditions. An additional strategy is the use of lignin-degrading enzymes, which imitates the natural degradation process. A versatile set of enzymes for lignin degradation has been identified, and research has focused on the production of recombinant enzymes in sufficient amounts to characterize their structure and reaction mechanisms. Enzymes have been analyzed individually and in combinations using artificial substrates, lignin model compounds, lignin and lignocellulose. Here we consider progress in the production of recombinant lignin-degrading peroxidases, the advantages and disadvantages of different expression hosts, and obstacles that must be overcome before such enzymes can be characterized and used for the industrial processing of lignin. PMID:27295524
Tunçsoy, Mustafa; Duran, Servet; Ay, Özcan; Cicik, Bedii; Erdem, Cahit
2017-09-01
Accumulation of copper oxide nanoparticles (CuO NPs) in gill, liver and muscle tissues of Oreochromis niloticus and its effects on superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities in gill and liver tissues were studied after exposing the fish to 20 µg/L Cu over 15 days. Copper levels and enzyme activities in tissues were determined using spectrophotometric (ICP-AES and UV) techniques respectively. No mortality was observed during the experiments. Copper levels increased in gill and liver tissues of O. niloticus compared to control when exposed to CuO NPs whereas exposure to metal had no effect on muscle level at the end of the exposure period. Highest accumulation of copper was observed in liver while no accumulation was detected in muscle tissue. SOD, CAT activities decreased and GPx activity increased in gill and liver tissues when exposed to CuO NPs.
Serrano, Irene; Olmedilla, Adela
2012-12-01
Stigma-surface and style enzymes are important for pollen reception, selection and germination. This report deals with the histochemical location of the activity of four basic types of enzyme involved in these processes in the olive (Olea europaea L.). The detection of peroxidase, esterase and acid-phosphatase activities at the surface of the stigma provided evidence of early receptivity in olive pistils. The stigma maintained its receptivity until the arrival of pollen. Acid-phosphatase activity appeared in the style at the moment of anthesis and continued until the fertilization of the ovule. RNase activity was detected in the extracellular matrix of the styles of flowers just before pollination and became especially evident in pistils after self-pollination. This activity gradually decreased until it practically disappeared in more advanced stages. RNase activity was also detected in pollen tubes growing in pollinated pistils and appeared after in vitro germination in the presence of self-incompatible pistils. These findings suggest that RNases may well be involved in intraspecific pollen rejection in olive flowers. To the best of our knowledge this is the first time that evidence of enzyme activity in stigma receptivity and pollen selection has been described in this species. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Grotzky, Andrea; Manaka, Yuichi; Kojima, Taisuke; Walde, Peter
2011-01-10
Covalent UV/vis-quantifiable bis-aryl hydrazone bond formation was investigated for the preparation of conjugates between α-poly-d-lysine (PDL) and either α-chymotrypsin (α-CT) or horseradish peroxidase (HRP). PDL and the enzymes were first modified via free amino groups with the linking reagents succinimidyl 6-hydrazinonicotinate acetone hydrazone (S-HyNic, at pH 7.6) and succinimidyl 4-formylbenzoate (S-4FB, at pH 7.2), respectively. The modified PDL and enzymes were then conjugated at pH 4.7, whereby polymer chains carrying several enzymes were obtained. Kinetics of the bis-aryl hydrazone bond formation was investigated spectrophotometrically at 354 nm. Retention of the enzymatic activity after conjugate formation was confirmed by using the substrates N-succinimidyl-l-Ala-l-Ala-l-Pro-l-Phe-p-nitroanilide (for α-CT) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS, for HRP). Thus, not only a mild and efficient preparation and convenient quantification of a conjugate between the polycationic α-polylysine and enzymes could be shown, but also the complete preservation of the enzymatic activity.
Gao, Yanzheng; Li, Hui; Gong, Shuaishuai
2012-01-01
Plant contamination by polycyclic aromatic hydrocarbons (PAHs) is crucial to food safety and human health. Enzyme inhibitors are commonly utilized in agriculture to control plant metabolism of organic components. This study revealed that the enzyme inhibitor ascorbic acid (AA) significantly reduced the activities of peroxidase (POD) and polyphenol oxidase (PPO), thus enhancing the potential risks of PAH contamination in tall fescue (Festuca arundinacea Schreb.). POD and PPO enzymes in vitro effectively decomposed naphthalene (NAP), phenanthrene (PHE) and anthracene (ANT). The presence of AA reduced POD and PPO activities in plants, and thus was likely responsible for enhanced PAH accumulation in tall fescue. This conclusion is supported by the significantly enhanced uptake of PHE in plants in the presence of AA, and the positive correlation between enzyme inhibition efficiencies and the rates of metabolism of PHE in tall fescue roots. This study provides a new perspective, that the common application of enzyme inhibitors in agricultural production could increase the accumulation of organic contaminants in plants, hence enhancing risks to food safety and quality. PMID:23185628
Potential of extracellular enzymes from Trametes versicolor F21a in Microcystis spp. degradation.
Du, Jingjing; Pu, Gaozhong; Shao, Chen; Cheng, Shujun; Cai, Ji; Zhou, Liang; Jia, Yong; Tian, Xingjun
2015-03-01
Studies have shown that microorganisms may be used to eliminate cyanobacteria in aquatic environments. The present study showed that the white-rot fungus Trametes versicolor F21a could degrade Microcystis aeruginosa. After T. versicolor F21a and Microcystis spp. were co-incubated for 60h, >96% of Microcystis spp. cells were degraded by T. versicolor F21a. The activities of extracellular enzymes showed that cellulase, β-glucosidase, protease, and laccase were vital to Microcystis spp. degradation in the early stage (0h to 24h), while β-glucosidase, protease, laccase, and manganese peroxidase in the late stage (24h to 60h). The positive and significant correlation of the degradation rate with these enzyme activities indicated that these enzymes were involved in the degradation rate of Microcystis spp. cells at different phases. It suggested that the extracellular enzymes released by T. versicolor F21a might be vital to Microcystis spp. degradation. The results of this study may be used to develop alternative microbial control agents for cyanobacterial control. Copyright © 2014 Elsevier B.V. All rights reserved.
Choleva, Tatiana G; Gatselou, Vasiliki A; Tsogas, George Z; Giokas, Dimosthenis L
2017-12-05
The intrinsic peroxidase-like activity of rhodium nanoparticles (RhNPs) and their use as catalytic labels for sensitive colorimetric assays is presented. RhNPs catalyze the oxidation of the peroxidase substrate 3,3,5,5-tetramethylbenzidine (TMB) in the presence of H 2 O 2 to produce a blue reaction product with a maximum absorbance at 652 nm. Kinetic studies show catalysis to follow Michaelis-Menten kinetics and a "ping-pong" mechanism. The calculated kinetic parameters indicate high affinity of RhNPs for both the substrate TMB and H 2 O 2 . In fact, they are better than other peroxidase mimicking nanomaterials and even the natural enzyme horseradish peroxidase. On the other hand, RhNPs exhibit no reactivity towards saccharides, thiols, amino acids and ascorbic acid. Based on these findings, a sensitive and selective colorimetric method was worked out for the determination of H 2 O 2 in real samples with a linear response in the 1-100 μM concentration range. By employing glucose oxidase, the glucose assay has a linear range that covers the 5 to 125 μM glucose concentration range. The detection limits are <0.75 μM for both species. The methods were applied to the determination of H 2 O 2 in spiked pharmaceutical formulations, and of glucose in soft drinks and blood plasma. Figures of merit include (a) good accuracy (with errors of <6%), (b) high recoveries (96.5-103.7%), and (c) satisfactory reproducibility (<6.3%). Graphical abstract Rhodium nanoparticles catalyze the oxidation of 3,3,5,5-tetramethylbenzidine (TMB) in the presence of H 2 O 2 to produce a blue reaction product. The effect is exploited in photometric assays for hydrogen peroxide and glucose.
Primus, J L; Boersma, M G; Mandon, D; Boeren, S; Veeger, C; Weiss, R; Rietjens, I M
1999-06-01
This study describes the catalytic properties of manganese microperoxidase 8 [Mn(III)MP8] compared to iron microperoxidase 8 [Fe(III)MP8]. The mini-enzymes were tested for pH-dependent activity and operational stability in peroxidase-type conversions, using 2-methoxyphenol and 3,3'-dimethoxybenzidine, and in a cytochrome P450-like oxygen transfer reaction converting aniline to para-aminophenol. For the peroxidase type of conversions the Fe to Mn replacement resulted in a less than 10-fold decrease in the activity at optimal pH, whereas the aniline para-hydroxylation is reduced at least 30-fold. In addition it was observed that the peroxidase type of conversions are all fully blocked by ascorbate and that aniline para-hydroxylation by Fe(III)MP8 is increased by ascorbate whereas aniline para-hydroxylation by Mn(III)MP8 is inhibited by ascorbate. Altogether these results indicate that different types of reactive metal oxygen intermediates are involved in the various conversions. Compound I/II, scavenged by ascorbate, may be the reactive species responsible for the peroxidase reactions, the polymerization of aniline and (part of) the oxygen transfer to aniline in the absence of ascorbate. The para-hydroxylation of aniline by Fe(III)MP8, in the presence of ascorbate, must be mediated by another reactive iron-oxo species which could be the electrophilic metal(III) hydroperoxide anion of microperoxidase 8 [M(III)OOH MP8]. The lower oxidative potential of Mn, compared to Fe, may affect the reactivity of both compound I/II and the metal(III) hydroperoxide anion intermediate, explaining the differential effect of the Fe to Mn substitution on the pH-dependent behavior, the rate of catalysis and the operational stability of MP8.
Tissue Printing to Visualize Polyphenol Oxidase and Peroxidase in Vegetables, Fruits, and Mushrooms
ERIC Educational Resources Information Center
Melberg, Amanda R.; Flurkey, William H.; Inlow, Jennifer K.
2009-01-01
A simple tissue-printing procedure to determine the tissue location of the endogenous enzymes polyphenol oxidase and peroxidase in a variety of vegetables, fruits, and mushrooms is described. In tissue printing, cell contents from the surface of a cut section of the tissue are transferred to an adsorptive surface, commonly a nitrocellulose…
USDA-ARS?s Scientific Manuscript database
Catalase/peroxidases (KatGs) are a superfamily of reactive oxygen species (ROS)-degrading enzymes believed to be horizontally acquired by ancient Ascomycota from bacteria. Subsequent gene duplication resulted in two KatG paralogs in ascomycetes: the widely distributed intracellular KatG1 group, and ...
Some pharmaceuticals and environmental chemicals bind the thyroid peroxidase (TPO) enzyme and disrupt thyroid hormone production. The potential for TPO inhibition is a function of both the binding affinity and concentration of the chemical within the thyroid gland. The former can...