Hydroxynonenal and uncoupling proteins: a model for protection against oxidative damage.
Echtay, Karim S; Pakay, Julian L; Esteves, Telma C; Brand, Martin D
2005-01-01
In this mini review we summarize recent studies from our laboratory that show the involvement of superoxide and the lipid peroxidation product 4-hydroxynonenal in the regulation of mitochondrial uncoupling. Superoxide produced during mitochondrial respiration is a major cause of the cellular oxidative damage that may underlie degenerative diseases and ageing. Superoxide production is very sensitive to the magnitude of the mitochondrial protonmotive force, so can be strongly decreased by mild uncoupling. Superoxide is able to give rise to other reactive oxygen species, which elicit deleterious effects primarily by oxidizing intracellular components, including lipids, DNA and proteins. Superoxide-induced lipid peroxidation leads to the production of reactive aldehydes, including 4-hydroxynonenal. These aldehydic lipid peroxidation products are in turn able to modify proteins such as mitochondrial uncoupling proteins and the adenine nucleotide translocase, converting them into active proton transporters. This activation induces mild uncoupling and so diminishes mitochondrial superoxide production, hence protecting against disease and oxidative damage at the expense of energy production.
USDA-ARS?s Scientific Manuscript database
Hepatocellular injury resulting from increased lipid peroxidation products and oxidative stress is considered a potential mechanism driving the progression of nonalcoholic fatty liver disease (NAFLD) to nonalcoholic steatohepatitsis (NASH). To test the significance of lipid peroxidation and protein...
Vásquez-Garzón, Verónica R; Rouimi, Patrick; Jouanin, Isabelle; Waeg, Georg; Zarkovic, Neven; Villa-Treviño, Saul; Guéraud, Françoise
2012-05-01
Among disruptions induced by oxidative stress, modifications of proteins, particularly irreversible carbonylation, are associated with the development of several diseases, including cardiovascular diseases, neurodegenerative diseases, and cancer. Carbonylation of proteins can occur directly or indirectly through the adduction of lipid oxidation products. In this study, three classical and easy-to-perform techniques to detect direct or indirect carbonylation of proteins were compared. A model protein apomyoglobin and a complex mixture of rat liver cytosolic proteins were exposed to cumene hydroperoxide oxidation or adduction to the lipid peroxidation product 4-hydroxynonenal in order to test direct or indirect carbonylation, respectively. The technique using a specific anti-4-hydroxynonenal-histidine adduct antibody was effective to detect in vitro modification of model apomyoglobin and cytosolic proteins by 4-hydroxynonenal but not by direct carbonylation which was achieved by techniques using biotin-coupled hydrazide or dinitrophenylhydrazine derivatization of carbonyls. Sequential use of these methods enabled the detection of both direct and indirect carbonyl modification in proteins, although constitutively biotinylated proteins were detected by biotin-hydrazide. Although rather classical and efficient, methods for carbonyl detection on proteins in oxidative stress studies may be biased by some artifactual detections and complicated by proteins multimerizations. The use of more and more specific available antibodies is recommended to complete detection of lipid peroxidation product adducts on proteins.
Kim, Helena K; Isaacs-Trepanier, Cameron; Elmi, Nika; Rapoport, Stanley I; Andreazza, Ana C
2016-05-01
Chronic N-methyl-d-aspartate (NMDA) administration to rats may be a model to investigate excitotoxicity mediated by glutamatergic hyperactivity, and lithium has been reported to be neuroprotective. We hypothesized that glutamatergic hyperactivity in chronic NMDA injected rats would cause mitochondrial dysfunction and lipid peroxidation in the brain, and that chronic lithium treatment would ameliorate some of these NMDA-induced alterations. Rats treated with lithium for 6 weeks were injected i.p. 25 mg/kg NMDA on a daily basis for the last 21 days of lithium treatment. Brain was removed and frontal cortex was analyzed. Chronic NMDA decreased brain levels of mitochondrial complex I and III, and increased levels of the lipid oxidation products, 8-isoprostane and 4-hydroxynonenal, compared with non-NMDA injected rats. Lithium treatment prevented the NMDA-induced increments in 8-isoprostane and 4-hydroxynonenal. Our findings suggest that increased chronic activation of NMDA receptors can induce alterations in electron transport chain complexes I and III and in lipid peroxidation in brain. The NMDA-induced changes may contribute to glutamate-mediated excitotoxicity, which plays a role in brain diseases such as bipolar disorder. Lithium treatment prevented changes in 8-isoprostane and 4-hydroxynonenal, which may contribute to lithium's reported neuroprotective effect and efficacy in bipolar disorder. Copyright © 2016 Elsevier Ltd. All rights reserved.
4-Hydroxy-nonenal—A Bioactive Lipid Peroxidation Product †
Schaur, Rudolf J.; Siems, Werner; Bresgen, Nikolaus; Eckl, Peter M.
2015-01-01
This review on recent research advances of the lipid peroxidation product 4-hydroxy-nonenal (HNE) has four major topics: I. the formation of HNE in various organs and tissues, II. the diverse biochemical reactions with Michael adduct formation as the most prominent one, III. the endogenous targets of HNE, primarily peptides and proteins (here the mechanisms of covalent adduct formation are described and the (patho-) physiological consequences discussed), and IV. the metabolism of HNE leading to a great number of degradation products, some of which are excreted in urine and may serve as non-invasive biomarkers of oxidative stress. PMID:26437435
Oxidative stress markers during a course of hyperthyroidism.
Lampka, Magdalena; Junik, Roman; Nowicka, Anna; Kopczyńska, Ewa; Tyrakowski, Tomasz; Odrowaz-Sypniewska, Grazyna
2006-01-01
Previous studies have shown the presence of oxidative stress in hyperthyroid patients. The aim of this study was to evaluate the influence of hyperthyroidism on lipid peroxidation, plasma lipoprotein oxidation and antioxidant status. We have estimated the clinical utility of the biochemical parameters analysed as markers of oxidative stress in hyperthyroidism. Twenty five patients with overt hyperthyroidism because of Graves' disease or toxic multinodular goitre and 20 healthy subjects were included in the study. Lipid peroxidation was evaluated by measurement of peroxides and malondialdehyde with 4-hydroxynonenal (MDA + 4-HNE) concentrations. Autoantibodies against oxidised LDL (anti-oxLDL) were assayed as a marker of lipoprotein oxidation. Changes in the antioxidant defence system were estimated by measurement of total antioxidant status in serum (TAS) and erythrocyte superoxide dismutase activity (SOD). A significant increase in serum concentration of peroxides and MDA + 4-HNE was observed in patients with hyperthyroidism. However, no difference was found in anti-oxLDL concentration and antioxidant status parameters (TAS, SOD) between the control group and the patient group. Our results indicate an intensification of the oxidative processes caused by an excess of thyroid hormones, which is not accompanied by a response from the antioxidant system. Elevated concentrations of lipid peroxidation products in serum, both peroxides and malondialdehyde with 4-hydroxynonenal, may be useful as markers of oxidative stress during the course of hyperthyroidism.
Differential metabolism of 4-hydroxynonenal in liver, lung and brain of mice and rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Ruijin; Dragomir, Ana-Cristina; Mishin, Vladimir
2014-08-15
The lipid peroxidation end-product 4-hydroxynonenal (4-HNE) is generated in tissues during oxidative stress. As a reactive aldehyde, it forms Michael adducts with nucleophiles, a process that disrupts cellular functioning. Liver, lung and brain are highly sensitive to xenobiotic-induced oxidative stress and readily generate 4-HNE. In the present studies, we compared 4-HNE metabolism in these tissues, a process that protects against tissue injury. 4-HNE was degraded slowly in total homogenates and S9 fractions of mouse liver, lung and brain. In liver, but not lung or brain, NAD(P)+ and NAD(P)H markedly stimulated 4-HNE metabolism. Similar results were observed in rat S9 fractionsmore » from these tissues. In liver, lung and brain S9 fractions, 4-HNE formed protein adducts. When NADH was used to stimulate 4-HNE metabolism, the formation of protein adducts was suppressed in liver, but not lung or brain. In both mouse and rat tissues, 4-HNE was also metabolized by glutathione S-transferases. The greatest activity was noted in livers of mice and in lungs of rats; relatively low glutathione S-transferase activity was detected in brain. In mouse hepatocytes, 4-HNE was rapidly taken up and metabolized. Simultaneously, 4-HNE-protein adducts were formed, suggesting that 4-HNE metabolism in intact cells does not prevent protein modifications. These data demonstrate that, in contrast to liver, lung and brain have a limited capacity to metabolize 4-HNE. The persistence of 4-HNE in these tissues may increase the likelihood of tissue injury during oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a highly reactive aldehyde. • Rodent liver, but not lung or brain, is efficient in degrading 4-hydroxynonenal. • 4-hydroxynonenal persists in tissues with low metabolism, causing tissue damage.« less
Lee, Seung-Ah; Belyaeva, Olga V.; Kedishvili, Natalia Y.
2008-01-01
SUMMARY Mutations in human Retinol Dehydrogenase 12 (RDH12) are known to cause photoreceptor cell death but the physiological function of RDH12 in photoreceptors remains poorly understood. In vitro, RDH12 recognizes both retinoids and medium-chain aldehydes as substrates. Our previous study suggested that RDH12 protects cells against toxic levels of retinaldehyde and retinoic acid [Lee et al., J. Biol. Chem. 282 (2007) 35621–35628]. Here, we investigated whether RDH12 can also protect cells against highly reactive medium-chain aldehydes. Analysis of cell survival demonstrated that RDH12 was protective against nonanal but not against 4-hydroxynonenal. At high concentrations, nonanal inhibited the activity of RDH12 towards retinaldehyde, suggesting that nonanal was metabolized by RDH12. 4-Hydroxynonenal did not inhibit the RDH12 retinaldehyde reductase activity, but it strongly inhibited the activities of lecithin:retinol acyl transferase and aldehyde dehydrogenase, resulting in decreased levels of retinyl esters and retinoic acid and accumulation of unesterified retinol. Thus, the results of this study showed that RDH12 is more effective in protection against retinaldehyde than against medium-chain aldehydes, and that medium-chain aldehydes, especially 4-hydroxynonenal, severely disrupt cellular retinoid homeostasis. Together, these findings provide a new insight into the effects of lipid peroxidation products and the impact of oxidative stress on retinoid metabolism. PMID:18396173
Tang, Sung-Chun; Lathia, Justin D.; Selvaraj, Pradeep K.; Jo, Dong-Gyu; Mughal, Mohamed R.; Cheng, Aiwu; Siler, Dominic A.; Markesbery, William R.; Arumugam, Thiruma V.; Mattson, Mark. P.
2008-01-01
The innate immune system senses the invasion of pathogenic microorganisms and tissue injury through Toll-like receptors (TLR), a mechanism thought to be limited to immune cells. We recently found that neurons express several TLRs, and that the levels of TLR2 and TLR4 are increased in neurons in response to energy deprivation. Here we report that TLR4 expression increases in neurons when exposed to amyloid β-peptide (Aβ1-42) or the lipid peroxidation product 4-hydroxynonenal (HNE). Neuronal apoptosis triggered by Aβ and HNE was mediated by jun N-terminal kinase (JNK); neurons from TLR4 mutant mice exhibited reduced JNK and caspase-3 activation and were protected against apoptosis induced by Aβ and HNE. Levels of TLR4 were decreased in inferior parietal cortex tissue specimens from end-stage AD patients compared to aged-matched control subjects, possibly as the result of loss of neurons expressing TLR4. Our findings suggest that TLR4 signaling increases the vulnerability of neurons to Aβ and oxidative stress in AD, and identify TLR4 as a potential therapeutic target for AD. PMID:18586243
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Ruijin; Heck, Diane E.; Mishin, Vladimir
2014-03-01
4-Hydroxynonenal (4-HNE) is a lipid peroxidation end product generated in response to oxidative stress in the skin. Keratinocytes contain an array of antioxidant enzymes which protect against oxidative stress. In these studies, we characterized 4-HNE-induced changes in antioxidant expression in mouse keratinocytes. Treatment of primary mouse keratinocytes and PAM 212 keratinocytes with 4-HNE increased mRNA expression for heme oxygenase-1 (HO-1), catalase, NADPH:quinone oxidoreductase (NQO1) and glutathione S-transferase (GST) A1-2, GSTA3 and GSTA4. In both cell types, HO-1 was the most sensitive, increasing 86–98 fold within 6 h. Further characterization of the effects of 4-HNE on HO-1 demonstrated concentration- and time-dependentmore » increases in mRNA and protein expression which were maximum after 6 h with 30 μM. 4-HNE stimulated keratinocyte Erk1/2, JNK and p38 MAP kinases, as well as PI3 kinase. Inhibition of these enzymes suppressed 4-HNE-induced HO-1 mRNA and protein expression. 4-HNE also activated Nrf2 by inducing its translocation to the nucleus. 4-HNE was markedly less effective in inducing HO-1 mRNA and protein in keratinocytes from Nrf2 −/− mice, when compared to wild type mice, indicating that Nrf2 also regulates 4-HNE-induced signaling. Western blot analysis of caveolar membrane fractions isolated by sucrose density centrifugation demonstrated that 4-HNE-induced HO-1 is localized in keratinocyte caveolae. Treatment of the cells with methyl-β-cyclodextrin, which disrupts caveolar structure, suppressed 4-HNE-induced HO-1. These findings indicate that 4-HNE modulates expression of antioxidant enzymes in keratinocytes, and that this can occur by different mechanisms. Changes in expression of keratinocyte antioxidants may be important in protecting the skin from oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a reactive aldehyde. • 4-HNE induces antioxidant proteins in mouse keratinocytes. • Induction of antioxidant proteins is regulated via MAP kinases, Nrf2 and caveolae. • 4-HNE is an effective signaling molecule in keratinocytes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Ruijin; Po, Iris; Mishin, Vladimir
The cornea is highly sensitive to oxidative stress, a process that can lead to lipid peroxidation. Ultraviolet light B (UVB) and nitrogen mustard (mechlorethamine) are corneal toxicants known to induce oxidative stress. Using a rabbit air-lifted corneal organ culture model, the oxidative stress responses to these toxicants in the corneal epithelium was characterized. Treatment of the cornea with UVB (0.5 J/cm{sup 2}) or nitrogen mustard (100 nmol) resulted in the generation of 4-hydroxynonenal (4-HNE), a reactive lipid peroxidation end product. This was associated with increased expression of the antioxidant, heme oxygenase-1 (HO-1). In human corneal epithelial cells in culture, additionmore » of 4-HNE or 9-nitrooleic acid, a reactive nitrolipid formed during nitrosative stress, caused a time-dependent induction of HO-1 mRNA and protein; maximal responses were evident after 10 h with 30 μM 4-HNE or 6 h with 10 μM 9-nitrooleic acid. 4-HNE and 9-nitrooleic acid were also found to activate Erk1/2, JNK and p38 MAP kinases, as well as phosphoinositide-3-kinase (PI3)/Akt. Inhibition of p38 blocked 4-HNE- and 9-nitrooleic acid-induced HO-1 expression. Inhibition of Erk1/2, and to a lesser extent, JNK and PI3K/Akt, suppressed only 4-HNE-induced HO-1, while inhibition of JNK and PI3K/Akt, but not Erk1/2, partly reduced 9-nitrooleic acid-induced HO-1. These data indicate that the actions of 4-HNE and 9-nitrooleic acid on corneal epithelial cells are distinct. The sensitivity of corneal epithelial cells to oxidative stress may be an important mechanism mediating tissue injury induced by UVB or nitrogen mustard. - Highlights: • UVB or nitrogen mustard causes rabbit corneal epithelial injury. • 4-Hydroxynonenal (4-HNE) was formed and heme oxygenase-1 (HO-1) was increased. • 4-HNE induced HO-1 mRNA and protein expression in human corneal epithelial cells. • The induction of HO-1 by 4-HNE was through MAP kinase activation.« less
Zhu, Xiongwei; Castellani, Rudy J; Moreira, Paula I; Aliev, Gjumrakch; Shenk, Justin C; Siedlak, Sandra L; Harris, Peggy L R; Fujioka, Hisashi; Sayre, Lawrence M; Szweda, Pamela A; Szweda, Luke I; Smith, Mark A; Perry, George
2012-02-01
Lipid peroxidation generates reactive aldehydes, most notably hydroxynonenal (HNE), which covalently bind amino acid residue side chains leading to protein inactivation and insolubility. Specific adducts of lipid peroxidation have been demonstrated in intimate association with the pathological lesions of Alzheimer disease (AD), suggesting that oxidative stress is a major component of AD pathogenesis. Some HNE-protein products result in protein crosslinking through a fluorescent compound similar to lipofuscin, linking lipid peroxidation and the lipofuscin accumulation that commonly occurs in post-mitotic cells such as neurons. In this study, brain tissue from AD and control patients was examined by immunocytochemistry and immunoelectron microscopy for evidence of HNE-crosslinking modifications of the type that should accumulate in the lipofuscin pathway. Strong labeling of granulovacuolar degeneration (GVD) and Hirano bodies was noted but lipofuscin did not contain this specific HNE-fluorophore. These findings directly implicate lipid crosslinking peroxidation products as accumulating not in the lesions or the lipofuscin pathways, but instead in a distinct pathway, GVD, that accumulates cytosolic proteins. Copyright © 2011 Elsevier Inc. All rights reserved.
Shearn, Colin T; Reigan, Philip; Petersen, Dennis R
2012-07-01
Dysregulation of cell signaling by electrophiles such as 4-hydroxynonenal (4-HNE) is a key component in the pathogenesis of chronic inflammatory liver disease. Another consequence of inflammation is the perpetuation of oxidative damage by the production of reactive oxidative species such as hydrogen peroxide. Previously, we have demonstrated Akt2 as a direct target of 4-HNE in hepatocellular carcinoma cells. In the present study, we used the hepatocellular carcinoma cell line HepG2 as model to understand the combinatorial effects of 4-HNE and hydrogen peroxide. We demonstrate that 4-HNE inhibits hydrogen peroxide-mediated phosphorylation of Akt1 but not Akt2. Pretreatment of HepG2 cells with 4-HNE prevented hydrogen peroxide stimulation of Akt-dependent phosphorylation of downstream targets and intracellular Akt activity compared with untreated control cells. Using biotin hydrazide capture, it was confirmed that 4-HNE treatment resulted in carbonylation of Akt1, which was not observed in untreated control cells. Using a synthetic GSK3α/β peptide as a substrate, treatment of recombinant human myristoylated Akt1 (rAkt1) with 20 or 40 μΜ 4-HNE inhibited rAkt1 activity by 29 and 60%, respectively. We further demonstrate that 4-HNE activates Erk via a PI3 kinase and PP2A-dependent mechanism leading to increased Jnk phosphorylation. At higher concentrations, 4-HNE decreased both cell survival and proliferation as evidenced by MTT assays and EdU incorporation as well as decreased expression of cyclin D1 and β-catenin, an effect only moderately increased by the addition of hydrogen peroxide. The ability of 4-HNE to exert combinatorial effects on Erk, Jnk, and Akt-dependent cell survival pathways provides additional insight into the mechanisms of cellular damage associated with chronic inflammation. Published by Elsevier Inc.
Sawicki, Rafał; Singh, Sharda P; Mondal, Ashis K; Benes, Helen; Zimniak, Piotr
2003-01-01
From the fruitfly, Drosophila melanogaster, ten members of the cluster of Delta-class glutathione S-transferases (GSTs; formerly denoted as Class I GSTs) and one member of the Epsilon-class cluster (formerly GST-3) have been cloned, expressed in Escherichia coli, and their catalytic properties have been determined. In addition, nine more members of the Epsilon cluster have been identified through bioinformatic analysis but not further characterized. Of the 11 expressed enzymes, seven accepted the lipid peroxidation product 4-hydroxynonenal as substrate, and nine were active in glutathione conjugation of 1-chloro-2,4-dinitrobenzene. Since the enzymically active proteins included the gene products of DmGSTD3 and DmGSTD7 which were previously deemed to be pseudogenes, we investigated them further and determined that both genes are transcribed in Drosophila. Thus our present results indicate that DmGSTD3 and DmGSTD7 are probably functional genes. The existence and multiplicity of insect GSTs capable of conjugating 4-hydroxynonenal, in some cases with catalytic efficiencies approaching those of mammalian GSTs highly specialized for this function, indicates that metabolism of products of lipid peroxidation is a highly conserved biochemical pathway with probable detoxification as well as regulatory functions. PMID:12443531
Steppeler, Christina; Haugen, John-Erik; Rødbotten, Rune; Kirkhus, Bente
2016-01-20
Red meat high in heme iron may promote the formation of potentially genotoxic aldehydes during lipid peroxidation in the gastrointestinal tract. In this study, the formation of malondialdehyde (MDA) equivalents measured by the thiobarbituric acid reactive substances (TBARS) method was determined during in vitro digestion of cooked red meat (beef and pork), as well as white meat (chicken) and fish (salmon), whereas analysis of 4-hydroxyhexenal (HHE) and 4-hydroxynonenal (HNE) was performed during in vitro digestion of cooked beef and salmon. Comparing products with similar fat contents indicated that the amount of unsaturated fat and not total iron content was the dominating factor influencing the formation of aldehydes. It was also shown that increasing fat content in beef products caused increasing concentrations of MDA equivalents. The highest levels, however, were found in minced beef with added fish oil high in unsaturated fat. This study indicates that when ingested alone, red meat products low in unsaturated fat and low in total fat content contribute to relatively low levels of potentially genotoxic aldehydes in the gastrointestinal tract.
Zhang, Shi; Eitan, Erez; Wu, Tsung-Yu; Mattson, Mark P
2018-01-01
Parkinson's disease (PD) is characterized by accumulations of toxic α-synuclein aggregates in vulnerable neuronal populations in the brainstem, midbrain, and cerebral cortex. Recent findings suggest that α-synuclein pathology can be propagated transneuronally, but the underlying molecular mechanisms are unknown. Advances in the genetics of rare early-onset familial PD indicate that increased production and/or reduced autophagic clearance of α-synuclein can cause PD. The cause of the most common late-onset PD is unclear, but may involve metabolic compromise and oxidative stress upstream of α-synuclein accumulation. As evidence, the lipid peroxidation product 4-hydroxynonenal (HNE) is elevated in the brain during normal aging and moreso in brain regions afflicted with α-synuclein pathology. Here, we report that HNE increases aggregation of endogenous α-synuclein in primary neurons and triggers the secretion of extracellular vesicles (EVs) containing cytotoxic oligomeric α-synuclein species. EVs released from HNE-treated neurons are internalized by healthy neurons which as a consequence degenerate. Levels of endogenously generated HNE are elevated in cultured cells overexpressing human α-synuclein, and EVs released from those cells are toxic to neurons. The EV-associated α-synuclein is located both inside the vesicles and on their surface, where it plays a role in EV internalization by neurons. On internalization, EVs harboring pathogenic α-synuclein are transported both anterogradely and retrogradely within axons. Focal injection of EVs containing α-synuclein into the striatum of wild-type mice results in spread of synuclein pathology to anatomically connected brain regions. Our findings suggest a scenario for late-onset PD in which lipid peroxidation promotes intracellular accumulation and then extrusion of EVs containing toxic α-synuclein species; the EVs are then internalized by adjacent neurons, so propagating the neurodegenerative process. Published by Elsevier Inc.
Tumor Suppression and Sensitization to Taxol Induces Apoptosis of EIA in Breast Cancer Cells
2005-06-01
participated in the regulation of apoptosis induced by ceramide, mistletoe lectin, and 4-hydroxynonenal, an aldehyde product of mem- brane lipid peroxidation... Mistletoe lectin induces apoptosis and telomerase inhibition in hu- man A253 cancer cells through dephosphorylation of Akt. Arch Pharm Res 2004; 27:68-76...participated subunit of protein phosphatase 2A [PP2A (PP2A/C)l enhanced the activity in the regulation of apoptosis induced by ceramide, mistletoe lectin, of
Flores-Bellver, M; Bonet-Ponce, L; Barcia, J M; Garcia-Verdugo, J M; Martinez-Gil, N; Saez-Atienzar, S; Sancho-Pelluz, J; Jordan, J; Galindo, M F; Romero, F J
2014-07-17
Retinal pigment epithelium has a crucial role in the physiology and pathophysiology of the retina due to its location and metabolism. Oxidative damage has been demonstrated as a pathogenic mechanism in several retinal diseases, and reactive oxygen species are certainly important by-products of ethanol (EtOH) metabolism. Autophagy has been shown to exert a protective effect in different cellular and animal models. Thus, in our model, EtOH treatment increases autophagy flux, in a concentration-dependent manner. Mitochondrial morphology seems to be clearly altered under EtOH exposure, leading to an apparent increase in mitochondrial fission. An increase in 2',7'-dichlorofluorescein fluorescence and accumulation of lipid peroxidation products, such as 4-hydroxy-nonenal (4-HNE), among others were confirmed. The characterization of these structures confirmed their nature as aggresomes. Hence, autophagy seems to have a cytoprotective role in ARPE-19 cells under EtOH damage, by degrading fragmented mitochondria and 4-HNE aggresomes. Herein, we describe the central implication of autophagy in human retinal pigment epithelial cells upon oxidative stress induced by EtOH, with possible implications for other conditions and diseases.
Faisal, Mohammad; Shahab, Uzma; Alatar, Abdulrahman A; Ahmad, Saheem
2017-11-01
The structural perturbations in DNA molecule may be caused by a break in a strand, a missing base from the backbone, or a chemically changed base. These alterations in DNA that occurs naturally can result from metabolic or hydrolytic processes. DNA damage plays a major role in the mutagenesis, carcinogenesis, aging and various other patho-physiological conditions. DNA damage can be induced through hydrolysis, exposure to reactive oxygen species (ROS) and other reactive carbonyl metabolites including 4-hydroxynonenal (HNE). 4-HNE is an important lipid peroxidation product which has been implicated in the mutagenesis and carcinogenesis processes. The present study examines to probe the presence of auto-antibodies against 4-hydroxynonenal damaged DNA (HNE-DNA) in various cancer subjects. In this study, the purified calf thymus DNA was damaged by the action of 4-HNE. The DNA was incubated with 4-HNE for 24 h at 37°C temperature. The binding characteristics of cancer auto-antibodies were assessed by direct binding and competitive inhibition ELISA. DNA modifications produced hyperchromicity in UV spectrum and decreased fluorescence intensity. Cancer sera exhibited enhanced binding with the 4-HNE modified calf thymus DNA as compared to its native conformer. The 4-HNE modified DNA presents unique epitopes which may be one of the factors for the auto-antibody induction in cancer patients. The HNE modified DNA presents unique epitopes which may be one of the factors for the autoantibody induction in cancer patients. © 2017 Wiley Periodicals, Inc.
Dasuri, Kalavathi; Ebenezer, Philip; Fernandez-Kim, Sun Ok; Zhang, Le; Gao, Zhanguo; Bruce-Keller, Annadora J; Freeman, Linnea R; Keller, Jeffrey N
2013-01-01
Lipid peroxidation products such as 4-hydroxynonenal (HNE) are known to be increased in response to oxidative stress, and are known to cause dysfunction and pathology in a variety of tissues during periods of oxidative stress. The aim of the current study was to determine the chronic (repeated HNE exposure) and acute effects of physiological concentrations of HNE toward multiple aspects of adipocyte biology using differentiated 3T3-L1 adipocytes. Our studies demonstrate that acute and repeated exposure of adipocytes to physiological concentrations of HNE is sufficient to promote subsequent oxidative stress, impaired adipogenesis, alter the expression of adipokines, and increase lipolytic gene expression and subsequent increase in free fatty acid (FFA) release. These results provide an insight in to the role of HNE-induced oxidative stress in regulation of adipocyte differentiation and adipose dysfunction. Taken together, these data indicate a potential role for HNE promoting diverse effects toward adipocyte homeostasis and adipocyte differentiation, which may be important to the pathogenesis observed in obesity and metabolic syndrome.
USDA-ARS?s Scientific Manuscript database
To test the significance of lipid peroxidation in the development of alcoholic liver injury, an ethanol (EtOH) liquid diet was fed to male wild type 129/SvJ mice, and glutathione S-transferase A4-4 null (GSTA4-/-) mice for 40 d. GSTA4-/- mice were also crossed with peroxisome proliferator-activated ...
Dysregulation of hepatic zinc transporters in a mouse model of alcoholic liver disease
Sun, Qian; Li, Qiong; Zhong, Wei; Zhang, Jiayang; Sun, Xiuhua; Tan, Xiaobing; Yin, Xinmin; Sun, Xinguo; Zhang, Xiang
2014-01-01
Zinc deficiency is a consistent phenomenon observed in patients with alcoholic liver disease, but the mechanisms have not been well defined. The objective of this study was to determine if alcohol alters hepatic zinc transporters in association with reduction of hepatic zinc levels and if oxidative stress mediates the alterations of zinc transporters. C57BL/6 mice were pair-fed with the Lieber-DeCarli control or ethanol diets for 2, 4, or 8 wk. Chronic alcohol exposure reduced hepatic zinc levels, but increased plasma and urine zinc levels, at all time points. Hepatic zinc finger proteins, peroxisome proliferator-activated receptor-α (PPAR-α) and hepatocyte nuclear factor 4α (HNF-4α), were downregulated in ethanol-fed mice. Four hepatic zinc transporter proteins showed significant alterations in ethanol-fed mice compared with the controls. ZIP5 and ZIP14 proteins were downregulated, while ZIP7 and ZnT7 proteins were upregulated, by ethanol exposure at all time points. Immunohistochemical staining demonstrated that chronic ethanol exposure upregulated cytochrome P-450 2E1 and caused 4-hydroxynonenal accumulation in the liver. For the in vitro study, murine FL-83B hepatocytes were treated with 5 μM 4-hydroxynonenal or 100 μM hydrogen peroxide for 72 h. The results from in vitro studies demonstrated that 4-hydroxynonenal treatment altered ZIP5 and ZIP7 protein abundance, and hydrogen peroxide treatment changed ZIP7, ZIP14, and ZnT7 protein abundance. These results suggest that chronic ethanol exposure alters hepatic zinc transporters via oxidative stress, which might account for ethanol-induced hepatic zinc deficiency. PMID:24924749
High throughput assay for evaluation of reactive carbonyl scavenging capacity.
Vidal, N; Cavaille, J P; Graziani, F; Robin, M; Ouari, O; Pietri, S; Stocker, P
2014-01-01
Many carbonyl species from either lipid peroxidation or glycoxidation are extremely reactive and can disrupt the function of proteins and enzymes. 4-hydroxynonenal and methylglyoxal are the most abundant and toxic lipid-derived reactive carbonyl species. The presence of these toxics leads to carbonyl stress and cause a significant amount of macromolecular damages in several diseases. Much evidence indicates trapping of reactive carbonyl intermediates may be a useful strategy for inhibiting or decreasing carbonyl stress-associated pathologies. There is no rapid and convenient analytical method available for the assessment of direct carbonyl scavenging capacity, and a very limited number of carbonyl scavengers have been identified to date, their therapeutic potential being highlighted only recently. In this context, we have developed a new and rapid sensitive fluorimetric method for the assessment of reactive carbonyl scavengers without involvement glycoxidation systems. Efficacy of various thiol- and non-thiol-carbonyl scavenger pharmacophores was tested both using this screening assay adapted to 96-well microplates and in cultured cells. The scavenging effects on the formation of Advanced Glycation End-product of Bovine Serum Albumin formed with methylglyoxal, 4-hydroxynonenal and glucose-glycated as molecular models were also examined. Low molecular mass thiols with an α-amino-β-mercaptoethane structure showed the highest degree of inhibitory activity toward both α,β-unsaturated aldehydes and dicarbonyls. Cysteine and cysteamine have the best scavenging ability toward methylglyoxal. WR-1065 which is currently approved for clinical use as a protective agent against radiation and renal toxicity was identified as the best inhibitor of 4-hydroxynonenal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Debabrata; Sen, Gargi; Biswas, Tuli, E-mail: tulibiswas@iicb.res.i
2010-05-01
Chronic exposure to arsenic in rats led to gradual accumulation of the toxicant in erythrocytes causing oxidative stress in these cells. 4-Hydroxynonenal (4-HNE), a major aldehyde product of lipid peroxidation, contributed significantly to the cytopathological events observed during oxidative stress in the erythrocytes of exposed rats. 4-HNE triggered death signal cascade that was initiated with the formation of HNE-protein adducts in cytosol. HNE-protein adduct formation resulted in depletion of cytosolic antioxidants followed by increased generation of ROS. Results showed accumulation of hydrogen peroxide (H{sub 2}O{sub 2}) from the early stages of arsenic exposure, while superoxide (O{sub 2}{sup c}entre dot{sup -})more » and hydroxyl radical ({sup c}entre dotOH) also contributed to the oxidative stress during longer period of exposure. Suppression of antioxidant system coupled with increased generation of ROS eventually led to activation of caspase 3 during arsenic exposure. Attenuation of HNE-mediated activation of caspase 3 in presence of N-acetylcysteine (NAC) indicated the involvement of GSH in the process. Prevention of HNE-mediated degradation of membrane proteins in presence of Z-DEVD-FMK identified caspase 3 as the principal mediator of HNE-induced cellular damage during arsenic exposure. Degradation of band 3 followed by its aggregation on the red cell surface promoted immunologic recognition of redistributed band 3 by autologous IgG with subsequent attachment of C3b. Finally, the formation of C3b-IgG-band 3 immune complex accelerated the elimination of affected cells from circulation and led to the decline of erythrocyte life span during chronic arsenic toxicity.« less
Role of 4-hydroxynonenal in chemopreventive activities of sulforaphane
Sharma, Rajendra; Sharma, Abha; Chaudhary, Pankaj; Sahu, Mukesh; Jaiswal, Shailesh; Awasthi, Sanjay; Awasthi, Yogesh C.
2012-01-01
Chemoprevention of cancer via herbal and dietary supplements is a logical approach to combat cancer and presently it is an attractive area of research investigations. Over the years, the use of isothiocyanates, such as sulforaphane (SFN) found in cruciferous vegetables, has been advocated as chemopreventive agents and their efficacy has been demonstrated in cell lines and animal models. In-vivo studies with SFN suggest that besides protecting normal healthy cells from environmental carcinogens it also exhibits cytotoxicity and apoptotic effects against various cancer cell types. Among several mechanisms for the chemopreventive activity of SFN against chemical carcinogenesis, its effect on drug metabolizing enzymes that causes activation/ neutralization of carcinogenic metabolites is well established. Recent studies suggest that SFN exerts its selective cytotoxicity to cancer cells via reactive oxygen species (ROS)-mediated generation of lipid peroxidation (LPO) products particularly 4-hydroxynonenal (HNE). Against the background of the known biochemical effects of SFN on normal and cancer cells, in this article we have reviewed the underlying molecular mechanisms responsible for the overall chemopreventive effects of SFN focusing on the role of HNE in these mechanisms that may also contribute to its selective cytotoxicity to cancer cells. PMID:22579574
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raza, Haider; John, Annie; Brown, Eric M.
Cellular oxidative stress and alterations in redox metabolisms have been implicated in the etiology and pathology of many diseases including cancer. Antioxidant treatments have been proven beneficial in controlling these diseases. We have recently shown that 4-hydroxynonenal (4-HNE), a by-product of lipid peroxidation, induces oxidative stress in PC12 cells by compromising the mitochondrial redox metabolism. In this study, we have further investigated the deleterious effects of 4-HNE on mitochondrial respiratory functions and apoptosis using the same cell line. In addition, we have also compared the effects of two antioxidants, curcumin and melatonin, used as chemopreventive agents, on mitochondrial redox metabolismmore » and respiratory functions in these cells. 4-HNE treatment has been shown to cause a reduction in glutathione (GSH) pool, an increase in reactive oxygen species (ROS), protein carbonylation and apoptosis. A marked inhibition in the activities of the mitochondrial respiratory enzymes, cytochrome c oxidase and aconitase was observed after 4-HNE treatment. Increased nuclear translocation of NF-kB/p65 protein was also observed after 4-HNE treatment. Curcumin and melatonin treatments, on the other hand, maintained the mitochondrial redox and respiratory functions without a marked effect on ROS production and cell viability. These results suggest that 4-HNE-induced cytotoxicity may be associated, at least in part, with the altered mitochondrial redox and respiratory functions. The alterations in mitochondrial energy metabolism and redox functions may therefore be critical in determining the difference between cell death and survival.« less
Elastin aging and lipid oxidation products in human aorta.
Zarkovic, Kamelija; Larroque-Cardoso, Pauline; Pucelle, Mélanie; Salvayre, Robert; Waeg, Georg; Nègre-Salvayre, Anne; Zarkovic, Neven
2015-01-01
Vascular aging is associated with structural and functional modifications of the arteries, and by an increase in arterial wall thickening in the intima and the media, mainly resulting from structural modifications of the extracellular matrix (ECM) components. Among the factors known to accumulate with aging, advanced lipid peroxidation end products (ALEs) are a hallmark of oxidative stress-associated diseases such as atherosclerosis. Aldehydes generated from the peroxidation of polyunsaturated fatty acids (PUFA), (4-hydroxynonenal, malondialdehyde, acrolein), form adducts on cellular proteins, leading to a progressive protein dysfunction with consequences in the pathophysiology of vascular aging. The contribution of these aldehydes to ECM modification is not known. This study was carried out to investigate whether aldehyde-adducts are detected in the intima and media in human aorta, whether their level is increased in vascular aging, and whether elastin fibers are a target of aldehyde-adduct formation. Immunohistological and confocal immunofluorescence studies indicate that 4-HNE-histidine-adducts accumulate in an age-related manner in the intima, media and adventitia layers of human aortas, and are mainly expressed in smooth muscle cells. In contrast, even if the structure of elastin fiber is strongly altered in the aged vessels, our results show that elastin is not or very poorly modified by 4-HNE. These data indicate a complex role for lipid peroxidation and in particular for 4-HNE in elastin homeostasis, in the vascular wall remodeling during aging and atherosclerosis development. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Elastin aging and lipid oxidation products in human aorta
Zarkovic, Kamelija; Larroque-Cardoso, Pauline; Pucelle, Mélanie; Salvayre, Robert; Waeg, Georg; Nègre-Salvayre, Anne; Zarkovic, Neven
2014-01-01
Vascular aging is associated with structural and functional modifications of the arteries, and by an increase in arterial wall thickening in the intima and the media, mainly resulting from structural modifications of the extracellular matrix (ECM) components. Among the factors known to accumulate with aging, advanced lipid peroxidation end products (ALEs) are a hallmark of oxidative stress-associated diseases such as atherosclerosis. Aldehydes generated from the peroxidation of polyunsaturated fatty acids (PUFA), (4-hydroxynonenal, malondialdehyde, acrolein), form adducts on cellular proteins, leading to a progressive protein dysfunction with consequences in the pathophysiology of vascular aging. The contribution of these aldehydes to ECM modification is not known. This study was carried out to investigate whether aldehyde-adducts are detected in the intima and media in human aorta, whether their level is increased in vascular aging, and whether elastin fibers are a target of aldehyde-adduct formation. Immunohistological and confocal immunofluorescence studies indicate that 4-HNE-histidine-adducts accumulate in an age-related manner in the intima, media and adventitia layers of human aortas, and are mainly expressed in smooth muscle cells. In contrast, even if the structure of elastin fiber is strongly altered in the aged vessels, our results show that elastin is not or very poorly modified by 4-HNE. These data indicate a complex role for lipid peroxidation and in particular for 4-HNE in elastin homeostasis, in the vascular wall remodeling during aging and atherosclerosis development. PMID:25553420
Mitochondria as a source and target of lipid peroxidation products in healthy and diseased heart.
Anderson, Ethan J; Katunga, Lalage A; Willis, Monte S
2012-02-01
The heart is a highly oxidative organ in which cardiomyocyte turnover is virtually absent, making it particularly vulnerable to accumulation of lipid peroxidation products (LPP) formed as a result of oxidative damage. Reactive oxygen and nitrogen species are the most common electrophiles formed during lipid peroxidation and lead to the formation of both stable and unstable LPP. Of the LPP formed, highly reactive aldehydes are a well-recognized causative factor in ageing and age-associated diseases, including cardiovascular disease and diabetes. Recent studies have identified that the mitochondria are both a primary source and target of LPP, with specific emphasis on aldehydes in cardiomyocytes and how these affect the electron transport system and Ca(2+) balance. Numerous studies have found that there are functional consequences in the heart following exposure to specific aldehydes (acrolein, trans-2-hexanal, 4-hydroxynonenal and acetaldehyde). Because these LPP are known to form in heart failure, cardiac ischaemia-reperfusion injury and diabetes, they may have an underappreciated role in the pathophysiology of these disease processes. Lipid peroxidation products are involved in the transcriptional regulation of endogenous anti-oxidant systems. Recent evidence demonstrates that transient increases in LPP may be beneficial in cardioprotection by contributing to mitohormesis (i.e. induction of anti-oxidant systems) in cardiomyocytes. Thus, exploitation of the cardioprotective actions of the LPP may represent a novel therapeutic strategy for future treatment of heart disease. © 2011 The Authors. Clinical and Experimental Pharmacology and Physiology © 2011 Blackwell Publishing Asia Pty Ltd.
Živković, Nevenka Piskač; Petrovečki, Mladen; Lončarić, Čedna Tomasović; Nikolić, Igor; Waeg, Georg; Jaganjac, Morana; Žarković, Kamelija; Žarković, Neven
2017-04-01
The Aim of the study was to reveal if PET-CT analysis of primary and of secondary lung cancer could be related to the onset of lipid peroxidation in cancer and in surrounding non-malignant lung tissue. Nineteen patients with primary lung cancer and seventeen patients with pulmonary metastasis were involved in the study. Their lungs were analyzed by PET-CT scanning before radical surgical removal of the cancer. Specific immunohistochemistry for the major bioactive marker of lipid peroxidation, 4-hydroxynonenal (HNE), was done for the malignant and surrounding non-malignant lung tissue using genuine monoclonal antibody specific for the HNE-histidine adducts. Both the intensity of the PET-CT analysis and the HNE-immunohistochemistry were in correlation with the size of the tumors analyzed, while primary lung carcinomas were larger than the metastatic tumors. The intensity of the HNE-immunohistochemistry in the surrounding lung tissue was more pronounced in the metastatic than in the primary tumors, but it was negatively correlated with the cancer volume determined by PET-CT. The appearance of HNE was more pronounced in non-malignant surrounding tissue than in cancer or stromal cells, both in case of primary and metastatic tumors. Both PET-CT and HNE-immunohistochemistry reflect the size of the malignant tissue. However, lipid peroxidation of non-malignant lung tissue in the vicinity of cancer is more pronounced in metastatic than in primary malignancies and might represent the mechanism of defense against cancer, as was recently revealed also in case of human liver cancer. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Yeast aquaporin regulation by 4-hydroxynonenal is implicated in oxidative stress response.
Rodrigues, Claudia; Tartaro Bujak, Ivana; Mihaljević, Branka; Soveral, Graça; Cipak Gasparovic, Ana
2017-05-01
Reactive oxygen species, especially hydrogen peroxide (H 2 O 2 ), contribute to functional molecular impairment and cellular damage, but also are necessary in normal cellular metabolism, and in low doses play stimulatory role in cell proliferation and stress resistance. In parallel, reactive aldehydes such as 4-hydroxynonenal (HNE), are lipid peroxidation breakdown products which also contribute to regulation of numerous cellular processes. Recently, channeling of H 2 O 2 by some mammalian aquaporin isoforms has been reported and suggested to contribute to aquaporin involvement in cancer malignancies, although the mechanism by which these membrane water channels are implicated in oxidative stress is not clear. In this study, two yeast models with increased levels of membrane polyunsaturated fatty acids (PUFAs) and aquaporin AQY1 overexpression, respectively, were used to evaluate their interplay in cell's oxidative status. In particular, the aim of the study was to investigate if HNE accumulation could affect aquaporin function with an outcome in oxidative stress response. The data showed that induction of aquaporin expression by PUFAs results in increased water permeability in yeast membranes and that AQY1 activity is impaired by HNE. Moreover, AQY1 expression increases cellular sensitivity to oxidative stress by facilitating H 2 O 2 influx. On the other hand, AQY1 expression has no influence on the cellular antioxidant GSH levels and catalase activity. These results strongly suggest that aquaporins are important players in oxidative stress response and could contribute to regulation of cellular processes by regulation of H 2 O 2 influx. © 2017 IUBMB Life, 69(5):355-362, 2017. © 2017 International Union of Biochemistry and Molecular Biology.
Xiao, Mengqing; Zhong, Huiqin; Xia, Lin; Tao, Yongzhen; Yin, Huiyong
2017-10-01
Mitochondrial lipids are essential for maintaining the integrity of mitochondrial membranes and the proper functions of mitochondria. As the "powerhouse" of a cell, mitochondria are also the major cellular source of reactive oxygen species (ROS). Oxidative stress occurs when the antioxidant system is overwhelmed by overproduction of ROS. Polyunsaturated fatty acids in mitochondrial membranes are primary targets for ROS attack, which may lead to lipid peroxidation (LPO) and generation of reactive lipids, such as 4-hydroxynonenal. When mitochondrial lipids are oxidized, the integrity and function of mitochondria may be compromised and this may eventually lead to mitochondrial dysfunction, which has been associated with many human diseases including cancer, cardiovascular diseases, diabetes, and neurodegenerative diseases. How mitochondrial lipids are oxidized and the underlying molecular mechanisms and pathophysiological consequences associated with mitochondrial LPO remain poorly defined. Oxidation of the mitochondria-specific phospholipid cardiolipin and generation of bioactive lipids through mitochondrial LPO has been increasingly recognized as an important event orchestrating apoptosis, metabolic reprogramming of energy production, mitophagy, and immune responses. In this review, we focus on the current understanding of how mitochondrial LPO and generation of bioactive lipid mediators in mitochondria are involved in the modulation of mitochondrial functions in the context of relevant human diseases associated with oxidative stress. Copyright © 2017 Elsevier Inc. All rights reserved.
Requena, J R; Fu, M X; Ahmed, M U; Jenkins, A J; Lyons, T J; Baynes, J W; Thorpe, S R
1997-01-01
Malondialdehyde (MDA) and 4-hydroxynonenal (HNE) are major end-products of oxidation of polyunsaturated fatty acids, and are frequently measured as indicators of lipid peroxidation and oxidative stress in vivo. MDA forms Schiff-base adducts with lysine residues and cross-links proteins in vitro; HNE also reacts with lysines, primarily via a Michael addition reaction. We have developed methods using NaBH4 reduction to stabilize these adducts to conditions used for acid hydrolysis of protein, and have prepared reduced forms of lysine-MDA [3-(N epsilon-lysino)propan-1-ol (LM)], the lysine-MDA-lysine iminopropene cross-link [1,3-di(N epsilon-lysino)propane (LML)] and lysine-HNE [3-(N epsilon-lysino)-4-hydroxynonan-l-ol (LHNE)]. Gas chromatography/MS assays have been developed for quantification of the reduced compounds in protein. RNase incubated with MDA or HNE was used as a model for quantification of the adducts by gas chromatography/MS. There was excellent agreement between measurement of MDA bound to RNase as LM and LML, and as thiobarbituric acid-MDA adducts measured by HPLC; these adducts accounted for 70-80% of total lysine loss during the reaction with MDA. LM and LML (0.002-0.12 mmol/ mol of lysine) were also found in freshly isolated low-density lipoprotein (LDL) from healthy subjects. LHNE was measured in RNase treated with HNE, but was not detectable in native LDL. LM, LML and LHNE increased in concert with the formation of conjugated dienes during the copper-catalysed oxidation of LDL, but accounted for modification of < 1% of lysine residues in oxidized LDL. These results are the first report of direct chemical measurement of MDA and HNE adducts to lysine residues in LDL. LM, LML and LHNE should be useful as biomarkers of lipid peroxidative modification of protein and of oxidative stress in vitro and in vivo. PMID:9078279
Benedusi, Valeria; Martorana, Francesca; Brambilla, Liliana; Maggi, Adriana; Rossi, Daniela
2012-01-01
Recent evidence highlights the peroxisome proliferator-activated receptors (PPARs) as critical neuroprotective factors in several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). To gain new mechanistic insights into the role of these receptors in the context of ALS, here we investigated how PPAR transcriptional activity varies in hSOD1G93A ALS transgenic mice. We demonstrate that PPARγ-driven transcription selectively increases in the spinal cord of symptomatic hSOD1G93A mice. This phenomenon correlates with the up-regulation of target genes, such as lipoprotein lipase and glutathione S-transferase α-2, which are implicated in scavenging lipid peroxidation by-products. Such events are associated with enhanced PPARγ immunoreactivity within motor neuronal nuclei. This observation, and the fact that PPARγ displays increased responsiveness in cultured hSOD1G93A motor neurons, points to a role for this receptor in neutralizing deleterious lipoperoxidation derivatives within the motor cells. Consistently, in both motor neuron-like cultures and animal models, we report that PPARγ is activated by lipid peroxidation end products, such as 4-hydroxynonenal, whose levels are elevated in the cerebrospinal fluid and spinal cord from ALS patients. We propose that the accumulation of critical concentrations of lipid peroxidation adducts during ALS progression leads to the activation of PPARγ in motor neurons. This in turn triggers self-protective mechanisms that involve the up-regulation of lipid detoxification enzymes, such as lipoprotein lipase and glutathione S-transferase α-2. Our findings indicate that anticipating natural protective reactions by pharmacologically modulating PPARγ transcriptional activity may attenuate neurodegeneration by limiting the damage induced by lipid peroxidation derivatives. PMID:22910911
Lord, Tessa; Martin, Jacinta H; Aitken, R John
2015-02-01
With increasing periods of time following ovulation, the metaphase II (MII)-stage oocyte experiences overproduction of reactive oxygen species and elevated levels of lipid peroxidation that are implicitly linked with functional deficiencies acquired during postovulatory oocyte aging. We have demonstrated that the electrophilic aldehydes 4-hydroxynonenal (4HNE), malondialdehyde, and acrolein are by-products of nonenzymatic lipid peroxidation in the murine MII-stage oocyte, adducting to multiple proteins within the cell. The covalent modification of oocyte proteins by these aldehydes increased with extended periods of time postovulation; the mitochondrial protein succinate dehydrogenase (SDHA) was identified as a primary target for 4HNE adduction. Time- and dose-dependent studies revealed that exposure to elevated levels of electrophilic aldehydes causes mitochondrial reactive oxygen species production, lipid peroxidation, loss of mitochondrial membrane potential, and eventual apoptosis within the MII oocyte, presumably as a consequence of electron transport chain collapse following SDHA adduction. Additionally, we have determined that short-term exposure to low doses of 4HNE dramatically impairs the oocyte's ability to participate in fertilization and support embryonic development; however, this loss of functionality can be prevented by supplementation with the antioxidant penicillamine. In conclusion, this study has revealed that the accumulation of electrophilic aldehydes is linked to postovulatory oocyte aging, causing reduced fertility, oxidative stress, and apoptosis of this highly specialized cell. These data highlight the importance of timely fertilization of the mammalian oocyte postovulation and emphasize the potential advantages associated with antioxidant supplementation of oocyte culture medium in circumstances where reinsemination of oocytes may be desirable (i.e., rescue intracytoplasmic sperm injection), or where in vitro fertilization may be delayed. © 2015 by the Society for the Study of Reproduction, Inc.
Pizzimenti, Stefania; Ferracin, Manuela; Sabbioni, Silvia; Toaldo, Cristina; Pettazzoni, Piergiorgio; Dianzani, Mario Umberto; Negrini, Massimo; Barrera, Giuseppina
2009-01-15
4-Hydroxynonenal (HNE) is one of several lipid oxidation products that may have an impact on human pathophysiology. It is an important second messenger involved in the regulation of various cellular processes and exhibits antiproliferative and differentiative properties in various tumor cell lines. The mechanisms by which HNE affects cell growth and differentiation are only partially clarified. Because microRNAs (miRNAs) have the ability to regulate several cellular processes, we hypothesized that HNE, in addition to other mechanisms, could affect miRNA expression. Here, we present the results of a genome-wide miRNA expression profiling of HNE-treated HL-60 leukemic cells. Among 470 human miRNAs, 10 were found to be differentially expressed between control and HNE-treated cells (at p<0.05). Six miRNAs were down-regulated (miR-181a*, miR-199b, miR-202, miR-378, miR-454-3p, miR-575) and 4 were up-regulated (miR-125a, miR-339, miR-663, miR-660). Three of these regulated miRNAs (miR-202, miR-339, miR-378) were further assayed and validated by quantitative real-time RT-PCR. Moreover, consistent with the down-regulation of miR-378, HNE also induced the expression of the SUFU protein, a tumor suppressor recently identified as a target of miR-378. The finding that HNE could regulate the expression of miRNAs and their targets opens new perspectives on the understanding of HNE-controlled pathways. A functional analysis of 191 putative gene targets of miRNAs modulated by HNE is discussed.
Bali, Elif Burcu; Ergin, Volkan; Rackova, Lucia; Bayraktar, Oğuz; Küçükboyaci, Nurgün; Karasu, Çimen
2014-08-01
Olive (Olea europaea) leaf, an important traditional herbal medicine, displays cardioprotection that may be related to the cellular redox modulating effects of its polyphenolic constituents. This study was undertaken to investigate the protective effect of the ethanolic and methanolic extracts of olive leaves compared to the effects of oleuropein, hydroxytyrosol, and quercetin as a positive standard in a carbonyl compound (4-hydroxynonenal)-induced model of oxidative damage to rat cardiomyocytes (H9c2). Cell viability was detected by the MTT assay; reactive oxygen species production was assessed by the 2',7'-dichlorodihydrofluorescein diacetate method, and the mitochondrial membrane potential was determined using a JC-1 dye kit. Phospho-Hsp27 (Ser82), phospho-MAPKAPK-2 (Thr334), phospho-c-Jun (Ser73), cleaved-caspase-3 (cl-CASP3) (Asp175), and phospho-SAPK/JNK (Thr183/Tyr185) were measured by Western blotting. The ethanolic and methanolic extracts of olive leaves inhibited 4-hydroxynonenal-induced apoptosis, characterized by increased reactive oxygen species production, impaired viability (LD50: 25 µM), mitochondrial dysfunction, and activation of pro-apoptotic cl-CASP3. The ethanolic and methanolic extracts of olive leaves also inhibited 4-hydroxynonenal-induced phosphorylation of stress-activated transcription factors, and the effects of extracts on p-SAPK/JNK, p-Hsp27, and p-MAPKAPK-2 were found to be concentration-dependent and comparable with oleuropein, hydroxytyrosol, and quercetin. While the methanolic extract downregulated 4-hydroxynonenal-induced p-MAPKAPK-2 and p-c-Jun more than the ethanolic extract, it exerted a less inhibitory effect than the ethanolic extract on 4-hydroxynonenal-induced p-SAPK/JNK and p-Hsp27. cl-CASP3 and p-Hsp27 were attenuated, especially by quercetin. Experiments showed a predominant reactive oxygen species inhibitory and mitochondrial protecting ability at a concentration of 1-10 µg/mL of each extract, oleuropein, hydroxytyrosol, and quercetin. The ethanolic extract of olive leaves, which contains larger amounts of oleuropein, hydroxytyrosol, verbascoside, luteolin, and quercetin (by HPLC) than the methanolic one, has more protecting ability on cardiomyocyte viability than the methanolic extract or each phenolic compound against 4-hydroxynonenal-induced carbonyl stress and toxicity. Georg Thieme Verlag KG Stuttgart · New York.
Glutamate release from activated microglia requires the oxidative burst and lipid peroxidation.
Barger, Steven W; Goodwin, Mary E; Porter, Mandy M; Beggs, Marjorie L
2007-06-01
When activated by proinflammatory stimuli, microglia release substantial levels of glutamate, and mounting evidence suggests this contributes to neuronal damage during neuroinflammation. Prior studies indicated a role for the Xc exchange system, an amino acid transporter that antiports glutamate for cystine. Because cystine is used for synthesis of glutathione (GSH) synthesis, we hypothesized that glutamate release is an indirect consequence of GSH depletion by the respiratory burst, which produces superoxide from NADPH oxidase. Microglial glutamate release triggered by lipopolysaccharide was blocked by diphenylene iodonium chloride and apocynin, inhibitors of NADPH oxidase. This glutamate release was also blocked by vitamin E and elicited by lipid peroxidation products 4-hydroxynonenal and acrolein, suggesting that lipid peroxidation makes crucial demands on GSH. Although NADPH oxidase inhibitors also suppressed nitrite accumulation, vitamin E did not; moreover, glutamate release was largely unaffected by nitric oxide donors, inhibitors of nitric oxide synthase, or changes in gene expression. These findings indicate that a considerable degree of the neurodegenerative consequences of neuroinflammation may result from conversion of oxidative stress to excitotoxic stress. This phenomenon entails a biochemical chain of events initiated by a programmed oxidative stress and resultant mass-action amino acid transport. Indeed, some of the neuroprotective effects of antioxidants may be due to interference with these events rather than direct protection against neuronal oxidation.
Stachowicz, Aneta; Olszanecki, Rafał; Suski, Maciej; Głombik, Katarzyna; Basta-Kaim, Agnieszka; Adamek, Dariusz; Korbut, Ryszard
2017-02-17
The role of different genotypes of apolipoprotein E (apoE) in the etiology of Alzheimer's disease is widely recognized. It has been shown that altered functioning of apoE may promote 4-hydroxynonenal modification of mitochondrial proteins, which may result in mitochondrial dysfunction, aggravation of oxidative stress, and neurodegeneration. Mitochondrial aldehyde dehydrogenase (ALDH2) is an enzyme considered to perform protective function in mitochondria by the detoxification of the end products of lipid peroxidation, such as 4-hydroxynonenal and other reactive aldehydes. The goal of our study was to apply a differential proteomics approach in concert with molecular and morphological techniques to elucidate the changes in the frontal cortex and hippocampus of apolipoprotein E knockout (apoE -/- ) mice upon treatment with Alda-1-a small molecular weight activator of ALDH2. Despite the lack of significant morphological changes in the brain of apoE -/- mice as compared to age-matched wild type animals, the proteomic and molecular approach revealed many changes in the expression of genes and proteins, indicating the impairment of energy metabolism, neuroplasticity, and neurogenesis in brains of apoE -/- mice. Importantly, prolonged treatment of apoE -/- mice with Alda-1 led to the beneficial changes in the expression of genes and proteins related to neuroplasticity and mitochondrial function. The pattern of alterations implies mitoprotective action of Alda-1, however, the accurate functional consequences of the revealed changes require further research.
Weng, Hongbo; Li, Xuezheng; Reece, E Albert; Yang, Peixin
2012-05-01
Hyperglycemia induces oxidative stress and increases inducible nitric oxide synthase (iNOS) expression. We hypothesized that oxidative stress is responsible for hyperglycemia-induced iNOS expression. iNOS-luciferase activities, nitrosylated protein, and lipid peroxidation markers 4-hydroxynonenal and malondialdehyde were determined in parietal yolk sac-2 cells exposed to 5 mmol/L glucose or high glucose (25 mmol/L) with or without copper zinc superoxide dismutase 1 (SOD1) treatment. Levels of iNOS protein and messenger RNA, nitrosylated protein, and cleaved caspase-3 and -8 were assessed in wild-type embryos and SOD1-overexpressing embryos from nondiabetic and diabetic dams. SOD1 treatment diminished high glucose-induced oxidative stress, as evidenced by 4-hydroxynonenal and malondialdehyde reductions, and it blocked high glucose-increased iNOS expression, iNOS-luciferase activities, and nitrosylated protein. In vivo SOD1 overexpression suppressed hyperglycemia-increased iNOS expression and nitrosylated protein, and it blocked caspase-3 and -8 cleavage. We conclude that oxidative stress induces iNOS expression, nitrosative stress, and apoptosis in diabetic embryopathy. Copyright © 2012 Mosby, Inc. All rights reserved.
Bin, Ping; Shen, Meili; Li, Haibin; Sun, Xin; Niu, Yong; Meng, Tao; Yu, Tao; Zhang, Xiao; Dai, Yufei; Gao, Weimin; Gu, Guizhen; Yu, Shanfa; Zheng, Yuxin
2016-08-01
Diesel engine exhaust (DEE) was found to induce lipid peroxidation (LPO) in animal exposure studies. LPO is a class of oxidative stress and can be reflected by detecting the levels of its production, such as malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), and etheno-DNA adducts including 1,N(6)-etheno-2'-deoxyadenosine (ɛdA) and 3,N(4)-etheno-2'-deoxycytidine (ɛdC). However, the impact of DEE exposure on LPO has not been explored in humans. In this study, we evaluated urinary MDA, 4-HNE, ɛdA, and ɛdC levels as biomarkers of LPO among 108 workers with exclusive exposure to DEE and 109 non-DEE-exposed workers. Results showed that increased levels of urinary MDA and ɛdA were observed in subjects occupationally exposed to DEE before and after age, body mass index (BMI), smoking status, and alcohol use were adjusted (all p < 0.001). There was a statistically significant relationship between the internal exposure dose (urinary ΣOH-PAHs) and MDA, 4-HNE, and ɛdA (all p < 0.001). Furthermore, significant increased relations between urinary etheno-DNA adduct and MDA, 4-HNE were observed (all p < 0.05). The findings of this study suggested that the level of LPO products (MDA and ɛdA) was increased in DEE-exposed workers, and urinary MDA and ɛdA might be feasible biomarkers for DEE exposure. LPO induced DNA damage might be involved and further motivated the genomic instability could be one of the pathogeneses of cancer induced by DEE-exposure. However, additional investigations should be performed to understand these observations.
Moazamian, Ryan; Polhemus, Ashley; Connaughton, Haley; Fraser, Barbara; Whiting, Sara; Gharagozloo, Parviz; Aitken, Robert John
2015-06-01
Oxidative stress is known to compromise human sperm function and to activate the intrinsic apoptotic cascade in these cells. One of the key features of oxidatively stressed spermatozoa is the induction of a lipid peroxidation process that results in the formation of aldehydes potentially capable of disrupting sperm function through the formation of adducts with DNA and key proteins. In this study, we have examined the impact of a range of small molecular mass aldehydes generated as a consequence of lipid peroxidation on human sperm function and also compared the two most commonly formed compounds, 4-hydroxynonenal (4HNE) and malondialdehyde (MDA), for their relative ability to reflect a state of oxidative stress in these cells. Dramatic differences in the bioactivity of individual aldehydes were observed, that generally correlated with the second order rate constants describing their interaction with the model nucleophile, glutathione. Our results demonstrate that acrolein and 4HNE were the most reactive lipid aldehydes, inhibiting sperm motility while augmenting reactive oxygen species production, lipid peroxidation, oxidative DNA damage and caspase activation, in a dose-dependent manner (P < 0.001). In contrast, a variety of saturated aldehydes and the well-known marker of oxidative stress, MDA, were without effect on this cell type. While MDA was not cytotoxic per se, its generation did reflect the induction of oxidative stress in vivo and in vitro in a manner that was highly correlated with the bioactive lipid aldehyde, 4HNE. Despite such overall correlations, individual patient samples were observed in which either MDA or 4HNE predominated. Given the relative cytotoxicity of 4HNE, we propose that this aldehyde should be the preferred criterion for diagnosing oxidative stress in the male germ line. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Hall, Sally E; Aitken, R John; Nixon, Brett; Smith, Nathan D; Gibb, Zamira
2017-01-01
Oxidative stress is a major determinant of mammalian sperm function stimulating lipid peroxidation cascades that culminate in the generation of potentially cytotoxic aldehydes. The aim of this study was to assess the impact of such aldehydes on the functionality of stallion spermatozoa. The impact of exposure to exogenous acrolein (ACR) and 4-hydroxynonenal (4HNE) was manifested in a highly significant dose- and time-dependent increase in mitochondrial reactive oxygen species (ROS), total cellular ROS, a decrease in sperm motility, and a time-dependent increase in lipid peroxidation. Notably, low doses of ACR and 4HNE also caused a significant decrease in zona binding. In contrast, exogenous malondialdehyde, a commonly used marker of oxidative stress, had little impact on the various sperm parameters assessed. In accounting for the negative physiological impact of ACR and 4HNE, it was noted that both aldehydes readily adducted to sperm proteins located predominantly within the head, proximal centriole, and tail. The detoxifying activity of mitochondrial aldehyde dehydrogenase 2 appeared responsible for a lack of adduction in the midpiece; however, this activity was overwhelmed by 24 h of electrophilic aldehyde exposure. Sequencing of the dominant proteins targeted for ACR and 4HNE covalent modification identified heat shock protein 90 alpha (cytosolic) class A member 1 and arylsulfatase A, respectively. These collective findings may prove useful in the identification of diagnostic biomarkers of stallion fertility and resolving the mechanistic basis of sperm dysfunction in this species. © The Authors 2016. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please journals.permissions@oup.com.
Colville, Louise
2012-01-01
The volatile compounds released by orthodox (desiccation-tolerant) seeds during ageing can be analysed using gas chromatography–mass spectrometry (GC-MS). Comparison of three legume species (Pisum sativum, Lathyrus pratensis, and Cytisus scoparius) during artificial ageing at 60% relative humidity and 50 °C revealed variation in the seed volatile fingerprint between species, although in all species the overall volatile concentration increased with storage period, and changes could be detected prior to the onset of viability loss. The volatile compounds are proposed to derive from three main sources: alcoholic fermentation, lipid peroxidation, and Maillard reactions. Lipid peroxidation was confirmed in P. sativum seeds through analysis of malondialdehyde and 4-hydroxynonenal. Volatile production by ageing orthodox seeds was compared with that of recalcitrant (desiccation-sensitive) seeds of Quercus robur during desiccation. Many of the volatiles were common to both ageing orthodox seeds and desiccating recalcitrant seeds, with alcoholic fermentation forming the major source of volatiles. Finally, comparison was made between two methods of analysis; the first used a Tenax adsorbent to trap volatiles, whilst the second used solid phase microextraction to extract volatiles from the headspace of vials containing powdered seeds. Solid phase microextraction was found to be more sensitive, detecting a far greater number of compounds. Seed volatile analysis provides a non-invasive means of characterizing the processes involved in seed deterioration, and potentially identifying volatile marker compounds for the diagnosis of seed viability loss. PMID:23175670
Zhong, Huiqin; Xiao, Mengqing; Zarkovic, Kamelija; Zhu, Mingjiang; Sa, Rina; Lu, Jianhong; Tao, Yongzhen; Chen, Qun; Xia, Lin; Cheng, Shuqun; Waeg, Georg; Zarkovic, Neven; Yin, Huiyong
2017-01-01
Altered redox status in cancer cells has been linked to lipid peroxidation induced by reactive oxygen species (ROS) and subsequent formation of reactive lipid electrophiles, especially 4-hydroxy-nonenal (4-HNE). Emerging evidence suggests that cancer cells manipulate redox status to acquire anti-apoptotic phenotype but the underlying mechanisms are poorly understood. Cardiolipin (CL), a mitochondria-specific inner membrane phospholipid, is critical for maintaining mitochondrial function. Paradoxically, liver tissues contain tetralinoleoyl cardiolipin (TLCL) as the major CL in mitochondria yet emerging evidence suggests that ROS generated in mitochondria may lead to CL peroxidation and activation of intrinsic apoptosis. It remains unclear how CL oxidation leads to apoptosis and its relevance to the pathogenesis of hepatocellular carcinoma (HCC). We employed a mass spectrometry-based lipidomic approach to profile lipids in human tissues of HCC and found that CL was gradually decreased in tumor comparing to peripheral non-cancerous tissues, accompanied by a concomitant decrease of oxidized CL and its oxidation product, 4-HNE. Incubation of liver cancer cells with TLCL significantly restored apoptotic sensitivity accompanied by an increase of CL and its oxidation products when treated with staurosporine (STS) or Sorafenib (the standard treatment for late stage HCC patients). Our studies uncovered a novel mechanism by which cancer cells adopt to evade apoptosis, highlighting the importance of mitochondrial control of apoptosis through modulation of CL oxidation and subsequent 4-HNE formation in HCC. Thus manipulation of mitochondrial CL oxidation and lipid electrophile formation may have potential therapeutic value for diseases linked to oxidative stress and mitochondrial dysfunctions. Copyright © 2016 Elsevier Inc. All rights reserved.
The lack of 4-hydroxynonenal in otosclerotic bone tissue in Ethiopian population.
Rudic, Milan; Wagner, Richard; Willkinson, Eric; Danese, Giovanni; Kiros, Nega; Zarkovic, Kamelija; Zarkovic, Neven
2015-10-01
In Ethiopians, like in other Africans, the incidence of otosclerosis is lower than in Western and Asian populations. Unfortunately, due to the lack of available otorhinolaryngology specialists many patients are not treated and suffer the progression of the disease and severe hearing loss. This program of the Global ENT Outreach Organization (GEO) together with the Ethiopian partners was done to help some of these patients and in parallel to evaluate the presence of the oxidative stress bioactive marker 4-hydroxynonenal (HNE), which is known as major lipid peroxidation product and the second messenger of free radicals, in the otosclerotic bone specimens. Namely, we described recently that as HNE acts as a bone growth regulator associated with pathogenesis of otosclerosis. The prospective study conducted at the ENT Department of the Migbare Senay General Hospital, Addis Ababa, Ethiopia in June 2012, under the auspices of the Global ENT Outreach Organization, USA. Altogether 36 patients (male = 12, female = 24) underwent surgery due to the previous otosclerosis diagnosis based on the clinical and audiometric findings. The bone samples were harvested from patients with intraoperatively confirmed otosclerosis diagnosis. Immunohistochemistry for HNE-modified proteins was carried out on formalin-fixed paraffin-embedded specimens. The presence of HNE was found in almost all bone samples analyzed, without particular difference in the HNE distribution pattern between the otosclerotic and respective control bone specimens. Although there was no significant association between the HNE appearance and otosclerotic bone outgrowth observed, several cases have shown tendency of higher HNE expression in patients with more severe hearing loss. The results of the present study are in contrast with our previous findings obtained on European patients most likely due to the differences between studied population groups.
Ravera, S; Bartolucci, M; Cuccarolo, P; Litamè, E; Illarcio, M; Calzia, D; Degan, P; Morelli, A; Panfoli, I
2015-01-01
Oxidative phosphorylation (OXPHOS) is not only the main source of ATP for the cell, but also a major source of reactive oxygen species (ROS), which lead to oxidative stress. At present, mitochondria are considered the organelles responsible for the OXPHOS, but in the last years we have demonstrated that it can also occur outside the mitochondrion. Myelin sheath is able to conduct an aerobic metabolism, producing ATP that we have hypothesized is transferred to the axon, to support its energetic demand. In this work, spectrophotometric, cytofluorimetric, and luminometric analyses were employed to investigate the oxidative stress production in isolated myelin, as far as its respiratory activity is concerned. We have evaluated the levels of malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), markers of lipid peroxidation, as well as of hydrogen peroxide (H2O2), marker of ROS production. To assess the presence of endogenous antioxidant systems, superoxide dismutase, catalase, and glutathione peroxidase activities were assayed. The effect of certain uncoupling or antioxidant molecules on oxidative stress in myelin was also investigated. We report that isolated myelin produces high levels of MDA, 4-HNE, and H2O2, likely through the pathway composed by Complex I-III-IV, but it also contains active superoxide dismutase, catalase, and glutathione peroxidase, as antioxidant defense. Uncoupling compounds or Complex I inhibitors increase oxidative stress, while antioxidant compounds limit ROS generation. Data may shed new light on the role of myelin sheath in physiology and pathology. In particular, it can be presumed that the axonal degeneration associated with myelin loss in demyelinating diseases is related to oxidative stress caused by impaired OXPHOS.
Lipoperoxidation is selectively involved in progressive supranuclear palsy.
Odetti, P; Garibaldi, S; Norese, R; Angelini, G; Marinelli, L; Valentini, S; Menini, S; Traverso, N; Zaccheo, D; Siedlak, S; Perry, G; Smith, M A; Tabaton, M
2000-05-01
Progressive supranuclear palsy (PSP) is a neurodegenerative disorder characterized by extensive neurofibrillary tangle (NFT) formation and neuronal loss in selective neuronal populations. Currently, no clues to the biological events underlying the pathological process have emerged. In Alzheimer disease (AD), which shares with PSP the occurrence of NFTs, advanced glycation end products (AGEs) as well as oxidation adducts have been found to be increased in association with neurofibrillary pathology. The presence and the amount of lipid and protein oxidation markers, as well as of pyrraline and pentosidine. 2 major AGEs, was assessed by biochemical, immunochemical, and immunocytochemical analysis in midbrain tissue from 5 PSP cases, 6 sporadic AD cases, and 6 age-matched control cases. The levels of 4-hydroxynonenal (HNE) and thiobarbituric acid reactive substances (TBARS), 2 major products of lipid peroxidation, were significantly increased by 1.6-fold (p < 0.04) and 3.9-fold (p < 0.01), respectively, in PSP compared with control tissues, whereas in AD only TBARS were significantly increased. In PSP tissue the intensity of neuronal HNE immunoreactivity was proportional to the extent of abnormal aggregated tau protein. The amount of protein oxidation products and AGEs was instead similar in PSP and control tissues. In AD, a higher but not significant level of pyrraline and pentosidine was measured, whereas the level of carbonyl groups was doubled. These findings indicate that in PSP, unlike in AD, lipid peroxidation is selectively associated with NFT formation. The intraneuronal accumulation of toxic aldehydes may contribute to hamper tau degradation, leading to its aggregation in the PSP specific abnormal filaments.
Time-dependent effect of rutin on skin fibroblasts membrane disruption following UV radiation.
Gęgotek, Agnieszka; Bielawska, Katarzyna; Biernacki, Michał; Dobrzyńska, Izabela; Skrzydlewska, Elżbieta
2017-08-01
Chronic exposure of the skin to solar UV radiation induces a number of biological alterations, including a redox imbalance; therefore, there is an urgent need for skin cells protective compounds. The aim of this study was to determine the effects of natural, previously extensively examined, polyphenol with antioxidant properties - rutin, on UV-induced skin fibroblasts membrane disruption. Accordingly, fibroblasts exposed to UVA and UVB irradiation were incubated with rutin (12h before and/or up to 24h after irradiation), and the structural and metabolic changes were examined. Rutin penetration through the fibroblast phospholipid bilayer was aided by UVA-induced bilitranslocase activity 2-4h after irradiation, while UVB irradiation led to enhanced phospholipid peroxidation and higher membrane permeability to facilitate the interaction of rutin with phospholipids. Lipidomic analysis revealed that 4h of rutin treatment also partially prevented UVA/B-induced increase in phosphatidylethanolamine and phosphatidylcholine level, as well as their membrane localization, which resulted in an enhanced zeta potential in the cells and liposomes. Moreover, rutin 2h following irradiation, in a various degree, prevented the increased in phospholipase A2 activity and ROS generation, and partially protected against the reduction of arachidonic and linoleic acids level and the lipid peroxidation product 4-hydroxynonenal level increase. Rutin effectively prevented against decrease in glutathione peroxidase, glutathione and vitamins E and C activities/levels, particularly 2h following UVA irradiation. In conclusion, highest skin fibroblasts membrane level of rutin occurred in 2-4h following UVA/B-radiation results in its strongest effect on biomembrane structure and functions and cellular antioxidant system irrespective of the radiation type. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Fujita, Kyota; Seike, Toshihiro; Yutsudo, Noriko; Ohno, Mizuki; Yamada, Hidetaka; Yamaguchi, Hiroo; Sakumi, Kunihiko; Yamakawa, Yukiko; Kido, Mizuho A; Takaki, Atsushi; Katafuchi, Toshihiko; Tanaka, Yoshinori; Nakabeppu, Yusaku; Noda, Mami
2009-09-30
It has been shown that molecular hydrogen (H(2)) acts as a therapeutic antioxidant and suppresses brain injury by buffering the effects of oxidative stress. Chronic oxidative stress causes neurodegenerative diseases such as Parkinson's disease (PD). Here, we show that drinking H(2)-containing water significantly reduced the loss of dopaminergic neurons in PD model mice using both acute and chronic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The concentration-dependency of H(2) showed that H(2) as low as 0.08 ppm had almost the same effect as saturated H(2) water (1.5 ppm). MPTP-induced accumulation of cellular 8-oxoguanine (8-oxoG), a marker of DNA damage, and 4-hydroxynonenal (4-HNE), a marker of lipid peroxidation were significantly decreased in the nigro-striatal dopaminergic pathway in mice drinking H(2)-containing water, whereas production of superoxide (O(2)*(-)) detected by intravascular injection of dihydroethidium (DHE) was not reduced significantly. Our results indicated that low concentration of H(2) in drinking water can reduce oxidative stress in the brain. Thus, drinking H(2)-containing water may be useful in daily life to prevent or minimize the risk of life style-related oxidative stress and neurodegeneration.
Oxidative Stress Level in the Testes of Mice and Rats during Nickel Intoxication
Murawska-Ciałowicz, Eugenia; Bal, Wojciech; Januszewska, Lidia; Zawadzki, Marcin; Rychel, Joanna; Zuwała-Jagiełło, Jolanta
2012-01-01
The genotioxic and carcinogenic effect of nickel probably results from its capacity to produce reactive oxygen species (ROS) and disturb the redox balance. The aim of the study was to find out if rats lacking spermatic protamine 2 are less susceptible to Ni(II) than mice. Consequently, the levels of malondialdehyde + 4 hydroxynonenal (MDA+4HDA) − markers of lipid peroxidation, as well as the level of reduced glutathione (GSH) were measured within the rat and mouse testes. Our results showed that the levels of lipid peroxidation markers were elevated in testicular homogenates of intoxicated mice without any changes in rats. GSH level was lower in the group of intoxicated mice comparing to the control without statistically significant changes in rats' homogenates. Moreover, the level of GSH in the testes of intoxicated mice was lower than in rats. On the basis of our results, it appears that Ni(II) can initiate oxidative stress in the testes of mice but not of rats and can reduce GSH level. Consequently, the antioxidative defense of the testes is reduced. Ni(II) that causes oxidative stress in the testes may also contribute to infertility. PMID:22448131
Leerach, Nontaphat; Yakaew, Swanya; Phimnuan, Preeyawass; Soimee, Wichuda; Nakyai, Wongnapa; Luangbudnark, Witoo; Viyoch, Jarupa
2017-03-01
Chronic UVB exposure causes skin disorders and cancer through DNA strand breaks and oxidation of numerous functional groups of proteins and lipids in the skin. In this study, we investigated the effects of Thai banana (Musa AA group, "Khai," and Musa ABB group, "Namwa") on the prevention of UVB-induced skin damage when fed to male ICR mice. Mice were orally fed banana (Khai or Namwa) fruit pulps at dose of 1mg/g body weight/day for 12weeks. The shaved backs of the mice were irradiated with UVB for 12weeks. The intensity dose of UVB-exposure was increased from 54mJ/cm 2 /exposure at week 1 to 126mJ/cm 2 /exposure at week 12. A significant increase in skin thickness, lipid peroxidation, protein oxidation end products, and expression of MMP-1 was observed in UVB-irradiated mouse skin. A reduction in the accumulation of oxidation end products was found in the skin of UVB-irradiated mice receiving Khai. This occurred in conjunction with a reduction in MMP-1 expression, inhibition of epidermal thickening, and induction of γ-GCS expression. The dietary intake of Khai prevented skin damage from chronic UVB exposure by increased γ-GCS expression and reduced oxidation end products included carbonyls, malondialdehyde and 4-hydroxynonenal. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhao, Jing; Chen, Jing; Zhu, Haining; Xiong, Youling L.
2012-01-01
Antioxidative peptides in food systems are potential targets of lipid oxidation-generated reactive aldehydes, such as malonaldehyde (MDA) and 4-hydroxynonenal (HNE). In this study, covalent modifications on radical-scavenging peptides prepared from soy protein hydrolysate by MDA and HNE were characterized by liquid chromatography–electrospray ionization-mass spectrometry (LC-ESI-MS/MS). MS/MS analyses detected the formation of Schiff base type adducts of MDA on the side chain groups of lysine, histidine, arginine, glutamine, and asparagine residues as well as the N-termini of peptides. MDA also formed a fluorescent product with lysine residues. HNE adducted on lysine residues through Schiff base formation and on histidine, arginine, glutamine, and asparagine residues mainly through Michael addition. In spite of the extensive MDA modification, peptide cross-linking by this potential mechanism was undetectable. PMID:22946674
Fujita, Kyota; Seike, Toshihiro; Yutsudo, Noriko; Ohno, Mizuki; Yamada, Hidetaka; Yamaguchi, Hiroo; Sakumi, Kunihiko; Yamakawa, Yukiko; Kido, Mizuho A.; Takaki, Atsushi; Katafuchi, Toshihiko; Tanaka, Yoshinori
2009-01-01
It has been shown that molecular hydrogen (H2) acts as a therapeutic antioxidant and suppresses brain injury by buffering the effects of oxidative stress. Chronic oxidative stress causes neurodegenerative diseases such as Parkinson's disease (PD). Here, we show that drinking H2-containing water significantly reduced the loss of dopaminergic neurons in PD model mice using both acute and chronic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The concentration-dependency of H2 showed that H2 as low as 0.08 ppm had almost the same effect as saturated H2 water (1.5 ppm). MPTP-induced accumulation of cellular 8-oxoguanine (8-oxoG), a marker of DNA damage, and 4-hydroxynonenal (4-HNE), a marker of lipid peroxidation were significantly decreased in the nigro-striatal dopaminergic pathway in mice drinking H2-containing water, whereas production of superoxide (O2•−) detected by intravascular injection of dihydroethidium (DHE) was not reduced significantly. Our results indicated that low concentration of H2 in drinking water can reduce oxidative stress in the brain. Thus, drinking H2-containing water may be useful in daily life to prevent or minimize the risk of life style-related oxidative stress and neurodegeneration. PMID:19789628
4-Hydroxynonenal activates Src through a non-canonical pathway that involves EGFR/PTP1B
Zhang, Hongqiao; Forman, Henry Jay
2015-01-01
Src, a non-receptor protein tyrosine kinase involved in many biological processes, can be activated through both redox-dependent and independent mechanisms. 4-Hydroxy-2-nonenal (HNE) is a lipid peroxidation product that is increased in pathophysiological conditions associated with Src activation. This study examined how HNE activates human c-Src. In the canonical pathway Src activation is initiated by dephosphorylation of pTyr530 followed by conformational change that causes Src auto-phosphorylation at Tyr419 and its activation. HNE increased Src activation in both dose- and time-dependent manner, while it also increased Src phosphorylation at Tyr530 (pTyr530 Src), suggesting that HNE activated Src via a non-canonical mechanism. Protein tyrosine phosphatase 1B inhibitor (539741), at concentrations that increased basal pTyr530 Src, also increased basal Src activity and significantly reduced HNE-mediated Src activation. The EGFR inhibitor, AG1478, and EGFR silencing, abrogated HNE-mediated EGFR activation and inhibited basal and HNE-induced Src activity. In addition, AG1478 also eliminated the increase of basal Src activation by a PTP1B inhibitor. Taken together these data suggest that HNE can activate Src partly through a non-canonical pathway involving activation of EGFR and inhibition of PTP1B. PMID:26453921
Hypothermia can reverse hepatic oxidative stress damage induced by hypoxia in rats.
Garnacho-Castaño, Manuel Vicente; Alva, Norma; Sánchez-Nuño, Sergio; Bardallo, Raquel G; Palomeque, Jesús; Carbonell, Teresa
2016-12-01
Our previous findings demonstrated that hypothermia enhances the reduction potential in the liver and helps to maintain the plasmatic antioxidant pool. Here, we aimed to elucidate if hypothermia protects against hypoxia-induced oxidative stress damage in rat liver. Several hepatic markers of oxidative stress were compared in three groups of animals (n = 8 in each group): control normothermic group ventilated with room air and two groups under extreme hypoxia (breathing 10 % O 2 ), one kept at normothermia (HN) (37 °C) and the other under deep hypothermia (HH) (central body temperature of 21-22 °C). Hypoxia in normothermia significantly increased the levels of hepatic nitric oxide, inducible nitric oxide synthase expression, protein oxidation, Carbonilated proteins, advanced oxidation protein products, 4-hydroxynonenal (HNE) protein adducts, and lipid peroxidation when compared to the control group (p < 0.05). However, when hypoxia was induced under hypothermia, results from the oxidative stress biomarker analyses did not differ significantly from those found in the control group. Indeed, 4-HNE protein adduct amounts were significantly lower in the HH versus HN group (p < 0.05). Therefore, hypothermia can mitigate hypoxia-induced oxidative stress damage in rat liver. These effects could help clarify the mechanisms of action of therapeutic hypothermia.
Woyda-Ploszczyca, Andrzej; Jarmuszkiewicz, Wieslawa
2013-05-01
The influence of 4-hydroxy-2-nonenal (HNE), a lipid peroxidation end product, on the activity of the amoeba Acanthamoeba castellanii uncoupling protein (AcUCP) in isolated phosphorylating mitochondria was studied. Under phosphorylating conditions, exogenously added HNE induced GTP-sensitive AcUCP-mediated mitochondrial uncoupling. The HNE-induced proton leak decreased the yield of oxidative phosphorylation in an HNE concentration-dependent manner. The present study describes how the contributions of ATP synthase and HNE-induced AcUCP in phosphorylating respiration vary when the rate of succinate oxidation is decreased by limiting succinate uptake or inhibiting complex III activity within the range of a constant membrane potential. In phosphorylating mitochondria, at a given HNE concentration (100 μM), the efficiency of AcUCP in mitochondrial uncoupling increased as the respiratory rate decreased because the AcUCP contribution remained constant while the ATP synthase contribution decreased with the respiratory rate. HNE-induced uncoupling can be inhibited by GTP only when ubiquinone is sufficiently oxidized, indicating that in phosphorylating A. castellanii mitochondria, the sensitivity of AcUCP activity to GTP depends on the redox state of the membranous ubiquinone.
Resveratrol Rescues Kidney Mitochondrial Function Following Hemorrhagic Shock
Wang, Hao; Guan, Yuxia; Karamercan, Mehmet Akif; Ye, Lan; Bhatti, Tricia; Becker, Lance B.; Baur, Joseph A.; Sims, Carrie A.
2015-01-01
Objective Hemorrhagic shock may contribute to acute kidney injury by profoundly altering renal mitochondrial function. Resveratrol (RSV), a naturally occurring sirtuin-1 (SIRT1) activator, has been shown to promote mitochondrial function and reduce oxidative damage in a variety of aging-related disease states. We hypothesized that RSV treatment during resuscitation would ameliorate kidney mitochondrial dysfunction and decrease oxidative damage following hemorrhagic shock. Method Using a decompensated hemorrhagic shock model, male Long-Evans rats (n=6 per group) were sacrificed prior to hemorrhage (Sham), at severe shock, and following either lactated Ringer’s (LR) Resuscitation or LR+RSV Resuscitation (RSV: 30mg/kg). At each time point, blood samples were assayed for arterial blood gases, lactate, blood urea nitrogen (BUN) and serum creatinine. Mitochondria were also isolated from kidney samples in order to assess individual electron transport complexes (CI, CII, and CIV) using high-resolution respirometry. Total mitochondria reactive oxygen species (ROS) were measured using fluorometry and lipid peroxidation was assessed by measuring 4-hydroxynonenal by Western blot. qPCR was used quantify mRNA from PGC1-α, SIRT1, and proteins known to mitigate oxidative damage and promote mitochondrial biogenesis. Results RSV supplementation during resuscitation restored mitochondrial respiratory capacity, decreased mitochondrial ROS and lipid peroxidation. Compared to standard LR resuscitation, RSV treatment significantly increased SIRT1 and PGC1-α expression and significantly increased both SOD2 and catalase expression. Although RSV was associated with decreased lactate production, pH, BUN and serum creatinine values did not differ between resuscitation strategies. Conclusions Resuscitation with RSV significantly restored renal mitochondrial function and decreased oxidative damage following hemorrhagic shock. PMID:25895148
Singhal, Sharad S; Singh, Sharda P; Singhal, Preeti; Horne, David; Singhal, Jyotsana; Awasthi, Sanjay
2015-12-15
4-Hydroxy-2-trans-nonenal (4HNE), one of the major end products of lipid peroxidation (LPO), has been shown to induce apoptosis in a variety of cell lines. It appears to modulate signaling processes in more than one way because it has been suggested to have a role in signaling for differentiation and proliferation. It has been known that glutathione S-transferases (GSTs) can reduce lipid hydroperoxides through their Se-independent glutathione-peroxidase activity and that these enzymes can also detoxify LPO end-products such as 4HNE. Available evidence from earlier studies together with results of recent studies in our laboratories strongly suggests that LPO products, particularly hydroperoxides and 4HNE, are involved in the mechanisms of stress-mediated signaling and that it can be modulated by the alpha-class GSTs through the regulation of the intracellular concentrations of 4HNE. We demonstrate that 4HNE induced apoptosis in various cell lines is accompanied with c-Jun-N-terminal kinase (JNK) and caspase-3 activation. Cells exposed to mild, transient heat or oxidative stress acquire the capacity to exclude intracellular 4HNE at a faster rate by inducing GSTA4-4 which conjugates 4HNE to glutathione (GSH), and RLIP76 which mediates the ATP-dependent transport of the GSH-conjugate of 4HNE (GS-HNE). The balance between formation and exclusion promotes different cellular processes - higher concentrations of 4HNE promote apoptosis; whereas, lower concentrations promote proliferation. In this article, we provide a brief summary of the cellular effects of 4HNE, followed by a review of its GST-catalyzed detoxification, with an emphasis on the structural attributes that play an important role in the interactions with alpha-class GSTA4-4. Taken together, 4HNE is a key signaling molecule and that GSTs being determinants of its intracellular concentrations, can regulate stress-mediated signaling, are reviewed in this article. Copyright © 2015 Elsevier Inc. All rights reserved.
THE EFFECT OF GREEN TEA ON OXIDATIVE DAMAGE AND TUMOUR FORMATION IN LOBUND-WISTAR RATS
O'Sullivan, Jacintha; Sheridan, Juliette; Mulcahy, Hugh; Tenniswood, Martin; Morrissey, Colm
2014-01-01
A number of epidemiological studies suggest that the consumption of green tea reduces the incidence of prostate cancer. Since the major catechins present in green tea are potent anti-oxidants, we hypothesized that genetic and cellular damage induced by oxygen free radicals could be significantly reduced by potent anti-oxidants in green tea, thus reducing the cumulative genetic and cellular damage with age, and slowing or preventing tumour formation. Long-term administration of a decaffeinated green tea extract to Lobund-Wistar rats for periods up to 26 months almost halved the incidence of primary tumours in the genitourinary tract when compared to an aged-matched cohort receiving just water. We observed no inhibition of DNA adduct formation or lipid peroxidation in animals consuming green tea compared to animals consuming de-ionized water. The decrease in tumour formation was associated with an increase in 8-hydroxy-2’deoxyguanosine (8-OH-dG) and 4-hydroxynonenal (4-HNE) content (markers of DNA adduct formation and lipid peroxidation respectively) in the epithelium of the ventral prostate in aging animals. There was also an increase in 8-OH-dG expression, but no change in 4-HNE expression in the seminal vesicles of older animals. There was an age associated increase in expression of the anti-oxidant enzymes MnSOD and catalase in the epithelium of the ventral prostate of aging animals. There was also an increase in MnSOD expression, but no change in catalase expression in the seminal vesicles of older animals. These data demonstrate that consumption of green tea decreases the incidence of genitourinary tract tumours in the Lobund-Wistar rat, but has no effect on age associated DNA adduct formation and lipid peroxidation in the aging rat ventral prostate and seminal vesicles. PMID:18941371
Martin Muñoz, Patricia; Ortega Ferrusola, Cristina; Vizuete, Guillermo; Plaza Dávila, Maria; Rodriguez Martinez, Heriberto; Peña, Fernando J
2015-12-01
Oxidative stress has been linked to sperm death and the accelerated senescence of cryopreserved spermatozoa. However, the molecular mechanisms behind this phenomenon remain poorly understood. Reactive oxygen species (ROS) are considered relevant signaling molecules for sperm function, only becoming detrimental when ROS homeostasis is lost. We hereby hypothesize that a major component of the alteration of ROS homeostasis in cryopreserved spermatozoa is the exhaustion of intrinsic antioxidant defense mechanisms. To test this hypothesis, semen from seven stallions was frozen using a standard technique. The parameters of sperm quality (motility, velocity, and membrane integrity) and markers of sperm senescence (caspase 3, 4-hydroxynonenal, and mitochondrial membrane potential) were assessed before and after cryopreservation. Changes in the intracellular thiol content were also monitored. Cryopreservation caused significant increases in senescence markers as well as dramatic depletion of intracellular thiols to less than half of the initial values (P < 0.001) postthaw. Interestingly, very high and positive correlations were observed among thiol levels with sperm functionality postthaw: total motility (r = 0.931, P < 0.001), progressive motility (r = 0.904, P < 0.001), and percentage of live spermatozoa without active caspase 3 (r = 0.996, P < 0.001). In contrast, negative correlations were detected between active caspase 3 and thiol content both in living (r = -0.896) and dead (r = -0.940) spermatozoa; additionally, 4-hydroxynonenal levels were negatively correlated with thiol levels (r = -0.856). In conclusion, sperm functionality postthaw correlates with the maintenance of adequate levels of intracellular thiols. The accelerated senescence of thawed spermatozoa is related to oxidative and electrophilic stress induced by increased production of 4-hydroxynoneal in thawed samples once intracellular thiols are depleted. © 2015 by the Society for the Study of Reproduction, Inc.
Antioxidant capacity and protein oxidation in cerebrospinal fluid of amyotrophic lateral sclerosis.
Siciliano, G; Piazza, S; Carlesi, C; Del Corona, A; Franzini, M; Pompella, A; Malvaldi, G; Mancuso, M; Paolicchi, A; Murri, L
2007-05-01
The causes of Amyotrophic Lateral Sclerosis (ALS) are unknown. A bulk of evidence supports the hypothesis that oxidative stress and mitochondrial dysfunction can be implicated in ALS pathogenesis. METHODS =: We assessed, in cerebrospinal fluid (CSF) and in plasma of 49 ALS patients and 8 controls, the amount of oxidized proteins (AOPP, advanced oxidation protein products), the total antioxidant capacity (FRA, the ferric reducing ability), and, in CSF, two oxidation products, the 4-hydroxynonenal and the sum of nitrites plus nitrates. The FRA was decreased (p = 0.003) in CSF, and AOPP were increased in both CSF (p = 0.0039) and plasma (p = 0.001) of ALS patients. The content of AOPP was differently represented in CSF of ALS clinical subsets, resulting in increase in the common and pseudopolyneuropathic forms (p < 0.001) and nearly undetectable in the bulbar form, as in controls. The sum of nitrites plus nitrates and 4-hydroxynonenal were unchanged in ALS patients compared with controls. Our results, while confirming the occurrence of oxidative stress in ALS, indicate how its effects can be stratified and therefore implicated differently in the pathogenesis of different clinical forms of ALS.
Overholt, Martin F; Dilger, Anna C; Boler, Dustin D; Kerr, Brian J
2018-05-26
Consumption of peroxidized lipids has been shown to reduce pig performance and energy and lipid digestibility. Objectives of the current study were to evaluate the effect of feeding soybean oil (SO) with different levels of peroxidation on growth performance, lipid, N, and GE digestibility, plasma Trp, and gut integrity in finishing pigs. Fifty-six barrows (46.7 ± 5.1 kg initial BW) were randomly assigned to one of four diets in each of two dietary phases, containing either 10% fresh SO (22.5 °C) or thermally processed SO (45 °C for 288 h, 90 °C for 72 h, or 180 °C for 6 h), each infused with of 15 L/min of air. Peroxide values were 2.0, 17.4, 123.6, and 19.4 mEq/kg; 2,4-decadienal values were 2.07, 1.90, 912.15, and 915.49 mg/kg; and 4-hydroxynonenal concentrations were 0.66, 1.49, 170.48, and 82.80 mg/kg, for the 22.5, 45, 90, and 180 °C processed SO, respectively. Pigs were individually housed and fed ad libitum for 81 d to measure growth performance, including a metabolism period to collect urine and feces for determination of GE, lipid, N digestibility, and N retention. Following the last day of fecal and urine collection when pigs were in the metabolism crates, lactulose and mannitol were fed and subsequently measured in the urine to evaluate gut permeability, while markers of oxidative stress were evaluated in plasma, urine, and liver. There were no differences observed in ADFI (P = 0.91), but average daily gain (ADG) and gain:feed G:F were decreased in pigs fed 90 °C SO diet (P ≤ 0.07) compared to pigs fed the other SO diets. Pigs fed the 90 and 180 °C SO had the lowest (P = 0.05) DE as a % of GE compared to pigs fed the 22.5 °C SO, with pigs fed the 45 °C SO being intermediate. Lipid digestibility was similarly affected (P = 0.01) as energy digestibility, but ME as a % of DE was not affected by dietary treatment (P = 0.16). There were no effects of lipid peroxidation on N digested, N retained, or the urinary lactulose:mannitol ratio (P ≥ 0.25). Pigs fed the SO processed at 90 and 180 °1C had lower concentrations (P < 0.01) of plasma Trp compared to pigs fed the 22.5 and 45 °C SO treatments. Pigs fed 90 °C SO had the greatest (P < 0.01) concentrations of F2-isoprostane in plasma and urine thiobarbituric acid reactive substances compared to the other SO treatments. These results indicate that the change in FA composition and/or the presence of lipid peroxidation products in peroxidized SO may reduce ADG, G:F, and digestibility of GE and ether extract, but has little impact on N digestibility and balance or on gut permeability.
Oxidative stress and lung injury induced by short-term exposure to wood smoke in guinea pigs.
Ramos, Carlos; Pedraza-Chaverri, José; Becerril, C; Cisneros, J; González-Ávila, G; Rivera-Rosales, R; Sommer, B; Medina-Campos, O N; Montaño, M
2013-11-01
Oxidative stress and lung injury induced by short-term exposure to wood smoke were evaluated in guinea pigs through cell profile, bronchoalveolar lavage (BAL), conventional histology and immunohistochemistry (4-hydroxynonenal, 3-nitrotyrosine, Mn-superoxide dismutase, heme oxygenase-1); malondialdehyde and 4-hydroxynonenal concentration, Mn-superoxide dismutase, glutathione reductase, glutathione peroxidase, and catalase activities in plasma, lung and BAL. Total cells increased in BAL, and the percentage of macrophages, neutrophils and lymphocytes augmented (72-96 h). Histopathological examination of lung tissues showed mild thickening of membranous bronchiole walls, infiltration of foamy macrophages and polymorphonuclear leukocytes in bronchial, bronchiolar and intraalveolar spaces. Goblet cell hyperplasia was also observed in bronchial and bronchiolar epithelia. Plasma malondialdehyde concentration was increased at all times, while 4-hydroxynonenal was increased only in plasma and BAL after 24 h. Plasma glutathione reductase activity increased at 24 and 72 h, BAL glutathione peroxidase activity decreased at 72 and 96 h, whereas catalase activity increased in plasma at 72 h, and decreased in BAL at 24 h. Immunostaining intensity to 4-hydroxynonenal, 3-nitrotyrosine, Mn-superoxide dismutase and heme oxygenase-1 was enhanced mainly in macrophages, bronchial/bronchiolar epithelial cells and type II pneumocytes after 72-96 h of wood smoke exposure. Overall, short-term exposure to wood smoke induces alterations in oxidative/antioxidant state in lung and airway injury, similar to those observed in humans with domestic exposure.
Coughlan, Christina; Walker, Douglas I.; Lohr, Kelly M.; Richardson, Jason R.; Saba, Laura M.; Caudle, W. Michael; Fritz, Kristofer S.; Roede, James R.
2015-01-01
Epidemiological studies indicate exposures to the herbicide paraquat (PQ) and fungicide maneb (MB) are associated with increased risk of Parkinson's disease (PD). Oxidative stress appears to be a premier mechanism that underlies damage to the nigrostriatal dopamine system in PD and pesticide exposure. Enhanced oxidative stress leads to lipid peroxidation and production of reactive aldehydes; therefore, we conducted proteomic analyses to identify carbonylated proteins in the striatum and cortex of pesticide-treated mice in order to elucidate possible mechanisms of toxicity. Male C57BL/6J mice were treated biweekly for 6 weeks with saline, PQ (10 mg/kg), MB (30 mg/kg), or the combination of PQ and MB (PQMB). Treatments resulted in significant behavioral alterations in all treated mice and depleted striatal dopamine in PQMB mice. Distinct differences in 4-hydroxynonenal-modified proteins were observed in the striatum and cortex. Proteomic analyses identified carbonylated proteins and peptides from the cortex and striatum, and pathway analyses revealed significant enrichment in a variety of KEGG pathways. Further analysis showed enrichment in proteins of the actin cytoskeleton in treated samples, but not in saline controls. These data indicate that treatment-related effects on cytoskeletal proteins could alter proper synaptic function, thereby resulting in impaired neuronal function and even neurodegeneration. PMID:26345149
Bécuwe, P; Bianchi, A; Keller, J M; Dauça, M
1999-09-15
We examined the effects of clofibric acid, a peroxisome proliferator, on the production of superoxide radicals, on the levels of malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), and on the expression of superoxide dismutases (SODs) in the human HepG2 hepatoma cell line. To this end, HepG2 cells were treated for 1 or 5 days with 0.25, 0.50, or 0.75 mM clofibric acid. The production of superoxide radicals was only enhanced in HepG2 cells exposed for 5 days to the different clofibric acid concentrations. However, this overproduction of superoxide radicals was not accompanied by increased rates of lipid peroxidation, as the MDA and 4-HNE levels did not change significantly. Manganese (Mn) SOD activity was increased when HepG2 cells were treated for 1 day with 0.50 or 0.75 mM clofibric acid. For this duration of treatment, no change was observed in total SOD and copper/zinc (Cu/Zn) SOD activities. For a 5-day treatment, total SOD and MnSOD activities as well as the enzyme apoprotein and MnSOD mRNA levels increased whatever the clofibric acid concentration used. This transcriptional induction of the MnSOD gene was correlated with an activation of the activator protein-1 transcription factor for 1 and 5 days of treatment, but was independent of nuclear factor-kappa B and of peroxisome proliferator-activated receptor. On the other hand, the PP exerted very little effect if any on Cu,ZnSOD expression. In contrast to rodent data, PP treatment of human hepatoma cells induces MnSOD expression.
Oxidative Phospholipidomics in health and disease: Achievements, challenges and hopes.
Reis, Ana
2017-10-01
Phospholipid peroxidation products are recognized as important bioactive lipid mediators playing an active role as modulators in signalling events in inflammation, immunity and infection. The biochemical responses are determined by the oxidation structural features present in oxPL modulating biophysical and biological properties in model membranes and lipoproteins. In spite of the extensive work conducted with model systems over the last 20 years, the study of oxPL in biological systems has virtually stagnated. In fact, very little is known concerning the predominant oxPL in fluids and tissues, their basal levels, and any variations introduced with age, gender and ethnicity in health and disease. In consequence, knowledge on oxPL has not yet translated into clinical diagnostic, in the early and timely diagnosis of "silent" diseases such as atherosclerosis and cardiovascular diseases, or as prognosis tools in disease stratification and particularly useful in the context of multimorbidities. Their use as therapeutic solutions or the development of innovative functional biomaterials remains to be explored. This review summarizes the achievements made in the identification of oxPL revealing an enormous structural diversity. A brief overview of the challenges associated with the analysis of such diverse array of products is given and a critical evaluation on key aspects in the analysis pipeline that need to be addressed. Once these issues are addressed, Oxidative Phospholipidomics will hopefully lead to major breakthrough discoveries in biochemistry, pharmaceutical, and clinical areas for the upcoming 20 years. This article is part of Special Issue entitled 4-Hydroxynonenal and Related Lipid Oxidation Products. Copyright © 2017 Elsevier Inc. All rights reserved.
Peptidyl-prolyl cis/trans-isomerase A1 (Pin1) is a target for modification by lipid electrophiles.
Aluise, Christopher D; Rose, Kristie; Boiani, Mariana; Reyzer, Michelle L; Manna, Joseph D; Tallman, Keri; Porter, Ned A; Marnett, Lawrence J
2013-02-18
Oxidation of membrane phospholipids is associated with inflammation, neurodegenerative disease, and cancer. Oxyradical damage to phospholipids results in the production of reactive aldehydes that adduct proteins and modulate their function. 4-Hydroxynonenal (HNE), a common product of oxidative damage to lipids, adducts proteins at exposed Cys, His, or Lys residues. Here, we demonstrate that peptidyl-prolyl cis/trans-isomerase A1 (Pin1), an enzyme that catalyzes the conversion of the peptide bond of pSer/pThr-Pro moieties in signaling proteins from cis to trans, is highly susceptible to HNE modification. Incubation of purified Pin1 with HNE followed by MALDI-TOF/TOF mass spectrometry resulted in detection of Michael adducts at the active site residues His-157 and Cys-113. Time and concentration dependencies indicate that Cys-113 is the primary site of HNE modification. Pin1 was adducted in MDA-MB-231 breast cancer cells treated with 8-alkynyl-HNE as judged by click chemistry conjugation with biotin followed by streptavidin-based pulldown and Western blotting with anti-Pin1 antibody. Furthermore, orbitrap MS data support the adduction of Cys-113 in the Pin1 active site upon HNE treatment of MDA-MB-231 cells. siRNA knockdown of Pin1 in MDA-MB-231 cells partially protected the cells from HNE-induced toxicity. Recent studies indicate that Pin1 is an important molecular target for the chemopreventive effects of green tea polyphenols. The present study establishes that it is also a target for electrophilic modification by products of lipid peroxidation.
Chronic Ethanol Consumption in Mice Alters Hepatocyte Lipid Droplet Properties
Orlicky, David J.; Roede, James R.; Bales, Elise; Greenwood, Carrie; Greenberg, Andrew; Petersen, Dennis; McManaman, James L.
2014-01-01
Background Hepatosteatosis is a common pathological feature of impaired hepatic metabolism following chronic alcohol consumption. Although often benign and reversible, it is widely believed that steatosis is a risk factor for development of advanced liver pathologies, including steatohepatitis and fibrosis. The hepatocyte alterations accompanying the initiation of steatosis are not yet clearly defined. Methods Induction of hepatosteatosis by chronic ethanol consumption was investigated using the Lieber-DeCarli (LD) high fat diet model. Effects were assessed by immunohistochemistry and blood and tissue enzymatic assays. Cell culture models were employed for mechanistic studies. Results Pair feeding mice ethanol (LD-Et) or isocaloric control (LD-Co) diets for 6 weeks progressively increased hepatocyte triglyceride accumulation in morphological, biochemical, and zonally distinct cytoplasmic lipid droplets (CLD). The LD-Et diet induced zone 2-specific triglyceride accumulation in large CLD coated with perilipin, adipophilin (ADPH), and TIP47. In LD-Co- fed mice, CLD were significantly smaller than those in LD-Et-fed mice and lacked perilipin. A direct role of perilipin in formation of large CLD was further suggested by cell culture studies showing that perilipin-coated CLD were significantly larger than those coated with ADPH or TIP47. LD-Co- and LD-Et-fed animals also differed in hepatic metabolic stress responses. In LD-Et but not LD-Co-fed mice, inductions were observed in the following: microsomal ethanol-oxidizing system [cytochrome P-4502E1 (CYP2E1)], hypoxia response pathway (hypoxia-inducible factor 1 alpha, HIF1α), endoplasmic reticulum stress pathway (calreticulin), and synthesis of lipid peroxidation products [4-hydroxynonenal (4-HNE)]. CYP2E1 and HIF1 α immunostaining localized to zone 3 and did not correlate with accumulation of large CLD. In contrast, calreticulin and 4-HNE immunostaining closely correlated with large CLD accumulation. Importantly, 4- HNE staining significantly colocalized with ADPH and perilipin on the CLD surface. Conclusions These data suggest that ethanol contributes to macrosteatosis by both altering CLD protein composition and inducing lipid peroxide adduction of CLD-associated proteins. PMID:21535024
Pettazzoni, Piergiorgio; Ciamporcero, Eric; Medana, Claudio; Pizzimenti, Stefania; Dal Bello, Federica; Minero, Valerio Giacomo; Toaldo, Cristina; Minelli, Rosalba; Uchida, Koji; Dianzani, Mario Umberto; Pili, Roberto; Barrera, Giuseppina
2011-10-15
4-Hydroxynonenal (HNE) is an end product of lipoperoxidation with antiproliferative and proapoptotic properties in various tumors. Here we report a greater sensitivity to HNE in PC3 and LNCaP cells compared to DU145 cells. In contrast to PC3 and LNCaP cells, HNE-treated DU145 cells showed a smaller reduction in growth and did not undergo apoptosis. In DU145 cells, HNE did not induce ROS production and DNA damage and generated a lower amount of HNE-protein adducts. DU145 cells had a greater GSH and GST A4 content and GSH/GST-mediated HNE detoxification. Nuclear factor erythroid 2-related factor-2 (Nrf2) is a regulator of the antioxidant response. Nrf2 protein content and nuclear accumulation were higher in DU145 cells compared to PC3 and LNCaP cells, whereas the expression of KEAP1, the main negative regulator of Nrf2 activity, was lower. Inhibition of Nrf2 expression with specific siRNA resulted in a reduction in GST A4 expression and GS-HNE formation, indicating that Nrf2 controls HNE metabolism. In addition, Nrf2 knockdown sensitized DU145 cells to HNE-mediated antiproliferative and proapoptotic activity. In conclusion, we demonstrated that increased Nrf2 activity resulted in a reduction in HNE sensitivity in prostate cancer cells, suggesting a potential mechanism of resistance to pro-oxidant therapy. Copyright © 2011 Elsevier Inc. All rights reserved.
Basu, Arpita; Wilkinson, Marci; Penugonda, Kavitha; Simmons, Brandi; Betts, Nancy M; Lyons, Timothy J
2009-01-01
Background Strawberry flavonoids are potent antioxidants and anti-inflammatory agents that have been shown to reduce cardiovascular disease risk factors in prospective cohort studies. Effects of strawberry supplementation on metabolic risk factors have not been studied in obese populations. We tested the hypothesis that freeze-dried strawberry powder (FSP) will lower fasting lipids and biomarkers of oxidative stress and inflammation at four weeks compared to baseline. We also tested the tolerability and safety of FSP in subjects with metabolic syndrome. FSP is a concentrated source of polyphenolic flavonoids, fiber and phytosterols. Methods Females (n = 16) with 3 features of metabolic syndrome (waist circumference >35 inches, triglycerides > 150 mg/dL, fasting glucose > 100 mg/dL and < 126 mg/dL, HDL <50 mg/dL, or blood pressure >130/85 mm Hg) were enrolled in the study. Subjects consumed two cups of the strawberry drink daily for four weeks. Each cup had 25 g FSP blended in water. Fasting blood draws, anthropometrics, dietary analyses, and blood pressure measurements were done at baseline and 4 weeks. Biomarkers of oxidative stress and inflammation were measured using ELISA techniques. Plasma ellagic acid was measured using HPLC-UV techniques. Results Total cholesterol and LDL-cholesterol levels were significantly lower at 4 weeks versus baseline (-5% and -6%, respectively, p < 0.05), as was lipid peroxidation in the form of malondialdehyde and hydroxynonenal (-14%, p < 0.01). Oxidized-LDL showed a decreasing trend at 4 weeks (p = 0.123). No effects were noted on markers of inflammation including C-reactive protein and adiponectin. A significant number of subjects (13/16) showed an increase in plasma ellagic acid at four weeks versus baseline, while no significant differences were noted in dietary intakes at four weeks versus baseline. Thus, short-term supplementation of freeze-dried strawberries appeared to exert hypocholesterolemic effects and decrease lipid peroxidation in women with metabolic syndrome. PMID:19785767
Kleniewska, Paulina; Pawliczak, Rafał
2018-05-30
Probiotics and prebiotics have become an object of intense research, to identify methods of mitigating oxidative stress. Over the past few years, the number of in vitro and in vivo studies, related to antioxidant properties of probiotics/prebiotics has significantly increased. The aim of the present study was to assess whether probiotic in combination with prebiotic influences the level of human 4-hydroxynonenal, 8-isoprostane and glutathione reductase activity. Experiments were carried out on healthy volunteers (male and female). All oxidative stress markers were measured in blood plasma pre- and post-administration of synbiotic. The administration of synbiotic resulted in a significant decrease in 4-hydroxynonenal in the female-synbiotic group (p < 0.05), 8-isoprostanes in the female-synbiotic group and male-synbiotic group (p < 0.05) and non-significant increase in the activity of glutathione reductase (p > 0.05) vs. control. The present results show that supplementation of synbiotics contributed to the decrease in oxidative stress parameters in the female patients. Copyright © 2018 Medical University of Bialystok. Published by Elsevier B.V. All rights reserved.
Antinociception by the anti-oxidized phospholipid antibody E06.
Mohammadi, Milad; Oehler, Beatrice; Kloka, Jan; Martin, Corinna; Brack, Alexander; Blum, Robert; Rittner, Heike L
2018-04-21
Reactive oxygen species (ROS) and their downstream molecules such as oxidized phospholipids (OxPL) and 4-hydroxynonenal (4-HNE) activate transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) ion channels in vivo and in vitro shaping thermal and mechanical hypersensitivity in inflammatory pain. E06/T15 is a monoclonal autoantibody against oxidized phosphatidylcholine (OxPC) used in diagnostics in arteriosclerosis. Recently, we provided evidence that E06 also ameliorates inflammatory pain. Here, we studied E06 for local treatment against hypersensitivity evoked by endogenous and exogenous TRPA1 and TRPV1 agonists. We utilized a combination of reflexive and complex behavioural pain measurements, live-cell calcium imaging, and OxPC-binding assays. Lipid peroxidation metabolite 4-HNE, hydrogen peroxide (H 2 O 2 ) as ROS source, allyl isothiocyanate (AITC) and capsaicin were used to activate respective receptors. All irritants induced thermal and mechanical hypersensitivity, spontaneous nocifensive and affective motivational behaviour, as well as calcium influx in HEK TRPA1 - or HEK TRPV1 -cells and dorsal root ganglion (DRG) neurons. E06 prevented prolonged mechanical hypersensitivity induced by all irritants except for H 2 O 2 . E06 did not alter immediate irritant-induced nocifensive or affective motivational behaviour. In vitro, E06 blocked only 4-HNE-induced calcium influx albeit 4-HNE did not bind to E06. After 1-3 h, all tested irritants elicited formation of OxPC in paw tissue. E06 ameliorates not only inflammatory pain but also prolonged hypersensitivity due to formation of OxPC. This supports the view that neutralizing certain OxPL as endogenous TRPA1/V1 activators may be valuable for pain therapy. This article is protected by copyright. All rights reserved.
Mongkhon, John-Max; Thach, Maryane; Shi, Qin; Fernandes, Julio C; Fahmi, Hassan; Benderdour, Mohamed
2014-08-01
Our study was designed to elucidate the precise molecular mechanisms by which sorbitol-modified hyaluronic acid (HA/sorbitol) exerts beneficial effects in osteoarthritis (OA). Human OA chondrocytes were treated with increasing doses of HA/sorbitol ± anti-CD44 antibody or with sorbitol alone and thereafter with or without interleukin-1beta (IL-1β) or hydrogen peroxide (H2O2). Signal transduction pathways and parameters related to oxidative stress, apoptosis, inflammation, and catabolism were investigated. HA/sorbitol prevented IL-1β-induced oxidative stress, as measured by reactive oxygen species, p47-NADPH oxidase phosphorylation, 4-hydroxynonenal (HNE) production and HNE-metabolizing glutathione-S-transferase A4-4 expression. Moreover, HA/sorbitol stifled IL-1β-induced metalloproteinase-13, nitric oxide (NO) and prostaglandin E2 release as well as inducible NO synthase expression. Study of the apoptosis process revealed that this gel significantly attenuated cell death, caspase-3 activation and DNA fragmentation elicited by exposure to a cytotoxic H2O2 dose. Examination of signaling pathway components disclosed that HA/sorbitol prevented IL-1β-induced p38 mitogen-activated protein kinase and nuclear factor-kappa B activation, but not that of extracellular signal-regulated kinases 1 and 2. Interestingly, the antioxidant as well as the anti-inflammatory and anti-catabolic effects of HA/sorbitol were attributed to sorbitol and HA, respectively. Altogether, our findings support a beneficial effect of HA/sorbitol in OA through the restoration of redox status and reduction of apoptosis, inflammation and catabolism involved in cartilage damage.
2009-01-01
The α,β-unsaturated aldehydes (enals) acrolein, crotonaldehyde, and trans-4-hydroxynonenal (4-HNE) are products of endogenous lipid peroxidation, arising as a consequence of oxidative stress. The addition of enals to dG involves Michael addition of the N2-amine to give N2-(3-oxopropyl)-dG adducts, followed by reversible cyclization of N1 with the aldehyde, yielding 1,N2-dG exocyclic products. The 1,N2-dG exocyclic adducts from acrolein, crotonaldehyde, and 4-HNE exist in human and rodent DNA. The enal-induced 1,N2-dG lesions are repaired by the nucleotide excision repair pathway in both Escherichia coli and mammalian cells. Oligodeoxynucleotides containing structurally defined 1,N2-dG adducts of acrolein, crotonaldehyde, and 4-HNE were synthesized via a postsynthetic modification strategy. Site-specific mutagenesis of enal adducts has been carried out in E. coli and various mammalian cells. In all cases, the predominant mutations observed are G→T transversions, but these adducts are not strongly miscoding. When placed into duplex DNA opposite dC, the 1,N2-dG exocyclic lesions undergo ring opening to the corresponding N2-(3-oxopropyl)-dG derivatives. Significantly, this places a reactive aldehyde in the minor groove of DNA, and the adducted base possesses a modestly perturbed Watson−Crick face. Replication bypass studies in vitro indicate that DNA synthesis past the ring-opened lesions can be catalyzed by pol η, pol ι, and pol κ. It also can be accomplished by a combination of Rev1 and pol ζ acting sequentially. However, efficient nucleotide insertion opposite the 1,N2-dG ring-closed adducts can be carried out only by pol ι and Rev1, two DNA polymerases that do not rely on the Watson−Crick pairing to recognize the template base. The N2-(3-oxopropyl)-dG adducts can undergo further chemistry, forming interstrand DNA cross-links in the 5′-CpG-3′ sequence, intrastrand DNA cross-links, or DNA−protein conjugates. NMR and mass spectrometric analyses indicate that the DNA interstand cross-links contain a mixture of carbinolamine and Schiff base, with the carbinolamine forms of the linkages predominating in duplex DNA. The reduced derivatives of the enal-mediated N2-dG:N2-dG interstrand cross-links can be processed in mammalian cells by a mechanism not requiring homologous recombination. Mutations are rarely generated during processing of these cross-links. In contrast, the reduced acrolein-mediated N2-dG peptide conjugates can be more mutagenic than the corresponding monoadduct. DNA polymerases of the DinB family, pol IV in E. coli and pol κ in human, are implicated in error-free bypass of model acrolein-mediated N2-dG secondary adducts, the interstrand cross-links, and the peptide conjugates. PMID:19397281
A 6% Benzoyl Peroxide Foaming Cloth Cleanser Used in the Treatment of Acne Vulgaris
2009-01-01
Objective: The study was conducted to evaluate the product attributes of a new benzoyl peroxide-containing foaming cloth cleanser and to compare the overall patient satisfaction of this product with two currently available benzoyl peroxide acne products (6% benzoyl peroxide cleanser and 4% benzoyl peroxide wash). Design: This was a randomized, single-blind study. Setting: Two clinical trial sites. Participants: Male and female subjects (N=193) aged 17 to 30 years with a history of acne vulgaris were enrolled. Measures: Subjects initially cleansed their face with the benzoyl peroxide foaming cloth and then completed a product-attribute survey. Following an interval of five minutes or more, subjects cleansed their face again using one of two randomly assigned comparator benzoyl peroxide-containing cleansing products and then completed a comparative survey. Survey results were tabulated and a top-two box analysis was performed. Results: Following the use of the benzoyl peroxide-containing foaming cloth, 94 percent of the product-attribute responses were positive (p≤0.05). With respect to convenience, usability, and cosmetic elegance, the majority of subjects indicated a preference for the benzoyl peroxide foaming cloth compared to the 6% benzoyl peroxide cleanser and 4% benzoyl peroxide wash (for each, p≤0.05). There were no reports of adverse events. Conclusion: These attributes supporting preference for the benzoyl peroxide foaming cloth cleanser may improve patient satisfaction with topical acne treatment resulting in improved patient compliance. (J Clin Aesthetic Dermatol. 2009;2(7):26–29.) PMID:20729967
Rama Rao, Kakulavarapu V; Iring, Stephanie; Younger, Daniel; Kuriakose, Matthew; Skotak, Maciej; Alay, Eren; Gupta, Raj K; Chandra, Namas
2018-06-12
Blast-induced traumatic brain injury (bTBI) is a leading cause of morbidity in soldiers on the battlefield and in training sites with long-term neurological and psychological pathologies. Previous studies from our laboratory demonstrated activation of oxidative stress pathways after blast injury, but their distribution among different brain regions and their impact on the pathogenesis of bTBI have not been explored. The present study examined the protein expression of two isoforms: nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 1 and 2 (NOX1, NOX2), corresponding superoxide production, a downstream event of NOX activation, and the extent of lipid peroxidation adducts of 4-hydroxynonenal (4HNE) to a range of proteins. Brain injury was evaluated 4 h after the shock-wave exposure, and immunofluorescence signal quantification was performed in different brain regions. Expression of NOX isoforms displayed a differential increase in various brain regions: in hippocampus and thalamus, there was the highest increase of NOX1, whereas in the frontal cortex, there was the highest increase of NOX2 expression. Cell-specific analysis of changes in NOX expression with respect to corresponding controls revealed that blast resulted in a higher increase of NOX1 and NOX 2 levels in neurons compared with astrocytes and microglia. Blast exposure also resulted in increased superoxide levels in different brain regions, and such changes were reflected in 4HNE protein adduct formation. Collectively, this study demonstrates that primary blast TBI induces upregulation of NADPH oxidase isoforms in different regions of the brain parenchyma and that neurons appear to be at higher risk for oxidative damage compared with other neural cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singhal, Sharad S., E-mail: ssinghal@coh.org; Singh, Sharda P.; Singhal, Preeti
2015-12-15
4-Hydroxy-2-trans-nonenal (4HNE), one of the major end products of lipid peroxidation (LPO), has been shown to induce apoptosis in a variety of cell lines. It appears to modulate signaling processes in more than one way because it has been suggested to have a role in signaling for differentiation and proliferation. It has been known that glutathione S-transferases (GSTs) can reduce lipid hydroperoxides through their Se-independent glutathione-peroxidase activity and that these enzymes can also detoxify LPO end-products such as 4HNE. Available evidence from earlier studies together with results of recent studies in our laboratories strongly suggests that LPO products, particularly hydroperoxidesmore » and 4HNE, are involved in the mechanisms of stress-mediated signaling and that it can be modulated by the alpha-class GSTs through the regulation of the intracellular concentrations of 4HNE. We demonstrate that 4HNE induced apoptosis in various cell lines is accompanied with c-Jun-N-terminal kinase (JNK) and caspase-3 activation. Cells exposed to mild, transient heat or oxidative stress acquire the capacity to exclude intracellular 4HNE at a faster rate by inducing GSTA4-4 which conjugates 4HNE to glutathione (GSH), and RLIP76 which mediates the ATP-dependent transport of the GSH-conjugate of 4HNE (GS-HNE). The balance between formation and exclusion promotes different cellular processes — higher concentrations of 4HNE promote apoptosis; whereas, lower concentrations promote proliferation. In this article, we provide a brief summary of the cellular effects of 4HNE, followed by a review of its GST-catalyzed detoxification, with an emphasis on the structural attributes that play an important role in the interactions with alpha-class GSTA4-4. Taken together, 4HNE is a key signaling molecule and that GSTs being determinants of its intracellular concentrations, can regulate stress-mediated signaling, are reviewed in this article. - Highlights: • GSTs are the major determinants of the intracellular concentration of 4HNE. • Higher concentrations of 4HNE promote apoptosis whereas lower promote proliferation. • Stress-mediated signaling can be modulated by the α-class glutathione S-transferase. • Genotoxic effect of 4HNE may be ameliorated by modulating the cellular GSH levels. • RLIP76 (RalBP1) mediates ATP-dependent transport of GSH-conjugate of 4HNE (GSHNE).« less
Muñoz, Mario F.; Argüelles, Sandro
2014-01-01
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews of in vivo mammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown. PMID:24999379
Suzuki, D; Miyata, T; Saotome, N; Horie, K; Inagi, R; Yasuda, Y; Uchida, K; Izuhara, Y; Yagame, M; Sakai, H; Kurokawa, K
1999-04-01
Advanced glycation end products (AGE) include a variety of protein adducts whose accumulation has been implicated in tissue damage associated with diabetic nephropathy (DN). It was recently demonstrated that among AGE, glycoxidation products, whose formation is closely linked to oxidation, such as carboxymethyllysine (CML) and pentosidine, accumulate in expanded mesangial matrix and nodular lesions in DN, in colocalization with malondialdehyde-lysine (MDA-lysine), a lipoxidation product, whereas pyrraline, another AGE structure whose deposition is rather independent from oxidative stress, was not found within diabetic glomeruli. Because CML, pentosidine, and MDA-lysine are all formed under oxidative stress by carbonyl amine chemistry between protein amino group and carbonyl compounds, their colocalization suggests a local oxidative stress and increased protein carbonyl modification in diabetic glomerular lesions. To address this hypothesis, human renal tissues from patients with DN or IgA nephropathy were examined with specific antibodies to characterize most, if not all, carbonyl modifications of proteins by autoxidation products of carbohydrates, lipids, and amino acids: CML (derived from carbohydrates, lipids, and amino acid), pentosidine (derived from carbohydrates), MDA-lysine (derived from lipids), 4-hydroxynonenal-protein adduct (derived from lipids), and acrolein-protein adduct (derived from lipids and amino acid). All of the protein adducts were identified in expanded mesangial matrix and nodular lesions in DN. In IgA nephropathy, another primary glomerular disease leading to end-stage renal failure, despite positive staining for MDA-lysine and 4-hydroxynonenal-protein adduct in the expanded mesangial area, CML, pentosidine, and acrolein-protein adduct immunoreactivities were only faint in glomeruli. These data suggest a broad derangement in nonenzymatic biochemistry in diabetic glomerular lesions, and implicate an increased local oxidative stress and carbonyl modification of proteins in diabetic glomerular tissue damage ("carbonyl stress").
In Vivo Protection against Retinal Neurodegeneration by Sigma Receptor 1 Ligand (+)-Pentazocine
Smith, Sylvia B.; Duplantier, Jennifer; Dun, Ying; Mysona, Barbara; Roon, Penny; Martin, Pamela M.; Ganapathy, Vadivel
2008-01-01
Purpose To evaluate the neuroprotective properties of the sigma receptor 1 (σR1) ligand, (+)-pentazocine in an in vivo model of retinal neurodegeneration. Methods Spontaneously diabetic Ins2Akita/+ and wild-type mice received intraperitoneal injections of (+)-pentazocine for 22 weeks beginning at diabetes onset. Retinal mRNA and protein were analyzed by RT-PCR and Western blot analysis. Retinal histologic sections were measured to determine total retinal thickness, thicknesses of inner-outer nuclear and plexiform layers (INL, ONL, IPL, INL), and the number of cell bodies in the ganglion cell layer (GCL). Immunolabeling experiments were performed using antibodies specific for 4-hydroxynonenal and nitrotyrosine, markers of lipid peroxidation, and reactive nitrogen species, respectively, and an antibody specific for vimentin to view radial Müller fibers. Results σR1 mRNA and protein levels in the Ins2Akita/+ retina were comparable to those in the wild-type, indicating that σR1 is an available target during the disease process. Histologic evaluation of eyes of Ins2Akita/+ mice showed disruption of retinal architecture. By 17 to 25 weeks after birth, Ins2Akita/+ mice demonstrated ∼30% and 25% decreases in IPL and INL thicknesses, respectively, and a 30% reduction in ganglion cells. In the (+)-pentazocine-treated group, retinas of Ins2Akita/+ mice showed remarkable preservation of retinal architecture; IPL and INL thicknesses of (+)-pentazocinetreated Ins2Akita/+ mouse retinas were within normal limits. The number of ganglion cells was 15.6 ± 1.5 versus 10.4 ± 1.2 cells/100 μm retinal length in (+)-pentazocine-treated versus nontreated mutant mice. Levels of nitrotyrosine and 4-hydroxynonenal increased in Ins2Akita/+ retinas, but were reduced in (+)-pentazocine-treated mice. Retinas of Ins2Akita/+ mice showed loss of the uniform organization of radial Müller fibers. Retinas of (+)-pentazocine-treated mice maintained the radial organization of glial processes. Conclusion Sustained (+)-pentazocine treatment in an in vivo model of retinal degeneration conferred significant neuroprotection, reduced evidence of oxidative stress, and preserved retinal architecture, suggesting that σR1 ligands are promising therapeutic agents for intervention in neurodegenerative diseases of the retina. PMID:18469181
Kimura, Hiroko; Kon, Nobuko; Furukawa, Satoshi; Mukaida, Masahiro; Yamakura, Fumiyuki; Matsumoto, Kazuko; Sone, Hirohito; Murakami-Murofushi, Kimiko
2010-01-01
The purpose of this study is to elucidate the effect of wheel training on oxidative stress maker levels in spontaneous hypertensive rats (SHR). 4-hydroxynonenal and 3-nitrotyrosine levels in the aorta of SHRs were allowed to run for 10 weeks from the age of 15 weeks were measured and compared with those of nonexercised SHRs. The 4-hydroxynonenal and 3-nitrotyrosine levels in the exercised group were significantly lower than those in the nonexercised group. The exercised group showed a significant increase of manganese-containing superoxide dismutase. Endurance exercise showed a possible suppressing effect on the arteriosclerosis development by reducing oxidative stress, even after emergence of hypertension.
Effect of four different opalescence tooth-whitening products on enamel microhardness.
Majeed, A; Grobler, S R; Moola, M H; Rossouw, R J; van Kotze, T J W
2008-06-01
The purpose was to evaluate the effect of various Opalescence tooth-whitening products on enamel. Enamel blocks were exposed to Opalescence PF 10% Carbamide Peroxide (n = 10), Opalescence PF 20% Carbamide Peroxide (n = 10), Opalescence Trèswhite Supreme 10% Hydrogen Peroxide (n = 10) and Opalescence Quick PF 45% Carbamide Peroxide (n = 10) according to the manufacturer's instructions. The control group was enamel blocks (n = 10) kept in artificial saliva. The values were obtained before exposure and after the 14-days treatment period. Enamel blocks were kept in saliva between treatments. Indent marks on enamel blocks were examined using the scanning electron microscope for treatment effects. All four different Opalescence products damaged enamel. The most damage was done when treated for a long period (112 hours). SEM images also showed damage to enamel by all 4 products. Opalescence with 10% and with 20% Carbamide Peroxide showed the highest damage, which also differed significantly (p < 0.05) from the saliva control group (p < 0.05; Tukey-Kramer Multiple comparison test). All 4 Opalescence products damaged enamel. Higher damage was done by the 10% carbamide peroxide and 20% carbamide peroxide products because of the much longer exposure period (112 hours in comparison to 7 hours).
Borisov, Dmitry A; Vil’, Vera A; Dembitsky, Valery M
2014-01-01
Summary The present review describes the current status of synthetic five and six-membered cyclic peroxides such as 1,2-dioxolanes, 1,2,4-trioxolanes (ozonides), 1,2-dioxanes, 1,2-dioxenes, 1,2,4-trioxanes, and 1,2,4,5-tetraoxanes. The literature from 2000 onwards is surveyed to provide an update on synthesis of cyclic peroxides. The indicated period of time is, on the whole, characterized by the development of new efficient and scale-up methods for the preparation of these cyclic compounds. It was shown that cyclic peroxides remain unchanged throughout the course of a wide range of fundamental organic reactions. Due to these properties, the molecular structures can be greatly modified to give peroxide ring-retaining products. The chemistry of cyclic peroxides has attracted considerable attention, because these compounds are used in medicine for the design of antimalarial, antihelminthic, and antitumor agents. PMID:24454562
Cheng, Xinghua; Chapple, Sarah J.; Patel, Bijal; Puszyk, William; Sugden, David; Yin, Xiaoke; Mayr, Manuel; Siow, Richard C.M.; Mann, Giovanni E.
2013-01-01
In utero exposure to gestational diabetes mellitus (GDM) is associated with an increased risk of type 2 diabetes and cardiovascular disease in later life, yet the underlying mechanisms remain to be elucidated. We examined the effects of GDM on the proteome, redox status, and nuclear factor erythroid 2–related factor 2 (Nrf2)-mediated antioxidant gene expression in human fetal endothelial cells. Proteomic analysis revealed that proteins involved in redox homeostasis were significantly altered in GDM and associated with increased mitochondrial superoxide generation, protein oxidation, DNA damage, and diminished glutathione (GSH) synthesis. In GDM cells, the lipid peroxidation product 4-hydroxynonenal (HNE) failed to induce nuclear Nrf2 accumulation and mRNA and/or protein expression of Nrf2 and its target genes NAD(P)H:quinone oxidoreductase 1 (NQO1), Bach1, cystine/glutamate transporter, and glutamate cysteine ligase. Although methylation of CpG islands in Nrf2 or NQO1 promoters was unaltered by GDM, decreased DJ-1 and increased phosphorylated glycogen synthase kinase 3β levels may account for impaired Nrf2 signaling. HNE-induced increases in GSH and NQO1 levels were abrogated by Nrf2 small interfering RNA in normal cells, and overexpression of Nrf2 in GDM cells partially restored NQO1 induction. Dysregulation of Nrf2 in fetal endothelium may contribute to the increased risk of type 2 diabetes and cardiovascular disease in offspring. PMID:23974919
Cheng, Xinghua; Chapple, Sarah J; Patel, Bijal; Puszyk, William; Sugden, David; Yin, Xiaoke; Mayr, Manuel; Siow, Richard C M; Mann, Giovanni E
2013-12-01
In utero exposure to gestational diabetes mellitus (GDM) is associated with an increased risk of type 2 diabetes and cardiovascular disease in later life, yet the underlying mechanisms remain to be elucidated. We examined the effects of GDM on the proteome, redox status, and nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant gene expression in human fetal endothelial cells. Proteomic analysis revealed that proteins involved in redox homeostasis were significantly altered in GDM and associated with increased mitochondrial superoxide generation, protein oxidation, DNA damage, and diminished glutathione (GSH) synthesis. In GDM cells, the lipid peroxidation product 4-hydroxynonenal (HNE) failed to induce nuclear Nrf2 accumulation and mRNA and/or protein expression of Nrf2 and its target genes NAD(P)H:quinone oxidoreductase 1 (NQO1), Bach1, cystine/glutamate transporter, and glutamate cysteine ligase. Although methylation of CpG islands in Nrf2 or NQO1 promoters was unaltered by GDM, decreased DJ-1 and increased phosphorylated glycogen synthase kinase 3β levels may account for impaired Nrf2 signaling. HNE-induced increases in GSH and NQO1 levels were abrogated by Nrf2 small interfering RNA in normal cells, and overexpression of Nrf2 in GDM cells partially restored NQO1 induction. Dysregulation of Nrf2 in fetal endothelium may contribute to the increased risk of type 2 diabetes and cardiovascular disease in offspring.
Carcinine has 4-hydroxynonenal scavenging property and neuroprotective effect in mouse retina.
Marchette, Lea D; Wang, Huaiwen; Li, Feng; Babizhayev, Mark A; Kasus-Jacobi, Anne
2012-06-20
Oxidative stress induces retinal damage and contributes to vision loss in progressive retinopathies. Carcinine (β-alanyl-histamine) is a natural imidazole-containing peptide derivative with antioxidant activity. It is predicted to scavenge 4-hydroxynonenal (4-HNE), a toxic product of lipid oxidation. The aim of this study was to confirm the 4-HNE scavenging effect and evaluate the neuroprotective effect of carcinine in mouse retina subjected to oxidative stress. HPLC coupled with mass spectrometry was used to analyze carcinine and 4-HNE-carcinine adduct. Protection of retinal proteins from modification by 4-HNE was tested by incubating carcinine with retinal protein extract and 4-HNE. Modified retinal proteins were quantified by dot-blot analysis. Mice were treated with carcinine (intravitreal injection and gavage) and exposed to bright light to induce oxidative damage in the retina. Photoreceptor degeneration was measured by histology and electroretinography. Retinal levels of retinol dehydrogenase 12 (RDH12) were measured by immunoblot analysis, after exposure to bright light and in retinal explants after exposure to 4-HNE. The ability of carcinine to form an adduct with 4-HNE, as well as to prevent and even reverse the adduction of retinal proteins by the toxic aldehyde was demonstrated in vitro. Carcinine, administered by intravitreal injection or gavage, strongly protected mouse retina against light-induced photoreceptor degeneration and had a protective effect on RHD12, a protein found specifically in photoreceptor cells. This study suggests that carcinine can be administered noninvasively to efficiently protect photoreceptor cells from oxidative damage. Carcinine could be administered daily to prevent vision loss in progressive retinopathies.
Cytochromes P450 Catalyze the Reduction of α,β-Unsaturated Aldehydes
Amunom, Immaculate; Dieter, Laura J.; Tamasi, Viola; Cai, Jan; Conklin, Daniel J.; Srivastava, Sanjay; Martin, Martha V.; Guengerich, F. Peter; Prough, Russell A.
2011-01-01
The metabolism of α,β-unsaturated aldehydes, e.g. 4-hydroxynonenal, involves oxidation to carboxylic acids, reduction to alcohols, and glutathionylation to eventually form mercapturide conjugates. Recently we demonstrated that P450s can oxidize aldehydes to carboxylic acids, a reaction previously thought to involve aldehyde dehydrogenase. When recombinant cytochrome P450 3A4 was incubated with 4-hydroxynonenal, O2, and NADPH, several products were produced, including 1,4-dihydroxynonene (DHN), 4-hydroxy-2-nonenoic acid (HNA), and an unknown metabolite. Several P450s catalyzed the reduction reaction in the order (human) P450 2B6 ≅ P450 3A4 > P450 1A2 > P450 2J2 > (mouse) P450 2c29. Other P450s did not catalyze the reduction reaction (human P450 2E1 & rabbit P450 2B4). Metabolism by isolated rat hepatocytes showed that HNA formation was inhibited by cyanamide, while DHN formation was not affected. Troleandomycin increased HNA production 1.6-fold while inhibiting DHN formation, suggesting that P450 3A11 is a major enzyme involved in rat hepatic clearance of 4-HNE. A fluorescent assay was developed using 9-anthracenealdehyde to measure both reactions. Feeding mice diet containing t-butylated hydroxyanisole increased the level of both activities with hepatic microsomal fractions, but not proportionally. Miconazole (0.5 mM) was a potent inhibitor of these microsomal reduction reactions, while phenytoin and α-naphthoflavone (both at 0.5 mM) were partial inhibitors, suggesting the role of multiple P450 enzymes. The oxidative metabolism of these aldehydes was inhibited >90% in an Ar or CO atmosphere, while the reductive reactions were not greatly affected. These results suggest that P450s are significant catalysts of reduction of α,β-unsaturated aldehydes in liver. PMID:21766881
Butt, Omer I.; Buehler, Paul W.; D'Agnillo, Felice
2011-01-01
Systemic exposure to cell-free hemoglobin (Hb) or its breakdown products after hemolysis or with the use of Hb-based oxygen therapeutics may alter the function and integrity of the blood-brain barrier. Using a guinea pig exchange transfusion model, we investigated the effect of a polymerized cell-free Hb (HbG) on the expression of endothelial tight junction proteins (zonula occludens 1, claudin-5, and occludin), astrocyte activation, IgG extravasation, heme oxygenase (HO), iron deposition, oxidative end products (4-hydroxynonenal adducts and 8-hydroxydeoxyguanosine), and apoptosis (cleaved caspase 3). Reduced zonula occludens 1 expression was observed after HbG transfusion as evidenced by Western blot and confocal microscopy. Claudin-5 distribution was altered in small- to medium-sized vessels. However, total expression of claudin-5 and occludin remained unchanged except for a notable increase in occludin 72 hours after HbG transfusion. HbG-transfused animals also showed increased astrocytic glial fibrillary acidic protein expression and IgG extravasation after 72 hours. Increased HO activity and HO-1 expression with prominent enhancement of HO-1 immunoreactivity in CD163-expressing perivascular cells and infiltrating monocytes/macrophages were also observed. Consistent with oxidative stress, HbG increased iron deposition, 4-hydroxynonenal and 8-hydroxydeoxyguanosine immunoreactivity, and cleaved caspase-3 expression. Systemic exposure to an extracellular Hb triggers blood-brain barrier disruption and oxidative stress, which may have important implications for the use of Hb-based therapeutics and may provide indirect insight on the central nervous system vasculopathies associated with excessive hemolysis. PMID:21356382
Demir, Eşref; Marcos, Ricard
2017-07-01
Lipid peroxidation products can induce tissue damage and are implicated in diverse pathological conditions, including aging, atherosclerosis, brain disorders, cancer, lung and various liver disorders. Since in vivo studies produce relevant information, we have selected Drosophila melanogaster as a suitable in vivo model to characterise the potential risks associated to two lipid peroxidation products namely 4-oxo-2-nonenal (4-ONE) and 4-hydroxy-hexenal (4-HHE). Toxicity, intracellular reactive oxygen species production, and genotoxicity were the end-points evaluated. Haemocytes and midgut cells were the evaluated targets. Results showed that both compounds penetrate the intestine of the larvae, affecting midgut cells, and reaching haemocytes. Significant genotoxic effects, as determined by the comet assay, were observed in both selected cell targets in a concentration/time dependent manner. This study highlights the importance of D. melanogaster as a model organism in the study of the different biological effects caused by lipid peroxidation products entering via ingestion. This is the first study reporting genotoxicity data in haemocytes and midgut cells of D. melanogaster larvae for the two selected compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.
Smith, M A; Sayre, L M; Anderson, V E; Harris, P L; Beal, M F; Kowall, N; Perry, G
1998-06-01
Formation of carbonyls derived from lipids, proteins, carbohydrates, and nucleic acids is common during oxidative stress. For example, metal-catalyzed, "site-specific" oxidation of several amino acid side-chains produces aldehydes or ketones, and peroxidation of lipids generates reactive aldehydes such as malondialdehyde and hydroxynonenal. Here, using in situ 2,4-dinitrophenylhydrazine labeling linked to an antibody system, we describe a highly sensitive and specific cytochemical technique to specifically localize biomacromolecule-bound carbonyl reactivity. When this technique was applied to tissues from cases of Alzheimer disease, in which oxidative events including lipoperoxidative, glycoxidative, and other oxidative protein modifications have been reported, we detected free carbonyls not only in the disease-related intraneuronal lesions but also in other neurons. In marked contrast, free carbonyls were not found in neurons or glia in age-matched control cases. Importantly, this assay was highly specific for detecting disease-related oxidative damage because the site of oxidative damage can be assessed in the midst of concurrent age-related increases in free carbonyls in vascular basement membrane that would contaminate biochemical samples subjected to bulk analysis. These findings demonstrate that oxidative imbalance and stress are key elements in the pathogenesis of Alzheimer disease.
A novel role of Drosophila cytochrome P450-4e3 in permethrin insecticide tolerance.
Terhzaz, Selim; Cabrero, Pablo; Brinzer, Robert A; Halberg, Kenneth A; Dow, Julian A T; Davies, Shireen-A
2015-12-01
The exposure of insects to xenobiotics, such as insecticides, triggers a complex defence response necessary for survival. This response includes the induction of genes that encode key Cytochrome P450 monooxygenase detoxification enzymes. Drosophila melanogaster Malpighian (renal) tubules are critical organs in the detoxification and elimination of these foreign compounds, so the tubule response induced by dietary exposure to the insecticide permethrin was examined. We found that expression of the gene encoding Cytochrome P450-4e3 (Cyp4e3) is significantly up-regulated by Drosophila fed on permethrin and that manipulation of Cyp4e3 levels, specifically in the principal cells of the Malpighian tubules, impacts significantly on the survival of permethrin-fed flies. Both dietary exposure to permethrin and Cyp4e3 knockdown cause a significant elevation of oxidative stress-associated markers in the tubules, including H2O2 and lipid peroxidation byproduct, HNE (4-hydroxynonenal). Thus, Cyp4e3 may play an important role in regulating H2O2 levels in the endoplasmic reticulum (ER) where it resides, and its absence triggers a JAK/STAT and NF-κB-mediated stress response, similar to that observed in cells under ER stress. This work increases our understanding of the molecular mechanisms of insecticide detoxification and provides further evidence of the oxidative stress responses induced by permethrin metabolism. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Semen, Khrystyna; Yelisyeyeva, Olha; Jarocka-Karpowicz, Iwona; Kaminskyy, Danylo; Solovey, Lyubomyr; Skrzydlewska, Elzbieta; Yavorskyi, Ostap
2015-01-01
Pulmonary arterial hypertension (PAH) is a rare multifactorial disease with an unfavorable prognosis. Sildenafil therapy can improve functional capacity and pulmonary hemodynamics in PAH patients. Nowadays, it is increasingly recognized that the effects of sildenafil are pleiotropic and may also involve changes of the pro-/antioxidant balance, lipid peroxidation and autonomic control. In present study we aimed to assess the effects of sildenafil on the fatty acids (FAs) status, level of hydroxynonenal (HNE) and heart rate variability (HRV) in PAH patients. Patients with PAH were characterized by an increase in HNE and changes in the FAs composition with elevation of linoleic, oleic, docosahexanoic acids in phospholipids as well as reduced HRV with sympathetic predominance. Sildenafil therapy improved exercise capacity and pulmonary hemodynamics and reduced NT-proBNP level in PAH. Antioxidant and anti-inflammatory effects of sildenafil were noted from the significant lowering of HNE level and reduction of the phopholipid derived oleic, linoleic, docosahexanoic, docosapentanoic FAs. That was also associated with some improvement of HRV on account of the activation of the neurohumoral regulatory component. Incomplete recovery of the functional metabolic disorders in PAH patients may be assumed from the persistent increase in free FAs, reduced HRV with the sympathetic predominance in the spectral structure after treatment comparing to control group. The possibilities to improve PAH treatment efficacy through mild stimulation of free radical reactions and formation of hormetic reaction in the context of improved NO signaling are discussed. PMID:26654977
Kim, Hye-Young H.; Tallman, Keri A.; Liebler, Daniel C.; Porter, Ned A.
2009-01-01
HNE (4-hydroxynonenal), a byproduct of lipid peroxidation, reacts with nucleophilic centers on proteins. A terminal alkynyl analog of HNE (alkynyl HNE, aHNE) serves as a surrogate for HNE itself, both compounds reacting with protein amine and thiol functional groups by similar chemistry. Proteins modified with aHNE undergo reaction with a click reagent that bears azido and biotin groups separated by a photocleavable linker. Peptides and proteins modified in this way are affinity purified on streptavidin beads. Photolysis of the beads with a low intensity UV light releases bound biotinylated proteins or peptides, i.e. proteins or peptides modified by aHNE. Two strategies, (a) protein catch and photorelease and (b) peptide catch and photorelease, are employed to enrich adducted proteins or peptide mixtures highly enriched in adducts. Proteomics analysis of the streptavidin-purified peptides by LC-MS/MS permits identification of the adduction site. Identification of 30 separate peptides from human serum albumin by peptide catch and photorelease reveals 18 different aHNE adduction sites on the protein. Protein catch and photorelease shows that both HSA and ApoA1 in human plasma undergo significant modification by aHNE. PMID:19483245
NASA Astrophysics Data System (ADS)
Wang, H. L.; Huang, D.; Zhang, X.; Zhao, Y.; Chen, Z. M.
2012-03-01
The aqueous phase reaction of volatile organic compounds (VOCs) has not been considered in most analyses of atmospheric chemical processes. However, some experimental evidence has shown that, compared to the corresponding gas phase reaction, the aqueous chemical processes of VOCs in the bulk solutions and surfaces of ambient wet particles (cloud, fog, and wet aerosols) may potentially contribute to the products and formation of secondary organic aerosol (SOA). In the present study, we performed a laboratory experiment of the aqueous ozonolysis of isoprene at different pHs (3-7) and temperatures (4-25 °C). We detected three important kinds of products, including carbonyl compounds, peroxide compounds, and organic acids. Our results showed that the molar yields of these products were nearly independent of the investigated pHs and temperatures. These products included (1) carbonyls: 56.7 ± 6.7% formaldehyde, 42.8 ± 2.5% methacrolein (MAC), and 57.7 ± 3.4% methyl vinyl ketone (MVK); (2) peroxides: 53.4 ± 4.1% hydrogen peroxide (H2O2) and 15.1 ± 3.1% hydroxylmethyl hydroperoxide (HMHP); and (3) organic acids: undetectable (< 1% estimated by the detection limit). Based on the amounts of products formed and the isoprene consumed, the total carbon yield was estimated to be 95 ± 4%. This implied that most of the products in the reaction system were detected. Of note, the combined yields of both MAC + MVK and H2O2 + HMHP in the aqueous isoprene ozonolysis were much higher than those observed in the corresponding gas phase reaction. We suggested that these unexpected high yields of carbonyls and peroxides were related to the greater capability of condensed water, compared to water vapor, to stabilize energy-rich Criegee radicals. This aqueous ozonolysis of isoprene (and possibly other biogenic VOCs) could potentially occur on the surfaces of ambient wet particles and plants. Moreover, the high-yield carbonyl and peroxide products might provide a considerable source of aqueous phase oxidants and SOA precursors. Thus, aqueous ozonolysis on the surface of plants, where carbonyls and peroxides form, might affect biogenic VOC emissions and the deposition of O3 and SO2 onto leaves to different extents in clean and polluted regions.
Peng, Li-Tao; Jiang, Yue-Ming; Yang, Shu-Zhen; Pan, Si-Yi
2005-10-01
Accelerated senescence of fresh-cut Chinese water chestnut (CWC) tissues in relation to active oxygen species (AOS) metabolism was investigated. Fresh-cut CWC (2 mm thick) and intact CWC were stored at 4 degrees C in trays wrapped with plastic films. Changes in superoxide anion production rate, activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) were monitored, while contents of hydrogen peroxide, ascorbic acid, MDA as well as electrolyte leakage were measured. Fresh-cutting of CWC induced activities of SOD, CAT and APX to a certain extent (Fig. 2B and Fig. 3), but simultaneously stimulated superoxide anion production markedly (Fig. 2A), enhanced hydrogen peroxide accumulation and accelerated loss in ascorbic acid (Figs. 4 and 5), which resulted in increased lipid peroxidation indicated by malondialdehyde (MDA) content and electrolyte leakage (Fig. 1). Statistics analysis indicated that there was a significantly positive correlation among hydrogen peroxide accumulation, MDA content and electrolyte leakage (Table 1). Histochemical detection with 3, 3'-diaminobenzidine further demonstrated that hydrogen peroxide accumulation increased in fresh-cut CWC during storage (Fig. 5). AOS production rate and activities of SOD, CAT and APX changed little while no obvious hydrogen peroxide accumulation was observed, in intact CWC during storage.
Hydrogen peroxide production is affected by oxygen levels in mammalian cell culture.
Maddalena, Lucas A; Selim, Shehab M; Fonseca, Joao; Messner, Holt; McGowan, Shannon; Stuart, Jeffrey A
2017-11-04
Although oxygen levels in the extracellular space of most mammalian tissues are just a few percent, under standard cell culture conditions they are not regulated and are often substantially higher. Some cellular sources of reactive oxygen species, like NADPH oxidase 4, are sensitive to oxygen levels in the range between 'normal' physiological (typically 1-5%) and standard cell culture (up to 18%). Hydrogen peroxide in particular participates in signal transduction pathways via protein redox modifications, so the potential increase in its production under standard cell culture conditions is important to understand. We measured the rates of cellular hydrogen peroxide production in some common cell lines, including C2C12, PC-3, HeLa, SH-SY5Y, MCF-7, and mouse embryonic fibroblasts (MEFs) maintained at 18% or 5% oxygen. In all instances the rate of hydrogen peroxide production by these cells was significantly greater at 18% oxygen than at 5%. The increase in hydrogen peroxide production at higher oxygen levels was either abolished or substantially reduced by treatment with GKT 137831, a selective inhibitor of NADPH oxidase subunits 1 and 4. These data indicate that oxygen levels experienced by cells in culture influence hydrogen peroxide production via NADPH oxidase 1/4, highlighting the importance of regulating oxygen levels in culture near physiological values. However, we measured pericellular oxygen levels adjacent to cell monolayers under a variety of conditions and with different cell lines and found that, particularly when growing at 5% incubator oxygen levels, pericellular oxygen was often lower and variable. Together, these observations indicate the importance, and difficulty, of regulating oxygen levels experienced by cells in culture. Copyright © 2017 Elsevier Inc. All rights reserved.
Basu, Arpita; Sanchez, Karah; Leyva, Misti J; Wu, Mingyuan; Betts, Nancy M; Aston, Christopher E; Lyons, Timothy J
2010-02-01
To compare the effects of supplementation of green tea beverage or green tea extracts with controls on body weight, glucose and lipid profile, biomarkers of oxidative stress, and safety parameters in obese subjects with metabolic syndrome. Randomized, controlled prospective trial. General Clinical Research Center (GCRC) at University of Oklahoma Health Sciences Center (OUHSC). Thirty-five subjects with obesity and metabolic syndrome were recruited in age- and gender-matched trios and were randomly assigned to the control (4 cups water/d), green tea (4 cups/d), or green tea extract (2 capsules and 4 cups water/d) group for 8 weeks. The tea and extract groups had similar dosing of epiogallocatechin-3-gallate (EGCG), the active compound in green tea. Anthropometrics, blood pressure, fasting glucose and lipids, nuclear magnetic resonance (NMR)-based lipid particle size, safety parameters, biomarkers of oxidative stress (oxidized low-density lipoprotein [LDL], myeloperoxidase [MPO], malondialdehyde and hydroxynonenals [MDA and HNE]), and free catechins were analyzed at screen and at 4 and 8 weeks of the study. Pairwise comparisons showed green tea beverage and green tea extracts caused a significant decrease in body weight and body mass index (BMI) versus controls at 8 weeks (-2.5 +/- 0.7 kg, p < 0.01, and -1.9 +/- 0.6, p < 0.05, respectively). Green tea beverage showed a decreasing trend in LDL-cholesterol and LDL/high-density lipoprotein (HDL) versus controls (p < 0.1). Green tea beverage also significantly decreased MDA and HNE (-0.39 +/- 0.06 microM, p < 0.0001) versus controls. Plasma free catechins were detectable in both beverage and extract groups versus controls at screen and at 8 weeks, indicating compliance and bioavailability of green tea catechins. Green tea beverage consumption (4 cups/d) or extract supplementation (2 capsules/d) for 8 weeks significantly decreased body weight and BMI. Green tea beverage further lowered lipid peroxidation versus age- and gender-matched controls, suggesting the role of green tea flavonoids in improving features of metabolic syndrome in obese patients.
Oxidation of white phosphorus by peroxides in water
NASA Astrophysics Data System (ADS)
Abdreimova, R. R.; Akbaeva, D. N.; Polimbetova, G. S.
2017-10-01
A mixture of hypophosphorous, phosphorous, and phosphoric acids is formed during the anaerobic oxidation of white phosphorus by peroxides [ROOH; R = H, 3-ClC6H4CO, (CH3)3C] in water. The rate of reactions grows considerably upon adding nonpolar organic solvents. The activity series of peroxides and solvents are determined experimentally. NMR spectroscopy shows that the main product of the reaction is phosphorous acid, regardless of the nature of the peroxide and solvent. A radical mechanism of oxidation of white phosphorus by peroxides in water is proposed. It is initiated by the homolysis of peroxide with the formation of HO• radicals that are responsible for the homolytic opening of phosphoric tetrahedrons. Further oxidation and stages of the hydrolysis of intermediate phosphorus-containing compounds yield products of the reaction.
Li, Yi-Chieh; Hsieh, Chang-Chi
2014-01-01
Hepatic manifestations of the metabolic syndrome are related obesity, type 2 diabetes/insulin resistance and non-alcoholic fatty liver disease. Here we investigated how the anti-inflammatory properties of lactoferrin can protect against the onset of hepatic manifestations of the metabolic syndrome by using a murine model administered with high-fructose corn syrup. Our results show that a high-fructose diet stimulates intestinal bacterial overgrowth and increases intestinal permeability, leading to the introduction of endotoxin into blood circulation and liver. Immunohistochemical staining of Toll-like receptor-4 and thymic stromal lymphopoietin indicated that lactoferrin can modulate lipopolysaccharide-mediated inflammatory cascade. The important regulatory roles are played by adipokines including interleukin-1β, interleukin-6, tumor necrosis factor-α, monocyte chemotactic protein-1, and adiponectin, ultimately reducing hepatitis and decreasing serum alanine aminotransferase release. These beneficial effects of lactoferrin related to the downregulation of the lipopolysaccharide-induced inflammatory cascade in the liver. Furthermore, lactoferrin reduced serum and hepatic triglycerides to prevent lipid accumulation in the liver, and reduced lipid peroxidation, resulting in 4-hydroxynonenal accumulation. Lactoferrin reduced oral glucose tolerance test and homeostasis model assessment-insulin resistance. Lactoferrin administration thus significantly lowered liver weight, resulting from a decrease in the triglyceride and cholesterol synthesis that activates hepatic steatosis. Taken together, these results suggest that lactoferrin protected against high-fructose corn syrup induced hepatic manifestations of the metabolic syndrome.
Li, Yi-Chieh; Hsieh, Chang-Chi
2014-01-01
Hepatic manifestations of the metabolic syndrome are related obesity, type 2 diabetes/insulin resistance and non-alcoholic fatty liver disease. Here we investigated how the anti-inflammatory properties of lactoferrin can protect against the onset of hepatic manifestations of the metabolic syndrome by using a murine model administered with high-fructose corn syrup. Our results show that a high-fructose diet stimulates intestinal bacterial overgrowth and increases intestinal permeability, leading to the introduction of endotoxin into blood circulation and liver. Immunohistochemical staining of Toll-like receptor-4 and thymic stromal lymphopoietin indicated that lactoferrin can modulate lipopolysaccharide-mediated inflammatory cascade. The important regulatory roles are played by adipokines including interleukin-1β, interleukin-6, tumor necrosis factor-α, monocyte chemotactic protein-1, and adiponectin, ultimately reducing hepatitis and decreasing serum alanine aminotransferase release. These beneficial effects of lactoferrin related to the downregulation of the lipopolysaccharide-induced inflammatory cascade in the liver. Furthermore, lactoferrin reduced serum and hepatic triglycerides to prevent lipid accumulation in the liver, and reduced lipid peroxidation, resulting in 4-hydroxynonenal accumulation. Lactoferrin reduced oral glucose tolerance test and homeostasis model assessment-insulin resistance. Lactoferrin administration thus significantly lowered liver weight, resulting from a decrease in the triglyceride and cholesterol synthesis that activates hepatic steatosis. Taken together, these results suggest that lactoferrin protected against high-fructose corn syrup induced hepatic manifestations of the metabolic syndrome. PMID:24816278
Martinello, Flávia; Luiz da Silva, Edson
2006-11-01
Ascorbic acid interferes negatively in peroxidase-based tests (Trinder method). However, the precise mechanism remains unclear for tests that use peroxide, a phenolic compound and 4-aminophenazone (4-AP). We determined the chemical mechanism of this interference, by examining the effects of ascorbic acid in the reaction kinetics of the production and reduction of the oxidized chromophore in urate, cholesterol, triglyceride and glucose tests. Reaction of ascorbic acid with the Trinder method constituents was also verified. Ascorbic acid interfered stoichiometrically with all tests studied. However, it had two distinct effects on the reaction rate. In the urate test, ascorbic acid decreased the chromophore formation with no change in its production kinetics. In contrast, in cholesterol, triglyceride and glucose tests, an increase in the lag phase of color development occurred. Of all the Trinder constituents, only peroxide reverted the interference. In addition, ascorbic acid did not interfere with oxidase activity nor reduce significantly the chromophore formed. Peroxide depletion was the predominant chemical mechanism of ascorbic acid interference in the Trinder method with phenolics and 4-AP. Distinctive effects of ascorbic acid on the reaction kinetics of urate, cholesterol, glucose and triglyceride might be due to the rate of peroxide production by oxidases.
Effect of acute beer ingestion on the liver: studies in female mice.
Kanuri, Giridhar; Wagnerberger, Sabine; Landmann, Marianne; Prigl, Eva; Hellerbrand, Claus; Bischoff, Stephan C; Bergheim, Ina
2015-04-01
The aim of the present study was to assess whether the effects of acute consumption of stout or pilsner beer on the liver differ from those of plain ethanol in a mouse model. Seven-week-old female C57BL/6J mice received either ethanol, stout or pilsner beer (ethanol content: 6 g/kg body weight) or isocaloric maltodextrin solution. Plasma alanine transaminase, markers of steatosis, lipogenesis, activation of the toll-like receptor-4 signaling cascade as well as lipid peroxidation and fibrogenesis in the liver were measured 12 h after acute ethanol or beer intake. Acute alcohol ingestion caused a marked ~11-fold increase in hepatic triglyceride accumulation in comparison to controls, whereas in mice exposed to stout and pilsner beer, hepatic triglyceride levels were increased only by ~6.5- and ~4-fold, respectively. mRNA expression of sterol regulatory element-binding protein 1c and fatty acid synthase in the liver did not differ between alcohol and beer groups. In contrast, expression of myeloid differentiation primary response gene 88, inducible nitric oxide synthases, but also the concentrations of 4-hydroxynonenal protein adducts, nuclear factor κB and plasminogen activator inhibitor-1 were induced in livers of ethanol treated mice but not in those exposed to the two beers. Taken together, our results suggest that acute ingestion of beer and herein especially of pilsner beer is less harmful to the liver than the ingestion of plain ethanol.
Aldo-Keto Reductases 1B in Adrenal Cortex Physiology
Pastel, Emilie; Pointud, Jean-Christophe; Martinez, Antoine; Lefrançois-Martinez, A. Marie
2016-01-01
Aldose reductase (AKR1B) proteins are monomeric enzymes, belonging to the aldo-keto reductase (AKR) superfamily. They perform oxidoreduction of carbonyl groups from a wide variety of substrates, such as aliphatic and aromatic aldehydes or ketones. Due to the involvement of human aldose reductases in pathologies, such as diabetic complications and cancer, AKR1B subgroup enzymatic properties have been extensively characterized. However, the issue of AKR1B function in non-pathologic conditions remains poorly resolved. Adrenal activities generated large amount of harmful aldehydes from lipid peroxidation and steroidogenesis, including 4-hydroxynonenal (4-HNE) and isocaproaldehyde (4-methylpentanal), which can both be reduced by AKR1B proteins. More recently, some AKR1B isoforms have been shown to be endowed with prostaglandin F synthase (PGFS) activity, suggesting that, in addition to possible scavenger function, they could instigate paracrine signals. Interestingly, the adrenal gland is one of the major sites for human and murine AKR1B expression, suggesting that their detoxifying/signaling activity could be specifically required for the correct handling of adrenal function. Moreover, chronic effects of ACTH result in a coordinated regulation of genes encoding the steroidogenic enzymes and some AKR1B isoforms. This review presents the molecular mechanisms accounting for the adrenal-specific expression of some AKR1B genes. Using data from recent mouse genetic models, we will try to connect their enzymatic properties and regulation with adrenal functions. PMID:27499746
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Seung J.; Kim, Chae E.; Yun, Mi R.
Exaggerated levels of 4-hydroxynonenal (HNE) and 5-lipoxygenase (5-LO) co-exist in macrophages in atherosclerotic lesions, and activated macrophages produce MMP-9 that degrades atherosclerotic plaque constituents. This study investigated the effects of HNE on MMP-9 production, and the potential role for 5-LO derivatives in MMP-9 production in murine macrophages. Stimulation of J774A.1 cells with HNE led to activation of 5-LO, as measured by leukotriene B{sub 4} (LTB{sub 4}) production. This was associated with an increased production of MMP-9, which was blunted by inhibition of 5-LO with MK886, a 5-LO inhibitor or with 5-LO siRNA. A cysteinyl-LT{sub 1} (cysLT{sub 1}) receptor antagonist, REV-5901more » as well as a BLT{sub 1} receptor antagonist, U-75302, also attenuated MMP-9 production induced by HNE. Furthermore, LTB{sub 4} and cysLT (LTC{sub 4} and LTD{sub 4}) enhanced MMP-9 production in macrophages, suggesting a pivotal role for 5-LO in HNE-mediated production of MMP-9. Among the MAPK pathways, LTB{sub 4} and cysLT enhanced phosphorylation of ERK and p38 MAPK, but not JNK. Linked to these results, a p38 MAPK inhibitor as well as an ERK inhibitor blunted MMP-9 production induced by LT. Collectively, these data suggest that 5-LO-derived LT mediates HNE-induced MMP-9 production via activation of ERK and p38 MAPK pathways, consequently leading to plaque instability in atherosclerosis.« less
Ciccoli, Lucia; De Felice, Claudio; Paccagnini, Eugenio; Leoncini, Silvia; Pecorelli, Alessandra; Signorini, Cinzia; Belmonte, Giuseppe; Guerranti, Roberto; Cortelazzo, Alessio; Gentile, Mariangela; Zollo, Gloria; Durand, Thierry; Valacchi, Giuseppe; Rossi, Marcello; Hayek, Joussef
2013-01-01
Autism spectrum disorders (ASDs) are a complex group of neurodevelopment disorders steadily rising in frequency and treatment refractory, where the search for biological markers is of paramount importance. Although red blood cells (RBCs) membrane lipidomics and rheological variables have been reported to be altered, with some suggestions indicating an increased lipid peroxidation in the erythrocyte membrane, to date no information exists on how the oxidative membrane damage may affect cytoskeletal membrane proteins and, ultimately, RBCs shape in autism. Here, we investigated RBC morphology by scanning electron microscopy in patients with classical autism, that is, the predominant ASDs phenotype (age range: 6-26 years), nonautistic neurodevelopmental disorders (i.e., "positive controls"), and healthy controls (i.e., "negative controls"). A high percentage of altered RBCs shapes, predominantly elliptocytes, was observed in autistic patients, but not in both control groups. The RBCs altered morphology in autistic subjects was related to increased erythrocyte membrane F2-isoprostanes and 4-hydroxynonenal protein adducts. In addition, an oxidative damage of the erythrocyte membrane β-actin protein was evidenced. Therefore, the combination of erythrocyte shape abnormalities, erythrocyte membrane oxidative damage, and β-actin alterations constitutes a previously unrecognized triad in classical autism and provides new biological markers in the diagnostic workup of ASDs.
Ciccoli, Lucia; De Felice, Claudio; Pecorelli, Alessandra; Belmonte, Giuseppe; Guerranti, Roberto; Cortelazzo, Alessio; Durand, Thierry; Valacchi, Giuseppe; Rossi, Marcello; Hayek, Joussef
2013-01-01
Autism spectrum disorders (ASDs) are a complex group of neurodevelopment disorders steadily rising in frequency and treatment refractory, where the search for biological markers is of paramount importance. Although red blood cells (RBCs) membrane lipidomics and rheological variables have been reported to be altered, with some suggestions indicating an increased lipid peroxidation in the erythrocyte membrane, to date no information exists on how the oxidative membrane damage may affect cytoskeletal membrane proteins and, ultimately, RBCs shape in autism. Here, we investigated RBC morphology by scanning electron microscopy in patients with classical autism, that is, the predominant ASDs phenotype (age range: 6–26 years), nonautistic neurodevelopmental disorders (i.e., “positive controls”), and healthy controls (i.e., “negative controls”). A high percentage of altered RBCs shapes, predominantly elliptocytes, was observed in autistic patients, but not in both control groups. The RBCs altered morphology in autistic subjects was related to increased erythrocyte membrane F2-isoprostanes and 4-hydroxynonenal protein adducts. In addition, an oxidative damage of the erythrocyte membrane β-actin protein was evidenced. Therefore, the combination of erythrocyte shape abnormalities, erythrocyte membrane oxidative damage, and β-actin alterations constitutes a previously unrecognized triad in classical autism and provides new biological markers in the diagnostic workup of ASDs. PMID:24453417
Moon, Jae Yun; Choi, Su Jin; Heo, Cheol Ho; Kim, Hwan Myung; Kim, Hye Sun
2017-07-01
α-Syntrophin is a component of the dystrophin-glycoprotein complex that interacts with various intracellular signaling proteins in muscle cells. The α-syntrophin knock-down C2 cell line (SNKD), established by infecting lentivirus particles with α-syntrophin shRNA, is characterized by a defect in terminal differentiation and increase in cell death. Since myoblast differentiation is accompanied by intensive mitochondrial biogenesis, the generation of intracellular reactive oxygen species (ROS) is also increased during myogenesis. Two-photon microscopy imaging showed that excessive intracellular ROS accumulated during the differentiation of SNKD cells as compared with control cells. The formation of 4-hydroxynonenal adduct, a byproduct of lipid peroxidation during oxidative stress, significantly increased in differentiated SNKD myotubes and was dramatically reduced by epigallocatechin-3-gallate, a well-known ROS scavenger. Among antioxidant enzymes, catalase was significantly decreased during differentiation of SNKD cells without changes at the mRNA level. Of interest was the finding that the degradation of catalase was rescued by MG132, a proteasome inhibitor, in the SNKD cells. This study demonstrates a novel function of α-syntrophin. This protein plays an important role in the regulation of oxidative stress from endogenously generated ROS during myoblast differentiation by modulating the protein stability of catalase. © 2017 Federation of European Biochemical Societies.
Unsolved mysteries: How does lipid peroxidation cause ferroptosis?
Feng, Huizhong
2018-01-01
Ferroptosis is a cell death process driven by damage to cell membranes and linked to numerous human diseases. Ferroptosis is caused by loss of activity of the key enzyme that is tasked with repairing oxidative damage to cell membranes—glutathione peroxidase 4 (GPX4). GPX4 normally removes the dangerous products of iron-dependent lipid peroxidation, protecting cell membranes from this type of damage; when GPX4 fails, ferroptosis ensues. Ferroptosis is distinct from apoptosis, necroptosis, necrosis, and other modes of cell death. Several key mysteries regarding how cells die during ferroptosis remain unsolved. First, the drivers of lipid peroxidation are not yet clear. Second, the subcellular location of lethal lipid peroxides remains an outstanding question. Finally, how exactly lipid peroxidation leads to cell death is an unsolved mystery. Answers to these questions will provide insights into the mechanisms of ferroptotic cell death and associated human diseases, as well as new therapeutic strategies for such diseases. PMID:29795546
Lipid Peroxidation and Transforming Growth Factor-β1 Levels in Gastric Cancer at Pathologic Stages.
Tüzün, Sefa; Yücel, Ahmet Fikret; Pergel, Ahmet; Kemik, Ahu Sarbay; Kemik, Ozgür
2012-09-01
High levels of TGF-β1 and enhanced TGF-β1 receptor signaling are related to the pathology of gastric cancer. This effect is caused by oxidative stress and lipid peroxidation products. The aim of this study was to investigate the levels of TGF-β1 and lipid peroxidation products in gastric cancer patients and their correlation with pathologic stage. Lipid peroxidation products and TGF-β1 levels were studied in the serum samples of 50 gastric cancer patients and 18 control subjects. HNE-protein adducts and TGF-β1 levels were significantly higher in T2, T3 and T4 gastric cancers than in either the T1 stage or controls (p<0.001). Pathologic stage was correlated with TGF-β1 levels (r=0.702, p<0.05). These markers production may contribute to tumor angiogenesis and aid in the prognosis of the gastric cancer.
Xia, Qingsu; Yin, Jun J.; Wamer, Wayne G.; Cherng, Shu-Hui; Boudreau, Mary D.; Howard, Paul C.; Yu, Hongtao; Fu, Peter P.
2006-01-01
We have previously reported that photoirradiation of retinyl palmitate (RP), a storage and ester form of vitamin A (retinol), with UVA light resulted in the formation of photodecomposition products, generation of reactive oxygen species, and induction of lipid peroxidation. In this paper, we report our results following the photoirradiation of RP in ethanol by an UV lamp with approximately equal UVA and UVB light. The photodecomposition products were separated by reversed-phase HPLC and characterized spectroscopically by comparison with authentic standards. The identified products include: 4-keto-RP, 11-ethoxy-12-hydroxy-RP, 13-ethoxy-14-hydroxy-RP, anhydroretinol (AR), and trans- and cis-15-ethoxy-AR. Photoirradiation of RP in the presence of a lipid, methyl linoleate, resulted in induction of lipid peroxidation. Lipid peroxidation was inhibited when sodium azide was present during photoirradiation which suggests free radicals were formed. Our results demonstrate that, similar to irradiation with UVA light, RP can act as a photosensitizer leading to free radical formation and induction of lipid peroxidation following irradiation with UVB light. PMID:16823091
Allegra, M.; D’Acquisto, F.; Tesoriere, L.; Attanzio, A.; Livrea, M.A.
2014-01-01
Macrophages come across active prostaglandin (PG) metabolism during inflammation, shunting early production of pro-inflammatory towards anti-inflammatory mediators terminating the process. This work for the first time provides evidence that a phytochemical may modulate the arachidonate (AA) metabolism in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages, promoting the ultimate formation of anti-inflammatory cyclopentenone 15deoxy-PGJ2. Added 1 h before LPS, indicaxanthin from Opuntia Ficus Indica prevented activation of nuclear factor-κB (NF-κB) and over-expression of PGE2 synthase-1 (mPGES-1), but up-regulated cyclo-oxygenase-2 (COX-2) and PGD2 synthase (H-PGDS), with final production of the anti-inflammatory cyclopentenone. The effects were positively related with concentration between 50 and 100 µM. Indicaxanthin did not have any effect in the absence of LPS. A kinetic study investigating the redox status of LPS-stimulated macrophages between 0.5 and 12 h, either in the absence or in the presence of 50–100 µM indicaxanthin, revealed a differential control of ROS production, with early (0.5–3 h) modest inhibition, followed by a progressive (3–12 h) concentration-dependent enhancement over the level induced by LPS alone. In addition, indicaxanthin caused early (0.5–3 h) concentration-dependent elevation of conjugated diene lipid hydroperoxides, and production of hydroxynonenal-protein adducts, over the amount induced by LPS. In LPS-stimulated macrophages indicaxanthin did not affect PG metabolism when co-incubated with either an inhibitor of NADPH oxidase or vitamin E. It is concluded that LPS-induced pro-oxidant activity of indicaxanthin at the membrane level allows formation of signaling intermediates whose accumulation modulates PG biosynthetic pathway in inflamed macrophages. PMID:25180166
Allegra, M; D'Acquisto, F; Tesoriere, L; Attanzio, A; Livrea, M A
2014-01-01
Macrophages come across active prostaglandin (PG) metabolism during inflammation, shunting early production of pro-inflammatory towards anti-inflammatory mediators terminating the process. This work for the first time provides evidence that a phytochemical may modulate the arachidonate (AA) metabolism in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages, promoting the ultimate formation of anti-inflammatory cyclopentenone 15deoxy-PGJ2. Added 1 h before LPS, indicaxanthin from Opuntia Ficus Indica prevented activation of nuclear factor-κB (NF-κB) and over-expression of PGE2 synthase-1 (mPGES-1), but up-regulated cyclo-oxygenase-2 (COX-2) and PGD2 synthase (H-PGDS), with final production of the anti-inflammatory cyclopentenone. The effects were positively related with concentration between 50 and 100 µM. Indicaxanthin did not have any effect in the absence of LPS. A kinetic study investigating the redox status of LPS-stimulated macrophages between 0.5 and 12 h, either in the absence or in the presence of 50-100 µM indicaxanthin, revealed a differential control of ROS production, with early (0.5-3 h) modest inhibition, followed by a progressive (3-12 h) concentration-dependent enhancement over the level induced by LPS alone. In addition, indicaxanthin caused early (0.5-3 h) concentration-dependent elevation of conjugated diene lipid hydroperoxides, and production of hydroxynonenal-protein adducts, over the amount induced by LPS. In LPS-stimulated macrophages indicaxanthin did not affect PG metabolism when co-incubated with either an inhibitor of NADPH oxidase or vitamin E. It is concluded that LPS-induced pro-oxidant activity of indicaxanthin at the membrane level allows formation of signaling intermediates whose accumulation modulates PG biosynthetic pathway in inflamed macrophages.
Li, Yinping; Cui, Jiefen; Zhang, Gaoli; Liu, Zhengkun; Guan, Huashi; Hwang, Hueymin; Aker, Winfred G; Wang, Peng
2016-08-01
The seaweed Ulva prolifera, distributed in inter-tidal zones worldwide, contains a large percentage of cellulosic materials. The technical feasibility of using U. prolifera residue (UPR) obtained after extraction of polysaccharides as a renewable energy resource was investigated. An environment-friendly and economical pretreatment process was conducted using hydrogen peroxide. The hydrogen peroxide pretreatment improved the efficiency of enzymatic hydrolysis. The resulting yield of reducing sugar reached a maximum of 0.42g/g UPR under the optimal pretreatment condition (hydrogen peroxide 0.2%, 50°C, pH 4.0, 12h). The rate of conversion of reducing sugar in the concentrated hydrolysates to bioethanol reached 31.4% by Saccharomyces cerevisiae fermentation, which corresponds to 61.7% of the theoretical maximum yield. Compared with other reported traditional processes on Ulva biomass, the reducing sugar and bioethanol yield are substantially higher. Thus, hydrogen peroxide pretreatment is an effective enhancement of the process of bioethanol production from the seaweed U. prolifera. Copyright © 2016 Elsevier Ltd. All rights reserved.
Proteomic plasma profile of psoriatic patients.
Gęgotek, Agnieszka; Domingues, Pedro; Wroński, Adam; Wójcik, Piotr; Skrzydlewska, Elżbieta
2018-06-05
Psoriasis is a chronic, immune-mediated inflammatory skin disease with severe consequences for the whole organism. The lack of complete knowledge of the main factors predisposing an individual to the appearance of psoriatic lesions, has recently led to the search for modifications in biochemical pathways participating in the development of this disease. We therefore aimed to investigate changes in the plasma proteomic profile of patients with psoriasis. A proteomics approach was used to analyze the expression of proteins in plasma from psoriatic patients and healthy controls (sex- and age-matched individuals). The analysis was performed using gel electrophoresis, followed by nanoflow LC-MS/MS using a Q-Exactive OrbiTrap mass spectrometer. Proteomic data indicated a significant decrease in the level of proteins involved in lipid metabolism, such as apolipoprotein M, and proteins involved in the management of vitamin D levels in psoriatic patients' plasma. These changes were accompanied by the expression of proteins involved in immune response and signal transduction. This was particularly evident by the level of transcriptional factors, including AT motif binding factor 1, which regulates excessive cellular proliferation and differentiation. It was also suggested that psoriasis development was associated with increased expression of proteins directly involved in signaling molecule secretion [biotinidase and BAI1-associated protein 3]. In addition, the lipid peroxidation product - 4-hydroxynonenal (4-HNE) generates higher level of adducts with proteins in the plasma of psoriatic patients. Moreover, plasma proteins from healthy subjects creating with 4-HNE adducts were mainly characterized as structural, while in the plasma of psoriatic patients, increased levels of 4-HNE-protein adducts with catalytic activity were observed. The results presented herein confirm the current knowledge about the profile of proteins responsible for the immune response and management of vitamin D in the plasma of psoriatic patients. However, several new proteins were also identified, which are involved in signal transduction and lipid metabolism as well as catalytic activity. The expression or structure of these proteins was shown to change through the course of the development of psoriasis. This knowledge may help contribute to the design of more specific pharmacotherapy. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hand, K. P.; Carlson, R. W.
2007-12-01
The presence of hydrogen peroxide and condensed phase molecular oxygen on the surface of Europa is now well established [1,2] and laboratory experiments have repeatedly demonstrated the viability of various radiolytic processes for explaining the observations [see e.g. 3, 4]. To date, however, both the Europa observations and the laboratory work have been limited to only the upper few, or few tens of microns, of ice. The spectrum of charged particles incident on the surface of Europa penetrates deeper, and deposits energy over a much greater range, than any laboratory experiment has aimed to replicate [5, 6]. Here we present results from laboratory work on hydrogen peroxide production using energetic electrons (4 keV - 16 keV) and couple these results with a numerical model for the integrated steady-state density of hydrogen peroxide as a function of depth into the ice. Production rates and steady-state peroxide levels for a range of initial electron energies are used to generate functions for the number of peroxide molecules produced per initial electron as it penetrates through the ice. We examined the electron energy spectrum from 0.01 MeV to 10 MeV and accounted for electrons incident to the surface over the solid angle from cosine(theta) = 0.3-1.0, where theta is the angle from the normal to the surface. We found that, accounting for production and destruction as a function of energy deposition, steady-state hydrogen peroxide concentrations resulting from electron radiolysis likely increases by a factor of a few to an order of magnitude at a depth of a few hundred microns. In other words, the 0.13 percent by number abundance of peroxide observed by NIMS [1] may be a low-end value; at depth the peroxide concentration could increase to a few percent by number relative to water. [1] Carlson et al. 1999. [2] Spencer and Calvin, 2002. [3] Moore and Hudson, 2000. [4] Loeffler et al., 2006. [5] Cooper et al., 2001 [6] Paranicas et al., 2001.
Yamamoto, Yoko; Kobayashi, Yukiko; Matsumoto, Hideaki
2001-01-01
Pea (Pisum sativum) roots were treated with aluminum in a calcium solution, and lipid peroxidation was investigated histochemically and biochemically, as well as other events caused by aluminum exposure. Histochemical stainings were observed to distribute similarly on the entire surface of the root apex for three events (aluminum accumulation, lipid peroxidation, and callose production), but the loss of plasma membrane integrity (detected by Evans blue uptake) was localized exclusively at the periphery of the cracks on the surface of root apex. The enhancement of four events (aluminum accumulation, lipid peroxidation, callose production, and root elongation inhibition) displayed similar aluminum dose dependencies and occurred by 4 h. The loss of membrane integrity, however, was enhanced at lower aluminum concentrations and after longer aluminum exposure (8 h). The addition of butylated hydroxyanisole (a lipophilic antioxidant) during aluminum treatment completely prevented lipid peroxidation and callose production by 40%, but did not prevent or slow the other events. Thus lipid peroxidation is a relatively early symptom induced by the accumulation of aluminum and appears to cause, in part, callose production, but not the root elongation inhibition; by comparison, the loss of plasma membrane integrity is a relatively late symptom caused by cracks in the root due to the inhibition of root elongation. PMID:11154329
Lipid Peroxidation and Transforming Growth Factor-β1 Levels in Gastric Cancer at Pathologic Stages
Tüzün, Sefa; Yücel, Ahmet Fikret; Pergel, Ahmet; Kemik, Ahu Sarbay; Kemik, Özgür
2012-01-01
Objective: High levels of TGF-β1 and enhanced TGF-β1 receptor signaling are related to the pathology of gastric cancer. This effect is caused by oxidative stress and lipid peroxidation products. The aim of this study was to investigate the levels of TGF-β1 and lipid peroxidation products in gastric cancer patients and their correlation with pathologic stage. Material and Methods: Lipid peroxidation products and TGF-β1 levels were studied in the serum samples of 50 gastric cancer patients and 18 control subjects. Results: HNE-protein adducts and TGF-β1 levels were significantly higher in T2, T3 and T4 gastric cancers than in either the T1 stage or controls (p<0.001). Pathologic stage was correlated with TGF-β1 levels (r=0.702, p<0.05). Conclusion: These markers production may contribute to tumor angiogenesis and aid in the prognosis of the gastric cancer. PMID:25207013
Dietary fisetin supplementation protects against alcohol-induced liver injury in mice
Sun, Qian; Zhang, Wenliang; Zhong, Wei; Sun, Xinguo; Zhou, Zhanxiang
2016-01-01
Background Overproduction of reactive oxygen species (ROS) is associated with the development of alcoholic liver disease (ALD). Plant polyphenols have been used as dietary inverventions for multiple diseases including ALD. The objective of the present study was to determine whether dietary supplementation with fisetin, a novel flavonoid, exerts beneficial effect on alcohol-induced liver injury. Methods C57BL/6J mice were pair-fed with the Lieber-DeCarli control or ethanol diet for four weeks with or without fisetin supplementation at 10 mg/kg/d. Results Alcohol feeding induced lipid accumulation in the liver and increased plasma ALT and AST activities, which were attenuated by fisetin suplementation. The ethanol concentrations in the plasma and liver were significantly elevated by alcohol exposure but were reduced by fisetin suplementation. Although fisetin did not affect the protein expression of alcohol metabolism enzymes, the aldehyde dehydrogenase activities were significantly increased by fisetin compared to the alcohol alone group. In addition, fisetin suplementation remarkably reduced hepatic NADPH oxidase 4 (NOX4) levels along with decreased plasma hydrogen peroxide and hepatic superoxide and 4-hydroxynonenal (4HNE) levels after alcohol exposure. Alcohol-induced apoptosis and upregulation of Fas and cleaved caspase-3 in the liver were prevented by fisetin. Moreover, fisetin suplementation attenuated alcohol-induced hepatic streatosis through increasing plasma adiponectin levels and hepatic protein levels of p-AMPK, ACOX1, CYP4A, and MTTP. Conclusion The present study demonstrated that the protective effect of fisetin on ALD is achieved by accelerating ethanol clearance and inhibition of oxidative stress. The data suggest that fisetin has a therapeutical potential for treating ALD. PMID:27575873
Zhong, Huiqin; Lu, Jianhong; Xia, Lin; Zhu, Mingjiang; Yin, Huiyong
2014-01-01
Emerging evidence indicates that mitochondrial cardiolipins (CL) are prone to free radical oxidation and this process appears to be intimately associated with multiple biological functions of mitochondria. Our previous work demonstrated that a significant amount of potent lipid electrophiles including 4-hydroxy-nonenal (4-HNE) was generated from CL oxidation through a novel chemical mechanism. Here we provide further evidence that a characteristic class of CL oxidation products, epoxyalcohol-aldehyde-CL (EAA-CL), is formed through this novel mechanism in isolated mice liver mitochondria when treated with the pro-apoptotic protein t-Bid to induce cyt c release. Generation of these oxidation products are dose-dependently attenuated by a peroxidase inhibitor acetaminophen (ApAP). Using a mouse model of atherosclerosis, we detected significant amount of these CL oxidation products in liver tissue of low density lipoprotein receptor knockout (LDLR -/-) mice after Western diet feeding. Our studies highlight the importance of lipid electrophiles formation from CL oxidation in the settings of apoptosis and atherosclerosis as inhibition of CL oxidation and lipid electrophiles formation may have potential therapeutic value in diseases linked to oxidant stress and mitochondrial dysfunctions.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Protective effects of red wine flavonols on 4-hydroxynonenal-induced apoptosis in PC12 cells.
Jang, Young Jin; Kang, Nam Joo; Lee, Ki Won; Lee, Hyong Joo
2009-08-01
There is accumulating evidence that a moderate consumption of red wine has health benefits, such as the inhibition of neurodegenerative diseases. Although this is generally attributed to resveratrol, the protective mechanisms and the active substance(s) remain unclear. We examined whether and how red wine extract (RWE) and red wine flavonols quercetin and myricetin inhibited 4-hydroxynonenal (HNE)-induced apoptosis of rat pheochromocytoma PC12 cells. RWE attenuated HNE-induced PC12 cell death in a dose-dependent manner. HNE induced cleavage of poly(ADP-ribose) polymerase, which is involved in DNA repair in the nucleus, and this was inhibited by RWE treatment. Treatment with RWE also inhibited HNE-induced nuclear condensation in PC12 cells. Data of 2',7'-dichlorofluorescin diacetate showed that RWE protected against apoptosis of PC12 cells by attenuating intracellular reactive oxygen species. The cytoprotective effects on HNE-induced cell death were stronger for quercetin and myricetin than for resveratrol. HNE-induced nuclear condensation was attenuated by quercetin and myricetin. These results suggest that the neuroprotective potential of red wine is attributable to flavonols rather than to resveratrol.
Shen, Yi; Zhong, Linlin; Johnson, Stephen; Cao, Deliang
2011-05-30
Aldo-keto reductase family 1 member B1 (AKR1B1, 1B1 in brief) and aldo-keto reductase family 1 member B10 (AKR1B10, 1B10 in brief) are two proteins with high similarities in their amino acid sequences, stereo structures, and substrate specificity. However, these two proteins exhibit distinct tissue distributions; 1B10 is primarily expressed in the gastrointestinal tract and adrenal gland, whereas 1B1 is ubiquitously present in all tissues/organs, suggesting their difference in biological functions. This study evaluated in parallel the enzyme activity of 1B1 and 1B10 toward alpha, beta-unsaturated carbonyl compounds with cellular and dietary origins, including acrolein, crotonaldehyde, 4-hydroxynonenal, trans-2-hexenal, and trans-2,4-hexadienal. Our results showed that 1B10 had much better enzyme activity and turnover rates toward these chemicals than 1B1. By detecting the enzymatic products using high-performance liquid chromatography, we measured their activity to carbonyl compounds at low concentrations. Our data showed that 1B10 efficiently reduced the tested carbonyl compounds at physiological levels, but 1B1 was less effective. Ectopically expressed 1B10 in 293T cells effectively eliminated 4-hydroxynonenal at 5 μM by reducing to 1,4-dihydroxynonene, whereas endogenously expressed 1B1 did not. The 1B1 and 1B10 both showed enzyme activity to glutathione-conjugated carbonyl compounds, but 1B1 appeared more active in general. Together our data suggests that 1B10 is more effectual in eliminating free electrophilic carbonyl compounds, but 1B1 seems more important in the further detoxification of glutathione-conjugated carbonyl compounds. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Van Hecke, Thomas; Wouters, An; Rombouts, Caroline; Izzati, Tazkiyah; Berardo, Alberto; Vossen, Els; Claeys, Erik; Van Camp, John; Raes, Katleen; Vanhaecke, Lynn; Peeters, Marc; De Vos, Winnok H; De Smet, Stefaan
2016-02-24
We studied the formation of malondialdehyde, 4-hydroxy-nonenal, and hexanal (lipid oxidation products, LOP) during in vitro digestion of a cooked low-fat and high-fat beef product in response to the addition of reducing compounds. We also investigated whether higher LOP in the digests resulted in a higher cyto- and genotoxicity in Caco-2, HT-29 and HCT-116 cell lines. High-fat compared to low-fat beef digests contained approximately 10-fold higher LOP concentrations (all P < 0.001), and induced higher cytotoxicity (P < 0.001). During digestion of the high-fat product, phenolic acids (gallic, ferulic, chlorogenic, and caffeic acid) displayed either pro-oxidant or antioxidant behavior at lower and higher doses respectively, whereas ascorbic acid was pro-oxidant at all doses, and the lipophilic reducing compounds (α-tocopherol, quercetin, and silibinin) all exerted a clear antioxidant effect. During digestion of the low-fat product, the hydrophilic compounds and quercetin were antioxidant. Decreases or increases in LOP concentrations amounted to 100% change versus controls.
Kocadağlı, Tolgahan; Göncüoğlu, Neslihan; Hamzalıoğlu, Aytül; Gökmen, Vural
2012-09-01
Coffee, as a source of acrylamide, needs to be investigated in depth to understand the contribution of different precursors. This study aimed to investigate the contributions of sucrose decomposition and lipid oxidation on acrylamide formation in coffee during roasting. Coffee beans and model systems were used to monitor the accumulation of neo-formed carbonyls during heating through sucrose decomposition and lipid oxidation. High resolution mass spectrometry analyses confirmed the formation of 5-hydroxymethylfurfural (HMF) and 3,4-dideoxyosone, which were identified as the major sugar decomposition products in both roasted coffee and model systems. Among others, 2-octenal, 2,4-decadienal, 2,4-heptadienal, 4-hydroxynonenal, and 4,5-epoxy-2-decenal were identified in relatively high quantities in roasted coffee. Formation and elimination of HMF in coffee during roasting had a kinetic pattern similar to those of acrylamide. Its concentration rapidly increased within 10 min followed by an exponential decrease afterward. The amount of lipid oxidation products tended to increase linearly during roasting. It was concluded from the results that roasting formed a pool of neo-formed carbonyls from sucrose decomposition and lipid oxidation, and they play certain role on acrylamide formation in coffee.
Glycerophosphate-dependent peroxide production by brown fat mitochondria from newborn rats.
Drahota, Z; Rauchova, H; Jesina, P; Vojtísková, A; Houstek, J
2003-03-01
Glycerophosphate (GP)-dependent, ferricyanide-induced hydrogen peroxide production was studied in brown adipose tissue mitochondria from newborn rats. Relations between the rate of hydrogen peroxide production and total amount of hydrogen peroxide produced at different GP and ferricyanide concentrations were determined. It was found that the rate of hydrogen peroxide production increases with increasing GP concentration and decreases with increasing ferricyanide concentration. Total amount of hydrogen peroxide produced increases with increasing ferricyanide concentration, however, not proportionally, and the efficiency of this process (oxygen/ferricyanide ratio) strongly declines. Data presented provide further information on the character and kinetics of hydrogen peroxide production by mammalian mitochondrial glycerophosphate dehydrogenase.
Arya, Aditya; Sethy, Niroj Kumar; Singh, Sushil Kumar; Das, Mainak; Bhargava, Kalpana
2013-01-01
Cerium oxide nanoparticles (nanoceria) are effective at quenching reactive oxygen species (ROS) in cell culture and animal models. Although nanoceria reportedly deposit in lungs, their efficacy in conferring lung protection during oxidative stress remains unexplored. Thus, the study evaluated the protective efficacy of nanoceria in rat lung tissue during hypobaric hypoxia. A total of 48 animals were randomly divided into four equal groups (control [C], nanoceria treated [T], hypoxia [H], and nanoceria treated plus hypoxia [T+H]). Animals were injected intraperitoneally with either a dose of 0.5 μg/kg body weight/week of nanoceria (T and T+H groups) or vehicle (C and H groups) for 5 weeks. After the final dose, H and T+H animals were challenged with hypobaric hypoxia, while C and T animals were maintained at normoxia. Lungs were isolated and homogenate was obtained for analysis of ROS, lipid peroxidation, glutathione, protein carbonylation, and 4-hydroxynonenal-adduct formation. Plasma was used for estimating major inflammatory cytokines using enzyme-linked immunosorbent assay. Intact lung tissues were fixed and both transmission electron microscopy and histopathological examinations were carried out separately for detecting internalization of nanoparticles as well as altered lung morphology. Spherical nanoceria of 7-10 nm diameter were synthesized using a microemulsion method, and the lung protective efficacy of the nanoceria evaluated during hypobaric hypoxia. With repeated intraperitoneal injections of low micromole concentration, we successfully localized the nanoceria in rodent lung without any inflammatory response. The lung-deposited nanoceria limited ROS formation, lipid peroxidation, and glutathione oxidation, and prevented oxidative protein modifications like nitration and carbonyl formation during hypobaric hypoxia. We also observed reduced lung inflammation in the nanoceria-injected lungs, supporting the anti-inflammatory properties of nanoceria. Cumulatively, these results suggest nanoceria deposit in lungs, confer protection by quenching noxious free radicals during hypobaric hypoxia, and do not evoke any inflammatory response.
40 CFR 415.90 - Applicability; description of the hydrogen peroxide production subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... hydrogen peroxide production subcategory. 415.90 Section 415.90 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Hydrogen Peroxide Production Subcategory § 415.90 Applicability; description of the hydrogen peroxide production subcategory. The provisions of this subpart are applicable to discharges...
40 CFR 415.90 - Applicability; description of the hydrogen peroxide production subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... hydrogen peroxide production subcategory. 415.90 Section 415.90 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Hydrogen Peroxide Production Subcategory § 415.90 Applicability; description of the hydrogen peroxide production subcategory. The provisions of this subpart are applicable to discharges...
40 CFR 415.90 - Applicability; description of the hydrogen peroxide production subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... hydrogen peroxide production subcategory. 415.90 Section 415.90 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Hydrogen Peroxide Production Subcategory § 415.90 Applicability; description of the hydrogen peroxide production subcategory. The provisions of this subpart are applicable to discharges...
40 CFR 415.90 - Applicability; description of the hydrogen peroxide production subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... hydrogen peroxide production subcategory. 415.90 Section 415.90 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Hydrogen Peroxide Production Subcategory § 415.90 Applicability; description of the hydrogen peroxide production subcategory. The provisions of this subpart are applicable to discharges...
40 CFR 415.90 - Applicability; description of the hydrogen peroxide production subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... hydrogen peroxide production subcategory. 415.90 Section 415.90 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Hydrogen Peroxide Production Subcategory § 415.90 Applicability; description of the hydrogen peroxide production subcategory. The provisions of this subpart are applicable to discharges...
Dietary Fisetin Supplementation Protects Against Alcohol-Induced Liver Injury in Mice.
Sun, Qian; Zhang, Wenliang; Zhong, Wei; Sun, Xinguo; Zhou, Zhanxiang
2016-10-01
Overproduction of reactive oxygen species is associated with the development of alcoholic liver disease (ALD). Plant polyphenols have been used as dietary interventions for multiple diseases including ALD. The objective of this study was to determine whether dietary supplementation with fisetin, a novel flavonoid, exerts beneficial effect on alcohol-induced liver injury. C57BL/6J mice were pair-fed with the Lieber-DeCarli control or ethanol (EtOH) diet for 4 weeks with or without fisetin supplementation at 10 mg/kg/d. Alcohol feeding induced lipid accumulation in the liver and increased plasma alanine aminotransferase and aspartate aminotransferase activities, which were attenuated by fisetin supplementation. The EtOH concentrations in the plasma and liver were significantly elevated by alcohol exposure but were reduced by fisetin supplementation. Although fisetin did not affect the protein expression of alcohol metabolism enzymes, the aldehyde dehydrogenase activities were significantly increased by fisetin compared to the alcohol alone group. In addition, fisetin supplementation remarkably reduced hepatic NADPH oxidase 4 levels along with decreased plasma hydrogen peroxide and hepatic superoxide and 4-hydroxynonenal levels after alcohol exposure. Alcohol-induced apoptosis and up-regulation of Fas and cleaved caspase-3 in the liver were prevented by fisetin. Moreover, fisetin supplementation attenuated alcohol-induced hepatic steatosis through increasing plasma adiponectin levels and hepatic protein levels of p-AMPK, ACOX1, CYP4A, and MTTP. This study demonstrated that the protective effect of fisetin on ALD is achieved by accelerating EtOH clearance and inhibition of oxidative stress. The data suggest that fisetin has a therapeutical potential for treating ALD. Copyright © 2016 by the Research Society on Alcoholism.
Lieber, Charles S; Cao, Qi; DeCarli, Leonore M; Leo, Maria A; Mak, Ki M; Ponomarenko, Anatoly; Ren, Chaoling; Wang, Xiaolei
2007-10-01
Chronic alcohol consumption is known to induce cytochrome P450 2E1 (CYP2E1) leading to lipid peroxidation, mitochondrial dysfunction and hepatotoxicity. We showed that replacement of dietary long-chain triglycerides (LCT) by medium-chain triglycerides (MCT) could be protective. We now wondered whether the induction of mitochondrial CYP2E1 plays a role and whether liver injury could be avoided through mitochondrial intervention. Rats were fed 4 different isocaloric liquid diets. The control group received our standard dextrin-maltose diet with intake limited to the average consumption of the 3 alcohol groups fed ad libitum the alcohol containing Lieber-DeCarli liquid diet. The fat was either 32% of calories as LCT (alcohol), or 16% as LCT + 16% as MCT (alcohol-MCT 16%), or 32% as MCT only (alcohol-MCT 32%). After 21 days, compared to the controls, the alcohol and both alcohol-MCT groups had a significant increase in mitochondrial CYP2E1 (p < 0.05 for both). As shown before, the same was found for the microsomal CYP2E1. When MCT replaced all the fat, like in the alcohol-MCT 32% group, CYP2E1 was significantly reduced by 40% in mitochondria (p < 0.05) and 30% in microsomes (p < 0.01). In mitochondria, 4-hydroxynonenal (4-HNE), a parameter of oxidative stress, paralleled CYP2E1. Compared to controls, alcohol and alcohol-MCT 16% significantly raised mitochondrial 4-HNE (p < 0.001), whereas the alcohol-MCT 32% diet brought it down to control levels (p < 0.001). Mitochondrial reduced glutathione (GSH) was also significantly lowered by alcohol consumption (p < 0.05), and it increased to almost normal levels with alcohol-MCT 32% (p = 0.006). These changes in the mitochondria reflected the reduction observed in total liver in which alcohol-MCT 32% decreased the alcohol-induced steatosis with a diminution of triglycerides (p < 0.001) and of the pro-inflammatory cytokine tumor necrosis factor-alpha (p < 0.001). Mitochondria participate in the induction of CYP2E1 by alcohol and contribute to lipid peroxidation and GSH depletion. Thus, lipid composition of the diet is an important determinant for the beneficial effect of MCT, with a diet containing a mixture of LCT/MCT being ineffective.
Photochemical Transformation of Munitions Constituents in Marine Waters
2012-05-01
include catalysts such as TiO2 or additives such peroxide, Fenton’s reagent (peroxide and iron (II)), and peroxide and ozone, which are meant to speed...photoproducts. The product mixture formed by the photolysis of 2,4- and 2,6-DNT is yellow in color , while the original DNTs are colorless in solution. The...The organisms shown in Figure 12 include one marine fish (Sciaenops ocellatus, 48-hr EC-50 for embryo survival), one marine arthropod (Artemia
Cirigliano, Marcela; Gwazdauskas, Jennifer A; Gonzalez, Pablo
2012-01-01
Objective: To compare the first two weeks of tolerability of clindamycin/benzoyl peroxide gel versus adapalene/benzoyl peroxide gel followed by six weeks of open-label clindamycin/benzoyl peroxide gel therapy in subjects with mild-to-moderate acne who participated in two eight-week, identically designed, clinical studies. Methods: Using a split-face method, patients received both clindamycin/benzoyl peroxide gel and adapalene/benzoyl peroxide gel once daily for two weeks (allocation to the right or left side of the face was randomized) in an investigator-blinded fashion. Patients then went on to receive a further six weeks of open-label, full-face clindamycin/benzoyl peroxide gel. The primary outcome was to compare signs and symptoms of tolerability during the first two weeks of treatment using an investigator-assessed 4-point rating scale. Secondary endpoints included assessment of acne severity (Investigator Static Global Assessment and lesion counts), quality of life, product acceptability/preference, and patient assessments of tolerability and safety. Results: Of the 76 subjects enrolled in the two studies, 72 completed them. Overall both products were well tolerated, but mean scores for erythema, dryness, and peeling were significantly higher with adapalene/benzoyl peroxide gel than with clindamycin/benzoyl peroxide gel at both Weeks 1 and 2 (p<0.03). Patients also rated clindamycin/benzoyl peroxide gel significantly more tolerable than adapalene/benzoyl peroxide gel for redness, dryness, burning, itching, and scaling at Weeks 1 and 2 (p 0.0073). Mean Investigator Static Global Assessment score improved with both products during the first two weeks of treatment and continued to show significant improvement versus baseline when treatment with clindamycin/benzoyl peroxide gel was continued for a further six weeks (p<0.001 at Week 8). Lesion counts improved throughout the study with significant reductions from baseline occurring at Weeks 5 and 8 (p<0.0001 for both time points for total lesion counts). Clindamycin/benzoyl peroxide gel and adapalene/benzoyl peroxide gel were well tolerated, with most adverse events of mild-to-moderate severity. Conclusion: Clindamycin/benzoyl peroxide gel had better tolerability with regard to erythema, dryness, and peeling than adapalene/benzoyl peroxide gel during the first two weeks of treatment. PMID:22808305
Silver-palladium catalysts for the direct synthesis of hydrogen peroxide
NASA Astrophysics Data System (ADS)
Khan, Zainab; Dummer, Nicholas F.; Edwards, Jennifer K.
2017-11-01
A series of bimetallic silver-palladium catalysts supported on titania were prepared by wet impregnation and assessed for the direct synthesis of hydrogen peroxide, and its subsequent side reactions. The addition of silver to a palladium catalyst was found to significantly decrease hydrogen peroxide productivity and hydrogenation, but crucially increase the rate of decomposition. The decomposition product, which is predominantly hydroxyl radicals, can be used to decrease bacterial colonies. The interaction between silver and palladium was characterized using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and temperature programmed reduction (TPR). The results of the TPR and XPS indicated the formation of a silver-palladium alloy. The optimal 1% Ag-4% Pd/TiO2 bimetallic catalyst was able to produce approximately 200 ppm of H2O2 in 30 min. The findings demonstrate that AgPd/TiO2 catalysts are active for the synthesis of hydrogen peroxide and its subsequent decomposition to reactive oxygen species. The catalysts are promising for use in wastewater treatment as they combine the disinfectant properties of silver, hydrogen peroxide production and subsequent decomposition. This article is part of a discussion meeting issue 'Providing sustainable catalytic solutions for a rapidly changing world'.
Gabbanini, Simone; Matera, Riccardo; Valvassori, Alice; Valgimigli, Luca
2015-04-15
A novel method for the UHPLC-MS/MS analysis of (E)-4-hydroxynonenal (4-HNE) is described. The method is based on derivatization of 4-HNE with pentafluorophenylhydrazine (1) or 4-trifluoromethylphenylhydrazine (2) in acetonitrile in the presence of trifluoroacetic acid as catalyst at room temperature and allows complete analysis of one sample of vegetable oil in only 21 min, including sample preparation and chromatography. The method involving hydrazine 1, implemented in an ion trap instrument with analysis of the transition m/z 337→154 showed LOD=10.9 nM, average accuracy of 101% and precision ranging 2.5-4.0% RSD intra-day (2.7-4.1% RSD inter-day), with 4-HNE standard solutions. Average recovery from lipid matrices was 96.3% from vaseline oil, 91.3% from sweet almond oil and 105.3% from olive oil. The method was tested on the assessment of safety and oxidative degradation of seven samples of dietary oil (soybean, mixed seeds, corn, peanut, sunflower, olive) and six cosmetic-grade oils (avocado, blackcurrant, apricot kernel, echium, sesame, wheat germ) and effectively detected increased 4-HNE levels in response to chemical (Fenton reaction), photochemical, or thermal stress and aging, aimed at mimicking typical oxidation associated with storage or industrial processing. The method is a convenient, cost-effective and reliable tool to assess quality and safety of vegetable oils. Copyright © 2015 Elsevier B.V. All rights reserved.
Ozonation and alkaline-peroxide pretreatment of wheat straw for Cryptococcus curvatus fermentation
NASA Technical Reports Server (NTRS)
Greenwalt, C. J.; Hunter, J. B.; Lin, S.; McKenzie, S.; Denvir, A.
2000-01-01
Crop residues in an Advanced Life Support System (ALS) contain many valuable components that could be recovered and used. Wheat is 60% inedible, with approximately 90% of the total sugars in the residue cellulose and hemicellulose. To release these sugars requires pretreatment followed by enzymatic hydrolysis. Cryptococcus curvatus, an oleaginous yeast, uses the sugars in cellulose and hemicellulose for growth and production of storage triglycerides. In this investigation, alkaline-peroxide and ozonation pretreatment methods were compared for their efficiency to release glucose and xylose to be used in the cultivation of C. curvatus. Leaching the biomass with water at 65 degrees C for 4 h prior to pretreatment facilitated saccharification. Alkaline-peroxide and ozone pretreatment were almost 100% and 80% saccharification efficient, respectively. The sugars derived from the hydrolysis of alkaline-peroxide-treated wheat straw supported the growth of C. curvatus and the production of edible single-cell oil.
Ríos-Castillo, Abel G; González-Rivas, Fabián; Rodríguez-Jerez, José J
2017-10-01
In order to develop disinfectant formulations that leverage the effectiveness of hydrogen peroxide (H 2 O 2 ), this study evaluated the bactericidal efficacy of hydrogen peroxide-based disinfectants against Gram-positive and Gram-negative bacteria on stainless steel surfaces. Low concentration of hydrogen peroxide as 0.5% with a cationic polymer, ethoxylated fatty alcohol, and ethyl alcohol had bactericidal efficacy (reductions ≥ 4 log 10 CFU/mL) against Escherichia coli, Staphylococcus aureus, Enterococcus hirae, and Pseudomonas aeruginosa. Hydrogen peroxide-based disinfectants were more effective against E. hirae and P. aeruginosa than to S. aureus. However, the efficacy of hydrogen peroxide against catalase positive bacteria such as S. aureus was increased when this compound was formulated with low concentrations of benzalkonium chloride or ethyl alcohol, lactic acid, sodium benzoate, cationic polymer, and salicylic acid. This study demonstrates that the use of hydrogen peroxide with other antimicrobial products, in adequate concentrations, had bactericidal efficacy in Gram-positive and Gram-negative bacteria on stainless steel surfaces, enabling to reduce the effective concentration of hydrogen peroxide. In the same way, the use of hydrogen peroxide-based disinfectants could reduce the concentrations of traditional disinfectants as quaternary ammonium compounds and therefore a reduction of their chemical residues in the environment after being used. The study of the bactericidal properties of environmentally nontoxic disinfectants such as hydrogen peroxide, sole or in formulations with other disinfectants against Gram-positive and Gram-negative bacteria can enhance the efficacy of various commonly used disinfectant formulations with the hygiene benefits that it entails. Also, the use of hydrogen peroxide formulations can reduce the concentration levels of products that generate environmental residues. © 2017 Institute of Food Technologists®.
Role of oxidative stress in a rat model of radiation-induced erectile dysfunction.
Kimura, Masaki; Rabbani, Zahid N; Zodda, Andrew R; Yan, Hui; Jackson, Isabel L; Polascik, Thomas J; Donatucci, Craig F; Moul, Judd W; Vujaskovic, Zeljko; Koontz, Bridget F
2012-06-01
Chronic oxidative stress is one of the major factors playing an important role in radiation-induced normal tissue injury. However, the role of oxidative stress in radiation-induced erectile dysfunction (ED) has not been fully investigated. Aims. To investigate role of oxidative stress after prostate-confined irradiation in a rat model of radiation-induced ED. Fifty-four young adult male rats (10-12 weeks of age) were divided into age-matched sham radiotherapy (RT) and RT groups. Irradiated animals received prostate-confined radiation in a single 20 Gy fraction. Intracavernous pressure (ICP) measurements with cavernous nerve electrical stimulation were conducted at 2, 4, and 9 weeks following RT. The protein expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits (Nox4 and gp91(phox)), markers of oxidative DNA damage (8-hydroxy-2'-deoxyguanosine [8-OHdG]), lipid peroxidation (4-hydroxynonenal [4HNE]), and inflammatory response including inducible nitric oxide synthase, macrophage activation (ED-1), and nitrotyrosine, and endogenous antioxidant defense by nuclear factor erythroid 2-related factor (Nrf2) were evaluated in irradiated prostate tissue and corpora cavernosa (CC). In addition, we investigated the relationships between results of ICP/mean arterial pressure (MAP) ratios and expression level of oxidative stress markers. In the RT group, hemodynamic functional studies demonstrated a significant time-dependent decrease in ICP. Increased expression of Nox4, gp91(phox), 8-OHdG, and 4HNE were observed in the prostate and CC after RT. Similarly, expressions of inflammatory markers were significantly increased. There was a trend for increased Nrf2 after 4 weeks. ICP/MAP ratio negatively correlated with higher expression level of oxidative markers. NADPH oxidase activation and chronic oxidative stress were observed in irradiated prostate tissue and CC, which correlated with lower ICP/MAP ratio. Persistent inflammatory responses were also found in both tissues after RT. These findings suggest that oxidative stress plays a crucial role in the development of radiation-induced ED. © 2012 International Society for Sexual Medicine.
Seaborg, G.T.; Gofman, J.W.; Stoughton, R.W.
1959-08-18
A method is described for separating U/sup 233/ from thorium and fission products. The separation is effected by forming a thorium-nitric acid solution of about 3 pH, adding hydrogen peroxide to precipitate uranium and thorium peroxide, treating the peroxides with sodium hydroxide to selectively precipitate the uranium peroxide, and reacting the separated solution with nitric acid to re- precipitate the uranium peroxide.
Gibb, Zamira; Lambourne, Sarah R; Quadrelli, Julianne; Smith, Nathan D; Aitken, Robert J
2015-10-01
The spermatozoa of many stallions do not tolerate being cooled, restricting the commercial viability of these animals and necessitating the development of a chemically defined room temperature (RT) storage medium. This study examined the impact of two major modulators of oxidative phosphorylation, pyruvate (Pyr) and L-carnitine (L-C), on the storage of stallion spermatozoa at RT. Optimal concentrations of Pyr (10 mM) and L-C (50 mM) were first identified and these concentrations were then used to investigate the effects of these compounds on sperm functionality and oxidative stress at RT. Mitochondrial and cytosolic reactive oxygen species, along with lipid peroxidation, were all significantly suppressed by the addition of L-C (48 h MitoSOX Red negative: 46.2% vs. 26.1%; 48 and 72 h dihydroethidium negative: 61.6% vs. 43.1% and 64.4% vs. 46.9%, respectively; 48 and 72 h 4-hydroxynonenal negative: 37.1% vs. 23.8% and 41.6% vs. 25.7%, respectively), while the Pyr + L-C combination resulted in significantly higher motility compared to the control at 72 h (total motility: 64.2% vs. 39.4%; progressive motility: 34.2% vs. 15.2%). In addition, supplementation with L-C significantly reduced oxidative DNA damage at 72 h (9.0% vs. 15.6%). To investigate the effects of L-C as an osmolyte, comparisons were made between media that were osmotically balanced with NaCl, choline chloride, or L-C. This analysis demonstrated that spermatozoa stored in the L-C balanced medium had significantly higher total motility (55.0% vs. 39.0%), rapid motility (44.0% vs. 25.7%), and ATP levels (70.9 vs. 12.8 ng/ml) following storage compared with the NaCl treatment, while choline chloride did not significantly improve these parameters compared to the control. Finally, mass spectrometry was used to demonstrate that a combination of Pyr and L-C produced significantly higher acetyl-L-carnitine production than any other treatment (6.7 pg/10(6) spermatozoa vs. control at 4.0 pg/10(6) spermatozoa). These findings suggest that Pyr and L-C could form the basis of a novel, effective RT storage medium for equine spermatozoa. © 2015 by the Society for the Study of Reproduction, Inc.
Mian, K. B.; Martin, W.
1995-01-01
1. In this study we investigated the role of catalase in relaxation induced by hydroxylamine, sodium azide, glyceryl trinitrate and hydrogen peroxide in isolated rings of rat aorta. 2. Hydrogen peroxide (1 microM-1 mM)-induced concentration-dependent relaxation of phenylephrine (PE)-induced tone in endothelium-containing rings. In endothelium-denuded rings, however, higher concentrations (30 microM-1 mM) of hydrogen peroxide were required to produce relaxation. The endothelium-dependent component of hydrogen peroxide-induced relaxation was abolished following pretreatment with N(O)-nitro-L-arginine methyl ester (L-NAME, 30 microM). L-NAME (30 microM) had no effect, however, on hydrogen peroxide-induced relaxation in endothelium-denuded rings. 3. Pretreatment of endothelium-denuded rings with catalase (1000 u ml-1) blocked relaxation induced by hydrogen peroxide (10 microM-1 mM). The ability of catalase to inhibit hydrogen peroxide-induced relaxation was partially blocked following incubation with 3-amino-1,2, 4-triazole (AT, 50 mM) for 30 min and completely blocked at 90 min. 4. Pretreatment of endothelium-denuded rings with methylene blue (MeB, 30 microM) inhibited relaxation induced by hydrogen peroxide (10 microM-1 mM), sodium azide (1-300 nM), hydroxylamine (1-300 nM) and glyceryl trinitrate (1-100 nM) suggesting that each acted by stimulation of soluble guanylate cyclase. 5. Pretreatment of endothelium-denuded rings with AT (1-50 mM, 90 min) to inhibit endogenous catalase blocked relaxation induced by sodium azide (1-300 nM) and hydroxylamine (1-300 nM) but had no effect on relaxation induced by hydrogen peroxide (10 microM-1 mM) or glyceryl trinitrate (1-100 nM). 6. In a cell-free system, incubation of sodium azide (10 microM-3 mM) and hydroxylamine (10 microM-30 mM) but not glyceryl trinitrate (10 microM-1 mM) with catalase (1000 u ml-1) in the presence of hydrogen peroxide (1 mM) led to production of nitrite, a major breakdown product of nitric oxide. AT (1-100 mM) inhibited, in a concentration-dependent manner, the formation of nitrite from azide in the presence of hydrogen peroxide. 7. These data suggest that metabolism by catalase plays an important role in the relaxation induced by hydroxylamine and sodium azide in isolated rings of rat aorta. Relaxation appears to be due to formation of nitric oxide and activation of soluble guanylate cyclase. In contrast, metabolism by catalase does not appear to be involved in the relaxant actions of hydrogen peroxide or glyceryl trinitrate. PMID:8719811
Smart Pixels for Optical Processing and Communications: Design, Models, Fabrication and Test
1998-06-01
11.3 Mobility-Lifetime Product 115 11.4 P-IforVCSEL 116 Chapter 12: Developing a Reliable Etch 12.1 Etch Rates and Selectivity for Citric Acid 126...eGa0.4As etch-stop layer beneath the GaAs buffer. The gate recess was performed with a timed citric acid / hydrogen peroxide wet etch. The conducting...alkalinity. The wet etchant tested in this effort was a citric acid / hydrogen peroxide mixture,8 due to its availability, ease of preparation
Ogura, Yuki; Kuwahara, Tomohiro; Akiyama, Minoru; Tajima, Shingo; Hattori, Kazuhisa; Okamoto, Kouhei; Okawa, Shinpei; Yamada, Yukio; Tagami, Hachiro; Takahashi, Motoji; Hirao, Tetsuji
2011-10-01
The photo-aged facial skin is characterized by various unique features such as dark spots, wrinkles, and sagging. Elderly people, particularly Asians, tend to show a yellowish skin color change with photo-aging. However, there has been no analytical study conducted on this unique skin color change of the aged facial skin. The purpose of the present study is to examine whether the carbonyl modification in the dermal protein is involved in the yellowish color change that occurs in the photo-aged skin. Normal skin samples excised from the face, abdomen and buttock of variously aged Japanese were separated into the epidermal and the dermal portions. These skin samples were histologically examined for carbonyl modification. Moreover, an in vitro constructed dermis model composed of a contracted collagen gel was treated with acrolein or 4-hydroxynonenal. All these samples were also studied colorimetrically. The dermal samples obtained from the photo-aged facial skin exhibited an appearance of yellowish color, whereas neither the facial epidermis nor the dermis obtained from the abdomen or buttock showed such a yellowish discoloration. The upper layer of the dermis that revealed the yellowish color showed elastosis whose elastic fibers were found to colocalize with carbonyl protein as detected by a labeled hydrazide, as well as by an immunohistochemical examination using the antibody against acrolein adduct. Experimental induction of carbonyl modification in a dermis model in vitro by a long-term treatment with acrolein or 4-hydroxynonenal was found to show the appearance of the yellowish change which was also proven by an increase in b* value of colorimetry. It was more pronounced than that induced by glycation. Our present results strongly suggest that carbonyl modification of the dermal protein is involved in the production of the yellowish color change that is noted in the photo-aged facial skin. Copyright © 2011 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
Metals, toxicity and oxidative stress.
Valko, M; Morris, H; Cronin, M T D
2005-01-01
Metal-induced toxicity and carcinogenicity, with an emphasis on the generation and role of reactive oxygen and nitrogen species, is reviewed. Metal-mediated formation of free radicals causes various modifications to DNA bases, enhanced lipid peroxidation, and altered calcium and sulfhydryl homeostasis. Lipid peroxides, formed by the attack of radicals on polyunsaturated fatty acid residues of phospholipids, can further react with redox metals finally producing mutagenic and carcinogenic malondialdehyde, 4-hydroxynonenal and other exocyclic DNA adducts (etheno and/or propano adducts). Whilst iron (Fe), copper (Cu), chromium (Cr), vanadium (V) and cobalt (Co) undergo redox-cycling reactions, for a second group of metals, mercury (Hg), cadmium (Cd) and nickel (Ni), the primary route for their toxicity is depletion of glutathione and bonding to sulfhydryl groups of proteins. Arsenic (As) is thought to bind directly to critical thiols, however, other mechanisms, involving formation of hydrogen peroxide under physiological conditions, have been proposed. The unifying factor in determining toxicity and carcinogenicity for all these metals is the generation of reactive oxygen and nitrogen species. Common mechanisms involving the Fenton reaction, generation of the superoxide radical and the hydroxyl radical appear to be involved for iron, copper, chromium, vanadium and cobalt primarily associated with mitochondria, microsomes and peroxisomes. However, a recent discovery that the upper limit of "free pools" of copper is far less than a single atom per cell casts serious doubt on the in vivo role of copper in Fenton-like generation of free radicals. Nitric oxide (NO) seems to be involved in arsenite-induced DNA damage and pyrimidine excision inhibition. Various studies have confirmed that metals activate signalling pathways and the carcinogenic effect of metals has been related to activation of mainly redox-sensitive transcription factors, involving NF-kappaB, AP-1 and p53. Antioxidants (both enzymatic and non-enzymatic) provide protection against deleterious metal-mediated free radical attacks. Vitamin E and melatonin can prevent the majority of metal-mediated (iron, copper, cadmium) damage both in vitro systems and in metal-loaded animals. Toxicity studies involving chromium have shown that the protective effect of vitamin E against lipid peroxidation may be associated rather with the level of non-enzymatic antioxidants than the activity of enzymatic antioxidants. However, a very recent epidemiological study has shown that a daily intake of vitamin E of more than 400 IU increases the risk of death and should be avoided. While previous studies have proposed a deleterious pro-oxidant effect of vitamin C (ascorbate) in the presence of iron (or copper), recent results have shown that even in the presence of redox-active iron (or copper) and hydrogen peroxide, ascorbate acts as an antioxidant that prevents lipid peroxidation and does not promote protein oxidation in humans in vitro. Experimental results have also shown a link between vanadium and oxidative stress in the etiology of diabetes. The impact of zinc (Zn) on the immune system, the ability of zinc to act as an antioxidant in order to reduce oxidative stress and the neuroprotective and neurodegenerative role of zinc (and copper) in the etiology of Alzheimer's disease is also discussed. This review summarizes recent findings in the metal-induced formation of free radicals and the role of oxidative stress in the carcinogenicity and toxicity of metals.
Apidianakis, Yiorgos; Que, Yok-Ai; Xu, Weihong; Tegos, George P.; Zimniak, Piotr; Hamblin, Michael R.; Tompkins, Ronald G.; Xiao, Wenzhong; Rahme, Laurence G.
2012-01-01
Patients with severe burns are highly susceptible to bacterial infection. While immunosuppression facilitates infection, the contribution of soft tissues to infection beyond providing a portal for bacterial entry remains unclear. We showed previously that glutathione S-transferase S1 (gstS1), an enzyme with conjugating activity against the lipid peroxidation byproduct 4-hydroxynonenal (4HNE), is important for resistance against wound infection in Drosophila muscle. The importance of the mammalian functional counterpart of GstS1 in the context of wounds and infection has not been investigated. Here we demonstrate that the presence of a burn wound dramatically affects expression of both human (hGSTA4) and mouse (mGsta4) 4HNE scavengers. hGSTA4 is down-regulated significantly within 1 wk of thermal burn injury in the muscle and fat tissues of patients from the large-scale collaborative Inflammation and the Host Response to Injury multicentered study. Similarly, mGsta4, the murine GST with the highest catalytic efficiency for 4HNE, is down-regulated to approximately half of normal levels in mouse muscle immediately postburn. Consequently, 4HNE protein adducts are increased 4- to 5-fold in mouse muscle postburn. Using an open wound infection model, we show that deletion of mGsta4 renders mice more susceptible to infection with the prevalent wound pathogen Pseudomonas aeruginosa, while muscle hGSTA4 expression negatively correlates with burn wound infection episodes per patient. Our data suggest that hGSTA4 down-regulation and the concomitant increase in 4HNE adducts in human muscle are indicative of susceptibility to infection in individuals with severely thermal injuries.—Apidianakis, Y., Que, Y.-A., Xu, W., Tegos, G. P., Zimniak, P., Hamblin, M. R., Tompkins, R. G., Xiao, W., Rahme, L. G. Down-regulation of glutatione S-transferase α 4 (hGSTA4) in the muscle of thermally injured patients is indicative of susceptibility to bacterial infection. PMID:22038048
Fu, T Y; Gent, P; Kumar, V
2012-03-01
This was a head-to-head comparison of two hydrogen-peroxide-based room decontamination systems. To compare the efficacy, efficiency and safety of hydrogen peroxide vapour (HPV; Clarus R, Bioquell, Andover, U.K.) and aerosolized hydrogen peroxide (aHP; SR2, Sterinis, now supplied as Glosair, Advanced Sterilization Products (ASP), Johnson & Johnson Medical Ltd, Wokingham, U.K.) room disinfection systems. Efficacy was tested using 4- and 6-log Geobacillus stearothermophilus biological indicators (BIs) and in-house prepared test discs containing approximately 10(6) meticillin-resistant Staphylococcus aureus (MRSA), Clostridium difficile and Acinetobacter baumannii. Safety was assessed by detecting leakage of hydrogen peroxide using a hand-held detector. Efficiency was assessed by measuring the level of hydrogen peroxide using a hand-held sensor at three locations inside the room, 2 h after the start of the cycles. HPV generally achieved a 6-log reduction, whereas aHP generally achieved less than a 4-log reduction on the BIs and in-house prepared test discs. Uneven distribution was evident for the aHP system but not the HPV system. Hydrogen peroxide leakage during aHP cycles with the door unsealed, as per the manufacturer's operating manual, exceeded the short-term exposure limit (2 ppm) for more than 2 h. When the door was sealed with tape, as per the HPV system, hydrogen peroxide leakage was <1 ppm for both systems. The mean concentration of hydrogen peroxide in the room 2 h after the cycle started was 1.3 [standard deviation (SD) 0.4] ppm and 2.8 (SD 0.8) ppm for the four HPV and aHP cycles, respectively. None of the readings were <2 ppm for the aHP cycles. The HPV system was safer, faster and more effective for biological inactivation. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
Landmann, Marianne; Sellmann, Cathrin; Engstler, Anna Janina; Ziegenhardt, Doreen; Jung, Finn; Brombach, Christine; Bergheim, Ina
2017-01-01
Using a binge-drinking mouse model, we aimed to determine whether hops (Humulus lupulus) in beer is involved in the less damaging effects of acute beer consumption on the liver in comparison with ethanol. Female C57BL/6 J mice were either fed one iso-alcoholic and iso-caloric bolus dose of ethanol, beer, beer without hops (6 g ethanol/kg body weight) or an iso-caloric bolus of maltodextrin control solution. Markers of steatosis, intestinal barrier function, activation of toll-like receptor 4 signaling cascades, lipid peroxidation and lipogenesis were determined in liver, small intestine and plasma 2 h and 12 h after acute alcohol ingestion. Alcohol-induced hepatic fat accumulation was significantly attenuated in mice fed beer whereas in those fed beer without hops, hepatic fat accumulation was similar to that found in ethanol-fed mice. While markers of intestinal barrier function e.g. portal endotoxin levels and lipogenesis only differed slightly between groups, hepatic concentrations of myeloid differentiation primary response gene 88, inducible nitric oxide synthase (iNOS) and plasminogen-activator inhibitor 1 protein as well as of 4-hydroxynonenal and 3-nitrotyrosine protein adducts were similarly elevated in livers of mice fed ethanol or beer without hops when compared with controls. Induction of these markers was markedly attenuated in mice fed hops-containing beer. Taken together, our data suggest that hops in beer markedly attenuated acute alcohol-induced liver steatosis in female mice through mechanisms involving a suppression of iNOS induction in the liver. © The Author 2016. Medical Council on Alcohol and Oxford University Press. All rights reserved.
Agrawal, Rahul; Zhuang, Yumei; Cummings, Bethany P; Stanhope, Kimber L; Graham, James L; Havel, Peter J; Gomez-Pinilla, Fernando
2014-09-01
The rising prevalence of type-2 diabetes is becoming a pressing issue based on emerging reports that T2DM can also adversely impact mental health. We have utilized the UCD-T2DM rat model in which the onset of T2DM develops spontaneously across time and can serve to understand the pathophysiology of diabetes in humans. An increased insulin resistance index and plasma glucose levels manifested the onset of T2DM. There was a decrease in hippocampal insulin receptor signaling in the hippocampus, which correlated with peripheral insulin resistance index along the course of diabetes onset (r=-0.56, p<0.01). T2DM increased the hippocampal levels of 4-hydroxynonenal (4-HNE; a marker of lipid peroxidation) in inverse proportion to the changes in the mitochondrial regulator PGC-1α. Disrupted energy homeostasis was further manifested by a concurrent reduction in energy metabolic markers, including TFAM, SIRT1, and AMPK phosphorylation. In addition, T2DM influenced brain plasticity as evidenced by a significant reduction of BDNF-TrkB signaling. These results suggest that the pathology of T2DM in the brain involves a progressive and coordinated disruption of insulin signaling, and energy homeostasis, with profound consequences for brain function and plasticity. All the described consequences of T2DM were attenuated by treatment with the glucagon-like peptide-1 receptor agonist, liraglutide. Similar results to those of liraglutide were obtained by exposing T2DM rats to a food energy restricted diet, which suggest that normalization of brain energy metabolism is a crucial factor to counteract central insulin sensitivity and synaptic plasticity associated with T2DM. Copyright © 2014 Elsevier B.V. All rights reserved.
Furuta, Takahiro; Ohshima, Chiaki; Matsumura, Mayu; Takebayashi, Naoto; Hirota, Emi; Mawaribuchi, Toshiki; Nishida, Kentaro; Nagasawa, Kazuki
2016-04-15
Zinc released from glutamatergic boutons and astrocytes acts as neuro- and glio-transmitters, and thus its extracellular level has to be strictly regulated. We previously revealed that uptake of zinc by astrocytes plays a critical role in its clearance, and zinc transporter Zrt/Irt-like protein 1 (ZIP1) is the molecule responsible for the uptake. However, it is unknown whether or not the functionality of the zinc clearance system is altered under oxidative stress-loaded conditions. Here, we characterized zinc uptake by oxidative stress-loaded astrocytes. Cultured mouse astrocytes were treated with hydrogen peroxide (H2O2) to load oxidative stress. Functional expression of ZIP1 in astrocytes was evaluated by means of (65)Zn uptake, Western blotting and immunocytochemical analysis. Treatment of astrocytes with 0.4mM H2O2 for 24h increased the expression levels of glial fibrillary acidic protein and 4-hydroxynonenal without significant decreases in their viability, indicating that induction of oxidative stress in astrocytes. Under oxidative stress-loaded conditions, astrocytes exhibited increased (65)Zn uptake activity, and the maximum uptake velocity for the uptake was significantly increased compared to that in the control group, while there was no change in the Michaelis constants, which were almost identical to that of mouse ZIP1. In the H2O2-treated astrocytes, the expression levels of ZIP1 were significantly increased in the cellular and plasma membrane fractions. It appears that under oxidative stress-loaded conditions, astrocytes exhibit increased zinc clearance activity and this is due, at least in part, to increased ZIP1 expression. Copyright © 2016 Elsevier Inc. All rights reserved.
Chemistry of peroxide compounds
NASA Technical Reports Server (NTRS)
Volnov, I. I.
1981-01-01
The history of Soviet research from 1866 to 1967 on peroxide compounds is reviewed. This research dealt mainly with peroxide kinetics, reactivity and characteristics, peroxide production processes, and more recently with superoxides and ozonides and emphasis on the higher oxides of group 1 and 2 elements. Solid state fluidized bed synthesis and production of high purity products based on the relative solubilities of the initial, intermediate, and final compounds and elements in liquid ammonia are discussed.
2014-01-01
Background The nuclear protein high-mobility group box 1 (HMGB1) is a key trigger for the inflammatory reaction during liver ischemia reperfusion injury (IRI). Hydrogen treatment was recently associated with down-regulation of the expression of HMGB1 and pro-inflammatory cytokines during sepsis and myocardial IRI, but it is not known whether hydrogen has an effect on HMGB1 in liver IRI. Methods A rat model of 60 minutes 70% partial liver ischemia reperfusion injury was used. Hydrogen enriched saline (2.5, 5 or 10 ml/kg) was injected intraperitoneally 10 minutes before hepatic reperfusion. Liver injury was assessed by serum alanine aminotransferase (ALT) enzyme levels and histological changes. We also measured malondialdehyde (MDA), hydroxynonenal (HNE) and 8-hydroxy-guanosine (8-OH-G) levels as markers of the peroxidation injury induced by reactive oxygen species (ROS). In addition, pro-inflammatory cytokines including TNF-α and IL-6, and high mobility group box B1 protein (HMGB1) were measured as markers of post ischemia-reperfusion inflammation. Results Hydrogen enriched saline treatment significantly attenuated the severity of liver injury induced by ischemia-reperfusion. The treatment group showed reduced serum ALT activity and markers of lipid peroxidation and post ischemia reperfusion histological changes were reduced. Hydrogen enriched saline treatment inhibited HMGB1 expression and release, reflecting a reduced local and systemic inflammatory response to hepatic ischemia reperfusion. Conclusion These results suggest that, in our model, hydrogen enriched saline treatment is protective against liver ischemia-reperfusion injury. This effect may be mediated by both the anti-oxidative and anti-inflammatory effects of the solution. PMID:24410860
Electrochemical Hydrogen Peroxide Generator
NASA Technical Reports Server (NTRS)
Tennakoon, Charles L. K.; Singh, Waheguru; Anderson, Kelvin C.
2010-01-01
Two-electron reduction of oxygen to produce hydrogen peroxide is a much researched topic. Most of the work has been done in the production of hydrogen peroxide in basic media, in order to address the needs of the pulp and paper industry. However, peroxides under alkaline conditions show poor stabilities and are not useful in disinfection applications. There is a need to design electrocatalysts that are stable and provide good current and energy efficiencies to produce hydrogen peroxide under acidic conditions. The innovation focuses on the in situ generation of hydrogen peroxide using an electrochemical cell having a gas diffusion electrode as the cathode (electrode connected to the negative pole of the power supply) and a platinized titanium anode. The cathode and anode compartments are separated by a readily available cation-exchange membrane (Nafion 117). The anode compartment is fed with deionized water. Generation of oxygen is the anode reaction. Protons from the anode compartment are transferred across the cation-exchange membrane to the cathode compartment by electrostatic attraction towards the negatively charged electrode. The cathode compartment is fed with oxygen. Here, hydrogen peroxide is generated by the reduction of oxygen. Water may also be generated in the cathode. A small amount of water is also transported across the membrane along with hydrated protons transported across the membrane. Generally, each proton is hydrated with 3-5 molecules. The process is unique because hydrogen peroxide is formed as a high-purity aqueous solution. Since there are no hazardous chemicals or liquids used in the process, the disinfection product can be applied directly to water, before entering a water filtration unit to disinfect the incoming water and to prevent the build up of heterotrophic bacteria, for example, in carbon based filters. The competitive advantages of this process are: 1. No consumable chemicals are needed in the process. The only raw materials needed are water and oxygen or air. 2. The product is pure and can therefore be used in disinfection applications directly or after proper dilution with water. 3. Oxygen generated in the anode compartment is used in the electrochemical reduction process; in addition, external oxygen is used to establish a high flow rate in the cathode compartment to remove the desired product efficiently. Exiting oxygen can be recycled after separation of liquid hydrogen peroxide product, if so desired. 4. The process can be designed for peroxide generation under microgravity conditions. 5. High concentrations of the order of 6-7 wt% can be generated by this method. This method at the time of this reporting is superior to what other researchers have reported. 6. The cell design allows for stacking of cells to increase the hydrogen peroxide production. 7. The catalyst mix containing a diquaternary ammonium compound enabled not only higher concentration of hydrogen peroxide but also higher current efficiency, improved energy efficiency, and catalyst stability. 8. The activity of the catalyst is maintained even after repeated periods of system shutdown. 9. The catalyst system can be extended for fuel-cell cathodes with suitable modifications.
Yum, Hye-Won; Kang, Jing X; Hahm, Ki Baik; Surh, Young-Joon
2017-06-10
Omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) are known to have strong anti-inflammatory effects. In the present study, we investigated the protective effects of ω-3 PUFAs on experimentally induced murine colitis. Intrarectal administration of 2.5% 2,4,6-trinitrobenzene sulfonic acid (TNBS) caused inflammation in the colon of wild type mice, but this was less severe in fat-1 transgenic mice that constitutively produce ω-3 PUFAs from ω-6 PUFAs. The intraperitoneal administration of docosahexaenoic acid (DHA), a representative ω-3 PUFA, was also protective against TNBS-induced murine colitis. In addition, endogenously formed and exogenously introduced ω-3 PUFAs attenuated the production of malondialdehyde and 4-hydroxynonenal in the colon of TNBS-treated mice. The effective protection against inflammatory and oxidative colonic tissue damages in fat-1 and DHA-treated mice was associated with suppression of NF-κB activation and cyclooxygenase-2 expression and with elevated activation of Nrf2 and upregulation of its target gene, heme oxygenase-1. Taken together, these results provide mechanistic basis of protective action of ω-3 fatty PUFAs against experimental colitis. Copyright © 2017. Published by Elsevier Inc.
Gimeno, Pascal; Bousquet, Claudine; Lassu, Nelly; Maggio, Annie-Françoise; Civade, Corinne; Brenier, Charlotte; Lempereur, Laurent
2015-03-25
This manuscript presents an HPLC/UV method for the determination of hydrogen peroxide present or released in teeth bleaching products and hair products. The method is based on an oxidation of triphenylphosphine into triphenylphosphine oxide by hydrogen peroxide. Triphenylphosphine oxide formed is quantified by HPLC/UV. Validation data were obtained using the ISO 12787 standard approach, particularly adapted when it is not possible to make reconstituted sample matrices. For comparative purpose, hydrogen peroxide was also determined using ceric sulfate titrimetry for both types of products. For hair products, a cross validation of both ceric titrimetric method and HPLC/UV method using the cosmetic 82/434/EEC directive (official iodometric titration method) was performed. Results obtained for 6 commercialized teeth whitening products and 5 hair products point out similar hydrogen peroxide contain using either the HPLC/UV method or ceric sulfate titrimetric method. For hair products, results were similar to the hydrogen peroxide content using the cosmetic 82/434/EEC directive method and for the HPLC/UV method, mean recoveries obtained on spiked samples, using the ISO 12787 standard, ranges from 100% to 110% with a RSD<3.0%. To assess the analytical method proposed, the HPLC method was used to control 35 teeth bleaching products during a market survey and highlight for 5 products, hydrogen peroxide contents higher than the regulated limit. Copyright © 2015 Elsevier B.V. All rights reserved.
Santosa, I E; Ram, P C; Boamfa, E I; Laarhoven, L J J; Reuss, J; Jackson, M B; Harren, F J M
2007-06-01
Using ethane as a marker for peroxidative damage to membranes by reactive oxygen species (ROS) we examined the injury of rice seedlings during submergence in the dark. It is often expressed that membrane injury from ROS is a post-submergence phenomenon occurring when oxygen is re-introduced after submergence-induced anoxia. We found that ethane production, from rice seedlings submerged for 24-72 h, was stimulated to 4-37 nl gFW(-1), indicating underwater membrane peroxidation. When examined a week later the seedlings were damaged or had died. On de-submergence in air, ethane production rates rose sharply, but fell back to less than 0.1 nl gFW(-1) h(-1) after 2 h. We compared submergence-susceptible and submergence-tolerant cultivars, submergence starting in the morning (more damage) and in the afternoon (less damage) and investigated different submergence durations. The seedlings showed extensive fatality whenever total ethane emission exceeded about 15 nl gFW(-1). Smaller amounts of ethane emission were linked to less extensive injury to leaves. Partial oxygen shortage (O(2) levels <1%) imposed for 2 h in gas phase mixtures also stimulated ethane production. In contrast, seedlings under anaerobic gas phase conditions produced no ethane until re-aerated: then a small peak was observed followed by a low, steady ethane production. We conclude that damage during submergence is not associated with extensive anoxia. Instead, injury is linked to membrane peroxidation in seedlings that are partially oxygen deficient while submerged. On return to air, further peroxidation is suppressed within about 2 h indicating effective control of ROS production not evident during submergence itself.
Omata, Yo; Saito, Yoshiro; Yoshida, Yasukazu; Jeong, Byeong-Seon; Serwa, Remigiusz; Nam, Tae-gyu; Porter, Ned A; Niki, Etsuo
2010-05-15
Free radical-mediated lipid peroxidation has been implicated in the pathogenesis of various diseases. Lipid peroxidation products are cytotoxic and they modify proteins and DNA bases, leading eventually to degenerative disorders. Various synthetic antioxidants have been developed and assessed for their capacity to inhibit lipid peroxidation and oxidative stress induced by free radicals. In this study, the capacity of novel 6-amino-2,4,5-trimethyl-3-pyridinols for scavenging peroxyl radicals, inhibiting plasma lipid peroxidation in vitro, and preventing cytotoxicity induced by glutamate, 6-hydroxydopamine, 1-methyl-4-phenylpyridium (MPP(+) ), and hydroperoxyoctadecadienoic acid was assessed. It was found that they exerted higher reactivity toward peroxyl radicals and more potent activity for inhibiting the above oxidative stress than alpha-tocopherol, the most potent natural antioxidant, except against the cytotoxicity induced by MPP(+). These results suggest that the novel 6-amino-3-pyridinols may be potent antioxidants against oxidative stress. Copyright 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lapina, Victoria A.; Doutsov, Alexander E.
1994-07-01
The effect of the UV-A and blue light on the accumulation of lipid peroxidation products and activities of succinate dehydrogenase and superoxide dismutase in the retina was examined in eye cup model of dark and light adapted frogs R. temporaria. Retinas were exposed to UV-A radiation (8 mW/cm2) and blue light (10 to 150 mW/cm2) for periods from 5 min to 1 hr. We have measured TBA-active products both in the retina homogenates and in the reaction media. Enzyme activities was measured in the retina homogenates only. The measurements revealed a significant increase in the endogenous and exogenous forms of lipid peroxidation products in the retina of dark adapted frog (1.6+/- 0.4; 1.4+/- 0.3 nmole TBA-active products per mg protein, respectively) compared to light adapted (0.85+/- 0.16; 0.32+/- 0.06 nmole TBA-active products per mg protein, respectively). In the same conditions succinate dehydrogenase activity was decline more than 50% but superoxide dismutase activity didn't decrease. Disorganized inner and outer segments were observed after 40 min exposures. No light microscopic changes were detected after 5 min exposures. Light damage was significantly higher in the retina of dark adapted frog. The results indicate that the retina from eye cup of dark adapted frog is more susceptible to UV-A and blue light damages.
Fang, Hsun-Lang; Lin, Wen-Chuan
2008-06-01
Lipid peroxidation (LPO) is known to be associated with liver fibrosis in chronic liver injury. However, direct effects of the products of LPO on liver fibrogenesis have not been demonstrated. In this study, we examined the LPO products of carbon tetrachloride (CCl4)+corn oil to evaluate the effect of LPO products on liver fibrosis. CCl4 was given twice a week for 8 weeks. Corn oil was given daily to rats at a dose of 2 or 10ml/kg via gastrogavage throughout the whole experiment period. CCl4 induced both cyclooxygenase (COX)-2 independent and COX-2 dependent LPO. COX-2 independent LPO was enhanced by corn oil treatment while no effect was reflected on COX-2 dependent LPO. CCl4-induced liver fibrosis in rats was not aggravated by corn oil treatment. In addition, the amount of fatty liver induced by CCl4 was increased by corn oil treatment. Though the inflammation-related UCP-2 mRNA expression was induced by CCl4, it was not aggravated by the enhancement of corn oil. corn oil enriches polyunsaturated fatty acids through COX-2 independent pathways to increase LPO products that do not enhance liver fibrosis induced by CCl4.
Kuesel, Jana T; Hardeland, Rüdiger; Pfoertner, Henrike; Aeckerle, Nelia
2010-01-01
N-[2-(6-methoxyquinazolin-4-yl)-ethyl] acetamide (MQA) is a compound formed from the melatonin metabolite N(1)-acetyl-5-methoxykynuramine (AMK). We followed MQA production in reaction systems containing various putative reaction partners, in the absence and presence of hydrogen peroxide and/or copper(II). Although MQA may be formally described as a condensation product of either N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK) with ammonia, or AMK with formamide, none of these combinations led to substantial quantities of MQA. However, MQA formation was observed in mixtures containing AMK, hydrogen peroxide, hydrogen carbonate and ammonia, or AMK, hydrogen peroxide, copper(II) and potentially carbamoylating agents, such as potassium cyanate or, more efficiently, carbamoyl phosphate. In the presence of hydrogen peroxide, copper(II) and carbamoyl phosphate, MQA was the major product obtained from AMK, but the omission of copper(II) mainly led to another metabolite, 3-acetamidomethyl-6-methoxycinnolinone (AMMC). This was caused by nitric oxide (NO) generated under oxidative conditions from carbamoyl phosphate, as shown by an NO spin trap. MQA formation with carbamoyl phosphate was not due to the possible decomposition product, formamide. The reaction of AMK with carbamoyl phosphate under oxidative conditions, in which inorganic phosphate and water are released and which differs from the typical process of carbamoylation via isocyanate, may be considered as a new physiological route of MQA formation.
Grasso, G; Komatsu, H; Axelsen, P H
2017-09-01
Amyloid β peptides (Aβ) and metal ions are associated with oxidative stress in Alzheimer's disease (AD). Oxidative stress, acting on ω-6 polyunsaturated fatty acyl chains, produces diverse products, including 4-hydroxy-2-nonenal (HNE), which can covalently modify the Aβ that helped to produce it. To examine possible feedback mechanisms involving Aβ, metal ions and HNE production, the effects of HNE modification and fibril formation on metal ion binding was investigated. Results indicate that copper(II) generally inhibits the modification of His side chains in Aβ by HNE, but that once modified, copper(II) still binds to Aβ with high affinity. Fibril formation protects only one of the three His residues in Aβ from HNE modification, and this protection is consistent with proposed models of fibril structure. These results provide insight into a network of biochemical reactions that may be operating as a consequence of oxidative stress in AD, or as part of the pathogenic process. Copyright © 2016. Published by Elsevier Inc.
Anti-atherosclerotic actions of azelaic acid, an end product of linoleic acid peroxidation, in mice.
Litvinov, Dmitry; Selvarajan, Krithika; Garelnabi, Mahdi; Brophy, Larissa; Parthasarathy, Sampath
2010-04-01
Atherosclerosis is a chronic inflammatory disease associated with the accumulation of oxidized lipids in arterial lesions. Recently we studied the degradation of peroxidized linoleic acid and suggested that oxidation is an essential process that results in the generation of terminal products, namely mono- and dicarboxylic acids that may lack the pro-atherogenic effects of peroxidized lipids. In continuation of that study, we tested the effects of azelaic acid (AzA), one of the end products of linoleic acid peroxidation, on the development of atherosclerosis using low density lipoprotein receptor knockout (LDLr(-/-)) mice. LDLr(-/-) mice were fed with a high fat and high cholesterol Western diet (WD group). Another group of animals were fed the same diet with AzA supplementation (WD+AzA group). After 4 months of feeding, mice were sacrificed and atherosclerotic lesions were measured. The results showed that the average lesion area in WD+AzA group was 38% (p<0.001) less as compared to WD group. The athero-protective effect of AzA was not related to changes in plasma lipid content. AzA supplementation decreased the level of CD68 macrophage marker by 34% (p<0.05). The finding that AzA exhibits an anti-atherogenic effect suggests that oxidation of lipid peroxidation-derived aldehydes into carboxylic acids could be an important step in the body's defense against oxidative damage. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
Sakina, N L; Dontsov, A E; Afanas'ev, G G; Ostrovski, M A; Pelevina, I I
1990-01-01
In studying the effect of whole-body X-irradiation on the accumulation of lipid peroxidation products (conjugated dienes, TBA-active products, and Schiff bases) in retina and retinal pigmented epithelium of pigmented and nonpigmented mice it was shown that irradiation of dark-pigmented mice does not cause even a slight accumulation of lipid peroxidation products as compared to that in the controls. Albino mice exhibited a marked increase in the level of lipid peroxidation products which was manifested soon after irradiation and persisted for at least 3 months after irradiation. Melanine is suggested to participate in protecting eye structures against pro-oxidizing action of ionizing radiation.
40 CFR 415.91 - Specialized definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Hydrogen Peroxide Production... apply to this subpart. (b) The term product shall mean hydrogen peroxide as a one hundred percent hydrogen peroxide solution. (c) The term Cyanide A shall mean those cyanides amenable to chlorination and...
Apigenin alleviates STZ-induced diabetic cardiomyopathy.
Liu, Huang-Jun; Fan, Yun-Lin; Liao, Hai-Han; Liu, Yuan; Chen, Si; Ma, Zhen-Guo; Zhang, Ning; Yang, Zheng; Deng, Wei; Tang, Qi-Zhu
2017-04-01
Apigenin is an important component of fruits and vegetables in human daily diets. Several cellular and animal models have been performed to demonstrate its anti-oxidant and anti-inflammatory bioactivities. However, the cardioprotective effects of apigenin in diabetic cardiomyopathy (DCM) remain unclear. In this study, we intended to explore the roles of apigenin in cardiac remodeling of DCM. Male C57BL/6 J mice were treated with streptozotocin (STZ, 50 mg/kg) for 5 consecutive days to induce DCM. The echocardiography and catheter-based measurements of hemodynamic parameters were performed to evaluate the cardiac function. Paraffin slices of harvested hearts were prepared for histological pathological analysis and TUNEL assay. Oxidative assay kits were used to detect Glutathione Peroxidase (GPx), Lipid Peroxidation Malondialdehyde (MDA), and Superoxide Dismutase (SOD). Western blot and real-time PCR were used for accessing the expressions of protein and mRNA. Diabetes mellitus exacerbated the cardiac dysfunction, fibrosis, and overaccumulation of 4-hydroxynonenal accompanying with down-regulation of Bcl2, GPx, and SOD, up-regulation of MDA, cleaved caspase3, and pro-apoptotic protein Bax, and contribution to the translocation of NF-κB. All these pathological changes could be effectively blunted by treatment of apigenin in vivo. Finally, H9c2 treated with high glucose or apigenin was used for further investigation of these effects in vitro; what is more, we also compared the effects between apigenin and Resveratrol in in vitro experiments. Our experiments have demonstrated that apigenin may be a potential drug for diabetic patients suffering from DCM.
Gallardo Bolaños, J M; Balao da Silva, C; Martín Muñoz, P; Plaza Dávila, M; Ezquerra, J; Aparicio, I M; Tapia, J A; Ortega Ferrusola, C; Peña, F J
2014-08-01
To investigate the mechanisms inducing sperm death after ejaculation, stallion ejaculates were incubated in BWW media during 6 h at 37°C. At the beginning of the incubation period and after 1, 2, 4 and 6 h sperm motility and kinematics (CASA), mitochondrial membrane potential and membrane permeability and integrity were evaluated (flow cytometry). Also, at the same time intervals, active caspase 3, hydrogen peroxide, superoxide anion (flow cytometry) and Akt phosphorylation (flow cytometry) were evaluated. Major decreases in sperm function occurred after 6 h of incubation, although after 1 h decrease in the percentages of motile and progressive motile sperm occurred. The decrease observed in sperm functionality after 6 h of incubation was accompanied by a significant increase in the production of hydrogen peroxide and the greatest increase in caspase 3 activity. Additionally, the percentage of phosphorylated Akt reached a minimum after 6 h of incubation. These results provide evidences that sperm death during in vitro incubation is largely an apoptotic phenomena, probably stimulated by endogenous production of hydrogen peroxide and the lack of prosurvival factors maintaining Akt in a phosphorylated status. Disclosing molecular mechanisms leading to sperm death may help to develop new strategies for stallion sperm conservation. © 2014 Blackwell Verlag GmbH.
Xu, Libin; Korade, Zeljka; Porter, Ned A.
2010-01-01
Free radical chain oxidation of highly oxidizable 7-dehydrocholesterol (7-DHC) initiated by 2,2′-azobis(4-methoxy-2,4-dimethylvaleronitrile) was carried out at 37°C in benzene for 24 hours. Fifteen oxysterols derived from 7-DHC were isolated and characterized with 1D- and 2D-NMR spectroscopy and mass spectrometry. A mechanism that involves abstraction of hydrogen atoms at C-9 and/or C-14 is proposed to account for the formation of all of the oxysterols and the reaction progress profile. In either the H-9 or H-14 mechanism, a pentadienyl radical intermediate is formed after abstraction of H-9 or H-14 by a peroxyl radical. This step is followed by the well-precedented transformations observed in peroxidation reactions of polyunsaturated fatty acids such as oxygen addition, peroxyl radical 5-exo cyclization, and SHi carbon radical attack on the peroxide bond. The mechanism for peroxidation of 7-DHC also accounts for the formation of numerous oxysterol natural products isolated from fungal species, marine sponges, and cactaceous species. In a cell viability test, the oxysterol mixture from 7-DHC peroxidation was found to be cytotoxic to Neuro2a neuroblastoma cells in the micromolar concentration range. We propose that the high reactivity of 7-DHC and the oxysterols generated from its peroxidation may play important roles in the pathogenesis of Smith-Lemli-Opitz syndrome (SLOS), X-linked dominant chondrodysplasia punctata (CDPX2), and cerebrotendinous xanthomatosis (CTX), all of these being metabolic disorders having an elevated level of 7-DHC. PMID:20121089
Reactive decontamination formulation
Giletto, Anthony [College Station, TX; White, William [College Station, TX; Cisar, Alan J [Cypress, TX; Hitchens, G Duncan [Bryan, TX; Fyffe, James [Bryan, TX
2003-05-27
The present invention provides a universal decontamination formulation and method for detoxifying chemical warfare agents (CWA's) and biological warfare agents (BWA's) without producing any toxic by-products, as well as, decontaminating surfaces that have come into contact with these agents. The formulation includes a sorbent material or gel, a peroxide source, a peroxide activator, and a compound containing a mixture of KHSO.sub.5, KHSO.sub.4 and K.sub.2 SO.sub.4. The formulation is self-decontaminating and once dried can easily be wiped from the surface being decontaminated. A method for decontaminating a surface exposed to chemical or biological agents is also disclosed.
NASA Astrophysics Data System (ADS)
Crandall, Parker B.; Góbi, Sándor; Gillis-Davis, Jeffrey; Kaiser, Ralf I.
2017-09-01
Due to their oxidizing properties, perchlorates (ClO4-) are suggested by the planetary science community to play a vital role in the scarcity of organics on the Martian surface. However, alternative oxidation agents such as hydrogen peroxide (H2O2) have received surprisingly little attention. In this study, samples of magnesium perchlorate hexahydrate (Mg(ClO4)2 · 6H2O) were exposed to monoenergetic electrons and D2+ ions separately, sequentially, and simultaneously to probe the effects of galactic cosmic ray exposure of perchlorates and the potential incorporation of hydrogen (deuterium) into these minerals. The experiments were carried out under ultrahigh-vacuum conditions at 50 K, after which the samples were slowly heated to 300 K while the subliming products were monitored by a quadrupole mass spectrometer. In all cases, molecular oxygen (O2) was detected upon the onset of irradiation and also during the warmup phase. In case of a simultaneous D2+-electron exposure, deuterated water (D2O) and deuterium peroxide (D2O2) were also detected in the warmup phase, whereas only small amounts of D2O2 were found after an exclusive D2+ irradiation. These experiments yield the first data identifying hydrogen peroxide as a potential product in the interaction of cosmic rays with perchlorates in the Martian regolith revealing that perchlorates are capable of producing multiple oxidizing agents (O2 and D2O2) that may account for the destruction of organics on the Martian surface.
Oxygen toxicity in the perfused rat liver and lung under hyperbaric conditions.
Nishiki, K; Jamieson, D; Oshino, N; Chance, B
1976-01-01
1. In the lung and liver of tocopherol-deficient rats, the activities of glutathione peroxidase and glucose 6-phosphate dehydrogenase were increased substantially, suggesting an important role for both enzymes in protecting the organ against the deleterious effects of lipid peroxides. 2. Facilitation of the glutathione peroxidase reaction by infusing t-butyl hydroperoxide caused the oxidation of nicotinamide nucleotides and glutathione, resulting in a concomitant increase in the rate of release of oxidized glutathione into the perfusate. Thus the rate of production of lipid peroxide and H2O2 in the perfused organ could be compared by simultaneous measurement of the rate of glutathione release and the turnover number of the catalase reaction. 3. On hyperbaric oxygenation at 4 X 10(5)Pa, H2O2 production, estimated from the turnover of the catalase reaction, was increased slightly in the liver, and glutathione release was increased slightly, in both lung and liver. 4. Tocopherol deficiency caused a marked increase in lipid-peroxide formation as indicated by a corresponding increase in glutathione release under hyperbaric oxygenation, with a further enhancement when the tocopherol-deficient rats were also starved. 5. The study demonstrates that the primary response to hyperbaric oxygenation is an elevation of the rate of lipid peroxidation rather than of the rate of formation of H2O2 or superoxide. PMID:12754
Lee, Yun Mi; Kim, Mi Jung; Kim, Youngha; Kim, Hyeyoung
2015-01-01
Background: The Janus kinase (Jak)/Signal transducers of activated transcription (Stat) pathway is an upstream signaling pathway for NF-κB activation in Helicobacter pylori-induced interleukin (IL)-8 production in gastric epithelial AGS cells. H. pylori activates NADPH oxidase and produces hydrogen peroxide, which activates Jak1/Stat3 in AGS cells. Therefore, hydrogen peroxide may be critical for IL-8 production via Jak/Stat activation in gastric epithelial cells. Glutamine is depleted during severe injury and stress and contributes to the formation of glutathione (GSH), which is involved in conversion of hydrogen peroxide into water as a cofactor for GSH peroxidase. Methods: We investigated whether glutamine deprivation induces hydrogen peroxide-mediated IL-8 production and whether hydrogen peroxide activates Jak1/Stat3 to induce IL-8 in AGS cells. Cells were cultured in the presence or absence of glutamine or hydrogen peroxide, with or without GSH or a the Jak/Stat specific inhibitor AG490. Results: Glutamine deprivation decreased GSH levels, but increased levels of hydrogen peroxide and IL-8, an effect that was inhibited by treatment with GSH. Hydrogen peroxide induced the activation of Jak1/Stat3 time-dependently. AG490 suppressed hydrogen peroxide- induced activation of Jak1/Stat3 and IL-8 expression in AGS cells, but did not affect levels of reactive oxygen species in AGS cells. Conclusions: In gastric epithelial AGS cells, glutamine deprivation increases hydrogen peroxide levels and IL-8 expression, which may be mediated by Jak1/Stat3 activation. Glutamine supplementation may be beneficial for preventing gastric inflammation by suppressing hydrogen peroxide-mediated Jak1/Stat3 activation and therefore, reducing IL-8 production. Scavenging hydrogen peroxide or targeting Jak1/Stat3 may also prevent oxidant-mediated gastric inflammation. PMID:26473156
Coleman, Jeffrey D.; Prabhu, K. Sandeep; Thompson, Jerry T.; Reddy, P. Sreenivasula; Peters, Jeffrey M.; Peterson, Blake R.; Reddy, C. Channa; Vanden Heuvel, John P.
2007-01-01
Liver insufficiency and damage is a major cause of death and disease worldwide and may result from exposure to environmental toxicants, specific combinations or dosages of pharmaceuticals and microbial metabolites. The generation of reactive intermediates, in particular 4-hydroxynonenal (4-HNE), is a common event in liver damage caused by a variety of hepatotoxic drugs and solvents. The peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that are involved in the transcriptional regulation of lipid metabolism as well as other biological functions. Importantly, we have observed that the PPARβ/δ−/− mouse is more susceptible to chemically-induced hepatotoxicity than its wildtype counterpart, and our objective in this study was to elucidate the mechanism(s) by which PPARβ/δ confers protection to hepatocytes. We hypothesized that PPARβ/δ plays a protective role by responding to toxic lipids and altering gene expression accordingly. In support, oxidized-VLDL and constituents including 13-S-hydroxyoctadeca-dienoic acid (13(S)-HODE) and 4-HNE are PPARβ/δ ligands. A structure-activity relationship was established where 4-HNE and 4-hydroperoxynonenal (4-HpNE) enhanced the activity of the PPARβ/δ subtype while 4-hyroxy-hexenal (4-HHE), 4-oxo-2-Nonenal (4-ONE), and trans-4,5-epoxy-2(E)-decenal did not activate this receptor. Increasing PPARβ/δ activity with a synthetic agonist decreased sensitivity of hepatocytes to 4-HNE and other toxic agents, whereas inhibition of this receptor had the opposite result. Gene expression microarray analysis identified several important PPARβ/δ-regulated detoxification enzymes involved in 4-HNE metabolism that are regulated at the transcript level. This research established 4-HNE as an endogenous modulator of PPARβ/δ activity and raises the possibility that agonists of this nuclear receptor may be utilized to prevent or treat liver disease associated with oxidative damage. PMID:17382197
Spoljaric, Dubravka; Cipak, Ana; Horvatic, Janja; Andrisic, Luka; Waeg, Georg; Zarkovic, Neven; Jaganjac, Morana
2011-10-01
Oxidative stress, i.e. excessive production of reactive oxygen species (ROS), leads to lipid peroxidation and to formation of reactive aldehydes (e.g. 4-hydroxy-2-nonenal; HNE), which act as second messengers of free radicals. It was previously shown that herbicides can induce ROS production in algal cells. In the current paper, the unicellular green microalga Chlorella kessleri was used to study the effect of two herbicides (S-metolachlor and terbuthylazine) and hydrogen peroxide (H(2)O(2)) on oxidative stress induction, HNE formation, chlorophyll content and the cell growth. Production of HNE was detected in this study for the first time in the cells of unicellular green algae using the antibody specific for the HNE-histidine adducts revealing the HNE-histidine adducts even in untreated, control C. kessleri. Exposure of algal cells to herbicides and H(2)O(2) increased the ROS production, modifying production of HNE. Namely, 4h upon treatment the levels of HNE-histidine conjugates were below controls. However, their amount increased afterwards. The increase of HNE levels in algae was followed by their increased growth rate, as was previously described for human carcinoma cells. Hence, changes in the cellular HNE content upon herbicide treatment inducing lipid oxidative stress and alterations in cellular growth rate of C. kessleri resemble adaptation of malignant cells to the HNE treatment. Therefore, as an addition to the standard toxicity tests, the evaluation of HNE-protein adducts in C. kessleri might indicate environmental pollution with lipid peroxidation-inducing herbicides. Finally, C. kessleri might be a convenient experimental model to further study cellular hormetic adaptation to oxidative stress-derived aldehydes. Copyright © 2011 Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-22
... the monograph (75 FR 9767, March 4, 2010) (final rule). The guidance describes the requirements of the... products marketed under the monograph (i.e., products that contain any of the active ingredients permitted under the OTC topical acne drug monograph, including benzoyl peroxide, resorcinol, resorcinol...
Abid, Yousra; Azabou, Samia; Jridi, Mourad; Khemakhem, Ibtihel; Bouaziz, Mohamed; Attia, Hamadi
2017-10-15
Traditional Tunisian butter (TTB) is one of the most appreciated dairy products in Tunisia. Herein, the storage stability of TTB enriched with antioxidants from tomato processing by-products (TPB) was evaluated during 60days of storage at 4°C. TPB extract contains significant amounts of lycopene and phenolics. TTB enriched with 400mg of TPB extract/kg of TTB revealed the lowest peroxide values at all the determination intervals. Adding 400mg of TPB extract/kg of TTB did not exhibit any undesired effect on lactic bacteria which are necessary for development of aroma and chemical properties of TTB. However, raw TTB and highly enriched TTB (800mg of TPB extract/kg of TTB) displayed higher lipid peroxidation. The detrimental effect of high antioxidant amounts on TTB stability could be due to a possible pro-oxidant character. Thus, appropriate supplementation of TPB extract could be used in TTB as a protective agent against lipid peroxidation to extend its shelf-life up to two months. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mancini, Simone; Preziuso, Giovanna; Dal Bosco, Alessandro; Roscini, Valentina; Parisi, Giuliana; Paci, Gisella
2017-11-01
Effects of ginger powder were evaluated on fatty acid (FA) profile, lipid peroxidation (TBARS) and antioxidant capacity (ABTS, DPPH and FRAP) of rabbit burgers. Burgers were manufactured as control samples (only meat) and two additions of ginger powder (1% and 2%) and stored raw at 4°C for 7days. At day 1, 4 and 7 of storage burgers were analysed both as raw and cooked. Ginger powder affected all the tested parameters; both PUFAω3 and PUFAω6 were incremented in raw and cooked samples leading to decreased atherogenicity and thrombogenicity indexes and increased hypo/hypercholesterolemic index and peroxidability index. Lipid peroxidation values of raw and cooked burgers added with ginger were lower than control burgers, at the same time, ABTS, DPPH and FRAP values were incremented by the addition of ginger powder. The results obtained demonstrate the antioxidant capacity of ginger powder as rabbit meat products additive and highlight the capacity of this spice to maintain its characteristics after burgers' cooking. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lu, Yonggang; Lin, Minjie; Aitken, Robert John
2017-10-01
In this study, we have investigated the impact of dibutyl phthalate (DBP) on early embryogenesis in a sessile marine invertebrate, Galeolaria caespitosa. DBP was found to induce sperm dysfunction as well as impaired and defective embryogenesis characterised by a particular pattern of abnormality. Thus, after the first cleavage, one blastomere in these abnormal embryos was able to carry out further mitoses, while the other arrested. Analysis of microtubules, chromosomes and actin filaments demonstrated that the mitotic spindles in the abnormal embryos were irregularly bent, shortened and unable to anchor to the cortex, resulting in the defective segregation of chromosomes. Within the non-dividing blastomeres, karyokinesis was found to continue at a slow pace as indicated by the presence of multiple sets of abnormal mitotic spindles. However, cytokinesis had been disrupted in these arrested cells due to a failure to assemble the contractile actin ring, as a result of which one pole of the embryos remained as one large, undivided cell. DBP was found to suppress the activity of superoxide dismutase in spermatozoa and, in association with this change, DBP-treated cells experienced oxidative stress as indicated by the presence of lipid aldehydes, such as 4-hydroxynonenal (4-HNE) in the sperm acrosome and neck. Adduction of lipid aldehydes at the level of the acrosome would be expected to impede the acrosome reaction and account for the significant decrease in fertilisation rates. 4-HNE generated as a consequence of lipid peroxidation in the sperm neck resulted in alkylation of the sperm centrioles. Such paternally damaged centrioles were inherited by the embryos and disrupted cytoskeletal protein organisation during early cleavage, generating the observed abnormalities in embryonic development. This research emphasises the vulnerability of spermatozoa to oxidative damage and highlights novel potential mechanisms for reproductive toxicity involving the alkylation of subcellular structures in spermatozoa by lipid aldehydes. Copyright © 2017 Elsevier B.V. All rights reserved.
Pillai, Radhakrishnan; Moore, Robert
2010-01-01
Background: Clinicians have been reluctant to prescribe benzoyl peroxide concurrently with topical tretinoin due to a belief that the benzoyl peroxide may cause oxidation and degradation of the tretinoin molecule, thereby reducing its effectiveness. However, benzoyl peroxide-induced degradation of tretinoin may not necessarily apply to all topical tretinoin formulations. Objective: To evaluate the potential for benzoyl peroxide-induced degradation of an optimized aqueous gel formulation of tretinoin (0.05%). Methods: Tretinoin gel (0.05%) and benzoyl peroxide gel (6.26% premix concentration to produce 5% benzoyl peroxide in a fixed combination clindamycin product) were mixed together (1:1) at 32ºC and samples assayed after 1, 2, 3, 5, and 7 hours. Each sample was analyzed for tretinoin (expressed as % tretinoin remaining) and its degradation product content. Results: No loss of tretinoin was observed over the seven-hour time period. When tretinoin gel (0.05%) was combined with benzoyl peroxide, 100 percent of the initial tretinoin concentration remained after seven hours. There was no increase in the degradation products of tretinoin. Conclusions: There was no benzoyl peroxide-induced degradation of tretinoin when the optimized formulation of tretinoin gel (0.05%) was admixed with benzoyl peroxide gel (6.26%). Although the direct clinical significance of these results is unknown, clinicians may feel comfortable using this particular combination concurrently without concerns about tretinoin oxidation and degradation. PMID:20967192
Safety issues of high-concentrated hydrogen peroxide production used as rocket propellant
NASA Astrophysics Data System (ADS)
Romantsova, O. V.; Ulybin, V. B.
2015-04-01
The article dwells on the possibility of production of high-concentrated hydrogen peroxide with the Russian technology of isopropyl alcohol autoxidation. Analysis of fire/explosion hazards and reasons of insufficient quality is conducted for the technology. Modified technology is shown. Non-standard fire/explosion characteristics required for integrated fire/explosion hazards rating for modified hydrogen peroxide production based on the autoxidation of isopropyl alcohol are defined.
Donath, Bernadette; Fischer, Claudia; Page, Sharon; Prebeck, Sigrid; Jilg, Nikolaus; Weber, Marion; da Costa, Clarissa; Neumeier, Dieter; Miethke, Thomas; Brand, Korbinian
2002-11-01
Chlamydia pneumoniae may be involved in atherosclerosis by inducing inflammation as well as LDL oxidation. The transcription factor NF-kappa B is found in an active state in atherosclerotic lesions. This study examined the effect of C. pneumoniae exposure on the NF-kappa B system in human monocytic lineage cells. Short exposure to C. pneumoniae as well as chlamydial heat shock protein 60 activated NF-kappa B, accompanied by increased cytokine production. Incubation with C. pneumoniae-induced depletion of I kappa B-alpha and later I kappa B-epsilon which was preceded by I kappa B kinase complex activation. 4-Hydroxynonenal, an aldehyde LDL oxidation product, was shown to inhibit C. pneumoniae induced NF-kappa B activation by preventing I kappa B phosphorylation/proteolysis. During long-term incubation with C. pneumoniae I kappa B-alpha returned to baseline, whereas the levels of I kappa B-epsilon and p65 were upregulated. Interestingly, long-term preincubation with C. pneumoniae selectively prevented restimulation by this microorganism, which appears to be at least partly facilitated by inhibition of I kappa B proteolysis. C. pneumoniae-induced NF-kappa B activation as well as the inhibition of that effect under certain conditions may contribute to chronic inflammation with potential relevance to vascular disease.
High levels of hydrogen peroxide in overnight tooth-whitening formulas: effects on enamel and pulp.
Pugh, George; Zaidel, Lynette; Lin, Nora; Stranick, Michael; Bagley, Daniel
2005-01-01
Limited data are available to assess the safety of high levels of hydrogen peroxide in overnight tooth-whitening formulas. The purpose of this study was to assess the effects of hydrogen peroxide on enamel microhardness, pulp penetration, and enamel morphology. Colgate Platinum Professional Overnight Whitening System (Colgate Oral Pharmaceuticals, Inc., Canton, MA, USA) (10% carbamide peroxide, equivalent to 3.5% hydrogen peroxide) was compared with two prototype formulations containing either 7.0% or 12.0% hydrogen peroxide. In the pulp chamber studies, human extracted teeth were exposed to 3.5%, 7.0%, or 12.0% hydrogen peroxide for 30 minutes, 4 hours, or 7 hours. Microhardness, electron spectroscopy for chemical analysis, and atomic force microscopy evaluations were made from enamel blocks cut from human extracted molars. The enamel blocks were evaluated following 14 7-hour treatments (98 h total). At 7 hours' post-treatment, hydrogen peroxide penetrated the pulp chamber at 23.12 +/- 10.09, 24.58 +/- 6.90, and 26.39 +/- 5.43 microg for 3.5%, 7.0%, and 12.0% hydrogen peroxide, respectively. With regard to enamel morphology, pulp penetration, microhardness, and elemental composition, no statistically significant differences were observed between treatment groups following 98 hours of treatment. Hydrogen peroxide does not adversely affect enamel morphology or microhardness. The levels recovered in pulp indicate that hydrogen peroxide is not expected to inhibit pulpal enzymes. Overnight tray products containing levels of hydrogen peroxide of 3.5%, 7.0%, and 12.0% are not expected to adversely affect the enamel or pulpal enzymes. Additional safety studies are needed to assess the potential for tooth sensitivity and gingival irritation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Disselkamp, Robert S.; Harris, Benjamin D.; Hart, Todd R.
2008-07-20
The production of polyol chemicals is of increasing interest as they are obtained from the catalytic processing of biological feedstock materials, which also is becoming more prevalent. A case in point is glycerol production, formed as a byproduct in biodiesel catalytic processing. Here we report the reaction of a simple 1,2-diol, propylene glycol, with hydrogen peroxide and a Pd-black catalyst under reflux conditions at 368 K. The experiments were performed by either co-addition of hydrogen peroxide with air sparging, or addition of hydrogen peroxide alone, each yielding hydroxy acetone (HA) and acetic acid (AA) products, with a lesser amount ofmore » lactic acid (LA) formed. Product conversion data at near neutral pH versus hydrogen peroxide equivalents added relative to substrate is presented. Hydrogen peroxide addition without air sparging at 5 equivalents resulted in 65% conversion with an HA:AA molar ratio of 2:1. Conversely, hydrogen peroxide addition with air sparging at only 0.75 equivalents resulted in 40% conversion with an HA:AA ratio of 3:1. From this it is concluded that although the product distribution in these chemistries is somewhat unchanged by air sparging, it is surprising that the amount of reactive oxygen is greatly enhanced with co-addition of O2/H2O2. Additional studies have revealed the amount of LA formed can be enhanced under acidic conditions (pH=1.5 compared to pH=8.5), such that 26% of total product formation is LA. Since hydrogen peroxide is an environmentally clean reagent and becoming more cost effective to use, this work may guide future applied investigations into polyol chemical syntheses.« less
De, Arnab Kumar; Dey, Narottam; Adak, Malay Kumar
2016-07-01
In the present experiment a pteridophytic species Azolla and an angiospermic species Vernonia were evaluated on the basis of cellular reactivity for herbicidal action through ongoing concentrations. Initially, both the species recorded a significant activity of IAA-oxidase as mark of IAA metabolism with herbicidal sensitivity. Still, Vernonia species were more affected on 2,4-D mediated auxin catabolism. The loss of auxin concentrations on the tissues by 2,4-D reaction was also reflected on growth parameters including relative growth rate and chlorophyll biosynthesis. In a dose dependent manner Vernonia plants were more affected with loss of chlorophyll content and decline in relative growth rate. On the other hand, both those parameters were adjusted significantly with 2,4-D accumulation in Azolla . The stability of cellular metabolism was documented by significant down regulation of protein and lipid peroxidation with concomitant moderation to superoxide and hydrogen peroxide accumulation. The later two were more vulnerable to damage in the Vernonia plant with profuse accumulation of protein and lipid peroxidation products. Similarly, tissue specific reaction to superoxide and hydrogen peroxide accumulation were distinctly demarcated in two species significantly. As a whole, the cellular responses and metabolite distribution to 2,4-D sensitization are the features to describe bio-indices for aquatic fern species Azolla with comparison to angiospermic species Vernonia .
Protective effect of pomegranate seed oil against H2O2 -induced oxidative stress in cardiomyocytes
Bihamta, Mehdi; Hosseini, Azar; Ghorbani, Ahmad; Boroushaki, Mohammad Taher
2017-01-01
Objective: It has been well documented that oxidative stress is involved in the pathogenesis of cardiac diseases. Previous studies have shown that pomegranate seed oil (PSO) has antioxidant properties. This study was designed to investigate probable protective effects of PSO against hydrogen peroxide (H2O2)-induced damage in H9c2 cardiomyocytes. Materials and Methods: The cells were pretreated 24 hr with PSO 1 hr before exposure to 200 µM H2O2. Cell viability was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) assay. The level of reactive oxygen species (ROS) and lipid peroxidation were measured by fluorimetric methods. Results: H2O2 significantly decreased cell viability which was accompanied by an increase in ROS production and lipid peroxidation and a decline in superoxide dismutase activity. Pretreatment with PSO increased viability of cardiomyocytes and decrease the elevated ROS production and lipid peroxidation. Also, PSO was able to restore superoxide dismutase activity. Conclusion: PSO has protective effect against oxidative stress-induced damage in cardiomyocytes and can be considered as a natural cardioprotective agent to prevent cardiovascular diseases. PMID:28265546
Determination of oxidative status in breast and formula milk.
Turoli, D; Testolin, G; Zanini, R; Bellù, R
2004-12-01
To investigate to what extent formula milk and stored breast milk, commonly used in hospitals, could be pro-oxidant sources for newborn babies. We determined total antioxidant capacity and lipid peroxidation products, such as lipid peroxides, TBARS and conjugated dienes, in fresh and stored (at -20 degrees C) samples of breast milk and in different brands of formula milk. There were notable differences in the oxidation parameters in several brands of formula milk, particularly concerning the levels of lipid peroxides and total antioxidant capacity. No difference was found in the mean total antioxidant capacity between formula and breast milk, even if the vitamin content is much higher in formula milk than in breast milk. On the contrary, all the considered lipid peroxidation products were higher in human milk (HM) than formula milk (FM), and lipid peroxides were much higher in HM stored at -20 degrees C. Many differences were found between different formula milks. There was a conspicuous formation of lipid peroxides in HM stored at -20 degrees C, which was probably caused by an increased presence of free fatty acids due to lipoprotein lipase activity during storage. Unexpectedly, even fresh HM had a higher concentration of lipid peroxidation products when compared to FM. This could be ascribed to the higher susceptibility of HM to degradation during analysis because of manipulation and light exposure. However, it is also interesting that the high content of lipid peroxides did not correspond to a low total antioxidant capacity in either breast or formula milk. This could signify that such levels of lipid peroxidation products might be present naturally in milk and HM after expression is subject to a strong peroxidation either at room temperature or at -20 degrees C.
Sharma, Rajendra; Sharma, Abha; Dwivedi, Seema; Zimniak, Piotr; Awasthi, Sanjay; Awasthi, Yogesh C.
2008-01-01
Previously, we have shown that 4-hydroxynonenal (4-HNE) induces Fas-mediated apoptosis in HLE B-3 cells through a pathway which is independent of FasL, FADD, procaspase8-and DISC (Li, J. et al. Biochemistry, 45, 12253-12264). The involvement of Daxx has also been suggested in this pathway but its role is not clear. Here, we report that Daxx plays an important regulatory role during 4-HNE induced, Fas-mediated apoptosis in Jurkat cells. 4-HNE induces Fas-dependent apoptosis in procaspase8 deficient Jurkat cells via the activation of ASK1, JNK and caspase3 and the apoptosis can be inhibited by masking Fas with the antagonistic anti-Fas antibodies. We demonstrate that 4-HNE exposure to Jurkat cells leads to the induction of both Fas and Daxx. 4-HNE binds to both Fas and Daxx and promotes the export of Daxx from nucleus to cytosol where it binds to Fas and inhibits apoptosis. Depletion of Daxx results in increase in the activation of ASK1, JNK, and caspase3 along with exacerbation of 4-HNE-induced apoptosis suggesting that Daxx inhibits apoptosis by binding to Fas. 4-HNE-induced translocation of the Daxx is also accompanied with the activation of the transcription factor HSF1. Results of these studies are consistent with a model in which by interacting with Fas, 4-HNE promotes pro-apoptotic signaling via ASK1, JNK and caspase3. In parallel, 4-HNE induces Daxx and promotes its export from the nucleus to cytosol where it interacts with Fas to self-limit the extent of apoptosis by inhibiting the downstream pro-apoptotic signaling. Cytoplasmic translocation of Daxx also results in up-regulation of HSF1 associated stress responsive genes. PMID:18069800
Sakudo, Akikazu; Toyokawa, Yoichi; Nakamura, Tetsuji; Yagyu, Yoshihito; Imanishi, Yuichiro
2017-01-01
Gas plasma, produced by a short high‑voltage pulse generated from a static induction thyristor power supply [1.5 kilo pulse/sec (kpps)], was demonstrated to inactivate Geobacillus stearothermophilus spores (decimal reduction time at 15 min, 2.48 min). Quantitative polymerase chain reaction and enzyme‑linked immunosorbent assays further indicated that nitrogen gas plasma treatment for 15 min decreased the level of intact genomic DNA and increased the level of 8-hydroxy-2'-deoxyguanosine, a major product of DNA oxidation. Three potential inactivation factors were generated during operation of the gas plasma instrument: Heat, longwave ultraviolet-A and oxidative stress (production of hydrogen peroxide, nitrite and nitrate). Treatment of the spores with hydrogen peroxide (3x2‑4%) effectively inactivated the bacteria, whereas heat treatment (100˚C), exposure to UV-A (75‑142 mJ/cm2) and 4.92 mM peroxynitrite (•ONOO‑), which is decomposed into nitrite and nitrate, did not. The results of the present study suggest the gas plasma treatment inactivates bacterial spores primarily by generating hydrogen peroxide, which contributes to the oxidation of the host genomic DNA.
Przybyszewski, W M
2001-01-01
This review reports the evidence for the participation of final products of lipid peroxidation in the anticancer mechanism of ionising radiation and radiomimetic cytostatics. Processes of lipid peroxidation occur endogenously in response to oxidative stress and great diversity of reactive metabolites is formed. However, direct observation of radical reaction in pathophysiology of cells, tissues and organs is limited technically. Most investigations focused on the indirect assessment of their final products, aldehydes. The peroxidative breakdown of polyunsaturated fatty acids is believed to be involved in the regulation of cell division, and antitumor effect through biochemical and genetic processes.
40 CFR 415.91 - Specialized definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Hydrogen Peroxide Production Subcategory... this subpart. (b) The term product shall mean hydrogen peroxide as a one hundred percent hydrogen...
40 CFR 415.91 - Specialized definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Hydrogen Peroxide Production Subcategory... this subpart. (b) The term product shall mean hydrogen peroxide as a one hundred percent hydrogen...
40 CFR 415.91 - Specialized definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Hydrogen Peroxide Production Subcategory... this subpart. (b) The term product shall mean hydrogen peroxide as a one hundred percent hydrogen...
Delenian, N V; Markin, A A
1989-01-01
Rats flown for 7 days on Cosmos-1667 were for the first time used to measure antioxidative enzymes (superoxide dismutase, glutathione peroxidase, glutathione reductase, catalase), lipid peroxidation products (diene conjugates, malonic dialdehyde, Schiff bases) and tocopherol. Enhanced lipid peroxidation in the heart was completely compensated by activation of antioxidative enzymes. The content of all lipid peroxidation products measured in the liver increased; this was accompanied by a decrease of glutathione peroxidase and an increase of superoxide dismutase activities. It is suggested that lipid peroxidation was activated in response to altered gravity.
Gonzalez, Ernesto E; Olson, Douglas; Aryana, Kayanush
2017-06-01
Lactococcus lactis is a culture widely used in salt-containing dairy products. Salt hinders bacterial growth, but exposure to environmental stress may protect cells against subsequent stress, including salt. The objective of this study was to evaluate the salt tolerance of L. lactis R-604 after exposure to various stresses. The culture was subjected to 10% (vol/vol) ethanol for 30 min, mild heat at 52°C for 30 min, 15 mM hydrogen peroxide for 30 min, or UV light (254 nm) for 5 min and compared with a control. Starting with 5 log cfu/mL for all treatments, growth was determined in M17 broth with 5 NaCl concentrations (0, 1, 3, 5, and 7% wt/vol). Plating was conducted daily for 5 d. Salt tolerance was enhanced with mild heat exposure before growth in M17 broth with 5% (wt/vol) NaCl on d 3, 4, and 5, and with exposure to hydrogen peroxide and ethanol stresses before growth in M17 broth with 5% (wt/vol) NaCl on d 4 and 5. Exposure of this culture to mild heat, hydrogen peroxide, or ethanol before growth in M17 broth containing 5% (wt/vol) salt can enhance its survival, which could be beneficial when using it in salt-containing dairy products. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Mutagenicity of ω-3 fatty acid peroxidation products in the Ames test.
Grúz, Petr; Shimizu, Masatomi; Sugiyama, Kei-Ichi; Honma, Masamitsu
2017-07-01
Polyunsaturated fatty acids (PUFA) represent one of the main building blocks of cellular membranes and their varying composition impacts lifespan as well as susceptibility to cancer and other degenerative diseases. Increased intake of ω-3 PUFA is taught to compensate for the abundance of ω-6 PUFA in modern human diet and prevent cardiocirculatory diseases. However, highly unsaturated PUFA of marine and seed origin easily oxidize to aldehydic products which form DNA adducts. With increased PUFA consumption it is prudent to re-evaluate ω-3 PUFA safety and the genotoxic hazards of their metabolites. We have used the standard Ames test to examine the mutagenicity of 2 hexenals derived from lipid peroxidation of the common ω-3 PUFA in human diet and tissues. Both 4-hydroxyhexenal and 2-hexenal derived from the ω-3 docosahexaenoic and α-linolenic acid, respectively, induced base substitutions in the TA104 and TA100 Ames strains in a dose dependent manner. Their mutagenicity was dependent on the Y-family DNA polymerase RI and they did not induce other types of mutations such as the -2 and -1 frameshifts in the TA98 and TA97 strains. Our results expand previous findings about the mutagenicity of related ω-3 peroxidation product 4-oxohexenal and raise alert that overuse of ω-3 rich oils may have adverse effect on genome stability. Copyright © 2017 Elsevier B.V. All rights reserved.
Melanin Biosynthesis in Cryptococcus neoformans
Williamson, Peter R.; Wakamatsu, Kazumasa; Ito, Shosuke
1998-01-01
Pigment production by Cryptococcus neoformans is virulence associated. Dopamine- and 3,4-dihydroxyphenylalanine–melanin products were identified after acidic permanganate oxidation, alkaline hydrogen peroxide oxidation, or hydrolysis with hydriodic acid. These data provide direct chemical evidence for the formation of eumelanin polymers by catecholamine oxidation by laccase alone followed by oxidative coupling of dihydroxyindole. PMID:9515929
Integrated process and dual-function catalyst for olefin epoxidation
Zhou, Bing; Rueter, Michael
2003-01-01
The invention discloses a dual-functional catalyst composition and an integrated process for production of olefin epoxides including propylene oxide by catalytic reaction of hydrogen peroxide from hydrogen and oxygen with olefin feeds such as propylene. The epoxides and hydrogen peroxide are preferably produced simultaneously in situ. The dual-functional catalyst comprises noble metal crystallites with dimensions on the nanometer scale (on the order of <1 nm to 10 nm), specially dispersed on titanium silicalite substrate particles. The dual functional catalyst catalyzes both the direct reaction of hydrogen and oxygen to generate hydrogen peroxide intermediate on the noble metal catalyst surface and the reaction of the hydrogen peroxide intermediate with the propylene feed to generate propylene oxide product. Combining both these functions in a single catalyst provides a very efficient integrated process operable below the flammability limits of hydrogen and highly selective for the production of hydrogen peroxide to produce olefin oxides such as propylene oxide without formation of undesired co-products.
Artificial photosynthesis for production of hydrogen peroxide and its fuel cells.
Fukuzumi, Shunichi
2016-05-01
The reducing power released from photosystem I (PSI) via ferredoxin enables the reduction of NADP(+) to NADPH, which is essential in the Calvin-Benson cycle to make sugars in photosynthesis. Alternatively, PSI can reduce O2 to produce hydrogen peroxide as a fuel. This article describes the artificial version of the photocatalytic production of hydrogen peroxide from water and O2 using solar energy. Hydrogen peroxide is used as a fuel in hydrogen peroxide fuel cells to make electricity. The combination of the photocatalytic H2O2 production from water and O2 using solar energy with one-compartment H2O2 fuel cells provides on-site production and usage of H2O2 as a more useful and promising solar fuel than hydrogen. This article is part of a Special Issue entitled Biodesign for Bioenergetics--The design and engineering of electronc transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson. Copyright © 2016 Elsevier B.V. All rights reserved.
21 CFR 582.1366 - Hydrogen peroxide.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Hydrogen peroxide. 582.1366 Section 582.1366 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1366 Hydrogen peroxide. (a) Product. Hydrogen peroxide. (b) [Reserved] (c) Limitations...
21 CFR 582.1366 - Hydrogen peroxide.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Hydrogen peroxide. 582.1366 Section 582.1366 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1366 Hydrogen peroxide. (a) Product. Hydrogen peroxide. (b) [Reserved] (c) Limitations...
21 CFR 582.1366 - Hydrogen peroxide.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Hydrogen peroxide. 582.1366 Section 582.1366 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1366 Hydrogen peroxide. (a) Product. Hydrogen peroxide. (b) [Reserved] (c) Limitations...
21 CFR 582.1366 - Hydrogen peroxide.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Hydrogen peroxide. 582.1366 Section 582.1366 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1366 Hydrogen peroxide. (a) Product. Hydrogen peroxide. (b) [Reserved] (c) Limitations...
21 CFR 582.1366 - Hydrogen peroxide.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Hydrogen peroxide. 582.1366 Section 582.1366 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1366 Hydrogen peroxide. (a) Product. Hydrogen peroxide. (b) [Reserved] (c) Limitations...
21 CFR 529.1150 - Hydrogen peroxide.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Hydrogen peroxide. 529.1150 Section 529.1150 Food... DRUGS, FEEDS, AND RELATED PRODUCTS CERTAIN OTHER DOSAGE FORM NEW ANIMAL DRUGS § 529.1150 Hydrogen peroxide. (a) Specifications. Each milliliter of solution contains 396.1 milligrams (mg) hydrogen peroxide...
21 CFR 529.1150 - Hydrogen peroxide.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Hydrogen peroxide. 529.1150 Section 529.1150 Food... DRUGS, FEEDS, AND RELATED PRODUCTS CERTAIN OTHER DOSAGE FORM NEW ANIMAL DRUGS § 529.1150 Hydrogen peroxide. (a) Specifications. Each milliliter of solution contains 396.1 milligrams (mg) hydrogen peroxide...
21 CFR 529.1150 - Hydrogen peroxide.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Hydrogen peroxide. 529.1150 Section 529.1150 Food... DRUGS, FEEDS, AND RELATED PRODUCTS CERTAIN OTHER DOSAGE FORM NEW ANIMAL DRUGS § 529.1150 Hydrogen peroxide. (a) Specifications. Each milliliter of solution contains 396.1 milligrams (mg) hydrogen peroxide...
21 CFR 529.1150 - Hydrogen peroxide.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Hydrogen peroxide. 529.1150 Section 529.1150 Food... DRUGS, FEEDS, AND RELATED PRODUCTS CERTAIN OTHER DOSAGE FORM NEW ANIMAL DRUGS § 529.1150 Hydrogen peroxide. (a) Specifications. Each milliliter of solution contains 396.1 milligrams (mg) hydrogen peroxide...
21 CFR 529.1150 - Hydrogen peroxide.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Hydrogen peroxide. 529.1150 Section 529.1150 Food... DRUGS, FEEDS, AND RELATED PRODUCTS CERTAIN OTHER DOSAGE FORM NEW ANIMAL DRUGS § 529.1150 Hydrogen peroxide. (a) Specifications. Each milliliter of solution contains 396.1 milligrams (mg) hydrogen peroxide...
Hasegawa, Masashi; Ogihara, Tohru; Tamai, Hiroshi; Hiroi, Mayo
2009-08-04
Recent clinical trials have demonstrated the efficacy and safety of therapeutic hypothermia for neonatal hypoxic ischemic encephalopathy (HIE). We previously reported that the levels of non-protein-bound iron and ascorbic acid (AA) are increased in the CSF of infants with HIE. In this study, we investigated the effect of hypothermia on the combined cytotoxicity of Fe and AA for differentiated PC12 cells. The optimal settings for hypothermic treatment were a temperature of 30-32 degrees C, rescue time window of less than 6 h, and minimum duration of at least 24 h. Hypothermia effectively prevented the loss of the mitochondrial transmembrane potential from 6 h to 72 h (end of the study period) and attenuated the release of apoptotic proteins (cytochrome c and apoptosis-inducing factor) at 6 h of exposure to Fe-AA. Activation of caspase-3 was also delayed until 24 h. Akt was transiently activated, although no influence of temperature was observed. Elevation of oxidative stress markers, including ortho-, meta-, and di-tyrosine (markers of protein oxidation) and 4-hydroxynonenal (lipid peroxidation) was significantly attenuated when the temperature was reduced by 5 degrees C. The half-cell reduction potential (Ehc) of GSSG/2GSH redox couple ranged from -220 to -180 mV in unstressed differentiated PC12 cells, and apoptosis was triggered when Ehc exceeded -180 mV. Hypothermia prevented Ehc from rising above -180 mV within 24 h of exposure to Fe-AA. In conclusion, hypothermia prevented cell death due to Fe-AA toxicity by inhibiting apoptotic pathways through maintenance of a reduced cellular environment, as well as by alleviating oxidative stress.
Di Domenico, Fabio; Pupo, Gilda; Tramutola, Antonella; Giorgi, Alessandra; Schininà, Maria Eugenia; Coccia, Raffaella; Head, Elizabeth; Butterfield, D Allan; Perluigi, Marzia
2014-06-01
Down syndrome (DS) is the most common genetic cause of intellectual disability, due to partial or complete triplication of chromosome 21. DS subjects are characterized by a number of abnormalities including premature aging and development of Alzheimer disease (AD) neuropathology after approximately 40 years of age. Several studies show that oxidative stress plays a crucial role in the development of neurodegeneration in the DS population. Increased lipid peroxidation is one of the main events causing redox imbalance within cells through the formation of toxic aldehydes that easily react with DNA, lipids, and proteins. In this study we used a redox proteomics approach to identify specific targets of 4-hydroxynonenal modifications in the frontal cortex from DS cases with and without AD pathology. We suggest that a group of identified proteins followed a specific pattern of oxidation in DS vs young controls, probably indicating characteristic features of the DS phenotype; a second group of identified proteins showed increased oxidation in DS/AD vs DS, thus possibly playing a role in the development of AD. The third group of comparison, DS/AD vs old controls, identified proteins that may be considered specific markers of AD pathology. All the identified proteins are involved in important biological functions including intracellular quality control systems, cytoskeleton network, energy metabolism, and antioxidant response. Our results demonstrate that oxidative damage is an early event in DS, as well as dysfunctions of protein-degradation systems and cellular protective pathways, suggesting that DS subjects are more vulnerable to oxidative damage accumulation that might contribute to AD development. Further, considering that the majority of proteins have been already demonstrated to be oxidized in AD brain, our results strongly support similarities with AD in DS. Copyright © 2014 Elsevier Inc. All rights reserved.
McGovern, Toby K; Powell, William S; Day, Brian J; White, Carl W; Govindaraju, Karuthapillai; Karmouty-Quintana, Harry; Lavoie, Normand; Tan, Ju Jing; Martin, James G
2010-10-06
Exposure to chlorine (Cl2) causes airway injury, characterized by oxidative damage, an influx of inflammatory cells and airway hyperresponsiveness. We hypothesized that Cl2-induced airway injury may be attenuated by antioxidant treatment, even after the initial injury. Balb/C mice were exposed to Cl2 gas (100 ppm) for 5 mins, an exposure that was established to alter airway function with minimal histological disruption of the epithelium. Twenty-four hours after exposure to Cl2, airway responsiveness to aerosolized methacholine (MCh) was measured. Bronchoalveolar lavage (BAL) was performed to determine inflammatory cell profiles, total protein, and glutathione levels. Dimethylthiourea (DMTU;100 mg/kg) was administered one hour before or one hour following Cl2 exposure. Mice exposed to Cl2 had airway hyperresponsiveness to MCh compared to control animals pre-treated and post-treated with DMTU. Total cell counts in BAL fluid were elevated by Cl2 exposure and were not affected by DMTU treatment. However, DMTU-treated mice had lower protein levels in the BAL than the Cl2-only treated animals. 4-Hydroxynonenal analysis showed that DMTU given pre- or post-Cl2 prevented lipid peroxidation in the lung. Following Cl2 exposure glutathione (GSH) was elevated immediately following exposure both in BAL cells and in fluid and this change was prevented by DMTU. GSSG was depleted in Cl2 exposed mice at later time points. However, the GSH/GSSG ratio remained high in chlorine exposed mice, an effect attenuated by DMTU. Our data show that the anti-oxidant DMTU is effective in attenuating Cl2 induced increase in airway responsiveness, inflammation and biomarkers of oxidative stress.
Konash, Anastassija; Magner, Edmond
2006-07-15
Due to their frequent occurrence in food, cosmetics and pharmaceutical products, and their poor solubility in water, the detection of peroxides in organic solvents has aroused significant interest. For diagnostics or on-site testing, a fast and specific experimental approach is required. Although aqueous peroxide biosensors are well known, they are usually not suitable for nonaqueous applications due to their instability. Here we describe an organic phase biosensor for hydrogen peroxide based on horseradish peroxidase immobilized in an Eastman AQ 55 polymer matrix. Rotating disc amperometry was used to examine the effect of the solvent properties, the amount and pH of added buffer, the concentration of peroxide and ferrocene dimethanol, and the amount of Eastman AQ 55 and of enzyme on the response of the biosensor to hydrogen peroxide. The response of the biosensor was limited by diffusion. Linear responses (with detection limits to hydrogen peroxide given in parentheses) were obtained in methanol (1.2 microM), ethanol (0.6 microM), 1-propanol (2.8 microM), acetone (1.4 microM), acetonitrile (2.6 microM), and ethylene glycol (13.6 microM). The rate of diffusion of ferrocene dimethanol was more constrained than the rate of diffusion of hydrogen peroxide, resulting in a comparatively narrow linear range. The main advantages of the sensor are its ease of use and a high degree of reproducibility, together with good operational and storage stability.
Redox- and non-redox-metal-induced formation of free radicals and their role in human disease.
Valko, Marian; Jomova, Klaudia; Rhodes, Christopher J; Kuča, Kamil; Musílek, Kamil
2016-01-01
Transition metal ions are key elements of various biological processes ranging from oxygen formation to hypoxia sensing, and therefore, their homeostasis is maintained within strict limits through tightly regulated mechanisms of uptake, storage and secretion. The breakdown of metal ion homeostasis can lead to an uncontrolled formation of reactive oxygen species, ROS (via the Fenton reaction, which produces hydroxyl radicals), and reactive nitrogen species, RNS, which may cause oxidative damage to biological macromolecules such as DNA, proteins and lipids. An imbalance between the formation of free radicals and their elimination by antioxidant defense systems is termed oxidative stress. Most vulnerable to free radical attack is the cell membrane which may undergo enhanced lipid peroxidation, finally producing mutagenic and carcinogenic malondialdehyde and 4-hydroxynonenal and other exocyclic DNA adducts. While redox-active iron (Fe) and copper (Cu) undergo redox-cycling reactions, for a second group of redox-inactive metals such as arsenic (As) and cadmium (Cd), the primary route for their toxicity is depletion of glutathione and bonding to sulfhydryl groups of proteins. While arsenic is known to bind directly to critical thiols, other mechanisms, involving formation of hydrogen peroxide under physiological conditions, have been proposed. Redox-inert zinc (Zn) is the most abundant metal in the brain and an essential component of numerous proteins involved in biological defense mechanisms against oxidative stress. The depletion of zinc may enhance DNA damage by impairing DNA repair mechanisms. Intoxication of an organism by arsenic and cadmium may lead to metabolic disturbances of redox-active copper and iron, with the occurrence of oxidative stress induced by the enhanced formation of ROS/RNS. Oxidative stress occurs when excessive formation of ROS overwhelms the antioxidant defense system, as is maintained by antioxidants such as ascorbic acid, alpha-tocopherol, glutathione (GSH), carotenoids, flavonoids and antioxidant enzymes which include SOD, catalase and glutathione peroxidase. This review summarizes current views regarding the role of redox-active/inactive metal-induced formation of ROS, and modifications to biomolecules in human disease such as cancer, cardiovascular disease, metabolic disease, Alzheimer's disease, Parkinson's disease, renal disease, blood disorders and other disease. The involvement of metals in DNA repair mechanisms, tumor suppressor functions and interference with signal transduction pathways are also discussed.
21 CFR 172.814 - Hydroxylated lecithin.
Code of Federal Regulations, 2014 CFR
2014-04-01
... resultant product has an acetyl value of 30 to 38: (1) With hydrogen peroxide, benzoyl peroxide, lactic acid, and sodium hydroxide. (2) With hydrogen peroxide, acetic acid, and sodium hydroxide. (b) It is used or...
NASA Astrophysics Data System (ADS)
Santosa, I. E.; Laarhoven, L. J. J.; Harbinson, J.; Driscoll, S.; Harren, F. J. M.
2003-01-01
At low temperatures, high light intensity induces strong photooxidative lipid peroxidation in chilling sensitive cucumber leaves. A sensitive laser-based photoacoustic detector was employed to monitor on-line the evolution of ethane, one of the end products of lipid peroxidation. The Δv=2 CO laser operated in the 2.62-4.06 μm infrared wavelength region with a maximum intracavity power of 11 W. In combination with an intracavity placed photoacoustic cell the laser was able to detect ethane down to 0.5 part per billion. Cucumber leaf disks chilled in the light produce ethane; the rate of ethane production depends on the applied temperature, light intensity, and period of chilling.
Impacts of heterogeneous reactions to atmospheric peroxides: Observations and budget analysis study
NASA Astrophysics Data System (ADS)
Qin, Mengru; Chen, Zhongming; Shen, Hengqing; Li, Huan; Wu, Huihui; Wang, Yin
2018-06-01
Atmospheric peroxides play important roles in atmospheric chemistry, acting as reactive oxidants and reservoirs of HOX and ROX radicals. Field measurements of atmospheric peroxides were conducted over urban Beijing from 2015 to 2016, including dust storm days, haze days and different seasons. We employed a box model based on RACM2 mechanism to conduct concentration simulation and budget analysis of hydrogen peroxide (H2O2) and peroxyacetic acid (PAA). In this study, heterogeneous reaction is found to be a significant sink for atmospheric H2O2 and PAA in urban Beijing. Here, we recommend a suitable uptake coefficient formula considering the water effect for model research of peroxides. It is found that H2O2 and PAA unexpectedly maintained considerable concentrations on haze days, even higher than that on non-haze days. This phenomenon is mainly ascribed to relatively high levels of volatile organic compounds and ozone on haze days. In addition, high levels of water vapor in pollution episode can promote not only the heterogeneous uptake to aerosol phase but also the production of H2O2. Atmospheric PAA formation is suggested to be sensitive to alkenes and NOX in urban Beijing. In particular, with the help of peroxides, sulfate formation rate from heterogeneous uptake could increase by ∼4 times on haze days, indicating the potential effect of peroxides on enhancement of aerosol oxidative property and secondary sulfate formation.
Cyclic voltammetry to evaluate the antioxidant potential in winemaking by-products.
José Jara-Palacios, M; Luisa Escudero-Gilete, M; Miguel Hernández-Hierro, J; Heredia, Francisco J; Hernanz, Dolores
2017-04-01
Grape pomace is composed of seeds, skins and stems that are an important source of phenolic substances, which have antioxidant properties and potential benefits to human health. Cyclic voltammetry (CV) has been used to measure the total antioxidant potential of different winemaking by-products. The electrochemical behavior of pomace, seeds, skins and stems was measured by CV and lipid peroxidation inhibition by thiobarbituric acid reactive substances (TBARS) method. Differences for the electrochemical parameter were found between the by-products, pomace and seeds, which presented the greatest voltammetric peak area. Furthermore, the by-products induced inhibition of lipid peroxidation in rat liver homogenates. Pomace and seeds showed higher capacity to inhibit lipid peroxidation than stems and skins, which could be because these by-products are richer in flavanols. Simple regression analyses showed that voltammetric parameters are highly correlated to the values obtained for lipid peroxidation inhibition. CV is a promising technique to estimate the total antioxidant potential of phenolic extract from winemaking by-products. Copyright © 2016 Elsevier B.V. All rights reserved.
Boshuizen, Margit; Leopold, Jan Hendrik; Zakharkina, Tetyana; Knobel, Hugo H; Weda, Hans; Nijsen, Tamara M E; Vink, Teunis J; Sterk, Peter J; Schultz, Marcus J; Bos, Lieuwe D J
2015-09-03
Alkanes and alkenes in the breath are produced through fatty acid peroxidation, which is initialized by reactive oxygen species. Inflammation is an important cause and effect of reactive oxygen species. We aimed to evaluate the association between fatty acid peroxidation products and inflammation of the alveolar and systemic compartment in ventilated intensive care unit (ICU) patients.Volatile organic compounds were measured by gas chromatography and mass spectrometry in the breath of newly ventilated ICU patients within 24 h after ICU admission. Cytokines were measured in non-directed bronchial lavage fluid (NBL) and plasma by cytometric bead array. Correlation coefficients were calculated and presented in heatmaps.93 patients were included. Peroxidation products in exhaled breath were not associated with markers of inflammation in plasma, but were correlated with those in NBL. IL-6, IL-8, IL-1β and TNF-α concentration in NBL showed inverse correlation coefficients with the peroxidation products of fatty acids. Furthermore, NBL IL-10, IL-13, GM-CSF and IFNγ demonstrated positive associations with breath alkanes and alkenes. Correlation coefficients for NBL cytokines were high regarding peroxidation products of n-6, n-7 and particularly in n-9 fatty acids.Levels of lipid peroxidation products in the breath of ventilated ICU patients are associated with levels of inflammatory markers in NBL, but not in plasma. Alkanes and alkenes in breath seems to be associated with an anti-inflammatory, rather than a pro-inflammatory state in the alveoli.
Next Steps Forward in Understanding Martian Surface and Subsurface Chemistry
NASA Astrophysics Data System (ADS)
Carrier, Brandi L.
2017-09-01
The presence of oxidants such as hydrogen peroxide (H2O2) and perchlorate (ClO4-), which have been detected on Mars, has significant implications for chemistry and astrobiology. These oxidants can increase the reactivity of the Martian soil, accelerate the decomposition of organic molecules, and depress the freezing point of water. The study by Crandall et al. "Can Perchlorates be Transformed to Hydrogen Peroxide Products by Cosmic Rays on the Martian Surface" reveals a new formation mechanism by which hydrogen peroxide and other potential oxidants can be generated via irradiation of perchlorate by cosmic rays. This study represents an important next step in developing a full understanding of Martian surface and subsurface chemistry, particularly with respect to degradation of organic molecules and potential biosignatures.
Effect of americium-241 on luminous bacteria. Role of peroxides.
Alexandrova, M; Rozhko, T; Vydryakova, G; Kudryasheva, N
2011-04-01
The effect of americium-241 ((241)Am), an alpha-emitting radionuclide of high specific activity, on luminous bacteria Photobacterium phosphoreum was studied. Traces of (241)Am in nutrient media (0.16-6.67 kBq/L) suppressed the growth of bacteria, but enhanced luminescence intensity and quantum yield at room temperature. Lower temperature (4 °C) increased the time of bacterial luminescence and revealed a stage of bioluminescence inhibition after 150 h of bioluminescence registration start. The role of conditions of exposure the bacterial cells to the (241)Am is discussed. The effect of (241)Am on luminous bacteria was attributed to peroxide compounds generated in water solutions as secondary products of radioactive decay. Increase of peroxide concentration in (241)Am solutions was demonstrated; and the similarity of (241)Am and hydrogen peroxide effects on bacterial luminescence was revealed. The study provides a scientific basis for elaboration of bioluminescence-based assay to monitor radiotoxicity of alpha-emitting radionuclides in aquatic solutions. Copyright © 2011 Elsevier Ltd. All rights reserved.
[Inhibition of Linseed Oil Autooxidation by Essential Oils and Extracts from Spice Plants].
Misharina, T A; Alinkina, E S; Terenina, M B; Krikunova, N I; Kiseleva, V I; Medvedeva, I B; Semenova, M G
2015-01-01
Clove bud essential oil, extracts from ginger, pimento and black pepper, or ascorbyl palmytate were studied as natural antioxidants for the inhibition of autooxidation of polyunsaturated fatty acids in linseed oil. Different methods were used to estimate antioxidant efficiency. These methods are based on the following parameters: peroxide values; peroxide concentration; content of degradation products of unsaturated fatty acid peroxides, which acted with thiobarbituric acid; diene conjugate content; the content of volatile compounds that formed as products of unsaturated fatty acid peroxide degradation; and the composition of methyl esters of fatty acids in samples of oxidized linseed oil.
Shimizu, T; Igarashi, J; Ohtuka, Y; Oguchi, S; Kaneko, K; Yamashiro, Y
2001-01-01
We investigated the effect of n-3 polyunsaturated fatty acids (PUFAs) on mucosal levels of leukotrienes (LTs) and lipid peroxide (LPO), and on mucosal microcirculation, in rats with experimental colitis induced by dextran sulfate sodium (DSS). We fed Wistar rats a perilla oil-enriched diet containing alpha-linolenic acid (63.2% of total fatty acids) with various doses of vitamin E for 4 weeks, with 4% DSS added to the drinking water during the last week. Control rats were fed a diet produced from soybean oil containing alpha-linolenic acid (5.1% of total fatty acids). Colonic mucosal blood flow was measured with a laser Doppler flowmeter. The mucosal level of arachidonic acid was significantly lower and that of eicosapentaenoic acid was significantly higher in the experimental group. The mucosal level of LPO in the experimental group fed a trace or ordinary dose of vitamin E was significantly higher than that of the controls. The production of LTB(4) and LTC(4) from the colonic mucosa in the experimental group was significantly lower than that in controls. However, only the experimental group fed a vitamin E dose 4-fold higher than that given to the controls showed a significant increase in mucosal blood flow. These results suggest that n-3 PUFAs increase mucosal blood flow by inhibiting LT production when there is sufficient vitamin E to inhibit lipid peroxidation in rats with experimental colitis. Copyright 2001 S. Karger AG, Basel
Lipid peroxidation products do not activate hepatic stellate cells.
Fang, Hsun-Lang; Lin, Wen-Chuan
2008-11-20
Lipid peroxidation (LPO) is known to be associated with liver fibrosis in chronic liver injury. However, direct effects of the products of LPO on liver fibrogenesis are still not clear. In this study, we examined the LPO products, such as malondiladehyde (MDA), 8-iso-prostaglandin F(2alpha) (8-iso-PGF(2alpha)), and 15-keto-13,14-dihydro-PGF(2alpha) (15-keto-PGF(2alpha)), on the activation of hepatic stellate cells (HSCs) in vivo and in vitro. Carbon tetrachloride (CCl(4)) was given orally to rats twice a week for 8 weeks. Corn oil was given daily to rats for 8 weeks. CCl(4) induced both free-radical-medicated and cyclooxygenase-2-dependent LPO. Free radical-medicated LPO showed an increase with corn oil treatment, whereas no effect was reflected on COX-2-dependent LPO. CCl(4) induced liver fibrosis in rats, but no liver fibrosis was observed in rats treated with corn oil. In vitro studies demonstrated that MDA, 8-iso-PGF(2alpha) and 15-keto-PGF(2alpha), did not activate HSCs, which were preactivated or not preactivated by TGF-beta1. Our results clearly indicate that LPO products, such as MDA, 8-iso-PGF(2alpha) and 15-keto-PGF(2alpha), cannot directly activate HSCs.
2017-01-01
Activation of macrophages may be one of the possible approaches in modulating inflammation. We previously reported that Bougainvillea xbuttiana extract showed an immunomodulatory activity. Here we compare the activation of macrophages exposed to B. xbuttiana extract and compare it with the other treatments such as LPS, IL-4, and IL-10. The cytotoxic effect of extract on peritoneal macrophages was determined by the technique of violet crystal staining. To verify the activation of macrophages we used the tests of vacuolization, hydrogen peroxide production, and percentages of cellular expansion and phagocytosis. The levels of interleukins secreted by macrophages treated with the extract, LPS, and cytokines were determined by the biological assay for the determination of TNF levels and by ELISA for all other interleukins. NO levels were evaluated by colorimetric reactions using Griess reagent. Our results showed that B. xbuttiana extract induced (a) low cytotoxicity percentages, (b) increased vacuolization, hydrogen peroxide production and cell expansion and phagocytosis percentages, and (c) decreased production of TNF-α, IFN-γ, IL-1β, and IL-6 and potentiated production of IL-4, IL-10 and TGF-β. These results suggest that B. xbuttiana extract was able to activate the murine macrophages in a manner similar to those macrophages exposed to IL-4 and IL-10. PMID:29279849
7-Nitro-4-(phenylthio)benzofurazan is a potent generator of superoxide and hydrogen peroxide.
Patridge, Eric V; Eriksson, Emma S E; Penketh, Philip G; Baumann, Raymond P; Zhu, Rui; Shyam, Krishnamurthy; Eriksson, Leif A; Sartorelli, Alan C
2012-10-01
Here, we report on 7-nitro-4-(phenylthio)benzofurazan (NBF-SPh), the most potent derivative among a set of patented anticancer 7-nitrobenzofurazans (NBFs), which have been suggested to function by perturbing protein-protein interactions. We demonstrate that NBF-SPh participates in toxic redox-cycling, rapidly generating reactive oxygen species (ROS) in the presence of molecular oxygen, and this is the first report to detail ROS production for any of the anticancer NBFs. Oxygraph studies showed that NBF-SPh consumes molecular oxygen at a substantial rate, rivaling even plumbagin, menadione, and juglone. Biochemical and enzymatic assays identified superoxide and hydrogen peroxide as products of its redox-cycling activity, and the rapid rate of ROS production appears to be sufficient to account for some of the toxicity of NBF-SPh (LC(50) = 12.1 μM), possibly explaining why tumor cells exhibit a sharp threshold for tolerating the compound. In cell cultures, lipid peroxidation was enhanced after treatment with NBF-SPh, as measured by 2-thiobarbituric acid-reactive substances, indicating a significant accumulation of ROS. Thioglycerol rescued cell death and increased survival by 15-fold to 20-fold, but pyruvate and uric acid were ineffective protectants. We also observed that the redox-cycling activity of NBF-SPh became exhausted after an average of approximately 19 cycles per NBF-SPh molecule. Electrochemical and computational analyses suggest that partial reduction of NBF-SPh enhances electrophilicity, which appears to encourage scavenging activity and contribute to electrophilic toxicity.
7-Nitro-4-(phenylthio)benzofurazan is a potent generator of superoxide and hydrogen peroxide
Eriksson, Emma S. E.; Penketh, Philip G.; Baumann, Raymond P.; Zhu, Rui; Shyam, Krishnamurthy; Eriksson, Leif A.; Sartorelli, Alan C.
2013-01-01
Here, we report on 7-nitro-4-(phenylthio) benzofurazan (NBF-SPh), the most potent derivative among a set of patented anticancer 7-nitrobenzofurazans (NBFs), which have been suggested to function by perturbing protein–protein interactions. We demonstrate that NBF-SPh participates in toxic redox-cycling, rapidly generating reactive oxygen species (ROS) in the presence of molecular oxygen, and this is the first report to detail ROS production for any of the anticancer NBFs. Oxygraph studies showed that NBF-SPh consumes molecular oxygen at a substantial rate, rivaling even plumbagin, menadione, and juglone. Biochemical and enzymatic assays identified superoxide and hydrogen peroxide as products of its redox-cycling activity, and the rapid rate of ROS production appears to be sufficient to account for some of the toxicity of NBF-SPh (LC50 = 12.1 µM), possibly explaining why tumor cells exhibit a sharp threshold for tolerating the compound. In cell cultures, lipid peroxidation was enhanced after treatment with NBF-SPh, as measured by 2-thiobarbituric acid-reactive substances, indicating a significant accumulation of ROS. Thioglycerol rescued cell death and increased survival by 15-fold to 20-fold, but pyruvate and uric acid were ineffective protectants. We also observed that the redox-cycling activity of NBF-SPh became exhausted after an average of approximately 19 cycles per NBF-SPh molecule. Electrochemical and computational analyses suggest that partial reduction of NBF-SPh enhances electrophilicity, which appears to encourage scavenging activity and contribute to electrophilic toxicity. PMID:22669514
Jia, Cai-Hua; Shin, Jung-Ah; Lee, Ki-Teak
2015-12-02
Caffeic acid phenethyl ester (CAPE) and 4-vinylcatechol (4-VC) were prepared for studying their antioxidative activities in emulsion. Oil-in-water emulsions of stripped soybean oil containing 200 ppm of CAPE, 4-VC, or α-tocopherol were stored at 40 °C in the dark for 50 days, and proton nuclear magnetic resonance ((1)H NMR) was used to identify and quantify the oxidation products. Emulsion droplet sizes, peroxide values, and levels of primary oxidation products (i.e., hydroperoxides) and secondary oxidation products (i.e., aldehydes) were determined. The results showed that CAPE (200 ppm) and 4-VC (200 ppm) had significantly greater antioxidant activities on the oxidation of stripped soybean oil-in-water emulsions than α-tocopherol (200 ppm). The peroxide values of CAPE (8.4 mequiv/L emulsion) and 4-VC (15.0 mequiv/L emulsion) were significantly lower than that of α-tocopherol (33.4 mequiv/L emulsion) (p < 0.05) on 36 days. In addition, the combinations of CAPE + α-tocopherol (100 + 100 ppm) or 4-VC + α-tocopherol (100 + 100 ppm) had better antioxidant activities than α-tocopherol (200 ppm). For CAPE + α-tocopherol, 4-VC + α-tocopherol, and α-tocopherol, the amounts of conjugated diene forms were 16.67, 13.72, and 16.32 mmol/L emulsion, and the concentrations of aldehydes were 2.15, 1.13, and 4.26 mmol/L emulsion, respectively, after 50 days of storage.
Suh, Joon Hyuk; Niu, Yue S; Hung, Wei-Lun; Ho, Chi-Tang; Wang, Yu
2017-06-01
Lipid peroxidation gives rise to carbonyl species, some of which are reactive and play a role in the pathogenesis of numerous human diseases. Oils are ubiquitous sources that can be easily oxidized to generate these compounds under oxidative stress. In this present work, we developed a targeted lipidomic method for the simultaneous determination of thirty-five aldehydes and ketones derived from fish oil, the omega-3 fatty acid-rich source, by using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The analytes include highly toxic reactive carbonyl species (RCS) such as acrolein, crotonaldehyde, trans-4-hydroxy-2-hexenal (HHE), trans-4-hydroxy-2-nonenal (HNE), trans-4-oxo-2-nonenal (ONE), glyoxal and methylglyoxal, all of which are promising biomarkers of lipid peroxidation. They were formed using in vitro Fe(II)-mediated oxidation, and derivatized using 2,4-dinitrophenylhydrazine (DNPH) for the feasibility of quantitative assay. Before analysis, solid phase extraction (SPE) was used to clean samples further. Uniquely different patterns of carbonyl compound generation between omega-3 and 6 fatty acids were observed using this lipidomic approach. The method developed was both validated, and successfully applied to monitor formation of carbonyl species by lipid peroxidation using ten different fish oil products. Hypotheses of correlations between the monitored dataset of analytes and their parent fatty acids were also tested using the Pearson's correlation test. Results indicate our method is a useful analytical tool for lipid peroxidation studies. Copyright © 2017 Elsevier B.V. All rights reserved.
Moriello, Karen A; Hondzo, Hanna
2014-06-01
Accelerated hydrogen peroxide is a proprietary disinfectant formulation that is available for both commercial and home use and is labelled as antifungal. To determine the antifungal efficacy of accelerated hydrogen peroxide disinfectants against Microsporum and Trichophyton spp. Three products formulated as ready to use and three concentrates were used. Concentrates were tested at dilutions of 1:8, 1:16 (recommended dilution) and 1:32. One product was a surgical instrument disinfectant. Sterile water, sodium hypochlorite (1:32 dilution) and over-the-counter 3% hydrogen peroxide were used as controls. Conidial suspensions contained ~9.6 × 10(5) /mL Microsporum canis, ~1.0 × 10(7) /mL M. gypseum or ~2.0 × 10(7) /mL Trichophyton sp. and were tested at 1:10 dilution. Isolated infective spore suspensions of M. canis from an untreated cat and T. erinacei from an untreated hedgehog were tested at 1:10, 1:5 and 1:1 spore-to-disinfectant dilutions. Too many colonies to count were present on untreated control plates. Accelerated hydrogen peroxide and household hydrogen peroxide inhibited growth of both pathogens in conidial (1:10 dilution) and spore suspensions (1:10, 1:5 and 1:10 dilution). There was no lack of efficacy of products that were >12 months old. Accelerated hydrogen peroxide products are an option for environmental disinfection of surfaces exposed to M. canis and Trichophyton sp. after appropriate gross decontamination and mechanical cleaning with a detergent. The results from conidial testing were identical to those of isolated infected spore testing, which suggests that accelerated hydrogen peroxide products with label claim as antifungal against Trichophyton mentagrophytes may be suitable as an alternative disinfectant to sodium hypochlorite. © 2014 ESVD and ACVD.
The Effect of Buckwheat Hull Extract on Lipid Oxidation in Frozen-Stored Meat Products.
Hęś, Marzanna; Szwengiel, Artur; Dziedzic, Krzysztof; Le Thanh-Blicharz, Joanna; Kmiecik, Dominik; Górecka, Danuta
2017-04-01
This study investigated the effect of antioxidants on lipid stability of frozen-stored meat products. Buckwheat hull extract was used to enrich fried meatballs made from ground pork. During 180-d storage of meat products, lipid oxidation (peroxide and 2-thiobarbituric acid reactive substances [TBARS] value) was periodically monitored. The results were compared with butylated hydroxytoluene (BHT). The addition of antioxidants decreased lipid oxidation in stored meatballs. The highest ability to control peroxide and TBARS values was demonstrated for buckwheat hull extract. Moreover, buckwheat hull extract showed a higher 2,2-diphenyl-1-picrylhydrazyl free radical scavenging activity as well as higher Fe(II) ion chelating ability, as compared with BHT. The total content of phenolic compounds are highly correlated to the individual polyphenols in extract of buckwheat hull, among which the following were assayed: 3,4-dihydroxybenzoic acid, 4-hydroxybenzoic acid, gallic acid, isovanillic acid and p-coumaric acid, and flavonoids: isoorientin, quercetin, quercetin 3-d-glucoside, rutin, and vitexin. These results indicate that plant extracts can be used to prolong shelf life of products by protecting them against lipid oxidation and deterioration of their nutritional quality. © 2017 Institute of Food Technologists®.
Kim, Jae-Hoon; Oh, Duk-Geun
2017-01-01
This study was conducted to establish the shelf-life of a milk beverage product supplemented with coffee extracts. Qualitative changes including peroxide value (PV), microorganism content, caffeine content, and sensory evaluation were measured periodically in beverages kept at 10, 20, and 30°C for 8 wk. Lipid oxidation of the product was measured by peroxide value analysis, and apparent changes were observed during a 4 wk storage period. Caffeine analysis revealed that the changes in caffeine content were negligible during the storage period. Total aerobic bacteria, Escherichia coli, yeast, and mold were not detected in the products during an 8 wk storage period. Sensory evaluation revealed that after 4 wk of storage overall acceptance was less than 3 points on a 5-point scale. In this study, PV was used as an indicator of the shelf-life of the milk beverage product. PV analysis revealed that a value of 20 meq/kg was the end of the shelf-life using the Arrhenius equation and the accelerated shelf-life test (ASLT). Assuming that the beverages are kept at 4°C during distribution, calculation of when the PV reached the quality limit point (20 meq/kg) was done with the equation ln(PV) = 0.3644X − 2.21834 and, using that equation, PV = e0.3644X-2.21834 was calculated. Therefore, 14.3086 wk was determined to be the shelf-life of the milk beverage supplemented with coffee when stored at 4°C. PMID:28515654
Liu, P; Kerr, B J; Chen, C; Weber, T E; Johnston, L J; Shurson, G C
2014-07-01
A total of 108 barrows (6.67 ± 0.03 kg BW) were assigned to 12 dietary treatments in a 4 × 3 factorial design plus a corn-soybean meal control diet to evaluate the effect of lipid source and peroxidation level on DE, ME, and apparent total tract digestibility (ATTD) of DM, GE, ether extract (EE), N, and C in young pigs. Main effects were lipid source (corn oil [CN], canola oil [CA], poultry fat [PF], and tallow [TL]) and peroxidation level (original lipids [OL], slow oxidation [SO] of lipids heated for 72 h at 95°C, or rapid oxidation [RO] of lipids heated for 7 h at 185°C). Pigs were provided ad libitum access to diets for 28 d followed by an 8-d period of controlled feed intake equivalent to 4% BW daily. Diets were formulated based on the ME content of CA with the standardized ileal digestible Lys, Met, Thr, Trp, total Ca, and available P:ME balanced relative to NRC (1998) recommendations. Lipid peroxidation analysis indicated that compared with the OL, SO and RO had a markedly increased concentrations of lipid peroxidation products, and the increase of peroxidation products in CN and CA were greater than those in PF and TL. Addition of lipids to diets increased (P < 0.05) ATTD of EE and tended to improve (P = 0.06) ATTD of GE compared with pigs fed the control diet. Feeding CN or CA increased (P < 0.05) ATTD of DM, GE, EE, N, and C compared with feeding TL, while feeding PF improved (P < 0.05) ATTD of GE and EE and tended to increase (P = 0.06) ATTD of C compared with TL. Pigs fed CN had increased (P = 0.05) percentage N retention than pigs fed TL. No peroxidation level effect or interaction between lipid source and peroxidation level on DE and ME was observed. Lipid source tended (P = 0.08) to affect DE but not ME values of experimental lipids (P > 0.12). Digestible energy values for CA (8,846, 8,682, and 8,668 kcal/kg) and CN (8,867, 8,648, and 8,725 kcal/kg) were about 450 kcal/kg greater than that of TL (8,316, 8,168, and 8,296 kcal/kg), with PF being intermediate (8,519, 8,274, and 8,511 kcal/kg), for OL, SO, and RO lipids, respectively, respectively. In conclusion, lipid source affected ATTD of dietary DM, GE, EE, N, and C, and N retention and tended to influence the DE value of the lipid but did not significantly affect their ME value. Rapid and slow heating of lipids used in this study increased lipid peroxidation products but had no detectable effects on nutrient and energy digestibility as well as DE and ME values of the various lipids.
... the benzoyl peroxide product to one or two small areas you want to treat for 3 days when ... cream, or gel, first wash the affected skin areas and gently pat dry with a towel. Then apply a small amount of benzoyl Peroxide, rub it in gently. ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanhemmen, J.J.; Meuling, W.J.A.
1975-01-01
The reactivity of gamma ray induced superoxide radicals and dismutation products (singlet molecular oxygen and hydrogen peroxide) with DNA were studied. Superoxide dismutase, which removes superoxide radicals and inhibits the formation of singlet oxygen, protects biologically active DNA (OX174 RF) against inactivation by ionizing radiation. Catalase, which removes hydrogen peroxide, also protects the DNA. Attempts with various chemical sources of singlet oxygen to determine whether this species inactivates DNA did not yield an unequivocal answer. It was concluded that a combination of the protonated form of the superoxide radical and hydrogen peroxide inactivates DNA. (Author) (GRA)
Kulikova, A I; Tugusheva, F A; Zubina, I M; Shepilova, I N
2008-05-01
The authors propose a simple and reproducible procedure for using iron ions to stimulate serum lipid peroxidation, with TBA-active products being further determined. The procedure determines the reserve of lipids that can be oxidized during oxidative stress. A combination of direct studies and correlation analysis suggests that low-density lipoproteins and very low-density lipoproteins are the major substrates for lipid peroxidation while high-density lipoproteins show a high resistance to this process. The presented procedure may be used to monitor lipid peroxidation in various conditions and upon various exposures in common laboratory practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishikado, Atsushi; Nishio, Yoshihiko, E-mail: nishio@belle.shiga-med.ac.jp; Morino, Katsutaro
2010-11-05
Research highlights: {yields} Low doses of 4-HHE and 4-HNE induce HO-1 expression in vascular endothelial cells. {yields} 4-HHE and 4-HNE increase the intranuclear expression and DNA binding of Nrf2. {yields} 4-HHE and 4-HNE-induced HO-1 expression depends on the activation of Nrf2. {yields} Pretreatment with 4-HHE and 4-HNE prevents oxidative stress-induced cytotoxicity. -- Abstract: Large-scale clinical studies have shown that n-3 polyunsaturated fatty acids (n-3 PUFAs) such as eicosapentaenoic and docosahexaenoic acids reduce cardiovascular events without improving classical risk factors for atherosclerosis. Recent studies have proposed that direct actions of n-3 PUFAs themselves, or of their enzymatic metabolites, have antioxidative andmore » anti-inflammatory effects on vascular cells. Although a recent study showed that plasma 4-hydroxy hexenal (4-HHE), a peroxidation product of n-3 PUFA, increased after supplementation of docosahexaenoic acid, the antiatherogenic effects of 4-HHE in vascular cells remain unclear. In the present study, we tested the hypothesis that 4-HHE induces the antioxidative enzyme heme oxygenase-1 (HO-1) through activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a master regulatory transcriptional factor, and prevents oxidative stress-induced cytotoxicity in vascular endothelial cells. This mechanism could partly explain the cardioprotective effects of n-3 PUFAs. Human umbilical vein endothelial cells were stimulated with 1-10 {mu}M 4-HHE or 4-hydroxy nonenal (4-HNE), a peroxidation product of n-6 PUFAs. Both 4-HHE and 4-HNE dose-dependently increased HO-1 mRNA and protein expression, and intranuclear expression and DNA binding of Nrf2 at 5 {mu}M. Small interfering RNA for Nrf2 significantly reduced 4-HHE- or 4-HNE-induced HO-1 mRNA and protein expression. Furthermore, pretreatment with 4-HHE or 4-HNE prevented tert-butyl hydroperoxide-induced cytotoxicity. In conclusion, 4-HHE, a peroxidation product of n-3 PUFAs, stimulated expression of the antioxidant enzyme HO-1 through the activation of Nrf2 in vascular endothelial cells. This resulted in prevention of oxidative stress-induced cytotoxicity, and may represent a possible mechanism to partly explain the cardioprotective effects of n-3 PUFAs.« less
In vitro study on tooth enamel lesions related to whitening dentifrice.
de Araújo, Danilo Barral; Silva, Luciana Rodrigues; Campos, Elisângela de Jesus; Correia de Araújo, Roberto Paulo
2011-01-01
The tooth whitening substances for extrinsic use that are available in Brazil contain hydrogen peroxide or carbamide peroxide. Several studies have attributed the appearance of lesions in the enamel morphology, including hypersensitivity, to these substances. Such lesions justify fluoride therapy and application of infrared lasers, among other procedures. However, there is no consensus among researchers regarding the relevance of the severity of lesions detected on the tooth surface. The present study was carried out with an aim of evaluating in vitro the effects of the hydrogen peroxide, carbamide peroxide and sodium bicarbonate contained in dentifrice formulations, on human tooth enamel. After darkening process in laboratory, human premolars were brushed using dentifrice containing the two whitening substances (Rembrandt - carbamide peroxide and Mentadent - hydrogen peroxide) and the abrasive product (Colgate - sodium bicarbonate). The degree of specimen staining before and after this procedure was determined using spectrophotometry. Scanning electron microscopy (SEM) was used to obtain images, which were analyzed to show the nature of the lesions that appeared on the enamel surface. The effectiveness of the whitening caused by hydrogen peroxide and carbamide peroxide and the abrasion caused by bicarbonate were confirmed, given that the treated test pieces returned to their original coloration. Based on SEM, evaluation of the enamel surfaces subjected to the test products showed that different types of morphologic lesions of varying severity appeared. Whitening dentifrice containing hydrogen peroxide and carbamide peroxide produced lesions on the enamel surface such that the greatest sequelae were associated with exposure to hydrogen peroxide.
Liu, Fang-Fang; Yang, Lin-Dong; Sun, Xiao-Ru; Zhang, Hui; Pan, Wei; Wang, Xing-Ming; Yang, Jian-Jun; Ji, Mu-Huo; Yuan, Hong-Mei
2016-12-01
Post-traumatic stress disorder (PTSD) is a common psychiatric disease following exposure to a severe traumatic event or physiological stress, yet the precise mechanisms underlying PTSD remains largely to be determined. Using an animal model of PTSD induced by a single prolonged stress (SPS), we assessed the role of hippocampal nicotinamide adenosine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) and parvalbumin (PV) interneurons in the development of PTSD symptoms. In the present study, behavioral tests were performed by the open field (day 13 after SPS) and fear conditioning tests (days 13 and 14 after SPS). For the interventional study, rats were chronically treated with a NADPH oxidase inhibitor apocynin either by early or delayed administration. The levels of tumor necrosis factor-alpha, interleukin (IL)-1β, IL-6, IL-10, malondialdehyde, superoxide dismutase, NOX2, 4-hydroxynonenal, and PV in the hippocampus were measured at the indicated time points. In the present study, we showed that SPS rats displayed anxiety-like and enhanced fear learning behavior, which was accompanied by the increased expressions of malondialdehyde, IL-6, NOX2, 4-hydroxynonenal, and decreased PV expression. Notably, early but not delayed treatment with apocynin reversed all these abnormalities after SPS. In conclusion, our results provided evidence that NOX2 activation in the hippocampus, at least in part, contributes to oxidative stress and neuroinflammation, which further results in PV interneuron loss and consequent PTSD symptoms in a rat model of PTSD induced by SPS.
1994-08-01
Safety and efficacy criteria are defined for oral products containing various forms of peroxides. The guidelines ask for safety and efficacy studies plus observation criteria that include long-term follow-up.
Chemical reactions in perfume ageing.
Blakeway, J M; Frey, M L; Lacroix, S; Salerno, M S
1987-10-01
Summary The interactions between a typical range of perfume materials, alcohol, water, air, elevated temperatures and daylight have been studied. The changes of composition, acidity, peroxide content and the formation of new molecules were followed. The stabilizing effects of UV absorbers, antioxidants and sequestering agents were examined; - the formation of acid reaction products was accelerated by air, temperature, daylight and the presence of natural products; - peroxide formation was accelerated by heat and light and the presence of air; as the acidity increased, the peroxides decomposed; - the acetalization of other aldehydes was accelerated by temperature and daylight and the presence of natural products up to 40% of certain aldehydes may be converted into acetals after 3 months at 37 degrees C; - many stereoisomerizations occur, e.g., transisoeugenol is converted up to 10% into the cis isomer after 3 months at 37 degrees C and 58% in daylight; - evaluation of antioxidants UV absorbers and sequestering agents showed a significant protection against deterioration only by EDTA dipotassium salt; - ethanol was converted into acetaldehyde and its diethylacetal by peroxides present and formed on ageing up to 0.08%. Natural products accelerated this formation; - the reaction between benzoyl peroxide and ethanol was shown to yield up to 63% of acetaldehyde+diethyl acetal whilst di-t-butyl peroxide gave only 23% under the same conditions. These results go some way to explaining odour changes in perfume ageing.
Peters, R; van Duin, M; Tonoli, D; Kwakkenbos, G; Mengerink, Y; van Benthem, R A T M; de Koster, C G; Schoenmakers, P J; van der Wal, Sj
2008-08-08
The dicumyl-peroxide-initiated addition and combination reactions of mixtures of alkanes (n-octane, n-decane) and alkenes [5,6-dihydrodicyclopentadiene (DCPDH), 5-ethylidene-2-norbornane (ENBH) and 5-vinylidene-2-norbornane (VNBH)] were studied to mimic the peroxide cross-linking reactions of terpolymerised ethylene, propylene and a diene monomer (EPDM). The reaction products of the mixtures were separated by both gas chromatography (GC) and comprehensive two-dimensional gas chromatography (GCxGC). The separated compounds were identified from their mass spectra and their GC and GCxGC elution pattern. Quantification of the various alkyl/alkyl, alkyl/allyl and allyl/allyl combination products shows that allylic-radicals comprise approximately 60% of the substrate radicals formed. The total concentration of the products formed by combination is found to be independent of the concentration and the type of alkene. The total concentration of the products formed by addition to the alkene increases with increasing concentration of alkene. In addition, the total concentration of the formed addition products depends strongly on the type of the alkene used, viz. VNBH>ENBH approximately DCPDH, which is a consequence of differences in steric hindrance of the unsaturation. The peroxide curing efficiency, defined as the number of moles of cross-linked products formed per mol of peroxide, is 173% using 9% (w/w) 5-vinylidene-2-norbornane (VNBH). This indicates that the addition reaction is recurrent. All these findings are consistent with experimental studies on peroxide curing of EPDM rubber. In addition, the present results provide more-detailed structural information, increasing the understanding of the mechanism of peroxide curing of EPDM. The described approach to use low-molecular-weight model compounds followed by GC-mass spectrometry (MS) and GCxGC-MS analysis is proven to be a very powerful tool to study the cross-linking of EPDM.
Mau, T; Hartmann, V; Burmeister, J; Langguth, P; Häusler, H
2004-01-01
The use of steam in sterilization processes is limited by the implementation of heat-sensitive components inside the machines to be sterilized. Alternative low-temperature sterilization methods need to be found and their suitability evaluated. Vaporized Hydrogen Peroxide (VHP) technology was adapted for a production machine consisting of highly sensitive pressure sensors and thermo-labile air tube systems. This new kind of "cold" surface sterilization, known from the Barrier Isolator Technology, is based on the controlled release of hydrogen peroxide vapour into sealed enclosures. A mobile VHP generator was used to generate the hydrogen peroxide vapour. The unit was combined with the air conduction system of the production machine. Terminal vacuum pumps were installed to distribute the gas within the production machine and for its elimination. In order to control the sterilization process, different physical process monitors were incorporated. The validation of the process was based on biological indicators (Geobacillus stearothermophilus). The Limited Spearman Karber Method (LSKM) was used to statistically evaluate the sterilization process. The results show that it is possible to sterilize surfaces in a complex tube system with the use of gaseous hydrogen peroxide. A total microbial reduction of 6 log units was reached.
Combined acid/alkaline-peroxide pretreatment of olive tree biomass for bioethanol production.
Martínez-Patiño, José Carlos; Ruiz, Encarnación; Romero, Inmaculada; Cara, Cristóbal; López-Linares, Juan Carlos; Castro, Eulogio
2017-09-01
Olive tree biomass (OTB) can be used for producing second generation bioethanol. In this work, extracted OTB was subjected to fractionation using a sequential acid/alkaline oxidative pretreatment. In the first acid stage, the effects of sulfuric acid concentration and reaction times at 130°C were investigated. Up to 71% solubilization of hemicellulosic sugars was achieved under optimized conditions (2.4% H 2 SO 4 , 84min). In the second stage, the influence of hydrogen peroxide concentration and process time were evaluated at 80°C. Approximately 80% delignification was achieved under the best operational conditions (7% H 2 O 2 , 90min) within the experimental range studied. This pretreatment produced a substrate with 72% cellulose that was highly accessible to enzymatic attack, yielding 82g glucose/100g glucose in delignified OTB. Ethanol production from both hemicellulosic sugars solubilized in the acid pretreatment and glucose from enzymatic hydrolysis of delignified OTB yielded 15g ethanol/100g OTB. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mukai, Rie; Matsui, Naoko; Fujikura, Yutaka; Matsumoto, Norifumi; Hou, De-Xing; Kanzaki, Noriyuki; Shibata, Hiroshi; Horikawa, Manabu; Iwasa, Keiko; Hirasaka, Katsuya; Nikawa, Takeshi; Terao, Junji
2016-05-01
Quercetin is a major dietary flavonoid in fruits and vegetables. We aimed to clarify the preventive effect of dietary quercetin on disuse muscle atrophy and the underlying mechanisms. We established a mouse denervation model by cutting the sciatic nerve in the right leg (SNX surgery) to lack of mobilization in hind-limb. Preintake of a quercetin-mixed diet for 14days before SNX surgery prevented loss of muscle mass and atrophy of muscle fibers in the gastrocnemius muscle (GM). Phosphorylation of Akt, a key phosphorylation pathway of suppression of protein degradation, was activated in the quercetin-mixed diet group with and without SNX surgery. Intake of a quercetin-mixed diet suppressed the generation of hydrogen peroxide originating from mitochondria and elevated mitochondrial peroxisome proliferator-activated receptor-γ coactivator 1α mRNA expression as well as NADH dehydrogenase 4 expression in the GM with SNX surgery. Quercetin and its conjugated metabolites reduced hydrogen peroxide production in the mitochondrial fraction obtained from atrophied muscle. In C2C12 myotubes, quercetin reached the mitochondrial fraction. These findings suggest that dietary quercetin can prevent disuse muscle atrophy by targeting mitochondria in skeletal muscle tissue through protecting mitochondria from decreased biogenesis and reducing mitochondrial hydrogen peroxide release, which can be related to decreased hydrogen peroxide production and/or improvements on antioxidant capacity of mitochondria. Copyright © 2016 Elsevier Inc. All rights reserved.
Chen, Wenrong; Zhang, Zhenzhen; Shen, Yanwen; Duan, Xuewu; Jiang, Yuemin
2014-10-20
To understand the potential of application of tea polyphenols to the shelf life extension and quality maintenance of litchi (Litchi chinensis Sonn.) fruit, the fruits were dipped into a solution of 1% tea phenols for 5 min before cold storage at 4 °C. Changes in browning index, contents of anthocyanins and phenolic compounds, superoxide dismutase (SOD) and peroxidase (POD) activities, O2.- production rate and H2O2 content, levels of relative leakage rate and lipid peroxidation, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity were measured after 0, 10, 20 and 30 days of cold storage. The results showed that application of tea polyphenols markedly delayed pericarp browning, alleviated the decreases in contents of total soluble solids (TSS) and ascorbic acid, and maintained relatively high levels of total phenolics and anthocyanins of litchi fruit after 30 days of cold storage. Meanwhile, the treatment reduced the increases in relative leakage rate and lipid peroxidation content, delayed the increases in both O2.- production rate and H2O2 contents, and increased SOD activity but reduced POD activity throughout this storage period. These data indicated that the delayed pericarp browning of litchi fruit by the treatment with tea polyphenols could be due to enhanced antioxidant capability, reduced accumulations of reactive oxygen species and lipid peroxidation, and improved membrane integrity.
Koga, S; Nakano, M; Ito, T; Tomita, Y
1992-03-01
Phospholipid peroxidation of unsaturated phospholipid liposomes in the tyrosinase(mushroom)-4-hydroxyanisole system was studied in both the presence and absence of Fe3+, as a model of melanocyte damage by this agent. Ferric ion is required for the lipid peroxidation, and maximal lipid peroxidation was achieved with a molar ratio of [Fe3+]/[4-hydroxyanisole] of about 1. The lipid peroxidation was significantly inhibited by ceruloplasmin (a ferroxidase), indicating that Fe3+, which would be coordinated with metabolites, catechols, should be reduced to express its oxidant property. Judging from the results obtained with inhibitors or scavengers of active oxygen species, O2-, H2O2, and .OH would not mainly involve in the lipid peroxidation.
Jaganjac, Morana; Almuraikhy, Shamma; Al-Khelaifi, Fatima; Al-Jaber, Mashael; Bashah, Moataz; Mazloum, Nayef A; Zarkovic, Kamelija; Zarkovic, Neven; Waeg, Georg; Kafienah, Wael; Elrayess, Mohamed A
2017-08-01
Obesity-associated impaired fat accumulation in the visceral adipose tissue can lead to ectopic fat deposition and increased risk of insulin resistance and type 2 diabetes mellitus (T2DM). This study investigated whether impaired adipogenesis of omental (OM) adipose tissues and elevated 4-hydroxynonenal (4-HNE) accumulation contribute to this process, and if combined metformin and insulin treatment in T2DM patients could rescue this phenotype. OM adipose tissues were obtained from forty clinically well characterized obese individuals during weight reduction surgery. Levels of 4-HNE protein adducts, adipocyte size and number of macrophages were determined within these tissues by immunohistochemistry. Adipogenic capacity and gene expression profiles were assessed in preadipocytes derived from these tissues in relation to insulin resistance and in response to 4-HNE, metformin or combined metformin and insulin treatment. Preadipocytes isolated from insulin resistant (IR) and T2DM individuals exhibited lower adipogenesis, marked by upregulation of anti-adipogenic genes, compared to preadipocytes derived from insulin sensitive (IS) individuals. Impaired adipogenesis was also associated with increased 4-HNE levels, smaller adipocytes and greater macrophage presence in the adipose tissues. Within the T2DM group, preadipocytes from combined metformin and insulin treated subset showed better in vitro adipogenesis compared to metformin alone, which was associated with less presence of macrophages and 4-HNE in the adipose tissues. Treatment of preadipocytes in vitro with 4-HNE reduced their adipogenesis and increased proliferation, even in the presence of metformin, which was partially rescued by the presence of insulin. This study reveals involvement of 4-HNE in the impaired OM adipogenesis-associated with insulin resistance and T2DM and provides a proof of concept that this impairment can be reversed by the synergistic action of insulin and metformin. Further studies are needed to evaluate involvement of 4-HNE in metabolically impaired abdominal adipogenesis and to confirm benefits of combined metformin-insulin therapy in T2DM patients. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Wu, Shichao; Qiao, Yu; Yang, Sixie; Ishida, Masayoshi; He, Ping; Zhou, Haoshen
2017-01-01
Reducing the high charge potential is a crucial concern in advancing the performance of lithium-oxygen batteries. Here, for water-containing lithium-oxygen batteries with lithium hydroxide products, we find that a hydrogen peroxide aqueous solution added in the electrolyte can effectively promote the decomposition of lithium hydroxide compounds at the ultralow charge potential on a catalyst-free Ketjen Black-based cathode. Furthermore, for non-aqueous lithium-oxygen batteries with lithium peroxide products, we introduce a urea hydrogen peroxide, chelating hydrogen peroxide without any water in the organic, as an electrolyte additive in lithium-oxygen batteries with a lithium metal anode and succeed in the realization of the low charge potential of ∼3.26 V, which is among the best levels reported. In addition, the undesired water generally accompanying hydrogen peroxide solutions is circumvented to protect the lithium metal anode and ensure good battery cycling stability. Our results should provide illuminating insights into approaches to enhancing lithium-oxygen batteries. PMID:28585527
NASA Astrophysics Data System (ADS)
Wu, Shichao; Qiao, Yu; Yang, Sixie; Ishida, Masayoshi; He, Ping; Zhou, Haoshen
2017-06-01
Reducing the high charge potential is a crucial concern in advancing the performance of lithium-oxygen batteries. Here, for water-containing lithium-oxygen batteries with lithium hydroxide products, we find that a hydrogen peroxide aqueous solution added in the electrolyte can effectively promote the decomposition of lithium hydroxide compounds at the ultralow charge potential on a catalyst-free Ketjen Black-based cathode. Furthermore, for non-aqueous lithium-oxygen batteries with lithium peroxide products, we introduce a urea hydrogen peroxide, chelating hydrogen peroxide without any water in the organic, as an electrolyte additive in lithium-oxygen batteries with a lithium metal anode and succeed in the realization of the low charge potential of ~3.26 V, which is among the best levels reported. In addition, the undesired water generally accompanying hydrogen peroxide solutions is circumvented to protect the lithium metal anode and ensure good battery cycling stability. Our results should provide illuminating insights into approaches to enhancing lithium-oxygen batteries.
Effect of various tooth-whitening products on enamel microhardness.
Grobler, S R; Majeed, A; Moola, M H
2009-11-01
The purpose of this in vitro study was to evaluate the effect of various tooth-whitening products containing carbamide peroxide (CP) or hydrogen peroxide (HP), on enamel microhardness. Enamel blocks were exposed to: Nite White ACP 10% CP (Group 2, n=10); Yotuel Patient 10% CP (Group 3, n=10); Opalescence PF 10% CP (Group 4, n=10); Opalescence PF 20% CP (Group 5, n=10); Opalescence Treswhite Supreme 10% HP (Group 6, n=10); Yotuel 10 Minutes 30% CP (Group 7, n=10); Opalescence Quick 45% CP (Group 8, n=10), Yotuel Special 35% HP (Group 9, n=10), Opalescence Boost 38% HP (Group 10, n=10) according to the instructions of the manufacturers. The control (Group 1, n=10) was enamel blocks kept in artificial saliva at 37 degrees C without any treatment. The microhardness values were obtained before exposure and after a 14-day treatment period. Specimens were kept in artificial saliva at 37 degrees C between treatments. Data were analysed using Kruskal-Wallis one-way ANOVA and Tukey-Kramer Multiple Comparison Test. Indent marks on the enamel blocks were also examined under the Scanning Electron Microscope. All whitening products decreased enamel microhardness except group 10 but only Groups 2, 3, 4, 5 and 7 showed significant decrease in enamel microhardness as compared to the control group (p < 0.05). Groups 2, 3 and 7 differed significantly from all the other groups (p < 0.05). The highest damage was recorded for Group 2 (Nite White ACP 10% CP), which differed significantly from Groups 3 and 7. SEM images also showed damage to enamel. All products tested in this study decreased enamel microhardness except Opalescence Boost 38% HP. The products containing carbamide peroxide were more damaging to enamel because of the longer application times. Nite White ACP 10% CP showed the highest reduction in enamel microhardness as compared to other products tested.
Elucidating the Role of Protandim and 6-Gingerol in Protection Against Osteoarthritis.
Abusarah, Jamilah; Benabdoune, Houda; Shi, Qin; Lussier, Bertrand; Martel-Pelletier, Johanne; Malo, Michel; Fernandes, Julio C; de Souza, Fátima Pereira; Fahmi, Hassan; Benderdour, Mohamed
2017-05-01
Protandim and 6-gingerol, two potent nutraceuticals, have been shown to decrease free radicals production through enhancing endogenous antioxidant enzymes. In this study, we evaluated the effects of these products on the expression of different factors involved in osteoarthritis (OA) process. Human OA chondrocytes were treated with 1 ng/ml IL-1β in the presence or absence of protandim (0-10 μg/ml) or 6-gingerol (0-10 μM). OA was induced surgically in mice by destabilization of the medial meniscus (DMM). The animals were treated weekly with an intraarticular injection of 10 μl of vehicle or protandim (10 μg/ml) for 8 weeks. Sham-operated mice served as controls. In vitro, we demonstrated that protandim and 6-gingerol preserve cell viability and mitochondrial metabolism and prevented 4-hydroxynonenal (HNE)-induced cell mortality. They activated Nrf2 transcription factor, abolished IL-1β-induced NO, PGE 2 , MMP-13, and HNE production as well as IL-β-induced GSTA4-4 down-regulation. Nrf2 overexpression reduced IL-1β-induced HNE and MMP-13 as well as IL-1β-induced GSTA4-4 down-regulation. Nrf2 knockdown following siRNA transfection abolished protandim protection against oxidative stress and catabolism. The activation of MAPK and NF-κB by IL-1β was not affected by 6-gingerol. In vivo, we observed that Nrf2 and GSTA4-4 expression was significantly lower in OA cartilage from humans and mice compared to normal controls. Interestingly, protandim administration reduced OA score in DMM mice. Altogether, our data indicate that protandim and 6-gingerol are essential in preserving cartilage and abolishing a number of factors known to be involved in OA pathogenesis. J. Cell. Biochem. 118: 1003-1013, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Paula, Anabela Baptista; Dias, Maria Isabel; Ferreira, Manuel Marques; Carrilho, Teresa; Marto, Carlos Miguel; Casalta, João; Cabrita, António Silvério; Carrilho, Eunice
2015-10-01
The value of aesthetic dentistry has precipitated several developments in the investigation of dental materials related to this field. The free marketing of these products is a problem and it is subject to various interpretations regarding its legality. There are several techniques for tooth whitening, the most used one being the external bleaching. It is the later version of such technique that poses the greatest danger of ingesting the product. The present study analysed the systemic effect of these products when they are swallowed. This experimental study aimed to observe the effects of a tooth whitening product, whose active agent is 6% hydrogen peroxide, on the gastric mucosa of healthy and non-tumour gastric pathology animals. Fifty Wistar-Han rats were used and then distributed into 5 groups, one for control and four test groups in which the bleaching product was administered in animals with and without non-tumour gastric pathology (induced by the administration of 1 sample of 50% ethanol and 5% of drinking water during 6 days) at different times of study by gavage. There was a decrease in body weight in animals of groups handled during the study period, which was most pronounced in IV and VA groups. Changes in spleen weight relative to body weight revealed no statistically significant changes. An analysis of the frequency was performed on the results of macroscopic observation of the gastric mucosa. The gastric mucosa revealed lesions in all manipulated groups, being more frequent in groups III and IV. It appears that there is a synergism when using hydrogen peroxide and 50% ethanol in the same group. Therefore, it seems that there are some signs of toxicity 3 to 4 days after administration of 6% hydrogen peroxide. The prescription of these therapies must be controlled by the clinician and the risks must be minimized.
PAULA, Anabela Baptista; DIAS, Maria Isabel; FERREIRA, Manuel Marques; CARRILHO, Teresa; MARTO, Carlos Miguel; CASALTA, João; CABRITA, António Silvério; CARRILHO, Eunice
2015-01-01
The value of aesthetic dentistry has precipitated several developments in the investigation of dental materials related to this field. The free marketing of these products is a problem and it is subject to various interpretations regarding its legality. There are several techniques for tooth whitening, the most used one being the external bleaching. It is the later version of such technique that poses the greatest danger of ingesting the product. The present study analysed the systemic effect of these products when they are swallowed. Objective This experimental study aimed to observe the effects of a tooth whitening product, whose active agent is 6% hydrogen peroxide, on the gastric mucosa of healthy and non-tumour gastric pathology animals. Material and Methods Fifty Wistar-Han rats were used and then distributed into 5 groups, one for control and four test groups in which the bleaching product was administered in animals with and without non-tumour gastric pathology (induced by the administration of 1 sample of 50% ethanol and 5% of drinking water during 6 days) at different times of study by gavage. There was a decrease in body weight in animals of groups handled during the study period, which was most pronounced in IV and VA groups. Changes in spleen weight relative to body weight revealed no statistically significant changes. An analysis of the frequency was performed on the results of macroscopic observation of the gastric mucosa. Results The gastric mucosa revealed lesions in all manipulated groups, being more frequent in groups III and IV. It appears that there is a synergism when using hydrogen peroxide and 50% ethanol in the same group. Conclusion Therefore, it seems that there are some signs of toxicity 3 to 4 days after administration of 6% hydrogen peroxide. The prescription of these therapies must be controlled by the clinician and the risks must be minimized. PMID:26537721
Cathodic electrocatalyst layer for electrochemical generation of hydrogen peroxide
NASA Technical Reports Server (NTRS)
Tennakoon, Charles L. K. (Inventor); Singh, Waheguru Pal (Inventor); Rhodes, Christopher P. (Inventor); Anderson, Kelvin C. (Inventor)
2011-01-01
A cathodic gas diffusion electrode for the electrochemical production of aqueous hydrogen peroxide solutions. The cathodic gas diffusion electrode comprises an electrically conductive gas diffusion substrate and a cathodic electrocatalyst layer supported on the gas diffusion substrate. A novel cathodic electrocatalyst layer comprises a cathodic electrocatalyst, a substantially water-insoluble quaternary ammonium compound, a fluorocarbon polymer hydrophobic agent and binder, and a perfluoronated sulphonic acid polymer. An electrochemical cell using the novel cathodic electrocatalyst layer has been shown to produce an aqueous solution having between 8 and 14 weight percent hydrogen peroxide. Furthermore, such electrochemical cells have shown stable production of hydrogen peroxide solutions over 1000 hours of operation including numerous system shutdowns.
Hydrogen peroxide fuels aging, inflammation, cancer metabolism and metastasis
Martinez-Outschoorn, Ubaldo E; Lin, Zhao; Pavlides, Stephanos; Whitaker-Menezes, Diana; Pestell, Richard G; Howell, Anthony
2011-01-01
In 1889, Dr. Stephen Paget proposed the “seed and soil” hypothesis, which states that cancer cells (the seeds) need the proper microenvironment (the soil) for them to grow, spread and metastasize systemically. In this hypothesis, Dr. Paget rightfully recognized that the tumor microenvironment has an important role to play in cancer progression and metastasis. In this regard, a series of recent studies have elegantly shown that the production of hydrogen peroxide, by both cancer cells and cancer-associated fibroblasts, may provide the necessary “fertilizer,” by driving accelerated aging, DNA damage, inflammation and cancer metabolism, in the tumor microenvironment. By secreting hydrogen peroxide, cancer cells and fibroblasts are mimicking the behavior of immune cells (macrophages/neutrophils), driving local and systemic inflammation, via the innate immune response (NFκB). Thus, we should consider using various therapeutic strategies (such as catalase and/or other antioxidants) to neutralize the production of cancer-associated hydrogen peroxide, thereby preventing tumor-stroma co-evolution and metastasis. The implications of these findings for overcoming chemo-resistance in cancer cells are also discussed in the context of hydrogen peroxide production and cancer metabolism. PMID:21734470
Correia, Jessyca Aline da Costa; Júnior, José Edvan Marques; Gonçalves, Luciana Rocha B; Rocha, Maria Valderez Ponte
2013-07-01
The alkaline hydrogen peroxide (AHP) pretreatment of cashew apple bagasse (CAB) was evaluated based on the conversion of the resultant cellulose into glucose. The effects of the concentration of hydrogen peroxide at pH 11.5, the biomass loading and the pretreatment duration performed at 35°C and 250 rpm were evaluated after the subsequent enzymatic saccharification of the pretreated biomass using a commercial cellulase enzyme. The CAB used in this study contained 20.56 ± 2.19% cellulose, 10.17 ± 0.89% hemicellulose and 35.26 ± 0.90% lignin. The pretreatment resulted in a reduced lignin content in the residual solids. Increasing the H2O2 concentration (0-4.3% v/v) resulted in a higher rate of enzymatic hydrolysis. Lower biomass loadings gave higher glucose yields. In addition, no measurable furfural and hydroxymethyl furfural were produced in the liquid fraction during the pretreatment. The results show that alkaline hydrogen peroxide is effective for the pretreatment of CAB. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
[Effects of metal-catalyzed oxidation on the formation of advanced oxidation protein products].
Li, Li; Peng, Ai; Zhu, Kai-Yuan; Yu, Hong; Ll, Xin-Hua; Li, Chang-Bin
2008-03-11
To explore the relationship between metal-catalyzed oxidation (MCO) and the formation of advanced oxidation protein products (AOPPs). Specimens of human serum albumin (HSA) and pooled plasma were collected from 3 healthy volunteers and 4 uremia patients were divided into 3 groups: Group A incubated with copper sulfate solution of the concentrations of 0, 0.2, or 0.5 mmol/L, Group B, incubated with hydrogen peroxide 2 mmol/L, and Group C, incubated with copper sulfate 0.2 or 0.5 mmol/L plus hydrogen peroxide 2 mmol/L. 30 min and 24 h later the AOPP level was determined by ultraviolet visible spectrophotometry. High-performance liquid chromatography (HPLC) was used to observe the fragmentation effect on plasma proteins. Ninhydrin method was used to examine the protein fragments. The scavenging capacity of hydroxyl radical by macromolecules was measured so as to estimate the extent of damage for proteins induced by MCO. (1) The AOPP level of the HSA and plasma specimens of the uremia patients increased along with the increase of cupric ion concentration in a dose-dependent manner, especially in the presence of hydrogen peroxide (P < 0.05). (2) Aggregation of proteins was almost negligible in all groups, however, HPLC showed that cupric ion with or without hydrogen peroxide increased the fragments in the HAS specimens (with a relative molecular mass of 5000) and uremia patients' plasma proteins (with the molecular mass 7000). (3) The plasma AOPP level of the healthy volunteers was 68.2 micromol/L +/- 2.4 micromol/L, significantly lower than that of the uremia patients (158.5 micromol/L +/- 8.2 micromol/L). (4) The scavenging ability to clear hydroxyl radical by plasma proteins of the healthy volunteers was 1.38 -9.03 times as higher than that of the uremia patients. MCO contributes to the formation of AOPPs mainly through its fragmentation effect to proteins.
A Modified Demonstration of the Catalytic Decomposition of Hydrogen Peroxide
NASA Astrophysics Data System (ADS)
Trujillo, Carlos Alexander
2005-06-01
A safer and cheaper version of the popular catalyzed decomposition of hydrogen peroxide demonstration commonly called the “Elephants’ Toothpaste” is presented. Hydrogen peroxide is decomposed in the presence of a surfactant by the enzyme catalase producing foam. Catalase has a higher activity compared with the traditional iodide and permits the use of diluted hydrogen peroxide solutions. The demonstration can be made with household products with similar amazing effects.
Hydrogen peroxide on the surface of Europa
Carlson, R.W.; Anderson, M.S.; Johnson, R.E.; Smythe, W.D.; Hendrix, A.R.; Barth, C.A.; Soderblom, L.A.; Hansen, G.B.; McCord, T.B.; Dalton, J.B.; Clark, R.N.; Shirley, J.H.; Ocampo, A.C.; Matson, D.L.
1999-01-01
Spatially resolved infrared and ultraviolet wavelength spectra of Europa's leading, anti-jovian quadrant observed from the Galileo spacecraft show absorption features resulting from hydrogen peroxide. Comparisons with laboratory measurements indicate surface hydrogen peroxide concentrations of about 0.13 percent, by number, relative to water ice. The inferred abundance is consistent with radiolytic production of hydrogen peroxide by intense energetic particle bombardment and demonstrates that Europa's surface chemistry is dominated by radiolysis.
Hydrogen peroxide on the surface of Europa.
Carlson, R W; Anderson, M S; Johnson, R E; Smythe, W D; Hendrix, A R; Barth, C A; Soderblom, L A; Hansen, G B; McCord, T B; Dalton, J B; Clark, R N; Shirley, J H; Ocampo, A C; Matson, D L
1999-03-26
Spatially resolved infrared and ultraviolet wavelength spectra of Europa's leading, anti-jovian quadrant observed from the Galileo spacecraft show absorption features resulting from hydrogen peroxide. Comparisons with laboratory measurements indicate surface hydrogen peroxide concentrations of about 0.13 percent, by number, relative to water ice. The inferred abundance is consistent with radiolytic production of hydrogen peroxide by intense energetic particle bombardment and demonstrates that Europa's surface chemistry is dominated by radiolysis.
Possible role of organic peroxides in the detection of irradiated food
NASA Astrophysics Data System (ADS)
Shengchu, Qi; Jilan, Wu; Yan, Zhu
1993-07-01
In order to determine the level of organic peroxides induced by autooxidation, random sampling of pork has been performed with ˜ 300 analytical data. The organic peroxide content in unirradiated pork has been estimated as (5.4±3.0)X10 -5mol.kg -1. The dependence of yield of peroxide in pork, minced meat and braised chicken on absorbed dose has been investigated. For killing trichinae 0.5˜1 kGy is used, the quantity of peroxide in pork will be 2X10 -4mol.kg -1 (or 4X10 -4 mol.kg -1 for 1 kGy), which is 3.7˜7.4 times greater than the background. If 3 kGy is used to eliminate Samonella, the quantity of peroxides in pork will be 1.3X10 -3mol.kg -1., which approaches 24 times greater than the average value of background. When minced meat was irradiated in the presence of air, a chain reaction takes place with G (organic peroxides) value 30.2. Radiation processing dose of braised chicken for shelf-life extension is ˜ 9kGy, organic peroxide content in braised chicken fat is 32.5X10 -4mol.kg -1, which is about 14.7 times greater than average value (2.2X10 -4mol.kg -1) in unirradiated one. Applying peroxide method to qualitatively detect the irradiated food containing fat is satisfactory. Recombining with measuring ESR signal of irradiated bone will cause the method of detection more accurate and perfect.
Catino, Stefania; Paciello, Fabiola; Miceli, Fiorella; Rolesi, Rolando; Troiani, Diana; Calabrese, Vittorio; Santangelo, Rosaria; Mancuso, Cesare
2016-01-01
Over the past years, several lines of evidence have pointed out the efficacy of ferulic acid (FA) in counteracting oxidative stress elicited by β-amyloid or free radical initiators, based on the ability of this natural antioxidant to up-regulate the heme oxygenase-1 (HO-1) and biliverdin reductase (BVR) system. However, scarce results can be found in literature regarding the cytoprotective effects of FA in case of damage caused by neurotoxicants. The aim of this work is to investigate the mechanisms through which FA exerts neuroprotection in SH-SY5Y neuroblastoma cells exposed to the neurotoxin trimethyltin (TMT). FA (1–10 μM for 6 h) dose-dependently increased both basal and TMT (10 μM for 24 h)-induced HO-1 expression in SH-SY5Y cells by fostering the nuclear translocation of the transcriptional activator Nrf2. In particular, the co-treatment of FA (10 μM) with TMT was also responsible for the nuclear translocation of HO-1 in an attempt to further increase cell stress response in SH-SY5Y cells. In addition to HO-1, FA (1–10 μM for 6 h) dose-dependently increased the basal expression of BVR. The antioxidant and neuroprotective features of FA, through the increase of HO activity, were supported by the evidence that FA inhibited TMT (10 μM)-induced lipid peroxidation (evaluated by detecting 4-hydroxy-nonenal) and DNA fragmentation in SH-SY5Y cells and that this antioxidant effect was reversed by the HO inhibitor Zinc-protoporphyrin-IX (5 μM). Among the by-products of the HO/BVR system, carbon monoxide (CORM-2, 50 nM) and bilirubin (BR, 50 nM) significantly inhibited TMT-induced superoxide anion formation in SH-SY5Y cells. All together, these results corroborate the neuroprotective effect of FA through the up-regulation of the HO-1/BVR system, via carbon monoxide and BR formation, and provide the first evidence on the role of HO-1/Nrf2 axis in FA-related enhancement of cell stress response in human neurons. PMID:26779023
Yuan, Zhaoyang; Wen, Yangbing; Kapu, Nuwan Sella
2018-01-01
A sequential two-stage pretreatment process comprising alkaline pre-extraction and alkaline hydrogen peroxide pretreatment (AHP) was investigated to convert bamboo carbohydrates into bioethanol. The results showed that mild alkaline pre-extraction using 8% (w/w) sodium hydroxide (NaOH) at 100°C for 180min followed by AHP pretreatment with 4% (w/w) hydrogen peroxide (H 2 O 2 ) was sufficient to generate a substrate that could be efficiently digested with low enzyme loadings. Moreover, alkali pre-extraction enabled the use of lower H 2 O 2 charges in AHP treatment. Two-stage pretreatment followed by enzymatic hydrolysis with only 9FPU/g cellulose led to the recovery of 87% of the original sugars in the raw feedstock. The use of the pentose-hexose fermenting Saccharomyces cerevisiae SR8u strain enabled the utilization of 95.7% sugars in the hydrolysate to reach 4.6%w/v ethanol titer. The overall process also enabled the recovery of 62.9% lignin and 93.8% silica at high levels of purity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Trombetta, Domenico; Cimino, Francesco; Cristani, Mariateresa; Mandalari, Giuseppina; Saija, Antonella; Ginestra, Giovanna; Speciale, Antonio; Chirafisi, Joselita; Bisignano, Giuseppe; Waldron, Keith; Narbad, Arjan; Faulds, Craig B
2010-07-28
Bergamot ( Citrus bergamia Risso) is a less commercialized Citrus fruit, mainly used for its essential oil extracted from the peel. Bergamot peel (BP) represents about 60% of the processed fruits and is regarded as primary waste. However, it contains good amounts of useful compounds, such as pectins and flavonoids. Many of the bioactivities of Citrus flavonoids appear to impact vascular endothelial cells. Herein, we report the protective effect of two flavonoid-rich extracts from BP (endowed with radical-scavenging properties and lacking genotoxic activity) against alterations in cell modifications induced by the pleiotropic inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) on human umbilical vein endothelial cells (HUVECs), as demonstrated by monitoring intracellular levels of malondialdehyde/4-hydroxynonenal, reduced and oxidized glutathione and superoxide dismutase activity, and the activation status of nuclear factor-kappaB (NF-kappaB). Thus, BP appears to be a potential source of natural antioxidant/anti-inflammatory phytocomplexes to be employed as ingredients of nutraceutical products or functional foods.
Pathophysiology of neutrophil-mediated extracellular redox reactions.
Jaganjac, Morana; Cipak, Ana; Schaur, Rudolf Joerg; Zarkovic, Neven
2016-01-01
Neutrophil granulocyte leukocytes (neutrophils) play fundamental role in the innate immune response. In the presence of adequate stimuli, neutrophils release excessive amount of reactive oxygen species (ROS) that may induce cell and tissue injury. Oxidative burst of neutrophils acts as a double-edged sword. It may contribute to the pathology of atherosclerosis and brain injury but is also necessary in resolving infections. Moreover, neutrophil-derived ROS may also have both a tumor promoting and tumor suppressing role. ROS have a specific activities and diffusion distance, which is related to their short lifetime. Therefore, the manner in which ROS will act depends on the cells targeted and the intra- and extracellular levels of individual ROS, which can further cause production of reactive aldehydes like 4-hydroxynonenal (HNE) that act as a second messengers of ROS. In this review we discuss the influence of neutrophil mediated extracellular redox reactions in ischemia reperfusion injury, transplant rejection and chronic diseases (atherosclerosis, inflammatory bowel diseases and cancer). At the end a brief overview of cellular mechanisms to maintain ROS homeostasis is given.
Shelf-life modeling of bakery products by using oxidation indices.
Calligaris, Sonia; Manzocco, Lara; Kravina, Giuditta; Nicoli, Maria Cristina
2007-03-07
The aim of this work was to develop a shelf-life prediction model of lipid-containing bakery products. To this purpose (i) the temperature dependence of the oxidation rate of bakery products was modeled, taking into account the changes in lipid physical state; (ii) the acceptance limits were assessed by sensory analysis; and (iii) the relationship between chemical oxidation index and acceptance limit was evaluated. Results highlight that the peroxide number, the changes of which are linearly related to consumer acceptability, is a representative index of the quality depletion of biscuits during their shelf life. In addition, the evolution of peroxides can be predicted by a modified Arrhenius equation accounting for the changes in the physical state of biscuit fat. Knowledge of the relationship between peroxides and sensory acceptability together with the temperature dependence of peroxide formation allows a mathematical model to be set up to simply and quickly calculate the shelf life of biscuits.
NASA Astrophysics Data System (ADS)
Gogoi, Satyabrat; Karak, Niranjan
2017-10-01
Safe, sustainable, and green production of hydrogen peroxide is an exciting proposition due to the role of hydrogen peroxide as a green oxidant and energy carrier for fuel cells. The current work reports the development of carbon dot-impregnated waterborne hyperbranched polyurethane as a heterogeneous photo-catalyst for solar-driven production of hydrogen peroxide. The results reveal that the carbon dots possess a suitable band-gap of 2.98 eV, which facilitates effective splitting of both water and ethanol under solar irradiation. Inclusion of the carbon dots within the eco-friendly polymeric material ensures their catalytic activity and also provides a facile route for easy catalyst separation, especially from a solubilizing medium. The overall process was performed in accordance with the principles of green chemistry using bio-based precursors and aqueous medium. This work highlights the potential of carbon dots as an effective photo-catalyst.
Iasnikov, A A; Ponomarenko, S P
1976-05-01
Kinetics of co-oxidation of 1-benzen-3-carbamido-1,4-dihydropyridine (BDN) and phenylglyoxal (PG) with hydrogen peroxide is studied. Dimeric product (di-e11-benzen-5-carbamido-1,2-dihydropyridyl-2]) is found to be formed at pH 9, and quaternal pyridinium salt (BNA)--at pH 7. Molecular oxigen is determined to participate in the reaction at pH 7. Copper (II) ions catalyze this process. Significant catalytic effect of p-dinitrobenzen (p-DNB) is found. The reaction mechanism is postulated to form hydroperoxide from PG and hydrogen peroxide which are capable to split the hydrogen attom from dihydropyridine, molecular oxigen or p-DNB being an acceptor of the electrone. Hypothesis on separate transfer of hydrogen atom and electrone in biological systems are proposed.
Code of Federal Regulations, 2012 CFR
2012-07-01
... SOURCE CATEGORY Hydrogen Peroxide Production Subcategory § 415.92 Effluent limitations guidelines... point source subject to this subpart and manufacturing hydrogen peroxide by the oxidation of alkyl...—Hydrogen Peroxide Organic Process Pollutant or pollutant property BPT limitations Maximum for any 1 day...
Code of Federal Regulations, 2014 CFR
2014-07-01
... SOURCE CATEGORY Hydrogen Peroxide Production Subcategory § 415.92 Effluent limitations guidelines... point source subject to this subpart and manufacturing hydrogen peroxide by the oxidation of alkyl...—Hydrogen Peroxide Organic Process Pollutant or pollutant property BPT limitations Maximum for any 1 day...
Code of Federal Regulations, 2013 CFR
2013-07-01
... SOURCE CATEGORY Hydrogen Peroxide Production Subcategory § 415.92 Effluent limitations guidelines... point source subject to this subpart and manufacturing hydrogen peroxide by the oxidation of alkyl...—Hydrogen Peroxide Organic Process Pollutant or pollutant property BPT limitations Maximum for any 1 day...
Code of Federal Regulations, 2011 CFR
2011-07-01
... SOURCE CATEGORY Hydrogen Peroxide Production Subcategory § 415.92 Effluent limitations guidelines... point source subject to this subpart and manufacturing hydrogen peroxide by the oxidation of alkyl...—Hydrogen Peroxide Organic Process Pollutant or pollutant property BPT limitations Maximum for any 1 day...
Code of Federal Regulations, 2010 CFR
2010-07-01
... SOURCE CATEGORY Hydrogen Peroxide Production Subcategory § 415.92 Effluent limitations guidelines... point source subject to this subpart and manufacturing hydrogen peroxide by the oxidation of alkyl...—Hydrogen Peroxide Organic Process Pollutant or pollutant property BPT limitations Maximum for any 1 day...
21 CFR 172.814 - Hydroxylated lecithin.
Code of Federal Regulations, 2011 CFR
2011-04-01
... whereby the separated fatty acid fraction of the resultant product has an acetyl value of 30 to 38: (1) With hydrogen peroxide, benzoyl peroxide, lactic acid, and sodium hydroxide. (2) With hydrogen peroxide, acetic acid, and sodium hydroxide. (b) It is used or intended for use, in accordance with good...
2013-01-01
Background Reactive oxygen species (ROS) are important mediators in a number of degenerative diseases. Oxidative stress refers to the imbalance between the production of ROS and the ability to scavenge these species through endogenous antioxidant systems. Since antioxidants can inhibit oxidative processes, it becomes relevant to describe natural compounds with antioxidant properties which may be designed as therapies to decrease oxidative damage and stimulate endogenous cytoprotective systems. The present study tested the protective effect of two xanthones isolated from the heartwood of Calophyllum brasilienses against FeSO4-induced toxicity. Methods Through combinatory chemistry assays, we evaluated the superoxide (O2●—), hydroxyl radical (OH●), hydrogen peroxide (H2O2) and peroxynitrite (ONOO—) scavenging capacity of jacareubin (xanthone III) and 2-(3,3-dimethylallyl)-1,3,5,6-tetrahydroxyxanthone (xanthone V). The effect of these xanthones on murine DNA and bovine serum albumin degradation induced by an OH• generator system was also evaluated. Additionally, we investigated the effect of these xanthones on ROS production, lipid peroxidation and glutathione reductase (GR) activity in FeSO4-exposed brain, liver and lung rat homogenates. Results Xanthone V exhibited a better scavenging capacity for O2●—, ONOO- and OH● than xanthone III, although both xanthones were unable to trap H2O2. Additionally, xanthones III and V prevented the albumin and DNA degradation induced by the OH● generator system. Lipid peroxidation and ROS production evoked by FeSO4 were decreased by both xanthones in all tissues tested. Xanthones III and V also prevented the GR activity depletion induced by pro-oxidant activity only in the brain. Conclusions Altogether, the collected evidence suggests that xanthones can play a role as potential agents to attenuate the oxidative damage produced by different pro-oxidants. PMID:24119308
NASA Astrophysics Data System (ADS)
Piatnytskyi, Dmytro V.; Zdorevskyi, Oleksiy O.; Perepelytsya, Sergiy M.; Volkov, Sergey N.
2015-11-01
Changes in the medium of biological cells under ion beam irradiation has been considered as a possible cause of cell function disruption in the living body. The interaction of hydrogen peroxide, a long-lived molecular product of water radiolysis, with active sites of DNA macromolecule was studied, and the formation of stable DNA-peroxide complexes was considered. The phosphate groups of the macromolecule backbone were picked out among the atomic groups of DNA double helix as a probable target for interaction with hydrogen peroxide molecules. Complexes consisting of combinations including: the DNA phosphate group, H2O2 and H2O molecules, and Na+ counterion, were considered. The counterions have been taken into consideration insofar as under the natural conditions they neutralise DNA sugar-phosphate backbone. The energy of the complexes have been determined by considering the electrostatic and the Van der Waals interactions within the framework of atom-atom potential functions. As a result, the stability of various configurations of molecular complexes was estimated. It was shown that DNA phosphate groups and counterions can form stable complexes with hydrogen peroxide molecules, which are as stable as the complexes with water molecules. It has been demonstrated that the formation of stable complexes of H2O2-Na+-PO4- may be detected experimentally by observing specific vibrations in the low-frequency Raman spectra. The interaction of H2O2 molecule with phosphate group of the double helix backbone can disrupt DNA biological function and induce the deactivation of the cell genetic apparatus. Thus, the production of hydrogen peroxide molecules in the nucleus of living cells can be considered as an additional mechanism by which high-energy ion beams destroy tumour cells during ion beam therapy. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene Surdutovich.
Wei, Yaqing; Chen, Pingping; Ling, Tiejun; Wang, Yijun; Dong, Ruixia; Zhang, Chen; Zhang, Longjie; Han, Manman; Wang, Dongxu; Wan, Xiaochun; Zhang, Jinsong
2016-08-01
(-)-Epigallocatechin-3-gallate (EGCG) from green tea has anti-cancer effect. The cytotoxic actions of EGCG are associated with its auto-oxidation, leading to the production of hydrogen peroxide and formation of numerous EGCG auto-oxidation products (EAOPs), the structures and bioactivities of them remain largely unclear. In the present study, we compared several fundamental properties of EGCG and EAOPs, which were prepared using 5mg/mL EGCG dissolved in 200mM phosphate buffered saline (pH 8.0 at 37°C) and normal oxygen partial pressure for different periods of time. Despite the complete disappearance of EGCG after the 4-h auto-oxidation, 4-h EAOPs gained an enhanced capacity to deplete cysteine thiol groups, and retained the cytotoxic effects of EGCG as well as the capacity to produce hydrogen peroxide and inhibit thioredoxin reductase, a putative target for cancer prevention and treatment. The results indicate that certain EAOPs possess equivalent cytotoxic activities to EGCG, while exhibiting simultaneously enhanced capacity for cysteine depletion. These results imply that EGCG and EAOPs formed extracellularly function in concert to exhibit cytotoxic effects, which previously have been ascribed to EGCG alone. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reactive Oxygen Species are Ubiquitous along Subsurface Redox Gradients
NASA Astrophysics Data System (ADS)
Nico, P. S.; Yuan, X.; Davis, J. A.; Dwivedi, D.; Williams, K. H.; Bhattacharyya, A.; Fox, P. M.
2016-12-01
Reactive oxygen species (hydroxyl radical, superoxide, hydrogen peroxide, etc.) are known to be important intermediates in many biological and earth system processes. They have been particularly well studied in the realms of atmospheric chemistry and aquatic photochemistry. However, recently there is increasing evidence that they are also present in impactful quantities in dark systems as a result of both biotic and abiotic reactions. Herein we will present a complementary suite of laboratory and field studies examining the presence and production of hydrogen peroxide under relevant subsurface conditions. The laboratory work examines the redox cycling between reduced organic matter, molecular oxygen, and Fe which results in not only the production of hydrogen peroxide and oxidation of organic functional groups but also the maintenance of steady-state concentration of Fe(II) under fully oxygenated aqueous conditions. The field studies involve three distinct locations, namely a shallow subsurface aquifer, a hyporheic zone redox gradient across a river meander, and a hillside shale seep. In all cases detectable quantities (tens of nanomolar) of hydrogen peroxide were measured. In general, concentrations peak under transitional redox conditions where there is the simultaneous presence of reduced Fe, organic matter, and at least trace dissolved oxygen. Many, but not all, of the observed dynamics in hydrogen peroxide production can be reproduced by a simple kinetic model representing the reactions between Fe, organic matter, and molecular oxygen, but many questions remain regarding the role of microorganisms and other redox active chemical species in determining the detected hydrogen peroxide concentrations. The consistent detection of hydrogen peroxide at these disparate locations supports the hypothesis that hydrogen peroxide, and by extension, the entire suite of reactive oxygen species are ubiquitous along subsurface redox gradients.
Kellogg, Dean L; McCammon, Karen M; Hinchee-Rodriguez, Kathryn S; Adamo, Martin L; Roman, Linda J
2017-09-01
Previously published studies strongly suggested that insulin- and exercise-induced skeletal muscle glucose uptake require nitric oxide (NO) production. However, the signal transduction mechanisms by which insulin and contraction regulated NO production and subsequent glucose transport are not known. In the present study, we utilized the myotube cell lines treated with insulin or hydrogen peroxide, the latter to mimic contraction-induced oxidative stress, to characterize these mechanisms. We found that insulin stimulation of neuronal nitric oxide synthase (nNOS) phosphorylation, NO production, and GLUT4 translocation were all significantly reduced by inhibition of either nNOS or Akt2. Hydrogen peroxide (H 2 O 2 ) induced phosphorylation of nNOS at the same residue as did insulin, and also stimulated NO production and GLUT4 translocation. nNOS inhibition prevented H 2 O 2 -induced GLUT4 translocation. AMP activated protein kinase (AMPK) inhibition prevented H 2 O 2 activation and phosphorylation of nNOS, leading to reduced NO production and significantly attenuated GLUT4 translocation. We conclude that nNOS phosphorylation and subsequently increased NO production are required for both insulin- and H 2 O 2 -stimulated glucose transport. Although the two stimuli result in phosphorylation of the same residue on nNOS, they do so through distinct protein kinases. Thus, insulin and H 2 O 2 -activated signaling pathways converge on nNOS, which is a common mediator of glucose uptake in both pathways. However, the fact that different kinases are utilized provides a basis for the use of exercise to activate glucose transport in the face of insulin resistance. Copyright © 2017. Published by Elsevier Inc.
Shchepin, Roman; Möller, Matias N; Kim, Hye-young H; Hatch, Duane M; Bartesaghi, Silvina; Kalyanaraman, Balaraman; Radi, Rafael; Porter, Ned A
2010-12-15
Free radical co-oxidation of polyunsaturated lipids with tyrosine or phenolic analogues of tyrosine gave rise to lipid peroxide-tyrosine (phenol) adducts in both aqueous micellar and organic solutions. The novel adducts were isolated and characterized by 1D and 2D NMR spectroscopy as well as by mass spectrometry (MS). The spectral data suggest that the polyunsaturated lipid peroxyl radicals give stable peroxide coupling products exclusively at the para position of the tyrosyl (phenoxy) radicals. These adducts have characteristic (13)C chemical shifts at 185 ppm due to the cross-conjugated carbonyl of the phenol-derived cyclohexadienone. The primary peroxide adducts subsequently undergo intramolecular Diels-Alder (IMDA) cyclization, affording a number of diastereomeric tricyclic adducts that have characteristic carbonyl (13)C chemical shifts at ~198 ppm. All of the NMR HMBC and HSQC correlations support the structure assignments of the primary and Diels-Alder adducts, as does MS collision-induced dissociation data. Kinetic rate constants and activation parameters for the IMDA reaction were determined, and the primary adducts were reduced with cuprous ion to give a phenol-derived 4-hydroxycyclohexa-2,5-dienone. No products from adduction of peroxyls at the phenolic ortho position were found in either the primary or cuprous reduction product mixtures. These studies provide a framework for understanding the nature of lipid-protein adducts formed by peroxyl-tyrosyl radical-radical termination processes. Coupling of lipid peroxyl radicals with tyrosyl radicals leads to cyclohexenone and cyclohexadienone adducts, which are of interest in and of themselves since, as electrophiles, they are likely targets for protein nucleophiles. One consequence of lipid peroxyl reactions with tyrosyls may therefore be protein-protein cross-links via interprotein Michael adducts.
Shchepin, Roman; Möller, Matias N.; Kim, Hye-young H.; Hatch, Duane M.; Bartesaghi, Silvina; Kalyanaraman, Balaraman; Radi, Rafael
2013-01-01
Free radical co-oxidation of polyunsaturated lipids with tyrosine or phenolic analogs of tyrosine gave rise to lipid peroxide-tyrosine (phenol) adducts in both aqueous micellar and organic solutions. The novel adducts were isolated and characterized by 1D and 2D NMR as well as by mass spectrometry. The spectral data suggest that the polyunsaturated lipid peroxyl radicals give stable peroxide coupling products exclusively at the para position of the tyrosyl (phenoxy) radicals. These adducts have characteristic 13C chemical shifts at 185 ppm due to the cross-conjugated carbonyl of the phenol-derived cyclohexadienone. The primary peroxide adducts subsequently undergo intramolecular Diels-Alder (IMDA) cyclization, affording a number of diastereomeric tricyclic adducts that have characteristic carbonyl 13C chemical shifts at ~198 ppm. All NMR HMBC and HSQC correlations support the structure assignment of the primary and Diels-Alder adducts, as does MS collision induced dissociation. Kinetic rate constants and activation parameters for the IMDA reaction were determined and the primary adducts were reduced with cuprous ion giving a phenol-derived 4-hydroxycyclohexa-2,5-dienone. No products from adduction of peroxyls at the phenolic ortho position were found either in the primary or the cuprous reduction product mixtures. These studies provide a framework for understanding the nature of lipid-protein adducts formed by peroxyl-tyrosyl radical-radical termination processes. Coupling of lipid peroxyl radicals with tyrosyl radicals leads to cyclohexenone and cyclohexadienone adducts which are of interest in and of themselves since, as electrophiles, they are likely targets for protein nucleophiles. One consequence of lipid peroxyl reactions with tyrosyls may therefore be protein-protein crosslinks via interprotein Michael adducts. PMID:21090613
Mechanisms of the antihypertensive effects of Nigella sativa oil in L-NAME-induced hypertensive rats
Jaarin, Kamsiah; Foong, Wai Dic; Yeoh, Min Hui; Kamarul, Zaman Yusoff Nik; Qodriyah, Haji Mohd Saad; Azman, Abdullah; Zuhair, Japar Sidik Fadhlullah; Juliana, Abdul Hamid; Kamisah, Yusof
2015-01-01
OBJECTIVES This study was conducted to determine whether the blood pressure-lowering effect of Nigella sativa might be mediated by its effects on nitric oxide, angiotensin-converting enzyme, heme oxygenase and oxidative stress markers. METHODS: Twenty-four adult male Sprague-Dawley rats were divided equally into 4 groups. One group served as the control (group 1), whereas the other three groups (groups 2-4) were administered L-NAME (25 mg/kg, intraperitoneally). Groups 3 and 4 were given oral nicardipine daily at a dose of 3 mg/kg and Nigella sativa oil at a dose of 2.5 mg/kg for 8 weeks, respectively, concomitantly with L-NAME administration. RESULTS Nigella sativa oil prevented the increase in systolic blood pressure in the L-NAME-treated rats. The blood pressure reduction was associated with a reduction in cardiac lipid peroxidation product, NADPH oxidase, angiotensin-converting enzyme activity and plasma nitric oxide, as well as with an increase in heme oxygenase-1 activity in the heart. The effects of Nigella sativa on blood pressure, lipid peroxidation product, nicotinamide adenine dinucleotide phosphate oxidase and angiotensin-converting enzyme were similar to those of nicardipine. In contrast, L-NAME had opposite effects on lipid peroxidation, angiotensin-converting enzyme and NO. CONCLUSION: The antihypertensive effect of Nigella sativa oil appears to be mediated by a reduction in cardiac oxidative stress and angiotensin-converting enzyme activity, an increase in cardiac heme oxygenase-1 activity and a prevention of plasma nitric oxide loss. Thus, Nigella sativa oil might be beneficial for controlling hypertension. PMID:26602523
NASA Astrophysics Data System (ADS)
Zhang, Xiangjing; Yang, Zhihui; Cai, Zhonghua
2008-08-01
Abalone Haliotis diversicolor supertexta is an important economic mollusk. The settlement and metamorphosis are two critical stages during its development period, which has direct influence on abalone survival and production. The influence of reactive oxygen species (hydrogen peroxide) on abalone embryo and juvenile development were examined in this study. Larvae of Haliotis diversicolor supertexta were induced to settlement and metamorphose by exposure to seawater supplemented with hydrogen peroxide. They had the best performance at 800 μmol/L. The concentration of 1 000 μmol/L or higher was toxic to the larvae, as the larvae could settle down only at benthic diatom plates without complete metamorphosis. In addition, H2O2 adding time was critical to the larval performance. 24h after two-day post-fertilization was proved to be the optimal adding time. In this paper, two action mechanisms of hydrogen peroxide are discussed: (1) hydrogen peroxide has direct toxicity to ciliated cells, thus cause apoptosis; (2) hydrogen peroxide, as a product from catecholamines’ autoxidation process in vivo, can reverse this process to produce neuro-transmitters to induce abalone metamorphosis.
Glycerophosphate-dependent hydrogen peroxide production by rat liver mitochondria.
Jesina, P; Kholová, D; Bolehovská, R; Cervinková, Z; Drahota, Z; Houstek, J
2004-01-01
We studied the extent to which hormonally-induced mitochondrial glycerophosphate dehydrogenase (mGPDH) activity contributes to the supply of reducing equivalents to the mitochondrial respiratory chain in the rat liver. The activity of glycerophosphate oxidase was compared with those of NADH oxidase and/or succinate oxidase. It was found that triiodothyronine-activated mGPDH represents almost the same capacity for the saturation of the respiratory chain as Complex II. Furthermore, the increase of mGPDH activity induced by triiodothyronine correlated with an increase of capacity for glycerophosphate-dependent hydrogen peroxide production. As a result of hormonal treatment, a 3-fold increase in glycerophosphate-dependent hydrogen peroxide production by liver mitochondria was detected by polarographic and luminometric measurements.
Briso, A L F; Lima, A P B; Gonçalves, R S; Gallinari, M O; dos Santos, P H
2014-01-01
The present study evaluated transenamel and transdentinal penetration of hydrogen peroxide during tooth whitening recognized in altered enamel by the presence of cracks or microabrasion. We used 72 experimental units (n=20) obtained from bovine incisors: GI-sound enamel; GII-teeth showing visible enamel cracks (4 mm to 5.7 mm in length); and GIII-microabrasioned enamel. The 12 remaining specimens were used to analyze the enamel surface morphology using scanning electron microscopy. The specimens were cylindrical and 5.7 mm in diameter and 3.5 mm thick. A product based on 35% hydrogen peroxide was used for bleaching, following the manufacturer's recommendations for use. To quantify the H2O2 penetration, the specimens were placed in artificial pulp chambers containing an acetate buffer solution. After bleaching, the solution was collected and adequately proportioned with leucocrystal violet, peroxidase enzyme, and deionized water. The resulting solution was evaluated using ultraviolet visible reflectance spectrophotometer equipment. The data were analyzed by analysis of variance (ANOVA) and Fisher's PLSD at a significance level of 0.05, and significant differences in the penetration of peroxide in different substrate conditions were observed (p<0.0001). The penetration of hydrogen peroxide was more intense in cracked teeth. The group in which the enamel was microabraded showed intermediate values when compared to the control group. Microabrasion and the presence of cracks in the enamel make this substrate more susceptible to penetration of hydrogen peroxide during in-office whitening.
Deciphering the chemoselectivity of nickel-dependent quercetin 2,4-dioxygenase.
Wang, Wen-Juan; Wei, Wen-Jie; Liao, Rong-Zhen
2018-06-13
The reaction mechanism and chemoselectivity of nickel-dependent quercetin 2,4-dioxygenase (2,4-QueD) have been investigated using the QM/MM approach. The protonation state of the Glu74 residue, a first-shell ligand of Ni, has been considered to be either neutral or deprotonated. QM/MM calculations predict that Glu74 must be deprotonated to rationalize the chemoselectivity and steer the 2,4-dioxygenolytic cleavage of quercetin, which harvests the experimentally-observed product, 2-protocatechuoylphloroglucinol carboxylic acid, coupled with the release of carbon monoxide. If the enzyme has a neutral Glu74 residue, the undesired 2,3-dioxygenolytic cleavage of quercetin becomes the dominant pathway, leading to the formation of α-keto acid. The calculations suggest that the reaction takes place via three major steps: (1) attack of the superoxide on the C2 of the substrate pyrone ring to generate a NiII-peroxide intermediate; (2) formation of the second C-O bond between C4 and the peroxide to produce a peroxide bridge; (3) simultaneous cleavage of the C2-C3, C3-C4, and O1-O2 bonds with the formation of 2-protocatechuoylphloroglucinol carboxylic acid and carbon monoxide. The third step was found to be rate-limiting, with a barrier of 17.4 kcal mol-1, which is in very good agreement with the experimental kinetic data. For the second C-O bond formation, an alternative pathway is that the peroxide attacks the C3 of the substrate pyrone ring, leading to the formation of a four-membered ring intermediate, which then undergoes concerted C2-C3 and O1-O2 bond cleavages to produce an α-keto acid. This pathway is associated with a barrier of 30.6 kcal mol-1, which is much higher than the major pathway. When Glu74 is protonated, the 2,3-dioxygenolytic pathway, however, has a lower barrier (21.8 kcal mol-1) than the 2,4-dioxygenolytic pathway.
Kuo, Dar-Chih; Hsu, Shih-Ping; Chien, Chiang-Ting
2009-01-01
Increased reactive oxygen species (ROS) and hyperlipidemia can promote arterial thrombus. We evaluated the potential of a partially hydrolyzed guar gum (PHGG) as dietary fiber on lipid profiles and FeCl3-induced arterial thrombosis in the high fat-diet fed hamsters. Our in vitro results found that PHGG is efficient to scavenge O2-•, H2O2, and HOCl. High fat-diet increased plasma triglyceride, total cholesterol, LDL, VLDL, methylguanidine and dityrosine level and accelerated FeCl3-induced arterial thrombosis formation (from 463 ± 51 to 303 ± 45 sec). Low dose PHGG supplement significantly decreased the total cholesterol, LDL, methylguanidine and dityrosine level and delayed the time for arterial thrombosis formation (528 ± 75 sec). High dose PHGG supplement decreased the level in triglyceride, total cholesterol, LDL and VLDL and further delayed the time for arterial thrombus (671 ± 36 sec). The increased Bax protein and decreased Bcl-2 and HSP-70 protein expression was found in the carotid and femoral arteries of high fat-diet hamsters. Low and high dose of PHGG supplement decreased Bax expression and increased Bcl-2 and HSP-70 protein expression. We found that FeCl3 significantly enhanced intercellular adhesion molecule-1 and 4-hydroxynonenal expression in the endothelial site of damaged artery after 150-sec FeCl3 stimulation. PHGG supplement decreased the endothelial ICAM-1 and 4-hydroxynonenal expression after 150-sec FeCl3 stimulation. Based on these results, we conclude that PHGG supplement can increase antioxidant protein expression and thus decrease oxidative stress induced arterial injury. PMID:19272178
Csepregi, Kristóf; Hideg, Éva
2016-12-01
Assays assessing non-enzymatic hydrogen peroxide antioxidant capacities are often hampered by the high UV absorption of the sample itself. This is a typical problem in studies using plant extracts with high polyphenol content. Our assay is based on comparing the 405 nm absorption of the product of potassium iodine and hydrogen peroxide in the presence and absence of a putative hydrogen peroxide reactive antioxidant. This method is free of interference with either hydrogen peroxide or antioxidant self-absorption and it is also suitable for high-throughput plate reader applications.
Zhou, Xu; Wang, Qilin; Jiang, Guangming
2015-04-01
Methane production from anaerobic digestion of waste activated sludge (WAS) is limited by the slow hydrolysis rate and/or poor methane potential of WAS. This study presents a novel pre-treatment strategy based on indigenous iron (in WAS) activated peroxidation to enhance methane production from WAS. Pre-treatment of WAS for 30 min at 50mg H2O2/g total solids (dry weight) and pH 2.0 (iron concentration in WAS was 7 mg/g TS) substantially enhanced WAS solubilization. Biochemical methane potential tests demonstrated that methane production was improved by 10% at a digestion time of 16d after incorporating the indigenous iron activated peroxidation pre-treatment. Model-based analysis indicated that indigenous iron activated peroxidation pre-treatment improved the methane potential by 13%, whereas the hydrolysis rate was not significantly affected. The economic analysis showed that the proposed pre-treatment method can save the cost by $112,000 per year in a treatment plant with a population equivalent of 300,000. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lam, Rosanna Y Y; Lin, Zhi-Xiu; Sviderskaya, Elena V; Cheng, Christopher H K
2014-08-21
Searching for depigmenting agents from natural sources has become a new direction in the cosmetic industry as natural products are generally perceived as relatively safer. In our previous study, selected Chinese medicines traditionally used to treat hyperpigmentation were tested for anti-hyperpigmentary effects using a melan-a cell culture model. Among the tested chemical compounds, 4-ethylresorcinol, 4-ethylphenol and 1-tetradecanol were found to possess hypopigmentary effects. Western blot analysis, reverse transcriptase polymerase chain reaction (RT-PCR), cyclic adenosine monophosphate (cAMP) assay, protein kinase A (PKA) activity assay, tyrosinase inhibition assay and lipid peroxidation inhibition assay were performed to reveal the underlying cellular and molecular mechanisms of the hypopigmentary effects. 4-Ethylresorcinol and 4-ethylphenol attenuated mRNA and protein expression of tyrosinase-related protein (TRP)-2, and possessed antioxidative effect by inhibiting lipid peroxidation. 1-Tetradecanol was able to attenuate protein expression of tyrosinase. The hypopigmentary actions of 4-ethylresorcinol, 4-ethylphenol and 1-tetradecanol were associated with regulating downstream proteins along the PKA pathway. 4-Ethylresorcinol was more effective in inhibiting melanin synthesis when compared to 4-ethylphenol and 1-tetradecanol.
Zhang, Wensong; Li, Yi; Ding, Hanlu; Du, Yaqin; Wang, Li
2016-08-01
Although vascular calcification in end-stage renal disease (ESRD) represents a ubiquitous human health problem, effective therapies with limited side effects are still lacking, and the precise mechanisms are not fully understood. The Nrf-2/ARE pathway is a pivotal to regulate anti-oxidative responses in vascular calcification upon ESRD. Although Nrf-2 plays a crucial role in atherosclerosis, pulmonary fibrosis, and brain ischemia, the effect of Nrf-2 and oxidative stress on vascular calcification in ESRD patients is still unclear. The aim of this research was to study the protective role of hydrogen peroxide in vascular calcification and the mechanism of Nrf-2 and oxidative stress on vascular calcification. Here we used the rat vascular smooth muscle cell model of β-glycerophosphate-induced calcification resembling vascular calcification in ESRD to investigate the therapeutic effect of 0.01 mM hydrogen peroxide on vascular calcification and further explores the possible underlying mechanisms. Our current report shows the in vitro role of 0.01 mM hydrogen peroxide in protecting against intracellular ROS accumulation upon vascular calcification. Both hydrogen peroxide and sulforaphane pretreatment reduced ROS production, increased the expression of Nrf-2, and decreased the expression of Runx2 following calcification. Our study demonstrates that 0.01 mM hydrogen peroxide can effectively protect rat aortic vascular smooth muscle cells against oxidative stress by preventing vascular calcification induced ROS production through Nrf-2 pathway. These data might define an antioxidant role of hydrogen peroxide in vascular calcification upon ESRD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bi, Xuanxuan; Wang, Rongyue; Ma, Lu
In sodium–oxygen (Na–O2) batteries, multiple discharge products have been observed by different research groups. Given the fact that different materials, gas supplies, and cell configurations are used by different groups, it is a great challenge to draw a clear conclusion on the formation of the different products. Here, two different cell setups are used to investigate the cell chemistries of Na–O2 batteries. With the same materials and gas supplies, a peroxide-based product is observed in a glass chamber cell and a superoxide-based product is observed in a stainless-steel cell. Ex situ high-energy X-ray diffraction (HEXRD) and Raman spectroscopy are performedmore » to investigate the structure and composition of the product. In addition, in situ XRD is used to investigate the structure evolution of the peroxide-based product. The findings highlight the importance of the cell design and emphasize the critical environment of the formation of the discharge products of Na–O2 batteries.« less
Cherkasov, S V; Gladysheva, I V; Bukharin, O V
2012-01-01
Study the interaction of vaginal corynebacteria and lactobacilli in realization of oxidative mechanism of antagonistic relations of bacteria. Effect of supernatants of corynebacteria inhibiting catalase on antagonism of peroxide producing lactobacilli to Staphylococcus aureus was studied. High frequency (55.5 - 72.7%) of potentiating of antagonism of lactobacilli with medium and high level of hydrogen peroxide production under the effect of supernatants of corynebacteria inhibiting catalase was established. The frequency of potentiation of antagonism of lactobacilli and corynebacteriae depended on the intensity of hydrogen peroxide production and on the ability of corynebacteria to suppress catalase of staphylococci. Potentiation of antagonism to S. aureus of peroxide producing lactobacilli and corynebacteria with catalase inhibitors gives evidence on realization of oxidative bacterial mechanism of colonization resistance in human organism.
BASIC PEROXIDE PRECIPITATION METHOD OF SEPARATING PLUTONIUM FROM CONTAMINANTS
Seaborg, G.T.; Perlman, I.
1959-02-10
A process is described for the separation from each other of uranyl values, tetravalent plutonium values and fission products contained in an aqueous acidic solution. First the pH of the solution is adjusted to between 2.5 and 8 and hydrogen peroxide is then added to the solution causing precipitation of uranium peroxide which carries any plutonium values present, while the fission products remain in solution. Separation of the uranium and plutonium values is then effected by dissolving the peroxide precipitate in an acidic solution and incorporating a second carrier precipitate, selective for plutonium. The plutonium values are thus carried from the solution while the uranium remains flissolved. The second carrier precipitate may be selected from among the group consisting of rare earth fluorides, and oxalates, zirconium phosphate, and bismuth lihosphate.
10. VIEW OF CALCINER IN ROOM 146148. THE CALCINER HEATED ...
10. VIEW OF CALCINER IN ROOM 146-148. THE CALCINER HEATED PLUTONIUM PEROXIDE TO CONVERT IT TO PLUTONIUM OXIDE. THE PROCESS REMOVED RESIDUAL WATER AND NITRIC ACID LEAVING A DRY, POWDERED PRODUCT. (4/29/65) - Rocky Flats Plant, Plutonium Recovery & Fabrication Facility, North-central section of plant, Golden, Jefferson County, CO
Ye, Xiaodong; Fels, Diane; Tovmasyan, Artak; Aird, Katherine M.; Dedeugd, Casey; Allensworth, Jennifer L.; Kos, Ivan; Park, Won; Spasojevic, Ivan; Devi, Gayathri R.; Dewhirst, Mark W.; Leong, Kam W.; Batinic-Haberle, Ines
2012-01-01
Due to the ability to easily accept and donate electrons Mn(III) N-alkylpyridylporphyrins (MnPs) can dismute O2˙−, reduce peroxynitrite, but also generate reactive species and behave as pro-oxidants if conditions favour such action. Herein two ortho isomers, MnTE-2-PyP5+, MnTnHex-2-PyP5+, and a meta isomer MnTnHex-3-PyP5+, which differ greatly with regard to their metal-centered reduction potential, E1/2 (MnIIIP/MnIIP) and lipophilicity, were explored. Employing MnIIIP/MnIIP redox system for coupling with ascorbate, these MnPs catalyze ascorbate oxidation and thus peroxide production. Consequently, cancer oxidative burden may be enhanced, which in turn would suppress its growth. Cytotoxic effects on Caco-2, Hela, 4T1, HCT116 and SUM149 were studied. When combined with ascorbate, MnPs killed cancer cells via peroxide produced outside of the cell. MnTE-2-PyP5+ was the most efficacious catalyst for peroxide production, while MnTnHex-3-PyP5+ is most prone to oxidative degradation with H2, and thus the least efficacious. A 4T1 breast cancer mouse study of limited scope and success was conducted. The tumour oxidative stress was enhanced and its microvessel density reduced when mice were treated either with ascorbate or MnP/ascorbate; the trend towards tumour growth suppression was detected. PMID:21859376
Jin, Chunhua; Sun, Jingping; Stilphen, Carly A; Smith, Susan M E; Ocasio, Hiram; Bermingham, Brent; Darji, Sandip; Guha, Avirup; Patel, Roshan; Geurts, Aron M; Jacob, Howard J; Lambert, Nevin A; O'Connor, Paul M
2014-09-01
We previously characterized a H(+) transport pathway in medullary thick ascending limb nephron segments that when activated stimulated the production of superoxide by nicotinamide adenine dinucleotide phosphate oxidase. Importantly, the activity of this pathway was greater in Dahl salt-sensitive rats than salt-resistant (SS.13(BN)) rats, and superoxide production was enhanced in low Na(+) media. The goal of this study was to determine the molecular identity of this pathway and its relationship to Na(+). We hypothesized that the voltage-gated proton channel, HV1, was the source of superoxide-stimulating H(+) currents. To test this hypothesis, we developed HV1(-/-) null mutant rats on the Dahl salt-sensitive rat genetic background using zinc-finger nuclease gene targeting. HV1 could be detected in medullary thick limb from wild-type rats. Intracellular acidification using an NH4Cl prepulse in 0 sodium/BaCl2 containing media resulted in superoxide production in thick limb from wild-type but not HV1(-/-) rats (P<0.05) and more rapid recovery of intracellular pH in wild-type rats (ΔpHI 0.005 versus 0.002 U/s, P=0.046, respectively). Superoxide production was enhanced by low intracellular sodium (<10 mmol/L) in both thick limb and peritoneal macrophages only when HV1 was present. When fed a high-salt diet, blood pressure, outer medullary renal injury (tubular casts), and oxidative stress (4-hydroxynonenal staining) were significantly reduced in HV1(-/-) rats compared with wild-type Dahl salt-sensitive rats. We conclude that HV1 is expressed in medullary thick ascending limb and promotes superoxide production in this segment when intracellular Na(+) is low. HV1 contributes to the development of hypertension and renal disease in Dahl salt-sensitive rats. © 2014 American Heart Association, Inc.
Vasu, Srividya; McClenaghan, Neville H; Flatt, Peter R
2016-10-01
Mechanisms of toxicity and cell damage were investigated in novel clonal human pancreatic beta cell line, 1.1B4, after exposure to streptozotocin, alloxan, ninhydrin, and hydrogen peroxide. Viability, DNA damage, insulin secretion/content, [Ca]i, and glucokinase/hexokinase, mRNA expression were measured by MTT assay, comet assay, radioimmunoassay, fluorometric imaging plate reader, enzyme-coupled photometry, and real-time polymerase chain reaction, respectively. Chemicals significantly reduced 1.1B4 cell viability in a time/concentration-dependent manner. Chronic 18-hour exposure decreased cellular insulin, glucokinase, and hexokinase activities. Chemicals decreased transcription of INS, GCK, PCSK1, PCSK2, and GJA1 (involved in secretory function). Insulin release and [Ca]i responses to nutrients and membrane-depolarizing agents were impaired. Streptozotocin and alloxan up-regulated transcription of genes, SOD1 and SOD2 (antioxidant enzymes). Ninhydrin and hydrogen peroxide up-regulated SOD2 transcription, whereas alloxan and hydrogen peroxide increased CAT transcription. Chemicals induced DNA damage, apoptosis, and increased caspase 3/7 activity. Streptozotocin and alloxan decreased transcription of BCL2 while increasing transcription of BAX. Chemicals did not affect transcription of HSPA4 and HSPA5 and nitrite production. 1.1B4 cells represent a useful model of human beta cells. Chemicals impaired 1.1B4 cell secretory function and activated antioxidant defense and apoptotic pathways without activating endoplasmic reticulum stress response/nitrosative stress.
Production of Hydroxyl Radical via the Activation of Hydrogen Peroxide by Hydroxylamine.
Chen, Liwei; Li, Xuchun; Zhang, Jing; Fang, Jingyun; Huang, Yanmin; Wang, Ping; Ma, Jun
2015-09-01
The production of the hydroxyl radical (HO·) is important in environmental chemistry. This study reports a new source of HO· generated solely from hydrogen peroxide (H2O2) activated by hydroxylamine (HA). Electron paramagnetic resonance analysis and the oxidation of a HO· probe, benzoic acid, were used to confirm the production of HO·. The production of HO· increased with increasing concentrations of either HA or H2O2 as well as decreasing pH. The second-order rate constant for the reaction was (2.2 ± 0.2) × 10(-4) M(-1) s(-1). HO· was probably produced in two steps: the activation of H2O2 by protonated HA and then reaction between the H2O2 and the intermediate protonated aminoxyl radical generated in the first step. Such a two-step oxidation can possibly be ascribed to the ionizable hydroxyl moiety in the molecular structure of HA, as is suggested by comparing the reactivity of a series of HA derivatives in HO· production. The results shed light on a previously unknown source of HO· formation, which broadens the understanding of its role in environmental processes.
Delgado, Denise Aparecida; de Souza Sant'ana, Anderson; de Massaguer, Pilar Rodriguez
2012-07-01
This study aimed at enumerating molds (heat-labile and heat-resistant) on the surface of paperboard material to be filled with tomato pulps through an aseptic system and at determining the most heat- and hydrogen peroxide-resistant strains. A total of 118 samples of laminated paperboard before filling were collected, being 68 before and 50 after the hydrogen peroxide bath. Seven molds, including heat-resistant strains (Penicillium variotii and Talaromyces flavus) with counts ranging between 0.71 and 1.02 CFU/cm(2) were isolated. P. variotii was more resistant to hydrogen peroxide than T. flavus and was inactivated after heating at 85 °C/15 min. When exposed to 35 % hydrogen peroxide at 25 °C, T. flavus (F5E2) and N. fischeri (control) were less resistant than P. variotti (F1A1). P. citrinum (F7E2) was shown to be as resistant as P. variotti. The D values (the time to cause one logarithmic cycle reduction in a microbial population at a determined temperature) for spores of P. variotii (F1A1) and N. fischeri (control) with 4 months of age at 85 and 90 °C were 3.9 and 4.5 min, respectively. Although the contamination of packages was low, the presence of heat- and chemical-resistant molds may be of concern for package sterility and product stability during shelf-life. To our knowledge, this is the first report that focuses on the isolation of molds, including heat-resistant ones, contaminating paperboard packaging material and on estimating their resistance to the chemical and physical processes used for packaging sterilization.
Martinez, C A; Nohalez, A; Ceron, J J; Rubio, C P; Roca, J; Cuello, C; Rodriguez-Martinez, H; Martinez, E A; Gil, M A
2017-11-01
The use of oils with undetected alterations is a long-recognized problem for in vitro embryo production systems. Since peroxides in oils have been associated with reduced embryo production outcomes, our goals were (1) to evaluate the effects of a batch of mineral oil (MO) that was suspected to be altered on the in vitro production of pig embryos and (2) to determine oil peroxide values throughout culture and the transfer of oxidant agents from oil to culture media. Sunflower oil, which has a completely different chemical composition than MO but a higher oxidative status, and unaltered MO were used as controls. Oocyte maturation, fertilization and embryo development were affected differently depending on the oil overlay used. While the suspected MO was not able to sustain in vitro maturation and fertilization, the oocytes incubated in the presence of sunflower oil were matured and fertilized similarly to those of the unaltered MO group. Moreover, the cleavage rate of presumed zygotes cultured under the suspected MO was severely reduced compared with those cultured under the other oils, and none of the cleaved embryos developed to the blastocyst stage. Although the cleavage rates in the sunflower oil and unaltered MO groups were similar, embryos cultured under sunflower oil also failed to develop to the blastocyst stage. Our results revealed that the suspected MO and sunflower oil had similar levels of peroxides and that these levels were much higher than those of the unaltered MO. The total oxidant status was higher in media incubated under peroxidized oils than in fresh media or media incubated without an oil overlay or under unaltered MO, indicating that oxidant agents were transferred to the incubation media. However, unlike the sunflower oil group, the culture media incubated under the suspected MO had high levels of total oxidant status and low levels of hydrogen peroxide and reactive oxygen species, suggesting the presence of other unknown oxidant agents in that oil. These results indicate that a peroxidized MO overlay dramatically decreases embryo production outcomes. This decrease could be associated with the higher peroxide values of the oil but cannot be explained by the levels of hydrogen peroxide and reactive oxygen species transferred from the oil to the culture media. It is likely that different oxidant agent(s) and/or other toxic compounds present in the peroxidized MO are responsible for its damaging effects on oocytes and embryos. Copyright © 2017 Elsevier Inc. All rights reserved.
Investigating the Stability of Benzoyl Peroxide in Over-the-Counter Acne Medications
ERIC Educational Resources Information Center
Kittredge, Marina Canepa; Kittredge, Kevin W.; Sokol, Melissa S.; Sarquis, Arlyne M.; Sennet, Laura M.
2008-01-01
One of the most commonly used ingredients in over-the-counter acne treatments in cream, gel, and wash form is benzoyl peroxide. It is an anti-bacterial agent that kills the bacterium ("Propionibacterium acne") involved in the formation of acne. The formulation of these products is extremely difficult owing to the instability of benzoyl peroxide.…
Yamada, Yusuke; Fukunishi, Yurie; Yamazaki, Shin-ichi; Fukuzumi, Shunichi
2010-10-21
Hydrogen peroxide was electrochemically produced by reducing oxygen in an aqueous solution with [Co(TCPP)] as a catalyst and photovoltaic solar cell operating at 0.5 V. Hydrogen peroxide thus produced is utilized as a fuel for a one-compartment fuel cell with Ag-Pb alloy nanoparticles as the cathode.
Investigation of flavonoid influence on peroxidation processes intensity in the blood
NASA Astrophysics Data System (ADS)
Navolokin, N. A.; Mudrak, D. A.; Plastun, I. L.; Bucharskaya, A. B.; Agandeeva, K. E.; Ivlichev, A. V.; Tychina, S. A.; Afanasyeva, G. A.; Polukonova, N. V.; Maslyakova, G. N.
2017-03-01
Influence of flavonoids on the intensity of peroxidation processes in the blood is investigated by numerical modeling and by experiment in vivo. As an example we consider the effects of flavonoid-containing extract of Helichrysum arenarium L. with antitumor activity on serum of rats with transplanted liver cancer PC-1. It was found that the content of malondialdehyde, lipid hydroperoxides and average mass molecules were decreased in animals with transplanted liver cancer after intramuscular and oral administration of Helichrysum arenarium L extract in a dose of 1000 mg/mL. The extract reduces the intensity of lipid peroxidation processes in animals. The compound formation possibility of flavonoids and products of lipid peroxidation is investigated by numerical simulations. Using the density functional theory method of molecular modeling, we analyze hydrogen bonds formation and their influence on IR - spectra and structure of molecular complex which is formed due to interaction between flavonoids and products of lipid peroxidation processes on example of naringine and malondialdehyde. We have found that naringine can form a steady molecular complex with malondialdehyde by hydrogen bonds formation. Thus, the application of Helichrysum arenarium L. extract for suppression processes of lipid peroxidation and activation of enzymatic and non-enzymatic antioxidant systems is promising.
Yang, Joon-Hyuck; Park, Jeen-Woo
2003-08-01
Membrane lipid peroxidation processes yield products that may react with DNA and proteins to cause oxidative modifications. Cytosolic NADP+-dependent isocitrate dehydrogenase (ICDH) in U937 cells produces NADPH, an essential reducing equivalent for the antioxidant system. The protective role of ICDH against lipid peroxidation-mediated oxidative damage in U937 cells was investigated in control cells pre-treated with oxalomalate, a competitive inhibitor of ICDH. Upon exposure to 2,2'-azobis(2-amidinopropane) hydrochloride (AAPH) to U937 cells, which induces lipid peroxidation in membranes, the viability was lower and the protein oxidation, lipid peroxidation, and oxidative DNA damage, reflected by an increase in 8-hydroxy-2'-deoxyguanosine, were higher in oxalomalate-treated cells as compared to control cells. We also observed the significant increase in the endogenous production of reactive oxygen species, as measured by the oxidation of 2',7'-dichlorodihydrofluorescin, as well as the significant decrease in the intracellular GSH level in oxalomalate-treated U937 cells upon exposure to AAPH. These results suggest that ICDH plays an important role as an antioxidant enzyme in cellular defense against lipid peroxidation-mediated oxidative damage through the removal of reactive oxygen species.
Yuan, Zhaoyang; Wen, Yangbing; Li, Guodong
2018-07-01
An efficient scheme was developed for the conversion of wheat straw (WS) into bioethanol, silica and lignin. WS was pre-extracted with 0.2 mol/L sodium hydroxide at 30 °C for 5 h to remove about 91% of initial silica. Subsequently, the alkaline-pretreated solids were subjected to alkaline hydrogen peroxide (AHP) pretreatment with 40 mg hydrogen peroxide (H 2 O 2 )/g biomass at 50 °C for 7 h to prepare highly digestible substrate. The results of enzymatic hydrolysis demonstrated that the sequential alkaline-AHP pretreated WS was efficiently hydrolyzed at 10% (w/v) solids loading using an enzyme dosage of 10 mg protein/g glucan. The total sugar conversion of 92.4% was achieved. Simultaneous saccharification and co-fermentation (SSCF) was applied to produce ethanol from the two-stage pretreated substrate using Saccharomyces cerevisiae SR8u strain. Ethanol with concentration of 31.1 g/L was produced. Through the proposed process, about 86.4% and 54.1% of the initial silica and lignin were recovered, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.
Samiei, Mohammad; Janani, Maryam; Vahdati, Amin; Alemzadeh, Yalda; Bahari, Mahmoud
2017-01-01
The present study evaluated the element distribution in completely set calcium-enriched mixture (CEM) cement after application of 35% carbamide peroxide, 40% hydrogen peroxide and sodium perborate as commercial bleaching agents using an energy-dispersive x-ray microanalysis (EDX) system. The surface structure was also observed using the scanning electron microscope (SEM). Twenty completely set CEM cement samples, measuring 4×4 mm 2 , were prepared in the present in vitro study and randomly divided into 4 groups based on the preparation technique as follows: the control group; 35% carbamide peroxide group in contact for 30-60 min for 4 times; 40% hydrogen peroxide group with contact time of 15-20 min for 3 times; and sodium perborate group, where the powder and liquid were mixed and placed on CEM cement surface 4 times. Data were analyzed at a significance level of 0.05 through the one Way ANOVA and Tukey's post hoc tests. EDX showed similar element distribution of oxygen, sodium, calcium and carbon in CEM cement with the use of carbamide peroxide and hydroxide peroxide; however, the distribution of silicon was different ( P <0.05). In addition, these bleaching agents resulted in significantly higher levels of oxygen and carbon ( P <0.05) and a lower level of calcium ( P <0.05) compared to the control group. SEM of the control group showed plate-like and globular structure. Sodium perborate was similar to control group due to its weak oxidizing properties. Globular structures and numerous woodpecker holes were observed on the even surface on the carbamide peroxide group. The mean elemental distribution of completely set CEM cement was different when exposed to sodium perborate, carbamide peroxide and hydrogen peroxide.
Trends in Selective Hydrogen Peroxide Production on Transition Metal Surfaces from First Principles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rankin, Rees B.; Greeley, Jeffrey P.
2012-10-19
We present a comprehensive, Density Functional Theory-based analysis of the direct synthesis of hydrogen peroxide, H2O2, on twelve transition metal surfaces. We determine the full thermodynamics and selected kinetics of the reaction network on these metals, and we analyze these energetics with simple, microkinetically motivated rate theories to assess the activity and selectivity of hydrogen peroxide production on the surfaces of interest. By further exploiting Brønsted-Evans-Polanyi relationships and scaling relationships between the binding energies of different adsorbates, we express the results in the form of a two dimensional contour volcano plot, with the activity and selectivity being determined as functionsmore » of two independent descriptors, the atomic hydrogen and oxygen adsorption free energies. We identify both a region of maximum predicted catalytic activity, which is near Pt and Pd in descriptor space, and a region of selective hydrogen peroxide production, which includes Au. The optimal catalysts represent a compromise between activity and selectivity and are predicted to fall approximately between Au and Pd in descriptor space, providing a compact explanation for the experimentally known performance of Au-Pd alloys for hydrogen peroxide synthesis, and suggesting a target for future computational screening efforts to identify improved direct hydrogen peroxide synthesis catalysts. Related methods of combining activity and selectivity analysis into a single volcano plot may be applicable to, and useful for, other aqueous phase heterogeneous catalytic reactions where selectivity is a key catalytic criterion.« less
Meinertz, J.R.; Greseth, Shari L.; Gaikowski, M.P.; Schmidt, L.J.
2008-01-01
A flow-through, continuous exposure test system was developed to expose Daphnia magna to an unstable compound. 35% Perox-Aid?? is a specially formulated hydrogen peroxide (a highly oxidative chemical) product approved for use in U.S. aquaculture and therefore has the potential to be released from aquaculture facilities and pose a risk to aquatic invertebrates. The study objective was to assess the effects of 35% Perox-Aid?? on an aquatic invertebrate by evaluating the survival, growth, production, and gender ratio of progeny from a representative aquatic invertebrate continuously exposed to 35% Perox-Aid??. The study design consisted of 6 treatment groups (10 test chambers each) with target hydrogen peroxide concentrations of 0.0, 0.32, 0.63, 1.25, 2.5, and 5.0??mg L- 1. The study was initiated with < 24-h-old Daphnia (1 daphnid per chamber) that were exposed to hydrogen peroxide for 21??days. Hydrogen peroxide concentrations ??? 1.25??mg L- 1 had no significant effect on Daphnia time to death compared to controls and no significant effect on the time to first brood production and the number of broods produced. Concentrations ??? 0.63??mg L- 1 had no significant effect on the total number of young produced. Concentrations ??? 0.32??mg L- 1 had a negative effect on Daphnia growth. Hydrogen peroxide had no significant effect on the gender ratio of young produced. All second generation Daphnia were female. A continuous discharge of hydrogen peroxide into aquatic ecosystems is not likely to affect cladocerans if the concentration is maintained at ??? 0.63??mg L- 1 for less than 21??days.
Pooja, Makwana; Pradeep, Appukuttan Nair R; Hungund, Shambhavi P; Sagar, Chandrashekhar; Ponnuvel, Kangayam M; Awasthi, Arvind K; Trivedy, Kanika
2017-12-20
Parasitization of silkworm, Bombyx mori by invasive larva of dipteran parasitoid Exorista bombycis caused upto 20% revenue loss in sericulture. The parasitism was successful by suppressing host immune system however mechanism of immune suppression induced by E. bombycis is unknown which is unravelled here. The infestation induced cytotoxic symptoms in host hemocytes, such as vacuolated cytoplasm, porous plasma membrane, indented nuclei with condensed chromatin and dilated RER. One of the markers of necrosis is cell permeabilization, which can be measured as released lactate dehydrogenase (LDH). LDH level showed significantly (P<0.01) high release into extracellular medium in vitro after exposure of hemocytes to parasitoid larval tissue protein compared with control revealing membrane permeability and loss of cell integrity. At five minutes after exposure, cytotoxicity was 43% and was increased to 99% at 3h. The cytotoxicity is signalled by increased content of hydrogen peroxide (H2O2) causing lipid peroxidation followed by porosity in plasma membrane. A test for lipid peroxidation by measurement of lipid peroxidation breakdown product, malondialdehyde (MDA) revealed significant increase in peroxidation from one to 24 h post-invasion, with maximum at 12 h (P<0.008). Level of reactive oxygen species measured as H2O2 production increased from 6 to 12 h post-invasion and continued to increase significantly (P<0.03) reaching maximum at 48 h. These observations reveal that dipteran endoparasitoid invasion induced H2O2 production in the hemocytes causing cytotoxicity, lipid peroxidation and membrane porosity that suppressed both humoral- and cell-mediated immune responses of hemocytes in B. mori.
Hom, D G; Jiang, D; Hong, E J; Mo, J Q; Andersen, J K
1997-06-01
In vivo administration of either 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or methamphetamine (MA) produces damage to the dopaminergic nervous system which may be due in part to the generation of reactive oxygen species (ROS). The resistance of superoxide dismutase (SOD) over-expressing transgenic mice to the effects of both MPTP and MA suggests the involvement of superoxide in the resulting neurotoxicity of both compounds. Superoxide can be converted by SOD to hydrogen peroxide, which itself can cause cellular degeneration by reacting with free iron to produce highly reactive hydroxyl radicals resulting in damage to proteins, nucleic acids and membrane phospholipids. Hydrogen peroxide has also been reported to be produced via inhibition of NADH dehydrogenase by MPP + formed during oxidation of MPTP by MAO-B and by dopamine auto-oxidation following MA-induced dopamine release from synaptic vesicles within nerve terminals. To test whether hydrogen peroxide is an important factor in the toxicity of either of these two neurotoxins, we created clonal PC12 lines expressing elevated levels of the hydrogen peroxide-reducing enzyme glutathione peroxidase (GSHPx). Elevation of GSHPx levels in PC12 was found to diminish the rise in ROS levels and lipid peroxidation resulting from MA but not MPTP treatment. Elevated levels of GSHPx also appeared to prevent decreases in transport-mediated dopamine uptake produced via MA administration as well as to attenuate toxin-induced cell loss as measured by either MTT reduction or LDH release. Our data, therefore, suggest that hydrogen peroxide production likely contributes to MA toxicity in dopaminergic neurons.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Stowage of Division 1.5, Class 4 (flammable solids... Solids), Class 5 (Oxidizers and Organic Peroxides), and Division 1.5 Materials § 176.400 Stowage of Division 1.5, Class 4 (flammable solids) and Class 5 (oxidizers and organic peroxides) materials. (a) Class...
Jatuporn, Srisakul; Sangwatanaroj, Somkiat; Saengsiri, Aem-Orn; Rattanapruks, Sopida; Srimahachota, Suphot; Uthayachalerm, Wasan; Kuanoon, Wanpen; Panpakdee, Orasa; Tangkijvanich, Pisit; Tosukhowong, Piyaratana
2003-01-01
The purpose of this study was to compare the short-term effects of an intensive lifestyle modification (ILM) program on lipid peroxidation and antioxidant systems in patients with coronary artery disease (CAD). Twenty-two patients in the control group continued to receive their conventional treatment with lipid-lowering drugs, whereas 22 patients in the experimental group were assigned to intensive lifestyle modification (ILM) without taking any lipid-lowering agent. The ILM program comprised dietary advice on low-fat diets, high antioxidants and high fiber intakes, yoga exercise, stress management and smoking cessation. After 4 months of intervention, patients in the experimental group revealed a statistically significant increase in plasma total antioxidants, plasma vitamin E and erythrocyte glutathione (GSH) compared to patients in the control group. There was no significant change in plasma malondialdehyde (MDA), a circulating product of lipid peroxidation, in either group. We concluded that the ILM program increased circulating antioxidants and reduced oxidative stress in patients with CAD.
Lamberson, Connor R; Muchalski, Hubert; McDuffee, Kari B; Tallman, Keri A; Xu, Libin; Porter, Ned A
2017-10-01
The free radical chain autoxidation of cholesterol and the oxidation products formed, i.e. oxysterols, have been the focus of intensive study for decades. The peroxidation of sterol precursors to cholesterol such as 7-dehydrocholesterol (7-DHC) and desmosterol as well as their oxysterols has received less attention. The peroxidation of these sterol precursors can become important under circumstances in which genetic conditions or exposures to small molecules leads to an increase of these biosynthetic intermediates in tissues and fluids. 7-DHC, for example, has a propagation rate constant for peroxidation some 200 times that of cholesterol and this sterol is found at elevated levels in a devastating human genetic condition, Smith-Lemli-Opitz syndrome (SLOS). The propagation rate constants for peroxidation of sterol intermediates on the biosynthetic pathway to cholesterol were determined by a competition kinetic method, i.e. a peroxyl radical clock. In this work, propagation rate constants for lathosterol, zymostenol, desmosterol, 7-dehydrodesmosterol and other sterols in the Bloch and Kandutsch-Russell pathways are assigned and these rate constants are related to sterol structural features. Furthermore, potential oxysterols products are proposed for sterols whose oxysterol products have not been determined. Copyright © 2017 Elsevier B.V. All rights reserved.
Sekine, Seiji; Kubo, Kazuhiro; Tadokoro, Tadahiro; Saito, Morio
2007-11-01
We hypothesized a suppressive mechanism for docosahexaenoic acid (22:6n-3; DHA)-induced tissue lipid peroxidation in which the degradation products, especially aldehydic compounds, are conjugated with glutathione through catalysis by glutathione S-transferases, and then excreted into urine as mercapturic acids. In the present study, ascorbic acid-requiring ODS rats were fed a diet containing DHA (3.6% of total energy) for 31 days. Lipid peroxides including degradation products and their scavengers in the liver and kidney were determined, and the temporal change in the urinary excretion of mercapturic acids was also measured. The activity of aldehyde dehydrogenase, which catalyzes the oxidation and detoxification of aldehydes, tended to be higher in the liver of DHA-fed rats. The levels of lipid peroxides as measured by thiobarbituric acid-reactive substances and aldehydic compounds were higher and that of alpha-tocopherol was lower in the liver, and the pattern of temporal changes in the urinary excretion of mercapturic acids was also different between the n-6 linoleic acid and DHA-fed rats. Accordingly, we presume from these results that after dietary DHA-induced lipid peroxidation, a proportion of the lipid peroxidation-derived aldehydic degradation products is excreted into urine as mercapturic acids.
Sekine, Seiji; Kubo, Kazuhiro; Tadokoro, Tadahiro; Saito, Morio
2007-01-01
We hypothesized a suppressive mechanism for docosahexaenoic acid (22:6n-3; DHA)-induced tissue lipid peroxidation in which the degradation products, especially aldehydic compounds, are conjugated with glutathione through catalysis by glutathione S-transferases, and then excreted into urine as mercapturic acids. In the present study, ascorbic acid-requiring ODS rats were fed a diet containing DHA (3.6% of total energy) for 31 days. Lipid peroxides including degradation products and their scavengers in the liver and kidney were determined, and the temporal change in the urinary excretion of mercapturic acids was also measured. The activity of aldehyde dehydrogenase, which catalyzes the oxidation and detoxification of aldehydes, tended to be higher in the liver of DHA-fed rats. The levels of lipid peroxides as measured by thiobarbituric acid-reactive substances and aldehydic compounds were higher and that of α-tocopherol was lower in the liver, and the pattern of temporal changes in the urinary excretion of mercapturic acids was also different between the n-6 linoleic acid and DHA-fed rats. Accordingly, we presume from these results that after dietary DHA-induced lipid peroxidation, a proportion of the lipid peroxidation-derived aldehydic degradation products is excreted into urine as mercapturic acids. PMID:18299714
Liang, Mao-Chang; Hartman, Hyman; Kopp, Robert E.; Kirschvink, Joseph L.; Yung, Yuk L.
2006-01-01
During Proterozoic time, Earth experienced two intervals with one or more episodes of low-latitude glaciation, which are probable “Snowball Earth” events. Although the severity of the historical glaciations is debated, theoretical “hard Snowball” conditions are associated with the nearly complete shutdown of the hydrological cycle. We show here that, during such long and severe glacial intervals, a weak hydrological cycle coupled with photochemical reactions involving water vapor would give rise to the sustained production of hydrogen peroxide. The photochemical production of hydrogen peroxide has been proposed previously as the primary mechanism for oxidizing the surface of Mars. During a Snowball, hydrogen peroxide could be stored in the ice; it would then be released directly into the ocean and the atmosphere upon melting and could mediate global oxidation events in the aftermath of the Snowball, such as that recorded in the Fe and Mn oxides of the Kalahari Manganese Field, deposited after the Paleoproterozoic low-latitude Makganyene glaciation. Low levels of peroxides and molecular oxygen generated during Archean and earliest Proterozoic non-Snowball glacial intervals could have driven the evolution of oxygen-mediating and -using enzymes and thereby paved the way for the eventual appearance of oxygenic photosynthesis. PMID:17138669
Hazard Assessment of Personal Protective Clothing for Hydrogen Peroxide Service
NASA Technical Reports Server (NTRS)
Greene, Ben; McClure, Mark B.; Johnson, Harry T.
2004-01-01
Selection of personal protective equipment (PPE) for hydrogen peroxide service is an important part of the hazard assessment process. But because drip testing of chemical protective clothing for hydrogen peroxide service has not been reported for about 40 years, it is of great interest to test new protective clothing materials with new, high-concentration hydrogen peroxide following similar procedures. The suitability of PPE for hydrogen peroxide service is in part determined by observations made when hydrogen peroxide is dripped onto swatches of protective clothing material. Protective clothing material was tested as received, in soiled condition, and in grossly soiled condition. Materials were soiled by pretreating the material with potassium permanganate (KMnO4) solution then drying to promote a reaction. Materials were grossly soiled with solid KMnO4 to greatly promote reaction. Observations of results including visual changes to the hydrogen peroxide and materials, times to ignition, and self-extinguishing characteristics of the materials are reported.
Huun, Marianne Ullestad; Garberg, Håvard T; Escobar, Javier; Chafer, Consuelo; Vento, Maximo; Holme, Ingar M; Saugstad, Ola Didrik; Solberg, Rønnaug
2018-02-23
Lipid peroxidation mediated by reactive oxygen species is a major contributor to oxidative stress. Docosahexaenoic acid (DHA) has anti-oxidant and neuroprotective properties. Our objective was to assess how oxidative stress measured by lipid peroxidation was modified by DHA in a newborn piglet model of hypoxia-ischemia (HI). Fifty-five piglets were randomized to (i) hypoxia, (ii) DHA, (iii) hypothermia, (iv) hypothermia+DHA or (v) sham. All groups but sham were subjected to hypoxia by breathing 8% O2. DHA was administered 210 min after end of hypoxia and the piglets were euthanized 9.5 h after end of hypoxia. Urine and blood were harvested at these two time points and analyzed for F4-neuroprostanes, F2-isoprostanes, neurofuranes and isofuranes using UPLC-MS/MS. F4-neuroprostanes in urine were significantly reduced (P=0.006) in groups receiving DHA. Hypoxia (median, IQR 1652 nM, 610-4557) vs. DHA (440 nM, 367-738, P=0.016) and hypothermia (median, IQR 1338 nM, 744-3085) vs. hypothermia+DHA (356 nM, 264-1180, P=0.006). The isoprostane compound 8-iso-PGF2α was significantly lower (P=0.011) in the DHA group compared to the hypoxia group. No significant differences were found between the groups in blood. DHA significantly reduces oxidative stress by measures of lipid peroxidation following HI in both normothermic and hypothermic piglets.
Organometallic catalysts for primary phosphoric acid fuel cells
NASA Technical Reports Server (NTRS)
Walsh, Fraser
1987-01-01
A continuing effort by the U.S. Department of Energy to improve the competitiveness of the phosphoric acid fuel cell by improving cell performance and/or reducing cell cost is discussed. Cathode improvement, both in performance and cost, available through the use of a class of organometallic cathode catalysts, the tetraazaannulenes (TAAs), was investigated. A new mixed catalyst was identified which provides improved cathode performance without the need for the use of a noble metal. This mixed catalyst was tested under load for 1000 hr. in full cell at 160 to 200 C in phosphoric acid H3PO4, and was shown to provide stable performance. The mixed catalyst contains an organometallic to catalyze electroreduction of oxygen to hydrogen peroxide and a metal to catalyze further electroreduction of the hydrogen peroxide to water. Cathodes containing an exemplar mixed catalyst (e.g., Co bisphenyl TAA/Mn) operate at approximately 650 mV vs DHE in 160 C, 85% H3PO4 with oxygen as reactant. In developing this mixed catalyst, a broad spectrum of TAAs were prepared, tested in half-cell and in a rotating ring-disk electrode system. TAAs found to facilitate the production of hydrogen peroxide in electroreduction were shown to be preferred TAAs for use in the mixed catalyst. Manganese (Mn) was identified as a preferred metal because it is capable of catalyzing hydrogen peroxide electroreduction, is lower in cost and is of less strategic importance than platinum, the cathode catalyst normally used in the fuel cell.
Towner, Rheal A; Smith, Nataliya; Saunders, Debra; De Souza, Patricia Coutinho; Henry, Leah; Lupu, Florea; Silasi-Mansat, Robert; Ehrenshaft, Marilyn; Mason, Ronald P; Gomez-Mejiba, Sandra E; Ramirez, Dario C
2013-12-01
Free radicals play a major role in gliomas. By combining immuno-spin-trapping (IST) and molecular magnetic resonance imaging (mMRI), in vivo levels of free radicals were detected within mice bearing orthotopic GL261 gliomas. The nitrone spin trap DMPO (5,5-dimethyl pyrroline N-oxide) was administered prior to injection of an anti-DMPO probe (anti-DMPO antibody covalently bound to a bovine serum albumin (BSA)-Gd (gadolinium)-DTPA (diethylene triamine penta acetic acid)-biotin MRI contrast agent) to trap tumor-associated free radicals. mMRI detected the presence of anti-DMPO adducts by either a significant sustained increase (p<0.001) in MR signal intensity or a significant decrease (p<0.001) in T1 relaxation, measured as %T1 change. In vitro assessment of the anti-DMPO probe indicated a significant decrease (p<0.0001) in T1 relaxation in GL261 cells that were oxidatively stressed with hydrogen peroxide, compared to controls. The biotin moiety of the anti-DMPO probe was targeted with fluorescently-labeled streptavidin to locate the anti-DMPO probe in excised brain tissues. As a negative control a non-specific IgG antibody covalently bound to the albumin-Gd-DTPA-biotin construct was used. DMPO adducts were also confirmed in tumor tissue from animals administered DMPO, compared to non-tumor brain tissue. GL261 gliomas were found to have significantly increased malondialdehyde (MDA) protein adducts (p<0.001) and 3-nitrotyrosine (3-NT) (p<0.05) compared to normal mouse brain tissue, indicating increased oxidized lipids and proteins, respectively. Co-localization of the anti-DMPO probe with either 3-NT or 4-hydroxynonenal was also observed. This is the first report regarding the detection of in vivo levels of free radicals from a glioma model. © 2013.
Riccelli, Maria Grazia; Goldoni, Matteo; Andreoli, Roberta; Mozzoni, Paola; Pinelli, Silvana; Alinovi, Rossella; Selis, Luisella; Mutti, Antonio; Corradi, Massimo
2018-08-01
The respiratory tract is the main target organ of the inhaled hexavalent chromium (Cr-VI) and nickel (Ni) contained in stainless steel (SS) welding fumes (WFs). The aim of this study was to investigate the Cr and Ni content of the exhaled breath condensate (EBC) of SS tungsten inert gas (TIG) welders, and relate their concentrations with oxidative stress and inflammatory biomarkers. EBC and urine from 100 SS TIG welders were collected pre-(T 0 ) and post-shift (T 1 ) on a Friday, and pre-shift (T 2 ) on the following Monday morning. Both EBC and urinary Cr concentrations were higher at T 1 (0.08 μg/L and 0.71 μg/g creatinine) and T 0 (0.06 μg/L and 0.74 μg/g creatinine) than at T 2 (below the limit of detection [LOD] and 0.59 μg/g creatinine), and EBC Ni concentrations generally remained
Son, Seung-Wan; Lee, Jin-Seok; Kim, Hyeong-Geug; Kim, Dong-Woon; Ahn, Yo-Chan; Son, Chang-Gue
2016-01-01
Among sex hormones, estrogen is particularly well known to act as neuroprotective agent. Unlike estrogen, testosterone has not been well investigated in regard to its effects on the brain, especially under psychological stress. To investigate the role of testosterone in oxidative brain injuries under psychological stress, we adapted an orchiectomy and restraint stress model. BALB/c mice were subjected to either an orchiectomy or sham operation. After allowing 15 days for recovery, mice were re-divided into four groups according to exposure of restraint stress: sham, sham plus stress, orchiectomy, and orchiectomy plus stress. Serum testosterone was undetectable in orchiectomized groups and restraint-induced stress significantly reduced testosterone levels in sham plus stress group. The serum levels of corticosterone and adrenaline were notably elevated by restraint stress, and these elevated hormones were markedly augmented by orchiectomy. Two oxidative stressors and biomarkers for lipid and protein peroxidation were significantly increased in the cerebral cortex and hippocampus by restraint stress, while the reverse pattern was observed in antioxidant enzymes. These results were supported by histopathological findings, with 4-hydroxynonenal staining for oxidative injury and Fluoro-Jade B staining showing the degenerating neurons. The aforementioned patterns of oxidative injury were accelerated by orchiectomy. These findings strongly suggest the conclusion that testosterone exerts a protective effect against oxidative brain damage, especially under stressed conditions. Unlike estrogen, the effects of testosterone on the brain have not been thoroughly investigated. In order to investigate the role of testosterone in oxidative brain injuries under psychological stress, we adapted an orchiectomy and restraint stress model. Orchiectomy markedly augmented the restraint stress-induced elevation of serum corticosterone and adrenaline levels as well as oxidative alterations in brain tissues, especially in the hippocampus. These findings are the first evidence that testosterone depletion makes the brain prone to oxidative injury. © 2015 International Society for Neurochemistry.
Myshkin, V A; Guliaeva, I A; Ibatullina, R B; Savlukov, A I; Enikeev, D A; Sergeeva, S A
2004-01-01
Actoprotecting properties ofbemitil, tietasol in combination with atropin were studied in red cell membranes and lipid peroxidation of rats poisoned with MI in a dose 320 mg/kg (0.9 LD50). Atropin treatment showed a low effect. The addition of bemitil and tietasol normalized electric charge and osmotic resistance in red cell membranes, activity of superoxide dismutase, catalase, glucose-6-phosphate dehydrogenase and content of lipid peroxidation products--ketodienes and TBA-reacting products. Efficacy of the combined treatment is due primarily to noncholinergic mechanism of action of bemitil and tietasol--stimulation of endogenic antioxidant systems of erythron and antiradical activity (bemitil).
[The origin of hydrogen peroxide in oral cavity and its role in oral microecology balance].
Keke, Zhang; Xuedong, Zhou; Xin, Xu
2017-04-01
Hydrogen peroxide, an important antimicrobial agent in oral cavity, plays a significant role in the balance of oral microecology. At the early stage of biofilm formation, about 80% of the detected initial colonizers belong to the genus Streptococcus. These oral streptococci use different oxidase to produce hydrogen peroxide. Recent studies showed that the produced hydrogen peroxide plays a critical role in modulating oral microecology. Hydrogen peroxide modulates biofilm development attributed to its growth inhibitory nature. Hydrogen peroxide production is closely associated with extracellular DNA(eDNA) release from microbe and the development of its competent cell which are critical for biofilm development and also serves as source for horizontal gene transfer. Microbe also can reduce the damage to themselves through several detoxification mechanisms. Moreover, hydrogen peroxide is also involved in the regulation of interactions between oral microorganisms and host. Taken together, hydrogen peroxide is an imperative ecological factor that contributes to the microbial equilibrium in the oral cavity. Here we will give a brief review of both the origin and the function in the oral microecology balance of hydrogen peroxide.
Swathy, S S; Panicker, Seema; Nithya, R S; Anuja, M M; Rejitha, S; Indira, M
2010-09-01
Sida cordifolia is a plant belonging to the Malvaceae family used in many ayurvedic preparations. This study aimed at assessing the effects of ethanolic extract of Sida cordifolia root on quinolinic acid (QUIN) induced neurotoxicity and to compare its effect with the standard drug deprenyl in rat brain. Rats were divided into six groups: (1) control group (2) QUIN (55 microg/100 g bwt/day) (3) 50% ethanolic plant extract treated group (50 mg/100 g bwt/day) (4) Deprenyl (100 microg/100 g bwt/day) (5) QUIN (55 microg/100 g bwt/day) + 50% ethanolic plant extract treated group (50 mg/100 g bwt/day) (6) QUIN (55 microg/100 g bwt/day) + Deprenyl (100 microg/100 g bwt/day). At the end of the experimental period a status of lipid peroxidation products, protein peroxidation product, activities of the scavenging enzymes and the activities of the inflammatory markers were analyzed. Results revealed that the lipid peroxidation products decreased and the activities of the scavenging enzymes increased significantly in the brain of the plant extract treated group, deprenyl treated group and also in the coadminstered groups. The activities of markers of inflammatory responses such as cyclooxygenase and lipoxygenase were found to be significantly increased in the QUIN treated rats and this was decreased upon the administration of plant extract and deprenyl. In short, the study revealed that 50% ethanolic extract of Sida cordifolia has got potent antioxidant and antiinflammatory activity and the activity is comparable with the standard drug deprenyl.
Polysaccharides in Spirulina platensis Improve Antioxidant Capacity of Chinese-Style Sausage.
Luo, Aiguo; Feng, Jia; Hu, Bianfang; Lv, Junping; Chen, C-Y Oliver; Xie, Shulian
2017-11-01
This study examined the effect of Spirulina platensis polysaccharides (SPP) at 0.1%, 0.25%, and 0.5% (wt/wt) of Chinese-style sausages on lipid peroxidation, microbiological and sensory properties during 24 d stored at 4 °C. During the storage, pH, lightness (L * ) values, DPPH radical scavenging activity and sensory scores decreased with time and TBARS, TVB-N, mesophilic, and psychrotrophic total viable counts increased. However, the magnitude of the changes was attenuated with the addition of SPP as compared to control. Samples containing SPP had significantly (P ≤ 0.05) higher DPPH radical scavenging activity and lower TBARS values compared with the control, and the antioxidant effect was dose-dependent. The addition of 0.5% SPP maintained stable redness (a * ) values of sausages, although there was no positive effect on the microbiological status. Moreover, the addition of SPP prevented the decrease of aroma, flavor and sensory acceptance of samples. The results suggested incorporation of SPP could decrease lipid peroxidation and improve sensory properties of Chinese-style sausage. There is a great need for adding natural antioxidants to healthier meat and meat products. Spirulina platensis polysaccharides (SPP) had strong antioxidant activity. The addition of SPP to Chinese-style pork sausage could inhibit lipid peroxidation, to extend the shelf life of meat products. SPP were very potential to be used to replace synthetic antioxidants in meat and meat products. © 2017 Institute of Food Technologists®.
Brouwers, Jos F; Silva, Patricia F N; Gadella, Barend M
2005-01-15
Reactive oxygen species have been implicated in sperm aberrations causing multiple pathologies including sub- and infertility. Freeze/thawing of sperm samples is routinely performed in the cattle breeding industries for semen storage prior to artificial insemination but unusual in porcine breeding industries as semen dilution and storage at 17 degrees C is sufficient for artificial insemination within 2-3 days. However, longer semen storage requires cryopreservation of boar semen. Freeze/thawing procedures induce sperm damage and induce reactive oxygen species in mammalian sperm and boar sperm seems to be more vulnerable for this than bull sperm. We developed a new method to detect reactive oxygen species induced damage at the level of the sperm plasma membrane in bull sperm. Lipid peroxidation in freshly stored and frozen/thawed sperm cells was assessed by mass spectrometric analysis of the main endogenous lipid classes, phosphatidylcholine and cholesterol and by fluorescence techniques using the lipid peroxidation reporter probe C11-BODIPY(581/591). Peroxidation as reported by the fluorescent probe, clearly corresponded with the presence of hydroxy- and hydroperoxyphosphatidylcholine in the sperm membranes, which are early stage products of lipid peroxidation. This allowed us, for the first time, to correlate endogenous lipid peroxidation with localization of this process in the living sperm cells. Cytoplasmatic droplets in incompletely matured sperm cells were intensely peroxidized. Furthermore, lipid peroxidation was particularly strong in the mid-piece and tail of frozen/thawed spermatozoa and significantly less intense in the sperm head. Induction of peroxidation in fresh sperm cells with the lipid soluble reactive oxygen species tert-butylhydroperoxide gave an even more pronounced effect, demonstrating antioxidant activity in the head of fresh sperm cells. Furthermore, we were able to show using the flow cytometer that spontaneous peroxidation was not a result of cell death, as only a pronounced subpopulation of living cells showed peroxidation after freeze-thawing. Although the method was established on bovine sperm, we discuss the importance of these assays for detecting lipid peroxidation in boar sperm cells.
Silveira, J; Coutinho, S; Marques, D; Castro, J; Mata, A; Carvalho, M L; Pessanha, S
2018-06-05
In this work we present the analysis of dental enamel treated with an over-the-counter whitening product, bought in e-commerce at a very low cost, used without medical supervision in an abusive manner, in order to evaluate its demineralization action. Moreover, we studied the influence of renewal or non-renewal of saliva solution in which the specimens were stored throughout the study. The Degree of Demineralization was determined through the evaluation of the PO 4 3- symmetric stretching band (~959cm -1 ) in Raman spectra of the specimens in different days during the course of the study. Results showed that a maximum of demineralization occurred between days 27 and 34 of application. Titration of the whitening product revealed a content of hydrogen peroxide 170-fold higher than what is allowed in Europe, according with legislation. Despite this extreme concentration of hydrogen peroxide, the demineralization was not as great as could be expected suggesting an important role of the pH of the solution in this demineralization mechanism. Copyright © 2018 Elsevier B.V. All rights reserved.
Chacko, Balu K; Srivastava, Anup; Johnson, Michelle; Benavides, Gloria A.; Chang, Mi Jung; Ye, Yaozu; Jhala, Nirag; Murphy, Michael P; Kalyanaraman, Balaraman; Darley-Usmar, Victor M.
2011-01-01
Chronic alcohol-induced liver disease results in inflammation, steatosis and increased oxidative and nitrosative damage to the mitochondrion. We hypothesized that targeting an antioxidant to the mitochondria would prevent oxidative damage and attenuate the steatosis associated with alcoholic liver disease. To test this we investigated the effects of mitochondria-targeted ubiquinone, MitoQ, (5 & 25 mg/kg/d for 4 weeks) in male Sprague-Dawley rats consuming ethanol using the Lieber-DeCarli diet with pair-fed controls. Hepatic steatosis, 3-nitrotyosine (3-NT), 4-hydroxynonenal (4-HNE), hypoxia inducible factor α (HIF1α) and the activity of the mitochondrial respiratory chain complexes were assessed. As reported previously, ethanol consumption resulted in hepatocyte ballooning, increased lipid accumulation in the form of micro and macrovesicular steatosis and induction of CYP2E1. MitoQ had a minor on the ethanol-dependent decrease in mitochondrial respiratory chain proteins and their activities, it did however decrease hepatic steatosis in ethanol consuming animals and prevented the ethanol-induced formation of 3-NT and 4-HNE. Interestingly, MitoQ completely blocks the increase in HIF1α in all ethanol-fed groups which has previously been demonstrated in cell culture models and shown to be essential in ethanol-dependent hepatosteatosis. These results demonstrate the antioxidant capacity of MitoQ in alleviating alcohol associated mitochondrial ROS and several downstream effects of ROS/RNS production such as inhibiting protein nitration and protein aldehyde formation and specifically ROS-dependant HIF1α stabilization. PMID:21520201
Reactive oxygen species and lipid peroxidation product-scavenging ability of yogurt organisms.
Lin, M Y; Yen, C L
1999-08-01
The antioxidative activity of the intracellular extracts of yogurt organisms was investigated. All 11 strains tested, including five strains of Streptococcus thermophilus and six strains of Lactobacillus delbrueckii ssp. bulgaricus, demonstrated an antioxidative effect on the inhibition of linoleic acid peroxidation. The antioxidative effect of intracellular extracts of 10(8) cells of yogurt organisms was equivalent to 25 to 96 ppm butylated hydroxytoluene, which indicated that all strains demonstrated excellent antioxidative activity. The scavenging of reactive oxygen species, hydroxyl radical, and hydrogen peroxide was studied for intracellular extracts of yogurt organisms. All strains showed reactive oxygen species-scavenging ability. Lactobacillus delbrueckii ssp. bulgaricus Lb demonstrated the highest hydroxyl radical-scavenging ability at 234 microM. Streptococcus thermophilus MC and 821 and L. delbrueckii ssp. bulgaricus 448 and 449 scavenged the most hydrogen peroxide at approximately 50 microM. The scavenging ability of lipid peroxidation products, t-butylhydroperoxide and malondialdehyde, was also evaluated. Results showed that the extracts were not able to scavenge the t-butylhydroperoxide. Nevertheless, malondialdehyde was scavenged well by most strains.
Isoprenoid Alcohols are Susceptible to Oxidation with Singlet Oxygen and Hydroxyl Radicals.
Komaszylo Née Siedlecka, Joanna; Kania, Magdalena; Masnyk, Marek; Cmoch, Piotr; Lozinska, Iwona; Czarnocki, Zbigniew; Skorupinska-Tudek, Karolina; Danikiewicz, Witold; Swiezewska, Ewa
2016-02-01
Isoprenoids, as common constituents of all living cells, are exposed to oxidative agents--reactive oxygen species, for example, singlet oxygen or hydroxyl radicals. Despite this fact, products of oxidation of polyisoprenoids have never been characterized. In this study, chemical oxidation of isoprenoid alcohols (Prenol-2 and -10) was performed using singlet oxygen (generated in the presence of hydrogen peroxide/molybdate or upon photochemical reaction in the presence of porphyrin), oxygen (formed upon hydrogen peroxide dismutation) or hydroxyl radical (generated by the hydrogen peroxide/sonication, UV/titanium dioxide or UV/hydrogen peroxide) systems. The structure of the obtained products, hydroxy-, peroxy- and heterocyclic derivatives, was studied with the aid of mass spectrometry (MS) and nuclear magnetic resonance (NMR) methods. Furthermore, mass spectrometry with electrospray ionization appeared to be a useful analytical tool to detect the products of oxidation of isoprenoids (ESI-MS analysis), as well as to establish their structure on the basis of the fragmentation spectra of selected ions (ESI-MS/MS analysis). Taken together, susceptibility of polyisoprenoid alcohols to various oxidizing agents was shown for the first time.
Coupling of Solar Energy to Hydrogen Peroxide Production in the Cyanobacterium Anacystis nidulans
Roncel, Mercedes; Navarro, José A.; De la Rosa, Miguel A.
1989-01-01
Hydrogen peroxide production by blue-green algae (cyanobacteria) under photoautotrophic conditions is of great interest as a model system for the bioconversion of solar energy. Our experimental system was based on the photosynthetic reduction of molecular oxygen with electrons from water by Anacystis nidulans 1402-1 as the biophotocatalyst and methyl viologen as a redox intermediate. It has been demonstrated that the metabolic conditions of the algae in their different growth stages strongly influence the capacity for hydrogen peroxide photoproduction, and so the initial formation rate and net peroxide yield became maximum in the mid-log phase of growth. The overall process can be optimized in the presence of certain metabolic inhibitors such as iodoacetamide and p-hydroxymercuribenzoate, as well as by permeabilization of the cellular membrane after drastic temperature changes and by immobilization of the cells in inert supports such as agar and alginate. PMID:16347855
Boadi, William Y; Iyere, Peter A; Adunyah, Samuel E
2003-01-01
The single and combined effects of two abundant flavonoids, namely quercetin and genistein, were investigated according to their ability to inhibit the oxidation of methyl linolenate via Fenton's pathway. Antioxidative activity was determined by oxidizing methyl linolenate suspended in a buffer solution with either Fe2+ (50 microM) or Cu2+ (50 microM) and hydrogen peroxide (0.01 mM) without or with a flavonoid sample (10 or 20 microM). Lipid peroxidation products were measured by the thiobarbituric acid (TBA) assay and the amounts of thiobarbituric acid-reactive substances (TBARS) were calculated from a calibration curve using 1,1,3,3-tetraethoxypropane as the standard. Both quercetin and genistein at the 10 or 20 microM level decreased lipid peroxidation significantly compared with their respective controls. Of the two flavonoids tested, quercetin had a more marked effect on inhibiting lipid peroxides. Peroxidation products for the control samples were higher for the Fe2+-treated samples compared with the Cu2+ samples. Combination of both flavonoids at the same dose levels continued to decrease lipid peroxidation, the effect being the same for both metal ions. The data suggest that the combined flavonoids offered better protection than the single treatments and this may be attributed to the better radical scavenging or increased chelating capabilities of the combined over the single treatments. The differences in peroxide levels for the single treatment of quercetin compared with the genistein-treated samples may reflect the structural differences between these compounds in combating oxidative stress. Copyright 2003 John Wiley & Sons, Ltd.
Chiu, Wen-Ta; Shen, Shing-Chuan; Chow, Jyh-Ming; Lin, Cheng-Wei; Shia, Ling-Tin; Chen, Yen-Chou
2010-01-01
In the presence of 12-O-tetradecanoylphorbol-13-acetate (TPA) stimulation, an increase in the migration/invasion of U87 glioblastoma cells was detected by a wound healing assay, transwell analysis, and spheroid formation assay by inducing matrix metalloproteinase-9 (MMP-9) enzyme activity via a gelatin zymographic analysis. A dose- and time-dependent increase in cyclooxygenase-2 (COX-2) gene expression with elevated prostaglandin E(2) (PGE(2)) production was identified in TPA- but not in 4alpha-TPA (a respective inactive compound)-treated U87 cells TPA-induced migration/invasion was significantly blocked by adding the COX-2-specific inhibitor, NS398, through a reduction in PGE(2) production. Data from the pharmacological studies using specific chemical inhibitors showed that activation of protein kinase C (PKC) and extracellular signal-regulated kinases (ERKs) was involved in TPA-induced migration/invasion, COX-2 protein expression, and MMP-9 activation. Stimulation of intracellular peroxide production by TPA was detected by a DCHF-DA assay, and the addition of superoxide dismutase (SOD) or tempol significantly inhibited TPA-induced migration/invasion and COX-2 protein expression accompanied by a decrease in peroxide production. An increase in NADPH oxidase activity by TPA was examined, and TPA-induced migration/invasion was blocked by adding DPI, an NADPH oxidase inhibitor. Additionally, the natural flavonoids quercetin (QE), baicalein (BE), and myricetin (ME) effectively blocked TPA-induced migration/invasion while simultaneously inhibiting COX-2/PGE(2) production, MMP-9 enzyme activity, and peroxide production in U87 cells. The contribution of ROS production to the migration/invasion of U87 glioblastoma cells via ERK-activated COX-2/PGE(2) and MMP-9 induction was first investigated here, and agents such as QE, BE, and ME with the ability to block these events possess the potential to be developed for use against migration/invasion by glioblastomas.
Kozan, J V B; Silva, R P; Serrano, S H P; Lima, A W O; Angnes, L
2007-05-22
A novel unmediated hydrogen peroxide biosensor based on the incorporation of fibrous tissue of coconut fruit in carbon paste matrix is presented. Cyclic voltammetry and amperometry were utilized to characterize the main electrochemical parameters and the performance of this new biosensor under different preparation and operation conditions. The resulting H2O2-sensitive biosensors respond rapidly (7 s to attain 90% of the signal), was operated at -0.15 V, presented linear response between 2.0x10(-4) and 3.4x10(-3) mol L(-1), the detection limit was estimated as 4.0x10(-5) mol L(-1). Its operation potential was situated between -0.2 and 0.1 V and the best pH was determined as 5.2. Electrodes containing 5% (w/w) of coconut fiber presented the best signal and their lifetime was extended to 3 months. The apparent Michaelis-Menten constant KM(app) and Vmax were estimated to be 8.90 mmol L(-1) and 6.92 mmol L(-1) microA(-1), respectively. The results obtained for determination of hydrogen peroxide in four pharmaceutical products (antiseptic solution, contact lenses cleaning solution, hair coloring cream and antiseptic dental rinse solution) were in agreement with those obtained by the spectrophotometric method. An additional advantage of these biosensors is the capacity to measure hydrogen peroxide even in samples with relatively low pH. To demonstrate the enzymatic activity of the coconut tissue, a very simple way was created during this work. Coconut fibers were immersed in H2O2 solution between two glass slides. Sequential images were taken to show the rapid generation of O2, attesting the high activity of the enzymes.
da Costa, Jessyca Aline; Marques, José Edvan; Gonçalves, Luciana Rocha Barros; Rocha, Maria Valderez Ponte
2015-03-01
The effect of combinations and ratios between different enzymes has been investigated in order to assess the optimal conditions for hydrolysis of cashew apple bagasse pretreated with alkaline hydrogen peroxide (the solids named CAB-AHP). The separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) processes were evaluated in the ethanol production. The enzymatic hydrolysis conducted with cellulase complex and β-glucosidase in a ratio of 0.61:0.39, enzyme loading of 30FPU/g(CAB-AHP) and 66CBU/g(CAB-AHP), respectively, using 4% cellulose from CAB-AHP, turned out to be the most effective conditions, with glucose and xylose yields of 511.68 mg/g(CAB-AHP) and 237.8 mg/g(CAB-AHP), respectively. Fermentation of the pure hydrolysate by Kluyveromyces marxianus ATCC 36907 led to an ethanol yield of 61.8kg/ton(CAB), corresponding to 15 g/L ethanol and productivity of 3.75 g/( Lh). The ethanol production obtained for SSF process using K. marxianus ATCC 36907 was 18 g/L corresponding to 80% yield and 74.2kg/ton(CAB). Copyright © 2014 Elsevier Ltd. All rights reserved.
Gaikowski, M.P.; Rach, J.J.; Drobish, M.; Hamilton, J.; Harder, T.; Lee, L.A.; Moen, C.; Moore, A.
2003-01-01
The efficacy of hydrogen peroxide in controlling saprolegniasis on eggs of walleye Stizostedion vitreum, white sucker Catostomus commersoni, and paddlefish Polyodon spathula was evaluated at four private, state, and federal production hatcheries participating in an Investigational New Animal Drug efficacy study (experiment 1; walleyes) and in a laboratory-based miniature egg jar incubation system (experiment 2; walleyes, white suckers, and paddlefish). Naturally occurring fungal infestations (saprolegniasis) were observed on eggs in both experiments. Confirmatory diagnosis of infested eggs from one hatchery in experiment 1 identified the pathogen as Saprolegnia parasitica. During experiment 1, eggs were treated daily for 15 min with either 0, 500, or 750 mg/L of hydrogen peroxide, and one trial compared a 500-mg/L hydrogen peroxide treatment with a formalin treatment at 1,667 mg/L. Saprolegniasis infestation was observed in control egg jars, whereas treatment with either formalin or hydrogen peroxide virtually eliminated the infestation. Hydrogen peroxide treatments of 500 mg/L either increased egg hatch or were as effective as physical removal of infested eggs in controlling mortality. Although treatment with formalin at 1,667 mg/L significantly increased the percent eye-up of walleye eggs compared with that of those treated with hydrogen peroxide at 500 mg/L, the difference was only 1.9-2.6%. In experiment 2, noneyed eggs were treated for 15 min every other day with 0, 283, 565, or 1,130 mg/L of hydrogen peroxide until the viable eggs hatched. Saprolegniasis infestation engulfed most control eggs, whereas infestation of treated eggs was either reduced or not visible. Hydrogen peroxide significantly increased egg hatch for all three species tested in experiment 2. Although hydrogen peroxide treatments as low as 283 mg/L significantly increased walleye and white sucker hatch, treatments between 500 and 1,000 mg/L are more likely to be effective in production egg incubation systems.
Rapid detection of benzoyl peroxide in wheat flour by using Raman scattering spectroscopy
NASA Astrophysics Data System (ADS)
Zhao, Juan; Peng, Yankun; Chao, Kuanglin; Qin, Jianwei; Dhakal, Sagar; Xu, Tianfeng
2015-05-01
Benzoyl peroxide is a common flour additive that improves the whiteness of flour and the storage properties of flour products. However, benzoyl peroxide adversely affects the nutritional content of flour, and excess consumption causes nausea, dizziness, other poisoning, and serious liver damage. This study was focus on detection of the benzoyl peroxide added in wheat flour. A Raman scattering spectroscopy system was used to acquire spectral signal from sample data and identify benzoyl peroxide based on Raman spectral peak position. The optical devices consisted of Raman spectrometer and CCD camera, 785 nm laser module, optical fiber, prober, and a translation stage to develop a real-time, nondestructive detection system. Pure flour, pure benzoyl peroxide and different concentrations of benzoyl peroxide mixed with flour were prepared as three sets samples to measure the Raman spectrum. These samples were placed in the same type of petri dish to maintain a fixed distance between the Raman CCD and petri dish during spectral collection. The mixed samples were worked by pretreatment of homogenization and collected multiple sets of data of each mixture. The exposure time of this experiment was set at 0.5s. The Savitzky Golay (S-G) algorithm and polynomial curve-fitting method was applied to remove the fluorescence background from the Raman spectrum. The Raman spectral peaks at 619 cm-1, 848 cm-1, 890 cm-1, 1001 cm-1, 1234 cm-1, 1603cm-1, 1777cm-1 were identified as the Raman fingerprint of benzoyl peroxide. Based on the relationship between the Raman intensity of the most prominent peak at around 1001 cm-1 and log values of benzoyl peroxide concentrations, the chemical concentration prediction model was developed. This research demonstrated that Raman detection system could effectively and rapidly identify benzoyl peroxide adulteration in wheat flour. The experimental result is promising and the system with further modification can be applicable for more products in near future.
Uchida, Koji; Shibata, Takahiro; Toyokuni, Shinya; Daniel, Bareket; Zarkovic, Kamelija; Zarkovic, Neven; Sasson, Shlomo
2018-05-25
Non-enzymatic peroxidation of polyunsaturated fatty acids (PUFA) results in the formation of various α,β-unsaturated aldehydes, of which 4-hydroxyalkenals are abundant. The propensity of n-6 PUFA, such as linoleic acid, γ-linolenic acid and arachidonic acid, to undergo radical-induced peroxidation and generate 4-hydroxy-2E-nonenal (4-HNE) has been widely demonstrated. The ability of the latter to form covalent adducts with macromolecules and modify cellular functions has been linked to numerous pathological processes. Concomitantly, evidence has accumulated on specific signaling properties of low concentrations of 4-HNE that may induce hormetic and protective responses to peroxidation stress in cells. It has long been known that peroxidation of PUFA, and particularly arachidonic acid, also give rise to 4-hydroxy-2E,6Z-dodecadienal (4-HDDE), which is more chemically reactive than 4-HNE. Few studies on 4-HDDE revealed its ability to avidly interact covalently with electronegative moieties in macromolecules and to its ability to selectively activate the transcriptional regulator Peroxisome Proliferator-Activated Receptor (PPAR)-β/δ. The research on 4-HDDE has been impeded due to the lack of available pure 4-HDDE and antibodies that recognize 4-HDDE-modified epitopes in proteins. The purpose of this study was to employ an established procedure to synthesize 4-HDDE and use it to create and characterize a monoclonal antibody against 4-HDDE-modified proteins and establish its application for ELISA and immunohistochemical analysis of cells and tissues and further expand lipid peroxidation research. Copyright © 2018 Elsevier Inc. All rights reserved.
Wang, Gangduo; Wang, Jianling; Fan, Xiuzhen; Ansari, G. A. S.; Khan, M. Firoze
2011-01-01
Trichloroethene (TCE), a common occupational and environmental toxicant, is known to induce autoimmunity. Previous studies in our laboratory showed increased oxidative stress in TCE-mediated autoimmunity. To further establish the role of oxidative stress and to investigate the mechanisms of TCE-mediated autoimmunity, dose- and time- response studies were conducted in MRL+/+ mice by treating them with TCE via drinking water at doses of 0.5, 1.0 or 2.0 mg/ml for 12, 24 or 36 weeks. TCE exposure led to dose-related increases in malondialdehyde (MDA)-/hydroxynonenal (HNE)-protein adducts and their corresponding antibodies in the sera and decreases in GSH and GSH/GSSG ratio in the kidneys at 24 and 36 weeks, with greater changes at 36 weeks. The increases in these protein adducts and decreases in GSH/GSSG ratio were associated with significant elevation in serum anti-nuclear- and anti-ssDNA-antibodies, suggesting an association between TCE-induced oxidative stress and autoimmune response. Interestingly, splenocytes from mice treated with TCE for 24 weeks secreted significantly higher levels of IL-17 and IL-21 than did splenocytes from controls after stimulation with MDA-mouse serum albumin (MSA) or HNE-MSA adducts. The increased release of these cytokines showed a dose-related response and was more pronounced in mice treated with TCE for 36 weeks. These studies provide evidence that MDA- and or HNE-protein adducts contribute to TCE-mediated autoimmunity, which may be via activation of Th17 cells. PMID:22178267
Dissolution of spent nuclear fuel in carbonate-peroxide solution
NASA Astrophysics Data System (ADS)
Soderquist, Chuck; Hanson, Brady
2010-01-01
This study shows that spent UO2 fuel can be completely dissolved in a room temperature carbonate-peroxide solution apparently without attacking the metallic Mo-Tc-Ru-Rh-Pd fission product phase. In parallel tests, identical samples of spent nuclear fuel were dissolved in nitric acid and in an ammonium carbonate, hydrogen peroxide solution. The resulting solutions were analyzed for strontium-90, technetium-99, cesium-137, europium-154, plutonium, and americium-241. The results were identical for all analytes except technetium, where the carbonate-peroxide dissolution had only about 25% of the technetium that the nitric acid dissolution had.
Bowtle, William; Kanyowa, Lionel; Mackenzie, Mark; Higgins, Paul
2011-06-01
The industrial take-up of liquid-fill hard capsule technology is limited in part by lack of published long-term physical and chemical stability data which demonstrate the robustness of the system. To assess the effects of extreme long-term storage on liquid-fill capsule product quality and integrity, with respect to both the capsules per se and a standard blister-pack type (foil-film blister). Fourteen sets of stored peroxidation-sensitive liquid-fill hard gelatin capsule product samples, originating ~20 years from the current study, were examined with respect to physical and selected chemical properties, together with microbiological evaluation. All sets retained physical integrity of capsules and blister-packs. Capsules were free of leaks, gelatin cross-linking, and microbiological growth. Eight samples met a limit (anisidine value, 20) commonly used as an index of peroxidation for lipid-based products with shelf lives of 2-3 years. Foil-film blister-packs using PVC or PVC-PVdC as the thermoforming film were well-suited packaging components for the liquid-fill capsule format. The study confirms the long-term physical robustness of the liquid-fill hard capsule format, together with its manufacturing and banding processes. It also indicates that various peroxidation-sensitive products using the capsule format may be maintained satisfactorily over very prolonged storage periods.
A novel accelerated oxidative stability screening method for pharmaceutical solids.
Zhu, Donghua Alan; Zhang, Geoff G Z; George, Karen L S T; Zhou, Deliang
2011-08-01
Despite the fact that oxidation is the second most frequent degradation pathway for pharmaceuticals, means of evaluating the oxidative stability of pharmaceutical solids, especially effective stress testing, are still lacking. This paper describes a novel experimental method for peroxide-mediated oxidative stress testing on pharmaceutical solids. The method utilizes urea-hydrogen peroxide, a molecular complex that undergoes solid-state decomposition and releases hydrogen peroxide vapor at elevated temperatures (e.g., 30°C), as a source of peroxide. The experimental setting for this method is simple, convenient, and can be operated routinely in most laboratories. The fundamental parameter of the system, that is, hydrogen peroxide vapor pressure, was determined using a modified spectrophotometric method. The feasibility and utility of the proposed method in solid form selection have been demonstrated using various solid forms of ephedrine. No degradation was detected for ephedrine hydrochloride after exposure to the hydrogen peroxide vapor for 2 weeks, whereas both anhydrate and hemihydrate free base forms degraded rapidly under the test conditions. In addition, both the anhydrate and the hemihydrate free base degraded faster when exposed to hydrogen peroxide vapor at 30°C under dry condition than at 30°C/75% relative humidity (RH). A new degradation product was also observed under the drier condition. The proposed method provides more relevant screening conditions for solid dosage forms, and is useful in selecting optimal solid form(s), determining potential degradation products, and formulation screening during development. Copyright © 2011 Wiley-Liss, Inc.
Araujo, Danilo Barral; Silva, Luciana Rodrigues; de Araujo, Roberto Paulo Correia
2010-01-01
Tooth whitening agents containing hydrogen peroxide and carbamide peroxide are used frequently in esthetic dental procedures. However, lesions on the enamel surface have been attributed to the action of these products. Using conventional procedures for separating and isolating biological structures, powdered enamel was obtained and treated with hydrogen peroxide, carbamide peroxide, and sodium bicarbonate, ingredients typically found in dentifrices. The enamel was exposed to different pH levels, and atomic emission spectrometry was used to determine calcium release rates. As the pH level increased, the rate of calcium release from enamel treated with dentifrices containing whitening agents decreased. Carbamide peroxide produced the lowest amount of decalcification, while sodium bicarbonate produced the highest release rates at all pH levels.
Li, Hongmin; Li, Qingling; Wang, Xu; Xu, Kehua; Chen, Zhenzhen; Gong, Xiaocong; Liu, Xin; Tong, Lili; Tang, Bo
2009-03-15
A method for the first time to simultaneously determine superoxide and hydrogen peroxide in macrophage RAW 264.7 cell extracts by microchip electrophoresis with laser-induced fluorescence detection (MCE-LIF) was developed. 2-Chloro-1,3-dibenzothiazolinecyclohexene (DBZTC) and bis(p-methylbenzenesulfonyl) dichlorofluorescein (FS), two probes that can be specifically derivatized by superoxide and hydrogen peroxide, respectively, were synthesized and used. Parameters influencing the derivatization and on-chip separation were optimized. With the use of a HEPES (20 mM, pH 7.4) running buffer, a 50 mm long separation channel, and a separation voltage of 1800 V, baseline separation was achieved within 48 s for the two derivatization products, DBZTC-oxide (DBO) and 2,7-dichlorofluorescein (DCF). The linearity ranges of the method were 0.08-5.0 and 0.02-5.0 microM with detection limits (signal-to-noise ratio = 3) of 10 nM (1.36 amol) and 5.6 nM (0.76 amol) for superoxide and hydrogen peroxide, respectively. The relative standard deviations (RSDs) of migration time and peak area were less than 2.0% and 5.0%, respectively. The recoveries of the cell extract samples spiked with 1.0 microM standard solutions were 96.1% and 93.0% for superoxide and hydrogen peroxide, respectively. With the use of this method, superoxide and hydrogen peroxide in phorbol myristate acetate (PMA)-stimulated macrophage RAW 264.7 cell extracts were found to be 0.78 and 1.14 microM, respectively. The method has paved a way for simultaneously determining two or more reactive oxygen species (ROS) in a biological system with high resolution.
Diamond, Richard D.; Clark, Robert A.; Haudenschild, Christian C.
1980-01-01
In previous studies, we noted that Candida hyphae and pseudohyphae could be damaged and probably killed by neutrophils, primarily by oxygen-dependent nonphagocytic mechanisms. In extending these studies, amount of damage to hyphae again was measured by inhibition of [14C]cytosine uptake. Neutrophils from only one of four patients with chronic granulomatous disease damaged hyphae at all, and neutrophils from this single patient damaged hyphae far less efficiently than simultaneously tested neutrophils from normal control subjects. Neutrophils from neither of two subjects with hereditary myeloperoxidase deficiency damaged the hyphae. This confirmed the importance of oxidative mechanisms in general and myeloperoxidase-mediated systems in particular in damaging Candida hyphae. Several potentially fungicidal oxidative intermediates are produced by metabolic pathways of normal neutrophils, but their relative toxicity for Candida hyphae was previously unknown. To help determine this, cell-free in vitro systems were used to generate these potentially microbicidal products. Myeloperoxidase with hydrogen peroxide, iodide, and chloride resulted in 91.2% damage to hyphal inocula in 11 experiments. There was less damage when either chloride or iodide was omitted, and no damage when myeloperoxidase was omitted or inactivated by heating. Azide, cyanide, and catalase (but not heated catalase) inhibited the damage. Systems for generation of hydrogen peroxide could replace reagent hydrogen peroxide in the myeloperoxidase system. These included glucose oxidase, in the presence of glucose, and xanthine oxidase, in the presence of either hypoxanthine or acetaldehyde. In the presence of myeloperoxidase and a halide, the toxicity of the xanthine oxidase system was not inhibited by superoxide dismutase and, under some conditions, was marginally increased by this enzyme. This suggested that superoxide radical did not damage hyphae directly but served primarily as an intermediate in the production of hydrogen peroxide. The possible damage to hyphae by singlet oxygen was examined using photoactivation of rose bengal. This dye damaged hyphae in the presence of light and oxygen. The effect was almost completely inhibited by putative quenchers of singlet oxygen: histidine, tryptophan, and 1,4-diazobicyclo[2.2.2]octane. These agents also inhibited damage to hyphae by myeloperoxidase, halide, and either hydrogen peroxide or a peroxide source (xanthine oxidase plus acetaldehyde). Myeloperoxidase-mediated damage to hyphae was also inhibited by dimethyl sulfoxide, an antioxidant and scavenger of the hydroxyl radical. These data support the involvement of oxidative mechanisms and the myeloperoxidase-H2O2-halide system, in particular in damaging hyphae in vitro and perhaps in vivo as well. Images PMID:6253527
Effects of iron overload in a rat nutritional model of non-alcoholic fatty liver disease.
Kirsch, Richard; Sijtsema, Helene P; Tlali, Mpho; Marais, Adrian D; Hall, Pauline de la M
2006-12-01
This study sought to determine whether excess hepatic iron potentiates liver injury in the methionine choline-deficient (MCD) model of non-alcoholic fatty liver disease (NAFLD). Iron-loaded rats were fed either MCD or control diets [MCD diet plus choline bitartrate (2 g/kg) and DL-methionine (3 g/kg)] for 4 and 12 weeks, after which liver pathology, hepatic iron, triglyceride, lipid peroxidation products and hydroxyproline (HYP) levels and serum alanine aminotransferase (ALT) levels were evaluated. Iron supplementation in MCD animals resulted in histologic evidence of hepatic iron overload at 4 and 12 weeks and a 14-fold increase in hepatic iron concentration at 12 weeks (P < 0.001). Iron supplementation in these animals was associated with increased lobular necroinflammation at 4 weeks (P < 0.02) and decreased hepatic steatosis (P < 0.01), hepatic triglyceride levels (P < 0.01), hepatic-conjugated dienes (CD; P < 0.02) and serum ALT levels (P < 0.002) at 12 weeks. Reduced hepatic steatosis (P < 0.005) and CD (P < 0.01) were apparent by 4 weeks. Iron supplementation was associated with a trend towards increased perivenular fibrosis not hepatic HYP content. Hepatic iron overload in the MCD model of NAFLD is associated with decreased hepatic lipid, decreased early lipid peroxidation products, increased necroinflammation and a trend towards increased perivenular fibrosis.
F2-isoprostanes and F4-neuroprostanes as markers of intracranial aneurysm development.
Syta-Krzyżanowska, Anna; Jarocka-Karpowicz, Iwona; Kochanowicz, Jan; Turek, Grzegorz; Rutkowski, Robert; Gorbacz, Krzysztof; Mariak, Zenon; Skrzydlewska, Elżbieta
2018-04-24
Intracranial aneurysms are common, occurring in about 1-2% of the population. Saccular aneurysm is a pouch-like pathological dilatation of an intracranial artery that develops when the cerebral artery wall becomes too weak to resist hemodynamic pressure and distends. The aim of this study was to determine whether the development of intracranial aneurysms and subarachnoid hemorrhage (SAH) affects neuronal phospholipid metabolism, and what influence different invasive treatments have on brain free radical phospholipid metabolism. The level of polyunsaturated fatty acid (PUFA) cyclization products - F2-isoprostanes and F4-neuroprostanes - was examined using liquid chromatography - mass spectrometry (LC-MS) in the plasma of patients with brain aneurysm and resulting subarachnoid hemorrhage. It was revealed that an aneurysm leads to the enhancement of lipid peroxidation with a significant increase in plasma F2-isoprostanes and F4-neuroprostanes (more than 3-fold and 11-fold, respectively) in comparison to healthy subjects. The rupture of an aneurysm results in hemorrhage and an additional increase in examined prostaglandin derivatives. The embolization and clipping of aneurysms contribute to a gradual restoration of metabolic homeostasis in brain cells, which is visible in the decrease in PUFA cyclization products. The results indicate that aneurysm development is associated with enhanced inflammation and oxidative stress, factors which favor lipid peroxidation, particularly in neurons, whose membranes are rich in docosahexaenoic acid, a precursor of F4-neuroprostanes.
Silverman, D J; Santucci, L A
1988-01-01
Cells infected by Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever, display unusual intracellular morphological changes characterized by dilatation of the membranes of the endoplasmic reticulum and outer nuclear envelope. These changes are consistent with those that might be expected to occur following peroxidation of membrane lipids initiated by oxygen radical species, such as the hydroxyl radical or a variety of organic radicals. Using a fluorescent probe, we have found significantly increased levels of peroxides in human endothelial cells infected by R. rickettsii. Studies with desferrioxamine, an iron chelator effective in preventing formation of the hydroxyl radical from hydrogen peroxide and the superoxide free radical, reduced peroxide levels in infected cells to those found in uninfected cells. This observation suggests that the increased peroxides in infected cells may be lipid peroxides, degradation products of free radical attack on polyenoic fatty acids. The potential for lipid peroxidation as an important mechanism in endothelial cell injury caused by R. rickettsii is discussed. Images PMID:3141280
Negre-Salvayre, A; Coatrieux, C; Ingueneau, C; Salvayre, R
2008-01-01
Reactive carbonyl compounds (RCCs) formed during lipid peroxidation and sugar glycoxidation, namely Advanced lipid peroxidation end products (ALEs) and Advanced Glycation end products (AGEs), accumulate with ageing and oxidative stress-related diseases, such as atherosclerosis, diabetes or neurodegenerative diseases. RCCs induce the 'carbonyl stress' characterized by the formation of adducts and cross-links on proteins, which progressively leads to impaired protein function and damages in all tissues, and pathological consequences including cell dysfunction, inflammatory response and apoptosis. The prevention of carbonyl stress involves the use of free radical scavengers and antioxidants that prevent the generation of lipid peroxidation products, but are inefficient on pre-formed RCCs. Conversely, carbonyl scavengers prevent carbonyl stress by inhibiting the formation of protein cross-links. While a large variety of AGE inhibitors has been developed, only few carbonyl scavengers have been tested on ALE-mediated effects. This review summarizes the signalling properties of ALEs and ALE-precursors, their role in the pathogenesis of oxidative stress-associated diseases, and the different agents efficient in neutralizing ALEs effects in vitro and in vivo. The generation of drugs sharing both antioxidant and carbonyl scavenger properties represents a new therapeutic challenge in the treatment of carbonyl stress-associated diseases.
Zozulińska, D A; Wierusz-Wysocka, B; Wysocki, H; Majchrzak, A E; Wykretowicz, A
1996-08-01
We address the question whether oxygen metabolism of polymorphonuclear neutrophils (PMN) is influenced by disease duration in patients with insulin-dependent diabetes mellitus (IDDM). PMN were isolated from patients with IDDM of various durations and from healthy controls. We measured PMN production of superoxide anions (O2-) by cytochrome c reduction (see Babior, B.M. et al. (1973) J. Clin. Invest. 52, 741-746) and PMN production of hydrogen peroxide (H2O2) by phenol red oxygenation (see Pick, E. (1980) J. Immunol. Methods 38, 161-169) in three groups of IDDM patients subdivided according to disease duration (group A: IDDM less that 10 years; group B: IDDM of 10-15 years; group C: IDDM of more than 15 years) and in control healthy subjects (group H). Unstimulated O2- production in all IDDM patients was not statistically different from control values (A: 4.3 +/- 0.4 nmol/10(6) PMN per 30 min, nmol/10(6) PMN per 30 min; C: 4.9 +/- 0.9 nmol/10(6) PMN per 30 min; and H: 3.5 +/- 0.2 nmol/10(6) PMN per 30 min, respectively). In contrast, stimulated O2- production was significantly lower in both patients with 10-15 years, and patients with more than 15 years, duration of IDDM than in controls (B: 25.7 +/- 2.5 nmol/10(6) PMN per 30 min; C: 21.1 +/- 3.4 nmol/10(6) PMN per 30 min and H: 42.2 +/- 1.1 nmol/10(6) PMN per 30 min, respectively) correlating with disease duration (r = -0.44, P < 0.033). The stimulated O2- production in patients with less than 10 years duration of IDDM (A: 35.7 +/- 1.9 nmol/10(6) PMN per 30 min) was slightly lower than in controls. H2O2 production of unstimulated PMN (A: 4.0 +/- 0.5 nmol/10(6) PMN per 30 min; B: 4.4 +/- 0.8 nmol/10(6) PMN per 30 min and C: 4.4 +/-1.0 nmol/10(6) PMN per 30 min, respectively) was much higher than those in controls. In contrast, stimulated H2O2 production did not differ statistically from the value noticed in healthy subjects. The results obtained might indicate that production of H2O2 by unstimulated cells is increased in diabetic patients while generation of O2- by stimulated neutrophils is markedly impaired, suggesting that toxic oxygen species production might be influenced by disease duration.
Fukuzumi, Shunichi; Yamada, Yusuke; Karlin, Kenneth D
2012-11-01
This review describes homogeneous and heterogeneous catalytic reduction of dioxygen with metal complexes focusing on the catalytic two-electron reduction of dioxygen to produce hydrogen peroxide. Whether two-electron reduction of dioxygen to produce hydrogen peroxide or four-electron O 2 -reduction to produce water occurs depends on the types of metals and ligands that are utilized. Those factors controlling the two processes are discussed in terms of metal-oxygen intermediates involved in the catalysis. Metal complexes acting as catalysts for selective two-electron reduction of oxygen can be utilized as metal complex-modified electrodes in the electrocatalytic reduction to produce hydrogen peroxide. Hydrogen peroxide thus produced can be used as a fuel in a hydrogen peroxide fuel cell. A hydrogen peroxide fuel cell can be operated with a one-compartment structure without a membrane, which is certainly more promising for the development of low-cost fuel cells as compared with two compartment hydrogen fuel cells that require membranes. Hydrogen peroxide is regarded as an environmentally benign energy carrier because it can be produced by the electrocatalytic two-electron reduction of O 2 , which is abundant in air, using solar cells; the hydrogen peroxide thus produced could then be readily stored and then used as needed to generate electricity through the use of hydrogen peroxide fuel cells.
Abelleira-Pereira, Jose M; Pérez-Elvira, Sara I; Sánchez-Oneto, Jezabel; de la Cruz, Roberto; Portela, Juan R; Nebot, Enrique
2015-03-15
Studies on the development and evolution of anaerobic digestion (AD) pretreatments are nowadays becoming widespread, due to the outstanding benefits that these processes could entail in the management of sewage sludge. Production of sewage sludge in wastewater treatment plants (WWTPs) is becoming an extremely important environmental issue. The work presented in this paper is a continuation of our previous studies with the aim of understanding and developing the advanced thermal hydrolysis (ATH) process. ATH is a novel AD pretreatment based on a thermal hydrolysis (TH) process plus hydrogen peroxide (H2O2) addition that takes advantage of a peroxidation/direct steam injection synergistic effect. The main goal of the present research was to compare the performance of TH and ATH, conducted at a wide range of operating conditions, as pretreatments of mesophilic AD with an emphasis on methane production enhancement as a key parameter and its connection with the sludge solubilization. Results showed that both TH and ATH patently improved methane production in subsequent mesophilic BMP (biochemical methane potential) tests in comparison with BMP control tests (raw secondary sewage sludge). Besides other interesting results and discussions, a promising result was obtained since ATH, operated at temperature (115 °C), pretreatment time (5 min) and pressure (1 bar) considerably below those typically used in TH (170 °C, 30 min, 8 bar), managed to enhance the methane production in subsequent mesophilic BMP tests [biodegradability factor (fB) = cumulative CH4production/cumulative CH4production (Control) = 1.51 ± 0.01] to quite similar levels than conventional TH pretreatment [fB = 1.52 ± 0.03]. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dokoutchaev, Alexandre; Krishnan, Venkatesan V.; Thompson, Mark E.; Balasubramanian, Mahalingam
1998-10-01
We have continued previous efforts to synthesize and characterize a microporous metal phosphate/viologen-phosphonate compound, [(ZrF) 2(PO 4)(O 3PCH 2CH 2-4,4'-bipyridinium-CH 2CH 2PO 3)] ṡF·2H 2O, ZrPO PV. A derivative of this material has been shown to be an efficient catalyst for the production of hydrogen peroxide from hydrogen and oxygen. This paper has two objectives—one is to optimize the synthetic routes leading to the preparation of MPO PV (M=zirconium or hafnium) and the second is to characterize MPO PV and the derivatives formed by Pt or Pd incorporation by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray powder diffraction (XRD), inductively coupled plasma-mass spectrometry (ICP-MS) and X-ray absorption fine structure analysis (XAFS). Powder XRD data have shown much higher crystallinity in MPO PV samples prepared by hydrothermal methods than those prepared by reflux methods. In the hydrothermal synthesis, the amount of mineralizer (HF) present controlled the crystallite size (as determined from TEM micrographs). The larger the quantity of HF in the bomb, the larger the size of the crystals but the lower the yield of the MPO PV material. Crystal sizes of about 2.5 μm in length and 0.15 μm in diameter have been made with very large quantities of HF as mineralizer (10 times the required stoichiometric amount). Ion exchange of the material by PdCl 42- has resulted in the incorporation of the PdCl 42- ions in place of X - in the material. This has been confirmed by XAFS studies that demonstrate the oxidation state of Pd is 2+ and show four Cl atoms bound to Pd. Upon reduction it has been confirmed (by XAFS) that the palladium exists as metal with oxidation state of zero. Ion exchange by PdCl 42- and PtCl 42- and subsequent reduction of the material suspension by hydrogen result in the formation of separate Pt and Pd colloids in the close vicinity of the crystallites. TEM micrographs show clearly that the Pt metal obtained after reduction forms much smaller particles in comparison to Pd. These exchanged and reduced materials have also been investigated as catalysts for production of hydrogen peroxide in mixed acetone/water medium. The production of hydrogen peroxide is enhanced by increasing amounts of Pd in the catalyst. Hydrogen peroxide yields are the highest for catalysts containing only Pd as opposed to a mixture of Pt and Pd.
Liver Necrosis and Lipid Peroxidation in the Rat as the Result of Paraquat and Diquat Administration
Burk, Raymond F.; Lawrence, Richard A.; Lane, James M.
1980-01-01
Paraquat and diquat facilitate formation of superoxide anion in biological systems, and lipid peroxidation has been postulated to be their mechanism of toxicity. Paraquat has been shown to be more toxic to selenium-deficient mice than to controls, presumably as the result of decreased activity of the selenoenzyme glutathione peroxidase. The present study was designed to measure lipid peroxidation and to assess toxicity in control and selenium-deficient rats given paraquat and diquat. Lipid peroxidation was measured by determining ethane production rates of intact animals; toxicity was assessed by survival and by histological and serum enzyme evidence of liver and kidney necrosis. Paraquat and diquat were both much more toxic to selenium-deficient rats than to control rats. Diquat (19.5 μmol/kg) caused rapid and massive liver and kidney necrosis and very high ethane production rates in selenium-deficient rats. The effect of paraquat (78 μmol/kg) was similar to that of diquat but was not as severe. Acutely lethal doses of paraquat (390 μmol/kg) and diquat (230 μmol/kg) in control rats caused very little ethane production and no evidence of liver necrosis. These findings suggest that paraquat and diquat exert their acute toxicity largely through lipid peroxidation in selenium-deficient rats. Selenium deficiency had no effect on superoxide dismutase activity in erythrocytes or in 105,000 g supernate of liver or kidney. Glutathione peroxidase, which represents the only well-characterized biochemical function of selenium in animals, was dissociated from the protective effect of selenium against diquat-induced lipid peroxidation and toxicity by a time-course study in which selenium-deficient rats were injected with 50 μg of selenium and later given diquat (19.5 μmol/kg). Within 10 h, the selenium injection provided significant protection against diquat-induced lipid peroxidation and mortality even though this treatment resulted in no rise in glutathione peroxidase activity of liver, kidney, lung, or plasma at 10 h. This suggests that a selenium-dependent factor in addition to glutathione peroxidase exists that protects against lipid peroxidation. Images PMID:7364936
Influence of pH on inhibition of Streptococcus mutans by Streptococcus oligofermentans.
Liu, Ying; Chu, Lei; Wu, Fei; Guo, Lili; Li, Mengci; Wang, Yinghui; Wu, Ligeng
2014-02-01
Streptococcus oligofermentans is a novel strain of oral streptococcus that can specifically inhibit the growth of Streptococcus mutans. The aims of this study were to assess the growth of S. oligofermentans and the ability of S. oligofermentans to inhibit growth of Streptococcus mutans at different pH values. Growth inhibition was investigated in vitro using an interspecies competition assay. The 4-aminoantipyine method was used to measure the initial production rate and the total yield of hydrogen peroxide in S. oligofermentans. S. oligofermentans grew best at pH 7.0 and showed the most pronounced inhibitory effect when it was inoculated earlier than S. mutans. In terms of the total yield and the initial production rate of hydrogen peroxide by S. oligofermentans, the effects of the different culture pH values were as follows: pH 7.0 > 6.5 > 6.0 > 7.5 > 5.5 = 8.0 (i.e. there was no significant difference between pH 5.5 and pH 8.0). Environmental pH and the sequence of inoculation significantly affected the ability of S. oligofermentans to inhibit the growth of S. mutans. The degree of inhibition may be attributed to the amount of hydrogen peroxide produced. © 2013 Eur J Oral Sci.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibing, G.
Organic compounds which contain one or more double carbon bonds per molecule frequently display the ability of polymerizing with each other and with other compounds. It is mainly compounds containing peroxide that serve as catalysts for such operations. Examples of recommended substances are hydrogen peroxide, ozone, perbenzoic acid, benzoin peroxide, peroxide-containing ethers, persulfates, etc. It was found that a catalyst of much greater effectiveness in the polymerization of unsaturated compounds can be obtained from one of the previously-known catalysts if the hydrocarbons are processed with lateral-chain substances (e.g., toluene, xylene, ethyl benzene, propyl benzene, diethyl benzene, etc.) in boiling heatmore » with damp air. In this process there develops a small measure of peroxide of previously unknown make-up, which possess outstanding catalytic effectiveness. For production of the catalyst, the aromatics are heated by return-flow cooler and conducted for several hours through an air stream which has been saturated with steam. Oxidation can be undertaken with other substances also; for example, oxygen, ozone, or compounds which give off oxygen. Activation with air, however, is the simplest way and yields the most effective catalyst. Examples of the process are provided.« less
Hui, Ada; Lam, Xanthe M; Kuehl, Christopher; Grauschopf, Ulla; Wang, Y John
2015-01-01
When isolator technology is applied to biotechnology drug product fill-finish process, hydrogen peroxide (H2O2) spiking studies for the determination of the sensitivity of protein to residual peroxide in the isolator can be useful for assessing a maximum vapor phase hydrogen peroxide (VPHP) level. When monoclonal antibody (mAb) drug products were spiked with H2O2, an increase in methionine (Met 252 and Met 428) oxidation in the Fc region of the mAbs with a decrease in H2O2 concentration was observed for various levels of spiked-in peroxide. The reaction between Fc-Met and H2O2 was stoichiometric (i.e., 1:1 molar ratio), and the reaction rate was dependent on the concentrations of mAb and H2O2. The consumption of H2O2 by Fc-Met oxidation in the mAb followed pseudo first-order kinetics, and the rate was proportional to mAb concentration. The extent of Met 428 oxidation was half of that of Met 252, supporting that Met 252 is twice as reactive as Met 428. Similar results were observed for free L-methionine when spiked with H2O2. However, mAb formulation excipients may affect the rate of H2O2 consumption. mAb formulations containing trehalose or sucrose had faster H2O2 consumption rates than formulations without the sugars, which could be the result of impurities (e.g., metal ions) present in the excipients that may act as catalysts. Based on the H2O2 spiking study results, we can predict the amount Fc-Met oxidation for a given protein concentration and H2O2 level. Our kinetic modeling of the reaction between Fc-Met oxidation and H2O2 provides an outline to design a H2O2 spiking study to support the use of VPHP isolator for antibody drug product manufacture. Isolator technology is increasing used in drug product manufacturing of biotherapeutics. In order to understand the impact of residual vapor phase hydrogen peroxide (VPHP) levels on protein product quality, hydrogen peroxide (H2O2) spiking studies may be performed to determine the sensitivity of monoclonal antibody (mAb) drug products to residual peroxide in the isolator. In this study, mAbs were spiked with H2O2; an increase in methionine (Met) oxidation of the mAbs with a decrease in H2O2 concentration was observed for various levels of spiked-in peroxide. The reaction between Met and H2O2 was 1:1, and its rate was dependent on mAb and H2O2 concentrations. Consumption of H2O2 by Met followed pseudo first-order kinetics; the rate was proportional to mAb concentration. Formulations containing trehalose or sucrose had faster consumption rates than formulations without the sugars, which could be due to excipient impurities. Based on H2O2 spiking study results, we can predict the amount of Met oxidation for a given mAb concentration and H2O2 level. Our modeling of the reaction between Fc-Met oxidation and H2O2 provides an outline to design a H2O2 spiking study that supports using VPHP isolators during manufacture of mAb products. © PDA, Inc. 2015.
NASA Astrophysics Data System (ADS)
Young, Michelle N.; Chowdhury, Nadrat; Garver, Emily; Evans, Patrick J.; Popat, Sudeep C.; Rittmann, Bruce E.; Torres, César I.
2017-07-01
Microbial peroxide producing cells (MPPCs) are microbial electrochemical cells used to synthesize hydrogen peroxide (H2O2) in the cathode chamber. Catholyte hydraulic retention time (HRT), different catholytes and their concentrations, and a ferrochelating stabilizer are varied in a continuous-flow cathode MPPC to evaluate their impacts on performance. Using NaCl catholytes, the MPPC produced as high as 3.1 ± 0.37 g H2O2 L-1 at a 4-h HRT with as little as 1.13 W-h g-1 H2O2 energy input and with up to 57 g Lcathode-1 d-1 at a 1-h HRT. For these conditions, the H2O2 production rate provides more than 3 times the H2O2 required for disinfection or micro-pollutant removal while using 5-25% of the power used in conventional H2O2 production processes. Attempts to improve H2O2-production by adding weak acid buffers or H2O2-stabilizing EDTA fail for different reasons. The addition of the ferrochelator EDTA to prevent H2O2 auto-decay deteriorates MPPC performance, because EDTA diffuses from the cathode to the anode, inhibiting iron utilization by anode-respiring bacteria. Weak acid buffers failed to reduce cathode concentration overpotentials. Buffering catholytes lowered the H2O2 yield due to large pH gradients at the cathode chamber entrance, causing the formation of H2O instead of H2O2 or O2 re-formation from H2O2 auto-decay.
Evaluation of a 6% hydrogen peroxide tooth-whitening gel on enamel microhardness after extended use.
Toteda, Mariarosaria; Philpotts, Carole J; Cox, Trevor F; Joiner, Andrew
2008-11-01
To evaluate the effects of a 6% hydrogen peroxide tooth whitener, Xtra White, on sound human enamel microhardness in vitro after an extended and exaggerated simulated 8 weeks of product use. Polished human enamel specimens were prepared and baseline microhardness and color measurements determined. The enamel specimens were exposed to a fluoride-containing toothpaste for 30 seconds and then exposed to water, Xtra White, a control carbopol gel containing no hydrogen peroxide, or a carbonated beverage (each group, n = 8) for 20 minutes. Specimens were exposed to whole saliva at all other times. In order to simulate 8 weeks of extended product use, quadruple the length of the manufacturer's instructions, 112 treatments, were conducted. Microhardness measurements were taken after 2, 4, 6, and 8 weeks of simulated treatments, and color was measured after 2 and 8 weeks. The Xtra White-treated specimens showed a statistically significant (P < .0001) increase in L* and decrease in b* compared to the water-treated specimens after 2 weeks simulated use, indicating bleaching had occurred. The carbonated beverage-treated specimens were significantly softened (P = .0009) compared to baseline after only 1 treatment. The carbopol gel-treated specimens were significantly softened (P = .0028) after 2 weeks of simulated treatments compared to baseline. There were no statistically significant differences in enamel microhardness between baseline and all treatment times for XW and water groups. Xtra White does not have any deleterious effects on sound human enamel microhardness after an extended and exaggerated simulated 8 weeks of product use.
NASA Astrophysics Data System (ADS)
Semsang, Nuananong; Yu, LiangDeng
2013-07-01
Low-energy ion beam bombardment has been used to mutate a wide variety of plant species. To explore the indirect effects of low-energy ion beam on biological damage due to the free radical production in plant cells, the increase in antioxidant enzyme activities and lipid peroxidation level was investigated in ion-bombarded rice seeds. Local rice seeds were bombarded with nitrogen or argon ion beams at energies of 29-60 keV and ion fluences of 1 × 1016 ions cm-2. The activities of the antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST) and lipid peroxidation level were assayed in the germinated rice seeds after ion bombardment. The results showed most of the enzyme activities and lipid peroxidation levels in both the argon and nitrogen bombarded samples were higher than those in the natural control. N-ion bombardment could induce higher levels of antioxidant enzyme activities in the rice samples than the Ar-ion bombardment. Additional effects due to the vacuum condition were found to affect activities of some antioxidant enzymes and lipid peroxidation level. This study demonstrates that ion beam bombardment and vacuum condition could induce the antioxidant enzyme activity and lipid peroxidation level which might be due to free radical production in the bombarded rice seeds.
Prasad, Ankush; Pospíšil, Pavel
2011-01-01
Reactive oxygen species formed as a response to various abiotic and biotic stresses cause an oxidative damage of cellular component such are lipids, proteins and nucleic acids. Lipid peroxidation is considered as one of the major processes responsible for the oxidative damage of the polyunsaturated fatty acid in the cell membranes. Various methods such as a loss of polyunsaturated fatty acids, amount of the primary and the secondary products are used to monitor the level of lipid peroxidation. To investigate the use of ultra-weak photon emission as a non-invasive tool for monitoring of lipid peroxidation, the involvement of lipid peroxidation in ultra-weak photon emission was studied in the unicellular green alga Chlamydomonas reinhardtii. Lipid peroxidation initiated by addition of exogenous linoleic acid to the cells was monitored by ultra-weak photon emission measured with the employment of highly sensitive charged couple device camera and photomultiplier tube. It was found that the addition of linoleic acid to the cells significantly increased the ultra-weak photon emission that correlates with the accumulation of lipid peroxidation product as measured using thiobarbituric acid assay. Scavenging of hydroxyl radical by mannitol, inhibition of intrinsic lipoxygenase by catechol and removal of molecular oxygen considerably suppressed ultra-weak photon emission measured after the addition of linoleic acid. The photon emission dominated at the red region of the spectrum with emission maximum at 680 nm. These observations reveal that the oxidation of linoleic acid by hydroxyl radical and intrinsic lipoxygenase results in the ultra-weak photon emission. Electronically excited species such as excited triplet carbonyls are the likely candidates for the primary excited species formed during the lipid peroxidation, whereas chlorophylls are the final emitters of photons. We propose here that the ultra-weak photon emission can be used as a non-invasive tool for the detection of lipid peroxidation in the cell membranes. PMID:21799835
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pei-Shing Eugene Dai; Petty, R.H.; Ingram, C.
Substitution of transition metals for either aluminum and/or phosphorus in the AlPO{sub 4}-11 framework is found to afford novel heterogeneous catalysts for liquid phase hydroxylation of phenol with hydrogen peroxide. AlPO{sub 4}-11 is more active than SAPO-11 and MgAPO-11 for phenol conversion to hydroquinone. The Bronsted acid sites of SAPO-11 and MgAPO-11 may promote the decomposition of hydrogen peroxide to water and oxygen, thus leading to lower phenol conversions. Substitution of divalent and trivalent metal cations, such as Fe, Co and Mn appears to significantly improve the conversion of phenol. The activity follows the order of FeAPO-11>FeMnAPO-11>CoAPO-11>MnAPO-11{much_gt}ALPO{sub 4}-11. FeAPO-11, FeMnAPO-11more » and AlPO{sub 4}-11 give similar product selectivities of about 1:1 hydroquitione (HQ) to catechol (CT). MnAPO-11 and CoAPO-11 favor the production of catechol, particularly at low conversions. FeAPO-11 and TS-1 (titanium silicate with MFI topology) are comparable for the phenol conversions with TS-1 giving higher selectivities toward hydroquinone. The external surfaces of the catalysts plays a significant role in these oxidation reactions. MeAPO molecular sieves may be complementary to the metal silicalite catalysts for the catalytic oxidations in the manufacture of fine chemicals.« less
Diamond, Richard D.; Clark, Robert A.
1982-01-01
Our previous studies established that human neutrophils could damage and probably kill hyphae of Aspergillus fumigatus and Rhizopus oryzae in vitro, primarily by oxygen-dependent mechanisms active at the cell surface. These studies were extended, again quantitating hyphal damage by reduction in uptake of 14C-labeled uracil or glutamine. Neither A. fumigatus nor R. oryzae hyphae were damaged by neutrophils from patients with chronic granulomatous disease, confirming the importance of oxidative mechanisms in damage to hyphae. In contrast, neutrophils from one patient with hereditary myeloperoxidase deficiency damaged R. oryzae but not A. fumigatus hyphae. Cell-free, in vitro systems were then used to help determine the relative importance of several potentially fungicidal products of neutrophils. Both A. fumigatus and R. oryzae hyphae were damaged by the myeloperoxidase-hydrogen peroxide-halide system either with reagent hydrogen peroxide or enzymatic systems for generating hydrogen peroxide (glucose oxidase with glucose, or xanthine oxidase with either hypoxanthine or acetaldehyde). Iodide with or without chloride supported the reaction, but damage was less with chloride alone as the halide cofactor. Hydrogen peroxide alone damaged hyphae only in concentrations ≥1 mM, but 0.01 mM hypochlorous acid, a potential product of the myeloperoxidase system, significantly damaged R. oryzae hyphae (a 1 mM concentration was required for significant damage to A. fumigatus hyphae). Damage to hyphae by the myeloperoxidase system was inhibited by azide, cyanide, catalase, histidine, and tryptophan, but not by superoxide dismutase, dimethyl sulfoxide, or mannitol. Photoactivation of the dye rose bengal resulted in hyphal damage which was inhibited by histidine, tryptophan, and 1,4-diazobicyclo(2,2,2)octane. Lysates of neutrophils or separated neutrophil granules did not affect A. fumigatus hyphae, but did damage R. oryzae hyphae. Similarly, three preparations of cationic proteins purified from human neutrophil granules were more active in damaging R. oryzae than A. fumigatus hyphae. This damage, as with the separated granules and whole cell lysates, was inhibited by the polyanion heparin. Damage to R. oryzae hyphae by neutrophil cationic proteins was enhanced by activity of the complete myeloperoxidase system or by hydrogen peroxide alone in subinhibitory concentrations. These data support the importance of oxidative products in general and the myeloperoxidase system in particular in damage to hyphae by neutrophils. Cationic proteins may also contribute significantly to neutrophil-mediated damage to R. oryzae hyphae. PMID:6292103
Chemistry and biology of ω-3 PUFA peroxidation-derived compounds.
Wang, Weicang; Yang, Haixia; Johnson, David; Gensler, Catherine; Decker, Eric; Zhang, Guodong
2017-09-01
The ω-3 polyunsaturated fatty acids (PUFAs) are among the most popular dietary supplements in the US, but they are chemically unstable and highly prone to lipid peroxidation. Many studies performed in different countries demonstrate that the majority of ω-3 PUFA products on the market are oxidized, suggesting that the resulting ω-3 PUFA peroxidation-derived compounds could be widely consumed by the general public. Therefore, it is of practical importance to understand the effects of these oxidized lipid compounds on human health. In this review, we summarize and discuss the chemical structures and biological activities of ω-3 PUFA peroxidation-derived compounds, and emphasize the importance to better understand the role of lipid peroxidation in biological activities of ω-3 PUFAs. Copyright © 2016 Elsevier Inc. All rights reserved.
Smith, Tucker J; Foegeding, E Allen; Drake, MaryAnne
2015-10-01
Whey protein is a highly functional food ingredient used in a wide variety of applications. A large portion of fluid whey produced in the United States is derived from Cheddar cheese manufacture and contains annatto (norbixin), and therefore must be bleached. The objective of this study was to compare sensory and functionality differences between whey protein isolate (WPI) bleached by benzoyl peroxide (BP) or hydrogen peroxide (HP). HP and BP bleached WPI and unbleached controls were manufactured in triplicate. Descriptive sensory analysis and gas chromatography-mass spectrometry were conducted to determine flavor differences between treatments. Functionality differences were evaluated by measurement of foam stability, protein solubility, SDS-PAGE, and effect of NaCl concentration on gelation relative to an unbleached control. HP bleached WPI had higher concentrations of lipid oxidation and sulfur containing volatile compounds than both BP and unbleached WPI (P < 0.05). HP bleached WPI was characterized by high aroma intensity, cardboard, cabbage, and fatty flavors, while BP bleached WPI was differentiated by low bitter taste. Overrun and yield stress were not different among WPI (P < 0.05). Soluble protein loss at pH 4.6 of WPI decreased by bleaching with either hydrogen peroxide or benzoyl peroxide (P < 0.05), and the heat stability of WPI was also distinct among WPI (P < 0.05). SDS PAGE results suggested that bleaching of whey with either BP or HP resulted in protein degradation, which likely contributed to functionality differences. These results demonstrate that bleaching has flavor effects as well as effects on many of the functionality characteristics of whey proteins. Whey protein isolate (WPI) is often used for its functional properties, but the effect of oxidative bleaching chemicals on the functional properties of WPI is not known. This study identifies the effects of hydrogen peroxide and benzoyl peroxide on functional and flavor characteristics of WPI bleached by hydrogen and benzoyl peroxide and provides insights for the product applications which may benefit from bleaching. © 2015 Institute of Food Technologists®
THE RÔLE OF CERTAIN METALLIC IONS AS OXIDATION CATALYSTS
Cook, S. F.
1926-01-01
1. When iron and copper are allowed to act on hydrogen peroxide and pyrogallol, enough carbon dioxide is produced to be readily measured. 2. The curve of the production of carbon dioxide may be fitted by an empirical equation, by the use of which the initial rate and the total amount of the oxidation may be determined. 3. The effect of the concentration of the reagents is different in each case, the effect varying as a fractional power of the copper and pyrogallol concentrations and as a logarithmic function of the hydrogen peroxide concentration. 4. When gold or silver is used the rate changes suddenly during the course of the reaction due to the precipitation of colloidal metal. 5. Mercury, cadmium, zinc, tin, and some other metals have no effect. 6. A theoretical set of equations is assumed to account for the action of the metals. 7. The metals are assumed to act by means of the formation of intermediate peroxides. 8. Experiments on the action of gold indicate that the metals are active in the ionic and not in the colloidal state. PMID:19872322
The effect of ghee (clarified butter) on serum lipid levels and microsomal lipid peroxidation.
Sharma, Hari; Zhang, Xiaoying; Dwivedi, Chandradhar
2010-04-01
Ghee, also known as clarified butter, has been utilized for thousands of years in Ayurveda as a therapeutic agent. In ancient India, ghee was the preferred cooking oil. In the last several decades, ghee has been implicated in the increased prevalence of coronary artery disease (CAD) in Asian Indians due to its content of saturated fatty acids and cholesterol and, in heated ghee, cholesterol oxidation products. Our previous research on Sprague-Dawley outbred rats, which serve as a model for the general population, showed no effect of 5 and 10% ghee-supplemented diets on serum cholesterol and triglycerides. However, in Fischer inbred rats, which serve as a model for genetic predisposition to diseases, results of our previous research showed an increase in serum total cholesterol and triglyceride levels when fed a 10% ghee-supplemented diet. In the present study, we investigated the effect of 10% dietary ghee on microsomal lipid peroxidation, as well as serum lipid levels in Fischer inbred rats to assess the effect of ghee on free radical mediated processes that are implicated in many chronic diseases including cardiovascular disease. Results showed that 10% dietary ghee fed for 4 weeks did not have any significant effect on levels of serum total cholesterol, but did increase triglyceride levels in Fischer inbred rats. Ghee at a level of 10% in the diet did not increase liver microsomal lipid peroxidation or liver microsomal lipid peroxide levels. Animal studies have demonstrated many beneficial effects of ghee, including dose-dependent decreases in serum total cholesterol, low density lipoprotein (LDL), very low density lipoprotein (VLDL), and triglycerides; decreased liver total cholesterol, triglycerides, and cholesterol esters; and a lower level of nonenzymatic-induced lipid peroxidation in liver homogenate. Similar results were seen with heated (oxidized) ghee which contains cholesterol oxidation products. A preliminary clinical study showed that high doses of medicated ghee decreased serum cholesterol, triglycerides, phospholipids, and cholesterol esters in psoriasis patients. A study on a rural population in India revealed a significantly lower prevalence of coronary heart disease in men who consumed higher amounts of ghee. Research on Maharishi Amrit Kalash-4 (MAK-4), an Ayurvedic herbal mixture containing ghee, showed no effect on levels of serum cholesterol, high density lipoprotein (HDL), LDL, or triglycerides in hyperlipidemic patients who ingested MAK-4 for 18 weeks. MAK-4 inhibited the oxidation of LDL in these patients. The data available in the literature do not support a conclusion of harmful effects of the moderate consumption of ghee in the general population. Factors that may be involved in the rise of CAD in Asian Indians include the increased use of vanaspati (vegetable ghee) which contains 40% trans fatty acids, psychosocial stress, insulin resistance, and altered dietary patterns. Research findings in the literature support the beneficial effects of ghee outlined in the ancient Ayurvedic texts and the therapeutic use of ghee for thousands of years in the Ayurvedic system of medicine.
Preparation of water soluble chitosan by hydrolysis using hydrogen peroxide.
Xia, Zhenqiang; Wu, Shengjun; Chen, Jinhua
2013-08-01
Chitosan is not soluble in water, which limits its wide application particularly in the medicine and food industry. In the present study, water soluble chitosan (WSC) was prepared by hydrolyzing chitosan using hydrogen peroxide under the catalysis of phosphotungstic acid in homogeneous phase. Factors affecting hydrolysis were investigated and the optimal hydrolysis conditions were determined. The WSC structure was characterized by Fourier transform infrared spectroscopy. The resulting products were composed of chitooligosaccharides of DP 2-9. The WSC content of the product and the yield were 94.7% and 92.3% (w/w), respectively. The results indicate that WSC can be effectively prepared by hydrolysis of chitosan using hydrogen peroxide under the catalysis of phosphotungstic acid. Copyright © 2013 Elsevier B.V. All rights reserved.
Methods and apparatus for the on-site production of hydrogen peroxide
NASA Technical Reports Server (NTRS)
Buschmann, Wayne E. (Inventor); James, Patrick I. (Inventor)
2010-01-01
Methods, apparatus, and applications for the on-site production of hydrogen peroxide are described. An embodiment of the apparatus comprises at least one anolyte chamber coupled to at least one anode, at least one catholyte chamber, wherein the at least one catholyte chamber is coupled to at least one cathode, at least one anode membrane and at least one cathode membrane, wherein the anode membrane is adjacent to the at least one anode, wherein the cathode membrane is adjacent to the at least one cathode, at least one central chamber disposed between the at least one anolyte chamber and the at least one catholyte chamber. Hydrogen peroxide is produced by reduction of an oxygen-containing gas at the cathode.
Rabelo, Sarita C; Filho, Rubens Maciel; Costa, Aline C
2008-01-01
Pretreatment procedures of sugarcane bagasse with lime (calcium hydroxide) or alkaline hydrogen peroxide were evaluated and compared. Analyses were performed using 2(3) factorial designs, with pretreatment time, temperature, and lime loading and hydrogen peroxide concentration as factors. The responses evaluated were the yield of total reducing sugars (TRS) and glucose released from pretreated bagasse after enzymatic hydrolysis. Experiments were performed using the bagasse, as it comes from an alcohol/sugar factory and bagasse, in the size, range from 0.248 to 1.397 mm (12-60 mesh). The results show that, when hexoses and pentoses are of interest, lime should be the pretreatment agent chosen, as high TRS yields are obtained for non-screened bagasse using 0.40 g lime/g dry biomass at 70 degrees C for 36 h. When the product of interest is glucose, the best results were obtained with lime pretreatment of screened bagasse. However, the results for alkaline peroxide and lime pretreatments of non-screened bagasse are not very different.
NASA Astrophysics Data System (ADS)
Rabelo, Sarita C.; Filho, Rubens Maciel; Costa, Aline C.
Pretreatment procedures of sugarcane bagasse with lime (calcium hydroxide) or alkaline hydrogen peroxide were evaluated and compared. Analyses were performed using 2 × 2 × 2 factorial designs, with pretreatment time, temperature, and lime loading and hydrogen peroxide concentration as factors. The responses evaluated were the yield of total reducing sugars (TRS) and glucose released from pretreated bagasse after enzymatic hydrolysis. Experiments were performed using the bagasse as it comes from an alcohol/ sugar factory and bagasse in the size range of 0.248 to 1.397 mm (12-60 mesh). The results show that when hexoses and pentoses are of interest, lime should be the pretreatment agent chosen, as high TRS yields are obtained for nonscreened bagasse using 0.40 g lime/g dry biomass at 70 °C for 36 h. When the product of interest is glucose, the best results were obtained with lime pretreatment of screened bagasse. However, the results for alkaline peroxide and lime pretreatments of nonscreened bagasse are not very different.
Rabelo, Sarita C; Maciel Filho, Rubens; Costa, Aline C
2008-03-01
Pretreatment procedures of sugarcane bagasse with lime (calcium hydroxide) or alkaline hydrogen peroxide were evaluated and compared. Analyses were performed using 2 x 2 x 2 factorial designs, with pretreatment time, temperature, and lime loading and hydrogen peroxide concentration as factors. The responses evaluated were the yield of total reducing sugars (TRS) and glucose released from pretreated bagasse after enzymatic hydrolysis. Experiments were performed using the bagasse as it comes from an alcohol/sugar factory and bagasse in the size range of 0.248 to 1.397 mm (12-60 mesh). The results show that when hexoses and pentoses are of interest, lime should be the pretreatment agent chosen, as high TRS yields are obtained for nonscreened bagasse using 0.40 g lime/g dry biomass at 70 degrees C for 36 h. When the product of interest is glucose, the best results were obtained with lime pretreatment of screened bagasse. However, the results for alkaline peroxide and lime pretreatments of nonscreened bagasse are not very different.
[Indicators of lipid peroxidation in the blood in hereditary predisposition to arteriosclerosis].
Davidenkova, E F; Shafran, M G; Veksler, B M
1990-02-01
In members of the families whose parents had atherosclerosis complicated by macrofocal myocardial infarction or stroke, the serum level of lipid peroxidation products was correlated to enzymatic activity of neutrophil and red blood cells oxidation-antioxidation. In persons with hereditary predisposition to atherosclerosis both with clinical signs of atherosclerosis and phenotypically healthy against the control group there was elevated content of plasma acylhydroperoxides and hypoactivity of neutrophil myeloperoxidase. Determination of lipid peroxidation products by malonic dealdehyde showed this parameter to be higher in members of the families of the study group and in those with cardiovascular disorders. For those whose parents had atherosclerosis versus control subjects there were no differences in the activity of superoxide dismutase, glutation peroxidase and catalase in the blood red cells. Shifts in lipid peroxidation and activity of blood myeloperoxidase are identical in type and may represent a pathogenetic ling in formation of hereditary predisposition to cardiovascular disorders of atherosclerotic origin, the detection of which becomes feasible in a subclinical period.
Soudham, Venkata Prabhakar; Brandberg, Tomas; Mikkola, Jyri-Pekka; Larsson, Christer
2014-08-01
The aim of the present work was to investigate whether a detoxification method already in use during waste water treatment could be functional also for ethanol production based on lignocellulosic substrates. Chemical conditioning of spruce hydrolysate with hydrogen peroxide (H₂O₂) and ferrous sulfate (FeSO₄) was shown to be an efficient strategy to remove significant amounts of inhibitory compounds and, simultaneously, to enhance the enzymatic hydrolysis and fermentability of the substrates. Without treatment, the hydrolysates were hardly fermentable with maximum ethanol concentration below 0.4 g/l. In contrast, treatment by 2.5 mM FeSO₄ and 150 mM H₂O₂ yielded a maximum ethanol concentration of 8.3 g/l. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ischemic-Anoxia of the Central Nervous System: Iron Dependent Oxidative Injury during Reperfusion.
1986-10-15
much deeper tissue acidosis and augmented injury is seen in contrast to complete ischemic-anoxia. 4 8. The delocalized iron catalyzes the production of...of deep metabolic acidosis (HCO5 at about 10 meq/L). OCCM maintained good oxygenation, ventilation and acid base balance. The blood gas differences to...lactic acidosis which occurs in the brain under the influence of such low flow rates. 4 3. Siesjo’s study of the pH dependence of lipid peroxidation in
Shevalye, Hanna; Lupachyk, Sergey; Watcho, Pierre; Stavniichuk, Roman; Khazim, Khaled; Abboud, Hanna E; Obrosova, Irina G
2012-03-01
This study evaluated early renal functional, structural, and biochemical changes in high-calorie/high-fat diet fed mice, a model of prediabetes and alimentary obesity. Male C57BL6/J mice were fed normal (11 kcal% fat) or high-fat (58 kcal% fat) diets for 16 wk. Renal changes were evaluated by histochemistry and immunohistochemistry, Western blot analysis, ELISA, enzymatic assays, and chemiluminometry. High-fat diet consumption led to increased body and kidney weights, impaired glucose tolerance, hyperinsulinemia, polyuria, a 2.7-fold increase in 24-h urinary albumin excretion, 20% increase in renal glomerular volume, 18% increase in renal collagen deposition, and 8% drop of glomerular podocytes. It also resulted in a 5.3-fold increase in urinary 8-isoprostane excretion and a 38% increase in renal cortex 4-hydroxynonenal adduct accumulation. 4-hydroxynonenal adduct level and immunoreactivity or Sirtuin 1 expression in renal medulla were not affected. Studies of potential mechanisms of the high-fat diet induced renal cortex oxidative injury revealed that whereas nicotinamide adenine dinucleotide phosphate reduced form oxidase activity only tended to increase, 12/15-lipoxygenase was significantly up-regulated, with approximately 12% increase in the enzyme protein expression and approximately 2-fold accumulation of 12(S)-hydroxyeicosatetraenoic acid, a marker of 12/15-lipoxygenase activity. Accumulation of periodic acid-Schiff -positive material, concentrations of TGF-β, sorbitol pathway intermediates, and expression of nephrin, CAAT/enhancer-binding protein homologous protein, phosphoeukaryotic initiation factor-α, and total eukaryotic initiation factor-α in the renal cortex were indistinguishable between experimental groups. Vascular endothelial growth factor concentrations were reduced in high-fat diet fed mice. In conclusion, systemic and renal cortex oxidative stress associated with 12/15-lipoxygenase overexpression and activation is an early phenomenon caused by high-calorie/high-fat diet consumption and a likely contributor to kidney disease associated with prediabetes and alimentary obesity.
Zhang, Huihui; Du, Yatao; Zhang, Xu; Lu, Jun
2014-01-01
Abstract Aims: Mitochondrial thioredoxin (Trx) is critical for defense against oxidative stress-induced cell apoptosis. To date, mitochondrial thioredoxin reductase (TrxR) is the only known enzyme catalyzing Trx2 reduction in mitochondria. However, TrxR is sensitive to inactivation by exo/endogenous electrophiles, for example, 4-hydroxynonenal (HNE). In this study, we characterized the mitochondrial glutaredoxin 2 (Grx2) system as a backup for the mitochondrial TrxR. Meanwhile, as Grx2 is also present in the cytosol/nucleus of certain cancer cell lines, the reducing activity of Grx2 on Trx1 was also tested. Results: Glutathione alone could reduce oxidized Trx2, and the presence of physiological concentrations of Grx2 markedly increased the reaction rate. HeLa cells with Grx2 overexpression (particularly in the mitochondria) exhibited higher viabilities than the wild-type cells after treatment with TrxR inhibitors (Auranofin or HNE), whereas knockdown of Grx2 sensitized the cells to TrxR inhibitors. Accordingly, Grx2 overexpression in the mitochondria had protected Trx2 from oxidation by HNE treatment, whereas Grx2 knockdown had sensitized Trx2 to oxidation. On the other hand, Grx2 reduced Trx1 with similar activities as that of Trx2. Overexpression of Grx2 in the cytosol had protected Trx1 from oxidation, indicating a supportive role of Grx2 in the cytosolic redox balance of cancer cells. Innovation: This work explores the reductase activity of Grx2 on Trx2/1, and demonstrates the physiological importance of the activity by using in vivo redox western blot assays. Conclusion: Grx2 system could help to keep Trx2/1 reduced during an oxidative stress, thereby contributing to the anti-apoptotic signaling. Antioxid. Redox Signal. 21, 669–681. PMID:24295294
Vila, Andrew; Tallman, Keri A.; Jacobs, Aaron T.; Liebler, Daniel C.; Porter, Ned A.; Marnett, Lawrence J.
2009-01-01
Polyunsaturated fatty acids (PUFA) are primary targets of free radical damage during oxidative stress. Diffusible electrophilic α, β-unsaturated aldehydes, such as 4-hydroxynonenal (HNE), have been shown to modify proteins that mediate cell signaling (e.g. IKK and Keap1) and alter gene expression pathways responsible for inducing antioxidant genes, heat shock proteins, and the DNA damage response. To fully understand cellular responses to HNE, it is important to determine its protein targets in an unbiased fashion. This requires a strategy for detecting and isolating HNE-modified proteins regardless of the nature of the chemical linkage between HNE and its targets. Azido or alkynyl derivatives of HNE were synthesized and demonstrated to be equivalent to HNE in their ability to induce heme oxygenase induction and induce apoptosis in colon cancer (RKO) cells. Cells exposed to the tagged HNE derivatives were lysed and exposed to reagents to effect Staudinger ligation or copper-catalyzed Huisgen 1,3 dipolar cycloaddition reaction (click chemistry) to conjugate HNE-adducted proteins with biotin for subsequent affinity purification. Both strategies yielded efficient biotinylation of tagged HNE-protein conjugates but click chemistry was found to be superior for recovery of biotinylated proteins from streptavidin-coated beads. Biotinylated proteins were detected in lysates from RKO cell incubations with azido-HNE at concentrations as low as 1 μM. These proteins were affinity purified with streptavidin beads and proteomic analysis was performed by linear ion trap mass spectrometry. Proteomic analysis revealed a dose-dependent increase in labeled proteins with increased sequence coverage at higher concentrations. Several proteins involved in stress signaling (heat shock proteins 70 and 90, and the 78-kDa glucose-regulated protein) were selectively adducted by azido- and alkynyl-HNE. The use of azido and alkynyl derivatives in conjunction with click chemistry appears to be a valuable approach for the identification of the protein targets of HNE. PMID:18232660
Zabel, Matthew; Nackenoff, Alex; Kirsch, Wolff M; Harrison, Fiona E; Perry, George; Schrag, Matthew
2018-02-01
Oxidative stress and decreased cellular responsiveness to oxidative stress are thought to influence brain aging and Alzheimer's disease, but the specific patterns of oxidative damage and the underlying mechanism leading to this damage are not definitively known. The objective of this study was to define the pattern of changes in oxidative-stress related markers by brain region in human Alzheimer's disease and mild cognitive impairment brain tissue. Observational case-control studies were identified from systematic queries of PubMed, ISI Web of Science and Scopus databases and studies were evaluated with appropriate quality measures. The data was used to construct a region-by-region meta-analysis of malondialdehyde, 4-hydroxynonenal, protein carbonylation, 8-hydroxyguanine levels and superoxide dismutase, glutathione peroxidase, glutathione reductase and catalase activities. We also evaluated ascorbic acid, tocopherol, uric acid and glutathione levels. The analysis was complicated in several cases by publication bias and/or outlier data. We found that malondialdehyde levels were slightly increased in the temporal and occipital lobes and hippocampus, but this analysis was significantly impacted by publication bias. 4-hydroxynonenal levels were unchanged in every brain region. There was no change in 8-hydroxyguanine level in any brain region and protein carbonylation levels were unchanged except for a slight increase in the occipital lobe. Superoxide dismutase, glutathione peroxidase and reductase and catalase activities were not decreased in any brain region. There was limited data reporting non-enzymatic antioxidant levels in Alzheimer's disease brain, although glutathione and tocopherol levels appear to be unchanged. Minimal quantitative data is available from brain tissue from patients with mild cognitive impairment. While there is modest evidence supporting minor regional changes in markers of oxidative damage, this analysis fails to identify a consistent pattern of pro-oxidative changes and accumulation of oxidative damage in bulk tissue analysis in the setting of Alzheimer's disease, as has been widely reported. Copyright © 2017 Elsevier Inc. All rights reserved.
Anti-Atherosclerotic Actions of Azelaic acid, an End Product of Linoleic Acid Peroxidation, in Mice
Litvinov, Dmitry; Selvarajan, Krithika; Garelnabi, Mahdi; Brophy, Larissa; Parthasarathy, Sampath
2009-01-01
Background Atherosclerosis is a chronic inflammatory disease associated with the accumulation of oxidized lipids in arterial lesions. Recently we studied the degradation of peroxidized linoleic acid and suggested that oxidation is an essential process that results in the generation of terminal products, namely mono- and dicarboxylic acids that may lack the pro-atherogenic effects of peroxidized lipids. In continuation of that study, we tested the effects of azelaic acid (AzA), one of the end products of linoleic acid peroxidation, on the development of atherosclerosis using low density lipoprotein receptor knockout (LDLr−/−) mice. Methods and results LDLr−/− mice were fed with a high fat and high cholesterol Western diet (WD group). Another group of animals were fed the same diet with AzA supplementation (WD+AzA group). After four months of feeding, mice were sacrificed and atherosclerotic lesions were measured. The results showed that the average lesion area in WD+AzA group was 38% (p<0.001) less as compared to WD group. The athero-protective effect of AzA was not related to changes in plasma lipid content. AzA supplementation decreased the level of CD68 macrophage marker by 34% (p<0.05). Conclusions The finding that AzA exhibits an anti-atherogenic effect suggests that oxidation of lipid peroxidation-derived aldehydes into carboxylic acids could be an important step in the body’s defense against oxidative damage. PMID:19880116
Oxidation resistant peroxide cross-linked UHMWPE produced by blending and surface diffusion
NASA Astrophysics Data System (ADS)
Gul, Rizwan M.; Oral, Ebru; Muratoglu, Orhun K.
2014-06-01
Ultra-high molecular weight polyethylene (UHMWPE) has been widely used as acetabular cup in total hip replacement (THR) and tibial component in total knee replacement (TKR). Crosslinking of UHMWPE has been successful used to improve its wear performance leading to longer life of orthopedic implants. Crosslinking can be performed by radiation or organic peroxides. Peroxide crosslinking is a convenient process as it does not require specialized equipment and the level of crosslinking can be manipulated by changing the amount of peroxide added. However, there is concern about the long-term stability of these materials due to possible presence of by-products. Vitamin E has been successfully used to promote long-term oxidative stability of UHMWPE. In this study, UHMWPE has been crosslinked using organic peroxide in the presence of Vitamin E to produce an oxidation resistant peroxide crosslinked material. Crosslinking was performed both in bulk by mixing peroxide and resin, and only on the surface using diffusion of peroxides.The results show that UHMWPE can be crosslinked using organic peroxides in the presence of vitamin E by both methods. However, the level of crosslinking decreases with the increase in vitamin E content. The wear resistance increases with the increase in crosslink density, and oxidation resistance significantly increases due to the presence of vitamin E.
Longer period of oral administration of aspartame on cytokine response in Wistar albino rats.
Choudhary, Arbind Kumar; Sheela Devi, Rathinasamy
2015-03-01
Aspartame is a non-nutritive sweetener particularly used in 'diet' and 'low calorie' products and also in a variety of foods, drugs and hygiene products. Aspartame is metabolized by gut esterases and peptidases to three common chemicals: the amino acids, aspartic acid and phenylalanine, and small amounts of methanol. The aim of the present study was to assess potential changes in molecular mediators of aspartame as a chemical stressor in rats. The effects of long-term administration of aspartame (40 mg/kg body weight/day) were tested in Wistar Albino rats. The treatment effects were assessed in different conditions, including control groups. After 90 days of treatment, circulating concentrations of different parameters were assessed: corticosterone, lipid peroxidation, antioxidant activity, nitric oxide, reduced glutathione and cytokines (interleukin 2, interleukin 4, tumor necrosis factor-α and interferon-γ). The results show that there was a significant increase in plasma corticosterone, serum lipid peroxidation and nitric oxide level along with a decrease in enzymatic and non-enzymatic antioxidant as well as significant decrease in interleukin 2, tumor necrosis factor-α and interferon-γ. There was also a significant increase in interleukin 4 irrespective of whether the animals were immunized or not. The findings clearly point out that aspartame acts as a chemical stressor because of increased corticosterone level and increased lipid peroxidation and nitric oxide level induce generation of free radicals in serum which may be the reason for variation of cytokine level and finally results in alteration of immune function. Aspartame metabolite methanol or formaldehyde may be the causative factors behind the changes observed. Copyright © 2014 SEEN. Published by Elsevier España, S.L.U. All rights reserved.
Cibirka, R M; Myers, M; Downey, M C; Nelson, S K; Browning, W D; Hawkins, I K; Dickinson, G L
1999-01-01
Prescribed, patient-applied tooth lightening agents, or nightguard vital bleaching, typically utilizes a 10% carbamide peroxide agent applied during nocturnal hours. The purpose of this randomized double-blind study was to compare the amount of tooth color change in two groups of subjects using dentist-supervised, patient-applied 10% carbamide peroxide gel. One group used Opalescence (Ultradent Products Inc., South Jordan, Utah) and the other NiteWhite Excel (Discus Dental, Inc., Los Angeles, California). Evaluation of tooth color for the six maxillary anterior teeth was done using a Vita shade guide at baseline, 1, 2, and 4 weeks. Subjects were instructed to apply the gel nocturnally using a custom-made soft tray 8 hours per day for 2 weeks. The 16 tabs of the shade guide were ranked according to value from darkest to lightest. The number (1-16) that correlated to the shade tab selected as the match for each tooth was the outcome variable. A Kruskal-Wallis one way analysis of variance on ranks was used. The test revealed no statistically significant difference between Opalescence and NiteWhite Excel for lightening the teeth (p = .807). The color change was still significant after 2 weeks without further bleaching activity. The baseline evaluation of the maxillary incisors and canines for all subjects, regardless of group, demonstrated a significant shade difference, with the canines being darker. This difference was not seen after 2 weeks of active bleaching or at the 4-week evaluation. In this study comparing bleaching products, patients using Opalescence and NiteWhite Excel experienced a significant change in the color of their teeth relative to baseline values after 2 weeks of active treatment.
Shodehinde, Sidiqat Adamson; Oboh, Ganiyu
2013-06-01
To evaluate and compare antioxidant activities of the aqueous extracts of unripe plantain (Musa paradisiaca), assess their inhibitory action on sodium nitroprusside induced lipid peroxidation in rat pancreas in vitro and to characterize the main phenolic constituents of the plantain products using gas chromatography analysis. Aqueous extracts of plantain products (raw, elastic pastry, roasted and boiled) flour of 0.1 g/mL (each) were used to determine their total phenol, total flavonoid, 1,1 diphenyl-2 picrylhydrazyl (DPPH) and hydroxyl (OH) radical scavenging ability. The inhibitory effect of the extracts on sodium nitroprusside induced lipid peroxidation was also determined. The results revealed that all the aqueous extracts showed antioxidant activity. The boiled flour had highest DPPH and OH radical scavenging ability while raw flour had the highest Fe(2+) chelating ability, sodium nitroprusside inhibitory effect and vitamin C content. The antioxidant results showed that elastic pastry had the highest total phenol and total flavonoid content. Characterization of the unripe plantain products for polyphenol contents using gas chromatography showed varied quantity of apigenin, myricetin, luteolin, capsaicin, isorhaemnetin, caffeic acid, kampferol, quercetin, p-hydroxybenzoic acid, shogaol, glycitein and gingerol per product on the spectra. Considering the antioxidant activities and ability to inhibit lipid peroxidation of unripe plantain, this could justify their traditional use in the management/prevention of diseases related to stress.
Shodehinde, Sidiqat Adamson; Oboh, Ganiyu
2013-01-01
Objective To evaluate and compare antioxidant activities of the aqueous extracts of unripe plantain (Musa paradisiaca), assess their inhibitory action on sodium nitroprusside induced lipid peroxidation in rat pancreas in vitro and to characterize the main phenolic constituents of the plantain products using gas chromatography analysis. Methods Aqueous extracts of plantain products (raw, elastic pastry, roasted and boiled) flour of 0.1 g/mL (each) were used to determine their total phenol, total flavonoid, 1,1 diphenyl-2 picrylhydrazyl (DPPH) and hydroxyl (OH) radical scavenging ability. The inhibitory effect of the extracts on sodium nitroprusside induced lipid peroxidation was also determined. Results The results revealed that all the aqueous extracts showed antioxidant activity. The boiled flour had highest DPPH and OH radical scavenging ability while raw flour had the highest Fe2+ chelating ability, sodium nitroprusside inhibitory effect and vitamin C content. The antioxidant results showed that elastic pastry had the highest total phenol and total flavonoid content. Characterization of the unripe plantain products for polyphenol contents using gas chromatography showed varied quantity of apigenin, myricetin, luteolin, capsaicin, isorhaemnetin, caffeic acid, kampferol, quercetin, p-hydroxybenzoic acid, shogaol, glycitein and gingerol per product on the spectra. Conclusions Considering the antioxidant activities and ability to inhibit lipid peroxidation of unripe plantain, this could justify their traditional use in the management/prevention of diseases related to stress. PMID:23730557
Joshi, Suresh G; Cooper, Moogega; Yost, Adam; Paff, Michelle; Ercan, Utku K; Fridman, Gregory; Friedman, Gary; Fridman, Alexander; Brooks, Ari D
2011-03-01
Oxidative stress leads to membrane lipid peroxidation, which yields products causing variable degrees of detrimental oxidative modifications in cells. Reactive oxygen species (ROS) are the key regulators in this process and induce lipid peroxidation in Escherichia coli. Application of nonthermal (cold) plasma is increasingly used for inactivation of surface contaminants. Recently, we reported a successful application of nonthermal plasma, using a floating-electrode dielectric-barrier discharge (FE-DBD) technique for rapid inactivation of bacterial contaminants in normal atmospheric air (S. G. Joshi et al., Am. J. Infect. Control 38:293-301, 2010). In the present report, we demonstrate that FE-DBD plasma-mediated inactivation involves membrane lipid peroxidation in E. coli. Dose-dependent ROS, such as singlet oxygen and hydrogen peroxide-like species generated during plasma-induced oxidative stress, were responsible for membrane lipid peroxidation, and ROS scavengers, such as α-tocopherol (vitamin E), were able to significantly inhibit the extent of lipid peroxidation and oxidative DNA damage. These findings indicate that this is a major mechanism involved in FE-DBD plasma-mediated inactivation of bacteria.
Joshi, Suresh G.; Cooper, Moogega; Yost, Adam; Paff, Michelle; Ercan, Utku K.; Fridman, Gregory; Friedman, Gary; Fridman, Alexander; Brooks, Ari D.
2011-01-01
Oxidative stress leads to membrane lipid peroxidation, which yields products causing variable degrees of detrimental oxidative modifications in cells. Reactive oxygen species (ROS) are the key regulators in this process and induce lipid peroxidation in Escherichia coli. Application of nonthermal (cold) plasma is increasingly used for inactivation of surface contaminants. Recently, we reported a successful application of nonthermal plasma, using a floating-electrode dielectric-barrier discharge (FE-DBD) technique for rapid inactivation of bacterial contaminants in normal atmospheric air (S. G. Joshi et al., Am. J. Infect. Control 38:293-301, 2010). In the present report, we demonstrate that FE-DBD plasma-mediated inactivation involves membrane lipid peroxidation in E. coli. Dose-dependent ROS, such as singlet oxygen and hydrogen peroxide-like species generated during plasma-induced oxidative stress, were responsible for membrane lipid peroxidation, and ROS scavengers, such as α-tocopherol (vitamin E), were able to significantly inhibit the extent of lipid peroxidation and oxidative DNA damage. These findings indicate that this is a major mechanism involved in FE-DBD plasma-mediated inactivation of bacteria. PMID:21199923
Giraudo, Maeva; Cottin, Guillaume; Esperanza, Marta; Gagnon, Pierre; Silva, Amila O De; Houde, Magali
2017-12-01
Benzotriazole ultra violet stabilizers (BZT-UVs) are compounds used in many applications and products to prevent photochemical degradation. Despite their widespread presence in aquatic ecosystems and persistence in the environment, there are very limited data on their effects and toxicity, and their modes of action remain largely unknown. The objectives of the present study were to evaluate the chronic effects of 2 BZT-UVs, 2-(2H-benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol (UV-234) and 2-(2H-benzotriazol-2-yl)-4,6-di-tert-pentylphenol (UV-328), on the freshwater green algae Chlamydomonas reinhardtii and the freshwater crustacean Daphnia magna. Organisms were exposed to 0.01 and 10 μg/L of UV-234, UV-328, as well as a mixture of the 2 compounds. Life-history endpoints (viability, reproduction, and growth) and oxidative stress-related biomarkers (gene transcription, reactive oxygen species [ROS] production, and lipid peroxidation) were measured. Daphnia magna growth, reproduction, and gene transcription were not impacted by 21-d individual or mixed exposure. After 96-h of exposure, no differences were observed on the cellular viability of C. reinhardtii for either of the 2 BZT-UVs. In the algae, results showed increased ROS production in response to UV-328 and lipid peroxidation following exposure to UV-234. Synergistic effects of the 2 BZT-UVs were evident at the transcriptional level with 2 to 6 times up-regulation of glutathione peroxidase (gp x ) in response to the mixture for all treatment conditions. The transcription of superoxide dismutase (sod), catalase (cat), and ascorbic peroxidase (apx) was also regulated by UV-234 and UV-328 in the green algae, most likely as a result of ROS production and lipid peroxidation. Results from the present study suggest potential impacts of UV-234 and UV-328 exposure on the antioxidant defense system in C. reinhardtii. Environ Toxicol Chem 2017;36:3333-3342. © 2017 Crown in the Right of Canada. Published by Wiley Periodicals Inc., on behalf of SETAC. © 2017 Crown in the Right of Canada. Published by Wiley Periodicals Inc., on behalf of SETAC.
Smith, T J; Gerard, P D; Drake, M A
2015-11-01
Much of the fluid whey produced in the United States is a by-product of Cheddar cheese manufacture and must be bleached. Benzoyl peroxide (BP) is currently 1 of only 2 legal chemical bleaching agents for fluid whey in the United States, but benzoic acid is an unavoidable by-product of BP bleaching. Benzoyl peroxide is typically a powder, but new liquid BP dispersions are available. A greater understanding of the bleaching characteristics of BP is necessary. The objective of the study was to compare norbixin destruction, residual benzoic acid, and flavor differences between liquid whey and 80% whey protein concentrates (WPC80) bleached at different temperatures with 2 different benzoyl peroxides (soluble and insoluble). Two experiments were conducted in this study. For experiment 1, 3 factors (temperature, bleach type, bleach concentration) were evaluated for norbixin destruction using a response surface model-central composite design in liquid whey. For experiment 2, norbixin concentration, residual benzoic acid, and flavor differences were explored in WPC80 from whey bleached by the 2 commercially available BP (soluble and insoluble) at 5 mg/kg. In liquid whey, soluble BP bleached more norbixin than insoluble BP, especially at lower concentrations (5 and 10 mg/kg) at both cold (4°C) and hot (50°C) temperatures. The WPC80 from liquid whey bleached with BP at 50°C had lower norbixin concentration, benzoic acid levels, cardboard flavor, and aldehyde levels than WPC80 from liquid whey bleached with BP at 4°C. Regardless of temperature, soluble BP destroyed more norbixin at lower concentrations than insoluble BP. The WPC80 from soluble-BP-bleached wheys had lower cardboard flavor and lower aldehyde levels than WPC80 from insoluble-BP-bleached whey. This study suggests that new, soluble (liquid) BP can be used at lower concentrations than insoluble BP to achieve equivalent bleaching and that less residual benzoic acid remains in WPC80 powder from liquid whey bleached hot (50°C) than cold (4°C), which may provide opportunities to reduce benzoic acid residues in dried whey ingredients, expanding their marketability. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Formation of formic acid and organic peroxides in the ozonolysis of ethene with added water vapour
NASA Astrophysics Data System (ADS)
Horie, Osamu; Neeb, Peter; Limbach, Stefan; Moortgat, Geert K.
1994-07-01
Ozonolysis of C2H4 was carried out in a 580 l glass reaction vessel at 1-5 ppm reactant concentrations, with added water vapour. Under dry conditions ([H2O]0 = 0.5 ppm), HCHO, CO, CO2, (CHO)2O (formic acid anhydride), H2O2, and CH3OOH were identified as the reaction products. Under wet conditions ([H2O]0 = 2 × 104 ppm), HCOOH yields approaching ca. 20% of the converted C2H4, were observed, while no (CHO)2O was formed. Hydroxymethyl hydroperoxide, HOCH2OOH, was observed as the major peroxide, and found to be formed only in the presence of water vapour. Direct reactions of H2O vapour with the excited CH2OO* radicals and with stabilized CH2OO radicals are postulated to explain the formation of HCOOH and HOCH2OOH in the presence of water vapour, respectively.
Deiana, Monica; Incani, Alessandra; Rosa, Antonella; Corona, Giulia; Atzeri, Angela; Loru, Debora; Paola Melis, M; Assunta Dessì, M
2008-09-01
We investigated the capacity of hydroxytyrosol (HT), 3,4-dihydroxyphenylethanol, and homovanillic alcohol (HVA), 4-hydroxy-3-methoxy-phenylethanol, to inhibit H(2)O(2) induced oxidative damage in LLC-PK1, a porcine kidney epithelial cell line, studying the effect of H(2)O(2) on specific cell membrane lipid targets, unsaturated fatty acids and cholesterol. Exposure to H(2)O(2) induced a significant increase of the level of MDA together with a disruption of the membrane structure, with the loss of unsaturated fatty acids, cholesterol and alpha-tocopherol, and the formation of fatty acids hydroperoxides and 7-ketocholesterol. Pretreatment with HT protected renal cells from oxidative damage: the level of membrane lipids was preserved and there was no significant detection of oxidation products. HVA exerted a comparable activity, thus both HT and HVA were able to prevent in renal cells the lipid peroxidation process that plays a central role in tubular cell injury.
Bu, Tong-liang; Jia, Yu-dong; Lin, Jin-xing; Mi, Yu-ling; Zhang, Cai-qiao
2012-01-01
As a component of diesel exhaust particles, 3-methyl-4-nitrophenol (4-nitro-m-cresol, PNMC) is also a metabolite of the insecticide fenitrothion and imposes hazardous effects on human health. In the present study, the alleviative effect of a common antioxidant flavonoid quercetin on mouse germ cells intoxicated by PNMC was investigated. Results showed that a single intraperitoneal injection of PNMC at 100 mg/kg induced severe testicular damage after one week. PNMC-treated mice showed a significant loss of germ cells (approximate 40% loss of round germ cells). PNMC caused an increase of hydroxyl radical and hydrogen peroxide production and lipid peroxidation, as well as a decrease in glutathione level, superoxide dismutase and glutathione peroxidase activities. Furthermore, treatment of PNMC increased expression of the pro-apoptotic protein Bax and decreased expression of the anti-apoptotic protein Bcl-XL in germ cells. In addition, testicular caspase-3 activity was significantly up-regulated and germ cell apoptosis was significantly increased in the PNMC-treated mice. In contrast, combined administration of quercetin at 75 mg/kg significantly attenuated PNMC-induced testicular toxicity. These results indicate that the antioxidant quercetin displays a remarkable protective effect on PNMC-induced oxidative damage in mouse testes and may represent an efficient supplement to attenuate reproductive toxicity by environmental toxicants to ensure healthy sperm production. PMID:22467373
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eggers, B.; Kurth, J.H.; Kurth, M.C.
1994-09-01
Epidemiological studies suggest that several different environmental agents interact with a number of genetic elements to cause Parkinson`s disease (PD), a common neurodegenerative disease. Abnormalities of oxidative metabolism may be central to this process. Specifically, the production and degradation of dopamine may lead to toxic by-products and increased oxidative stress. Toxic by-products include hydrogen peroxide, superoxide, and hydroxyl radicals, all of which are implicated in the aging process of the central nervous system. Superoxide dismutase (SOD) catalyzes superoxide to hydrogen peroxide. Genetic predisposition to PD may be at least partially a result of certain SOD alleles. Using the cDNA sequencemore » of Mn-SOD gene, oligonucleotide primers were designed which span several presumptive splice junction sites. An approximatley 2.4kb PCR product was amplified from gDNA samples that span one or more intron near the 3{prime} end of the Mn-SOD cDNA sequence. The resultant product was screened with a panel of 4-cutters to identify fragments appropriate for SSCP analysis. Twenty-two gDNA samples were screened for SSCP and size differences of these PCR products. After digestion with AluI, two polymorphisms were observed. Two alleles with a size difference of 2-4 bp were observed by denaturing PAGE in one of the fragments. SSCP analysis revealed a polymorphism with 2 alleles in another fragment. Sequence analysis of these polymorphisms is in progress. DNA from several DEPH families was used to confirm Mendelian inheritance of these polymorphisms. Genomic DNA samples have been collected from 265 PD patients and 169 control individuals; allelic frequencies will be determined for these populations, compared by {chi}{sup 2} analysis, and relative risk calculated. These results may support a contribution of Mn-SOD in the genetic predisposition to PD.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hovanec, J.W.; Albizo, J.M.; Henderson, V.D.
1994-08-01
The use of concentrated mixtures of hydrogen peroxide and sodium hydroxide for the chemical neutralization (detoxification) of VX has been examined. The reaction of VX in 4 N sodium hydroxide/11% hydrogen peroxide is rapid and exothermic. Care must be taken to avoid temperature increases which can induce peroxide decomposition. This can be done by controlling the addition of VX to the reaction. (Author).
Reed, James R.; Cawley, George F.; Backes, Wayne L.
2013-01-01
The goal of this study was to characterize the effects of CYP1A2•CYP2B4 complex formation on the rates and efficiency of toluene metabolism by comparing the results from simple reconstituted systems containing P450 reductase (CPR) and a single P450 to those using a mixed system containing CPR and both P450s. In the mixed system, the rates of formation of CYP2B4-specific benzyl alcohol and p-cresol were inhibited, whereas that of CYP1A2-specific o-cresol was increased, results consistent with the formation of a CYP1A2•CYP2B4 complex where the CYP1A2 moiety has higher affinity for CPR binding. Comparison of the rates of NADPH oxidation and production of hydrogen peroxide and excess water by the simple and mixed systems indicated that excess water formed at a much lower rate in the mixed system. The commensurate increase in the rate of CYP1A2-specific product formation suggested the P450•P450 interaction increased the putative rate-limiting step of CYP1A2 catalysis, abstraction of a hydrogen radical from the substrate. Cumene hydroperoxide-supported metabolism was measured to determine whether the effects of the P450•P450 interaction required the presence of CPR. Peroxidative metabolism was not affected by the interaction of the two P450s, even with CPR present. However, CPR did stimulate peroxidative metabolism by the simple system containing CYP1A2. These results suggest the major functional effects of the P450•P450 interaction are mediated by changes in the relative abilities of the P450s to receive electrons from CPR. Furthermore, CPR may play an effector role by causing a conformation change in CYP1A2 that makes its metabolism more efficient. PMID:23675771
Asad, Sedigheh; Dastgheib, Seyed Mohammad Mehdi; Khajeh, Khosro
2016-11-01
Horseradish peroxidase (HRP) with a variety of potential biotechnological applications is still isolated from the horseradish root as a mixture of different isoenzymes with different biochemical properties. There is an increasing demand for preparations of high amounts of pure enzyme but its recombinant production is limited because of the lack of glycosylation in Escherichia coli and different glycosylation patterns in yeasts which affects its stability parameters. The goal of this study was to increase the stability of non-glycosylated enzyme, which is produced in E. coli, toward hydrogen peroxide via mutagenesis. Asparagine 268, one of the N-glycosylation sites of the enzyme, has been mutated via saturation mutagenesis using the megaprimer method. Modification and miniaturization of previously described protocols enabled screening of a library propagated in E. coli XJb (DE3). The library of mutants was screened for stability toward hydrogen peroxide with azinobis (ethylbenzthiazoline sulfonate) as a reducing substrate. Asn268Gly mutant, the top variant from the screening, exhibited 18-fold increased stability toward hydrogen peroxide and twice improved thermal stability compared with the recombinant HRP. Moreover, the substitution led to 2.5-fold improvement in the catalytic efficiency with phenol/4-aminoantipyrine. Constructed mutant represents a stable biocatalyst, which may find use in medical diagnostics, biosensing, and bioprocesses. © 2015 International Union of Biochemistry and Molecular Biology, Inc.
The structure of antimalarial dispiro-1,2,4-trioxolanes: A density functional approach
NASA Astrophysics Data System (ADS)
Moroni, L.; Salvi, P. R.
2006-02-01
Ab initio DF/B3-LYP/cc-pVDZ calculations have been performed on three dispiro-1,2,4-trioxolane systems ( 2)-( 4). Interest in these systems comes from the fact that a water-soluble derivative of ( 3), known as OZ277, has been synthesized and identified as antimalarial drug with activity superior to those of semisynthetic artemisinins. Structural data have been obtained regarding the atomic arrangement around the peroxide bond for the three systems. Making reference to ( 3), two conformers have been calculated depending on the axial or equatorial bond of spirocyclohexane with the peroxide oxygen of 1,2,4-trioxolane. In particular, while the peroxide oxygen on the spiroadamantane side is sterically hindered for both the axial and the equatorial conformer, the peroxide oxygen on the spirocyclohexane side is more accessible to external attack when the conformer is axial than when is equatorial.
Hyperbaric oxygen therapy for systemic gas embolism after hydrogen peroxide ingestion.
Byrne, Brendan; Sherwin, Robert; Courage, Cheryl; Baylor, Alfred; Dolcourt, Bram; Brudzewski, Jacek R; Mosteller, Jeffrey; Wilson, Robert F
2014-02-01
Hydrogen peroxide is a commonly available product and its ingestion has been demonstrated to produce in vivo gas bubbles, which can embolize to devastating effect. We report two cases of hydrogen peroxide ingestion with resultant gas embolization, one to the portal system and one cerebral embolus, which were successfully treated with hyperbaric oxygen therapy (HBO), and review the literature. Two individuals presented to our center after unintentional ingestion of concentrated hydrogen peroxide solutions. Symptoms were consistent with portal gas emboli (Patient A) and cerebral gas emboli (Patient B), which were demonstrated on imaging. They were successfully treated with HBO and recovered without event. As demonstrated by both our experience as well as the current literature, HBO has been used to successfully treat gas emboli associated with hydrogen peroxide ingestion. We recommend consideration of HBO in any cases of significant hydrogen peroxide ingestion with a clinical picture compatible with gas emboli. Copyright © 2014 Elsevier Inc. All rights reserved.
Dutta, Arghya; Wong, Raymond A; Park, Woonghyeon; Yamanaka, Keisuke; Ohta, Toshiaki; Jung, Yousung; Byon, Hye Ryung
2018-02-14
The major challenge facing lithium-oxygen batteries is the insulating and bulk lithium peroxide discharge product, which causes sluggish decomposition and increasing overpotential during recharge. Here, we demonstrate an improved round-trip efficiency of ~80% by means of a mesoporous carbon electrode, which directs the growth of one-dimensional and amorphous lithium peroxide. Morphologically, the one-dimensional nanostructures with small volume and high surface show improved charge transport and promote delithiation (lithium ion dissolution) during recharge and thus plays a critical role in the facile decomposition of lithium peroxide. Thermodynamically, density functional calculations reveal that disordered geometric arrangements of the surface atoms in the amorphous structure lead to weaker binding of the key reaction intermediate lithium superoxide, yielding smaller oxygen reduction and evolution overpotentials compared to the crystalline surface. This study suggests a strategy to enhance the decomposition rate of lithium peroxide by exploiting the size and shape of one-dimensional nanostructured lithium peroxide.
Electrosynthesis of hydrogen peroxide via the reduction of oxygen assisted by power ultrasound.
González-García, José; Banks, Craig E; Sljukić, Biljana; Compton, Richard G
2007-04-01
The electrosynthesis of hydrogen peroxide using the oxygen reduction reaction has been studied in the absence and presence of power ultrasound in a non-optimized sono-electrochemical flow reactor (20 cm cathodic compartment length with 6.5 cm inner diameter) with reticulated vitreous glassy carbon electrode (30 x 40 x 10 mm, 10 ppi, 7 cm(2)cm(-3)) as the cathode. The effect of several electrochemical operational variables (pH, volumetric flow, potential) and of the sono-electrochemical parameters (ultrasound amplitude and horn-to-electrode distance) on the cumulative concentration of hydrogen peroxide and current efficiency of the electrosynthesis process have been explored. The application of power ultrasound was found to increase both the cumulative concentration of hydrogen peroxide and the current efficiency. The application of ultrasound is therefore a promising approach to the increased efficiency of production of hydrogen peroxide by electrosynthesis, even in the solutions of lower pH (<12). The results demonstrate the feasibility of at-site-of-use green synthesis of hydrogen peroxide.
Iron ore mines leachate potential for oxyradical production.
Hamoutene, D; Rahimtula, A; Payne, J
2000-06-01
The ecotoxicological effects of mining effluents is coming under much greater scrutiny. It appears necessary to explore possible health effects in association with iron ore mining effluents. The present results clearly demonstrate that iron-ore leachate is not an inert media but has the potential to induce lipid peroxidation. Peroxidation was assessed by measuring oxygen consumption in the presence of a reducing agent such as ascorbate or NADPH and a chelator such as EDTA. Labrador iron ore is an insoluble complex crystalline material containing a mixture of metals (Fe, Al, Ti, Mn, Mg,ellipsis, ) in contrast to the iron sources used for normal lipid peroxidation studies. The metal of highest percentage is iron (59. 58%), a metal known to induce oxyradical production. Iron ore powder initiated ascorbic acid-dependent lipid peroxidation (nonenzymatic) in liposomes, lipids extracted from rat and salmon liver microsomes, and intact salmon liver microsomes. It also revealed an inhibitory effect of NADPH-dependent microsomes lipid peroxidation as well as on NADPH cytochrome c reductase activity. However, nonenzymatic peroxidation in rat liver microsomes was not significantly inhibited. Cytochrome P450 IA1- and IIB1-dependent enzymatic activities as well as P450 levels were not affected. The inhibition could be due to one of the other components of iron ore leachate (Mn, Al,ellipsis, ). These effects of iron-ore leachate indicate that a potential toxicity could be associated with its release into lakes. Further studies are necessary to explore in vivo effects on aquatic animals. Copyright 2000 Academic Press.
FY13 Progress Report on the Phase I Mini-SHINE Water Irradiations and Micro-SHINE Irradiations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youker, Amanda J.; Krebs, John F.; Kalensky, Michael
2014-02-19
The original goal of the micro-SHINE experiments was to confirm that precipitation of uranyl peroxide can be prevented by adding a catalyst such as FeSO 4 to destroy peroxide. After successfully demonstrating that FeSO 4 is an effective catalyst for peroxide destruction, subsequent micro-SHINE solutions were used as tracers to perform a Mo-separation and recovery column experiment, a sulfate-to-nitrate conversion, and iodine speciation experiments.
Gupte, Sachin A; Kaminski, Pawel M; George, Shimran; Kouznestova, Lioubov; Olson, Susan C; Mathew, Rajamma; Hintze, Thomas H; Wolin, Michael S
2009-04-01
Protein kinase C (PKC) stimulation of NAD(P)H oxidases (Nox) is an important component of multiple vascular disease processes; however, the relationship between oxidase activation and the regulation of vascular smooth muscle contraction by PKC remains poorly understood. Therefore, we examined the signaling cascade of PKC-elicited Nox activation and the role of superoxide and hydrogen peroxide in mediating PKC-induced vascular contraction. Endothelium-denuded bovine coronary arteries showed a PKC-dependent basal production of lucigenin (5 muM)-detected Nox oxidase-derived superoxide, which was stimulated fourfold by PKC activation with 10 muM phorbol 12,13-dibutyrate (PDBu). PDBu appeared to increase superoxide generation by Nox2 through both p47(phox) and peroxide-dependent Src activation mechanisms based on the actions of inhibitors, properties of Src phosphorylation, and the loss of responses in aorta from mice deficient in Nox2 and p47(phox). The actions of inhibitors of contractile regulating mechanisms, scavengers of superoxide and peroxide, and responses in knockout mouse aortas suggest that a major component of the contraction elicited by PDBu appeared to be mediated through peroxide derived from Nox2 activation stimulating force generation through Rho kinase and calmodulin kinase-II mechanisms. Superoxide generated by PDBu also attenuated relaxation to nitroglycerin. Peroxide-derived from Nox2 activation by PKC appeared to be a major contributor to the thromboxane A(2) receptor agonist U46619 (100 nM)-elicited contraction of coronary arteries. Thus a p47(phox) and Src kinase activation of peroxide production by Nox2 appears to be an important contributor to vascular contractile mechanisms mediated through activation of PKC.
Trans-4-oxo-2--nonenal potently alters mitochondrial function
USDA-ARS?s Scientific Manuscript database
Alzheimer’s disease elevates lipid peroxidation in the brain and data indicate that lipid-aldehydes are pathological effectors of lipid peroxidation. The disposition of 4-substituted nonenals derived from arachidonate (20:4, n-6) and linoleate (18:2, n-6) oxidation is modulated by their protein addu...
NASA Astrophysics Data System (ADS)
Pena, Alvaro J.; Pacheco-Londono, Leonardo; Figueroa, Javier; Rivera-Montalvo, Luis A.; Roman-Velazquez, Felix R.; Hernandez-Rivera, Samuel P.
2005-05-01
The characterization of Tetracetone Tetraperoxide (TRATRP), Triacetone Triperoxide (TATP), Diacetone Diperoxide (DADP), Tricyclohexylidene Triperoxide and Dibenzo Diperoxide using GC-MS, GC-FTIR, FTIR, FT-NMR and Raman Spectroscopy is reported. These compounds were synthesized, purified and characterized in the laboratory in order to develop methodologies for their trace detection. During this study, TATP has been synthesized by different methods obtaining high purity and good yields, even using common household products. DADP synthetic routes reported in the literature were verified. The methods described, including those that produce mixtures with TATP and other peroxides forms were also tested. This study will also focused in the preparation of other cyclic peroxides, including Hexamethelene Triperoxide Diamine (HMTD) and different forms of cyclic peroxides from ketones. This issue of thermodynamic versus kinetic control of secondary products of all syntheses and the effect of temperature in the distribution sub products of the syntheses was also addressed. A vibrational differentiation study of was carried out. Differences were found computationally in the υ(O-O), υ(C-O), δ(CH3-C) and δ(C-O) for Raman and IR bands and retention time and fragment patron for GC-MS and GC-FT-IR.
40 CFR 261.21 - Characteristic of ignitability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... combustion of organic matter (see Note 4). (i) An organic compound containing the bivalent -O-O- structure... have been replaced by organic radicals must be classed as an organic peroxide unless: (A) The material... the material containing an organic peroxide is other than that of an organic peroxide, or (D...
40 CFR 261.21 - Characteristic of ignitability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... combustion of organic matter (see Note 4). (i) An organic compound containing the bivalent -O-O- structure... have been replaced by organic radicals must be classed as an organic peroxide unless: (A) The material... the material containing an organic peroxide is other than that of an organic peroxide, or (D...
40 CFR 261.21 - Characteristic of ignitability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... combustion of organic matter (see Note 4). (i) An organic compound containing the bivalent -O-O- structure... have been replaced by organic radicals must be classed as an organic peroxide unless: (A) The material... the material containing an organic peroxide is other than that of an organic peroxide, or (D...
The Contribution of Singlet Oxygen to Insulin Resistance
2017-01-01
Insulin resistance contributes to the development of diabetes and cardiovascular dysfunctions. Recent studies showed that elevated singlet oxygen-mediated lipid peroxidation precedes and predicts diet-induced insulin resistance (IR), and neutrophils were suggested to be responsible for such singlet oxygen production. This review highlights literature suggesting that insulin-responsive cells such as endothelial cells, hepatocytes, adipocytes, and myocytes also produce singlet oxygen, which contributes to insulin resistance, for example, by generating bioactive aldehydes, inducing endoplasmic reticulum (ER) stress, and modifying mitochondrial DNA. In these cells, nutrient overload leads to the activation of Toll-like receptor 4 and other receptors, leading to the production of both peroxynitrite and hydrogen peroxide, which react to produce singlet oxygen. Cytochrome P450 2E1 and cytochrome c also contribute to singlet oxygen formation in the ER and mitochondria, respectively. Endothelial cell-derived singlet oxygen is suggested to mediate the formation of oxidized low-density lipoprotein which perpetuates IR, partly through neutrophil recruitment to adipose tissue. New singlet oxygen-involving pathways for the formation of IR-inducing bioactive aldehydes such as 4-hydroperoxy-(or hydroxy or oxo)-2-nonenal, malondialdehyde, and cholesterol secosterol A are proposed. Strategies against IR should target the singlet oxygen-producing pathways, singlet oxygen quenching, and singlet oxygen-induced cellular responses. PMID:29081894
The Contribution of Singlet Oxygen to Insulin Resistance.
Onyango, Arnold N
2017-01-01
Insulin resistance contributes to the development of diabetes and cardiovascular dysfunctions. Recent studies showed that elevated singlet oxygen-mediated lipid peroxidation precedes and predicts diet-induced insulin resistance (IR), and neutrophils were suggested to be responsible for such singlet oxygen production. This review highlights literature suggesting that insulin-responsive cells such as endothelial cells, hepatocytes, adipocytes, and myocytes also produce singlet oxygen, which contributes to insulin resistance, for example, by generating bioactive aldehydes, inducing endoplasmic reticulum (ER) stress, and modifying mitochondrial DNA. In these cells, nutrient overload leads to the activation of Toll-like receptor 4 and other receptors, leading to the production of both peroxynitrite and hydrogen peroxide, which react to produce singlet oxygen. Cytochrome P450 2E1 and cytochrome c also contribute to singlet oxygen formation in the ER and mitochondria, respectively. Endothelial cell-derived singlet oxygen is suggested to mediate the formation of oxidized low-density lipoprotein which perpetuates IR, partly through neutrophil recruitment to adipose tissue. New singlet oxygen-involving pathways for the formation of IR-inducing bioactive aldehydes such as 4-hydroperoxy-(or hydroxy or oxo)-2-nonenal, malondialdehyde, and cholesterol secosterol A are proposed. Strategies against IR should target the singlet oxygen-producing pathways, singlet oxygen quenching, and singlet oxygen-induced cellular responses.
Han, Yantao; Xie, Jing; Gao, Hui; Xia, Yunqiu; Chen, Xuehong; Wang, Chunbo
2015-03-01
The objective of this study was to investigate the hepatoprotective effect of cod skin collagen peptides (CSCP), isolated from fishing industrial by-products, in vitro and in vivo. Effect of CSCP on cell proliferation of normal and H2O2-damaged Chang liver cells was determined by MTT assay in vitro. Two animal models, CCl4-induced and acetaminophenum-induced acute hepatotoxicity, were established to assess the hepatoprotective effect of CSCP. Liver weight index, serum ALT and AST, antioxidant enzymes, and lipid peroxidation product were used as the markers of liver toxicity. The cell viability in the H2O2-treated Chang liver cells was remarkably increased when pretreated with CSCP from 100 to 1,000 µg/ml in a dose-dependent manner. CSCP pretreatment also alleviated the CCL4-induced liver index loss, while no marked changes were found in acetaminophenum-treated mice. Furthermore, CSCP pulled down serum ALT and AST level, increased the activities of SOD and CAT, and decreased MDA in both murine models of acute liver toxicity. Pretreatment with CSCP protected liver tissue against oxidative injure in vivo and in vitro. The underlying mechanism might involve enhancement in the activities of antioxidant enzymes and reduction in the lipid peroxidation.
Young, Michelle N; Links, Mikaela J; Popat, Sudeep C; Rittmann, Bruce E; Torres, César I
2016-12-08
A microbial peroxide producing cell (MPPC) for H 2 O 2 production at the cathode was systematically optimized with minimal energy input. First, the stability of H 2 O 2 was evaluated using different catholytes, membranes, and catalyst materials. On the basis of these results, a flat-plate MPPC fed continuously using 200 mm NaCl catholyte at a 4 h hydraulic retention time was designed and operated, producing H 2 O 2 for 18 days. H 2 O 2 concentration of 3.1 g L -1 H 2 O 2 with 1.1 Wh g -1 H 2 O 2 power input was achieved in the MPPC. The high H 2 O 2 concentration was a result of the optimum materials selected. The small energy input was largely the result of the 0.5 cm distance between the anode and cathode, which reduced ionic transport losses. However, >50 % of operational overpotentials were due to the 4.5-5 pH unit difference between the anode and cathode chambers. The results demonstrate that a MPPC can continuously produce H 2 O 2 at high concentration by selecting compatible materials and appropriate operating conditions. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Špoljarić Maronić, Dubravka; Štolfa Čamagajevac, Ivna; Horvatić, Janja; Žuna Pfeiffer, Tanja; Stević, Filip; Žarković, Neven; Waeg, Georg; Jaganjac, Morana
2018-05-08
The estimation of the toxic influences of herbicide products on non-target aquatic organisms is essential for evaluation of environmental contamination. We assessed the effects of the herbicide S-metolachlor (S-MET) on unicellular green microalga Parachlorella kessleri during 4-72 in vitro exposure to concentrations in the range 2-200μg/L. The results have shown that S-MET had a significant effect on algae, even in doses 10 and 20 times lower than the EC50 values obtained for P. kessleri (EC50-72h=1090μg/L). It generates reactive oxygen species in algae, decreases their growth and photosynthetic pigment concentration, changes their ultrastructure and alters the cellular antioxidant defence capacities. The levels of protein adducts with the reactive aldehyde 4-hydroxy-2-nonenal (HNE), the end-product of lipid peroxidation, were significantly elevated in S-MET treated cells revealing the insufficient effectiveness of P. kessleri antioxidant mechanisms and persistent lipid peroxidation. Since algae are fundamental aquatic food component, the damaged algal cells, still capable of dividing while having persistently increased content of HNE upon S-MET contamination could represent an important environmental toxic factor that might further affect higher organisms in the food chain. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinoshita, Hiroyuki; Matsumura, Takeshi, E-mail: takeshim@gpo.kumamoto-u.ac.jp; Ishii, Norio
Highlights: ► We examined the anti-athrogenic effect of apocynin in atherosclerotic model mice. ► Apocynin prevented atherosclerotic lesion formation. ► Apocynin suppressed ROS production in aorta and in macrophages. ► Apocynin suppressed cytokine expression and cell proliferation in macrophages. ► Apocynin may be beneficial compound for the prevention of atherosclerosis. -- Abstract: Production of reactive oxygen species (ROS) and other proinflammatory substances by macrophages plays an important role in atherogenesis. Apocynin (4-hydroxy-3-methoxy-acetophenone), which is well known as a NADPH oxidase inhibitor, has anti-inflammatory effects including suppression of the generation of ROS. However, the suppressive effects of apocynin on the progressionmore » of atherosclerosis are not clearly understood. Thus, we investigated anti-atherosclerotic effects of apocynin using apolipoprotein E-deficient (apoE{sup –/–}) mice in vivo and in mouse peritoneal macrophages in vitro. In atherosclerosis-prone apoE{sup –/–} mice, apocynin suppressed the progression of atherosclerosis, decreased 4-hydroxynonenal-positive area in atherosclerotic lesions, and mRNA expression of monocyte chemoattractant protein-1 (MCP-1) and interleukin-6 (IL-6) in aorta. In mouse peritoneal macrophages, apocynin suppressed the Ox-LDL-induced ROS generation, mRNA expression of MCP-1, IL-6 and granulocyte/macrophage colony-stimulating factor, and cell proliferation. Moreover, immunohistochemical studies revealed that apocynin decreased the number of proliferating cell nuclear antigen-positive macrophages in atherosclerotic lesions of apoE{sup –/–} mice. These results suggested that apocynin suppressed the formation of atherosclerotic lesions, at least in part, by inactivation of macrophages. Therefore, apocynin may be a potential therapeutic material to prevent the progression of atherosclerosis.« less
Gomes, Marcelo Pedrosa; Le Manac'h, Sarah Gingras; Maccario, Sophie; Labrecque, Michel; Lucotte, Marc; Juneau, Philippe
2016-06-01
We used a willow species (Salix miyabeana cultivar SX64) to examine the differential secondary-effects of glyphosate and aminomethylphosphonic acid (AMPA), the principal glyphosate by-product, on chlorophyll metabolism and photosynthesis. Willow plants were treated with different concentrations of glyphosate (equivalent to 0, 1.4, 2.1 and 2.8kgha(-1)) and AMPA (equivalent to 0, 0.28, 1.4 and 2.8kgha(-1)) and evaluations of pigment contents, chlorophyll fluorescence, and oxidative stress markers (hydrogen peroxide content and antioxidant enzyme activities) in leaves were performed after 12h of exposure. We observed that AMPA and glyphosate trigger different mechanisms leading to decreases in chlorophyll content and photosynthesis rates in willow plants. Both chemicals induced ROS accumulation in willow leaves although only glyphosate-induced oxidative damage through lipid peroxidation. By disturbing chlorophyll biosynthesis, AMPA induced decreases in chlorophyll contents, with consequent effects on photosynthesis. With glyphosate, ROS increases were higher than the ROS-sensitive threshold, provoking chlorophyll degradation (as seen by pheophytin accumulation) and invariable decreases in photosynthesis. Peroxide accumulation in both AMPA and glyphosate-treated plants was due to the inhibition of antioxidant enzyme activities. The different effects of glyphosate on chlorophyll contents and photosynthesis as described in the literature may be due to various glyphosate:AMPA ratios in those plants. Copyright © 2015 Elsevier Inc. All rights reserved.
Freitas, Isabel; Boncompagni, Eleonora; Tarantola, Eleonora; Gruppi, Cristian; Bertone, Vittorio; Ferrigno, Andrea; Milanesi, Gloria; Vaccarone, Rita; Tira, M. Enrica; Vairetti, Mariapia
2016-01-01
Nonalcoholic fatty liver disease (NAFLD) is a serious health problem in developed countries. We documented the effects of feeding with a NAFLD-inducing, methionine- and choline-deficient (MCD) diet, for 1–4 weeks on rat liver oxidative stress, with respect to a control diet. Glycogen, neutral lipids, ROS, peroxidated proteins, and SOD2 were investigated using histochemical procedures; ATP, GSH, and TBARS concentrations were investigated by biochemical dosages, and SOD2 expression was investigated by Western Blotting. In the 4-week-diet period, glycogen stores decreased whereas lipid droplets, ROS, and peroxidated proteins expression (especially around lipid droplets of hepatocytes) increased. SOD2 immunostaining decreased in poorly steatotic hepatocytes but increased in the thin cytoplasm of macrosteatotic cells; a trend towards a quantitative decrease of SOD expression in homogenates occurred after 3 weeks. ATP and GSH values were significantly lower for rats fed with the MCD diet with respect to the controls. An increase of TBARS in the last period of the diet is in keeping with the high ROS production and low antioxidant defense; these TBARS may promote protein peroxidation around lipid droplets. Since these proteins play key roles in lipid mobilization, storage, and metabolism, this last information appears significant, as it points towards a previously misconsidered target of NAFLD-associated oxidative stress that might be responsible for lipid dysfunction. PMID:26881047
Freitas, Isabel; Boncompagni, Eleonora; Tarantola, Eleonora; Gruppi, Cristian; Bertone, Vittorio; Ferrigno, Andrea; Milanesi, Gloria; Vaccarone, Rita; Tira, M Enrica; Vairetti, Mariapia
2016-01-01
Nonalcoholic fatty liver disease (NAFLD) is a serious health problem in developed countries. We documented the effects of feeding with a NAFLD-inducing, methionine- and choline-deficient (MCD) diet, for 1-4 weeks on rat liver oxidative stress, with respect to a control diet. Glycogen, neutral lipids, ROS, peroxidated proteins, and SOD2 were investigated using histochemical procedures; ATP, GSH, and TBARS concentrations were investigated by biochemical dosages, and SOD2 expression was investigated by Western Blotting. In the 4-week-diet period, glycogen stores decreased whereas lipid droplets, ROS, and peroxidated proteins expression (especially around lipid droplets of hepatocytes) increased. SOD2 immunostaining decreased in poorly steatotic hepatocytes but increased in the thin cytoplasm of macrosteatotic cells; a trend towards a quantitative decrease of SOD expression in homogenates occurred after 3 weeks. ATP and GSH values were significantly lower for rats fed with the MCD diet with respect to the controls. An increase of TBARS in the last period of the diet is in keeping with the high ROS production and low antioxidant defense; these TBARS may promote protein peroxidation around lipid droplets. Since these proteins play key roles in lipid mobilization, storage, and metabolism, this last information appears significant, as it points towards a previously misconsidered target of NAFLD-associated oxidative stress that might be responsible for lipid dysfunction.
Khan, Faidad; Wu, Xueqing; Matzkin, Gideon L; Khan, Mohsin A; Sakai, Fuminori; Vidal, Jorge E
2016-01-01
Staphylococcus aureus (Sau) strains are a main cause of disease, including nosocomial infections which have been linked to the production of biofilms and the propagation of antibiotic resistance strains such as methicillin-resistant Staphylococcus aureus (MRSA). A previous study found that Streptococcus pneumoniae (Spn) strains kill planktonic cultures of Sau strains. In this work, we have further evaluated in detail the eradication of Sau biofilms and investigated ultrastructural interactions of the biofilmicidal effect. Spn strain D39, which produces the competence stimulating peptide 1 (CSP1), reduced Sau biofilms within 8 h of inoculation, while TIGR4, producing CSP2, eradicated Sau biofilms and planktonic cells within 4 h. Differences were not attributed to pherotypes as other Spn strains producing different pheromones eradicated Sau within 4 h. Experiments using Transwell devices, which physically separated both species growing in the same well, demonstrated that direct contact between Spn and Sau was required to efficiently eradicate Sau biofilms and biofilm-released planktonic cells. Physical contact-mediated killing of Sau was not related to production of hydrogen peroxide as an isogenic TIGR4Δ spx B mutant eradicated Sau bacteria within 4 h. Confocal micrographs confirmed eradication of Sau biofilms by TIGR4 and allowed us to visualize ultrastructural point of contacts between Sau and Spn. A time-course study further demonstrated spatial colocalization of Spn chains and Sau tetrads as early as 30 min post-inoculation (Pearson's coefficient >0.72). Finally, precolonized biofilms produced by Sau strain Newman, or MRSA strain USA300, were eradicated by mid-log phase cultures of washed TIGR4 bacteria within 2 h post-inoculation. In conclusion, Spn strains rapidly eradicate pre-colonized Sau aureus biofilms, including those formed by MRSA strains, by a mechanism(s) requiring bacterium-bacterium contact, but independent from the production of hydrogen peroxide.
Different Modes of Hydrogen Peroxide Action During Seed Germination
Wojtyla, Łukasz; Lechowska, Katarzyna; Kubala, Szymon; Garnczarska, Małgorzata
2016-01-01
Hydrogen peroxide was initially recognized as a toxic molecule that causes damage at different levels of cell organization and thus losses in cell viability. From the 1990s, the role of hydrogen peroxide as a signaling molecule in plants has also been discussed. The beneficial role of H2O2 as a central hub integrating signaling network in response to biotic and abiotic stress and during developmental processes is now well established. Seed germination is the most pivotal phase of the plant life cycle, affecting plant growth and productivity. The function of hydrogen peroxide in seed germination and seed aging has been illustrated in numerous studies; however, the exact role of this molecule remains unknown. This review evaluates evidence that shows that H2O2 functions as a signaling molecule in seed physiology in accordance with the known biology and biochemistry of H2O2. The importance of crosstalk between hydrogen peroxide and a number of signaling molecules, including plant phytohormones such as abscisic acid, gibberellins, and ethylene, and reactive molecules such as nitric oxide and hydrogen sulfide acting on cell communication and signaling during seed germination, is highlighted. The current study also focuses on the detrimental effects of H2O2 on seed biology, i.e., seed aging that leads to a loss of germination efficiency. The dual nature of hydrogen peroxide as a toxic molecule on one hand and as a signal molecule on the other is made possible through the precise spatial and temporal control of its production and degradation. Levels of hydrogen peroxide in germinating seeds and young seedlings can be modulated via pre-sowing seed priming/conditioning. This rather simple method is shown to be a valuable tool for improving seed quality and for enhancing seed stress tolerance during post-priming germination. In this review, we outline how seed priming/conditioning affects the integrative role of hydrogen peroxide in seed germination and aging. PMID:26870076
DNA strand breakage and lipid peroxidation after exposure to welding fumes in vivo.
Chuang, Cheng-Hung; Huang, Chong-En; Chen, Hsiu-Ling
2010-01-01
A remarkable number of complex aerosols are generated from welding processes. The objective of this study was to compare DNA damage and lipid peroxidation in plasma and in lung and in liver tissue of rats exposed to welding fumes in an exposure chamber with those of control animals. Three air samples from the chamber were also collected to assess the exposure dose for each exposure (total samplings = 18). Eight male Sprague-Dawley rats were exposed to welding fumes at a concentration of 1540.76 mg/m(3) for 10 min/day six times on day 1, day 3, day 7, day 15, day 30 and day 40. Lung, liver and kidney injury was measured following exposure, as well as in unexposed control rats (n = 4 at the beginning of the study). DNA strand breakage [tail moment (TMOM)] in exposed animals showed significant differences at day 1, day 4, day 7 and day 15 relative to the levels in control animals. Malondialdehyde (MDA, a lipid peroxidation product) levels increased gradually post-welding to 0.4 microM at 7 days. MDA and TMOM both reached maximum levels 7 days after the first exposure. At the start, an increasing trend in DNA strand breakage was more obvious than increases in MDA levels; MDA seemed to reflect long-term effects of exposure to welding fumes since it increased after 7 days and was sustained to 40 days in vivo. Significant differences in both MDA levels and DNA strand breakage were seen in lung, liver and kidney 40 days after the first fume inhalation. We conclude that acute exposure of rats to welding fumes causes noticeable oxidative damage and lipid peroxidation effects and that DNA damage may recover after long and repeat exposure. More chronic inhalation and low-dose studies are needed in order to further assess the effects of inhalation of welding fumes on DNA and to elucidate the possible causal mechanisms associated with the biologically damaging effects of welding fumes.
Madhu, Ks; Hegde, Swaroop; Mathew, Sylvia; Lata, DA; Bhandi, Shilpa H; N, Shruthi
2013-08-01
Non vital bleaching is simple, conservative procedure for esthetic correction of discolored endodontically treated teeth. The aim of this study was to determine and compare the amount of peroxide leakage from four different bleaching agents i.e superoxol, sodium perborate, combination of superoxol & sodium perborate and carbamide peroxide during intracoronal bleaching, as the safe and effective bleaching is the need of the hour. 50 extracted maxillary centrals were selected for the study. Following standardized protocol access, cleaning and shaping by step back technique and obturation was done using guttapercha and AH plus sealer. Access was sealed with Cavit G and outer root surface was coated with wax and nail varnish. The teeth were separated into crown and root and the root portion was placed in plastic tube containing distilled water for 7days.After incubation, 3mm of gutta-percha was removed below CEJ and 2mm glass ionomer cement base was placed. Grouped into five categories based on the bleaching agent placed in pulp chamber as -group1 (control)-distilled water, group 2-sodium perborate with distilled water , group 3- 30% hydrogen peroxide ,group 4-mixture of sodium perborate and 30% hydrogen peroxide and group 5-10% carbamide peroxide gel. Peroxide leakage was measured after 24hrs using ferrothiocyanate method and optical density using spectrophotometer. Statistical analysis of the data was conducted using ANOVA and multiple comparisons within the groups was done using BONFERRONI method (Post-Hoc tests). The results showed highest peroxide penetration from 30% hydrogen peroxide followed by mixture of sodium perborate with 30% hydrogen peroxide, mixture of sodium perborate with distilled water and least penetration from 10% carbamide peroxide gel. The results were statistically significant. Radicular peroxide leakage in 10% carbamide peroxide was significantly lower than the other tested bleaching agents making it a very safe alternative for intracoronal bleaching. How to cite this article: Madhu KS, Hegde S, Mathew S, Lata DA, Bhandi SH, Shruthi N. Comparison of Radicular Peroxide Leakage from four Commonly used Bleaching agents following Intracoronal Bleaching in Endodontically treated teeth - An In Vitro Study. J Int Oral Health 2013; 5(4):49-55.
40 CFR 415.91 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... of any raw material, intermediate product, finished product, by-product, or waste product. The term... contact with any raw material, intermediate product, finished product, by-product or waste product by... this subpart. (b) The term product shall mean hydrogen peroxide as a one hundred percent hydrogen...
Müller, A; Sies, H
1982-01-01
The volatile hydrocarbons ethane and n-pentane are produced at increased rates by isolated perfused rat liver during the metabolism of acutely ethanol. The effect is half-maximal at 0.5 mM-ethanol, and its is not observed when inhibitors of alcohol dehydrogenase such as 4-methyl- or 4-propyl-pyrazole are also present. Propanol, another substrate for the dehydrogenase, is also active. Increased alkane production can be initiated by adding acetaldehyde in the presence of 4-methyl- or 4-propyl-pyrazole. An antioxidant, cyanidanol, suppresses the ethanol-induced alkane production. The data obtained with the isolated organ demonstrate that products known to arise from the peroxidation of polyunsaturated fatty acids are formed in the presence of ethanol and that the activity of alcohol dehydrogenase is required for the generation of the active radical species. The mere presence of ethanol, e.g. at binding sites of special form(s) of cytochrome P-450, it not sufficient to elicit an increased production of volatile hydrocarbons by rat liver. PMID:6751324
Maani, Bahareh; Alimi, Mazdak; Shokoohi, Shirin; Fazeli, Fatemeh
2017-06-01
Rice bran samples were treated under different conditions including hydrogen peroxide content (1, 4, and 7 wt%) and media pH (10.5, 11.5, and 12.5). Water holding capacity and color measurement results showed acceptable improvements compared with the untreated native bran confirmed by Fourier transform infrared analysis. Optimization of modification conditions upon characterization results suggested the introduction of 7% hydrogen peroxide at pH = 12.5. Accordingly, 1, 2 and 3 wt% of the rice bran treated under the optimized conditions, was used in salad dressing formulation; as for .3 wt% of modified starch in the formulation of blank sample, 1 wt% of treated rice bran dietary fiber was substituted. Biopolymer swelling and formation of a stable viscous gel network promoted by the chemical treatment of lignocellulosic rice bran restrict the mobility of oil droplets dispersed in the continuous phase which would consequently retard the emulsion instability phenomena. This effect was also confirmed by flow behavior and viscoelastic characterization results. Salad dressing samples containing 1 and 2 wt% treated rice bran showed acceptable physicochemical, rheological and organoleptic properties besides superior nutritional characteristics compared with the commercial modified starch traditionally used in salad dressing formulations. Despite recommended consumption of dietary fibers, addition of unprocessed lignocellulosic materials to food products usually raise negative effects in sensory, color, and texture quality. This study investigates the modification of rice bran, the byproduct of brown rice milling, to substitute modified starch traditionally used in salad dressing formulations to achieve optimum properties desirable for the final product. Optimization of modification conditions upon characterization of the formulated samples in this study would suggest new improved formulation for the commercial product. © 2016 Wiley Periodicals, Inc.
BOREAS TGB-10 Oxidant Concentration Data over the SSA
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Conrad, Sara K. (Editor); Westberg, Hal; Hall, Brad; Jackson, Andrea V.
2000-01-01
The BOREAS TGB-10 team collected several trace gas data sets in its efforts to determine the role of biogenic hydrocarbon emissions with respect to boreal forest carbon cycles. This data set contains measured peroxide (H2O2 and total organic peroxides (ROOH)) and ozone concentrations as well as H2O2 and ROOH deposition velocities. These data were obtained at the SSA-OJP site from May to September 1994. The data are stored in tabular ASCII files. Some important results were: (1) Ozone concentrations were consistently low, 20-30 ppb, during the summer of 1994. (2) Peroxide concentrations showed a seasonal variation with highest concentrations occurring in July (IFC-2). (3) Midday H2O2 levels averaged around 1.4 ppb during IFC-2 and 0.4 - 0.5 ppb during IFC's 1 and 3. (4) Midday organic peroxide concentrations were lower, averaging 0.8 ppb during IFC-2, and 0.4 - 0.5 ppb during IFC's 1 and 3. (5) The rough pine forest canopy serves as a significant sink for H2O2. (6) Midday H2O2 deposition velocities averaged 4 - 7 cm/s. (7) Organic peroxide deposition velocities (measured as total ROOH) were approximately 40% as large as those of H2O2.
Yang, Eun Sun; Yang, Joon-Hyuck; Park, Ji Eun; Park, Jeen-Woo
2005-01-01
Membrane lipid peroxidation processes yield products that may react with DNA and proteins to cause oxidative modifications. Recently, we demonstrated that the control of cytosolic redox balance and the cellular defense against oxidative damage is one of the primary functions of cytosolic NADP+ -dependent isocitrate dehydrogenase (IDPc) through to supply NADPH for antioxidant systems. The protective role of IDPc against lipid peroxidation-mediated apoptosis in U937 cells was investigated in control and cells pre-treated with oxlalomalate, a competitive inhibitor of IDPc. Upon exposure to 2,2'-azobis (2-amidinopropane) hydrochloride (AAPH) to U937 cells, which induces lipid peroxidation in membranes, the susceptibility to apoptosis was higher in oxalomalate-treated cells as compared to control cells. The results suggest that IDPc plays an important protective role in apoptosis of U937 cells induced by lipid peroxidation-mediated oxidative stress.
Liang, Yao-Dong; Yu, Chun-Xia
2013-03-01
A stronger chemiluminescence (CL) was observed when hydrogen peroxide was mixed with nitrite and berberine in sulfuric acid solution. The stronger CL originated from peroxidation of berberine by peroxynitrous acid that was synthesized online by the mixing of acidic hydrogen peroxide solution with nitrite solution in a flow system. The emitting species was excited state oxyberberine, a peroxidized product of berberine. Based on the stronger CL, a flow injection CL method for the determination of berberine was proposed. Under optimum experimental conditions, the stronger CL intensity was linearly related to the concentration of berberine over the range of 2.0 × 10(-7) -2.0 × 10(-5) mol L(-1) . The limit of detection (s/n = 3) was 6.2 × 10(-8) mol L(-1) . The proposed method has been evaluated by analyzing berberine in pharmaceutical preparations. Copyright © 2011 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Moser, L.
1988-01-01
A number of oxidizing agents, including chlorine, bromine, ozone and other peroxides, were allowed to act on copper solutions with the intention of forming copper peroxide. The only successful agent appears to be hydrogen peroxide. It must be used in a neutral 50 to 30 percent solution at a temperature near zero. Other methods described in the literature apparently do not work. The excess of hydrogen must be quickly sucked out of the brown precipitate, which it is best to wash with alcohol and ether. The product, crystalline under a microscope, can be analyzed only approximately. It approaches the formula CuO2H2O. In alkaline solution it appears to act catalytically in causing the decomposition of other peroxides, so that Na2O2 cannot be used to prepare it. On the addition of acids the H2O2 is regenerated. The dry substance decomposes much more slowly than the moist but is not very stable.
Czégény, Gyula; Wu, Min; Dér, András; Eriksson, Leif A; Strid, Åke; Hideg, Éva
2014-06-27
Solar UV-B (280-315 nm) radiation is a developmental signal in plants but may also cause oxidative stress when combined with other environmental factors. Using computer modeling and in solution experiments we show that UV-B is capable of photosensitizing hydroxyl radical production from hydrogen peroxide. We present evidence that the oxidative effect of UV-B in leaves is at least twofold: (i) it increases cellular hydrogen peroxide concentrations, to a larger extent in pyridoxine antioxidant mutant pdx1.3-1 Arabidopsis and; (ii) is capable of a partial photo-conversion of both 'natural' and 'extra' hydrogen peroxide to hydroxyl radicals. As stress conditions other than UV can increase cellular hydrogen peroxide levels, synergistic deleterious effects of various stresses may be expected already under ambient solar UV-B. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Oxidative stress-mediated mouse liver lesions caused by Clonorchis sinensis infection.
Maeng, Sejung; Lee, Hye Won; Bashir, Qudsia; Kim, Tae Im; Hong, Sung-Jong; Lee, Tae Jin; Sohn, Woon-Mok; Na, Byoung-Kuk; Kim, Tong-Soo; Pak, Jhang Ho
2016-03-01
Clonorchis sinensis is a high-risk pathogenic helminth that strongly provokes inflammation, epithelial hyperplasia, periductal fibrosis, and even cholangiocarcinoma in chronically infected individuals. Chronic inflammation is associated with an increased risk of various cancers due to the disruption of redox homeostasis. Accordingly, the present study was conducted to examine the time course relationship between histopathological changes and the appearance of oxidative stress markers, including lipid peroxidation, enzymes involved in lipid peroxidation, and mutagenic DNA adducts in the livers of mice infected with C. sinensis, as well as proinflammatory cytokines in infected mouse sera. Histopathological phenotypes such as bile duct epithelial hyperplasia, periductal fibrosis, edema and inflammatory infiltration increased in infected livers in a time-dependent manner. Intense immunoreactivity of lipid peroxidation products (4-hydroxy-2-nonenal; malondialdehyde), cyclooxygenase-2, 5-lipoxygenase and 8-oxo-7,8-dihydro-2'-deoxyguanosine were concomitantly observed in these injured regions. We also found elevated expressions of cyclooxygenase-2 and 5-lipoxygenase in C. sinensis excretory-secretory product-treated cholangiocarcinoma cells. Moreover, the levels of proinflammatory cytokines such as TNF-α, ILβ-1 and IL-6 were differentially upregulated in infected sera. With regard to oxidative stress-mediated carcinogenesis, our findings suggest that C. sinensis infestation may disrupt host redox homeostasis, creating a damaging environment that favors the development of advanced hepatobiliary diseases such as clonorchiasis-associated cholangiocarcinoma. Copyright © 2015 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Kamada, Kensaku; Goto, Shinji; Okunaga, Tomohiro; Ihara, Yoshito; Tsuji, Kentaro; Kawai, Yoshichika; Uchida, Koji; Osawa, Toshihiko; Matsuo, Takayuki; Nagata, Izumi; Kondo, Takahito
2004-12-01
We previously found that nuclear glutathione S-transferase pi (GSTpi) accumulates in cancer cells resistant to anticancer drugs, suggesting that it has a role in the acquisition of resistance to anticancer drugs. In the present study, the effect of oxidative stress on the nuclear translocation of GSTpi and its role in the protection of DNA from damage were investigated. In human colonic cancer HCT8 cells, the hydrogen peroxide (H(2)O(2))-induced increase in nuclear condensation, the population of sub-G(1) peak, and the number of TUNEL-positive cells were observed in cells pretreated with edible mushroom lectin, an inhibitor of the nuclear transport of GSTpi. The DNA damage and the formation of lipid peroxide were dependent on the dose of H(2)O(2) and the incubation time. Immunological analysis showed that H(2)O(2) induced the nuclear accumulation of GSTpi but not of glutathione peroxidase. Formation of the 7-(2-oxo-hepyl)-substituted 1,N(2)-etheno-2'-deoxyguanosine adduct by the reaction of 13-hydroperoxyoctadecadienoic acid (13-HPODE) with 2'-deoxyguanosine was inhibited by GSTpi in the presence of glutathione. The conjugation product of 4-oxo-2-nonenal, a lipid aldehyde of 13-HPODE, with GSH in the presence of GSTpi, was identified by LS/MS. These results suggested that nuclear GSTpi prevents H(2)O(2)-induced DNA damage by scavenging the formation of lipid-peroxide-modified DNA.
Maćczak, Aneta; Cyrkler, Monika; Bukowska, Bożena; Michałowicz, Jaromir
2017-06-01
Bisphenol A (BPA) and its analogs are widely used in the production of various everyday use products, which leads to a common exposure of humans to these substances. The effect of bisphenols on oxidative stress parameters has not been described in detail in non-nucleated cells, therefore, we have decided to evaluate the impact of BPA and its analogs, i.e. bisphenol S (BPS), bisphenol F (BPF) and bisphenol AF (BPAF) on reactive oxygen species (ROS) formation, lipid peroxidation, glutathione (GSH) level and the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) in human erythrocytes. The erythrocytes were incubated with the compounds studied in the concentrations ranging from 0.1 to 500μg/ml for 1, 4 or 24h. It has been found that bisphenols enhanced ROS (including • OH) formation, depleted GSH level, increased lipid peroxidation and changed the activities of SOD, CAT and GSH-Px. It has been noted that the strongest alterations in ROS formation, lipid peroxidation and the activity of antioxidant enzymes were induced by BPAF, which changed CAT and SOD activity even at 0.5μg/ml. It has also been shown that BPA caused the strongest changes in GSH level, while BPS, which is the main BPA substituent in the manufacture did not alter most parameters studied. Copyright © 2017 Elsevier B.V. All rights reserved.
Pinheiro, Helena Burlamaqui; Cardoso, Paulo Eduardo Capel
2011-06-01
To investigate the influence of calcium phosphate enhanced home whitening agents on human enamel and dentin surface microhardness and ultramorphology. Five intact molars crowns were used for ultrastructural analysis and five for microhardness test. Each resulting coronal structure was cut in slices. After measuring baseline Knoop Hardness Number (KHN) of the enamel and dentin, the slices were divided into six experimental groups and one control (n= 5). G1= 15% carbamide peroxide (CP); G2= 16% CP; G3= Ca and PO4 (remineralizing agent); G4= 16% CP with Ca and PO4; G5= 7.5% hydrogen peroxide (HP) with Ca and PO4; G6=7.5% HP with Ca. After each daily session of treatment, specimens were stored in distilled water (37 degrees C) until the next session. Products were applied for 2 weeks, according to manufacturers' instructions. Additional KHN weredetermined. Conventional whitening agents (G1; G2) and the gel with Ca (G6), caused KHN decrease (P< 0.05).The remineralizing and whitening agents with Ca and PO4 (G3; G4; G5) did not change KHN. A change of morphology was observed on enamel and dentin surfaces in G1; G2; G5.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaynor, James D.; Karakoti, Ajay S.; Inerbaev, Talgat
2013-05-02
A single layer of oxygen-deficient cerium oxide nanoparticles (CNPs) are immobilized on microscopic glass slide using poly(4-vinylpyridine) (PVP) self-assembled monolayers (SAMs). A specific colorimetric property of CNPs when reacted with hydrogen peroxide allows for the direct, single-step peroxide detection which can be used in medical diagnosis and explosives detection. Multiple PVP-CNP immobilized layers improve sensitivity of detection and the sensor can be regenerated for reuse.
Osman, Ahmed M.; Boeren, Sjef; Boersma, Marelle G.; Veeger, Cees; Rietjens, Ivonne M. C. M.
1997-01-01
The results of this study report the H2O2-driven microperoxidase-8 (MP8)-catalyzed dehalogenation of halophenols such as 4-fluorophenol, 4-chlorophenol, 4-bromophenol, and 2-fluorophenol in alcoholic solvents. In methanol, the conversion of the para-halophenols and 2-fluorophenol to, respectively, 4-methoxyphenol and 2-methoxyphenol, as the major dehalogenated products is observed. In ethanol, 4-ethoxyphenol is the principal dehalogenated product formed from 4-fluorophenol. Two mechanisms are suggested for this MP8-dependent alkoxylating dehalogenation reaction. In one of these mechanisms the oxene resonant form of compound I of MP8 is suggested to react with methanol forming a cofactor-peroxide-alkyl intermediate. This intermediate reacts with the reactive π-electrons of the substrate, leading to the formation of the alkoxyphenols and the release of the fluorine substituent as fluoride anion. PMID:9113983
CATALYTIC OXIDATION OF ALCOHOLS AND EPOXIDATION OF OLEFINS WITH HYDROGEN PEROXIDE AS OXIDANT
Hydrogen peroxide (H2O2) is an ideal oxidant of choice for these oxidations due to economic and environmental reasons by giving water as a by-product. Two catalysts used are vanadium phosphorus oxide (VPO) and Fe3+/montmorillonite-K10 catalyst prepared by ion-exchange method at a...
HYDROGEN PEROXIDE FORMATION FROM THE PHOTOOXIDATION OF FORMALDEHYDE AND ITS PRESENCE IN RAINWATER
The photooxidation of formaldehyde with sunlamps (E(max) = 3100 A) produces hydrogen peroxide (H2O2) at varying concentrations depending upon the amount of water vapor present. It is postulated that the variable production of H2O2 is a result of condensation on the reactor surfac...
Alkaline peroxide pretreatment of corn stover for enzymatic saccharification and ethanol production
USDA-ARS?s Scientific Manuscript database
Alkaline hydrogen peroxide (AHP) pretreatment and enzymatic saccharification were evaluated for conversion of corn stover cellulose and hemicellulose to fermentable sugars. Corn stover used in this study contained 37.0±0.2% cellulose, 26.8±0.2% hemicellulose and 18.0±0.1% lignin on dry basis. Unde...
Mechanism of protein decarbonylation.
Wong, Chi-Ming; Marcocci, Lucia; Das, Dividutta; Wang, Xinhong; Luo, Haibei; Zungu-Edmondson, Makhosazane; Suzuki, Yuichiro J
2013-12-01
Ligand/receptor stimulation of cells promotes protein carbonylation that is followed by the decarbonylation process, which might involve thiol-dependent reduction (C.M. Wong et al., Circ. Res. 102:301-318; 2008). This study further investigated the properties of this protein decarbonylation mechanism. We found that the thiol-mediated reduction of protein carbonyls is dependent on heat-labile biologic components. Cysteine and glutathione were efficient substrates for decarbonylation. Thiols decreased the protein carbonyl content, as detected by 2,4-dinitrophenylhydrazine, but not the levels of malondialdehyde or 4-hydroxynonenal protein adducts. Mass spectrometry identified proteins that undergo thiol-dependent decarbonylation, which include peroxiredoxins. Peroxiredoxin-2 and -6 were carbonylated and subsequently decarbonylated in response to the ligand/receptor stimulation of cells. siRNA knockdown of glutaredoxin inhibited the decarbonylation of peroxiredoxin. These results strengthen the concept that thiol-dependent decarbonylation defines the kinetics of protein carbonylation signaling. © 2013 Elsevier Inc. All rights reserved.
Mechanism of protein decarbonylation
Wong, Chi-Ming; Marcocci, Lucia; Das, Dividutta; Wang, Xinhong; Luo, Haibei; Zungu-Edmondson, Makhosazane; Suzuki, Yuichiro J.
2013-01-01
Ligand/receptor-stimulation of cells promotes protein carbonylation that is followed by the decarbonylation process, which might involve thiol-dependent reduction (Wong et al., Circ. Res. 102 301-318, 2008). The present study further investigated the properties of this protein decarbonylation mechanism. We found that the thiol-mediated reduction of protein carbonyls is dependent on heat-labile biologic components. Cysteine and glutathione were found to be efficient substrates for decarbonylation. Thiols decreased the protein carbonyl content, as detected by 2,4-dinitrophenylhydrazine, but not the levels of malondialdehyde or 4-hydroxynonenal protein adducts. Mass spectrometry identified proteins that undergo thiol-dependent decarbonylation, which include peroxiredoxins. Peroxiredoxins-2 and -6 were found to be carbonylated and subsequent decarbonylated in response to the ligand/receptor-stimulation of cells. siRNA knockdown of glutaredoxin inhibited the decarbonylation of peroxiredoxin. These results strengthen the concept that thiol-dependent decarbonylation defines the kinetics of protein carbonylation signaling. PMID:24044890
Nieva, Jorge; Song, Byeong-Doo; Rogel, Joseph K.; Kujawara, David; Altobel, Lawrence; Izharrudin, Alicia; Boldt, Grant E.; Grover, Rajesh K.; Wentworth, Anita D.; Wentworth, Paul
2011-01-01
SUMMARY Epidemiologic and clinical evidence points to an increased risk of cancer when coupled with chronic inflammation. However, the molecular mechanisms that underpin this interrelationship remain largely unresolved. Herein we show that the inflammation-derived cholesterol 5,6-secosterol aldehydes, atheronal-A (KA) and –B (ALD), but not the PUFA-derived aldehydes 4-hydroxynonenal (HNE) and 4-hydroxyhexenal (HHE), induce misfolding of wild-type p53 into an amyloidogenic form that binds thioflavin T and Congo Red dyes but cannot bind to a consensus DNA sequence. Treatment of lung carcinoma cells with KA and ALD leads to a loss of function of extracted p53, as determined by analysis of extracted nuclear protein and in activation of p21. Our results uncover a plausible chemical link between inflammation and cancer and expands the already pivotal role of p53 dysfunction and cancer risk. PMID:21802012
Free radical scavenging abilities of polypeptide from Chlamys farreri
NASA Astrophysics Data System (ADS)
Han, Zhiwu; Chu, Xiao; Liu, Chengjuan; Wang, Yuejun; Mi, Sun; Wang, Chunbo
2006-09-01
We investigated the radical scavenging effect and antioxidation property of polypeptide extracted from Chlamys farreri (PCF) in vitro using chemiluminescence and electron spin resonance (ESR) methods. We examined the scavenging effects of PCF on superoxide anions (O{2/-}), hydroxyl radicals (OH·), peroxynitrite (ONOO-) and the inhibiting capacity of PCF on peroxidation of linoleic acid. Our experiment suggested that PCF could scavenge oxygen free radicals including superoxide anions (O{2/-}) (IC50=0.3 mg/ml), hydroxyl radicals (OH·) (IC50=0.2 μg/ml) generated from the reaction systems and effectively inhibit the oxidative activity of ONOO- (IC50=0.2 mg/ml). At 1.25 mg/ml of PCF, the inhibition ratio on lipid peroxidation of linoleic acid was 43%. The scavenging effect of PCF on O{2/-}, OH· and ONOO- free radicals were stronger than those of vitamin C but less on lipid peroxidation of linoleic acid. Thus PCF could scavenge free radicals and inhibit the peroxidation of linoleic acid in vitro. It is an antioxidant from marine products and potential for industrial production in future.
Present and future technologies of tooth whitening.
Viscio, D; Gaffar, A; Fakhry-Smith, S; Xu, T
2000-01-01
Dental stains can be broadly classified as intrinsic or extrinsic. Intrinsic stains are a result of defects in tooth development, fluorosis, or acquired through the use of tetracycline. Extrinsic stains are localized mainly in the pellicle and are generated by the reaction between sugars and amino acids or acquired from the retention of exogenous chromophores in the pellicle. Three clinical methods are currently used for measuring stain removal and tooth whitening in the development of new whitening technologies: Lobene Stain Index, Shade Guide Color Change, and Minolta ChromaMeter. Professional tooth whitening products rely on proven technologies--35% hydrogen peroxide for in-office power bleaching or 10% to 15% carbamide peroxide for at-home bleaching--to reduce intrinsic stain and change the inherent tooth color. Over-the-counter tooth whitening products use a combination of surfactants, abrasives, anticalculus agents, and low levels of hydrogen peroxide to reduce extrinsic stain and help maintain tooth whiteness after professional treatment. Future technologies for whitening teeth could involve the use of activating agents to enhance the performance of hydrogen peroxide and natural enzymes.
The impact of iron on the bleaching efficacy of hydrogen peroxide in liquid whey systems.
Jervis, Suzanne M; Drake, MaryAnne
2013-02-01
Whey is a value-added product that is utilized in many food and beverage applications for its nutritional and functional properties. Whey and whey products are generally utilized in dried ingredient applications. One of the primary sources of whey is from colored Cheddar cheese manufacture that contains the pigment annatto resulting in a characteristic yellow colored Cheddar cheese. The colorant is also present in the liquid cheese whey and must be bleached so that it can be used in ingredient applications without imparting a color. Hydrogen peroxide and benzoyl peroxide are 2 commercially approved chemical bleaching agents for liquid whey. Concerns regarding bleaching efficacy, off-flavor development, and functionality changes have been previously reported for whey bleached with hydrogen peroxide and benzoyl peroxide. It is very important for the dairy industry to understand how bleaching can impact flavor and functionality of dried ingredients. Currently, the precise mechanisms of off-flavor development and functionality changes are not entirely understood. Iron reactions in a bleached liquid whey system may play a key role. Reactions between iron and hydrogen peroxide have been widely studied since the reaction between these 2 relatively stable species can cause great destruction in biological and chemical systems. The actual mechanism of the reaction of iron with hydrogen peroxide has been a controversy in the chemistry and biological community. The precise mechanism for a given reaction can vary greatly based upon the concentration of reactants, temperature, pH, and addition of biological material. In this review, some hypotheses for the mechanisms of iron reactions that may occur in fluid whey that may impact bleaching efficacy, off-flavor development, and changes in functionality are presented. Cheese whey is bleached to remove residual carotenoid cheese colorant. Concerns regarding bleaching efficacy, off-flavor development, and functionality changes have been reported for whey proteins bleached with hydrogen peroxide and benzoyl peroxide. It is very important for the dairy industry to understand how whey bleaching can impact flavor and functionality of dried ingredients. Proposed mechanisms of off-flavor development and functionality changes are discussed in this hypothesis paper. © 2013 Institute of Food Technologists®
Kirsch, Richard; Clarkson, Vivian; Shephard, Enid G; Marais, David A; Jaffer, Mohamed A; Woodburne, Vivienne E; Kirsch, Ralph E; Hall, Pauline de la M
2003-11-01
The methionine choline-deficient (MCD) diet leads to steatohepatitis in rodents. The aim of the present study was to investigate species, strain and sex differences in this nutritional model of non-alcoholic steatohepatitis (NASH). Male and female Wistar, Long-Evans and Sprague-Dawley rats, and C57/BL6 mice (n = 6 per group) were fed a MCD diet for 4 weeks. Control groups received an identical diet supplemented with choline bitartrate (0.2% w/w) and methionine (0.3% w/w). Liver pathology (steatosis and inflammation) and ultrastructure, liver lipid profile (total lipids, triglycerides, lipid peroxidation products), liver : body mass ratios and serum alanine aminotransferase (ALT) levels were compared between these groups. The MCD diet-fed male rats developed greater steatosis (P < 0.001), had higher liver lipid content (P < 0.05) and had higher serum ALT levels (P < 0.005) than did female rats. Wistar rats (both sexes) had higher liver lipid levels (P < 0.05), serum ALT levels (P < 0.05), and liver mass : body mass ratios (P < 0.025) than did Long-Evans and Sprague-Dawley rats. In female groups, Wistar rats showed greater fatty change than did the other two strains (P < 0.05). All rats fed the MCD diet developed hepatic steatosis, but necrosis and inflammation were minor features and fibrosis was absent. Compared with Wistar rats, male C57/BL6 mice showed a marked increase in inflammatory foci (P < 0.001), end products of lipid peroxidation (free thiobarbituric acid reactive substances) (P < 0.005), and mitochondrial injury, while showing less steatosis (P < 0.005), lower hepatic triglyceride levels, (P < 0.005) and lower early lipid peroxidation products (conjugated dienes and lipid hydroperoxides; P < 0.005 and P < 0.01, respectively). The Wistar strain and the male sex are associated with the greatest degree of steatosis in rats subjected to the MCD diet. Of the groups studied, male C57/BL6 mice develop the most inflammation and necrosis, lipid peroxidation, and ultrastructural injury, and best approximate the histological features of NASH.
[Antioxidant activity of cationic whey protein isolate].
titova, M E; Komolov, S A; Tikhomirova, N A
2012-01-01
The process of lipid peroxidation (LPO) in biological membranes of cells is carried out by free radical mechanism, a feature of which is the interaction of radicals with other molecules. In this work we investigated the antioxidant activity of cationic whey protein isolate, obtained by the cation-exchange chromatography on KM-cellulose from raw cow's milk, in vitro and in vivo. In biological liquids, which are milk, blood serum, fetal fluids, contains a complex of biologically active substances with a unique multifunctional properties, and which are carrying out a protective, antimicrobial, regenerating, antioxidant, immunomodulatory, regulatory and others functions. Contents of the isolate were determined electrophoretically and by its biological activity. Cationic whey protein isolate included lactoperoxidase, lactoferrin, pancreatic RNase, lysozyme and angeogenin. The given isolate significantly has an antioxidant effect in model experimental systems in vitro and therefore may be considered as a factor that can adjust the intensity of lipid oxidation. In model solutions products of lipid oxidation were obtained by oxidation of phosphatidylcholine by hydrogen peroxide in the presence of a source of iron. The composition of the reaction mixture: 0,4 mM H2O2; 50 mcM of hemin; 2 mg/ml L-alpha-phosphatidylcholine from soybean (Sigma, German). Lipid peroxidation products were formed during the incubation of the reaction mixture for two hours at 37 degrees C. In our studies rats in the adaptation period immediately after isolation from the nest obtained from food given orally native cationic whey protein isolate at the concentration three times higher than in fresh cow's milk. On the manifestation of the antioxidant activity of cationic whey protein isolate in vivo evidence decrease of lipid peroxidation products concentration in the blood of rats from the experimental group receipt whey protein isolate in dos 0,6 mg/g for more than 20% (p<0,05) with oral feeding. Thus, significantly cationic whey protein isolate has an antioxidant effect in model experimental systems, and so can be considered as a factor that can regulate the intensity of lipid oxidation.
Lu, Jing; Ding, Xiao-jun; Yu, Xiao-ping; Gong, Yi-ming
2015-10-01
To evaluate the effect of casein phosphopeptide-amorphouscalcium phosphate (CPP-ACP) treatment on the shear bond strength of orthodontic brackets after tooth bleaching. One hundred extracted human premolars were randomly divided and treated according to 5 groups (n=20) : (1) no treatment; (2) 10% carbamide peroxide bleaching; (3) 38% hydrogen peroxide bleaching; (4)10% carbamide peroxide bleaching and CPP-ACP paste; (5)38% hydrogen peroxide bleaching and CPP-ACP paste. In all groups, the brackets were bonded using a conventional acid-etch and bond system (Transbond XT, 3M Unitek, Monrovia, Calif). The shear bond strength adhesive remnant index (ARI) of the brackets were determined and the data was analyzed by ANOVA and Bonferroni test using SPSS13.0 software package. The use of 10% carbamide peroxide and 38% hydrogen peroxide bleaching significantly decreased the shear bond strength of orthodontic brackets when compared with untreated group (P<0.05). After combination of tooth bleaching and CPP-ACP treatment, group 4 (10% carbamide peroxide bleaching + CPP-ACP) and group 5 (38% hydrogen peroxide bleaching + CPP-ACP) showed higher levels of shear bond strength than group 2 and 3; however, no significant difference was found (P>0.05). The ARI did not show any significant difference before and after CPP-ACP treatment. After tooth bleaching, CPP-ACP treatment have little influence on the shear bond strength of orthodontic brackets.
Manoharan, Shanmugam; Panjamurthy, Kuppusamy; Balakrishnan, Subramanian; Vasudevan, Kalaiarasan; Vellaichamy, Lakshmanan
2009-01-01
Circadian time-dependent treatment with chemotherapeutic drugs (chronotherapy) optimizes the therapeutic index by maximizing treatment efficacy and minimizing toxicity. The circadian time-dependent chemopreventive and anti-lipid peroxidative efficacy of withaferin-A in 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch carcinogenesis was investigated in the present study. We induced oral squamous cell carcinoma in the buccal pouches of golden Syrian hamsters during the day (4:00, 8:00, 12:00, 16:00, 20:00 and 24:00) by application of DMBA three times per week for 14 weeks. The circadian time-dependent tumor incidence, volume and burden were observed in hamsters treated with either DMBA alone or DMBA + withaferin-A. The circadian pattern of lipid peroxidation by-products, as measured by the formation of thiobarbituric acid reactive substances (TBARS) and enzymatic antioxidants [superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)], was also analyzed in the buccal mucosa of DMBA-treated hamsters. We found the highest incidence of tumor formation at 24.00 h in hamsters treated with DMBA alone as compared to other experimental groups. Circadian dysregulation of lipid peroxidation and antioxidant status was observed in DMBA-treated animals as compared to control animals. Oral (po) administration of withaferin-A (20 mg/kg) completely prevented the formation of tumors between 8.00 h and 12.00 h and synchronized the status of lipid peroxidation and antioxidants in the buccal mucosa of hamsters treated with DMBA alone. Also, oral administration of withaferin-A to DMBA-treated animals significantly reduced the formation of tumors and synchronized the status of lipid peroxidation and antioxidants in the rest of the time intervals. Our study thus suggests that withaferin-A has significant chemopreventive and anti-lipid peroxidative potential in DMBA-induced oral carcinogenesis, probably by interfering with DMBA-induced abnormal cell proliferation in the buccal mucosa.
Fluorescent Probes Used for Detection of Hydrogen Peroxide under Biological Conditions.
Żamojć, Krzysztof; Zdrowowicz, Magdalena; Jacewicz, Dagmara; Wyrzykowski, Dariusz; Chmurzyński, Lech
2016-05-03
Hydrogen peroxide is a well-established precursor of reactive oxygen and nitrogen species that are known to contribute to oxidative stress-the crucial factor responsible for the course of a wide range of phy-sicochemical processes as well as the genesis of various diseases, such as cancer and neurodegenerative disorders. Thus, the development of sensitive and selective methods for the detection and quantitative determination of hydrogen peroxide is of great importance in monitoring the in vivo production of that species and elucidating its biological functions. This review highlights the progress that has been made in the development of fluorescent and luminescent probes (excluding nanoparticles) employed to monitor hydrogen peroxide under biological conditions. Attention was focused on probes developed in the past 10 years.
Nakamura, Hideaki; Mogi, Yotaro; Akimoto, Takuo; Naemura, Kiyoshi; Kato, Teru; Yano, Kazuyoshi; Karube, Isao
2008-11-15
An absorption-based surface plasmon resonance (SPR(Abs)) biosensor probe has been developed for simple and reproducible measurements of hydrogen peroxide using a modified Trinder's reagent (a chromogenic reagent). The reagent enabled the determination of the hydrogen peroxide concentration by the development of deep color dyes (lambda(max)=630 nm) through the oxidative coupling reaction with N-ethyl-N-(2-hydroxy-3-sulfopropyl)-3,5-dimethylaniline sodium salt monohydrate (MAOS; C(13)H(20)NNaO(4)S.H(2)O) and 4-aminoantipyrine (4-AA) in the presence of hydrogen peroxide and horseradish peroxidase (HRP). In the present study, urea as an adduct of hydrogen peroxide for color development could be omitted from the measurement solution. The measurement solution containing 5mM hydrogen peroxide was deeply colored at a high absorbance value calculated as 46.7cm(-1) and was directly applied to the SPR(Abs) biosensing without dilution. The measurement was simply performed by dropping the measurement solution onto the surface of the SPR sensor probe, and the SPR(Abs) biosensor response to hydrogen peroxide was obtained as a reflectivity change in the SPR spectrum. After investigation of the pH profiles in the SPR(Abs) biosensor probe, a linear calibration curve was obtained between 1.0 and 50mM hydrogen peroxide (r=0.991, six points, average of relative standard deviation; 0.152%, n=3) with a detection limit of 0.5mM. To examine the applicability of this SPR(Abs) biosensor probe, 20mM glucose detection using glucose oxidase was also confirmed without influence of the refractive index in the measurement solution. Thus, the SPR(Abs) biosensor probe employing the modified Trinder's reagent demonstrated applicability to other analyte biosensing tools.
A comparison of the relative antioxidant potency of L-ergothioneine and idebenone.
Dong, Kelly K; Damaghi, Niusha; Kibitel, Jeannie; Canning, Matthew T; Smiles, Kenneth A; Yarosh, Daniel B
2007-09-01
L-ergothioneine (EGT) is a stable antioxidant found in food plants as well as in animal tissue undergoing relatively high levels of oxidative stress. Idebenone is a stable analog of the antioxidant coenzyme Q(10). All are potent antioxidants found in skincare products, but their relative potencies are not well described. To establish the physiological relevance of EGT by examining transcription of the EGT transporter gene OCTN-1 and production of the receptor protein in skin fibroblasts. In addition, to compare the inhibition of lipid peroxide formation by coenzyme Q(10) and EGT. Furthermore, to compare the peroxide-scavenging abilities of EGT and idebenone in both simple solution and in cell cultures exposed to ultraviolet A (UVA). OCTN-1 expression and production in cultured fibroblasts were measured through real-time reverse transcription-PCR and Western blotting, respectively. Alloxan-induced lipid peroxidation in liposomes was used to evaluate the inhibition of lipid peroxide formation. The abilities of EGT and idebenone to directly scavenge hydroxyl radicals produced by H(2)O(2 )were determined. Finally, we irradiated fibroblasts with UVA340 radiation and compared antioxidant capabilities to scavenge free radicals. We found that OCTN-1 is expressed and readily detectable in cultured human fibroblasts. EGT was more efficient in inhibiting lipid peroxide formation than coenzyme Q(10) or idebenone. Samples treated with EGT had significantly less peroxide than those treated with idebenone 120 min after adding the antioxidants to H(2)O(2). EGT acted significantly quicker and more efficiently in capturing reactive oxygen species (ROS) after UVA340 irradiation. EGT is a natural skin antioxidant, as evidenced by the presence of the EGT transporter in fibroblasts. EGT is a more powerful antioxidant than either coenzyme Q(10) or idebenone due to its relatively greater efficiency in directly scavenging free radicals and in protecting cells from UV-induced ROS.
Brand, Martin D
2016-11-01
This review examines the generation of reactive oxygen species by mammalian mitochondria, and the status of different sites of production in redox signaling and pathology. Eleven distinct mitochondrial sites associated with substrate oxidation and oxidative phosphorylation leak electrons to oxygen to produce superoxide or hydrogen peroxide: oxoacid dehydrogenase complexes that feed electrons to NAD + ; respiratory complexes I and III, and dehydrogenases, including complex II, that use ubiquinone as acceptor. The topologies, capacities, and substrate dependences of each site have recently clarified. Complex III and mitochondrial glycerol 3-phosphate dehydrogenase generate superoxide to the external side of the mitochondrial inner membrane as well as the matrix, the other sites generate superoxide and/or hydrogen peroxide exclusively in the matrix. These different site-specific topologies are important for redox signaling. The net rate of superoxide or hydrogen peroxide generation depends on the substrates present and the antioxidant systems active in the matrix and cytosol. The rate at each site can now be measured in complex substrate mixtures. In skeletal muscle mitochondria in media mimicking muscle cytosol at rest, four sites dominate, two in complex I and one each in complexes II and III. Specific suppressors of two sites have been identified, the outer ubiquinone-binding site in complex III (site III Qo ) and the site in complex I active during reverse electron transport (site I Q ). These suppressors prevent superoxide/hydrogen peroxide production from a specific site without affecting oxidative phosphorylation, making them excellent tools to investigate the status of the sites in redox signaling, and to suppress the sites to prevent pathologies. They allow the cellular roles of mitochondrial superoxide/hydrogen peroxide production to be investigated without catastrophic confounding bioenergetic effects. They show that sites III Qo and I Q are active in cells and have important roles in redox signaling (e.g. hypoxic signaling and ER-stress) and in causing oxidative damage in a variety of biological contexts. Copyright © 2016 Elsevier Inc. All rights reserved.
Generation of Free Radicals during Cold Injury and Rewarming
1988-01-01
a mixture of sodium citrate (0.05 M) and sodium acetate (0.03 M) (pH 4.5); 50 ; 1 of 70% perchloric acid was then added to the mixture. The resultant...products of salicylic acid were eluted with buffer (degassed and filtered) containing 0.03 M sodium acetate and 0.05 M sodium citrate 6 (pH 4.5) at a...Malonaldehyde was measured as an index for lipid peroxidation. Plasma (0.5 ml) was added to 0.5 ml ice-cold perchloric acid (15%) and then treated with
Li, Jun; Kong, Wei-jia; Zhao, Xue-yan; Hu, Yu-juan
2008-11-01
To set up the oxidative stress experimental model of rat cochlea with stria vascularis marginal cells injury induced by hydrogen peroxide in vitro. Cultured marginal cells of rat were treated by 200, 300, 400, 600 and 800 micromol/L hydrogen peroxide (H(2)O(2)) for 0.5, 1, 2, 4, 16 and 24 hours, respectively. Cell viability was assessed by the CCK-8 assay. The content of the lipid peroxidation production malondialdehyde (MDA) were detected in H(2)O(2) induced marginal cells injury with different concentration H(2)O(2). Apoptosis was assessed by flow cytometry by propidium sodium staining. The expression of the cleaved-caspase-3 was assessed by Western blot. Being exposed to H(2)O(2), marginal cells displayed nuclear pyknosis and margination, cytoplasmic condensation, cell shrinkage and formation of membrane and bounded apoptotic bodies. A time-dependent and dose-dependent decrease of cellular viability was detected with the treatment of H(2)O(2). Cellular maleic dialdehyde was generated in proportion to the concentration of H(2)O(2) at 2 hours and the number of apoptotic cells increased significantly (P < 0. 05). Western blot showed the expression of the cleaved-caspase-3 increased when 200 micromol/L, 300 micromol/L and 400 micromol/L H(2)O(2) treated cultured marginal cells. Thereafter the expression of the cleaved-caspase-3 decreased with 600 micromol/L H(2)O(2) and with 800 micromol/L H(2)O(2) the expression of cleaved-caspase-3 was weak. The findings indicated that the experimental model can be established successfully using cultured cells exposed to H(2)O(2) and activation of caspase-3 is associated with hydrogen peroxide induced rat marginal cells the oxidative stress injury.
Role of Lipid Peroxidation-Derived α, β-Unsaturated Aldehydes in Vascular Dysfunction
Lee, Seung Eun; Park, Yong Seek
2013-01-01
Vascular diseases are the most prominent cause of death, and inflammation and vascular dysfunction are key initiators of the pathophysiology of vascular disease. Lipid peroxidation products, such as acrolein and other α, β-unsaturated aldehydes, have been implicated as mediators of inflammation and vascular dysfunction. α, β-Unsaturated aldehydes are toxic because of their high reactivity with nucleophiles and their ability to form protein and DNA adducts without prior metabolic activation. This strong reactivity leads to electrophilic stress that disrupts normal cellular function. Furthermore, α, β-unsaturated aldehydes are reported to cause endothelial dysfunction by induction of oxidative stress, redox-sensitive mechanisms, and inflammatory changes such as induction of cyclooxygenase-2 and cytokines. This review provides an overview of the effects of lipid peroxidation products, α, β-unsaturated aldehydes, on inflammation and vascular dysfunction. PMID:23819013
Detailed product analysis during the low temperature oxidation of n-butane
Herbinet, Olivier; Battin-Leclerc, Frédérique; Bax, Sarah; Le Gall, Hervé; Glaude, Pierre-Alexandre; Fournet, René; Zhou, Zhongyue; Deng, Liulin; Guo, Huijun; Xie, Mingfeng; Qi, Fei
2013-01-01
The products obtained from the low-temperature oxidation of n-butane in a jet-stirred reactor (JSR) have been analysed using two methods: gas chromatography analysis of the outlet gas and reflectron time-of-flight mass spectrometry. The mass spectrometer was combined with tunable synchrotron vacuum ultraviolet photoionization and coupled with a JSR via a molecular-beam sampling system. Experiments were performed under quasi-atmospheric pressure, for temperatures between 550 and 800 K, at a mean residence time of 6s and with a stoichiometric n-butane/oxygen/argon mixture (composition = 4/26/70 in mol %). 36 reaction products have been quantified, including addition to the usual oxidation products, acetic acid, hydrogen peroxide, C1, C2 and C4 alkylhydroperoxides and C4 ketohydroperoxides. Evidence of the possible formation of products (dihydrofuranes, furanones) derived from cyclic ethers has also been found. The performance of a detailed kinetic model of the literature has been assessed with the simulation of the formation of this extended range of species. These simulations have also allowed the analysis of possible pathways for the formation of some obtained products. PMID:21031192
Physiological and biochemical responses of Prorocentrum minimum to high light stress
NASA Astrophysics Data System (ADS)
Park, So Yun; Choi, Eun Seok; Hwang, Jinik; Kim, Donggiun; Ryu, Tae Kwon; Lee, Taek-Kyun
2009-12-01
Prorocentrum minimum is a common bloomforming photosynthetic dinoflagellate found along the southern coast of Korea. To investigate the adaptive responses of P. minimum to high light stress, we measured growth rate, and generation of reactive oxidative species (ROS), superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) in cultures exposed to normal (NL) and high light levels (HL). The results showed that HL (800 μmol m-2 s-1) inhibited growth of P. minimum, with maximal inhibition after 7-9 days. HL also increased the amount of ROS and MDA, suggesting that HL stress leads to oxidative damage and lipid peroxidation in this species. Under HL, we first detected superoxide on day 4 and H2O2 on day 5. We also detected SOD activity on day 5 and CAT activity on day 6. The level of lipid peroxidation, an indicator of cell death, was high on day 8. Addition of diphenyleneiodonium (DPI), an NAD(P)H inhibitor, decreased the levels of superoxide generation and lipid peroxidation. Our results indicate that the production of ROS which results from HL stress in P. minimum also induces antioxidative enzymes that counteract oxidative damage and allow P. minimum to survive.
Shaheen, R; Abramian, A; Horn, J; Dominguez, G; Sullivan, R; Thiemens, Mark H
2010-11-23
The debate of life on Mars centers around the source of the globular, micrometer-sized mineral carbonates in the ALH84001 meteorite; consequently, the identification of Martian processes that form carbonates is critical. This paper reports a previously undescribed carbonate formation process that occurs on Earth and, likely, on Mars. We identified micrometer-sized carbonates in terrestrial aerosols that possess excess (17)O (0.4-3.9‰). The unique O-isotopic composition mechanistically describes the atmospheric heterogeneous chemical reaction on aerosol surfaces. Concomitant laboratory experiments define the transfer of ozone isotopic anomaly to carbonates via hydrogen peroxide formation when O(3) reacts with surface adsorbed water. This previously unidentified chemical reaction scenario provides an explanation for production of the isotopically anomalous carbonates found in the SNC (shergottites, nakhlaites, chassignites) Martian meteorites and terrestrial atmospheric carbonates. The anomalous hydrogen peroxide formed on the aerosol surfaces may transfer its O-isotopic signature to the water reservoir, thus producing mass independently fractionated secondary mineral evaporites. The formation of peroxide via heterogeneous chemistry on aerosol surfaces also reveals a previously undescribed oxidative process of utility in understanding ozone and oxygen chemistry, both on Mars and Earth.
Shaheen, R.; Abramian, A.; Horn, J.; Dominguez, G.; Sullivan, R.; Thiemens, Mark H.
2010-01-01
The debate of life on Mars centers around the source of the globular, micrometer-sized mineral carbonates in the ALH84001 meteorite; consequently, the identification of Martian processes that form carbonates is critical. This paper reports a previously undescribed carbonate formation process that occurs on Earth and, likely, on Mars. We identified micrometer-sized carbonates in terrestrial aerosols that possess excess 17O (0.4–3.9‰). The unique O-isotopic composition mechanistically describes the atmospheric heterogeneous chemical reaction on aerosol surfaces. Concomitant laboratory experiments define the transfer of ozone isotopic anomaly to carbonates via hydrogen peroxide formation when O3 reacts with surface adsorbed water. This previously unidentified chemical reaction scenario provides an explanation for production of the isotopically anomalous carbonates found in the SNC (shergottites, nakhlaites, chassignites) Martian meteorites and terrestrial atmospheric carbonates. The anomalous hydrogen peroxide formed on the aerosol surfaces may transfer its O-isotopic signature to the water reservoir, thus producing mass independently fractionated secondary mineral evaporites. The formation of peroxide via heterogeneous chemistry on aerosol surfaces also reveals a previously undescribed oxidative process of utility in understanding ozone and oxygen chemistry, both on Mars and Earth. PMID:21059939
Nicholls, P
2007-10-01
Alexander Bach was both revolutionary politician and biochemist. His earliest significant publication, "Tsar-golod" ("The Tsar of Hunger"), introduced Marxist thought to Russian workers. In exile for 30 years, he moved to study the dialectic of the oxidases. When his theory of oxidases as combinations of oxygenases and peroxidases was developed (circa 1900) the enzyme concept was not fully formulated, and the enzyme/substrate distinction not yet made. Peroxides however were then and remain now significant intermediates, when either free or bound, in oxidase catalyses. The aerobic dehydrogenase/peroxidase/catalase coupled systems which were studied slightly later clarified the Bach model and briefly became an oxidase paradigm. Identification of peroxidase as a metalloprotein, a key step in understanding oxidase and peroxidase mechanisms, postdated Bach's major work. Currently we recognize catalytic organic peroxides in flavoprotein oxygenases; such organic peroxides are also involved in lipid oxidation and tryptophan radical decay. But most physiologically important peroxides are now known to be bound to transition metals (either Fe or Cu) and formed both directly and indirectly (from oxygen). The typical stable metalloprotein peroxide product is the ferryl state. When both peroxide oxidizing equivalents are retained the second equivalent is held as a protein or porphyrin radical. True metal peroxide complexes are unstable. But often water molecules mark the spot where the original peroxide decayed. The cytochrome c oxidase Fe-Cu center can react with either peroxide or oxygen to form the intermediate higher oxidation states P and F. In its resting state water molecules and hydroxyl ions can be seen marking the original location of the oxygen or peroxide molecule.
Liu, Yunbao; Nair, Muraleedharan G
2010-07-23
Antioxidants scavenge free radicals, singlet oxygen, and electrons in cellular redox reactions. The yellow MTT [3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide] is reduced to a purple formazan by mitochondrial enzymes. NADPH is the basis of established in vitro cell viability assays. An antioxidant assay has been developed utilizing the redox reaction between MTT and selected natural product extracts and purified compounds. This simple, fast, and inexpensive MTT antioxidant assay is comparable with the lipid peroxidation inhibitory assay and can be mechanized to achieve high throughput.
Gomes, Katia M.S.; Bechara, Luiz R.G.; Lima, Vanessa M.; Ribeiro, Márcio A.C.; Campos, Juliane C.; Dourado, Paulo M.; Kowaltowski, Alicia J.; Mochly-Rosen, Daria; Ferreira, Julio C.B.
2015-01-01
Background/Objectives We previously demonstrated that reducing cardiac aldehydic load by aldehyde dehydrogenase 2 (ALDH2), a mitochondrial enzyme responsible for metabolizing the major lipid peroxidation product, protects against acute ischemia/reperfusion injury and chronic heart failure. However, time-dependent changes in ALDH2 profile, aldehydic load and mitochondrial bioenergetics during progression of post-myocardial infarction (post-MI) cardiomyopathy is unknown and should be established to determine the optimal time window for drug treatment. Methods Here we characterized cardiac ALDH2 activity and expression, lipid peroxidation, 4-hydroxy-2-nonenal (4-HNE) adduct formation, glutathione pool and mitochondrial energy metabolism and H2O2 release during the 4 weeks after permanent left anterior descending (LAD) coronary artery occlusion in rats. Results We observed a sustained disruption of cardiac mitochondrial function during the progression of post-MI cardiomyopathy, characterized by >50% reduced mitochondrial respiratory control ratios and up to 2 fold increase in H2O2 release. Mitochondrial dysfunction was accompanied by accumulation of cardiac and circulating lipid peroxides and 4-HNE protein adducts and down-regulation of electron transport chain complexes I and V. Moreover, increased aldehydic load was associated with a 90% reduction in cardiac ALDH2 activity and increased glutathione pool. Further supporting an ALDH2 mechanism, sustained Alda-1 treatment (starting 24hrs after permanent LAD occlusion surgery) prevented aldehydic overload, mitochondrial dysfunction and improved ventricular function in post-MI cardiomyopathy rats. Conclusion Taken together, our findings demonstrate a disrupted mitochondrial metabolism along with an insufficient cardiac ALDH2-mediated aldehyde clearance during the progression of ventricular dysfunction, suggesting a potential therapeutic value of ALDH2 activators during the progression of post-myocardial infarction cardiomyopathy. PMID:25464432
Inadequate Antioxidative Responses in Kidneys of Brain-Dead Rats.
Hoeksma, Dane; Rebolledo, Rolando A; Hottenrott, Maximilia; Bodar, Yves S; Wiersema-Buist, Janneke J; Van Goor, Harry; Leuvenink, Henri G D
2017-04-01
Brain death (BD)-related lipid peroxidation, measured as serum malondialdehyde (MDA) levels, correlates with delayed graft function in renal transplant recipients. How BD affects lipid peroxidation is not known. The extent of BD-induced organ damage is influenced by the speed at which intracranial pressure increases. To determine possible underlying causes of lipid peroxidation, we investigated the renal redox balance by assessing oxidative and antioxidative processes in kidneys of brain-dead rats after fast and slow BD induction. Brain death was induced in 64 ventilated male Fisher rats by inflating a 4.0F Fogarty catheter in the epidural space. Fast and slow inductions were achieved by an inflation speed of 0.45 and 0.015 mL/min, respectively, until BD confirmation. Healthy non-brain-dead rats served as reference values. Brain-dead rats were monitored for 0.5, 1, 2, or 4 hours, after which organs and blood were collected. Increased MDA levels became evident at 2 hours of slow BD induction at which increased superoxide levels, decreased glutathione peroxidase (GPx) activity, decreased glutathione levels, increased inducible nitric oxide synthase and heme-oxygenase 1 expression, and increased plasma creatinine levels were evident. At 4 hours after slow BD induction, superoxide, MDA, and plasma creatinine levels increased further, whereas GPx activity remained decreased. Increased MDA and plasma creatinine levels also became evident after 4 hours fast BD induction. Brain death leads to increased superoxide production, decreased GPx activity, decreased glutathione levels, increased inducible nitric oxide synthase and heme-oxygenase 1 expression, and increased MDA and plasma creatinine levels. These effects were more pronounced after slow BD induction. Modulation of these processes could lead to decreased incidence of delayed graft function.
Hirane, Miku; Araki, Mutsumi; Dong, Yan; Honoki, Kanya; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi
2013-11-08
Reactive oxygen species (ROS) are known to mediate a variety of biological responses, including cell motility. Recently, we indicated that lysophosphatidic acid (LPA) receptor-3 (LPA3) increased cell motile activity stimulated by hydrogen peroxide. In the present study, we assessed the role of LPA1 in the cell motile activity mediated by ROS in mouse fibroblast 3T3 cells. 3T3 cells were treated with hydrogen peroxide and 2,3-dimethoxy-1,4-naphthoquinone (DMNQ) at concentrations of 0.1 and 1 μM for 48 h. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3 cells treated with hydrogen peroxide and DMNQ were significantly higher than those of untreated cells. 3T3 cells treated with hydrogen peroxide and DMNQ showed elevated expression levels of the Lpar3 gene, but not the Lpar1 and Lpar2 genes. To investigate the effects of LPA1 on the cell motile activity induced by hydrogen peroxide and DMNQ, Lpar1-overexpressing (3T3-a1) cells were generated from 3T3 cells and treated with hydrogen peroxide and DMNQ. The cell motile activities stimulated by hydrogen peroxide and DMNQ were markedly suppressed in 3T3-a1 cells. These results suggest that LPA signaling via LPA1 inhibits the cell motile activities stimulated by hydrogen peroxide and DMNQ in 3T3 cells. Copyright © 2013 Elsevier Inc. All rights reserved.
Determination Hypoiodous Acid (HIO) By Peroxidase System Using Peroxidase Enzyme
NASA Astrophysics Data System (ADS)
Al-Baarri, A. N.; Legowo, A. M.; Widayat; Abduh, S. B. M.; Hadipernata, M.; Wisnubroto; Ardianti, D. K.; Susanto, M. N.; Yusuf, M.; Demasta, E. K.
2018-02-01
It has been understood that peroxidase enzyme including peroxidase serves as catalyzer to enzymatic reaction among hydrogen peroxide and halides, therefore this research was done for generating hypoiodous acid (HIO) from peroxidase system using peroxidase enzyme. Hydrogen peroxide, potassium iodide, and peroxidase enzyme were used to produce HIO. Determination the amount of formed HIO was done using 2,2'-azino-bis(3- ethylbenzothiazoline-6-sulphonic acid) or ABTS as substrate through the colorimetric measurement of hydrogen peroxide residue during reaction process using at 412 nm. The result indicated that residual hydrogen peroxide showed the minimum concentration after 60 minutes reaction time. Because the reaction started at the beginning time of mixing, hydrogen peroxide was unable to be eliminated totally to produce HIO. The reaction of peroxidase system was able to determine the beginning of mixing process but the reaction process could not eliminate the initial concentration of hydrogen peroxide indicating the maximum amount of production of HIO could be determined. In conclusion, the less of H2O2, higher HIO obtained and peroxidase enzymes can accelerate the formation of HIO.
The Reactions of Nitrogen Peroxide with Possible Stabilisers for Propellants
1957-03-01
ether Carbamite Phe nyl-be nzyl-ure thane (pure) Cyclohexanyl-urethane Cyclohexano ne Die thyl phthalate Di-isoamyl phthalate Dibutyl oxalate Glycollic...saponification" arises from the presence of phenyl urethane and diphenyl urea; differences in contents of these impurities and of benzyl aniline...nitrogen that is recovered from a product. 4.2.2 Ure are fairly reactive. Triphenylethylurea present with diphenyl - amine in 蠢 compound" leads to a
The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism
Havaux, Michel; Niyogi, Krishna K.
1999-01-01
When light energy absorbed by plants becomes excessive relative to the capacity of photosynthesis, the xanthophyll violaxanthin is reversibly deepoxidized to zeaxanthin (violaxanthin cycle). The protective function of this phenomenon was investigated in a mutant of Arabidopsis thaliana, npq1, that has no functional violaxanthin deepoxidase. Two major consequences of the npq1 mutation are the absence of zeaxanthin formation in strong light and the partial inhibition of the quenching of singlet excited chlorophylls in the photosystem II light-harvesting complexes. Prolonged exposure of whole plants to bright light resulted in a limited photoinhibition of photosystem II in both npq1 and wild-type leaves, although CO2 fixation and the linear electron transport in npq1 plants were reduced substantially. Lipid peroxidation was more pronounced in npq1 compared with the wild type, as measured by chlorophyll thermoluminescence, ethane production, and the total hydroperoxy fatty acids content. Lipid peroxidation was amplified markedly under chilling stress, and photooxidative damage ultimately resulted in leaf bleaching and tissue necrosis in npq1. The npq4 mutant, which possesses a normal violaxanthin cycle but has a limited capacity of quenching singlet excited chlorophylls, was rather tolerant to lipid peroxidation. The double mutant, npq4 npq1, which differs from npq4 only by the absence of the violaxanthin cycle, exhibited an increased susceptibility to photooxidative damage, similar to that of npq1. Our results demonstrate that the violaxanthin cycle specifically protects thylakoid membrane lipids against photooxidation. Part of this protection involves a mechanism other than quenching of singlet excited chlorophylls. PMID:10411949
NASA Astrophysics Data System (ADS)
Craft, Andrew K.
Methane (CH4) is a plentiful, naturally occurring hydrocarbon, and the main constituent of natural gas. Due to its abundance, it has been well studied as both a feedstock for chemical production and as a fuel. Recently, methane has become of interest due to it's release into the atmosphere as a result of human activities. Rather than capture and use methane, companies opt to flare methane, as it is more environmentally and economically friendly. In 2012, these practices led to over $1 Billion lost in fuel. A recent breakthrough involving the use of hydrogen peroxide (H2O2) in the partial oxidation of methane to liquid chemicals at ambient conditions has been made. This process, used an iron based zeolite catalyst, and moderate concentrations of peroxide. Although peroxide is produced inexpensively industrially, there are cost and safety concerns with shipping the product to the remote fields where it would be used in this process. Nitrogen doped carbon materials have been identified as promising electrocatalysts for the oxygen reduction reaction (ORR). Here, the synthesis and subsequent testing of a NDC catalyst is reported. KIT-6, a mesoporous silica was used as a hard template, with an ionic liquid being the carbon and nitrogen precursor. Powder x-ray diffraction, N 2 adsorption, scanning electron microscopy, and elemental analysis were used to characterize the template and resulting catalyst. Pore size distribution of KIT-6 can be influenced by slight changes in the synthesis procedure. This was utilized in an attempt to change the properties of the final catalyst. Slight changes in the hydrothermal ageing temperature changed the pore distribution in template, and the ECSA was significantly increased as a result. Rotating Disk Electrode (RDE) testing shows that the catalysts have high selectivity (90%) towards H2O2. A RDE is not a production method that can be used industrially. In the best circumstances, it would take over 4 hours to accumulate the required amount of H2O2 used by Hammond et al. Mass transport of the reactants to the surface of the catalyst hinders the overall activity. A flow cell type device can help overcome these limitations by delivering the reactants directly to the catalyst surface. Current densities of 50 mA cm-2 with selectivity around 60% was achieved in the tested flow cell. This device would require 40 minutes to produce the necessary amount of peroxide to be used if scaled up to 25 cm2.
Kinetic release of hydrogen peroxide from different whitening products.
da Silva Marques, Duarte Nuno; Silveira, Joao Miguel; Marques, Joana Rita; Amaral, Joao Almeida; Guilherme, Nuno Marques; da Mata, António Duarte
2012-01-01
The objective of this in vitro study was to evaluate the kinetics of hydrogen peroxide (HP) release from five different bleaching products: VivaStyle® 10% fitted tray gel, VivaStyle® 30% in-office bleaching gel, VivaStyle® Paint-On Plus paint-on bleaching varnish, Opalescence PF® 10% carbamide peroxide gel and Trèswhite Supreme 10% HP gel. Each product was firstly titrated for its HP content by a described method. HP release kinetics was assessed by a modified spectrophotometric technique. One sample t test was performed to test for differences between the manufacturers' claimed HP concentrations and the titrated HP content in the whitening products. Analysis of variance plus Tamhane's post hoc tests and Pearson correlation analysis were used as appropriate. Values of P < 0.05 were taken as significant. Titrated HP revealed an increased content when compared to the manufacturer's specifications for all the products tested (P < 0.05), although only products from one manufacturer produced significantly higher results. All products presented a significant (P < 0.05) and sustained release of HP. However, the product with paint-on cellulose-based matrix resulted in significantly (P < 0.05) faster kinetics when compared to other products tested. These results are consistent with manufacturers' reduced recommended application times. The results of this study suggest that modifying the matrix composition may be a viable alternative to HP concentration increase, since this may result in faster release kinetics without exposure to high HP concentrations.
The Feasibility of Using Hydrogen Peroxide Decomposition Studies for High School Chemistry.
ERIC Educational Resources Information Center
Carter, Gillian E.
1986-01-01
Highlights difficulties that occur when teachers attempt to devise new experiments (use of hydrogen peroxide decomposition) and how seemingly useless results can be turned into productive student projects. Considers effects of ions present in tap water, pH, dust, and nature of vessel's surface. Reaction order and safety precautions are noted. (JN)
Background: There is an increased interest in the application of microbial electrochemical cell (MEC) for the recovery of value-added products such as hydrogen gas and hydrogen peroxide (H2O2) from wastewater. H2O2 has strong oxidation capability and produces hydroxyl radicals wh...
There is an increased interest in the application of microbial electrochemical cell (MEC) for the recovery of value-added products such as hydrogen gas and hydrogen peroxide (H2O2) from wastewater. H2O2 has strong oxidation capability and produces hydroxyl radicals when coupled w...
Kim, Jae Kwang; Lee, Ji Eun; Jung, Eun Hye; Jung, Ji Yun; Jung, Dae Hwa; Ku, Sae Kwang; Cho, Il Je; Kim, Sang Chan
2018-01-01
Hemistepsin A (HsA) is a sesquiterpene lactone isolated from Hemistepta lyrata (Bunge) Bunge. We investigated the anti-inflammatory effects of HsA and sought to determine its mechanisms of action in macrophages. HsA pretreatment inhibited nitric oxide production, and reduced the expression of iNOS and COX-2 in Toll-like receptor ligand-stimulated RAW 264.7 cells. Additionally, HsA decreased the secretion of proinflammatory cytokines in lipopolysaccharide (LPS)-stimulated Kupffer cells as well as in RAW 264.7 cells. HsA inhibited phosphorylation of IKKα/β and degradation of IκBα, resulting in decreased nuclear translocation of nuclear factor-κB (NF-κB) and its transcriptional activity. Moreover, HsA phosphorylated nuclear factor erythroid 2-related factor 2 (Nrf2), increased expression levels of antioxidant genes, and attenuated LPS-stimulated H 2 O 2 production. Phosphorylation of p38 and c-Jun N-terminal kinase was required for HsA-mediated Nrf2 phosphorylation. In a D-galactosamine/LPS-induced liver injury model, HsA ameliorated D-galactosamine/LPS-induced hepatocyte degeneration and inflammatory cells infiltration. Moreover, immunohistochemical analyses using nitrotyrosine, 4-hydroxynonenal, and cleaved poly (ADP-ribose) polymerase antibodies revealed that HsA protected the liver from oxidative stress. Furthermore, HsA reduced the numbers of proinflammatory cytokine-positive cells in hepatic tissues. Thus, these results suggest HsA may be a promising natural product to manage inflammation-mediated tissue injuries through inhibition of NF-κB and activation of Nrf2. Copyright © 2017 Elsevier Ltd. All rights reserved.
Morrell, J M; Lagerqvist, A; Humblot, P; Johannisson, A
2016-04-06
Additional means are needed for evaluating the quality of stallion spermatozoa in semen doses for AI. Mitochondrial membrane potential (ΔΨm) has been linked to fertility in some species, but is rarely used in the evaluation of cooled stallion semen; metabolic activity may be associated with reactive oxygen species production (ROS). In the present study, ΔΨm and ROS production were measured in doses of cooled stallion semen. The effect of colloid centrifugation on these parameters was also investigated. In this case, colloid centrifugation involves centrifuging a sperm sample through a silane-coated silica colloid formulation to retrieve the most robust spermatozoa. High and low ΔΨm in cooled stallion semen varied between stallions and between ejaculates, but was not affected by single-layer centrifugation (SLC). The SLC-selected spermatozoa produced significantly less hydrogen peroxide than controls (P < 0.001), which could explain the increased longevity and retention of fertilising capacity seen in previous studies. For SLC samples, ΔΨm was positively associated with viable spermatozoa that were not producing reactive oxygen species (r = 0.49; P < 0.001) and negatively associated with ROS production (for superoxide: r = -0.4, P < 0.01; for hydrogen peroxide: r = -0.39, P < 0.05). There was no clear association between ΔΨm and ROS production in control samples.
Marty-Teysset, C.; de la Torre, F.; Garel, J.-R.
2000-01-01
The growth of Lactobacillus delbrueckii subsp. bulgaricus (L. delbrueckii subsp. bulgaricus) on lactose was altered upon aerating the cultures by agitation. Aeration caused the bacteria to enter early into stationary phase, thus reducing markedly the biomass production but without modifying the maximum growth rate. The early entry into stationary phase of aerated cultures was probably related to the accumulation of hydrogen peroxide in the medium. Indeed, the concentration of hydrogen peroxide in aerated cultures was two to three times higher than in unaerated ones. Also, a similar shift from exponential to stationary phase could be induced in unaerated cultures by adding increasing concentrations of hydrogen peroxide. A significant fraction of the hydrogen peroxide produced by L. delbrueckii subsp. bulgaricus originated from the reduction of molecular oxygen by NADH catalyzed by an NADH:H2O2 oxidase. The specific activity of this NADH oxidase was the same in aerated and unaerated cultures, suggesting that the amount of this enzyme was not directly regulated by oxygen. Aeration did not change the homolactic character of lactose fermentation by L. delbrueckii subsp. bulgaricus and most of the NADH was reoxidized by lactate dehydrogenase with pyruvate. This indicated that NADH oxidase had no (or a very small) energetic role and could be involved in eliminating oxygen. PMID:10618234
Omotayo, T.I.; Akinyemi, G.S.; Omololu, P.A.; Ajayi, B.O.; Akindahunsi, A.A.; Rocha, J.B.T.; Kade, I.J.
2014-01-01
The precise molecular events defining the complex role of oxidative stress in the inactivation of the cerebral sodium pump in radical-induced neurodegenerative diseases is yet to be fully clarified and thus still open. Herein we investigated the modulation of the activity of the cerebral transmembrane electrogenic enzyme in Fe2+-mediated in vitro oxidative stress model. The results show that Fe2+ inhibited the transmembrane enzyme in a concentration dependent manner and this effect was accompanied by a biphasic generation of aldehydic product of lipid peroxidation. While dithiothreitol prevented both Fe2+ inhibitory effect on the pump and lipid peroxidation, vitamin E prevented only lipid peroxidation but not inhibition of the pump. Besides, malondialdehyde (MDA) inhibited the pump by a mechanism not related to oxidation of its critical thiols. Apparently, the low activity of the pump in degenerative diseases mediated by Fe2+ may involve complex multi-component mechanisms which may partly involve an initial oxidation of the critical thiols of the enzyme directly mediated by Fe2+ and during severe progression of such diseases; aldehydic products of lipid peroxidation such as MDA may further exacerbate this inhibitory effect by a mechanism that is likely not related to the oxidation of the catalytically essential thiols of the ouabain-sensitive cerebral electrogenic pump. PMID:25618580
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jen-Yeu; Sarker, Altaf Hossain; Cooper, Priscilla K.
Human positive cofactor 4 (PC4) is a transcriptional coactivator with a highly conserved single-strand DNA (ssDNA) binding domain of unknown function. We identified PC4 as a suppressor of the oxidative mutator phenotype of the Escherichia coli fpg mutY mutant and demonstrate that this suppression requires its ssDNA binding activity. Yeast mutants lacking their PC4 ortholog Sub1 are sensitive to hydrogen peroxide and exhibit spontaneous and peroxide induced hypermutability. PC4 expression suppresses the peroxide sensitivity of the yeast sub l{Delta} mutant, suggesting that the human protein has a similar function. A role for yeast and human proteins in DNA repair ismore » suggested by the demonstration that Sub1 acts in a peroxide-resistance pathway involving Rad2 and by the physical interaction of PC4 with the human Rad2 homolog XPG. We show XPG recruits PC4 to a bubble-containing DNA substrate with resulting displacement of XPG and formation of a PC4-DNA complex. We discuss the possible requirement for PC4 in either global or transcription-coupled repair of oxidative DNA damage to mediate the release of XPG bound to its substrate.« less
Larsson, Karin; Harrysson, Hanna; Havenaar, Robert; Alminger, Marie; Undeland, Ingrid
2016-02-01
Marine lipids contain a high proportion of polyunsaturated fatty acids (PUFA), including the characteristic long chain (LC) n-3 PUFA. Upon peroxidation these lipids generate reactive products, such as malondialdehyde (MDA), 4-hydroxy-2-hexenal (HHE) and 4-hydroxy-2-nonenal (HNE), which can form covalent adducts with biomolecules and thus are regarded as genotoxic and cytotoxic. PUFA peroxidation can occur both before and after ingestion. The aim of this study was to determine what levels of MDA, HHE and HNE can evolve in the gastric and intestinal lumen after ingesting meals containing fish or fish oil using a dynamic gastrointestinal (GI) model (TIM). The impact of the fish muscle matrix, lipid content, fish species, and oven baking on GI oxidation was evaluated. MDA and HHE concentrations in gastric lumen increased for all meals during digestion, with the highest level found with herring mince; ∼ 25 μM MDA and ∼ 850 nM HHE. Aldehyde concentrations reached in intestinal lumen during digestion of fish containing meals were generally lower than in gastric lumen, while isolated herring oils (bulk and emulsified) generated higher MDA and HHE values in intestinal lumen compared to gastric lumen. Based on aldehyde levels in gastric lumen, meals containing herring lipids were ranked: raw herring (17% lipid) = baked herring (4% lipid) > raw herring (4% lipid) ≫ herring oil emulsion > herring oil. Herring developed higher concentrations of MDA and HHE during gastric digestion compared to salmon, which initially contained lower levels of oxidation products. Cooked salmon generated higher MDA concentrations during digestion than raw salmon. Low levels of HNE were observed during digestion of all test meals, in accordance with the low content of n-6 PUFA in fish lipids.
In-situ synthesis of hydrogen peroxide in a novel Zn-CNTs-O2 system
NASA Astrophysics Data System (ADS)
Gong, Xiao-bo; Yang, Zhao; Peng, Lin; Zhou, An-lan; Liu, Yan-lan; Liu, Yong
2018-02-01
A novel strategy of in-situ synthesis of hydrogen peroxide (H2O2) was formulated and evaluated. Oxygen was selectively reduced to H2O2 combined with electrochemical corrosion of zinc in the Zn-CNTs-O2 system. The ratio of zinc and CNTs, heat treatment temperature, and operational parameters such as composite dosage, initial pH, solution temperature, oxygen flow rate were systematically investigated to improve the efficiency of H2O2 generation. The Zn-CNTs composite (weight ratio of 2.5:1) prepared at 500 °C showed the maximum H2O2 accumulation concentration of 293.51 mg L-1 within 60 min at the initial pH value of 3.0, Zn-CNTs dosage of 0.4 g and oxygen flow rate of 400 mL min-1. The oxygen was reduced through two-electron pathway to hydrogen peroxide on CNTs while the zinc was oxidized in the system and the dissolved zinc ions convert to zinc hydroxide and depositing on the surface of CNTs. It was proposed that the increment of direct H2O2 production was caused by the improvement of the formed Zn/CNTs corrosion cell. This provides promising strategy for in-situ synthesis and utilization of hydrogen peroxide in the novel Zn-CNTs-O2 system, which enhances the environmental and economic attractiveness of the use of H2O2 as green oxidant for wastewater treatments.
Huang, Sheng-Yang; Tai, Shih-Huang; Chang, Che-Chao; Tu, Yi-Fang; Chang, Chih-Han; Lee, E-Jian
2018-04-01
In the present study, the neuroprotective potential of magnolol against ischemia-reperfusion brain injury was examined via in vivo and in vitro experiments. Magnolol exhibited strong radical scavenging and antioxidant activity, and significantly inhibited the production of interleukin‑6, tumor necrosis factor‑a and nitrite/nitrate (NOX) in lipopolysaccharide-stimulated BV2 and RAW 264.7 cells when applied at concentrations of 10 and 50 µM, respectively. Magnolol (100 µM) also significantly attenuated oxygen‑glucose deprivation‑induced damage in neonatal rat hippocampal slice cultures, when administered up to 4 h following the insult. In a rat model of stable ischemia, compared with a vehicle‑treated ischemic control, pretreatment with magnolol (0.01‑1 mg/kg, intravenously) significantly reduced brain infarction following ischemic stroke, and post‑treatment with magnolol (1 mg/kg) remained effective and significantly reduced infarction when administered 2 h following the onset of ischemia. Additionally, magnolol (0.3 and 1 mg/kg) significantly reduced the accumulation of superoxide anions at the border zones of infarction and reduced oxidative damage in the ischemic brain. This was assessed by measuring the levels of NOX, malondialdehyde and myeloperoxidase, the ratio of glutathione/oxidized glutathione and the immunoreactions of 8‑hydroxy‑2'‑deoxyguanosine and 4‑hydroxynonenal. Thus, magnolol was revealed to protect against ischemia‑reperfusion brain damage. This may be partly attributed to its antioxidant, radical scavenging and anti‑inflammatory effects.
Oxygen Mass Flow Rate Generated for Monitoring Hydrogen Peroxide Stability
NASA Technical Reports Server (NTRS)
Ross, H. Richard
2002-01-01
Recent interest in propellants with non-toxic reaction products has led to a resurgence of interest in hydrogen peroxide for various propellant applications. Because peroxide is sensitive to contaminants, material interactions, stability and storage issues, monitoring decomposition rates is important. Stennis Space Center (SSC) uses thermocouples to monitor bulk fluid temperature (heat evolution) to determine reaction rates. Unfortunately, large temperature rises are required to offset the heat lost into the surrounding fluid. Also, tank penetration to accomodate a thermocouple can entail modification of a tank or line and act as a source of contamination. The paper evaluates a method for monitoring oxygen evolution as a means to determine peroxide stability. Oxygen generation is not only directly related to peroxide decomposition, but occurs immediately. Measuring peroxide temperature to monitor peroxide stability has significant limitations. The bulk decomposition of 1% / week in a large volume tank can produce in excess of 30 cc / min. This oxygen flow rate corresponds to an equivalent temperature rise of approximately 14 millidegrees C, which is difficult to measure reliably. Thus, if heat transfer were included, there would be no temperature rise. Temperature changes from the surrounding environment and heat lost to the peroxide will also mask potential problems. The use of oxygen flow measurements provides an ultra sensitive technique for monitoring reaction events and will provide an earlier indication of an abnormal decomposition when compared to measuring temperature rise.
Sabir, Firat; Beyatli, Yavuz; Cokmus, Cumhur; Onal-Darilmaz, Derya
2010-01-01
In this study, the metabolic activities (in terms of quantities of the produced lactic acid, hydrogen peroxide, and exopolysaccharides) of 8 strains of Lactobacillus spp., Lactococcus spp., and Pediococcus spp., were determined. Lactic acid levels produced by strains were 8.1 to 17.4 mg/L. The L. acidophilus Z1L strain produced the maximum amount (3.18 μg/mL) of hydrogen peroxide. The exopolysaccharides (EPS) production by the strains was ranged between 173 and 378 mg/L. The susceptibility of 7 different antibiotics against these strains was also tested. All strains were found to be sensitive to ampicillin. The tolerance of the strains to low pH, their resistance to bile salts of strains, and their abilities to autoaggregate and coaggregate with Escherichia coli ATCC 11229 were also evaluated. High EPS-producing strains showed significant autoaggregation and coaggregation ability with test bacteria (P < 0.01). A correlation also was determined between EPS production and acid-bile tolerance (P < 0.05). EPS production possibly affects or is involved in acid-bile tolerance and aggregation of Lactobacillus spp., Lactococcus spp., and Pediococcus spp. strains and supports the potential of L. acidophilus Z1L strain as new probiotic. © 2010 Institute of Food Technologists®
BOREAS TGB-10 Oxidant Flux Data over the SSA
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Conrad, Sara K. (Editor); Westberg, Hal; Hall, Brad; Jackson, Andrea V.
2000-01-01
The BOREAS TGB-10 team collected several trace gas data sets in its efforts to determine the role of biogenic hydrocarbon emissions with respect to boreal forest carbon cycles. This oxidant data set contains measured peroxide (H2O2 and total organic peroxides (ROOH)) and ozone concentrations as well as H2O2 and ROOH deposition velocities. These data were obtained at the SSA-OJP site during the summer of 1994. Measurements were made from May to September 1994. The data are stored in tabular ASCII files. Some important results were: (1) Ozone concentrations were consistently low, 20-30 ppb, during the summer of 1994. (2) Peroxide concentrations showed a seasonal variation with highest concentrations occurring in July (IFC-2). (3) Midday H2O2 levels averaged around 1.4 ppb during IFC-2 and 0.4 - 0.5 ppb during IFC's 1 and 3. (4) Midday organic peroxide concentrations were lower, averaging 0.8 ppb during IFC-2, and 0.4 - 0.5 ppb during IFC's 1 and 3. (5) The rough pine forest canopy serves as a significant sink for H2O2. (6) Midday H2O2 deposition velocities averaged 4 - 7 cm/s. (7) Organic peroxide deposition velocities (measured as total ROOH) were approximately 40% as large as those of H2O2.
d'Uscio, Livius V; Smith, Leslie A; Katusic, Zvonimir S
2011-12-01
In the present study, we used the hph-1 mouse, which displays GTP-cyclohydrolase I (GTPCH I) deficiency, to test the hypothesis that loss of tetrahydrobiopterin (BH(4)) in conduit and small arteries activates compensatory mechanisms designed to protect vascular wall from oxidative stress induced by uncoupling of endothelial nitric oxide synthase (eNOS). Both GTPCH I activity and BH(4) levels were reduced in the aortas and small mesenteric arteries of hph-1 mice. However, the BH(4)-to-7,8-dihydrobiopterin ratio was significantly reduced only in hph-1 aortas. Furthermore, superoxide anion and 3-nitrotyrosine production were significantly enhanced in aortas but not in small mesenteric arteries of hph-1 mice. In contrast to the aorta, protein expression of copper- and zinc-containing superoxide dismutase (CuZnSOD) was significantly increased in small mesenteric arteries of hph-1 mice. Protein expression of catalase was increased in both aortas and small mesenteric arteries of hph-1 mice. Further analysis of endothelial nitric oxide synthase (eNOS)/cyclic guanosine monophosphate (cGMP) signaling demonstrated that protein expression of phosphorylated Ser(1177)-eNOS as well as basal cGMP levels and hydrogen peroxide was increased in hph-1 aortas. Increased production of hydrogen peroxide in hph-1 mice aortas appears to be the most likely mechanism responsible for phosphorylation of eNOS and elevation of cGMP. In contrast, upregulation of CuZnSOD and catalase in resistance arteries is sufficient to protect vascular tissue from increased production of reactive oxygen species generated by uncoupling of eNOS. The results of our study suggest that anatomical origin determines the ability of vessel wall to cope with oxidative stress induced by uncoupling of eNOS.
Krumschnabel, Gerhard; Fontana-Ayoub, Mona; Sumbalova, Zuzana; Heidler, Juliana; Gauper, Kathrin; Fasching, Mario; Gnaiger, Erich
2015-01-01
Mitochondrial respiration is associated with the formation of reactive oxygen species, primarily in the form of superoxide (O2 (•-)) and particularly hydrogen peroxide (H2O2). Since H2O2 plays important roles in physiology and pathology, measurement of hydrogen peroxide has received considerable attention over many years. Here we describe how the well-established Amplex Red assay can be used to detect H2O2 production in combination with the simultaneous assessment of mitochondrial bioenergetics by high-resolution respirometry. Fundamental instrumental and methodological parameters were optimized for analysis of the effects of various substrate, uncoupler, and inhibitor titrations (SUIT) on respiration versus H2O2 production. The sensitivity of the H2O2 assay was strongly influenced by compounds contained in different mitochondrial respiration media, which also exerted significant effects on chemical background fluorescence changes. Near linearity of the fluorescence signal was restricted to narrow ranges of accumulating resorufin concentrations independent of the nature of mitochondrial respiration media. Finally, we show an application example using isolated mouse brain mitochondria as an experimental model for the simultaneous measurement of mitochondrial respiration and H2O2 production in SUIT protocols.
Progress in the development of peroxide-based anti-parasitic agents.
Muraleedharan, K M; Avery, Mitchell A
2009-08-01
Progress made in the past decade pertaining to the development of anti-parasitic agents based on artemisinin is presented. Apart from discussions on important derivatives obtained through functionalization at the C-3, C-9, C-10 and O-11 positions of artemisinin, an outline on its seco analogs and artemisinin bundles are given for a broader perspective on structure-activity relationships. Success with synthetic peroxides, drug-hybrid approaches, broad-spectrum anti-infective properties of peroxide compounds and a survey on peroxide-containing natural products other than artemisinin with available biological data are included to highlight recent trends and avenues for future research. A supplementary material with details on the biological properties of a larger collection of molecules belonging to the above structural classes is also given for reference.
NASA Astrophysics Data System (ADS)
Díaz, L.; Morales, Y.; Torres, C.
2015-01-01
The esthetic dentistry reference in our society is determined by several factors, including one that produces more dissatisfaction is abnormal tooth color or that does not meet the patient's expectations. For this reason it has been designed and implemented an algorithm in MATLAB that captures, digitizes, pre-processing and analyzed dental imaging by allowing to evaluate the degree of bleaching caused by the use of peroxide of hidrogen. The samples analyzed were human teeth extracted, which were subjected to different concentrations of peroxide of hidrogen and see if they can teeth whitening when using these products, was used different concentrations and intervals of time to analysis or study of the whitening of the teeth with the hydrogen peroxide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meservey, A.B.
1963-01-01
A search for solutions suitable for dissolving uranium dioxide powder or lumps and yet noncorrosive enough to be used for decontaminating the carbon steel EGCR charge and service machines resulted in the development of buffered oxalate solutions of controlled temperature and pH, with hydrogen peroxide added to act as corrosion inhibitor, UO/sub 2/ oxidizer, and decontamination aid. Hydrogen peroxide acts either as a corrosion promoter or inhibitor, depending on factors such as its concentration, the ratio to other ingredients, acidity, temperature, the presence of complexing agents, and the ferric ion content of the solution. In general, oxalate-peroxide solutions for fissionmore » product decontamination from metal surfaces were superior to more conventional decontaminating solutions and had attractively low corrosion rates on carbon steel (less than 0.01 mil/hr), Solution instability, initially a serious drawback, was largely overcome. Of nearly a hundred formulations studied, the one having the best combination of long life, low corrosivity, high solvency for UO/sub 2/, decontamination power, safety, and ease of waste disposal was an aqueous solution of 0.4M oxalic acid, 0.18M ammonium citrate, and 0.34M H/sub 2/O/sub 2/, adjusted to pH 4.00 with ammonium hydroxide and used at 85 to 95 deg C. Similar solutions at lower pH, with increased H/sub 2/O/sub 2/ concentration to maintain noncorrosiveness, were successful decontaminants at 60 deg C when contact times were increased to several hours. Contaminated stainless steels heated to 500 deg C in helium resisted decontamination in noncorrosive reagents. Oxalate-peroxide soluttons are currently recommended as UO/sub 2/ solvents and as general decontaminants for mild steel and aluminum surfaces in the GCR program, and for stainless steels which were not strongly heated while contaminated. These solutions may also find application in the decontamination of metals used in the aqueous reprocessing of radioactive nuclear fuels. (auth)« less
Hydrogen peroxide generation in a model paediatric parenteral amino acid solution.
Brawley, V; Bhatia, J; Karp, W B
1993-12-01
1. Parenteral amino acid solutions undergo photooxidation, which may be an important factor in total parenteral nutrition-associated hepatic dysfunction. Light-exposed parenteral solutions containing amino acids, in addition to vitamins and trace minerals, generate free radicals, which, in turn, may contribute to this type of injury. This study examined the characteristics of H2O2 production in a parenteral amino acid solution modelled on a commercially available paediatric parenteral amino acid solution. 2. The solution was exposed to light in the presence of riboflavin-5'-monophosphate (riboflavin), and peroxide formation in the presence and absence of catalase (H2O2 formation) was assayed using potassium iodide/molybdate. 3. Peak H2O2 production occurred at a light intensity of 8 microW cm-2 nm-1 in the 425-475 nm waveband and was linear to 2 h of light exposure. H2O2 production reached 500 mumol/l at 24 h. 4. H2O2 was directly related to a riboflavin concentration of up to 20 mumol/l and was maximal at 30 mumol/l. 5. H2O2 production was greatest in the amino acid/riboflavin solution at a pH of between 5 and 6. 6. Under the conditions of light exposure intensity, light exposure time, riboflavin concentration and pH found during the administration of parenteral nutrition in neonatal intensive care units, net H2O2 production occurs in solutions modelled on a paediatric parenteral amino acid preparation.
Tarry-Adkins, Jane L; Fernandez-Twinn, Denise S; Hargreaves, Iain P; Neergheen, Viruna; Aiken, Catherine E; Martin-Gronert, Malgorzata S; McConnell, Josie M; Ozanne, Susan E
2016-01-01
Background: It is well established that low birth weight and accelerated postnatal growth increase the risk of liver dysfunction in later life. However, molecular mechanisms underlying such developmental programming are not well characterized, and potential intervention strategies are poorly defined. Objectives: We tested the hypotheses that poor maternal nutrition and accelerated postnatal growth would lead to increased hepatic fibrosis (a pathological marker of liver dysfunction) and that postnatal supplementation with the antioxidant coenzyme Q10 (CoQ10) would prevent this programmed phenotype. Design: A rat model of maternal protein restriction was used to generate low-birth-weight offspring that underwent accelerated postnatal growth (termed “recuperated”). These were compared with control rats. Offspring were weaned onto standard feed pellets with or without dietary CoQ10 (1 mg/kg body weight per day) supplementation. At 12 mo, hepatic fibrosis, indexes of inflammation, oxidative stress, and insulin signaling were measured by histology, Western blot, ELISA, and reverse transcriptase–polymerase chain reaction. Results: Hepatic collagen deposition (diameter of deposit) was greater in recuperated offspring (mean ± SEM: 12 ± 2 μm) than in controls (5 ± 0.5 μm) (P < 0.001). This was associated with greater inflammation (interleukin 6: 38% ± 24% increase; P < 0.05; tumor necrosis factor α: 64% ± 24% increase; P < 0.05), lipid peroxidation (4-hydroxynonenal, measured by ELISA: 0.30 ± 0.02 compared with 0.19 ± 0.05 μg/mL per μg protein; P < 0.05), and hyperinsulinemia (P < 0.05). CoQ10 supplementation increased (P < 0.01) hepatic CoQ10 concentrations and ameliorated liver fibrosis (P < 0.001), inflammation (P < 0.001), some measures of oxidative stress (P < 0.001), and hyperinsulinemia (P < 0.01). Conclusions: Suboptimal in utero nutrition combined with accelerated postnatal catch-up growth caused more hepatic fibrosis in adulthood, which was associated with higher indexes of oxidative stress and inflammation and hyperinsulinemia. CoQ10 supplementation prevented liver fibrosis accompanied by downregulation of oxidative stress, inflammation, and hyperinsulinemia. PMID:26718412
Borys, Jan; Maciejczyk, Mateusz; Krȩtowski, Adam J.; Antonowicz, Bozena; Ratajczak-Wrona, Wioletta; Jabłońska, Ewa; Załęski, Piotr; Waszkiel, Danuta; Ładny, Jerzy R.; Żukowski, Piotr; Zalewska, Anna
2017-01-01
Titanium miniplates and screws are commonly used for fixation of jaw fractured or osteotomies. Despite the opinion of their biocompatibility, in clinical practice symptoms of chronic inflammation around the fixation develop in some patients, even many years after the application of miniplates and screws. The cause of these complications is still an unanswered question. Taking into account that oxidative stress is one of the toxic action of titanium, we have evaluated the antioxidant barrier as well as oxidative stress in the erythrocytes, plasma and periosteum covering the titanium fixation of the jaw. The study group was composed of 32 patients aged 20–30 with inserted miniplates and screws. The antioxidant defense: catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase-1 (SOD1), uric acid (UA), total antioxidant capacity (TAC), as well as oxidative damage products: advanced oxidation protein products (AOPP), advanced glycation end products (AGE), dityrosine, kynurenine, N-formylkynurenine, tryptophan, malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), total oxidant status (TOS), and oxidative status index (OSI) were evaluated. SOD1 activity (↓37%), and tryptophan levels (↓34%) showed a significant decrease while AOPP (↑25%), TOS (↑80%) and OSI (↑101%) were significantly elevated in maxillary periosteum of patients who underwent bimaxillary osteotomies as compared to the control group. SOD-1 (↓55%), TAC (↓58.6%), AGE (↓60%) and N-formylkynurenine (↓34%) was statistically reduced while AOPP (↑38%), MDA (↑29%), 4-HNE (↑114%), TOS (↑99%), and OSI (↑381%) were significantly higher in the mandibular periosteum covering miniplates/screw compared with the control tissues. There were no correlations between antioxidants and oxidative stress markers in the periosteum of all patients and the blood. As exposure to the Ti6Al4V titanium alloy leads to disturbances of redox balance in the periosteum surrounding titanium implants of the maxilla and the mandible so antioxidant supplementation should be recommended to the patients undergoing treatment of dentofacial deformities with the use of titanium implants. The results we obtained may also indicate a need to improve the quality of titanium jaw fixations through increase of TiO2 passivation layer thickness or to develop new, the most highly biodegradable materials for their production. PMID:28638348
Akt3 is a privileged first responder in isozyme-specific electrophile response.
Long, Marcus J C; Parvez, Saba; Zhao, Yi; Surya, Sanjna L; Wang, Yiran; Zhang, Sheng; Aye, Yimon
2017-03-01
Isozyme-specific post-translational regulation fine tunes signaling events. However, redundancy in sequence or activity renders links between isozyme-specific modifications and downstream functions uncertain. Methods to study this phenomenon are underdeveloped. Here we use a redox-targeting screen to reveal that Akt3 is a first-responding isozyme sensing native electrophilic lipids. Electrophile modification of Akt3 modulated downstream pathway responses in cells and Danio rerio (zebrafish) and markedly differed from Akt2-specific oxidative regulation. Digest MS sequencing identified Akt3 C119 as the privileged cysteine that senses 4-hydroxynonenal. A C119S Akt3 mutant was hypomorphic for all downstream phenotypes shown by wild-type Akt3. This study documents isozyme-specific and chemical redox signal-personalized physiological responses.
Tsuchiya, Yukihiro; Yamaguchi, Mitsune; Chikuma, Toshiyuki; Hojo, Hiroshi
2005-06-15
Lipid peroxidation products such as 4-hydroxy-2-nonenal (HNE) may be responsible for various pathophysiological events under oxidative stress, since they injure cellular components such as proteins and DNA. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which is a key enzyme of glycolysis and has been reported to be a multifunctional enzyme, is one of the enzymes inhibited by HNE. Previous studies showed that GAPDH is degraded when incubated with acetylleucine chloromethyl ketone (ALCK), resulting in the liberation of a 23-kDa fragment. In this study, we examined whether GAPDH incubated with HNE or other aldehydes of lipid peroxidation products are degraded similarly to that with ALCK. The U937 cell extract was incubated with these aldehydes at 37 degrees C and analyzed by Western blotting using anti-GAPDH antibodies. Incubation with HNE or 4-hydroxy-2-hexenal (HHE) decreased GAPDH activity and GAPDH protein level, and increased the 23-kDa fragment, in time- and dose-dependent manners, but that with other aldehydes did not. Gel filtration using the Superose 6 showed that the GAPDH-degrading activity was eluted in higher molecular fractions than proteasome activity. The enzyme activity was detected at the basic range of pH and inhibited by serine protease inhibitors, diisopropyl fluorophosphate and phenylmethylsulfonyl fluoride, but not by other protease inhibitors including a proteasome inhibitor, MG-132, and a tripeptidyl peptidase II (TPP II) inhibitor, AAF-CMK. These results suggest that GAPDH modified by HNE and HHE is degraded by a giant serine protease, releasing the 23-kDa fragment, not by proteasome or TPP II.
Sánchez-Gómez, Francisco J; Calvo, Enrique; Bretón-Romero, Rosa; Fierro-Fernández, Marta; Anilkumar, Narayana; Shah, Ajay M; Schröder, Katrin; Brandes, Ralf P; Vázquez, Jesús; Lamas, Santiago
2015-12-01
Laminar shear stress (LSS) triggers signals that ultimately result in atheroprotection and vasodilatation. Early responses are related to the activation of specific signaling cascades. We investigated the participation of redox-mediated modifications and in particular the role of hydrogen peroxide (H2O2) in the sulfenylation of redox-sensitive phosphatases. Exposure of vascular endothelial cells to short periods of LSS (12 dyn/cm(2)) resulted in the generation of superoxide radical anion as detected by the formation of 2-hydroxyethidium by HPLC and its subsequent conversion to H2O2, which was corroborated by the increase in the fluorescence of the specific peroxide sensor HyPer. By using biotinylated dimedone we detected increased total protein sulfenylation in the bovine proteome, which was dependent on NADPH oxidase 4 (NOX4)-mediated generation of peroxide. Mass spectrometry analysis allowed us to identify the phosphatase SHP2 as a protein susceptible to sulfenylation under LSS. Given the dependence of FAK activity on SHP2 function, we explored the role of FAK under LSS conditions. FAK activation and subsequent endothelial NO synthase (eNOS) phosphorylation were promoted by LSS and both processes were dependent on NOX4, as demonstrated in lung endothelial cells isolated from NOX4-null mice. These results support the idea that LSS elicits redox-sensitive signal transduction responses involving NOX4-dependent generation of hydrogen peroxide, SHP2 sulfenylation, and ulterior FAK-mediated eNOS activation. Copyright © 2015 Elsevier Inc. All rights reserved.
FIELD STUDY: IN SITU OXIDATION OF 1,4-DIOXANE WITH OZONE AND HYDROGEN PEROXIDE
A pilot-scale field evaluation is underway to assess the effectiveness of in situ oxidation (using ozone with and without hydrogen peroxide) for remediation of 1,4-dioxane and chlorinated volatile organic compounds in groundwater at the Cooper Drum Company Superfund Site located ...
Are Reactive Oxygen Species Involved in Microcystin-LR Intoxication?
1988-05-12
peroxidation in paracetamol intoxication, did not alter the effect of BHA pretreatment., -- 2-A 4" 4 2 - INTRODUCTION The toxic cyclic heptapeptide...that paracetamol induces dose-dependant lipid peroxidation in starved, but not in fed mice (WENDEL et a’.., 1979). This fact, and the trends
Assay to detect lipid peroxidation upon exposure to nanoparticles.
Potter, Timothy M; Neun, Barry W; Stern, Stephan T
2011-01-01
This chapter describes a method for the analysis of human hepatocarcinoma cells (HEP G2) for lipid peroxidation products, such as malondialdehyde (MDA), following treatment with nanoparticle formulations. Oxidative stress has been identified as a likely mechanism of nanoparticle toxicity, and cell-based in vitro systems for evaluation of nanoparticle-induced oxidative stress are widely considered to be an important component of biocompatibility screens. The products of lipid peroxidation, lipid hydroperoxides, and aldehydes, such as MDA, can be measured via a thiobarbituric acid reactive substances (TBARS) assay. In this assay, which can be performed in cell culture or in cell lysate, MDA combines with thiobarbituric acid (TBA) to form a fluorescent adduct that can be detected at an excitation wavelength of 530 nm and an emission wavelength of 550 nm. The results are then expressed as MDA equivalents, normalized to total cellular protein (determined by Bradford assay).