Sample records for peroxide pretreatment process

  1. Optimization study on the hydrogen peroxide pretreatment and production of bioethanol from seaweed Ulva prolifera biomass.

    PubMed

    Li, Yinping; Cui, Jiefen; Zhang, Gaoli; Liu, Zhengkun; Guan, Huashi; Hwang, Hueymin; Aker, Winfred G; Wang, Peng

    2016-08-01

    The seaweed Ulva prolifera, distributed in inter-tidal zones worldwide, contains a large percentage of cellulosic materials. The technical feasibility of using U. prolifera residue (UPR) obtained after extraction of polysaccharides as a renewable energy resource was investigated. An environment-friendly and economical pretreatment process was conducted using hydrogen peroxide. The hydrogen peroxide pretreatment improved the efficiency of enzymatic hydrolysis. The resulting yield of reducing sugar reached a maximum of 0.42g/g UPR under the optimal pretreatment condition (hydrogen peroxide 0.2%, 50°C, pH 4.0, 12h). The rate of conversion of reducing sugar in the concentrated hydrolysates to bioethanol reached 31.4% by Saccharomyces cerevisiae fermentation, which corresponds to 61.7% of the theoretical maximum yield. Compared with other reported traditional processes on Ulva biomass, the reducing sugar and bioethanol yield are substantially higher. Thus, hydrogen peroxide pretreatment is an effective enhancement of the process of bioethanol production from the seaweed U. prolifera. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Alkaline peroxide pretreatment of corn stover: effects of biomass, peroxide, and enzyme loading and composition on yields of glucose and xylose

    PubMed Central

    2011-01-01

    Background Pretreatment is a critical step in the conversion of lignocellulose to fermentable sugars. Although many pretreatment processes are currently under investigation, none of them are entirely satisfactory in regard to effectiveness, cost, or environmental impact. The use of hydrogen peroxide at pH 11.5 (alkaline hydrogen peroxide (AHP)) was shown by Gould and coworkers to be an effective pretreatment of grass stovers and other plant materials in the context of animal nutrition and ethanol production. Our earlier experiments indicated that AHP performed well when compared against two other alkaline pretreatments. Here, we explored several key parameters to test the potential of AHP for further improvement relevant to lignocellulosic ethanol production. Results The effects of biomass loading, hydrogen peroxide loading, residence time, and pH control were tested in combination with subsequent digestion with a commercial enzyme preparation, optimized mixtures of four commercial enzymes, or optimized synthetic mixtures of pure enzymes. AHP pretreatment was performed at room temperature (23°C) and atmospheric pressure, and after AHP pretreatment the biomass was neutralized with HCl but not washed before enzyme digestion. Standard enzyme digestion conditions were 0.2% glucan loading, 15 mg protein/g glucan, and 48 h digestion at 50°C. Higher pretreatment biomass loadings (10% to 20%) gave higher monomeric glucose (Glc) and xylose (Xyl) yields than the 2% loading used in earlier studies. An H2O2 loading of 0.25 g/g biomass was almost as effective as 0.5 g/g, but 0.125 g/g was significantly less effective. Optimized mixtures of four commercial enzymes substantially increased post-AHP-pretreatment enzymatic hydrolysis yields at all H2O2 concentrations compared to any single commercial enzyme. At a pretreatment biomass loading of 10% and an H2O2 loading of 0.5 g/g biomass, an optimized commercial mixture at total protein loadings of 8 or 15 mg/g glucan gave monomeric Glc yields of 83% or 95%, respectively. Yields of Glc and Xyl after pretreatment at a low hydrogen peroxide loading (0.125 g H2O2/g biomass) could be improved by extending the pretreatment residence time to 48 h and readjusting the pH to 11.5 every 6 h during the pretreatment. A Glc yield of 77% was obtained using a pretreatment of 15% biomass loading, 0.125 g H2O2/g biomass, and 48 h with pH adjustment, followed by digestion with an optimized commercial enzyme mixture at an enzyme loading of 15 mg protein/g glucan. Conclusions Alkaline peroxide is an effective pretreatment for corn stover. Particular advantages are the use of reagents with low environmental impact and avoidance of special reaction chambers. Reasonable yields of monomeric Glc can be obtained at an H2O2 concentration one-quarter of that used in previous AHP research. Additional improvements in the AHP process, such as peroxide stabilization, peroxide recycling, and improved pH control, could lead to further improvements in AHP pretreatment. PMID:21658263

  3. Enhancing methane production from waste activated sludge using a novel indigenous iron activated peroxidation pre-treatment process.

    PubMed

    Zhou, Xu; Wang, Qilin; Jiang, Guangming

    2015-04-01

    Methane production from anaerobic digestion of waste activated sludge (WAS) is limited by the slow hydrolysis rate and/or poor methane potential of WAS. This study presents a novel pre-treatment strategy based on indigenous iron (in WAS) activated peroxidation to enhance methane production from WAS. Pre-treatment of WAS for 30 min at 50mg H2O2/g total solids (dry weight) and pH 2.0 (iron concentration in WAS was 7 mg/g TS) substantially enhanced WAS solubilization. Biochemical methane potential tests demonstrated that methane production was improved by 10% at a digestion time of 16d after incorporating the indigenous iron activated peroxidation pre-treatment. Model-based analysis indicated that indigenous iron activated peroxidation pre-treatment improved the methane potential by 13%, whereas the hydrolysis rate was not significantly affected. The economic analysis showed that the proposed pre-treatment method can save the cost by $112,000 per year in a treatment plant with a population equivalent of 300,000. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Ethanol production from bamboo using mild alkaline pre-extraction followed by alkaline hydrogen peroxide pretreatment.

    PubMed

    Yuan, Zhaoyang; Wen, Yangbing; Kapu, Nuwan Sella

    2018-01-01

    A sequential two-stage pretreatment process comprising alkaline pre-extraction and alkaline hydrogen peroxide pretreatment (AHP) was investigated to convert bamboo carbohydrates into bioethanol. The results showed that mild alkaline pre-extraction using 8% (w/w) sodium hydroxide (NaOH) at 100°C for 180min followed by AHP pretreatment with 4% (w/w) hydrogen peroxide (H 2 O 2 ) was sufficient to generate a substrate that could be efficiently digested with low enzyme loadings. Moreover, alkali pre-extraction enabled the use of lower H 2 O 2 charges in AHP treatment. Two-stage pretreatment followed by enzymatic hydrolysis with only 9FPU/g cellulose led to the recovery of 87% of the original sugars in the raw feedstock. The use of the pentose-hexose fermenting Saccharomyces cerevisiae SR8u strain enabled the utilization of 95.7% sugars in the hydrolysate to reach 4.6%w/v ethanol titer. The overall process also enabled the recovery of 62.9% lignin and 93.8% silica at high levels of purity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Processing and fractional utilization of lignocellulosic substrates by "pure" and "natural and defined mixed" culture C.TM1, C.SA IV and rumen mixed culture consortia CD.

    PubMed

    Sankar, M; Chandra, T S

    2003-01-01

    A detailed analysis was made of chemical fractions of common agro-residues before and after pretreatment (alkali and hydrogen peroxide), and the selective utilization of components such as WSS, EBS, TSS, lignin, cellulose and hemicellulose by pure and mixed cultures of cellulolytic and xylanolytic Clostridia was monitored and correlated with the organisms' enzyme activity. For all cultures pretreatment gave higher utilization of hemicellulose and cellulose fractions; hydrogen peroxide pretreatment was more effective than NaOH treatment. Lignin utilization was not very significant even on pretreatment. C.TM1 and C.SA IV utilized hemicellulose and cellulose better than mixed cultures in selected substrates. These results help to determine the substrate composition, pretreatment conditions and enzyme system of the organism needed when designing an inoculum for agricultural waste treatment processes such as composting or biogas generation.

  6. Bioconversion of paper mill sludge to bioethanol in the presence of accelerants or hydrogen peroxide pretreatment.

    PubMed

    Gurram, Raghu Nandan; Al-Shannag, Mohammad; Lecher, Nicholas Joshua; Duncan, Shona M; Singsaas, Eric Lawrence; Alkasrawi, Malek

    2015-09-01

    In this study we investigated the technical feasibility of convert paper mill sludge into fuel ethanol. This involved the removal of mineral fillers by using either chemical pretreatment or mechanical fractionation to determine their effects on cellulose hydrolysis and fermentation to ethanol. In addition, we studied the effect of cationic polyelectrolyte (as accelerant) addition and hydrogen peroxide pretreatment on enzymatic hydrolysis and fermentation. We present results showing that removing the fillers content (ash and calcium carbonate) from the paper mill sludge increases the enzymatic hydrolysis performance dramatically with higher cellulose conversion at faster rates. The addition of accelerant and hydrogen peroxide pretreatment further improved the hydrolysis yields by 16% and 25% (g glucose / g cellulose), respectively with the de-ashed sludge. The fermentation process of produced sugars achieved up to 95% of the maximum theoretical ethanol yield and higher ethanol productivities within 9h of fermentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Alkaline Peroxide Delignification of Corn Stover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittal, Ashutosh; Katahira, Rui; Donohoe, Bryon S.

    Selective biomass fractionation into carbohydrates and lignin is a key challenge in the conversion of lignocellulosic biomass to fuels and chemicals. In the present study, alkaline hydrogen peroxide (AHP) pretreatment was investigated to fractionate lignin from polysaccharides in corn stover (CS), with a particular emphasis on the fate of the lignin for subsequent valorization. The influence of peroxide loading on delignification during AHP pretreatment was examined over the range of 30-500 mg H2O2/g dry CS at 50 degrees C for 3 h. Mass balances were conducted on the solid and liquid fractions generated after pretreatment for each of the threemore » primary components, lignin, hemicellulose, and cellulose. AHP pretreatment at 250 mg H2O2/g dry CS resulted in the pretreated solids with more than 80% delignification consequently enriching the carbohydrate fraction to >90%. Two-dimensional nuclear magnetic resonance (2D-NMR) spectroscopy of the AHP pretreated residue shows that, under high peroxide loadings (>250 mg H2O2/g dry CS), most of the side chain structures were oxidized and the aryl-ether bonds in lignin were partially cleaved, resulting in significant delignification of the pretreated residues. Gel permeation chromatography (GPC) analysis shows that AHP pretreatment effectively depolymerizes CS lignin into low molecular weight (LMW) lignin fragments in the aqueous fraction. Imaging of AHP pretreated residues shows a more granular texture and a clear lamellar pattern in secondary walls, indicative of layers of varying lignin removal or relocalization. Enzymatic hydrolysis of this pretreated residue at 20 mg/g of glucan resulted in 90% and 80% yields of glucose and xylose, respectively, after 120 h. Overall, AHP pretreatment is able to selectively remove more than 80% of the lignin from biomass in a form that has potential for downstream valorization processes and enriches the solid pulp into a highly digestible material.« less

  8. Production of bioethanol and value added compounds from wheat straw through combined alkaline/alkaline-peroxide pretreatment.

    PubMed

    Yuan, Zhaoyang; Wen, Yangbing; Li, Guodong

    2018-07-01

    An efficient scheme was developed for the conversion of wheat straw (WS) into bioethanol, silica and lignin. WS was pre-extracted with 0.2 mol/L sodium hydroxide at 30 °C for 5 h to remove about 91% of initial silica. Subsequently, the alkaline-pretreated solids were subjected to alkaline hydrogen peroxide (AHP) pretreatment with 40 mg hydrogen peroxide (H 2 O 2 )/g biomass at 50 °C for 7 h to prepare highly digestible substrate. The results of enzymatic hydrolysis demonstrated that the sequential alkaline-AHP pretreated WS was efficiently hydrolyzed at 10% (w/v) solids loading using an enzyme dosage of 10 mg protein/g glucan. The total sugar conversion of 92.4% was achieved. Simultaneous saccharification and co-fermentation (SSCF) was applied to produce ethanol from the two-stage pretreated substrate using Saccharomyces cerevisiae SR8u strain. Ethanol with concentration of 31.1 g/L was produced. Through the proposed process, about 86.4% and 54.1% of the initial silica and lignin were recovered, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Pretreatment of lignocellulosic biomass using Fenton chemistry

    USDA-ARS?s Scientific Manuscript database

    Pretreatment is a necessary step in “biomass to biofuel conversion” due to the recalcitrant nature of lignocellulosic biomass. White-rot fungi utilize peroxidases and hydrogen peroxide (in vivo Fenton chemistry) to degrade lignin. In an attempt to mimic this process, solution phase Fenton chemistry ...

  10. A comparison between lime and alkaline hydrogen peroxide pretreatments of sugarcane bagasse for ethanol production.

    PubMed

    Rabelo, Sarita C; Filho, Rubens Maciel; Costa, Aline C

    2008-01-01

    Pretreatment procedures of sugarcane bagasse with lime (calcium hydroxide) or alkaline hydrogen peroxide were evaluated and compared. Analyses were performed using 2(3) factorial designs, with pretreatment time, temperature, and lime loading and hydrogen peroxide concentration as factors. The responses evaluated were the yield of total reducing sugars (TRS) and glucose released from pretreated bagasse after enzymatic hydrolysis. Experiments were performed using the bagasse, as it comes from an alcohol/sugar factory and bagasse, in the size, range from 0.248 to 1.397 mm (12-60 mesh). The results show that, when hexoses and pentoses are of interest, lime should be the pretreatment agent chosen, as high TRS yields are obtained for non-screened bagasse using 0.40 g lime/g dry biomass at 70 degrees C for 36 h. When the product of interest is glucose, the best results were obtained with lime pretreatment of screened bagasse. However, the results for alkaline peroxide and lime pretreatments of non-screened bagasse are not very different.

  11. A Comparison between Lime and Alkaline Hydrogen Peroxide Pretreatments of Sugarcane Bagasse for Ethanol Production

    NASA Astrophysics Data System (ADS)

    Rabelo, Sarita C.; Filho, Rubens Maciel; Costa, Aline C.

    Pretreatment procedures of sugarcane bagasse with lime (calcium hydroxide) or alkaline hydrogen peroxide were evaluated and compared. Analyses were performed using 2 × 2 × 2 factorial designs, with pretreatment time, temperature, and lime loading and hydrogen peroxide concentration as factors. The responses evaluated were the yield of total reducing sugars (TRS) and glucose released from pretreated bagasse after enzymatic hydrolysis. Experiments were performed using the bagasse as it comes from an alcohol/ sugar factory and bagasse in the size range of 0.248 to 1.397 mm (12-60 mesh). The results show that when hexoses and pentoses are of interest, lime should be the pretreatment agent chosen, as high TRS yields are obtained for nonscreened bagasse using 0.40 g lime/g dry biomass at 70 °C for 36 h. When the product of interest is glucose, the best results were obtained with lime pretreatment of screened bagasse. However, the results for alkaline peroxide and lime pretreatments of nonscreened bagasse are not very different.

  12. A comparison between lime and alkaline hydrogen peroxide pretreatments of sugarcane bagasse for ethanol production.

    PubMed

    Rabelo, Sarita C; Maciel Filho, Rubens; Costa, Aline C

    2008-03-01

    Pretreatment procedures of sugarcane bagasse with lime (calcium hydroxide) or alkaline hydrogen peroxide were evaluated and compared. Analyses were performed using 2 x 2 x 2 factorial designs, with pretreatment time, temperature, and lime loading and hydrogen peroxide concentration as factors. The responses evaluated were the yield of total reducing sugars (TRS) and glucose released from pretreated bagasse after enzymatic hydrolysis. Experiments were performed using the bagasse as it comes from an alcohol/sugar factory and bagasse in the size range of 0.248 to 1.397 mm (12-60 mesh). The results show that when hexoses and pentoses are of interest, lime should be the pretreatment agent chosen, as high TRS yields are obtained for nonscreened bagasse using 0.40 g lime/g dry biomass at 70 degrees C for 36 h. When the product of interest is glucose, the best results were obtained with lime pretreatment of screened bagasse. However, the results for alkaline peroxide and lime pretreatments of nonscreened bagasse are not very different.

  13. Alkaline hydrogen peroxide pretreatment of cashew apple bagasse for ethanol production: study of parameters.

    PubMed

    Correia, Jessyca Aline da Costa; Júnior, José Edvan Marques; Gonçalves, Luciana Rocha B; Rocha, Maria Valderez Ponte

    2013-07-01

    The alkaline hydrogen peroxide (AHP) pretreatment of cashew apple bagasse (CAB) was evaluated based on the conversion of the resultant cellulose into glucose. The effects of the concentration of hydrogen peroxide at pH 11.5, the biomass loading and the pretreatment duration performed at 35°C and 250 rpm were evaluated after the subsequent enzymatic saccharification of the pretreated biomass using a commercial cellulase enzyme. The CAB used in this study contained 20.56 ± 2.19% cellulose, 10.17 ± 0.89% hemicellulose and 35.26 ± 0.90% lignin. The pretreatment resulted in a reduced lignin content in the residual solids. Increasing the H2O2 concentration (0-4.3% v/v) resulted in a higher rate of enzymatic hydrolysis. Lower biomass loadings gave higher glucose yields. In addition, no measurable furfural and hydroxymethyl furfural were produced in the liquid fraction during the pretreatment. The results show that alkaline hydrogen peroxide is effective for the pretreatment of CAB. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  14. Ozonation and alkaline-peroxide pretreatment of wheat straw for Cryptococcus curvatus fermentation

    NASA Technical Reports Server (NTRS)

    Greenwalt, C. J.; Hunter, J. B.; Lin, S.; McKenzie, S.; Denvir, A.

    2000-01-01

    Crop residues in an Advanced Life Support System (ALS) contain many valuable components that could be recovered and used. Wheat is 60% inedible, with approximately 90% of the total sugars in the residue cellulose and hemicellulose. To release these sugars requires pretreatment followed by enzymatic hydrolysis. Cryptococcus curvatus, an oleaginous yeast, uses the sugars in cellulose and hemicellulose for growth and production of storage triglycerides. In this investigation, alkaline-peroxide and ozonation pretreatment methods were compared for their efficiency to release glucose and xylose to be used in the cultivation of C. curvatus. Leaching the biomass with water at 65 degrees C for 4 h prior to pretreatment facilitated saccharification. Alkaline-peroxide and ozone pretreatment were almost 100% and 80% saccharification efficient, respectively. The sugars derived from the hydrolysis of alkaline-peroxide-treated wheat straw supported the growth of C. curvatus and the production of edible single-cell oil.

  15. Effect of hydrogen peroxide pretreatment on the structural features and the enzymatic hydrolysis of rice straw.

    PubMed

    Wei, C J; Cheng, C Y

    1985-10-01

    Assessment was made to evaluate the effect of hydrogen peroxide pretreatment on the change of the structural features and the enzymatic hydrolysis of rice straw. Changes in the lignin content, weight loss, accessibility for Cadoxen, water holding capacity, and crystallinity of straw were measured during pretreatment to express the modification of the lignocellulosic structure of straw. The rates and the extents of enzymatic hydrolysis, cellulase adsorption, and cellobiose accumulation in the initial stage of hydrolysis were determined to study the pretreatment effect on hydrolysis. Pretreatment at 60 degrees C for 5 h in a solution with 1% (w/w) H(2)O(2) and NaOH resulted in 60% delignification, 40% weight loss, a fivefold increase in the accessibility for Cadoxen, an one times increase in the water-holding capacity, and only a slight decrease in crystallinity as compared with that of the untreated straw. Improvement on the pretreatment effect could be made by increasing the initial alkalinity and the pretreatment temperature of hydrogen peroxide solution. A saturated improvement on the structural features was found when the weight ratio of hydrogen peroxide to straw was above 0.25 g H(2)O(2)/g straw in an alkaline H(2)O(2) solution with 1% (w/w) NaOH at 32 degrees C. The initial rates and extents of hydrolysis, cellulase adsorption, and cellobiose accumulation in hydrolysis were enhanced in accordance with the improved structural features of straw pretreated. A four times increase in the extent of the enzymatic hydrolysis of straw for 24 h was attributed to the alkaline hydrogen peroxide pretreatment.

  16. Combined acid/alkaline-peroxide pretreatment of olive tree biomass for bioethanol production.

    PubMed

    Martínez-Patiño, José Carlos; Ruiz, Encarnación; Romero, Inmaculada; Cara, Cristóbal; López-Linares, Juan Carlos; Castro, Eulogio

    2017-09-01

    Olive tree biomass (OTB) can be used for producing second generation bioethanol. In this work, extracted OTB was subjected to fractionation using a sequential acid/alkaline oxidative pretreatment. In the first acid stage, the effects of sulfuric acid concentration and reaction times at 130°C were investigated. Up to 71% solubilization of hemicellulosic sugars was achieved under optimized conditions (2.4% H 2 SO 4 , 84min). In the second stage, the influence of hydrogen peroxide concentration and process time were evaluated at 80°C. Approximately 80% delignification was achieved under the best operational conditions (7% H 2 O 2 , 90min) within the experimental range studied. This pretreatment produced a substrate with 72% cellulose that was highly accessible to enzymatic attack, yielding 82g glucose/100g glucose in delignified OTB. Ethanol production from both hemicellulosic sugars solubilized in the acid pretreatment and glucose from enzymatic hydrolysis of delignified OTB yielded 15g ethanol/100g OTB. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. [Effect of Residual Hydrogen Peroxide on Hydrolysis Acidification of Sludge Pretreated by Microwave -H2O2-Alkaline Process].

    PubMed

    Jia, Rui-lai; Liu, Ji-bao; Wei, Yuan-song; Cai, Xing

    2015-10-01

    Previous studies have found that in the hydrolysis acidification process, sludge after microwave -H2O2-alkaline (MW-H2O2-OH, pH = 10) pretreatment had an acid production lag due to the residual hydrogen peroxide. In this study, effects of residual hydrogen peroxide after MW-H2O2-OH (pH = 10 or pH = 11) pretreatment on the sludge hydrolysis acidification were investigated through batch experiments. Our results showed that catalase had a higher catalytic efficiency than manganese dioxide for hydrogen peroxide, which could completely degraded hydrogen peroxide within 10 min. During the 8 d of hydrolysis acidification time, both SCOD concentrations and the total VFAs concentrations of four groups were firstly increased and then decreased. The optimized hydrolysis times were 0.5 d for four groups, and the optimized hydrolysis acidification times were 3 d for MW-H2O2-OH (pH = 10) group, MW-H2O2-OH (pH = 10) + catalase group and MW-H2O2-OH (pH = 11) + catalase group. The optimized hydrolysis acidification time for MW-H2O2-OH (pH = 11) group was 4 d. Residual hydrogen peroxide inhibited acid production for sludge after MW-H2O2-OH (pH = 10) pretreatment, resulting in a lag in acidification stage. Compared with MW-H2O2-OH ( pH = 10) pretreatment, MW-H2O2-OH (pH = 11 ) pretreatment released more SCOD by 19.29% and more organic matters, which resulted in the increase of total VFAs production significantly by 84.80% at 5 d of hydrolysis acidification time and MW-H2O2-OH (pH = 11) group could shorten the lag time slightly. Dosing catalase (100 mg x -L(-1)) after the MW-H2O2-OH (pH = 10 or pH = 11) pretreatment not only significantly shortened the lag time (0.5 d) in acidification stage, but also produced more total VFAs by 23.61% and 50.12% in the MW-H2O2-OH (pH = 10) + catalase group and MW-H2O2-OH (pH = 11) + catalase group, compared with MW-H2O2-OH (pH = 10) group at 3d of hydrolysis acidification time. For MW-H2O2-OH (pH = 10) group, MW-H2O2-OH (pH = 10) + catalase group and MW-H2O2-OH(pH = 11) + catalase group, the dominant VFAs were acetic, iso-valeric and n-butyric acids. For MW-H2O2-OH (pH = 11) group, the dominant VFAs were acetic, propionic and iso-valeric acids. In the optimized hydrolysis acidification time for each group, percentages of the three main acids accounted for more than 75% of total VFAs, and percentages of acetic acid accounted for more than 41% of total VFAs.

  18. High-concentration sugars production from corn stover based on combined pretreatments and fed-batch process.

    PubMed

    Yang, Maohua; Li, Wangliang; Liu, Binbin; Li, Qiang; Xing, Jianmin

    2010-07-01

    In this paper, high-concentration sugars were produced from pretreated corn stover. The raw corn stover was pretreated in a process combining steam explosion and alkaline hydrogen-peroxide. The hemicellulose and lignin were removed greatly. The cellulose content increased to 73.2%. Fed-batch enzymatic hydrolysis was initiated with 12% (w/v) solids loading and 20 FPU/g solids. Then, 6% solids were fed consecutively at 12, 36 and 60 h. After 144 h, the final concentrations of reducing sugar, glucose, cellobiose and xylose reached 220, 175, 22 and 20 g/L, respectively. The final total biomass conversion was 60% in fed-batch process. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. Hazard Assessment of Personal Protective Clothing for Hydrogen Peroxide Service

    NASA Technical Reports Server (NTRS)

    Greene, Ben; McClure, Mark B.; Johnson, Harry T.

    2004-01-01

    Selection of personal protective equipment (PPE) for hydrogen peroxide service is an important part of the hazard assessment process. But because drip testing of chemical protective clothing for hydrogen peroxide service has not been reported for about 40 years, it is of great interest to test new protective clothing materials with new, high-concentration hydrogen peroxide following similar procedures. The suitability of PPE for hydrogen peroxide service is in part determined by observations made when hydrogen peroxide is dripped onto swatches of protective clothing material. Protective clothing material was tested as received, in soiled condition, and in grossly soiled condition. Materials were soiled by pretreating the material with potassium permanganate (KMnO4) solution then drying to promote a reaction. Materials were grossly soiled with solid KMnO4 to greatly promote reaction. Observations of results including visual changes to the hydrogen peroxide and materials, times to ignition, and self-extinguishing characteristics of the materials are reported.

  20. Integrated experimental and technoeconomic evaluation of two-stage Cu-catalyzed alkaline–oxidative pretreatment of hybrid poplar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhalla, Aditya; Fasahati, Peyman; Particka, Chrislyn A.

    2018-05-17

    When applied to recalcitrant lignocellulosic feedstocks, multi-stage pretreatments can provide more processing flexibility to optimize or balance process outcomes such as increasing delignification, preserving hemicellulose, and maximizing enzymatic hydrolysis yields. We previously reported that adding an alkaline pre-extraction step to a copper-catalyzed alkaline hydrogen peroxide (Cu-AHP) pretreatment process resulted in improved sugar yields, but the process still utilized relatively high chemical inputs (catalyst and H2O2) and enzyme loadings. We hypothesized that by increasing the temperature of the alkaline pre-extraction step in water or ethanol, we could reduce the inputs required during Cu-AHP pretreatment and enzymatic hydrolysis without significant loss inmore » sugar yield. We also performed technoeconomic analysis to determine if ethanol or water was the more cost-effective solvent during alkaline pre-extraction and if the expense associated with increasing the temperature was economically justified.« less

  1. Enhancement of methane production in mesophilic anaerobic digestion of secondary sewage sludge by advanced thermal hydrolysis pretreatment.

    PubMed

    Abelleira-Pereira, Jose M; Pérez-Elvira, Sara I; Sánchez-Oneto, Jezabel; de la Cruz, Roberto; Portela, Juan R; Nebot, Enrique

    2015-03-15

    Studies on the development and evolution of anaerobic digestion (AD) pretreatments are nowadays becoming widespread, due to the outstanding benefits that these processes could entail in the management of sewage sludge. Production of sewage sludge in wastewater treatment plants (WWTPs) is becoming an extremely important environmental issue. The work presented in this paper is a continuation of our previous studies with the aim of understanding and developing the advanced thermal hydrolysis (ATH) process. ATH is a novel AD pretreatment based on a thermal hydrolysis (TH) process plus hydrogen peroxide (H2O2) addition that takes advantage of a peroxidation/direct steam injection synergistic effect. The main goal of the present research was to compare the performance of TH and ATH, conducted at a wide range of operating conditions, as pretreatments of mesophilic AD with an emphasis on methane production enhancement as a key parameter and its connection with the sludge solubilization. Results showed that both TH and ATH patently improved methane production in subsequent mesophilic BMP (biochemical methane potential) tests in comparison with BMP control tests (raw secondary sewage sludge). Besides other interesting results and discussions, a promising result was obtained since ATH, operated at temperature (115 °C), pretreatment time (5 min) and pressure (1 bar) considerably below those typically used in TH (170 °C, 30 min, 8 bar), managed to enhance the methane production in subsequent mesophilic BMP tests [biodegradability factor (fB) = cumulative CH4production/cumulative CH4production (Control) = 1.51 ± 0.01] to quite similar levels than conventional TH pretreatment [fB = 1.52 ± 0.03]. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Pretreatment of whole blood using hydrogen peroxide and UV irradiation. Design of the advanced oxidation process.

    PubMed

    Bragg, Stefanie A; Armstrong, Kristie C; Xue, Zi-Ling

    2012-08-15

    A new process to pretreat blood samples has been developed. This process combines the Advanced Oxidation Process (AOP) treatment (using H(2)O(2) and UV irradiation) with acid deactivation of the enzyme catalase in blood. A four-cell reactor has been designed and built in house. The effect of pH on the AOP process has been investigated. The kinetics of the pretreatment process shows that at high C(H(2)O(2),t=0), the reaction is zeroth order with respect to C(H(2)O(2)) and first order with respect to C(blood). The rate limiting process is photon flux from the UV lamp. Degradation of whole blood has been compared with that of pure hemoglobin samples. The AOP pretreatment of the blood samples has led to the subsequent determination of chromium and zinc concentrations in the samples using electrochemical methods. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. New prospects in pretreatment of cotton fabrics using microwave heating.

    PubMed

    Hashem, M; Taleb, M Abou; El-Shall, F N; Haggag, K

    2014-03-15

    As microwaves are known to give fast and rapid volume heating, the present study is undertaken to investigate the use of microwave heating for pretreatment cotton fabrics to reduce the pretreatment time, chemicals and water. The onset of the microwave heating technique on the physicochemical and performance properties of desized, scoured and bleached cotton fabric is elucidated and compared with those obtained on using conventional thermal heating. Combined one-step process for desizing, scouring and bleaching of cotton fabric under microwave heating was also investigated. The dual effect of adding urea, (as microwave absorber and hydrogen peroxide activator) has been exploiting to accelerate the pretreatment reaction of cotton fabric. DSC, FT-IR and SEM have been used to investigate the onset of microwave on the morphological and chemical change of cotton cellulose after pretreatment and bleaching under microwave heating. Results obtained show that, a complete fabric preparation was obtained in just 5 min on using microwave in pretreatments process and the fabric properties were comparable to those obtained in traditional pretreatment process which requires 2.5-3h for completion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Protection by the flavonoids quercetin and luteolin against peroxide- or menadione-induced oxidative stress in MC3T3-E1 osteoblast cells.

    PubMed

    Fatokun, Amos A; Tome, Mercedes; Smith, Robert A; Darlington, L Gail; Stone, Trevor W

    2015-01-01

    Potential protective effects of the flavonoids quercetin and luteolin have been examined against the oxidative stress of MC3T3-E1 osteoblast-like cells. Although hydrogen peroxide and menadione reduced cell viability, the toxicity was prevented by desferrioxamine or catalase but not superoxide dismutase, suggesting the involvement of hydrogen peroxide in both cases. Quercetin and luteolin reduced the oxidative damage, especially that caused by hydrogen peroxide. When cultures were pre-incubated with quercetin or luteolin, protection was reduced or lost. Protection was also reduced when a 24 h pre-incubation with the flavonoids was followed by exposure to menadione alone. Pretreating cultures with luteolin impaired protection by quercetin, whereas quercetin pretreatment did not affect protection by luteolin. It is concluded that quercetin and luteolin suppress oxidative damage to MC3T3-E1 cells, especially caused by peroxide. The reduction in protection by pretreatment implies a down-regulation of part of the toxic transduction pathway.

  5. Alkali-based pretreatments distinctively extract lignin and pectin for enhancing biomass saccharification by altering cellulose features in sugar-rich Jerusalem artichoke stem.

    PubMed

    Li, Meng; Wang, Jun; Yang, Yuezhou; Xie, Guanghui

    2016-05-01

    Jerusalem artichoke (JA) has been known as a potential nonfood feedstock for biofuels. Based on systems analysis of total 59 accessions, both soluble sugar and ash could positively affect biomass digestibility after dilute sodium hydroxide pretreatment (A). In this study, one representative accession (HEN-3) was used to illustrate its enzymatic digestibility with pretreatments of ultrasonic-assisted dilute sodium hydroxide (B), alkaline peroxide (C), and ultrasonic-assisted alkaline peroxide (D). Pretreatment D exhibited the highest hexose release rate (79.4%) and total sugar yield (10.4 g/L), which were 2.4 and 2.6 times higher, respectively, than those of the control. The analysis of cellulose crystalline index (CrI), cellulose degree of polymerization (DP), thermal behavior and SEM suggested that alkali-based pretreatments could distinctively extract lignin and pectin polymers, leading to significant alterations of cellulose CrI and DP for high biomass saccharification. Additionally, hydrogen peroxide (H2O2) could significant reduce the generation of fermentation inhibitors during alkali-based pretreatments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Alkaline peroxide pretreatment of corn stover for enzymatic saccharification and ethanol production

    USDA-ARS?s Scientific Manuscript database

    Alkaline hydrogen peroxide (AHP) pretreatment and enzymatic saccharification were evaluated for conversion of corn stover cellulose and hemicellulose to fermentable sugars. Corn stover used in this study contained 37.0±0.2% cellulose, 26.8±0.2% hemicellulose and 18.0±0.1% lignin on dry basis. Unde...

  7. Treatment of oily port wastewater effluents using the ultraviolet/hydrogen peroxide photodecomposition system.

    PubMed

    Siedlecka, Ewa Maria; Stepnowski, Piotr

    2006-08-01

    This paper presents the nonselective degradation of mechanically pretreated oily wastewater by hydrogen peroxide (H2O2) in the presence and absence of UV irradiation. The effect of chemical oxidation on wastewater biodegradability was also examined. The exclusive use of H2O2 photolyzed by daylight results in quite efficient degradation rates for the low peroxide concentrations used. Higher hydrogen peroxide concentrations inhibit degradation of organic contaminants in the wastewater. The degradation rates of all contaminants are relatively high with an advanced oxidation system (UV/H2O2), but degradation efficiencies are not distinguishably different when 20 or 45 minutes of UV irradiation is used. The excess of H2O2 used in the process can inhibit phenolic degradation and may lead to the formation of a new phenolic fraction. The biodegradability of port wastewater did not increase significantly following the application of the advanced oxidation process.

  8. Application of H2O and UV/H2O2 processes for enhancing the biodegradability of reactive black 5 dye.

    PubMed

    Kalpana, S Divya; Kalyanaraman, Chitra; Gandhi, N Nagendra

    2011-07-01

    Leather processing is a traditional activity in India during which many organic and inorganic chemicals are added while part of it is absorbed by the leather, the remaining chemicals are discharged along with the effluent. The effluent contains both easily biodegradable and not easily biodegradable synthetic organics like dyes, syntans. Easily biodegradable organics are removed in the existing biological treatment units whereas synthetic organics present in the wastewater are mostly adsorbed over the microbes. As the tannery effluent contains complex chemicals, it is difficult to ascertain the degradation of specific pollutants. To determine the increase in the biodegradability, one of the complex and synthetic organic chemical like dye used in the tanning operation was selected for Advanced Oxidation Process (AOPs) treatment for cleaving complex organics and its subsequent treatment in aerobic process. In the present study, Reactive Black 5 Dye used in the tanning operation was selected for Hydrogen Peroxide (H2O2) and UV/H2O2 pre-treatment for different operating conditions like pH, contact time and different volume of H2O2. A comparison was made between the untreated, Hydrogen Peroxide (H2O2) and UV/H2O2 treated effluent in order to ascertain the influence of AOP on the improvement of biodegradability of effluent. An increase in the BOD5/COD ratio from 0.21 to 0.435 was achieved in the UV/H2O2 pre-treatment process. This pre-treated effluent was further subjected to aerobic process. Biochemical Oxygen Demand (BOD5) and Chemical Oxygen Demand (COD) removal efficiency of the UV/H2O2 pre-treated dye solution in the aerobic process was found to be 86.39% and 77.82% when compared to 52.43% of BOD5 and 51.55% of COD removal efficiency without any pre-treatment. Hence from these results, to increase the biodegradability of Reactive Black 5 dye pre-treatment methods like H2O2 and UV/H2O2 can be used prior to biological treatment process.

  9. Comparison of Pretreatment Methods on Vetiver Leaves for Efficient Processes of Simultaneous Saccharification and Fermentation by Neurospora sp.

    NASA Astrophysics Data System (ADS)

    Restiawaty, E.; Dewi, A.

    2017-07-01

    Lignocellulosic biomass is a potential raw material for bioethanol production. Neurospora sp. can be used to convert lignocellulosic biomass into bioethanol because of its ability to perform simultaneous saccharification and fermentation. However, lignin content, degree of polymerization, and crystallinity of cellulose contained in lignocellulosic biomass can inhibit cellulosic-biomass digestion by Neurospora sp, so that a suitable pretreatment method of lignocellulosic biomass is needed. The focus of this research was to investigate the suitable pretreatment method for vetiver leaves (Vetiveria zizanioides L. Nash) used as a raw material producing bioethanol in the process of simultaneous saccharification and fermentation (SSF) by Neurospora sp.. Vetiver plants obtained from Garut are deliberately cultivated to produce essential oils extracted from the roots of this plant. Since the vetiver leaves do not contain oil, some of harvested leaves are usually used for crafts and cattle feed, and the rest are burned. This study intended to look at other potential of vetiver leaves as a source of renewable energy. Pretreatments of the vetiver leaves were conducted using hot water, dilute acid, alkaline & dilute acid, and alkaline peroxide, in which each method was accompanied by thermal treatment. The results showed that the alkaline peroxide treatment is a suitable for vetiver leaves as indicated by the increase of cellulose content up to 65.1%, while the contents of hot water soluble, hemicellulose, lignin, and ash are 8.7%, 18.3%, 6.8%, and 1.1%, respectively. Using this pretreatment method, the vetiver leaves can be converted into bioethanol by SSF process using Neurospora sp. with a concentration of bioethanol of 6.7 g/L operated at room temperature.

  10. Scale-up and integration of alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis, and ethanolic fermentation.

    PubMed

    Banerjee, Goutami; Car, Suzana; Liu, Tongjun; Williams, Daniel L; Meza, Sarynna López; Walton, Jonathan D; Hodge, David B

    2012-04-01

    Alkaline hydrogen peroxide (AHP) has several attractive features as a pretreatment in the lignocellulosic biomass-to-ethanol pipeline. Here, the feasibility of scaling-up the AHP process and integrating it with enzymatic hydrolysis and fermentation was studied. Corn stover (1 kg) was subjected to AHP pretreatment, hydrolyzed enzymatically, and the resulting sugars fermented to ethanol. The AHP pretreatment was performed at 0.125 g H(2) O(2) /g biomass, 22°C, and atmospheric pressure for 48 h with periodic pH readjustment. The enzymatic hydrolysis was performed in the same reactor following pH neutralization of the biomass slurry and without washing. After 48 h, glucose and xylose yields were 75% and 71% of the theoretical maximum. Sterility was maintained during pretreatment and enzymatic hydrolysis without the use of antibiotics. During fermentation using a glucose- and xylose-utilizing strain of Saccharomyces cerevisiae, all of the Glc and 67% of the Xyl were consumed in 120 h. The final ethanol titer was 13.7 g/L. Treatment of the enzymatic hydrolysate with activated carbon prior to fermentation had little effect on Glc fermentation but markedly improved utilization of Xyl, presumably due to the removal of soluble aromatic inhibitors. The results indicate that AHP is readily scalable and can be integrated with enzyme hydrolysis and fermentation. Compared to other leading pretreatments for lignocellulosic biomass, AHP has potential advantages with regard to capital costs, process simplicity, feedstock handling, and compatibility with enzymatic deconstruction and fermentation. Biotechnol. Bioeng. 2012; 109:922-931. © 2011 Wiley Periodicals, Inc. Copyright © 2011 Wiley Periodicals, Inc.

  11. Cinnamic acid and fish flour affect wheat phenolic acids and flavonoid compounds, lipid peroxidation, proline levels under salt stress.

    PubMed

    Karadağ, Bergüzar; Yücel, Nilgün Candan

    2017-12-01

    To elucidate the physiological mechanism of salt stress mitigated by cinnamic acid (CA) and fish flour (FF) pretreatment, wheat was pretreated with 20, 50 and 100 ppm CA and 1 g/10 mL FF for 2 d and was then cultivated. We investigated whether exogenous CA + FF could protect wheat from salt stress and examined whether the protective effect was associated with the regulation of seed vigor, antioxidant defense systems, phenolic biosynthesis and lipid peroxidation. At 2 days exogenous CA did not influence seed vigor. Salt stress increased the phenolic biosynthesis, but the CA + FF-combined pretreatment enhanced the phenolic biosynthesis even more under salt stress and decreased lipid peroxidation to some extent, enhancing the tolerance of wheat to salt stress.

  12. Oxalomalate, a competitive inhibitor of NADP+ -dependent isocitrate dehydrogenase, regulates lipid peroxidation-mediated apoptosis in U937 cells.

    PubMed

    Yang, Eun Sun; Yang, Joon-Hyuck; Park, Ji Eun; Park, Jeen-Woo

    2005-01-01

    Membrane lipid peroxidation processes yield products that may react with DNA and proteins to cause oxidative modifications. Recently, we demonstrated that the control of cytosolic redox balance and the cellular defense against oxidative damage is one of the primary functions of cytosolic NADP+ -dependent isocitrate dehydrogenase (IDPc) through to supply NADPH for antioxidant systems. The protective role of IDPc against lipid peroxidation-mediated apoptosis in U937 cells was investigated in control and cells pre-treated with oxlalomalate, a competitive inhibitor of IDPc. Upon exposure to 2,2'-azobis (2-amidinopropane) hydrochloride (AAPH) to U937 cells, which induces lipid peroxidation in membranes, the susceptibility to apoptosis was higher in oxalomalate-treated cells as compared to control cells. The results suggest that IDPc plays an important protective role in apoptosis of U937 cells induced by lipid peroxidation-mediated oxidative stress.

  13. Rebamipide attenuates nonsteroidal anti-inflammatory drugs (NSAID) induced lipid peroxidation by the manganese superoxide dismutase (MnSOD) overexpression in gastrointestinal epithelial cells.

    PubMed

    Nagano, Y; Matsui, H; Shimokawa, O; Hirayama, A; Tamura, M; Nakamura, Y; Kaneko, T; Rai, K; Indo, H P; Majima, H J; Hyodo, I

    2012-04-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) often cause gastrointestinal complications such as gastric ulcers and erosions. Recent studies on the pathogenesis have revealed that NSAIDs induce lipid peroxidation in gastric epithelial cells by generating superoxide anion in mitochondria, independently with cyclooxygenase-inhibition and the subsequent prostaglandin deficiency. Although not clearly elucidated, the impairment of mitochondrial oxidative phosphorylation, or uncoupling, by NSAIDs is associated with the generation of superoxide anion. Physiologically, superoxide is immediately transformed into hydrogen peroxide and diatomic oxygen with manganese superoxide dismutase (MnSOD). Rebamipide is an antiulcer agent that showed protective effects against NSAID-induced lipid peroxidation in gastrointestinal tracts. We hypothesized that rebamipide may attenuate lipid peroxidation by increasing the expression of MnSOD protein in mitochondria and decreasing the leakage of superoxide anion in NSAID-treated gastric and small intestinal epithelial cells. Firstly, to examine rebamipide increases the expression of MnSOD proteins in mitochondria of gastrointestinal epithelial cells, we underwent Western blotting analysis against anti-MnSOD antibody in gastric RGM1 cells and small intestinal IEC6 cells. Secondly, to examine whether the pretreatment of rebamipide decreases NSAID-induced mitochondrial impairment and lipid peroxidation, we treated these cells with NSAIDs with or without rebamipide pretreatment, and examined with specific fluorescent indicators. Finally, to examine whether pretreatment of rebamipide attenuates NSAID-induced superoxide anion leakage from mitochondria, we examined the mitochondria from indomethacin-treated RGM1 cells with electron spin resonance (ESR) spectroscopy using a specific spin-trapping reagent, CYPMPO. Rebamipide increased the expression of MnSOD protein, and attenuated NSAID-induced mitochondrial impairment and lipid peroxidation in RGM1 and IEC6 cells. The pretreatment of rebamipide significantly decreased the signal intensity of superoxide anion from the mitochondria. We conclude that rebamipide attenuates lipid peroxidation by increasing the expression of MnSOD protein and decreasing superoxide anion leakage from mitochondria in both gastric and small intestinal epithelial cells.

  14. Effect of thermal, acid, alkaline and alkaline-peroxide pretreatments on the biochemical methane potential and kinetics of the anaerobic digestion of wheat straw and sugarcane bagasse.

    PubMed

    Bolado-Rodríguez, Silvia; Toquero, Cristina; Martín-Juárez, Judit; Travaini, Rodolfo; García-Encina, Pedro Antonio

    2016-02-01

    The effect of thermal, acid, alkaline and alkaline-peroxide pretreatments on the methane produced by the anaerobic digestion of wheat straw (WS) and sugarcane bagasse (SCB) was studied, using whole slurry and solid fraction. All the pretreatments released formic and acetic acids and phenolic compounds, while 5-hydroxymetilfurfural (HMF) and furfural were generated only by acid pretreatment. A remarkable inhibition was found in most of the whole slurry experiments, except in thermal pretreatment which improved methane production compared to the raw materials (29% for WS and 11% for SCB). The alkaline pretreatment increased biodegradability (around 30%) and methane production rate of the solid fraction of both pretreated substrates. Methane production results were fitted using first order or modified Gompertz equations, or a novel model combining both equations. The model parameters provided information about substrate availability, controlling step and inhibitory effect of compounds generated by each pretreatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Effect of ultrasonic pre-treatment of thermomechanical pulp on hydrogen peroxide bleaching

    NASA Astrophysics Data System (ADS)

    Loranger, E.; Charles, A.; Daneault, C.

    2012-12-01

    Ultrasound pre-treatments of softwood TMP had been carried to evaluate its impact on the efficiency of hydrogen peroxide bleaching. The trials were performed after a factorial design of experiment using frequency, power and time as variables. The experiments were conducted in an ultrasonic bath and then bleached with hydrogen peroxide. Measurements such as brightness, L*A*B* color system coordinate, residual hydrogen peroxide and metal content were evaluated on bleached pulp. The results indicate that the effect of ultrasonic treatment on brightness was dependent on the ultrasound frequency used; the brightness increased slightly at 68 kHz and decreased at 40 and 170 kHz. These results were correlated to the ultrasound effect on the generation of transition metals (copper, iron and manganese) which are responsible for catalytic decomposition of hydrogen peroxide. The influence of metal interference was minimized by using a chelating agent such as diethylene triamine pentaacetic acid (DTPA). With the results obtained in this study we have identified a set of option conditions, e.g. 1000 W, 40 kHz, 1.5 % consistency and 0.2% addition of DTPA prior to the bleaching stage (after ultrasonic pre-treatment) who improve brightness by 2.5 %ISO.

  16. Techno-economic comparison of centralized versus decentralized biorefineries for two alkaline pretreatment processes.

    PubMed

    Stoklosa, Ryan J; Del Pilar Orjuela, Andrea; da Costa Sousa, Leonardo; Uppugundla, Nirmal; Williams, Daniel L; Dale, Bruce E; Hodge, David B; Balan, Venkatesh

    2017-02-01

    In this work, corn stover subjected to ammonia fiber expansion (AFEX™) 1 pretreatment or alkaline pre-extraction followed by hydrogen peroxide post-treatment (AHP pretreatment) were compared for their enzymatic hydrolysis yields over a range of solids loadings, enzymes loadings, and enzyme combinations. Process techno-economic models were compared for cellulosic ethanol production for a biorefinery that handles 2000tons per day of corn stover employing a centralized biorefinery approach with AHP or a de-centralized AFEX pretreatment followed by biomass densification feeding a centralized biorefinery. A techno-economic analysis (TEA) of these scenarios shows that the AFEX process resulted in the highest capital investment but also has the lowest minimum ethanol selling price (MESP) at $2.09/gal, primarily due to good energy integration and an efficient ammonia recovery system. The economics of AHP could be made more competitive if oxidant loadings were reduced and the alkali and sugar losses were also decreased. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Effect of Chemical Washing Pre-treatment of Empty Fruit Bunch (EFB) biochar on Characterization of Hydrogel Biochar composite as Bioadsorbent

    NASA Astrophysics Data System (ADS)

    Meri, N. H.; Alias, A. B.; Talib, N.; Rashid, Z. A.; Wan, W. A.; Ghani, Ab Karim

    2018-05-01

    Hydrogel biochar composite (HBC) is a recent interest among researchers because of the hydrophilic characteristic which can adsorb chemical fluid and showed a versatile potential as adsorbent in removing hazardous material in wastewater and gas stream. In this study, the effect of chemical washing pre-treatment by using two different type of chemical agent Hydrochloric Acid (HCL) and Hydrogen Peroxide (H2O2) was analysed and investigated. The raw EFB biochar was prepared using microwave assisted pyrolysis under 1000W for 30 min under N2 flow with 150 mL/min. To improve the adsoprtion ability, the EFB biochar has been chemical washed pre-treatment with Hydrochloric Acid (HCl) and Hydrogen Peroxide (H2O2) before polymerization process with acrylamide (AAm) as monomer, N,N’-methylenebisacrylamide (MBA) as crosslinker and ammonium persulfate (APS) as initiator. The characterization has studied by using Fourier transform infrared spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC). FTIR result shows that, the formation of Raw EFB to Hydrogel Biochar Composite (Raw EFB > EFB Biochar > Treated Biochars (HCl & H2O2) > Hydrogel Biochar Composite) have changed in functional group. For DSC result it shows that the thermal behaviour of all samples is endothermic process and have high thermal resistance.

  18. Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw. Influence of inhibitors and washing.

    PubMed

    Toquero, Cristina; Bolado, Silvia

    2014-04-01

    Pretreatment is essential in the production of alcohol from lignocellulosic material. In order to increase enzymatic sugar release and bioethanol production, thermal, dilute acid, dilute basic and alkaline peroxide pretreatments were applied to wheat straw. Compositional changes in pretreated solid fractions and sugars and possible inhibitory compounds released in liquid fractions were analysed. SEM analysis showed structural changes after pretreatments. Enzymatic hydrolysis and fermentation by Pichia stipitis of unwashed and washed samples from each pretreatment were performed so as to compare sugar and ethanol yields. The effect of the main inhibitors found in hydrolysates (formic acid, acetic acid, 5-hydroxymethylfurfural and furfural) was first studied through ethanol fermentations of model media and then compared to real hydrolysates. Hydrolysates of washed alkaline peroxide pretreated biomass provided the highest sugar concentrations, 31.82g/L glucose, and 13.75g/L xylose, their fermentation yielding promising results, with ethanol concentrations reaching 17.37g/L. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Photo-oxidation of PAHs with calcium peroxide as a source of the hydroxyl radicals

    NASA Astrophysics Data System (ADS)

    Kozak, Jolanta; Włodarczyk-Makuła, Maria

    2018-02-01

    The efficiency of the removal of selected PAHs from the pretreated coking wastewater with usage of CaO2, Fenton reagent (FeSO4) and UV rays are presented in this article. The investigations were carried out using coking wastewater originating from biological, industrial wastewater treatment plant. At the beginning of the experiment, the calcium peroxide (CaO2) powder as a source of hydroxyl radicals (OH•) and Fenton reagent were added to the samples of wastewater. Then, the samples were exposed to UV rays for 360 s. The process was carried out at pH 3.5-3.8. After photo-oxidation process a decrease in the PAHs concentration was observed. The removal efficiency of selected hydrocarbons was in the ranged of 89-98%. The effectiveness of PAHs degradation was directly proportional to the calcium peroxide dose.

  20. Synthesis of pulping processes with fiber loading methods for lightweight papers

    Treesearch

    John H. Klungness; Roland Gleisner; Masood Akhtar; Eric G. Horn; Mike Lentz

    2003-01-01

    Pulping technologies can be synthesized with fiber loading with simultaneous alkaline peroxide bleaching to produce lightweight high-opacity printing papers. We compared the results of recent experiments on combining oxalic acid pretreated wood chips used for thermomechanical pulp (TMP) with fiber loading and previous experiments on combining similar pulps treated with...

  1. A new approach for bioethanol production from sugarcane bagasse using hydrodynamic cavitation assisted-pretreatment and column reactors.

    PubMed

    Terán Hilares, Ruly; Kamoei, Douglas Viana; Ahmed, Muhammad Ajaz; da Silva, Silvio Silvério; Han, Jong-In; Santos, Júlio César Dos

    2018-05-01

    Hydrodynamic cavitation (HC) was adopted to assist alkaline-hydrogen peroxide pretreatment of sugarcane bagasse (SCB). In the following condition: 0.29 M of NaOH, 0.78% (v/v) of H 2 O 2 , 9.95 min of process time and 3 bar of inlet pressure, 95.4% of digestibility of cellulosic fraction was achieved. To take the best use of the pretreated biomass, the overall process was intensified by way of employing a packed bed flow-through column reactor and thus enabling to handle a high solid loading of 20%, thereby leading to cellulose and hemicellulose conversions to 74.7% and 75%, respectively. In the fermentation step, a bubble column reactor was introduced to maximize ethanol production from the pretreated SCB by Scheffersomyces stipitis NRRL-Y7124, resulting in 31.50 g/L of ethanol, 0.49 g/g of ethanol yield and 0.68 g/L.h of productivity. All this showed that our HC-assisted NaOH-H 2 O 2 pretreatment strategy along with the process intensification approach might offer an option for SCB-based biorefineries. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. The inhibitory effect of 3-amino-1,2,4-triazole on relaxation induced by hydroxylamine and sodium azide but not hydrogen peroxide or glyceryl trinitrate in rat aorta.

    PubMed Central

    Mian, K. B.; Martin, W.

    1995-01-01

    1. In this study we investigated the role of catalase in relaxation induced by hydroxylamine, sodium azide, glyceryl trinitrate and hydrogen peroxide in isolated rings of rat aorta. 2. Hydrogen peroxide (1 microM-1 mM)-induced concentration-dependent relaxation of phenylephrine (PE)-induced tone in endothelium-containing rings. In endothelium-denuded rings, however, higher concentrations (30 microM-1 mM) of hydrogen peroxide were required to produce relaxation. The endothelium-dependent component of hydrogen peroxide-induced relaxation was abolished following pretreatment with N(O)-nitro-L-arginine methyl ester (L-NAME, 30 microM). L-NAME (30 microM) had no effect, however, on hydrogen peroxide-induced relaxation in endothelium-denuded rings. 3. Pretreatment of endothelium-denuded rings with catalase (1000 u ml-1) blocked relaxation induced by hydrogen peroxide (10 microM-1 mM). The ability of catalase to inhibit hydrogen peroxide-induced relaxation was partially blocked following incubation with 3-amino-1,2, 4-triazole (AT, 50 mM) for 30 min and completely blocked at 90 min. 4. Pretreatment of endothelium-denuded rings with methylene blue (MeB, 30 microM) inhibited relaxation induced by hydrogen peroxide (10 microM-1 mM), sodium azide (1-300 nM), hydroxylamine (1-300 nM) and glyceryl trinitrate (1-100 nM) suggesting that each acted by stimulation of soluble guanylate cyclase. 5. Pretreatment of endothelium-denuded rings with AT (1-50 mM, 90 min) to inhibit endogenous catalase blocked relaxation induced by sodium azide (1-300 nM) and hydroxylamine (1-300 nM) but had no effect on relaxation induced by hydrogen peroxide (10 microM-1 mM) or glyceryl trinitrate (1-100 nM). 6. In a cell-free system, incubation of sodium azide (10 microM-3 mM) and hydroxylamine (10 microM-30 mM) but not glyceryl trinitrate (10 microM-1 mM) with catalase (1000 u ml-1) in the presence of hydrogen peroxide (1 mM) led to production of nitrite, a major breakdown product of nitric oxide. AT (1-100 mM) inhibited, in a concentration-dependent manner, the formation of nitrite from azide in the presence of hydrogen peroxide. 7. These data suggest that metabolism by catalase plays an important role in the relaxation induced by hydroxylamine and sodium azide in isolated rings of rat aorta. Relaxation appears to be due to formation of nitric oxide and activation of soluble guanylate cyclase. In contrast, metabolism by catalase does not appear to be involved in the relaxant actions of hydrogen peroxide or glyceryl trinitrate. PMID:8719811

  3. Steam pretreatment of Saccharum officinarum L. bagasse by adding of impregnating agents for advanced bioethanol production.

    PubMed

    Verardi, A; Blasi, A; De Bari, I; Calabrò, V

    2016-12-01

    The main byproduct of the sugarcane industry, Saccharum officinarum L. bagasse (sugarcane bagasse, SCB), is widely used as lignocellulose biomass for bio-ethanol (EtOH) production. In this research study, SCB was pretreated by steam explosion (SE) method using two different impregnating agents: sulfur dioxide (SD) and hydrogen peroxide (HP). As matter of fact, the use of impregnating agents improves the performance of SE method, increasing the concentrations of fermentable sugars after enzymatic saccharification, and decreasing the inhibitor compounds produced during the steam pretreatment step. The aim of this study was to investigate and compare the use of the two impregnating agents in various SE-conditions in order to optimize pretreatment parameters. For every pretreatment condition, it has been evaluated: concentration of fermentable sugars, glucose and xylose yields, and the effects of the inhibitor compounds on enzymatic hydrolysis step. The obtained results allow to improve the efficiency of the whole process of bio-EtOH synthesis enhancing the amount of fermentable sugars produced and the eco-sustainability of the whole process. Indeed, the optimization of steam pretreatment leads to a reduction of energy requirements and to a lower environmental impact. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Production of isoprene, one of the high-density fuel precursors, from peanut hull using the high-efficient lignin-removal pretreatment method.

    PubMed

    Wang, Sumeng; Wang, Zhaobao; Wang, Yongchao; Nie, Qingjuan; Yi, Xiaohua; Ge, Wei; Yang, Jianming; Xian, Mo

    2017-01-01

    Isoprene as the feedstock can be used to produce renewable energy fuels, providing an alternative to replace the rapidly depleting fossil fuels. However, traditional method for isoprene production could not meet the demands for low-energy consumption and environment-friendliness. Moreover, most of the previous studies focused on biofuel production out of lignocellulosic materials such as wood, rice straw, corn cob, while few studies concentrated on biofuel production using peanut hull (PH). As is known, China is the largest peanut producer in the globe with an extremely considerable amount of PH to be produced each year. Therefore, a novel, renewable, and environment-friendly pretreatment strategy to increase the enzymatic hydrolysis efficiency of cellulose and reduce the inhibitors generation was developed to convert PH into isoprene. The optimal pretreatment conditions were 100 °C, 60 min, 10% (w/v) solid loading with a 2:8 volume ratio of phosphoric acid and of hydrogen peroxide. In comparison with the raw PH, the hemicellulose and lignin were reduced to 85.0 and 98.0%, respectively. The cellulose-glucose conversion of pretreated PH reached up to 95.0% in contrast to that of the raw PH (19.1%). Only three kinds of inhibitors including formic acid, levulinic acid, and a little furfural were formed during the pretreatment process, whose concentrations were too low to inhibit the isoprene yield for Escherichia coli fermentation. Moreover, compared with the isoprene yield of pure glucose fermentation (298 ± 9 mg/L), 249 ± 6.7 and 294 ± 8.3 mg/L of isoprene were produced using the pretreated PH as the carbon source by the engineered strain via separate hydrolysis and fermentation and simultaneous saccharification and fermentation (SSF) methods, respectively. The isoprene production via SSF had a 9.8% glucose-isoprene conversion which was equivalent to 98.8% of isoprene production via the pure glucose fermentation. The optimized phosphoric acid/hydrogen peroxide combination pretreatment approach was proved effective to remove lignin and hemicellulose from lignocellulosic materials. Meanwhile, the pretreated PH could be converted into isoprene efficiently in the engineered Escherichia coli . It is concluded that this novel strategy of isoprene production using lignocellulosic materials pretreated by phosphoric acid/hydrogen peroxide is a promising alternative to isoprene production using traditional way which can fully utilize non-renewable fossil sources.

  5. Caffeic acid and quercetin protect erythrocytes against the oxidative stress and the genotoxic effects of lambda-cyhalothrin in vitro.

    PubMed

    Abdallah, Fatma Ben; Fetoui, H; Fakhfakh, F; Keskes, L

    2012-01-01

    Lambda-cyhalothrin (LTC) is a synthetic pyrethroid with a broad spectrum of insecticidal and acaricidal activities used to control wide range of insect pests in a variety of applications. The aim of this study was to examine (i) the potency of LTC to induce oxidative stress response in rat erythrocytes in vitro and (ii) the role of caffeic acid (20 μM) and/or quercetin (10 μM) in preventing the cytotoxic effects. Erythrocytes were divided into four portions. The erythrocytes of the first portion were incubated for 4 h at 37°C with different concentrations (0, 50 and 100 μM) of LTC. The others portions were pretreated with caffeic acid and/or quercetin for 30 min prior to LTC incubation. Lipid peroxidation, protein oxidation, antioxidant enzyme activities and DNA damage were examined. LTC at different concentrations causes increased levels of lipid peroxidation, protein oxidation, DNA damage and decreased antioxidant enzyme activities. Combined caffeic acid and quercetin pretreatments significantly reduced the levels of lipid peroxidation markers, that is thiobarbituric acid reactive substance (TBARS), protein carbonyls (PCO) and decreased DNA damage in LTC portion. Further, combined caffeic acid and quercetin pretreatment maintain antioxidant enzyme activities and glutathione content near to normal values. These results suggest that LTC exerts its toxic effect by increasing lipid peroxidation, altering the antioxidant enzyme activities and DNA damage. Caffeic acid and quercetin pretreatments prevent the toxic effects of LTC, suggesting their role as a potential antioxidant.

  6. Recycling the liquid fraction of alkaline hydrogen peroxide in the pretreatment of corn stover.

    PubMed

    Alencar, Bárbara Ribeiro Alves; Reis, Alexandre Libanio Silva; de Souza, Raquel de Fatima Rodrigues; Morais, Marcos Antônio; Menezes, Rômulo Simões Cezar; Dutra, Emmanuel Damilano

    2017-10-01

    The aim of this study was to evaluate the influence of recycling the liquid fraction of pretreatment with alkaline hydrogen peroxide (AHP) on the hydrolysis of corn stover. Corn stover was pretreated in the traditional condition with 7.5% v/v H 2 O 2 . After pretreatment, the solids were separated from the liquid fraction and five successive reuse cycles of the liquid fraction were tested. The solid fraction from pretreatment in each recycle was submitted to enzymatic hydrolysis. The number of recycles had a linear negative effect (R 2 =0.98) on biomass delignification efficiency and also affected negatively the enzymatic conversion efficiency. Despite the decrease in efficiency after each recycling step, reuse of the liquid fraction leads to reduction in water, H 2 O 2 and NaOH consumption of up to 57.6%, 59.6% and 57.6%, respectively. These findings point to an efficient recycling technology, which may reduce costs and save water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Innovative pretreatment of sugarcane bagasse using supercritical CO2 followed by alkaline hydrogen peroxide.

    PubMed

    Phan, Duy The; Tan, Chung-Sung

    2014-09-01

    An innovative method for pretreatment of sugarcane bagasse using sequential combination of supercritical CO2 (scCO2) and alkaline hydrogen peroxide (H2O2) at mild conditions is proposed. This method was found to be superior to the individual pretreatment with scCO2, ultrasound, or H2O2 and the sequential combination of scCO2 and ultrasound regarding the yield of cellulose and hemicellulose, almost twice the yield was observed. Pretreatment with scCO2 could obtain higher amount of cellulose and hemicellulose but also acid-insoluble lignin. Pretreatment with ultrasound or H2O2 could partly depolymerize lignin, however, could not separate cellulose from lignin. The analysis of liquid products via enzymatic hydrolysis by HPLC and the characterization of the solid residues by SEM revealed strong synergetic effects in the sequential combination of scCO2 and H2O2. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Enhanced enzymatic hydrolysis and ethanol production from cashew apple bagasse pretreated with alkaline hydrogen peroxide.

    PubMed

    da Costa, Jessyca Aline; Marques, José Edvan; Gonçalves, Luciana Rocha Barros; Rocha, Maria Valderez Ponte

    2015-03-01

    The effect of combinations and ratios between different enzymes has been investigated in order to assess the optimal conditions for hydrolysis of cashew apple bagasse pretreated with alkaline hydrogen peroxide (the solids named CAB-AHP). The separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) processes were evaluated in the ethanol production. The enzymatic hydrolysis conducted with cellulase complex and β-glucosidase in a ratio of 0.61:0.39, enzyme loading of 30FPU/g(CAB-AHP) and 66CBU/g(CAB-AHP), respectively, using 4% cellulose from CAB-AHP, turned out to be the most effective conditions, with glucose and xylose yields of 511.68 mg/g(CAB-AHP) and 237.8 mg/g(CAB-AHP), respectively. Fermentation of the pure hydrolysate by Kluyveromyces marxianus ATCC 36907 led to an ethanol yield of 61.8kg/ton(CAB), corresponding to 15 g/L ethanol and productivity of 3.75 g/( Lh). The ethanol production obtained for SSF process using K. marxianus ATCC 36907 was 18 g/L corresponding to 80% yield and 74.2kg/ton(CAB). Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Combined free nitrous acid and hydrogen peroxide pre-treatment of waste activated sludge enhances methane production via organic molecule breakdown

    PubMed Central

    Zhang, Tingting; Wang, Qilin; Ye, Liu; Batstone, Damien; Yuan, Zhiguo

    2015-01-01

    This study presents a novel pre-treatment strategy using combined free nitrous acid (FNA i.e. HNO2) and hydrogen peroxide (H2O2) to enhance methane production from WAS, with the mechanisms investigated bio-molecularly. WAS from a full-scale plant was treated with FNA alone (1.54 mg N/L), H2O2 alone (10–80 mg/g TS), and their combinations followed by biochemical methane potential tests. Combined FNA and H2O2 pre-treatment substantially enhanced methane potential of WAS by 59–83%, compared to 13–23% and 56% with H2O2 pre-treatment alone and FNA pre-treatment alone respectively. Model-based analysis indicated the increased methane potential was mainly associated with up to 163% increase in rapidly biodegradable fraction with combined pre-treatment. The molecular weight distribution and chemical structure analyses revealed the breakdown of soluble macromolecules with the combined pre-treatment caused by the deamination and oxidation of the typical functional groups in proteins, polysaccharides and phosphodiesters. These changes likely improved the biodegradability of WAS. PMID:26565653

  10. Optimizing Phosphoric Acid plus Hydrogen Peroxide (PHP) Pretreatment on Wheat Straw by Response Surface Method for Enzymatic Saccharification.

    PubMed

    Qiu, Jingwen; Wang, Qing; Shen, Fei; Yang, Gang; Zhang, Yanzong; Deng, Shihuai; Zhang, Jing; Zeng, Yongmei; Song, Chun

    2017-03-01

    Wheat straw was pretreated by phosphoric acid plus hydrogen peroxide (PHP), in which temperature, time, and H 3 PO 4 proportion for pretreatment were investigated by using response surface method. Results indicated that hemicellulose and lignin removal positively responded to the increase of pretreatment temperature, H 3 PO 4 proportion, and time. H 3 PO 4 proportion was the most important variable to control cellulose recovery, followed by pretreatment temperature and time. Moreover, these three variables all negatively related to cellulose recovery. Increasing H 3 PO 4 proportion can improve enzymatic hydrolysis; however, reduction on cellulose recovery results in decrease of glucose yield. Extra high temperature or long time for pretreatment was not beneficial to enzymatic hydrolysis and glucose yield. Based on the criterion for minimizing H 3 PO 4 usage and maximizing glucose yield, the optimized pretreatment conditions was 40 °C, 2.0 h, and H 3 PO 4 proportion of 70.2 % (H 2 O 2 proportion of 5.2 %), by which glucose yielded 299 mg/g wheat straw (946.2 mg/g cellulose) after 72-h enzymatic hydrolysis.

  11. Oxalomalate, a competitive inhibitor of NADP+-dependent isocitrate dehydrogenase, enhances lipid peroxidation-mediated oxidative damage in U937 cells.

    PubMed

    Yang, Joon-Hyuck; Park, Jeen-Woo

    2003-08-01

    Membrane lipid peroxidation processes yield products that may react with DNA and proteins to cause oxidative modifications. Cytosolic NADP+-dependent isocitrate dehydrogenase (ICDH) in U937 cells produces NADPH, an essential reducing equivalent for the antioxidant system. The protective role of ICDH against lipid peroxidation-mediated oxidative damage in U937 cells was investigated in control cells pre-treated with oxalomalate, a competitive inhibitor of ICDH. Upon exposure to 2,2'-azobis(2-amidinopropane) hydrochloride (AAPH) to U937 cells, which induces lipid peroxidation in membranes, the viability was lower and the protein oxidation, lipid peroxidation, and oxidative DNA damage, reflected by an increase in 8-hydroxy-2'-deoxyguanosine, were higher in oxalomalate-treated cells as compared to control cells. We also observed the significant increase in the endogenous production of reactive oxygen species, as measured by the oxidation of 2',7'-dichlorodihydrofluorescin, as well as the significant decrease in the intracellular GSH level in oxalomalate-treated U937 cells upon exposure to AAPH. These results suggest that ICDH plays an important role as an antioxidant enzyme in cellular defense against lipid peroxidation-mediated oxidative damage through the removal of reactive oxygen species.

  12. Structural characterization of alkaline hydrogen peroxide pretreated grasses exhibiting diverse lignin phenotypes

    PubMed Central

    2012-01-01

    Background For cellulosic biofuels processes, suitable characterization of the lignin remaining within the cell wall and correlation of quantified properties of lignin to cell wall polysaccharide enzymatic deconstruction is underrepresented in the literature. This is particularly true for grasses which represent a number of promising bioenergy feedstocks where quantification of grass lignins is particularly problematic due to the high fraction of p-hydroxycinnamates. The main focus of this work is to use grasses with a diverse range of lignin properties, and applying multiple lignin characterization platforms, attempt to correlate the differences in these lignin properties to the susceptibility to alkaline hydrogen peroxide (AHP) pretreatment and subsequent enzymatic deconstruction. Results We were able to determine that the enzymatic hydrolysis of cellulose to to glucose (i.e. digestibility) of four grasses with relatively diverse lignin phenotypes could be correlated to total lignin content and the content of p-hydroxycinnamates, while S/G ratios did not appear to contribute to the enzymatic digestibility or delignification. The lignins of the brown midrib corn stovers tested were significantly more condensed than a typical commercial corn stover and a significant finding was that pretreatment with alkaline hydrogen peroxide increases the fraction of lignins involved in condensed linkages from 88–95% to ~99% for all the corn stovers tested, which is much more than has been reported in the literature for other pretreatments. This indicates significant scission of β-O-4 bonds by pretreatment and/or induction of lignin condensation reactions. The S/G ratios in grasses determined by analytical pyrolysis are significantly lower than values obtained using either thioacidolysis or 2DHSQC NMR due to presumed interference by ferulates. Conclusions It was found that grass cell wall polysaccharide hydrolysis by cellulolytic enzymes for grasses exhibiting a diversity of lignin structures and compositions could be linked to quantifiable changes in the composition of the cell wall and properties of the lignin including apparent content of the p-hydroxycinnamates while the limitations of S/G estimation in grasses is highlighted. PMID:22672858

  13. Effect of ultrasound dielectric pretreatment on the oxidation resistance of vacuum-fried apple chips.

    PubMed

    Shen, Xu; Zhang, Min; Bhandari, Bhesh; Guo, Zhimei

    2018-02-15

    In order to investigate the effect of ultrasound dielectric pretreatment on the oxidation resistance of vacuum-fried apple chips, apple slices were pretreated at ultrasonic powers of 150, 250 and 400 W for times of 10, 20 and 30 min before vacuum frying. The quality and oxidation resistance of fried apple were evaluated by testing the dielectric properties and comparing the moisture content, oil uptake, color, acid value (AV) and peroxide value (PV) of apple chips. Ultrasonic treatment significantly changed the dielectric properties of apple slices. Moisture and oil contents of apple chips decreased with increasing ultrasonic power and time. During storage, the color retention of fried apple chips processed by ultrasound was improved. AV and PV values of fried apple chips processed by ultrasound were lower, which improved their antioxidant properties. The results of the present study indicated that ultrasound dielectric pretreatment improved not only the quality of vacuum-fried apple chips but also their antioxidant properties. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  14. Pretreating wheat straw by phosphoric acid plus hydrogen peroxide for enzymatic saccharification and ethanol production at high solid loading.

    PubMed

    Qiu, Jingwen; Ma, Lunjie; Shen, Fei; Yang, Gang; Zhang, Yanzong; Deng, Shihuai; Zhang, Jing; Zeng, Yongmei; Hu, Yaodong

    2017-08-01

    Wheat straw was pretreated by phosphoric acid plus hydrogen peroxide (PHP) for enzymatic hydrolysis and ethanol fermentation at high solid loadings. Results indicated solid loading could reach 20% with 77.4% cellulose-glucose conversion and glucose concentration of 164.9g/L in hydrolysate, it even was promoted to 25% with only 3.4% decrease on cellulose-glucose conversion as the pretreated-wheat straw was dewatered by air-drying. 72.9% cellulose-glucose conversion still was achieved as the minimized enzyme input of 20mg protein/g cellulose was employed for hydrolysis at 20% solid loading. In the corresponding conditions, 100g wheat straw can yield 11.2g ethanol with concentration of 71.2g/L by simultaneous saccharification and fermentation. Thus, PHP-pretreatment benefitted the glucose or ethanol yield at high solid loadings with lower enzyme input. Additionally, decreases on the maximal cellulase adsorption and the direct-orange/direct-blue indicated drying the PHP-pretreated substrates negatively affected the hydrolysis due to the shrinkage of cellulase-size-accommodable pores. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Limitations of the removal of cyanide from coking wastewater by ozonation and by the hydrogen peroxide-ozone process.

    PubMed

    Pueyo, N; Miguel, N; Ovelleiro, J L; Ormad, M P

    The purpose of this study is to compare the efficiency of ozonation and the hydrogen peroxide-ozone process for the removal of cyanide from coking wastewater. The most efficient oxidation process is combined with coagulation-flocculation-decantation and lime-soda ash softening pretreatments. The oxidation in aqueous solution and industrial wastewater (at pH 9.5-12.3) by O3 was carried out using a range of concentration of consumed O3 from 10 to 290 mg/L. A molar ratio of H2O2/O3 from 0.1 to 5.2 with different concentrations of O3 constants was used for the H2O2-O3 process. The maximum cyanide removal obtained in coking wastewater was 90% using a mass ratio of O3/CN(-) of 9.5. Using lower concentrations of O3, cyanide is not removed and can even be generated due to the presence of other cyanide precursor organic micropollutants in the industrial matrix. The concentration of O3 is reduced to half for the same cyanide removal efficiency if the pretreatments are applied to reduce the carbonate and bicarbonate ions. The cyanide removal efficiency in coking wastewater is not improved if the O3 is combined with the H2O2. However, the preliminary cyanide removal treatment in aqueous solution showed an increase in the cyanide removal efficiency for the H2O2-O3 process.

  16. Are Reactive Oxygen Species Involved in Microcystin-LR Intoxication?

    DTIC Science & Technology

    1988-05-12

    peroxidation in paracetamol intoxication, did not alter the effect of BHA pretreatment., -- 2-A 4" 4 2 - INTRODUCTION The toxic cyclic heptapeptide...that paracetamol induces dose-dependant lipid peroxidation in starved, but not in fed mice (WENDEL et a’.., 1979). This fact, and the trends

  17. Relating Nanoscale Accessibility within Plant Cell Walls to Improved Enzyme Hydrolysis Yields in Corn Stover Subjected to Diverse Pretreatments.

    PubMed

    Crowe, Jacob D; Zarger, Rachael A; Hodge, David B

    2017-10-04

    Simultaneous chemical modification and physical reorganization of plant cell walls via alkaline hydrogen peroxide or liquid hot water pretreatment can alter cell wall structural properties impacting nanoscale porosity. Nanoscale porosity was characterized using solute exclusion to assess accessible pore volumes, water retention value as a proxy for accessible water-cell walls surface area, and solute-induced cell wall swelling to measure cell wall rigidity. Key findings concluded that delignification by alkaline hydrogen peroxide pretreatment decreased cell wall rigidity and that the subsequent cell wall swelling resulted increased nanoscale porosity and improved enzyme binding and hydrolysis compared to limited swelling and increased accessible surface areas observed in liquid hot water pretreated biomass. The volume accessible to a 90 Å dextran probe within the cell wall was found to be correlated to both enzyme binding and glucose hydrolysis yields, indicating cell wall porosity is a key contributor to effective hydrolysis yields.

  18. Oleuropein attenuates cognitive dysfunction and oxidative stress induced by some anesthetic drugs in the hippocampal area of rats.

    PubMed

    Alirezaei, Masoud; Rezaei, Maryam; Hajighahramani, Shahin; Sookhtehzari, Ali; Kiani, Katayoun

    2017-01-01

    The present study was designed to evaluate the antioxidant effects of oleuropein against oxidative stress in the hippocampal area of rats. We used seven experimental groups as follows: Control, Propofol, Propofol-Ketamine (Pro.-Ket.), Xylazine-Ketamine (Xyl.-Ket.), and three oleuropein-pretreated groups (Ole.-Pro., Ole.-Pro.-Ket. and Ole.-Xyl.-Ket.). The oleuropein-pretreated groups received oleuropein (15 mg/kg body weight as orally) for 10 consecutive days. Propofol 100 mg/kg, xylazine 3 mg/kg, and ketamine 75 mg/kg once as ip was used on the 11th day of treatment. Spatial memory impairment and antioxidant status of hippocampus were measured via Morris water maze, lipid peroxidation marker, and antioxidant enzyme activities. Spatial memory impairment and lipid peroxidation significantly increased in Xyl.-Ket.-treated rats in comparison to the control, propofol, Ole.-Pro. and Ole.-Pro.-Ket. groups. Oleuropein pretreatment significantly reversed spatial memory impairment and lipid peroxidation in the Ole.-Xyl.-Ket. group as compared to the Xyl.-Ket.-treated rats. There was no significant difference between the control and the propofol group in lipid peroxidation and spatial memory status. Superoxide dismutase and catalase activities both significantly decreased in Xyl.-Ket.-treated rats when compared to the control, propofol, Ole.-Pro., Ole.-Pro.-Ket., and Ole.-Xyl.-Ket. groups. In contrast, glutathione peroxidase activity in Xyl.-Ket.-treated rats significantly increased as compared to the control, propofol, Pro.-Ket., Ole.-Pro., and Ole.-Pro.-Ket. groups. We concluded that xylazine in combination with ketamine is an oxidative anesthetic drug and oleuropein pretreatment attenuates cognitive dysfunction and oxidative stress induced by anesthesia in the hippocampal area of rats. We also confirmed the antioxidant properties of propofol as a promising antioxidant anesthetic agent.

  19. Combined effects of Fenton peroxidation and CaO conditioning on sewage sludge thermal drying.

    PubMed

    Liu, Huan; Liu, Peng; Hu, Hongyun; Zhang, Qiang; Wu, Zhenyu; Yang, Jiakuan; Yao, Hong

    2014-12-01

    Joint application of Fenton's reagent and CaO can dramatically enhance sludge dewaterability, thus are also likely to affect subsequent thermal drying process. This study investigated the synergistic effects of the two conditioners on the thermal drying behavior of sewage sludge and the emission characteristics of main sulfur-/nitrogen-containing gases. According to the results, Fenton peroxidation combined with CaO conditioning efficiently promoted sludge heat transfer, reduced the amounts of both free and bound water, and created porous structure in solids to provide evaporation channels, thus producing significant positive effects on sludge drying performance. In this case, the required time for drying was shortened to one-third. Additionally, joint usage of Fenton's reagent and CaO did not increase the losses of organic matter during sludge drying process. Meanwhile, they facilitated the formation of sulfate and sulfonic acid/sulfone, leading to sulfur retention in dried sludge. Both of Fenton peroxidation and CaO conditioning promoted the oxidation, decomposition, and/or dissolution of protein and inorganic nitrogen in sludge pre-treatment. As a consequence, the emissions of sulfurous and nitrogenous gases from dewatered sludge drying were greatly suppressed. These indicate that combining Fenton peroxidation with CaO conditioning is a promising strategy to improve drying efficiency of sewage sludge and to control sulfur and nitrogen contaminants during sludge thermal drying process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Fuel ethanol production from alkaline peroxide pretreated corn stover

    USDA-ARS?s Scientific Manuscript database

    Corn stover (CS) has the potential to serve as an abundant low-cost feedstock for production of fuel ethanol. Due to heterogeneous complexity and recalcitrance of lignocellulosic feedstocks, pretreatment is required to break the lignin seal and/or disrupt the structure of crystalline cellulose to in...

  1. Pretreatment of corn stover and hybrid poplar by sodium hydroxide and hydrogen peroxide.

    PubMed

    Gupta, Rajesh; Lee, Y Y

    2010-01-01

    Sodium hydroxide and its derivatives are used as pulping reagents, wherein the spent NaOH is recovered in salt form and reused. In this study, use of low concentration NaOH (1-5%) in pretreatment of corn stover and hybrid poplar was investigated. It was done with the understanding that NaOH can be recovered. One of the main objectives in this study is to explore the potential of H(2)O(2) with NaOH for pretreatment of high lignin substrate such as hybrid poplar. Pretreatment time has not been optimized in this study but held constant at 24 h. Corn stover, after treatment with NaOH under moderate conditions, attains near quantitative glucan digestibility. On the other hand, hybrid poplar requires treatment at higher temperature and NaOH concentration to attain acceptable level of digestibility. Supplementation of hydrogen peroxide in the pretreatment significantly raises delignification and digestibility of hybrid poplar. It was also helpful in retaining the carbohydrates in the treated solids. Retention of hemicellulose after pretreatment provides a significant economic benefit as it eliminates the need for detoxifying hemicellulose sugars. As the residual xylan remaining after pretreatment is an impediment to enzymatic digestion of glucan, supplementation of xylanase has significantly increased the digestibility of glucan as well as xylan of the treated hybrid poplar. (c) 2010 American Institute of Chemical Engineers

  2. Surface characterization and chemical analysis of bamboo substrates pretreated by alkali hydrogen peroxide.

    PubMed

    Song, Xueping; Jiang, Yan; Rong, Xianjian; Wei, Wei; Wang, Shuangfei; Nie, Shuangxi

    2016-09-01

    The surface characterization and chemical analysis of bamboo substrates by alkali hydrogen peroxide pretreatment (AHPP) were investigated in this study. The results tended to manifest that AHPP prior to enzymatic and chemical treatment was potential for improving accessibility and reactivity of bamboo substrates. The inorganic components, organic solvent extractives and acid-soluble lignin were effectively removed by AHPP. X-ray photoelectron spectroscopy (XPS) analysis indicated that the surface of bamboo chips had less lignin but more carbohydrate after pre-treatment. Fiber surfaces became etched and collapsed, and more pores and debris on the substrate surface were observed with Scanning Electron Microscopy (SEM). Brenauer-Emmett-Teller (BET) results showed that both of pore volume and surface area were increased after AHPP. Although XRD analysis showed that AHPP led to relatively higher crystallinity, pre-extraction could overall enhance the accessibility of enzymes and chemicals into the bamboo structure. Copyright © 2016. Published by Elsevier Ltd.

  3. Gastroprotective effect of cyanidin 3-glucoside on ethanol-induced gastric lesions in rats.

    PubMed

    Li, Chun-Ying; Xu, Hong-De; Zhao, Bing-Tian; Chang, Hyo-Ihl; Rhee, Hae-Ik

    2008-12-01

    This study investigated the in vivo protective effect of cyanidin 3-glucoside (C3G) against ethanol-induced gastric lesions in rats. The experimental rats were treated with 80% ethanol after pretreatment with various doses of C3G (4 and 8 mg/kg of body weight), and the control rats received only 80% ethanol. Oral pretreatment with C3G significantly inhibited the formation of ethanol-induced gastric lesions and the elevation of the lipid peroxide level. In addition, pretreatment with C3G significantly increased the level of glutathione and the activities of radical scavenging enzymes, such as superoxide dismutase, catalase, and glutathione peroxidase, in gastric tissues. These results suggest that the gastroprotective effect of C3G removes the ethanol-induced lipid peroxides and free radicals and that it may offer a potential remedy for the treatment of gastric lesions.

  4. Effects of curcumin and ursolic acid on the mitochondrial coupling efficiency and hydrogen peroxide emission of intact skeletal myoblasts.

    PubMed

    Tueller, Daniel J; Harley, Jackson S; Hancock, Chad R

    2017-10-21

    Curcumin may improve blood glucose management, but the mechanism is not fully established. We demonstrated that curcumin (40 μM) reduced the mitochondrial coupling efficiency (percentage of oxygen consumption coupled to ATP synthesis) of intact skeletal muscle cells. A 30-minute pretreatment with curcumin reduced mitochondrial coupling efficiency by 17.0 ± 0.4% relative to vehicle (p < 0.008). Curcumin pretreatment also decreased the rate of hydrogen peroxide emission by 43 ± 13% compared to vehicle (p < 0.05). Analysis of cell respiration in the presence of curcumin revealed a 40 ± 4% increase in the rate of oxygen consumption upon curcumin administration (p < 0.05 compared to vehicle). No difference in mitochondrial coupling efficiency was observed between vehicle- and curcumin-pretreated cells after permeabilization of cell membranes (p > 0.7). The interaction between curcumin and ursolic acid, another natural compound that may improve blood glucose management, was also examined. Pretreatment with ursolic acid (0.12 μM) increased the mitochondrial coupling efficiency of intact cells by 4.1 ± 1.1% relative to vehicle (p < 0.008) and attenuated the effect of curcumin when the two compounds were used in combination. The observed changes to mitochondrial coupling efficiency and hydrogen peroxide emission were consistent with the established effects of curcumin on blood glucose control. Our findings also show that changes to mitochondrial coupling efficiency after curcumin pretreatment may go undetected unless cells are assessed in the intact condition. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Comparison of pretreatment methods on the enzymatic Saccharification of aspen wood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinto, J.H.; Kamden, D.P.

    Five different chemical pretreatments, using dilute sulfuric acid, sodium hydroxide, hydrogen peroxide and sodium hydroxide, peroxy-monosulfate, and acetic acid, were applied to aspen thermomechanical fibers. The pretreated fibers were submitted to enzymatic hydrolysis and the liberated glucose was monitored. High glucose concentrations were observed for the peroxymonosulfate and the acetic acid pretreated samples. Glucose concentrations greater than 25 g/L were obtained in these cases. This corresponds to conversions on the order of 90% of the retreated substrate glucose content. 18 refs., 1 fig., 4 tabs.

  6. The effect of lignin removal by alkaline peroxide pretreatment on the susceptibility of corn stover to purified cellulolytic and xylanolytic enzymes.

    PubMed

    Selig, Michael J; Vinzant, Todd B; Himmel, Michael E; Decker, Stephen R

    2009-05-01

    Pretreatment of corn stover with alkaline peroxide (AP) at pH 11.5 resulted in reduction of lignin content in the residual solids as a function of increasing batch temperature. Scanning electron microscopy of these materials revealed notably more textured surfaces on the plant cell walls as a result of the delignifying pretreatment. As expected, digestion of the delignified samples with commercial cellulase preparations showed an inverse relationship between the content of lignin present in the residual solids after pretreatment and the extent of both glucan and xylan conversion achievable. Digestions with purified enzymes revealed that decreased lignin content in the pretreated solids did not significantly impact the extent of glucan conversion achievable by cellulases alone. Not until purified xylanolytic activities were included with the cellulases were significant improvements in glucan conversion realized. In addition, an inverse relationship was observed between lignin content after pretreatment and the extent of xylan conversion achievable in a 24-h period with the xylanolytic enzymes in the absence of the cellulases. This observation, coupled with the direct relationship between enzymatic xylan and glucan conversion observed in a number of cases, suggests that the presence of lignins may not directly occlude cellulose present in lignocelluloses but rather impact cellulase action indirectly by its association with xylan.

  7. Cardioprotective Effects of Tualang Honey: Amelioration of Cholesterol and Cardiac Enzymes Levels.

    PubMed

    Khalil, Md Ibrahim; Tanvir, E M; Afroz, Rizwana; Sulaiman, Siti Amrah; Gan, Siew Hua

    2015-01-01

    The present study was designed to investigate the cardioprotective effects of Malaysian Tualang honey against isoproterenol- (ISO-) induced myocardial infarction (MI) in rats by investigating changes in the levels of cardiac marker enzymes, cardiac troponin I (cTnI), triglycerides (TG), total cholesterol (TC), lipid peroxidation (LPO) products, and antioxidant defense system combined with histopathological examination. Male albino Wistar rats (n = 40) were pretreated orally with Tualang honey (3 g/kg/day) for 45 days. Subcutaneous injection of ISO (85 mg/kg in saline) for two consecutive days caused a significant increase in serum cardiac marker enzymes (creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), and aspartate transaminase (AST)), cTnI, serum TC, and TG levels. In addition, ISO-induced myocardial injury was confirmed by a significant increase in heart lipid peroxidation (LPO) products (TBARS) and a significant decrease in antioxidant enzymes (SOD, GPx, GRx, and GST). Pretreatment of ischemic rats with Tualang honey conferred significant protective effects on all of the investigated biochemical parameters. The biochemical findings were further confirmed by histopathological examination in both Tualang-honey-pretreated and ISO-treated hearts. The present study demonstrates that Tualang honey confers cardioprotective effects on ISO-induced oxidative stress by contributing to endogenous antioxidant enzyme activity via inhibition of lipid peroxidation.

  8. Protective effect of pomegranate seed oil against H2O2 -induced oxidative stress in cardiomyocytes

    PubMed Central

    Bihamta, Mehdi; Hosseini, Azar; Ghorbani, Ahmad; Boroushaki, Mohammad Taher

    2017-01-01

    Objective: It has been well documented that oxidative stress is involved in the pathogenesis of cardiac diseases. Previous studies have shown that pomegranate seed oil (PSO) has antioxidant properties. This study was designed to investigate probable protective effects of PSO against hydrogen peroxide (H2O2)-induced damage in H9c2 cardiomyocytes. Materials and Methods: The cells were pretreated 24 hr with PSO 1 hr before exposure to 200 µM H2O2. Cell viability was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) assay. The level of reactive oxygen species (ROS) and lipid peroxidation were measured by fluorimetric methods. Results: H2O2 significantly decreased cell viability which was accompanied by an increase in ROS production and lipid peroxidation and a decline in superoxide dismutase activity. Pretreatment with PSO increased viability of cardiomyocytes and decrease the elevated ROS production and lipid peroxidation. Also, PSO was able to restore superoxide dismutase activity. Conclusion: PSO has protective effect against oxidative stress-induced damage in cardiomyocytes and can be considered as a natural cardioprotective agent to prevent cardiovascular diseases. PMID:28265546

  9. Effect of photoactivated disinfection with a light-emitting diode on bacterial species and biofilms associated with periodontitis and peri-implantitis.

    PubMed

    Eick, Sigrun; Markauskaite, Giedre; Nietzsche, Sandor; Laugisch, Oliver; Salvi, Giovanni E; Sculean, Anton

    2013-05-01

    To determine the effect of photoactivated disinfection (PAD) using toluidine blue and a light-emitting diode (LED) in the red spectrum (wave length at 625-635 nm) on species associated with periodontitis and peri-implantitis and bacteria within a periodontopathic biofilm. Sixteen single microbial species including 2 Porphyromonas gingivalis and 2 Aggregatibacter actinomycetemcomitans and a multispecies mixture consisting of 12 species suspended in saline without and with 25% human serum were exposed to PAD. Moreover, single-species biofilms consisting of 2 P. gingivalis and 2 A. actinomycetemcomitans strains and a multi-species biofilm on 24-well-plates, grown on titanium discs and in artificial periodontal pockets were exposed to PAD with and without pretreatment with 0.25% hydrogen peroxide. Changes in the viability were determined by counting the colony forming units (cfu). PAD reduced the cfu counts in saline by 1.42 log₁₀ after LED application for 30s and by 1.99 log₁₀ after LED application for 60s compared with negative controls (each p<0.001). Serum did not inhibit the efficacy of PAD. PAD reduced statistically significantly (p<0.05) the cfu counts of the P. gingivalis biofilms. The viability of the A. actinomycetemcomitans biofilms and the multi-species biofilms was statistically significantly decreased when PAD was applied after a pretreatment with 0.25% hydrogen peroxide. The biofilm formed in artificial pockets was more sensitive to PAD with and without pretreatment with hydrogen peroxide compared with those formed on titanium discs. PAD using a LED was effective against periodontopathic bacterial species and reduced viability in biofilms but was not able to completely destroy complex biofilms. The use of PAD following pretreatment with hydrogen peroxide resulted in an additional increase in the antimicrobial activity which may represent a new alternative to treat periodontal and peri-implant infections thus warranting further testing in clinical studies. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Ethanol production from rape straw by a two-stage pretreatment under mild conditions.

    PubMed

    Romero, Inmaculada; López-Linares, Juan C; Delgado, Yaimé; Cara, Cristóbal; Castro, Eulogio

    2015-08-01

    The growing interest on rape oil as raw material for biodiesel production has resulted in an increasing availability of rape straw, an agricultural residue that is an attractive renewable source for the production of second-generation bioethanol. Pretreatment is one of the key steps in such a conversion process. In this work, a sequential two-stage pretreatment with dilute sulfuric acid (130 °C, 60 min, 2% w/v H2SO4) followed by H2O2 (1-5% w/v) in alkaline medium (NaOH) at low temperature (60, 90 °C) and at different pretreatment times (30-90 min) was investigated. The first-acid stage allows the solubilisation of hemicellulose fraction into fermentable sugars. The second-alkaline peroxide stage allows the delignification of the solid material whilst the cellulose remaining in rape straw turned highly digestible by cellulases. Simultaneous saccharification and fermentation with 15% (w/v) delignified substrate at 90 °C, 5% H2O2 for 60 min, led to a maximum ethanol production of 53 g/L and a yield of 85% of the theoretical.

  11. Effective alkaline metal-catalyzed oxidative delignification of hybrid poplar

    DOE PAGES

    Bhalla, Aditya; Bansal, Namita; Stoklosa, Ryan J.; ...

    2016-02-09

    Background: Strategies to improve copper-catalyzed alkaline hydrogen peroxide (Cu-AHP) pretreatment of hybrid poplar were investigated. These improvements included a combination of increasing hydrolysis yields, while simultaneously decreasing process inputs through (i) more efficient utilization of H 2O 2 and (ii) the addition of an alkaline extraction step prior to the metal-catalyzed AHP pretreatment. We hypothesized that utilizing this improved process could substantially lower the chemical inputs needed during pretreatment. Results: Hybrid poplar was pretreated utilizing a modified process in which an alkaline extraction step was incorporated prior to the Cu-AHP treatment step and H 2O 2 was added batch-wise overmore » the course of 10 h. Our results revealed that the alkaline pre-extraction step improved both lignin and xylan solubilization, which ultimately led to improved glucose (86 %) and xylose (95 %) yields following enzymatic hydrolysis. An increase in the lignin solubilization was also observed with fed-batch H 2O 2 addition relative to batch-only addition, which again resulted in increased glucose and xylose yields (77 and 93 % versus 63 and 74 %, respectively). Importantly, combining these strategies led to significantly improved sugar yields (96 % glucose and 94 % xylose) following enzymatic hydrolysis. In addition, we found that we could substantially lower the chemical inputs (enzyme, H 2O 2, and catalyst), while still maintaining high product yields utilizing the improved Cu-AHP process. This pretreatment also provided a relatively pure lignin stream consisting of ≥90 % Klason lignin and only 3 % xylan and 2 % ash following precipitation. Two-dimensional heteronuclear single-quantum coherence (2D HSQC) NMR and size-exclusion chromatography demonstrated that the solubilized lignin was high molecular weight (Mw ≈ 22,000 Da) and only slightly oxidized relative to lignin from untreated poplar. In conclusion: This study demonstrated that the fed-batch, two-stage Cu-AHP pretreatment process was effective in pretreating hybrid poplar for its conversion into fermentable sugars. Results showed sugar yields near the theoretical maximum were achieved from enzymatically hydrolyzed hybrid poplar by incorporating an alkaline extraction step prior to pretreatment and by efficiently utilizing H 2O 2 during the Cu-AHP process. Significantly, this study reports high sugar yields from woody biomass treated with an AHP pretreatment under mild reaction conditions.« less

  12. Assessment of Fenton's reagent and ozonation as pre-treatments for increasing the biodegradability of aqueous diethanolamine solutions from an oil refinery gas sweetening process.

    PubMed

    Durán-Moreno, A; García-González, S A; Gutiérrez-Lara, M R; Rigas, F; Ramírez-Zamora, R M

    2011-02-28

    The aim of this work was to evaluate the efficiency of three chemical oxidation processes for increasing the biodegradability of aqueous diethanolamine solutions (aqueous DEA solutions), to be used as pre-treatments before a biological process. The raw aqueous DEA solution, sourced from a sour gas sweetening plant at a Mexican oil refinery, was first characterized by standardized physico-chemical methods. Then experiments were conducted on diluted aqueous DEA solutions to test the effects of Fenton's reagent, ozone and ozone-hydrogen peroxide on the removal of some physicochemical parameters of these solutions. Lastly, biodegradability tests based on Dissolved Organic Carbon Die Away OECD301-A, were carried out on a dilution of the raw aqueous DEA solution and on the treated aqueous DEA solutions, produced by applying the best experimental conditions determined during the aforementioned oxidation tests. Experimental results showed that for aqueous DEA solutions treated with Fenton's reagent, the best degradation rate (70%) was obtained at pH 2.8, with Fe(2+) and H(2)O(2) at doses of 1000 and 10,000 mg/L respectively. In the ozone process, the best degradation (60%) was observed in aqueous DEA solution (100 mg COD/L), using 100 mg O(3)/L at pH 5. In the ozone-hydrogen peroxide process, no COD or DOC removals were observed. The diluted spent diethanolamine solution showed its greatest increase in biodegradability after a reaction period of 28 days when treated with Fenton's reagent, but after only 15 days in the case of ozonation. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Au/n-ZnO rectifying contact fabricated with hydrogen peroxide pretreatment

    NASA Astrophysics Data System (ADS)

    Gu, Q. L.; Cheung, C. K.; Ling, C. C.; Ng, A. M. C.; Djurišić, A. B.; Lu, L. W.; Chen, X. D.; Fung, S.; Beling, C. D.; Ong, H. C.

    2008-05-01

    Au contacts were deposited on n-type ZnO single crystals with and without hydrogen peroxide pretreatment for the ZnO substrate. The Au/ZnO contacts fabricated on substrates without H2O2 pretreatment were Ohmic and those with H2O2 pretreatment were rectifying. With an aim of fabricating a good quality Schottky contact, the rectifying property of the Au/ZnO contact was systemically investigated by varying the treatment temperature and duration. The best performing Schottky contact was found to have an ideality factor of 1.15 and a leakage current of ˜10-7 A cm-2. A multispectroscopic study, including scanning electron microscopy, positron annihilation spectroscopy, deep level transient spectroscopy, x-ray photoelectron spectroscopy, and photoluminescence, showed that the H2O2 treatment removed the OH impurity and created Zn-vacancy related defects hence decreasing the conductivity of the ZnO surface layer, a condition favorable for forming good Schottky contact. However, the H2O2 treatment also resulted in a deterioration of the surface morphology, leading to an increase in the Schottky contact ideality factor and leakage current in the case of nonoptimal treatment time and temperature.

  14. Improvement of the enzymatic hydrolysis of furfural residues by pretreatment with combined green liquor and hydrogen peroxide.

    PubMed

    Yu, Hai-Long; Tang, Yong; Xing, Yang; Zhu, Li-Wei; Jiang, Jian-Xin

    2013-11-01

    A potential commercial pretreatment for furfural residues (FRs) was investigated by using a combination of green liquor and hydrogen peroxide (GL-H2O2). The results showed that 56.2% of lignin removal was achieved when the sample was treated with 0.6 g H2O2/g-DS (dry substrate) and 6 mL GL/g-DS at 80 °C for 3 h. After 96 h hydrolysis with 18 FPU/g-cellulose for cellulase, 27 CBU/g-cellulose for β-glucosidase, the glucose yield increased from 71.2% to 83.6%. Ethylenediaminetetraacetic acid was used to reduce the degradation of H2O2, the glucose yield increased to 90.4% after the addition of 1% (w/w). The untreated FRs could bind more easily to cellulase than pretreated FRs could. The structural changes on the surface of sample were characterized by X-ray photoelectron spectroscopy. The results indicated that the surface lignin could be effectively removed during pretreatment, thereby decreasing the enzyme-lignin binding activity. Moreover, the carbonyl from lignin plays an important role in cellulase binding. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. A novel amperometric biosensor based on artichoke (Cynara scolymus L.) tissue homogenate immobilized in gelatin for hydrogen peroxide detection.

    PubMed

    Oztürk, G; Ertaş, F N; Akyilmaz, E; Dinçkaya, E; Tural, H

    2004-01-01

    A biosensor for specific determination of hydrogen peroxide was developed by using homogenized artichoke (Cynara scolymus L.) tissue in combination with a dissolved oxygen probe and applied in determination of hydrogen peroxide in milk samples. Artichoke tissue, which has catalase activity, was immobilized with gelatine by means of glutaraldehyde and fixed on a pretreated teflon membrane. The electrode response was maximum when 0.05 M phosphate buffer was used at pH 7.0 and at 30 degrees C. Upon addition of hydrogen peroxide, the electrode gives a linear response in a concentration range of 5.0-50 x 10(-5) M with a response time of 3 min. The method was also applied to the determination of hydrogen peroxide in milk samples.

  16. Influence of salicylic acid pretreatment on seeds germination and some defence mechanisms of Zea mays plants under copper stress.

    PubMed

    Moravcová, Šárka; Tůma, Jiří; Dučaiová, Zuzana Kovalíková; Waligórski, Piotr; Kula, Monika; Saja, Diana; Słomka, Aneta; Bąba, Wojciech; Libik-Konieczny, Marta

    2018-01-01

    The study was focused on the influence of salicylic acid (SA) on maize seeds germination and on some physiological and biochemical processes in maize plants growing in the hydroponic culture under copper (Cu) stress. A significant influence of SA pretreatment on the advanced induction of the maize seeds metabolic activity and the level of the endogenous SA in germinated seeds and developing roots have been stated. Although, the ability of maize seeds to uptake SA and accumulate it in the germinated roots was confirmed, the growth inhibition of Cu-stressed maize seedlings was not ameliorated by SA seeds pretreatment. Cu-stressed plants exhibited a decrease in the photosynthetic pigment concentration and the increase in non-photochemical quenching (NPQ) - an indicator of an excess energy in PSII antenna assemblies lost as a heat. The amelioration effect of SA application was found only for carotenoids content which increased in stressed plants. It was also shown that maize roots growing in stress conditions significantly differed in the chemical composition in comparison to the roots of control plants, but the SA pretreatment did not affect these differences. On the other hand, it was found that SA seed pretreatment significantly influenced the ability of stressed plants to accumulate copper in the roots. It was stated that a higher level of exogenous SA application led to a lower accumulation of Cu ions in maize roots. Cu-stressed plants exhibited higher oxidative stress in roots than in leaves which was manifested as an increase in the concentration of hydrogen peroxide due to stress factor application. We observed an increase in catalase (CAT) activity in leaves of Cu-stressed plants which corresponded with a lower H 2 O 2 content when compared with roots where the hydrogen peroxide level was higher, and the inhibition of the CAT activity was found. Furthermore, we found that the SA seed pretreatment led to a decrease in the H 2 O 2 content in the roots of the Cu-stressed plants, but it did not influence the H 2 O 2 level in leaves. The increase in hydrogen peroxide content in the roots of Cu-stressed plants correlated with a higher activity of the MnSODI and MnSODII isoforms. It was found that SA pretreatment caused a decrease in MnSODII activity accompanied by the decrease in H 2 O 2 concentration. Achieved results indicated also that the changes in the chemical composition of the root tissue under copper stress constituted protection mechanisms of blocking copper flow into other plant organs. However, it might be assumed that the root tissue remodelling under Cu stress did not only prevent against the Cu ions uptake but also limited the absorption of minerals required for the normal growth leading to the inhibition of the plant development. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Influence of steam pretreatment severity on post-treatments used to enhance the enzymatic hydrolysis of pretreated softwoods at low enzyme loadings.

    PubMed

    Kumar, Linoj; Chandra, Richard; Saddler, Jack

    2011-10-01

    It is recognized that some form of post-treatment will usually be required if reasonable hydrolysis yields (>60%) of steam pretreated softwood are to be achieved when using low enzyme loadings (5 FPU/g cellulose). In the work reported here we modified/removed lignin from steam pretreated softwood while investigating the influence that the severity of pretreatment might have on the effectiveness of subsequent post-treatments. Although treatment at a lower severity could provide better overall hemicellulose recovery, post-treatment was not as effective on the cellulosic component. Pretreatment at medium severity resulted in the best compromise, providing reasonable recovery of the water soluble hemicellulose sugars and the use of post-treatment conditions that significantly increased the enzymatic hydrolysis of the water insoluble cellulosic component. Post-treatment with alkaline hydrogen peroxide or neutral sulfonation resulted in 62% cellulose hydrolysis at an enzyme loading of 5 FPU/g cellulose, which was four times greater than was obtained when the cellulosic fraction was not post-treated. When the enzyme loading was increased to 15 FPU/g cellulose, the post-treated cellulosic fraction was almost completely hydrolyzed to glucose. Despite the higher lignin content (44%) of the sulfonated substrate, similar hydrolysis yields to those achieved after alkaline peroxide post-treatment (14% lignin content) indicated that, in addition to lignin removal, lignin modification also plays an important role in influencing the effectiveness of hydrolysis when low enzyme loadings are used. Copyright © 2011 Wiley Periodicals, Inc.

  18. Ultrasonic pilot-scale reactor for enzymatic bleaching of cotton fabrics.

    PubMed

    Gonçalves, Idalina; Herrero-Yniesta, Victor; Perales Arce, Iratxe; Escrigas Castañeda, Monica; Cavaco-Paulo, Artur; Silva, Carla

    2014-07-01

    The potential of ultrasound-assisted technology has been demonstrated by several laboratory scale studies. However, their successful industrial scaling-up is still a challenge due to the limited pilot and commercial sonochemical reactors. In this work, a pilot reactor for laccase-hydrogen peroxide cotton bleaching assisted by ultrasound was scaled-up. For this purpose, an existing dyeing machine was transformed and adapted by including piezoelectric ultrasonic devices. Laboratory experiments demonstrated that both low frequency, high power (22 kHz, 2100 W) and high frequency, low power ultrasounds (850 kHz, 400 W) were required to achieve satisfactory results. Standard half (4 g/L H2O2 at 90 °C for 60 min) and optical (8 g/L H2O2 at 103 °C for 40 min) cotton bleaching processes were used as references. Two sequential stages were established for cotton bleaching: (1) laccase pretreatment assisted by high frequency ultrasound (850 kHz, 400 W) and (2) bleaching using high power ultrasound (22 kHz, 2100 W). When compared with conventional methods, combined laccase-hydrogen peroxide cotton bleaching with ultrasound energy improved the whitening effectiveness. Subsequently, less energy (temperature) and chemicals (hydrogen peroxide) were needed for cotton bleaching thus resulting in costs reduction. This technology allowed the combination of enzyme and hydrogen peroxide treatment in a continuous process. The developed pilot-scale reactor offers an enhancement of the cotton bleaching process with lower environmental impact as well as a better performance of further finishing operations. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Efficacy of brown seaweed hot water extract against HCl-ethanol induced gastric mucosal injury in rats.

    PubMed

    Raghavendran, Hanumantha Rao Balaji; Sathivel, Arumugam; Devaki, Thiruvengadam

    2004-04-01

    Effect of pre-treatment with hot water extract of marine brown alga Sargassum polycystum C.Ag. (100 mg/kg body wt, orally for period of 15 days) on HCl-ethanol (150 mM of HCl-ethanol mixture containing 0.15 N HCl in 70% v/v ethanol given orally) induced gastric mucosal injury in rats was examined with respect to lipid peroxides, antioxidant enzyme status, acid/pepsin and glycoproteins in the gastric mucosa. The levels of lipid peroxides of gastric mucosa and volume, acidity of the gastric juice were increased with decreased levels of antioxidant enzymes and glycoproteins were observed in HCl-ethanol induced rats. The rats pre-treated with seaweed extract prior to HCl-ethanol induction reversed the depleted levels of antioxidant enzymes and reduced the elevated levels of lipid peroxides when compared with HCl-ethanol induced rats. The levels of glycoproteins and alterations in the gastric juice were also maintained at near normal levels in rats pre-treated with seaweed extract. The rats given seaweed extract alone did not show any toxicity, which was confirmed by histopathological studies. These results suggest that the seaweed extract contains some anti-ulcer agents, which may maintain the volume/acidity of gastric juice and improve the gastric mucosa antioxidant defense system against HCl-ethanol induced gastric mucosal injury in rats.

  20. An advancement in removing extraneous color from wood for low-magnification reflected-light image analysis of conifer tree rings

    Treesearch

    Paul R. Sheppard; Alex Wiedenhoeft

    2007-01-01

    This paper describes the removal of extraneous color from increment cores of conifers prior to reflected-light image analysis of tree rings. Ponderosa pine in central New Mexico was chosen for study. Peroxide bleaching was used as a pretreatment to remove extraneous color and still yield usable wood for image analysis. The cores were bleached in 3% peroxide raised to...

  1. Effect of hydrogen peroxide pretreatment on ZnO-based metal–semiconductor–metal ultraviolet photodetectors deposited using plasma-enhanced atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yu-Chang; Lee, Hsin-Ying, E-mail: hylee@ee.ncku.edu.tw; Lee, Tsung-Hsin

    2016-01-15

    In this study, zinc oxide (ZnO) films were deposited on sapphire substrates using a plasma-enhanced atomic layer deposition system. Prior to deposition, the substrates were treated with hydrogen peroxide (H{sub 2}O{sub 2}) in order to increase nucleation on the initial sapphire surface and, thus, enhance the quality of deposited ZnO films. Furthermore, x-ray diffraction spectroscopy measurements indicated that the crystallinity of ZnO films was considerably enhanced by H{sub 2}O{sub 2} pretreatment, with the strongest (002) diffraction peak occurring for the film pretreated with H{sub 2}O{sub 2} for 60 min. X-ray photoelectron spectroscopy also was used, and the results indicated that amore » high number of Zn–O bonds was generated in ZnO films pretreated appropriately with H{sub 2}O{sub 2}. The ZnO film deposited on a sapphire substrate with H{sub 2}O{sub 2} pretreatment for 60 min was applied to metal–semiconductor–metal ultraviolet photodetectors (MSM-UPDs) as an active layer. The fabricated ZnO MSM-UPDs showed improvements in dark current and ultraviolet–visible rejection ratios (0.27 μA and 1.06 × 10{sup 3}, respectively) compared to traditional devices.« less

  2. Anti-ulcerogenic effect of the methanol extract of Chasmanthera dependens (Hochst) stem on male Wistar rats.

    PubMed

    Tijani, Stephanie Abiola; Olaleye, Samuel B; Farombi, Ebenezer O

    2018-04-19

    Oxidative stress and free radical-mediated processes have been implicated in the pathogenesis of indomethacin-induced gastric ulcer. This study investigated the ability of the methanol extract of Chasmanthera dependens to protect the gastric mucosal from oxidative damage induced by oral administration of indomethacin in rats. The C. dependens stems were chopped into pieces, air-dried, and pulverized into powder. One kilogram of the powder was macerated in 1 L of methanol for 72 h. The mixture was filtered and evaporated using rotatory evaporator to obtain the extract of C. dependens. Adult male rats were divided into eight groups of six animals per group and were pretreated orally with the methanol extract of C. dependens (200, 400, and 800 mg/kg) or cimetidine (CIM), a standard drug (50 mg/kg), for 7 days. Gastric ulcer was induced orally with indomethacin. Ulcerogenic parameters, oxidative stress indices, and histopathological examination of the stomach were assessed to monitor the gastroprotective potential of C. dependens stem. Indomethacin caused severe gastric mucosa damage and significant reduction in the gastric mucosa antioxidant system with concomitant increase in the level of lipid peroxidation. Pretreatment with the methanol extract of C. dependens or CIM significantly reduced the formation of ulcer at the different doses administered. Similarly, pretreatments with the extract or CIM improved the antioxidant system, decreased acid output, lipid peroxidation, and improved the architecture of the gastric mucosa in ulcerated rats. The results show the gastroprotective effect of the methanolic extract of C. dependens, which may be attributed to its antioxidant properties.

  3. Cellulosic bioethanol production from Jerusalem artichoke (Helianthus tuberosus L.) using hydrogen peroxide-acetic acid (HPAC) pretreatment.

    PubMed

    Song, Younho; Wi, Seung Gon; Kim, Ho Myeong; Bae, Hyeun-Jong

    2016-08-01

    Jerusalem artichoke (JA) is recognized as a suitable candidate biomass crop for bioethanol production because it has a rapid growth rate and high biomass productivity. In this study, hydrogen peroxide-acetic acid (HPAC) pretreatment was used to enhance the enzymatic hydrolysis and to effectively remove the lignin of JA. With optimized enzyme doses, synergy was observed from the combination of three different enzymes (RUT-C30, pectinase, and xylanase) which provided a conversion rate was approximately 30% higher than the rate with from treatment with RUT-C30 alone. Fermentation of the JA hydrolyzates by Saccharomyces cerevisiae produced a fermentation yield of approximately 84%. Therefore, Jerusalem artichoke has potential as a bioenergy crop for bioethanol production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Effects of levetiracetam in lipid peroxidation level, nitrite-nitrate formation and antioxidant enzymatic activity in mice brain after pilocarpine-induced seizures.

    PubMed

    Oliveira, A A; Almeida, J P C; Freitas, R M; Nascimento, V S; Aguiar, L M V; Júnior, H V N; Fonseca, F N; Viana, G S B; Sousa, F C F; Fonteles, M M F

    2007-05-01

    : Oxidative stress has been implicated in a large number of human degenerative diseases, including epilepsy. Levetiracetam (LEV) is a new antiepileptic agent with broad-spectrum effects on seizures and animal models of epilepsy. Recently, it was demonstrated that the mechanism of LEV differs from that of conventional antiepileptic drugs. Objectifying to investigate if LEV mechanism of action involves antioxidant properties, lipid peroxidation levels, nitrite-nitrate formation, catalase activity, and glutathione (GSH) content were measured in adult mice brain. The neurochemical analyses were carried out in hippocampus of animals pretreated with LEV (200 mg/kg, i.p.) 60 min before pilocarpine-induced seizures (400 mg/kg, s.c.). The administration of alone pilocarpine, 400 mg/kg, s.c. (P400) produced a significant increase of lipid peroxidation level in hippocampus. LEV pretreatment was able to counteract this increase, preserving the lipid peroxidation level in normal value. P400 administration also produced increase in the nitrite-nitrate formation and catalase activity in hippocampus, beyond a decrease in GSH levels. LEV administration before P400 prevented the P400-induced alteration in nitrite-nitrate levels and preserved normal values of catalase activity in hippocampus. Moreover, LEV administration prevented the P400-induced loss of GSH in this cerebral area. The present data suggest that the protective effects of LEV against pilocarpine-induced seizures can be mediated, at least in part, by reduction of lipid peroxidation and hippocampal oxidative stress.

  5. Esculetin-induced protection of human hepatoma HepG2 cells against hydrogen peroxide is associated with the Nrf2-dependent induction of the NAD(P)H: Quinone oxidoreductase 1 gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subramaniam, Sudhakar R.; Ellis, Elizabeth M., E-mail: elizabeth.ellis@strath.ac.uk

    Esculetin (6,7-dihydroxy coumarin), is a potent antioxidant that is present in several plant species. The aim of this study was to investigate the mechanism of protection of esculetin in human hepatoma HepG2 cells against reactive oxygen species (ROS) induced by hydrogen peroxide. Cell viability, cell integrity, intracellular glutathione levels, generation of reactive oxygen species and expression of antioxidant enzymes were used as markers to measure cellular oxidative stress and response to ROS. The protective effect of esculetin was compared to a well-characterized chemoprotective compound quercetin. Pre-treatment of HepG2 cells with sub-lethal (10-25 {mu}M) esculetin for 8 h prevented cell deathmore » and maintained cell integrity following exposure to 0.9 mM hydrogen peroxide. An increase in the generation of ROS following hydrogen peroxide treatment was significantly attenuated by 8 h pre-treatment with esculetin. In addition, esculetin ameliorated the decrease in intracellular glutathione caused by hydrogen peroxide exposure. Moreover, treatment with 25 {mu}M esculetin for 8 h increased the expression of NAD(P)H: quinone oxidoreductase (NQO1) at both protein and mRNA levels significantly, by 12-fold and 15-fold, respectively. Esculetin treatment also increased nuclear accumulation of Nrf2 by 8-fold indicating that increased NQO1 expression is Nrf2-mediated. These results indicate that esculetin protects human hepatoma HepG2 cells from hydrogen peroxide induced oxidative injury and that this protection is provided through the induction of protective enzymes as part of an adaptive response mediated by Nrf2 nuclear accumulation.« less

  6. Pretreatment combining ultrasound and sodium percarbonate under mild conditions for efficient degradation of corn stover.

    PubMed

    Nakashima, Kazunori; Ebi, Yuuki; Kubo, Masaki; Shibasaki-Kitakawa, Naomi; Yonemoto, Toshikuni

    2016-03-01

    Ultrasound (US) can be used to disrupt microcrystalline cellulose to give nanofibers via ultrasonic cavitation. Sodium percarbonate (SP), consisting of sodium carbonate and hydrogen peroxide, generates highly reactive radicals, which cause oxidative delignification. Here, we describe a novel pretreatment technique using a combination of US and SP (US-SP) for the efficient saccharification of cellulose and hemicellulose in lignocellulosic corn stover. Although US-SP pretreatment was conducted under mild condition (i.e., at room temperature and atmospheric pressure), the pretreatment greatly increased lignin removal and cellulose digestibility. We also determined the optimum US-SP treatment conditions, such as ultrasonic power output, pretreatment time, pretreatment temperature, and SP concentration for an efficient cellulose saccharification. Moreover, xylose could be effectively recovered from US-SP pretreated biomass without the formation of microbial inhibitor furfural. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Saccharification of microalgae biomass obtained from wastewater treatment by enzymatic hydrolysis. Effect of alkaline-peroxide pretreatment.

    PubMed

    Martín Juárez, Judit; Lorenzo Hernando, Ana; Muñoz Torre, Raúl; Blanco Lanza, Saúl; Bolado Rodríguez, Silvia

    2016-10-01

    An enzymatic method for the carbohydrate hydrolysis of different microalgae biomass cultivated in domestic (DWB) and pig manure (PMWB) wastewaters, at different storage conditions (fresh, freeze-dried and reconstituted), was evaluated. The DWB provided sugars yields between 40 and 63%, although low xylose yields (< 23.5%). Approximately 2% of this biomass was converted to byproducts as succinic, acetic and formic acids. For PMWB, a high fraction of the sugars (up to 87%) was extracted, but mainly converted into acetic, butyric and formic acids, which was attributed to the bacterial action. In addition, the performance of an alkaline-peroxide pretreatment, conducted for 1h, 50°C and H2O2 concentrations from 1 to 7.5% (w/w), was essayed. The hydrolysis of pretreated microalgae supported a wide range of sugars extraction for DWB (55-90%), and 100% for PMWB. Nevertheless, a large fraction of these sugars (∼30% for DWB and 100% for PMWB) was transformed to byproducts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Prophylactic Antioxidant Potential of Gallic Acid in Murine Model of Sepsis

    PubMed Central

    Maurya, Harikesh; Mangal, Vaishali; Gandhi, Sanjay; Prabhu, Kathiresan; Ponnudurai, Kathiresan

    2014-01-01

    Present study is to investigate the effect of Gallic acid pretreatment on survival of septic animals and oxidative stress in different organs like lungs, liver, kidney, spleen, and vascular dysfunction of mice. Sepsis was induced by cecal ligation and puncture (CLP) in healthy adult male albino mice (25–30 g) and was divided into 3 groups each consisting of 6 animals, that is, sham-operated (SO group (Group I), SO + sepsis (Group II), and Gallic acid + sepsis (Group III)). Group III animals were pretreated with Gallic acid at the dose rate of 20 mg/kg body weight for 2 days before induction of sepsis. Animals were sacrificed on 8th day and the tissue samples were obtained for further investigation on lipid peroxidation (LPO), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GSH). Gallic acid pretreatment significant (P < 0.05) reduces kidney, spleen, liver, and lungs' malondialdehyde level in septic mice. However, it fails to improve reduced glutathione level in all given organs, while, Gallic acid pretreated mice showed significant improvement in SOD activity of kidney and spleen when compared to septic mice. Finally, the beneficial effects of Gallic acid pretreatment in sepsis are evident from the observations that Gallic acid partially restored SOD and catalase activity and completely reversed lipid peroxidation. Further studies are required to find out the possible mechanisms underlying the beneficial effects of Gallic acid on large population. PMID:25018890

  9. Effect of pretreatments on biogas production from microalgae biomass grown in pig manure treatment plants.

    PubMed

    Martín Juárez, Judit; Riol Pastor, Elena; Fernández Sevilla, José M; Muñoz Torre, Raúl; García-Encina, Pedro A; Bolado Rodríguez, Silvia

    2018-06-01

    Methane production from pretreated and raw mixed microalgae biomass grown in pig manure was evaluated. Acid and basic pretreatments provided the highest volatile solids solubilisation (up to 81%) followed by alkaline-peroxide and ultrasounds (23%). Bead milling and steam explosion remarkably increased the methane production rate, although the highest yield (377 mL CH 4 /g SV) was achieved by alkali pretreatment. Nevertheless, some pretreatments inhibited biogas production and resulted in lag phases of 7-9 days. Hence, experiments using only the pretreated solid phase were performed, which resulted in a decrease in the lag phase to 2-3 days for the alkali pretreatment and slightly increased biomass biodegradability of few samples. The limiting step during the BMP test (hydrolysis or microbial inhibition) for each pretreatment was elucidated using the goodness of fitting to a first order or a Gompertz model. Finally, the use of digestate as biofertilizer was evaluated applying a biorefinery concept. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Pretreating lignocellulosic biomass by the concentrated phosphoric acid plus hydrogen peroxide (PHP) for enzymatic hydrolysis: evaluating the pretreatment flexibility on feedstocks and particle sizes.

    PubMed

    Wang, Qing; Wang, Zhanghong; Shen, Fei; Hu, Jinguang; Sun, Fubao; Lin, Lili; Yang, Gang; Zhang, Yanzong; Deng, Shihuai

    2014-08-01

    In order to seek a high-efficient pretreatment path for converting lignocellulosic feedstocks to fermentable sugars by enzymatic hydrolysis, the concentrated H₃PO₄ plus H₂O₂ (PHP) was attempted to pretreat different lignocellulosic biomass for evaluating the pretreatment flexibility on feedstocks. Meanwhile, the responses of pretreatment to particle sizes were also evaluated. When the PHP-pretreatment was employed (final H₂O₂ and H₃PO₄ concentration of 1.77% and 80.0%), 71-96% lignin and more than 95% hemicellulose in various feedstocks (agricultural residues, hardwood, softwood, bamboo, and their mixture, and garden wastes mixture) can be removed. Consequently, more than 90% glucose conversion was uniformly achieved indicating PHP greatly improved the pretreatment flexibility to different feedstocks. Moreover, when wheat straw and oak chips were PHP-pretreated with different sizes, the average glucose conversion reached 94.9% and 100% with lower coefficient of variation (7.9% and 0.0%), which implied PHP-pretreatment can significantly weaken the negative effects of feedstock sizes on subsequent conversion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Anaerobic digestion of organic fraction of municipal solid waste combining two pretreatment modalities, high temperature microwave and hydrogen peroxide.

    PubMed

    Shahriari, Haleh; Warith, Mostafa; Hamoda, Mohamed; Kennedy, Kevin J

    2012-01-01

    In order to enhance anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW), pretreatment combining two modalities, microwave (MW) heating in presence or absence of hydrogen peroxide (H(2)O(2)) were investigated. The main pretreatment variables affecting the characteristics of the OFMSW were temperature (T) via MW irradiation and supplemental water additions of 20% and 30% (SWA20 and SW30). Subsequently, the focus of this study was to evaluate mesophilic batch AD performance in terms of biogas production, as well as changes in the characteristics of the OFMSW post digestion. A high MW induced temperature range (115-175°C) was applied, using sealed vessels and a bench scale MW unit equipped with temperature and pressure controls. Biochemical methane potential (BMP) tests were conducted on the whole OFMSW as well as the liquid fractions. The whole OFMSW pretreated at 115°C and 145°C showed 4-7% improvement in biogas production over untreated OFMSW (control). When pretreated at 175°C, biogas production decreased due to formation of refractory compounds, inhibiting the digestion. For the liquid fraction of OFMSW, the effect of pretreatment on the cumulative biogas production (CBP) was more pronounced for SWA20 at 145°C, with a 26% increase in biogas production after 8days of digestion, compared to the control. When considering the increased substrate availability in the liquid fraction after MW pretreatment, a 78% improvement in biogas production vs. the control was achieved. Combining MW and H(2)O(2) modalities did not have a positive impact on OFMSW stabilization and enhanced biogas production. In general, all samples pretreated with H(2)O(2) displayed a long lag phase and the CBP was usually lower than MW irradiated only samples. First order rate constant was calculated. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Multivariate analysis of sludge disintegration by microwave-hydrogen peroxide pretreatment process.

    PubMed

    Ya-Wei, Wang; Cheng-Min, Gui; Xiao-Tang, Ni; Mei-Xue, Chen; Yuan-Song, Wei

    2015-01-01

    Microwave irradiation (with H2O2) has been shown to offer considerable advantages owing to its flexible control, low overall cost, and resulting higher soluble chemical oxygen demand (SCOD); accordingly, the method has been proposed recently as a means of improving sludge disintegration. However, the key factor controlling this sludge pretreatment process, pH, has received insufficient attention to date. To address this, the response surface approach (central composite design) was applied to evaluate the effects of total suspended solids (TSS, 2-20 g/L), pH (4-10), and H2O2 dosage (0-2 w/w) and their interactions on 16 response variables (e.g., SCODreleased, pH, H2O2remaining). The results demonstrated that all three factors affect sludge disintegration significantly, and no pronounced interactions between response variables were observed during disintegration, except for three variables (TCOD, TSSremaining, and H2O2 remaining). Quadratic predictive models were constructed for all 16 response variables (R(2): 0.871-0.991). Taking soluble chemical oxygen demand (SCOD) as an example, the model and coefficients derived above were able to predict the performance of microwave pretreatment (enhanced by H2O2 and pH adjustment) from previously published studies. The predictive models developed were able to optimize the treatment process for multiple disintegration objectives. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Mechanistic study on ultrasound assisted pretreatment of sugarcane bagasse using metal salt with hydrogen peroxide for bioethanol production.

    PubMed

    Ramadoss, Govindarajan; Muthukumar, Karuppan

    2016-01-01

    This study presents the ultrasound assisted pretreatment of sugarcane bagasse (SCB) using metal salt with hydrogen peroxide for bioethanol production. Among the different metal salts used, maximum holocellulose recovery and delignification were achieved with ultrasound assisted titanium dioxide (TiO2) pretreatment (UATP) system. At optimum conditions (1% H2O2, 4 g SCB dosage, 60 min sonication time, 2:100 M ratio of metal salt and H2O2, 75°C, 50% ultrasound amplitude and 70% ultrasound duty cycle), 94.98 ± 1.11% holocellulose recovery and 78.72 ± 0.86% delignification were observed. The pretreated SCB was subjected to dilute acid hydrolysis using 0.25% H2SO4 and maximum xylose, glucose and arabinose concentration obtained were 10.94 ± 0.35 g/L, 14.86 ± 0.12 g/L and 2.52 ± 0.27 g/L, respectively. The inhibitors production was found to be very less (0.93 ± 0.11 g/L furfural and 0.76 ± 0.62 g/L acetic acid) and the maximum theoretical yield of glucose and hemicellulose conversion attained were 85.8% and 77%, respectively. The fermentation was carried out using Saccharomyces cerevisiae and at the end of 72 h, 0.468 g bioethanol/g holocellulose was achieved. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis of pretreated SCB was made and its morphology was studied using scanning electron microscopy (SEM). The compounds formed during the pretreatment were identified using gas chromatography-mass spectrometry (GC-MS) analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Application of persulfate-oxidation foam spraying as a bioremediation pretreatment for diesel oil-contaminated soil.

    PubMed

    Bajagain, Rishikesh; Lee, Sojin; Jeong, Seung-Woo

    2018-09-01

    This study investigated a persulfate-bioaugmentation serial foam spraying technique to remove total petroleum hydrocarbons (TPHs) present in diesel-contaminated unsaturated soil. Feeding of remedial agents by foam spraying increased the infiltration/unsaturated hydraulic conductivity of reagents into the unsaturated soil. Persulfate mixed with a surfactant solution infiltrated the soil faster than peroxide, resulting in relatively even soil moisture content. Persulfate had a higher soil infiltration tendency, which would facilitate its distribution over a wide soil area, thereby enhancing subsequent biodegradation efficiency. Nearly 80% of soil-TPHs were degraded by combined persulfate-bioaugmentation foam spraying, while bioaugmentation foam spraying alone removed 52%. TPH fraction analysis revealed that the removal rate for the biodegradation recalcitrant fraction (C 18 to C 22 ) in deeper soil regions was higher for persulfate-bioaugmentation serial foam application than for peroxide-bioaugmentation foam application. Persulfate-foam spraying may be superior to peroxide for TPH removal even at a low concentration (50 mN) because persulfate-foam is more permeable, persistent, and does not change soil pH in the subsurface. Although the number of soil microbes declines by oxidation pretreatment, bioaugmentation-foam alters the microbial population exponentially. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Influence of size reduction treatments on sugar recovery from Norway spruce for butanol production.

    PubMed

    Yang, Ming; Xu, Minyuan; Nan, Yufei; Kuittinen, Suvi; Kamrul Hassan, Md; Vepsäläinen, Jouko; Xin, Donglin; Zhang, Junhua; Pappinen, Ari

    2018-06-01

    This study investigated whether the effectiveness of pretreatment is limited by a size reduction of Norway spruce wood in biobutanol production. The spruce was milled, chipped, and mashed for hydrogen peroxide-acetic acid (HPAC) and dilute acid (DA) pretreatment. Sugar recoveries from chipped and mashed spruce after enzymatic hydrolysis were higher than from milled spruce, and the recoveries were not correlated with the spruce fiber length. HPAC pretreatment resulted in almost 100% glucose and 88% total reducing sugars recoveries from chipped spruce, which were apparently higher than DA pretreatment, demonstrating greater effectiveness of HPAC pretreatment on sugar production. The butanol and ABE yield from chipped spruce were 126.5 and 201.2 g/kg pretreated spruce, respectively. The yields decreased with decreasing particle size due to biomass loss in the pretreatment. The results suggested that Norway spruce chipped to a 20 mm length is applicable to the production of platform sugars for butanol fermentation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Enhanced cellulase hydrolysis of eucalyptus waste fibers from pulp mill by Tween80-assisted ferric chloride pretreatment.

    PubMed

    Chen, Liheng; Fu, Shiyu

    2013-04-03

    Pretreatment combining FeCl3 and Tween80 was performed for cellulose-to-ethanol conversion of eucalyptus alkaline peroxide mechanical pulping waste fibers (EAWFs). The FeCl3 pretreatment alone showed a good effect on the enzymatic hydrolysis of EAWFs, but inhibited enzyme activity to some extent. A surfactant, Tween80, added during FeCl3 pretreatment was shown to significantly enhance enzyme reaction by eluting enzymatic inhibitors such as iron(III) that are present at the surface of the pretreated biomass. Treatment temperature, liquid-solid ratio, treatment time, FeCl3 concentration, and Tween80 dosage for pretreatment were optimized as follows: 180 °C, 8:1, 30 min, 0.15 mol/L, and 1% (w/v). Pretreated EAWFs under such optimal conditions provided enzymatic glucose (based on 100 g of oven-dried feedstock) and substrate enzymatic digestibility of EAWFs of 34.8 g and 91.3% after 72 h of enzymatic hydrolysis, respectively, with an initial cellulase loading of 20 FPU/g substrate.

  17. Salicylic acid and heat acclimation pretreatment protects Laminaria japonica sporophyte (Phaeophyceae) from heat stress

    NASA Astrophysics Data System (ADS)

    Zhou, Bin; Tang, Xuexi; Wang, You

    2010-07-01

    Possible mediatory roles of heat acclimation and salicylic acid in protecting the sporophyte of marine macroalga Laminaria japonica (Phaeophyceae) from heat stress were studied. Heat stress resulted in oxidative injury in the kelp blades. Under heat stress significant accumulation of hydrogen peroxide (H2O2) and malonaldehyde (MDA), a membrane lipid peroxidation product, and a drastic decrease in chlorophyll a content were recorded. Activity of the enzymatic antioxidant system was drastically affected by heat stress. The activity of superoxide dismutase (SOD) was significantly increased while peroxidase (POD), catalase (CAT) and glutathione peroxidase (GPX) were greatly inhibited and, simultaneously, phenylalanine ammonia-lyase was activated while polyphenol oxidase (PPO) was inhibited. Both heat acclimation pretreatment and exogenous application of salicylic acid alleviated oxidative damage in kelp blades. Blades receiving heat acclimation pretreatment and exogenous salicylic acid prior to heat stress exhibited a reduced increase in H2O2 and MDA content, and a lower reduction in chlorophyll a content. Pretreatment with heat acclimation and salicylic acid elevated activities of SOD, POD, CAT, GPX and PPO. Considering these results collectively, we speculate that the inhibition of antioxidant enzymes is a possible cause of the heat-stress-induced oxidative stress in L. japonica, and enhanced thermotolerance may be associated, at least in part, with the elevated activity of the enzymatic antioxidant system.

  18. Effects of sodium nitroprusside (SNP) pretreatment on UV-B stress tolerance in lettuce (Lactuca sativa L.) seedlings.

    PubMed

    Esringu, Aslıhan; Aksakal, Ozkan; Tabay, Dilruba; Kara, Ayse Aydan

    2016-01-01

    Ultraviolet-B (UV-B) radiation is one of the most important abiotic stress factors that could influence plant growth, development, and productivity. Nitric oxide (NO) is an important plant growth regulator involved in a wide variety of physiological processes. In the present study, the possibility of enhancing UV-B stress tolerance of lettuce seedlings by the exogenous application of sodium nitroprusside (SNP) was investigated. UV-B radiation increased the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD) and total phenolic concentrations, antioxidant capacity, and expression of phenylalanine ammonia lyase (PAL) gene in seedlings, but the combination of SNP pretreatment and UV-B enhanced antioxidant enzyme activities, total phenolic concentrations, antioxidant capacity, and PAL gene expression even more. Moreover, UV-B radiation significantly inhibited chlorophylls, carotenoid, gibberellic acid (GA), and indole-3-acetic acid (IAA) contents and increased the contents of abscisic acid (ABA), salicylic acid (SA), malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide radical (O2•(-)) in lettuce seedlings. When SNP pretreatment was combined with the UV-B radiation, we observed alleviated chlorophylls, carotenoid, GA, and IAA inhibition and decreased content of ABA, SA, MDA, H2O2, and O2•(-) in comparison to non-pretreated stressed seedlings.

  19. A novel water-soluble vitamin E derivative protects against aspirin-induced gastric mucosal injury in rats.

    PubMed

    Isozaki, Yutaka; Yoshida, Norimasa; Ichikawa, Hiroshi; Kuroda, Masaaki; Kokura, Satoshi; Naito, Yuji; Okanoue, Takeshi; Yoshikawa, Toshikazu

    2005-12-01

    Oxygen radical-mediated lipid peroxidation and neutrophil activation may be involved in the development of gastric mucosal injury induced by non-steroidal anti-inflammatory drugs (NSAIDs). Vitamin E is one of the lipid-soluble antioxidants and is generally considered to protect against lipid peroxidation of the cell membrane and to scavenge singlet oxygen and superoxide anion radicals. Our object was to investigate the antioxidative effects of water-soluble vitamin E derivative, 2-(alpha-D-glucopyranosyl)methyl-2,5,7,8-tetra-methylchroman-6-ol (TMG), on aspirin-induced gastric mucosal injury in rats. Gastric injury was induced by intragastric administration of aspirin and 0.15 N HCl in male Sprague-Dawley rats. TMG dissolved in physiological saline was injected intraperitoneally 0.5 h before the aspirin administration. The intragastric administration of acidified aspirin induced hyperemia and hemorragic erosions in rat stomach. The increase in total area of gastric erosions was reduced by pretreatment with TMG in a dose-dependent manner. The increases of thiobarbituric acid-reactive substances (TBA-RS) and myeloperoxidase (MPO) activity 3 h after aspirin administration were significantly inhibited by pretreatment with TMG. The gastric concentration of cytokine-induced neutrophil chemoattractants-1 (CINC-1) increased after aspirin administration, and the increase was also inhibited by pretreatment with TMG. These results suggest that TMG is effective for the treatment of aspirin-induced gastric injury. This anti-inflammatory effect of TMG seems to be related to impairment of lipid peroxidation, neutrophil function and cytokine production in gastric mucosa.

  20. Protein degradation following treatment with hydrogen peroxide.

    PubMed Central

    Fligiel, S. E.; Lee, E. C.; McCoy, J. P.; Johnson, K. J.; Varani, J.

    1984-01-01

    Pretreatment of hemoglobin with 50-5000 nmol hydrogen peroxide (H2O2) increased its susceptibility to proteolysis by a number of purified enzymes, including trypsin, chymotrypsin, elastase, and plasmin, and by the neutral protease of rat peritoneal leukocytes. Pretreatment of the protein substrate with catalase-inactivated H2O2 had no effect. Separation of the proteolytic fragments by G-75 Sephadex gel filtration indicated no apparent differences in the size distribution of the fragments produced by treatment with the H2O2/proteolytic enzyme combination as compared with enzyme treatment alone. A partially purified preparation of rat glomerular basement membrane was also treated with proteolytic enzyme alone or in combination with H2O2. As with the hemoglobin, pretreatment of the glomerular basement membrane with H2O2 increased its susceptibility to subsequent proteolytic attack. In addition, treatment of a basement membrane glycoprotein, fibronectin, with H2O2 also increased its sensitivity to subsequent proteolysis. These results suggest that in addition to their other proinflammatory activities, oxygen-derived metabolites may contribute to tissue destruction by altering the susceptibility of proteins to hydrolytic enzymes. Images Figure 1 PMID:6375392

  1. Effects of conventional ozonation and electro-peroxone pretreatment of surface water on disinfection by-product formation during subsequent chlorination.

    PubMed

    Mao, Yuqin; Guo, Di; Yao, Weikun; Wang, Xiaomao; Yang, Hongwei; Xie, Yuefeng F; Komarneni, Sridhar; Yu, Gang; Wang, Yujue

    2018-03-01

    The electro-peroxone (E-peroxone) process is an emerging ozone-based electrochemical advanced oxidation process that combines conventional ozonation with in-situ cathodic hydrogen peroxide (H 2 O 2 ) production for oxidative water treatment. In this study, the effects of the E-peroxone pretreatment on disinfection by-product (DBP) formation from chlorination of a synthetic surface water were investigated and compared to conventional ozonation. Results show that due to the enhanced transformation of ozone (O 3 ) to hydroxyl radicals (OH) by electro-generated H 2 O 2 , the E-peroxone process considerably enhanced dissolved organic carbon (DOC) abatement and significantly reduced bromate (BrO 3 - ) formation compared to conventional ozonation. However, natural organic matter (NOM) with high UV 254 absorbance, which is the major precursors of chlorination DBPs, was less efficiently abated during the E-peroxone process than conventional ozonation. Consequently, while both conventional ozonation and the E-peroxone process substantially reduced the formation of DBPs (trihalomethanes and haloacetic acids) during post-chlorination, higher DBP concentrations were generally observed during chlorination of the E-peroxone pretreated waters than conventional ozonation treated. In addition, because of conventional ozonation or the E-peroxone treatment, DBPs formed during post-chlorination shifted to more brominated species. The overall yields of brominated DBPs exhibited strong correlations with the bromide concentrations in water. Therefore, while the E-peroxone process can effectively suppress bromide transformation to bromate, it may lead to higher formation of brominated DBPs during post-chlorination compared to conventional ozonation. These results suggest that the E-peroxone process can lead to different DBP formation and speciation during water treatment trains compared to conventional ozonation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Pretreatment of lignocellulosic biomass using Fenton chemistry.

    PubMed

    Kato, Dawn M; Elía, Noelia; Flythe, Michael; Lynn, Bert C

    2014-06-01

    In an attempt to mimic white-rot fungi lignin degradation via in vivo Fenton chemistry, solution phase Fenton chemistry (10 g biomass, 176 mmol hydrogen peroxide and 1.25 mmol Fe(2+) in 200 mL of water) was applied to four different biomass feedstocks. An enzymatic saccharification of Fenton pretreated biomass showed an average 212% increase relative to untreated control across all four feedstocks (P<0.05, statistically significant). A microbial fermentation of the same Fenton pretreated biomass showed a threefold increase in gas production upon a sequential co-culture with Clostridium thermocellum and Clostridium beijerinckii. These results demonstrate the use of solution phase Fenton chemistry as a viable pretreatment method to make cellulose more bioavailable for microbial biofuel conversion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Measurement of the diene conjugated form of linoleic acid in plasma by high performance liquid chromatography: a questionable non-invasive assay of free radical activity?

    PubMed

    Thompson, S; Smith, M T

    1985-11-01

    It has been previously reported that the main diene-conjugated fatty acid in human plasma is a non-oxygen containing linoleic acid isomer (PL-9, 11-LA'). It has also been proposed that this isomer can be used as a specific marker of free radical-mediated lipid peroxidation in humans. Here we report that the in vitro induction of lipid peroxidation in human and rat blood with either UV irradiation or phenylhydrazine failed to increase the plasma levels of this isomer. The induction of lipid peroxidation in vivo in rats pretreated with either phenylhydrazine or bromotrichloromethane also failed to increase the plasma levels of this isomer. These findings demonstrate that PL-9, 11-LA' cannot be used as an in vivo marker of free radical-mediated lipid peroxidation in rats and casts doubts on its validity as a specific marker in humans.

  4. Protective effect of hydroxytyrosol and its metabolite homovanillic alcohol on H(2)O(2) induced lipid peroxidation in renal tubular epithelial cells.

    PubMed

    Deiana, Monica; Incani, Alessandra; Rosa, Antonella; Corona, Giulia; Atzeri, Angela; Loru, Debora; Paola Melis, M; Assunta Dessì, M

    2008-09-01

    We investigated the capacity of hydroxytyrosol (HT), 3,4-dihydroxyphenylethanol, and homovanillic alcohol (HVA), 4-hydroxy-3-methoxy-phenylethanol, to inhibit H(2)O(2) induced oxidative damage in LLC-PK1, a porcine kidney epithelial cell line, studying the effect of H(2)O(2) on specific cell membrane lipid targets, unsaturated fatty acids and cholesterol. Exposure to H(2)O(2) induced a significant increase of the level of MDA together with a disruption of the membrane structure, with the loss of unsaturated fatty acids, cholesterol and alpha-tocopherol, and the formation of fatty acids hydroperoxides and 7-ketocholesterol. Pretreatment with HT protected renal cells from oxidative damage: the level of membrane lipids was preserved and there was no significant detection of oxidation products. HVA exerted a comparable activity, thus both HT and HVA were able to prevent in renal cells the lipid peroxidation process that plays a central role in tubular cell injury.

  5. Comparative study of alkaline hydrogen peroxide and organosolv pretreatments of sugarcane bagasse to improve the overall sugar yield.

    PubMed

    Yu, Hailong; You, Yanzhi; Lei, Fuhou; Liu, Zuguang; Zhang, Weiming; Jiang, Jianxin

    2015-01-01

    Green liquor (GL) combined with H2O2 (GL-H2O2) and green liquor (GL) combined with ethanol (GL-ethanol) were chosen for treating sugarcane bagasse. Results showed that the glucose yield (calculated from the glucose content as a percentage of the theoretical glucose available in the substrates)of sugarcane bagasse from GL-ethanol pretreatment (97.7%) was higher than that from GL-H2O2 pretreatment (41.7%) after 72h hydrolysis with 18 filter paper unit (FPU)/g-cellulose for cellulase, 27,175 cellobiase units (CBU)/g-cellulose for β-glucosidase. Furthermore, about 94.1% of xylan was converted to xylose after GL-ethanol pretreatment without additional xylanase, while the xylose yield was only 29.2% after GL-H2O2 pretreatment. Scanning electron microscopy showed that GL-ethanol pretreatment could break up the fiber severely. Moreover, GL-ethanol pretreated substrate was more accessible to cellulase and more hydrophilic than that of GL-H2O2 pretreated. Therefore, GL-ethanol pretreatment is a promising method for improving the overall sugar (glucose and xylan) yield of sugarcane bagasse. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Integrated experimental and technoeconomic evaluation of two-stage Cu-catalyzed alkaline-oxidative pretreatment of hybrid poplar.

    PubMed

    Bhalla, Aditya; Fasahati, Peyman; Particka, Chrislyn A; Assad, Aline E; Stoklosa, Ryan J; Bansal, Namita; Semaan, Rachel; Saffron, Christopher M; Hodge, David B; Hegg, Eric L

    2018-01-01

    When applied to recalcitrant lignocellulosic feedstocks, multi-stage pretreatments can provide more processing flexibility to optimize or balance process outcomes such as increasing delignification, preserving hemicellulose, and maximizing enzymatic hydrolysis yields. We previously reported that adding an alkaline pre-extraction step to a copper-catalyzed alkaline hydrogen peroxide (Cu-AHP) pretreatment process resulted in improved sugar yields, but the process still utilized relatively high chemical inputs (catalyst and H 2 O 2 ) and enzyme loadings. We hypothesized that by increasing the temperature of the alkaline pre-extraction step in water or ethanol, we could reduce the inputs required during Cu-AHP pretreatment and enzymatic hydrolysis without significant loss in sugar yield. We also performed technoeconomic analysis to determine if ethanol or water was the more cost-effective solvent during alkaline pre-extraction and if the expense associated with increasing the temperature was economically justified. After Cu-AHP pretreatment of 120 °C NaOH-H 2 O pre-extracted and 120 °C NaOH-EtOH pre-extracted biomass, approximately 1.4-fold more total lignin was solubilized (78% and 74%, respectively) compared to the 30 °C NaOH-H 2 O pre-extraction (55%) carried out in a previous study. Consequently, increasing the temperature of the alkaline pre-extraction step to 120 °C in both ethanol and water allowed us to decrease bipyridine and H 2 O 2 during Cu-AHP and enzymes during hydrolysis with only a small reduction in sugar yields compared to 30 °C alkaline pre-extraction. Technoeconomic analysis indicated that 120 °C NaOH-H 2 O pre-extraction has the lowest installed ($246 million) and raw material ($175 million) costs compared to the other process configurations. We found that by increasing the temperature of the alkaline pre-extraction step, we could successfully lower the inputs for pretreatment and enzymatic hydrolysis. Based on sugar yields as well as capital, feedstock, and operating costs, 120 °C NaOH-H 2 O pre-extraction was superior to both 120 °C NaOH-EtOH and 30 °C NaOH-H 2 O pre-extraction.

  7. Coupling alkaline pre-extraction with alkaline-oxidative post-treatment of corn stover to enhance enzymatic hydrolysis and fermentability.

    PubMed

    Liu, Tongjun; Williams, Daniel L; Pattathil, Sivakumar; Li, Muyang; Hahn, Michael G; Hodge, David B

    2014-04-03

    A two-stage chemical pretreatment of corn stover is investigated comprising an NaOH pre-extraction followed by an alkaline hydrogen peroxide (AHP) post-treatment. We propose that conventional one-stage AHP pretreatment can be improved using alkaline pre-extraction, which requires significantly less H2O2 and NaOH. To better understand the potential of this approach, this study investigates several components of this process including alkaline pre-extraction, alkaline and alkaline-oxidative post-treatment, fermentation, and the composition of alkali extracts. Mild NaOH pre-extraction of corn stover uses less than 0.1 g NaOH per g corn stover at 80°C. The resulting substrates were highly digestible by cellulolytic enzymes at relatively low enzyme loadings and had a strong susceptibility to drying-induced hydrolysis yield losses. Alkaline pre-extraction was highly selective for lignin removal over xylan removal; xylan removal was relatively minimal (~20%). During alkaline pre-extraction, up to 0.10 g of alkali was consumed per g of corn stover. AHP post-treatment at low oxidant loading (25 mg H2O2 per g pre-extracted biomass) increased glucose hydrolysis yields by 5%, which approached near-theoretical yields. ELISA screening of alkali pre-extraction liquors and the AHP post-treatment liquors demonstrated that xyloglucan and β-glucans likely remained tightly bound in the biomass whereas the majority of the soluble polymeric xylans were glucurono (arabino) xylans and potentially homoxylans. Pectic polysaccharides were depleted in the AHP post-treatment liquor relative to the alkaline pre-extraction liquor. Because the already-low inhibitor content was further decreased in the alkaline pre-extraction, the hydrolysates generated by this two-stage pretreatment were highly fermentable by Saccharomyces cerevisiae strains that were metabolically engineered and evolved for xylose fermentation. This work demonstrates that this two-stage pretreatment process is well suited for converting lignocellulose to fermentable sugars and biofuels, such as ethanol. This approach achieved high enzymatic sugars yields from pretreated corn stover using substantially lower oxidant loadings than have been reported previously in the literature. This pretreatment approach allows for many possible process configurations involving novel alkali recovery approaches and novel uses of alkaline pre-extraction liquors. Further work is required to identify the most economical configuration, including process designs using techno-economic analysis and investigating processing strategies that economize water use.

  8. Integrated experimental and technoeconomic evaluation of two-stage Cu-catalyzed alkaline–oxidative pretreatment of hybrid poplar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhalla, Aditya; Fasahati, Peyman; Particka, Chrislyn A.

    When applied to recalcitrant lignocellulosic feedstocks, multi-stage pretreatments can provide more processing flexibility to optimize or balance process outcomes such as increasing delignification, preserving hemicellulose, and maximizing enzymatic hydrolysis yields. We previously reported that adding an alkaline pre-extraction step to a copper-catalyzed alkaline hydrogen peroxide (Cu-AHP) pretreatment process resulted in improved sugar yields, but the process still utilized relatively high chemical inputs (catalyst and H 2O 2) and enzyme loadings. We hypothesized that by increasing the temperature of the alkaline pre-extraction step in water or ethanol, we could reduce the inputs required during Cu-AHP pretreatment and enzymatic hydrolysis without significantmore » loss in sugar yield. We also performed technoeconomic analysis to determine if ethanol or water was the more cost-effective solvent during alkaline pre-extraction and if the expense associated with increasing the temperature was economically justified. After Cu-AHP pretreatment of 120 °C NaOH-H 2O pre-extracted and 120 °C NaOH-EtOH pre-extracted biomass, approximately 1.4-fold more total lignin was solubilized (78% and 74%, respectively) compared to the 30 °C NaOH-H 2O pre-extraction (55%) carried out in a previous study. Consequently, increasing the temperature of the alkaline pre-extraction step to 120 °C in both ethanol and water allowed us to decrease bipyridine and H 2O 2 during Cu-AHP and enzymes during hydrolysis with only a small reduction in sugar yields compared to 30 °C alkaline pre-extraction. Technoeconomic analysis indicated that 120 °C NaOH-H 2O pre-extraction has the lowest installed ($246 million) and raw material (175 million) costs compared to the other process configurations. We found that by increasing the temperature of the alkaline pre-extraction step, we could successfully lower the inputs for pretreatment and enzymatic hydrolysis. Based on sugar yields as well as capital, feedstock, and operating costs, 120 °C NaOH-H 2O pre-extraction was superior to both 120 °C NaOH-EtOH and 30 °C NaOH-H 2O pre-extraction.« less

  9. Integrated experimental and technoeconomic evaluation of two-stage Cu-catalyzed alkaline–oxidative pretreatment of hybrid poplar

    DOE PAGES

    Bhalla, Aditya; Fasahati, Peyman; Particka, Chrislyn A.; ...

    2018-05-17

    When applied to recalcitrant lignocellulosic feedstocks, multi-stage pretreatments can provide more processing flexibility to optimize or balance process outcomes such as increasing delignification, preserving hemicellulose, and maximizing enzymatic hydrolysis yields. We previously reported that adding an alkaline pre-extraction step to a copper-catalyzed alkaline hydrogen peroxide (Cu-AHP) pretreatment process resulted in improved sugar yields, but the process still utilized relatively high chemical inputs (catalyst and H 2O 2) and enzyme loadings. We hypothesized that by increasing the temperature of the alkaline pre-extraction step in water or ethanol, we could reduce the inputs required during Cu-AHP pretreatment and enzymatic hydrolysis without significantmore » loss in sugar yield. We also performed technoeconomic analysis to determine if ethanol or water was the more cost-effective solvent during alkaline pre-extraction and if the expense associated with increasing the temperature was economically justified. After Cu-AHP pretreatment of 120 °C NaOH-H 2O pre-extracted and 120 °C NaOH-EtOH pre-extracted biomass, approximately 1.4-fold more total lignin was solubilized (78% and 74%, respectively) compared to the 30 °C NaOH-H 2O pre-extraction (55%) carried out in a previous study. Consequently, increasing the temperature of the alkaline pre-extraction step to 120 °C in both ethanol and water allowed us to decrease bipyridine and H 2O 2 during Cu-AHP and enzymes during hydrolysis with only a small reduction in sugar yields compared to 30 °C alkaline pre-extraction. Technoeconomic analysis indicated that 120 °C NaOH-H 2O pre-extraction has the lowest installed ($246 million) and raw material (175 million) costs compared to the other process configurations. We found that by increasing the temperature of the alkaline pre-extraction step, we could successfully lower the inputs for pretreatment and enzymatic hydrolysis. Based on sugar yields as well as capital, feedstock, and operating costs, 120 °C NaOH-H 2O pre-extraction was superior to both 120 °C NaOH-EtOH and 30 °C NaOH-H 2O pre-extraction.« less

  10. Semicarbazide-sensitive amine oxidase substrates potentiate hydralazine hypotension: possible role of hydrogen peroxide.

    PubMed

    Vidrio, Horacio; Medina, Martha; González-Romo, Pilar; Lorenzana-Jiménez, Marte; Díaz-Arista, Patricia; Baeza, Alejandro

    2003-11-01

    The relation between inhibition of semicarbazide-sensitive amine oxidase (SSAO) and vasodilation by hydralazine (HYD) was evaluated in chloralose/urethane-anesthetized rats pretreated with various substrates of the enzyme and subsequently administered a threshold hypotensive dose of the vasodilator. The SSAO substrates benzylamine, phenethylamine, and methylamine potentiate the hypotensive response to HYD. Methylamine, which was studied in greater detail because of its status as a possible endogenous SSAO substrate, does not influence the response to the reference vasodilator pinacidil; it does enhance HYD relaxation in aortic rings obtained from pretreated rats. Experiments designed to identify the product of SSAO activity responsible for potentiation by methylamine suggest involvement of hydrogen peroxide (H2O2), as evidenced by the findings that such potentiation is abolished by additional pretreatment with the H2O2-metabolizing enzyme catalase, and that the plasma concentration of H2O2 is increased by methylamine and decreased by HYD. These results are interpreted as a substantiation of the relation between the known SSAO inhibitory effect of HYD and its vasodilator activity. Pretreatment with the SSAO substrates would increase production of H2O2 in vascular smooth muscle and thus magnify the influence of this vasoconstrictor agent on vascular tone. In these conditions, the decrease in H2O2 production and hence in vascular tone caused by SSAO inhibition by HYD would also be magnified. It is speculated that inhibition of vascular SSAO could represent a novel mechanism of vasodilation.

  11. Attenuation of cyclosporine A toxicity by sublethal heat shock. Role of catalase.

    PubMed

    Andrés, David; Bautista, Mirandeli; Cascales, María

    2005-02-01

    Cyclosporine A (CsA) is the immunosuppressor most frequently used in transplant surgery and in the treatment of autoimmune diseases because of its specific inhibiting effect on signal transduction pathways of cell T receptor. It has been shown that CsA is able to generate reactive oxygen species and lipid peroxidation, which are directly involved in the CsA hepatotoxicity. In the present study, we investigated the effect of a sublethal heat pre-treatment (43 degrees C for 30 min) on the hepatoma cell line HepG2 exposed to cytotoxic concentrations of CsA (10 and 25 microM) for 3 and 24 h. Parameters of cytotoxicity were assayed by measuring LDH (lactate dehydrogenase) leakage into the medium. Peroxide concentration was tested by flow cytometry by measuring the fluorescence intensity of DCF (dichlorofluorescein). Gene expression of catalase was detected by measuring the respective mRNA and proteins, as well as protein level of HSP70. The enzymatic activity of catalase was also determined. Heat pre-treatment significantly reduced CsA cytotoxicity as well as the level of peroxide generation. The protective effect of the previous heat treatment (corroborated by the irreversible catalase inhibitor 3-aminotriazole) against the CsA cytotoxicity was due to an increased expression and activity of catalase that was significantly reduced by the effect of CsA. We conclude that heat pre-treatment strongly protects against CsA injury, and the mechanism of this protection is by means of inducing not only the expression of HSP70 but also the expression and activity of catalase, the main enzyme system involved in H(2)O(2) elimination.

  12. Preventive effects of selenium yeast, chromium picolinate, zinc sulfate and their combination on oxidative stress, inflammation, impaired angiogenesis and atherogenesis in myocardial infarction in rats.

    PubMed

    Al-Rasheed, Nouf M; Attia, Hala A; Mohamed, Raessa A; Al-Rasheed, Nawal M; Al-Amin, Maha A

    2013-01-01

    Accumulating evidences suggest a critical role of trace metal dyshemostasis in oxidative stress and cardiac dysfunction after myocardial infarction (MI). This study investigated the cardioprotective effects of selenium yeast (Se), chromium picolinate Cr(pic)3, zinc sulfate (Zn) and their combination on isoproterenol (ISO)-induced MI. Rats were divided into six groups: normal control, ISO control, Se-pretreated (0.1 mg/kg), Cr(pic)3-pretreated (400 µg/kg), Zn-pretreated (30 mg/kg) and metal combination-pretreated groups. All metals were administered for 28 days and at the 27th day, MI was induced by subcutaneous injection of ISO (85 mg/kg) once for two consecutive days. ISO control group showed hyperlipidemia, elevation of cardiac biomarkers and lipid peroxidation and increased immunostaining of p47 phox NADPH oxidase subunit in addition to decreased levels of glutathione (GSH), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). Cardiac levels of tumor necrosis factor-α (TNF-α) were increased, while vascular endothelial growth factor (VEGF, the major angiogenic factor) was decreased. Pretreatment with Se normalized the cardiac enzymes, lipid peroxidation, GSH, SOD, CAT, GPx, TNF-α and VEGF (P<0.001) and reduced the immunostaining of p47 phox subunit. However, Se failed to correct the dyslipidemia. Cr(pic)3 significantly improved lipid profile (P<0.001) and all other biochemical deviations except for VEGF. Zn, but to lesser extent, reduced the oxidative damage and TNF-α levels and improved both dyslipidemia and angiogenesis. Combination therapy exhibited less prominent protection compared to individual metals. Daily supplementation with trace metals is promising for improving myocardial performance via preventing oxidative damage, induction of angiogenesis, anti-inflammatory and/or anti-hyperlipidemic mechanisms.

  13. Harnessing genetic diversity in Saccharomyces cerevisiae for fermentation of xylose in hydrolysates of alkaline hydrogen peroxide-pretreated biomass.

    PubMed

    Sato, Trey K; Liu, Tongjun; Parreiras, Lucas S; Williams, Daniel L; Wohlbach, Dana J; Bice, Benjamin D; Ong, Irene M; Breuer, Rebecca J; Qin, Li; Busalacchi, Donald; Deshpande, Shweta; Daum, Chris; Gasch, Audrey P; Hodge, David B

    2014-01-01

    The fermentation of lignocellulose-derived sugars, particularly xylose, into ethanol by the yeast Saccharomyces cerevisiae is known to be inhibited by compounds produced during feedstock pretreatment. We devised a strategy that combined chemical profiling of pretreated feedstocks, high-throughput phenotyping of genetically diverse S. cerevisiae strains isolated from a range of ecological niches, and directed engineering and evolution against identified inhibitors to produce strains with improved fermentation properties. We identified and quantified for the first time the major inhibitory compounds in alkaline hydrogen peroxide (AHP)-pretreated lignocellulosic hydrolysates, including Na(+), acetate, and p-coumaric (pCA) and ferulic (FA) acids. By phenotyping these yeast strains for their abilities to grow in the presence of these AHP inhibitors, one heterozygous diploid strain tolerant to all four inhibitors was selected, engineered for xylose metabolism, and then allowed to evolve on xylose with increasing amounts of pCA and FA. After only 149 generations, one evolved isolate, GLBRCY87, exhibited faster xylose uptake rates in both laboratory media and AHP switchgrass hydrolysate than its ancestral GLBRCY73 strain and completely converted 115 g/liter of total sugars in undetoxified AHP hydrolysate into more than 40 g/liter ethanol. Strikingly, genome sequencing revealed that during the evolution from GLBRCY73, the GLBRCY87 strain acquired the conversion of heterozygous to homozygous alleles in chromosome VII and amplification of chromosome XIV. Our approach highlights that simultaneous selection on xylose and pCA or FA with a wild S. cerevisiae strain containing inherent tolerance to AHP pretreatment inhibitors has potential for rapid evolution of robust properties in lignocellulosic biofuel production.

  14. Influence of alkaline hydrogen peroxide pre-hydrolysis on the isolation of microcrystalline cellulose from oil palm fronds.

    PubMed

    Owolabi, Abdulwahab F; Haafiz, M K Mohamad; Hossain, Md Sohrab; Hussin, M Hazwan; Fazita, M R Nurul

    2017-02-01

    In the present study, microcrystalline cellulose (MCC) was isolated from oil palm fronds (OPF) using chemo-mechanical process. Wherein, alkaline hydrogen peroxide (AHP) was utilized to extract OPF fibre at different AHP concentrations. The OPF pulp fibre was then bleached with acidified sodium chlorite solution followed by the acid hydrolysis using hydrochloric acid. Several analytical methods were conducted to determine the influence of AHP concentration on thermal properties, morphological properties, microscopic and crystalline behaviour of isolated MCC. Results showed that the MCC extracted from OPF fibres had fibre diameters of 7.55-9.11nm. X-ray diffraction (XRD) analyses revealed that the obtained microcrystalline fibre had both celluloses I and cellulose II polymorphs structure, depending on the AHP concentrations. The Fourier transmission infrared (FTIR) analyses showed that the AHP pre-hydrolysis was successfully removed hemicelluloses and lignin from the OPF fibre. The crystallinity of the MCC was increased with the AHP concentrations. The degradation temperature of MCC was about 300°C. The finding of the present study showed that pre-treatment process potentially influenced the quality of the isolation of MCC from oil palm fronds. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Hepatoprotective effect of collagen peptides from cod skin against liver oxidative damage in vitro and in vivo.

    PubMed

    Han, Yantao; Xie, Jing; Gao, Hui; Xia, Yunqiu; Chen, Xuehong; Wang, Chunbo

    2015-03-01

    The objective of this study was to investigate the hepatoprotective effect of cod skin collagen peptides (CSCP), isolated from fishing industrial by-products, in vitro and in vivo. Effect of CSCP on cell proliferation of normal and H2O2-damaged Chang liver cells was determined by MTT assay in vitro. Two animal models, CCl4-induced and acetaminophenum-induced acute hepatotoxicity, were established to assess the hepatoprotective effect of CSCP. Liver weight index, serum ALT and AST, antioxidant enzymes, and lipid peroxidation product were used as the markers of liver toxicity. The cell viability in the H2O2-treated Chang liver cells was remarkably increased when pretreated with CSCP from 100 to 1,000 µg/ml in a dose-dependent manner. CSCP pretreatment also alleviated the CCL4-induced liver index loss, while no marked changes were found in acetaminophenum-treated mice. Furthermore, CSCP pulled down serum ALT and AST level, increased the activities of SOD and CAT, and decreased MDA in both murine models of acute liver toxicity. Pretreatment with CSCP protected liver tissue against oxidative injure in vivo and in vitro. The underlying mechanism might involve enhancement in the activities of antioxidant enzymes and reduction in the lipid peroxidation.

  16. Endrin-induced histopathological changes and lipid peroxidation in livers and kidneys of rats, mice, guinea pigs and hamsters.

    PubMed

    Hassan, M Q; Numan, I T; al-Nasiri, N; Stohs, S J

    1991-01-01

    Endrin toxicity may be due to an oxidative stress associated with increased lipid peroxidation, decreased glutathione content, and inhibition of glutathione peroxidase activity. Extensive interspecies variability exists in sensitivity towards endrin. Therefore, histopathological changes and lipid peroxidation in the livers and kidneys of rats, mice, hamsters, and guinea pigs were examined 24 hr after the administration of 4 mg endrin/kg body weight orally in corn oil. Degeneration and necrotic changes with inflammatory cell infiltration were observed in livers and kidneys, and interspecies variability occurred. Fatty changes in the form of hepatic foam cells with cytoplasmic vacuolation were present. Lipofuscin pigments, associated with lipid peroxidation, were observed in hepatocytes and Kupffer cells. These histopathological conditions were prevented in rats which had been pretreated with butylated hydroxyanisole, vitamins E and C, or cysteine, antioxidants and free radical scavengers which have previously been shown to inhibit lipid peroxidation. The extent of endrin-induced lipid peroxidation correlated well with the degree of histopathological changes. Thus, histological changes consistent with the induction of an oxidative stress were observed following the administration of endrin to various animal species.

  17. Fractionation of bamboo culms by autohydrolysis, organosolv delignification and extended delignification: understanding the fundamental chemistry of the lignin during the integrated process.

    PubMed

    Wen, Jia-Long; Sun, Shao-Ni; Yuan, Tong-Qi; Xu, Feng; Sun, Run-Cang

    2013-12-01

    Bamboo (Phyllostachys pubescens) was successfully fractionated using a three-step integrated process: (1) autohydrolysis pretreatment facilitating xylooligosaccharide (XOS) production (2) organosolv delignification with organic acids to obtain high-purity lignin, and (3) extended delignification with alkaline hydrogen peroxide (AHP) to produce purified pulp. The integrated process was comprehensively evaluated by component analysis, SEM, XRD, and CP-MAS NMR techniques. Emphatically, the fundamental chemistry of the lignin fragments obtained from the integrated process was thoroughly investigated by gel permeation chromatography and solution-state NMR techniques (quantitative (13)C, 2D-HSQC, and (31)P-NMR spectroscopies). It is believed that the integrated process facilitate the production of XOS, high-purity lignin, and purified pulp. Moreover, the enhanced understanding of structural features and chemical reactivity of lignin polymers will maximize their utilizations in a future biorefinery industry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Protective effect of ursolic acid from Cornus officinalis on the hydrogen peroxide-induced damage of HEI-OC1 auditory cells.

    PubMed

    Yu, Hyeon-Hee; Hur, Jong-Moon; Seo, Se-Jeong; Moon, Hae-Dalma; Kim, Hyun-Jin; Park, Rae-Kil; You, Yong-Ouk

    2009-01-01

    The fruits of Cornus officinalis have been used in traditional oriental medicine for treatment of inner ear diseases, such as tinnitus and hearing loss. In the present study, we investigated the protective effect of C. officinalis on hydrogen peroxide-induced cytotoxicity in HEI-OC1 auditory cells. The results from bioassay-guided fractionation of methanol extract of C. officinalis fruits showed that ursolic acid is a major active component. Ursolic acid (0.05-2 microg/ml) had protective effect against the HEI-OC1 cell damage and reduced lipid peroxidation in a dose-dependent manner. In addition, pre-treatment with ursolic acid significantly attenuated the decrease of activities of catalase (CAT) and glutathione peroxidase (GPX), but superoxide dismutase (SOD) activity was not significantly affected by ursolic acid. These results indicate that ursolic acid protects hydrogen peroxide-induced HEI-OC1 cell damage through inhibition of lipid peroxidation and induction of antioxidant enzymes, CAT and GPX, and may be one of the active components responsible for these effects of C. officinalis fruits.

  19. Protective effect of Opuntia ficus-indica L. cladodes against UVA-induced oxidative stress in normal human keratinocytes.

    PubMed

    Petruk, Ganna; Di Lorenzo, Flaviana; Imbimbo, Paola; Silipo, Alba; Bonina, Andrea; Rizza, Luisa; Piccoli, Renata; Monti, Daria Maria; Lanzetta, Rosa

    2017-12-15

    Opuntia ficus-indica L. is known for its beneficial effects on human health, but still little is known on cladodes as a potent source of antioxidants. Here, a direct, economic and safe method was set up to obtain water extracts from Opuntia ficus-indica cladodes rich in antioxidant compounds. When human keratinocytes were pre-treated with the extract before being exposed to UVA radiations, a clear protective effect against UVA-induced stress was evidenced, as indicated by the inhibition of stress-induced processes, such as free radicals production, lipid peroxidation and GSH depletion. Moreover, a clear protective effect against apoptosis in pre-treated irradiated cells was evidenced. We found that eucomic and piscidic acids were responsible for the anti-oxidative stress action of cladode extract. In conclusion, a bioactive, safe, low-cost and high value-added extract from Opuntia cladodes was obtained to be used for skin health/protection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Utilization of acid pre-treated coconut dregs as a substrate for production of detergent compatible lipase by Bacillus stratosphericus.

    PubMed

    Mohd Zin, Nur Bainun; Mohamad Yusof, Busyra; Oslan, Siti Nurbaya; Wasoh, Helmi; Tan, Joo Shun; Ariff, Arbakariya B; Halim, Murni

    2017-12-01

    In recent years, many efforts have been directed to explore the methods to reduce the production costs of industrial lipase by improving the yield and the use of low-cost agricultural wastes. Coconut dregs, which is a lignocellulosic by-product from coconut oil and milk processing plants, is rich in cellulose (36%) and crude fat (9%). A newly isolated Bacillus stratosphericus has been demonstrated to perform cellulose hydrolysis on coconut dregs producing fermentable sugars. The highest extracellular lipase activity of 140 U/mL has been achieved in submerged fermentation with acid pre-treated coconut dregs. The lipase was found to be active over a wide range of temperatures and pHs. The activity of lipase can be generally increased by the presence of detergent ingredients such as Tween-80, cetyltrimethylammonium bromide, hydrogen peroxide and phosphate per sulphate. The great compatibility of lipase in commercial detergents has also underlined its potential as an additive ingredient in biodetergent formulations.

  1. Chemical pretreatment of lignocellulosic agroindustrial waste for methane production.

    PubMed

    Pellera, Frantseska-Maria; Gidarakos, Evangelos

    2018-01-01

    This study investigates the effect of different chemical pretreatments on the solubilization and the degradability of different solid agroindustrial waste, namely winery waste, cotton gin waste, olive pomace and juice industry waste. Eight different reagents were investigated, i.e. sodium hydroxide (NaOH), sodium bicarbonate (NaHCO 3 ), sodium chloride (NaCl), citric acid (H 3 Cit), acetic acid (AcOH), hydrogen peroxide (H 2 O 2 ), acetone (Me 2 CO) and ethanol (EtOH), under three condition sets resulting in treatments of varying intensity, depending on process duration, reagent dosage and temperature. Results indicated that chemical pretreatment under more severe conditions is more effective on the solubilization of lignocellulosic substrates, such as those of the present study and among the investigated reagents, H 3 Cit, H 2 O 2 and EtOH appeared to be the most effective to this regard. At the same time, although chemical pretreatment in general did not improve the methane potential of the substrates, moderate to high severity conditions were found to generally be the most satisfactory in terms of methane production from pretreated materials. In fact, moderate severity treatments using EtOH for winery waste, H 3 Cit for olive pomace and H 2 O 2 for juice industry waste and a high severity treatment with EtOH for cotton gin waste, resulted in maximum specific methane yield values. Ultimately, the impact of pretreatment parameters on the different substrates seems to be dependent on their characteristics, in combination with the specific mode of action of each reagent. The overall energy balance of such a system could probably be improved by using lower operating powers and higher solid to liquid ratios. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Anaerobic digestion of organic fraction of municipal solid waste combining two pretreatment modalities, high temperature microwave and hydrogen peroxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahriari, Haleh, E-mail: haleh.shahriari@gmail.com; Warith, Mostafa; Hamoda, Mohamed

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Microwave and H{sub 2}O{sub 2} pretreatment were studied to enhance anaerobic digestion of organic waste. Black-Right-Pointing-Pointer The whole waste pretreated at 115 Degree-Sign C or 145 Degree-Sign C had the highest biogas production. Black-Right-Pointing-Pointer Biogas production of the whole waste decreased at 175 Degree-Sign C due to formation of refractory compounds. Black-Right-Pointing-Pointer Pretreatment to 145 Degree-Sign C and 175 Degree-Sign C were the best when considering only the free liquid fraction. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} pretreatment had a lag phase and the biogas production was not higher than MW pretreated samples. - Abstract: In order to enhance anaerobicmore » digestion (AD) of the organic fraction of municipal solid waste (OFMSW), pretreatment combining two modalities, microwave (MW) heating in presence or absence of hydrogen peroxide (H{sub 2}O{sub 2}) were investigated. The main pretreatment variables affecting the characteristics of the OFMSW were temperature (T) via MW irradiation and supplemental water additions of 20% and 30% (SWA20 and SW30). Subsequently, the focus of this study was to evaluate mesophilic batch AD performance in terms of biogas production, as well as changes in the characteristics of the OFMSW post digestion. A high MW induced temperature range (115-175 Degree-Sign C) was applied, using sealed vessels and a bench scale MW unit equipped with temperature and pressure controls. Biochemical methane potential (BMP) tests were conducted on the whole OFMSW as well as the liquid fractions. The whole OFMSW pretreated at 115 Degree-Sign C and 145 Degree-Sign C showed 4-7% improvement in biogas production over untreated OFMSW (control). When pretreated at 175 Degree-Sign C, biogas production decreased due to formation of refractory compounds, inhibiting the digestion. For the liquid fraction of OFMSW, the effect of pretreatment on the cumulative biogas production (CBP) was more pronounced for SWA20 at 145 Degree-Sign C, with a 26% increase in biogas production after 8 days of digestion, compared to the control. When considering the increased substrate availability in the liquid fraction after MW pretreatment, a 78% improvement in biogas production vs. the control was achieved. Combining MW and H{sub 2}O{sub 2} modalities did not have a positive impact on OFMSW stabilization and enhanced biogas production. In general, all samples pretreated with H{sub 2}O{sub 2} displayed a long lag phase and the CBP was usually lower than MW irradiated only samples. First order rate constant was calculated.« less

  3. Optimization of pretreatment, enzymatic hydrolysis and fermentation for more efficient ethanol production by Jerusalem artichoke stalk.

    PubMed

    Li, Kai; Qin, Jin-Cheng; Liu, Chen-Guang; Bai, Feng-Wu

    2016-12-01

    Jerusalem artichoke (JA) is a potential energy crop for biorefinery due to its unique agronomic traits such as resistance to environmental stresses and high biomass yield in marginal lands. Although JA tubers have been explored for inulin extraction and biofuels production, there is little concern on its stalk (JAS). In this article, the pretreatment of JAS by alkaline hydrogen peroxide was optimized using the response surface methodology to improve sugars yield and reduce chemicals usage. Scanning electron microscopy, X-ray diffraction, and thermogravimetric analysis were applied to characterize the structures of the pretreated JAS to evaluate the effectiveness of the pretreatment. Furthermore, the feeding of the pretreated JAS and cellulase was performed for high solid uploading (up to 30%) to increase ethanol titer, and simultaneous saccharification and fermentation with 55.6g/L ethanol produced, 36.5% more than that produced through separate hydrolysis and fermentation, was validated to be more efficient. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Pretreatment of paper tube residuals for improved biogas production.

    PubMed

    Teghammar, Anna; Yngvesson, Johan; Lundin, Magnus; Taherzadeh, Mohammad J; Horváth, Ilona Sárvári

    2010-02-01

    Paper tube residuals, which are lignocellulosic wastes, have been studied as substrate for biogas (methane) production. Steam explosion and nonexplosive hydrothermal pretreatment, in combination with sodium hydroxide and/or hydrogen peroxide, have been used to improve the biogas production. The treatment conditions of temperature, time and addition of NaOH and H(2)O(2) were statistically evaluated for methane production. Explosive pretreatment was more successful than the nonexplosive method, and gave the best results at 220 degrees C, 10 min, with addition of both 2% NaOH and 2% H(2)O(2). Digestion of the pretreated materials at these conditions yielded 493 N ml/g VS methane which was 107% more than the untreated materials. In addition, the initial digestion rate was improved by 132% compared to the untreated samples. The addition of NaOH was, besides the explosion effect, the most important factor to improve the biogas production.

  5. Vitamin D3-induced hypercalcemia increases carbon tetrachloride-induced hepatotoxicity through elevated oxidative stress in mice

    PubMed Central

    Usuda, Haruki; Miura, Nobuhiko; Fukuishi, Nobuyuki; Nonogaki, Tsunemasa; Onosaka, Satomi

    2017-01-01

    The aim of this study was to determine whether calcium potentiates acute carbon tetrachloride (CCl4) -induced toxicity. Elevated calcium levels were induced in mice by pre-treatment with cholecalciferol (vitamin D3; V.D3), a compound that has previously been shown to induce hypercalcemia in human and animal models. As seen previously, mice injected with CCl4 exhibited increased plasma levels of alanine aminotransferase, aspartate aminotransferase, and creatinine; transient body weight loss; and increased lipid peroxidation along with decreased total antioxidant power, glutathione, ATP, and NADPH. Pre-treatment of these animals with V.D3 caused further elevation of the values of these liver functional markers without altering kidney functional markers; continued weight loss; a lower lethal threshold dose of CCl4; and enhanced effects on lipid peroxidation and total antioxidant power. In contrast, exposure to V.D3 alone had no effect on plasma markers of liver or kidney damage or on total antioxidant power or lipid peroxidation. The potentiating effect of V.D3 was positively correlated with elevation of hepatic calcium levels. Furthermore, direct injection of CaCl2 also enhanced CCl4-induced hepatic injury. Since CaCl2 induced hypercalcemia transiently (within 3 h of injection), our results suggest that calcium enhances the CCl4-induced hepatotoxicity at an early stage via potentiation of oxidative stress. PMID:28448545

  6. Antioxidant potential of the methanol-methylene chloride extract of Terminalia glaucescens leaves on mice liver in streptozotocin-induced stress.

    PubMed

    Njomen, Guy Bertrand Sabas Nya; Kamgang, René; Oyono, Jean Louis Essame; Njikam, Njifutie

    2008-11-01

    The antioxidant effect of the methanol-methylene chloride extract of Terminalia glaucescens (Combretaceae) leaves was investigated in streptozotocin (STZ)-induced oxidative stress. Oxidative stress was induced in mice by a daily dose of STZ (45 mg/kg body weight i.p.) for five days. From day one, before STZ injection, normal and diabetic-test mice received an oral dose of the extract (100 or 300 mg/kg b.w.) daily. Plasma metabolites, lipid peroxidation, and antioxidant enzymes in the liver were assessed and gain in body weight recorded. In normal mice the plant extract reduced food and water intake, blood glucose and LDL-C level and body weight gain, did not affect the lipid peroxidation in the liver, while the antioxidant enzyme activities seemed increased. Blood glucose was decreased (P < 0.05) in normal mice treated with 300 mg/kg extract. Diabetic mice pretreated with 100 mg/kg extract as diabetic control mice (DC) showed significant (P < 0.001) body weight loss, polyphagia and polydipsia, high plasma glucose level, decrease in the liver catalase, peroxidase, and superoxide dismutase activities, and increase in lipid peroxidation. The HDL-C level was lowered (P < 0.05) whereas LDL-C increased. In 300 mg/kg extract-pretreated diabetic mice the extract prevented body weight loss, increase of blood glucose level, lipid peroxidation in liver, food and water intake, and lowering of plasma HDL-C level and liver antioxidants; this extract prevented LDL-C level increase. These results indicate that T. glaucescens protects against STZ-induced oxidative stress and could thus explain its traditional use for diabetes and obesity treatment or management.

  7. Ethanol production from a biomass mixture of furfural residues with green liquor-peroxide saccarified cassava liquid.

    PubMed

    Ji, Li; Zheng, Tianran; Zhao, Pengxiang; Zhang, Weiming; Jiang, Jianxin

    2016-06-01

    As the most abundant renewable resources, lignocellulosic materials are ideal candidates as alternative feedstock for bioethanol production. Cassava residues (CR) are byproducts of the cassava starch industry which can be mixed with lignocellulosic materials for ethanol production. The presence of lignin in lignocellulosic substrates can inhibit saccharification by reducing the cellulase activity. Simultaneous saccharification and fermentation (SSF) of furfural residues (FR) pretreated with green liquor and hydrogen peroxide (GL-H2O2) with CR saccharification liquid was investigated. The final ethanol concentration, yield, initial rate, number of live yeast cells, and the dead yeast ratio were compared to evaluate the effectiveness of combining delignificated lignocellulosic substrates and starchy substrates for ethanol production. Our results indicate that 42.0 % of FR lignin removal was achieved on FR using of 0.06 g H2O2/g-substrate and 9 mL GL/g-substrate at 80 °C. The highest overall ethanol yield was 93.6 % of the theoretical. When the ratio of 0.06 g/g-H2O2-GL-pretreated FR to CR was 5:1, the ethanol concentration was the same with that ratio of untreated FR to CR of 1:1. Using 0.06 g/g-H2O2-GL-pretreated FR with CR at a ratio of 2:1 resulted in 51.9 g/L ethanol concentration. Moreover, FR pretreated with GL-H2O2 decreased the concentration of byproducts in SSF compared with that obtained in the previous study. The lignin in FR would inhibit enzyme activity and GL-H2O2 is an advantageous pretreatment method to treat FR and high intensity of FR pretreatment increased the final ethanol concentration. The efficiency of ethanol fermentation of was improved when delignification increased. GL-H2O2 is an advantageous pretreatment method to treat FR. As the pretreatment dosage of GL-H2O2 on FR increased, the proportion of lignocellulosic substrates was enhanced in the SSF of the substrate mixture of CR and FR as compared with untreated FR. Moreover, the final ethanol concentration was increased with a high ethanol yield and lower byproduct concentrations.

  8. Coupling alkaline pre-extraction with alkaline-oxidative post-treatment of corn stover to enhance enzymatic hydrolysis and fermentability

    PubMed Central

    2014-01-01

    Background A two-stage chemical pretreatment of corn stover is investigated comprising an NaOH pre-extraction followed by an alkaline hydrogen peroxide (AHP) post-treatment. We propose that conventional one-stage AHP pretreatment can be improved using alkaline pre-extraction, which requires significantly less H2O2 and NaOH. To better understand the potential of this approach, this study investigates several components of this process including alkaline pre-extraction, alkaline and alkaline-oxidative post-treatment, fermentation, and the composition of alkali extracts. Results Mild NaOH pre-extraction of corn stover uses less than 0.1 g NaOH per g corn stover at 80°C. The resulting substrates were highly digestible by cellulolytic enzymes at relatively low enzyme loadings and had a strong susceptibility to drying-induced hydrolysis yield losses. Alkaline pre-extraction was highly selective for lignin removal over xylan removal; xylan removal was relatively minimal (~20%). During alkaline pre-extraction, up to 0.10 g of alkali was consumed per g of corn stover. AHP post-treatment at low oxidant loading (25 mg H2O2 per g pre-extracted biomass) increased glucose hydrolysis yields by 5%, which approached near-theoretical yields. ELISA screening of alkali pre-extraction liquors and the AHP post-treatment liquors demonstrated that xyloglucan and β-glucans likely remained tightly bound in the biomass whereas the majority of the soluble polymeric xylans were glucurono (arabino) xylans and potentially homoxylans. Pectic polysaccharides were depleted in the AHP post-treatment liquor relative to the alkaline pre-extraction liquor. Because the already-low inhibitor content was further decreased in the alkaline pre-extraction, the hydrolysates generated by this two-stage pretreatment were highly fermentable by Saccharomyces cerevisiae strains that were metabolically engineered and evolved for xylose fermentation. Conclusions This work demonstrates that this two-stage pretreatment process is well suited for converting lignocellulose to fermentable sugars and biofuels, such as ethanol. This approach achieved high enzymatic sugars yields from pretreated corn stover using substantially lower oxidant loadings than have been reported previously in the literature. This pretreatment approach allows for many possible process configurations involving novel alkali recovery approaches and novel uses of alkaline pre-extraction liquors. Further work is required to identify the most economical configuration, including process designs using techno-economic analysis and investigating processing strategies that economize water use. PMID:24693882

  9. Silymarin improved 6-OHDA-induced motor impairment in hemi-parkisonian rats: behavioral and molecular study

    PubMed Central

    2014-01-01

    Background Neuroinflammation and oxidative stress has been shown to be associated with the development of Parkinson disease (PD). In the present study, we investigated the effect of intraperitoneal (i.p.) administration of silymarin, on 6-OHDA-induced motor-impairment, brain lipid per-oxidation and cerebrospinal fluid (CSF) levels of inflammatory cytokine in the rats. Results The results showed that silymarin is able to improve motor coordination significantly (p < 0.001) in a dose dependent manner. There was a significant (p < 0.001) increase in MDA levels of 6-OHDA-lesioned rats whereas; in silymarin (100, 200 and 300 mg/kg, i.p. for 5 days) pre-treated hemi-parkinsonian rats MDA levels was decreased markedly (p < 0.001). Furthermore the CSF levels of IL-1β was decreased (p < 0.001) in silymarin (100, 200 and 300 mg/kg) pre-treated rats up to the range of normal non-parkinsonian animals. Conclusion We found that pre-treatment with silymarin could improve 6-OHDA-induced motor imbalance by attenuating brain lipid per-oxidation as well as CSF level of IL-1β as a pro-inflammatory cytokine. We suggest a potential prophylactic effect for silymarin in PD. However, further clinical trial studies should be carried out to prove this hypothesis. PMID:24726284

  10. Controlled grafting of comb copolymer brushes on poly(tetrafluoroethylene) films by surface-initiated living radical polymerizations.

    PubMed

    Yu, W H; Kang, E T; Neoh, K G

    2005-01-04

    Surface modification of poly(tetrafluoroethylene) (PTFE) films by well-defined comb copolymer brushes was carried out. Peroxide initiators were generated directly on the PTFE film surface via radio frequency Ar plasma pretreatment, followed by air exposure. Poly(glycidyl methacrylate) (PGMA) brushes were first prepared by surface-initiated reversible addition-fragmentation chain transfer polymerization from the peroxide initiators on the PTFE surface in the presence of a chain transfer agent. Kinetics study revealed a linear increase in the graft concentration of PGMA with the reaction time, indicating that the chain growth from the surface was consistent with a "controlled" or "living" process. alpha-Bromoester moieties were attached to the grafted PGMA by reaction of the epoxide groups with 2-bromo-2-methylpropionic acid. The comb copolymer brushes were subsequently prepared via surface-initiated atom transfer radical polymerization of two hydrophilic vinyl monomers, including poly(ethylene glycol) methyl ether methacrylate and sodium salt of 4-styrenesulfonic acid. The chemical composition of the modified PTFE surfaces was characterized by X-ray photoelectron spectroscopy.

  11. Andrographis paniculata extract protect against isoproterenol-induced myocardial injury by mitigating cardiac dysfunction and oxidative injury in rats.

    PubMed

    Ojha, Shreesh; Bharti, Saurabh; Golechha, Mahaveer; Sharma, Ashok K; Rani, Neha; Kumari, Santosh; Arya, Dharamvir Singh

    2012-01-01

    Present study evaluated the cardioprotective effect of Andrographis paniculata (100, 200 or 400 mg/kg) against isoproterenol (85 mg/kg, b.w.)-induced cardiotoxicity referred as myocardial infarction in rats. Isoproterenol significantly (p < 0.05) decreased mean arterial pressure, heart rate, contractility and relaxation and increased left ventricular end diastolic pressure. Isoproterenol also significantly (p < 0.05) decreased antioxidants, superoxide dismutase, catalase, glutathione peroxidase, glutathione and increased leakage of cardiac injury markers; creatine phosphokinase-MB isoenzyme, lactate dehydrogenase concomitant to increased lipid peroxidation and histopathological perturbations. However, pretreatment with A. paniculata favorably restored hemodynamic parameters and left ventricular function and significantly (p < 0.05) prevented the depletion of endogenous antioxidants and myocyte marker enzymes as well as inhibited lipid peroxidation. Significant (p < 0.05) reversal of almost all the hemodynamic, biochemical and histopathological parameters by A. paniculata pretreatment in isoproterenol-induced cardiotoxicity depicted the cardioprotective effect of A. paniculata. Results showed that A. paniculata protected heart against cardiotoxic effects of isoproterenol by boosting endogenous antioxidant network, restoring ventricular function and maintaining structural integrity of heart.

  12. Additional Antiepileptic Mechanisms of Levetiracetam in Lithium-Pilocarpine Treated Rats

    PubMed Central

    Al-Shorbagy, Muhammad Y.; El Sayeh, Bahia M.; Abdallah, Dalaal M.

    2013-01-01

    Several studies have addressed the antiepileptic mechanisms of levetiracetam (LEV); however, its effect on catecholamines and the inflammatory mediators that play a role in epilepsy remain elusive. In the current work, lithium (Li) pretreated animals were administered LEV (500 mg/kg i.p) 30 min before the induction of convulsions by pilocarpine (PIL). Li-PIL-induced seizures were accompanied by increased levels of hippocampal prostaglandin (PG) E2, myeloperoxidase (MPO), tumor necrosis factor-α, and interleukin-10. Moreover, it markedly elevated hippocampal lipid peroxides and nitric oxide levels, while it inhibited the glutathione content. Li-PIL also reduced hippocampal noradrenaline, as well as dopamine contents. Pretreatment with LEV protected against Li-PIL-induced seizures, where it suppressed the severity and delayed the onset of seizures in Li-PIL treated rats. Moreover, LEV reduced PGE2 and MPO, yet it did not affect the level of both cytokines in the hippocampus. LEV also normalized hippocampal noradrenaline, dopamine, glutathione, lipid peroxides, and nitric oxide contents. In conclusion, alongside its antioxidant property, LEV anticonvulsive effect involves catecholamines restoration, as well as inhibition of PGE2, MPO, and nitric oxide. PMID:24098559

  13. Effects of short-term anoxia treatment on browning of fresh-cut Chinese water chestnut in relation to antioxidant activity.

    PubMed

    You, Yanli; Jiang, Yueming; Sun, Jian; Liu, Hai; Song, Lili; Duan, Xuewu

    2012-06-01

    The effects of short-term anoxia pre-treatment on browning of fresh-cut Chinese water chestnut (CWC), stored at 4°C, in relation to antioxidant activity were investigated. CWC slices were exposed to pure N 2 for 4h and then stored at 4°C for 18d. Anoxia significantly inhibited browning of CWC slices during storage, accompanied by lower contents of malondialdehyde, H 2 O 2 , and lipoxygenase activity. Furthermore, anoxia induced the activities of superoxide dismutase and ascorbate peroxidase, which could benefit scavenging reactive oxygen species and alleviating lipid peroxidation. In addition, better maintenance of reducing power and free-radical-scavenging activities against α,α-diphenyl-β-picrylhydrazy (DPPH), superoxide anions and hydroxyl was observed in N 2 -treated CWC slices, with higher phenolic compounds and ascorbic acid contents. Collectively, these finds suggest that N 2 pre-treatment enhanced enzymatic and non-enzymatic antioxidant activity in CWC slices, and thereby contributed to alleviating lipid peroxidation and maintenance of storage quality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Synthesis of functional carbon nanospheres by a composite-molten-salt method and amperometric sensing of hydrogen peroxide.

    PubMed

    Wang, Xue; Hu, Chenguo; Xiong, Yufeng; Zhang, Cuiling

    2013-02-01

    Functional carbon nanospheres have been synthesized from analytically pure glucose by a composite-molten-salt (CMS) method. Field emission scanning electron microscopy, transmission electron microscopy, Raman and Fourier transformation infra-red spectroscopy indicate the carbon nanospheres are solid, bond hybridisation (sp2/sp3) and with many functional groups on their surfaces. Amperometric sensor based on the synthesized carbon nanospheres have been fabricated without pretreatment or modification. The detection of hydrogen peroxide exhibits high sensitivity and good selectivity. The electrochemical measurement of these nanospheres demonstrates much superior performance to those of the carbon nanospheres synthesized by hydrothermal method.

  15. Enhancement of anaerobic digestibility of waste activated sludge using photo-Fenton pretreatment.

    PubMed

    Heng, Gan Chin; Isa, Mohamed Hasnain; Lim, Jun-Wei; Ho, Yeek-Chia; Zinatizadeh, Ali Akbar Lorestani

    2017-12-01

    Biological treatments, such as activated sludge process, are common methods to treat municipal and industrial wastewaters. However, they produce huge amounts of waste activated sludge (WAS). The excess sludge treatment and disposal are a challenge for wastewater treatment plants due to economic, environmental, and regulatory factors. In this study, photo-Fenton pretreatment (oxidation using hydrogen peroxide and iron catalyst aided with UV light) was optimized using response surface methodology (RSM) and central composite design (CCD) to determine the effects of three operating parameters (H 2 O 2 dosage, H 2 O 2 /Fe 2+ molar ratio, and irradiation time) on disintegration and dewaterability of WAS. MLVSS removal, capillary suction time (CST) reduction, sCOD, and EPS were obtained as 70%, 25%, 12,000 mg/L, and 500 mg/L, respectively, at the optimal conditions, i.e., 725 g H 2 O 2 /kg TS, H 2 O 2 /Fe 2+ molar ratio 80, and irradiation time 40 min. Two batch-fed completely mixed mesophilic anaerobic digesters were then operated at 15-day solid retention time (SRT) and 37 ± 0.5 °C to compare the digestibility of untreated and photo-Fenton pretreated sludge in terms of volatile solids (VS) reduction, COD removal, and biogas production at steady-state operations. Photo-Fenton pretreatment followed by anaerobic digestion of WAS was very effective and yielded 75.7% total VS reduction, 81.5% COD removal, and 0.29-0.31 m 3 /kg VS fed ·d biogas production rate, compared to 40.7% total VS solid reduction, 54.7% COD removal, and 0.12-0.17 m 3 /kg VS fed ·d biogas production rate for control. Thus, photo-Fenton can be a useful pretreatment step in sludge management.

  16. One-step pretreatment of yellow poplar biomass using peracetic acid to enhance enzymatic digestibility.

    PubMed

    Lee, Hyeong Rae; Kazlauskas, Romas J; Park, Tai Hyun

    2017-09-22

    Pretreatment of biomass with dilute acid requires high temperatures of >160 °C to remove xylan and does not remove lignin. Here we report that the addition of peracetic acid, a strong oxidant, to mild dilute acid pretreatment reduces the temperature requirement to only 120 °C. Pretreatment of yellow poplar with peracetic acid (300 mM, 2.3 wt%) and dilute sulfuric acid (100 mM, 1.0 wt%) at 120 °C for 5 min removed 85.7% of the xylan and 90.4% of the lignin leaving a solid consisting of 75.6% glucan, 6.0% xylan and 4.7% lignin. Low enzyme loadings of 5 FPU/g glucan and 10 pNPGU/g glucan converted this solid to glucose with an 84.0% yield. This amount of glucose was 2.5 times higher than with dilute acid-pretreated solid and 13.8 times higher than with untreated yellow poplar. Thus, the addition of peracetic acid, easily generated from acetic acid and hydrogen peroxide, dramatically increases the effectiveness of dilute acid pretreatment of biomass.

  17. Pretreating wheat straw by the concentrated phosphoric acid plus hydrogen peroxide (PHP): Investigations on pretreatment conditions and structure changes.

    PubMed

    Wang, Qing; Hu, Jinguang; Shen, Fei; Mei, Zili; Yang, Gang; Zhang, Yanzong; Hu, Yaodong; Zhang, Jing; Deng, Shihuai

    2016-01-01

    Wheat straw was pretreated by PHP (the concentrated H3PO4 plus H2O2) to clarify effects of temperature, time and H3PO4 proportion on hemicellulose removal, delignification, cellulose recovery and enzymatic digestibility. Overall, hemicellulose removal was intensified by PHP comparing to the concentrated H3PO4. Moreover, efficient delignification specially happened in PHP pretreatment. Hemicellulose removal and delignification by PHP positively responded to temperature and time. Increasing H3PO4 proportion in PHP can promote hemicellulose removal, however, decrease the delignification. Maximum hemicellulose removal and delignification were achieved at 100% and 83.7% by PHP. Enzymatic digestibility of PHP-pretreated wheat straw was greatly improved by increasing temperature, time and H3PO4 proportion, and complete hydrolysis can be achieved consequently. As temperature of 30-40°C, time of 2.0 h and H3PO4 proportion of 60% were employed, more than 92% cellulose was retained in the pretreated wheat straw, and 29.1-32.6g glucose can be harvested from 100g wheat straw. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Rapamycin protects the mitochondria against oxidative stress and apoptosis in a rat model of Parkinson's disease.

    PubMed

    Jiang, Jianhua; Jiang, Juean; Zuo, Yuanyi; Gu, Zhenlun

    2013-04-01

    Parkinson's disease (PD) is a neurodegenerative disease, in which oxidative stress and mitochondrial dysfunction are responsible for neuronal apoptosis. Rapamycin plays a crucial role in reducing oxidative stress and protecting the mitochondria. However, its protective role in PD has not yet been fully elucidated. In this study, we report that pre-treatment with rapamycin provides behavioral improvements, protects against the loss of dopaminergic neurons, and alleviates mitochondrial ultrastructural injuries in a rat model of PD. Peroxide levels were lower and antioxidant activities were higher in PD rats pre-treated with rapamycin compared to the PD rats pre-treated with the vehicle. Furthermore, pre-treatment with rapamycin significantly elevated the expression of anti-apoptotic markers and reduced the levels of pro-apoptotic markers compared to pre-treatment with the vehicle. In conclusion, our results demonstrated that rapamycin reduced oxidative stress and alleviated mitochondrial injuries in the 6-hydroxydopamine (6-OHDA)-induced rat model of PD, which may subsequently contribute to its anti-apoptotic effects. The ability of rapamycin to exhibit neuroprotection in a rat model of PD may be related to its antioxidant capabilities.

  19. Protective effects of Arctium lappa L. roots against hydrogen peroxide-induced cell injury and potential mechanisms in SH-SY5Y cells.

    PubMed

    Tian, Xing; Guo, Li-Ping; Hu, Xiao-Long; Huang, Jin; Fan, Yan-Hua; Ren, Tian-Shu; Zhao, Qing-Chun

    2015-04-01

    Accumulated evidence has shown that excessive reactive oxygen species (ROS) have been implicated in neuronal cell death related with various chronic neurodegenerative disorders. This study was designed to explore neuroprotective effects of ethyl acetate extract of Arctium lappa L. roots (EAL) on hydrogen peroxide (H2O2)-induced cell injury in human SH-SY5Y neuroblastoma cells. The cell viability was significantly decreased after exposure to 200 μM H2O2, whereas pretreatment with different concentrations of EAL attenuated the H2O2-induced cytotoxicity. Hoechst 33342 staining indicated that EAL reversed nuclear condensation in H2O2-treated cells. Meanwhile, TUNEL assay with DAPI staining showed that EAL attenuated apoptosis was induced by H2O2. Pretreatment with EAL also markedly elevated activities of antioxidant enzyme (GSH-Px and SOD), reduced lipid peroxidation (MDA) production, prevented ROS formation, and the decrease of mitochondrial membrane potential. In addition, EAL showed strong radical scavenging ability in 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) assays. Furthermore, EAL inhibited H2O2-induced apoptosis by increases in the Bcl-2/Bax ratio, decreases in cytochrome c release, and attenuation of caspase-3, caspase-9 activities, and expressions. These findings suggest that EAL may be regarded as a potential antioxidant agent and possess potent neuroprotective activity against H2O2-induced injury.

  20. Evaluation of the cytotoxic and antimutagenic effects of biflorin, an antitumor 1,4 o-naphthoquinone isolated from Capraria biflora L.

    PubMed

    Vasconcellos, Marne C; Moura, Dinara J; Rosa, Renato M; Machado, Miriana S; Guecheva, Temenouga N; Villela, Izabel; Immich, Bruna F; Montenegro, Raquel C; Fonseca, Aluísio M; Lemos, Telma L G; Moraes, Maria Elisabete A; Saffi, Jenifer; Costa-Lotufo, Letícia V; Moraes, Manoel O; Henriques, João A P

    2010-10-01

    Biflorin is a natural quinone isolated from Capraria biflora L. Previous studies demonstrated that biflorin inhibits in vitro and in vivo tumor cell growth and presents potent antioxidant activity. In this paper, we report concentration-dependent cytotoxic, genotoxic, antimutagenic, and protective effects of biflorin on Salmonella tiphymurium, yeast Saccharomyces cerevisiae, and V79 mammalian cells, using different approaches. In the Salmonella/microsome assay, biflorin was not mutagenic to TA97a TA98, TA100, and TA102 strains. However, biflorin was able to induce cytotoxicity in haploid S. cerevisiae cells in stationary and exponential phase growth. In diploid yeast cells, biflorin did not induce significant mutagenic and recombinogenic effects at the employed concentration range. In addition, the pre-treatment with biflorin prevented the mutagenic and recombinogenic events induced by hydrogen peroxide (H(2)O(2)) in S. cerevisiae. In V79 mammalian cells, biflorin was cytotoxic at higher concentrations. Moreover, at low concentrations biflorin pre-treatment protected against H(2)O(2)-induced oxidative damage by reducing lipid peroxidation and DNA damage as evaluated by normal and modified comet assay using DNA glycosylases. Our results suggest that biflorin cellular effects are concentration dependent. At lower concentrations, biflorin has significant antioxidant and protective effects against the cytotoxicity, genotoxicity, mutagenicity, and intracellular lipid peroxidation induced by H(2)O(2) in yeast and mammalian cells, which can be attributed to its hydroxyl radical-scavenging property. However, at higher concentrations, biflorin is cytotoxic and genotoxic.

  1. Synergistic effects of plant defense elicitors and Trichoderma harzianum on enhanced induction of antioxidant defense system in tomato against Fusarium wilt disease.

    PubMed

    Zehra, Andleeb; Meena, Mukesh; Dubey, Manish Kumar; Aamir, Mohd; Upadhyay, R S

    2017-11-02

    Plant defense against their pathogens can be induced by a complex network of different inducers. The present study investigates the synergistic effect of Trichoderma harzianum, exogenous salicylic acid (SA) and methyl jasmonate (MeJA) over the response and regulation of the antioxidant defense mechanisms and lipid peroxidation in tomato plants against Fusarium wilt disease. In the present work, tomato plants were infected by Fusarium oxysporum f. sp. lycopersici 3 days after inoculated with T. harzianum and/or sprayed daily for 3 days with chemical inducers (SA and MeJA). Plants were analysed at 0, 24, 48, 72 and 96 h after inoculation with Fusarium oxysporum f. sp. lycopersici. Infection of tomato plants by pathogen led to strong reduction in the dry weight of roots and shoots with the enhanced concentration of H 2 O 2 and varying degree of lipid peroxidation. Concurrently, exogenous SA, when applied with pathogen greatly enhanced H 2 O 2 content as well as activities of antioxidant enzymes except catalase (CAT) and ascorbate peroxidase (APx). The pathogen challenged plants pretreated with T. harzianum and MeJA together exhibited less lipid peroxidation and as well as the elevated level of ascorbic acid and enhanced activities of antioxidant enzymes. All applied treatments protected tomato seedlings against Fusarium wilt disease but the percentage of protection was found higher in plants pretreated with the combination of T. harzianum and chemical inducers.

  2. Production of bioethanol from multiple waste streams of rice milling.

    PubMed

    Favaro, Lorenzo; Cagnin, Lorenzo; Basaglia, Marina; Pizzocchero, Valentino; van Zyl, Willem Heber; Casella, Sergio

    2017-11-01

    This work describes the feasibility of using rice milling by-products as feedstock for bioethanol. Starch-rich residues (rice bran, broken, unripe and discolored rice) were individually fermented (20%w/v) through Consolidated Bioprocessing by two industrial engineered yeast secreting fungal amylases. Rice husk (20%w/v), mainly composed by lignocellulose, was pre-treated at 55°C with alkaline peroxide, saccharified through optimized dosages of commercial enzymes (Cellic® CTec2) and fermented by the recombinant strains. Finally, a blend of all the rice by-products, formulated as a mixture (20%w/v) according to their proportions at milling plants, were co-processed to ethanol by optimized pre-treatment, saccharification and fermentation by amylolytic strains. Fermenting efficiency for each by-product was high (above 88% of the theoretical) and further confirmed on the blend of residues (nearly 52g/L ethanol). These results demonstrated for the first time that the co-conversion of multiple waste streams is a promising option for second generation ethanol production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Effects of conventional and hydrogen sulfide-releasing non-steroidal anti-inflammatory drugs in rats with stress-induced and epinephrine-induced gastric damage.

    PubMed

    Fomenko, Iryna; Sklyarov, Alexander; Bondarchuk, Tetyana; Biletska, Lilya; Panasyuk, Natalia; Wallace, John L

    2014-12-01

    Mechanisms of gastric defence under conditions of combined influence of acute stress and non-steroidal anti-inflammatory drugs (NSAIDs) are still poorly studied. The aim of this study was to explore the effects of different types of NSAIDs (naproxen, celecoxib and ATB-346) in producing experimental gastric lesions (induced by water-restraint stress (WRS) or by epinephrine (EPN) injection) and to determine the role of lipid peroxidation and the nitric oxide (NO) system in the pathogenesis of the damage. Male rats were used (eight per group) in this work. The NSAIDs were all administered at a dose 10 mg kg(-1) 30 min prior to WRS or EPN injection. Administration of naproxen to the control rats caused development of gastric lesions, whereas administration of a hydrogen sulfide (H2S)-releasing NSAID (ATB-346) or a selective cyclooxygenase-2 inhibitor (celecoxib) did not cause gastric damage. In contrast, lipid peroxidation processes were enhanced in all groups as was the activity of NO synthase (NOS). Pretreatment with naproxen in the WRS model caused an increase in severity of damage and a decrease in NOS activity. ATB-346 displayed beneficial effects, manifested by a decrease in the area of gastric damage, but parameters of lipid peroxidation and the NOS system did not differ substantially from those in the group treated with naproxen. Administration of different NSAIDs under conditions of EPN-induced gastric damage resulted in the decrease in NOS activity and lipid peroxidation. None of the tested NSAIDs exacerbated EPN-induced gastric mucosal injury; indeed, they all reduced the extent of damage.

  4. Oxidative stress induced by cadmium in the plasma, erythrocytes and lymphocytes of rats: Attenuation by grape seed proanthocyanidins.

    PubMed

    Nazima, B; Manoharan, V; Miltonprabu, S

    2016-04-01

    The present study has been designed to investigate the ameliorative effect of grape seed proanthocyanidins (GSP) on cadmium (Cd)-induced oxidative damage in rat erythrocytes. Twenty four male Wistar rats were divided into four groups: control, GSP-treated group (100 mg kg(-1) body weight (BW)), Cd-treated group (cadmium chloride, 5 mg kg(-1) BW), and GSP + Cd-treated group in which GSP was orally pre-administered 90 min before Cd intoxication for 4 weeks. At the end of the experimental period, blood samples were collected by cardiac puncture and were processed for various biochemical estimations. The extent of oxidative damage in isolated rat erythrocyte membrane was assessed by measuring lipid peroxidation, enzymatic and non-enzymatic content, calcium ion (Ca(2+))/magnesium ion (Mg(2+))-ATPase and sodium ion (Na(+))/potassium ion (K(+))-ATPase activities, free iron, calcium, hydrogen peroxide (H2O2) concentration, and osmotic fragility. Our results unveiled that Cd intoxication significantly increased the erythrocyte lipid peroxidation markers and decreased the activity of enzymatic and non-enzymatic markers in erythrocytes. Conversely, GSP pretreatment significantly prevented the decrease in the activities of antioxidant enzymes and membrane-bound ATPases. GSP also restored the levels of iron, calcium, and H2O2 in Cd-treated rats. Conformational changes in erythrocytes of various groups were also determined using morphological and ultrastructural electron microscopic analysis. The findings of our study clearly revealed that GSP affords superior protection against Cd-induced reactive oxygen species generation, lipid peroxidation, and free radical generation in Cd-treated rats, which presumably reflects the ability of this flavonoid to protect erythrocytes and lymphocytes of rats from the toxic effects of Cd. © The Author(s) 2015.

  5. Protective effects of parecoxib on rat primary astrocytes from oxidative stress induced by hydrogen peroxide* #

    PubMed Central

    Ling, Yun-zhi; Li, Xiao-hong; Yu, Li; Zhang, Ye; Liang, Qi-sheng; Yang, Xiao-di; Wang, Hong-tao

    2016-01-01

    Objective: To investigate the protective effects of parecoxib from oxidative stress induced by hydrogen peroxide (H2O2) in rat astrocytes in vitro. Methods: All experiments included 4 groups: (1) negative control (NC) group, without any treatment; (2) H2O2 treatment group, 100 μmol/L H2O2 treatment for 24 h; (3) and (4) parecoxib pretreatment groups, 80 and 160 μmol/L parecoxib treatment for 24 h, respectively, and then treated with 100 μmol/L H2O2. Several indices were investigated, and the expressions of Bax, Bcl-2, and brain-derived neurotrophic factor (BDNF) were quantified. Results: Compared to the NC group, exposure to H2O2 resulted in significant morphological changes, which could be reversed by pretreatment of parecoxib. In addition, H2O2 treatment led to loss of viability (P=0.026) and increased intracellular reactive oxygen species (ROS) levels (P<0.001), and induced apoptosis (P<0.01) in the primary astrocytes relative to the NC group. However, in the parecoxib pretreatment groups, all the above changes reversed significantly (P<0.05) as compared to the H2O2 treatment group, and were nearly unchanged when compared to the NC group. Mechanical investigation showed that dysregulated Bax, Bcl-2, and BDNF could be implicated in these changes. Conclusions: Our results indicated that parecoxib provided a protective effect from oxidative stress induced by exposure to H2O2. PMID:27604861

  6. Protective effects of parecoxib on rat primary astrocytes from oxidative stress induced by hydrogen peroxide.

    PubMed

    Ling, Yun-Zhi; Li, Xiao-Hong; Yu, Li; Zhang, Ye; Liang, Qi-Sheng; Yang, Xiao-di; Wang, Hong-Tao

    2016-09-01

    To investigate the protective effects of parecoxib from oxidative stress induced by hydrogen peroxide (H2O2) in rat astrocytes in vitro. All experiments included 4 groups: (1) negative control (NC) group, without any treatment; (2) H2O2 treatment group, 100 μmol/L H2O2 treatment for 24 h; (3) and (4) parecoxib pretreatment groups, 80 and 160 μmol/L parecoxib treatment for 24 h, respectively, and then treated with 100 μmol/L H2O2. Several indices were investigated, and the expressions of Bax, Bcl-2, and brain-derived neurotrophic factor (BDNF) were quantified. Compared to the NC group, exposure to H2O2 resulted in significant morphological changes, which could be reversed by pretreatment of parecoxib. In addition, H2O2 treatment led to loss of viability (P=0.026) and increased intracellular reactive oxygen species (ROS) levels (P<0.001), and induced apoptosis (P<0.01) in the primary astrocytes relative to the NC group. However, in the parecoxib pretreatment groups, all the above changes reversed significantly (P<0.05) as compared to the H2O2 treatment group, and were nearly unchanged when compared to the NC group. Mechanical investigation showed that dysregulated Bax, Bcl-2, and BDNF could be implicated in these changes. Our results indicated that parecoxib provided a protective effect from oxidative stress induced by exposure to H2O2.

  7. Antioxidant effect of lidocaine and procaine on reactive oxygen species-induced endothelial dysfunction in the rabbit abdominal aorta

    PubMed Central

    Lee, Jae Myeong; Jeong, Ji Seon; Cho, Sang Yun; Kim, Dong Won

    2010-01-01

    Background Reactive oxygen species (ROS) induce lipid peroxidation and tissue damage in the endothelium. We tested the antioxidant effect of lidocaine and procaine on ROS-induced endothelial damage in the rabbit aorta. Methods Aortic rings isolated from rabbits were suspended in an organ bath filled with Krebs-Henseleit (K-H) solution bubbled with 5% CO2 and 95% O2 at 37.5℃. After precontraction with phenylephrine (PE, 10-6 M), changes in tension were recorded following a cumulative administration of acetylcholine (ACh 3 × 10-8 to 10-6 M). Differences were measured as percentages of ACh-induced relaxation of aortic rings before and after exposure to ROS as generated by electrolysis of the K-H solution. The aortic rings were pretreated with lidocaine or procaine (10-5 M to 3 × 10-3 M) to compare their effects, as well as ROS scavengers, catalase, mannitol, sodium salicylate, and deferoxamine, and a catalase inhibitor, 3-amino-1,2,4-triazole (3AT). Results Lidocaine and procaine dose-dependently maintained endothelium-dependent relaxation induced by ACh despite ROS activity (P < 0.05 vs control value). The 3AT pretreated procaine (3 × 10-3 M) group decreased more significantly than the un-pretreated procaine group (P < 0.05). Conclusions These findings suggest that lidocaine and procaine dose-dependently preserve endothelium-dependent vasorelaxation against ROS attack, potentially via hydrogen peroxide scavenging. PMID:20740215

  8. Fatty acids characterization, oxidative perspectives and consumer acceptability of oil extracted from pre-treated chia (Salvia hispanica L.) seeds.

    PubMed

    Imran, Muhammad; Nadeem, Muhammad; Manzoor, Muhammad Faisal; Javed, Amna; Ali, Zafar; Akhtar, Muhammad Nadeem; Ali, Muhammad; Hussain, Yasir

    2016-09-20

    Chia (Salvia hispanica L.) seeds have been described as a good source of lipids, protein, dietary fiber, polyphenolic compounds and omega-3 polyunsaturated fatty acids. The consumption of chia seed oil helps to improve biological markers related to metabolic syndrome diseases. The oil yield and fatty acids composition of chia oil is affected by several factors such as pre-treatment method and size reduction practices. Therefore, the main mandate of present investigate was to study the effect of different seed pre-treatments on yield, fatty acids composition and sensory acceptability of chia oil at different storage intervals and conditions. Raw chia seeds were characterized for proximate composition. Raw chia seeds after milling were passed through sieves to obtain different particle size fractions (coarse, seed particle size ≥ 10 mm; medium, seed particle size ≥ 5 mm; fine, seed particle size ≤ 5 mm). Heat pre-treatment of chia seeds included the water boiling (100 C°, 5 min), microwave roasting (900 W, 2450 MHz, 2.5 min), oven drying (105 ± 5 °C, 1 h) and autoclaving (121 °C, 15 lbs, 15 min) process. Extracted oil from pre-treated chia seeds were stored in Tin cans at 25 ± 2 °C and 4 ± 1 °C for 60-days and examined for physical (color, melting point, refractive index), oxidative (iodine value, peroxide value, free fatty acids), fatty acids (palmitic, stearic, oleic, linoleic, α-linolenic) composition and sensory (appearance, flavor, overall acceptability) parameters, respectively. The proximal composition of chia seeds consisted of 6.16 ± 0.24 % moisture, 34.84 ± 0.62 % oil, 18.21 ± 0.45 % protein, 4.16 ± 0.37 % ash, 23.12 ± 0.29 % fiber, and 14.18 ± 0.23 % nitrogen contents. The oil yield as a result of seed pre-treatments was found in the range of 3.43 ± 0.22 % (water boiled samples) to 32.18 ± 0.34 % (autoclaved samples). The oil samples at day 0 indicated the maximum color (R and Y Lovibond scale) value for oven drying while at storage day 60 (25 ± 2 °C), the highest color value was found for autoclave pre-treatment. The slightly increasing trend of color values for all treatments was observed during the storage period. The lowest iodine value (182.83 ± 1.18 g/100 g at storage day 0 & 173.49 ± 1.21 g/100 g at storage day 60, 25 ± 2 °C) was calculated for autoclaved samples while the maximum iodine value (193.42 ± 1.14 g/100 g at storage day 0 & 190.36 ± 1.17 g/100 g at storage day 60, 25 ± 2 °C) was recorded for raw chia samples. The significant increasing trend for all treatments was observed in case of peroxide value and free fatty acids production during storage. Maximum decrease in linoleic (35 %) and α-linolenic (18 %) fatty acids was observed in autoclaved samples. The oil from pre-treated seed samples obtained decreasing scores for sensory parameters throughout the storage period at different conditions. As a result, chia seeds are an important source of lipids and essential fatty acids. The water boiling and high temperature processing of chia seeds provides instability to lipids during storage at room temperature. However, detailed investigation is required on the processing performance and storage stability of food products supplemented with pre-treated chia seeds and furthers their effect on biological system.

  9. Vitamins C and E improve regrowth and reduce lipid peroxidation of blackberry shoot tips following cryopreservation.

    PubMed

    Uchendu, Esther E; Leonard, Scott W; Traber, Maret G; Reed, Barbara M

    2010-01-01

    Oxidative processes involved in cryopreservation protocols may be responsible for the reduced viability of tissues after liquid nitrogen exposure. Antioxidants that counteract these reactions should improve recovery. This study focused on oxidative lipid injury and the effects of exogenous vitamin E (tocopherol, Vit E) and vitamin C (ascorbic acid, Vit C) treatments on regrowth at four critical steps of the plant vitrification solution number 2 (PVS2) vitrification cryopreservation technique; pretreatment, loading, rinsing, and regrowth. Initial experiments showed that Vit E at 11-15 mM significantly increased regrowth (P < 0.001) when added at any of the four steps. There was significantly more malondialdehyde (MDA), a lipid peroxidation product, at each of the steps than in fresh untreated shoot tips. Vit E uptake was assayed at each step and showed significantly more alpha- and gamma-tocopherols in treated shoots than those without Vit E. Vit E added at each step significantly reduced MDA formation and improved shoot regrowth. Vit C (0.14-0.58 mM) also significantly improved regrowth of shoot tips at each step compared to the controls. Regrowth medium with high iron concentrations and Vit C decreased recovery. However, in iron-free medium, Vit C significantly improved recovery. Treatments with Vit E (11 mM) and Vit C (0.14 mM) combined were not significantly better than Vit C alone. We recommend adding Vit C (0.28 mM) to the pretreatment medium, the loading solution or the rinse solution in the PVS2 vitrification protocol. This is the first report of the application of vitamins for improving cryopreservation of plant tissues by minimizing oxidative damage.

  10. Effect of initial moisture content and chip size on the bioconversion efficiency of softwood lignocellulosics.

    PubMed

    Cullis, Ian F; Saddler, John N; Mansfield, Shawn D

    2004-02-20

    Previous optimization strategies for the bioconversion of lignocellulosics by steam explosion technologies have focused on the effects of temperature, pH, and treatment time, but have not accounted for changes in severity brought about by properties inherent in the starting feedstock. Consequently, this study evaluated the effects of chip properties, feedstock size (40-mesh, 1.5 x 1.5 cm, 5 x 5 cm), and moisture content (12% and 30%) on the overall bioconversion process, and more specifically on the efficacy of removal of recalcitrant lignin from the lignocellulosic substrates following steam explosion. Increasing chip size resulted in an improvement in the solids recovery, with concurrent increases in the water soluble, hemicellulose-derived sugar recovery (7.5%). This increased recovery is a result of a decrease in the "relative severity" of the pretreatment as chip size increases. Additionally, the decreased relative severity minimized the condensation of the recalcitrant residual lignin and therefore increased the efficacy of peroxide fractionation, where a 60% improvement in lignin removal was possible with chips of larger initial size. Similarly, increased initial moisture content reduced the relative severity of the pretreatment, generating improved solids and hemicellulose-derived carbohydrate recovery. Both increased chip size and higher initial moisture content results in a substrate that performs better during peroxide delignification, and consequently enzymatic hydrolysis. Furthermore, a post steam-explosion refining step increased hemicellulose-derived sugar recovery and was most effectively delignified (to as low as 6.5%). The refined substrate could be enzymatically hydrolyzed to very high levels (98%) and relatively fast rates (1.23 g/L/h). Copyright 2004 Wiley Periodicals, Inc.

  11. The Role of Hydrogen Peroxide and Nitric Oxide in the Induction of Plant-Encoded RNA-Dependent RNA Polymerase 1 in the Basal Defense against Tobacco Mosaic Virus

    PubMed Central

    Shi, Kai; Li, Xin; Zhang, Guan-Qun; Xia, Xiao-Jian; Chen, Zhi-Xiang; Yu, Jing-Quan

    2013-01-01

    Plant RNA-dependent RNA Polymerase 1 (RDR1) is an important element of the RNA silencing pathway in the plant defense against viruses. RDR1 expression can be elicited by viral infection and salicylic acid (SA), but the mechanisms of signaling during this process remains undefined. The involvement of hydrogen peroxide (H2O2) and nitric oxide (NO) in RDR1 induction in the compatible interactions between Tobacco mosaic tobamovirus (TMV) and Nicotiana tabacum, Nicotiana benthamiana, and Arabidopsis thaliana was examined. TMV inoculation onto the lower leaves of N. tabacum induced the rapid accumulation of H2O2 and NO followed by the increased accumulation of RDR1 transcripts in the non-inoculated upper leaves. Pretreatment with exogenous H2O2 and NO on upper leaf led to increased RDR1 expression and systemic TMV resistance. Conversely, dimethylthiourea (an H2O2 scavenger) and 2-(4-carboxyphenyl)- 4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (an NO scavenger) partly blocked TMV- and SA-induced RDR1 expression and increased TMV susceptibility, whereas pretreatment with exogenous H2O2 and NO failed to diminish TMV infection in N. benthamiana plants with naturally occurring RDR1 loss-of-function. Furthermore, in N. tabacum and A. thaliana, TMV-induced H2O2 accumulation was NO-dependent, whereas NO generation was not affected by H2O2. These results suggest that, in response to TMV infection, H2O2 acts downstream of NO to mediate induction of RDR1, which plays a critical role in strengthening RNA silencing to restrict systemic viral infection. PMID:24098767

  12. Rapid detection of benzoyl peroxide in wheat flour by using Raman scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhao, Juan; Peng, Yankun; Chao, Kuanglin; Qin, Jianwei; Dhakal, Sagar; Xu, Tianfeng

    2015-05-01

    Benzoyl peroxide is a common flour additive that improves the whiteness of flour and the storage properties of flour products. However, benzoyl peroxide adversely affects the nutritional content of flour, and excess consumption causes nausea, dizziness, other poisoning, and serious liver damage. This study was focus on detection of the benzoyl peroxide added in wheat flour. A Raman scattering spectroscopy system was used to acquire spectral signal from sample data and identify benzoyl peroxide based on Raman spectral peak position. The optical devices consisted of Raman spectrometer and CCD camera, 785 nm laser module, optical fiber, prober, and a translation stage to develop a real-time, nondestructive detection system. Pure flour, pure benzoyl peroxide and different concentrations of benzoyl peroxide mixed with flour were prepared as three sets samples to measure the Raman spectrum. These samples were placed in the same type of petri dish to maintain a fixed distance between the Raman CCD and petri dish during spectral collection. The mixed samples were worked by pretreatment of homogenization and collected multiple sets of data of each mixture. The exposure time of this experiment was set at 0.5s. The Savitzky Golay (S-G) algorithm and polynomial curve-fitting method was applied to remove the fluorescence background from the Raman spectrum. The Raman spectral peaks at 619 cm-1, 848 cm-1, 890 cm-1, 1001 cm-1, 1234 cm-1, 1603cm-1, 1777cm-1 were identified as the Raman fingerprint of benzoyl peroxide. Based on the relationship between the Raman intensity of the most prominent peak at around 1001 cm-1 and log values of benzoyl peroxide concentrations, the chemical concentration prediction model was developed. This research demonstrated that Raman detection system could effectively and rapidly identify benzoyl peroxide adulteration in wheat flour. The experimental result is promising and the system with further modification can be applicable for more products in near future.

  13. Amelioration of Ethanol-Induced Gastric Ulcers in Rats Pretreated with Phycobiliproteins of Arthrospira (Spirulina) Maxima.

    PubMed

    Guzmán-Gómez, Oscar; García-Rodríguez, Rosa Virginia; Quevedo-Corona, Lucía; Pérez-Pastén-Borja, Ricardo; Rivero-Ramírez, Nora Lilia; Ríos-Castro, Emmanuel; Pérez-Gutiérrez, Salud; Pérez-Ramos, Julia; Chamorro-Cevallos, Germán Alberto

    2018-06-13

    Phycobiliproteins of Arthrospira ( Spirulina ) maxima have attracted attention because of their potential therapeutic antioxidant properties. The aim of this study was to assess the possible antiulcerogenic activity of these phycobiliproteins (ExPhy) against ethanol-induced gastric ulcers in rats. To explore the possible mechanisms of action, we examined antioxidant defense enzymes (e.g., catalase, superoxide dismutase, and glutathione peroxidase), as well as the level of lipid peroxidation (MDA) and the histopathological changes in the gastric mucosa. Intragastric administration of ExPhy (100, 200, and 400 mg/kg body weight) significantly lowered the ulcer index value compared to the ulcer control group ( p < 0.05). The greatest protection was provided by the concentration of 400 mg/kg. The histological study supported the observed gastroprotective activity of ExPhy, showing a reduced inflammatory response. Moreover, the alcohol-induced decrease in stomach antioxidant enzyme activity found in the ulcer control group was prevented by ExPhy pretreatment. Furthermore, ExPhy reversed the ethanol-induced increase in lipid peroxidation. In summary, the antiulcerogenic potential of ExPhy may be due, at least in part, to its anti-oxidant and anti-inflammatory effects.

  14. Antioxidant Properties and Cardioprotective Mechanism of Malaysian Propolis in Rats.

    PubMed

    Ahmed, Romana; Tanvir, E M; Hossen, Md Sakib; Afroz, Rizwana; Ahmmed, Istiyak; Rumpa, Nur-E-Noushin; Paul, Sudip; Gan, Siew Hua; Sulaiman, Siti Amrah; Khalil, Md Ibrahim

    2017-01-01

    Propolis contains high concentrations of polyphenols, flavonoids, tannins, ascorbic acid, and reducing sugars and proteins. Malaysian Propolis (MP) has been reported to exhibit high 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity and ferric reducing antioxidant power (FRAP) values. Herein, we report the antioxidant properties and cardioprotective properties of MP in isoproterenol- (ISO-) induced myocardial infarction in rats. Male Wistar rats ( n = 32) were pretreated orally with an ethanol extract of MP (100 mg/kg/day) for 30 consecutive days. Subcutaneous injection of ISO (85 mg/kg in saline) for two consecutive days caused a significant increase in serum cardiac marker enzymes and cardiac troponin I levels and altered serum lipid profiles. In addition significantly increased lipid peroxides and decreased activities of cellular antioxidant defense enzymes were observed in the myocardium. However, pretreatment of ischemic rats with MP ameliorated the biochemical parameters, indicating the protective effect of MP against ISO-induced ischemia in rats. Histopathological findings obtained for the myocardium further confirmed the biochemical findings. It is concluded that MP exhibits cardioprotective activity against ISO-induced oxidative stress through its direct cytotoxic radical-scavenging activities. It is also plausible that MP contributed to endogenous antioxidant enzyme activity via inhibition of lipid peroxidation.

  15. Ischemic Preconditioning Increases the Tolerance of Fatty Liver to Hepatic Ischemia-Reperfusion Injury in the Rat

    PubMed Central

    Serafín, Anna; Roselló-Catafau, Joan; Prats, Neus; Xaus, Carme; Gelpí, Emilio; Peralta, Carmen

    2002-01-01

    Hepatic steatosis is a major risk factor in ischemia-reperfusion. The present study evaluates whether preconditioning, demonstrated to be effective in normal livers, could also confer protection in the presence of steatosis and investigates the potential underlying protective mechanisms. Fatty rats had increased hepatic injury and decreased survival after 60 minutes of ischemia compared with lean rats. Fatty livers showed a degree of neutrophil accumulation and microcirculatory alterations similar to that of normal livers. However, in presence of steatosis, an increased lipid peroxidation that could be reduced with glutathione-ester pretreatment was observed after hepatic reperfusion. Ischemic preconditioning reduced hepatic injury and increased animal survival. Both in normal and fatty livers, this endogenous protective mechanism was found to control lipid peroxidation, hepatic microcirculation failure, and neutrophil accumulation, reducing the subsequent hepatic injury. These beneficial effects could be mediated by nitric oxide, because the inhibition of nitric oxide synthesis and nitric oxide donor pretreatment abolished and simulated, respectively, the benefits of preconditioning. Thus, ischemic preconditioning could be an effective surgical strategy to reduce the hepatic ischemia-reperfusion injury in normal and fatty livers under normothermic conditions, including hepatic resections, and liver transplantation. PMID:12163383

  16. Protective Effect of 4-(3,4-Dihydroxyphenyl)-3-Buten-2-One from Phellinus linteus on Naproxen-Induced Gastric Antral Ulcers in Rats.

    PubMed

    Kim, Jeong-Hwan; Kwon, Hyun Ju; Kim, Byung Woo

    2016-05-28

    The present study investigated the protective effect of naturally purified 4-(3,4- dihydroxyphenyl)-3-buten-2-one (DHP) from Phellinus linteus against naproxen-induced gastric antral ulcers in rats. To verify the protective effect of DHP on naproxen-induced gastric antral ulcers, various doses (1, 5, and 10 μg/kg) of DHP were pretreated for 3 days, and then gastric damage was caused by 80 mg/kg naproxen applied for 3 days. DHP prevented naproxen-induced gastric antral ulcers in a dose-dependent manner. In particular, 10 μg/kg DHP showed the best protective effect against naproxen-induced gastric antral ulcers. Moreover, DHP significantly attenuated the naproxen-induced lipid peroxide level in gastric mucosa and increased the activities of radical scavenging enzymes, such as superoxide dismutase, catalase, and glutathione peroxidase, in a dose-dependent manner. A histological examination clearly demonstrated that the gastric antral ulcer induced by naproxen nearly disappeared after the pretreatment of DHP. These results suggest that DHP can inhibit naproxen-induced gastric antral ulcers through prevention of lipid peroxidation and activation of radical scavenging enzymes.

  17. Pretreatment with Pyridoxamine Mitigates Isolevuglandin-associated Retinal Effects in Mice Exposed to Bright Light*

    PubMed Central

    Charvet, Casey D.; Saadane, Aicha; Wang, Meiyao; Salomon, Robert G.; Brunengraber, Henri; Turko, Illarion V.; Pikuleva, Irina A.

    2013-01-01

    The benefits of antioxidant therapy for treating age-related macular degeneration, a devastating retinal disease, are limited. Perhaps species other than reactive oxygen intermediates should be considered as therapeutic targets. These could be lipid peroxidation products, including isolevuglandins (isoLGs), prototypical and extraordinarily reactive γ-ketoaldehydes that avidly bind to proteins, phospholipids, and DNA and modulate the properties of these biomolecules. We found isoLG adducts in aged human retina but not in the retina of mice kept under dim lighting. Hence, to test whether scavenging of isoLGs could complement or supplant antioxidant therapy, we exposed mice to bright light and found that this insult leads to retinal isoLG-adduct formation. We then pretreated mice with pyridoxamine, a B6 vitamer and efficient scavenger of γ-ketoaldehydes, and found that the levels of retinal isoLG adducts are decreased, and morphological changes in photoreceptor mitochondria are not as pronounced as in untreated animals. Our study demonstrates that preventing the damage to biomolecules by lipid peroxidation products, a novel concept in vision research, is a viable strategy to combat oxidative stress in the retina. PMID:23970548

  18. Hydrogen peroxide prevents vascular calcification induced ROS production by regulating Nrf-2 pathway.

    PubMed

    Zhang, Wensong; Li, Yi; Ding, Hanlu; Du, Yaqin; Wang, Li

    2016-08-01

    Although vascular calcification in end-stage renal disease (ESRD) represents a ubiquitous human health problem, effective therapies with limited side effects are still lacking, and the precise mechanisms are not fully understood. The Nrf-2/ARE pathway is a pivotal to regulate anti-oxidative responses in vascular calcification upon ESRD. Although Nrf-2 plays a crucial role in atherosclerosis, pulmonary fibrosis, and brain ischemia, the effect of Nrf-2 and oxidative stress on vascular calcification in ESRD patients is still unclear. The aim of this research was to study the protective role of hydrogen peroxide in vascular calcification and the mechanism of Nrf-2 and oxidative stress on vascular calcification. Here we used the rat vascular smooth muscle cell model of β-glycerophosphate-induced calcification resembling vascular calcification in ESRD to investigate the therapeutic effect of 0.01 mM hydrogen peroxide on vascular calcification and further explores the possible underlying mechanisms. Our current report shows the in vitro role of 0.01 mM hydrogen peroxide in protecting against intracellular ROS accumulation upon vascular calcification. Both hydrogen peroxide and sulforaphane pretreatment reduced ROS production, increased the expression of Nrf-2, and decreased the expression of Runx2 following calcification. Our study demonstrates that 0.01 mM hydrogen peroxide can effectively protect rat aortic vascular smooth muscle cells against oxidative stress by preventing vascular calcification induced ROS production through Nrf-2 pathway. These data might define an antioxidant role of hydrogen peroxide in vascular calcification upon ESRD.

  19. Hydrogen Peroxide Pretreatment Mitigates Cadmium-Induced Oxidative Stress in Brassica napus L.: An Intrinsic Study on Antioxidant Defense and Glyoxalase Systems

    PubMed Central

    Hasanuzzaman, Mirza; Nahar, Kamrun; Gill, Sarvajeet S.; Alharby, Hesham F.; Razafindrabe, Bam H. N.; Fujita, Masayuki

    2017-01-01

    Cadmium (Cd) is considered as one of the most toxic metals for plant growth and development. In the present study, we investigated the role of externally applied hydrogen peroxide (H2O2) in regulating the antioxidant defense and glyoxalase systems in conferring Cd-induced oxidative stress tolerance in rapeseed (Brassica napus L.). Seedlings were pretreated with 50 μM H2O2 for 24 h. These pretreated seedlings as well as non-pretreated seedlings were grown for another 48 h at two concentrations of CdCl2 (0.5 and 1.0 mM). Both the levels of Cd increased MDA and H2O2 levels and lipoxygenase activity while ascorbate (AsA) declined significantly. However, reduced glutathione (GSH) content showed an increase at 0.5 mM CdCl2, but glutathione disulfide (GSSG) increased at any level of Cd with a decrease in GSH/GSSG ratio. The activities of ascorbate peroxidase (APX) and glutathione S-transferase (GST) upregulated due to Cd treatment in dose-dependent manners, while glutathione reductase (GR) and glutathione peroxidase (GPX) increased only at 0.5 mM CdCl2 and decreased at higher dose. The activity of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT), glyoxalase I (Gly I), and glyoxalase II (Gly II) decreased under Cd stress. On the other hand, H2O2 pretreated seedlings, when exposed to Cd, AsA and GSH contents and GSH/GSSG ratio increased noticeably. H2O2 pretreatment increased the activities of APX, MDHAR, DHAR, GR, GST, GPX, and CAT of Cd affected seedlings. Thus enhancement of both the non-enzymatic and enzymatic antioxidants helped to decrease the oxidative damage as indicated by decreased levels of H2O2 and MDA. The seedlings which were pretreated with H2O2 also showed enhanced glyoxalase system. The activities of Gly I, and Gly II and the content of GSH increased significantly due to H2O2 pretreatment in Cd affected seedlings, compared to the Cd-stressed plants without H2O2 pretreatment which were vital for methylglyoxal detoxification. So, the major roles of H2O2 were improvement of antioxidant defense system and glyoxalase system which protected plants from the damage effects of ROS and MG. The mechanism of H2O2 to induce antioxidant defense and glyoxalase system and improving physiology under stress condition is not known clearly which should be elucidated. The signaling roles of H2O2 and its interaction with other signaling molecules, phytohormones or other biomolecules and their roles in stress protection should be explored. PMID:28239385

  20. Exogenous melatonin improves Malus resistance to Marssonina apple blotch.

    PubMed

    Yin, Lihua; Wang, Ping; Li, Mingjun; Ke, Xiwang; Li, Cuiying; Liang, Dong; Wu, Shan; Ma, Xinli; Li, Chao; Zou, Yangjun; Ma, Fengwang

    2013-05-01

    We examined whether exogenously applied melatonin could improve resistance to Marssonina apple blotch (Diplocarpon mali) by apple [Malus prunifolia (Willd.) Borkh. cv. Donghongguo]. This serious disease leads to premature defoliation in the main regions of apple production. When plants were pretreated with melatonin, resistance was increased in the leaves. We investigated the potential roles for melatonin in modulating levels of hydrogen peroxide (H2O2), as well the activities of antioxidant enzymes and pathogenesis-related proteins during these plant-pathogen interactions. Pretreatment enabled plants to maintain intracellular H2O2 concentrations at steady-state levels and enhance the activities of plant defence-related enzymes, possibly improving disease resistance. Because melatonin is safe and beneficial to animals and humans, exogenous pretreatment might represent a promising cultivation strategy to protect plants against this pathogen infection. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  1. Enhanced short-chain fatty acids production from waste activated sludge by combining calcium peroxide with free ammonia pretreatment.

    PubMed

    Wang, Dongbo; Shuai, Kun; Xu, Qiuxiang; Liu, Xuran; Li, Yifu; Liu, Yiwen; Wang, Qilin; Li, Xiaoming; Zeng, Guangming; Yang, Qi

    2018-08-01

    This study reported a new low-cost and high-efficient combined method of CaO 2  + free ammonia (FA) pretreatment for sludge anaerobic fermentation. Experimental results showed that the optimal short-chain fatty acids (SCFA) yield of 338.6 mg COD/g VSS was achieved when waste activated sludge (WAS) was pretreated with 0.05 g/g VSS of CaO 2  + 180 mg/L of FA for 3 d, which was 2.5-fold of that from CaO 2 pretreatment and 1.5-fold of that from FA pretreatment. The mechanism investigations exhibited that the CaO 2  + FA could provided more biodegradable substrates, this combination accelerated the disintegration of sludge cells, which thereby providing more organics for subsequent SCFA production. It was also found that the combination of CaO 2 and FA inhibited the specific activities of hydrolytic microbes, SCFA producers, and methanogens to some extents, but its inhibition to methanogens was much severer than that to the other two types of microbes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Bioethanol production from sodium hydroxide/hydrogen peroxide-pretreated water hyacinth via simultaneous saccharification and fermentation with a newly isolated thermotolerant Kluyveromyces marxianu strain.

    PubMed

    Yan, Jinping; Wei, Zhilei; Wang, Qiaoping; He, Manman; Li, Shumei; Irbis, Chagan

    2015-10-01

    In this study, bioethanol production from NaOH/H2O2-pretreated water hyacinth was investigated. Pretreatment of water hyacinth with 1.5% (v/v) H2O2 and 3% (w/v) NaOH at 25 °C increased the production of reducing sugars (223.53 mg/g dry) and decreased the cellulose crystallinity (12.18%), compared with 48.67 mg/g dry and 22.80% in the untreated sample, respectively. The newly isolated Kluyveromyces marxianu K213 showed greater ethanol production from glucose (0.43 g/g glucose) at 45 °C than did the control Saccharomyces cerevisiae angel yeast. The maximum ethanol concentration (7.34 g/L) achieved with K. marxianu K213 by simultaneous saccharification and fermentation (SSF) from pretreated water hyacinth at 42 °C was 1.78-fold greater than that produced by angel yeast S. cerevisiae at 30 °C. The present work demonstrates that bioethanol production achieved via SSF of NaOH/H2O2-pretreated water hyacinth with K. marxianu K213 is a promising strategy to utilize water hyacinth biomass. Copyright © 2015. Published by Elsevier Ltd.

  3. PROCESS OF ELIMINATING HYDROGEN PEROXIDE IN SOLUTIONS CONTAINING PLUTONIUM VALUES

    DOEpatents

    Barrick, J.G.; Fries, B.A.

    1960-09-27

    A procedure is given for peroxide precipitation processes for separating and recovering plutonium values contained in an aqueous solution. When plutonium peroxide is precipitated from an aqueous solution, the supernatant contains appreciable quantities of plutonium and peroxide. It is desirable to process this solution further to recover plutonium contained therein, but the presence of the peroxide introduces difficulties; residual hydrogen peroxide contained in the supernatant solution is eliminated by adding a nitrite or a sulfite to this solution.

  4. Remifentanil ameliorates intestinal ischemia-reperfusion injury

    PubMed Central

    2013-01-01

    Background Intestinal ischemia-reperfusion injury (IRI) can occur in clinical scenarios such as organ transplantation, trauma and cardio-pulmonary bypass, as well as in neonatal necrotizing enterocolitis or persistent ductus arteriosus. Pharmacological protection by pretreating (“preconditioning”) with opioids attenuates IRI in a number of organs. Remifentanil appears particularly attractive for this purpose because of its ultra-short duration of action and favorable safety profile. To date, little is known about opioid preconditioning of the intestine. Methods Young adult C57BL/6J mice were randomly assigned to receive tail vein injections of 1 μg/kg of remifentanil or normal saline and underwent either ischemia-reperfusion of the intestine or a sham laparotomy. Under isoflurane anesthesia, the mice were subjected to intestinal ischemia-reperfusion by occlusion (clamping) of the superior mesenteric artery for 30 min, followed by unclamping and 60 min of reperfusion. After completion of this protocol, tissue injury and lipid peroxidation in jejunum and ileum were analyzed by histology and malondialdehyde (MDA), respectively. Systemic interleukin (IL)-6 was determined in the plasma by ELISA. Results Pretreatment with remifentanil markedly reduced intestinal IRI (P < 0.001): In the ileum, we observed a more than 8-fold decrease in injured villi (4% vs 34% in saline-pretreated animals). In fact, the mucosa in the remifentanil group was as healthy as that of sham-operated animals. This protective effect was not as pronounced in the jejunum, but the percentage of damaged villi was still reduced considerably (18% vs 42%). There was up to 3-fold more tissue MDA after intestinal ischemia-reperfusion than after sham laparotomy, but this increase in lipid peroxidation was prevented by preconditioning with remifentanil (P < 0.05). The systemic inflammatory response triggered by intestinal IRI was significantly attenuated in mice pretreated with remifentanil (159 vs 805 pg/ml of IL-6 after saline pretreatment, with 92 pg/ml in the sham groups). After sham operations, no difference was detected between the saline- and remifentanil-pretreatments in any of the parameters investigated. Conclusion Preconditioning with remifentanil attenuates intestinal IRI and the subsequent systemic inflammatory response in mice. We therefore suggest that prophylaxis with this ultra-short-acting opioid may be advantageous in various clinical scenarios of human IRI. PMID:23607370

  5. Coconut Haustorium Maintains Cardiac Integrity and Alleviates Oxidative Stress in Rats Subjected to Isoproterenol-induced Myocardial Infarction

    PubMed Central

    Chikku, A. M.; Rajamohan, T.

    2012-01-01

    The present study evaluates the effect of aqueous extract of coconut haustorium on isoproterenol-induced myocardial infarction in Sprague Dawley rats. Rats were pretreated with aqueous extract of coconut haustorium (40 mg/100 g) orally for 45 days. After pretreatment, myocardial infarction was induced by injecting isoproterenol subcutaneously (20 mg/100 g body weight) twice at an interval of 24 h. Activity of marker enzymes like lactate dehydrogenase, creatinine kinase-MB, aspartate transaminase and alanine transaminase were increased in the serum and decreased in the heart of isoproterenol treated rats indicating cardiac damage. These changes were significantly reduced in haustorium pretreated rats. Moreover, an increase in the activities of antioxidant enzymes and decrease in the levels of peroxidation products were observed in the myocardium of coconut haustorium pretreated rats. Histopathology of the heart of these rats showed almost normal tissue morphology. From these results, it is clear that aqueous extract of coconut haustorium possess significant cardioprotective and antioxidant properties during isoproterenol-induced myocardial infarction in rats. PMID:23716867

  6. Effects of Different Pretreatments to Fresh Fruit on Chemical and Thermal Characteristics of Crude Palm Oil.

    PubMed

    Tang, Minmin; Xia, Qiuyu; Holland, Brendan J; Wang, Hui; Zhang, Yufeng; Li, Rui; Cao, Hongxing

    2017-12-01

    This study selected 5 methods, including boiling, hot air drying, high-pressurized steam, freezing, and microwave radiation to pretreat fresh oil palm fruit before solvent extraction of the oil. Using fresh fruit as a control, the pretreatment methods were compared for the effects on the activity of the 2 main enzymes in the fruit and some physicochemical properties of the crude palm oil. The results indicated, although all the 5 pretreatments could inactivate lipase and peroxidase in the treated flesh significantly (P < 0.05), the high-pressurized steam was the most effective. There were also differences in the unsaturated fatty acid contents of the 6 oils. The crude oil from frozen fruit contained significantly more vitamin E (37829.33 ppm) than previously reported. Microwave radiation was shown to significantly decrease the free fatty acid content and the peroxide value, while increasing the oxidative stability index. Thermal behaviors of the oils were significantly different to each other with the exception a few parameters (P < 0.05). © 2017 Institute of Food Technologists®.

  7. Protective role of polyphenols from Bauhinia hookeri against carbon tetrachloride-induced hepato- and nephrotoxicity in mice.

    PubMed

    Al-Sayed, Eman; Abdel-Daim, Mohamed M; Kilany, Omnia E; Karonen, Maarit; Sinkkonen, Jari

    2015-08-01

    The hepatoprotective and nephroprotective activity of a polyphenol-rich fraction (BHPF) obtained from Bauhinia hookeri was investigated against CCl4-induced acute hepatorenal toxicity in mice. BHPF was administered (100, 200 and 400 mg/kg/day) for 5 days, then CCl4 was administered. BHPF pretreatment significantly (p < 0.001) inhibited the CCl4-induced increase in ALT, AST, ALP, LDH, total bilirubin, cholesterol, creatinine, uric acid, urea and malondialdehyde in a dose-dependent manner. In contrast, BHPF pretreatment markedly increased the contents of glutathione and superoxide dismutase in the liver and kidney tissues, indicating the strong in vivo antioxidant activity of BHPF. Pretreatment with BHPF preserved the hepatic architecture and conferred marked protection against necrosis and ballooning degeneration. Pretreatment with BHPF reduced the inflammatory cell aggregation and degenerative changes in the lining epithelium of the kidney tubules. It can be concluded that BHPF has a remarkable hepato- and nephroprotective activity by enhancing the antioxidant defense status, reducing lipid peroxidation and protecting against the histopathological changes induced by CCl4 in the liver and kidney tissues.

  8. Sequential solar photo-fenton-biological system for the treatment of winery wastewaters.

    PubMed

    Mosteo, R; Sarasa, J; Ormad, Maria P; Ovelleiro, J L

    2008-08-27

    In this study, winery wastewaters are considered for degradation using heterogeneous photo-Fenton as a preliminary step before biotreatment. The heterogeneous photo-Fenton process assisted by solar light is able to partially degrade the organic matter present in winery wastewaters. When an initial hydrogen peroxide concentration of 0.1 M is used over 24 h of treatment, a degradation yield of organic matter (measured as TOC) of around 50% is reached. The later treatment (activated sludge process) allows the elimination of 90% of the initial TOC present in pretreated winery wastewaters without producing nondesired side-effects, such as the bulking phenomenon, which is usually detected when this treatment is used alone. The final effluent contains a concentration of organic matter (measured as COD) of 128 mg O2/L. The coupled system comprising the heterogeneous photo-Fenton process and biological treatment based on activated sludge in simple stage is a real alternative for the treatment of winery wastewater.

  9. Alleviation of salt-induced oxidative damage by 5-aminolevulinic acid in wheat seedlings

    NASA Astrophysics Data System (ADS)

    Genişel, Mucip; Erdal, Serkan

    2016-04-01

    The aim of this study was to elucidate how 5-aminolevulinic acid (ALA), the precursor of chlorophyll compounds, affects the defence mechanisms of wheat seedlings induced by salt stress. To determine the possible stimulative effects of ALA against salinity, 11-day old wheat seedlings were sprayed with ALA at two different concentrations (10 and 20 mg.l-1) and then stressed by exposure to salt (150 mM NaCl). The salt stress led to significant changes in the antioxidant activity. While guaiacol peroxidase activity decreased, the activities of superoxide dismutase, catalase, and ascorbate peroxidase markedly increased under salt stress. Compared to the salt stress alone, the application of ALA beforehand further increased the activity of these enzymes. This study is the first time the effects of ALA have been monitored with regard to protein content and the isoenzyme profiles of the antioxidant enzymes. Although the salt stress reduced both the soluble protein content and protein band intensities, pre-treating with ALA significantly mitigated these stress-induced reductions. The data for the isoenzyme profiles of the antioxidant enzymes paralleled that of the ALA-induced increases in antioxidant activity. As a consequence of the high antioxidant activity in the seedlings pre-treated with ALA, the stress-induced elevations in the reactive oxygen species, superoxide anion, and hydrogen peroxide contents and lipid peroxidation levels were markedly diminished. Taken together, this data demonstrated that pre-treating with ALA confers resistance to salt stress by modulating the protein synthesis and antioxidant activity in wheat seedlings.

  10. Prophylactic role of phycocyanin: a study of oxalate mediated renal cell injury.

    PubMed

    Farooq, Shukkur Muhammed; Asokan, Devarajan; Kalaiselvi, Periandavan; Sakthivel, Ramasamy; Varalakshmi, Palaninathan

    2004-08-10

    Oxalate induced renal calculi formation and the associated renal injury is thought to be caused by free radical mediated mechanisms. An in vivo model was used to investigate the effect of phycocyanin (from Spirulina platensis), a known antioxidant, against calcium oxalate urolithiasis. Male Wistar rats were divided into four groups. Hyperoxaluria was induced in two of these groups by intraperitoneal infusion of sodium oxalate (70 mg/kg) and a pretreatment of phycocyanin (100 mg/kg) as a single oral dosage was given, 1h prior to sodium oxalate infusion. An untreated control and drug control (phycocyanin alone) were also included in the study. We observed that phycocyanin significantly controlled the early biochemical changes in calcium oxalate stone formation. The antiurolithic nature of the drug was evaluated by the assessment of urinary risk factors and light microscopic observation of urinary crystals. Renal tubular damage as divulged by urinary marker enzymes (alkaline phosphatase, acid phosphatase and gamma-glutamyl transferase) and histopathological observations such as decreased tubulointerstitial, tubular dilatation and mononuclear inflammatory cells, indicated that renal damage was minimised in drug-pretreated group. Oxalate levels (P < 0.001) and lipid peroxidation (P < 0.001) in kidney tissue were significantly controlled by drug pretreatment, suggesting the ability of phycocyanin to quench the free radicals, thereby preventing the lipid peroxidation mediated tissue damage and oxalate entry. This accounts for the prevention of CaOx stones. Thus, the present analysis revealed the antioxidant and antiurolithic potential of phycocyanin thereby projecting it as a promising therapeutic agent against renal cell injury associated kidney stone formation.

  11. Genotoxic and chemopreventive assessment of Cynara scolymus L. aqueous extract in a human-derived liver cell line.

    PubMed

    da Silva, Regiane Pereira; Jacociunas, Laura Vicedo; de Carli, Raíne Fogliati; de Abreu, Bianca Regina Ribas; Lehmann, Mauricio; da Silva, Juliana; Ferraz, Alexandre de Barros Falcão; Dihl, Rafael Rodrigues

    2017-10-01

    Cynara scolymus L., popularly known as artichoke, is consumed as food and used as tea infusions for pharmacological purposes to treat liver dysfunctions and other conditions. Scientific data on the safety and protective effect of artichoke in human-derived liver cells is missing. This study investigated the genotoxic and modulatory effect of a liophilized extract suspended in water of C. scolymus L. leaves. Four extract concentrations (0.62, 1.25, 2.5 and 5.0 mg/mL) were evaluated using the comet assay on human hepatocyte cultures, HepG2 cells. Genotoxicity was assessed after two treatment periods, 1 and 24 h. Antigenotoxicity was evaluated against oxidative lesions induced by hydrogen peroxide in pre-, simultaneous and post-treatment protocols. Artichoke leaves aqueous extract induced genotoxic effects in HepG2 cells after 1- and 24-h treatments. In turn, extract concentrations of 0.62, 1.25 and 2.5 mg/mL, exhibited a protective effect in pretreatment, compared to hydrogen peroxide alone. However, in simultaneous and post-treatment protocols, only the lowest concentration reduced the frequency of DNA damage induced by hydrogen peroxide. In addition, in the simultaneous treatment protocol, the highest artichoke extract concentration increased hydrogen peroxide genotoxicity. It can be concluded that artichoke is genotoxic, in vitro, to HepG2 cells, but can also modulate hydrogen peroxide DNA damage.

  12. The protective effect of astaxanthin on fetal alcohol spectrum disorder in mice.

    PubMed

    Zheng, Dong; Li, Yi; He, Lei; Tang, Yamei; Li, Xiangpen; Shen, Qingyu; Yin, Deling; Peng, Ying

    2014-09-01

    Astaxanthin is a strong antioxidant with the ability of reducing the markers of inflammation. To explore the protective effect of astaxanthin on maternal ethanol induced embryonic deficiency, and to investigate the underlying mechanisms, we detected the morphology, expression of neural marker genes, oxidative stress indexes, and inflammatory factors in mice model of fetal alcohol spectrum disorder with or without astaxanthin pretreatment. Our results showed that astaxanthin blocked maternal ethanol induced retardation of embryonic growth, and the down-regulation of neural marker genes, Otx1 and Sox2. Moreover, astaxanthin also reversed the increases of malondialdehyde (MDA), hydrogen peroxide (H2O2), and the decrease of glutathione peroxidase (GPx) in fetal alcohol spectrum disorder. In addition, maternal ethanol induced up-regulation of toll-like receptor 4 (TLR4), and the down-streaming myeloid differentiation factor 88 (MyD88), NF-κB, TNF-α, and IL-1β in embryos, and this was inhibited by astaxanthin pretreatment. These results demonstrated a protective effect of astaxanthin on fetal alcohol spectrum disorder, and suggested that oxidative stress and TLR4 signaling associated inflammatory reaction are involved in this process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Trichloroethylene metabolite S-(1,2-dichlorovinyl)-l-cysteine induces lipid peroxidation-associated apoptosis via the intrinsic and extrinsic apoptosis pathways in a first-trimester placental cell line.

    PubMed

    Elkin, Elana R; Harris, Sean M; Loch-Caruso, Rita

    2018-01-01

    Trichloroethylene (TCE), a prevalent environmental contaminant, is a potent renal and hepatic toxicant through metabolites such as S-(1, 2-dichlorovinyl)-l-cysteine (DCVC). However, effects of TCE on other target organs such as the placenta have been minimally explored. Because elevated apoptosis and lipid peroxidation in placenta have been observed in pregnancy morbidities involving poor placentation, we evaluated the effects of DCVC exposure on apoptosis and lipid peroxidation in a human extravillous trophoblast cell line, HTR-8/SVneo. We exposed the cells in vitro to 10-100μM DCVC for various time points up to 24h. Following exposure, we measured apoptosis using flow cytometry, caspase activity using luminescence assays, gene expression using qRT-PCR, and lipid peroxidation using a malondialdehyde quantification assay. DCVC significantly increased apoptosis in time- and concentration-dependent manners (p<0.05). DCVC also significantly stimulated caspase 3, 7, 8 and 9 activities after 12h (p<0.05), suggesting that DCVC stimulates the activation of both the intrinsic and extrinsic apoptotic signaling pathways simultaneously. Pre-treatment with the tBID inhibitor Bl-6C9 partially reduced DCVC-stimulated caspase 3 and 7 activity, signifying crosstalk between the two pathways. Additionally, DCVC treatment increased lipid peroxidation in a concentration-dependent manner. Co-treatment with the antioxidant peroxyl radical scavenger (±)-α-tocopherol attenuated caspase 3 and 7 activity, suggesting that lipid peroxidation mediates DCVC-induced apoptosis in extravillous trophoblasts. Our findings suggest that DCVC-induced apoptosis and lipid peroxidation in extravillous trophoblasts could contribute to poor placentation if similar effects occur in vivo in response to TCE exposure, indicating that further studies into this mechanism are warranted. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Rearrangements of organic peroxides and related processes

    PubMed Central

    Yaremenko, Ivan A; Vil’, Vera A; Demchuk, Dmitry V

    2016-01-01

    Summary This review is the first to collate and summarize main data on named and unnamed rearrangement reactions of peroxides. It should be noted, that in the chemistry of peroxides two types of processes are considered under the term rearrangements. These are conventional rearrangements occurring with the retention of the molecular weight and transformations of one of the peroxide moieties after O–O-bond cleavage. Detailed information about the Baeyer−Villiger, Criegee, Hock, Kornblum−DeLaMare, Dakin, Elbs, Schenck, Smith, Wieland, and Story reactions is given. Unnamed rearrangements of organic peroxides and related processes are also analyzed. The rearrangements and related processes of important natural and synthetic peroxides are discussed separately. PMID:27559418

  15. Formation of iodo-trihalomethanes (I-THMs) during disinfection with chlorine or chloramine: Impact of UV/H2O2 pre-oxidation.

    PubMed

    Zhang, Jie; Liu, Jing; He, Chuan-Shu; Qian, Chen; Mu, Yang

    2018-06-04

    Ultraviolet/hydrogen peroxide (UV/H 2 O 2 ) pre-oxidation has the potential to induce reactions with dissolved organic matter (DOM) and alter the generation of disinfection byproducts (DBPs). This study evaluated the influence of UV/H 2 O 2 pretreatment on the formation of iodo-trihalomethanes (I-THMs) during disinfection with chlorine or chloramine. The changes of precursors, I - and Br - , after UV/H 2 O 2 pretreatment were investigated, and then, the formation and speciation of I-THMs during chlorination or chloramination after pre-oxidation were explored. Additionally, the effects of UV doses and H 2 O 2 concentrations on the formation and speciation of I-THMs were studied. It was found that UV/H 2 O 2 pretreatment could change larger molecular weight (MW) DOM to smaller MW species, which had less aromatic organic compounds and fluorescence substances. Additionally, insignificant transformations of I - and Br - were observed after UV/H 2 O 2 treatment. Compared to direct disinfection, UV/H 2 O 2 pretreatment resulted in 23.0 ± 3.5% reduction in I-THMs formation during post-chlorination while an enhancement was observed during post-chloramination at a UV dose of 460 mJ/cm 2 and 20 mg/L H 2 O 2 . Moreover, total I-THM concentration increased from 43.7 ± 2.4 to 97.6 ± 14.9 nM with the increase of UV doses from 0 to 1400 mJ/cm 2 during the post-chlorination process, while reduced when the UV fluence was >460 mJ/cm 2 during the post-chloramination. Additionally, the generation of I-THMs during both post-chlorination and post-chloramination was positively related to the H 2 O 2 levels from 0 to 20 mg/L in the UV/H 2 O 2 pretreatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Water-soluble fractions from defatted sesame seeds protect human neuroblast cells against peroxyl radicals and hydrogen peroxide-induced oxidative stress.

    PubMed

    Ben Othman, Sana; Katsuno, Nakako; Kitayama, Akemi; Fujimura, Makoto; Kitaguchi, Kohji; Yabe, Tomio

    2016-09-01

    Oxidative stress is involved in the development of aging-related diseases, such as neurodegenerative diseases. Dietary antioxidants that can protect neuronal cells from oxidative damage play an important role in preventing such diseases. Previously, we reported that water-soluble fractions purified from defatted sesame seed flour exhibit good antioxidant activity in vitro. In the present study, we investigated the protective effects of white and gold sesame seed water-soluble fractions (WS-wsf and GS-wsf, respectively) against 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) and hydrogen peroxide (H2O2) induced oxidative stress in human neuroblast SH-SY5Y cells. Pretreatment with WS-wsf and GS-wsf did not protect cells against AAPH-induced cytotoxicity, while simultaneous co-treatment with AAPH significantly improved cell viability and inhibited membrane lipid peroxidation. These results suggest that WS-wsf and GS-wsf protect cells from AAPH-induced extracellular oxidative damage via direct scavenging of peroxyl radicals. When oxidative stress was induced by H2O2, pretreatment WS-wsf and GS-wsf significantly enhanced cell viability. These results suggest that in addition to radical scavenging, WS-wsf and GS-wsf enhance cellular resistance to intracellular oxidative stress by activation of the Nrf-2/ARE pathway as confirmed by the increased Nrf2 protein level in the nucleus and increased heme oxygenase 1 (HO-1) mRNA expression. The roles of ferulic and vanillic acids as bioactive antioxidants in these fractions were also confirmed. In conclusion, our results indicated that WS-wsf and GS-wsf, which showed antioxidant activity in vitro, are also efficient antioxidants in a cell system protecting SH-SY5Y cells against both extracellular and intracellular oxidative stress.

  17. Antioxidant Properties and Cardioprotective Mechanism of Malaysian Propolis in Rats

    PubMed Central

    Ahmed, Romana; Hossen, Md. Sakib; Ahmmed, Istiyak; Rumpa, Nur-E-Noushin; Sulaiman, Siti Amrah

    2017-01-01

    Propolis contains high concentrations of polyphenols, flavonoids, tannins, ascorbic acid, and reducing sugars and proteins. Malaysian Propolis (MP) has been reported to exhibit high 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity and ferric reducing antioxidant power (FRAP) values. Herein, we report the antioxidant properties and cardioprotective properties of MP in isoproterenol- (ISO-) induced myocardial infarction in rats. Male Wistar rats (n = 32) were pretreated orally with an ethanol extract of MP (100 mg/kg/day) for 30 consecutive days. Subcutaneous injection of ISO (85 mg/kg in saline) for two consecutive days caused a significant increase in serum cardiac marker enzymes and cardiac troponin I levels and altered serum lipid profiles. In addition significantly increased lipid peroxides and decreased activities of cellular antioxidant defense enzymes were observed in the myocardium. However, pretreatment of ischemic rats with MP ameliorated the biochemical parameters, indicating the protective effect of MP against ISO-induced ischemia in rats. Histopathological findings obtained for the myocardium further confirmed the biochemical findings. It is concluded that MP exhibits cardioprotective activity against ISO-induced oxidative stress through its direct cytotoxic radical-scavenging activities. It is also plausible that MP contributed to endogenous antioxidant enzyme activity via inhibition of lipid peroxidation. PMID:28261310

  18. Antioxidant and Protective Effect of Ethyl Acetate Extract of Podophyllum Hexandrum Rhizome on Carbon Tetrachloride Induced Rat Liver Injury

    PubMed Central

    Ganie, Showkat Ahmad; Haq, Ehtishamul; Masood, Akbar; Hamid, Abid; Zargar, Mohmmad Afzal

    2011-01-01

    The antioxidant and hepatoprotective activities of ethyl acetate extract was carefully investigated by the methods of DPPH radical scavenging activity, Hydroxyl radical scavenging activity, Superoxide radical scavenging activity, Hydrogen peroxide radical scavenging activity and its Reducing power ability. All these in vitro antioxidant activities were concentration dependent which were compared with standard antioxidants such as BHT, α-tocopherol. The hepatoprotective potential of Podophyllum hexandrum extract was also evaluated in male Wistar rats against carbon tetrachloride (CCl4)-induced liver damage. Pre-treated rats were given ethyl acetate extract at 20, 30 and 50 mg/kg dose prior to CCl4 administration (1 ml/kg, 1:1 in olive oil). Rats pre-treated with Podophyllum hexandrum extract remarkably prevented the elevation of serum AST, ALT, LDH and liver lipid peroxides in CCl4-treated rats. Hepatic glutathione levels were significantly increased by the treatment with the extract in all the experimental groups. The extract at the tested doses also restored the levels of liver homogenate enzymes (glutathione peroxidase, glutathione reductase, superoxide dismutase and glutathione-S- transferase) significantly. This study suggests that ethyl acetate extract of P. hexandrum has a liver protective effect against CCl4-induced hepatotoxicity and possess in vitro antioxidant activities. PMID:21394192

  19. Pretreatment of Adipose Derived Stem Cells with Curcumin Facilitates Myocardial Recovery via Antiapoptosis and Angiogenesis

    PubMed Central

    Liu, Jianfeng; Zhu, Ping; Song, Peng; Xiong, Weiping; Chen, Haixu; Peng, Wenhui; Wang, Shuxia; Li, Shan; Fu, Zhiqing; Wang, Yutang; Wang, Haibin

    2015-01-01

    The poor survival rate of transplanted stem cells in ischemic myocardium has limited their therapeutic efficacy. Curcumin has potent antioxidant property. This study investigates whether prior curcumin treatment protects stem cells from oxidative stress injury and improves myocardial recovery following cells transplantation. Autologous Sprague-Dawley rat adipose derived mesenchymal stem cells (ADSCs) were pretreated with or without curcumin. The hydrogen peroxide/serum deprivation (H2O2/SD) medium was used to mimic the ischemic condition in vitro. Cytoprotective effects of curcumin on ADSCs were evaluated. Curcumin pretreatment significantly increased cell viability and VEGF secretion, and decreased cell injury and apoptosis via regulation of PTEN/Akt/p53 and HO-1 signal proteins expression. The therapeutic potential of ADSCs implantation was investigated in myocardial ischemia-reperfusion injury (IRI) model. Transplantation of curcumin pretreated ADSCs not only resulted in better heart function, higher cells retention, and smaller infarct size, but also decreased myocardial apoptosis, promoted neovascularization, and increased VEGF level in ischemic myocardium. Together, priming of ADSCs with curcumin improved tolerance to oxidative stress injury and resulted in enhancement of their therapeutic potential of ADSCs for myocardial repair. Curcumin pretreatment is a promising adjuvant strategy for stem cells transplantation in myocardial restoration. PMID:26074974

  20. Two techniques for eliminating luminol interference material and flow system configurations for luminol and firefly luciferase systems

    NASA Technical Reports Server (NTRS)

    Thomas, R. R.

    1976-01-01

    Two methods for eliminating luminol interference materials are described. One method eliminates interference from organic material by pre-reacting a sample with dilute hydrogen peroxide. The reaction rate resolution method for eliminating inorganic forms of interference is also described. The combination of the two methods makes the luminol system more specific for bacteria. Flow system designs for both the firefly luciferase and luminol bacteria detection systems are described. The firefly luciferase flow system incorporating nitric acid extraction and optimal dilutions has a functional sensitivity of 3 x 100,000 E. coli/ml. The luminol flow system incorporates the hydrogen peroxide pretreatment and the reaction rate resolution techniques for eliminating interference. The functional sensitivity of the luminol flow system is 1 x 10,000 E. coli/ml.

  1. Detoxification of acid pretreated spruce hydrolysates with ferrous sulfate and hydrogen peroxide improves enzymatic hydrolysis and fermentation.

    PubMed

    Soudham, Venkata Prabhakar; Brandberg, Tomas; Mikkola, Jyri-Pekka; Larsson, Christer

    2014-08-01

    The aim of the present work was to investigate whether a detoxification method already in use during waste water treatment could be functional also for ethanol production based on lignocellulosic substrates. Chemical conditioning of spruce hydrolysate with hydrogen peroxide (H₂O₂) and ferrous sulfate (FeSO₄) was shown to be an efficient strategy to remove significant amounts of inhibitory compounds and, simultaneously, to enhance the enzymatic hydrolysis and fermentability of the substrates. Without treatment, the hydrolysates were hardly fermentable with maximum ethanol concentration below 0.4 g/l. In contrast, treatment by 2.5 mM FeSO₄ and 150 mM H₂O₂ yielded a maximum ethanol concentration of 8.3 g/l. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Copper leaching from electronic waste for the improvement of gold recycling.

    PubMed

    Torres, Robinson; Lapidus, Gretchen T

    2016-11-01

    Gold recovery from electronic waste material with high copper content was investigated at ambient conditions. A chemical preliminary treatment was found necessary to remove the large quantities of copper before the precious metal can be extracted. For this purpose inorganic acids (HCl, HNO 3 and H 2 SO 4 ) and two organic substances EDTA and citrate, were tested. The effect of auxiliary oxidants such as air, ozone and peroxide hydroxide was studied. In pretreatments with peroxide and HCl or citrate, copper extractions greater than 90% were achieved. In the second leaching stage for gold recovery, the solid residue of the copper extraction was contacted with thiourea solutions, resulting in greater than 90% gold removal after only one hour of reaction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Enhancing enzymatic hydrolysis of coconut husk through Pseudomonas aeruginosa AP 029/GLVIIA rhamnolipid preparation.

    PubMed

    de Araújo, Cynthia Kérzia Costa; de Oliveira Campos, Alan; de Araújo Padilha, Carlos Eduardo; de Sousa Júnior, Francisco Canindé; do Nascimento, Ruthinéia Jéssica Alves; de Macedo, Gorete Ribeiro; Dos Santos, Everaldo Silvino

    2017-08-01

    This work investigated the influence of chemical (Triton X-100) and biological surfactant preparation (rhamnolipids) in coconut husk hydrolysis that was subjected to pretreatment with acid-alkali or alkaline hydrogen peroxide. The natural and pretreated biomass was characterized using the National Renewable Energy Laboratory protocol analysis as well as X-ray diffraction and scanning electron microscopy. The results demonstrated that in terms of the total reducing sugars, there was no significant difference between the hydrolysis using Triton X-100 and rhamnolipids, regardless of the pretreatment. A cellulosic conversion value as high as 33.0% was obtained in experiments with rhamnolipids. The coconut husk was observed to be a potential biomass that could produce second generation ethanol, and the rhamnolipid preparation can be used to support for the enzymatic hydrolysis, enhancing the advantage of cellulose conversion into glucose over chemical surfactants because it is an environmentally friendly approach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Mollusc C-reactive protein crosses species barrier and reverses hepatotoxicity of lead in rodent models.

    PubMed

    Mukherjee, Sandip; Chatterjee, Sarmishtha; Sarkar, Shuvasree; Agarwal, Soumik; Kundu, Rakesh; Maitra, Sudipta; Bhattacharya, Shelley

    2013-08-01

    Achatina fulica C-reactive protein (ACRP) reversed the toxic effects of lead nitrate both in vivo in mice and in vitro in rat hepatocytes restoring the basal level of cell viability, lipid peroxidation, reduced glutathione and superoxides. Cytotoxicity was also significantly ameliorated in rat hepatocytes by in vitro pre-treatments with individual subunits (60, 62, 90 and 110 kDa) of ACRP. Annexin V-Cy3/CFDA dual staining showed significant reduction in the number of apoptotic hepatocytes pre-treated with ACRP. ACRP induced restoration of mitochondrial membrane potential was remarkable. ACRP pre-treatment prevented Pb-induced apoptosis mediated by caspase activation. The antagonistic effect of ACRP may be due to scavenging of reactive oxygen species which maintained the homeostasis of cellular redox potential as well as reduced glutathione status. The results suggest that ACRP crosses the species barrier and it may be utilized as a viable exogenous agent of cytoprotection against heavy metal related toxicity.

  5. Mode of Action Studies on Nitrodiphenyl Ether Herbicides

    PubMed Central

    Bowyer, John R.; Smith, Beverly J.; Camilleri, Patrick; Lee, Susan A.

    1987-01-01

    5-[2-Chloro-4-(trifluoromethyl)phenoxy]-2-nitroacetophenone oxime-o-(acetic acid, methyl ester) (DPEI), is a potent nitrodiphenyl ether herbicide which causes rapid leaf wilting, membrane lipid peroxidation, and chlorophyll destruction in a process which is both light- and O2-dependent. These effects resemble those of other nitrodiphenyl ether herbicides. Unlike paraquat, the herbicidal effects of DPEI are only slightly reduced by pretreatment with the photosynthetic electron transport inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea. DPEI is a weak inhibitor of photosynthetic electron transport (I50 15 micromolar for water to paraquat) in vitro, with at least one site of action at the cytochrome b6f complex. Ultrastructural studies and measurements of ethane formation resulting from lipid peroxidation indicate that mutants of barley lacking photosystem I (PSI) (viridis-zb63) or photosystem II (viridis-zd69) are resistant to paraquat but susceptible to DPEI. The results indicate that electron transfer through both photosystems is not essential for the toxic effects of nitrodiphenyl ether herbicides. Furthermore, the results show that neither cyclic electron transport around PSI, nor the diversion of electrons from PSI to O2 when NADPH consumption is blocked are essential for the phytotoxicity of nitrodiphenyl ether herbicides. Images Fig. 2 Fig. 3 Fig. 4 PMID:16665297

  6. Mushroom insoluble polysaccharides prevent carbon tetrachloride-induced hepatotoxicity in rat.

    PubMed

    Nada, Somaia A; Omara, Enayat A; Abdel-Salam, Omar M E; Zahran, Hanan G

    2010-11-01

    The aim of the present study was to investigate the effect of mushroom insoluble non-starch polysaccharides (MINSP) on the carbon tetrachloride (CCl(4))-induced hepatic damage in rat. MINSP (100 and 200 mg/kg) administered daily orally for 15 days before CCl(4) (1.5 ml/kg). The effect of MINSP treatment was also examined in normal rats. Normal groups treated with MINSP showed significant decrease in serum activities of the liver enzymes, lipid peroxides and nitric oxide (NO) in the liver. Reduced glutathione (GSH) and total proteins (TP) contents in liver homogenate also increased after treatment with only MINSP for 15 days. In CCl(4)-treated rats, significant elevation in serum liver enzymes, increased lipid peroxides and NO in the liver, and depletion of hepatic-GSH level were observed. Pre-treatment with MINSP significantly ameliorated the tested parameters when compared with CCl(4)-treated group. It improved the antioxidant activity of the liver in a dose-dependent manner. Histopathological examination of hepatic tissue revealed that MINSP administration alone protected hepatocytes from the damage induced by CCl(4). MINSP are safe; it could be used as fat replacer in processing low fat diet. MINSP represents a good functional food and liver supporter for patient suffering from various liver diseases. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Protective effects of Ginkgo biloba extract on the ethanol-induced gastric ulcer in rats

    PubMed Central

    Chen, Sheng-Hsuan; Liang, Yu-Chih; Chao, Jane CJ; Tsai, Li-Hsueh; Chang, Chun-Chao; Wang, Chia-Chi; Pan, Shiann

    2005-01-01

    AIM: To evaluate the preventive effect of Ginkgo biloba extract (GbE) on ethanol-induced gastric mucosal injuries in rats. METHODS: Female Wistar albino rats were used for the studies. We randomly divided the rats for each study into five subgroups: normal control, experimental control, and three experimental groups. The gastric ulcers were induced by instilling 1 mL 50% ethanol into the stomach. We gave GbE 8.75, 17.5, 26.25 mg/kg intravenously to the experimental groups respectively 30 min prior to the ulcerative challenge. We removed the stomachs 45 min later. The gastric ulcers, gastric mucus and the content of non-protein sulfhydryl groups (NP-SH), malondialdehyde (MDA), c-Jun kinase (JNK) activity in gastric mucosa were evaluated. The amount of gastric juice and its acidity were also measured. RESULTS: The findings of our study are as follows: (1) GbE pretreatment was found to provide a dose-dependent protection against the ethanol-induced gastric ulcers in rats; (2) the GbE pretreatment afforded a dose-dependent inhibition of ethanol-induced depletion of stomach wall mucus, NP-SH contents and increase in the lipid peroxidation (increase MDA) in gastric tissue; (3) gastric ulcer induced by ethanol produced an increase in JNK activity in gastric mucosa which also significantly inhibited by pretreatment with GbE; and (4) GbE alone had no inhibitory effect on gastric secretion in pylorus-ligated rats. CONCLUSION: The finding of this study showed that GbE significantly inhibited the ethanol-induced gastric lesions in rats. We suggest that the preventive effect of GbE may be mediated through: (1) inhibition of lipid peroxidation; (2) preservation of gastric mucus and NP-SH; and (3) blockade of cell apoptosis. PMID:15968732

  8. Possible involvements of glutamate and adrenergic receptors on acute toxicity of methylphenidate in isolated hippocampus and cerebral cortex of adult rats.

    PubMed

    Motaghinejad, Majid; Motevalian, Manijeh; Shabab, Behnaz

    2017-04-01

    Neurodegeneration induced by methylphenidate (MPH), as a central stimulant with unknown long-term consequences, in adult rats' brain and the possible mechanisms involved were studied. Rats were acutely treated with MPH in the presence and absence of some receptor antagonists such as ketamine, topiramate, yohimbine, and haloperidol. Motor activity and anxiety level in rats were monitored. Antioxidant and inflammatory parameters were also measured in isolated hippocampus and cerebral cortex. MPH-treated groups (10 and 20 mg/kg) demonstrated anxiety-like behavior and increased motor activity. MPH significantly increased lipid peroxidation, GSSG content, IL-1β and TNF-α levels in isolated tissues, and also significantly reduced GSH content, superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR) activities in hippocampus and cerebral cortex. Pretreatment of animals by receptor antagonists caused inhibition of MPH-induced motor activity disturbances and anxiety-like behavior. Pretreatment of animals by ketamine, topiramate, and yohimbine inhibited the MPH-induced oxidative stress and inflammation; it significantly decreased lipid peroxidation, GSSG level, IL-1β and TNF-α levels and increased GSH content, SOD, GPx, and GR activities in hippocampus and cerebral cortex of acutely MPH-treated rats. Pretreatment with haloperidol did not cause any change in MPH-induced oxidative stress and inflammation. In conclusion, acute administration of high doses of MPH can cause oxidative and inflammatory changes in brain cells and induce neurodegeneration in hippocampus and cerebral cortex of adult rats and these changes might probably be mediated by glutamate (NMDA or AMPA) and/or α 2 -adrenergic receptors. © 2016 Société Française de Pharmacologie et de Thérapeutique.

  9. Evaluation of antioxidant and cytoprotective activities of Arnica montana L. and Artemisia absinthium L. ethanolic extracts

    PubMed Central

    2012-01-01

    Background Arnica montana L. and Artemisia absinthium L. (Asteraceae) are medicinal plants native to temperate regions of Europe, including Romania, traditionally used for treatment of skin wounds, bruises and contusions. In the present study, A. montana and A. absinthium ethanolic extracts were evaluated for their chemical composition, antioxidant activity and protective effect against H2O2-induced oxidative stress in a mouse fibroblast-like NCTC cell line. Results A. absinthium extract showed a higher antioxidant capacity than A. montana extract as Trolox equivalent antioxidant capacity, Oxygen radical absorbance capacity and 2,2-diphenyl-1-picrylhydrazyl free radical-scavenging activity, in correlation with its flavonoids and phenolic acids content. Both plant extracts had significant effects on the growth of NCTC cells in the range of 10–100 mg/L A. montana and 10–500 mg/L A. absinthium. They also protected fibroblast cells against hydrogen peroxide-induced oxidative damage, at the same doses. The best protection was observed in cell pre-treatment with 10 mg/L A. montana and 10–300 mg/L A. absinthium, respectively, as determined by Neutral red and lactate dehydrogenase assays. In addition, cell pre-treatment with plant extracts, at these concentrations, prevented morphological changes induced by hydrogen peroxide. Flow-cytometry analysis showed that pre-treatment with A. montana and A. absinthium extracts restored the proportion of cells in each phase of the cell cycle. Conclusions A. montana and A. absinthium extracts, rich in flavonoids and phenolic acids, showed a good antioxidant activity and cytoprotective effect against oxidative damage in fibroblast-like cells. These results provide scientific support for the traditional use of A. montana and A. absinthium in treatment of skin disorders. PMID:22958433

  10. Antiepileptic effect of fisetin in iron-induced experimental model of traumatic epilepsy in rats in the light of electrophysiological, biochemical, and behavioral observations.

    PubMed

    Das, Jharana; Singh, Rameshwar; Sharma, Deepak

    2017-05-01

    Traumatic epilepsy is defined by episodes of recurring seizures secondary to severe brain injury. Though drugs are found effective to control seizures, their long-term use have been observed to increase reactive oxygen species in animals. Flavonoid fisetin, a natural bioactive phytonutrient reported to exert anticonvulsive effect in experimental seizure models. But, trauma-induced seizures could not be prevented by anticonvulsants was reported in some clinical studies. To study the effect of fisetin on epileptiform electrographic activity in iron-induced traumatic epilepsy and also the probable reason behind the effect in rats. Fisetin pretreatment (20 mg/kg body wt., p.o.) of rats for 12 weeks were chosen followed by injecting iron (5 µl, 100 mM) stereotaxically to generate iron-induced epilepsy. Experimental design include electrophysiological study (electroencephalograph in correlation with multiple unit activity (MUA) in the cortex and CA1 subfield of the hippocampus; spectral analysis of seizure and seizure-associated behavioral study (Morris water maze for spatial learning, open-field test for anxiety) and biochemical study (lipid peroxidation, Na + ,K + -ATPase activity) in both the cortex and the hippocampus. Fisetin pretreatment was found to prevent the development of iron-induced electrical seizure and decrease the corresponding MUA in the cortex (*P˂0.05) as well as in the hippocampus (***P˂0.001). Fisetin pretreatment decreased the lipid peroxides (*P˂0.05) and retained the Na + ,K + -ATPase activity (*P˂0.05) which was found altered in the epileptic animals and also found to attenuate the seizure-associated cognitive dysfunctions. This study demonstrated the antiepileptic action of fisetin in iron-induced model of epileptic rats by inhibiting oxidative stress.

  11. Secoisolariciresinol diglucoside attenuates cardiac hypertrophy and oxidative stress in monocrotaline-induced right heart dysfunction.

    PubMed

    Puukila, Stephanie; Fernandes, Rafael Oliveira; Türck, Patrick; Carraro, Cristina Campos; Bonetto, Jéssica Hellen Poletto; de Lima-Seolin, Bruna Gazzi; da Rosa Araujo, Alex Sander; Belló-Klein, Adriane; Boreham, Douglas; Khaper, Neelam

    2017-08-01

    Pulmonary arterial hypertension (PAH) occurs when remodeling of pulmonary vessels leads to increased pulmonary vascular resistance resulting in increased pulmonary arterial pressure. Increased pulmonary arterial pressure results in right ventricle hypertrophy and eventually heart failure. Oxidative stress has been implicated in the pathogenesis of PAH and may play a role in the regulation of cellular signaling involved in cardiac response to pressure overload. Secoisolariciresinol diglucoside (SDG), a component from flaxseed, has been shown to reduce cardiac oxidative stress in various pathophysiological conditions. We investigated the potential protective effects of SDG in a monocrotaline-induced model of PAH. Five- to six-week-old male Wistar rats were given a single intraperitoneal injection of monocrotaline (60 mg/kg) and sacrificed 21 days later where heart, lung, and plasma were collected. SDG (25 mg/kg) was given via gavage as either a 21-day co-treatment or pre-treatment of 14 days before monocrotaline administration and continued for 21 days. Monocrotaline led to right ventricle hypertrophy, increased lipid peroxidation, and elevated plasma levels of alanine transaminase (ALT) and aspartate transaminase (AST). Co-treatment with SDG did not attenuate hypertrophy or ALT and AST levels but decreased reactive oxygen species (ROS) levels and catalase and superoxide dismutase activity compared to the monocrotaline-treated group. Pre-treatment with SDG decreased right ventricle hypertrophy, ROS levels, lipid peroxidation, catalase, superoxide dismutase, and glutathione peroxidase activity and plasma levels of ALT and AST when compared to the monocrotaline group. These findings indicate that pre-treatment with SDG provided better protection than co-treatment in this model of right heart dysfunction, suggesting an important role for SDG in PAH and right ventricular remodeling.

  12. Effect of ketorolac and diclofenac on the impairment of endothelium-dependent relaxation induced by reactive oxygen species in rabbit abdominal aorta

    PubMed Central

    Lee, Seung Yoon; Choi, Jin Hwa; Jeon, Woo Jae; Cheong, Mi Ae

    2010-01-01

    Background Reactive oxygen species (ROS) induce lipid peroxidation and tissue damage in endothelium. We studied the influences of ketorolac and diclofenac on ROS effects using the endothelium of rabbit abdominal aorta. Methods Isolated rabbit aortic rings were suspended in an organ bath filled with Krebs-Henseleit (K-H) solution bubbled with 5% CO2 and 95% O2 at 37.5℃. After being stimulated to contract with phenylephrine (PE, 10-6 M), changes in arterial tension were recorded following the cumulative administration of acetylcholine (ACh, 3 × 10-8 to 10-6 M). The percentages of ACh-induced relaxation of aortic rings before and after exposure to ROS, generated by electrolysis of K-H solution, were used as the control and experimental values, respectively. The aortic rings were pretreated with ketorolac or diclofenac at the same concentrations (10-5 M to 3 × 10-4 M), and the effects of these agents were compared with the effects of ROS scavengers: catalase, mannitol, sodium salicylate and deferoxamine and the catalase inhibitor, 3-amino-1,2,4-triazole (3AT). Results Both ketorolac and diclofenac maintained endothlium-dependent relaxation induced by ACh in a dose-related manner inspite of ROS attack (P < 0.05 vs. control value). The 3AT pretreated ketorolac (3 × 10-3 M) group was decreased more significantly than un-pretreated ketorolac (P < 0.05). Conclusions These findings suggest that ketorlac and diclofenac preserve the endothelium-dependent vasorelaxation against the attack of ROS, in a concentration-related manner. One of the endothelial protection mechanisms of ketorolac may be hydrogen peroxide scavenging. PMID:20877705

  13. Cardioprotective effect of saffron extract and safranal in isoproterenol-induced myocardial infarction in wistar rats.

    PubMed

    Mehdizadeh, Roya; Parizadeh, Mohammad-Reza; Khooei, Ali-Reza; Mehri, Soghra; Hosseinzadeh, Hossein

    2013-01-01

    This study was designed to evaluate the cardioprotective effect of Crocus sativus L. (saffron) aqueous extract and safranal, the major constituent of the essential oil of saffron, on lipid peroxidation, biochemical parameters and histopathological findings in isoproterenol (ISO)-induced myocardial infarction in Wistar rats. The saffron extract (20, 40, 80 and 160 mg/kg/day IP) or control were administered for 9 days along with ISO (85 mg/kg, SC, at 24 hr interval) on 8th and 9th day in rats. Activities of creatine kinase-muscle, brain (CK-MB) and lactate dehydrogenase (LDH) were measured using standard commercial kits. The level of malondialdehyde in heart tissue was estimated with thiobarbituric acid reactive species test. For histopathological examination, hematoxylin and eosin (H&E) staining was used. ISO administration induced a statistically significant increase (P< 0.001) in serum LDH and CK-MB and a significant increase (P< 0.001) in the levels of thiobarbituric acid reactive substances (TBARs) in the heart as compared to vehicle control rats. Saffron pretreatment (20, 40, 80 and 160 mg/kg IP) or safranal pretreatment (0.025, 0.050, 0.075 ml/kg IP) for 8 days, significantly decreased (P< 0.001) the serum LDH and CK-MB and myocardial lipid peroxidation as compared to ISO- induced rats. Histological findings of the heart sections confirmed myocardial injury with ISO administration and preserved nearly normal tissue architecture with saffron or safranal pretreatment. Saffron and safranal may have cardioprotective effect in ISO-induced myocardial infarction through modulation of oxidative stress in such a way that they maintain the redox status of the cell.

  14. Alleviation of Waterlogging Damage in Winter Rape by Uniconazole Application: Effects on Enzyme Activity, Lipid Peroxidation, and Membrane Integrity.

    PubMed

    Leul; Zhou

    1999-08-01

    Oilseed rape (Brassica napus L.) seedlings treated with uniconazole [(E)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-l-yl)-l-penten-3-ol] were transplanted at the five-leaf stage into specially designed experimental containers and then exposed to waterlogging for 3 weeks. After waterlogging stress, uniconazole-treated seedlings had significantly higher activities of superoxide dismutase, catalase, and peroxidase enzymes and endogenous free proline content at both the seedling and flowering stages. Uniconazole plus waterlogging-treated plants had a significantly higher content of unsaturated fatty acids than the waterlogged plants. There was a parallel increase in the lipid peroxidation level and electrolyte leakage rate from the leaves of waterlogged plants. Leaves from uniconazole plus waterlogging-treated plants had a significantly lower lipid peroxidation level and electrolyte leakage rate compared with waterlogged plants at both the seedling and flowering stages. Pretreatment of seedlings with uniconazole could effectively delay stress-induced degradation of chlorophyll and reduction of root oxidizability. Uniconazole did not alter the soluble sugar content of leaves and stems, after waterlogging of seedlings. Uniconazole improved waterlogged plant performance and increased seed yield, possibly because of improved antioxidation defense mechanisms, and it retarded lipid peroxidation and membrane deterioration of plants.Key Words. Waterlogging-Uniconazole-Brassica napus L.-Enzymes-Lipid peroxidation-Membrane integrityhttp://link.springer-ny.com/link/service/journals/00344/bibs/18n1p9.html

  15. Rotenone Induction of Hydrogen Peroxide Inhibits mTOR-mediated S6K1 and 4E-BP1/eIF4E Pathways, Leading to Neuronal Apoptosis

    PubMed Central

    Zhou, Qian; Liu, Chunxiao; Liu, Wen; Zhang, Hai; Zhang, Ruijie; Liu, Jia; Zhang, Jinfei; Xu, Chong; Liu, Lei; Huang, Shile; Chen, Long

    2015-01-01

    Rotenone, a common pesticide and inhibitor of mitochondrial complex I, induces loss of dopaminergic neurons and consequential aspects of Parkinson’s disease (PD). However, the exact mechanism of rotenone neurotoxicity is not fully elucidated. Here, we show that rotenone induced reactive oxygen species (ROS), leading to apoptotic cell death in PC12 cells and primary neurons. Pretreatment with catalase (CAT), a hydrogen peroxide-scavenging enzyme, attenuated rotenone-induced ROS and neuronal apoptosis, implying hydrogen peroxide (H2O2) involved, which was further verified by imaging intracellular H2O2 using a peroxide-selective probe H2DCFDA. Using thenoyltrifluoroacetone (TTFA), antimycin A, or Mito-TEMPO, we further demonstrated rotenone-induced mitochondrial H2O2-dependent neuronal apoptosis. Rotenone dramatically inhibited mTOR-mediated phosphorylation of S6K1 and 4E-BP1, which was also attenuated by CAT in the neuronal cells. Of interest, ectopic expression of wild-type mTOR or constitutively active S6K1, or downregulation of 4E-BP1 partially prevented rotenone-induced H2O2 and cell apoptosis. Furthermore, we noticed that rotenone-induced H2O2 was linked to the activation of caspase-3 pathway. This was evidenced by the finding that pretreatment with CAT partially blocked rotenone-induced cleavages of caspase-3 and poly (ADP-ribose) polymerase. Of note, zVAD-fmk, a pan caspase inhibitor, only partially prevented rotenone-induced apoptosis in PC12 cells and primary neurons. Expression of mTOR-wt, S6K1-ca, or silencing 4E-BP1 potentiated zVAD-fmk protection against rotenone-induced apoptosis in the cells. The results indicate that rotenone induction of H2O2 inhibits mTOR-mediated S6K1 and 4E-BP1/eIF4E pathways, resulting in caspase-dependent and -independent apoptosis in neuronal cells. Our findings suggest that rotenone-induced neuronal loss in PD may be prevented by activating mTOR signaling and/or administering antioxidants. PMID:25304210

  16. PRECIPITATION OF PLUTONOUS PEROXIDE

    DOEpatents

    Barrick, J.G.; Manion, J.P.

    1961-08-15

    A precipitation process for recovering plutonium values contained in an aqueous solution is described. In the process for precipitating plutonium as plutonous peroxide, hydroxylamine or hydrazine is added to the plutoniumcontaining solution prior to the addition of peroxide to precipitate plutonium. The addition of hydroxylamine or hydrazine increases the amount of plutonium precipitated as plutonous peroxide. (AEC)

  17. Protective effect of edaravone for tourniquet-induced ischemia-reperfusion injury on skeletal muscle in murine hindlimb

    PubMed Central

    2013-01-01

    Background Studies have shown that ischemia-reperfusion (I/R) produces free radicals leading to lipid peroxidation and damage to skeletal muscle. The purposes of this study were 1) to assess the histological findings of gastrocnemius muscle (GC) and tibialis anterior muscle (TA) in I/R injury model mice, 2) to histologically analyze whether a single pretreatment of edaravone inhibits I/R injury to skeletal muscle in murine models and 3) to evaluate the effect of oxidative stress on these muscles. Methods C57BL6 mice were divided in two groups, with one group receiving 3 mg/kg intraperitoneal injections of edaravone (I/R + Ed group) and the other group receiving an identical amount of saline (I/R group) 30 minutes before ischemia. Edaravone (3-methy-1-pheny1-2-pyrazolin-5-one) is a potent and novel synthetic scavenger of free radicals. This drug inhibits both nonenzymatic lipid peroxidation and the lipoxygenase pathway, in addition to having potent antioxidant effects against ischemia reperfusion. The duration of the ischemia was 1.5 hours, with reperfusion at either 24 or 72 hours (3 days). Specimens of gastrocnemius (GC) and anterior tibialis (TA) were removed for histological evaluation and biochemical analysis. Results This model of I/R injury was highly reproducible in histologic muscle damage. In the histologic damage score, the mean muscle fibers and inflammatory cell infiltration in the I/R + Ed group were significantly less than the corresponding values of observed in the I/R group. Thus, pretreatment with edaravone was observed to have a protective effect on muscle damage after a period of I/R in mice. In addition, the mean muscle injury score in the I/R + Ed group was also significantly less than the I/R group. In the I/R + Ed group, the mean malondialdehyde (MDA) level was lower than in the I/R group and western-blotting revealed that edaravone pretreatment decreased the level of inducible nitric oxide synthase (iNOS) expression. Conclusions Edaravone was found to have a protective effect against I/R injury by directly inhibiting lipid peroxidation of the myocyte by free radicals in skeletal muscles and may also reduce the secondary edema and inflammatory infiltration incidence of oxidative stress on tissue. PMID:23530927

  18. Protective effects of combination of quercetin and α-tocopherol on mitochondrial dysfunction and myocardial infarct size in isoproterenol-treated myocardial infarcted rats: biochemical, transmission electron microscopic, and macroscopic enzyme mapping evidences.

    PubMed

    Punithavathi, V R; Stanely Mainzen Prince, P

    2010-01-01

    Mitochondrial dysfunction plays an important role in the pathology of myocardial infarction. We evaluated the combined protective effects of quercetin and α-tocopherol on mitochondrial damage and myocardial infarct size in isoproterenol-induced myocardia- infarcted rats. Rats were pretreated with quercetin (10 mg/kg) alone, α-tocopherol (10 mg/kg) alone, and combination of quercetin (10 mg/kg) and α-tocopherol (10 mg/kg) orally using an intragastric tube daily for 14 days. After pretreatment, rats were induced myocardial infarction by isoproterenol (100 mg/kg) at an interval of 24 h for 2 days. Isoproterenol treatment caused significant increase in mitochondrial lipid peroxides with significant decrease in mitochondrial antioxidants. Significant decrease in the activities of isocitrate, succinate, malate, and α-ketoglutarate and NADH dehydrogenases and cytochrome-c-oxidase, significant increase in calcium, and significant decrease in adenosine triphosphate were observed in mitochondria of myocardial infarcted rats. Combined pretreatment with quercetin and α-tocopherol normalized all the biochemical parameters and preserved the integrity of heart tissue and restored normal mitochondrial function in myocardial-infarcted rats. Transmission electron microscopic findings on heart mitochondria and macroscopic enzyme mapping assay on the size of myocardial infarct also correlated with these biochemical parameters. The present study showed that combined pretreatment was highly effective than single pretreatment. Copyright 2010 Wiley Periodicals, Inc.

  19. Treatment of Oil & Gas Produced Water.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwyer, Brian P.

    Production of oil and gas reserves in the New Mexico Four Corners Region results in large volumes of "produced water". The common method for handling the produced water from well production is re-injection in regulatory permitted salt water disposal wells. This is expensive (%7E $5/bbl.) and does not recycle water, an ever increasingly valuable commodity. Previously, Sandia National Laboratories and several NM small business tested pressure driven membrane-filtration techniques to remove the high TDS (total dissolved solids) from a Four Corners Coal Bed Methane produced water. Treatment effectiveness was less than optimal due to problems with pre-treatment. Inadequate pre-treatment allowedmore » hydrocarbons, wax and biological growth to foul the membranes. Recently, an innovative pre-treatment scheme using ozone and hydrogen peroxide was pilot tested. Results showed complete removal of hydrocarbons and the majority of organic constituents from a gas well production water. ACKNOWLEDGEMENTS This report was made possible through funding from the New Mexico Small Business Administration (NMSBA) Program at Sandia National Laboratories. Special thanks to Juan Martinez and Genaro Montoya for guidance and support from project inception to completion. Also, special thanks to Frank McDonald, the small businesses team POC, for laying the ground work for the entire project; Teresa McCown, the gas well owner and very knowledgeable- fantastic site host; Lea and Tim Phillips for their tremendous knowledge and passion in the oil & gas industry.; and Frank Miller and Steve Addleman for providing a pilot scale version of their proprietary process to facilitate the pilot testing.« less

  20. C-Phycocyanin Confers Protection against Oxalate-Mediated Oxidative Stress and Mitochondrial Dysfunctions in MDCK Cells

    PubMed Central

    Farooq, Shukkur M.; Boppana, Nithin B.; Asokan, Devarajan; Sekaran, Shamala D.; Shankar, Esaki M.; Li, Chunying; Gopal, Kaliappan; Bakar, Sazaly A.; Karthik, Harve S.; Ebrahim, Abdul S.

    2014-01-01

    Oxalate toxicity is mediated through generation of reactive oxygen species (ROS) via a process that is partly dependent on mitochondrial dysfunction. Here, we investigated whether C-phycocyanin (CP) could protect against oxidative stress-mediated intracellular damage triggered by oxalate in MDCK cells. DCFDA, a fluorescence-based probe and hexanoyl-lysine adduct (HEL), an oxidative stress marker were used to investigate the effect of CP on oxalate-induced ROS production and membrane lipid peroxidation (LPO). The role of CP against oxalate-induced oxidative stress was studied by the evaluation of mitochondrial membrane potential by JC1 fluorescein staining, quantification of ATP synthesis and stress-induced MAP kinases (JNK/SAPK and ERK1/2). Our results revealed that oxalate-induced cells show markedly increased ROS levels and HEL protein expression that were significantly decreased following pre-treatment with CP. Further, JC1 staining showed that CP pre-treatment conferred significant protection from mitochondrial membrane permeability and increased ATP production in CP-treated cells than oxalate-alone-treated cells. In addition, CP treated cells significantly decreased the expression of phosphorylated JNK/SAPK and ERK1/2 as compared to oxalate-alone-treated cells. We concluded that CP could be used as a potential free radical-scavenging therapeutic strategy against oxidative stress-associated diseases including urolithiasis. PMID:24691130

  1. Silymarin attenuated paraquat-induced cytotoxicity in macrophage by regulating Trx/TXNIP complex, inhibiting NLRP3 inflammasome activation and apoptosis.

    PubMed

    Liu, Zhenning; Sun, Mingli; Wang, Yu; Zhang, Lichun; Zhao, Hang; Zhao, Min

    2018-02-01

    Oxidative stress and inflammation are involved in paraquat-induced cytotoxicity. Silymarin can exert a potent antioxidative and anti-inflammatory effect in various pathophysiological processes. The aim of this current study is to explore the protective effect and potential mechanism of silymarin in paraquat-induced macrophage injury. Cells were pretreated with different doses of silymarin for 3h before exposure to paraquat. At 24h after exposure to paraquat, the paraquat-induced cytotoxicity to macrophage was measured via the MTT assay and LDH release. The levels of intracellular reactive oxygen species, GSH-Px, SOD, and lipid peroxidation product malondialdehyde were measured to evaluate the oxidative effect of paraquat. NLRP3 inflammasome and cytokines secretion in macrophage exposed to paraquat at 24h were measured via immunofluorescence microscopy, western blot or Elisa. Our results revealed that paraquat could dramatically cause cytotoxicity and reactive oxygen species generation, enhance TXNIP expression, and induce NLRP3 inflammasome activation and cytokines secretion. The pretreatment with silymarin could remarkably reduce the cytotoxicity, promote the expression of Trx and antioxidant enzymes, and suppress the TXNIP and NLRP3 inflammasome activation. In conclusion, silymarin attenuated paraquat-induced cytotoxicity in macrophage by inhibiting oxidative stress, NLRP3 inflammasome activation, cytokines secretion and apoptosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Preconditioning L6 Muscle Cells with Naringin Ameliorates Oxidative Stress and Increases Glucose Uptake

    PubMed Central

    Dhanya, R.; Arun, K. B.; Nisha, V. M.; Syama, H. P.; Nisha, P.; Santhosh Kumar, T. R.; Jayamurthy, P.

    2015-01-01

    Enhanced oxidative stress contributes to pathological changes in diabetes and its complications. Thus, strategies to reduce oxidative stress may alleviate these pathogenic processes. Herein, we have investigated Naringin mediated regulation of glutathione (GSH) & intracellular free radical levels and modulation of glucose uptake under oxidative stress in L6 cell lines. The results from the study demonstrated a marked decrease in glutathione with a subsequent increase in free radical levels, which was reversed by the pretreatment of Naringin. We also observed that the increased malondialdehyde level, the marker of lipid peroxidation on induction of oxidative stress was retrieved on Naringin pretreatment. Addition of Naringin (100 μM) showed approximately 40% reduction in protein glycation in vitro. Furthermore, we observed a twofold increase in uptake of fluorescent labeled glucose namely 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2-Deoxyglucose (2 - NBDG) on Naringin treatment in differentiated L6 myoblast. The increased uptake of 2-NBDG by L6 myotubes may be attributed due to the enhanced translocation of GLUT4. Our results demonstrate that Naringin activate GSH synthesis through a novel antioxidant defense mechanism against excessive Reactive Oxygen Species (ROS) production, contributing to the prevention of oxidative damage in addition to its effect on glycemic control. PMID:26147673

  3. Study on preparation method of Zanthoxylum bungeanum seeds kernel oil with zero trans-fatty acids.

    PubMed

    Liu, Tong; Yao, Shi-Yong; Yin, Zhong-Yi; Zheng, Xu-Xu; Shen, Yu

    2016-04-01

    The seed of Zanthoxylum bungeanum (Z. bungeanum) is a by-product of pepper production and rich in unsaturated fatty acid, cellulose, and protein. The seed oil obtained from traditional producing process by squeezing or extracting would be bad quality and could not be used as edible oil. In this paper, a new preparation method of Z. bungeanum seed kernel oil (ZSKO) was developed by comparing the advantages and disadvantages of alkali saponification-cold squeezing, alkali saponification-solvent extraction, and alkali saponification-supercritical fluid extraction with carbon dioxide (SFE-CO2). The results showed that the alkali saponification-cold squeezing could be the optimal preparation method of ZSKO, which contained the following steps: Z. bungeanum seed was pretreated by alkali saponification under the conditions of adding 10 %NaOH (w/w), solution temperature was 80 °C, and saponification reaction time was 45 min, and pretreated seed was separated by filtering, water washing, and overnight drying at 50 °C, then repeated squeezing was taken until no oil generated at 60 °C with 15 % moisture content, and ZSKO was attained finally using centrifuge. The produced ZSKO contained more than 90 % unsaturated fatty acids and no trans-fatty acids and be testified as a good edible oil with low-value level of acid and peroxide. It was demonstrated that the alkali saponification-cold squeezing process could be scaled up and applied to industrialized production of ZSKO.

  4. Lipoic acid attenuates Aroclor 1260-induced hepatotoxicity in adult rats.

    PubMed

    Aly, Hamdy A A; Mansour, Ahmed M; Hassan, Memy H; Abd-Ellah, Mohamed F

    2016-08-01

    The present study was aimed to investigate the mechanistic aspect of Aroclor 1260-induced hepatotoxicity and its protection by lipoic acid. The adult male Albino rats were divided into six groups. Group I served as control. Group II received lipoic acid (35 mg/kg/day). Aroclor 1260 was given to rats by oral gavage at doses 20, 40, or 60 mg/kg/day (Groups III, IV, and V, respectively). Group VI was pretreated with lipoic acid (35 mg/kg/day) 24 h before Aroclor 1260 (40 mg/kg/day). Treatment in all groups was continued for further 15 consecutive days. Serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase activities and total bilirubin, total cholesterol, and triglycerides were significantly increased while total protein, total albumin, and high-density lipoprotein were significantly decreased. Hydrogen peroxide production and lipid peroxidation were significantly increased while superoxide dismutase and catalase activities and reduced glutathione (GSH) content was significantly decreased in liver. Caspase-3 & -9 activities were significantly increased in liver. Lipoic acid pretreatment significantly reverted all these abnormalities toward their normal levels. In conclusion, Aroclor 1260 induced liver dysfunction, at least in part, by induction of oxidative stress. Apoptotic effect of hepatic cells is involved in Aroclor 1260-induced liver injury. Lipoic acid could protect rats against Aroclor 1260-induced hepatotoxicity. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 913-922, 2016. © 2014 Wiley Periodicals, Inc.

  5. Ferrous ions reused as catalysts in Fenton-like reactions for remediation of agro-food industrial wastewater.

    PubMed

    Leifeld, Vanessa; Dos Santos, Tâmisa Pires Machado; Zelinski, Danielle Wisniewski; Igarashi-Mafra, Luciana

    2018-09-15

    Cassava is the most important tuberous root in tropical and subtropical regions of the world, being the third largest source of carbohydrates. The root processing is related to the production of starch, an important industrial input, which releases a highly toxic liquid wastewater due to its complex composition, which inhibits high performances of conventional effluent treatments. This study aims to evaluate Fenton-like and photo-Fenton-like reactions for treatment of cassava wastewater, reusing ferrous ions from the preliminary coagulation stage. Pre-treated cassava wastewater was submitted to oxidation in three variations of hydrogen peroxide concentrations, with more relevant analytical responses verified in color, turbidity, COD (Chemical Oxygen Demand), and acute toxicity in Artemia salina, besides the action of radicals during Fenton-like reactions. At higher peroxide concentrations, a decrease of 68% in turbidity and 70% in COD on the photo-Fenton-like system was observed, even at slow reaction rates (fastest rate constant k = 2 × 10 -4 min -1 ). Inclusion of UV increases the viability of the Fenton-like reactions by supplementing the reaction medium with hydroxyl radicals, verified by the tert-butanol tests. The oxidation process leads to high EC 50 values in 24 h of incubation in Fenton-like reactions and 48 h in photo-Fenton-like reactions. Final COD and turbidity suggests that the reuse of iron, which remains in the preliminary treatment step shows a great potential as a catalyst for Fenton-like advanced oxidation processes. Tertiary treatment can be less expensive and harmful to the environment, reducing production of residual sludge and metal content in the final effluent, which reduces polluting potential of the effluent regarding solid waste. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Development of vapor phase hydrogen peroxide sterilization process for spacecraft applications

    NASA Technical Reports Server (NTRS)

    Rohatgi, N.; Schubert, W.; Knight, J.; Quigley, M.; Forsberg, G.; Ganapathi, G.; Yarbrough, C.; Koukol, R.

    2001-01-01

    This paper will present test data and discussion on the work we are conducting at JPL to address the following issues: 1) efficacy of sterilization process; 2) diffusion of hydrogen peroxide under sterilization process conditions into hard to reach places; 3) materials and components compatibility with the sterilization process and 4) development of methodology to protect sensitive components from hydrogen peroxide vapor.

  7. Element exchange in a water-and gas-closed biological life support system

    NASA Astrophysics Data System (ADS)

    1997-01-01

    Liquid human wastes and household water used for nutrition of wheat made possible to realize 24% closure for the mineral exchange in an experiment with a 2-component version of ``Bios-3'' life support system (LSS) Input-output balances of revealed, that elements (primarily trace elements) within the system. The structural materials (steel, titanium), expanded clay aggregate, and catalytic furnace catalysts. By the end of experiment, the permanent nutrient solution, plants, and the human diet gradually built up Ni, Cr, Al, Fe, V, Zn, Cu, and Mo. Thorough selection and pretreatment of materials can substantially reduce this accumulation. To enhance closure of the mineral exchange involves processing of human- metabolic wastes and inedible biomes inside LSS. An efficient method to oxidize wastes by hydrogen peroxide in a quartz reactor at the temperature of 80°C controlled electromagnetic field is proposed.

  8. Element exchange in a water-and gas-closed biological life support system

    NASA Astrophysics Data System (ADS)

    Gribovskaya, I. V.; Kudenko, Yu. A.; Gitelson, J. I.

    1997-01-01

    Liquid human wastes and household water used for nutrition of wheat made possible to realize 24% closure for the mineral exchange in an experiment with a 2-component version of ``Bios-3'' life support system (LSS) Input-output balances of revealed, that elements (primarily trace elements) within the system. The structural materials (steel, titanium), expanded clay aggregate, and catalytic furnace catalysts. By the end of experiment, the permanent nutrient solution, plants, and the human diet gradually built up Ni, Cr, Al, Fe, V, Zn, Cu, and Mo. Thorough selection and pretreatment of materials can substantially reduce this accumulation. To enhance closure of the mineral exchange involves processing of human- metabolic wastes and inedible biomes inside LSS. An efficient method to oxidize wastes by hydrogen peroxide in a quartz reactor at the temperature of 80 degC controlled electromagnetic field is proposed.

  9. Experimental design applied to photo-Fenton treatment of highly methomyl-concentrated water.

    PubMed

    Micó, María M; Bacardit, Jordi; Sans, Carme

    2010-01-01

    This work is focused on the study of the suitability of the photo-Fenton process as a pretreatment for water highly contaminated with a methomyl commercial formulation in Advanced Greenhouses devices. Initial concentrations of reagents and pesticide were evaluated according to a central composite experimental design, with methomyl depletion and biocompatibility of the final effluent as response functions. A triad of optimal operation conditions could be determined, [Met.](0)=50 mg L(-1), [H(2)O(2)](0)=254 mg L(-1) and [Fe(2+)](0)=77 mg L(-1) for the best elimination yield and an acceptable BOD(5)/COD value, and initial concentration of methomyl can be established as the most important parameter for the performance of the treatment due to the limitations that impose on the hydrogen peroxide doses in the presence of the excipients of the commercial formulation.

  10. Conversion of corn stover alkaline pre-treatment waste streams into biodiesel via Rhodococci

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le, Rosemary K.; Wells Jr., Tyrone; Das, Parthapratim

    We present the bioconversion of second-generation cellulosic ethanol waste streams into biodiesel via oleaginous bacteria is a novel optimization strategy for biorefineries with substantial potential for rapid development. In this study, one- and two-stage alkali/alkali-peroxide pretreatment waste streams of corn stover were separately implemented as feedstocks in 96 h batch reactor fermentations with wild-type Rhodococcus opacus PD 630, R. opacus DSM 1069, and R. jostii DSM 44719 T . Here we show using 31P-NMR, HPAECPAD, and SEC analyses, that the more rigorous and chemically-efficient two-stage chemical pretreatment effluent provided higher concentrations of solubilized glucose and lower molecular weight (70 300more » g mol1 ) lignin degradation products thereby enabling improved cellular density, viability, and oleaginicity in each respective strain. The most significant yields were by R. opacus PD 630, which converted 6.2% of organic content with a maximal total lipid production of 1.3 g L1 and accumulated 42.1% in oils based on cell dry weight after 48 h.« less

  11. Conversion of corn stover alkaline pre-treatment waste streams into biodiesel via Rhodococci

    DOE PAGES

    Le, Rosemary K.; Wells Jr., Tyrone; Das, Parthapratim; ...

    2017-01-13

    We present the bioconversion of second-generation cellulosic ethanol waste streams into biodiesel via oleaginous bacteria is a novel optimization strategy for biorefineries with substantial potential for rapid development. In this study, one- and two-stage alkali/alkali-peroxide pretreatment waste streams of corn stover were separately implemented as feedstocks in 96 h batch reactor fermentations with wild-type Rhodococcus opacus PD 630, R. opacus DSM 1069, and R. jostii DSM 44719 T . Here we show using 31P-NMR, HPAECPAD, and SEC analyses, that the more rigorous and chemically-efficient two-stage chemical pretreatment effluent provided higher concentrations of solubilized glucose and lower molecular weight (70 300more » g mol1 ) lignin degradation products thereby enabling improved cellular density, viability, and oleaginicity in each respective strain. The most significant yields were by R. opacus PD 630, which converted 6.2% of organic content with a maximal total lipid production of 1.3 g L1 and accumulated 42.1% in oils based on cell dry weight after 48 h.« less

  12. Hepatoprotective effects of fermented Curcuma longa L. on carbon tetrachloride-induced oxidative stress in rats.

    PubMed

    Kim, Yongjae; You, Yanghee; Yoon, Ho-Geun; Lee, Yoo-Hyun; Kim, Kyungmi; Lee, Jeongmin; Kim, Min Soo; Kim, Jong-Choon; Jun, Woojin

    2014-05-15

    The hepatoprotective effect of fermented Curcuma longa L. (FC) was investigated in rats under CCl4-induced oxidative stress. FC at a dose of 30 or 300 mg/kg body weight (b.w.) was orally administered for 14 days followed by a single dose of CCl4 (1.25 mL/kg b.w. in 20% corn oil) on day 14. Pretreatment with FC drastically prevented the elevated activities of serum AST, ALT, LDH, and ALP caused by CCl4-induced hepatotoxicity. Histopathologically evident hepatic necrosis was significantly ameliorated by FC pretreatment. When compared to the CCl4-alone treated group, rats pretreated with FC displayed the reduced level of malondialdehyde. Furthermore, FC enhanced antioxidant capacities with higher activities of catalase, glutathione-S-transferase, glutathione reductase, and glutathione peroxidase, and level of reduced glutathione. These results suggest that FC could be a candidate used for the prevention against various liver diseases induced by oxidative stress via elevating antioxidative potentials and decreasing lipid peroxidation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Hepatoprotective activity of bacoside A against N-nitrosodiethylamine-induced liver toxicity in adult rats.

    PubMed

    Janani, Panneerselvam; Sivakumari, Kanakarajan; Parthasarathy, Chandrakesan

    2009-10-01

    N-Nitrosodiethylamine (DEN) is a notorious carcinogen, present in many environmental factors. DEN induces oxidative stress and cellular injury due to enhanced generation of reactive oxygen species; free radical scavengers protect the membranes from DEN-induced damage. The present study was designed to evaluate the protective effect of bacoside A (the active principle isolated from Bacopa monniera Linn.) on carcinogen-induced damage in rat liver. Adult male albino rats were pretreated with 15 mg/kg body weight/day of bacoside A orally (for 14 days) and then intoxicated with single necrogenic dose of N-nitrosodiethylamine (200 mg/kg bodyweight, intraperitonially) and maintained for 7 days. The liver weight, lipid peroxidation (LPO), and activity of serum marker enzymes (aspartate transaminases, alanine transaminases, lactate dehydrogenase, alkaline phosphatase, and gamma-glutamyl transpeptidase) were markedly increased in carcinogen-administered rats, whereas the activities of marker enzymes were near normal in bacoside A-pretreated rats. Activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutatione-S-transferase, and reduced glutathione) in liver also decreased in carcinogen-administered rats, which were significantly elevated in bacoside A-pretreated rats. It is concluded that pretreatment of bacoside A prevents the elevation of LPO and activity of serum marker enzymes and maintains the antioxidant system and thus protects the rats from DEN-induced hepatotoxicity.

  14. Neuromodulatory propensity of Bacopa monniera against scopolamine-induced cytotoxicity in PC12 cells via down-regulation of AChE and up-regulation of BDNF and muscarnic-1 receptor expression.

    PubMed

    Pandareesh, M D; Anand, T

    2013-10-01

    Scopolamine is a competitive antagonist of muscarinic acetylcholine receptors, and thus classified as an anti-muscarinic and anti-cholinergic drug. PC12 cell lines possess muscarinic receptors and mimic the neuronal cells. These cells were treated with different concentrations of scopolamine for 24 h and were protected from the cellular damage by pretreatment with Bacopa monniera extract (BME). In current study, we have explored the molecular mechanism of neuromodulatory and antioxidant propensity of (BME) to attenuate scopolamine-induced cytotoxicity using PC12 cells. Our results elucidate that pretreatment of PC12 cells with BME ameliorates the mitochondrial and plasma membrane damage induced by 3 μg/ml scopolamine to 54.83 and 30.30 % as evidenced by MTT and lactate dehydrogenase assays respectively. BME (100 μg/ml) ameliorated scopolamine effect by down-regulating acetylcholine esterase and up-regulating brain-derived neurotropic factor and muscarinic muscarinic-1 receptor expression. BME pretreated cells also showed significant protection against scopolamine-induced toxicity by restoring the levels of antioxidant enzymes and lipid peroxidation. This result indicates that the scopolamine-induced cytotoxicity and neuromodulatory changes were restored with the pretreatment of BME.

  15. Prevention of CCl4-induced liver damage by ginger, garlic and vitamin E.

    PubMed

    Patrick-Iwuanyanwu, K C; Wegwu, M O; Ayalogu, E O

    2007-02-15

    The hepatoprotective effects of garlic (Allium sativum), ginger (Zingiber officinale) and vitamin E pre-treatment against carbon tetrachloride (CCl4)-induced liver damage in male wistar albino rats were investigated. Carbon tetrachloride (0.5 mL kg(-1) body weight) was administered after 28 days of feeding animals with diets containing ginger, garlic, vitamin E and various mixtures of ginger and garlic. Serum alanine amino transferase, aspartate amino transferase and alkaline phosphatase levels, 24 h after CCl4 administration, decreased significantly (p < or = 0.05) in rats pre-treated with garlic, ginger, vitamin E and various mixtures of garlic and ginger than in CCl4-treated rats only. Lipid peroxidation expressed by serum malondialdehyde (MDA) concentration was assayed to assess the extent of liver damage by CCl4; including the extent of hepatoprotection by garlic, ginger and vitamin E. MDA concentration was significantly decreased (p < or = 0.05) in rats pretreated with garlic, ginger, vitamin E and various mixtures of garlic and ginger than in rats administered CCl4-alone. Histological examination of the liver revealed severe infiltration of inflammatory cells in rats treated with CCl4 alone. However, the observed alteration in the normal architecture of the hepatic cells decreased remarkably in pre-treated rats.

  16. Biological water quality monitoring using chemiluminescent and bioluminescent techniques

    NASA Technical Reports Server (NTRS)

    Thomas, R. R.

    1978-01-01

    Automated chemiluminescence and bioluminescence sensors were developed for the continuous monitoring of microbial levels in water supplies. The optimal chemical procedures were determined for the chemiluminescence system to achieve maximum sensitivity. By using hydrogen peroxide, reaction rate differentiation, ethylene diamine tetraacetic acid (EDTA), and carbon monoxide pretreatments, factors which cause interference were eliminated and specificity of the reaction for living and dead bacteria was greatly increased. By employing existing technology with some modifications, a sensitive and specific bioluminescent system was developed.

  17. Sulfur Dioxide Enhances Endogenous Hydrogen Sulfide Accumulation and Alleviates Oxidative Stress Induced by Aluminum Stress in Germinating Wheat Seeds

    PubMed Central

    Zhu, Dong-Bo; Hu, Kang-Di; Guo, Xi-Kai; Liu, Yong; Hu, Lan-Ying; Li, Yan-Hong; Wang, Song-Hua; Zhang, Hua

    2015-01-01

    Aluminum ions are especially toxic to plants in acidic soils. Here we present evidences that SO2 protects germinating wheat grains against aluminum stress. SO2 donor (NaHSO3/Na2SO3) pretreatment at 1.2 mM reduced the accumulation of superoxide anion, hydrogen peroxide, and malondialdehyde, enhanced the activities of guaiacol peroxidase, catalase, and ascorbate peroxidase, and decreased the activity of lipoxygenase in germinating wheat grains exposed to Al stress. We also observed higher accumulation of hydrogen sulfide (H2S) in SO2-pretreated grain, suggesting the tight relation between sulfite and sulfide. Wheat grains geminated in water for 36 h were pretreated with or without 1 mM SO2 donor for 12 h prior to exposure to Al stress for 48 h and the ameliorating effects of SO2 on wheat radicles were studied. SO2 donor pretreatment reduced the content of reactive oxygen species, protected membrane integrity, and reduced Al accumulation in wheat radicles. Gene expression analysis showed that SO2 donor pretreatment decreased the expression of Al-responsive genes TaWali1, TaWali2, TaWali3, TaWali5, TaWali6, and TaALMT1 in radicles exposed to Al stress. These results suggested that SO2 could increase endogenous H2S accumulation and the antioxidant capability and decrease endogenous Al content in wheat grains to alleviate Al stress. PMID:26078810

  18. Chemopreventive effect of methanolic extract of Azadirachta indica on experimental Trypanosoma brucei induced oxidative stress in dogs

    PubMed Central

    Omobowale, Temidayo O.; Oyagbemi, Ademola A.; Oyewunmi, Oyefunbi A.; Adejumobi, Olumuyiwa A.

    2015-01-01

    Introduction: The medicinal properties of Azadirachta indica have been harnessed for many years in the treatment of many diseases in both humans and animals. Materials and Methods: Twenty-five apparently healthy dogs weighing between 3 and 8 kg were randomly divided into five groups with five dogs in each group. Ameliorative effect of A. indica on erythrocyte antioxidant status and markers of oxidative stress were assessed. Liver and kidney function tests were also performed. Results: Pre-treatment with methanolic extract of Azadirachta indica (MEAI) at different doses did not significantly alter the values of alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase activity in Trypanosoma brucei infection. Although, serum creatinine significantly (P < 0.05) decreased with pre-treatment with 50 mg/kg A. indica, after 2 weeks of T. brucei infection. However, the reduced glutathione (GSH) content of the erythrocyte increased significantly in animals pre-treated with 50 mg/kg and 200 mg/kg of A. indica respectively. Markers of oxidative stress such as malondialdehyde and hydrogen peroxide generated were higher in animals infected with T. brucei with no significant (P >0.05) difference compared to the values obtained in pre-treated animals. Pre-treatment with 100 mg/kg and 200 mg/kg of A. indica significantly (P < 0.05) decreased serum myeloperoxidase activity at 2 weeks post-infection with T. brucei. Conclusion: From this study, MEAI showed significant ability to attenuate oxidative stress and inflammation during experimental T. brucei infection. PMID:26130936

  19. Isothiocyanate from Moringa oleifera seeds mitigates hydrogen peroxide-induced cytotoxicity and preserved morphological features of human neuronal cells

    PubMed Central

    Shaari, Khozirah; Rosli, Rozita

    2018-01-01

    Reactive oxygen species are well known for induction of oxidative stress conditions through oxidation of vital biomarkers leading to cellular death via apoptosis and other process, thereby causing devastative effects on the host organs. This effect is believed to be linked with pathological alterations seen in several neurodegenerative disease conditions. Many phytochemical compounds proved to have robust antioxidant activities that deterred cells against cytotoxic stress environment, thus protect apoptotic cell death. In view of that we studied the potential of glucomoringin-isothiocyanate (GMG-ITC) or moringin to mitigate the process that lead to neurodegeneration in various ways. Neuroprotective effect of GMG-ITC was performed on retinoic acid (RA) induced differentiated neuroblastoma cells (SHSY5Y) via cell viability assay, flow cytometry analysis and fluorescence microscopy by means of acridine orange and propidium iodide double staining, to evaluate the anti-apoptotic activity and morphology conservation ability of the compound. Additionally, neurite surface integrity and ultrastructural analysis were carried out by means of scanning and transmission electron microscopy to assess the orientation of surface and internal features of the treated neuronal cells. GMG-ITC pre-treated neuron cells showed significant resistance to H2O2-induced apoptotic cell death, revealing high level of protection by the compound. Increase of intracellular oxidative stress induced by H2O2 was mitigated by GMG-ITC. Thus, pre-treatment with the compound conferred significant protection to cytoskeleton and cytoplasmic inclusion coupled with conservation of surface morphological features and general integrity of neuronal cells. Therefore, the collective findings in the presence study indicated the potentials of GMG-ITC to protect the integrity of neuron cells against induced oxidative-stress related cytotoxic processes, the hallmark of neurodegenerative diseases. PMID:29723199

  20. Evaluation of Fenton and ozone-based advanced oxidation processes as mature landfill leachate pre-treatments.

    PubMed

    Cortez, Susana; Teixeira, Pilar; Oliveira, Rosário; Mota, Manuel

    2011-03-01

    Fenton treatment (Fe(2+)/H(2)O(2)) and different ozone-based Advanced Oxidation Processes (AOPs) (O(3), O(3)/OH(-) and O(3)/H(2)O(2)) were evaluated as pre-treatment of a mature landfill leachate, in order to improve the biodegradability of its recalcitrant organic matter for subsequent biological treatment. With a two-fold diluted leachate, at optimised experimental conditions (initial pH 3, H(2)O(2) to Fe(2+) molar ratio of 3, Fe(2+) dosage of 4 mmol L(-1), and reaction time of 40 min) Fenton treatment removed about 46% of chemical oxygen demand (COD) and increased the five-day biochemical oxygen demand (BOD(5)) to COD ratio (BOD(5)/COD) from 0.01 to 0.15. The highest removal efficiency and biodegradability was achieved by ozone at higher pH values, solely or combined with H(2)O(2). These results confirm the enhanced production of hydroxyl radical under such conditions. After the application for 60 min of ozone at 5.6 g O(3)h(-1), initial pH 7, and 400 mg L(-1) of hydrogen peroxide, COD removal efficiency was 72% and BOD(5)/COD increased from 0.01 to 0.24. An estimation of the operating costs of the AOPs processes investigated revealed that Fe(2+)/H(2)O(2) was the most economical system (8.2 € m(-3)g(-1) of COD removed) to treat the landfill leachate. This economic study, however, should be treated with caution since it does not consider the initial investment, prices at plant scale, maintenance and labour costs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Isothiocyanate from Moringa oleifera seeds mitigates hydrogen peroxide-induced cytotoxicity and preserved morphological features of human neuronal cells.

    PubMed

    Jaafaru, Mohammed Sani; Nordin, Norshariza; Shaari, Khozirah; Rosli, Rozita; Abdull Razis, Ahmad Faizal

    2018-01-01

    Reactive oxygen species are well known for induction of oxidative stress conditions through oxidation of vital biomarkers leading to cellular death via apoptosis and other process, thereby causing devastative effects on the host organs. This effect is believed to be linked with pathological alterations seen in several neurodegenerative disease conditions. Many phytochemical compounds proved to have robust antioxidant activities that deterred cells against cytotoxic stress environment, thus protect apoptotic cell death. In view of that we studied the potential of glucomoringin-isothiocyanate (GMG-ITC) or moringin to mitigate the process that lead to neurodegeneration in various ways. Neuroprotective effect of GMG-ITC was performed on retinoic acid (RA) induced differentiated neuroblastoma cells (SHSY5Y) via cell viability assay, flow cytometry analysis and fluorescence microscopy by means of acridine orange and propidium iodide double staining, to evaluate the anti-apoptotic activity and morphology conservation ability of the compound. Additionally, neurite surface integrity and ultrastructural analysis were carried out by means of scanning and transmission electron microscopy to assess the orientation of surface and internal features of the treated neuronal cells. GMG-ITC pre-treated neuron cells showed significant resistance to H2O2-induced apoptotic cell death, revealing high level of protection by the compound. Increase of intracellular oxidative stress induced by H2O2 was mitigated by GMG-ITC. Thus, pre-treatment with the compound conferred significant protection to cytoskeleton and cytoplasmic inclusion coupled with conservation of surface morphological features and general integrity of neuronal cells. Therefore, the collective findings in the presence study indicated the potentials of GMG-ITC to protect the integrity of neuron cells against induced oxidative-stress related cytotoxic processes, the hallmark of neurodegenerative diseases.

  2. Investigation of flavonoid influence on peroxidation processes intensity in the blood

    NASA Astrophysics Data System (ADS)

    Navolokin, N. A.; Mudrak, D. A.; Plastun, I. L.; Bucharskaya, A. B.; Agandeeva, K. E.; Ivlichev, A. V.; Tychina, S. A.; Afanasyeva, G. A.; Polukonova, N. V.; Maslyakova, G. N.

    2017-03-01

    Influence of flavonoids on the intensity of peroxidation processes in the blood is investigated by numerical modeling and by experiment in vivo. As an example we consider the effects of flavonoid-containing extract of Helichrysum arenarium L. with antitumor activity on serum of rats with transplanted liver cancer PC-1. It was found that the content of malondialdehyde, lipid hydroperoxides and average mass molecules were decreased in animals with transplanted liver cancer after intramuscular and oral administration of Helichrysum arenarium L extract in a dose of 1000 mg/mL. The extract reduces the intensity of lipid peroxidation processes in animals. The compound formation possibility of flavonoids and products of lipid peroxidation is investigated by numerical simulations. Using the density functional theory method of molecular modeling, we analyze hydrogen bonds formation and their influence on IR - spectra and structure of molecular complex which is formed due to interaction between flavonoids and products of lipid peroxidation processes on example of naringine and malondialdehyde. We have found that naringine can form a steady molecular complex with malondialdehyde by hydrogen bonds formation. Thus, the application of Helichrysum arenarium L. extract for suppression processes of lipid peroxidation and activation of enzymatic and non-enzymatic antioxidant systems is promising.

  3. Immunopathologic effects of scorpion venom on hepato-renal tissues: Involvement of lipid derived inflammatory mediators.

    PubMed

    Lamraoui, Amal; Adi-Bessalem, Sonia; Laraba-Djebari, Fatima

    2015-10-01

    Scorpion venoms are known to cause different inflammatory disorders through complex mechanisms in various tissues. In the study here, the involvement of phospholipase A2 (PLA2) and cyclo-oxygenase (COX)-derived metabolites in hepatic and renal inflammation responses were examined. Mice were envenomed with Androctonus australis hector scorpion venom in the absence or presence of inhibitors that can interfere with lipid inflammatory mediator synthesis, i.e., dexamethasone (PLA2 inhibitor), indomethacin (non-selective COX-1/COX-2 inhibitor), or celecoxib (selective COX-2 inhibitor). The inflammatory response was assessed by evaluating vascular permeability changes, inflammatory cell infiltration, oxidative/nitrosative stress marker levels, and by histologic and functional analyses of the liver and kidney. Results revealed that the venom alone induced an inflammatory response in this tissues marked by increased microvascular permeability and inflammatory cell infiltration, increases in levels of nitric oxide and lipid peroxidation, and decreases in antioxidant defense. Moreover, significant alterations in the histological architecture of these organs were associated with increased serum levels of some metabolic enzymes, as well as urea and uric acid. Pre-treatment of mice with dexamethasone led to significant decreases of the inflammatory disorders in the hepatic parenchyma; celecoxib pre-treatment seemed to be more effective against renal inflammation. Indomethacin pre-treatment only slightly reduced the inflammatory disorders in the tissues. These results suggest that the induced inflammation response in liver was mediated mainly by PLA2 activation, while the renal inflammatory process was mediated by prostaglandin formation by COX-2. These findings provide additional insight toward the understanding of activated pathways and related mechanisms involved in scorpion envenoming syndrome.

  4. Protective Effect of Combined Caffeic Acid Phenethyl Ester and Bevacizumab Against Hydrogen Peroxide-Induced Oxidative Stress in Human RPE Cells.

    PubMed

    Dinc, Erdem; Ayaz, Lokman; Kurt, Akif Hakan

    2017-12-01

    This study aimed to evaluate the protective effects of caffeic acid phenethyl ester (CAPE) and combined CAPE-bevacizumab against oxidative stress induced by hydrogen peroxide (H 2 O 2 ) in human retinal pigment epithelium. ARPE-19 cells were pretreated with 5, 10, and 30 μM CAPE alone and in combination with bevacizumab for 3 h, then exposed to H 2 O 2 for 16 h. Cell viability was evaluated with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Vascular endothelial growth factor (VEGF) protein levels in the medium were measured using a human VEGF ELISA kit. Total antioxidant status (TAS) and total oxidant status (TOS) were measured in ARPE-19 cells using the test kit from Rel Assay. Expression levels of VEGF, Bax, Bcl-2, cytochrome c, apoptotic protease activating factor-1 (apaf-1), and caspase-3 were determined using reverse transcription polymerase chain reaction. Pretreatment of ARPE-19 cells with 30 μM CAPE and combined CAPE-bevacizumab reduced H 2 O 2 mediated cell death. H 2 O 2 -induced oxidative stress increased TOS and VEGF production, which was significantly inhibited by CAPE and the CAPE-bevacizumab combination. VEGF, Bax, cytochrome c, apaf-1, and caspase-3 gene expressions were significantly decreased in cells pretreated with 5, 10, and 30 μM CAPE and combined CAPE-bevacizumab compared to the H 2 O 2 group. In addition, Bcl-2 expression was significantly increased in both the CAPE and CAPE-bevacizumab combination groups compared to the H 2 O 2 group. CAPE has a protective effect on ARPE-19 cells against oxidative stress, and VEGF protein level and expression can be decreased by incubation with different concentrations of CAPE. These results demonstrate that CAPE suppresses the mitochondria-mediated apoptosis in ARPE-19 cells under oxidative stress. In addition, the use of CAPE in combination with bevacizumab has an additive effect.

  5. Effects of captopril on the cysteamine-induced duodenal ulcer in the rat.

    PubMed

    Saghaei, Firoozeh; Karimi, Iraj; Jouyban, Abolghasem; Samini, Morteza

    2012-05-01

    Oxidative stress is important factor underlying in a variety of diseases. Antioxidative enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) are part of the physiological defenses against oxidative stress. Malondialdehyde (MDA) is a lipid peroxidation biomarker and its elevated level in various diseases is related to free radical damage. Cysteamine is a cytotoxic agent, acting through generation of reactive oxygen species (ROS) and may decrease defense activity of antioxidative enzymes against ROS and induce duodenal ulcer. Captopril, acts as free radical scavengers and protect against injuries from oxidative damage to tissues.The aim of this study was the evaluation of the effect of captopril against cysteamine-induced duodenal ulcer by determining duodenal damage, duodenal tissue SOD and GSH-PX activities and plasma MAD level. This study was performed on 3 groups of 7 rats each: saline, cysteamine and cysteamine plus captopril treated groups. The effect of captopril against cysteamine-induced duodenal ulcer is determined by evaluating the duodenal damage, duodenal tissue SOD and GSH-PX activities and plasma MDA level. All animals were euthanized 24h after the last treatment and 2 ml blood and duodena samples were collected for calculation of ulcer index, histopathological assessment and measurement of tissue SOD, GSH-PX activities and plasma MDA level. Cysteamine produced severe duodenal damage, decreased the activity of duodenal tissue SOD and GSH-PX and increased the plasma MDA level compared with saline pretreated rats. Pretreatment with captopril decreased the cysteamine-induced duodenal damage and plasma level of MDA and increased the activities of SOD and GSH-PX in duodenal tissue compared with cysteamine pretreated animal. Our results suggest that captopril protects against cysteamine-induced duodenal ulcer and inhibits the decrease in SOD and GSH-PX activities and lipid peroxidation by increasing antioxidant defenses. Copyright © 2010 Elsevier GmbH. All rights reserved.

  6. Protective effect of Azolla microphylla on biochemical, histopathological and molecular changes induced by isoproterenol in rats.

    PubMed

    Bhaskaran, Sreenath Kunnathupara; Kannappan, Poornima

    2017-05-01

    Azolla microphylla is an important fast-growing aquatic plant trusted for its agronomic, nutritious and therapeutic uses. The present work is undertaken to investigate the protective effect of the ethanolic extract of Azolla microphylla (EAM) against the Isoproterenol (ISO) induced cardiotoxicity in rats. Rats were pre-treated with EAM (250 and 500mg/kg b.w.) for 28 days along with ISO (85mg/kg; s.c.) on the 29th and 30th days. ISO-induced rats displayed significant diminution in cardiac antioxidant enzymes activities, increased lipid peroxidation and alteration in cardiac marker enzymes. The same group also displayed an increase in levels of serum lipid profiles and pro-inflammatory cytokines (IL-6 and IL-8) accompanied with a significant reduction in the anti-inflammatory cytokine levels (IL-10). Moreover, the histopathological investigations in the heart tissue of ISO-induced group exhibited myocardial necrosis and inflammation, which correlated with the increased immunoreactivity for Bax/iNOS, whereas an absence of reactivity for Bcl-2 proteins. However, in EAM pre-treated rats, the activities of antioxidant enzymes, cardiac marker enzymes, membrane-bound ATPases together with the levels of lipid profile, non-enzymatic antioxidants, pro and anti-inflammatory cytokines were maintained at normalcy that was further supported by improving histopathological changes and myocardial architecture. The IHC results of EAM pre-treated rats indicate up-regulated and down-regulated expressions of Bcl-2 and Bax/iNOS proteins, respectively. Thus, the present study reveals that A. microphylla alleviates myocardial damage in ISO-induced cardiac injury and demonstrates cardioprotective potential which could be attributed to its potent antioxidant and free radical scavenging activity. A possible mechanism for the protective effect is the elevated expression of endogenous antioxidant defense enzymes, anti-inflammatory cytokines, degraded lipid peroxidation products and improved energy metabolism of cardiac mitochondria, thus attenuating necrosis of the myocytes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Salubrious effect of C-phycocyanin against oxalate-mediated renal cell injury.

    PubMed

    Farooq, Shukkur Muhammed; Asokan, Devarajan; Sakthivel, Ramasamy; Kalaiselvi, Periandavan; Varalakshmi, Palaninathan

    2004-10-01

    C-phycocyanin, a biliprotein pigment found in some blue green algae (Spirulina platensis) with nutritional and medicinal properties, was investigated for its efficacy on sodium oxalate-induced nephrotoxicity in experimentally induced urolithic rats. Male Wistar rats were divided into four groups. Hyperoxaluria was induced in two of these groups by intraperitoneal infusion of sodium oxalate (70 mg/kg), and a pretreatment of phycocyanin (100 mg/kg) as a single oral dosage was given to one of these groups by 1 h prior to sodium oxalate infusion challenges. The study also encompasses an untreated control group and a phycocyanin-alone treated drug control group. The extent of lipid peroxidation (LPO) was evaluated in terms of renal concentrations of MDA, conjugated diene and hydroperoxides. The following assay was performed in the renal tissue (a) antioxidant enzymes such as superoxide dismutase (SOD) and catalase, (b) glutathione metabolizing enzymes such as glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST) and glucose 6-phosphate dehydrogenase (G6PD), (c) the low molecular weight antioxidants (GSH, vitamins E and C) and protein carbonyl content. The increased concentrations of MDA, conjugated diene and hydroperoxide (index of the lipid peroxidation) were controlled (P < 0.001) in the phycocyanin-pretreated group. At the outset, the low molecular weight antioxidants were appreciably increased (P < 0.001), whereas the tissue protein carbonyl concentration was decreased (P < 0.001), suggesting that phycocyanin provides protection to renal cell antioxidants. It was noticed that the activities of antioxidant enzymes and glutathione metabolizing enzymes were considerably stabilized in rats pretreated with phycocyanin. We suggest that phycocyanin protects the integrity of the renal cell by stabilizing the free radical mediated LPO and protein carbonyl, as well as low molecular weight antioxidants and antioxidant enzymes in renal cells. Thus, the present analysis reveals that the antioxidant nature of C-phycocyanin protects the renal cell against oxalate-induced injury and may be a nephroprotective agent.

  8. Antioxidant status in experimental peritonitis: effects of alpha tocopherol and taurolin.

    PubMed

    Konukoglu, D; Iynem, H; Ziylan, E

    1999-03-01

    The role of oxidative stress and antioxidant defences in inflammation-induced organ injury is not clearly understood. We determined the effects of Escherichia coli (E. coli) peritonitis in rats on peritoneum lipid peroxidation and antioxidant defences. Tissue malondialdehyde (MDA) levels were measured to determine the free radical-induced lipid peroxidation in peritonitis. Tissue glutathione (GSH) levels, and activities of GSH-peroxidase, GSH-reductase and superoxide dismutase were examined to show antioxidant status. We also examined the effects of alpha-tocopherol (20 mg kg-1 body weight) as antioxidant and taurolin (200 mg kg-1 body weight) as chemotherapeutic agents on the oxidant stress and antioxidant defence. The treatment agents and E. coli were administrated intraperitoneally. Animals were killed at 2 h after the onset symptoms and then the peritoneum were obtained. Untreated rats with peritonitis had significantly higher MDA levels and significantly lower antioxidant activity than that of the control animals. Treatment of alpha-tocopherol and taurolin decreased the antioxidant activity and improved the antioxidant status. Pretreatment with alpha-tocopherol for 3 days prior to the induction of peritonitis (IP) and administration of taurolin at the time of the IP were more effective than treatment with alpha-tocopherol at the time of the IP and pretreatment of taurolin, respectively. These results are consistent with the idea that an oxidant/antioxidant imbalance is involved in animal peritonitis. Uses of alpha-tocopherol and taurolin in peritonitis were effective in decreasing the oxidative stress of tissue during peritonitis. Copyright 1999 The Italian Pharmacological Society.

  9. The protective effect of Physalis peruviana L. against cadmium-induced neurotoxicity in rats.

    PubMed

    Abdel Moneim, Ahmed E; Bauomy, Amira A; Diab, Marwa M S; Shata, Mohamed Tarek M; Al-Olayan, Ebtesam M; El-Khadragy, Manal F

    2014-09-01

    The present study was carried out to investigate the protective effect of Physalis peruviana L. (family Solanaceae) against cadmium-induced neurotoxicity in rats. Adult male Wistar rats were randomly divided into four groups. Group 1 was used as control. Group 2 was intraperitoneally injected with 6.5 mg/kg bwt of cadmium chloride for 5 days. Group 3 was treated with 200 mg/kg bwt of methanolic extract of Physalis (MEPh). Group 4 was pretreated with MEPh 1 h before cadmium for 5 days. Cadmium treatment induced marked disturbances in neurochemical parameters as indicating by significant (p < 0.05) reduction in dopamine (DA), serotonin (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA) in cerebellum, hippocampus, and cerebral cortex and enhanced significantly (p < 0.05) the levels of lipid peroxidation and nitric oxide in the brain. Cadmium treatment also decreased the amount of nonenzymatic and enzymatic antioxidants significantly (p < 0.05). Pretreatment with MEPh resulted in significant (p < 0.05) decreases in lipid peroxidation and nitric oxide levels and restored the amount of glutathione successfully. Although, preadministration of MEPh also brought the activities of cellular antioxidant enzymes, namely superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase significantly (p < 0.05) to the control levels, as well as the levels of Ca(2+), Cl(-), DA, 5-HT, and serotonin metabolite, 5-HIAA. These data indicated that Physalis has a beneficial effect in ameliorating the cadmium-induced oxidative neurotoxicity in the brain of rats.

  10. Effect of proline on biochemical and molecular mechanisms in lettuce (Lactuca sativa L.) exposed to UV-B radiation.

    PubMed

    Aksakal, Ozkan; Tabay, Dilruba; Esringu, Aslıhan; Icoglu Aksakal, Feyza; Esim, Nevzat

    2017-02-15

    The purpose of the present study was to evaluate the role of proline (Pro) in relieving UV-B radiation-induced oxidative stress in lettuce. Lettuce seedlings were exposed to 3.3 W m -2 UV-B radiation for 12 h after pre-treatment sprayed with 20 mM Pro. The data for malondialdehyde (MDA), hydrogen peroxide (H 2 O 2 ), endogenous Pro level, the activities of antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and peroxidase (POD)], total phenolic concentration, antioxidant capacity, expression of phenylalanine ammonia lyase (PAL), γ-tocopherol methyltransferase (γ-TMT) and proline dehydrogenase (ProDH) genes, phytohormone levels such as abscisic acid (ABA), gibberellic acid (GA), indole acetic acid (IAA) and salicylic acid (SA), soluble sugars and organic acids were recorded. It was found that Pro alleviated the oxidative damage in the seedlings of lettuce as demonstrated by lower lipid peroxidation and H 2 O 2 content, increasing the endogenous Pro level, the activity of antioxidant enzymes, total phenolic concentration and the antioxidant capacity. Additionally, it was revealed that exogenous application of Pro enhanced the levels of GA, IAA, the concentrations of soluble sugars and organic acids and expressions of PAL, γ-TMT and ProDH genes as compared to the control. The results obtained in this study suggest that pre-treatment with exogenous Pro provides important contributions to the increase in the UV-B tolerance of lettuce by regulating the biochemical mechanisms of UV-B response.

  11. Inhibition of hydrogen peroxide signaling by 4-hydroxynonenal due to differential regulation of Akt1 and Akt2 contributes to decreases in cell survival and proliferation in hepatocellular carcinoma cells.

    PubMed

    Shearn, Colin T; Reigan, Philip; Petersen, Dennis R

    2012-07-01

    Dysregulation of cell signaling by electrophiles such as 4-hydroxynonenal (4-HNE) is a key component in the pathogenesis of chronic inflammatory liver disease. Another consequence of inflammation is the perpetuation of oxidative damage by the production of reactive oxidative species such as hydrogen peroxide. Previously, we have demonstrated Akt2 as a direct target of 4-HNE in hepatocellular carcinoma cells. In the present study, we used the hepatocellular carcinoma cell line HepG2 as model to understand the combinatorial effects of 4-HNE and hydrogen peroxide. We demonstrate that 4-HNE inhibits hydrogen peroxide-mediated phosphorylation of Akt1 but not Akt2. Pretreatment of HepG2 cells with 4-HNE prevented hydrogen peroxide stimulation of Akt-dependent phosphorylation of downstream targets and intracellular Akt activity compared with untreated control cells. Using biotin hydrazide capture, it was confirmed that 4-HNE treatment resulted in carbonylation of Akt1, which was not observed in untreated control cells. Using a synthetic GSK3α/β peptide as a substrate, treatment of recombinant human myristoylated Akt1 (rAkt1) with 20 or 40 μΜ 4-HNE inhibited rAkt1 activity by 29 and 60%, respectively. We further demonstrate that 4-HNE activates Erk via a PI3 kinase and PP2A-dependent mechanism leading to increased Jnk phosphorylation. At higher concentrations, 4-HNE decreased both cell survival and proliferation as evidenced by MTT assays and EdU incorporation as well as decreased expression of cyclin D1 and β-catenin, an effect only moderately increased by the addition of hydrogen peroxide. The ability of 4-HNE to exert combinatorial effects on Erk, Jnk, and Akt-dependent cell survival pathways provides additional insight into the mechanisms of cellular damage associated with chronic inflammation. Published by Elsevier Inc.

  12. Influence of bleaching agents on surface roughness of sound or eroded dental enamel specimens.

    PubMed

    Azrak, Birgül; Callaway, Angelika; Kurth, Petra; Willershausen, Brita

    2010-12-01

    The aim of the present in vitro study was to assess the effect of bleaching agents on eroded and sound enamel specimens. Enamel specimens prepared from human permanent anterior teeth were incubated with different bleaching agents containing active ingredients as 7.5 or 13.5% hydrogen peroxide or 35% carbamide peroxide, ranging in pH from 4.9 to 10.8. The effect of the tooth whitening agents on surface roughness was tested for sound enamel surfaces as well as for eroded enamel specimens. To provoke erosive damage, the enamel specimens were incubated for 10 hours with apple juice (pH = 3.4). Afterwards, pretreated and untreated dental slices were incubated with one of the bleaching agents for 10 hours. The surface roughness (R(a)) of all enamel specimens (N = 80) was measured using an optical profilometric device. A descriptive statistical analysis of the R(a) values was performed. The study demonstrated that exposure to an acidic bleaching agent (pH = 4.9) resulted in a higher surface roughness (p = 0.043) than treatment with a high peroxide concentration (pH = 6.15). If the enamel surface was previously exposed to erosive beverages, subsequent bleaching may enhance damage to the dental hard tissue. Bleaching agents with a high concentration of peroxide or an acidic pH can influence the surface roughness of sound or eroded enamel. © 2010, COPYRIGHT THE AUTHORS. JOURNAL COMPILATION © 2010, WILEY PERIODICALS, INC.

  13. Protective Effect of Bacoside-A against Morphine-Induced Oxidative Stress in Rats

    PubMed Central

    Sumathi, T.; Nathiya, V. C.; Sakthikumar, M.

    2011-01-01

    In the present study, we investigated the protective effect of bacoside-A the active principle isolated from the plant Bacopa monniera against oxidative damage induced by morphine in rat brain. Morphine intoxicated rats received 10-160 mg/kg b.w. of morphine hydrochloride intraperitoneally for 21 days. Bacoside-A pretreated rats were administered with bacoside-A (10 mg/kg b.w/day) orally, 2 h before the injection of morphine for 21 days. Pretreatment with bacoside-A has shown to possess a significant protective role against morphine induced brain oxidative damage in the antioxidant status (total reduced glutathione, superoxide dismutase, catalase, glutathione peroxidase and lipid peroxidation) and membrane bound ATP-ases(Na+/K+ATPase. Ca2+ and Mg2+ ATPases) activities in rat. The results of the present study indicate that bacoside-A protects the brain from oxidative stress induced by morphine. PMID:22707825

  14. Protective Effect of Bacoside-A against Morphine-Induced Oxidative Stress in Rats.

    PubMed

    Sumathi, T; Nathiya, V C; Sakthikumar, M

    2011-07-01

    In the present study, we investigated the protective effect of bacoside-A the active principle isolated from the plant Bacopa monniera against oxidative damage induced by morphine in rat brain. Morphine intoxicated rats received 10-160 mg/kg b.w. of morphine hydrochloride intraperitoneally for 21 days. Bacoside-A pretreated rats were administered with bacoside-A (10 mg/kg b.w/day) orally, 2 h before the injection of morphine for 21 days. Pretreatment with bacoside-A has shown to possess a significant protective role against morphine induced brain oxidative damage in the antioxidant status (total reduced glutathione, superoxide dismutase, catalase, glutathione peroxidase and lipid peroxidation) and membrane bound ATP-ases(Na(+)/K(+)ATPase. Ca(2+) and Mg(2+) ATPases) activities in rat. The results of the present study indicate that bacoside-A protects the brain from oxidative stress induced by morphine.

  15. Cardioprotective effect of tincture of Crataegus on isoproterenol-induced myocardial infarction in rats.

    PubMed

    Jayalakshmi, R; Niranjali Devaraj, S

    2004-07-01

    Tincture of Crataegus (TCR), an alcoholic extract of the berries of hawthorn (Crataegus oxycantha), is used in herbal and homeopathic medicine. The present study was done to investigate the protective effect of TCR on experimentally induced myocardial infarction in rats. Pretreatment of TCR, at a dose of 0.5 mL/100 g bodyweight per day, orally for 30 days, prevented the increase in lipid peroxidation and activity of marker enzymes observed in isoproterenol-induced rats (85 mg kg(-1) s. c. for 2 days at an interval of 24 h). TCR prevented the isoproterenol-induced decrease in antioxidant enzymes in the heart and increased the rate of ADP-stimulated oxygen uptake and respiratory coupling ratio. TCR protected against pathological changes induced by isoproterenol in rat heart. The results show that pretreatment with TCR may be useful in preventing the damage induced by isoproterenol in rat heart.

  16. Pretreatment with alcoholic extract of Crataegus oxycantha (AEC) activates mitochondrial protection during isoproterenol - induced myocardial infarction in rats.

    PubMed

    Jayalakshmi, R; Thirupurasundari, C J; Devaraj, S Niranjali

    2006-11-01

    Crataegus oxycantha (hawthorn) is used in herbal and homeopathic medicine as a cardiotonic. The present study was done to investigate the effect of the alcoholic extract of Crataegus oxycantha (AEC) on mitochondrial function during experimentally induced myocardial infarction in rat. AEC was administered orally to male albino rats (150-200 g), at a dosage of 0.5 ml/100 g body weight/day, for 30 days. At the end of the experimental period, the animals were administered isoproterenol (85 mg/kg body weight, s.c) for 2 days at an interval of 24 h. After 48 h, the rats were anaesthetized and sacrificed. The hearts were homogenized for biochemical and electron microscopic analysis. AEC pretreatment maintained mitochondrial antioxidant status, prevented mitochondrial lipid peroxidative damage and decrease in Kreb's cycle enzymes induced by isoproterenol in rat heart.

  17. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal

    PubMed Central

    Muñoz, Mario F.; Argüelles, Sandro

    2014-01-01

    Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews of in vivo mammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown. PMID:24999379

  18. Protective effect of mangiferin against lipopolysaccharide-induced depressive and anxiety-like behaviour in mice.

    PubMed

    Jangra, Ashok; Lukhi, Manish M; Sulakhiya, Kunjbihari; Baruah, Chandana C; Lahkar, Mangala

    2014-10-05

    Numerous studies have demonstrated that inflammation, oxidative stress and altered level of neurotrophins are involved in the pathogenesis of depressive illness. Mangiferin, a C-glucosylxanthone is abundant in the stem and bark of Mangifera indica L. The compound has been shown to possess antioxidant, anti-inflammatory and immunomodulatory activities. The present study was performed to investigate the effect of mangiferin pretreatment on lipopolysaccharide-induced increased proinflammatory cytokines, oxidative stress and neurobehavioural abnormalities. Mice were challenged with lipopolysaccharide (0.83 mg/kg, i.p.) after 14 days of mangiferin (20 and 40 mg/kg, p.o.) pretreatment. Mangiferin pretreatment significantly ameliorated the anxiety-like behaviour as evident from the results of an elevated plus maze, light-dark box and open field test. Mangiferin pretreatment also improved the anhedonic behaviour as revealed by sucrose preference test and increased social interaction time. It also prevented the lipopolysaccharide-evoked depressive-like effect by reducing the immobility time in forced swim and tail suspension test. Lipopolysaccharide-induced elevated oxidative stress was decreased with mangiferin pretreatment due to its potential to increase reduced glutathione concentration, Superoxide dismutase and catalase activity and decrease lipid peroxidation and nitrite level in the hippocampus as well as in the prefrontal cortex. Mangiferin pretreatment also attenuated neuroinflammation by reducing the interleukin-1 beta (IL-1β) level in hippocampus and prefrontal cortex. In conclusion, our results demonstrated that mangiferin possessed antidepressant and anti-anxiety properties due to its ability to attenuate IL-1β level and oxidative stress evoked by intraperitoneal administration of lipopolysaccharide. Mangiferin may be a potential therapeutic agent for the treatment of depressive and anxiety illness. Copyright © 2014. Published by Elsevier B.V.

  19. Protective Effect of Quercetin against Oxidative Stress-Induced Cytotoxicity in Rat Pheochromocytoma (PC-12) Cells.

    PubMed

    Bao, Dengke; Wang, Jingkai; Pang, Xiaobin; Liu, Hongliang

    2017-07-06

    Oxidative stress has been implicated in the pathogenesis of many kinds of neurodegenerative disorders, particularly Parkinson's disease. Quercetin is a bioflavonoid found ubiquitously in fruits and vegetables, and has antioxidative activity. However, the underlying mechanism of the antioxidative effect of quercetin in neurodegenerative diseases has not been well explored. Here, we investigated the antioxidative effect and underlying molecular mechanisms of quercetin on PC-12 cells. We found that PC-12 cells pretreated with quercetin exhibited an increased cell viability and reduced lactate dehydrogenase (LDH) release when exposed to hydrogen peroxide (H₂O₂). The significantly-alleviated intracellular reactive oxygen species (ROS), malondialdehyde (MDA), and lipoperoxidation of the cell membrane of PC-12 cells induced by H₂O₂ were observed in the quercetin pretreated group. Furthermore, quercetin pretreatment markedly reduced the apoptosis of PC-12 cells and hippocampal neurons. The inductions of antioxidant enzyme catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) in PC-12 cells exposed to H₂O₂ were significantly reduced by preatment with quercetin. In addition, quercetin pretreatment significantly increased Bcl-2 expression, and reduced Bax, cleaved caspase-3 and p53 expressions. In conclusion, this study demonstrated that quercetin exhibited a protective effect against oxidative stress-induced apoptosis in PC-12 cells. Our findings suggested that quercetin may be developed as a novel therapeutic agent for neurodegenerative diseases induced by oxidative stress.

  20. Radioprotective activity of Polyalthia longifolia standardized extract against X-ray radiation injury in mice.

    PubMed

    Jothy, Subramanion L; Saito, Tamio; Kanwar, Jagat R; Chen, Yeng; Aziz, Azlan; Yin-Hui, Leong; Sasidharan, Sreenivasan

    2016-01-01

    The radioprotective effect of Polyalthia longifolia was studied in mice. P. longifolia treatment showed improvement in mice survival compared to 100% mortality in the irradiated mice. Significant increases in hemoglobin concentration, and red blood cell, white blood cell and platelet counts were observed in the animals pretreated with leaf extract. Pre-irradiation administration of P. longifolia leaf extract also increased the CFU counts of the spleen colony and increased the relative spleen size. A dose-dependent decrease in lipid peroxidation levels was observed in the animals pretreated with P. longifolia. However, although the animals pretreated with P. longifolia exhibited a significant increase in superoxide dismutase and catalase activity, the values remained below normal in both liver and the intestine. Pre-irradiation administration of P. longifolia also resulted in the regeneration of the mucosal crypts and villi of the intestine. Moreover, pretreatment with P. longifolia leaf extract also showed restoration of the normal liver cell structure and a significant reduction in the elevated levels of ALT, AST and bilirubin. These results suggested the radioprotective ability of P. longifolia leaf extract, which is significant for future investigation for human applications in developing efficient, economically viable, non-toxic natural and clinically acceptable novel radioprotectors. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  1. Effect of pretreatment with antiinflammatory agents on paraquat toxicity in the rat.

    PubMed

    Reddy, K A; Litov, R E; Omaye, S T

    1977-05-01

    Aspirin (ASA), indomethacin (IND), hydrocortisone (HYC) or 0.25% agar (control) were administered (p.o.) daily to rats for 5 days. Following drug pretreatments, the activities of cytosolic superoxide dismutase (SOD), glutathione peroxidase (GP) and glutathione reductase (GR) were elevated 30-70%, 5-25% and 8-25%, respectively. In a second experiment, rats pretreated as above were injected (ip) on the 5th day with paraquat (PQ) (29 mg/kg). Rats in each group expired more ethane 2 hours after PQ injection. After 22 hours, expired ethane returned to zero time levels. All control rats died within 48 hours after PQ injection. At the end of 48 hours, rats pretreated with ASA, IND, or HYC demonstrated survival rates of 13%, 31%, and 47%, respectively. PQ injection produces marked elevations of SOD (82%), GP (328%), and GR (36%) in the lungs of PQ-injected controls rats over non-PQ injected controls. Elevation of these enzymes were also noted in drug-treated rats after PQ injection but at values less than PQ-injected controls. Anti-inflammatory drugs were tested in rat liver homogenates for their ability to inhibit thiobarbituric acid (TBA) reactive product formation. Only the addition of HYC resulted in a decrease formation of TBA-reactive products. Thus in vitro studies suggest that the antiinflammatory drugs tested, other than HYC, may have other mechanisms of actions in addition to inhibition of lipid peroxides.

  2. Amelioration of cyclophosphamide induced myelosuppression and oxidative stress by cinnamic acid.

    PubMed

    Patra, Kartick; Bose, Samadrita; Sarkar, Shehnaz; Rakshit, Jyotirmoy; Jana, Samarjit; Mukherjee, Avik; Roy, Abhishek; Mandal, Deba Prasad; Bhattacharjee, Shamee

    2012-02-05

    Cinnamic acid (C9H8O2), is a major constituent of the oriental Ayurvedic plant Cinnamomum cassia (Family: Lauraceae). This phenolic acid has been reported to possess various pharmacological properties of which its antioxidant activity is a prime one. Therefore it is rational to hypothesize that it may ameliorate myelosuppression and oxidative stress induced by cyclophosphamide, a widely used chemotherapeutic agent. Commercial cyclophosphamide, Endoxan, was administered intraperitoneally to Swiss albino mice (50mg/kg) pretreated with 15, 30 and 60mg/kg doses of cinnamic acid orally at alternate days for 15days. Cinnamic acid pre-treatment was found to reduce cyclophosphamide induced hypocellularity in the bone marrow and spleen. This recovery was also reflected in the peripheral blood count. Amelioration of hypocellularity could be correlated with the modulation of cell cycle phase distribution. Cinnamic acid pre-treatment reduced bone marrow and hepatic oxidative stress as evident by lipid peroxidation and activity assays of antioxidant enzymes such as superoxide dismutase, catalase and glutathione-S-transferase. The present study indicates that cinnamic acid pretreatment has protective influence on the myelosuppression and oxidative stress induced by cyclophosphamide. This investigation is an attempt and is the first of its kind to establish cinnamic acid as an agent whose consumption provides protection to normal cells from the toxic effects of a widely used anti-cancer drug. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. Herbivore- and Elicitor- Induced Resistance in Groundnut to Asian armyworm, Spodoptera litura (Fab.) (Lepidoptera: Noctuidae)

    PubMed Central

    War, Abdul Rashid; Paulraj, Michael Gabriel; War, Mohd Yousf; Ignacimuthu, Savarimuthu

    2011-01-01

    Induced defense was studied in three groundnut genotypes ICGV 86699 (resistant), NCAc 343 (resistant) and TMV 2 (susceptible) in response to Spodoptera litura infestation and jasmonic acid (JA) application. The activity of the oxidative enzymes [peroxidase (POD) and polyphenol oxidase (PPO)] and the amounts other host plant defense components [total phenols, hydrogen peroxide (H2O2), malondialdehyde (MDA), and protein content] were recorded at 24, 48, 72 and 96 h in JA pretreated (one day before) plants and infested with S. litura, and JA application and simultaneous infestation with S. litura to understand the defense response of groundnut genotypes against S. litura damage. Data on plant damage, larval survival and larval weights were also recorded. There was a rapid increase in the activities of POD and PPO and in the quantities of total phenols, H2O2, MDA and protein content in the JA pretreated + S. litura infested plants. All the three genotypes showed quick response to JA application and S. litura infestation by increasing the defensive compounds. Among all the genotypes, higher induction was recorded in ICGV 86699 in most of the parameters. Reduced plant damage, low larval survival and larval weights were observed in JA pretreated plants. It suggests that pretreatment with elicitors, such as JA could provide more opportunity for plant defense against herbivores. PMID:22042128

  4. Isoprene Production on Enzymatic Hydrolysate of Peanut Hull Using Different Pretreatment Methods.

    PubMed

    Wang, Sumeng; Li, Ruichao; Yi, Xiaohua; Fang, Tigao; Yang, Jianming; Bae, Hyeun-Jong

    2016-01-01

    The present study is about the use of peanut hull for isoprene production. In this study, two pretreatment methods, hydrogen peroxide-acetic acid (HPAC) and popping, were employed prior to enzymatic hydrolysis, which could destroy the lignocellulosic structure and accordingly improve the efficiency of enzymatic hydrolysis. It is proven that the isoprene production on enzymatic hydrolysate with HPAC pretreatment is about 1.9-fold higher than that of popping pretreatment. Moreover, through High Performance Liquid Chromatography (HPLC) analysis, the amount and category of inhibitors such as formic acid, acetic acid, and HMF were assayed and were varied in different enzymatic hydrolysates, which may be the reason leading to a decrease in isoprene production during fermentation. To further increase the isoprene yield, the enzymatic hydrolysate of HPAC was detoxified by activated carbon. As a result, using the detoxified enzymatic hydrolysate as the carbon source, the engineered strain YJM21 could accumulate 297.5 mg/L isoprene, which accounted for about 90% of isoprene production by YJM21 fermented on pure glucose (338.6 mg/L). This work is thought to be the first attempt on isoprene production by E. coli using peanut hull as the feedstock. More importantly, it also shows the prospect of peanut hull to be considered as an alternative feedstock for bio-based chemicals or biofuels production due to its easy access and high polysaccharide content.

  5. Isoprene Production on Enzymatic Hydrolysate of Peanut Hull Using Different Pretreatment Methods

    PubMed Central

    Wang, Sumeng; Li, Ruichao; Yi, Xiaohua; Fang, Tigao

    2016-01-01

    The present study is about the use of peanut hull for isoprene production. In this study, two pretreatment methods, hydrogen peroxide-acetic acid (HPAC) and popping, were employed prior to enzymatic hydrolysis, which could destroy the lignocellulosic structure and accordingly improve the efficiency of enzymatic hydrolysis. It is proven that the isoprene production on enzymatic hydrolysate with HPAC pretreatment is about 1.9-fold higher than that of popping pretreatment. Moreover, through High Performance Liquid Chromatography (HPLC) analysis, the amount and category of inhibitors such as formic acid, acetic acid, and HMF were assayed and were varied in different enzymatic hydrolysates, which may be the reason leading to a decrease in isoprene production during fermentation. To further increase the isoprene yield, the enzymatic hydrolysate of HPAC was detoxified by activated carbon. As a result, using the detoxified enzymatic hydrolysate as the carbon source, the engineered strain YJM21 could accumulate 297.5 mg/L isoprene, which accounted for about 90% of isoprene production by YJM21 fermented on pure glucose (338.6 mg/L). This work is thought to be the first attempt on isoprene production by E. coli using peanut hull as the feedstock. More importantly, it also shows the prospect of peanut hull to be considered as an alternative feedstock for bio-based chemicals or biofuels production due to its easy access and high polysaccharide content. PMID:27847814

  6. Hydrogen Peroxide Is a Second Messenger in the Salicylic Acid-Triggered Adventitious Rooting Process in Mung Bean Seedlings

    PubMed Central

    Yang, Wei; Zhu, Changhua; Ma, Xiaoling; Li, Guijun; Gan, Lijun; Ng, Denny; Xia, Kai

    2013-01-01

    In plants, salicylic acid (SA) is a signaling molecule that regulates disease resistance responses, such as systemic acquired resistance (SAR) and hypertensive response (HR). SA has been implicated as participating in various biotic and abiotic stresses. This study was conducted to investigate the role of SA in adventitious root formation (ARF) in mung bean (Phaseolus radiatus L) hypocotyl cuttings. We observed that hypocotyl treatment with SA could significantly promote the adventitious root formation, and its effects were dose and time dependent. Explants treated with SA displayed a 130% increase in adventitious root number compared with control seedlings. The role of SA in mung bean hypocotyl ARF as well as its interaction with hydrogen peroxide (H2O2) were also elucidated. Pretreatment of mung bean explants with N, N’-dimethylthiourea (DMTU), a scavenger for H2O2, resulted in a significant reduction of SA-induced ARF. Diphenyleneiodonium (DPI), a specific inhibitor of membrane-linked NADPH oxidase, also inhibited the effect of adventitious rooting triggered by SA treatment. The determination of the endogenous H2O2 level indicated that the seedlings treated with SA could induce H2O2 accumulation compared with the control treatment. Our results revealed a distinctive role of SA in the promotion of adventitious rooting via the process of H2O2 accumulation. This conclusion was further supported by antioxidant enzyme activity assays. Based on these results, we conclude that the accumulation of free H2O2 might be a downstream event in response to SA-triggered adventitious root formation in mung bean seedlings. PMID:24386397

  7. Comparison of microwave and conduction-convection heating autohydrolysis pretreatment for bioethanol production.

    PubMed

    Aguilar-Reynosa, Alejandra; Romaní, Aloia; Rodríguez-Jasso, Rosa M; Aguilar, Cristóbal N; Garrote, Gil; Ruiz, Héctor A

    2017-11-01

    This work describes the application of two forms of heating for autohydrolysis pretreatment on isothermal regimen: conduction-convection heating and microwave heating processing using corn stover as raw material for bioethanol production. Pretreatments were performed using different operational conditions: residence time (10-50 min) and temperature (160-200°C) for both pretreatments. Subsequently, the susceptibility of pretreated solids was studied using low enzyme loads, and high substrate loads. The highest conversion was 95.1% for microwave pretreated solids. Also solids pretreated by microwave heating processing showed better ethanol conversion in simultaneous saccharification and fermentation process (92% corresponding to 33.8g/L). Therefore, microwave heating processing is a promising technology in the pretreatment of lignocellulosic materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. RT-CaCCO process: an improved CaCCO process for rice straw by its incorporation with a step of lime pretreatment at room temperature.

    PubMed

    Shiroma, Riki; Park, Jeung-yil; Al-Haq, Muhammad Imran; Arakane, Mitsuhiro; Ike, Masakazu; Tokuyasu, Ken

    2011-02-01

    We improved the CaCCO process for rice straw by its incorporation with a step of lime pretreatment at room temperature (RT). We firstly optimized the RT-lime pretreatment for the lignocellulosic part. When the ratio of lime/dry-biomass was 0.2 (w/w), the RT lime-pretreatment for 7-d resulted in an effect on the enzymatic saccharification of cellulose and xylan equivalent to that of the pretreatment at 120°C for 1h. Sucrose, starch and β-1,3-1,4-glucan, which could be often detected in rice straw, were mostly stable under the RT-lime pretreatment condition. Then, the pretreatment condition in the conventional CaCCO process was modified by the adaptation of the optimized RT lime-pretreatment, resulting in significantly better carbohydrate recoveries via enzymatic saccharification than those of the CaCCO process (120°C for 1 h). Thus, the improved CaCCO process (the RT-CaCCO process) could preserve/pretreat the feedstock at RT in a wet form with minimum loss of carbohydrates. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Cardioprotective effect of Sida rhomboidea. Roxb extract against isoproterenol induced myocardial necrosis in rats.

    PubMed

    Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Ansarullah; Karn, Sanjay S; Shah, Jigar D; Patel, Dipak K; Salunke, Sunita P; Padate, Geeta S; Devkar, Ranjitsinh V; Ramachandran, A V

    2011-05-01

    The present study investigates cardioprotective effect of Sida rhomboidea. Roxb (SR) extract on heart weight, plasma lipid profile, plasma marker enzymes, lipid peroxidation, endogenous enzymatic and non-enzymatic antioxidants and membrane bound ATPases against isoproterenol (IP) induced myocardial necrosis (MN) in rats. Rats treated with IP (85 mg/kg, s.c.) recorded significant (p<0.05) increment in heart weight, plasma lipid profile, plasma marker enzymes of cardiac damage, cardiac lipid peroxidation (LPO) and activity levels of Ca(+2) ATPase whereas there was significant (p<0.05) decrease in plasma HDL, cardiac endogenous enzymatic and non-enzymatic antioxidants, Na(+)-K(+) ATPase and Mg(+2) ATPase. Pre-treatment with SR extract (400 mg/kg per day, p.o.) for 30 consecutive days followed by IP injections on days 29th and 30th, showed significant (p<0.05) decrease in heart weight, plasma lipid profile, plasma marker enzymes of cardiac damage, cardiac lipid peroxidation, Ca(+2) ATPase and significant increase in plasma HDL, cardiac endogenous enzymatic and non-enzymatic antioxidants, Na(+)-K(+) ATPase and Mg(+2) ATPase compared to IP treated group. Hence, this study is the first scientific report on cardioprotective effect of SR against IP induced MN in rats. Copyright © 2010 Elsevier GmbH. All rights reserved.

  10. Role of fluoridated carbamide peroxide whitening gel in the remineralization of demineralized enamel: An in vitro study.

    PubMed

    Bollineni, Swetha; Janga, Ravi Kumar; Venugopal, L; Reddy, Indukuri Ravikishore; Babu, P Ravisekhar; Kumar, Sunil S

    2014-05-01

    The use of self-administered carbamide peroxide bleaching gels has become increasingly popular for whitening of discolored vital teeth. Studies have reported that its use may induce increased levels of sensitivity and surface roughness of the tooth due to demineralization. This study evaluates the effect of fluoride addition to the bleaching agent - its remineralizing capacity and alterations in the whitening properties. Twenty-four extracted lower third molar teeth, with the pretreatment shade determined, were taken up in the study. Each tooth was sectioned into four and labeled as groups A, B, C, and D. The tooth quadrants in group A-C were demineralized; groups A and B were treated with 10% carbamide peroxide gel (group-A without fluoride and group-B with 0.463% fluoride addition) (no further treatment was carried out for group c) group-D remained as the control. The post-treatment shade was determined. The tooth samples were sectioned (approximately 200 μm) for evaluation under a light microscope. The depth of demineralization was analyzed at five different equidistant points. Statistical analysis was carried out with t-tests, accepting ≤0.05 as significant. Addition of fluoride caused remineralization of demineralized enamel. The tooth whitening system showed that the remineralization properties did not affect the whitening properties.

  11. Valeriana officinalis Extracts Ameliorate Neuronal Damage by Suppressing Lipid Peroxidation in the Gerbil Hippocampus Following Transient Cerebral Ischemia

    PubMed Central

    Yoo, Dae Young; Jung, Hyo Young; Nam, Sung Min; Kim, Jong Whi; Choi, Jung Hoon; Kwak, Youn-Gil; Yoo, Miyoung; Lee, Sanghee; Yoon, Yeo Sung

    2015-01-01

    Abstract As a medicinal plant, the roots of Valeriana officinalis have been used as a sedative and tranquilizer. In the present study, we evaluated the neuroprotective effects of valerian root extracts (VE) on the hippocampal CA1 region of gerbils after 5 min of transient cerebral ischemia. Gerbils were administered VE orally once a day for 3 weeks, subjected to ischemia/reperfusion injury, and continued on VE for 3 weeks. The administration of 100 mg/kg VE (VE100 group) significantly reduced the ischemia-induced spontaneous motor hyperactivity 1 day after ischemia/reperfusion. Four days after ischemia/reperfusion, animals treated with VE showed abundant cresyl violet-positive neurons in the hippocampal CA1 region when compared to the vehicle or 25 mg/kg VE-treated groups. In addition, the VE treatment markedly decreased microglial activation in the hippocampal CA1 region 4 days after ischemia. Compared to the other groups, the VE100 group showed the lowest level of lipid peroxidation during the first 24 h after ischemia/reperfusion. In summary, the findings in this study suggest that pretreatment with VE has protective effects against ischemic injury in the hippocampal pyramidal neurons by decreasing microglial activation and lipid peroxidation. PMID:25785762

  12. Valeriana officinalis Extracts Ameliorate Neuronal Damage by Suppressing Lipid Peroxidation in the Gerbil Hippocampus Following Transient Cerebral Ischemia.

    PubMed

    Yoo, Dae Young; Jung, Hyo Young; Nam, Sung Min; Kim, Jong Whi; Choi, Jung Hoon; Kwak, Youn-Gil; Yoo, Miyoung; Lee, Sanghee; Yoon, Yeo Sung; Hwang, In Koo

    2015-06-01

    As a medicinal plant, the roots of Valeriana officinalis have been used as a sedative and tranquilizer. In the present study, we evaluated the neuroprotective effects of valerian root extracts (VE) on the hippocampal CA1 region of gerbils after 5 min of transient cerebral ischemia. Gerbils were administered VE orally once a day for 3 weeks, subjected to ischemia/reperfusion injury, and continued on VE for 3 weeks. The administration of 100 mg/kg VE (VE100 group) significantly reduced the ischemia-induced spontaneous motor hyperactivity 1 day after ischemia/reperfusion. Four days after ischemia/reperfusion, animals treated with VE showed abundant cresyl violet-positive neurons in the hippocampal CA1 region when compared to the vehicle or 25 mg/kg VE-treated groups. In addition, the VE treatment markedly decreased microglial activation in the hippocampal CA1 region 4 days after ischemia. Compared to the other groups, the VE100 group showed the lowest level of lipid peroxidation during the first 24 h after ischemia/reperfusion. In summary, the findings in this study suggest that pretreatment with VE has protective effects against ischemic injury in the hippocampal pyramidal neurons by decreasing microglial activation and lipid peroxidation.

  13. Hawthorn extract reduces infarct volume and improves neurological score by reducing oxidative stress in rat brain following middle cerebral artery occlusion.

    PubMed

    Elango, Chinnasamy; Jayachandaran, Kasevan Sawaminathan; Niranjali Devaraj, S

    2009-12-01

    In our present investigation the neuroprotective effect of alcoholic extract of Hawthorn (Crataegus oxycantha) was evaluated against middle cerebral artery occlusion induced ischemia/reperfusion injury in rats. Male Sprague-Dawley rats were pretreated with 100 mg/kg body weight of the extract by oral gavage for 15 days. The middle cerebral artery was then occluded for 75 min followed by 24 h of reperfusion. The pretreated rats showed significantly improved neurological behavior with reduced brain infarct when compared to vehicle control rats. The glutathione level in brain was found to be significantly (p<0.05) low in vehicle control rats after 24 h of reperfusion when compared to sham operated animals. However, in Hawthorn extract pretreated rats the levels were found to be close to that of sham. Malondialdehyde levels in brain of sham and pretreated group were found to be significantly lower than the non-treated vehicle group (p<0.05). The nitric oxide levels in brain were measured and found to be significantly (p<0.05) higher in vehicle than in sham or extract treated rats. Our results suggest that Hawthorn extract which is a well known prophylactic for cardiac conditions may very well protect the brain against ischemia-reperfusion. The reduced brain damage and improved neurological behavior after 24 h of reperfusion in Hawthorn extract pretreated group may be attributed to its antioxidant property which restores glutathione levels, circumvents the increase in lipid peroxidation and nitric oxide levels thereby reducing peroxynitrite formation and free radical induced brain damage.

  14. Methods of pretreating comminuted cellulosic material with carbonate-containing solutions

    DOEpatents

    Francis, Raymond

    2012-11-06

    Methods of pretreating comminuted cellulosic material with an acidic solution and then a carbonate-containing solution to produce a pretreated cellulosic material are provided. The pretreated material may then be further treated in a pulping process, for example, a soda-anthraquinone pulping process, to produce a cellulose pulp. The pretreatment solutions may be extracted from the pretreated cellulose material and selectively re-used, for example, with acid or alkali addition, for the pretreatment solutions. The resulting cellulose pulp is characterized by having reduced lignin content and increased yield compared to prior art treatment processes.

  15. Determination Hypoiodous Acid (HIO) By Peroxidase System Using Peroxidase Enzyme

    NASA Astrophysics Data System (ADS)

    Al-Baarri, A. N.; Legowo, A. M.; Widayat; Abduh, S. B. M.; Hadipernata, M.; Wisnubroto; Ardianti, D. K.; Susanto, M. N.; Yusuf, M.; Demasta, E. K.

    2018-02-01

    It has been understood that peroxidase enzyme including peroxidase serves as catalyzer to enzymatic reaction among hydrogen peroxide and halides, therefore this research was done for generating hypoiodous acid (HIO) from peroxidase system using peroxidase enzyme. Hydrogen peroxide, potassium iodide, and peroxidase enzyme were used to produce HIO. Determination the amount of formed HIO was done using 2,2'-azino-bis(3- ethylbenzothiazoline-6-sulphonic acid) or ABTS as substrate through the colorimetric measurement of hydrogen peroxide residue during reaction process using at 412 nm. The result indicated that residual hydrogen peroxide showed the minimum concentration after 60 minutes reaction time. Because the reaction started at the beginning time of mixing, hydrogen peroxide was unable to be eliminated totally to produce HIO. The reaction of peroxidase system was able to determine the beginning of mixing process but the reaction process could not eliminate the initial concentration of hydrogen peroxide indicating the maximum amount of production of HIO could be determined. In conclusion, the less of H2O2, higher HIO obtained and peroxidase enzymes can accelerate the formation of HIO.

  16. Glycerophosphate-dependent peroxide production by brown fat mitochondria from newborn rats.

    PubMed

    Drahota, Z; Rauchova, H; Jesina, P; Vojtísková, A; Houstek, J

    2003-03-01

    Glycerophosphate (GP)-dependent, ferricyanide-induced hydrogen peroxide production was studied in brown adipose tissue mitochondria from newborn rats. Relations between the rate of hydrogen peroxide production and total amount of hydrogen peroxide produced at different GP and ferricyanide concentrations were determined. It was found that the rate of hydrogen peroxide production increases with increasing GP concentration and decreases with increasing ferricyanide concentration. Total amount of hydrogen peroxide produced increases with increasing ferricyanide concentration, however, not proportionally, and the efficiency of this process (oxygen/ferricyanide ratio) strongly declines. Data presented provide further information on the character and kinetics of hydrogen peroxide production by mammalian mitochondrial glycerophosphate dehydrogenase.

  17. Polyamines induce adaptive responses in water deficit stressed cucumber roots.

    PubMed

    Kubiś, Jan; Floryszak-Wieczorek, Jolanta; Arasimowicz-Jelonek, Magdalena

    2014-01-01

    The aim of this study was to investigate the effect of exogenous polyamines (PAs) on the membrane status and proline level in roots of water stressed cucumber (Cucumis sativus cv. Dar) seedlings. It was found that water shortage resulted in an increase of membrane injury, lipoxygenase (LOX) activity, lipid peroxidation and proline concentration in cucumber roots during progressive dehydration. PA pretreatment resulted in a distinct reduction of the injury index, and this effect was reflected by a lower stress-evoked LOX activity increase and lipid peroxide levels at the end of the stress period. In contrast, PA-supplied stressed roots displayed a higher proline accumulation. The presented results suggest that exogenous PAs are able to alleviate water deficit-induced membrane permeability and diminish LOX activity. Observed changes were accompanied by an accumulation of proline, suggesting that the accumulation of this osmolyte might be another possible mode of action for PAs to attain higher membrane stability, and in this way mitigate water deficit effects in roots of cucumber seedlings.

  18. Chamomile confers protection against hydrogen peroxide-induced toxicity through activation of Nrf2-mediated defense response.

    PubMed

    Bhaskaran, Natarajan; Srivastava, Janmejai K; Shukla, Sanjeev; Gupta, Sanjay

    2013-01-01

    Oxidative stress plays an important role in the development of various human diseases. Aqueous chamomile extract is used as herbal medicine, in the form of tea, demonstrated to possess antiinflammatory and antioxidant properties. We demonstrate the cytoprotective effects of chamomile on hydrogen peroxide (H₂O₂)-induced cellular damage in macrophage RAW 264.7 cells. Pretreatment of cells with chamomile markedly attenuated H₂O₂-induced cell viability loss in a dose-dependent manner. The mechanisms by which chamomile-protected macrophages from oxidative stress was through the induction of several antioxidant enzymes including NAD(P)H:quinone oxidoreductase, superoxide dismutase, and catalase and increase nuclear accumulation of the transcription factor Nrf2 and its binding to antioxidant response elements. Furthermore, chamomile dose-dependently reduced H₂O₂-mediated increase in the intracellular levels of reactive oxygen species. Our results, for the first time, demonstrate that chamomile has protective effects against oxidative stress and might be beneficial to provide defense against cellular damage. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Chamomile Confers Protection against Hydrogen Peroxide-Induced Toxicity through Activation of Nrf2-Mediated Defense Response

    PubMed Central

    Bhaskaran, Natarajan; Srivastava, Janmejai K.; Shukla, Sanjeev; Gupta, Sanjay

    2014-01-01

    Oxidative stress plays an important role in the development of various human diseases. Aqueous chamomile extract is used as herbal medicine, in the form of tea, demonstrated to possess antiinflammatory and antioxidant properties. We demonstrate the cytoprotective effects of chamomile on hydrogen peroxide (H2O2)-induced cellular damage in macrophage RAW 264.7 cells. Pretreatment of cells with chamomile markedly attenuated H2O2-induced cell viability loss in a dose-dependent manner. The mechanisms by which chamomile-protected macrophages from oxidative stress was through the induction of several antioxidant enzymes including NAD (P)H:quinone oxidoreductase, superoxide dismutase, and catalase and increase nuclear accumulation of the transcription factor Nrf2 and its binding to antioxidant response elements. Furthermore, chamomile dose-dependently reduced H2O2-mediated increase in the intracellular levels of reactive oxygen species. Our results, for the first time, demonstrate that chamomile has protective effects against oxidative stress and might be beneficial to provide defense against cellular damage. PMID:22511316

  20. Reduced cytotoxicity in PCB-exposed Chinese Hamster Ovary (CHO) cells pretreated with vitamin E.

    PubMed

    Murati, Teuta; Šimić, Branimir; Pleadin, Jelka; Vukmirović, Maja; Miletić, Marina; Durgo, Ksenija; Kniewald, Jasna; Kmetič, Ivana

    2017-01-01

    The aim of this study was to evaluate protective effects of vitamin E (50 -150 μM) in ovary cells upon cytotoxic effects induced by two structurally distinct PCB congeners - planar "dioxin-like" PCB 77 and non-planar di-ortho-substituted PCB 153 with an emphasis on identifying differences in the mechanism of vitamin E action depending on the structure of congeners. Application of three bioassays confirmed that PCBs decrease ovarian cell proliferation with slightly profound effects of PCB 77. PCB - induced ROS production and lipid peroxidation were significant for both congeners with also more noticeable effect for PCB 77. Vitamin E pre-incubation has improved viability of cells, reduced ROS formation and lipid peroxidation induced by PCBs' treatment. Preincubation with vitamin E was more effective when cells where treated with non-planar PCB 153. Altogether, vitamin E action was protective, congener specific and more effective when ovary cells were exposed to ortho-substituted PCB congener. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Tree ring wood analysis after hydrogen peroxide pressure decomposition with inductively coupled plasma atomic emission spectrometry and electrothermal vaporization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matusiewicz, H.; Barnes, R.M.

    1985-02-01

    A method utilizing pressure decomposition to minimize sample pretreatment is described for the inductively coupled plasma atomic emission spectrometric analysis of red spruce and sugar maple. Cores collected from trees growing on Camels Hump Mountain, Vermont, were divided into decade increments in order to monitor the temporal changes in concentrations of 21 elements. Dried wood samples were decomposed in a bomb made of Teflon with 50% hydrogen peroxide heated in an oven at 125/sup 0/C for 4 h. The digestion permitted use of aqueous standards and minimized any potential matrix effects. The element concentrations were obtained sequentially by electrothermal vaporizationmore » ICP-AES using 5 ..mu..L sample aliquots. The method precision varied between 3 and 12%. Elements forming oxyanions (Al, As, Fe, Ge, Mn, Si, V) were found at elevated concentrations during the most recent three decades, while other metal (e.g., Mg, Zn) concentrations were unchanged or decreased. 45 references, 6 tables, 1 figure.« less

  2. Evaluation of evidenced-based radioprotective efficacy of Gymnema sylvestre leaves in mice brain.

    PubMed

    Sharma, K; Singh, Umang; Vats, Sharad; Priyadarsini, K; Bhatia, A; Kamal, Raka

    2009-01-01

    A Gymnema sylvestre leaves extract (GSE) rich in gymnemic acids was examined for its antioxidant activities through various in vitro assays, along with its radioprotective efficacy in mice brain. The IC(50) values of GSE for 2,2-diphenyl-1-picryl-hydrazyl scavenging assays, superoxide radical scavenging assays, inhibition of in vitro lipid peroxidation assays, and protein carbonyl formation assay were 238, 140, 99.46, and 28.03 microg/mL, respectively. Furthermore, the total phenolic content in GSE was equivalent to 18.06 microg/mL of Gallic acid. The rate of *OH radical scavenging activity of GSE is 0.46 times slower than SCN- derived from nanosecond pulse radiolysis studies. Results of in vivo studies showed that radiation (8 Gy)-induced augmentation in the levels of lipid peroxidation and depletion in glutathione and protein levels in mice brain were significantly ameliorated by GSE pretreatment. Results suggest that the radioprotective efficacy of GSE may be due to its antioxidant properties.

  3. Protective effects of protopine on hydrogen peroxide-induced oxidative injury of PC12 cells via Ca(2+) antagonism and antioxidant mechanisms.

    PubMed

    Xiao, Xianghua; Liu, Juntian; Hu, Jingwen; Zhu, Xiuping; Yang, Hua; Wang, Chaoyun; Zhang, Yuanhui

    2008-09-04

    Calcium and lipid peroxidation play important roles in oxidative stress-induced cellular injury and apoptosis, which ultimately cause cell death. In this study we examined whether protopine had a neuroprotection against H(2)O(2)-induced injury in PC12 cells. Pretreatment of PC12 cells with protopine improved the cell viability, enhanced activities of superoxide dismutase, glutathione peroxidase and catalase, and decreased malondialdehyde level in the H(2)O(2) injured cells. Protopine also reversed the increased intracellular Ca(2+) concentration and the reduced mitochondrial membrane potential caused by H(2)O(2) in the cells. Furthermore, protopine was able to inhibit caspase-3 expression and cell apoptosis induced by H(2)O(2). In summary, this study demonstrates that protopine is able to relieve H(2)O(2)-induced oxidative stress and apoptosis in PC12 cells, at least in part, by Ca(2+) antagonism and antioxidant mechanisms.

  4. Pretreatment of empty fruit bunch from oil palm for fuel ethanol production and proposed biorefinery process.

    PubMed

    Tan, Liping; Yu, Yongcheng; Li, Xuezhi; Zhao, Jian; Qu, Yinbo; Choo, Yuen May; Loh, Soh Kheang

    2013-05-01

    This study evaluates the effects of some pretreatment processes to improve the enzymatic hydrolysis of oil palm empty fruit bunch (EFB) for ethanol production. The experimental results show that the bisulfite pretreatment was practical for EFB pretreatment. Moreover, the optimum pretreatment conditions of the bisulfite pretreatment (180 °C, 30 min, 8% NaHSO3, 1% H2SO4) were identified. In the experiments, a biorefinery process of EFB was proposed to produce ethanol, xylose products, and lignosulfonates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. CYCLOOXYGENASE COMPETITIVE INHIBITORS ALTER TYROSYL RADICAL DYNAMICS IN PROSTAGLANDIN H SYNTHASE-2†

    PubMed Central

    Wu, Gang; Tsai, Ah-Lim; Kulmacz, Richard J.

    2009-01-01

    Reaction of prostaglandin H synthase (PGHS) isoforms 1 or 2 with peroxide forms a radical at Tyr385 that is required for cyclooxygenase catalysis, and another radical at Tyr504, whose function is unknown. Both tyrosyl radicals are transient and rapidly dissipated by reductants, suggesting that cyclooxygenase catalysis might be vulnerable to suppression by intracellular antioxidants. Our initial hypothesis was that the two radicals are in equilibrium and that their proportions and stability are altered upon binding of fatty acid substrate. As a test, we examined the effects of three competitive inhibitors (nimesulide, flurbiprofen and diclofenac) on the proportions and stability of the two radicals in PGHS-2 pretreated with peroxide. Adding nimesulide after ethyl peroxide led to some narrowing of the tyrosyl radical signal detected by EPR spectroscopy, consistent with a small increase in the proportion of the Tyr504 radical. Neither flurbiprofen nor diclofenac changed the EPR linewidth when added after peroxide. In contrast, the effects of cyclooxygenase inhibitors on the stability of the preformed tyrosyl radicals were dramatic. The half-life of total tyrosyl radical was 4.1 min in the control, >10 hr with added nimesulide, 48 min with flurbiprofen, and 0.8 min with diclofenac. Stabilization of the tyrosyl radicals was evident even at substoichiometric levels of nimesulide. Thus, the inhibitors had potent, structure-dependent, effects on the stability of both tyrosyl radicals. This dramatic modulation of tyrosyl radical stability by cyclooxygenase site ligands suggests a mechanism for regulating the reactivity of PGHS tyrosyl radicals with cellular antioxidants. PMID:19894761

  6. Protective Effect of Selenium Against Cisplatin-Induced Ototoxicity in an Experimental Design.

    PubMed

    Doğan, Sedat; Yazici, Hasmet; Yalçinkaya, Esin; Erdoğdu, Halil Ibrahim; Tokgöz, Sibel Alicura; Sarici, Furkan; Namuslu, Mehmet; Sarikaya, Yasin

    2016-10-01

    Cisplatin is an effective chemotherapeutic agent in the treatment of several types of malignant solid tumors but its clinical use is associated with ototoxicity. In the present study, we investigated the effect of selenium administration on lipid peroxidation (malondialdehyde [MDA]) and cisplatin-induced ototoxicity in rats. Healthy wistar albino rats (n = 21) were randomly divided into 3 groups: control (C), cisplatin (Cis), cisplatin and selenium (Cis+Se). Cisplatin was administered for 3 days to Cis and Cis+Se groups. Cis+Se group received selenium 5 days before cisplatin injection and continued for 11 consecutive days. Hearing thresholds and lipid peroxidation (MDA) levels of the rats were recorded before injections and at the end of experimental protocol. The cochleas of animals were harvested for histologic and immunuhistochemical examinations. In biochemichal analyses, pretreatment with selenium prevented the elevation of MDA levels in Cis+Se group rats. Moreover, animals in Cis+Se group had better hearing threshold levels than animals in cis group. Samples obtained from the animals in Cis group revealed extensive loss of the normal microarchitecture of the organ of Corti. On the other hand, animals in Cis+Se group exhibited a preservation of the morphology of the organ of Corti and outer hair cells. In the immunohistochemical examinations of cochlear tissues stained with anti-caspase-3, a higher degree of immunopositivity was found in the Cis group. When Cis+Se group and Cis group were compared, significantly less immunopositivity occurred in the Cis+Se group (P < 0.05). Thus, it appears that pretreatment with selenium may reduce cisplatin-induced ototoxicity in rats.

  7. Contrasting protective effects of cannabinoids against oxidative stress and amyloid-β evoked neurotoxicity in vitro.

    PubMed

    Harvey, Benjamin S; Ohlsson, Katharina S; Mååg, Jesper L V; Musgrave, Ian F; Smid, Scott D

    2012-01-01

    Cannabinoids have been widely reported to have neuroprotective properties in vitro and in vivo. In this study we compared the effects of CB1 and CB2 receptor-selective ligands, the endocannabinoid anandamide and the phytocannabinoid cannabidiol, against oxidative stress and the toxic hallmark Alzheimer's protein, β-amyloid (Aβ) in neuronal cell lines. PC12 or SH-SY5Y cells were selectively exposed to either hydrogen peroxide, tert-butyl hydroperoxide or Aβ, alone or in the presence of the CB1 specific agonist arachidonyl-2'-chloroethylamide (ACEA), CB2 specific agonist JWH-015, anandamide or cannabidiol. Cannabidiol improved cell viability in response to tert-butyl hydroperoxide in PC12 and SH-SY5Y cells, while hydrogen peroxide-mediated toxicity was unaffected by cannabidiol pretreatment. Aβ exposure evoked a loss of cell viability in PC12 cells. Of the cannabinoids tested, only anandamide was able to inhibit Aβ-evoked neurotoxicity. ACEA had no effect on Aβ-evoked neurotoxicity, suggesting a CB1 receptor-independent effect of anandamide. JWH-015 pretreatment was also without protective influence on PC12 cells from either pro-oxidant or Aβ exposure. None of the cannabinoids directly inhibited or disrupted preformed Aβ fibrils and aggregates. In conclusion, the endocannabinoid anandamide protects neuronal cells from Aβ exposure via a pathway unrelated to CB1 or CB2 receptor activation. The protective effect of cannabidiol against oxidative stress does not confer protection against Aβ exposure, suggesting divergent pathways for neuroprotection of these two cannabinoids. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. The antioxidant effect of the Malaysian Gelam honey on pancreatic hamster cells cultured under hyperglycemic conditions.

    PubMed

    Batumalaie, Kalaivani; Qvist, Rajes; Yusof, Kamaruddin Mohd; Ismail, Ikram Shah; Sekaran, Shamala Devi

    2014-05-01

    Type 2 diabetes consists of progressive hyperglycemia, insulin resistance, and pancreatic β-cell failure which could result from glucose toxicity, inflammatory cytokines, and oxidative stress. In the present study, we investigate the effect of pretreatment with Gelam honey (Melaleuca spp.) and the individual flavonoid components chrysin, luteolin, and quercetin, on the production of reactive oxygen species (ROS), cell viability, lipid peroxidation, and insulin content in hamster pancreatic cells (HIT-T15 cells), cultured under normal and hyperglycemic conditions. Phenolic extracts from a local Malaysian species of Gelam honey (Melaleuca spp.) were prepared using the standard extraction methods. HIT-T15 cells were cultured in 5 % CO2 and then preincubated with Gelam honey extracts (20, 40, 60, and 80 μg/ml) as well as some of its flavonoid components chrysin, luteolin, and quercetin (20, 40, 60, and 80 μM), prior to stimulation by 20 and 50 mM of glucose. The antioxidative effects were measured in these cultured cells at different concentrations and time point by DCFH-DA assay. Pretreatment of cells with Gelam honey extract or the flavonoid components prior to culturing in 20 or 50 mM glucose showed a significant decrease in the production of ROS, glucose-induced lipid peroxidation, and a significant increase in insulin content and the viability of cells cultured under hyperglycemic condition. Our results show the in vitro antioxidative property of the Gelam honey and the flavonoids on the β-cells from hamsters and its cytoprotective effect against hyperglycemia.

  9. Responses of antioxidant systems after exposition to rare earths and their role in chilling stress in common duckweed (Lemna minor L.): a defensive weapon or a boomerang?

    PubMed

    Ippolito, M P; Fasciano, C; d'Aquino, L; Morgana, M; Tommasi, F

    2010-01-01

    Extensive agriculture application of rare earth elements (REEs) in Far East countries might cause spreading of these metals in aquatic and terrestrial ecosystems, thus inducing a growing concern about their environmental impact. In this work the effects of a mix of different REE nitrate (RE) and of lanthanum nitrate (LA) on catalase and antioxidant systems involved in the ascorbate-glutathione cycle were investigated in common duckweed Lemna minor L. The results indicated that L. minor shows an overall good tolerance to the presence of REEs in the media. Treatments at concentrations up to 5 mM RE and 5 mM LA did not cause either visible symptoms on plants or significant effects on reactive oxygen species (ROS) production, chlorophyll content, and lipid peroxidation. Toxic effects were observed after 5 days of exposition to 10 mM RE and 10 mM LA. A remarkable increase in glutathione content as well as in enzymatic antioxidants was observed before the appearance of the stress symptoms in treated plants. Duckweed plants pretreated with RE and LA were also exposed to chilling stress to verify whether antioxidants variations induced by RE and LA improve plant resistance to the chilling stress. In pretreated plants, a decrease in ascorbate and glutathione redox state and in chlorophyll content and an increase in lipid peroxidation and ROS production levels were observed. The use of antioxidant levels as a stress marker for monitoring REE toxicity in aquatic ecosystems by means of common duckweed is discussed.

  10. Prophylactic effect of four prescriptions of traditional Chinese medicine on alpha-naphthylisothiocyanate and carbon tetrachloride induced toxicity in rats.

    PubMed

    Lin, K J; Chen, J C; Tsauer, W; Lin, C C; Lin, J G; Tsai, C C

    2001-12-01

    To study the prophylactic effects of four Chinese traditional prescriptions against experimental liver injury. Liver toxins, alpha-naphthylisothiocyanate (ANIT), and carbon tetrachloride (CCl4) were used to induce acute liver injury. Simo Yin(SMY), Guizhi Fuling Wan (GFW), Xieqing Wan (XQW), and Sini San (SNS) were fed (500 mg/kg, in saline, po) to the rats before toxin administration. All the animals were killed 48 h after toxin insulted. Serum index of liver function and hepatic lipid peroxidation (LPO) were estimated. Histopathological observation was conducted simultaneously. The rats treated with ANIT exhibited elevations of serum total bilirubin (TBI), alkaline phosphatase (ALP), glutamate-oxalate- transaminase (GOT), glutamate-pyruvate-transaminase (GPT), as well as cholestasis and parenchyma necrosis. In rats, challenged with ANIT, receiving the pre-treatment of prescriptions of SMY, XQW, and SNS, the biochemical and morphological parameters of liver injury were significantly reduced. The increased LPO level in liver tissue, associated with the provoked serum GOT and GPT levels were the salient features observed in CCl4-insulting rats. Pre-treatment of four prescriptions showed a remarkable protective effect, and also was effective in counteracting the free radical toxicity by bringing about a significant decrease in peroxidative level. These recipes ameliorate liver damage induced by both ANIT and CCl4 despite the differences in their mechanisms of injury. Therefore they may be able to exert hepatoprotective effects through more than one mechanism of action because they contained a mixture of anti-hepatotoxic ingredients with mutual reinforcement and assistance.

  11. Development of a sterilizing in-place application for a production machine using Vaporized Hydrogen Peroxide.

    PubMed

    Mau, T; Hartmann, V; Burmeister, J; Langguth, P; Häusler, H

    2004-01-01

    The use of steam in sterilization processes is limited by the implementation of heat-sensitive components inside the machines to be sterilized. Alternative low-temperature sterilization methods need to be found and their suitability evaluated. Vaporized Hydrogen Peroxide (VHP) technology was adapted for a production machine consisting of highly sensitive pressure sensors and thermo-labile air tube systems. This new kind of "cold" surface sterilization, known from the Barrier Isolator Technology, is based on the controlled release of hydrogen peroxide vapour into sealed enclosures. A mobile VHP generator was used to generate the hydrogen peroxide vapour. The unit was combined with the air conduction system of the production machine. Terminal vacuum pumps were installed to distribute the gas within the production machine and for its elimination. In order to control the sterilization process, different physical process monitors were incorporated. The validation of the process was based on biological indicators (Geobacillus stearothermophilus). The Limited Spearman Karber Method (LSKM) was used to statistically evaluate the sterilization process. The results show that it is possible to sterilize surfaces in a complex tube system with the use of gaseous hydrogen peroxide. A total microbial reduction of 6 log units was reached.

  12. Treatment of mature landfill leachate using hybrid processes of hydrogen peroxide and adsorption in an activated carbon fixed bed column.

    PubMed

    Eljaiek-Urzola, Monica; Guardiola-Meza, Luis; Ghafoori, Samira; Mehrvar, Mehrab

    2018-02-23

    In this study, the treatment of mature landfill leachate is evaluated by oxidation with hydrogen peroxide (H 2 O 2 ) combined with adsorption in a granular activated carbon (GAC) fixed bed column to determinate the increase in the biodegradability index, the reduction of chemical oxygen demand (COD) as well as the increase in the useful life of the GAC bed. The sample leachate from Loma de Los Cocos Landfill (Cartagena de Indias, Colombia) has a very low biodegradability ratio ranging from 0.034 to 0.048 that makes it difficult to meet the required water quality level according to the regulations. The COD removal is initially monitored in the H 2 O 2 oxidation treatment process. The operating conditions such as pH, H 2 O 2 dosage, and the reaction time are optimized in this process based on the percentage of COD removal. A maximum COD removal of 29.9% is achieved at an initial H 2 O 2 concentration of 5000 mg L -1 with a pH of 8 and the reaction time of 60 min. The hybrid treatment by H 2 O 2 -GAC achieved 97.3% COD removal and 116% increase in the biodegradability ratio (from 0.072 to 0.134) while this ratio was increased by 6.5% with H 2 O 2 alone. Moreover, the useful life of the GAC bed is increased from 45 min in the column fed with raw leachate to 170 min in the column fed with pretreated leachate and 5000 mg L -1 of H 2 O 2 at pH of 8 that subsequently increased the activated carbon adsorption capacity. An adsorption model for leachate treated with H 2 O 2 is also developed.

  13. The effect of dilute acid pre-treatment process in bioethanol production from durian (Durio zibethinus) seeds waste

    NASA Astrophysics Data System (ADS)

    Ghazali, K. A.; Salleh, S. F.; Riayatsyah, T. M. I.; Aditiya, H. B.; Mahlia, T. M. I.

    2016-03-01

    Lignocellulosic biomass is one of the promising feedstocks for bioethanol production. The process starts from pre-treatment, hydrolysis, fermentation, distillation and finally obtaining the final product, ethanol. The efficiency of enzymatic hydrolysis of cellulosic biomass depends heavily on the effectiveness of the pre-treatment step which main function is to break the lignin structure of the biomass. This work aims to investigate the effects of dilute acid pre-treatment on the enzymatic hydrolysis of durian seeds waste to glucose and the subsequent bioethanol fermentation process. The yield of glucose from dilute acid pre-treated sample using 0.6% H2SO4 and 5% substrate concentration shows significant value of 23.4951 g/L. Combination of dilute acid pre-treatment and enzymatic hydrolysis using 150U of enzyme able to yield 50.0944 g/L of glucose content higher compared to normal pre-treated sample of 8.1093 g/L. Dilute acid pre-treatment sample also shows stable and efficient yeast activity during fermentation process with lowest glucose content at 2.9636 g/L compared to 14.7583g/L for normal pre-treated sample. Based on the result, it can be concluded that dilute acid pre-treatment increase the yield of ethanol from bioethanol production process.

  14. PP/EPDM-blends by dynamic vulcanization: Influence of increasing peroxide concentration on mechanical, morphological and rheological characteristics

    NASA Astrophysics Data System (ADS)

    Patermann, S.; Altstädt, V.

    2014-05-01

    Thermoplastic vulcanizates (TPVs) combine the elastic properties of thermoset cross-linked rubbers with the melt processability of thermoplastics. The most representative examples of this class are the TPVs based on polypropylene (PP) and ethylene-propylenediene terpolymer rubber (EPDM). The PP/EPDM blends were produced by dynamic vulcanization in a continuous extrusion process. The influence of different peroxide concentrations was studied with regard to cross-link density, compression set, tensile strength/elongation at break and morphology. With increasing peroxide concentration, the cross-link density increases, leading to a reduction of the compression set by 50 %. The cross-linked blends show smaller dispersed EPDM particles than the uncured one. With a peroxide concentration between 0.2 and 0.6 % a maximum in tensile strength and elongation at break was found and with increasing peroxide concentration, the complex viscosity of the TPVs decreases. Compared to batch processes, the results show nearly the same trends.

  15. Integrated process and dual-function catalyst for olefin epoxidation

    DOEpatents

    Zhou, Bing; Rueter, Michael

    2003-01-01

    The invention discloses a dual-functional catalyst composition and an integrated process for production of olefin epoxides including propylene oxide by catalytic reaction of hydrogen peroxide from hydrogen and oxygen with olefin feeds such as propylene. The epoxides and hydrogen peroxide are preferably produced simultaneously in situ. The dual-functional catalyst comprises noble metal crystallites with dimensions on the nanometer scale (on the order of <1 nm to 10 nm), specially dispersed on titanium silicalite substrate particles. The dual functional catalyst catalyzes both the direct reaction of hydrogen and oxygen to generate hydrogen peroxide intermediate on the noble metal catalyst surface and the reaction of the hydrogen peroxide intermediate with the propylene feed to generate propylene oxide product. Combining both these functions in a single catalyst provides a very efficient integrated process operable below the flammability limits of hydrogen and highly selective for the production of hydrogen peroxide to produce olefin oxides such as propylene oxide without formation of undesired co-products.

  16. [Participation of final products of lipid peroxidation in the anticancer mechanism of ionizing radiation and radiomimetic cytostatics].

    PubMed

    Przybyszewski, W M

    2001-01-01

    This review reports the evidence for the participation of final products of lipid peroxidation in the anticancer mechanism of ionising radiation and radiomimetic cytostatics. Processes of lipid peroxidation occur endogenously in response to oxidative stress and great diversity of reactive metabolites is formed. However, direct observation of radical reaction in pathophysiology of cells, tissues and organs is limited technically. Most investigations focused on the indirect assessment of their final products, aldehydes. The peroxidative breakdown of polyunsaturated fatty acids is believed to be involved in the regulation of cell division, and antitumor effect through biochemical and genetic processes.

  17. Evaluation of a hydrogen peroxide-based system for high-level disinfection of vaginal ultrasound probes.

    PubMed

    Johnson, Stephen; Proctor, Matthew; Bluth, Edward; Smetherman, Dana; Baumgarten, Katherine; Troxclair, Laurie; Bienvenu, Michele

    2013-10-01

    Because of the complex process and the risk of errors associated with the glutaraldehyde-based solutions previously used at our institution for disinfection, our department has implemented a new method for high-level disinfection of vaginal ultrasound probes: the hydrogen peroxide-based Trophon system (Nanosonics, Alexandria, New South Wales, Australia). The aim of this study was to compare the time difference, safety, and sonographers' satisfaction between the glutaraldehyde-based Cidex (CIVCO Medical Solutions, Kalona, IA) and the hydrogen peroxide-based Trophon disinfection systems. The Institutional Review Board approved a 14-question survey administered to the 13 sonographers in our department. Survey questions addressed a variety of aspects of the disinfection processes with graded responses over a standardized 5-point scale. A process diagram was developed for each disinfection method with segmental timing analysis, and a cost analysis was performed. Nonvariegated analysis of the survey data with the Wilcoxon signed rank test showed a statistical difference in survey responses in favor of the hydrogen peroxide-based system over the glutaraldehyde-based system regarding efficiency (P = .0013), ease of use (P = .0013), ability to maintain work flow (P = .026), safety (P = .0026), fixing problems (P = .0158), time (P = .0011), and overall satisfaction (P = .0018). The glutaraldehyde-based system took 32 minutes versus 14 minutes for the hydrogen peroxide-based system; the hydrogen peroxide-based system saved on average 7.5 hours per week. The cost of the hydrogen peroxide-based system and weekly maintenance pays for itself if 1.5 more ultrasound examinations are performed each week. The hydrogen peroxide-based disinfection system was proven to be more efficient and viewed to be easier and safer to use than the glutaraldehyde-based system. The adoption of the hydrogen peroxide-based system led to higher satisfaction among sonographers.

  18. Flow-through pretreatment of lignocellulosic biomass with inorganic nanoporous membranes

    DOEpatents

    Bhave, Ramesh R.; Lynd, Lee; Shao, Xiongjun

    2018-04-03

    A process for the pretreatment of lignocellulosic biomass is provided. The process generally includes flowing water through a pretreatment reactor containing a bed of particulate ligno-cellulosic biomass to produce a pressurized, high-temperature hydrolyzate exit stream, separating solubilized compounds from the hydrolyzate exit stream using an inorganic nanoporous membrane element, fractionating the retentate enriched in solubilized organic components and recycling the permeate to the pretreatment reactor. The pretreatment process provides solubilized organics in concentrated form for the subsequent conversion into biofuels and other chemicals.

  19. Antioxidant Effect of Captopril and Enalapril on Reactive Oxygen Species-Induced Endothelial Dysfunction in the Rabbit Abdominal Aorta

    PubMed Central

    Kim, Ji Hoon; Kim, Young Hak; Chung, Won-Sang; Suh, Jung Kook; Kim, Sung Jin

    2013-01-01

    Background Reactive oxygen species (ROS) are known to be related to cardiovascular diseases. Many studies have demonstrated that angiotensin-converting enzyme inhibitors have beneficial effects against ROS. We investigated the antioxidant effect of captopril and enalapril in nitric oxide mediated vascular endothelium-dependent relaxations. Materials and Methods Isolated rabbit abdominal aorta ring segments were exposed to ROS by electrolysis of the organ bath medium (Krebs-Henseleit solution) after pretreatment with various concentrations (range, 10-5 to 3×10-4 M) of captopril and enalapril. Before and after electrolysis, the endothelial function was measured by preconstricting the vessels with norepinephrine (10-6 M) followed by the cumulative addition of acetylcholine (range, 3×10-8 to 10-6 M). The relevance of the superoxide anion and hydrogen peroxide scavenging effect of captopril and enalapril was investigated using additional pretreatments of diethyldithiocarbamate (DETCA, 0.5 mM), an inhibitor of Cu/Zn superoxide dismutase, and 3-amino-1,2,4-triazole (3AT, 50 mM), an inhibitor of catalase. Results Both captopril and enalapril preserved vascular endothelium-dependent relaxation after exposure to ROS in a dose-dependent manner (p<0.0001). Pretreatment with DETCA attenuated the antioxidant effect of captopril and enalapril (p<0.0001), but pretreatment with 3AT did not have an effect. Conclusion Both captopril and enalapril protect endothelium against ROS in a dose-dependent fashion in isolated rabbit abdominal aortas. This protective effect is related to superoxide anion scavenging. PMID:23422724

  20. Epigallocatechin gallate (EGCG) prevents H2O2-induced oxidative stress in primary rat retinal pigment epithelial cells.

    PubMed

    Cia, David; Vergnaud-Gauduchon, Juliette; Jacquemot, Nathalie; Doly, Michel

    2014-09-01

    To determine whether the green tea polyphenol epigallocatechin gallate (EGCG) could prevent H(2)O(2)-induced oxidative stress in primary rat retinal pigment epithelial cells. Primary cultures of retinal pigment epithelium (RPE) cells were established from Long-Evans newborn rats. RPE cells were pretreated with various concentrations of EGCG for 24 h before being exposed to hydrogen peroxide (H(2)O(2)) for 2 h to induce oxidative stress. Cell metabolic activity was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell death was quantified by flow cytometry using propidium iodide (PI). Treatment of RPE cells with EGCG alone does not affect the cell viability up to 50 µM. Exposure of RPE cells to 600 µM H(2)O(2) caused a significant decrease in cell viability; whereas pretreatment with 10, 25, and 50 µM EGCG significantly reduced this decrease in a dose-dependent manner. The proportion of PI-positive cells increased significantly in cultures treated with H(2)O(2) alone; whereas pretreatment of RPE cells with 50 µM EGCG significantly reduced H(2)O(2)-induced RPE cell death. Our study shows that EGCG pretreatment can protect primary rat RPE cells from H(2)O(2)-induced death. This suggests potential effect of EGCG in the prevention of retinal diseases associated with H(2)O(2)-induced oxidative stress.

  1. Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water

    NASA Astrophysics Data System (ADS)

    Locke, Bruce R.; Shih, Kai-Yuan

    2011-06-01

    This paper presents a review of the literature dealing with the formation of hydrogen peroxide from plasma processes. Energy yields for hydrogen peroxide generation by plasma from water span approximately three orders of magnitude from 4 × 10-2 to 80 g kWh-1. A wide range of plasma processes from rf to pulsed, ac, and dc discharges directly in the liquid phase have similar energy yields and may thus be limited by radical quenching processes at the plasma-liquid interface. Reactor modification using discharges in bubbles and discharges over the liquid phase can provide modest improvements in energy yield over direct discharge in the liquid, but the interpretation is complicated by additional chemical reactions of gas phase components such as ozone and nitrogen oxides. The highest efficiency plasma process utilizes liquid water droplets that may enhance efficiency by sequestering hydrogen peroxide in the liquid and by suppressing decomposition reactions by radicals from the gas and at the interface. Kinetic simulations of water vapor reported in the literature suggest that plasma generation of hydrogen peroxide should approach 45% of the thermodynamics limit, and this fact coupled with experimental studies demonstrating improvements with the presence of the condensed liquid phase suggest that further improvements in energy yield may be possible. Plasma generation of hydrogen peroxide directly from water compares favorably with a number of other methods including electron beam, ultrasound, electrochemical and photochemical methods, and other chemical processes.

  2. Effect of melatonin on motor performance and brain cortex mitochondrial function during ethanol hangover.

    PubMed

    Karadayian, A G; Bustamante, J; Czerniczyniec, A; Cutrera, R A; Lores-Arnaiz, S

    2014-06-06

    Increased reactive oxygen species generation and mitochondrial dysfunction occur during ethanol hangover. The aim of this work was to study the effect of melatonin pretreatment on motor performance and mitochondrial function during ethanol hangover. Male mice received melatonin solution or its vehicle in drinking water during 7 days and i.p. injection with EtOH (3.8 g/kg BW) or saline at the eighth day. Motor performance and mitochondrial function were evaluated at the onset of hangover (6h after injection). Melatonin improved motor coordination in ethanol hangover mice. Malate-glutamate-dependent oxygen uptake was decreased by ethanol hangover treatment and partially prevented by melatonin pretreatment. Melatonin alone induced a decrease of 30% in state 4 succinate-dependent respiratory rate. Also, the activity of the respiratory complexes was decreased in melatonin-pretreated ethanol hangover group. Melatonin pretreatment before the hangover prevented mitochondrial membrane potential collapse and induced a 79% decrement of hydrogen peroxide production as compared with ethanol hangover group. Ethanol hangover induced a 25% decrease in NO production. Melatonin alone and as a pretreatment before ethanol hangover significantly increased NO production by nNOS and iNOS as compared with control groups. No differences were observed in nNOS protein expression, while iNOS expression was increased in the melatonin group. Increased NO production by melatonin could be involved in the decrease of succinate-dependent oxygen consumption and the inhibition of complex IV observed in our study. Melatonin seems to act as an antioxidant agent in the ethanol hangover condition but also exhibited some dual effects related to NO metabolism. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Certification of vapor phase hydrogen peroxide sterilization process for spacecraft application

    NASA Technical Reports Server (NTRS)

    Rohatgi, N.; Schubert, W.; Koukol, R.; Foster, T. L.; Stabekis, P. D.

    2002-01-01

    This paper describes the selection process and research activities JPL is planning to conduct for certification of hydrogen peroxide as a NASA approved technique for sterilization of various spacecraft parts/components and entire modern spacecraft.

  4. Rapid Method for Sodium Hydroxide/Sodium Peroxide Fusion ...

    EPA Pesticide Factsheets

    Technical Fact Sheet Analysis Purpose: Qualitative analysis Technique: Alpha spectrometry Method Developed for: Plutonium-238 and plutonium-239 in water and air filters Method Selected for: SAM lists this method as a pre-treatment technique supporting analysis of refractory radioisotopic forms of plutonium in drinking water and air filters using the following qualitative techniques: • Rapid methods for acid or fusion digestion • Rapid Radiochemical Method for Plutonium-238 and Plutonium 239/240 in Building Materials for Environmental Remediation Following Radiological Incidents. Summary of subject analytical method which will be posted to the SAM website to allow access to the method.

  5. Dietary spices protect against hydrogen peroxide-induced DNA damage and inhibit nicotine-induced cancer cell migration.

    PubMed

    Jayakumar, R; Kanthimathi, M S

    2012-10-01

    Spices are rich sources of antioxidants due to the presence of phenols and flavonoids. In this study, the DNA protecting activity and inhibition of nicotine-induced cancer cell migration of 9 spices were analysed. Murine fibroblasts (3T3-L1) and human breast cancer (MCF-7) cells were pre-treated with spice extracts and then exposed to H₂O₂ and nicotine. The comet assay was used to analyse the DNA damage. Among the 9 spices, ginger, at 50 μg/ml protected against 68% of DNA damage in 3T3-L1 cells. Caraway, cumin and fennel showed statistically significant (p<0.05) DNA protecting activity. Treatment of MCF-7 cells with nicotine induced cell migration, whereas pre-treatment with spices reduced this migration. Pepper, long pepper and ginger exhibited a high rate of inhibition of cell migration. The results of this study prove that spices protect DNA and inhibit cancer cell migration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Limonene protects osteoblasts against methylglyoxal-derived adduct formation by regulating glyoxalase, oxidative stress, and mitochondrial function.

    PubMed

    Suh, Kwang Sik; Chon, Suk; Choi, Eun Mi

    2017-12-25

    Methylglyoxal (MG) is a potent protein glycating agent and an important precursor of advanced glycation end products, which are involved in the pathogenesis of diabetic osteopathy. In this study, we investigated the effects of limonene on MG-induced damage in osteoblastic MC3T3-E1 cells. Pretreating cells with limonene prevented MG-induced protein adduct formation, tumor necrosis factor alpha and interleukin-6 release, mitochondrial superoxide production, and cardiolipin peroxidation. In addition, limonene increased glyoxalase I activity, and glutathione and heme oxygenase-1 levels in the presence of MG. Pretreatment with limonene prior to MG exposure reduced MG-induced mitochondrial dysfunction by preventing mitochondrial membrane potential dissipation and adenosine triphosphate loss, and reduced the levels of adenosine monophosphate-activated protein kinase, peroxisome proliferator activated receptor γ coactivator 1α, and nitric oxide. These results demonstrate that limonene may prevent the development of diabetic osteopathy. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The Polyphenol Chlorogenic Acid Attenuates UVB-mediated Oxidative Stress in Human HaCaT Keratinocytes

    PubMed Central

    Cha, Ji Won; Piao, Mei Jing; Kim, Ki Cheon; Yao, Cheng Wen; Zheng, Jian; Kim, Seong Min; Hyun, Chang Lim; Ahn, Yong Seok; Hyun, Jin Won

    2014-01-01

    We investigated the protective effects of chlorogenic acid (CGA), a polyphenol compound, on oxidative damage induced by UVB exposure on human HaCaT cells. In a cell-free system, CGA scavenged 1,1-diphenyl-2-picrylhydrazyl radicals, superoxide anions, hydroxyl radicals, and intracellular reactive oxygen species (ROS) generated by hydrogen peroxide and ultraviolet B (UVB). Furthermore, CGA absorbed electromagnetic radiation in the UVB range (280–320 nm). UVB exposure resulted in damage to cellular DNA, as demonstrated in a comet assay; pre-treatment of cells with CGA prior to UVB irradiation prevented DNA damage and increased cell viability. Furthermore, CGA pre-treatment prevented or ameliorated apoptosis-related changes in UVB-exposed cells, including the formation of apoptotic bodies, disruption of mitochondrial membrane potential, and alterations in the levels of the apoptosis-related proteins Bcl-2, Bax, and caspase-3. Our findings suggest that CGA protects cells from oxidative stress induced by UVB radiation. PMID:24753819

  8. Inhibitory Effects of Pretreatment with Radon on Acute Alcohol-Induced Hepatopathy in Mice

    PubMed Central

    Toyota, Teruaki; Kataoka, Takahiro; Nishiyama, Yuichi; Taguchi, Takehito; Yamaoka, Kiyonori

    2012-01-01

    We previously reported that radon inhalation activates antioxidative functions in the liver and inhibits carbon tetrachloride-induced hepatopathy in mice. In addition, it has been reported that reactive oxygen species contribute to alcohol-induced hepatopathy. In this study, we examined the inhibitory effects of radon inhalation on acute alcohol-induced hepatopathy in mice. C57BL/6J mice were subjected to intraperitoneal injection of 50% alcohol (5 g/kg bodyweight) after inhaling approximately 4000 Bq/m3 radon for 24 h. Alcohol administration significantly increased the activities of glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT) in serum, and the levels of triglyceride and lipid peroxide in the liver, suggesting acute alcohol-induced hepatopathy. Radon inhalation activated antioxidative functions in the liver. Furthermore, pretreatment with radon inhibited the depression of hepatic functions and antioxidative functions. These findings suggested that radon inhalation activated antioxidative functions in the liver and inhibited acute alcohol-induced hepatopathy in mice. PMID:23213269

  9. Inhibitory effects of pretreatment with radon on acute alcohol-induced hepatopathy in mice.

    PubMed

    Toyota, Teruaki; Kataoka, Takahiro; Nishiyama, Yuichi; Taguchi, Takehito; Yamaoka, Kiyonori

    2012-01-01

    We previously reported that radon inhalation activates antioxidative functions in the liver and inhibits carbon tetrachloride-induced hepatopathy in mice. In addition, it has been reported that reactive oxygen species contribute to alcohol-induced hepatopathy. In this study, we examined the inhibitory effects of radon inhalation on acute alcohol-induced hepatopathy in mice. C57BL/6J mice were subjected to intraperitoneal injection of 50% alcohol (5 g/kg bodyweight) after inhaling approximately 4000 Bq/m(3) radon for 24 h. Alcohol administration significantly increased the activities of glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT) in serum, and the levels of triglyceride and lipid peroxide in the liver, suggesting acute alcohol-induced hepatopathy. Radon inhalation activated antioxidative functions in the liver. Furthermore, pretreatment with radon inhibited the depression of hepatic functions and antioxidative functions. These findings suggested that radon inhalation activated antioxidative functions in the liver and inhibited acute alcohol-induced hepatopathy in mice.

  10. Protection against UVB-induced oxidative stress in human skin cells and skin models by methionine sulfoxide reductase A.

    PubMed

    Pelle, Edward; Maes, Daniel; Huang, Xi; Frenkel, Krystyna; Pernodet, Nadine; Yarosh, Daniel B; Zhang, Qi

    2012-01-01

    Environmental trauma to human skin can lead to oxidative damage of proteins and affect their activity and structure. When methionine becomes oxidized to its sulfoxide form, methionine sulfoxide reductase A (MSRA) reduces it back to methionine. We report here the increase in MSRA in normal human epidermal keratinocytes (NHEK) after ultraviolet B (UVB) radiation, as well as the reduction in hydrogen peroxide levels in NHEK pre-treated with MSRA after exposure. Further, when NHEK were pre-treated with a non-cytotoxic pentapeptide containing methionine sulfoxide (metSO), MSRA expression increased by 18.2%. Additionally, when the media of skin models were supplemented with the metSO pentapeptide and then exposed to UVB, a 31.1% reduction in sunburn cells was evident. We conclude that the presence of MSRA or an externally applied peptide reduces oxidative damage in NHEK and skin models and that MSRA contributes to the protection of proteins against UVB-induced damage in skin.

  11. Expression of Mitochondrial Cytochrome C Oxidase Chaperone Gene (COX20) Improves Tolerance to Weak Acid and Oxidative Stress during Yeast Fermentation

    PubMed Central

    Kumar, Vinod; Hart, Andrew J.; Keerthiraju, Ethiraju R.; Waldron, Paul R.; Tucker, Gregory A.; Greetham, Darren

    2015-01-01

    Introduction Saccharomyces cerevisiae is the micro-organism of choice for the conversion of fermentable sugars released by the pre-treatment of lignocellulosic material into bioethanol. Pre-treatment of lignocellulosic material releases acetic acid and previous work identified a cytochrome oxidase chaperone gene (COX20) which was significantly up-regulated in yeast cells in the presence of acetic acid. Results A Δcox20 strain was sensitive to the presence of acetic acid compared with the background strain. Overexpressing COX20 using a tetracycline-regulatable expression vector system in a Δcox20 strain, resulted in tolerance to the presence of acetic acid and tolerance could be ablated with addition of tetracycline. Assays also revealed that overexpression improved tolerance to the presence of hydrogen peroxide-induced oxidative stress. Conclusion This is a study which has utilised tetracycline-regulated protein expression in a fermentation system, which was characterised by improved (or enhanced) tolerance to acetic acid and oxidative stress. PMID:26427054

  12. Effect of estradiol and hydrocortisone on the process of peroxidation of mitochondrial membrane lipids in irradiated rat liver. [/sup 60/Co. gamma. rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saksonov, N.P.

    Experiments were conducted on male, mongrel albino rats. They were exposed to /sup 60/Co ..gamma.. radiation once, in a dosage of 600 R. Estradiol and hydrocortisone were given intraperitoneally at the rate of 1 mg/kg, 2 h before irradiation or 2, 24 and 72 h after exposure. The animals were sacrificed 5 days after irradiation. These studies established that single exposure of animals to radiation in a dosage of 600 R leads to activation of processes of peroxidation of membrane lipids of the hepatic mitochondria. When estradiol is given 2 and 4 days before sacrificing, one observes acceleration of processesmore » of peroxidation of lipids without reliable change in malonic dialdehyde content. Administration of estrogen 5 days prior to sacrificing leads to a drop of malonic dialdehyde level, which is indicative of attenuation of the process of lipid peroxidation. Administration of hydrocortisone is associated with elevation of the latency period and level of peroxidation after 5 days, as compared to intact animals. Injection of this hormone 2 days before sacrificing the animals leads to attenuation and decrease in rate of peroxidation. The obtained data indicate that there are different mechanisms involved in the inhibitory effects of estradiol and hydrocortisone on peroxidation of lipids of mitochondrial membranes of the rat liver, activated by irradiation. Thus, it may be assumed that steroid hormones are actively involved in regulation of lipid peroxidation when mammals are exposed to radiation. (ERB)« less

  13. Formulation of enzyme blends to maximize the hydrolysis of alkaline peroxide pretreated alfalfa hay and barley straw by rumen enzymes and commercial cellulases

    PubMed Central

    2014-01-01

    Background Efficient conversion of lignocellulosic biomass to fermentable sugars requires the synergistic action of multiple enzymes; consequently enzyme mixtures must be properly formulated for effective hydrolysis. The nature of an optimal enzyme blends depends on the type of pretreatment employed as well the characteristics of the substrate. In this study, statistical experimental design was used to develop mixtures of recombinant glycosyl hydrolases from thermophilic and anaerobic fungi that enhanced the digestion of alkaline peroxide treated alfalfa hay and barley straw by mixed rumen enzymes as well as commercial cellulases (Accelerase 1500, A1500; Accelerase XC, AXC). Results Combinations of feruloyl and acetyl xylan esterases (FAE1a; AXE16A_ASPNG), endoglucanase GH7 (EGL7A_THITE) and polygalacturonase (PGA28A_ASPNG) with rumen enzymes improved straw digestion. Inclusion of pectinase (PGA28A_ASPNG), endoxylanase (XYN11A_THITE), feruloyl esterase (FAE1a) and β-glucosidase (E-BGLUC) with A1500 or endoglucanase GH7 (EGL7A_THITE) and β-xylosidase (E-BXSRB) with AXC increased glucose release from alfalfa hay. Glucose yield from straw was improved when FAE1a and endoglucanase GH7 (EGL7A_THITE) were added to A1500, while FAE1a and AXE16A_ASPNG enhanced the activity of AXC on straw. Xylose release from alfalfa hay was augmented by supplementing A1500 with E-BGLUC, or AXC with EGL7A_THITE and XYN11A_THITE. Adding arabinofuranosidase (ABF54B_ASPNG) and esterases (AXE16A_ASPNG; AXE16B_ASPNG) to A1500, or FAE1a and AXE16A_ASPNG to AXC enhanced xylose release from barley straw, a response confirmed in a scaled up assay. Conclusion The efficacy of commercial enzyme mixtures as well as mixed enzymes from the rumen was improved through formulation with synergetic recombinant enzymes. This approach reliably identified supplemental enzymes that enhanced sugar release from alkaline pretreated alfalfa hay and barley straw. PMID:24766728

  14. Formulation of enzyme blends to maximize the hydrolysis of alkaline peroxide pretreated alfalfa hay and barley straw by rumen enzymes and commercial cellulases.

    PubMed

    Badhan, Ajay; Wang, Yuxi; Gruninger, Robert; Patton, Donald; Powlowski, Justin; Tsang, Adrian; McAllister, Tim

    2014-04-26

    Efficient conversion of lignocellulosic biomass to fermentable sugars requires the synergistic action of multiple enzymes; consequently enzyme mixtures must be properly formulated for effective hydrolysis. The nature of an optimal enzyme blends depends on the type of pretreatment employed as well the characteristics of the substrate. In this study, statistical experimental design was used to develop mixtures of recombinant glycosyl hydrolases from thermophilic and anaerobic fungi that enhanced the digestion of alkaline peroxide treated alfalfa hay and barley straw by mixed rumen enzymes as well as commercial cellulases (Accelerase 1500, A1500; Accelerase XC, AXC). Combinations of feruloyl and acetyl xylan esterases (FAE1a; AXE16A_ASPNG), endoglucanase GH7 (EGL7A_THITE) and polygalacturonase (PGA28A_ASPNG) with rumen enzymes improved straw digestion. Inclusion of pectinase (PGA28A_ASPNG), endoxylanase (XYN11A_THITE), feruloyl esterase (FAE1a) and β-glucosidase (E-BGLUC) with A1500 or endoglucanase GH7 (EGL7A_THITE) and β-xylosidase (E-BXSRB) with AXC increased glucose release from alfalfa hay. Glucose yield from straw was improved when FAE1a and endoglucanase GH7 (EGL7A_THITE) were added to A1500, while FAE1a and AXE16A_ASPNG enhanced the activity of AXC on straw. Xylose release from alfalfa hay was augmented by supplementing A1500 with E-BGLUC, or AXC with EGL7A_THITE and XYN11A_THITE. Adding arabinofuranosidase (ABF54B_ASPNG) and esterases (AXE16A_ASPNG; AXE16B_ASPNG) to A1500, or FAE1a and AXE16A_ASPNG to AXC enhanced xylose release from barley straw, a response confirmed in a scaled up assay. The efficacy of commercial enzyme mixtures as well as mixed enzymes from the rumen was improved through formulation with synergetic recombinant enzymes. This approach reliably identified supplemental enzymes that enhanced sugar release from alkaline pretreated alfalfa hay and barley straw.

  15. Process and technoeconomic analysis of leading pretreatment technologies for lignocellulosic ethanol production using switchgrass.

    PubMed

    Tao, Ling; Aden, Andy; Elander, Richard T; Pallapolu, Venkata Ramesh; Lee, Y Y; Garlock, Rebecca J; Balan, Venkatesh; Dale, Bruce E; Kim, Youngmi; Mosier, Nathan S; Ladisch, Michael R; Falls, Matthew; Holtzapple, Mark T; Sierra, Rocio; Shi, Jian; Ebrik, Mirvat A; Redmond, Tim; Yang, Bin; Wyman, Charles E; Hames, Bonnie; Thomas, Steve; Warner, Ryan E

    2011-12-01

    Six biomass pretreatment processes to convert switchgrass to fermentable sugars and ultimately to cellulosic ethanol are compared on a consistent basis in this technoeconomic analysis. The six pretreatment processes are ammonia fiber expansion (AFEX), dilute acid (DA), lime, liquid hot water (LHW), soaking in aqueous ammonia (SAA), and sulfur dioxide-impregnated steam explosion (SO(2)). Each pretreatment process is modeled in the framework of an existing biochemical design model so that systematic variations of process-related changes are consistently captured. The pretreatment area process design and simulation are based on the research data generated within the Biomass Refining Consortium for Applied Fundamentals and Innovation (CAFI) 3 project. Overall ethanol production, total capital investment, and minimum ethanol selling price (MESP) are reported along with selected sensitivity analysis. The results show limited differentiation between the projected economic performances of the pretreatment options, except for processes that exhibit significantly lower monomer sugar and resulting ethanol yields. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. PROCESS OF RECOVERING URANIUM

    DOEpatents

    Carter, J.M.; Larson, C.E.

    1958-10-01

    A process is presented for recovering uranium values from calutron deposits. The process consists in treating such deposits to produce an oxidlzed acidic solution containing uranium together with the following imparities: Cu, Fe, Cr, Ni, Mn, Zn. The uranium is recovered from such an impurity-bearing solution by adjusting the pH of the solution to the range 1.5 to 3.0 and then treating the solution with hydrogen peroxide. This results in the precipitation of uranium peroxide which is substantially free of the metal impurities in the solution. The peroxide precipitate is then separated from the solution, washed, and calcined to produce uranium trioxide.

  17. Patent application for a process for production of effective catalysts for polymerization of unsaturated compounds (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibing, G.

    Organic compounds which contain one or more double carbon bonds per molecule frequently display the ability of polymerizing with each other and with other compounds. It is mainly compounds containing peroxide that serve as catalysts for such operations. Examples of recommended substances are hydrogen peroxide, ozone, perbenzoic acid, benzoin peroxide, peroxide-containing ethers, persulfates, etc. It was found that a catalyst of much greater effectiveness in the polymerization of unsaturated compounds can be obtained from one of the previously-known catalysts if the hydrocarbons are processed with lateral-chain substances (e.g., toluene, xylene, ethyl benzene, propyl benzene, diethyl benzene, etc.) in boiling heatmore » with damp air. In this process there develops a small measure of peroxide of previously unknown make-up, which possess outstanding catalytic effectiveness. For production of the catalyst, the aromatics are heated by return-flow cooler and conducted for several hours through an air stream which has been saturated with steam. Oxidation can be undertaken with other substances also; for example, oxygen, ozone, or compounds which give off oxygen. Activation with air, however, is the simplest way and yields the most effective catalyst. Examples of the process are provided.« less

  18. Hydrogen peroxide production and mitochondrial dysfunction contribute to the fusaric acid-induced programmed cell death in tobacco cells.

    PubMed

    Jiao, Jiao; Sun, Ling; Zhou, Benguo; Gao, Zhengliang; Hao, Yu; Zhu, Xiaoping; Liang, Yuancun

    2014-08-15

    Fusaric acid (FA), a non-specific toxin produced mainly by Fusarium spp., can cause programmed cell death (PCD) in tobacco suspension cells. The mechanism underlying the FA-induced PCD was not well understood. In this study, we analyzed the roles of hydrogen peroxide (H2O2) and mitochondrial function in the FA-induced PCD. Tobacco suspension cells were treated with 100 μM FA and then analyzed for H2O2 accumulation and mitochondrial functions. Here we demonstrate that cells undergoing FA-induced PCD exhibited H2O2 production, lipid peroxidation, and a decrease of the catalase and ascorbate peroxidase activities. Pre-treatment of tobacco suspension cells with antioxidant ascorbic acid and NADPH oxidase inhibitor diphenyl iodonium significantly reduced the rate of FA-induced cell death as well as the caspase-3-like protease activity. Moreover, FA treatment of tobacco cells decreased the mitochondrial membrane potential and ATP content. Oligomycin and cyclosporine A, inhibitors of the mitochondrial ATP synthase and the mitochondrial permeability transition pore, respectively, could also reduce the rate of FA-induced cell death significantly. Taken together, the results presented in this paper demonstrate that H2O2 accumulation and mitochondrial dysfunction are the crucial events during the FA-induced PCD in tobacco suspension cells. Copyright © 2014 Elsevier GmbH. All rights reserved.

  19. Induction of Mitochondrial Reactive Oxygen Species Production by Itraconazole, Terbinafine, and Amphotericin B as a Mode of Action against Aspergillus fumigatus

    PubMed Central

    Shekhova, Elena

    2017-01-01

    ABSTRACT Drug resistance in fungal pathogens is of incredible importance to global health, yet the mechanisms of drug action remain only loosely defined. Antifungal compounds have been shown to trigger the intracellular accumulation of reactive oxygen species (ROS) in human-pathogenic yeasts, but the source of those ROS remained unknown. In the present study, we examined the role of endogenous ROS for the antifungal activity of the three different antifungal substances itraconazole, terbinafine, and amphotericin B, which all target the fungal cell membrane. All three antifungals had an impact on fungal redox homeostasis by causing increased intracellular ROS production. Interestingly, the elevated ROS levels induced by antifungals were abolished by inhibition of the mitochondrial respiratory complex I with rotenone. Further, evaluation of lipid peroxidation using the thiobarbituric acid assay revealed that rotenone pretreatment decreased ROS-induced lipid peroxidation during incubation of Aspergillus fumigatus with itraconazole and terbinafine. By applying the mitochondrion-specific lipid peroxidation probe MitoPerOx, we also confirmed that ROS are induced in mitochondria and subsequently cause significant oxidation of mitochondrial membrane in the presence of terbinafine and amphotericin B. To summarize, our study suggests that the induction of ROS production contributes to the ability of antifungal compounds to inhibit fungal growth. Moreover, mitochondrial complex I is the main source of deleterious ROS production in A. fumigatus challenged with antifungal compounds. PMID:28848005

  20. Hyperoside prevents oxidative damage induced by hydrogen peroxide in lung fibroblast cells via an antioxidant effect.

    PubMed

    Piao, Mei Jing; Kang, Kyoung Ah; Zhang, Rui; Ko, Dong Ok; Wang, Zhi Hong; You, Ho Jin; Kim, Hee Sun; Kim, Ju Sun; Kang, Sam Sik; Hyun, Jin Won

    2008-12-01

    We elucidated the cytoprotective effects of hyperoside (quercetin-3-O-galactoside) against hydrogen peroxide (H2O2)-induced cell damage. We found that hyperoside scavenged the intracellular reactive oxygen species (ROS) detected by fluorescence spectrometry, flow cytometry, and confocal microscopy. In addition, we found that hyperoside scavenged the hydroxyl radicals generated by the Fenton reaction (FeSO4)+H2O2) in a cell-free system, which was detected by electron spin resonance (ESR) spectrometry. Hyperoside was found to inhibit H2O2-induced apoptosis in Chinese hamster lung fibroblast (V79-4) cells, as shown by decreased apoptotic nuclear fragmentation, decreased sub-G(1) cell population, and decreased DNA fragmentation. In addition, hyperoside pretreatment inhibited the H2O2-induced activation of caspase-3 measured in terms of levels of cleaved caspase-3. Hyperoside prevented H2O2-induced lipid peroxidation as well as protein carbonyl. In addition, hyperoside prevented the H2O2-induced cellular DNA damage, which was established by comet tail, and phospho histone H2A.X expression. Furthermore, hyperoside increased the catalase and glutathione peroxidase activities. Conversely, the catalase inhibitor abolished the cytoprotective effect of hyperoside from H2O2-induced cell damage. In conclusion, hyperoside was shown to possess cytoprotective properties against oxidative stress by scavenging intracellular ROS and enhancing antioxidant enzyme activity.

  1. Curcumin Blocks Naproxen-Induced Gastric Antral Ulcerations through Inhibition of Lipid Peroxidation and Activation of Enzymatic Scavengers in Rats.

    PubMed

    Kim, Jeong-Hwan; Jin, Soojung; Kwon, Hyun Ju; Kim, Byung Woo

    2016-08-28

    Curcumin is a polyphenol derived from the plant Curcuma longa, which is used for the treatment of diseases associated with oxidative stress and inflammation. The present study was undertaken to determine the protective effect of curcumin against naproxen-induced gastric antral ulcerations in rats. Different doses (10, 50, and 100 mg/kg) of curcumin or vehicle (curcumin, 0 mg/kg) were pretreated for 3 days by oral gavage, and then gastric mucosal lesions were caused by 80 mg/kg naproxen applied for 3 days. Curcumin significantly inhibited the naproxen-induced gastric antral ulcer area and lipid peroxidation in a dose-dependent manner. In addition, curcumin markedly increased activities of radical scavenging enzymes, such as superoxide dismutase (SOD), catalase, and glutathione peroxidase in a dose-dependent manner. Specifically, 100 mg/kg curcumin completely protected the gastric mucosa against the loss in the enzyme, resulting in a drastic increase of activities of radical scavenging enzymes up to more than the level of untreated normal rats. Histological examination obviously showed that curcumin prevents naproxen-induced gastric antral ulceration as a result of direct protection of the gastric mucosa. These results suggest that curcumin blocks naproxen-induced gastric antral ulcerations through prevention of lipid peroxidation and activation of radical scavenging enzymes, and it may offer a potential remedy of gastric antral ulcerations.

  2. (-) Epicatechin attenuates mitochondrial damage by enhancing mitochondrial multi-marker enzymes, adenosine triphosphate and lowering calcium in isoproterenol induced myocardial infarcted rats.

    PubMed

    Stanely Mainzen Prince, P

    2013-03-01

    Cardiac mitochondrial damage plays an important role in the pathology of myocardial infarction. The protective effects of (-) epicatechin on cardiac mitochondrial damage in isoproterenol induced myocardial infarction were evaluated in rats. Rats were pretreated with (-) epicatechin (20 mg/kg body weight) daily for a period of 21 days. After the pretreatment period, isoproterenol (100 mg/kg body weight) was injected subcutaneously into rats twice at an interval of 24 h to induce myocardial infarction. Isoproterenol induced myocardial infarcted rats showed a significant increase in the levels of cardiac diagnostic markers, heart mitochondrial lipid peroxidation, calcium, and a significant decrease in the activities/levels of heart mitochondrial glutathione peroxidase, glutathione reductase, reduced glutathione, isocitrate, succinate, malate, α-ketoglutarate and NADH-dehydrogenases, cytochrome-C-oxidase and adenosine triphosphate. (-) Epicatechin pretreatment showed significant protective effects on all the biochemical parameters evaluated. The in vitro study revealed the superoxide and hydroxyl radical scavenging activity of (-) epicatechin. The possible mechanisms for the beneficial effects of (-) epicatechin on cardiac mitochondria could be attributed to scavenging of free radicals, decreasing calcium, increasing multi-enzymes (antioxidant, tricarboxylic acid cycle and respiratory chain enzymes), reduced glutathione and adenosine triphosphate. Thus, (-) epicatechin attenuated mitochondrial damage in isoproterenol induced myocardial infarcted rats. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Physico-chemical pre-treatment and biotransformation of wastewater and wastewater sludge--fate of bisphenol A.

    PubMed

    Mohapatra, D P; Brar, S K; Tyagi, R D; Surampalli, R Y

    2010-02-01

    Bisphenol A (BPA), an endocrine disrupting compound largely used in plastic and paper industry, ends up in aquatic systems via wastewater treatment plants (WWTPs) among other sources. The identification and quantification of BPA in wastewater (WW) and wastewater sludge (WWS) is of major interest to assess the endocrine activity of treated effluent discharged into the environment. Many treatment technologies, including various pre-treatment methods, such as hydrolysis, Fenton oxidation, peroxidation, ultrasonication and ozonation have been developed in order to degrade BPA in WW and WWS and for the production of WWS based value-added products (VAPs). WWS based VAPs, such as biopesticides, bioherbicides, biofertilizers, bioplastics and enzymes are low cost biological alternatives that can compete with chemicals or other cost intensive biological products in the current markets. However, this field application is disputable due to the presence of these organic compounds which has been discussed with a perspective of simultaneous degradation. The pre-treatment produces an impact on rheology as well as value-addition which has been reviewed in this paper. Various analytical techniques available for the detection of BPA in WW and WWS are also discussed. Presence of heavy metals and possible thermodynamical behavior of the compound in WW and WWS can have major impact on BPA removal, which is also included in the review.

  4. Dry olive leaf extract counteracts L-thyroxine-induced genotoxicity in human peripheral blood leukocytes in vitro.

    PubMed

    Topalović, Dijana Žukovec; Živković, Lada; Čabarkapa, Andrea; Djelić, Ninoslav; Bajić, Vladan; Dekanski, Dragana; Spremo-Potparević, Biljana

    2015-01-01

    The thyroid hormones change the rate of basal metabolism, modulating the consumption of oxygen and causing production of reactive oxygen species, which leads to the development of oxidative stress and DNA strand breaks. Olive (Olea europaea L.) leaf contains many potentially bioactive compounds, making it one of the most potent natural antioxidants. The objective of this study was to evaluate the genotoxicity of L-thyroxine and to investigate antioxidative and antigenotoxic potential of the standardized oleuropein-rich dry olive leaf extract (DOLE) against hydrogen peroxide and L-thyroxine-induced DNA damage in human peripheral blood leukocytes by using the comet assay. Various concentrations of the extract were tested with both DNA damage inducers, under two different experimental conditions, pretreatment and posttreatment. Results indicate that L-thyroxine exhibited genotoxic effect and that DOLE displayed protective effect against thyroxine-induced genotoxicity. The number of cells with DNA damage, was significantly reduced, in both pretreated and posttreated samples (P < 0.05). Comparing the beneficial effect of all tested concentrations of DOLE, in both experimental protocols, it appears that extract was more effective in reducing DNA damage in the pretreatment, exhibiting protective role against L-thyroxine effect. This feature of DOLE can be explained by its capacity to act as potent free radical scavenger.

  5. Dry Olive Leaf Extract Counteracts L-Thyroxine-Induced Genotoxicity in Human Peripheral Blood Leukocytes In Vitro

    PubMed Central

    Žukovec Topalović, Dijana; Živković, Lada; Čabarkapa, Andrea; Djelić, Ninoslav; Bajić, Vladan; Spremo-Potparević, Biljana

    2015-01-01

    The thyroid hormones change the rate of basal metabolism, modulating the consumption of oxygen and causing production of reactive oxygen species, which leads to the development of oxidative stress and DNA strand breaks. Olive (Olea europaea L.) leaf contains many potentially bioactive compounds, making it one of the most potent natural antioxidants. The objective of this study was to evaluate the genotoxicity of L-thyroxine and to investigate antioxidative and antigenotoxic potential of the standardized oleuropein-rich dry olive leaf extract (DOLE) against hydrogen peroxide and L-thyroxine-induced DNA damage in human peripheral blood leukocytes by using the comet assay. Various concentrations of the extract were tested with both DNA damage inducers, under two different experimental conditions, pretreatment and posttreatment. Results indicate that L-thyroxine exhibited genotoxic effect and that DOLE displayed protective effect against thyroxine-induced genotoxicity. The number of cells with DNA damage, was significantly reduced, in both pretreated and posttreated samples (P < 0.05). Comparing the beneficial effect of all tested concentrations of DOLE, in both experimental protocols, it appears that extract was more effective in reducing DNA damage in the pretreatment, exhibiting protective role against L-thyroxine effect. This feature of DOLE can be explained by its capacity to act as potent free radical scavenger. PMID:25789081

  6. Pretreatment effects on orange processing waste for making ethanol by simultaneous saccharification and fermentation

    USDA-ARS?s Scientific Manuscript database

    Pretreatment of orange processing waste (CPW) by steam explosion under various conditions (pretreatment time, pH and temperatures) was investigated. Pretreatments longer than 4 min with steam purging resulted in CPW containing less than 0.1% limonene, an inhibitor for fermentation. Steam pretreatmen...

  7. 40 CFR 415.92 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SOURCE CATEGORY Hydrogen Peroxide Production Subcategory § 415.92 Effluent limitations guidelines... point source subject to this subpart and manufacturing hydrogen peroxide by the oxidation of alkyl...—Hydrogen Peroxide Organic Process Pollutant or pollutant property BPT limitations Maximum for any 1 day...

  8. 40 CFR 415.92 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SOURCE CATEGORY Hydrogen Peroxide Production Subcategory § 415.92 Effluent limitations guidelines... point source subject to this subpart and manufacturing hydrogen peroxide by the oxidation of alkyl...—Hydrogen Peroxide Organic Process Pollutant or pollutant property BPT limitations Maximum for any 1 day...

  9. 40 CFR 415.92 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SOURCE CATEGORY Hydrogen Peroxide Production Subcategory § 415.92 Effluent limitations guidelines... point source subject to this subpart and manufacturing hydrogen peroxide by the oxidation of alkyl...—Hydrogen Peroxide Organic Process Pollutant or pollutant property BPT limitations Maximum for any 1 day...

  10. 40 CFR 415.92 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SOURCE CATEGORY Hydrogen Peroxide Production Subcategory § 415.92 Effluent limitations guidelines... point source subject to this subpart and manufacturing hydrogen peroxide by the oxidation of alkyl...—Hydrogen Peroxide Organic Process Pollutant or pollutant property BPT limitations Maximum for any 1 day...

  11. 40 CFR 415.92 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SOURCE CATEGORY Hydrogen Peroxide Production Subcategory § 415.92 Effluent limitations guidelines... point source subject to this subpart and manufacturing hydrogen peroxide by the oxidation of alkyl...—Hydrogen Peroxide Organic Process Pollutant or pollutant property BPT limitations Maximum for any 1 day...

  12. Subgingival delivery of oral debriding agents: a proof of concept.

    PubMed

    Dunlap, Tanya; Keller, Duane C; Marshall, Milton V; Costerton, J William; Schaudinn, Christoph; Sindelar, Betty; Cotton, John R

    2011-01-01

    This study is a proof of concept to determine the efficacy of a custom-fabricated tray in placing antimicrobial and debriding agents in the periodontal pockets of persons with active gingival infections. Localized subgingival delivery of antimicrobial and antibiotic agents is routinely employed as adjunctive therapy for the treatment and management ofperiopathogens associated with periodontal disease. Because these delivery techniques often face time constraints and impose temporary restrictions on patient brushing and flossing, a custom-formed prescription dental tray can be used to deliver and maintain medications in periodontal pockets between office visits and without brushing or flossing restrictions. The ability of this tray to maintain sufficient concentrations of medication in the periodontal pockets to have a therapeutic effect is evaluated here with theoretical modeling and practical application. Hydrogen peroxide is an oral debriding agent and oral wound cleanser with antimicrobial properties. The debriding effect of 1.7% hydrogen peroxide gel was tested in vitro on Streptococcus mutans biofilm using glass carriers for collection. Diffusion modeling tested the potential of the customized tray to place hydrogen peroxide gel into the sulcus in the presence of crevicular fluid flow. Changes in periodontal microflora with scanning electron microscopy analysis of in vivo paper point site sampling were analyzed before and after a thin ribbon of 1.7% hydrogen peroxide gel (approximately 0.7 gm) and a subtherapeutic dose (three drops) of Vibramycin (50 mg/5 ml) were placed via Perio Trays into periodontal pockets, ranging from 4-8 mm at daily prescribed intervals for two to five weeks. In vitro results indicate that 1.7% hydrogen peroxide gel breaks down the exopolysaccharide slime and cell walls ofS. mutans, and begins to debride the cells from glass carriers within 10 minutes. Diffusion modeling indicates that hydrogen peroxide can penetrate into the deeper pockets (9 mm), but also its concentration in these deep pockets will increase over wearing time in the absence of degradation by peroxidases and catalase. Site sampling data confirm diffusion modeling results, with evidence that medication delivered with the prescription tray reduced subgingival bacterial loads and enhanced healing of corresponding oral tissues. The prescription Perio Tray effectively placed medication in the gingival sulcus. Mathematical modeling indicated Perio Tray placement of hydrogen peroxide gel in periodontal pockets with depths up to 9 mm over 15 minutes treatment time was theoretically possible. Pathology reports reveal reductions in subgingival bacterial loads and improvements in pretreatment pocket depths of up to 8 mm after 1.7% hydrogen peroxide and Vibramycin Syrup were prescribed for use with the Perio Tray. The in vitro analysis indicating that hydrogen peroxide is the active and effective oral debriding agent needs to be confirmed with additional studies.

  13. Low-energy biomass pretreatment with deep eutectic solvents for bio-butanol production.

    PubMed

    Procentese, Alessandra; Raganati, Francesca; Olivieri, Giuseppe; Russo, Maria Elena; Rehmann, Lars; Marzocchella, Antonio

    2017-11-01

    Waste lettuce leaves - from the "fresh cut vegetable" industry - were pretreated with the deep eutectic solvent (DES) made of choline chloride - glycerol. Reaction time (3-16h) and the operation temperature (80-150°C) were investigated. Enzymatic glucose and xylose yields of 94.9% and 75.0%, respectively were obtained when the biomass was pretreated at 150°C for 16h. Sugars contained in the biomass hydrolysate were fermented in batch cultures of Clostridium acetobutylicum DSMZ 792. The energy consumption and the energy efficiency related to the DES pretreatment were calculated and compared to the most common lignocellulosic pretreatment processes reported in the literature. The DES pretreatment process was characterized by lower energy required (about 28% decrease and 72% decrease) than the NAOH pretreatment and steam explosion process respectively. The Net Energy Ratio (NER) value related to butanol production via DES biomass pretreatment was assessed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Chemistry of peroxide compounds

    NASA Technical Reports Server (NTRS)

    Volnov, I. I.

    1981-01-01

    The history of Soviet research from 1866 to 1967 on peroxide compounds is reviewed. This research dealt mainly with peroxide kinetics, reactivity and characteristics, peroxide production processes, and more recently with superoxides and ozonides and emphasis on the higher oxides of group 1 and 2 elements. Solid state fluidized bed synthesis and production of high purity products based on the relative solubilities of the initial, intermediate, and final compounds and elements in liquid ammonia are discussed.

  15. Heated naringin mitigate the genotoxicity effect of Mitomycin C in BALB/c mice through enhancing the antioxidant status.

    PubMed

    Maatouk, Mouna; Mustapha, Nadia; Mokdad-Bzeouich, Imen; Chaaban, Hind; Ioannou, Irina; Ghedira, Kamel; Ghoul, Mohamed; Chekir-Ghedira, Leila

    2018-01-01

    A major problem with cancer chemotherapy is its severe toxic effects on non-target tissues. Assessment of natural products for their protective effect against anticancer drugs induced toxicity is gaining importance in cancer biology. The aim of the present study was to evaluate the effect of native and thermal treated naringin on the protective effect against mitomycin C (MMC) induced genotoxicity. The genotoxicity in liver kidney and brain cells isolated from Balb/C mice were evaluated by performing the comet assay. Antioxidant and lipid peroxidation assays were carried out to understand the protective effects of these compounds. The comet assay showed that heated and native naringin were not genotoxic at the tested dose (40 mg/kg b.w) on liver, kidney and brain cells. A significant decrease in DNA damages was observed, at the tested doses (20 mg/kg b.w and 40 mg/kg b.w) suggesting a protective role of these molecules against the genotoxicity induced by mitomycin C on liver, kidney and brain cells. Moreover, administration of MMC (6 mg/kg b.w.) altered the activities of glutathione peroxidase and superoxide dismutase accompanied by a significant increase of lipid peroxidation. Pretreatment of mouse with heated and native naringin before MMC administration significantly raised the glutathione peroxidase and superoxide dismutase activities followed by a reduced MMC-induced lipid peroxidation. Our study demonstrated that heat treatment of naringin preserve activities of native naringin. The genoprotective properties of heated and native naringin against MMC could be attributed to its antioxidant activities and its inhibitory effect on lipid peroxidation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. PROCESS OF REDUCING PLUTONIUM TO TETRAVALENT TRIVALENT STATE

    DOEpatents

    Mastick, D.F.

    1960-05-10

    The reduction of hexavalent and tetravalert plutonium ions to the trivalent state in strong nitric acid can be accomplished with hydrogen peroxide. The trivalent state may be stabilized as a precipitate by including oxalate or fluoride ions in the solution. The acid should be strong to encourage the reduction from the plutonyl to the trivalent state (and discourage the opposed oxidation reaction) and prevent the precipitation of plutonium peroxide, although the latter may be digested by increasing the acid concentration. Although excess hydrogen peroxide will oxidize plutonlum to the plutonyl state, complete reduction is insured by gently warming the solution to break down such excess H/ sub 2/O/sub 2/. The particular advantage of hydrogen peroxide as a reductant lies in the precipitation technique, where it introduces no contaminating ions. The process is adaptable to separate plutonium from uranium and impurities by proper adjustment of the sequence of insoluble anion additions and the hydrogen peroxide addition.

  17. Investigation of Plant Cell Wall Properties: A Study of Contributions from the Nanoscale to the Macroscale Impacting Cell Wall Recalcitrance

    NASA Astrophysics Data System (ADS)

    Crowe, Jacob Dillon

    Biochemical conversion of lignocellulosic biomass to fuel ethanol is one of a few challenging, yet opportune technologies that can reduce the consumption of petroleum-derived transportation fuels, while providing parallel reductions in greenhouse gas emissions. Biomass recalcitrance, or resistance to deconstruction, is a major technical challenge that limits effective conversion of biomass to fermentable sugars, often requiring a costly thermochemical pretreatment step to improve biomass deconstruction. Biomass recalcitrance is imparted largely by the secondary cell wall, a complex polymeric matrix of cell wall polysaccharides and aromatic heteropolymers, that provides structural stability to cells and enables plant upright growth. Polymers within the cell wall can vary both compositionally and structurally depending upon plant species and anatomical fraction, and have varied responses to thermochemical pretreatments. Cell wall properties impacting recalcitrance are still not well understood, and as a result, the goal of this dissertation is to investigate structural features of the cell wall contributing to recalcitrance (1) in diverse anatomical fractions of a single species, (2) in response to diverse pretreatments, and (3) resulting from genetic modification. In the first study, feedstock cell wall heterogeneity was investigated in anatomical (stem, leaf sheaths, and leaf blades) and internode fractions of switchgrass at varying tissue maturities. Lignin content was observed as the key contributor to recalcitrance in maturing stem tissues only, with non-cellulosic substituted glucuronoarabinoxylans and pectic polysaccharides contributing to cell wall recalcitrance in leaf sheath and leaf blades. Hydroxycinnamate (i.e., saponifiable p-coumarate and ferulate) content along with xylan and pectin extractability decreased with tissue maturity, suggesting lignification is only one component imparting maturity specific cell wall recalcitrance. In the second study, alkaline hydrogen peroxide and liquid hot water pretreatments were shown to alter structural properties impacting nanoscale porosity in corn stover. Delignification by alkaline hydrogen peroxide pretreatment decreased cell wall rigidity, with subsequent cell wall swelling resulting in increased nanoscale porosity and improved enzymatic hydrolysis compared to limited swelling and increased accessible surface areas observed in liquid hot water pretreated biomass. The volume accessible to a 90 A dextran probe within the cell wall was found to be positively correlated to both enzyme binding and glucose hydrolysis yields, indicating cell wall porosity is a key contributor to effective hydrolysis yields. In the third study, the effect of altered xylan content and structure was investigated in irregular xylem (irx) Arabidopsis thaliana mutants to understand the role xylan plays in secondary cell wall development and organization. Higher xylan extractability and lower cellulose crystallinity observed in irx9 and irx15 irx15-L mutants compared to wild type indicated altered xylan integration into the secondary cell wall. Nanoscale cell wall organization observed using multiple microscopy techniques was impacted to some extent in all irx mutants, with disorganized cellulose microfibril layers in sclerenchyma secondary cell walls likely resulting from irregular xylan structure and content. Irregular secondary cell wall microfibril layers showed heterogeneous nanomechanical properties compared to wild type, which translated to mechanical deficiencies observed in stem tensile tests. These results suggest nanoscale defects in cell wall strength can correspond to macroscale phenotypes.

  18. Efficient removal of lignin with the maintenance of hemicellulose from kenaf by two-stage pretreatment process.

    PubMed

    Wan Azelee, Nur Izyan; Md Jahim, Jamaliah; Rabu, Amir; Abdul Murad, Abdul Munir; Abu Bakar, Farah Diba; Md Illias, Rosli

    2014-01-01

    The enhancement of lignocellulose hydrolysis using enzyme complexes requires an efficient pretreatment process to obtain susceptible conditions for the enzyme attack. This study focuses on removing a major part of the lignin layer from kenaf (Hibiscus cannabinus) while simultaneously maintaining most of the hemicellulose. A two-stage pretreatment process is adopted using calcium hydroxide, Ca(OH)₂, and peracetic acid, PPA, to break the recalcitrant lignin layer from other structural polysaccharides. An experimental screening of several pretreatment chemicals, concentrations, temperatures and solid-liquid ratios enabled the production of an optimally designed pretreatment process for kenaf. Our results showed that the pretreatment process has provide 59.25% lignin removal while maintaining 87.72% and 96.17% hemicellulose and cellulose, respectively, using 1g of Ca(OH)₂/L and a 8:1 (mL:g) ratio of liquid-Ca(OH)₂ at 50 °C for 1.5 h followed by 20% peracetic acid pretreatment at 75 °C for 2 h. These results validate this mild approach for aiding future enzymatic hydrolysis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Effect of iron salt type and dosing mode on Fenton-based pretreatment of rice straw for enzymatic hydrolysis.

    PubMed

    Gan, Yu-Yan; Zhou, Si-Li; Dai, Xiao; Wu, Han; Xiong, Zi-Yao; Qin, Yuan-Hang; Ma, Jiayu; Yang, Li; Wu, Zai-Kun; Wang, Tie-Lin; Wang, Wei-Guo; Wang, Cun-Wen

    2018-06-15

    Fenton-based processes with four different iron salts in two different dosing modes were used to pretreat rice straw (RS) samples to increase their enzymatic digestibility. The composition analysis shows that the RS sample pretreated by the dosing mode of iron salt adding into H 2 O 2 has a much lower hemicellulose content than that pretreated by the dosing mode of H 2 O 2 adding into iron salt, and the RS sample pretreated by the chloride salt-based Fenton process has a much lower lignin content and a slightly lower hemicellulose content than that pretreated by the sulphate salt-based Fenton process. The higher concentration of reducing sugar observed on the RS sample with lower lignin and hemicellulose contents justifies that the Fenton-based process could enhance the enzymic hydrolysis of RS by removing hemicellulose and lignin and increasing its accessibility to cellulase. FeCl 3 ·6H 2 O adding into H 2 O 2 is the most efficient Fenton-based process for RS pretreatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Effect of L-Cysteine Pretreatment on the Control of Formaldehyde and Browning of the Culinary-Medicinal Shiitake Mushroom, Lentinus edodes (Higher Basidiomycetes) during Drying and Canning Processes.

    PubMed

    Li, Guijie; Wang, Qiang; Sun, Peng; Chen, Feng; Chen, Xiaolin; Wang, Cun; Zhao, Xin

    2015-01-01

    Fresh culinary-medicinal Shiitake mushrooms (Lentinus edodes) were pretreated by soaking in 0.1 mg/mL of L-cysteine solution for 1 hour; then the variation in formaldehyde content and browning degree were studied during hot air-drying and canning processes. The results indicated that L-cysteine pretreatment significantly inhibited the increase of formaldehyde content and browning during the drying process; these increases in the pretreatment groups ranged from 7.0% to 14.0% and 65.4% to 68.9%, respectively, of that of the control groups. While the L-cysteine pretreatment did not seem to have a significant effect on controlling the formaldehyde content during the canning process, the increase of the browning degree of the canned products of the pretreatment groups ranged from 64.8% to 78.5% of that of the control groups, indicating the inhibitive effect of L-cysteine on browning during the canning process of L. edodes. Overall, L-cysteine pretreatment improved the sensory quality of both dried and canned L. edodes.

  1. Electrochemical Hydrogen Peroxide Generator

    NASA Technical Reports Server (NTRS)

    Tennakoon, Charles L. K.; Singh, Waheguru; Anderson, Kelvin C.

    2010-01-01

    Two-electron reduction of oxygen to produce hydrogen peroxide is a much researched topic. Most of the work has been done in the production of hydrogen peroxide in basic media, in order to address the needs of the pulp and paper industry. However, peroxides under alkaline conditions show poor stabilities and are not useful in disinfection applications. There is a need to design electrocatalysts that are stable and provide good current and energy efficiencies to produce hydrogen peroxide under acidic conditions. The innovation focuses on the in situ generation of hydrogen peroxide using an electrochemical cell having a gas diffusion electrode as the cathode (electrode connected to the negative pole of the power supply) and a platinized titanium anode. The cathode and anode compartments are separated by a readily available cation-exchange membrane (Nafion 117). The anode compartment is fed with deionized water. Generation of oxygen is the anode reaction. Protons from the anode compartment are transferred across the cation-exchange membrane to the cathode compartment by electrostatic attraction towards the negatively charged electrode. The cathode compartment is fed with oxygen. Here, hydrogen peroxide is generated by the reduction of oxygen. Water may also be generated in the cathode. A small amount of water is also transported across the membrane along with hydrated protons transported across the membrane. Generally, each proton is hydrated with 3-5 molecules. The process is unique because hydrogen peroxide is formed as a high-purity aqueous solution. Since there are no hazardous chemicals or liquids used in the process, the disinfection product can be applied directly to water, before entering a water filtration unit to disinfect the incoming water and to prevent the build up of heterotrophic bacteria, for example, in carbon based filters. The competitive advantages of this process are: 1. No consumable chemicals are needed in the process. The only raw materials needed are water and oxygen or air. 2. The product is pure and can therefore be used in disinfection applications directly or after proper dilution with water. 3. Oxygen generated in the anode compartment is used in the electrochemical reduction process; in addition, external oxygen is used to establish a high flow rate in the cathode compartment to remove the desired product efficiently. Exiting oxygen can be recycled after separation of liquid hydrogen peroxide product, if so desired. 4. The process can be designed for peroxide generation under microgravity conditions. 5. High concentrations of the order of 6-7 wt% can be generated by this method. This method at the time of this reporting is superior to what other researchers have reported. 6. The cell design allows for stacking of cells to increase the hydrogen peroxide production. 7. The catalyst mix containing a diquaternary ammonium compound enabled not only higher concentration of hydrogen peroxide but also higher current efficiency, improved energy efficiency, and catalyst stability. 8. The activity of the catalyst is maintained even after repeated periods of system shutdown. 9. The catalyst system can be extended for fuel-cell cathodes with suitable modifications.

  2. Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways

    PubMed Central

    Christou, Anastasis; Manganaris, George A.; Papadopoulos, Ioannis; Fotopoulos, Vasileios

    2013-01-01

    Hydrogen sulfide (H2S) has been recently found to act as a potent priming agent. This study explored the hypothesis that hydroponic pretreatment of strawberry (Fragaria × ananassa cv. Camarosa) roots with a H2S donor, sodium hydrosulfide (NaHS; 100 μM for 48h), could induce long-lasting priming effects and tolerance to subsequent exposure to 100mM NaCI or 10% (w/v) PEG-6000 for 7 d. Hydrogen sulfide pretreatment of roots resulted in increased leaf chlorophyll fluorescence, stomatal conductance and leaf relative water content as well as lower lipid peroxidation levels in comparison with plants directly subjected to salt and non-ionic osmotic stress, thus suggesting a systemic mitigating effect of H2S pretreatment to cellular damage derived from abiotic stress factors. In addition, root pretreatment with NaHS resulted in the minimization of oxidative and nitrosative stress in strawberry plants, manifested via lower levels of synthesis of NO and H2O2 in leaves and the maintenance of high ascorbate and glutathione redox states, following subsequent salt and non-ionic osmotic stresses. Quantitative real-time RT-PCR gene expression analysis of key antioxidant (cAPX, CAT, MnSOD, GR), ascorbate and glutathione biosynthesis (GCS, GDH, GS), transcription factor (DREB), and salt overly sensitive (SOS) pathway (SOS2-like, SOS3-like, SOS4) genes suggests that H2S plays a pivotal role in the coordinated regulation of multiple transcriptional pathways. The ameliorative effects of H2S were more pronounced in strawberry plants subjected to both stress conditions immediately after NaHS root pretreatment, rather than in plants subjected to stress conditions 3 d after root pretreatment. Overall, H2S-pretreated plants managed to overcome the deleterious effects of salt and non-ionic osmotic stress by controlling oxidative and nitrosative cellular damage through increased performance of antioxidant mechanisms and the coordinated regulation of the SOS pathway, thus proposing a novel role for H2S in plant priming, and in particular in a fruit crop such as strawberry. PMID:23567865

  3. Phytochemical Ginkgolide B Attenuates Amyloid-β1-42 Induced Oxidative Damage and Altered Cellular Responses in Human Neuroblastoma SH-SY5Y Cells.

    PubMed

    Gill, Iqbal; Kaur, Sukhchain; Kaur, Navrattan; Dhiman, Monisha; Mantha, Anil K

    2017-01-01

    Oxidative stress is an upsurge in reactive oxygen/nitrogen species (ROS/RNS), which aggravates damage to cellular components viz. lipids, proteins, and nucleic acids resulting in impaired cellular functions and neurological pathologies including Alzheimer's disease (AD). In the present study, we have examined amyloid-β (Aβ)-induced oxidative stress responses, a major cause for AD, in the undifferentiated and differentiated human neuroblastoma SH-SY5Y cells. Aβ1-42-induced oxidative damage was evaluated on lipids by lipid peroxidation; proteins by protein carbonyls; antioxidant status by SOD and GSH enzyme activities; and DNA and RNA damage levels by evaluating the number of AP sites and 8-OHG base damages produced. In addition, the neuro-protective role of the phytochemical ginkgolide B (GB) in countering Aβ1-42-induced oxidative stress was assessed. We report that the differentiated cells are highly vulnerable to Aβ1-42-induced oxidative stress events as exerted by the deposition of Aβ in AD. Results of the current study suggest that the pre-treatment of GB, followed by Aβ1-42 treatment for 24 h, displayed neuro-protective potential, which countered Aβ1-42-induced oxidative stress responses in both undifferentiated and differentiated SH-SY5Y neuronal cells by: 1) hampering production of ROS and RNS; 2) reducing lipid peroxidation; 3) decreasing protein carbonyl content; 4) restoring antioxidant activities of SOD and GSH enzymes; and 5) maintaining genome integrity by reducing the oxidative DNA and RNA base damages. In conclusion, Aβ1-42 induces oxidative damage to the cellular biomolecules, which are associated with AD pathology, and are protected by the pre-treatment of GB against Aβ-toxicity. Taken together, this study advocates for phytochemical-based therapeutic interventions against AD.

  4. Effect of Piper betle on cardiac function, marker enzymes, and oxidative stress in isoproterenol-induced cardiotoxicity in rats.

    PubMed

    Arya, Dharamvir Singh; Arora, Sachin; Malik, Salma; Nepal, Saroj; Kumari, Santosh; Ojha, Shreesh

    2010-11-01

    The present study was designed to investigate the cardioprotective potential of Piper betle (P. betle) against isoproterenol (ISP)-induced myocardial infarction in rats. Rats were randomly divided into eight groups viz. control, ISP, P. betle (75, 150, and 300 mg/kg) and P. betle (75, 150, and 300 mg/kg) + ISP treated group. P. betle leaf extract (75, 150, or 300 mg/kg) or saline was orally administered for 30 days. ISP (85 mg/kg, s.c.) was administered at an interval of 24 h on the 28(th) and 29(th) day and on day 30 the functional and biochemical parameters were measured. ISP administration showed a significant decrease in systolic, diastolic, mean arterial pressure (SAP, DAP, MAP), heart rate (HR), contractility (+LVdP/dt), and relaxation (-LVdP/dt) and increased left ventricular end-diastolic pressure (LVEDP). ISP also caused significant decrease in myocardial antioxidants; superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH), and myocyte injury marker enzymes; creatine phosphokinase-MB (CK-MB) isoenzyme and lactate dehydrogenase (LDH) along with enhanced lipid peroxidation; thiobarbituric acid reacting species (TBARS) in heart. Pre-treatment with P. betle favorably modulated hemodynamic (SAP, DAP, and MAP) and ventricular function parameters (-LVdP/dt and LVEDP). P. betle pre-treatment also restored SOD, CAT, GSH, and GPx, reduced the leakage of CK-MB isoenzyme and LDH along with decreased lipid peroxidation in the heart. Taken together, the biochemical and functional parameters indicate that P. betle 150 and 300 mg/kg has a significant cardioprotective effect against ISP-induced myocardial infarction. Results of the present study suggest the cardioprotective potential of P. betle.

  5. 3',4',7-Trihydroxyflavone prevents apoptotic cell death in neuronal cells from hydrogen peroxide-induced oxidative stress.

    PubMed

    Kwon, Seung-Hwan; Hong, Sa-Ik; Ma, Shi-Xun; Lee, Seok-Yong; Jang, Choon-Gon

    2015-06-01

    In this study, we investigated the mechanisms of 3',4',7-trihydroxyflavone (THF) protection of neuronal cells from neuronal cell death induced by the oxidative stress-related neurotoxin hydrogen peroxide (H2O2). Pretreatment with THF significantly elevated cell viability, reduced H2O2-induced lactate dehydrogenase (LDH) release, reactive oxygen species (ROS) production, glutathione (GSH) content, superoxide dismutase (SOD) activity, catalase (CAT) activity, and mitochondria membrane potential (MMP) loss. Western blot data demonstrated that THF inhibited the H2O2-induced up- or down-regulation of cleaved caspase-3, cleaved caspase-9, cleaved poly-ADP-ribose polymerase (PARP), Bax, Bcl-2, and Bcl-xL, and attenuated the H2O2-induced release of cytochrome c from the mitochondria to the cytosol. In addition, pretreatment with THF attenuated H2O2-induced rapid and significant phosphorylation of c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), and phosphatidylinositol 3-kinases (PI3K)/Akt. THF also inhibited nuclear factor-κB (NF-κB) translocation to the nucleus induced by H2O2, down-stream of H2O2-induced phosphorylation of MAPKs and PI3K/Akt. These data provide the first evidence that THF protects neuronal cells against H2O2-induced oxidative stress, possibly through ROS reduction, mitochondria protection, and NF-κB modulation via MAPKs and PI3K/Akt pathways. The neuroprotective effects of THF make it a promising candidate as a therapeutic agent for neurodegenerative diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Redox-Dependent Calcium-Mediated Signaling Networks that Control the Senescence-Associated Secretory Phenotype

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, Akshaya

    Cellular senescence has evolved as a protective mechanism to arrest growth of cells with oncogenic potential. While senescent cells have lost the ability to divide, they remain metabolically active and adapt a deleterious senescence associated secretory phenotype (SASP) central to the progression of several age-associated disease pathologies. The SASP is mechanistically regulated by the pro-inflammatory cytokine interleukin-1 alpha (IL-1alpha) whose expression and activity is responsive to the senescence associated (SA) oxidant production and the accompanying disruption of calcium (Ca2+) homeostasis. Using primary IMR-90 human fetal lung fibroblasts as a model of replicative senescence, we explored the molecular underpinnings driving Ca2+ dysregulation in senescent cells. We establish that the redox-responsive Transient Receptor Potential TRPC6 channel is compromised due to desensitization owing to SA increases in steady state hydrogen peroxide (H2O2) production. SA dysregulation of Ca2+ is also accompanied by loss of response to H2O2-induced Ca2+ influx that can be rescued with catalase pre-treatments. Senescent cells are also insensitive to Ca2+ entry induced by hyperforin, a specific activator of TRPC6, that can be restored by catalase pre-treatments, further suggesting redox regulation of TRPC6 in senescence. Inhibition of TRPC6 channel activity restores the ability of senescent cells to respond to peroxide-induced Ca2+ in addition to suppressing SASP gene expression. Furthermore, mammalian target of rapamycin (mTOR) signaling regulates SASP by means of modulating TRPC6 channel expression. Together, our findings provide compelling evidence that redox and mTOR-mediated regulation of TRPC6 channel modulate SASP gene expression. Further, the gain-of-function mutation of TRPC6 has pathological implications in several chronic pathologies and renders it a viable target in age-associated diseases.

  7. An Antioxidant Phytotherapy to Rescue Neuronal Oxidative Stress

    PubMed Central

    Lin, Zhihong; Zhu, Danni; Yan, Yongqing; Yu, Boyang; Wang, Qiujuan; Shen, Pingniang; Ruan, Kefeng

    2011-01-01

    Oxidative stress is involved in the pathogenesis of ischemic neuronal injury. A Chinese herbal formula composed of Poria cocos (Chinese name: Fu Ling), Atractylodes macrocephala (Chinese name: Bai Zhu) and Angelica sinensis (Chinese names: Danggui, Dong quai, Donggui; Korean name: Danggwi) (FBD), has been proved to be beneficial in the treatment of cerebral ischemia/reperfusion (I/R).This study was carried out to evaluate the protective effect of FBD against neuronal oxidative stress in vivo and in vitro. Rat I/R were established by middle cerebral artery occlusion (MCAO) for 1 h, followed by 24 h reperfusion. MCAO led to significant depletion in superoxide dismutase and glutathione and rise in lipid peroxidation (LPO) and nitric oxide in brain. The neurological deficit and brain infarction were also significantly elevated by MCAO as compared with sham-operated group. All the brain oxidative stress and damage were significantly attenuated by 7 days pretreatment with the aqueous extract of FBD (250 mg kg−1, p.o.). Moreover, cerebrospinal fluid sampled from FBD-pretreated rats protected PC12 cells against oxidative insult induced by 0.2 mM hydrogen peroxide, in a concentration and time-dependent manner (IC50 10.6%, ET50 1.2 h). However, aqueous extract of FBD just slightly scavenged superoxide anion radical generated in xanthine–xanthine oxidase system (IC50 2.4 mg ml−1) and hydroxyl radical generated in Fenton reaction system (IC50 3.6 mg ml−1). In conclusion, FBD was a distinct antioxidant phytotherapy to rescue neuronal oxidative stress, through blocking LPO, restoring endogenous antioxidant system, but not scavenging free radicals. PMID:18955358

  8. Effects of hecogenin and its possible mechanism of action on experimental models of gastric ulcer in mice.

    PubMed

    Santos Cerqueira, Gilberto; dos Santos e Silva, Gabriela; Rios Vasconcelos, Emiliano; Fragoso de Freitas, Ana Paula; Arcanjo Moura, Brinell; Silveira Macedo, Danielle; Lopes Souto, Augusto; Barbosa Filho, José Maria; de Almeida Leal, Luzia Kalyne; de Castro Brito, Gerly Anne; Souccar, Caden; de Barros Viana, Glauce Socorro

    2012-05-15

    This study investigates the gastroprotective effects of hecogenin, a steroid saponin isolated from Agave sisalana, on experimental models of gastric ulcer. Male Swiss mice were used in the models of ethanol- and indometacin-induced gastric ulcer. To clarify the hecogenin mechanism of action, the roles of nitric oxide (NO), sulfhydryls (GSH), K⁺(ATP) channels and prostaglandins were also investigated, and measurements of lipid peroxidation (TBARS assay) and nitrite levels in the stomach of hecogenin-treated and untreated animals were performed. Furthermore, the effects of hecogenin on myeloperoxidase (MPO) release from human neutrophils were assessed in vitro. Our results showed that hecogenin (3.1, 7.5, 15, 30, 60 and 90 mg/kg, p.o.) acutely administered, before ethanol or indomethacin, exhibited a potent gastroprotective effect. Although the pretreatments with L-NAME, an iNOS inhibitor, and capsazepine, a TRPV1 receptor agonist, were not able to reverse the hecogenin effect, this was reversed by glibenclamide, a K⁺(ATP) blocker, and indomethacin in the model of ethanol-induced gastric lesions. The hecogenin pretreatment normalized GSH levels and significantly reduced lipid peroxidation and nitrite levels in the stomach, as evaluated by the ethanol-induced gastric lesion model. The drug alone increased COX-2 expression and this effect was further enhanced in the presence of ethanol. It also decreased MPO release and significantly protected the gastric mucosa. In conclusion, we showed that hecogenin presents a significant gastroprotective effect that seems to be mediated by K⁺(ATP) channels opening and the COX-2/PG pathway. In addition, its antioxidant and anti-inflammatory properties may play a role in the gastroprotective drug effect. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Protective Effect of Ginger (Zingiber officinale Roscoe) Extract against Oxidative Stress and Mitochondrial Apoptosis Induced by Interleukin-1β in Cultured Chondrocytes.

    PubMed

    Hosseinzadeh, Azam; Bahrampour Juybari, Kobra; Fatemi, Mohammad Javad; Kamarul, Tunku; Bagheri, Aboulfazl; Tekiyehmaroof, Neda; Sharifi, Ali Mohammad

    2017-01-01

    The protective effects of ginger (Zingiber officinale Roscoe) extract on IL-1β-mediated oxidative stress and mitochondrial apoptosis were investigated in C28I2 human chondrocytes. The effects of various concentrations of ginger extract on C28I2 human chondrocyte viability were evaluated in order to obtain noncytotoxic concentrations of the drug by methylthiotetrazole assay. The cells were pretreated with 5 and 25 μg/mL ginger extract for 24 h, followed by incubation with IL-1β (10 ng/mL) for 24 h. The effects of ginger extract on IL-1β-induced intracellular reactive oxygen species (ROS) production and lipid peroxidation were examined. The mRNA expressions of antioxidant enzymes including catalase, superoxide dismutase-1, glutathione peroxidase-1, glutathione peroxidase-3, and glutathione peroxidase-4 were evaluated by reverse transcription polymerase chain reaction. The protein expressions of Bax, Bcl-2, and caspase-3 were analyzed by Western blotting. No cytotoxicity was observed at any concentration of ginger extract in C28I2 cells. Ginger extract pretreatment remarkably increased the gene expression of antioxidant enzymes and reduced the IL-1β-induced elevation of ROS, lipid peroxidation, the Bax/Bcl-2 ratio, and caspase-3 activity. Ginger extract could considerably reduce IL-1β-induced oxidative stress and consequent mitochondrial apoptosis as the major mechanisms of chondrocyte cell death. These beneficial effects of ginger extract may be due to its antioxidant properties. It may be considered as a natural herbal product to prevent OA-induced cartilage destruction in the clinical setting. © 2017 S. Karger AG, Basel.

  10. PEROXIDE PROCESS FOR SEPARATION OF RADIOACTIVE MATERIALS

    DOEpatents

    Seaborg, G.T.; Perlman, I.

    1958-09-16

    reduced state, from hexavalent uranium. It consists in treating an aqueous solution containing such uranium and plutonium ions with sulfate ions in order to form a soluble uranium sulfate complex and then treating the solution with a soluble thorium compound and a soluble peroxide compound in order to ferm a thorium peroxide carrier precipitate which carries down with it the plutonium peroxide present. During this treatment the pH of the solution must be maintained between 2 and 3.

  11. A Three-Step Synthesis of Benzoyl Peroxide

    ERIC Educational Resources Information Center

    Her, Brenda; Jones, Alexandra; Wollack, James W.

    2014-01-01

    Benzoyl peroxide is used as a bleaching agent for flour and whey processing, a polymerization initiator in the synthesis of plastics, and the active component of acne medication. Because of its simplicity and wide application, benzoyl peroxide is a target molecule of interest. It can be affordably synthesized in three steps from bromobenzene using…

  12. Influence of feeding thermally peroxidized soybean oil on growth performance, digestibility, and gut integrity in growing pigs

    USDA-ARS?s Scientific Manuscript database

    Consumption of peroxidized oils has been shown to affect pig performance and oxidative status through the development of compounds which differ according to how oils are thermally processed. The objective of this study was to evaluate the effect of feeding varying degrees of peroxidized soybean oil ...

  13. The hydrogen peroxide impact on larval settlement and metamorphosis of abalone Haliotis diversicolor supertexta

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangjing; Yang, Zhihui; Cai, Zhonghua

    2008-08-01

    Abalone Haliotis diversicolor supertexta is an important economic mollusk. The settlement and metamorphosis are two critical stages during its development period, which has direct influence on abalone survival and production. The influence of reactive oxygen species (hydrogen peroxide) on abalone embryo and juvenile development were examined in this study. Larvae of Haliotis diversicolor supertexta were induced to settlement and metamorphose by exposure to seawater supplemented with hydrogen peroxide. They had the best performance at 800 μmol/L. The concentration of 1 000 μmol/L or higher was toxic to the larvae, as the larvae could settle down only at benthic diatom plates without complete metamorphosis. In addition, H2O2 adding time was critical to the larval performance. 24h after two-day post-fertilization was proved to be the optimal adding time. In this paper, two action mechanisms of hydrogen peroxide are discussed: (1) hydrogen peroxide has direct toxicity to ciliated cells, thus cause apoptosis; (2) hydrogen peroxide, as a product from catecholamines’ autoxidation process in vivo, can reverse this process to produce neuro-transmitters to induce abalone metamorphosis.

  14. Protective effect of grape seed extracts on human lymphocytes: a preliminary study.

    PubMed

    Szeto, Yim Tong; Lee, Kit Yee; Kalle, Wouter; Pak, Sok Cheon

    2013-03-01

    Grape seed extracts (GSEs) possess a broad spectrum of antioxidative properties that protects various cells from free radicals and oxidative stress. In this study, the genoprotective effect of GSE on human lymphocytic DNA was studied using standard and lysed cell comet assays. Lymphocytes from 5 healthy subjects were pretreated with GSE in different concentrations. The standard and lysed cell comet assays were performed on treated, untreated, challenged, and unchallenged cells in parallel. Cells were then subjected to an oxidant challenge induced with 5-min exposures to hydrogen peroxide. In the standard comet assay, GSE significantly diminished hydrogen-peroxide-induced DNA damage in a dose-dependent manner. In the lysed cell assay, however, the antioxidant effect was diminished at a higher GSE concentration. Data indicate that the cell membrane might play a role in limiting cellular access to antioxidants, which directly affects the genoprotective or potential pro-oxidant effect of antioxidants on human DNA. Using both standard and lysed cell comet assays in parallel could be a useful way to elucidate the mechanism of protection or damage by antioxidants.

  15. Pretreatment methods for bioethanol production.

    PubMed

    Xu, Zhaoyang; Huang, Fang

    2014-09-01

    Lignocellulosic biomass, such as wood, grass, agricultural, and forest residues, are potential resources for the production of bioethanol. The current biochemical process of converting biomass to bioethanol typically consists of three main steps: pretreatment, enzymatic hydrolysis, and fermentation. For this process, pretreatment is probably the most crucial step since it has a large impact on the efficiency of the overall bioconversion. The aim of pretreatment is to disrupt recalcitrant structures of cellulosic biomass to make cellulose more accessible to the enzymes that convert carbohydrate polymers into fermentable sugars. This paper reviews several leading acidic, neutral, and alkaline pretreatments technologies. Different pretreatment methods, including dilute acid pretreatment (DAP), steam explosion pretreatment (SEP), organosolv, liquid hot water (LHW), ammonia fiber expansion (AFEX), soaking in aqueous ammonia (SAA), sodium hydroxide/lime pretreatments, and ozonolysis are intensively introduced and discussed. In this minireview, the key points are focused on the structural changes primarily in cellulose, hemicellulose, and lignin during the above leading pretreatment technologies.

  16. Factors affecting seawater-based pretreatment of lignocellulosic date palm residues.

    PubMed

    Fang, Chuanji; Thomsen, Mette Hedegaard; Frankær, Christian Grundahl; Bastidas-Oyanedel, Juan-Rodrigo; Brudecki, Grzegorz P; Schmidt, Jens Ejbye

    2017-12-01

    Seawater-based pretreatment of lignocellulosic biomass is an innovative process at research stage. With respect to process optimization, factors affecting seawater-based pretreatment of lignocellulosic date palm residues were studied for the first time in this paper. Pretreatment temperature (180°C-210°C), salinity of seawater (0ppt-50ppt), and catalysts (H 2 SO 4 , Na 2 CO 3 , and NaOH) were investigated. The results showed that pretreatment temperature exerted the largest influence on seawater-based pretreatment in terms of the enzymatic digestibility and fermentability of pretreated solids, and the inhibition of pretreatment liquids to Saccharomyces cerevisiae. Salinity showed the least impact to seawater-based pretreatment, which widens the application spectrum of saline water sources such as brines discharged in desalination plant. Sulfuric acid was the most effective catalyst for seawater-based pretreatment compared with Na 2 CO 3 and NaOH. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Degradation and biodegradability improvement of the olive mill wastewater by peroxi-electrocoagulation/electrooxidation-electroflotation process with bipolar aluminum electrodes.

    PubMed

    Esfandyari, Yahya; Mahdavi, Yousef; Seyedsalehi, Mahdi; Hoseini, Mohammad; Safari, Gholam Hossein; Ghozikali, Mohammad Ghanbari; Kamani, Hossein; Jaafari, Jalil

    2015-04-01

    Olive mill wastewater is considered as one of the most polluting effluents of the food industry and constitutes a source of important environmental problems. In this study, the removal of pollutants (chemical oxygen demand (COD), biochemical oxygen demand (BOD5), polyphenols, turbidity, color, total suspended solids (TSS), and oil and grease) from olive oil mill processing wastewater by peroxi-electrocoagulation/electrooxidation-electroflotation process with bipolar aluminum electrodes was evaluated using a pilot continuous reactor. In the electrochemical unit, aluminum (Al), stainless steel, and RuO2/Ti plates were used. The effects of pH, hydrogen peroxide doses, current density, NaCl concentrations, and reaction times were studied. Under optimal conditions of pH 4, current density of 40 mA/m(2), 1000 mg/L H2O2, 1 g/L NaCl, and 30-min reaction time, the peroxi-electrochemical method yielded very effective removal of organic pollution from the olive mill wastewater diluted four times. The treatment process reduced COD by 96%, BOD5 by 93.6%, total, polyphenols by 94.4%, color by 91.4%, turbidity by 88.7, suspended solids by 97% and oil and grease by 97.1%. The biodegradability index (BOD5/COD) increased from 0.29 to 0.46. Therefore, the peroxi-electrocoagulation/electrooxidation-electroflotation process is considered as an effective and feasible process for pre-treating olive mill wastewater, making possible a post-treatment of the effluent in a biological system.

  18. Processing and Pretreatment Effects on Vanadium Transport in Nafion Membranes

    DOE PAGES

    Xie, Wei; Darling, Robert M.; Perry, Mike L.

    2015-10-13

    Here, this work describes how manufacturing processes and pretreatments affect the proton conductivity and vanadyl permeability of Nafion® and how these properties are altered by running in a cell. Five Nafion membranes were examined: reinforced XL100, dispersion cast NR211 and NR212, and extruded N115 and N117. The membranes were subjected to pretreatments that included annealing at 120°C and immersing in ambient temperature and boiling water and sulfuric acid. Vanadyl permeability varied by ~15X with pretreatment and ~3X with manufacturing process. Variations in ionic conductivity were comparatively modest: ~1.5X with pretreatment and ~1.2X with processing. Differences in permeability can be eliminatedmore » by annealing the extruded membranes above their glass-transition temperature or by immersing in boiling sulfuric acid. The differences induced by processing and pretreatments were largely absent from membranes removed from vanadium redox cells subjected to repeated charge/discharge cycles.« less

  19. Caffeic acid protects rat heart mitochondria against isoproterenol-induced oxidative damage

    PubMed Central

    Kumaran, Kandaswamy Senthil

    2010-01-01

    Cardiac mitochondrial dysfunction plays an important role in the pathology of myocardial infarction. The protective effects of caffeic acid on mitochondrial dysfunction in isoproterenol-induced myocardial infarction were studied in Wistar rats. Rats were pretreated with caffeic acid (15 mg/kg) for 10 days. After the pretreatment period, isoproterenol (100 mg/kg) was subcutaneously injected to rats at an interval of 24 h for 2 days to induce myocardial infarction. Isoproterenol-induced rats showed considerable increased levels of serum troponins and heart mitochondrial lipid peroxidation products and considerable decreased glutathione peroxidase and reduced glutathione. Also, considerably decreased activities of isocitrate, succinate, malate, α-ketoglutarate, and NADH dehydrogenases and cytochrome-C-oxidase were observed in the mitochondria of myocardial-infarcted rats. The mitochondrial calcium, cholesterol, free fatty acids, and triglycerides were considerably increased and adenosine triphosphate and phospholipids were considerably decreased in isoproterenol-induced rats. Caffeic acid pretreatment showed considerable protective effects on all the biochemical parameters studied. Myocardial infarct size was much reduced in caffeic acid pretreated isoproterenol-induced rats. Transmission electron microscopic findings also confirmed the protective effects of caffeic acid. The possible mechanisms of caffeic acid on cardiac mitochondria protection might be due to decreasing free radicals, increasing multienzyme activities, reduced glutathione, and adenosine triphosphate levels and maintaining lipids and calcium. In vitro studies also confirmed the free-radical-scavenging activity of caffeic acid. Thus, caffeic acid protected rat’s heart mitochondria against isoproterenol-induced damage. This study may have a significant impact on myocardial-infarcted patients. PMID:20376586

  20. Caffeic acid protects rat heart mitochondria against isoproterenol-induced oxidative damage.

    PubMed

    Kumaran, Kandaswamy Senthil; Prince, Ponnian Stanely Mainzen

    2010-11-01

    Cardiac mitochondrial dysfunction plays an important role in the pathology of myocardial infarction. The protective effects of caffeic acid on mitochondrial dysfunction in isoproterenol-induced myocardial infarction were studied in Wistar rats. Rats were pretreated with caffeic acid (15 mg/kg) for 10 days. After the pretreatment period, isoproterenol (100 mg/kg) was subcutaneously injected to rats at an interval of 24 h for 2 days to induce myocardial infarction. Isoproterenol-induced rats showed considerable increased levels of serum troponins and heart mitochondrial lipid peroxidation products and considerable decreased glutathione peroxidase and reduced glutathione. Also, considerably decreased activities of isocitrate, succinate, malate, α-ketoglutarate, and NADH dehydrogenases and cytochrome-C-oxidase were observed in the mitochondria of myocardial-infarcted rats. The mitochondrial calcium, cholesterol, free fatty acids, and triglycerides were considerably increased and adenosine triphosphate and phospholipids were considerably decreased in isoproterenol-induced rats. Caffeic acid pretreatment showed considerable protective effects on all the biochemical parameters studied. Myocardial infarct size was much reduced in caffeic acid pretreated isoproterenol-induced rats. Transmission electron microscopic findings also confirmed the protective effects of caffeic acid. The possible mechanisms of caffeic acid on cardiac mitochondria protection might be due to decreasing free radicals, increasing multienzyme activities, reduced glutathione, and adenosine triphosphate levels and maintaining lipids and calcium. In vitro studies also confirmed the free-radical-scavenging activity of caffeic acid. Thus, caffeic acid protected rat's heart mitochondria against isoproterenol-induced damage. This study may have a significant impact on myocardial-infarcted patients.

  1. Antioxidant mechanism is involved in the gastroprotective effects of ozonized sunflower oil in ethanol-induced ulcers in rats.

    PubMed

    Zamora Rodríguez, Zullyt B; González Alvarez, Ricardo; Guanche, Dailén; Merino, Nelson; Hernández Rosales, Frank; Menéndez Cepero, Silvia; Alonso González, Yaima; Schulz, Siegfried

    2007-01-01

    This research was performed in order to determine the potential protective effects of ozonized sunflower oil (OSO) in the injury of rat gastric mucosa induced by absolute ethanol and as well as to elucidate the role of reactive oxygen species (ROS), lipid peroxidation, and some important constituents of antioxidant defense such as superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) in these effects. OSO was administered to rats intragastrically by a cannula and it was applied during four days to animals. The doses of OSO administered daily to each group of rats were 4, 12, and 24 mg/kg, respectively, and one hour after the last treatment, absolute ethanol (1 mL/200 mg body weight) was administered. Our results showed that gastric ulcer index was significantly reduced in rats pretreated with OSO as compared with ethanol-treated controls. However, in rats pretreated with OSO, no significant reduction of TBARS content in gastric mucosa was found as compared to those rats treated with ethanol alone. In contrast, SOD and GSH-Px activities were significantly increased in gastric mucosa of OSO-pretreated rats with respect to those treated with ethanol alone. In summary, our results demonstrate that OSO pretreatment exerts protective effects in ethanol-induced gastric ulcers in rats. Furthermore, these results provide evidence that these protective effects of OSO are mediated at least partially by stimulation of some important antioxidant enzymes such as SOD and GSH-Px, which are scavengers of ROS and therefore prevent gastric injury induced by them.

  2. Antioxidant Mechanism is Involved in the Gastroprotective Effects of Ozonized Sunflower Oil in Ethanol-Induced Ulcers in Rats

    PubMed Central

    Rodríguez, Zullyt B. Zamora; Álvarez, Ricardo González; Guanche, Dailén; Merino, Nelson; Rosales, Frank Hernández; Cepero, Silvia Menéndez; González, Yaima Alonso; Schulz, Siegfried

    2007-01-01

    This research was performed in order to determine the potential protective effects of ozonized sunflower oil (OSO) in the injury of rat gastric mucosa induced by absolute ethanol and as well as to elucidate the role of reactive oxygen species (ROS), lipid peroxidation, and some important constituents of antioxidant defense such as superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) in these effects. OSO was administered to rats intragastrically by a cannula and it was applied during four days to animals. The doses of OSO administered daily to each group of rats were 4, 12, and 24 mg/kg, respectively, and one hour after the last treatment, absolute ethanol (1 mL/200 mg body weight) was administered. Our results showed that gastric ulcer index was significantly reduced in rats pretreated with OSO as compared with ethanol-treated controls. However, in rats pretreated with OSO, no significant reduction of TBARS content in gastric mucosa was found as compared to those rats treated with ethanol alone. In contrast, SOD and GSH-Px activities were significantly increased in gastric mucosa of OSO-pretreated rats with respect to those treated with ethanol alone. In summary, our results demonstrate that OSO pretreatment exerts protective effects in ethanol-induced gastric ulcers in rats. Furthermore, these results provide evidence that these protective effects of OSO are mediated at least partially by stimulation of some important antioxidant enzymes such as SOD and GSH-Px, which are scavengers of ROS and therefore prevent gastric injury induced by them. PMID:17497036

  3. Maternal Oxytocin Administration Before Birth Influences the Effects of Birth Anoxia on the Neonatal Rat Brain.

    PubMed

    Boksa, Patricia; Zhang, Ying; Nouel, Dominique

    2015-08-01

    Ineffective contractions and prolonged labor are common birth complications in primiparous women, and oxytocin is the most common agent given for induction or augmentation of labor. Clinical studies in humans suggest oxytocin might adversely affect the CNS response to hypoxia at birth. In this study, we used a rat model of global anoxia during Cesarean section birth to test if administering oxytocin to pregnant dams prior to birth affects the acute neonatal CNS response to birth anoxia. Anoxic pups born from dams pre-treated with intravenous injections or infusions of oxytocin before birth showed significantly increased brain lactate, a metabolic indicator of CNS hypoxia, compared to anoxic pups from dams pre-treated with saline. Anoxic pups born from dams given oxytocin before birth also showed decreased brain ATP compared to anoxic pups from saline dams. Direct injection of oxytocin to postnatal day 2 rat pups followed by exposure to anoxia also resulted in increased brain lactate and decreased brain ATP, compared to anoxia exposure alone. Oxytocin pre-treatment of the dam decreased brain malondialdehyde, a marker of lipid peroxidation, as well as protein kinase C activity, both in anoxic pups and controls, suggesting oxytocin may reduce aspects of oxidative stress. Finally, when dams were pretreated with indomethacin, a cyclooxygenase (COX) inhibitor, maternal oxytocin no longer potentiated effects of anoxia on neonatal brain lactate, suggesting this effect of oxytocin may be mediated via prostaglandin production or other COX-derived products. The results indicate that maternal oxytocin administration may have multiple acute effects on CNS metabolic responses to anoxia at birth.

  4. EFFECTS OF AQUATIC HUMIC SUBSTANCES ON ANALYSIS FOR HYDROGEN PEROXIDE USING PEROXIDASE-CATALYZED OXIDATIONS OF TRIARYLMETHANES OR P-HYDROXYPENYLACETIC ACID (JOURNAL VERSION)

    EPA Science Inventory

    A sensitive procedure is described for trace analysis of hydrogen peroxide in water. The process involves the peroxide-catalyzed oxidation of the leuco forms of two dyes, crystal violet and malachite green. The sensitivity of this procedure, as well as of another procedure based ...

  5. Hydrogen peroxide and caustic soda: Dancing with a dragon while bleaching

    Treesearch

    Peter W. Hart; Carl Houtman; Kolby Hirth

    2013-01-01

    When hydrogen peroxide is mixed with caustic soda, an auto-accelerating reaction can lead to generation of significant amounts of heat and oxygen. On the basis of experiments using typical pulp mill process concentration and temperatures, a relatively simple kinetic model has been developed. Evaluation of these model results reveals that hydrogen peroxide-caustic soda...

  6. Study of the temporal evolution of Whitening Teeth immersed in Peroxide of hydrogen (H2O2) Using Digital Image Processing

    NASA Astrophysics Data System (ADS)

    Díaz, L.; Morales, Y.; Torres, C.

    2015-01-01

    The esthetic dentistry reference in our society is determined by several factors, including one that produces more dissatisfaction is abnormal tooth color or that does not meet the patient's expectations. For this reason it has been designed and implemented an algorithm in MATLAB that captures, digitizes, pre-processing and analyzed dental imaging by allowing to evaluate the degree of bleaching caused by the use of peroxide of hidrogen. The samples analyzed were human teeth extracted, which were subjected to different concentrations of peroxide of hidrogen and see if they can teeth whitening when using these products, was used different concentrations and intervals of time to analysis or study of the whitening of the teeth with the hydrogen peroxide.

  7. Microwave Pretreatment For Hydrolysis Of Cellulose

    NASA Technical Reports Server (NTRS)

    Cullingford, Hatice S.; George, Clifford E.; Lightsey, George R.

    1993-01-01

    Microwave pretreatment enhances enzymatic hydrolysis of cellulosic wastes into soluble saccharides used as feedstocks for foods, fuels, and other products. Low consumption of energy, high yield, and low risk of proposed hydrolysis process incorporating microwave pretreatment makes process viable alternative to composting.

  8. Post-treatment of biologically treated wastewater containing organic contaminants using a sequence of H2O2 based advanced oxidation processes: photolysis and catalytic wet oxidation.

    PubMed

    Rueda-Márquez, J J; Sillanpää, M; Pocostales, P; Acevedo, A; Manzano, M A

    2015-03-15

    In this paper the feasibility of a multi-barrier treatment (MBT) for the regeneration of synthetic industrial wastewater (SIWW) was evaluated. Industrial pollutants (orange II, phenol, 4-chlorophenol and phenanthrene) were added to the effluent of municipal wastewater treatment plant. The proposed MBT begins with a microfiltration membrane pretreatment (MF), followed by hydrogen peroxide photolysis (H2O2/UVC) and finishing, as a polishing step, with catalytic wet peroxide oxidation (CWPO) using granular activated carbon (GAC) at ambient conditions. During the microfiltration step (0.7 μm) the decrease of suspended solids concentration, turbidity and Escherichia coli in treated water were 88, 94 and 99%, respectively. Also, the effluent's transmittance (254 nm) was increased by 14.7%. Removal of more than 99.9% of all added pollutants, mineralization of 63% of organic compounds and complete disinfection of total coliforms were reached during the H2O2/UVC treatment step (H2O2:TOC w/w ratio = 5 and an UVC average dose accumulated by wastewater 8.80 WUVC s cm(-2)). The power and efficiency of the lamp, the water transmittance and photoreactor geometry are taken into account and a new equation to estimate the accumulated dose in water is suggested. Remaining organic pollutants with a higher oxidation state of carbon atoms (+0.47) and toxic concentration of residual H2O2 were present in the effluent of the H2O2/UVC process. After 2.3 min of contact time with GAC at CWPO step, 90 and 100% of total organic carbon and residual H2O2 were removed, respectively. Also, the wastewater toxicity was studied using Vibrio fischeri and Sparus aurata larvae. The MBT operational and maintenance costs (O&M) was estimated to be 0.59 € m(-3). Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Structured DAG oil ameliorates renal injury in streptozotocin-induced diabetic rats through inhibition of NF-κB and activation of Nrf2 pathway.

    PubMed

    Das, Kankana; Ghosh, Mahua

    2017-02-01

    Accumulating evidence suggested that inflammatory processes are involved in the development of diabetic nephropathy (DN). Here, we have tested the hypothesis that Caprylic Acid (Cy)-diacylglycerol (DAG) oil (Cy-DAG), a novel structurally formulated lipid with high nutritional value, ameliorated DN in streptozotocin (STZ)-induced diabetic rats through the anti-inflammatory mechanisms. Basic hematological, biochemical parameters, immunoblotting, immunofluorescence and flow cytometry analysis were performed to observe the anti-inflammatory potential of Cy-DAG oil. The data revealed that STZ significantly increased the renal oxidative stress markers and decreased the levels of renal enzymatic and non-enzymatic antioxidants. Moreover, renal nitric oxide (NO), tissue necrosis factor-α (TNF-α), interleukin-6 (IL-6) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) were also increased in the renal tissue of STZ-treated rats. Further, DAG oil pretreatment produced a significant improvement in renal antioxidant status, reduced the lipid peroxidation and the levels of inflammatory markers in STZ-treated kidney. Similarly, results of protein expression showed that DAG oil pretreatment normalized the renal expression of Nrf2/Keap1 and its downstream regulatory proteins in STZ-treated condition. Immunohistochemical observations provided further evidence that DAG oil effectively protected the kidney from STZ-mediated oxidative damage. These results suggested that the DAG oil ameliorated STZ-induced oxidative renal injury by the activation of AKT/Nrf2/HO-1 pathway and the inhibition of ROS/MAPK/NF-κB pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. PROCESS FOR THE RECOVERY OF URANIUM

    DOEpatents

    Morris, G.O.

    1955-06-21

    This patent relates to a process for the recovery of uranium from impure uranium tetrafluoride. The process consists essentially of the steps of dissolving the impure uranium tetrafluoride in excess dilute sulfuric acid in the presence of excess hydrogen peroxide, precipitating ammonium uranate from the solution so formed by adding an excess of aqueous ammonia, dissolving the precipitate in sulfuric acid and adding hydrogen peroxide to precipitate uranium peroxdde.

  11. Cobalt-Catalyzed Trifluoromethylation-Peroxidation of Unactivated Alkenes with Sodium Trifluoromethanesulfinate and Hydroperoxide.

    PubMed

    Zhang, Hong-Yu; Ge, Chao; Zhao, Jiquan; Zhang, Yuecheng

    2017-10-06

    Disclosed herein is an unprecedented cobalt-catalyzed trifluoromethylation-peroxidation of unactivated alkenes. In this process the hydroperoxide acts as a radical initiator as well as a coupling partner. The cheap and readily available sodium trifluoromethanesulfinate serves as the CF 3 source in the reaction. Various alkenes are transformed into vicinal trifluoromethyl-peroxide compounds in moderate to good yields.

  12. The Protective Effect of Jatrorrhizine Against Oxidative Stress in Primary Rat Cortical Neurons.

    PubMed

    Luo, Tao; Shen, Xiu-Yin; Li, Sheng; Ouyang, Ting; Mai, Quan-An; Wang, Hua-Qiao

    2017-01-01

    This study investigated the neuroprotective effects of Jatrorrhizine in rat cortical neurons. The effects of Jatrorrhizine on hydrogen peroxide (H2O2)-induced cell lesion, levels of lipid peroxidation and antioxidant enzyme activities were investigated in rat cortical neurons. Levels of mitochondrial membrane potential (MMP) and intracellular reactive oxygen species (ROS) were measured by fluorescent rhodamine staining and 2',7'-dichlorfluorescein-diacetate staining, respectively. ATP content was measured by a high performance liquid chromatography. The protein levels for Bax, Bcl2 and cleaved caspase-3 were analyzed by western blot protein expression. There was a significant reduction in cell viability and activities of Superoxide dismutase and glutathione peroxidase for the cortical neurons after exposure to 50μM H2O2 for 12h. The hydrogen peroxide increased the production of malondialdehyde and ROS but decreased MMP and ATP in the neurons. However, pretreatment with different concentrations of Jatrorrhizine (5-20μM) inhibited H2O2-induced neurotoxicity markedly. Jatrorrhizine also attenuated the H2O2-induced Bcl-2/Bax ratio reduction and caspase-3 activation in these neurons. Our findings suggest that Jatrorrhizine plays a critical neuroprotective role in H2O2 - induced apoptosis through its anti-oxidative actions. This may allow Jatrorrhizine to be a novel therapeutic with its high bioavailability to treat Alzheimer's disease. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Induction of Mitochondrial Reactive Oxygen Species Production by Itraconazole, Terbinafine, and Amphotericin B as a Mode of Action against Aspergillus fumigatus.

    PubMed

    Shekhova, Elena; Kniemeyer, Olaf; Brakhage, Axel A

    2017-11-01

    Drug resistance in fungal pathogens is of incredible importance to global health, yet the mechanisms of drug action remain only loosely defined. Antifungal compounds have been shown to trigger the intracellular accumulation of reactive oxygen species (ROS) in human-pathogenic yeasts, but the source of those ROS remained unknown. In the present study, we examined the role of endogenous ROS for the antifungal activity of the three different antifungal substances itraconazole, terbinafine, and amphotericin B, which all target the fungal cell membrane. All three antifungals had an impact on fungal redox homeostasis by causing increased intracellular ROS production. Interestingly, the elevated ROS levels induced by antifungals were abolished by inhibition of the mitochondrial respiratory complex I with rotenone. Further, evaluation of lipid peroxidation using the thiobarbituric acid assay revealed that rotenone pretreatment decreased ROS-induced lipid peroxidation during incubation of Aspergillus fumigatus with itraconazole and terbinafine. By applying the mitochondrion-specific lipid peroxidation probe MitoPerOx, we also confirmed that ROS are induced in mitochondria and subsequently cause significant oxidation of mitochondrial membrane in the presence of terbinafine and amphotericin B. To summarize, our study suggests that the induction of ROS production contributes to the ability of antifungal compounds to inhibit fungal growth. Moreover, mitochondrial complex I is the main source of deleterious ROS production in A. fumigatus challenged with antifungal compounds. Copyright © 2017 American Society for Microbiology.

  14. Nuclear glutathione S-transferase pi prevents apoptosis by reducing the oxidative stress-induced formation of exocyclic DNA products.

    PubMed

    Kamada, Kensaku; Goto, Shinji; Okunaga, Tomohiro; Ihara, Yoshito; Tsuji, Kentaro; Kawai, Yoshichika; Uchida, Koji; Osawa, Toshihiko; Matsuo, Takayuki; Nagata, Izumi; Kondo, Takahito

    2004-12-01

    We previously found that nuclear glutathione S-transferase pi (GSTpi) accumulates in cancer cells resistant to anticancer drugs, suggesting that it has a role in the acquisition of resistance to anticancer drugs. In the present study, the effect of oxidative stress on the nuclear translocation of GSTpi and its role in the protection of DNA from damage were investigated. In human colonic cancer HCT8 cells, the hydrogen peroxide (H(2)O(2))-induced increase in nuclear condensation, the population of sub-G(1) peak, and the number of TUNEL-positive cells were observed in cells pretreated with edible mushroom lectin, an inhibitor of the nuclear transport of GSTpi. The DNA damage and the formation of lipid peroxide were dependent on the dose of H(2)O(2) and the incubation time. Immunological analysis showed that H(2)O(2) induced the nuclear accumulation of GSTpi but not of glutathione peroxidase. Formation of the 7-(2-oxo-hepyl)-substituted 1,N(2)-etheno-2'-deoxyguanosine adduct by the reaction of 13-hydroperoxyoctadecadienoic acid (13-HPODE) with 2'-deoxyguanosine was inhibited by GSTpi in the presence of glutathione. The conjugation product of 4-oxo-2-nonenal, a lipid aldehyde of 13-HPODE, with GSH in the presence of GSTpi, was identified by LS/MS. These results suggested that nuclear GSTpi prevents H(2)O(2)-induced DNA damage by scavenging the formation of lipid-peroxide-modified DNA.

  15. Lignocellulosic biomass pretreatment using AFEX.

    PubMed

    Balan, Venkatesh; Bals, Bryan; Chundawat, Shishir P S; Marshall, Derek; Dale, Bruce E

    2009-01-01

    Although cellulose is the most abundant organic molecule, its susceptibility to hydrolysis is restricted due to the rigid lignin and hemicellulose protection surrounding the cellulose micro fibrils. Therefore, an effective pretreatment is necessary to liberate the cellulose from the lignin-hemicellulose seal and also reduce cellulosic crystallinity. Some of the available pretreatment techniques include acid hydrolysis, steam explosion, ammonia fiber expansion (AFEX), alkaline wet oxidation, and hot water pretreatment. Besides reducing lignocellulosic recalcitrance, an ideal pretreatment must also minimize formation of degradation products that inhibit subsequent hydrolysis and fermentation. AFEX is an important pretreatment technology that utilizes both physical (high temperature and pressure) and chemical (ammonia) processes to achieve effective pretreatment. Besides increasing the surface accessibility for hydrolysis, AFEX promotes cellulose decrystallization and partial hemicellulose depolymerization and reduces the lignin recalcitrance in the treated biomass. Theoretical glucose yield upon optimal enzymatic hydrolysis on AFEX-treated corn stover is approximately 98%. Furthermore, AFEX offers several unique advantages over other pretreatments, which include near complete recovery of the pretreatment chemical (ammonia), nutrient addition for microbial growth through the remaining ammonia on pretreated biomass, and not requiring a washing step during the process which facilitates high solid loading hydrolysis. This chapter provides a detailed practical procedure to perform AFEX, design the reactor, determine the mass balances, and conduct the process safely.

  16. Lignocellulosic Biomass Pretreatment Using AFEX

    NASA Astrophysics Data System (ADS)

    Balan, Venkatesh; Bals, Bryan; Chundawat, Shishir P. S.; Marshall, Derek; Dale, Bruce E.

    Although cellulose is the most abundant organic molecule, its susceptibility to hydrolysis is restricted due to the rigid lignin and hemicellulose protection surrounding the cellulose micro fibrils. Therefore, an effective pretreatment is necessary to liberate the cellulose from the lignin-hemicellulose seal and also reduce cellulosic crystallinity. Some of the available pretreatment techniques include acid hydrolysis, steam explosion, ammonia fiber expansion (AFEX), alkaline wet oxidation, and hot water pretreatment. Besides reducing lignocellulosic recalcitrance, an ideal pretreatment must also minimize formation of degradation products that inhibit subsequent hydrolysis and fermentation. AFEX is an important pretreatment technology that utilizes both physical (high temperature and pressure) and chemical (ammonia) processes to achieve effective pretreatment. Besides increasing the surface accessibility for hydrolysis, AFEX promotes cellulose decrystallization and partial hemicellulose depolymerization and reduces the lignin recalcitrance in the treated biomass. Theoretical glucose yield upon optimal enzymatic hydrolysis on AFEX-treated corn stover is approximately 98%. Furthermore, AFEX offers several unique advantages over other pretreatments, which include near complete recovery of the pretreatment chemical (ammonia), nutrient addition for microbial growth through the remaining ammonia on pretreated biomass, and not requiring a washing step during the process which facilitates high solid loading hydrolysis. This chapter provides a detailed practical procedure to perform AFEX, design the reactor, determine the mass balances, and conduct the process safely.

  17. Biotechnological potential of Azolla filiculoides for biosorption of Cs and Sr: Application of micro-PIXE for measurement of biosorption.

    PubMed

    Ghorbanzadeh Mashkani, Saeid; Tajer Mohammad Ghazvini, Parisa

    2009-03-01

    The presence of Cs and Sr in culture medium of Azolla filiculoides caused about 27.4% and 46.3% inhibition of biomass growth, respectively, in comparison to A. filiculoides control weight which had not metals. Biosorption batch experiments were conducted to determine the Cs and Sr binding ability of native biomass and chemically modified biosorbents derived from Azolla namely ferrocyanide Azolla sorbents type 1 and type 2 (FAS1 and FAS2) and hydrogen peroxide Azolla sorbent (HAS). The best Cs and Sr removal results were obtained when A. filiculoides was treated by 2M MgCl(2) and 30ml H(2)O(2) 8mM at pH 7 for 12h and it was then washed by NaOH solution at pH 10.5 for 6h. Pretreatment of Azolla have been suggested to modify the surface characteristics which could improve biosorption process. The binding of Cs and Sr on the cell wall of Azolla was studied with micro-PIXE and FT-IR.

  18. Energy efficacy used to score organic refuse pretreatment processes for hydrogen anaerobic production.

    PubMed

    Ruggeri, Bernardo; Luongo Malave, Andrea C; Bernardi, Milena; Fino, Debora

    2013-11-01

    The production of hydrogen through Anaerobic Digestion (AD) has been investigated to verify the efficacy of several pretreatment processes. Three types of waste with different carbon structures have been tested to obtain an extensive representation of the behavior of the materials present in Organic Waste (OW). The following types of waste were selected: Sweet Product Residue (SPR), i.e., confectionary residue removed from the market after the expiration date, Organic Waste Market (OWM) refuse from a local fruit and vegetable market, and Coffee Seed Skin (CSS) waste from a coffee production plant. Several pretreatment processes have been applied, including physical, chemical, thermal, and ultrasonic processes and a combination of these processes. Two methods have been used for the SPR to remove the packaging, manual (SPR) and mechanical (SPRex). A pilot plant that is able to extrude the refuse to 200atm was utilized. Two parameters have been used to score the different pretreatment processes: efficiency (ξ), which takes into account the amount of energy produced in the form of hydrogen compared with the available energy embedded in the refuse, and efficacy (η), which compares the efficiency obtained using the pretreated refuse with that obtained using the untreated refuse. The best result obtained for the SPR was the basic pretreatment, with η=6.4, whereas the thermal basic pretreatment gave the highest value, η=17.0 for SPRex. The best result for the OWM was obtained through a combination of basic/thermal pretreatments with η=9.9; lastly, the CSS residue with ultrasonic pretreatment produced the highest quantity of hydrogen, η=5.2. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Study on loading coefficient in steam explosion process of corn stalk.

    PubMed

    Sui, Wenjie; Chen, Hongzhang

    2015-03-01

    The object of this work was to evaluate the effect of loading coefficient on steam explosion process and efficacy of corn stalk. Loading coefficient's relation with loading pattern and material property was first revealed, then its effect on transfer process and pretreatment efficacy of steam explosion was assessed by established models and enzymatic hydrolysis tests, respectively, in order to propose its optimization strategy for improving the process economy. Results showed that loading coefficient was mainly determined by loading pattern, moisture content and chip size. Both compact loading pattern and low moisture content improved the energy efficiency of steam explosion pretreatment and overall sugar yield of pretreated materials, indicating that they are desirable to improve the process economy. Pretreatment of small chip size showed opposite effects in pretreatment energy efficiency and enzymatic hydrolysis performance, thus its optimization should be balanced in investigated aspects according to further techno-economical evaluation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Mild-temperature dilute acid pretreatment for integration of first and second generation ethanol processes.

    PubMed

    Nair, Ramkumar B; Kalif, Mahdi; Ferreira, Jorge A; Taherzadeh, Mohammad J; Lennartsson, Patrik R

    2017-12-01

    The use of hot-water (100°C) from the 1st generation ethanol plants for mild-temperature lignocellulose pretreatment can possibly cut down the operational (energy) cost of 2nd generation ethanol process, in an integrated model. Dilute-sulfuric and -phosphoric acid pretreatment at 100°C was carried out for wheat bran and whole-stillage fibers. Pretreatment time and acid type influenced the release of sugars from wheat bran, while acid-concentration was found significant for whole-stillage fibers. Pretreatment led up-to 300% improvement in the glucose yield compared to only-enzymatically treated substrates. The pretreated substrates were 191-344% and 115-300% richer in lignin and glucan, respectively. Fermentation using Neurospora intermedia, showed 81% and 91% ethanol yields from wheat bran and stillage-fibers, respectively. Sawdust proved to be a highly recalcitrant substrate for mild-temperature pretreatment with only 22% glucose yield. Both wheat bran and whole-stillage are potential substrates for pretreatment using waste heat from the 1st generation process for 2nd generation ethanol. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Effect of pretreatment on the enzymatic hydrolysis of kitchen waste for xanthan production.

    PubMed

    Li, Panyu; Zeng, Yu; Xie, Yi; Li, Xiang; Kang, Yan; Wang, Yabo; Xie, Tonghui; Zhang, Yongkui

    2017-01-01

    The study was carried out to gain insight into the effect of pretreatment on enzymatic hydrolysis of kitchen waste (KW) for xanthan fermentation. Herein, various pretreatments were applied and it was found that chemical pretreatment had positive effect on the following enzymatic or overall hydrolysis process. The highest reducing sugar concentration was obtained as 51.87g/L from 2% HCl (90°C) pretreated sample, while the Kjeldahl nitrogen (KDN) concentration was 7.79g/L. Kinetic study showed that first order kinetic model was suitable to describe the enzymatic hydrolysis process. The obtained kitchen waste hydrolysate (KWH) was successfully applied for xanthan fermentation. Xanthan concentration reached 4.09-6.46g/L when KWH with 2% HCl (90°C) pretreatment was applied as medium. In comparison, a xanthan concentration of 3.25-5.57g/L was obtained from KWH without pretreatment. Therefore, pretreatment of KW using diluted acid is favorable for the overall hydrolysis process and effective for xanthan fermentation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Comparative techno-economic analysis of steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological pretreatments of corn stover.

    PubMed

    Baral, Nawa Raj; Shah, Ajay

    2017-05-01

    Pretreatment is required to destroy recalcitrant structure of lignocelluloses and then transform into fermentable sugars. This study assessed techno-economics of steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological pretreatments, and identified bottlenecks and operational targets for process improvement. Techno-economic models of these pretreatment processes for a cellulosic biorefinery of 113.5 million liters butanol per year excluding fermentation and wastewater treatment sections were developed using a modelling software-SuperPro Designer. Experimental data of the selected pretreatment processes based on corn stover were gathered from recent publications, and used for this analysis. Estimated sugar production costs ($/kg) via steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological methods were 0.43, 0.42, 0.65 and 1.41, respectively. The results suggest steam explosion and sulfuric acid pretreatment methods might be good alternatives at present state of technology and other pretreatment methods require research and development efforts to be competitive with these pretreatment methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Omeprazole induces heme oxygenase-1 in fetal human pulmonary microvascular endothelial cells via hydrogen peroxide-independent Nrf2 signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Ananddeep; Zhang, Shaojie; Shrestha, Amrit

    Omeprazole (OM) is an aryl hydrocarbon receptor (AhR) agonist and a proton pump inhibitor that is used to treat humans with gastric acid related disorders. Recently, we showed that OM induces NAD (P) H quinone oxidoreductase-1 (NQO1) via nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent mechanism. Heme oxygenase-1 (HO-1) is another cytoprotective and antioxidant enzyme that is regulated by Nrf2. Whether OM induces HO-1 in fetal human pulmonary microvascular endothelial cells (HPMEC) is unknown. Therefore, we tested the hypothesis that OM will induce HO-1 expression via Nrf2 in HPMEC. OM induced HO-1 mRNA and protein expression in a dose-dependent manner.more » siRNA-mediated knockdown of AhR failed to abrogate, whereas knockdown of Nrf2 abrogated HO-1 induction by OM. To identify the underlying molecular mechanisms, we determined the effects of OM on cellular hydrogen peroxide (H{sub 2}O{sub 2}) levels since oxidative stress mediated by the latter is known to activate Nrf2. Interestingly, the concentration at which OM induced HO-1 also increased H{sub 2}O{sub 2} levels. Furthermore, H{sub 2}O{sub 2} independently augmented HO-1 expression. Although N-acetyl cysteine (NAC) significantly decreased H{sub 2}O{sub 2} levels in OM-treated cells, we observed that OM further increased HO-1 mRNA and protein expression in NAC-pretreated compared to vehicle-pretreated cells, suggesting that OM induces HO-1 via H{sub 2}O{sub 2}-independent mechanisms. In conclusion, we provide evidence that OM transcriptionally induces HO-1 via AhR - and H{sub 2}O{sub 2} - independent, but Nrf2 - dependent mechanisms. These results have important implications for human disorders where Nrf2 and HO-1 play a beneficial role. - Highlights: • Omeprazole induces HO-1 in human fetal lung cells. • AhR deficiency fails to abrogate omeprazole-mediated induction of HO-1. • Nrf2 knockdown abrogates omeprazole-mediated HO-1 induction in human lung cells. • Hydrogen peroxide depletion augments omeprazole-mediated induction of HO-1.« less

  4. Low concentration of 4-hydroxy hexenal increases heme oxygenase-1 expression through activation of Nrf2 and antioxidative activity in vascular endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishikado, Atsushi; Nishio, Yoshihiko, E-mail: nishio@belle.shiga-med.ac.jp; Morino, Katsutaro

    2010-11-05

    Research highlights: {yields} Low doses of 4-HHE and 4-HNE induce HO-1 expression in vascular endothelial cells. {yields} 4-HHE and 4-HNE increase the intranuclear expression and DNA binding of Nrf2. {yields} 4-HHE and 4-HNE-induced HO-1 expression depends on the activation of Nrf2. {yields} Pretreatment with 4-HHE and 4-HNE prevents oxidative stress-induced cytotoxicity. -- Abstract: Large-scale clinical studies have shown that n-3 polyunsaturated fatty acids (n-3 PUFAs) such as eicosapentaenoic and docosahexaenoic acids reduce cardiovascular events without improving classical risk factors for atherosclerosis. Recent studies have proposed that direct actions of n-3 PUFAs themselves, or of their enzymatic metabolites, have antioxidative andmore » anti-inflammatory effects on vascular cells. Although a recent study showed that plasma 4-hydroxy hexenal (4-HHE), a peroxidation product of n-3 PUFA, increased after supplementation of docosahexaenoic acid, the antiatherogenic effects of 4-HHE in vascular cells remain unclear. In the present study, we tested the hypothesis that 4-HHE induces the antioxidative enzyme heme oxygenase-1 (HO-1) through activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a master regulatory transcriptional factor, and prevents oxidative stress-induced cytotoxicity in vascular endothelial cells. This mechanism could partly explain the cardioprotective effects of n-3 PUFAs. Human umbilical vein endothelial cells were stimulated with 1-10 {mu}M 4-HHE or 4-hydroxy nonenal (4-HNE), a peroxidation product of n-6 PUFAs. Both 4-HHE and 4-HNE dose-dependently increased HO-1 mRNA and protein expression, and intranuclear expression and DNA binding of Nrf2 at 5 {mu}M. Small interfering RNA for Nrf2 significantly reduced 4-HHE- or 4-HNE-induced HO-1 mRNA and protein expression. Furthermore, pretreatment with 4-HHE or 4-HNE prevented tert-butyl hydroperoxide-induced cytotoxicity. In conclusion, 4-HHE, a peroxidation product of n-3 PUFAs, stimulated expression of the antioxidant enzyme HO-1 through the activation of Nrf2 in vascular endothelial cells. This resulted in prevention of oxidative stress-induced cytotoxicity, and may represent a possible mechanism to partly explain the cardioprotective effects of n-3 PUFAs.« less

  5. Protective Effect of Pinus koraiensis Needle Water Extract Against Oxidative Stress in HepG2 Cells and Obese Mice

    PubMed Central

    Won, Sae Bom; Jung, Ga-young; Kim, Juhae; Chung, Young Shin; Hong, Eun Kyung

    2013-01-01

    Abstract Needles of pine species are rich in polyphenols, which may exert beneficial effects on human health. The present study was conducted to evaluate the in vitro and in vivo antioxidant effects of Pinus koraiensis needle water extracts (PKW). HepG2 cells were pretreated with various concentrations of PKW (from 10−3 to 1 mg/mL) and oxidative stress was induced by tert-butyl hydroperoxide (t-BOOH). In the animal model, male ICR mice were fed a high-fat diet for 6 weeks to induce obesity, and then mice were continually fed a high-fat diet with or without orally administered PKW (400 mg/kg body weight) for 5 weeks. Pretreatment with PKW prevented significant increases in cytotoxicity and catalase activity induced by t-BOOH in HepG2 cells. Similarly, the catalase protein expression levels elevated by t-BOOH were abrogated in cells pretreated with PKW. In mice fed a high-fat diet, PKW significantly increased hepatic activities of catalase and glutathione reductase and lower lipid peroxidation levels were observed in the liver and kidney of mice with PKW supplementation. The present study demonstrates that PKW protects against oxidative stress in HepG2 cells treated with t-BOOH and in mice fed a high-fat diet. PMID:23822143

  6. Momordica charantia polysaccharides ameliorate oxidative stress, hyperlipidemia, inflammation, and apoptosis during myocardial infarction by inhibiting the NF-κB signaling pathway.

    PubMed

    Raish, Mohammad

    2017-04-01

    The polysaccharide extract of Momordica charantia has various biological activities; however, its effect on endothelial dysfunction in myocardial infarction remains unclear. To elucidate this, myocardial infarction was induced in rats using isoproterenol (ISP). Pretreatment with M. charantia polysaccharides (MCP; 150 or 300mg/kg) for 25days significantly inhibited increases in heart weight, the heart-weight-to-body-weight ratio, and infarction size, and ameliorated the increased serum levels of aspartate transaminase, creatine kinase, lactate dehydrogenase, total cholesterol, triglycerides, very-low-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol. In addition, MCP enhanced the activity of superoxide dismutase, catalase, and non-protein sulfhydryls, and decreased the level of lipid peroxidation. Moreover, MCP pretreatment downregulated the expression of proinflammatory cytokines (tumor necrosis factor alpha, interleukin (IL)-6, and IL-10), inflammatory markers (nitric oxide, myeloperoxidase, and inducible nitric oxide synthase), and apoptotic markers (caspase-3 and BAX), and upregulated Bcl-2 expression. Pretreatment with MCP reduced myonecrosis, edema, and inflammatory cell infiltration, and restored cardiomyocytes architecture. This myocardial protective effect could be related to the enhancement of the antioxidant defense system through the nuclear factor kappa B (NF-kB) pathways, and to anti-apoptosis through regulation of Bax, caspase-3, and Bcl-2. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Prophylactic efficacy of S-2(2-aminoethylamino)ethyl phenyl sulfide (DRDE-07) against sulfur mustard induced lung toxicity in mice.

    PubMed

    Kannan, G M; Kumar, Pravin; Bhaskar, A S B; Pathak, U; Kumar, Deo; Nagar, D P; Pant, S C; Ganesan, K

    2016-01-01

    The present study was planned to investigate the prophylactic efficacy of S-2(2-aminoethylamino)ethyl phenyl sulfide (DRDE-07), against topically applied SM induced pulmonary toxicity in mouse. Animals were pretreated with S-2(2-aminoethylamino)ethyl phenyl sulfide (DRDE-07) (249.4 mg/kg by oral gavage) 30 minutes before SM exposure. The SM (6.48 mg/kg) was applied on hair clipped dorsocaudal region (percutaneous) of the animal. The animals were sacrificed on day 1, 3, 5 and 7. The biochemical changes those were observed in the bronchoalveolar lavage (BAL) fluid and lung tissue included protein, LDH, MPO, β-glucuronidase, MMP-2, MMP-9, activated macrophages, reduced glutathione and lipid peroxidation level. Pretreatment with DRDE-07 (0.2 LD50) attenuated SM-induced changes at all time point tested. BAL fluid biochemical endpoints indicated epithelial and endothelial cell damages as evidenced by increase in BAL protein, LDH level and increased number of activated macrophages. The increased myeloperoxidase activity and β-glucuronidase level exhibited the degranulation of neutrophils due to SM toxicity in lung. The zymogrphy analysis of BAL fluid showed a significant increase in matrix metalloproteases (MMP) activity due to inflammatory cells accumulation. Thirty minutes pretreatment with DRDE-07 decreased vascular permeability reduced the inflammation and oxidative stress, hence may be recommended as a potential prophylactic agent for SM intoxication.

  8. A pharmacological investigation of Hippophae salicifolia (HS) and Hippophae rhamnoides turkestanica (HRT) against multiple stress (C-H-R): an experimental study using rat model.

    PubMed

    Rathor, Richa; Sharma, Priyanka; Suryakumar, Geetha; Ganju, Lilly

    2015-09-01

    Hippophae salicifolia (HS) and Hippophae rhamnoides turkestanica (HRT) are abundantly found species of Hippophae in Himalayan region of India. As these plants thrive under extreme climatic conditions, it is suspected that these plants must have a unique adaptogenic property against high-altitude stress. To keeping these views in our mind, the present study was planned to evaluate the mechanism of action of aqueous extract of HS and aqueous extract of HRT against multiple stress [cold-hypoxia-restraint (C-H-R)] for their adaptogenic activity. The present study reported the adaptogenic activity of HS in facilitating tolerance to multiple stress, CHR in rats. Pre-treatment with aqueous extract of HS significantly attenuated reactive oxygen species (ROS) production, protein oxidation, and lipid peroxidation and also showed role in maintaining antioxidant status as similar to control rats. Since protein oxidation was decreased by pre-treatment of HS, protein homeostasis was also sustained by regulation of heat shock proteins (HSP70 and HSP60). Interestingly, heme oxygenase-1 (HO-1), Vascular Endothelial Growth Factor (VEGF), and nitric oxide (NO) level was also increased in HS pre-treated rats depicted its adaptogenic activity against multiple stress, CHR. Conclusively, aqueous extract of HS could use an adaptogen for high altitude-associated multiple stress (CHR).

  9. Chemical composition, antioxidant properties and hepatoprotective effects of chamomile (Matricaria recutita L.) decoction extract against alcohol-induced oxidative stress in rat.

    PubMed

    Sebai, Hichem; Jabri, Mohamed-Amine; Souli, Abdelaziz; Hosni, Karim; Rtibi, Kais; Tebourbi, Olfa; El-Benna, Jamel; Sakly, Mohsen

    2015-07-01

    The present study assessed the chemical composition, antioxidant properties, and hepatoprotective effects of subacute pre-treatment with chamomile (Matricaria recutita L.) decoction extract (CDE) against ethanol (EtOH)-induced oxidative stress in rats. The colorimetric analysis demonstrated that the CDE is rich in total polyphenols, total flavonoids and condensed tannins, and exhibited an important in vitro antioxidant activity. The use of LC/MS technique allowed us to identify 10 phenolic compounds in CDE. We found that CDE pretreatment, in vivo, protected against EtOH-induced liver injury evident by plasma transaminases activity and preservation of the hepatic tissue structure. The CDE counteracted EtOH-induced liver lipoperoxidation, preserved thiol -SH groups and prevented the depletion of antioxidant enzyme activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). We also showed that acute alcohol administration increased tissue and plasma hydrogen peroxide (H(2)O(2)), calcium and free iron levels. More importantly, CDE pre-treatment reversed all EtOH-induced disturbances in intracellular mediators. In conclusion, our data suggest that CDE exerted a potential hepatoprotective effect against EtOH-induced oxidative stress in rat, at least in part, by negatively regulating Fenton reaction components such as H(2)O(2) and free iron, which are known to lead to cytotoxicity mediated by intracellular calcium deregulation.

  10. Pre-treatment with α-tocopherol and Terminalia arjuna ameliorates, pro-inflammatory cytokines, cardiac and apoptotic markers in myocardial infracted rats.

    PubMed

    Shukla, Santosh K; Sharma, Suman B; Singh, Usha R

    2015-03-01

    This study was aimed to evaluate the cardioprotective potential of combination of T. arjuna and α-tocopherol in isoproterenol induced myocardial injury. Wistar albino rats were pre-treated with hydroalcoholic extract of T. arjuna (HETA) and α-tocopherol (100 mg/kg b. w) daily for 30 days. Isoproterenol (ISP, 85 mg/kg b.w) was administered on 28th and 29th days at an interval of 24 hr. ISP treated rats showed significant increase in lipid peroxidation (MDA), cardiac markers (CK-MB, SGOT, Trop I and LDH), pro-inflammatory cytokine (IL-6, CRP, TNF-α) levels and apoptotic markers (Bcl-2/Bax) as compared to healthy group. Pre-treatment with HETA 100 mg/kg b. w, reduced the elevated levels of these markers and significant effect (p<0.05) were observed with the combination of HETA and α-tocopherol at a dose of 100 mg/kg b. w, which was further confirmed by histopathological studies. The present study concluded that the combination of α-tocopherol (100 mg/kg b. w) and hydroalcoholic extract of T. arjuna (100 mg/kg b. w) augments endogenous antioxidant compounds of rat heart and also prevents the myocardium from ISP-induced myocardial injury and it may have therapeutic and prophylactic value in the treatment of ischemic heart disease.

  11. Neuroprotective effects of curcumin on 6-hydroxydopamine-induced Parkinsonism in rats: behavioral, neurochemical and immunohistochemical studies.

    PubMed

    Khuwaja, Gulrana; Khan, Mohd Moshahid; Ishrat, Tauheed; Ahmad, Ajmal; Raza, Syed Shadab; Ashafaq, Mohammad; Javed, Hayate; Khan, M Badruzzaman; Khan, Andleeb; Vaibhav, Kumar; Safhi, Mohammed M; Islam, Fakhrul

    2011-01-12

    Curcumin, the active principle of turmeric used in Indian curry is known for its antitumor, antioxidant, antiarthritic, anti-ischemic and anti-inflammatory properties and might inhibit the accumulation of destructive beta-amyloid in the brains of Alzheimer's disease patients. A Parkinsonian model in rats was developed by giving 6-hydroxydopamine (10 μg/2 μl in 0.1% ascorbic acid-saline) in the right striatum. After 3 weeks of lesioning, the behavior activities (rotarod, narrow beam test, grip test and contra-lateral rotations) were increased in a lesioned group as compared to a sham group and these activities were protected significantly with the pretreatment of curcumin. A significant protection on lipid peroxidation, glutathione, glutathione peroxidase, glutathione reductase, superoxide dismutase, catalase, tyrosine hydroxylase and D(2) receptor binding was observed in the striatum of lesioned group animals pretreated with 80 mg/kg body weight of curcumin for 21 days as compared to lesion group animals. No significant alterations on behavior and biochemical parameters were observed in sham group animals and the animals of sham group pretreated with curcumin. This study indicates that curcumin, which is an important ingredient of diet in India and also used in various systems of indigenous medicine, is helpful in preventing Parkinsonism and has therapeutic potential in combating this devastating neurologic disorder. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Alkylsilyl Peroxides as Alkylating Agents in the Copper-Catalyzed Selective Mono-N-Alkylation of Primary Amides and Arylamines.

    PubMed

    Sakamoto, Ryu; Sakurai, Shunya; Maruoka, Keiji

    2017-07-06

    The copper-catalyzed selective mono-N-alkylation of primary amides or arylamines using alkylsilyl peroxides as alkylating agents is reported. The reaction proceeds under mild reaction conditions and exhibits a broad substrate scope with respect to the alkylsilyl peroxides, as well as to the primary amides and arylamines. Mechanistic studies suggest that the present reaction should proceed through a free-radical process that includes alkyl radicals generated from the alkylsilyl peroxides. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Potable water recovery for spacecraft application by electrolytic pretreatment/air evaporation

    NASA Technical Reports Server (NTRS)

    Wells, G. W.

    1975-01-01

    A process for the recovery of potable water from urine using electrolytic pretreatment followed by distillation in a closed-cycle air evaporator has been developed and tested. Both the electrolytic pretreatment unit and the air evaporation unit are six-person, flight-concept prototype, automated units. Significantly extended wick lifetimes have been achieved in the air evaporation unit using electrolytically pretreated, as opposed to chemically pretreated, urine feed. Parametric test data are presented on product water quality, wick life, process power, maintenance requirements, and expendable requirements.

  14. Arsenic oxidation by UV radiation combined with hydrogen peroxide.

    PubMed

    Sorlini, S; Gialdini, F; Stefan, M

    2010-01-01

    Arsenic is a widespread contaminant in the environment around the world. The most abundant species of arsenic in groundwater are arsenite [As(III)] and arsenate [As(V)]. Several arsenic removal processes can reach good removal yields only if arsenic is present as As(V). For this reason it is often necessary to proceed with a preliminary oxidation of As(III) to As(V) prior to the removal technology. Several studies have focused on arsenic oxidation with conventional reagents and advanced oxidation processes. In the present study the arsenic oxidation was evaluated using hydrogen peroxide, UV radiation and their combination in distilled and in real groundwater samples. Hydrogen peroxide and UV radiation alone are not effective at the arsenic oxidation. Good arsenic oxidation yields can be reached in presence of hydrogen peroxide combined with a high UV radiation dose (2,000 mJ/cm(2)). The quantum efficiencies for As(III) oxidation were calculated for both the UV photolysis and the UV/H(2)O(2) processes.

  15. Development of an estimation model for the evaluation of the energy requirement of dilute acid pretreatments of biomass.

    PubMed

    Mafe, Oluwakemi A T; Davies, Scott M; Hancock, John; Du, Chenyu

    2015-01-01

    This study aims to develop a mathematical model to evaluate the energy required by pretreatment processes used in the production of second generation ethanol. A dilute acid pretreatment process reported by National Renewable Energy Laboratory (NREL) was selected as an example for the model's development. The energy demand of the pretreatment process was evaluated by considering the change of internal energy of the substances, the reaction energy, the heat lost and the work done to/by the system based on a number of simplifying assumptions. Sensitivity analyses were performed on the solid loading rate, temperature, acid concentration and water evaporation rate. The results from the sensitivity analyses established that the solids loading rate had the most significant impact on the energy demand. The model was then verified with data from the NREL benchmark process. Application of this model on other dilute acid pretreatment processes reported in the literature illustrated that although similar sugar yields were reported by several studies, the energy required by the different pretreatments varied significantly.

  16. Effect of structural changes of lignocelluloses material upon pre-treatment using green solvents

    NASA Astrophysics Data System (ADS)

    Gunny, Ahmad Anas Nagoor; Arbain, Dachyar; Jamal, Parveen

    2017-04-01

    The Malaysia Biomass strategy 2020 stated that the key step of biofuel production from biomass lies on the pretreatment process. Conventional `pre-treatment' methods are `non-green" and costly. The recent green and cost-effective biomass pretreatment is using new generation of Ionic Liquids also known as Deep Eutectic Solvents (DESs). DESs are made of renewable components are cheaper, greener and the process synthesis are easier. Thus, the present paper concerns with the preparation of various combination of DES and to study the effect of DESs pretreatment process on microcrystalline cellulose (MCC), a model substrate. The crystalline structural changes were studied using using X-ray Diffraction Methods, Fourier Transformed Infrared Spectroscopy (FTIR) and surface area and pore size analysis. Results showed reduction of crystalline structure of MCC treated with the DESs and increment of surface area and pore size of MCC after pre-treatment process. These results indicated the DES has successfully converted the lignocelluloses material in the form suitable for hydrolysis and conversion to simple sugar.

  17. Electrochemical pretreatment of waste activated sludge: effect of process conditions on sludge disintegration degree and methane production.

    PubMed

    Ye, Caihong; Yuan, Haiping; Dai, Xiaohu; Lou, Ziyang; Zhu, Nanwen

    2016-11-01

    Waste activated sludge (WAS) requires a long digestion time because of a rate-limiting hydrolysis step - the first phase of anaerobic digestion (AD). Pretreatment can be used prior to AD to facilitate the hydrolysis step and improve the efficiency of WAS digestion. This study evaluated a novel application of electrochemical (EC) technology employed as the pretreatment method prior to AD of WAS, focusing on the effect of process conditions on sludge disintegration and subsequent AD process. A superior process condition of EC pretreatment was obtained by reaction time of 30 min, electrolysis voltage of 20 V, and electrode distance of 5 cm, under which the disintegration degree of WAS ranged between 9.02% and 9.72%. In the subsequent batch AD tests, 206 mL/g volatile solid (VS) methane production in EC pretreated sludge was obtained, which was 20.47% higher than that of unpretreated sludge. The AD time was 19 days shorter for EC pretreated sludge compared to the unpretreated sludge. Additionally, the EC + AD reactor achieved 41.84% of VS removal at the end of AD. The analysis of energy consumption showed that EC pretreatment could be effective in enhancing sludge AD with reduced energy consumption when compared to other pretreatment methods.

  18. Preparation of sewage sludge based activated carbon by using Fenton's reagent and their use in 2-naphthol adsorption.

    PubMed

    Gu, Lin; Wang, Yachen; Zhu, Nanwen; Zhang, Daofang; Huang, Shouqiang; Yuan, Haiping; Lou, Ziyang; Wang, Miaolin

    2013-10-01

    In this study, Fenton's reagents (H2O2/Fe(2+)) are used to activate raw sewage sludge for the preparation of the sludge based activated carbon. The effect of the amount of hydrogen peroxide addition on carbon's chemical composition, texture properties, surface chemistry and morphology are investigated. Choosing an appropriate H2O2 dosage (5 v%) (equivalent to 70.7 mM/(g VS)), it is possible to obtain a comparatively highly porous materials with SBET and the total pore volume being 321 m(2)/g and 0.414 cm(3)/g, respectively. Continuously increasing the oxidant ratio resulted in a decreased SBET value. Further adsorption experiments by using 2-naphthol as model pollutant revealed that the adoption followed a pseudo-second-order kinetics better than pseudo-first-order. The calculated adsorption capacity is 111.9 mg/g on the carbon with 5% H2O2 pretreatment while this value is just 51.5mg/g on carbons without any pretreatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Protective effects of decursin and decursinol angelate against amyloid β-protein-induced oxidative stress in the PC12 cell line: the role of Nrf2 and antioxidant enzymes.

    PubMed

    Li, Li; Li, Wei; Jung, Sang-Won; Lee, Yong-Woo; Kim, Yong-Ho

    2011-01-01

    The protective effects of decursin (D) and decursinol angelate (DA) purified from Angelica gigas Nakai on amyloid β-protein (Aβ)-induced neurotoxicity and the underlying mechanisms were investigated. Aβ plays a major role in the pathogenesis of Alzheimer's disease (AD) by eliciting oxidative stress. It significantly increased cytotoxicity and lipid peroxidation, but decreased glutathione contents and antioxidant enzyme activities. All of these results were markedly reversed by pretreatment with D or DA. Nuclear transcription factor Nrf2, which regulates the expression of antioxidant enzymes, was significantly increased by D or DA pretreatment. Furthermore, D and DA suppressed Aβ aggregation. These results suggest that D and DA increase cellular resistance to Aβ-induced oxidative injury in the rat pheochromocytoma (PC12) cells, presumably through not only the induction of Nrf2 and related antioxidant enzymes, but also the anti-aggregation of Aβ. Thus D and DA have therapeutic potential in treating AD and other oxidative stress-related diseases.

  20. Suppression of streptozotocin-induced type-1 diabetes in mice by radon inhalation.

    PubMed

    Nishiyama, Y; Kataoka, T; Teraoka, J; Sakoda, A; Tanaka, H; Ishimori, Y; Mitsunobu, F; Taguchi, T; Yamaoka, K

    2013-01-01

    We examined the protective effect of radon inhalation on streptozotocin (STZ)-induced type-1 diabetes in mice. Mice inhaled radon at concentrations of 1000, 2500, and 5500 Bq/m3 for 24 hours before STZ administration. STZ administration induced characteristics of type-1 diabetes such as hyperglycemia and hypoinsulinemia; however, radon inhalation at doses of 1000 and 5500 Bq/m3 significantly suppressed the elevation of blood glucose in diabetic mice. Serum insulin was significantly higher in mice pre-treated with radon at a dose of 1000 Bq/m3 than in mice treated with a sham. In addition, superoxide dismutase activities and total glutathione contents were significantly higher and lipid peroxide was significantly lower in mice pre-treated with radon at doses of 1000 and 5500 Bq/m3 than in mice treated with a sham. These results were consistent with the result that radon inhalation at 1000 and 5500 Bq/m3 suppressed hyperglycemia. These findings suggested that radon inhalation suppressed STZ-induced type-1 diabetes through the enhancement of antioxidative functions in the pancreas.

  1. Protective effects of Althaea officinalis L. extract in 6-hydroxydopamine-induced hemi-Parkinsonism model: behavioral, biochemical and histochemical evidence.

    PubMed

    Rezaei, Maryam; Alirezaei, Masoud

    2014-05-01

    It is well known that Parkinson's disease (PD) is the second most common neurodegenerative disorder in humans. In this regard, the neuroprotective effect of Althaea officinalis (AO) has already been reported. Therefore, this study examined whether administration of AO extract would improve behavioral, biochemical and structural abnormalities in an experimental animal model of PD in rats. For this purpose, we induced hemi-Parkinsonism by unilateral intranigral injection of 6-hydroxydopamine (6-OHDA, 8 μg/5 μl saline-ascorbate). The rats were pretreated i.p. with AO extract (10 mg/kg) started 6 days before surgery and continued until the 3rd day post-surgery. Regarding oxidative stress, brain MDA concentration (as a lipid peroxidation marker) increased significantly in the 6-OHDA-administered group in comparison with rats pretreated with AO extract. It was found that AO treatment attenuated rotational behavior in the 6-OHDA-administered group and protected the neurons of substantia nigra pars compacta against 6-OHDA toxicity. Overall, AO extract administration indicated neuroprotective effects against 6-OHDA-induced hemi-Parkinsonism in rats.

  2. Protective effect of unsymmetrical dichalcogenide, a novel antioxidant agent, in vitro and an in vivo model of brain oxidative damage.

    PubMed

    Prigol, Marina; Wilhelm, Ethel A; Schneider, Caroline C; Nogueira, Cristina W

    2008-11-25

    Unsymmetrical dichalcogenides, a class of organoselenium compounds, were screened for antioxidant activity in rat brain homogenates in vitro. Unsymmetrical dichalcogenides (1-3) were tested against lipid peroxidation induced by sodium nitroprusside (SNP) or malonate, and reactive species (RS) production induced by sodium azide in rat brain homogenates. Compounds 1 (without a substituent at the phenyl group), 2 (chloro substituent at the phenyl group bounded to the sulfur atom) and 3 (chloro substituent at the phenyl group bounded to the selenium atom) protected against lipid peroxidation induced by SNP. The IC50 values followed the order 3<2<1. Lipid peroxidation induced by malonate was also reduced by dichalcogenides 1, 2 and 3. The IC50 values were 3

  3. Combination of alkaline and microwave pretreatment for disintegration of meat processing wastewater sludge.

    PubMed

    Erden, G

    2013-01-01

    Meat processing wastewater sludge has high organic content but it is very slow to degrade in biological processes. Anaerobic digestion may be a good alternative for this type of sludge when the hydrolysis, known to be the rate-limiting step of biological sludge anaerobic degradation, could be eliminated by disintegration. This investigation deals with disintegration of meat processing wastewater sludge. Microwave (MW) irradiation and combined alkaline pretreatment and MW irradiation were applied to sludge for disintegration purposes. Disintegration performance of the methods was evaluated with disintegration degree based on total and dissolved organic carbon calculations (DD(TOC)), and the solubilization of volatile solids (S(VS)) in the pretreated sludge. Optimum conditions were found to be 140 degrees C and 30 min for MW irradiation using response surface methodology (RSM) and pH = 13 for combined pretreatment. While DD(TOC) was observed as 24.6% and 54.9, S(VS) was determined as 8.54% and 42.5% for MW pretreated and combined pretreated sludge, respectively. The results clearly show that pre-conditioning of sludge with alkaline pretreatment played an important role in enhancing the disintegration efficiency of subsequent MW irradiation. Disintegration methods also affected the anaerobic biodegradability and dewaterability of sludge. An increase of 23.6% in biogas production in MW irradiated sludge was obtained, comparing to the raw sludge at the end of the 35 days of incubation. This increase was observed as 44.5% combined pretreatment application. While MW pretreatment led to a little improvement of the dewatering performance of sludge, in combined pretreatment NaOH deteriorates the sludge dewaterability.

  4. Pretreatment Solution for Water Recovery Systems

    NASA Technical Reports Server (NTRS)

    Muirhead, Dean (Inventor)

    2018-01-01

    Chemical pretreatments are used to produce usable water by treating a water source with a chemical pretreatment that contains a hexavalent chromium and an acid to generate a treated water source, wherein the concentration of sulfate compounds in the acid is negligible, and wherein the treated water source remains substantially free of precipitates after the addition of the chemical pretreatment. Other methods include reducing the pH in urine to be distilled for potable water extraction by pretreating the urine before distillation with a pretreatment solution comprising one or more acid sources selected from a group consisting of phosphoric acid, hydrochloric acid, and nitric acid, wherein the urine remains substantially precipitate free after the addition of the pretreatment solution. Another method described comprises a process for reducing precipitation in urine to be processed for water extraction by mixing the urine with a pretreatment solution comprising hexavalent chromium compound and phosphoric acid.

  5. Transcription factor Nrf2 mediates an adaptive response to sulforaphane that protects fibroblasts in vitro against the cytotoxic effects of electrophiles, peroxides and redox-cycling agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higgins, Larry G.; Kelleher, Michael O.; Eggleston, Ian M.

    2009-06-15

    Sulforaphane can stimulate cellular adaptation to redox stressors through transcription factor Nrf2. Using mouse embryonic fibroblasts (MEFs) as a model, we show herein that the normal homeostatic level of glutathione in Nrf2{sup -/-} MEFs was only 20% of that in their wild-type counterparts. Furthermore, the rate of glutathione synthesis following its acute depletion upon treatment with 3 {mu}mol/l sulforaphane was very substantially lower in Nrf2{sup -/-} MEFs than in wild-type cells, and the rebound leading to a {approx} 1.9-fold increase in glutathione that occurred 12-24 h after Nrf2{sup +/+} MEFs were treated with sulforaphane was not observed in Nrf2{sup -/-}more » fibroblasts. Wild-type MEFs that had been pre-treated for 24 h with 3 {mu}mol/l sulforaphane exhibited between 1.4- and 3.2-fold resistance against thiol-reactive electrophiles, including isothiocyanates, {alpha},{beta}-unsaturated carbonyl compounds (e.g. acrolein), aryl halides and alkene epoxides. Pre-treatment of Nrf2{sup +/+} MEFs with sulforaphane also protected against hydroperoxides (e.g. cumene hydroperoxide, CuOOH), free radical-generating compounds (e.g. menadione), and genotoxic electrophiles (e.g. chlorambucil). By contrast, Nrf2{sup -/-} MEFs were typically {approx} 50% less tolerant of these agents than wild-type fibroblasts, and sulforaphane pre-treatment did not protect the mutant cells against xenobiotics. To test whether Nrf2-mediated up-regulation of glutathione represents the major cytoprotective mechanism stimulated by sulforaphane, 5 {mu}mol/l buthionine sulfoximine (BSO) was used to inhibit glutathione synthesis. In Nrf2{sup +/+} MEFs pre-treated with sulforaphane, BSO diminished intrinsic resistance and abolished inducible resistance to acrolein, CuOOH and chlorambucil, but not menadione. Thus Nrf2-dependent up-regulation of GSH is the principal mechanism by which sulforaphane pre-treatment induced resistance to acrolein, CuOOH and chlorambucil, but not menadione.« less

  6. Effects of Gallic Acid and Cyclosporine A on Antioxidant Capacity and Cardiac Markers of Rat Isolated Heart After Ischemia/Reperfusion

    PubMed Central

    Badavi, Mohammad; Sadeghi, Najmeh; Dianat, Mahin; Samarbafzadeh, Alireza

    2014-01-01

    Background: Myocardial infarction is one of the important causes of death during old ages. Gallic acid as an antioxidant or cyclosporine A (CsA) as inhibitor of mitochondrial permeability transition pore (mPTP) alone could prevent these complications to some extent, but their combination effect has not been investigated. Objectives: The aim of this study was to determine the combined effect of gallic acid and CsA on antioxidant capacity of isolated heart tissues during ischemia reperfusion. Materials and Methods: Eighty male Wistar rats were randomly assigned to different groups: sham, control (Ca, received saline, 1 mL/kg); 3 groups were pretreated with gallic acid (G1a: 7.5, G2a: 15, G3a: 30 mg/kg) for 10 days, and the other 3 groups were pretreated with gallic acid and received CsA (0.2 µM) for 10 minutes before induction of ischemia and during the first 10 minutes of reperfusion (G1b, G2b and G3b) and the last group received CsA alone (Cb). After 10 days of pretreatment, the heart was isolated and transferred to the Langendorff apparatus and exposed to 30 minutes ischemia followed by 60 minutes of reperfusion. After that cardiac markers and antioxidant enzymes were assessed in cardiac tissues. Results: Lactate dehydrogenase (LDH), Superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) activity increased and malondialdehyde (MDA) decreased in animals pretreated with gallic acid significantly. However, pretreatment with gallic acid followed by CsA during reperfusion improved the antioxidant capacity and cardiac marker enzymes and restored the lipid peroxidation more effective than gallic acid or CsA alone. Nevertheless, CsA did not change the cardiac marker enzymes significantly. Conclusions: Gallic acid and CsA combination improved antioxidant capacity and cell membrane integrity more than each one alone. Therefore, it can be a therapeutic approach to reduce the I/R injury. PMID:25068044

  7. Bleach boosting effect of xylanase A from Bacillus halodurans C-125 in ECF bleaching of wheat straw pulp.

    PubMed

    Lin, Xiao-qiong; Han, Shuang-yan; Zhang, Na; Hu, Hui; Zheng, Sui-ping; Ye, Yan-rui; Lin, Ying

    2013-02-05

    Past studies have revealed major difficulties in applications of xylanase in the pulp and paper industry as enzymes isolated from many different species could not tolerate high temperatures or highly alkaline conditions. The thermostable xylanase A from Bacillus halodurans C-125 (C-125 xylanase A) was successfully cloned and expressed in Pichia pastoris with a yield as high as 3361 U/mL in a 2 L reactor. Its thermophilic and basophilic properties (optimal activity at 70 °C and pH 9.0), together with the fact it is cellulase-free, render this enzyme attractive for compatible applications in the pulp and paper industry. The pretreatment of wheat straw pulp with C-125 xylanase A at pH 9.0 and 70 °C for 90 min induced the release of both chromophores (Ab(237), Ab(254), Ab(280)) and hydrophobic compounds (Ab(465)) into the filtrate as well as sugar degradation. Moreover, the addition of 10 U xylanase to 1 g wheat straw pulp (dry weight) as pretreatment improved brightness by 5.2% ISO and decreased the kappa number by 5.0% when followed by hydrogen peroxide bleaching. In addition, compared with two commercial enzymes, Pulpzyme HC and AU-PE89, which are normally incorporated in ECF bleaching of wheat straw pulp, C-125 xylanase A proved to be more effective in enhancing brightness as well as preserving paper strength properties. When evaluating the physical properties of pulp samples, such as tensile index, tearing index, bursting index, and post-color (PC) number, the enzymes involved in pretreating pulps exhibited better or the same performances as chemical treatment. Compared with chemical bleaching, chlorine consumption can be significantly reduced by 10% for xylanase-pretreated wheat straw pulp while maintaining the brightness together with the kappa number at the same level. Scanning electron microscopy revealed significant surface modification of enzyme-pretreated pulp fibers with no marked fiber disruptions. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Hydrogen Peroxide as a Sustainable Energy Carrier: Electrocatalytic Production of Hydrogen Peroxide and the Fuel Cell.

    PubMed

    Fukuzumi, Shunichi; Yamada, Yusuke; Karlin, Kenneth D

    2012-11-01

    This review describes homogeneous and heterogeneous catalytic reduction of dioxygen with metal complexes focusing on the catalytic two-electron reduction of dioxygen to produce hydrogen peroxide. Whether two-electron reduction of dioxygen to produce hydrogen peroxide or four-electron O 2 -reduction to produce water occurs depends on the types of metals and ligands that are utilized. Those factors controlling the two processes are discussed in terms of metal-oxygen intermediates involved in the catalysis. Metal complexes acting as catalysts for selective two-electron reduction of oxygen can be utilized as metal complex-modified electrodes in the electrocatalytic reduction to produce hydrogen peroxide. Hydrogen peroxide thus produced can be used as a fuel in a hydrogen peroxide fuel cell. A hydrogen peroxide fuel cell can be operated with a one-compartment structure without a membrane, which is certainly more promising for the development of low-cost fuel cells as compared with two compartment hydrogen fuel cells that require membranes. Hydrogen peroxide is regarded as an environmentally benign energy carrier because it can be produced by the electrocatalytic two-electron reduction of O 2 , which is abundant in air, using solar cells; the hydrogen peroxide thus produced could then be readily stored and then used as needed to generate electricity through the use of hydrogen peroxide fuel cells.

  9. Neuroprotection by a novel brain permeable iron chelator, VK-28, against 6-hydroxydopamine lession in rats.

    PubMed

    Shachar, Dorit Ben; Kahana, Nava; Kampel, Vladimir; Warshawsky, Abraham; Youdim, Moussa B H

    2004-02-01

    Significant increase in iron occurs in the substantia nigra pars compacta of Parkinsonian subjects, and in 6-hydroxydopamine (6-OHDA) treated rats and monkeys. This increase in iron has been attributed to its release from ferritin and is associated with the generation of reactive oxygen species and the onset of oxidative stress-induced neurodegeneration. Several iron chelators with hydroxyquinoline backbone were synthesized and their ability to inhibit basal as well as iron-induced mitochondrial lipid peroxidation was examined. The neuroprotective potential of the brain permeable iron chelator, VK-28 (5-[4-(2-hydroxyethyl) piperazine-1-ylmethyl]-quinoline-8-ol), injected either intraventricularly (ICV) or intraperitoneally (IP), to 6-OHDA lesioned rats was investigated. VK-28 inhibited both basal and Fe/ascorbate induced mitochondrial membrane lipid peroxidation, with an IC(50) (12.7 microM) value comparable to that of the prototype iron chelator, desferal, which does not cross the blood brain barrier. At an ICV pretreatment dose as low as 1 microg, VK-28 was able to completely protect against ICV 6-OHDA (250 microg) induced striatal dopaminergic lesion, as measured by dopamine (DA), dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA) levels. IP injection of rats with VK-28 (1 and 5 mg/kg) daily for 10 and 7 days, respectively, demonstrated significant neuroprotection against ICV 6-OHDA at the higher dose, with 68% protection against loss of dopamine at 5mg/kg dosage of VK-28. The present study is the first to show neuroprotection with a brain permeable iron chelator. The latter can have implications for the treatment of Parkinson's disease and other neurodegenerative diseases (Alzheimer's disease, Friedreich ataxia, aceruloplasminemia, Hallervorden Spatz syndrome) where abnormal iron accumulation in the brain is thought to be associated with the degenerative processes.

  10. Spermidine-mediated hydrogen peroxide signaling enhances the antioxidant capacity of salt-stressed cucumber roots.

    PubMed

    Wu, Jianqiang; Shu, Sheng; Li, Chengcheng; Sun, Jin; Guo, Shirong

    2018-07-01

    Hydrogen peroxide (H 2 O 2 ) is a key signaling molecule that mediates a variety of physiological processes and defense responses against abiotic stress in higher plants. In this study, our aims are to clarify the role of H 2 O 2 accumulation induced by the exogenous application of spermidine (Spd) to cucumber (Cucumis sativus) seedlings in regulating the antioxidant capacity of roots under salt stress. The results showed that Spd caused a significant increase in endogenous polyamines and H 2 O 2 levels, and peaked at 2 h after salt stress. Spd-induced H 2 O 2 accumulation was blocked under salt stress by pretreatment with a H 2 O 2 scavenger and respective inhibitors of cell wall peroxidase (CWPOD; EC: 1.11.1.7), polyamine oxidase (PAO; EC: 1.5.3.11) and NADPH oxidase (NOX; EC: 1.6.3.1); among these three inhibitors, the largest decrease was found in response to the addition of the inhibitor of polyamine oxidase. In addition, we observed that exogenous Spd could increase the activities of the enzymes superoxide dismutase (SOD; EC: 1.15.1.1), peroxidase (POD; EC: 1.11.1.7) and catalase (CAT; EC: 1.11.1.6) as well as the expression of their genes in salt-stressed roots, and the effects were inhibited by H 2 O 2 scavengers and polyamine oxidase inhibitors. These results suggested that, by regulating endogenous PAs-mediated H 2 O 2 signaling in roots, Spd could enhance antioxidant enzyme activities and reduce oxidative damage; the main source of H 2 O 2 was polyamine oxidation, which was associated with improved tolerance and root growth recovery of cucumber under salt stress. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  11. Post-treatment mechanical refining as a method to improve overall sugar recovery of steam pretreated hybrid poplar.

    PubMed

    Dou, Chang; Ewanick, Shannon; Bura, Renata; Gustafson, Rick

    2016-05-01

    This study investigates the effect of mechanical refining to improve the sugar yield from biomass processed under a wide range of steam pretreatment conditions. Hybrid poplar chips were steam pretreated using six different conditions with or without SO2. The resulting water insoluble fractions were subjected to mechanical refining. After refining, poplar pretreated at 205°C for 10min without SO2 obtained a 32% improvement in enzymatic hydrolysis and achieved similar overall monomeric sugar recovery (539kg/tonne) to samples pretreated with SO2. Refining did not improve hydrolyzability of samples pretreated at more severe conditions, nor did it improve the overall sugar recovery. By maximizing overall sugar recovery, refining could partially decouple the pretreatment from other unit operations, and enable the use of low temperature, non-sulfur pretreatment conditions. The study demonstrates the possibility of using post-treatment refining to accommodate potential pretreatment process upsets without sacrificing sugar yields. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Photo-Fenton-assisted ozonation of p-Coumaric acid in aqueous solution.

    PubMed

    Monteagudo, J M; Carmona, M; Durán, A

    2005-08-01

    The degradation of p-Coumaric acid present in olive oil mill wastewater was investigated as a pretreatment stage to obtain more easily biodegradable molecules, with lower toxicity that facilitates subsequent anaerobic digestion. Thus, photo-Fenton-assisted ozonation has been studied and compared with ozonation at alkaline pH and conventional single ultraviolet (UV) and acid ozonation treatments. In the combined process, the overall kinetic rate constant was split into various components: direct oxidation by UV light, direct oxidation by ozone and oxidation by hydroxyl radicals. Molecular and/or radical ozone reaction was studied by conducting the reaction in the presence and absence of tert-butylalcohol at pHs 2, 7 and 9. Ozone oxidation rate increases with pH or by the addition of Fenton reagent and/or UV radiation due to generation of hydroxyl radicals, *OH. Hydrogen peroxide and ferrous ion play a double role during oxidation since at low concentrations they act as initiators of hydroxyl radicals but at high concentrations they act as radical scavengers. Finally, the additional levels of degradation by formation of hydroxyl radicals have been quantified in comparison to the conventional single processes and an equation is proposed for the reaction rate as a function of studied operating variables.

  13. Net positive energy wastewater treatment plant via thermal pre-treatment of sludge: A theoretical case study.

    PubMed

    Farno, Ehsan; Baudez, Jean Christophe; Parthasarathy, Rajarathinam; Eshtiaghi, Nicky

    2017-04-16

    In a wastewater treatment process, energy is mainly used in sludge handling and heating, while energy is recovered by biogas production in anaerobic digestion process. Thermal pre-treatment of sludge can change the energy balance in a wastewater treatment process since it reduces the viscosity and yield stress of sludge and increases the biogas production. In this study, a calculation based on a hypothetical wastewater treatment plant is provided to show the possibility of creating a net positive energy wastewater treatment plant as a result of implementing thermal pre-treatment process before the anaerobic digester. The calculations showed a great energy saving in pumping and mixing of the sludge by thermal pre-treatment of sludge before anaerobic digestion process.

  14. Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production.

    PubMed

    Kumar, Deepak; Murthy, Ganti S

    2011-09-05

    While advantages of biofuel have been widely reported, studies also highlight the challenges in large scale production of biofuel. Cost of ethanol and process energy use in cellulosic ethanol plants are dependent on technologies used for conversion of feedstock. Process modeling can aid in identifying techno-economic bottlenecks in a production process. A comprehensive techno-economic analysis was performed for conversion of cellulosic feedstock to ethanol using some of the common pretreatment technologies: dilute acid, dilute alkali, hot water and steam explosion. Detailed process models incorporating feedstock handling, pretreatment, simultaneous saccharification and co-fermentation, ethanol recovery and downstream processing were developed using SuperPro Designer. Tall Fescue (Festuca arundinacea Schreb) was used as a model feedstock. Projected ethanol yields were 252.62, 255.80, 255.27 and 230.23 L/dry metric ton biomass for conversion process using dilute acid, dilute alkali, hot water and steam explosion pretreatment technologies respectively. Price of feedstock and cellulose enzymes were assumed as $50/metric ton and 0.517/kg broth (10% protein in broth, 600 FPU/g protein) respectively. Capital cost of ethanol plants processing 250,000 metric tons of feedstock/year was $1.92, $1.73, $1.72 and $1.70/L ethanol for process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Ethanol production cost of $0.83, $0.88, $0.81 and $0.85/L ethanol was estimated for production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Water use in the production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment was estimated 5.96, 6.07, 5.84 and 4.36 kg/L ethanol respectively. Ethanol price and energy use were highly dependent on process conditions used in the ethanol production plant. Potential for significant ethanol cost reductions exist in increasing pentose fermentation efficiency and reducing biomass and enzyme costs. The results demonstrated the importance of addressing the tradeoffs in capital costs, pretreatment and downstream processing technologies.

  15. Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production

    PubMed Central

    2011-01-01

    Background While advantages of biofuel have been widely reported, studies also highlight the challenges in large scale production of biofuel. Cost of ethanol and process energy use in cellulosic ethanol plants are dependent on technologies used for conversion of feedstock. Process modeling can aid in identifying techno-economic bottlenecks in a production process. A comprehensive techno-economic analysis was performed for conversion of cellulosic feedstock to ethanol using some of the common pretreatment technologies: dilute acid, dilute alkali, hot water and steam explosion. Detailed process models incorporating feedstock handling, pretreatment, simultaneous saccharification and co-fermentation, ethanol recovery and downstream processing were developed using SuperPro Designer. Tall Fescue (Festuca arundinacea Schreb) was used as a model feedstock. Results Projected ethanol yields were 252.62, 255.80, 255.27 and 230.23 L/dry metric ton biomass for conversion process using dilute acid, dilute alkali, hot water and steam explosion pretreatment technologies respectively. Price of feedstock and cellulose enzymes were assumed as $50/metric ton and 0.517/kg broth (10% protein in broth, 600 FPU/g protein) respectively. Capital cost of ethanol plants processing 250,000 metric tons of feedstock/year was $1.92, $1.73, $1.72 and $1.70/L ethanol for process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Ethanol production cost of $0.83, $0.88, $0.81 and $0.85/L ethanol was estimated for production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Water use in the production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment was estimated 5.96, 6.07, 5.84 and 4.36 kg/L ethanol respectively. Conclusions Ethanol price and energy use were highly dependent on process conditions used in the ethanol production plant. Potential for significant ethanol cost reductions exist in increasing pentose fermentation efficiency and reducing biomass and enzyme costs. The results demonstrated the importance of addressing the tradeoffs in capital costs, pretreatment and downstream processing technologies. PMID:21892958

  16. Free standing graphene oxide film for hydrogen peroxide sensing

    NASA Astrophysics Data System (ADS)

    Ranjan, Pranay; Balakrishnan, Jayakumar; Thakur, Ajay D.

    2018-05-01

    We report hydrogen peroxide (H2O2)sensing using free standing graphene oxide thin films prepared using a cost effective scalable approach. Such sensors may find application in pharmaceutical and food processing industries.

  17. Improving the sludge disintegration efficiency of sonication by combining with alkalization and thermal pre-treatment methods.

    PubMed

    Şahinkaya, S; Sevimli, M F; Aygün, A

    2012-01-01

    One of the most serious problems encountered in biological wastewater treatment processes is the production of waste activated sludge (WAS). Sonication, which is an energy-intensive process, is the most powerful sludge pre-treatment method. Due to lack of information about the combined pre-treatment methods of sonication, the combined pre-treatment methods were investigated and it was aimed to improve the disintegration efficiency of sonication by combining sonication with alkalization and thermal pre-treatment methods in this study. The process performances were evaluated based on the quantities of increases in soluble chemical oxygen demand (COD), protein and carbohydrate. The releases of soluble COD, carbohydrate and protein by the combined methods were higher than those by sonication, alkalization and thermal pre-treatment alone. Degrees of sludge disintegration in various options of sonication were in the following descending order: sono-alkalization > sono-thermal pre-treatment > sonication. Therefore, it was determined that combining sonication with alkalization significantly improved the sludge disintegration and decreased the required energy to reach the same yield by sonication. In addition, effects on sludge settleability and dewaterability and kinetic mathematical modelling of pre-treatment performances of these methods were investigated. It was proven that the proposed model accurately predicted the efficiencies of ultrasonic pre-treatment methods.

  18. Perspective and prospective of pretreatment of corn straw for butanol production.

    PubMed

    Baral, Nawa Raj; Li, Jiangzheng; Jha, Ajay Kumar

    2014-01-01

    Corn straw, lignocellulosic biomass, is a potential substrate for microbial production of bio-butanol. Bio-butanol is a superior second generation biofuel among its kinds. Present researches are focused on the selection of butanol tolerant clostridium strain(s) to optimize butanol yield in the fermentation broth because of toxicity of bio-butanol to the clostridium strain(s) itself. However, whatever the type of the strain(s) used, pretreatment process always affects not only the total sugar yield before fermentation but also the performance and growth of microbes during fermentation due to the formation of hydroxyl-methyl furfural, furfural and phenolic compounds. In addition, the lignocellulosic biomasses also resist physical and biological attacks. Thus, selection of best pretreatment process and its parameters is crucial. In this context, worldwide research efforts are increased in past 12 years and researchers are tried to identify the best pretreatment method, pretreatment conditions for the actual biomass. In this review, effect of particle size, status of most common pretreatment method and enzymatic hydrolysis particularly for corn straw as a substrate is presented. This paper also highlights crucial parameters necessary to consider during most common pretreatment processes such as hydrothermal, steam explosion, ammonia explosion, sulfuric acid, and sodium hydroxide pretreatment. Moreover, the prospective of pretreatment methods and challenges is discussed.

  19. Synergistic Effect of Quercetin and α-Lipoic Acid on Aluminium Chloride Induced Neurotoxicity in Rats.

    PubMed

    Al-Otaibi, Sooad Saud; Arafah, Maha Mohamad; Sharma, Bechan; Alhomida, Abdullah Salih; Siddiqi, Nikhat Jamal

    2018-01-01

    The present study was carried out to study the protective effects of quercetin and α -lipoic acid alone and in combination against aluminum chloride induced neurotoxicity in rats. The study consisted of eight groups, namely, Group 1: control rats, Group 2: rats receiving aluminium chloride 7 mg/kg body weight intraperitoneal route (i.p) for two weeks, Group 3: rats receiving quercetin 50 mg/kg body weight i.p. for two weeks, Group 4: rats receiving quercetin 50 mg/kg body weight followed by aluminium chloride 7 mg/kg body weight i.p. for two weeks, Group 5: rats receiving α -lipoic acid 20 mg/kg body weight i.p. for two weeks, Group 6: rats receiving lipoic acid 20 mg/kg body weight followed by aluminium chloride 7 mg/kg body weight i.p. for two weeks, Group 7: rats receiving α -lipoic acid 20 mg/kg body weight and quercetin 50 mg/kg body weight i.p. for two weeks, and Group 8: rats receiving α -lipoic acid 20 mg/kg body weight and quercetin 50 mg/kg body weight followed by aluminium chloride 7 mg/kg body weight i.p. for two weeks. The animals were killed after 24 hours of the last dose by cervical dislocation. Aluminium chloride treatment of rats resulted in significant increases in lipid peroxidation, protein carbonyl levels, and acetylcholine esterase activity in the brain. This was accompanied with significant decreases in reduced glutathione, activities of the glutathione reductase, and superoxide dismutase. Pretreatment of AlCl 3 exposed rats to either quercetin or α -lipoic acid also restored altered lipid peroxidation and superoxide dismutase to near normal levels. Quercetin or α -lipoic acid pretreatment of AlCl 3 exposed rats improved the protein carbonyl and reduced glutathione, glutathione reductase, and acetylcholine esterase activities in rat brains towards normal levels. Combined pretreatment of AlCl3 exposed rats with quercetin and α -lipoic acid resulted in a tendency towards normalization of most of the parameters. Quercetin and α -lipoic acid complemented each other in protecting the rat brain against oxidative stress induced by aluminium chloride.

  20. Synergistic Effect of Quercetin and α-Lipoic Acid on Aluminium Chloride Induced Neurotoxicity in Rats

    PubMed Central

    Al-Otaibi, Sooad Saud

    2018-01-01

    Objectives The present study was carried out to study the protective effects of quercetin and α-lipoic acid alone and in combination against aluminum chloride induced neurotoxicity in rats. Materials and Methods The study consisted of eight groups, namely, Group 1: control rats, Group 2: rats receiving aluminium chloride 7 mg/kg body weight intraperitoneal route (i.p) for two weeks, Group 3: rats receiving quercetin 50 mg/kg body weight i.p. for two weeks, Group 4: rats receiving quercetin 50 mg/kg body weight followed by aluminium chloride 7 mg/kg body weight i.p. for two weeks, Group 5: rats receiving α-lipoic acid 20 mg/kg body weight i.p. for two weeks, Group 6: rats receiving lipoic acid 20 mg/kg body weight followed by aluminium chloride 7 mg/kg body weight i.p. for two weeks, Group 7: rats receiving α-lipoic acid 20 mg/kg body weight and quercetin 50 mg/kg body weight i.p. for two weeks, and Group 8: rats receiving α-lipoic acid 20 mg/kg body weight and quercetin 50 mg/kg body weight followed by aluminium chloride 7 mg/kg body weight i.p. for two weeks. The animals were killed after 24 hours of the last dose by cervical dislocation. Results Aluminium chloride treatment of rats resulted in significant increases in lipid peroxidation, protein carbonyl levels, and acetylcholine esterase activity in the brain. This was accompanied with significant decreases in reduced glutathione, activities of the glutathione reductase, and superoxide dismutase. Pretreatment of AlCl3 exposed rats to either quercetin or α-lipoic acid also restored altered lipid peroxidation and superoxide dismutase to near normal levels. Quercetin or α-lipoic acid pretreatment of AlCl3 exposed rats improved the protein carbonyl and reduced glutathione, glutathione reductase, and acetylcholine esterase activities in rat brains towards normal levels. Combined pretreatment of AlCl3 exposed rats with quercetin and α-lipoic acid resulted in a tendency towards normalization of most of the parameters. Conclusions Quercetin and α-lipoic acid complemented each other in protecting the rat brain against oxidative stress induced by aluminium chloride. PMID:29861723

  1. Enhancing enzymolysis and fermentation efficiency of sugarcane bagasse by synergistic pretreatment of Fenton reaction and sodium hydroxide extraction.

    PubMed

    Zhang, Teng; Zhu, Ming-Jun

    2016-08-01

    A study on the synergistic pretreatment of sugarcane bagasse (SCB) using Fenton reaction and NaOH extraction was conducted. The optimized process conditions for Fenton pretreatment were 10% (w/w) of H2O2, 20mM of Fe(2+), pH 2.5, pretreatment time 6h, and pretreatment temperature 55°C. Sequential pretreatments were performed in combination with NaOH extraction (NaOH 1% (w/w), 80°C, 5% of solid loading, 1h). Among all the pretreatments, Fenton pretreatment followed by NaOH extraction had the highest efficiency of 64.7% and 108.3% for enzymolysis and simultaneous saccharification fermentation (SSF) with an ethanol concentration of 17.44g/L. The analyses by the scanning electron microscopy, X-ray diffraction and confocal laser scanning microscopy revealed that Fenton pretreatment disrupts the structure of SCB to facilitate the degradation of lignin by NaOH. The overall data suggest that this combinatorial strategy is a promising process for SCB pretreatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Cross-talk between calcium-calmodulin and nitric oxide in abscisic acid signaling in leaves of maize plants.

    PubMed

    Sang, Jianrong; Zhang, Aying; Lin, Fan; Tan, Mingpu; Jiang, Mingyi

    2008-05-01

    Using pharmacological and biochemical approaches, the signaling pathways between hydrogen peroxide (H(2)O(2)), calcium (Ca(2+))-calmodulin (CaM), and nitric oxide (NO) in abscisic acid (ABA)-induced antioxidant defense were investigated in leaves of maize (Zea mays L.) plants. Treatments with ABA, H(2)O(2), and CaCl(2) induced increases in the generation of NO in maize mesophyll cells and the activity of nitric oxide synthase (NOS) in the cytosolic and microsomal fractions of maize leaves. However, such increases were blocked by the pretreatments with Ca(2+) inhibitors and CaM antagonists. Meanwhile, pretreatments with two NOS inhibitors also suppressed the Ca(2+)-induced increase in the production of NO. On the other hand, treatments with ABA and the NO donor sodium nitroprusside (SNP) also led to increases in the concentration of cytosolic Ca(2+) in protoplasts of mesophyll cells and in the expression of calmodulin 1 (CaM1) gene and the contents of CaM in leaves of maize plants, and the increases induced by ABA were reduced by the pretreatments with a NO scavenger and a NOS inhibitor. Moreover, SNP-induced increases in the expression of the antioxidant genes superoxide dismutase 4 (SOD4), cytosolic ascorbate peroxidase (cAPX), and glutathione reductase 1 (GR1) and the activities of the chloroplastic and cytosolic antioxidant enzymes were arrested by the pretreatments with Ca(2+) inhibitors and CaM antagonists. Our results suggest that Ca(2+)-CaM functions both upstream and downstream of NO production, which is mainly from NOS, in ABA- and H(2)O(2)-induced antioxidant defense in leaves of maize plants.

  3. Eleusine indica L. possesses antioxidant activity and precludes carbon tetrachloride (CCl₄)-mediated oxidative hepatic damage in rats.

    PubMed

    Iqbal, Mohammad; Gnanaraj, Charles

    2012-07-01

    The purpose of this study was to evaluate the ability of aqueous extract of Eleusine indica to protect against carbon tetrachloride (CCl₄)-induced hepatic injury in rats. The antioxidant activity of E. indica was evaluated using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging assay. The total phenolic content of E. indica was also determined. Biochemical parameters [e.g. alanine aminotransferase (ALT), aspartate aminotransferase (AST), malondialdehyde (MDA), glutathione (GSH), catalase, glutathione peroxidase, glutathione reductase, glutathione S-transferase and quinone reductase] were used to evaluate hepatic damage in animals pretreated with E. indica and intoxicated with CCl₄. CCl₄-mediated hepatic damage was also evaluated by histopathologically. E. indica extract was able to reduce the stable DPPH level in a dose-dependent manner. The half maximal inhibitory concentration (IC₅₀) value was 2350 μg/ml. Total phenolic content was found to be 14.9 ± 0.002 mg/g total phenolic expressed as gallic acid equivalent per gram of extract. Groups pretreated with E. indica showed significantly increased activity of antioxidant enzymes compared to the CCl₄-intoxicated group (p < 0.05). The increased levels of serum ALT and AST were significantly prevented by E. indica pretreatment (p < 0.05). The extent of MDA formation due to lipid peroxidation was significantly reduced (p < 0.05), and reduced GSH was significantly increased in a dose-dependently manner (p < 0.05) in the E. indica-pretreated groups as compared to the CCl₄-intoxicated group. The protective effect of E. indica was further evident through decreased histopathological alterations in the liver. The results of our study indicate that the hepatoprotective effects of E. indica might be ascribable to its antioxidant and free radical scavenging property.

  4. Pb-induced responses in Zygophyllum fabago plants are organ-dependent and modulated by salicylic acid.

    PubMed

    López-Orenes, Antonio; Martínez-Pérez, Ascensión; Calderón, Antonio A; Ferrer, María A

    2014-11-01

    Zygophyllum fabago is a promising species for restoring heavy metal (HM) polluted soils, although the mechanisms involved in HM tolerance in this non-model plant remain largely unknown. This paper analyses the extent to which redox-active compounds and enzymatic antioxidants in roots, stems and leaves are responsible for Pb tolerance in a metallicolous ecotype of Z. fabago and the possible influence of salicylic acid (SA) pretreatment (24 h, 0.5 mM SA) in the response to Pb stress. SA pretreatment reduced both the accumulation of Pb in roots and even more so the concentration of Pb in aerial parts of the plants, although a similar drop in the content of chlorophylls and in the maximum quantum yield of photosystem II was observed in both Pb- and SA-Pb-treated plants. Pb increased the endogenous free SA levels in all organs and this response was enhanced in root tissues upon SA pretreatment. Generally, Pb induced a reduction in catalase, ascorbate peroxidase and glutathione reductase specific activities, whereas dehydroascorbate reductase was increased in all organs of control plants. SA pretreatment enhanced the Pb-induced H2O2 accumulation in roots by up-regulating Fe-superoxide dismutase isoenzymes. Under Pb stress, the GSH redox ratio remained highly reduced in all organs while the ascorbic acid redox ratio dropped in leaf tissues where a rise in lipid peroxidation products and electrolyte leakage was observed. Finally, an organ-dependent accumulation of proline and β-carboline alkaloids was found, suggesting these nitrogen-redox-active compounds could play a role in the adaptation strategies of this species to Pb stress. Copyright © 2014. Published by Elsevier Masson SAS.

  5. Effect of isoproturon pretreatment on the biochemical toxicodynamics of anilofos in male rats.

    PubMed

    Hazarika, A; Sarkar, S N

    2001-08-28

    Anilofos and isoproturon are important herbicides of organophosphorus and substituted phenylurea groups, respectively. Isoproturon is an inducer of hepatic drug-metabolizing enzymes. Animals and humans have the potential to be exposed to the mixture of these intentionally introduced environmental xenobiotics, but toxicological interactions between these herbicides are not known. Effects of isoproturon pretreatment (675 mg/kg/day for 3 consecutive days) on the toxic actions of anilofos administered orally as a single dose (850 mg/kg) were evaluated by determining some biochemical attributes in blood (erythrocyte/plasma), brain and liver of rats. Anilofos or isoproturon alone or in combination failed to produce any noticeable signs of cholinergic hyperactivity and behavioural alterations. Isoproturon did not potentiate the anticholinesterase action of anilofos in blood and liver. Inhibition of brain acetylcholinesterase was significantly protected. No significant alteration in anilofos-mediated production of lipid peroxidation was observed in erythrocyte and brain of isoproturon-pretreated rats, but it was significantly increased in liver. Anilofos did not affect GSH and GST. The isoproturon-mediated increase in GSH levels of brain (threefold) and liver (3.6-fold) was also not affected following combined administration. GST activity was increased in liver of rats given isoproturon alone (fourfold) or in combination with anilofos (2.8-fold). Activities of total ATPase, Mg2+-ATPase and Na+-K+-ATPase were not affected in rats given either anilofos alone or herbicides in sequence. With these treatments, there were no alterations in the protein content of plasma, brain and liver. Overall findings of the study indicate that isoproturon pretreatment does not alter the toxicity of anilofos, the GSH-GST metabolic pathway may not have a significant implication in the detoxification of anilofos and the production of a reactive oxygen species may be a factor in mediating anilofos toxicity.

  6. A Biochemical Study on the Gastroprotective Effect of Andrographolide in Rats Induced with Gastric Ulcer

    PubMed Central

    Saranya, P.; Geetha, A.; Selvamathy, S. M. K. Narmadha

    2011-01-01

    The major objective of the study was to evaluate the gastroprotective property of andrographolide, a chief component of the leaves of Andrographis paniculata in terms of the ulcer preventive effect in rats. An acute toxicity test was conducted with different concentrations of andrographolide to determine the LD50 value. The dose responsive study was conducted in rats pretreated with andrographolide (1, 3 and 5 mg/kg) for a period of 30 days, prior to ulcer induction by administering ethanol, aspirin or by pyloric ligation. The ulcer protective efficacy was tested by determining the ulcer score, pH, pepsin, titrable acidity, gastric mucin, lipid peroxides, reduced glutathione, and enzymatic antioxidants superoxide dismutase, catalase and glutathione peroxidase in gastric tissue. The activities of H+-K+ ATPase and myeloperoxidase were also determined in gastric tissue. The LD50 value was found to be 48 mg/kg b. wt and the effective dose was found to be 3 mg/kg. We have observed a significant reduction in the ulcer score in rats pretreated with 3 mg of andrographolide/kg body weight. A favourable increase in the pH and decrease in titrable acidity were observed in the gastric fluid of rats pretreated with the test drug. The gastric tissue H+-K+ ATPase and myeloperoxidase activities were elevated in ulcer-induced animals. The elevation in the enzyme activity was significantly minimized in the andrographolide received animals. The antioxidants and mucin levels were significantly maintained in the gastric tissue of drug-pretreated animals. Andrographolide did not produce any toxic effects in normal rats. This study reveals that the ulcer preventive efficacy of andrographolide may probably due to its antioxidant, cytoprotective and antiacid secretory effects. PMID:22923868

  7. A biochemical study on the gastroprotective effect of andrographolide in rats induced with gastric ulcer.

    PubMed

    Saranya, P; Geetha, A; Selvamathy, S M K Narmadha

    2011-09-01

    The major objective of the study was to evaluate the gastroprotective property of andrographolide, a chief component of the leaves of Andrographis paniculata in terms of the ulcer preventive effect in rats. An acute toxicity test was conducted with different concentrations of andrographolide to determine the LD(50) value. The dose responsive study was conducted in rats pretreated with andrographolide (1, 3 and 5 mg/kg) for a period of 30 days, prior to ulcer induction by administering ethanol, aspirin or by pyloric ligation. The ulcer protective efficacy was tested by determining the ulcer score, pH, pepsin, titrable acidity, gastric mucin, lipid peroxides, reduced glutathione, and enzymatic antioxidants superoxide dismutase, catalase and glutathione peroxidase in gastric tissue. The activities of H(+)-K(+) ATPase and myeloperoxidase were also determined in gastric tissue. The LD(50) value was found to be 48 mg/kg b. wt and the effective dose was found to be 3 mg/kg. We have observed a significant reduction in the ulcer score in rats pretreated with 3 mg of andrographolide/kg body weight. A favourable increase in the pH and decrease in titrable acidity were observed in the gastric fluid of rats pretreated with the test drug. The gastric tissue H(+)-K(+) ATPase and myeloperoxidase activities were elevated in ulcer-induced animals. The elevation in the enzyme activity was significantly minimized in the andrographolide received animals. The antioxidants and mucin levels were significantly maintained in the gastric tissue of drug-pretreated animals. Andrographolide did not produce any toxic effects in normal rats. This study reveals that the ulcer preventive efficacy of andrographolide may probably due to its antioxidant, cytoprotective and antiacid secretory effects.

  8. Protective effects of the standardized extract of Zingiber officinale on myocardium against isoproterenol-induced biochemical and histopathological alterations in rats.

    PubMed

    Amran, Athirah Z; Jantan, Ibrahim; Dianita, Roza; Buang, Fhataheya

    2015-01-01

    Ginger [Zingiber officinale Roscoe. (Zingiberaceae)] has been universally used as a spice as well as for its health benefits. The present study evaluates the protective effect of the standardized extract of ginger against isoproterenol (ISO)-induced myocardial infarction (MI) in rats. Wistar rats were pretreated orally with three doses of standardized ginger extract (100, 200, and 400 mg/kg of body weight) or propranolol (5 mg/mL) for 28 d prior to ISO (85 mg/kg) induced MI in two doses on days 29 and 30. The rats were sacrificed 48 h after the first induction; serum and hearts were collected for biochemical and histopathological analysis. Gingerols and shogaols were identified and quantitatively analyzed in the extracts using validated reversed phase HPLC methods. Pretreatment with ginger extract at 400 mg/kg showed a significant decrease (p < 0.05) in all the cardiac enzyme activities, i.e., cardiac troponin I (cTnI) (0.57 ng/mL), creatine kinase MB isoenzyme (CK-MB) (10.34 pg/mL), lactate dehydrogenase (LDH) (115.22 U/L), alanine transaminase (ALT) (15.79 U/L), and aspartate transaminase (AST) (46.72 U/L) when compared with ISO-control rats. There were significant rises (p < 0.05) in the activity of glutathione peroxide (GPx) (53.16 U/L), catalase (CAT) (210.41 U/L), and superoxide dismutase (SOD) (280.89 U/mL) of the pretreated rats when compared with the ISO-control. Histopathological examination showed an improvement in membrane cell integrity in pretreated rats compared with untreated rats. The ethanol extract of ginger exhibited cardioprotective potential in treating myocardial injury following ISO administration.

  9. Gastroprotective effects of the essential oil of Hyptis crenata Pohl ex Benth. on gastric ulcer models.

    PubMed

    Diniz, Lúcio Ricardo Leite; Vieira, Charliene Freire Xavier; Santos, Edgleyson Chaves Dos; Lima, Glauber Cruz; Aragão, Kalynca Kayla Viana; Vasconcelos, Renata Prado; Araújo, Pâmella Cristina da Costa; Vasconcelos, Yuri de Abreu Gomes; Oliveira, Ariclécio Cunha de; Oliveira, Hermógenes David de; Portella, Viviane Gomes; Coelho-de-Souza, Andrelina Noronha

    2013-10-07

    Hyptis crenata Pohl ex Benth (Lamiaceae), popularly known as "hortelã-brava" or "hortelã do campo", is widely distributed in the northeast of Brazil. In Brazil, the leaves of this plant have been used in traditional medicine for the treatment of gastrointestinal disturbances, including gastric ulcers. In an attempt to experimentally validate this claimed antiulcerogenic activity, the gastroprotective effects of the essential oil extracted from the leaves of the Hyptis crenata Pohl ex Benth (EOHc) were evaluated in recognized gastric ulcer models in mice. EOHc was obtained by hydrodistillation and analyzed using gas chromatography-mass spectrometry (GC-MS). Swiss male mice (25-30g) were used for the studies. The gastric ulcers were induced by oral administration of absolute ethanol or indomethacin 45min after oral pretreatment with EOHc, vehicle and positive control drugs. One hour after the ulcerative challenges, the stomachs were removed and the area of the lesions was measured. The volume, pH and total acidity of the gastric secretions were determined using the pylorus ligature model. The gastrointestinal motility was measured using gastric emptying and intestinal transit. The ethanol-induced gastric mucus depletion and lipid peroxidation were also analyzed. Our findings are as follows: A significant inhibition of gastric lesions induced by absolute ethanol was observed in the mice pre-treated with EOHc, at a dose of 30 and 100 and 300mg/kg (5.56±1.51, 2.88±0.82 and 1.71±0.54mm(2), respectively) compared to control group (118.03±35.4mm(2)). Also, EOHc (300mg/kg) produced a gastroprotective effect against the gastric lesions induced by indomethacin (16.07±4.68mm(2)) compared to control group (38.64±6.1mm(2)). EOHc pretreatment produced a reduction in the ethanol-induced lipid peroxidation from 3.9±0.22 to 2.4±0.1μmol/mg tissue (EOHc-300mg/kg and control group, respectively). We also observed that EOHc pretreatment decreased the gastric emptying, but did not alter the intestinal transit ratio, ethanol-induced depletion of the gastric wall mucus or secretion parameters (volume, pH and [H(+)]). Our data indicate that EOHc exerts a gastroprotective effect, indicated by its significant inhibition of gastric lesions in ethanol- and indomethacin-induced ulcer models, which may be associated with its accelerating effect on gastric emptying and reduction in oxidative damages. Our data suggest a potential therapeutic application for EOHc in the treatment of gastric ulcers. © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Performance and techno-economic assessment of several solid-liquid separation technologies for processing dilute-acid pretreated corn stover.

    PubMed

    Sievers, David A; Tao, Ling; Schell, Daniel J

    2014-09-01

    Solid-liquid separation of pretreated lignocellulosic biomass slurries is a critical unit operation employed in several different processes for production of fuels and chemicals. An effective separation process achieves good recovery of solute (sugars) and efficient dewatering of the biomass slurry. Dilute acid pretreated corn stover slurries were subjected to pressure and vacuum filtration and basket centrifugation to evaluate the technical and economic merits of these technologies. Experimental performance results were used to perform detailed process simulations and economic analysis using a 2000 tonne/day biorefinery model to determine differences between the various filtration methods and their process settings. The filtration processes were able to successfully separate pretreated slurries into liquor and solid fractions with estimated sugar recoveries of at least 95% using a cake washing process. A continuous vacuum belt filter produced the most favorable process economics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Capillary electrophoresis-electrochemistry microfluidic system for the determination of organic peroxides

    NASA Technical Reports Server (NTRS)

    Wang, Joseph; Escarpa, Alberto; Pumera, Martin; Feldman, Jason; Svehla, D. (Principal Investigator)

    2002-01-01

    A microfluidic analytical system for the separation and detection of organic peroxides, based on a microchip capillary electrophoresis device with an integrated amperometric detector, was developed. The new microsystem relies on the reductive detection of both organic acid peroxides and hydroperoxides at -700 mV (vs. Ag wire/AgCl). Factors influencing the separation and detection processes were examined and optimized. The integrated microsystem offers rapid measurements (within 130 s) of these organic-peroxide compounds, down to micromolar levels. A highly stable response for repetitive injections (RSD 0.35-3.12%; n = 12) reflects the negligible electrode passivation. Such a "lab-on-a-chip" device should be attractive for on-site analysis of organic peroxides, as desired for environmental screening and industrial monitoring.

  12. Effect of chemical pretreatments on corn stalk bagasse as immobilizing carrier of Clostridium acetobutylicum in the performance of a fermentation-pervaporation coupled system.

    PubMed

    Cai, Di; Li, Ping; Chen, Changjing; Wang, Yong; Hu, Song; Cui, Caixia; Qin, Peiyong; Tan, Tianwei

    2016-11-01

    In this study, different pretreatment methods were evaluated for modified the corn stalk bagasse and further used the pretreated bagasse as immobilized carrier in acetone-butanol-ethanol fermentation process. Structural changes of the bagasses pretreated by different methods were analyzed by Fourier transform infrared, crystallinity index and scanning pictures by electron microscope. And the performances of batch fermentation using the corn stalk based carriers were evaluated. Results indicated that the highest ABE concentration of 23.86g/L was achieved using NaOH pretreated carrier in batch fermentation. Immobilized fermentation-pervaporation integration process was further carried out. The integration process showed long-term stability with 225-394g/L of ABE solvents on the permeate side of pervaporation membrane. This novel integration process was found to be an efficient method for biobutanol production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. SEMICONDUCTOR TECHNOLOGY A new cleaning process for the metallic contaminants on a post-CMP wafer's surface

    NASA Astrophysics Data System (ADS)

    Baohong, Gao; Yuling, Liu; Chenwei, Wang; Yadong, Zhu; Shengli, Wang; Qiang, Zhou; Baimei, Tan

    2010-10-01

    This paper presents a new cleaning process using boron-doped diamond (BDD) film anode electrochemical oxidation for metallic contaminants on polished silicon wafer surfaces. The BDD film anode electrochemical oxidation can efficiently prepare pyrophosphate peroxide, pyrophosphate peroxide can oxidize organic contaminants, and pyrophosphate peroxide is deoxidized into pyrophosphate. Pyrophosphate, a good complexing agent, can form a metal complex, which is a structure consisting of a copper ion, bonded to a surrounding array of two pyrophosphate anions. Three polished wafers were immersed in the 0.01 mol/L CuSO4 solution for 2 h in order to make comparative experiments. The first one was cleaned by pyrophosphate peroxide, the second by RCA (Radio Corporation of America) cleaning, and the third by deionized (DI) water. The XPS measurement result shows that the metallic contaminants on wafers cleaned by the RCA method and by pyrophosphate peroxide is less than the XPS detection limits of 1 ppm. And the wafer's surface cleaned by pyrophosphate peroxide is more efficient in removing organic carbon residues than RCA cleaning. Therefore, BDD film anode electrochemical oxidation can be used for microelectronics cleaning, and it can effectively remove organic contaminants and metallic contaminants in one step. It also achieves energy saving and environmental protection.

  14. Impact of ozonation and biological activated carbon filtration on ceramic membrane fouling.

    PubMed

    Ibn Abdul Hamid, Khaled; Sanciolo, Peter; Gray, Stephen; Duke, Mikel; Muthukumaran, Shobha

    2017-12-01

    Ozone pre-treatment (ozonation, ozonisation) and biological activated carbon (BAC) filtration pre-treatment for the ceramic microfiltration (CMF) treatment of secondary effluent (SE) were studied. Ozone pre-treatment was found to result in higher overall removal of UV absorbance (UVA 254 ) and colour, and higher permeability than BAC pre-treatment or the combined use of ozone and BAC (O3+BAC) pre-treatment. The overall removal of colour and UVA 254 by ceramic filtration of the ozone pre-treated water was 97% and 63% respectively, compared to 86% and 48% respectively for BAC pre-treatment and 29% and 6% respectively for the untreated water. Ozone pre-treatment, however, was not effective in removal of dissolved organic carbon (DOC). The permeability of the ozone pre-treated water through the ceramic membrane was found to decrease to 50% of the original value after 200 min of operation, compared to approximately 10% of the original value for the BAC pre-treated, O3+BAC pre-treated water and the untreated water. The higher permeability of the ozone pre-treated water was attributed to the excellent removal of biopolymer particles (100%) and high removal of humic substances (84%). The inclusion of a BAC stage between ozone pre-treatment and ceramic filtration was detrimental. The O3+BAC+CMF process was found to yield higher biopolymer removal (96%), lower humic substance (HS) component removal (66%) and lower normalized permeability (0.1) after 200 min of operation than the O3+CMF process (86%, 84% and 0.5 respectively). This was tentatively attributed to the chemical oxidation effect of ozone on the BAC biofilm and adsorbed components, leading to the generation of foulants that are not generated in the O3+CMF process. This study demonstrated the potential of ozone pre-treatment for reducing organic fouling and thus improving flux for the CMF of SE compared to O3+BAC pre-treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Distillation Kinetics of Solid Mixtures of Hydrogen Peroxide and Water and the Isolation of Pure Hydrogen Peroxide in Ultrahigh Vacuum

    NASA Technical Reports Server (NTRS)

    Teolis, B. D.; Baragiola, R. A.

    2006-01-01

    We present results of the growth of thin films of crystalline H2O2 and H2O2.2H2O (dihydrate) in ultrahigh vacuum by distilling an aqueous solution of hydrogen peroxide. We traced the process using infrared reflectance spectroscopy, mass loss on a quartz crystal microbalance, and in a few cases ultraviolet-visible reflectance. We find that the different crystalline phases-water, dihydrate, and hydrogen peroxide-have very different sublimation rates, making distillation efficient to isolate the less volatile component, crystalline H2O2.

  16. Process design and evaluation of production of bioethanol and β-lactam antibiotic from lignocellulosic biomass.

    PubMed

    Kim, Sung Bong; Park, Chulhwan; Kim, Seung Wook

    2014-11-01

    To design biorefinery processes producing bioethanol from lignocellulosic biomass with dilute acid pretreatment, biorefinery processes were simulated using the SuperPro Designer program. To improve the efficiency of biomass use and the economics of biorefinery, additional pretreatment processes were designed and evaluated, in which a combined process of dilute acid and aqueous ammonia pretreatments, and a process of waste media containing xylose were used, for the production of 7-aminocephalosporanic acid. Finally, the productivity and economics of the designed processes were compared. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Microwave oxidation treatment of sewage sludge.

    PubMed

    Lo, Kwang V; Srinivasan, Asha; Liao, Ping H; Bailey, Sam

    2015-01-01

    Microwave-oxidation treatment of sewage sludge using various oxidants was studied. Two treatment schemes with a combination of hydrogen peroxide and ozone were examined: hydrogen peroxide and ozone were introduced into the sludge simultaneously, followed by microwave heating. The other involved the ozonation first, and then the resulting solution was subjected to microwave and hydrogen peroxide treatment. The set with ozonation followed by hydrogen peroxide plus microwave heating yielded higher soluble materials than those of the set with hydrogen peroxide plus ozone first and then microwave treatment. No settling was observed for all treatments in the batch operation, except ozone/microwave plus hydrogen peroxide set at 120°C. The pilot-scale continuous-flow 915 MHz microwave study has demonstrated that microwave-oxidation process is feasible for real-time industrial application. It would help in providing key data for the design of a full-scale system for treating sewage sludge and the formulation of operational protocols.

  18. Pretreatment and fractionation of wheat straw for production of fuel ethanol and value-added co-products in a biorefinery

    USDA-ARS?s Scientific Manuscript database

    An integrated process has been developed for a wheat straw biorefinery. In this process wheat straw was pretreated by soaking in aqueous ammonia (SAA), which extensively removed lignin but preserved high percentages of the carbohydrate fractions for subsequent bioconversion. The pretreatment condi...

  19. Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine

    Treesearch

    J.Y. Zhu; X.J. Pan; G.S. Wang; R. Gleisner

    2009-01-01

    This study established a novel process using sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) for robust and efficient bioconversion of softwoods. The process consists of sulfite treatment of wood chips under acidic conditions followed by mechanical size reduction using disk refining. The results indicated that after the SPORL pretreatment of...

  20. Characteristics of sludge reduction in an integrated pretreatment and aerobic digestion process.

    PubMed

    Hwang, S; Jang, H; Lee, M; Song, J; Kim, S

    2006-01-01

    In this study, integrated pretreatments and aerobic digestion processes were investigated in order to provide a feasible alternative that can achieve effective sludge reduction. An ozone treatment in the presence of ionic manganese, a catalyst, increased the sludge reduction ratio three times higher than that of a single ozonation, presumably due to an increase in OH radical production. The ozone treatment yielded the effective sludge reduction ratio with an increasing ozone dosage, and an effective dosage of the catalyst was found to be 4 mg-Mn/g-TS. When a mechanical pretreatment and an ozone/catalyst were applied in a series, the integrated process, even at a half mechanical intensity and a half level of ozone dosage, showed higher and faster sludge reduction than each single process did. In addition, the integrated pretreatment process showed the highest dewaterability of the treated sludges. A ratio of sludge cake generation, which was newly introduced to quantify overall performance of sludge treatment processes, showed that the integrated pretreatment followed by the aerobic digestion yielded approximately a half of the sludge cake volume compared to the single aerobic digestion. Therefore, the integrated pretreatment can be a feasible method for the effective reduction of total suspended solid and the final volume.

  1. Improved ethanol yield and reduced minimum ethanol selling price (MESP) by modifying low severity dilute acid pretreatment with deacetylation and mechanical refining: 2) Techno-economic analysis

    PubMed Central

    2012-01-01

    Background Our companion paper discussed the yield benefits achieved by integrating deacetylation, mechanical refining, and washing with low acid and low temperature pretreatment. To evaluate the impact of the modified process on the economic feasibility, a techno-economic analysis (TEA) was performed based on the experimental data presented in the companion paper. Results The cost benefits of dilute acid pretreatment technology combined with the process alternatives of deacetylation, mechanical refining, and pretreated solids washing were evaluated using cost benefit analysis within a conceptual modeling framework. Control cases were pretreated at much lower acid loadings and temperatures than used those in the NREL 2011 design case, resulting in much lower annual ethanol production. Therefore, the minimum ethanol selling prices (MESP) of the control cases were $0.41-$0.77 higher than the $2.15/gallon MESP of the design case. This increment is highly dependent on the carbohydrate content in the corn stover. However, if pretreatment was employed with either deacetylation or mechanical refining, the MESPs were reduced by $0.23-$0.30/gallon. Combing both steps could lower the MESP further by $0.44 ~ $0.54. Washing of the pretreated solids could also greatly improve the final ethanol yields. However, the large capital cost of the solid–liquid separation unit negatively influences the process economics. Finally, sensitivity analysis was performed to study the effect of the cost of the pretreatment reactor and the energy input for mechanical refining. A 50% cost reduction in the pretreatment reactor cost reduced the MESP of the entire conversion process by $0.11-$0.14/gallon, while a 10-fold increase in energy input for mechanical refining will increase the MESP by $0.07/gallon. Conclusion Deacetylation and mechanical refining process options combined with low acid, low severity pretreatments show improvements in ethanol yields and calculated MESP for cellulosic ethanol production. PMID:22967479

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMillan, J.D.

    This paper reviews existing and proposed pretreatment processes for biomass. The focus is on the mechanisms by which the various pretreatments act and the influence of biomass structure and composition on the efficacy of particular pretreatment techniques. This analysis is used to identify pretreatment technologies and issues that warrant further research.

  3. Targeted iron oxide nanoparticles for the enhancement of radiation therapy

    PubMed Central

    Hauser, Anastasia K.; Mitov, Mihail I.; Daley, Emily F.; McGarry, Ronald C.; Anderson, Kimberly W.; Hilt, J. Zach

    2017-01-01

    To increase the efficacy of radiation, iron oxide nanoparticles can be utilized for their ability to produce reactive oxygen species (ROS). Radiation therapy promotes leakage of electrons from the electron transport chain and leads to an increase in mitochondrial production of the superoxide anion which is converted to hydrogen peroxide by superoxide dismutase. Iron oxide nanoparticles can then catalyze the reaction from hydrogen peroxide to the highly reactive hydroxyl radical. Therefore, the overall aim of this project was to utilize iron oxide nanoparticles conjugated to a cell penetrating peptide, TAT, to escape lysosomal encapsulation after internalization by cancer cells and catalyze hydroxyl radical formation. It was determined that TAT functionalized iron oxide nanoparticles and uncoated iron oxide nanoparticles resulted in permeabilization of the lysosomal membranes. Additionally, mitochondrial integrity was compromised when A549 cells were treated with both TAT-functionalized nanoparticles and radiation. Pre-treatment with TAT-functionalized nanoparticles also significantly increased the ROS generation associated with radiation. A long term viability study showed that TAT-functionalized nanoparticles combined with radiation resulted in a synergistic combination treatment. This is likely due to the TAT-functionalized nanoparticles sensitizing the cells to subsequent radiation therapy, because the nanoparticles alone did not result in significant toxicities. PMID:27521615

  4. Efficacy of antioxidants in human hair.

    PubMed

    Fernández, Estibalitz; Martínez-Teipel, Blanca; Armengol, Ricard; Barba, Clara; Coderch, Luisa

    2012-12-05

    Hair is exposed every day to a range of harmful effects such as sunlight, pollution, cosmetic treatments, grooming practices and cleansing. The UV components of sunlight damage human hair, causing fibre degradation. UV-B attacks the melanin pigments and the protein fractions (keratin) of hair and UV-A produces free radical/reactive oxygen species (ROS) through the interaction of endogenous photosensitizers. Hair was dyed and the efficacy of two antioxidant formulations was demonstrated after UV exposure by evaluating, surface morphology, protein and amino acid degradation, lipidic peroxidation, colour and shine changes and strength/relaxation properties. UV treatment resulted in an increase in protein and lipid degradation, changes in colour and shine and in adverse consequences for the mechanical properties. Natural antioxidants obtained from artichoke and rice applied to pretreated hair improved mechanical properties and preserved colour and shine of fibres, coating them and protecting them against UV. Furthermore, the lipidic peroxidation of the protein degradation caused by UV was reduced for some treated fibres, suggesting an improvement in fibre integrity. This was more marked in the case of the fibres treated using the artichoke extract, whereas the rice extract was better preserving shine and colour of hair fibres. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. A simple and sensitive enzymatic method for cholesterol quantification in macrophages and foam cells

    PubMed Central

    Robinet, Peggy; Wang, Zeneng; Hazen, Stanley L.; Smith, Jonathan D.

    2010-01-01

    A precise and sensitive method for measuring cellular free and esterified cholesterol is required in order to perform studies of macrophage cholesterol loading, metabolism, storage, and efflux. Until now, the use of an enzymatic cholesterol assay, commonly used for aqueous phase plasma cholesterol assays, has not been optimized for use with solid phase samples such as cells, due to inefficient solubilization of total cholesterol in enzyme compatible solvents. We present an efficient solubilization protocol compatible with an enzymatic cholesterol assay that does not require chemical saponification or chromatographic separation. Another issue with enzyme compatible solvents is the presence of endogenous peroxides that interfere with the enzymatic cholesterol assay. We overcame this obstacle by pretreatment of the reaction solution with the enzyme catalase, which consumed endogenous peroxides resulting in reduced background and increased sensitivity in our method. Finally, we demonstrated that this method for cholesterol quantification in macrophages yields results that are comparable to those measured by stable isotope dilution gas chromatography with mass spectrometry detection. In conclusion, we describe a sensitive, simple, and high-throughput enzymatic method to quantify cholesterol in complex matrices such as cells. PMID:20688754

  6. [Peroxide modification of membranes and isomorphic composition of cytochrome P-450 of rat liver microsomes during antioxidant deficiency].

    PubMed

    Gubskiy, Iu I; Paramonova, G I; Boldeskul, A E; Primak, R G; Bogdanova, L A; Zadorina, O V; Litvinova, N V

    1992-01-01

    Lipid peroxidation (LPO), physico-chemical properties of the membranes and isoformic composition of microsomal cytochrome P-450 from the rat liver were studied under conditions of antioxidant insufficiency (AOI) which was modelled by exclusion of alpha-tocopherol from the animals' ration. An insignificant accumulation of microsomal diene conjugates and schiff bases against a sharp increase of the ability to the prooxidant stimulated LPO in vitro took place. A significant decrease of membrane lipid microviscosity and a change in surface properties of microsomal membranes of rats with AOI was determined. Absence of alpha-tocopherol in the ration was accompanied by a significant change in the content of separate isoforms of cytochrome P-450 exhibited in growth of a polypeptide with m. w. 54 kDa and the lowering of proteins with m. w. 48 and 50 kDa. Less intensive quenching of tryptophan fluorescence by acrylamide was also revealed, which testified to a lower accessibility of the quencher to membrane proteins or their fluorophore sites. Modification of lipid composition and of physicochemical properties of the rat liver membrane microsomes which was observed at AOI was significantly correlated by pretreatment with the antioxidant 4-methyl-2,6-ditretbutylphenol (ionol).

  7. A double-blind investigation of the potential systemic absorption of isotretinoin, when combined with chemical sunscreens, following topical application to patients with widespread acne of the face and trunk.

    PubMed

    Cunliffe, W J; Glass, D; Goode, K; Stables, G I; Boorman, G C

    2001-01-01

    This study assessed the systemic absorption of isotretinoin and its metabolites, during a 4-week application of a cream containing 0.1% isotretinoin and chemical sunscreens, compared with a 4% benzoyl peroxide cream, in patients with acne on the face and trunk. Blood was drawn at weeks 0, 1, 2, 3 and 4 and at 96 h post-treatment. Plasma levels of isotretinoin (13-cis-retinoic acid) and tretinoin (all-trans-retinoic acid) were quantified by liquid chromatography with tandem mass spectrometry and the presence of their combined 4-oxo metabolites were monitored from the peak area ratios observed. The isotretinoin group showed no statistically or clinically significant increases in plasma retinoid levels and mean levels did not exceed +/-2 SD of the mean pre-treatment values, indicating that endogenous levels were not being exceeded. No significant differences were detected between the isotretinoin group and the 4% benzoyl peroxide group. These findings indicated that retinoid absorption from a cream containing 0.1% isotretinoin and chemical sunscreens was clinically insignificant, when applied to patients with widespread acne.

  8. Coupling solar photo-Fenton and biotreatment at industrial scale: main results of a demonstration plant.

    PubMed

    Malato, Sixto; Blanco, Julián; Maldonado, Manuel I; Oller, Isabel; Gernjak, Wolfgang; Pérez-Estrada, Leonidas

    2007-07-31

    This paper reports on the combined solar photo-Fenton/biological treatment of an industrial effluent (initial total organic carbon, TOC, around 500mgL(-1)) containing a non-biodegradable organic substance (alpha-methylphenylglycine at 500mgL(-1)), focusing on pilot plant tests performed for design of an industrial plant, the design itself and the plant layout. Pilot plant tests have demonstrated that biodegradability enhancement is closely related to disappearance of the parent compound, for which a certain illumination time and hydrogen peroxide consumption are required, working at pH 2.8 and adding Fe(2+)=20mgL(-1). Based on pilot plant results, an industrial plant with 100m(2) of CPC collectors for a 250L/h treatment capacity has been designed. The solar system discharges the wastewater (WW) pre-treated by photo-Fenton into a biotreatment based on an immobilized biomass reactor. First, results of the industrial plant are also presented, demonstrating that it is able to treat up to 500Lh(-1) at an average solar ultraviolet radiation of 22.9Wm(-2), under the same conditions (pH, hydrogen peroxide consumption) tested in the pilot plant.

  9. Ganoderma lucidum total triterpenes prevent γ-radiation induced oxidative stress in Swiss albino mice in vivo.

    PubMed

    Smina, T P; Joseph, Jini; Janardhanan, K K

    2016-11-01

    The in vivo radio-protective effect of total triterpenes isolated from Ganoderma lucidum (Fr.) P. Karst was evaluated using Swiss albino mice, by pre-treatment with total triterpenes for 14 days, followed by a whole body exposure to γ-radiation. The activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), and the level of reduced glutathione (GSH) were analysed in liver and brain homogenates. The extent of lipid and protein peroxidation was also estimated in liver and brain homogenates after irradiation. Protection of radiation-induced DNA strand breaks in peripheral blood lymphocytes and bone marrow cells was assessed using the comet assay. Total triterpenes were highly effective in reducing the levels of lipid peroxidation and protein oxidation to near normal values in both liver and brain tissues. Total triterpenes, when administered in vivo, were also found to be successful in restoring the antioxidant enzyme activities and GSH level in liver and brain of irradiated mice. Administration of total triterpenes, prior to radiation exposure, significantly decreased the DNA strand breaks. The results of the present study thus revealed the potential therapeutic use of Ganoderma total triterpenes as an adjuvant in radiation therapy.

  10. Protective role of Aloe vera against X-ray induced testicular dysfunction.

    PubMed

    Bala, S; Chugh, N A; Bansal, S C; Garg, M L; Koul, A

    2017-09-01

    The present investigation was carried out to evaluate the possible radioprotective potential of an Aloe vera extract against whole-body X-ray irradiation-induced testicular alterations in mice. Male balb/c mice were divided into four groups: control, A. vera, X-ray and A. vera pre-treated + X-ray irradiated. Histopathological examination revealed significant structural alterations in testes after X-ray exposure, which was also associated with the presence of apoptotic cells as assessed by TUNEL assay. X-ray irradiation resulted in elevation in the levels of reactive oxygen species, lipid peroxidation, a reduction in glutathione concentration and enhanced activities of antioxidant enzymes such as glutathione reductase, glutathione peroxidase, catalase, superoxide dismutase and glutathione-S-transferase. Sperm count/motility and testosterone levels were significantly decreased in the irradiated group. Irradiated animals pre-treated with A. vera extract revealed an improvement in antioxidant status, inhibition of lipid peroxides, apoptotic cell formation and enhanced testicular parameters when compared to the X-ray-exposed group. These findings suggest that A. vera extract could ameliorate X-ray-induced damage due to its free radical scavenging properties and its potential to boost cellular antioxidant defence machinery. © 2016 Blackwell Verlag GmbH.

  11. Study of Crystallinity Index (CrI) of Oil Palm Frond Pretreatment using Aqueous [EMIM][OAc] in a Closed System

    NASA Astrophysics Data System (ADS)

    Abu Darim, R.; Azizan, A.; Salihon, J.

    2018-05-01

    The objective of this preliminary study is to identify the Crystalinity Index (CrI) of Oil Palm Frond (OPF) pretreated with 40% concentration of 1-ethyl-3-methylimidazolium acetate ionic liquid ([EMIM][OAc]) in a closed system. The morphology and structural changes of the pretreated OPF were examined by using Fourier Transform Infrared Spectrometer (FTIR) and X-Ray Diffraction (XRD). The pretreatment process was carried out in triplicates by loading 40% of [EMIM][OAc] concentration with 10 wt% of OPF loading in the Bio-ionic liquid-reactor. The pretreatment process was conducted for 3 hours with working volume of 70 mL and temperature of 110°C. A Bio-ionic liquid reactor was purposely designed for the lignocellulosic pretreatment by using aqueous ionic liquid at high temperature (higher than boiling point of water). The CrI of OPF pretreated with 40% concentration of [EMM][OAc] in a closed system observed was 9% lower from the untreated OPF and the result showed significant difference with 95% confidence level. Further examination of the untreated and pretreated OPF by using XRD showed that the diffraction pattern of the pretreated OPF samples was decreasing compared to the untreated OPF. The characteristic of the FTIR spectra of the pretreated OPF showed the presence of the cellulose I and occurrence of amorphous cellulosic in the samples. The findings from this study are expected to improve knowledge on pretreatment of OPF by using aqueous [EMIM][OAc] as a green economically viable process for future renewable energy.

  12. Hydroxy acetone and lactic acid synthesis from aqueous propylene glycol/hydrogen peroxide catalysis on Pd-black

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Disselkamp, Robert S.; Harris, Benjamin D.; Hart, Todd R.

    2008-07-20

    The production of polyol chemicals is of increasing interest as they are obtained from the catalytic processing of biological feedstock materials, which also is becoming more prevalent. A case in point is glycerol production, formed as a byproduct in biodiesel catalytic processing. Here we report the reaction of a simple 1,2-diol, propylene glycol, with hydrogen peroxide and a Pd-black catalyst under reflux conditions at 368 K. The experiments were performed by either co-addition of hydrogen peroxide with air sparging, or addition of hydrogen peroxide alone, each yielding hydroxy acetone (HA) and acetic acid (AA) products, with a lesser amount ofmore » lactic acid (LA) formed. Product conversion data at near neutral pH versus hydrogen peroxide equivalents added relative to substrate is presented. Hydrogen peroxide addition without air sparging at 5 equivalents resulted in 65% conversion with an HA:AA molar ratio of 2:1. Conversely, hydrogen peroxide addition with air sparging at only 0.75 equivalents resulted in 40% conversion with an HA:AA ratio of 3:1. From this it is concluded that although the product distribution in these chemistries is somewhat unchanged by air sparging, it is surprising that the amount of reactive oxygen is greatly enhanced with co-addition of O2/H2O2. Additional studies have revealed the amount of LA formed can be enhanced under acidic conditions (pH=1.5 compared to pH=8.5), such that 26% of total product formation is LA. Since hydrogen peroxide is an environmentally clean reagent and becoming more cost effective to use, this work may guide future applied investigations into polyol chemical syntheses.« less

  13. Hydrogen peroxide inhibits iodide uptake and iodine organification in cultured porcine thyroid follicles.

    PubMed

    Fukayama, H; Murakami, S; Nasu, M; Sugawara, M

    1991-01-01

    We investigated the effect of hydrogen peroxide on the process of thyroid hormone formation in a physiologic culture system of porcine thyroid follicles that we recently established. Porcine thyroid follicles cultured in medium containing 1 mU/mL TSH were exposed to 0 to 500 microM hydrogen peroxide in the presence of 0.1 microCi carrier-free Na125 and sodium iodide for 2 h. Iodide uptake and iodine organification were measured in this incubation system. The kinetics of iodide uptake were used to explain the action of hydrogen peroxide. In addition, cAMP content and Na+,K(+)-ATPase activity (an enzyme necessary for iodide uptake) were measured to investigate the mechanism of hydrogen peroxide action. Hydrogen peroxide at concentrations of 100, 200, and 500 microM inhibited iodide uptake in a dose-dependent manner. Iodide organification was inhibited only when the concentration of hydrogen peroxide was greater than 200 microM. The kinetics of iodide uptake indicated that hydrogen peroxide was a noncompetitive inhibitor with iodide. Inhibition of iodide uptake and iodine organification by hydrogen peroxide were not mediated by alteration of cAMP content of Na+,K(+)-ATPase activity, since exposure to even 500 microM hydrogen peroxide did not change these parameters in the follicle when compared with those of control samples. Our results suggest that the iodide transport system in the thyroid follicle is inhibited at 200 microM hydrogen peroxide or greater.

  14. In vitro study on tooth enamel lesions related to whitening dentifrice.

    PubMed

    de Araújo, Danilo Barral; Silva, Luciana Rodrigues; Campos, Elisângela de Jesus; Correia de Araújo, Roberto Paulo

    2011-01-01

    The tooth whitening substances for extrinsic use that are available in Brazil contain hydrogen peroxide or carbamide peroxide. Several studies have attributed the appearance of lesions in the enamel morphology, including hypersensitivity, to these substances. Such lesions justify fluoride therapy and application of infrared lasers, among other procedures. However, there is no consensus among researchers regarding the relevance of the severity of lesions detected on the tooth surface. The present study was carried out with an aim of evaluating in vitro the effects of the hydrogen peroxide, carbamide peroxide and sodium bicarbonate contained in dentifrice formulations, on human tooth enamel. After darkening process in laboratory, human premolars were brushed using dentifrice containing the two whitening substances (Rembrandt - carbamide peroxide and Mentadent - hydrogen peroxide) and the abrasive product (Colgate - sodium bicarbonate). The degree of specimen staining before and after this procedure was determined using spectrophotometry. Scanning electron microscopy (SEM) was used to obtain images, which were analyzed to show the nature of the lesions that appeared on the enamel surface. The effectiveness of the whitening caused by hydrogen peroxide and carbamide peroxide and the abrasion caused by bicarbonate were confirmed, given that the treated test pieces returned to their original coloration. Based on SEM, evaluation of the enamel surfaces subjected to the test products showed that different types of morphologic lesions of varying severity appeared. Whitening dentifrice containing hydrogen peroxide and carbamide peroxide produced lesions on the enamel surface such that the greatest sequelae were associated with exposure to hydrogen peroxide.

  15. Inhibition of lymphocyte proliferation and antibody production in vitro by silica, talc, bentonite or Corynebacterium parvum: involvement of peroxidative processes.

    PubMed

    Hoffeld, J T

    1983-05-01

    This study was undertaken to determine whether and by what means particles which induce granulomata in vivo can affect murine spleen lymphoproliferative and antibody responses in vitro. Particles of silica, talc, Bentonite or C. parvum cells inhibited lipopolysaccharide- or concanavalin A-stimulated proliferation and sheep red blood cell-induced antibody response in vitro. The inhibition required at least 48 hours exposure of the cells to the particles. The late onset of inhibition and its reproducibility at different cell or mitogen concentrations implicated particle-induced injury to both phagocytes and lymphocytes. Either alpha-tocopherol or 2-mercaptoethanol prevented the particle-induced inhibition of spleen cell responses. alpha-Tocopherol and 2-mercaptoethanol have in common the capacity to protect cells against membrane lipid peroxidation. The inhibitory peroxidative process(es) implicated by these studies are most likely attributable to: (a) stimulation of oxidative metabolism of phagocytic cells by particles; and (b) iron-catalyzed peroxidation directly by the particles. These data may be relevant in understanding the pathogenesis of and devising therapeutic approaches toward various granulomatous conditions.

  16. An effective ostrich oil bleaching technique using peroxide value as an indicator.

    PubMed

    Palanisamy, Uma Devi; Sivanathan, Muniswaran; Radhakrishnan, Ammu Kutty; Haleagrahara, Nagaraja; Subramaniam, Thavamanithevi; Chiew, Gan Seng

    2011-07-05

    Ostrich oil has been used extensively in the cosmetic and pharmaceutical industries. However, rancidity causes undesirable chemical changes in flavour, colour, odour and nutritional value. Bleaching is an important process in refining ostrich oil. Bleaching refers to the removal of certain minor constituents (colour pigments, free fatty acid, peroxides, odour and non-fatty materials) from crude fats and oils to yield purified glycerides. There is a need to optimize the bleaching process of crude ostrich oil prior to its use for therapeutic purposes. The objective of our study was to establish an effective method to bleach ostrich oil using peroxide value as an indicator of refinement. In our study, we showed that natural earth clay was better than bentonite and acid-activated clay to bleach ostrich oil. It was also found that 1 hour incubation at a 150 °C was suitable to lower peroxide value by 90%. In addition, the nitrogen trap technique in the bleaching process was as effective as the continuous nitrogen flow technique and as such would be the recommended technique due to its cost effectiveness.

  17. Hydrogen Peroxide Probes Directed to Different Cellular Compartments

    PubMed Central

    Malinouski, Mikalai; Zhou, You; Belousov, Vsevolod V.; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2011-01-01

    Background Controlled generation and removal of hydrogen peroxide play important roles in cellular redox homeostasis and signaling. We used a hydrogen peroxide biosensor HyPer, targeted to different compartments, to examine these processes in mammalian cells. Principal Findings Reversible responses were observed to various redox perturbations and signaling events. HyPer expressed in HEK 293 cells was found to sense low micromolar levels of hydrogen peroxide. When targeted to various cellular compartments, HyPer occurred in the reduced state in the nucleus, cytosol, peroxisomes, mitochondrial intermembrane space and mitochondrial matrix, but low levels of the oxidized form of the biosensor were also observed in each of these compartments, consistent with a low peroxide tone in mammalian cells. In contrast, HyPer was mostly oxidized in the endoplasmic reticulum. Using this system, we characterized control of hydrogen peroxide in various cell systems, such as cells deficient in thioredoxin reductase, sulfhydryl oxidases or subjected to selenium deficiency. Generation of hydrogen peroxide could also be monitored in various compartments following signaling events. Conclusions We found that HyPer can be used as a valuable tool to monitor hydrogen peroxide generated in different cellular compartments. The data also show that hydrogen peroxide generated in one compartment could translocate to other compartments. Our data provide information on compartmentalization, dynamics and homeostatic control of hydrogen peroxide in mammalian cells. PMID:21283738

  18. Oxidation resistant peroxide cross-linked UHMWPE produced by blending and surface diffusion

    NASA Astrophysics Data System (ADS)

    Gul, Rizwan M.; Oral, Ebru; Muratoglu, Orhun K.

    2014-06-01

    Ultra-high molecular weight polyethylene (UHMWPE) has been widely used as acetabular cup in total hip replacement (THR) and tibial component in total knee replacement (TKR). Crosslinking of UHMWPE has been successful used to improve its wear performance leading to longer life of orthopedic implants. Crosslinking can be performed by radiation or organic peroxides. Peroxide crosslinking is a convenient process as it does not require specialized equipment and the level of crosslinking can be manipulated by changing the amount of peroxide added. However, there is concern about the long-term stability of these materials due to possible presence of by-products. Vitamin E has been successfully used to promote long-term oxidative stability of UHMWPE. In this study, UHMWPE has been crosslinked using organic peroxide in the presence of Vitamin E to produce an oxidation resistant peroxide crosslinked material. Crosslinking was performed both in bulk by mixing peroxide and resin, and only on the surface using diffusion of peroxides.The results show that UHMWPE can be crosslinked using organic peroxides in the presence of vitamin E by both methods. However, the level of crosslinking decreases with the increase in vitamin E content. The wear resistance increases with the increase in crosslink density, and oxidation resistance significantly increases due to the presence of vitamin E.

  19. Effect of alkaline microwaving pretreatment on anaerobic digestion and biogas production of swine manure.

    PubMed

    Yu, Tao; Deng, Yihuan; Liu, Hongyu; Yang, Chunping; Wu, Bingwen; Zeng, Guangming; Lu, Li; Nishimura, Fumitake

    2017-05-10

    Microwave assisted with alkaline (MW-A) condition was applied in the pretreatment of swine manure, and the effect of the pretreatment on anaerobic treatment and biogas production was evaluated in this study. The two main microwaving (MW) parameters, microwaving power and reaction time, were optimized for the pretreatment. Response surface methodology (RSM) was used to investigate the effect of alkaline microwaving process for manure pretreatment at various values of pH and energy input. Results showed that the manure disintegration degree was maximized of 63.91% at energy input of 54 J/g and pH of 12.0, and variance analysis indicated that pH value played a more important role in the pretreatment than in energy input. Anaerobic digestion results demonstrated that MW-A pretreatment not only significantly increased cumulative biogas production, but also shortened the duration for a stable biogas production rate. Therefore, the alkaline microwaving pretreatment could become an alternative process for effective treatment of swine manure.

  20. Ethanol production in a simultaneous saccharification and fermentation process with interconnected reactors employing hydrodynamic cavitation-pretreated sugarcane bagasse as raw material.

    PubMed

    Terán Hilares, Ruly; Ienny, João Vitor; Marcelino, Paulo Franco; Ahmed, Muhammad Ajaz; Antunes, Felipe A F; da Silva, Silvio Silvério; Santos, Júlio César Dos

    2017-11-01

    In this study, sugarcane bagasse (SCB) pretreated with alkali assisted hydrodynamic cavitation (HC) was investigated for simultaneous saccharification and fermentation (SSF) process for bioethanol production in interconnected column reactors using immobilized Scheffersomyces stipitis NRRL-Y7124. Initially, HC was employed for the evaluation of the reagent used in alkaline pretreatment. Alkalis (NaOH, KOH, Na 2 CO 3 , Ca(OH) 2 ) and NaOH recycled black liquor (successive batches) were used and their pretreatment effectiveness was assessed considering the solid composition and its enzymatic digestibility. In SSF process using NaOH-HC pretreatment SCB, 62.33% of total carbohydrate fractions were hydrolyzed and 17.26g/L of ethanol production (0.48g of ethanol/g of glucose and xylose consumed) was achieved. This proposed scheme of HC-assisted NaOH pretreatment together with our interconnected column reactors showed to be an interesting new approach for biorefineries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Potential hepatoprotective effects of new Cuban natural products in rat hepatocytes culture.

    PubMed

    Rodeiro, I; Donato, M T; Martínez, I; Hernández, I; Garrido, G; González-Lavaut, J A; Menéndez, R; Laguna, A; Castell, J V; Gómez-Lechón, M J

    2008-08-01

    The protective effects of five Cuban natural products (Mangifera indica L. (MSBE), Erythroxylum minutifolium, Erythroxylum confusum, Thalassia testudinum and Dictyota pinnatifida extracts and mangiferin) on the oxidative damage induced by model toxicants in rat hepatocyte cultures were studied. Cells were pre-incubated with the natural products (5-200 microg/mL) for 24 h. Then hepatotoxins (tert-butyl hydroperoxide, ethanol, carbon tetrachloride and lipopolysaccharide) were individually added and post-incubated for another 24 h. After treatments, cell viability was determined using the MTT assay. Mangiferin and MSBE exhibited the highest cytoprotective potential (EC50 between 50 and 125 microg/mL), followed by T. testudinum and Erythroxylum extracts, whereas no significant protective effects was produced by Dictyota extract treatment. Antioxidant properties of the natural products against lipid peroxidation and GSH depletion induced by tert-butyl hydroperoxide were then investigated. The results show that at 36 h pre-treatment of cells with mangiferin or MSBE, concentrations of T. testudinum and Erythroxylum extracts ranging from 25 to 100 microg/mL significantly inhibited lipid peroxidation induced by tert-butyl hydroperoxide (100 and 250 microM) and increased the GSH levels reduced by the toxicant. D. pinnatifida inhibited lipid peroxidation, but did not preserve GSH levels. In conclusion, MSBE, E. minutifolium, E. confusum and T. testudinum extracts and mangiferin showed hepatoprotective activity against induced damage in all the experimental series, where mangiferin and the extracts of MSBE and T. testudinum were the best candidates to inhibit "in vitro" damage to rat hepatocytes. This hepatoprotective effect found could be associated with the antioxidant properties observed for the products.

  2. Enzymolysis kinetics and structural characteristics of rice protein with energy-gathered ultrasound and ultrasound assisted alkali pretreatments.

    PubMed

    Li, Suyun; Yang, Xue; Zhang, Yanyan; Ma, Haile; Qu, Wenjuan; Ye, Xiaofei; Muatasim, Rahma; Oladejo, Ayobami Olayemi

    2016-07-01

    This research investigated the structural characteristics and enzymolysis kinetics of rice protein which was pretreated by energy-gathered ultrasound and ultrasound assisted alkali. The structural characteristics of rice protein before and after the pretreatment were performed with surface hydrophobicity and Fourier transform infrared (FTIR). There was an increase in the intensity of fluorescence spectrum and changes in functional groups after the pretreatment on rice protein compared with the control (without ultrasound and ultrasound assisted alkali processed), thus significantly enhancing efficiency of the enzymatic hydrolysis. A simplified kinetic equation for the enzymolysis model with the impeded reaction of enzyme was deduced to successfully describe the enzymatic hydrolysis of rice protein by different pretreatments. The initial observed rate constants (Kin,0) as well as ineffective coefficients (kimp) were proposed and obtained based on the experimental observation. The results showed that the parameter of kin,0 increased after ultrasound and ultrasound assisted alkali pretreatments, which proved the effects of the pretreatments on the substrate enhancing the enzymolysis process and had relation to the structure changes of the pretreatments on the substrate. Furthermore, the applicability of the simplified model was demonstrated by the enzymatic hydrolysis process for other materials. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. [Methodological aspects of evaluation of potential lipid capacity for peroxidation from the serum levels of TBA-active products during iron ion stimulation].

    PubMed

    Kulikova, A I; Tugusheva, F A; Zubina, I M; Shepilova, I N

    2008-05-01

    The authors propose a simple and reproducible procedure for using iron ions to stimulate serum lipid peroxidation, with TBA-active products being further determined. The procedure determines the reserve of lipids that can be oxidized during oxidative stress. A combination of direct studies and correlation analysis suggests that low-density lipoproteins and very low-density lipoproteins are the major substrates for lipid peroxidation while high-density lipoproteins show a high resistance to this process. The presented procedure may be used to monitor lipid peroxidation in various conditions and upon various exposures in common laboratory practice.

  4. Improved Electrolytic Hydrogen Peroxide Generator

    NASA Technical Reports Server (NTRS)

    James, Patrick I.

    2005-01-01

    An improved apparatus for the electrolytic generation of hydrogen peroxide dissolved in water has been developed. The apparatus is a prototype of H2O2 generators for the safe and effective sterilization of water, sterilization of equipment in contact with water, and other applications in which there is need for hydrogen peroxide at low concentration as an oxidant. Potential applications for electrolytic H2O2 generators include purification of water for drinking and for use in industrial processes, sanitation for hospitals and biotechnological industries, inhibition and removal of biofouling in heat exchangers, cooling towers, filtration units, and the treatment of wastewater by use of advanced oxidation processes that are promoted by H2O2.

  5. Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli.

    PubMed

    Joshi, Suresh G; Cooper, Moogega; Yost, Adam; Paff, Michelle; Ercan, Utku K; Fridman, Gregory; Friedman, Gary; Fridman, Alexander; Brooks, Ari D

    2011-03-01

    Oxidative stress leads to membrane lipid peroxidation, which yields products causing variable degrees of detrimental oxidative modifications in cells. Reactive oxygen species (ROS) are the key regulators in this process and induce lipid peroxidation in Escherichia coli. Application of nonthermal (cold) plasma is increasingly used for inactivation of surface contaminants. Recently, we reported a successful application of nonthermal plasma, using a floating-electrode dielectric-barrier discharge (FE-DBD) technique for rapid inactivation of bacterial contaminants in normal atmospheric air (S. G. Joshi et al., Am. J. Infect. Control 38:293-301, 2010). In the present report, we demonstrate that FE-DBD plasma-mediated inactivation involves membrane lipid peroxidation in E. coli. Dose-dependent ROS, such as singlet oxygen and hydrogen peroxide-like species generated during plasma-induced oxidative stress, were responsible for membrane lipid peroxidation, and ROS scavengers, such as α-tocopherol (vitamin E), were able to significantly inhibit the extent of lipid peroxidation and oxidative DNA damage. These findings indicate that this is a major mechanism involved in FE-DBD plasma-mediated inactivation of bacteria.

  6. Nonthermal Dielectric-Barrier Discharge Plasma-Induced Inactivation Involves Oxidative DNA Damage and Membrane Lipid Peroxidation in Escherichia coli▿

    PubMed Central

    Joshi, Suresh G.; Cooper, Moogega; Yost, Adam; Paff, Michelle; Ercan, Utku K.; Fridman, Gregory; Friedman, Gary; Fridman, Alexander; Brooks, Ari D.

    2011-01-01

    Oxidative stress leads to membrane lipid peroxidation, which yields products causing variable degrees of detrimental oxidative modifications in cells. Reactive oxygen species (ROS) are the key regulators in this process and induce lipid peroxidation in Escherichia coli. Application of nonthermal (cold) plasma is increasingly used for inactivation of surface contaminants. Recently, we reported a successful application of nonthermal plasma, using a floating-electrode dielectric-barrier discharge (FE-DBD) technique for rapid inactivation of bacterial contaminants in normal atmospheric air (S. G. Joshi et al., Am. J. Infect. Control 38:293-301, 2010). In the present report, we demonstrate that FE-DBD plasma-mediated inactivation involves membrane lipid peroxidation in E. coli. Dose-dependent ROS, such as singlet oxygen and hydrogen peroxide-like species generated during plasma-induced oxidative stress, were responsible for membrane lipid peroxidation, and ROS scavengers, such as α-tocopherol (vitamin E), were able to significantly inhibit the extent of lipid peroxidation and oxidative DNA damage. These findings indicate that this is a major mechanism involved in FE-DBD plasma-mediated inactivation of bacteria. PMID:21199923

  7. Antigenotoxic activity of lactic acid bacteria, prebiotics, and products of their fermentation against selected mutagens.

    PubMed

    Nowak, Adriana; Śliżewska, Katarzyna; Otlewska, Anna

    2015-12-01

    Dietary components such as lactic acid bacteria (LAB) and prebiotics can modulate the intestinal microbiota and are thought to be involved in the reduction of colorectal cancer risk. The presented study measured, using the comet assay, the antigenotoxic activity of both probiotic and non-probiotic LAB, as well as some prebiotics and the end-products of their fermentation, against fecal water (FW). The production of short chain fatty acids by the bacteria was quantified using HPLC. Seven out of the ten tested viable strains significantly decreased DNA damage induced by FW. The most effective of them were Lactobacillus mucosae 0988 and Bifidobacterium animalis ssp. lactis Bb-12, leading to a 76% and 80% decrease in genotoxicity, respectively. The end-products of fermentation of seven prebiotics by Lactobacillus casei DN 114-001 exhibited the strongest antigenotoxic activity against FW, with fermented inulin reducing genotoxicity by 75%. Among the tested bacteria, this strain produced the highest amounts of butyrate in the process of prebiotic fermentation, and especially from resistant dextrin (4.09 μM/mL). Fermented resistant dextrin improved DNA repair by 78% in cells pre-treated with 6.8 μM methylnitronitrosoguanidine (MNNG). Fermented inulin induced stronger DNA repair in cells pre-treated with mutagens (FW, 25 μM hydrogen peroxide, or MNNG) than non-fermented inulin, and the efficiency of DNA repair after 120 min of incubation decreased by 71%, 50% and 70%, respectively. The different degrees of genotoxicity inhibition observed for the various combinations of bacteria and prebiotics suggest that this effect may be attributable to carbohydrate type, SCFA yield, and the ratio of the end-products of prebiotic fermentation. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Flexural properties, morphology and bond strength of fiber-reinforced posts: influence of post pretreatment.

    PubMed

    Braga, Neilor Mateus Antunes; Souza-Gabriel, Aline Evangelista; Messias, Danielle Cristine Furtado; Rached-Junior, Fuad Jacob Abi; Oliveira, Camila Fávero; Silva, Ricardo Gariba; Silva-Sousa, Yara T Corrêa

    2012-01-01

    The aim of this study was to assess the influence of surface pretreatments of fiber-reinforced posts on flexural strength (FS), modulus of elasticity (ME) and morphology of these posts, as well as the bond strength (BS) between posts and core material. Fifty-two fiber posts (smooth and serrated) were assigned to 4 groups (n=13): no treatment (control), 10% hydrogen peroxide (HP) for 10 min (HP-10), 24% HP for 1 min (HP-24) and airborne-particle abrasion (Al(2)O(3)). To evaluate FS and ME, a 3-point bending test was performed. Three posts of each group were examined by scanning electron microscopy. Composite resin was used as the core build-up and samples were sectioned to obtain microtensile sticks. Data were analyzed by ANOVA and Tukey's test (α=0.05). For FS, significant differences were observed between posts type and surface pretreatment (p<0.05), with the highest means for the smooth posts. Al2O3 provided higher FS than HP-24. Al(2)O(3) promoted higher ME than HP-24 and control. SEM images revealed partial dissolution of the resin matrix in all treated groups. The smooth posts had higher BS and FS than serrated posts (p<0.05). Mechanical properties of the glass fiber posts and the bond strength between posts and composite material were not altered by the surface treatments, except for airborne-particle abrasion that increased the post elastic modulus.

  9. Calcium-calmodulin is required for abscisic acid-induced antioxidant defense and functions both upstream and downstream of H2O2 production in leaves of maize (Zea mays) plants.

    PubMed

    Hu, Xiuli; Jiang, Mingyi; Zhang, Jianhua; Zhang, Aying; Lin, Fan; Tan, Mingpu

    2007-01-01

    * Using pharmacological and biochemical approaches, the role of calmodulin (CaM) and the relationship between CaM and hydrogen peroxide (H(2)O(2)) in abscisic acid (ABA)-induced antioxidant defense in leaves of maize (Zea mays) plants were investigated. * Treatment with ABA or H(2)O(2) led to significant increases in the concentration of cytosolic Ca(2+) in the protoplasts of mesophyll cells and in the expression of the calmodulin 1 (CaM1) gene and the content of CaM in leaves of maize plants, and enhanced the expression of the antioxidant genes superoxide dismutase 4 (SOD4), cytosolic ascorbate peroxidase (cAPX), and glutathione reductase 1 (GR1) and the activities of the chloroplastic and cytosolic antioxidant enzymes. The up-regulation of the antioxidant enzymes was almost completely blocked by pretreatments with two CaM antagonists. * Pretreatments with CaM antagonists almost completely inhibited ABA-induced H(2)O(2) production throughout ABA treatment, but pretreatment with an inhibitor or scavenger of reactive oxygen species (ROS) did not affect the initial increase in the contents of CaM induced by ABA. * Our results suggest that Ca(2+)-CaM is involved in ABA-induced antioxidant defense, and that cross-talk between Ca(2+)-CaM and H(2)O(2) plays a pivotal role in ABA signaling.

  10. Geraniol attenuates 2-acetylaminofluorene induced oxidative stress, inflammation and apoptosis in the liver of wistar rats.

    PubMed

    Hasan, Syed Kazim; Sultana, Sarwat

    2015-01-01

    2-Acetylaminofluorene (2-AAF), is a well-known liver toxicant, generally used to induce tumors in laboratory animals. Geraniol (GE), a monoterpene found in essential oils of herbs and fruits, has been known to possess preventive efficacy against chemically induced toxicities. The present study was designed to analyze the protective effect of GE against 2-AAF induced oxidative stress, inflammation, hyperproliferation and apoptotic tissue damage in the liver of female Wistar rats. 2-AAF (0.02% w/w in diet) was administered and subjected to partial hepatectomy, as a mitogenic stimulus for the induction of hyperproliferation of liver tissue. GE was pre-treated orally at two different doses (100 and 200 mg/kg b.wt.) dissolved in corn oil. GE pre-treatment significantly ameliorated 2-AAF induced oxidative damage by diminishing tissue lipid peroxidation accompanied by the increase in enzymatic activities of catalase, glutathione peroxidase, glutathione reductase, superoxide dismutase and reduced glutathione content. The level of serum toxicity markers (AST, ALT, LDH) was found to be decreased. Pre-treatment with GE downregulated the expression of caspase-3,9, COX-2, NFkB, PCNA, iNOS, VEGF and significantly decreased disintegration of DNA. Histological findings further revealed that GE significantly restores the architecture of liver tissue. In the light of the above observations it may be concluded that GE may be used as preventive agent against 2-AAF induced oxidative stress, inflammation, hyperproliferation and apoptotic damage.

  11. Indole-3-carbinol protects against cisplatin-induced acute nephrotoxicity: role of calcitonin gene-related peptide and insulin-like growth factor-1.

    PubMed

    El-Naga, Reem N; Mahran, Yasmen F

    2016-07-15

    Nephrotoxicity associated with the clinical use of the anticancer drug cisplatin is a limiting problem. Thus, searching for new protective measures is required. Indole-3-carbinol is a powerful anti-oxidant, anti-inflammatory and anti-tumor agent. The present study aimed to investigate the potential protective effect of indole-3-carbinol against cisplatin-induced acute nephrotoxicity in rats. Rats were pre-treated with 20 mg/kg indole-3-carbinol orally before giving cisplatin (7 mg/kg). Cisplatin-induced acute nephrotoxicity was demonstrated where relative kidney weight, BUN and serum creatinine were significantly increased. Increased oxidative stress was evident in cisplatin group where GSH and SOD tissue levels were significantly depleted. Also, lipid peroxidation and NOX-1 were increased as compared to the control. Additionally, renal expression of pro-inflammatory mediators was induced by cisplatin. Cisplatin-induced cell death was shown by increased caspase-3 and decreased expression of EGF, IGF-1 and IGF-1 receptor. Nephrotoxicity, oxidative stress, inflammation and apoptotic effects induced by cisplatin were significantly ameliorated by indole-3-carbinol pre-treatment. Besides, the role of CGRP in cisplatin-induced nephrotoxicity was explored. Furthermore, cisplatin cytotoxic activity was significantly enhanced by indole-3-carbinol pre-treatment in vitro. In conclusion, indole-3-carbinol provides protection against cisplatin-induced nephrotoxicity. Also, reduced expression of CGRP may play a role in the pathogenesis of cisplatin-induced renal injury.

  12. Indole-3-carbinol protects against cisplatin-induced acute nephrotoxicity: role of calcitonin gene-related peptide and insulin-like growth factor-1

    PubMed Central

    El-Naga, Reem N.; Mahran, Yasmen F.

    2016-01-01

    Nephrotoxicity associated with the clinical use of the anticancer drug cisplatin is a limiting problem. Thus, searching for new protective measures is required. Indole-3-carbinol is a powerful anti-oxidant, anti-inflammatory and anti-tumor agent. The present study aimed to investigate the potential protective effect of indole-3-carbinol against cisplatin-induced acute nephrotoxicity in rats. Rats were pre-treated with 20 mg/kg indole-3-carbinol orally before giving cisplatin (7 mg/kg). Cisplatin-induced acute nephrotoxicity was demonstrated where relative kidney weight, BUN and serum creatinine were significantly increased. Increased oxidative stress was evident in cisplatin group where GSH and SOD tissue levels were significantly depleted. Also, lipid peroxidation and NOX-1 were increased as compared to the control. Additionally, renal expression of pro-inflammatory mediators was induced by cisplatin. Cisplatin-induced cell death was shown by increased caspase-3 and decreased expression of EGF, IGF-1 and IGF-1 receptor. Nephrotoxicity, oxidative stress, inflammation and apoptotic effects induced by cisplatin were significantly ameliorated by indole-3-carbinol pre-treatment. Besides, the role of CGRP in cisplatin-induced nephrotoxicity was explored. Furthermore, cisplatin cytotoxic activity was significantly enhanced by indole-3-carbinol pre-treatment in vitro. In conclusion, indole-3-carbinol provides protection against cisplatin-induced nephrotoxicity. Also, reduced expression of CGRP may play a role in the pathogenesis of cisplatin-induced renal injury. PMID:27417335

  13. A citrus waste-based biorefinery as a source of renewable energy: technical advances and analysis of engineering challenges.

    PubMed

    Rivas-Cantu, Raul C; Jones, Kim D; Mills, Patrick L

    2013-04-01

    An assessment of recent technical advances on pretreatment processes and its effects on enzymatic hydrolysis as the main steps of a proposed citrus processing waste (CPW) biorefinery is presented. Engineering challenges and relevant gaps in scientific and technical information for reliable design, modeling and scale up of a CPW biorefinery are also discussed. Some integrated physico-chemical pretreatments are proposed for testing for CPW, including high speed knife-grinding and simultaneous caustic addition. These new proposed processes and the effect of parameters such as particle size, surface area and morphology, pore volume and chemical composition of the diverse fractions resulting from pretreatment and enzymatic hydrolysis need to be evaluated and compared for pretreated and untreated samples of grapefruit processing waste. This assessment suggests the potential for filling the data gaps, and preliminary results demonstrate that the reduction of particle size and the increased surface area for the CPW will result in higher reaction rates and monosaccharide yields for the pretreated waste material.

  14. Transferring of components and energy output in industrial sewage sludge disposal by thermal pretreatment and two-phase anaerobic process.

    PubMed

    Yang, Xiaoyi; Wang, Xin; Wang, Lei

    2010-04-01

    For a better sewage sludge disposal and more efficient energy reclamation, transforming of components and energy in sludge by thermal and WAO pretreatment followed by two-phase anaerobic UASB process were studied in the pilot scale. Biogas outputs and the qualities and quantities of the effluent and solid residue were compared with a traditional anaerobic sludge digestion. Sludge components, including carbon, nitrogen, phosphorus, sulphur, were observed and mass balances were discussed throughout the process. The input and output energy balance was also studied. Results showed different trait to compare with biogas outputs in terms of COD added and raw sludge added. Pretreatment improved the transformation of carbon substances into biogas production with higher carbon removal and higher VSS removal. Comparing the energy obtained from biogas production with energy inputs required for pretreatment, energy output in the whole process decreased with higher pretreatment temperature. Copyright 2009 Elsevier Ltd. All rights reserved.

  15. Hydrodynamic cavitation as a strategy to enhance the efficiency of lignocellulosic biomass pretreatment.

    PubMed

    Terán Hilares, Ruly; Ramos, Lucas; da Silva, Silvio Silvério; Dragone, Giuliano; Mussatto, Solange I; Santos, Júlio César Dos

    2018-06-01

    Hydrodynamic cavitation (HC) is a process technology with potential for application in different areas including environmental, food processing, and biofuels production. Although HC is an undesirable phenomenon for hydraulic equipment, the net energy released during this process is enough to accelerate certain chemical reactions. The application of cavitation energy to enhance the efficiency of lignocellulosic biomass pretreatment is an interesting strategy proposed for integration in biorefineries for the production of bio-based products. Moreover, the use of an HC-assisted process was demonstrated as an attractive alternative when compared to other conventional pretreatment technologies. This is not only due to high pretreatment efficiency resulting in high enzymatic digestibility of carbohydrate fraction, but also, by its high energy efficiency, simple configuration, and construction of systems, besides the possibility of using on the large scale. This paper gives an overview regarding HC technology and its potential for application on the pretreatment of lignocellulosic biomass. The parameters affecting this process and the perspectives for future developments in this area are also presented and discussed.

  16. Response surface optimization of the thermal acid pretreatment of sugar beet pulp for bioethanol production using Trichoderma viride and Saccharomyces cerevisiae.

    PubMed

    El-Gendy, Nour Sh; Madian, Hekmat R; Nassar, Hussein N; Abu Amr, Salem S

    2015-01-01

    Worldwide nowadays, relying on the second generation bioethanol from the lignocellulosic feedstock is a mandatory aim. However, one of the major drawbacks for high ethanol yield is the physical and chemical pretreatment of this kind of feedstock. As the pretreatment is a crucial process operation that modifies the lignocellulosic structure and enhances its accessibility for the high cost hydrolytic enzymes in an attempt to maximize the yield of the fermentable sugars. The objective of this work was to optimize and integrate a physicochemical pretreatment of one of the major agricultural wastes in Egypt; the sugar beet pulp (SBP) and the enzymatic saccharification of the pretreated SBP using a whole fungal cells with a separate bioethanol fermentation batch processes to maximize the bioethanol yield. The response surface methodology was employed in this study to statistically evaluate and optimize the conditions for a thermal acid pretreatment of SBP. The significance and the interaction effects of the concentrations of HCl and SBP and the reaction temperature and time were studied using a three-level central composite design of experiments. A quadratic model equation was obtained to maximize the production of the total reducing sugars. The validity of the predicted model was confirmed. The thermally acid pretreated SBP was further subjected to a solid state fermentation batch process using Trichoderma viride F94. The thermal acid pretreatment and fungal hydrolyzes were integrated with two parallel batch fermentation processes of the produced hydrolyzates using Saccharomyces cerevisiae Y39, that yielded a total of ≈ 48 g/L bioethanol, at a conversion rate of ≈ 0.32 g bioethanol/ g SBP. Applying the proposed integrated process, approximately 97.5 gallon of ethanol would be produced from a ton (dry weight) of SBP.

  17. Response surface optimization of the thermal acid pretreatment of sugar beet pulp for bioethanol production using Trichoderma viride and Saccharomyces cerevisiae.

    PubMed

    El-Gendy, Nour Sh; Madian, Hekmat R; Nassar, Hussein N; Amr, Salem S Abu

    2015-09-15

    Worldwide nowadays, relying on the second generation bioethanol from the lignocellulosic feedstock is a mandatory aim. However, one of the major drawbacks for high ethanol yield is the physical and chemical pretreatment of this kind of feedstock. As the pretreatment is a crucial process operation that modifies the lignocellulosic structure and enhances its accessibility for the high cost hydrolytic enzymes in an attempt to maximize the yield of the fermentable sugars. The objective of this work was to optimize and integrate a physicochemical pretreatment of one of the major agricultural wastes in Egypt; the sugar beet pulp (SBP) and the enzymatic saccharification of the pretreated SBP using a whole fungal cells with a separate bioethanol fermentation batch processes to maximize the bioethanol yield. The response surface methodology was employed in this study to statistically evaluate and optimize the conditions for a thermal acid pretreatment of SBP. The significance and the interaction effects of the concentrations of HCl and SBP and the reaction temperature and time were studied using a three-level central composite design of experiments. A quadratic model equation was obtained to maximize the production of the total reducing sugars. The validity of the predicted model was confirmed. The thermally acid pretreated SBP was further subjected to a solid state fermentation batch process using Trichoderma viride F94. The thermal acid pretreatment and fungal hydrolyzes were integrated with two parallel batch fermentation processes of the produced hydrolyzates using Saccharomyces cerevisiae Y39, that yielded a total of ≈ 48 g/L bioethanol, at a conversion rate of ≈ 0.32 g bioethanol/ g SBP. Applying the proposed integrated process, approximately 97.5 gallon of ethanol would be produced from a ton (dry weight) of SBP.

  18. The impacts of deacetylation prior to dilute acid pretreatment on the bioethanol process

    PubMed Central

    2012-01-01

    Background Dilute acid pretreatment is a promising pretreatment technology for the biochemical production of ethanol from lignocellulosic biomass. During dilute acid pretreatment, xylan depolymerizes to form soluble xylose monomers and oligomers. Because the xylan found in nature is highly acetylated, the formation of xylose monomers requires two steps: 1) cleavage of the xylosidic bonds, and 2) cleavage of covalently bonded acetyl ester groups. Results In this study, we show that the latter may be the rate limiting step for xylose monomer formation. Furthermore, acetyl groups are also found to be a cause of biomass recalcitrance and hydrolyzate toxicity. While the removal of acetyl groups from native corn stover by alkaline de-esterification prior to pretreatment improves overall process yields, the exact impact is highly dependent on the corn stover variety in use. Xylose monomer yields in pretreatment generally increases by greater than 10%. Compared to pretreated corn stover controls, the deacetylated corn stover feedstock is approximately 20% more digestible after pretreatment. Finally, by lowering hydrolyzate toxicity, xylose utilization and ethanol yields are further improved during fermentation by roughly 10% and 7%, respectively. In this study, several varieties of corn stover lots were investigated to test the robustness of the deacetylation-pretreatment-saccharification-fermentation process. Conclusions Deacetylation shows significant improvement on glucose and xylose yields during pretreatment and enzymatic hydrolysis, but it also reduces hydrolyzate toxicity during fermentation, thereby improving ethanol yields and titer. The magnitude of effect is dependent on the selected corn stover variety, with several varieties achieving improvements of greater than 10% xylose yield in pretreatment, 20% glucose yield in low solids enzymatic hydrolysis and 7% overall ethanol yield. PMID:22369467

  19. Comparative evaluation of acid and alkaline sulfite pretreatments for enzymatic saccharification of bagasses from three different sugarcane hybrids.

    PubMed

    Monte, Joseana R; Laurito-Friend, Debora F; Ferraz, André; Milagres, Adriane M F

    2018-04-26

    Sugarcane bagasses from three experimental sugarcane hybrids and a mill-reference sample were used to compare the efficiency and mode of action of acid and alkaline sulfite pretreatment processes. Varied chemical loads and reaction temperatures were used to prepare samples with distinguished characteristics regarding xylan and lignin removals, as well as sulfonation levels of residual lignins. The pretreatment with low sulfite loads (5%) under acidic conditions (pH 2) provided maximum glucose yield of 70% during enzymatic hydrolysis with cellulases (10 FPU/g) and β-glucosidases (20 UI/g bagasse). In this case, glucan enzymatic conversion from pretreated materials was mostly associated with extensive xylan removal (70-100%) and partial delignification occurred during the pretreatment. The use of low sulfite loads under acidic conditions required pretreatment temperatures of 160°C. In contrast, at a lower pretreatment temperature (120°C), alkaline sulfite process achieved similar glucan digestibility, but required a higher sulfite load (7.5%). Residual xylans from acid pretreated materials were almost completely hydrolysed by commercial enzymes, contrasting with relatively lower xylan to xylose conversions observed in alkaline pretreated samples. Efficient xylan removal during acid sulfite pretreatment and also during enzymatic digestion can be useful to enhance glucan accessibility and digestibility by cellulases. Alkaline sulfite process also provided substrates with high glucan digestibility, mainly associated with delignification and sulfonation of residual lignins. The results demonstrate that temperature, pH and sulfite can be combined for reducing lignocellulose recalcitrance and achieve similar glucan conversion rates in the alkaline and acid sulfite pretreated bagasses. This article is protected by copyright. All rights reserved. © 2018 American Institute of Chemical Engineers.

  20. Survey of Lignin-Structure Changes and Depolymerization during Ionic Liquid Pretreatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Tanmoy; Isern, Nancy G.; Sun, Jian

    A detailed study of chemical changes in lignin structure during the ionic liquid (IL) pretreatment process is not only pivotal for understanding and overcoming biomass recalcitrance during IL pretreatment, but also is necessary for designing new routes for lignin valorization. Chemical changes in lignin were systematically studied as a function of pretreatment temperature, time and type of IL used. Kraft lignin was used as the lignin source and common pretreatment conditions were employed using three different ILs of varying chemical structure in terms of acidic or basic character. The chemical changes in the lignin structure due to IL pretreatment processesmore » were monitored using 1H-13C HSQC NMR, 31P NMR, elemental analysis, GPC, FT-IR, and the depolymerized products were analyzed using GC-MS. Although pretreatment in acidic IL, triethylammonium hydrogensulfate ([TEA][HSO4]) results in maximum decrease in β-aryl ether bond, maximum dehydration and recondensation pathways were also evident, with the net process showing a minimum decrease in the molecular weight of regenerated lignin. However, 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]) pretreatment yields a smaller decrease in the β-aryl ether content along with minimum evidence of recondensation, resulting in the maximum decrease in the molecular weight. Cholinium lysinate ([Ch][Lys]) pretreatment shows an intermediate result, with moderate depolymerization, dehydration and recondensation observed. The depolymerization products after IL pretreatment are found to be a function of the pretreatment temperature and the specific chemical nature of the IL used. At higher pretreatment temperature, [Ch][Lys] pretreatment yields guaiacol, [TEA][HSO4] yields guaiacylacetone, and [C2C1Im][OAc] yields both guaiacol and guaiacylacetone as major products. These results clearly indicate that the changes in lignin structure as well as the depolymerized product profile depend on the pretreatment conditions and the nature of the ILs. The insight gained on lignin structure changes and possible depolymerized products during IL pretreatment process would help future lignin valorization efforts in a potential IL-based lignocellulosic biorefinery.« less

  1. Eco-friendly processing in enzymatic xylooligosaccharides production from corncob: Influence of pretreatment with sonocatalytic-synergistic Fenton reaction and its antioxidant potentials.

    PubMed

    Kawee-Ai, Arthitaya; Srisuwun, Aungkana; Tantiwa, Nidtaya; Nontaman, Wimada; Boonchuay, Pinpanit; Kuntiya, Ampin; Chaiyaso, Thanongsak; Seesuriyachan, Phisit

    2016-07-01

    Delignification can be considered as a feasible process to pretreat lignocellulosic biomass in xylooligosaccharides production after the performance and efficiency has been improved through a few modifications. This study compared various pretreatment strategies such as Fenton, sonocatalytic, and sonocatalytic-synergistic Fenton employed on corncob in order to expose lignin content and saccharides to enhance the xylooligosaccharides yield by enzymatic hydrolysis. The dissolution of lignin and xylooligosaccharides production of corncob was enhanced by ultrasound assisted TiO2 and Fenton reaction. The corncob pretreated with a sonocatalytic-synergistic Fenton reaction gave the highest release of the lignin concentration level (1.03 g/L), dissolution level (80.25%), and xylooligosaccharides content (46.45 mg/g substrate). A two-step pretreatment processes consisting of the alkali treatment (pretreatment) and sonocatalytic-synergistic Fenton process (posttreatment) illustrated that subsequent enzymatic hydrolysis could be enhanced considerably. The release of the lignin concentration and xylooligosaccharides content were 33.20 g/L and 174.81 mg/g substrate, respectively. The antioxidant potential of xylooligosaccharides showed significant differences regarding the amount of xylooligosaccharides and the phenolic compounds produced. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Crankshaft motion in a highly congested bis(triarylmethyl)peroxide.

    PubMed

    Khuong, Tinh-Alfredo V; Zepeda, Gerardo; Sanrame, Carlos N; Dang, Hung; Bartberger, Michael D; Houk, K N; Garcia-Garibay, Miguel A

    2004-11-17

    Crankshaft motion has been proposed in the solid state for molecular fragments consisting of three or more rotors linked by single bonds, whereby the two terminal rotors are static and the internal rotors experience circular motion. Bis-[tri-(3,5-di-tert-butyl)phenylmethyl]-peroxide 2 was tested as a model in search of crankshaft motion at the molecular level. In the case of peroxide 2, the bulky trityl groups may be viewed as the external static rotors, while the two peroxide oxygens can undergo the sought after internal rotation. Evidence for this process in the case of peroxide 2 was obtained from conformational dynamics determined by variable-temperature (13)C and (1)H NMR between 190 and 375 K in toluene-d(8). Detailed spectral assignments for the interpretation of two coalescence processes were based on a correlation between NMR spectra obtained in solution at low temperature, in the solid state by (13)C CPMAS NMR, and by GIAO calculations based on a B3LYP/6-31G structure of 2 obtained from its X-ray coordinates as the input. Evidence supporting crankshaft rotation rather than slippage of the trityl groups was obtained from molecular mechanics calculations.

  3. Effect of pretreatment on simultaneous saccharification and fermentation of hardwood into acetone/butanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, M.M.; Song, S.K.; Lee, Y.Y.

    1991-12-31

    The effectiveness of pretreatments on hardwood substrate was investigated in connection with its subsequent conversion by simultaneous saccharification and fermentation (SSF), using Clostridium acetobutylicum. The main objectives of the pretreatment were to achieve efficient separation of lignin from carbohydrates, and to obtain maximum sugar yield on enzymatic hydrolysis of pretreated wood. Two methods have given promising results: (1) supercritical CO{sub 2}-SO{sub 2} treatment, and (2) monoethanolamine (MEA) treatment. The MEA pretreatment removed above 90% of hardwood lignin while retaining 83% of carbohydrates. With CO{sub 2}-SO{sub 2} pretreatment, the degree of lignin separation was lower. Under the scheme of SSF, themore » pretreated hardwood was converted to acetone, butanol, and ethanol (ABE) via single stage processing by cellulose enzyme system and C. acetobutylicum cells. The product yield in the process was such that 15 g of ABE/100 g of dry aspen wood was produced. In the overall process of SSF, the enzymatic hydrolysis was found to be the rate-limiting step. The ability of C. acetobutylicum to metabolize various 6-carbon and 5-carbon sugars resulted in efficient utilization of all available sugars from hardwood.« less

  4. Cytotoxicity Mechanism of Two Naphthoquinones (Menadione and Plumbagin) in Saccharomyces cerevisiae

    PubMed Central

    Castro, Frederico Augusto Vieira; Mariani, Diana; Panek, Anita Dolly; Eleutherio, Elis Cristina Araújo; Pereira, Marcos Dias

    2008-01-01

    Background Quinones are compounds extensively used in studies of oxidative stress due to their role in plants as chemicals for defense. These compounds are of great interest for pharmacologists and scientists, in general, because several cancer chemotherapeutic agents contain the quinone nucleus. However, due to differences in structures and diverse pharmacological effects, the exact toxicity mechanisms exerted by quinones are far from elucidatation. Methodology/Principal Findings Using Saccharomyces cerevisiae, we evaluated the main mechanisms of toxicity of two naphthoquinones, menadione and plumbagin, by determining tolerance and oxidative stress biomarkers such as GSH and GSSG, lipid peroxidation levels, as well as aconitase activity. The importance of glutathione transferases (GST) in quinone detoxification was also addressed. The GSSG/GSH ratio showed that menadione seemed to exert its toxicity mainly through the generation of ROS while plumbagin acted as an electrophile reacting with GSH. However, the results showed that, even by different pathways, both drugs were capable of generating oxidative stress through their toxic effects. Our results showed that the control strain, BY4741, and the glutathione transferase deficient strains (gtt1Δ and gtt2Δ) were sensitive to both compounds. With respect to the role of GST isoforms in cellular protection against quinone toxicity, we observed that the Gtt2 deficient strain was unable to overcome lipid peroxidation, even after a plumbagin pre-treatment, indicating that this treatment did not improve tolerance when compared with the wild type strain. Cross-tolerance experiments confirmed distinct cytotoxicity mechanisms for these naphthoquinones since only a pre-treatment with menadione was able to induce acquisition of tolerance against stress with plumbagin. Conclusions/Significance These results suggest different responses to menadione and plumbagin which could be due to the fact that these compounds use different mechanisms to exert their toxicity. In addition, the Gtt2 isoform seemed to act as a general protective factor involved in quinone detoxification. PMID:19098979

  5. Bradykinin-potentiating PEPTIDE-10C, an argininosuccinate synthetase activator, protects against H2O2-induced oxidative stress in SH-SY5Y neuroblastoma cells.

    PubMed

    Querobino, Samyr Machado; Ribeiro, César Augusto João; Alberto-Silva, Carlos

    2018-05-01

    Bradykinin-potentiating peptides (BPPs - 5a, 7a, 9a, 10c, 11e, and 12b) of Bothrops jararaca (Bj) were described as argininosuccinate synthase (AsS) activators, improving l-arginine availability. Agmatine and polyamines, which are l-arginine metabolism products, have neuroprotective properties. Here, we investigated the neuroprotective effects of low molecular mass fraction from Bj venom (LMMF) and two synthetic BPPs (BPP-10c, 

  6. Evaluation of therapeutic effect of omega-6 linoleic acid and thymoquinone enriched extracts from Nigella sativa oil in the mitigation of lipidemic oxidative stress in rats.

    PubMed

    Ahmad, Shafeeque; Beg, Zafarul H

    2016-06-01

    Nigella sativa belongs to the Ranunculaceae family. The therapeutic role of methanolic extract (ME) and volatile oil (VO) fractionated from N. sativa seed oil was investigated for antiperoxidative and antioxidant effects in atherogenic suspension fed rats. We examined the protective effects of ME and VO on the enzymatic and nonenzymatic antioxidants status in erythrocytes and the livers of atherogenic suspension fed rats. As a marker of lipid peroxidation, we estimated the conjugated diene, lipid hydroperoxide, and malondialdehyde concentrations in plasma in the following groups of rats: normolipidemic control, hyperlipidemic control, hyperlipidemic methanolic extract, and hyperlipidemic volatile oil. ME 500 mg or VO 100 mg/kg body weight of male rat was orally administrated for 30 d. Pretreatment of hyperlipidemic rats with these test extracts resulted in a significant decrease (P < 0.001) in the level of lipid peroxidation markers, conjugated diene, lipid hydroperoxide, and malondialdehyde (16-50%) compared to the hyperlipidemic control rats. In addition, ME and VO significantly (P < 0.001) elevated the hepatic and erythrocyte superoxide dismutase, catalase, and glutathione reductase activities (19-58%) compared to the hyperlipidemic rats. In liver homogenate of hyperlipidemic-ME and hyperlipidemic-VO, the glutathione-S-transferase activity was protected by 93% and 89%, and in erythrocytes, the glutathione peroxidase activity was protected by 90% and 77%, respectively. Interestingly, reduced glutathione level and activities of ATPases were protected to near normal levels. Pretreatment of rats with the test extracts replenished effectively (P < 0.001) the plasma total antioxidant power by an average of 88% against free radicals. The lipidemic oxidative stress was effectively mitigated by antiperoxidative activities of ME and VO. Thus, these test extracts, especially ME, may be used as antioxidant as well as hypolipidemic agents in the form of natural food supplement to prevent or treat diseases caused by free radicals. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Study on the influence of various factors in the hydrometallurgical processing of waste printed circuit boards for copper and gold recovery.

    PubMed

    Birloaga, Ionela; De Michelis, Ida; Ferella, Francesco; Buzatu, Mihai; Vegliò, Francesco

    2013-04-01

    The present lab-scale experimental study presents the process of leaching waste printed circuit boards (WPCBs) in order to recover gold by thioureation. Preliminary tests have shown that copper adversely affects gold extraction; therefore an oxidative leaching pre-treatment was performed in order to remove base metals. The effects of sulfuric acid concentration, hydrogen peroxide volume and temperature on the metal extraction yield were studied by analysis of variance (ANOVA). The highest copper extraction yields were 76.12% for sample A and 18.29% for sample D, after leaching with 2M H2SO4, 20 ml of 30% H2O2 at 30°C for 3h. In order to improve Cu removal, a second leaching was performed only on sample A, resulting in a Cu extraction yield of 90%. Other experiments have shown the negative effect of the stirring rate on copper dissolution. The conditions used for the process of gold extraction by thiourea were: 20 g/L thiourea, 6g/L ferric ion, 10 g/L sulfuric acid, 600 rpm stirring rate. To study the influence of temperature and particle size, this process was tested on pins manually removed from computer central processing units (CPUs) and on waste CPU for 3½ h. A gold extraction yield of 69% was obtained after 75% of Cu was removed by a double oxidative leaching treatment of WPCBs with particle sizes smaller than 2 mm. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Lipid peroxidation in sarcoplasmic reticulum membranes: effect on functional and biophysical properties.

    PubMed

    Dinis, T C; Almeida, L M; Madeira, V M

    1993-03-01

    The fluorescent polyunsaturated parinaric acid (PnA) incorporated in sarcoplasmic reticulum membranes (SR) was used to probe the initial stages of membrane lipid peroxidation. The experimental set up of the PnA assay was investigated by means of several peroxidation initiators to ascertain peroxidation conditions. This assay in SR is particularly useful to evaluate the membrane susceptibility to peroxidation and to ascertain suitable conditions (concentration of initiators and cofactors) to challenge peroxidation in each preparation under study. On the basis of the PnA assay, Fe2+/ascorbate was selected among the different initiator systems to assess the effect of lipid peroxidation upon biochemical and biophysical parameters of SR membranes. Under mildly controlled conditions at 25 degrees C, the lipid degradative process, as detected by fatty acid analysis, decreases the Ca2+ uptake (up to about 50% of control) and reduces the Ca2+ pump efficiency (Ca2+/ATP ratio) up to about 58% of control, without inactivation the ATPase enzyme turnover. The effect of lipid peroxidation on the SR bilayer organization is dependent either on the extent of lipid peroxidation or on the depth of the bilayer as probed by fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene and by intramolecular excimerization of 1,3-di(1-pyrenyl)propane. It is concluded that the effect of mild lipid peroxidation on Ca2+ pump activity is partially exerted through the alteration of physical properties in the lipid phase or lipid-protein interfaces.

  9. Electrosynthesis of hydrogen peroxide via the reduction of oxygen assisted by power ultrasound.

    PubMed

    González-García, José; Banks, Craig E; Sljukić, Biljana; Compton, Richard G

    2007-04-01

    The electrosynthesis of hydrogen peroxide using the oxygen reduction reaction has been studied in the absence and presence of power ultrasound in a non-optimized sono-electrochemical flow reactor (20 cm cathodic compartment length with 6.5 cm inner diameter) with reticulated vitreous glassy carbon electrode (30 x 40 x 10 mm, 10 ppi, 7 cm(2)cm(-3)) as the cathode. The effect of several electrochemical operational variables (pH, volumetric flow, potential) and of the sono-electrochemical parameters (ultrasound amplitude and horn-to-electrode distance) on the cumulative concentration of hydrogen peroxide and current efficiency of the electrosynthesis process have been explored. The application of power ultrasound was found to increase both the cumulative concentration of hydrogen peroxide and the current efficiency. The application of ultrasound is therefore a promising approach to the increased efficiency of production of hydrogen peroxide by electrosynthesis, even in the solutions of lower pH (<12). The results demonstrate the feasibility of at-site-of-use green synthesis of hydrogen peroxide.

  10. Prewashing enhances the liquid hot water pretreatment efficiency of waste wheat straw with high free ash content.

    PubMed

    Huang, Chen; Wu, Xinxing; Huang, Yang; Lai, Chenhuan; Li, Xin; Yong, Qiang

    2016-11-01

    The effect of prewashing process prior to the liquid hot water (LHW) pretreatment of high free ash content waste wheat straw (WWS) was investigated. It was found that prewashing process decreased the ash content of WWS greatly, from 29.48% to 9.82%. This contributed to the lower pH value of prehydrolyzate and higher xylan removal in the following LHW pretreatment. More importantly, the prewashing process effectively increased the cellulose enzymatic hydrolysis efficiency of pretreated WWS, from 53.04% to 84.15%. The acid buffering capacity (ABC) and cation exchange capacity (CEC) of raw and prewashed WWS were examined. The majority of free ash removal from WWS by prewashing resulted in the decrease of the ABC of the WWS from 211.74 to 61.81mmol/pH-kg, and potentially enhancing the efficiency of the follow-up LHW pretreatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Techno-economic analysis of different pretreatment processes for lignocellulosic-based bioethanol production.

    PubMed

    da Silva, André Rodrigues Gurgel; Torres Ortega, Carlo Edgar; Rong, Ben-Guang

    2016-10-01

    In this work, a method based on process synthesis, simulation and evaluation has been used to setup and study the industrial scale lignocellulosic bioethanol productions processes. Scenarios for pretreatment processes of diluted acid, liquid hot water and ammonia fiber explosion were studied. Pretreatment reactor temperature, catalyst loading and water content as well as solids loading in the hydrolysis reactor were evaluated regarding its effects on the process energy consumption and bioethanol concentration. The best scenarios for maximizing ethanol concentration and minimizing total annual costs (TAC) were selected and their minimum ethanol selling price was calculated. Ethanol concentration in the range of 2-8% (wt.) was investigated after the pretreatment. The best scenarios maximizing the ethanol concentration and minimizing TAC obtained a reduction of 19.6% and 30.2% respectively in the final ethanol selling price with respect to the initial base case. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Cell-wall structural changes in wheat straw pretreated for bioethanol production

    Treesearch

    Jan B. Kristensen; G. Thygesen Lisbeth; Claus Felby; Henning Jorgensen; Thomas Elder

    2008-01-01

    Pretreatment is an essential step in the enzymatic hydrolysis of biomass and subsequent production of bioethanol. Recent results indicate that only a mild pretreatment is necessary in an industrial, economically feasible system. The Integrated Biomass Utilisation System hydrothermal pretreatment process has previously been shown to be effective in preparing wheat straw...

  13. Net energy ratio for the production of steam pretreated biomass-based pellets

    DOE PAGES

    Shahrukh, Hassan; Oyedun, Adetoyese Olajire; Kumar, Amit; ...

    2015-06-21

    In this study, a process model was developed to determine the net energy ratio (NER) for both regular and steam-pretreated pellet production from ligno-cellulosic biomass. NER is a ratio of the net energy output to the total net energy input from non-renewable energy source into the system. Scenarios were developed to measure the effect of temperature and level of steam pretreatment on the NER of both production processes. The NER for the base case at 6 kg h –1 is 1.29 and 5.0 for steam-pretreated and regular pellet production respectively. However, at the large scale NER would improve. The majormore » factor for NER is energy for steam and drying unit. The sensitivity analysis for the model shows that the optimum temperature for steam pretreatment is 200 °C with 50% pretreatment (Steam pretreating 50% feed stock, while the rest is undergoing regular pelletization). Uncertainty result for steam pretreated and regular pellet is 1.35 ± 0.09 and 4.52 ± 0.34 respectively.« less

  14. Hydrogen peroxide modified sodium titanates with improved sorption capabilities

    DOEpatents

    Nyman, May D [Albuquerque, NM; Hobbs, David T [North Augusta, SC

    2009-02-24

    The sorption capabilities (e.g., kinetics, selectivity, capacity) of the baseline monosodium titanate (MST) sorbent material currently being used to sequester Sr-90 and alpha-emitting radioisotopes at the Savannah River Site are significantly improved when treated with hydrogen peroxide; either during the original synthesis of MST, or, as a post-treatment step after the MST has been synthesized. It is expected that these peroxide-modified MST sorbent materials will have significantly improved sorption capabilities for non-radioactive cations found in industrial processes and waste streams.

  15. Vapor hydrogen peroxide as alternative to dry heat microbial reduction

    NASA Astrophysics Data System (ADS)

    Chung, S.; Kern, R.; Koukol, R.; Barengoltz, J.; Cash, H.

    2008-09-01

    The Jet Propulsion Laboratory (JPL), in conjunction with the NASA Planetary Protection Officer, has selected vapor phase hydrogen peroxide (VHP) sterilization process for continued development as a NASA approved sterilization technique for spacecraft subsystems and systems. The goal was to include this technique, with an appropriate specification, in NASA Procedural Requirements 8020.12 as a low-temperature complementary technique to the dry heat sterilization process. The VHP process is widely used by the medical industry to sterilize surgical instruments and biomedical devices, but high doses of VHP may degrade the performance of flight hardware, or compromise material compatibility. The goal for this study was to determine the minimum VHP process conditions for planetary protection acceptable microbial reduction levels. Experiments were conducted by the STERIS Corporation, under contract to JPL, to evaluate the effectiveness of vapor hydrogen peroxide for the inactivation of the standard spore challenge, Geobacillus stearothermophilus. VHP process parameters were determined that provide significant reductions in spore viability while allowing survival of sufficient spores for statistically significant enumeration. In addition to the obvious process parameters of interest: hydrogen peroxide concentration, number of injection cycles, and exposure duration, the investigation also considered the possible effect on lethality of environmental parameters: temperature, absolute humidity, and material substrate. This study delineated a range of test sterilizer process conditions: VHP concentration, process duration, a process temperature range for which the worst case D-value may be imposed, a process humidity range for which the worst case D-value may be imposed, and the dependence on selected spacecraft material substrates. The derivation of D-values from the lethality data permitted conservative planetary protection recommendations.

  16. The Effect of Ionic Liquid Pretreatment on the Bioconversion of Tomato Processing Waste to Fermentable Sugars and Biogas.

    PubMed

    Allison, Brittany J; Cádiz, Juan Canales; Karuna, Nardrapee; Jeoh, Tina; Simmons, Christopher W

    2016-08-01

    Tomato pomace is an abundant lignocellulosic waste stream from industrial tomato processing and therefore a potential feedstock for production of renewable biofuels. However, little research has been conducted to determine if pretreatment can enhance release of fermentable sugars from tomato pomace. Ionic liquids (ILs) are an emerging pretreatment technology for lignocellulosic biomass to increase enzymatic digestibility and biofuel yield while utilizing recyclable chemicals with low toxicity. In this study, pretreatment of tomato pomace with the ionic liquid 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) was investigated. Changes in pomace enzymatic digestibility were affected by pretreatment time and temperature. Certain pretreatment conditions significantly improved reducing sugar yield and hydrolysis time compared to untreated pomace. Compositional analyses suggested that pretreatment primarily removed water-soluble compounds and enriched for lignocellulose in pomace, with only subtle changes to the composition of the lignocellulose. While tomato pomace was effectively pretreated with [C2mim][OAc] to improve enzymatic digestibility, as of yet, unknown factors in the pomace caused ionic liquid pretreatment to negatively affect anaerobic digestion of pretreated material. This result, which is unique compared to similar studies on IL pretreatment of grasses and woody biomass, highlights the need for additional research to determine how the unique chemical composition of tomato pomace and other lignocellulosic fruit residues may interact with ionic liquids to generate inhibitors for downstream fermentation to biofuels.

  17. Influence of twin-screw extrusion on soluble arabinoxylans and corn fiber gum from corn fiber.

    PubMed

    Singkhornart, Sasathorn; Lee, Seul Gi; Ryu, Gi Hyung

    2013-09-01

    The effect of feed moisture content and screw speed in the extrusion process with and without chemical pretreatment of corn fiber was investigated. Different chemical pretreatment methods (NaOH and H2 SO4 solution) were compared. The improvement of reducing sugar, soluble arabinoxylans (SAX) content and the yield of corn fiber gum was measured. A high reducing sugar content was obtained in the filtrate fraction from the extruded destarched corn fiber (EDCF) with H₂SO₄ pretreatment. Feed moisture content most effectively improved both reducing sugar and SAX content of filtrate. Increasing feed moisture content and screw speed resulted in a higher SAX content in the filtrate of the EDCF with NaOH pretreatment. The SAX content of the residual solid from the EDCF with NaOH pretreatment was higher compared to H₂SO₄ pretreated and unpretreated samples and significantly increased with decreasing feed moisture content. The screw speed did not have a major impact after enzyme hydrolysis. The yield of corn fiber gum was increased by 12% using NaOH pretreatment combined with extrusion process as compared to the destarched corn fiber. The results show the great potential of the extrusion process as an effective pretreatment for disruption the lignocelluloses of corn fiber, leading to conversion of cellulose to glucose and hemicelluloses to SAX and isolation of corn fiber gum. © 2013 Society of Chemical Industry.

  18. Developing Planetary Protection Technology: Recurrence of Hydrogen Peroxide Resistant Microbes from Spacecraft Assembly Facilities

    NASA Astrophysics Data System (ADS)

    Kempf, M. J.; Chen, F.; Quigley, M. S.; Pillai, S.; Kern, R.; Venkateswaran, K.

    2001-12-01

    Hydrogen peroxide vapor is currently the sterilant-of-choice for flight hardware because it is a low-heat sterilization process suitable for use with various spacecraft components. Hydrogen peroxide is a strong oxidizing agent that produces hydroxyl free radicals ( .OH) which attack essential cell components, including lipids, proteins, and DNA. Planetary protection research efforts at the Jet Propulsion Laboratory (JPL) are focused on developing cleaning and sterilization technologies for spacecraft preparation prior to launch. These efforts include research to assess the microbial diversity of spacecraft assembly areas and any extreme characteristics these microbes might possess. Previous studies have shown that some heat-tolerant Bacillus species isolated from the JPL Spacecraft Assembly Facility (SAF) are resistant to recommended hydrogen peroxide vapor sterilization exposures. A Bacillus species, which was related to a hydrogen peroxide resistant strain, was repeatedly isolated from various locations in the JPL-SAF. This species was found in both unclassified (entrance floors, ante-room, and air-lock) and classified (class 100K) (floors, cabinet tops, and air) areas. The phylogenetic affiliation of these strains was carried out using biochemical tests and 16S rDNA sequencing. The 16S rDNA analysis showed >99% sequence similarity to Bacillus pumilus. In order to understand the epidemiology of these strains, a more highly evolved gene (topoisomerase II β -subunit, gyrB) was also sequenced. Among 4 clades, one cluster, comprised of 3 strains isolated from the air-lock area, tightly aligned with the B. pumilus ATCC 7061 type strain (97%). The gyrB sequence similarity of this clade was only 91% with the 3 other clades. The genetic relatedness of these strains, as per pulse field gel electrophoresis patterns, will be presented. The vegetative cells and spores of a number of isolates were tested for their hydrogen peroxide resistance. Cells and spores were separately treated with 5% liquid hydrogen peroxide. After 60 minutes of exposure, the samples were diluted in tryptic soy broth and incubated at 32oC. Vegetative cells of one of the isolates, FO-036b, were the only cells to survive the exposure to hydrogen peroxide. In contrast, spores of several of the isolates survived exposure to hydrogen peroxide. Spores of these isolates do not appear to have any obvious morphological changes. We are in the process of analyzing these hydrogen peroxide resistant spores and comparing them to spores of microbes that are not as hydrogen peroxide resistant. The impact and implications of the identification and recurrence of these hydrogen peroxide microbes, and their spores, will be discussed.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahrukh, Hassan; Oyedun, Adetoyese Olajire; Kumar, Amit

    In this study, a process model was developed to determine the net energy ratio (NER) for both regular and steam-pretreated pellet production from ligno-cellulosic biomass. NER is a ratio of the net energy output to the total net energy input from non-renewable energy source into the system. Scenarios were developed to measure the effect of temperature and level of steam pretreatment on the NER of both production processes. The NER for the base case at 6 kg h –1 is 1.29 and 5.0 for steam-pretreated and regular pellet production respectively. However, at the large scale NER would improve. The majormore » factor for NER is energy for steam and drying unit. The sensitivity analysis for the model shows that the optimum temperature for steam pretreatment is 200 °C with 50% pretreatment (Steam pretreating 50% feed stock, while the rest is undergoing regular pelletization). Uncertainty result for steam pretreated and regular pellet is 1.35 ± 0.09 and 4.52 ± 0.34 respectively.« less

  20. Integrated chemical and multi-scale structural analyses for the processes of acid pretreatment and enzymatic hydrolysis of corn stover.

    PubMed

    Chen, Longjian; Li, Junbao; Lu, Minsheng; Guo, Xiaomiao; Zhang, Haiyan; Han, Lujia

    2016-05-05

    Corn stover was pretreated with acid under moderate conditions (1.5%, w/w, 121°C, 60min), and kinetic enzymolysis experiments were performed on the pretreated substrate using a mixture of Celluclast 1.5L (20FPU/g dry substrate) and Novozyme 188 (40CBU/g dry substrate). Integrated chemical and multi-scale structural methods were then used to characterize both processes. Chemical analysis showed that acid pretreatment removed considerable hemicellulose (from 19.7% in native substrate to 9.28% in acid-pretreated substrate) and achieved a reasonably high conversion efficiency (58.63% of glucose yield) in the subsequent enzymatic hydrolysis. Multi-scale structural analysis indicated that acid pretreatment caused structural changes via cleaving acetyl linkages, solubilizing hemicellulose, relocating cell wall surfaces and enlarging substrate porosity (pore volume increased from 0.0067cm(3)/g in native substrate to 0.019cm(3)/g in acid-pretreated substrate), thereby improving the polysaccharide digestibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Biopolymer - A beginning towards back to nature

    NASA Astrophysics Data System (ADS)

    Gautam, S.; Gautam, A.

    2018-05-01

    Biopolymer is regarded as a polymer which can be biodegradable. Polyhydroxyalkanoates (PHAs) is one of the biopolymer which can be recovered from biomass. PHAs are naturally conserved in the cytoplasm of the bacterial cell during the growth. Bacteria/microbes store their energy from carbon sources in the form of hydrocarbons. Intracellular stored compounds are tightly linked with entire cell resulting difficulty of separation. The work aims to extract PHAs from biomass effectively. Chemical and mechanical separation of PHA can be done from biomass. A pretreatment of cells before chemical and mechanical separation is also effective for separation of PHA and has been carried out. Chemical extraction of PHA includes digestion of cell wall in acidic or alkaline medium and releasing PHA in broth, later sedimentation recovers PHA. In recent work different chemical methods were carried out to extract PHA of medium chain length. In one of these, sodium hypochlorite was used to denature the protein and chloroform was used for extraction of purified PHA. A recovery upto 96.6%, PHA by dried weight of cell, was obtained which is quite high comparing to reported literature. Other chemical disruption by sodium chloride, sodium hydroxide and hydrogen peroxide with and without pretreatment have also been carried out.

  2. Naringenin improves learning and memory in an Alzheimer's disease rat model: Insights into the underlying mechanisms.

    PubMed

    Ghofrani, Saeed; Joghataei, Mohammad-Taghi; Mohseni, Simin; Baluchnejadmojarad, Tourandokht; Bagheri, Maryam; Khamse, Safoura; Roghani, Mehrdad

    2015-10-05

    Alzheimer's disease (AD) is one of the prevalent neurological disorders of the central nervous system hallmarked by increased beta-amyloid (Aβ) deposition and ensuing learning and memory deficit. In the present study, the beneficial effect of naringenin on improvement of learning and memory was evaluated in an Alzheimer's disease rat model. The Aβ-injected rats showed a lower alternation score in Y-maze task, impairment of retention and recall capability in passive avoidance test, and lower correct choices and higher errors in radial arm maze (RAM) task as compared to sham group in addition to enhanced oxidative stress and apoptosis. Naringenin, but not a combination of naringenin and fulvestrant (an estrogenic receptor antagonist) significantly improved the performance of Aβ-injected rats in passive avoidance and RAM tasks. Naringenin pretreatment of Aβ-injected rats also lowered hippocampal malondialdehyde (MDA) with no significant effect on nitrite and superoxide dismutase (SOD) activity in addition to lowering apoptosis. These results suggest naringenin pretreatment attenuates Aβ-induced impairment of learning and memory through mitigation of lipid peroxidation and apoptosis and its beneficial effect is somewhat mediated via estrogenic pathway. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Process performance assessment of advanced anaerobic digestion of sewage sludge including sequential ultrasound-thermal (55 °C) pre-treatment.

    PubMed

    Neumann, Patricio; Barriga, Felipe; Álvarez, Claudia; González, Zenón; Vidal, Gladys

    2018-03-15

    The aim of this study was to evaluate the performance and digestate quality of advanced anaerobic digestion of sewage sludge including sequential ultrasound-thermal (55 °C) pre-treatment. Both stages of pre-treatment contributed to chemical oxygen demand (COD) solubilization, with an overall factor of 11.4 ± 2.2%. Pre-treatment led to 19.1, 24.0 and 29.9% increased methane yields at 30, 15 and 7.5 days solid retention times (SRT), respectively, without affecting process stability or accumulation of intermediates. Pre-treatment decreased up to 4.2% water recovery from the digestate, but SRT was a more relevant factor controlling dewatering. Advanced digestion showed 2.4-3.1 and 1.5 logarithmic removals of coliforms and coliphages, respectively, and up to a 58% increase in the concentration of inorganics in the digestate solids compared to conventional digestion. The COD balance of the process showed that the observed increase in methane production was proportional to the pre-treatment solubilization efficiency. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Influence of different crosslinking systems on the mechanical and morphological properties of thermoplastic vulcanizates

    NASA Astrophysics Data System (ADS)

    Patermann, Simone; Altstädt, Volker

    2015-05-01

    Thermoplastic vulcanizates (TPVs) combine the elastic properties of thermoset cross-linked rubbers with the melt processability of thermoplastics. The most representative examples of this class are the TPVs based on polypropylene (PP) and ethylene-propylene-diene terpolymer rubber (EPDM). The PP/EPDM blends were produced by dynamic vulcanization in a continuous extrusion process. The influence of different crosslinking systems was studied with regard to cross-link density, compression set, tensile strength/elongation at break and morphology. With increasing peroxide concentration, the cross-link density increases, leading to a reduction of the compression set by 50 %. The same improvement is only reachable with twice the concentration of phenolic resin. Only the peroxide cross-linked blends show smaller dispersed EPDM particles with increasing peroxide concentration. With a peroxide concentration between 0.2 and 0.5 wt. %, a maximum in tensile strength and elongation at break was found. For the phenolic resin cross-linked blends, the tensile strength stays almost constant with increasing phenolic resin concentration and the elongation at break shows best results at 0.5 wt. % phenolic resin. Compared to batch processes, the results show different values, but comparable trends.

  5. Sonochemical and hydrodynamic cavitation reactors for laccase/hydrogen peroxide cotton bleaching.

    PubMed

    Gonçalves, Idalina; Martins, Madalena; Loureiro, Ana; Gomes, Andreia; Cavaco-Paulo, Artur; Silva, Carla

    2014-03-01

    The main goal of this work is to develop a novel and environmental-friendly technology for cotton bleaching with reduced processing costs. This work exploits a combined laccase-hydrogen peroxide process assisted by ultrasound. For this purpose, specific reactors were studied, namely ultrasonic power generator type K8 (850 kHz) and ultrasonic bath equipment Ultrasonic cleaner USC600TH (45 kHz). The optimal operating conditions for bleaching were chosen considering the highest levels of hydroxyl radical production and the lowest energy input. The capacity to produce hydroxyl radicals by hydrodynamic cavitation was also assessed in two homogenizers, EmulsiFlex®-C3 and APV-2000. Laccase nanoemulsions were produced by high pressure homogenization using BSA (bovine serum albumin) as emulsifier. The bleaching efficiency of these formulations was tested and the results showed higher whiteness values when compared to free laccase. The combination of laccase-hydrogen peroxide process with ultrasound energy produced higher whiteness levels than those obtained by conventional methods. The amount of hydrogen peroxide was reduced 50% as well as the energy consumption in terms of temperature (reduction of 40 °C) and operating time (reduction of 90 min). Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment.

    PubMed

    Zupanc, Mojca; Kosjek, Tina; Petkovšek, Martin; Dular, Matevž; Kompare, Boris; Širok, Brane; Blažeka, Željko; Heath, Ester

    2013-07-01

    To augment the removal of pharmaceuticals different conventional and alternative wastewater treatment processes and their combinations were investigated. We tested the efficiency of (1) two distinct laboratory scale biological processes: suspended activated sludge and attached-growth biomass, (2) a combined hydrodynamic cavitation-hydrogen peroxide process and (3) UV treatment. Five pharmaceuticals were chosen including ibuprofen, naproxen, ketoprofen, carbamazepine and diclofenac, and an active metabolite of the lipid regulating agent clofibric acid. Biological treatment efficiency was evaluated using lab-scale suspended activated sludge and moving bed biofilm flow-through reactors, which were operated under identical conditions in respect to hydraulic retention time, working volume, concentration of added pharmaceuticals and synthetic wastewater composition. The suspended activated sludge process showed poor and inconsistent removal of clofibric acid, carbamazepine and diclofenac, while ibuprofen, naproxen and ketoprofen yielded over 74% removal. Moving bed biofilm reactors were filled with two different types of carriers i.e. Kaldnes K1 and Mutag BioChip™ and resulted in higher removal efficiencies for ibuprofen and diclofenac. Augmentation and consistency in the removal of diclofenac were observed in reactors using Mutag BioChip™ carriers (85%±10%) compared to reactors using Kaldnes carriers and suspended activated sludge (74%±22% and 48%±19%, respectively). To enhance the removal of pharmaceuticals hydrodynamic cavitation with hydrogen peroxide process was evaluated and optimal conditions for removal were established regarding the duration of cavitation, amount of added hydrogen peroxide and initial pressure, all of which influence the efficiency of the process. Optimal parameters resulted in removal efficiencies between 3-70%. Coupling the attached-growth biomass biological treatment, hydrodynamic cavitation/hydrogen peroxide process and UV treatment resulted in removal efficiencies of >90% for clofibric acid and >98% for carbamazepine and diclofenac, while the remaining compounds were reduced to levels below the LOD. For ibuprofen, naproxen, ketoprofen and diclofenac the highest contribution to overall removal was attributed to biological treatment, for clofibric acid UV treatment was the most efficient, while for carbamazepine hydrodynamic cavitation/hydrogen peroxide process and UV treatment were equally efficient. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Hydrogen peroxide bleaching of cotton in ultrasonic energy.

    PubMed

    Mistik, S Ilker; Yükseloglu, S Müge

    2005-12-01

    It is well known that, conventional hydrogen peroxide bleaching process is an important and a specific step for wet processors; however it has some problems such as long time, high energy consumption. On the other hand, using ultrasonic energy in bleaching is an alternative method for the conventional processes. In this work, 100% cotton materials of different forms such as raw fibre, ring-spun yarns and knitted fabrics produced from these cottons, were treated with hydrogen peroxide in two different concentrations (5 mL/L and 10 mL/L), at three different temperatures (20 degrees C, 30 degrees C, 40 degrees C) and times (20 min, 30 min, 60 min). Whiteness Index of the samples were then measured spectrophotometrically and the overall results were compared.

  8. Evaluating different concentrations of hydrogen peroxide in an automated room disinfection system.

    PubMed

    Murdoch, L E; Bailey, L; Banham, E; Watson, F; Adams, N M T; Chewins, J

    2016-09-01

    A comparative study was made on the efficacy of 5, 10 and 35% weight by weight (w/w) hydrogen peroxide solutions when applied using an automated room disinfection system. Six-log biological indicators of methicillin-resistant Staphylococcus aureus (MRSA) and Geobacillus stearothermophilus were produced on stainless steel coupons and placed within a large, sealed, environmentally controlled enclosure. Five percent hydrogen peroxide was distributed throughout the enclosure using a Bioquell hydrogen peroxide vapour generator (BQ-50) for 40 min and left to reside for a further 200 min. Biological indicators were removed at 10-min intervals throughout the first 120 min of the process. The experiment was repeated for 10 and 35% hydrogen peroxide solutions. Five percent and 10% hydrogen peroxide solutions failed to achieve any reduction of MRSA, but achieved full kill of G. stearothermophilus spores at 70 and 40 min respectively. Thirty-five percent hydrogen peroxide achieved a 6-log reduction of MRSA after 30 min and full kill of G. stearothermophilus at 20 min. The concentration of 5% hydrogen peroxide within the enclosure after the 200-min dwell was measured at 9·0 ppm. This level exceeds the 15-min Short Term Exposure Limit (STEL) for hydrogen peroxide of 2·0 ppm. Users of automated hydrogen peroxide disinfection systems should review system efficacy and room re-entry protocols in light of these results. This research allows hospital infection control teams to consider the impact and risks of using low concentrations of hydrogen peroxide for disinfection within their facilities, and to question automated room disinfection system providers on the efficacy claims they make. The evidence that low concentration hydrogen peroxide solutions do not rapidly, autonomously break down, is in contradiction to the claims made by some hydrogen peroxide equipment providers and raises serious health and safety concerns. Facilities using hydrogen peroxide systems that claim autonomous break down of hydrogen peroxide should introduce monitoring procedures to ensure rooms are safe for re-entry and patient occupation. © 2016 The Society for Applied Microbiology.

  9. Optimized Rapeseed Oils Rich in Endogenous Micronutrients Protect High Fat Diet Fed Rats from Hepatic Lipid Accumulation and Oxidative Stress

    PubMed Central

    Xu, Jiqu; Liu, Xiaoli; Gao, Hui; Chen, Chang; Deng, Qianchun; Huang, Qingde; Ma, Zhonghua; Huang, Fenghong

    2015-01-01

    Micronutrients in rapeseed exert a potential benefit to hepatoprotection, but most of them are lost during the conventional refining processing. Thus some processing technologies have been optimized to improve micronutrient retention in oil. The aim of this study is to assess whether optimized rapeseed oils (OROs) have positive effects on hepatic lipid accumulation and oxidative stress induced by a high-fat diet. Methods: Rats received experiment diets containing 20% fat and refined rapeseed oil or OROs obtained with various processing technologies as lipid source. After 10 weeks of treatment, liver was assayed for lipid accumulation and oxidative stress. Results: All OROs reduced hepatic triglyceride contents. Microwave pretreatment-cold pressing oil (MPCPO) which had the highest micronutrients contents also reduced hepatic cholesterol level. MPCPO significantly decreased hepatic sterol regulatory element-binding transcription factor 1 (SREBP1) but increased peroxisome proliferator activated receptor α (PPARα) expressions, and as a result, MPCPO significantly suppressed acetyl CoA carboxylase and induced carnitine palmitoyl transferase-1 and acyl CoA oxidase expression. Hepatic catalase (CAT) and glutathione peroxidase (GPx) activities as well as reduced glutathione (GSH) contents remarkably increased and lipid peroxidation levels decreased in parallel with the increase of micronutrients. Conclusion: OROs had the ability to reduce excessive hepatic fat accumulation and oxidative stress, which indicated that OROs might contribute to ameliorating nonalcoholic fatty liver induced by high-fat diet. PMID:26473919

  10. The effect of hydrogen peroxide on uranium oxide films on 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Wilbraham, Richard J.; Boxall, Colin; Goddard, David T.; Taylor, Robin J.; Woodbury, Simon E.

    2015-09-01

    For the first time the effect of hydrogen peroxide on the dissolution of electrodeposited uranium oxide films on 316L stainless steel planchets (acting as simulant uranium-contaminated metal surfaces) has been studied. Analysis of the H2O2-mediated film dissolution processes via open circuit potentiometry, alpha counting and SEM/EDX imaging has shown that in near-neutral solutions of pH 6.1 and at [H2O2] ⩽ 100 μmol dm-3 the electrodeposited uranium oxide layer is freely dissolving, the associated rate of film dissolution being significantly increased over leaching of similar films in pH 6.1 peroxide-free water. At H2O2 concentrations between 1 mmol dm-3 and 0.1 mol dm-3, formation of an insoluble studtite product layer occurs at the surface of the uranium oxide film. In analogy to corrosion processes on common metal substrates such as steel, the studtite layer effectively passivates the underlying uranium oxide layer against subsequent dissolution. Finally, at [H2O2] > 0.1 mol dm-3 the uranium oxide film, again in analogy to common corrosion processes, behaves as if in a transpassive state and begins to dissolve. This transition from passive to transpassive behaviour in the effect of peroxide concentration on UO2 films has not hitherto been observed or explored, either in terms of corrosion processes or otherwise. Through consideration of thermodynamic solubility product and complex formation constant data, we attribute the transition to the formation of soluble uranyl-peroxide complexes under mildly alkaline, high [H2O2] conditions - a conclusion that has implications for the design of both acid minimal, metal ion oxidant-free decontamination strategies with low secondary waste arisings, and single step processes for spent nuclear fuel dissolution such as the Carbonate-based Oxidative Leaching (COL) process.

  11. Effect of hydrodynamic cavitation on the rate of OH-radical formation in the presence of hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Aseev, D. G.; Batoeva, A. A.

    2014-01-01

    It is shown experimentally that hydrogen peroxide is the source of OH-radicals at low-pressure hydrodynamic cavitation. Major preconditions for the intensification of oxidative destruction processes in organic pollutants with an added cavitation stimulus are determined.

  12. Combination of an electrolytic pretreatment unit with secondary water reclamation processes

    NASA Technical Reports Server (NTRS)

    Wells, G. W.; Bonura, M. S.

    1973-01-01

    The design and fabrication of a flight concept prototype electrolytic pretreatment unit (EPU) and of a contractor-furnished air evaporation unit (AEU) are described. The integrated EPU and AEU potable water recovery system is referred to as the Electrovap and is capable of processing the urine and flush water of a six-man crew. Results of a five-day performance verification test of the Electrovap system are presented and plans are included for the extended testing of the Electrovap to produce data applicable to the combination of electrolytic pretreatment with most final potable water recovery systems. Plans are also presented for a program to define the design requirements for combining the electrolytic pretreatment unit with a reverse osmosis final processing unit.

  13. Optimization of Alkaline and Dilute Acid Pretreatment of Agave Bagasse by Response Surface Methodology.

    PubMed

    Ávila-Lara, Abimael I; Camberos-Flores, Jesus N; Mendoza-Pérez, Jorge A; Messina-Fernández, Sarah R; Saldaña-Duran, Claudia E; Jimenez-Ruiz, Edgar I; Sánchez-Herrera, Leticia M; Pérez-Pimienta, Jose A

    2015-01-01

    Utilization of lignocellulosic materials for the production of value-added chemicals or biofuels generally requires a pretreatment process to overcome the recalcitrance of the plant biomass for further enzymatic hydrolysis and fermentation stages. Two of the most employed pretreatment processes are the ones that used dilute acid (DA) and alkaline (AL) catalyst providing specific effects on the physicochemical structure of the biomass, such as high xylan and lignin removal for DA and AL, respectively. Another important effect that need to be studied is the use of a high solids pretreatment (≥15%) since offers many advantaged over lower solids loadings, including increased sugar and ethanol concentrations (in combination with a high solids saccharification), which will be reflected in lower capital costs; however, this data is currently limited. In this study, several variables, such as catalyst loading, retention time, and solids loading, were studied using response surface methodology (RSM) based on a factorial central composite design of DA and AL pretreatment on agave bagasse using a range of solids from 3 to 30% (w/w) to obtain optimal process conditions for each pretreatment. Subsequently enzymatic hydrolysis was performed using Novozymes Cellic CTec2 and HTec2 presented as total reducing sugar (TRS) yield. Pretreated biomass was characterized by wet-chemistry techniques and selected samples were analyzed by calorimetric techniques, and scanning electron/confocal fluorescent microscopy. RSM was also used to optimize the pretreatment conditions for maximum TRS yield. The optimum conditions were determined for AL pretreatment: 1.87% NaOH concentration, 50.3 min and 13.1% solids loading, whereas DA pretreatment: 2.1% acid concentration, 33.8 min and 8.5% solids loading.

  14. Optimization of Alkaline and Dilute Acid Pretreatment of Agave Bagasse by Response Surface Methodology

    PubMed Central

    Ávila-Lara, Abimael I.; Camberos-Flores, Jesus N.; Mendoza-Pérez, Jorge A.; Messina-Fernández, Sarah R.; Saldaña-Duran, Claudia E.; Jimenez-Ruiz, Edgar I.; Sánchez-Herrera, Leticia M.; Pérez-Pimienta, Jose A.

    2015-01-01

    Utilization of lignocellulosic materials for the production of value-added chemicals or biofuels generally requires a pretreatment process to overcome the recalcitrance of the plant biomass for further enzymatic hydrolysis and fermentation stages. Two of the most employed pretreatment processes are the ones that used dilute acid (DA) and alkaline (AL) catalyst providing specific effects on the physicochemical structure of the biomass, such as high xylan and lignin removal for DA and AL, respectively. Another important effect that need to be studied is the use of a high solids pretreatment (≥15%) since offers many advantaged over lower solids loadings, including increased sugar and ethanol concentrations (in combination with a high solids saccharification), which will be reflected in lower capital costs; however, this data is currently limited. In this study, several variables, such as catalyst loading, retention time, and solids loading, were studied using response surface methodology (RSM) based on a factorial central composite design of DA and AL pretreatment on agave bagasse using a range of solids from 3 to 30% (w/w) to obtain optimal process conditions for each pretreatment. Subsequently enzymatic hydrolysis was performed using Novozymes Cellic CTec2 and HTec2 presented as total reducing sugar (TRS) yield. Pretreated biomass was characterized by wet-chemistry techniques and selected samples were analyzed by calorimetric techniques, and scanning electron/confocal fluorescent microscopy. RSM was also used to optimize the pretreatment conditions for maximum TRS yield. The optimum conditions were determined for AL pretreatment: 1.87% NaOH concentration, 50.3 min and 13.1% solids loading, whereas DA pretreatment: 2.1% acid concentration, 33.8 min and 8.5% solids loading. PMID:26442260

  15. Pretreatment of Biomass by Aqueous Ammonia for Bioethanol Production

    NASA Astrophysics Data System (ADS)

    Kim, Tae Hyun; Gupta, Rajesh; Lee, Y. Y.

    The methods of pretreatment of lignocellulosic biomass using aqueous ammonia are described. The main effect of ammonia treatment of biomass is delignification without significantly affecting the carbohydrate contents. It is a very effective pretreatment method especially for substrates that have low lignin contents such as agricultural residues and herbaceous feedstock. The ammonia-based pretreatment is well suited for simultaneous saccharification and co-fermentation (SSCF) because the treated biomass retains cellulose as well as hemicellulose. It has been demonstrated that overall ethanol yield above 75% of the theoretical maximum on the basis of total carbohydrate is achievable from corn stover pretreated with aqueous ammonia by way of SSCF. There are two different types of pretreatment methods based on aqueous ammonia: (1) high severity, low contact time process (ammonia recycle percolation; ARP), (2) low severity, high treatment time process (soaking in aqueous ammonia; SAA). Both of these methods are described and discussed for their features and effectiveness.

  16. Pretreatment of Cellulose By Electron Beam Irradiation Method

    NASA Astrophysics Data System (ADS)

    Jusri, N. A. A.; Azizan, A.; Ibrahim, N.; Salleh, R. Mohd; Rahman, M. F. Abd

    2018-05-01

    Pretreatment process of lignocellulosic biomass (LCB) to produce biofuel has been conducted by using various methods including physical, chemical, physicochemical as well as biological. The conversion of bioethanol process typically involves several steps which consist of pretreatment, hydrolysis, fermentation and separation. In this project, microcrystalline cellulose (MCC) was used in replacement of LCB since cellulose has the highest content of LCB for the purpose of investigating the effectiveness of new pretreatment method using radiation technology. Irradiation with different doses (100 kGy to 1000 kGy) was conducted by using electron beam accelerator equipment at Agensi Nuklear Malaysia. Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD) analyses were studied to further understand the effect of the suggested pretreatment step to the content of MCC. Through this method namely IRR-LCB, an ideal and optimal condition for pretreatment prior to the production of biofuel by using LCB may be introduced.

  17. Effects of ozone and ozone/peroxide on trace organic contaminants and NDMA in drinking water and water reuse applications.

    PubMed

    Pisarenko, Aleksey N; Stanford, Benjamin D; Yan, Dongxu; Gerrity, Daniel; Snyder, Shane A

    2012-02-01

    An ozone and ozone/peroxide oxidation process was evaluated at pilot scale for trace organic contaminant (TOrC) mitigation and NDMA formation in both drinking water and water reuse applications. A reverse osmosis (RO) pilot was also evaluated as part of the water reuse treatment train. Ozone/peroxide showed lower electrical energy per order of removal (EEO) values for TOrCs in surface water treatment, but the addition of hydrogen peroxide increased EEO values during wastewater treatment. TOrC oxidation was correlated to changes in UV(254) absorbance and fluorescence offering a surrogate model for predicting contaminant removal. A decrease in N-nitrosodimethylamine (NDMA) formation potential (after chloramination) was observed after treatment with ozone and ozone/peroxide. However, during spiking experiments with surface water, ozone/peroxide achieved limited destruction of NDMA, while in wastewaters net direct formation of NDMA of 6-33 ng/L was observed after either ozone or ozone/peroxide treatment. Once formed during ozonation, NDMA passed through the subsequent RO membranes, which highlights the significance of the potential for direct NDMA formation during oxidation in reuse applications. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Biorefining of wheat straw: accounting for the distribution of mineral elements in pretreated biomass by an extended pretreatment-severity equation.

    PubMed

    Le, Duy Michael; Sørensen, Hanne R; Knudsen, Niels Ole; Schjoerring, Jan K; Meyer, Anne S

    2014-01-01

    Mineral elements present in lignocellulosic biomass feedstocks may accumulate in biorefinery process streams and cause technological problems, or alternatively can be reaped for value addition. A better understanding of the distribution of minerals in biomass in response to pretreatment factors is therefore important in relation to development of new biorefinery processes. The objective of the present study was to examine the levels of mineral elements in pretreated wheat straw in response to systematic variations in the hydrothermal pretreatment parameters (pH, temperature, and treatment time), and to assess whether it is possible to model mineral levels in the pretreated fiber fraction. Principal component analysis of the wheat straw biomass constituents, including mineral elements, showed that the recovered levels of wheat straw constituents after different hydrothermal pretreatments could be divided into two groups: 1) Phosphorus, magnesium, potassium, manganese, zinc, and calcium correlated with xylose and arabinose (that is, hemicellulose), and levels of these constituents present in the fiber fraction after pretreatment varied depending on the pretreatment-severity; and 2) Silicon, iron, copper, aluminum correlated with lignin and cellulose levels, but the levels of these constituents showed no severity-dependent trends. For the first group, an expanded pretreatment-severity equation, containing a specific factor for each constituent, accounting for variability due to pretreatment pH, was developed. Using this equation, the mineral levels could be predicted with R(2) > 0.75; for some with R(2) up to 0.96. Pretreatment conditions, especially pH, significantly influenced the levels of phosphorus, magnesium, potassium, manganese, zinc, and calcium in the resulting fiber fractions. A new expanded pretreatment-severity equation is proposed to model and predict mineral composition in pretreated wheat straw biomass.

  19. The effect of thermal pre-treatment of titanium hydride (TiH2) powder in argon condition

    NASA Astrophysics Data System (ADS)

    Franciska P., L.; Erryani, Aprilia; Annur, Dhyah; Kartika, Ika

    2018-04-01

    Titanium hydride (TiH2) powders are used to enhance the foaming process in the formation of a highly porous metallic material with a cellular structure. But, the low temperature of hydrogen release is one of its problems. The present study, different thermal pre-treatment temperatures were employed to investigate the decomposition behavior of TiH2 to retard or delay a hydrogen gas release process during foaming. As a foaming agent, TiH2 was subjected to various heat treatments prior at 450 and 500°C during 2 hours in argon condition. To study the formation mechanism, the thermal behavior of titanium hydride and hydrogen release are investigated by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The morphology of pre-treated titanium hydride powders were examined using Scanning Electron Microscope (SEM) while unsure mapping and elemental composition of the pre-treated powders processed by Energy Dispersive Spectroscopy (EDS). To study the phase formation was characterized by X-ray diffraction analysis (XRD). In accordance with the results, an increase in pre-treatment temperature of TiH2 to higher degrees are changing the process of releasing hydrogen from titanium hydride powder. DTA/TGA results showed that thermal pre-treatment TiH2 at 450°C, released the hydrogen gas at 560°C in heat treatment when foaming process. Meanwhile, thermal pre-treatment in TiH2 at 500°C, released the hydrogen gas at 670°C when foaming process. There is plenty of direct evidence for the existence of oxide layers that showed by EDS analysis obtained in SEM. As oxygen is a light element and qualitative proof shows that the higher pre-treatment temperature produces more and thicker oxygen layers on the surface of the TiH2 powder particles. It might the thickness of oxide layer are different from different pre-treatment temperatures, which leading to the differences in the decomposition temperature. But from SEM result that oxidation of the powder does not change the powder morphology. The oxidation process also confirmed by XRD result, which showed higher thermal pre-treatment TiH2, more oxide higher peak is formed. The oxide layer of TiH2 particles is responsible for the observed shift in decomposition temperature and can prepare the stable foam that stabilizes forming of cell walls and avoid their collapse at higher temperatures.

  20. Cellulosic butanol biofuel production from sweet sorghum bagasse (SSB): Impact of hot water pretreatment and solid loadings on fermentation employing Clostridium beijerinckii P260

    USDA-ARS?s Scientific Manuscript database

    A novel butanol fermentation process was developed in which sweet sorghum bagasse (SSB) was pretreated using liquid hot water (LHW) pretreatment technique followed by enzymatic hydrolysis and butanol (acetone butanol ethanol; ABE) fermentation. A pretreatment temperature of 200 deg C resulted in the...

Top