Sample records for peroxynitrite formation implication

  1. Inhibition of peroxynitrite-mediated DNA strand cleavage and hydroxyl radical formation by aspirin at pharmacologically relevant concentrations: implications for cancer intervention

    PubMed Central

    Chen, Wei; Zhu, Hong; Jia, Zhenquan; Li, Jianrong; Misra, Hara P.; Zhou, Kequan; Li, Yunbo

    2009-01-01

    Epidemiological studies have suggested that the long-term use of aspirin is associated with a decreased incidence of human malignancies, especially colorectal cancer. Since accumulating evidence indicates that peroxynitrite is critically involved in multistage carcinogenesis, this study was undertaken to investigate the ability of aspirin to inhibit peroxynitrite-mediated DNA damage. Peroxynitrite and its generator 3-morpholinosydnonimine (SIN-1) were used to cause DNA strand breaks in φX-174 plasmid DNA. We demonstrated that the presence of aspirin at concentrations (0.25 -2 mM) compatible with amounts in plasma during chronic anti-inflammatory therapy resulted in a significant inhibition of DNA cleavage induced by both peroxynitrite and SIN-1. Moreover, the consumption of oxygen caused by 250 µM SIN-1 was found to be decreased in the presence of aspirin, indicating that aspirin might affect the auto-oxidation of SIN-1. Furthermore, EPR spectroscopy using 5,5-dimethylpyrroline-N-oxide (DMPO) as a spin trap demonstrated the formation of DMPO-hydroxyl radical adduct (DMPO-OH) from authentic peroxynitrite, and that aspirin at 0.25 - 2 mM potently diminished the radical adduct formation in a concentration-dependent manner. Taken together, these results demonstrate for the first time that aspirin at pharmacologically relevant concentrations can inhibit peroxynitrite-mediated DNA strand breakage and hydroxyl radical formation. These results may have implications for cancer intervention by aspirin. PMID:19785994

  2. Inhibition of peroxynitrite-mediated DNA strand cleavage and hydroxyl radical formation by aspirin at pharmacologically relevant concentrations: Implications for cancer intervention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Wei; College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035; Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061

    Epidemiological studies have suggested that the long-term use of aspirin is associated with a decreased incidence of human malignancies, especially colorectal cancer. Since accumulating evidence indicates that peroxynitrite is critically involved in multistage carcinogenesis, this study was undertaken to investigate the ability of aspirin to inhibit peroxynitrite-mediated DNA damage. Peroxynitrite and its generator 3-morpholinosydnonimine (SIN-1) were used to cause DNA strand breaks in {phi}X-174 plasmid DNA. We demonstrated that the presence of aspirin at concentrations (0.25-2 mM) compatible with amounts in plasma during chronic anti-inflammatory therapy resulted in a significant inhibition of DNA cleavage induced by both peroxynitrite and SIN-1.more » Moreover, the consumption of oxygen caused by 250 {mu}M SIN-1 was found to be decreased in the presence of aspirin, indicating that aspirin might affect the auto-oxidation of SIN-1. Furthermore, EPR spectroscopy using 5,5-dimethylpyrroline-N-oxide (DMPO) as a spin trap demonstrated the formation of DMPO-hydroxyl radical adduct (DMPO-OH) from authentic peroxynitrite, and that aspirin at 0.25-2 mM potently diminished the radical adduct formation in a concentration-dependent manner. Taken together, these results demonstrate for the first time that aspirin at pharmacologically relevant concentrations can inhibit peroxynitrite-mediated DNA strand breakage and hydroxyl radical formation. These results may have implications for cancer intervention by aspirin.« less

  3. Peroxynitrite induced formation of the neurotoxins 5-S-cysteinyl-dopamine and DHBT-1: implications for Parkinson's disease and protection by polyphenols.

    PubMed

    Vauzour, David; Ravaioli, Giulia; Vafeiadou, Katerina; Rodriguez-Mateos, Ana; Angeloni, Cristina; Spencer, Jeremy P E

    2008-08-15

    Mechanisms of nigral cell injury in Parkinson's disease remain unclear, although a combination of increased oxidative stress, the formation of catecholamine-quinones and the subsequent formation of neurotoxic cysteinyl-catecholamine conjugates may contribute. In the present study, peroxynitrite was observed to generate both 2-S- and 5-S-cysteinyl-dopamine and a dihydrobenzothiazine species, DHBT-1, following the reaction of dopamine with l-cysteine. The formation of 5-S-cysteinyl-dopamine and DHBT-1 in the presence of peroxynitrite induced significant neuronal injury. Pre-treatment of cortical neurons with pelargonidin, quercetin, hesperetin, caffeic acid, the 4'-O-Me derivatives of catechin and epicatechin (0.1-3.0 microM) resulted in concentration dependant protection against 5-S-cysteinyl-dopamine-induced neurotoxicity. These data suggest that polyphenols may protect against neuronal injury induced by endogenous neurotoxins relevant to the aetiology of the Parkinson disease.

  4. Distinct role of nitric oxide and peroxynitrite in mediating oligodendrocyte toxicity in culture and in experimental autoimmune encephalomyelitis.

    PubMed

    Li, S; Vana, A C; Ribeiro, R; Zhang, Y

    2011-06-16

    Nitric oxide has been implicated in the pathogenesis of multiple sclerosis. However, it is still unclear whether nitric oxide plays a protective role or is deleterious. We have previously shown that peroxynitrite, a reaction product of nitric oxide and superoxide, is toxic to mature oligodendrocytes (OLs). The toxicity is mediated by intracellular zinc release, phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), activation of 12-lipoxygenase (12-LOX) and the formation of reactive oxygen species (ROS). In this study, we found that the donors of nitric oxide, dipropylenetriamine NONOate (DPT NONOate) and diethylenetriamine NONOate (DETA NONOate), protected OLs from peroxynitrite or zinc-induced toxicity. The protective mechanisms appear to be attributable to their inhibition of peroxynitrite- or zinc-induced ERK1/2 phosphorylation and 12-LOX activation. In cultures of mature OLs exposed to lipopolysaccharide (LPS), induction of inducible nitric oxide synthase (iNOS) generated nitric oxide and rendered OLs resistant to peroxynitrite-induced toxicity. The protection was eliminated when 1400W, a specific inhibitor of iNOS, was co-applied with LPS. Using MOG35-55-induced experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, we found that nitrotyrosine immunoreactivity, an indicator of peroxynitrite formation, was increased in the spinal cord white matter, which correlated with the loss of mature OLs. Targeted gene deletion of the NADPH oxidase component gp91phox reduced clinical scores, the formation of nitrotyrosine and the loss of mature OLs. These results suggest that blocking the formation specifically of peroxynitrite, rather than nitric oxide, may be a protective strategy against oxidative stress induced toxicity to OLs. Published by Elsevier Ltd.

  5. Peroxynitrite modified DNA presents better epitopes for anti-DNA autoantibodies in diabetes type 1 patients.

    PubMed

    Tripathi, Prashant; Moinuddin; Dixit, Kiran; Mir, Abdul Rouf; Habib, Safia; Alam, Khursheed; Ali, Asif

    2014-07-01

    Peroxynitrite (ONOO(-)), formed by the reaction between nitric oxide (NO) and superoxide (O2(-)), has been implicated in the etiology of numerous disease processes. Peroxynitrite interacts with DNA via direct oxidative reactions or via indirect radical-mediated mechanism. It can inflict both oxidative and nitrosative damages on DNA bases, generating abasic sites, resulting in the single strand breaks. Plasmid pUC 18 isolated from Escherichiacoli was modified with peroxynitrite, generated by quenched flow process. Modifications incurred in plasmid DNA were characterized by ultraviolet and fluorescence spectroscopy, circular dichroism, HPLC and melting temperature studies. Binding characteristics and specificity of antibodies from diabetes patients were analyzed by direct binding and inhibition ELISA. Peroxynitrite modification of pUC 18 plasmid resulted in the formation of strand breaks and base modification. The major compound formed when peroxynitrite reacted with DNA was 8-nitroguanine, a specific marker for peroxynitrite induced DNA damage in inflamed tissues. The concentration of 8-nitroguanine was found to be 3.8 μM. Sera from diabetes type 1 patients from different age groups were studied for their binding to native and peroxynitrite modified plasmid. Direct binding and competitive-inhibition ELISA results showed higher recognition of peroxynitrite modified plasmid, as compared to the native form, by auto-antibodies present in diabetes patients. The preferential recognition of modified plasmid by diabetes autoantibodies was further reiterated by gel shift assay. Experimentally induced anti-peroxynitrite-modified plasmid IgG was used as a probe to detect nitrosative lesions in the DNA isolated from diabetes patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Myeloperoxidase scavenges peroxynitrite: A novel anti-inflammatory action of the heme enzyme

    PubMed Central

    Koyani, Chintan N.; Flemmig, Joerg; Malle, Ernst; Arnhold, Juergen

    2015-01-01

    Peroxynitrite, a potent pro-inflammatory and cytotoxic species, interacts with a variety of heme containing proteins. We addressed the question whether (i) the interaction of myeloperoxidase (MPO, an enzyme generating hypochlorous acid from hydrogen peroxide and chloride ions) with peroxynitrite affects the clearance of peroxynitrite, and (ii) if peroxynitrite could modulate the chlorinating activity of MPO. Our results show that this interaction promotes the decomposition of the highly reactive pro-inflammatory oxidant, whereby MPO Compound II (but not Compound I) is formed. The efficiency of MPO to remove peroxynitrite was enhanced by l-tyrosine, nitrite and (−)-epicatechin, substances known to reduce Compound II with high reaction rate. Next, peroxynitrite (added as reagent) diminished the chlorinating activity of MPO in the presence of hydrogen peroxide. Alternatively, SIN-1, a peroxynitrite donor, reduced hypochlorous acid formation by MPO, as measured by aminophenyl fluorescein oxidation (time kinetics) and taurine chloramine formation (end point measurement). At inflammatory loci, scavenging of peroxynitrite by MPO may overcome the uncontrolled peroxynitrite decomposition and formation of reactive species, which lead to cell/tissue damage. PMID:25731855

  7. Nitric oxide diffusion to red blood cells limits extracellular, but not intraphagosomal, peroxynitrite formation by macrophages.

    PubMed

    Prolo, Carolina; Álvarez, María Noel; Ríos, Natalia; Peluffo, Gonzalo; Radi, Rafael; Romero, Natalia

    2015-10-01

    Macrophage-derived nitric oxide ((•)NO) participates in cytotoxic mechanisms against diverse microorganisms and tumor cells. These effects can be mediated by (•)NO itself or (•)NO-derived species such as peroxynitrite formed by its diffusion-controlled reaction with NADPH oxidase-derived superoxide radical anion (O(2)(•-)). In vivo, the facile extracellular diffusion of (•)NO as well as different competing consumption routes limit its bioavailability for the reaction with O(2)(•-) and, hence, peroxynitrite formation. In this work, we evaluated the extent by which (•)NO diffusion to red blood cells (RBC) can compete with activated macrophages-derived O(2)(•-) and affect peroxynitrite formation yields. Macrophage-dependent peroxynitrite production was determined by boron-based probes that react directly with peroxynitrite, namely, coumarin-7-boronic acid (CBA) and fluorescein-boronate (Fl-B). The influence of (•)NO diffusion to RBC on peroxynitrite formation was experimentally analyzed in co-incubations of (•)NO and O(2)(•-)-forming macrophages with erythrocytes. Additionally, we evaluated the permeation of (•)NO to RBC by measuring the intracellular oxidation of oxyhemoglobin to methemoglobin. Our results indicate that diluted RBC suspensions dose-dependently inhibit peroxynitrite formation, outcompeting the O(2)(•-) reaction. Computer-assisted kinetic studies evaluating peroxynitrite formation by its precursor radicals in the presence of RBC are in accordance with experimental results. Moreover, the presence of erythrocytes in the proximity of (•)NO and O(2)(•-)-forming macrophages prevented intracellular Fl-B oxidation pre-loaded in L1210 cells co-cultured with activated macrophages. On the other hand, Fl-B-coated latex beads incorporated in the macrophage phagocytic vacuole indicated that intraphagosomal probe oxidation by peroxynitrite was not affected by nearby RBC. Our data support that in the proximity of a blood vessel, (•)NO consumption by RBC will limit the extracellular formation (and subsequent cytotoxic effects) of peroxynitrite by activated macrophages, while the intraphagosomal yield of peroxynitrite will remain unaffected. Copyright © 2015. Published by Elsevier Inc.

  8. Nitroxidative chemistry interferes with fluorescent probe chemistry: implications for nitric oxide detection using 2,3-diaminonaphthalene.

    PubMed

    Hu, Teh-Min; Chiu, Shih-Jiuan; Hsu, Yu-Ming

    2014-08-22

    Simultaneous production of nitric oxide (NO) and superoxide generates peroxynitrite and causes nitroxidative stress. The fluorometric method for NO detection is based on the formation of a fluorescent product from the reaction of a nonfluorescent probe molecule with NO-derived nitrosating species. Here, we present an example of how nitroxidative chemistry could interact with fluorescent probe chemistry. 2,3-Naphthotriazole (NAT) is the NO-derived fluorescent product of 2,3-diaminonaphthalene (DAN), a commonly used NO-detecting molecule. We show that NO/superoxide cogeneration, and particularly peroxynitrite, mediates the chemical decomposition of NAT. Moreover, the extent of NAT decomposition depends on the relative fluxes of NO and superoxide; the maximum effect being reached at almost equivalent generation rates for both radicals. The rate constant for the reaction of NAT with peroxynitrite was determined to be 2.2×10(3)M(-1)s(-1). Further, various peroxynitrite scavengers were shown to effectively inhibit NO/superoxide- and peroxynitrite-mediated decomposition of NAT. Taken together, the present study suggests that the interference of a fluorometric NO assay can be originated from the interaction between the final fluorescent product and the formed reactive nitrogen and oxygen species. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Inducible nitric oxide synthase is key to peroxynitrite-mediated, LPS-induced protein radical formation in murine microglial BV2 cells

    PubMed Central

    Kumar, Ashutosh; Chen, Shih-Heng; Kadiiska, Maria B.; Hong, Jau-Shyong; Zielonka, Jacek; Kalyanaraman, Balaraman; Mason, Ronald P.

    2014-01-01

    Microglia are the resident immune cells in the brain. Microglial activation is characteristic of several inflammatory and neurodegenerative diseases including Alzheimer’s disease, multiple sclerosis, and Parkinson’s disease. Though LPS-induced microglial activation in models of Parkinson’s disease (PD) is well documented, the free radical-mediated protein radical formation and its underlying mechanism during LPS-induced microglial activation is not known. Here we have used immuno-spin trapping and RNA interference to investigate the role of inducible nitric oxide synthase (iNOS) in peroxynitrite-mediated protein radical formation in murine microglial BV2 cells treated with LPS. Treatment of BV2 cells with LPS resulted in morphological changes, induction of iNOS and increased protein radical formation. Pretreatments with FeTPPS (a peroxynitrite decomposition catalyst), L-NAME (total NOS inhibitor), 1400W (iNOS inhibitor) and apocynin significantly attenuated LPS-induced protein radical formation and tyrosine nitration. Results obtained with coumarin-7-boronic acid, a highly specific probe for peroxynitrite detection, correlated with LPS-induced tyrosine nitration, which demonstrated involvement of peroxynitrite in protein radical formation. A similar degree of protection conferred by 1400W and L-NAME led us to conclude that only iNOS, and no other forms of NOS, are involved in LPS-induced peroxynitrite formation. Subsequently, siRNA for iNOS, the iNOS-specific inhibitor 1400W, the NF-kB inhibitor PDTC and the P38 MAPK inhibitor SB202190 were used to inhibit iNOS directly or indirectly. Inhibition of iNOS precisely correlated with decreased protein radical formation in LPS-treated BV2 cells. The time course of protein radical formation also matched the time course of iNOS expression. Taken together, these results prove the role of iNOS in peroxynitrite-mediated protein radical formation in LPS-treated microglial BV2 cells. PMID:24746617

  10. A peroxynitrite complex of copper: formation from a copper-nitrosyl complex, transformation to nitrite and exogenous phenol oxidative coupling or nitration.

    PubMed

    Park, Ga Young; Deepalatha, Subramanian; Puiu, Simona C; Lee, Dong-Heon; Mondal, Biplab; Narducci Sarjeant, Amy A; del Rio, Diego; Pau, Monita Y M; Solomon, Edward I; Karlin, Kenneth D

    2009-11-01

    Reaction of nitrogen monoxide with a copper(I) complex possessing a tridentate alkylamine ligand gives a Cu(I)-(*NO) adduct, which when exposed to dioxygen generates a peroxynitrite (O=NOO(-))-Cu(II) species. This undergoes thermal transformation to produce a copper(II) nitrito (NO(2) (-)) complex and 0.5 mol equiv O(2). In the presence of a substituted phenol, the peroxynitrite complex effects oxidative coupling, whereas addition of chloride ion to dissociate the peroxynitrite moiety instead leads to phenol ortho nitration. Discussions include the structures (including electronic description) of the copper-nitrosyl and copper-peroxynitrite complexes and the formation of the latter, based on density functional theory calculations and accompanying spectroscopic data.

  11. Methamphetamine generates peroxynitrite and produces dopaminergic neurotoxicity in mice: protective effects of peroxynitrite decomposition catalyst.

    PubMed

    Imam, S Z; Crow, J P; Newport, G D; Islam, F; Slikker, W; Ali, S F

    1999-08-07

    Methamphetamine (METH)-induced dopaminergic neurotoxicity is believed to be produced by oxidative stress and free radical generation. The present study was undertaken to investigate if METH generates peroxynitrite and produces dopaminergic neurotoxicity. We also investigated if this generation of peroxynitrite can be blocked by a selective peroxynitrite decomposition catalyst, 5, 10,15, 20-tetrakis(N-methyl-4'-pyridyl)porphyrinato iron III (FeTMPyP) and protect against METH-induced dopaminergic neurotoxicity. Administration of METH resulted in the significant formation of 3-nitrotyrosine (3-NT), an in vivo marker of peroxynitrite generation, in the striatum and also caused a significant increase in the body temperature. METH injection also caused a significant decrease in the concentration of dopamine (DA), 3, 4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) by 76%, 53% and 40%, respectively, in the striatum compared with the control group. Treatment with FeTMPyP blocked the formation of 3-NT by 66% when compared with the METH group. FeTMPyP treatment also provided significant protection against the METH-induced hyperthermia and depletion of DA, DOPAC and HVA. Administration of FeTMPyP alone neither resulted in 3-NT formation nor had any significant effect on DA or its metabolite concentrations. These findings indicate that peroxynitrite plays a role in METH-induced dopaminergic neurotoxicity and also suggests that peroxynitrite decomposition catalysts may be beneficial for the management of psychostimulant abuse. Copyright 1999 Published by Elsevier Science B.V.

  12. Prevention of dopaminergic neurotoxicity by targeting nitric oxide and peroxynitrite: implications for the prevention of methamphetamine-induced neurotoxic damage.

    PubMed

    Imam, S Z; Islam, F; Itzhak, Y; Slikker, W; Ali, S F

    2000-09-01

    Methamphetamine (METH) is a neurotoxic psychostimulant that produces catecholaminergic brain damage by producing oxidative stress and free radical generation. The role of oxygen and nitrogen radicals is well documented as a cause of METH-induced neurotoxic damage. In this study, we have obtained evidence that METH-induced neurotoxicity is the resultant of interaction between oxygen and nitrogen radicals, and it is mediated by the production of peroxynitrite. We have also assessed the effects of inhibitors of neuronal nitric oxide synthase (nNOS) as well as scavenger of nitric oxide and a peroxynitrite decomposition catalyst. Significant protective effects were observed with the inhibitor of nNOS, 7-nitroindazole (7-NI), as well as by the selective peroxynitrite scavenger or decomposition catalyst, 5,10,15,20-tetrakis(2,4,6-trimethyl-3,5-sulfonatophenyl)porphyrinato iron III (FeTPPS). However, the use of a nitric oxide scavenger, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), did not provide any significant protection against METH-induced hyperthermia or peroxynitrite generation and the resulting dopaminergic neurotoxicity. In particular, treatment with FeTPPS completely prevented METH-induced hyperthermia, peroxynitrite production, and METH-induced dopaminergic depletion. Together, these data demonstrate that METH-induced dopaminergic neurotoxicity is mediated by the generation of peroxynitrite, which can be selectively protected by nNOS inhibitors or peroxynitrite scavenger or decomposition catalysts.

  13. Manganese enhances peroxynitrite and leukotriene E4 formation in bovine aortic endothelial cells exposed to arsenic.

    PubMed

    Bunderson, Melisa; Pereira, Flavia; Schneider, Mark C; Shaw, Pamela K; Coffin, J Douglas; Beall, Howard D

    2006-01-01

    Long-term exposure to arsenic in drinking water has been linked to cancer and other health effects, including cardiovascular disease. Arsenic in the environment is found in combination with a range of metals that could influence its toxicity. Manganese, in particular, is a metal that is typically found in conjunction with arsenic in contaminated groundwater. Peroxynitrite is a powerful oxidant formed from the reaction between nitric oxide and superoxide anion. Arsenic has been shown to increase the formation of peroxynitrite in bovine aortic endothelial cells (BAECs) and promote the formation of 3-nitrotyrosine (3-NY) in the atherosclerotic plaque of ApoE-/-/LDLr-/- mice. Arsenic exposure also increases leukotriene E4 (LTE4) formation in both the mice and BAECs, an effect that is partially reversed by the addition of Nomega-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase (NOS) inhibitor. In the present study, we investigated the effect of adding nontoxic concentrations of manganese along with arsenic to BAEC cultures. Manganese increased arsenic toxicity and enhanced peroxynitrite, 3-NY, and LTE4 formation in BAECs. Addition of LNAME reduced 3-NY formation induced by arsenic/manganese mixtures, but in contrast to its effect on arsenic alone, L-NAME actually increased LTE4 synthesis in BAECs treated with the arsenic/manganese combination. Overall, these data suggest that manganese may exacerbate the toxic effects of arsenic on the vascular system.

  14. Formation and implications of alpha-synuclein radical in Maneb- and paraquat-induced models of Parkinson’s disease

    PubMed Central

    Kumar, Ashutosh; Leinisch, Fabian; Kadiiska, Maria B.; Corbett, Jean; Mason, Ronald P.

    2015-01-01

    Parkinson’s disease (PD) is a debilitating, progressive, neurodegenerative disorder characterized by progressive loss of dopaminergic neurons and motor deficits. Alpha-synuclein-containing aggregates represent a feature of a variety of neurodegenerative disorders, including PD; however, the mechanism that initiates and promotes intraneuronal alpha-synuclein aggregation remains unknown. We hypothesized protein radical formation as an initiating mechanism for alpha-synuclein aggregation. Therefore, we used the highly sensitive immuno-spin trapping technique to investigate protein radical formation as a possible mechanism of alpha-synuclein aggregation as well as to investigate the source of protein radical formation in the midbrains of Maneb and paraquat coexposed mice. Coexposure to Maneb and paraquat for 6 weeks resulted in active microgliosis, NADPH oxidase activation, and inducible nitric oxide synthase (iNOS) induction, which culminated in protein radical formation in the midbrains of mice. Results obtained with immuno-spin trapping and immunoprecipitation experiments confirmed formation of alpha-synuclein radicals in dopaminergic neurons of exposed mice. Free radical formation requires NADPH oxidase and iNOS, as indicated by decreased protein radical formation in knockout mice (P47phox−/− and iNOS−/−) and in mice treated with inhibitors such as FeTPPS (a peroxynitrite decomposition catalyst), 1400W (an iNOS inhibitor), or apocynin (a NADPH oxidase inhibitor). Concurrence of protein radical formation with dopaminergic neuronal death indicated a link between protein radicals and disease progression. Taken together, these results show for the first time the formation and detection of the alpha-synuclein radical and suggest that NADPH oxidase and iNOS play roles in peroxynitrite-mediated protein radical formation and subsequent neuronal death in the midbrains of Maneb and paraquat coexposed mice. PMID:25952542

  15. Intramitochondrial Ascorbic Acid Enhances the Formation of Mitochondrial Superoxide Induced by Peroxynitrite via a Ca2+-Independent Mechanism

    PubMed Central

    Guidarelli, Andrea; Cerioni, Liana; Fiorani, Mara; Cantoni, Orazio

    2017-01-01

    Exposure of U937 cells to peroxynitrite promotes mitochondrial superoxide formation via a mechanism dependent on both inhibition of complex III and increased mitochondrial Ca2+ accumulation. Otherwise inactive concentrations of the oxidant produced the same maximal effects in the presence of either complex III inhibitors or agents mobilizing Ca2+ from the ryanodine receptor and enforcing its mitochondrial accumulation. l-Ascorbic acid (AA) produced similar enhancing effects in terms of superoxide formation, DNA strand scission and cytotoxicity. However, AA failed to enhance the intra-mitochondrial concentration of Ca2+ and the effects observed in cells supplemented with peroxinitrite, while insensitive to manipulations preventing the mobilization of Ca2+, or the mitochondrial accumulation of the cation, were also detected in human monocytes and macrophages, which do not express the ryanodine receptor. In all these cell types, mitochondrial permeability transition-dependent toxicity was detected in cells exposed to AA/peroxynitrite and, based on the above criteria, these responses also appeared Ca2+-independent. The enhancing effects of AA are therefore similar to those mediated by bona fide complex III inhibitors, although the vitamin failed to directly inhibit complex III, and in fact enhanced its sensitivity to the inhibitory effects of peroxynitrite. PMID:28767071

  16. Nitroxyl (HNO) Reacts with Molecular Oxygen and Forms Peroxynitrite at Physiological pH

    PubMed Central

    Smulik, Renata; Dębski, Dawid; Zielonka, Jacek; Michałowski, Bartosz; Adamus, Jan; Marcinek, Andrzej; Kalyanaraman, Balaraman; Sikora, Adam

    2014-01-01

    Nitroxyl (HNO), the protonated one-electron reduction product of NO, remains an enigmatic reactive nitrogen species. Its chemical reactivity and biological activity are still not completely understood. HNO donors show biological effects different from NO donors. Although HNO reactivity with molecular oxygen is described in the literature, the product of this reaction has not yet been unambiguously identified. Here we report that the decomposition of HNO donors under aerobic conditions in aqueous solutions at physiological pH leads to the formation of peroxynitrite (ONOO−) as a major intermediate. We have specifically detected and quantified ONOO− with the aid of boronate probes, e.g. coumarin-7-boronic acid or 4-boronobenzyl derivative of fluorescein methyl ester. In addition to the major phenolic products, peroxynitrite-specific minor products of oxidation of boronate probes were detected under these conditions. Using the competition kinetics method and a set of HNO scavengers, the value of the second order rate constant of the HNO reaction with oxygen (k = 1.8 × 104 m−1 s−1) was determined. The rate constant (k = 2 × 104 m−1 s−1) was also determined using kinetic simulations. The kinetic parameters of the reactions of HNO with selected thiols, including cysteine, dithiothreitol, N-acetylcysteine, captopril, bovine and human serum albumins, and hydrogen sulfide, are reported. Biological and cardiovascular implications of nitroxyl reactions are discussed. PMID:25378389

  17. Edaravone, a potent free radical scavenger, reacts with peroxynitrite to produce predominantly 4-NO-edaravone.

    PubMed

    Fujisawa, Akio; Yamamoto, Yorihiro

    2016-05-01

    3-Methyl-1-phenyl-2-pyrazolin-5-one (edaravone) is used in clinical treatment of acute brain infarction to rescue the penumbra, based on its ability to prevent lipid peroxidation by scavenging lipid peroxyl radicals. Here, we show that edaravone also reacts with peroxynitrite to yield 4-NO-edaravone as the major product and 4-NO2-edaravone as a minor product. We observed little formation of 3-methyl-1-phenyl-2-pyrazolin-4,5-dione (4-oxoedaravone) and its hydrate, 2-oxo-3-(phenylhydrazono)butanoic acid, which are the major free radical-induced oxidation products of edaravone, suggesting that free radicals are not involved in the reaction with peroxynitrite. The reaction of peroxynitrite with edaravone is approximately 30-fold greater than with uric acid, a physiological peroxynitrite scavenger (reaction rate k = 1.5 × 10 (4)  M(-1) s(-1) vs. 480 M(-1) s(-1)). These results suggest that edaravone functions therapeutically as a scavenger of peroxynitrite as well as lipid peroxyl radicals, which is consistent with a report that edaravone treatment reduced levels of 3-nitrotyrosine in the cerebrospinal fluid of patients with amyotrophic lateral sclerosis.

  18. Role of superoxide–nitric oxide interactions in the accelerated age-related loss of muscle mass in mice lacking Cu,Zn superoxide dismutase

    PubMed Central

    Sakellariou, Giorgos K; Pye, Deborah; Vasilaki, Aphrodite; Zibrik, Lea; Palomero, Jesus; Kabayo, Tabitha; McArdle, Francis; Van Remmen, Holly; Richardson, Arlan; Tidball, James G; McArdle, Anne; Jackson, Malcolm J

    2011-01-01

    Summary Mice lacking Cu,Zn superoxide dismutase (SOD1) show accelerated, age-related loss of muscle mass. Lack of SOD1 may lead to increased superoxide, reduced nitric oxide (NO), and increased peroxynitrite, each of which could initiate muscle fiber loss. Single muscle fibers from flexor digitorum brevis of wild-type (WT) and Sod1−/− mice were loaded with NO-sensitive (4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate, DAF-FM) and superoxide-sensitive (dihydroethidium, DHE) probes. Gastrocnemius muscles were analyzed for SOD enzymes, nitric oxide synthases (NOS), and 3-nitrotyrosine (3-NT) content. A lack of SOD1 did not increase superoxide availability at rest because no increase in ethidium or 2-hydroxyethidium (2-HE) formation from DHE was seen in fibers from Sod1−/− mice compared with those from WT mice. Fibers from Sod1−/− mice had decreased NO availability (decreased DAF-FM fluorescence), increased 3-NT in muscle proteins indicating increased peroxynitrite formation and increased content of peroxiredoxin V (a peroxynitrite reductase), compared with WT mice. Muscle fibers from Sod1−/− mice showed substantially reduced generation of superoxide in response to contractions compared with fibers from WT mice. Inhibition of NOS did not affect DHE oxidation in fibers from WT or Sod1−/− mice at rest or during contractions, but transgenic mice overexpressing nNOS showed increased DAF-FM fluorescence and reduced DHE oxidation in resting muscle fibers. It is concluded that formation of peroxynitrite in muscle fibers is a major effect of lack of SOD1 in Sod1−/− mice and may contribute to fiber loss in this model, and that NO regulates superoxide availability and peroxynitrite formation in muscle. PMID:21443684

  19. Aronia melanocarpa as a protector against nitration of fibrinogen.

    PubMed

    Bijak, Michał; Saluk, Joanna; Antosik, Adam; Ponczek, Michał B; Żbikowska, Halina M; Borowiecka, Marta; Nowak, Paweł

    2013-04-01

    Fibrinogen (Fg) also known as coagulation factor I represents about 4% of the total human plasma proteins. The main function of Fg is its involvement in last phase of blood coagulation cascade, when thrombin-induced conversion of dissolved plasma fibrinogen into an insoluble fibrin clot occurs. The reaction of fibrinogen with peroxynitrite causes both structural modifications and changes of the biological properties of this plasma glycoprotein. Recently, there is an increased interest in the screening of natural products present in fruits, vegetables and herbs for their possible antioxidative activities. Therefore, the aim of our study was to estimate the effect of extract from berries of Aronia melanocarpa against nitrative and oxidative damage induced by peroxynitrite. The extract from A. melanocarpa (0.5-50 μg/ml) added to Fg 10 min before peroxynitrite (100 μM) significantly inhibited both the formation of the high molecular weight protein aggregates and nitration of Fg molecule. The extract also abolished peroxynitrite-induced inhibition of fibrinogen polymerization (by 95% at 50 μg/ml). The obtained results indicate that natural extract from berries of A. melanocarpa has protective effects against peroxynitrite-induced nitrative damage of plasma fibrinogen, and therefore may contribute in the prevention of peroxynitrite-related cardiovascular or inflammatory diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Influence of magnetic field on enzymatic ONOO- production

    NASA Astrophysics Data System (ADS)

    Dranova, T.; Petrovskii, D.; Ershov, N.; Slepneva, I.; Stass, D.

    2017-08-01

    Enzymatic oxidation of L-arginine catalyzed by inducible nitric oxide synthase gives nitric oxide as the main product and superoxide anion as a side reaction product. Recombination of these radicals gives a very reactive species - peroxynitrite, which is involved in many biochemical processes. In the current work it was shown that such a system can be a usable model system for investigating the influence of magnetic field on enzymatic peroxynitrite formation. Using a selective fluorescent probe for peroxynitrite - coumarin boronic acid and an adopted for the experimental purpose incubation mixture, magnetic field experiments have been done at 11.7T. The averaged magnetic field effect is equal to 2.8±0.9%.

  1. Administration of SIN-1 induces guinea pig airway hyperresponsiveness through inactivation of airway neutral endopeptidase.

    PubMed

    Kanazawa, H; Hirata, K; Yoshikawa, J

    1999-12-01

    Peroxynitrite plays an important role in the pathogenesis of airway inflammation. We have already found that peroxynitrite may contribute to decreased beta(2)-adrenoceptor responses in airway smooth muscle. However, it is not known whether peroxynitrite can alter neutral endopeptidase (EC 3.4.24.11; NEP) activity in the airways. This study was designed to determine whether peroxynitrite induces airway hyperresponsiveness to substance P (SP) and endothelin-1 (ET-1) through the inactivation of airway NEP. We examined whether the administration of S-morpholinosydnonimine (SIN-1), a compound that releases peroxynitrite, increased bronchoconstrictor responses to SP and ET-1 in anesthetized guinea pigs. In addition, we assayed NEP activity in the airways of SIN-1-exposed guinea pigs. Though SIN-1 (10(-7) M) alone had no effect on pulmonary resistance, pretreatment with SIN-1 significantly enhanced SP- and ET-1-induced bronchoconstriction. Pretreatment with phosphoramidon, an NEP inhibitor, also enhanced SP- and ET-1-induced bronchoconstriction. However, simultaneous administration of phosphoramidon and SIN-1 had no additive effect on SP- and ET-1-induced bronchoconstriction. Peroxynitrite formation by SIN-1 was completely inhibited by N-acetylcysteine (NAC) and glutathione (GSH) in vitro, and pretreatment with NAC and GSH significantly reversed the potentiation by SIN-1 of SP-induced bronchoconstriction. In addition, the NEP activity of the trachea after SIN-1 exposure was significantly reduced compared to the level in control guinea pigs (solvent for SIN-1: 30.0+/-4.2 fmol.min(-1).mg tissue(-1); 10(-7) M SIN-1; 15.5+/-4.5 fmol.min(-1).mg tissue(-1), p<0.05). These findings suggest that peroxynitrite induces airway hyperresponsiveness to SP and ET-1 through the inactivation of airway NEP, and that peroxynitrite is an important mediator of the alterations in airway functions.

  2. ¹⁹F magnetic resonance probes for live-cell detection of peroxynitrite using an oxidative decarbonylation reaction.

    PubMed

    Bruemmer, Kevin J; Merrikhihaghi, Sara; Lollar, Christina T; Morris, Siti Nur Sarah; Bauer, Johannes H; Lippert, Alexander R

    2014-10-21

    We report a newly discovered oxidative decarbonylation reaction of isatins that is selectively mediated by peroxynitrite (ONOO(-)) to provide anthranilic acid derivatives. We have harnessed this rapid and selective transformation to develop two reaction-based probes, 5-fluoroisatin and 6-fluoroisatin, for the low-background readout of ONOO(-) using (19)F magnetic resonance spectroscopy. 5-fluoroisatin was used to non-invasively detect ONOO(-) formation in living lung epithelial cells stimulated with interferon-γ (IFN-γ).

  3. Formation of peroxynitrite during thiol-mediated reduction of sodium nitroprusside.

    PubMed

    Aleryani, S; Milo, E; Kostka, P

    1999-10-18

    Aerobic incubations of equimolar concentrations (5-500 microM) of sodium nitroprusside (SNP) and dithiothreitol (DTT) carried out at pH 7.4 in the absence of light caused a concentration-dependent increase in the rates of oxidation of dihydrorhodamine-123. The enhancement of the rates of oxidation under such conditions was only partially sensitive to the inhibition by 100 mM dimethyl sulfoxide implying the involvement of both peroxynitrite and hydroxyl radicals in the observed effects. The oxidation of dihydrorhodamine-123 in the presence of SNP and DTT was nearly completely abolished by superoxide dismutase (20 U/ml). It was found that such an effect of the enzyme was related primarily to the stabilization of an intermediate of SNP reduction formed upstream to the liberation of nitrosonium ligand. Increased rates of oxidation of dihydrorhodamine-123 were also observed during the reduction of SNP with either L-cysteine or glutathione. It is concluded that thiol-mediated reduction of SNP under aerobic conditions is accompanied by the formation of oxygen-derived free radicals. Nitrosonium ligand liberated from the product(s) of SNP reduction is, under such conditions, converted to peroxynitrite.

  4. c-Jun N-terminal kinase modulates oxidant stress and peroxynitrite formation independent of inducible nitric oxide synthase in acetaminophen hepatotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Chieko; Lemasters, John J.; Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425

    Acetaminophen (APAP) overdose, which causes liver injury in animals and humans, activates c-jun N-terminal kinase (JNK). Although it was shown that the JNK inhibitor SP600125 effectively reduced APAP hepatotoxicity, the mechanisms of protection remain unclear. C57Bl/6 mice were treated with 10 mg/kg SP600125 or vehicle (8% dimethylsulfoxide) 1 h before 600 mg/kg APAP administration. APAP time-dependently induced JNK activation (detected by JNK phosphorylation). SP600125, but not the vehicle, reduced JNK activation, attenuated mitochondrial Bax translocation and prevented the mitochondrial release of apoptosis-inducing factor at 4-12 h. Nuclear DNA fragmentation, nitrotyrosine staining, tissue GSSG levels and liver injury (plasma ALT releasemore » and necrosis) were partially attenuated by the vehicle (- 65%) and completely eliminated by SP600125 (- 98%) at 6 and 12 h. Furthermore, SP600125 attenuated the increase of inducible nitric oxide synthase (iNOS) mRNA and protein. However, APAP did not enhance plasma nitrite + nitrate levels (NO formation); SP600125 had no effect on this parameter. The iNOS inhibitor L-NIL did not reduce NO formation or injury after APAP but prevented NO formation caused by endotoxin. Since SP600125 completely eliminated the increase in hepatic GSSG levels, an indicator of mitochondrial oxidant stress, it is concluded that the inhibition of peroxynitrite was mainly caused by reduced superoxide formation. Our data suggest that the JNK inhibitor SP600125 protects against APAP-induced liver injury in part by attenuation of mitochondrial Bax translocation but mainly by preventing mitochondrial oxidant stress and peroxynitrite formation and thereby preventing the mitochondrial permeability transition pore opening, a key event in APAP-induced cell necrosis.« less

  5. Relationships between nitric oxide, nitroxyl ion, nitrosonium cation and peroxynitrite.

    PubMed

    Hughes, M N

    1999-05-05

    This review is concerned mainly with the three redox-related, but chemically distinct, species NO-, NO. and NO+, with greatest emphasis being placed on the chemistry and biology of the nitroxyl ion. Biochemical routes for the formation of nitroxyl ion and methods for showing the intermediacy of this species are discussed, together with chemical methods for generating nitroxyl ion in solution. Reactions of nitroxyl ion with NO., thiols, iron centres in haem and with dioxygen are reviewed The significance of the reaction between NO- and dioxygen as a source of peroxynitrite is assessed, and attention drawn to the possible significance of the spin state of the nitroxyl ion in this context. The biological significance of nitrosation and the importance of S-nitrosothiols and certain metal nitrosyl complexes as carriers of NO+ at physiological pH is stressed. Some features in the chemistry of peroxynitrite are noted.

  6. Kinetics of Nitrite Reduction and Peroxynitrite Formation by Ferrous Heme in Human Cystathionine β-Synthase*

    PubMed Central

    Carballal, Sebastián; Cuevasanta, Ernesto; Yadav, Pramod K.; Gherasim, Carmen; Ballou, David P.; Alvarez, Beatriz; Banerjee, Ruma

    2016-01-01

    Cystathionine β-synthase (CBS) is a pyridoxal phosphate-dependent enzyme that catalyzes the condensation of homocysteine with serine or with cysteine to form cystathionine and either water or hydrogen sulfide, respectively. Human CBS possesses a noncatalytic heme cofactor with cysteine and histidine as ligands, which in its oxidized state is relatively unreactive. Ferric CBS (Fe(III)-CBS) can be reduced by strong chemical and biochemical reductants to Fe(II)-CBS, which can bind carbon monoxide (CO) or nitric oxide (NO•), leading to inactive enzyme. Alternatively, Fe(II)-CBS can be reoxidized by O2 to Fe(III)-CBS, forming superoxide radical anion (O2˙̄). In this study, we describe the kinetics of nitrite (NO2−) reduction by Fe(II)-CBS to form Fe(II)NO•-CBS. The second order rate constant for the reaction of Fe(II)-CBS with nitrite was obtained at low dithionite concentrations. Reoxidation of Fe(II)NO•-CBS by O2 showed complex kinetic behavior and led to peroxynitrite (ONOO−) formation, which was detected using the fluorescent probe, coumarin boronic acid. Thus, in addition to being a potential source of superoxide radical, CBS constitutes a previously unrecognized source of NO• and peroxynitrite. PMID:26867575

  7. Enhanced nitric oxide generation from nitric oxide synthases as the cause of increased peroxynitrite formation during acute restraint stress: Effects on carotid responsiveness to angiotensinergic stimuli in type-1 diabetic rats.

    PubMed

    Moreira, Josimar D; Pernomian, Larissa; Gomes, Mayara S; Moreira, Rafael P; do Prado, Alejandro F; da Silva, Carlos H T P; de Oliveira, Ana M

    2016-07-15

    Diabetes mellitus is associated with reactive oxygen and nitrogen species accumulation. Behavioral stress increases nitric oxide production, which may trigger a massive impact on vascular cells and accelerate cardiovascular complications under oxidative stress conditions such as Diabetes. For this study, type-1 Diabetes mellitus was induced in Wistar rats by intraperitoneal injection of streptozotocin. After 28 days, cumulative concentration-response curves for angiotensin II were obtained in endothelium-intact carotid rings from diabetic rats that underwent to acute restraint stress for 3h. The contractile response evoked by angiotensin II was increased in carotid arteries from diabetic rats. Acute restraint stress did not alter angiotensin II-induced contraction in carotid arteries from normoglycaemic rats. However acute stress combined with Diabetes increased angiotensin II-induced contraction in carotid rings. Western blot experiments and the inhibition of nitric oxide synthases in functional assays showed that neuronal, endothelial and inducible nitric oxide synthase isoforms contribute to the increased formation of peroxynitrite and contractile hyperreactivity to angiotensin II in carotid rings from stressed diabetic rats. In summary, these findings suggest that the increased superoxide anion generation in carotid arteries from diabetic rats associated to the increased local nitric oxide synthases expression and activity induced by acute restrain stress were responsible for exacerbating the local formation of peroxynitrite and the contraction induced by angiotensin II. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Peroxynitrite mediates testosterone-induced vasodilation of microvascular resistance vessels.

    PubMed

    Puttabyatappa, Yashoda; Stallone, John N; Ergul, Adviye; El-Remessy, Azza B; Kumar, Sanjiv; Black, Stephen; Johnson, Maribeth; Owen, Mary P; White, Richard E

    2013-04-01

    Our knowledge of how androgens influence the cardiovascular system is far from complete, and this lack of understanding is especially true of how androgens affect resistance vessels. Our aim was to identify the signaling mechanisms stimulated by testosterone (TES) in microvascular arteries and to understand how these mechanisms mediate TES-induced vasodilation. Mesenteric microvessels were isolated from male Sprague-Dawley rats. Tension studies demonstrated a rapid, concentration-dependent, vasodilatory response to TES that did not involve protein synthesis or aromatization to 17β-estradiol. Dichlorofluorescein fluorescence and nitrotyrosine immunoblot experiments indicated that TES stimulated peroxynitrite formation in microvessels, and functional studies demonstrated that TES-induced vasodilation was inhibited by scavenging peroxynitrite. As predicted, TES enhanced the production of both peroxynitrite precursors (i.e., superoxide and nitic oxide), and xanthine oxidase was identified as the likely source of TES-stimulated superoxide production. Functional and biochemical studies indicated that TES signaling involved activity of the phosphoinositide 3 (PI3) kinase-protein kinase B (Akt) cascade initiated by activation of the androgen receptor and culminated in enhanced production of cGMP and microvascular vasodilation. These findings, derived from a variety of analytical and functional approaches, provide evidence for a novel nongenomic signaling mechanism for androgen action in the microvasculature: TES-stimulated vasodilation mediated primarily by peroxynitrite formed from xanthine oxidase-generated superoxide and NO. This response was associated with activation of the PI3 kinase-Akt signaling cascade initiated by activation of the androgen receptor. We propose this mechanism could account for TES-stimulated cGMP production in microvessels and, ultimately, vasodilation.

  9. Peroxynitrite Mediates Testosterone-Induced Vasodilation of Microvascular Resistance Vessels

    PubMed Central

    Puttabyatappa, Yashoda; Stallone, John N.; Ergul, Adviye; El-Remessy, Azza B.; Kumar, Sanjiv; Black, Stephen; Johnson, Maribeth; Owen, Mary P.

    2013-01-01

    Our knowledge of how androgens influence the cardiovascular system is far from complete, and this lack of understanding is especially true of how androgens affect resistance vessels. Our aim was to identify the signaling mechanisms stimulated by testosterone (TES) in microvascular arteries and to understand how these mechanisms mediate TES-induced vasodilation. Mesenteric microvessels were isolated from male Sprague-Dawley rats. Tension studies demonstrated a rapid, concentration-dependent, vasodilatory response to TES that did not involve protein synthesis or aromatization to 17β-estradiol. Dichlorofluorescein fluorescence and nitrotyrosine immunoblot experiments indicated that TES stimulated peroxynitrite formation in microvessels, and functional studies demonstrated that TES-induced vasodilation was inhibited by scavenging peroxynitrite. As predicted, TES enhanced the production of both peroxynitrite precursors (i.e., superoxide and nitic oxide), and xanthine oxidase was identified as the likely source of TES-stimulated superoxide production. Functional and biochemical studies indicated that TES signaling involved activity of the phosphoinositide 3 (PI3) kinase-protein kinase B (Akt) cascade initiated by activation of the androgen receptor and culminated in enhanced production of cGMP and microvascular vasodilation. These findings, derived from a variety of analytical and functional approaches, provide evidence for a novel nongenomic signaling mechanism for androgen action in the microvasculature: TES-stimulated vasodilation mediated primarily by peroxynitrite formed from xanthine oxidase-generated superoxide and NO. This response was associated with activation of the PI3 kinase-Akt signaling cascade initiated by activation of the androgen receptor. We propose this mechanism could account for TES-stimulated cGMP production in microvessels and, ultimately, vasodilation. PMID:23318471

  10. The effect of peroxynitrite decomposition catalyst MnTBAP on aldehyde dehydrogenase-2 nitration by organic nitrates: role in nitrate tolerance.

    PubMed

    Mollace, Vincenzo; Muscoli, Carolina; Dagostino, Concetta; Giancotti, Luigino Antonio; Gliozzi, Micaela; Sacco, Iolanda; Visalli, Valeria; Gratteri, Santo; Palma, Ernesto; Malara, Natalia; Musolino, Vincenzo; Carresi, Cristina; Muscoli, Saverio; Vitale, Cristiana; Salvemini, Daniela; Romeo, Francesco

    2014-11-01

    Bioconversion of glyceryl trinitrate (GTN) into nitric oxide (NO) by aldehyde dehydrogenase-2 (ALDH-2) is a crucial mechanism which drives vasodilatory and antiplatelet effect of organic nitrates in vitro and in vivo. Oxidative stress generated by overproduction of free radical species, mostly superoxide anions and NO-derived peroxynitrite, has been suggested to play a pivotal role in the development of nitrate tolerance, though the mechanism still remains unclear. Here we studied the free radical-dependent impairment of ALDH-2 in platelets as well as vascular tissues undergoing organic nitrate ester tolerance and potential benefit when using the selective peroxynitrite decomposition catalyst Mn(III) tetrakis (4-Benzoic acid) porphyrin (MnTBAP). Washed human platelets were made tolerant to nitrates via incubation with GTN for 4h. This was expressed by attenuation of platelet aggregation induced by thrombin (40U/mL), an effect accompanied by GTN-related induction of cGMP levels in platelets undergoing thrombin-induced aggregation. Both effects were associated to attenuated GTN-induced nitrite formation in platelets supernatants and to prominent nitration of ALDH-2, the GTN to NO metabolizing enzyme, suggesting that GTN tolerance was associated to reduced NO formation via impairment of ALDH-2. These effects were all antagonized by co-incubation of platelets with MnTBAP, which restored GTN-induced responses in tolerant platelets. Comparable effect was found under in in vivo settings. Indeed, MnTBAP (10mg/kg, i.p.) significantly restored the hypotensive effect of bolus injection of GTN in rats made tolerants to organic nitrates via chronic administration of isosorbide-5-mononitrate (IS-5-MN), thus confirming the role of peroxynitrite overproduction in the development of tolerance to vascular responses induced by organic nitrates. In conclusion, oxidative stress subsequent to prolonged use of organic nitrates, which occurs via nitration of ALDH-2, represents a key event in GTN tolerance, an effect counteracted both in vitro and in vivo by novel peroxynitrite decomposition catalyst. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Pathophysiological roles of peroxynitrite in circulatory shock

    PubMed Central

    Szabó, Csaba; Módis, Katalin

    2014-01-01

    Summary Peroxynitrite is a reactive oxidant produced from nitric oxide (NO) and superoxide, which reacts with proteins, lipids and DNA and promotes cytotoxic and pro-inflammatory responses. Here we overview the role of peroxynitrite in various forms of circulatory shock. Immunohistochemical and biochemical evidence demonstrate the production of peroxynitrite in various experimental models of endotoxic and hemorrhagic shock, both in rodents and in large animals. In addition, biological markers of peroxynitrite have been identified in human tissues after circulatory shock. Peroxynitrite can initiate toxic oxidative reactions in vitro and in vivo. Initiation of lipid peroxidation, direct inhibition of mitochondrial respiratory chain enzymes, inactivation of glyceraldehyde-3-phosphate dehydrogenase, inhibition of membrane Na+/K+ ATP-ase activity, inactivation of membrane sodium channels, and other oxidative protein modifications contribute to the cytotoxic effect of peroxynitrite. In addition, peroxynitrite is a potent trigger of DNA strand breakage, with subsequent activation of the nuclear enzyme poly (ADP-ribose) polymerase (PARP), which promotes cellular energetic collapse and cellular necrosis. Additional actions of peroxynitrite that contribute to the pathogenesis of shock include inactivation of catecholamines and catecholamine receptors (leading to vascular failure), endothelial and epithelial injury (leading to endothelial and epithelial hyper-permeability and barrier dysfunction) as well as myocyte injury (contributing to loss of cardiac contractile function). Neutralization of peroxynitrite with potent peroxynitrite decomposition catalysts provides cytoprotective and beneficial effects in rodent and large animal models of circulatory shock. PMID:20523270

  12. Mitigation of NADPH Oxidase 2 Activity as a Strategy to Inhibit Peroxynitrite Formation*

    PubMed Central

    Zielonka, Jacek; Zielonka, Monika; VerPlank, Lynn; Cheng, Gang; Hardy, Micael; Ouari, Olivier; Ayhan, Mehmet Menaf; Podsiadły, Radosław; Sikora, Adam; Lambeth, J. David; Kalyanaraman, Balaraman

    2016-01-01

    Using high throughput screening-compatible assays for superoxide and hydrogen peroxide, we identified potential inhibitors of the NADPH oxidase (Nox2) isoform from a small library of bioactive compounds. By using multiple probes (hydroethidine, hydropropidine, Amplex Red, and coumarin boronate) with well defined redox chemistry that form highly diagnostic marker products upon reaction with superoxide (O2˙̄), hydrogen peroxide (H2O2), and peroxynitrite (ONOO−), the number of false positives was greatly decreased. Selected hits for Nox2 were further screened for their ability to inhibit ONOO− formation in activated macrophages. A new diagnostic marker product for ONOO− is reported. We conclude that the newly developed high throughput screening/reactive oxygen species assays could also be used to identify potential inhibitors of ONOO− formed from Nox2-derived O2˙̄ and nitric oxide synthase-derived nitric oxide. PMID:26839313

  13. Reactions of a Chromium(III)-Superoxo Complex and Nitric Oxide That Lead to the Formation of Chromium(IV)-Oxo and Chromium(III)-Nitrito Complexes

    PubMed Central

    Yokoyama, Atsutoshi; Cho, Kyung-Bin

    2013-01-01

    The reaction of an end-on Cr(III)-superoxo complex bearing a 14-membered tetraazamacrocyclic TMC ligand, [CrIII(14-TMC)(O2)(Cl)]+, with nitric oxide (NO) resulted in the generation of a stable Cr(IV)-oxo species, [CrIV(14-TMC)(O)(Cl)]+, via the formation of a Cr(III)-peroxynitrite intermediate and homolytic O-O bond cleavage of the peroxynitrite ligand. Evidence for the latter comes from EPR spectroscopy, computational chemistry, and the observation of phenol nitration chemistry. The Cr(IV)-oxo complex does not react with nitrogen dioxide (NO2), but reacts with NO to afford a Cr(III)-nitrito complex, [CrIII(14-TMC)(NO2)(Cl)]+. The Cr(IV)-oxo and Cr(III)-nitrito complexes were also characterized spectroscopically and/or structurally. PMID:24066924

  14. Magnolol attenuates the lung injury in hypertonic saline treatment from mesenteric ischemia reperfusion through diminishing iNOS.

    PubMed

    Shih, Hsin-Chin; Huang, Mu-Shun; Lee, Chen-Hsen

    2012-06-15

    Hypertonic saline (HTS) administration can decrease the inflammation following ischemia reperfusion. Magnolol is a potent antioxidant. The present study investigated whether combined treatment of magnolol and HTS could provide further protection in mesenteric ischemia reperfusion injury. Male C3H/HeOuJ mice were randomly segregated into the following groups: sham-operated (sham), vehicle treatment and mesenteric ischemia reperfusion (MSIR) (vehicle-treated), magnolol treatment and MSIR (magnolol-treated), HTS treatment and MSIR (HTS-treated), as well as co-administration of magnolol plus HTS and MSIR (combined-treated). In MSIR, mice were subjected to mesenteric ischemia for 60 min followed by reperfusion for 30 min. Lung injury was evaluated by lung edema (water ratio) and myeloperoxide (MPO) activity; RNA expression of inducible nitric oxide synthetase (iNOS), TNF-α, and IL-6 were assayed by real time RT-PCR. The formation of peroxynitrite in plasma was assayed by the peroxynitrite-dependent oxidation of dihydrorhodamine 123 (DHR 123) to rhodamine. Compared with those in the sham-treated group, lung edema and MPO activity, expressions of iNOS, TNF-α and IL-6, and plasma peroxynitrite were significantly increased in the vehicle-treated group. Significant attenuations of these parameters were found in the magnolol-treated or HTS-treated animals. Combined treatment of magnolol and HTS further suppressed the lung edema, iNOS, and TNF-α expressions, and plasma peroxynitrite, compared with the results of a single treatment of magnolol or HTS. Compared with single-agent use, co-administration of magnolol and HTS further decreases iNOS expression and plasma peroxynitrite as well as the degree of lung injury from MISR. These results may provide another treatment measure for post-injury immunomodulation. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Quercetin prevents protein nitration and glycolytic block of proliferation in hydrogen peroxide insulted cultured neuronal precursor cells (NPCs): Implications on CNS regeneration.

    PubMed

    Sajad, Mir; Zargan, Jamil; Zargar, Mohammad Afzal; Sharma, Jyoti; Umar, Sadiq; Arora, Rajesh; Khan, Haider A

    2013-05-01

    Survival along with optimal proliferation of neuronal precursors determines the outcomes of the endogenous cellular repair in CNS. Cellular-oxidation based cell death has been described in several neurodegenerative disorders. Therefore, this study was aimed at the identification of the potent targets of oxidative damage to the neuronal precursors and its effective prevention by a natural flavonoid, Quercetin. Neuronal precursor cells (NPCs), Nestin+ and GFAP (Glial fibrillary acidic protein)+ were isolated and cultured from adult rat SVZ (subventricular zone). These cells were challenged with a single dose of H2O2 (50μM) and/or pre-treated with different concentrations of Quercetin. H2O2 severely limited the cellular viability and expansion of the neurospheres. Cellular-oxidation studies revealed reduction in glutathione dependent redox buffering along with depletion of enzymatic cellular antioxidants that might potentiate the nitrite (NO2(-)) and superoxide anion (O2(-)) mediated peroxynitrite (ONOO(-)) formation and irreversible protein nitration. We identified depleted PK-M2 (M2 isoform of pyruvate kinase) activity and apoptosis of NPCs revealed by the genomic DNA fragmentation and elevated PARP (poly ADP ribose polymerase) activity along with increased Caspase activity initiated by severely depolarised mitochondrial membranes. However, the pre-treatment of Quercetin in a dose-response manner prevented these changes and restored the expansion of neurospheres preferably by neutralizing the oxidative conditions and thereby reducing peroxynitrite formation, protein nitration and PK-M2 depletion. Our results unravel the potential interactions of oxidative environment and respiration in the survival and activation of precursors and offer a promise shown by a natural flavonoid in the protective strategy for neuronal precursors of adult brain. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Effect of quercitrin gallate on zymosan A-induced peroxynitrite production in macrophages.

    PubMed

    Kim, Byung Hak; Cho, Sung-Min; Chang, Yoon Sook; Han, Sang Bae; Kim, Youngsoo

    2007-06-01

    We previously isolated quercetin 3-O-beta-(2"-galloyl)-rhamnopyranoside (QGR), a quercitrin gallate, from aerial parts of Persicaria lapathifolia (Polygonaceae) to prevent superoxide produc tion in monocytes from venous blood of healthy human donors. In this study, effects of QGR and its building moieties (quercitrin, quercetin and gallic acid) on the production of peroxyni trite, a coupling oxidant between superoxide and nitric oxide (NO) radicals, were investigated in zymosan A-stimulated macrophages RAW 264.7. The QGR, quercitrin and quercetin inhib ited peroxynitrite production in dose-dependent manners with IC50 values of 2.1 microM, 24.5 microM and 5.1 microM, respectively, but gallic acid even at 100 microM was inactive. QGR also inhibited both zymosan A- and phorbol 12-myristate 13-acetate-induced superoxide productions with IC50 values of 3.2 microM and 4.7 microM, respectively. However, QGR affected neither zymosan A-induced NO production nor inducible NO synthase synthesis. Taken together, QGR could inhibit peroxynitrite production by blocking superoxide production without affecting NO production. Finally, this study could provide a pharmacological potential of QGR in the oxidative stress-implicated disorders.

  17. Increasing the endogenous NO level causes catalase inactivation and reactivation of intercellular apoptosis signaling specifically in tumor cells

    PubMed Central

    Bauer, Georg

    2015-01-01

    Tumor cells generate extracellular superoxide anions and are protected against intercellular apoptosis-inducing HOCl- and NO/peroxynitrite signaling through the expression of membrane-associated catalase. This enzyme decomposes H2O2 and thus prevents HOCl synthesis. It efficiently interferes with NO/peroxynitrite signaling through oxidation of NO and decomposition of peroxynitrite. The regulatory potential of catalase at the crosspoint of ROS and RNS chemical biology, as well as its high local concentration on the outside of the cell membrane of tumor cells, establish tight control of intercellular signaling and thus prevent tumor cell apoptosis. Therefore, inhibition of catalase or its inactivation by singlet oxygen reactivate intercellular apoptosis-inducing signaling. Nitric oxide and peroxynitrite are connected with catalase in multiple and meaningful ways, as (i) NO can be oxidated by compound I of catalase, (ii) NO can reversibly inhibit catalase, (iii) peroxynitrite can be decomposed by catalase and (iv) the interaction between peroxynitrite and H2O2 leads to the generation of singlet oxygen that inactivates catalase. Therefore, modulation of the concentration of free NO through addition of arginine, inhibition of arginase, induction of NOS expression or inhibition of NO dioxygenase triggers an autoamplificatory biochemical cascade that is based on initial formation of singlet oxygen, amplification of superoxide anion/H2O2 and NO generation through singlet oxygen dependent stimulation of the FAS receptor and caspase-8. Finally, singlet oxygen is generated at sufficiently high concentration to inactivate protective catalase and to reactivate intercellular apoptosis-inducing ROS signaling. This regulatory network allows to establish several pathways for synergistic interactions, like the combination of modulators of NO metabolism with enhancers of superoxide anion generation, modulators of NO metabolism that act at different targets and between modulators of NO metabolism and direct catalase inhibitors. The latter aspect is explicitely studied for the interaction between catalase inhibiting acetylsalicylic acid and an NO donor. It is also shown that hybrid molecules like NO-aspirin utilize this synergistic potential. Our data open novel approaches for rational tumor therapy based on specific ROS signaling and its control in tumor cells. PMID:26342455

  18. Genotoxic effect and antigen binding characteristics of SLE auto-antibodies to peroxynitrite-modified human DNA.

    PubMed

    Khan, Md Asad; Alam, Khursheed; Mehdi, Syed Hassan; Rizvi, M Moshahid A

    2017-12-01

    Systemic lupus erythematosus (SLE) is an inflammatory autoimmune disease characterized by auto-antibodies against native deoxyribonucleic acid after modification and is one of the reasons for the development of SLE. Here, we have evaluated the structural perturbations in human placental DNA by peroxynitrite using spectroscopy, thermal denaturation and high-performance liquid chromatography (HPLC). Peroxynitrite is a powerful potent bi-functional oxidative/nitrative agent that is produced both endogenously and exogenously. In experimental animals, the peroxynitrite-modified DNA was found to be highly immunogenic. The induced antibodies showed cross-reactions with different types of DNA and nitrogen bases that were modified with peroxynitrite by inhibition ELISA. The antibody activity was inhibited by approximately 89% with its immunogen as the inhibitor. The antigen-antibodies interaction between induced antibodies with peroxynitrite-modified DNA showed retarded mobility as compared to the native form. Furthermore, significantly increased binding was also observed in SLE autoantibodies with peroxynitrite-modified DNA than native form. Moreover, DNA isolated from lymphocyte of SLE patients revealed significant recognition of anti-peroxynitrite-modified DNA immunoglobulin G (IgG). Our data indicates that DNA modified with peroxynitrite presents unique antigenic determinants that may induce autoantibody response in SLE. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Sensitive detection and estimation of cell-derived peroxynitrite fluxes using fluorescein-boronate.

    PubMed

    Rios, Natalia; Piacenza, Lucía; Trujillo, Madia; Martínez, Alejandra; Demicheli, Verónica; Prolo, Carolina; Álvarez, María Noel; López, Gloria V; Radi, Rafael

    2016-12-01

    The specific and sensitive detection of peroxynitrite (ONOO - /ONOOH) in biological systems is a great challenge due to its high reactivity towards several biomolecules. Herein, we validated the advantages of using fluorescein-boronate (Fl-B) as a highly sensitive fluorescent probe for the direct detection of peroxynitrite under biologically-relevant conditions in two different cell models. The synthesis of Fl-B was achieved by a very simply two-step conversion synthetic route with high purity (>99%) and overall yield (∼42%). Reactivity analysis of Fl-B with relevant biological oxidants including hydrogen peroxide (H 2 O 2 ), hypochlorous acid (HOCl) and peroxynitrite were performed. The rate constant for the reaction of peroxynitrite with Fl-B was 1.7×10 6 M -1 s -1 , a million times faster than the rate constant measured for H 2 O 2 (k=1.7M -1 s -1 ) and 2,700 faster than HOCl (6.2×10 2 M -1 s -1 ) at 37°C and pH 7.4. The reaction of Fl-B with peroxynitrite was significant even in the presence of physiological concentrations of CO 2 , a well-known peroxynitrite reactant. Experimental and simulated kinetic analyses confirm that the main oxidation process of Fl-B takes place with peroxynitrite itself via a direct bimolecular reaction and not with peroxynitrite-derived radicals. Fl-B was successfully applied for the detection of endogenously-generated peroxynitrite by endothelial cells and in macrophage-phagocyted parasites. Moreover, the generated data allowed estimating the actual intracellular flux of peroxynitrite. For instance, ionomycin-stimulated endothelial cells generated peroxynitrite at a rate of ∼ 0.1μMs -1 , while immunostimulated macrophages do so in the order of ∼1μMs -1 inside T. cruzi-infected phagosomes. Fl-B revealed not to be toxic in concentrations up to 1mM for 24h. Cellular peroxynitrite detection was achieved by conventional laboratory fluorescence-based methods including flow cytometry and epi-fluorescence microscopy. Fl-B was shown to be more sensitive than the coumarin boronate due to a higher molar absorption coefficient and quantum yield. Overall, our results show that Fl-B is a kinetically selective and highly sensitive probe for the direct detection of cell-derived peroxynitrite. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Boronate probes as diagnostic tools for real time monitoring of peroxynitrite and hydroperoxides

    PubMed Central

    Zielonka, Jacek; Sikora, Adam; Hardy, Micael; Joseph, Joy; Dranka, Brian P.; Kalyanaraman, Balaraman

    2012-01-01

    Boronates, a group of organic compounds, are emerging as one of the most effective probes for detecting and quantifying peroxynitrite, hypochlorous acid and hydrogen peroxide. Boronates react with peroxynitrite nearly a million times faster than with hydrogen peroxide. Boronate-containing fluorogenic compounds have been used to monitor real time generation of peroxynitrite in cells and for imaging hydrogen peroxide in living animals. This Perspective highlights potential applications of boronates and other fluorescent probes to high-throughput analyses of peroxynitrite and hydroperoxides in toxicological studies. PMID:22731669

  1. Poly(ADP-ribose) polymerase inhibition combined with irradiation: A dual treatment concept to prevent neointimal hyperplasia after endarterectomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beller, Carsten J.; Kosse, Jens; Radovits, Tamas

    2006-11-01

    Purpose: In a rat model of endarterectomy we investigated the potential role of the peroxynitrite-poly(ADP-ribose) polymerase (PARP) pathway in neointima formation and the effects of irradiation, pharmacologic inhibition of PARP, or combined pharmacologic inhibition of PARP and irradiation on vascular remodeling. Methods and Materials: Carotid endarterectomy was performed by incision of the left carotid artery with removal of intima in Sprague-Dawley rats. Six groups were studied: sham-operated rats (n = 10), control endarterectomized rats (n = 10), or endarterectomized rats irradiated with 15 Gy (n = 10), or treated with PARP inhibitor, INO-1001 (5 mg/kg/day) (n = 10), or withmore » combined treatment with INO-1001 and irradiation with 5 Gy (n = 10) or with 15 Gy (n = 10). After 21 days, neointima formation and vascular remodeling were assessed. Results: Neointima formation after endarterectomy was inhibited by postoperative irradiation with 15 Gy and was attenuated by PARP inhibition. However, in parallel to inhibition of neointimal hyperplasia, activation of the peroxynitrite-PARP pathway in the outer vessel wall layers was triggered by postoperative irradiation. Combined pharmacologic PARP inhibition and irradiation with 15 Gy significantly reduced both neointimal hyperplasia and activation of the peroxynitrite-PARP pathway in the outer vessel wall layers. Combination of PARP inhibition and irradiation with 5 Gy was less effective than both PARP inhibition or irradiation with 15 Gy alone. Conclusions: We conclude, that combined PARP inhibition and irradiation with 15 Gy may be a new dual strategy for prevention of restenosis after surgical vessel reconstruction: combining the strong antiproliferative effect of irradiation and ameliorating irradiation-induced side effects caused by excessive PARP activation.« less

  2. Pro-inflammatory cytokines downregulate Hsp27 and cause apoptosis of human retinal capillary endothelial cells.

    PubMed

    Nahomi, Rooban B; Palmer, Allison; Green, Katelyn M; Fort, Patrice E; Nagaraj, Ram H

    2014-02-01

    The formation of acellular capillaries in the retina, a hallmark feature of diabetic retinopathy, is caused by apoptosis of endothelial cells and pericytes. The biochemical mechanism of such apoptosis remains unclear. Small heat shock proteins play an important role in the regulation of apoptosis. In the diabetic retina, pro-inflammatory cytokines are upregulated. In this study, we investigated the effects of pro-inflammatory cytokines on small heat shock protein 27 (Hsp27) in human retinal endothelial cells (HREC). In HREC cultured in the presence of cytokine mixtures (CM), a significant downregulation of Hsp27 at the protein and mRNA level occurred, with no effect on HSF-1, the transcription factor for Hsp27. The presence of high glucose (25mM) amplified the effects of cytokines on Hsp27. CM activated indoleamine 2,3-dioxygenase (IDO) and enhanced the production of kynurenine and ROS. An inhibitor of IDO, 1-methyl tryptophan (MT), inhibited the effects of CM on Hsp27. CM also upregulated NOS2 and, consequently, nitric oxide (NO). A NOS inhibitor, L-NAME, and a ROS scavenger blocked the CM-mediated Hsp27 downregulation. While a NO donor in the culture medium did not decrease the Hsp27 content, a peroxynitrite donor and exogenous peroxynitrite did. The cytokines and high glucose-induced apoptosis of HREC were inhibited by MT and L-NAME. Downregulation of Hsp27 by a siRNA treatment promoted apoptosis in HREC. Together, these data suggest that pro-inflammatory cytokines induce the formation of ROS and NO, which, through the formation of peroxynitrite, reduce the Hsp27 content and bring about apoptosis of retinal capillary endothelial cells. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Beneficial effects of raxofelast (IRFI 016), a new hydrophilic vitamin E-like antioxidant, in carrageenan-induced pleurisy

    PubMed Central

    Cuzzocrea, Salvatore; Costantino, Giuseppina; Mazzon, Emanuela; Caputi, Achille P

    1999-01-01

    Peroxynitrite is a strong oxidant that results from reaction between NO and superoxide. It has been recently proposed that peroxynitrite plays a pathogenetic role in inflammatory processes. Here we have investigated the therapeutic efficacy of raxofelast, a new hydrophilic vitamin E-like antioxidant agent, in rats subjected to carrageenan-induced pleurisy. In vivo treatment with raxofelast (5, 10, 20 mg kg−1 intraperitoneally 5 min before carrageenan) prevented in a dose dependent manner carrageenan-induced pleural exudation and polymorphonuclear migration in rats subjected to carrageenan-induced pleurisy. Lung myeloperoxidase (MPO) activity and malondialdehyde (MDA) levels, as well as histological organ injury were significantly reduced by raxofelast. Immunohistochemical analysis for nitrotyrosine, a footprint of peroxynitrite, revealed a positive staining in lungs from carrageenan-treated rats. No positive nitrotyrosine staining was found in the lungs of the carrageenan-treated rats, which received raxofelast (20 mg kg−1) treatment. Furthermore, in vivo raxofelast (5, 10, 20 mg kg−1) treatment significantly reduced peroxynitrite formation as measured by the oxidation of the fluorescent dihydrorhodamine 123, prevented the appearance of DNA damage, the decrease in mitochondrial respiration and partially restored the cellular level of NAD+ in ex vivo macrophages harvested from the pleural cavity of rats subjected to carrageenan-induced pleurisy. In conclusion, our study demonstrates that raxofelast, a new hydrophilic vitamin E-like antioxidant agent, exerts multiple protective effects in carrageenan-induced acute inflammation. PMID:10077232

  4. Thiol oxidation by nitrosative stress: Cellular localization in human spermatozoa.

    PubMed

    Cabrillana, María E; Uribe, Pamela; Villegas, Juana V; Álvarez, Juan; Sánchez, Raúl; Fornés, Miguel W

    2016-10-01

    Peroxynitrite is a highly reactive nitrogen species and when it is generated at high levels it causes nitrosative stress, an important cause of impaired sperm function. High levels of peroxynitrite have been shown to correlate with decreased semen quality in infertile men. Thiol groups in sperm are mainly found in enzymes, antioxidant molecules, and structural proteins in the axoneme. Peroxynitrite primarily reacts with thiol groups of cysteine-containing proteins. Although it is well known that peroxynitrite oxidizes sulfhydryl groups in sperm, the subcellular localization of this oxidation remains unknown. The main objective of this study was to establish the subcellular localization of peroxynitrite-induced nitrosative stress in thiol groups and its relation to sperm motility in human spermatozoa. For this purpose, spermatozoa from healthy donors were exposed in vitro to 3-morpholinosydnonimine (SIN-1), a compound which generates peroxynitrite. In order to detect peroxynitrite and reduced thiol groups, the fluorescent probes, dihydrorhodamine 123 and monobromobimane (mBBr), were used respectively. Sperm viability was analyzed by propidium iodide staining. Peroxynitrite generation and thiol redox state were monitored by confocal microscopy whereas sperm viability was evaluated by flow cytometry. Sperm motility was analyzed by CASA using the ISAS(®) system. The results showed that exposure of human spermatozoa to peroxynitrite results in increased thiol oxidation which is mainly localized in the sperm head and principal piece regions. Thiol oxidation was associated with motility loss. The high susceptibility of thiol groups to peroxynitrite-induced oxidation could explain, at least in part, the negative effect of reactive nitrogen species on sperm motility. DHR: dihydrorhodamine 123; mBBr: monobromobimane ONOO(-): peroxynitrite RNS: reactive nitrogen species RFI: relative fluorescence intensity SIN-1: 3-morpholinosydnonimine CASA: Computer-Aided Sperm Analysis PARP: poli ADP ribose polimerasa VCL: curvilinear velocity VSL: straight-line velocity VAP: average path velocity PRDXs: peroxiredoxins ODF: outer dense fiber ODF1: outer dense fiber 1 PI: propidium iodide DMSO: dimethyl sulfoxide SD: standard deviation analysis of variance.

  5. Heme oxygenase-1 induction improves ischemic renal failure: role of nitric oxide and peroxynitrite.

    PubMed

    Salom, Miguel G; Cerón, Susana Nieto; Rodriguez, Francisca; Lopez, Bernardo; Hernández, Isabel; Martínez, José Gil; Losa, Adoración Martínez; Fenoy, Francisco J

    2007-12-01

    The present study evaluated the effects of heme oxygenase-1 (HO-1) induction on the changes in renal outer medullary nitric oxide (NO) and peroxynitrite levels during 45-min renal ischemia and 30-min reperfusion in anesthetized rats. Glomerular filtration rate (GFR), outer medullary blood flow (OMBF), HO and nitric oxide synthase (NOS) isoform expression, and renal low-molecular-weight thiols (-SH) were also determined. During ischemia significant increases in NO levels and peroxynitrite signal were observed (from 832.1 +/- 129.3 to 2,928.6 +/- 502.0 nM and from 3.8 +/- 0.7 to 9.0 +/- 1.6 nA before and during ischemia, respectively) that dropped to preischemic levels during reperfusion. OMBF and -SH significantly decreased after 30 min of reperfusion. Twenty-four hours later, an acute renal failure was observed (GFR 923.0 +/- 66.0 and 253.6 +/- 55.3 microl.min(-1).g kidney wt(-1) in sham-operated and ischemic kidneys, respectively; P < 0.05). The induction of HO-1 (CoCl(2) 60 mg/kg sc, 24 h before ischemia) decreased basal NO concentration (99.7 +/- 41.0 nM), although endothelial and neuronal NOS expression were slightly increased. CoCl(2) administration also blunted the ischemic increase in NO and peroxynitrite (maximum values of 1,315.6 +/- 445.6 nM and 6.3 +/- 0.5 nA, respectively; P < 0.05), preserving postischemic OMBF and GFR (686.4 +/- 45.2 microl.min(-1).g kidney wt(-1)). These beneficial effects of CoCl(2) on ischemic acute renal failure seem to be due to HO-1 induction, because they were abolished by stannous mesoporphyrin, a HO inhibitor. In conclusion, HO-1 induction has a protective effect on ischemic renal failure that seems to be partially mediated by decreasing the excessive production of NO with the subsequent reduction in peroxynitrite formation observed during ischemia.

  6. Reactions of peroxynitrite with cocoa procyanidin oligomers.

    PubMed

    Arteel, G E; Schroeder, P; Sies, H

    2000-08-01

    Peroxynitrite is a mediator molecule in inflammation, and its biological properties are being studied extensively. Flavonoids, which are natural plant constituents, protect against peroxynitrite and thereby could play an anti-inflammatory role. Procyanidin oligomers of different sizes (monomer through nonamer), isolated from the seeds of Theobroma cacao, were recently examined for their ability to protect against peroxynitrite-dependent oxidation of dihydrorhodamine 123 and nitration of tyrosine and were found to be effective in attenuating these reactions. The tetramer was particularly efficient at protecting against oxidation and nitration reactions. Epicatechin oligomers found in cocoa powder and chocolate may be a potent dietary source for defense against peroxynitrite.

  7. Antioxidant potential of Aesculus hippocastanum extract and escin against reactive oxygen and nitrogen species.

    PubMed

    Vašková, J; Fejerčáková, A; Mojžišová, G; Vaško, L; Patlevič, P

    2015-01-01

    Antioxidant, anti-inflammatory and venoconstrictor properties have been attributed to extracts from Aesculus hippocastanum. These unusual and diverse properties may be possibly basically linked with ability to scavenge free radicals. The scavenging capacity of dry horse chestnut extract of and escin have been investigated in vitro against superoxide anion radicals, hydroxyl radicals, nitrites and peroxynitrite. In general, the activity of the whole extract against superoxide radicals did not exceed 15% at pH 7.4, but the highest inhibition (46.11%) was recorded against hydroxyl radicals at a concentration of 100 µg.ml-1; however, the activity against other radicals was lower. Escin demonstrated a better ability to counteract nitric oxide oxidation products, nitrites. However, the efficiency of the whole extract completely disappeared as the concentration increased. Both extracts showed very low activity towards peroxynitrite. Escin was even able to induce peroxynitrite formation at the lower concentrations used. Whole extract showed better antiradical properties compared to its main active ingredient, escin, probably due to potential synergistic interaction with a mixture of compounds present in the plant extract. These findings can be the basis of both the presentation of side-effects and the persistence of disease in spite of ongoing treatment.

  8. [Peroxynitrite effect on the haemoglobin oxygen affinity in vitro in presence of different partial pressure of carbon dioxide].

    PubMed

    Stepuro, T L; Zinchuk, V V

    2011-08-01

    Peroxynitrite (ONOO-) besides its toxic possesses regulatory action that includes the modulation of oxygen binding properties of blood. The aim of this work was to estimate ONOO- effect on the haemoglobin oxygen affinity (HOA) in vitro in presence of different partial pressure of carbon dioxide (CO2). The ONOO- presence in venous blood in conditions of hypercapnia induced oxyhaemoglobin dissociation curve shift leftward while in hypocapnic conditions the result of a different character was obtained. The revealed effect of ONOO- is realized, possibly, through various modifications ofhaemoglobin whose formation is dependent on the CO2 pressure. The ONOO- influences the HOA in different manner that can be important in regulation of blood oxygenation in lungs and maintenance of oxygen consumption in tissues.

  9. Increasing the endogenous NO level causes catalase inactivation and reactivation of intercellular apoptosis signaling specifically in tumor cells.

    PubMed

    Bauer, Georg

    2015-12-01

    Tumor cells generate extracellular superoxide anions and are protected against intercellular apoptosis-inducing HOCl- and NO/peroxynitrite signaling through the expression of membrane-associated catalase. This enzyme decomposes H2O2 and thus prevents HOCl synthesis. It efficiently interferes with NO/peroxynitrite signaling through oxidation of NO and decomposition of peroxynitrite. The regulatory potential of catalase at the crosspoint of ROS and RNS chemical biology, as well as its high local concentration on the outside of the cell membrane of tumor cells, establish tight control of intercellular signaling and thus prevent tumor cell apoptosis. Therefore, inhibition of catalase or its inactivation by singlet oxygen reactivate intercellular apoptosis-inducing signaling. Nitric oxide and peroxynitrite are connected with catalase in multiple and meaningful ways, as (i) NO can be oxidated by compound I of catalase, (ii) NO can reversibly inhibit catalase, (iii) peroxynitrite can be decomposed by catalase and (iv) the interaction between peroxynitrite and H2O2 leads to the generation of singlet oxygen that inactivates catalase. Therefore, modulation of the concentration of free NO through addition of arginine, inhibition of arginase, induction of NOS expression or inhibition of NO dioxygenase triggers an autoamplificatory biochemical cascade that is based on initial formation of singlet oxygen, amplification of superoxide anion/H2O2 and NO generation through singlet oxygen dependent stimulation of the FAS receptor and caspase-8. Finally, singlet oxygen is generated at sufficiently high concentration to inactivate protective catalase and to reactivate intercellular apoptosis-inducing ROS signaling. This regulatory network allows to establish several pathways for synergistic interactions, like the combination of modulators of NO metabolism with enhancers of superoxide anion generation, modulators of NO metabolism that act at different targets and between modulators of NO metabolism and direct catalase inhibitors. The latter aspect is explicitely studied for the interaction between catalase inhibiting acetylsalicylic acid and an NO donor. It is also shown that hybrid molecules like NO-aspirin utilize this synergistic potential. Our data open novel approaches for rational tumor therapy based on specific ROS signaling and its control in tumor cells. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Pure MnTBAP selectively scavenges peroxynitrite over superoxide: Comparison of pure and commercial MnTBAP samples to MnTE-2-PyP in two different models of oxidative stress injuries, SOD-specific E. coli model and carrageenan-induced pleurisy

    PubMed Central

    Batinić-Haberle, Ines; Cuzzocrea, Salvatore; Rebouças, Júlio S.; Ferrer-Sueta, Gerardo; Mazzon, Emanuela; Di Paola, Rosanna; Radi, Rafael; Spasojević, Ivan; Benov, Ludmil; Salvemini, Daniela

    2009-01-01

    MnTBAP is often referred to as an SOD mimic in numerous models of oxidative stress. We have recently reported that pure MnTBAP does not dismute superoxide, but commercial/ill-purified samples are able to perform O2•− dismutation with low-to-moderate efficacy via non-innocent Mn-containing impurities. Herein, we show that neither commercial nor pure MnTBAP could substitute for SOD enzyme in the SOD-deficient E. coli model, while MnTE-2-PyP-treated SOD-deficient E. coli grew as well as wild-type strain. This SOD-specific system indicates that MnTBAP does not act as an SOD mimic in vivo. In another model, carrageenan-induced pleurisy in mice, inflammation was evidenced by increased pleural fluid exudate, and neutrophil infiltration and activation: these events were blocked by 0.3 mg/kg of MnTE-2-PyP and to a slightly lesser extent with 10 mg/kg of MnTBAP. Also, 3-nitrotyrosine formation, an indication of the peroxynitrite existence in vivo, was blocked by both compounds; again MnTE-2-PyP was 33-fold more effective. Pleurisy model data indicate that MnTBAP exert some protective actions in common with MnTE-2-PyP, which are not O2•−-related, and can be fully rationalized if one considers that the common biological role shared by MnTBAP and MnTE-2-PyP is related to their reduction of peroxynitrite and carbonate radical, the latter arising from ONOO− adduct with CO2. The log kcat (O2•−) value for MnTBAP is estimated to be about 3.16, which is ~5 and ~7 orders of magnitude smaller than the SOD activity of the potent SOD mimic MnTE-2-PyP and Cu, Zn-SOD, respectively. This very low value indicates that MnTBAP is very inefficient in dismuting superoxide to be of any biological impact, which was confirmed in the SOD-deficient E. coli model. Peroxynitrite scavenging ability of MnTBAP, however, is only ~2.5 orders of magnitude smaller than that of MnTE-2-PyP and is not significantly affected by the presence of the SOD-active impurities in commercial MnTBAP sample (log kred(ONOO−) = 5.06 for pure and 4.97 for commercial sample). The reduction of carbonate radical is equally fast with MnTBAP and MnTE-2-PyP. The dose of MnTBAP required to yield oxidative stress protection and block nitrotyrosine formation in the pleurisy model is >1.5 orders of magnitude higher than that of MnTE-2-PyP, which could be related to the smaller ability of MnTBAP to scavenge peroxynitrite. The slightly better protection observed with the commercial MnTBAP sample (relative to the pure MnTBAP one) could arise from its impurities, which, by scavenging O2•−, reduce consequently the overall peroxynitrite, and secondary ROS/RNS levels. These observations have profound biological repercussions as they may suggest that the effect of MnTBAP observed in numerous studies may conceivably relate to peroxynitrite scavenging. Moreover, provided that pure MnTBAP is unable to dismute superoxide at any significant extent, but is able to partially scavenge peroxynitrite and carbonate radical, this compound may prove valuable to distinguish ONOO−/CO3•− from O2•− pathways. PMID:19007878

  11. Changes in IP3 Receptor Expression and Function in Aortic Smooth Muscle of Atherosclerotic Mice

    PubMed Central

    Ewart, Marie-Ann; Ugusman, Azizah; Vishwanath, Anisha; Almabrouk, Tarek A.M.; Alganga, Husam; Katwan, Omar J.; Hubanova, Pavlina; Currie, Susan; Kennedy, Simon

    2017-01-01

    Peroxynitrite is an endothelium-independent vasodilator that induces relaxation via membrane hyperpolarization. The activation of IP3 receptors triggers the opening of potassium channels and hyperpolarization. Previously we found that relaxation to peroxynitrite was maintained during the development of atherosclerosis due to changes in the expression of calcium-regulatory proteins. In this study we investigated: (1) the mechanism of peroxynitrite-induced relaxation in the mouse aorta, (2) the effect of atherosclerosis on relaxation to peroxynitrite and other vasodilators, and (3) the effect of atherosclerosis on the expression and function of the IP3 receptor. Aortic function was studied using wire myography, and atherosclerosis was induced by fat-feeding ApoE−/− mice. The expression of IP3 receptors was studied using Western blotting and immunohistochemistry. Relaxation to peroxynitrite was attenuated by the IP3 antagonists 2-APB and xestospongin C and also the Kv channel blocker 4-aminopyridine (4-AP). Atherosclerosis attenuated vasodilation to cromakalim and the AMPK activator A769662 but not peroxynitrite. Relaxation was attenuated to a greater extent by 2-APB in atherosclerotic aortae despite the reduced expression of IP3 receptors. 4-AP was less effective in ApoE−/− mice fat-fed for 4 months. Peroxynitrite relaxation involves an IP3-induced calcium release and KV channel activation. This mechanism becomes less important as atherosclerosis develops, and relaxation to peroxynitrite may be maintained by increased calcium extrusion. PMID:28365690

  12. A multipumping flow system for in vitro screening of peroxynitrite scavengers.

    PubMed

    Ribeiro, Marta F T; Dias, Ana C B; Santos, João L M; Fernandes, Eduarda; Lima, José L F C; Zagatto, Elias A G

    2007-09-01

    Peroxynitrite anion is a reactive nitrogen species formed in vivo by the rapid, controlled diffusion reaction between nitric oxide and superoxide radicals. By reacting with several biological molecules, peroxynitrite may cause important cellular and tissue deleterious effects, which have been associated with many diseases. In this work, an automated flow-based procedure for the in vitro generation of peroxynitrite and subsequent screening of the scavenging activity of selected compounds is developed. This procedure involves a multipumping flow system (MPFS) and exploits the ability of compounds such as lipoic acid, dihydrolipoic acid, cysteine, reduced glutathione, oxidized glutathione, sulindac, and sulindac sulfone to inhibit the chemiluminescent reaction of luminol with peroxynitrite under physiological simulated conditions. Peroxynitrite was generated in the MPFS by the online reaction of acidified hydrogen peroxide with nitrite, followed by a subsequent stabilization by merging with a sodium hydroxide solution to rapidly quench the developing reaction. The pulsed flow and the timed synchronized insertion of sample and reagent solutions provided by the MPFS ensure the establishment of the reaction zone only inside the flow cell, thus allowing maximum chemiluminescence emission detection. The results obtained for the assayed compounds show that, with the exception of oxidized glutathione, all are highly potent scavengers of peroxynitrite at the studied concentrations.

  13. Gelam Honey Scavenges Peroxynitrite During the Immune Response

    PubMed Central

    Kassim, Mustafa; Mansor, Marzida; Suhaimi, Anwar; Ong, Gracie; Yusoff, Kamaruddin Mohd

    2012-01-01

    Monocytes and macrophages are part of the first-line defense against bacterial, fungal, and viral infections during host immune responses; they express high levels of proinflammatory cytokines and cytotoxic molecules, including nitric oxide, reactive oxygen species, and their reaction product peroxynitrite. Peroxynitrite is a short-lived oxidant and a potent inducer of cell death. Honey, in addition to its well-known sweetening properties, is a natural antioxidant that has been used since ancient times in traditional medicine. We examined the ability of Gelam honey, derived from the Gelam tree (Melaleuca spp.), to scavenge peroxynitrite during immune responses mounted in the murine macrophage cell line RAW 264.7 when stimulated with lipopolysaccharide/interferon-γ (LPS/IFN-γ) and in LPS-treated rats. Gelam honey significantly improved the viability of LPS/IFN-γ-treated RAW 264.7 cells and inhibited nitric oxide production—similar to the effects observed with an inhibitor of inducible nitric oxide synthase (1400W). Furthermore, honey, but not 1400W, inhibited peroxynitrite production from the synthetic substrate 3-morpholinosydnonimine (SIN-1) and prevented the peroxynitrite-mediated conversion of dihydrorhodamine 123 to its fluorescent oxidation product rhodamine 123. Honey inhibited peroxynitrite synthesis in LPS-treated rats. Thus, honey may attenuate inflammatory responses that lead to cell damage and death, suggesting its therapeutic uses for several inflammatory disorders. PMID:23109904

  14. The peroxynitrite catalyst WW-85 improves pulmonary function in ovine septic shock.

    PubMed

    Maybauer, Dirk M; Maybauer, Marc O; Szabó, Csaba; Cox, Robert A; Westphal, Martin; Kiss, Levente; Horvath, Eszter M; Traber, Lillian D; Hawkins, Hal K; Salzman, Andrew L; Southan, Garry J; Herndon, David N; Traber, Daniel L

    2011-02-01

    Systemic inflammatory response syndrome is associated with excessive production of nitric oxide (NO·) and superoxide (O2), forming peroxynitrite, which in turn, acts as a terminal mediator of cellular injury by producing cell necrosis and apoptosis. We examined the effect of the peroxynitrite decomposition catalyst, WW-85, in a sheep model of acute lung injury and septic shock. Eighteen sheep were operatively prepared and randomly allocated to the sham, control, or WW-85 group (n = 6 each). After a tracheotomy, acute lung injury was produced in the control and WW-85 groups by insufflation of four sets of 12 breaths of cotton smoke. Then, a 30-mL suspension of live Pseudomonas aeruginosa bacteria (containing 2 - 5 × 10¹¹ colony-forming units) was instilled into the lungs according to an established protocol. The sham group received only the vehicle (30 mL saline). The sheep were studied in awake state for 24 h and ventilated with 100% oxygen. WW-85 was administered 1 h after injury as bolus infusion (0.1 mg/kg), followed by a continuous infusion of 0.02 mg·kg⁻¹·h⁻¹ until the end of the 24-h experimental period. Compared with injured but untreated controls, WW-85-treated animals had significantly improved gas exchange, reductions in airway obstruction, shunt formation, lung myeloperoxidase concentrations, lung malondialdehyde concentrations, lung 3-nitrotyrosine concentrations, and plasma nitrate-to-nitrite levels. Animals treated with WW-85 exhibited less microvascular leakage and improvements in pulmonary function. These results provide evidence that blockade of the nitric oxide-peroxynitrite pathway improves disturbances from septic shock, as demonstrated in a clinically relevant ovine experimental model.

  15. Inhibition of plasma lipid oxidation induced by peroxyl radicals, peroxynitrite, hypochlorite, 15-lipoxygenase, and singlet oxygen by clinical drugs.

    PubMed

    Morita, Mayuko; Naito, Yuji; Yoshikawa, Toshikazu; Niki, Etsuo

    2016-11-15

    With increasing evidence showing the involvement of oxidative stress in the pathogenesis of various diseases, the effects of clinical drugs possessing antioxidant functions have received much attention. The unregulated oxidative modification of biological molecules leading to diseases is mediated by multiple oxidants including free radicals, peroxynitrite, hypochlorite, lipoxygenase, and singlet oxygen. The capacity of antioxidants to scavenge or quench oxidants depends on the nature of oxidants. In the present study, the antioxidant effects of several clinical drugs against plasma lipid oxidation induced by the aforementioned five kinds of oxidants were investigated from the production of lipid hydroperoxides, which have been implicated in the pathogenesis of various diseases. Troglitazone acted as a potent peroxyl radical scavenger, whereas probucol and edaravone showed only moderate reactivity and carvedilol, pentoxifylline, and ebselen did not act as radical scavenger. Probucol and edaravone suppressed plasma oxidation mediated by peroxynitrite and hypochlorite. Troglitazone and edaravone inhibited 15-lipoxygenase mediated plasma lipid oxidation, the IC 50 being 20 and 34μM respectively. None of the drugs used in this study suppressed plasma lipid oxidation by singlet oxygen. This study shows that the antioxidant effects of drugs depend on the nature of oxidants and that antioxidants against multiple oxidants are required to cope with oxidative stress in vivo. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Structural and Molecular Basis of the Peroxynitrite-mediated Nitration and Inactivation of Trypanosoma cruzi Iron-Superoxide Dismutases (Fe-SODs) A and B

    PubMed Central

    Martinez, Alejandra; Peluffo, Gonzalo; Petruk, Ariel A.; Hugo, Martín; Piñeyro, Dolores; Demicheli, Verónica; Moreno, Diego M.; Lima, Analía; Batthyány, Carlos; Durán, Rosario; Robello, Carlos; Martí, Marcelo A.; Larrieux, Nicole; Buschiazzo, Alejandro; Trujillo, Madia; Radi, Rafael; Piacenza, Lucía

    2014-01-01

    Trypanosoma cruzi, the causative agent of Chagas disease, contains exclusively iron-dependent superoxide dismutases (Fe-SODs) located in different subcellular compartments. Peroxynitrite, a key cytotoxic and oxidizing effector biomolecule, reacted with T. cruzi mitochondrial (Fe-SODA) and cytosolic (Fe-SODB) SODs with second order rate constants of 4.6 ± 0.2 × 104 m−1 s−1 and 4.3 ± 0.4 × 104 m−1 s−1 at pH 7.4 and 37 °C, respectively. Both isoforms are dose-dependently nitrated and inactivated by peroxynitrite. Susceptibility of T. cruzi Fe-SODA toward peroxynitrite was similar to that reported previously for Escherichia coli Mn- and Fe-SODs and mammalian Mn-SOD, whereas Fe-SODB was exceptionally resistant to oxidant-mediated inactivation. We report mass spectrometry analysis indicating that peroxynitrite-mediated inactivation of T. cruzi Fe-SODs is due to the site-specific nitration of the critical and universally conserved Tyr35. Searching for structural differences, the crystal structure of Fe-SODA was solved at 2.2 Å resolution. Structural analysis comparing both Fe-SOD isoforms reveals differences in key cysteines and tryptophan residues. Thiol alkylation of Fe-SODB cysteines made the enzyme more susceptible to peroxynitrite. In particular, Cys83 mutation (C83S, absent in Fe-SODA) increased the Fe-SODB sensitivity toward peroxynitrite. Molecular dynamics, electron paramagnetic resonance, and immunospin trapping analysis revealed that Cys83 present in Fe-SODB acts as an electron donor that repairs Tyr35 radical via intramolecular electron transfer, preventing peroxynitrite-dependent nitration and consequent inactivation of Fe-SODB. Parasites exposed to exogenous or endogenous sources of peroxynitrite resulted in nitration and inactivation of Fe-SODA but not Fe-SODB, suggesting that these enzymes play distinctive biological roles during parasite infection of mammalian cells. PMID:24616096

  17. Protection against peroxynitrite by cocoa polyphenol oligomers.

    PubMed

    Arteel, G E; Sies, H

    1999-11-26

    Flavonoids, natural plant constituents, protect against peroxynitrite and can thereby play a role in defense against this mediator of inflammation. Procyanidin oligomers of different size (monomer through nonamer), isolated from the seeds of Theobroma cacao, were examined for their ability to protect against peroxynitrite-dependent oxidation of dihydrorhodamine 123 and nitration of tyrosine. By molarity, oligomers were more effective than the monomeric epicatechin; the tetramer was particularly efficient at protecting against oxidation and nitration reactions. These results suggest that epicatechin oligomers found in cocoa powder and chocolate may be a potent dietary source for defense against peroxynitrite.

  18. Cardiolipin modulates allosterically peroxynitrite detoxification by horse heart cytochrome c

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ascenzi, Paolo, E-mail: ascenzi@uniroma3.it; Ciaccio, Chiara; Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, I-70126 Bari

    2011-01-07

    Research highlights: {yields} Cardiolipin binding to cytochrome c. {yields} Cardiolipin-dependent peroxynitrite isomerization by cytochrome c. {yields} Cardiolipin-cytochrome c complex plays pro-apoptotic effects. {yields} Cardiolipin-cytochrome c complex plays anti-apoptotic effects. -- Abstract: Upon interaction with bovine heart cardiolipin (CL), horse heart cytochrome c (cytc) changes its tertiary structure disrupting the heme-Fe-Met80 distal bond, reduces drastically the midpoint potential out of the range required for its physiological role, binds CO and NO with high affinity, and displays peroxidase activity. Here, the effect of CL on peroxynitrite isomerization by ferric cytc (cytc-Fe(III)) is reported. In the absence of CL, hexa-coordinated cytc does notmore » catalyze peroxynitrite isomerization. In contrast, CL facilitates cytc-Fe(III)-mediated isomerization of peroxynitrite in a dose-dependent fashion inducing the penta-coordination of the heme-Fe(III)-atom. The value of the second order rate constant for CL-cytc-Fe(III)-mediated isomerization of peroxynitrite (k{sub on}) is (3.2 {+-} 0.4) x 10{sup 5} M{sup -1} s{sup -1}. The apparent dissociation equilibrium constant for CL binding to cytc-Fe(III) is (5.1 {+-} 0.8) x 10{sup -5} M. These results suggest that CL-cytc could play either pro-apoptotic or anti-apoptotic effects facilitating lipid peroxidation and scavenging of reactive nitrogen species, such as peroxynitrite, respectively.« less

  19. Peroxynitrite-induced structural perturbations in human IgG: A physicochemical study.

    PubMed

    Arfat, Mir Yasir; Arif, Zarina; Chaturvedi, Sumit Kumar; Moinuddin; Alam, Khursheed

    2016-08-01

    IgG is an important defence protein. To exhibit optimum function the molecule must maintain its native structure. Peroxynitrite is a potent oxidizing and nitrating agent produced in vivo under pathophysiological conditions. It can oxidize and/or nitrate various amino acids causing changes in the structure and function of proteins. Such proteins may be involved in the pathogenesis of many inflammatory diseases, including rheumatoid arthritis. In the present work, peroxynitrite-induced structural changes in IgG have been studied by UV-visible, fluorescence, CD, FT-IR, DLS spectroscopy and DSC as well as by SDS-PAGE. Peroxynitrite-modified IgG exhibited hyperchromicity at 280 nm, quenching of tryptophan fluorescence, increase in ANS fluorescence, loss of β-sheet, shift in the positions of amide I and amide II bands, appearance of new peak in FT-IR, attachment of nitro residues and increase in melting temperature, compared to native IgG. Furthermore, peroxynitrite-modified IgG exhibited an additional peak at 420 nm, quenching in tyrosine fluorescence and enhancement in dityrosine fluorescence compared to native IgG. Generation of nitrotyrosine, dityrosine and nitrotryptophan was also observed in peroxynitrite-modified IgG. Gross structural changes in IgG caused by peroxynitrite and observed in vitro may favour autoantibodies induction in vivo under similar conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Highly efficient and stable catalyst for peroxynitrite decomposition

    Treesearch

    Yurii V. Geletii; Alan J. Bailey; Jennifer J. Cowan; Ira A. Weinstock; Craig L. Hill

    2001-01-01

    The new cobalt substituted-polyoxometalate K7[CoAlW11O39]•15H2O and the simple CoCl2•6H2O salt are efficient catalysts for peroxynitrite decomposition. These compounds also catalyze the oxidation of ascorbic acid and the nitration of phenol by peroxynitrite.

  1. Nitric Oxide and Peroxynitrite in Health and Disease

    PubMed Central

    PACHER, PÁL; BECKMAN, JOSEPH S.; LIAUDET, LUCAS

    2008-01-01

    The discovery that mammalian cells have the ability to synthesize the free radical nitric oxide (NO) has stimulated an extraordinary impetus for scientific research in all the fields of biology and medicine. Since its early description as an endothelial-derived relaxing factor, NO has emerged as a fundamental signaling device regulating virtually every critical cellular function, as well as a potent mediator of cellular damage in a wide range of conditions. Recent evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion. Peroxynitrite interacts with lipids, DNA, and proteins via direct oxidative reactions or via indirect, radical-mediated mechanisms. These reactions trigger cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. In vivo, peroxynitrite generation represents a crucial pathogenic mechanism in conditions such as stroke, myocardial infarction, chronic heart failure, diabetes, circulatory shock, chronic inflammatory diseases, cancer, and neurodegenerative disorders. Hence, novel pharmacological strategies aimed at removing peroxynitrite might represent powerful therapeutic tools in the future. Evidence supporting these novel roles of NO and peroxynitrite is presented in detail in this review. PMID:17237348

  2. S-nitrosoglutathione reduces tau hyper-phosphorylation and provides neuroprotection in rat model of chronic cerebral hypoperfusion.

    PubMed

    Won, Je-Seong; Annamalai, Balasubramaniam; Choi, Seungho; Singh, Inderjit; Singh, Avtar K

    2015-10-22

    We have previously reported that treatment of rats subjected to permanent bilateral common carotid artery occlusion (pBCCAO), a model of chronic cerebral hypoperfusion (CCH), with S-nitrosoglutathione (GSNO), an endogenous nitric oxide carrier, improved cognitive functions and decreased amyloid-β accumulation in the brains. Since CCH has been implicated in tau hyperphosphorylation induced neurodegeneration, we investigated the role of GSNO in regulation of tau hyperphosphorylation in rat pBCCAO model. The rats subjected to pBCCAO had a significant increase in tau hyperphosphorylation with increased neuronal loss in hippocampal/cortical areas. GSNO treatment attenuated not only the tau hyperphosphorylation, but also the neurodegeneration in pBCCAO rat brains. The pBCCAO rat brains also showed increased activities of GSK-3β and Cdk5 (major tau kinases) and GSNO treatment significantly attenuated their activities. GSNO attenuated the increased calpain activities and calpain-mediated cleavage of p35 leading to production of p25 and aberrant Cdk5 activation. In in vitro studies using purified calpain protein, GSNO treatment inhibited calpain activities while 3-morpholinosydnonimine (a donor of peroxynitrite) treatment increased its activities, suggesting the opposing role of GSNO vs. peroxynitrite in regulation of calpain activities. In pBCCAO rat brains, GSNO treatment attenuated the expression of inducible nitric oxide synthase (iNOS) expression and also reduced the brain levels of nitro-tyrosine formation, thereby indicating the protective role of GSNO in iNOS/nitrosative-stress mediated calpain/tau pathologies under CCH conditions. Taken together with our previous report, these data support the therapeutic potential of GSNO, a biological NO carrier, as a neuro- and cognitive-protective agent under conditions of CCH. Published by Elsevier B.V.

  3. Role of peroxynitrite and poly (ADP-ribosyl) synthetase activation in cardiovascular derangement induced by zymosan in the rat.

    PubMed

    Cuzzocrea, S; Zingarelli, B; Caputi, A P

    1998-01-01

    Peritoneal administration of zymosan in the rat induced a severe inflammatory process characterised by an increase in the plasma levels of nitrite and nitrate, stable metabolites of nitric oxide (NO) and in the levels of peroxynitrite, as measured by the oxidation of the fluorescent dye dihydrorhodamine 123, at 18 hours zymosan challenge. Immunohistochemical examination demonstrated a marked increase in the immunoreactivity to nitrotyrosine, a specific "footprint" of peroxynitrite, in the aorta of zymosan-shocked rats. In ex vivo experiments, thoracic aorta rings of zymosan-treated rats showed a reduced contraction to noradrenaline and reduced responsiveness to the relaxant effect to acetylcholine (vascular hyporeactivity and endothelial dysfunction, respectively). Treatment of zymosan-shocked rats with 3-aminobenzamide or Nicotinamide, inhibitors of poly ADP-ribosil synthetase (PARS) activity reduced the production of peroxynitrite and significantly prevented the cardiovascular dysfunction. Our data suggest that peroxynitrite and PARS activation play a role in the zymosan-induced cardiovascular derangements in the rat.

  4. Reaction-based Indicator displacement Assay (RIA) for the selective colorimetric and fluorometric detection of peroxynitrite.

    PubMed

    Sun, Xiaolong; Lacina, Karel; Ramsamy, Elena C; Flower, Stephen E; Fossey, John S; Qian, Xuhong; Anslyn, Eric V; Bull, Steven D; James, Tony D

    2015-05-01

    Using the self-assembly of aromatic boronic acids with Alizarin Red S (ARS), we developed a new chemosensor for the selective detection of peroxynitrite. Phenylboronic acid (PBA), benzoboroxole (BBA) and 2-( N , N -dimethylaminomethyl)phenylboronic acid (NBA) were employed to bind with ARS to form the complex probes. In particular, the ARS-NBA system with a high binding affinity can preferably react with peroxynitrite over hydrogen peroxide and other ROS/RNS due to the protection of the boron via the solvent-insertion B-N interaction. Our simple system produces a visible colorimetric change and on-off fluorescence response towards peroxynitrite. By coupling a chemical reaction that leads to an indicator displacement, we have developed a new sensing strategy, referred to herein as RIA (Reaction-based Indicator displacement Assay).

  5. A key role for peroxynitrite-mediated inhibition of cardiac ERG (Kv11.1) K+ channels in carbon monoxide–induced proarrhythmic early afterdepolarizations

    PubMed Central

    Al-Owais, Moza M.; Hettiarachchi, Nishani T.; Kirton, Hannah M.; Hardy, Matthew E.; Boyle, John P.; Scragg, Jason L.; Steele, Derek S.; Peers, Chris

    2017-01-01

    Exposure to CO causes early afterdepolarization arrhythmias. Previous studies in rats have indicated that arrhythmias arose as a result of augmentation of the late Na+ current. The purpose of the present study was to examine the basis for CO-induced arrhythmias in guinea pig myocytes in which action potentials (APs) more closely resemble those of human myocytes. Whole-cell current- and voltage-clamp recordings were made from isolated guinea pig myocytes as well as from human embryonic kidney 293 (HEK293) cells that express wild-type or a C723S mutant form of ether-a-go-go–related gene (ERG; Kv11.1). We also monitored the formation of peroxynitrite (ONOO−) in HEK293 cells fluorimetrically. CO—applied as the CO-releasing molecule, CORM-2—prolonged the APs and induced early afterdepolarizations in guinea pig myocytes. In HEK293 cells, CO inhibited wild-type, but not C723S mutant, Kv11.1 K+ currents. Inhibition was prevented by an antioxidant, mitochondrial inhibitors, or inhibition of NO formation. CO also raised ONOO− levels, an effect that was reversed by the ONOO− scavenger, FeTPPS [5,10,15,20-tetrakis-(4-sulfonatophenyl)-porphyrinato-iron(III)], which also prevented the CO inhibition of Kv11.1 currents and abolished the effects of CO on Kv11.1 tail currents and APs in guinea pig myocytes. Our data suggest that CO induces arrhythmias in guinea pig cardiac myocytes via the ONOO−-mediated inhibition of Kv11.1 K+ channels.—Al-Owais, M. M., Hettiarachchi, N. T., Kirton, H. M., Hardy, M. E., Boyle, J. P., Scragg, J. L., Steele, D. S., Peers, C. A key role for peroxynitrite-mediated inhibition of cardiac ERG (Kv11.1) K+ channels in carbon monoxide–induced proarrhythmic early afterdepolarizations. PMID:28743763

  6. Escherichia coli cellular responses to exposure to atmospheric-pressure dielectric barrier discharge plasma-treated N-acetylcysteine solution.

    PubMed

    Ercan, U K; Sen, B; Brooks, A D; Joshi, S G

    2018-04-06

    To understand the underlying cellular mechanisms during inactivation of Escherichia coli in response to antimicrobial solution of nonthermal plasma-activated N-acetylcysteine (NAC). The recommended techniques were used to demonstrate E. coli cellular and transcriptomic changes caused associated with peroxynitrite and compared with plasma-treated NAC solution. The findings demonstrate that E. coli cells respond to plasma-treated NAC and undergo severe oxidative and nitrosative stress, and leading to stress-induced damages to different components of bacterial cells, which includes loss of membrane potential, formation of oxidized glutathione (GSSG), formation of nitrotyrosine (a known marker of nitrosative stress), DNA damage, and generated a prominent pool of peroxynitrite. Reverse-transcriptase (RT)-polymerase chain reaction analysis of reactive nitrogen species (RNS) responsive genes indicated their differential expressions. For the first time, we report that the plasma-treated NAC solution activates predominantly nitrosative stress-responsive genes in E. coli and is responsible for cell death. The reactive species generated in solutions by nonthermal plasma treatment depends on the type of solution or solvent used. The plasma-treated NAC solution rapidly inactivates E. coli, mostly involving highly RNS generated in NAC solution, and has high potential as disinfectant. © 2018 The Society for Applied Microbiology.

  7. Consequences of MnSOD interactions with nitric oxide: nitric oxide dismutation and the generation of peroxynitrite and hydrogen peroxide.

    PubMed

    Filipović, Milos R; Stanić, Dragana; Raicević, Smiljana; Spasić, Mihajlo; Niketić, Vesna

    2007-01-01

    The present study demonstrates that manganese superoxide dismutase (MnSOD) (Escherichia coli), binds nitric oxide (*NO) and stimulates its decay under both anaerobic and aerobic conditions. The results indicate that previously observed MnSOD-catalyzed *NO disproportionation (dismutation) into nitrosonium (NO+) and nitroxyl (NO-) species under anaerobic conditions is also operative in the presence of molecular oxygen. Upon sustained aerobic exposure to *NO, MnSOD-derived NO- species initiate the formation of peroxynitrite (ONOO-) leading to enzyme tyrosine nitration, oxidation and (partial) inactivation. The results suggest that both ONOO- decomposition and ONOO(-)-dependent tyrosine residue nitration and oxidation are enhanced by metal centre-mediated catalysis. We show that the generation of ONOO- is accompanied by the formation of substantial amounts of H2O2. MnSOD is a critical mitochondrial antioxidant enzyme, which has been found to undergo tyrosine nitration and inactivation in various pathologies associated with the overproduction of *NO. The results of the present study can account for the molecular specificity of MnSOD nitration in vivo. The interaction of *NO with MnSOD may represent a novel mechanism by which MnSOD protects the cell from deleterious effects associated with overproduction of *NO.

  8. A Molecular Neurobiological Approach to Understanding the Aetiology of Chronic Fatigue Syndrome (Myalgic Encephalomyelitis or Systemic Exertion Intolerance Disease) with Treatment Implications.

    PubMed

    Monro, Jean A; Puri, Basant K

    2018-02-06

    Currently, a psychologically based model is widely held to be the basis for the aetiology and treatment of chronic fatigue syndrome (CFS)/myalgic encephalomyelitis (ME)/systemic exertion intolerance disease (SEID). However, an alternative, molecular neurobiological approach is possible and in this paper evidence demonstrating a biological aetiology for CFS/ME/SEID is adduced from a study of the history of the disease and a consideration of the role of the following in this disease: nitric oxide and peroxynitrite, oxidative and nitrosative stress, the blood-brain barrier and intestinal permeability, cytokines and infections, metabolism, structural and chemical brain changes, neurophysiological changes and calcium ion mobilisation. Evidence is also detailed for biologically based potential therapeutic options, including: nutritional supplementation, for example in order to downregulate the nitric oxide-peroxynitrite cycle to prevent its perpetuation; antiviral therapy; and monoclonal antibody treatment. It is concluded that there is strong evidence of a molecular neurobiological aetiology, and so it is suggested that biologically based therapeutic interventions should constitute a focus for future research into CFS/ME/SEID.

  9. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling☆

    PubMed Central

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-01-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2.) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling. PMID:26225731

  10. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling.

    PubMed

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-12-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2(.)) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts.

    PubMed Central

    MacMillan-Crow, L A; Crow, J P; Kerby, J D; Beckman, J S; Thompson, J A

    1996-01-01

    Inflammatory processes in chronic rejection remain a serious clinical problem in organ transplantation. Activated cellular infiltrate produces high levels of both superoxide and nitric oxide. These reactive oxygen species interact to form peroxynitrite, a potent oxidant that can modify proteins to form 3-nitrotyrosine. We identified enhanced immunostaining for nitrotyrosine localized to tubular epithelium of chronically rejected human renal allografts. Western blot analysis of rejected tissue demonstrated that tyrosine nitration was restricted to a few specific polypeptides. Immunoprecipitation and amino acid sequencing techniques identified manganese superoxide dismutase, the major antioxidant enzyme in mitochondria, as one of the targets of tyrosine nitration. Total manganese superoxide dismutase protein was increased in rejected kidney, particularly in the tubular epithelium; however, enzymatic activity was significantly decreased. Exposure of recombinant human manganese superoxide dismutase to peroxynitrite resulted in a dose-dependent (IC50 = 10 microM) decrease in enzymatic activity and concomitant increase in tyrosine nitration. Collectively, these observations suggest a role for peroxynitrite during development and progression of chronic rejection in human renal allografts. In addition, inactivation of manganese superoxide dismutase by peroxynitrite may represent a general mechanism that progressively increases the production of peroxynitrite, leading to irreversible oxidative injury to mitochondria. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8876227

  12. [Influence of ademol on NO metabolism indices in rats with modeling myocardial infarction].

    PubMed

    Khodakivs'kyĭ, O A; Pavlov, S V; Bukhtiiarova, N V

    2013-01-01

    It was established in experiments on the rats in the acute period of modeling pituitrin-isadrin myocardial infarction the formation of nitrogen monoxide decreases along with its accelerated transformation into peroxynitrite. It was evidenced by more than double inhibition of NO synthase activity in the myocardium and by decreasing the amount of nitrates on the background of the increasing level of peroxynitrites' marker--nitrotyrosine by 246.6% at an average. Experimental therapy of rats by ademol which is a derivate of adamantan (1-adamantiloxy-3-morpholino-2 propanol hydrochloride) better than by corvitin normalizes the processes of synthesis of nitric oxide. At the same time ademol probably exceeded the reference drug in ability to increase NO synthase activity and amount of nitrate, and promoted a decrease of the level of nitrotyrosine in the myocardium on the average by 36.3; 50.6 and 12.7%, respectively. Corrective influence of ademol on indicators of metabolism in NO system under the conditions of acute cardiac ischemia indicates to promicing development of domestic cardioprotector on its base.

  13. The effect of reagents mimicking oxidative stress on fibrinogen function.

    PubMed

    Štikarová, Jana; Kotlín, Roman; Riedel, Tomáš; Suttnar, Jiří; Pimková, Kristýna; Chrastinová, Leona; Dyr, Jan E

    2013-01-01

    Fibrinogen is one of the plasma proteins most susceptible to oxidative modification. It has been suggested that modification of fibrinogen may cause thrombotic/bleeding complications associated with many pathophysiological states of organism. We exposed fibrinogen molecules to three different modification reagents-malondialdehyde, sodium hypochlorite, and peroxynitrite-that are presented to various degrees in different stages of oxidative stress. We studied the changes in fibrin network formation and platelet interactions with modified fibrinogens under flow conditions. The fastest modification of fibrinogen was caused by hypochlorite. Fibers from fibrinogen modified with either reagent were thinner in comparison with control fibers. We found that platelet dynamic adhesion was significantly lower on fibrinogen modified with malondialdehyde and significantly higher on fibrinogen modified either with hypochlorite or peroxynitrite reflecting different prothrombotic/antithrombotic properties of oxidatively modified fibrinogens. It seems that, in the complex reactions ongoing in living organisms at conditions of oxidation stress, hypochlorite modifies proteins (e.g., fibrinogen) faster and more preferentially than malondialdehyde. It suggests that the prothrombotic effects of prior fibrinogen modifications may outweigh the antithrombotic effect of malondialdehyde-modified fibrinogen in real living systems.

  14. A redox-based mechanism for the contractile and relaxing effects of NO in the guinea-pig gall bladder

    PubMed Central

    Alcón, Soledad; Morales, Sara; Camello, Pedro J; Hemming, Jason M; Jennings, Lee; Mawe, Gary M; Pozo, María J

    2001-01-01

    The purpose of this study was to determine the effects of sodium nitroprusside (SNP), 2,2′-(hydroxynitrosohydrazino)bis-ethanamine (DETA/NO) and 3-morpholinosydnonimine (SIN-1), NO donors which yield different NO reactive species (NO+, NO. and peroxynitrite, respectively), as well as exogenous peroxynitrite, on gall bladder contractility. Under resting tone conditions, SNP induced a dose-dependent contraction with a maximal effect (10.3 ± 0.7 mN, s.e.m.) at 1 mm. Consistent with these findings, SNP caused a concentration-dependent depolarization of gall bladder smooth muscle. The excitatory effects of SNP were dependent on extracellular calcium entry through L-type Ca2+ channels. Furthermore, the contraction and depolarization were sensitive to tyrosine kinase blockade, and an associated increase in tyrosine phosphorylation was detected in Western blot studies. DETA/NO induced dose-dependent relaxing effects. These relaxations were sensitive to the guanylyl cyclase inhibitor 1H-[1,2,4]oxidiazolo[4,3-a]quinoxaline-1-one (ODQ, 2 μm) but they were not altered by treatment with the potassium channel blockers tetraethylammoniun (TEA, 5 mm) and 4-aminopyridine (4-AP, 5 mm). When tested in a reducing environment (created by 2.5 mm 1,4-dithiothreitol, DTT), SNP caused a relaxation of gall bladder muscle strips. Similarly, the SNP-induced contraction was converted to a relaxation, and associated hyperpolarization, when DTT was added during the steady state of an SNP-induced response. SIN-1 (0.1 mm), which has been shown to release peroxynitrite, induced relaxing effects that were enhanced by superoxide dismutase (SOD, 50 U ml−1). The relaxations induced by either SIN-1 alone or SIN-1 in the presence of SOD were strengthened by catalase (1000 U ml−1) and abolished by ODQ pretreatment. However, exogenous peroxynitrite induced a concentration-dependent contraction, which was dependent on activation of leukotriene (LT) metabolism and extracellular calcium. The peroxynitrite-induced contraction was abolished in the presence of the peroxynitrite scavenger melatonin. These results suggest that SIN-1 behaves as an NO. rather than a peroxynitrite source. We conclude that, depending on the redox state, NO has opposing effects on the motility of the gall bladder, being a relaxing agent when in NO. form and a contracting agent when in NO+ or peroxynitrite redox species form. Knowledge of the contrasting effects of the different redox forms of NO can clarify our understanding of the effects of NO donors on gall bladder and other smooth muscle cell types. PMID:11313447

  15. Recombinant heat shock protein 27 (HSP27/HSPB1) protects against cadmium-induced oxidative stress and toxicity in human cervical cancer cells.

    PubMed

    Alvarez-Olmedo, Daiana G; Biaggio, Veronica S; Koumbadinga, Geremy A; Gómez, Nidia N; Shi, Chunhua; Ciocca, Daniel R; Batulan, Zarah; Fanelli, Mariel A; O'Brien, Edward R

    2017-05-01

    Cadmium (Cd) is a carcinogen with several well-described toxicological effects in humans, but its molecular mechanisms are still not fully understood. Overexpression of heat shock protein 27 (HSP27/HSPB1)-a multifunctional protein chaperone-has been shown to protect cells from oxidative damage and apoptosis triggered by Cd exposure. The aims of this work were to investigate the potential use of extracellular recombinant HSP27 to prevent/counteract Cd-induced cellular toxicity and to evaluate if peroxynitrite was involved in the development of Cd-induced toxicity. Here, we report that the harmful effects of Cd correlated with changes in oxidative stress markers: upregulation of reactive oxygen species, reduction in nitric oxide (NO) bioavailability, increment in lipid peroxidation, peroxynitrite (PN), and protein nitration; intracellular HSP27 was reduced. Treatments with Cd (100 μM) for 24 h or with the peroxynitrite donor, SIN-1, decreased HSP27 levels (~50%), suggesting that PN formation is responsible for the reduction of HSP27. Pre-treatments of the cells either with Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME) (a pharmacological inhibitor of NO synthase) or with recombinant HSP27 (rHSP27) attenuated the disruption of the cellular metabolism induced by Cd, increasing in a 55 and 52%, respectively, the cell viability measured by CCK-8. Cd induced necrotic cell death pathways, although apoptosis was also activated; pre-treatment with L-NAME or rHSP27 mitigated cell death. Our findings show for the first time a direct relationship between Cd-induced toxicity and PN production and a role for rHSP27 as a potential therapeutic agent that may counteract Cd toxicity.

  16. Chemiluminescence detection of peroxynitrite with flow injection

    NASA Astrophysics Data System (ADS)

    Kang, Dai; Evmiridis, Nick P.; Vlessidis, Athanasios; Zhou, Yikai

    2001-09-01

    Peroxynitrite is an important derivative made by nitric oxide in vivo. It can make damages in many kinds of tissue and cells. Its research value in heart disease and cancer is a very high. A sensitive, specific method for analysis of peroxynitrite is described. In this method, chemiluminescence reaction between perodynitrite and luminol was used to detect with flow injection system. The assay has a detection limit of 2 by 10-8 mol L-1, and linear range of 5 by 10-8 mol L-1 to 5 by 10-5 mol L-1. The application o f flow injection system offers the possibility to establish biosensor for real-time detection of perodynitrite.

  17. Changes of Nitric Oxide and Peroxynitrite Serum Levels during Drug Therapy in Patients with Obsessive-Compulsive Disorder

    PubMed Central

    Aghakoochakzadeh, Maryam

    2016-01-01

    Objectives. Some studies have shown that increased nitric oxide (NO) concentrations may be associated with obsessive-compulsive disorder (OCD). In a few animal researches, enhanced synthesis of NO had reversed the effect of selective serotonin reuptake inhibitors (SSRIs). The present study tries to find the effect of treatment with SSRIs on NO serum levels and its product peroxynitrite. Patients and Methods. Patients diagnosed with OCD who are candidates of receiving SSRIs entered this study. Two blood samples were taken from subjects, prior to drug therapy and after the patients had shown some improvements due to their regimen. Serum NO and peroxynitrite levels were measured and their correlation with SSRI use was assessed. Results. 31 patients completed this study. Mean concentrations of NO and peroxynitrite prior to drug therapy were 28.63 ± 16.9 and 5.73 ± 2.5 μmol/L, respectively. These values were 18.87 ± 7.55 and 2.15 ± 0.94 μmol/L at the second blood test. With p values < 0.05, these differences were considered significant. Conclusion. Patients, who showed improvement of OCD symptoms after a mean duration of SSRI monotherapy of 3.531 ± 0.64 months, had lower values of NO and peroxynitrite in their sera compared to their levels prior to therapy. Such results can be helpful in finding a predictive factor of response to therapy and augmentation therapy with future drugs that target NO synthesis. PMID:27822492

  18. Leghemoglobin is nitrated in functional legume nodules in a tyrosine residue within the heme cavity by a nitrite/peroxide-dependent mechanism

    PubMed Central

    Sainz, Martha; Calvo-Begueria, Laura; Pérez-Rontomé, Carmen; Wienkoop, Stefanie; Abián, Joaquín; Staudinger, Christiana; Bartesaghi, Silvina; Radi, Rafael; Becana, Manuel

    2015-01-01

    SUMMARY Protein Tyr nitration is a post-translational modification yielding 3-nitrotyrosine (NO2-Tyr). Formation of NO2-Tyr is generally considered as a marker of nitroxidative stress and is involved in some human pathophysiological disorders, but it has been poorly studied in plants. Leghemoglobin (Lb) is an abundant hemeprotein of legume nodules that plays an essential role as O2 transporter. Liquid chromatography coupled to tandem mass spectrometry was used for a targeted search and quantification of NO2-Tyr in Lbs. For all Lbs examined, Tyr30, located in the distal heme pocket, is the major target of nitration. Lower amounts were found for NO2-Tyr25 and NO2-Tyr133. Nitrated Lb and other as yet unidentified nitrated proteins were also detected in nodules of plants not receiving NO3− and were found to decrease during senescence. This demonstrates formation of nitric oxide (•NO) and NO2− by alternative means to nitrate reductase, probably via a NO synthase-like enzyme, and strongly suggests that nitrated proteins perform biological functions and are not merely metabolic byproducts. In vitro assays with purified Lbs revealed that Tyr nitration requires NO2− + H2O2 and that peroxynitrite is not an efficient inducer of nitration, possibly by isomerizing it to NO3−. Nitrated Lb is formed via oxoferryl Lb, which generates nitrogen dioxide and tyrosyl radicals. This mechanism is distinctly different from that involved in heme nitration. Formation of NO2-Tyr in Lbs is a consequence of active metabolism in functional nodules, where Lbs may act as a sink of toxic peroxynitrite and may play a protective role in the symbiosis. PMID:25603991

  19. Endothelial cell respiration is affected by the oxygen tension during shear exposure: role of mitochondrial peroxynitrite.

    PubMed

    Jones, Charles I; Han, Zhaosheng; Presley, Tennille; Varadharaj, Saradhadevi; Zweier, Jay L; Ilangovan, Govindasamy; Alevriadou, B Rita

    2008-07-01

    Cultured vascular endothelial cell (EC) exposure to steady laminar shear stress results in peroxynitrite (ONOO(-)) formation intramitochondrially and inactivation of the electron transport chain. We examined whether the "hyperoxic state" of 21% O(2), compared with more physiological O(2) tensions (Po(2)), increases the shear-induced nitric oxide (NO) synthesis and mitochondrial superoxide (O(2)(*-)) generation leading to ONOO(-) formation and suppression of respiration. Electron paramagnetic resonance oximetry was used to measure O(2) consumption rates of bovine aortic ECs sheared (10 dyn/cm(2), 30 min) at 5%, 10%, or 21% O(2) or left static at 5% or 21% O(2). Respiration was inhibited to a greater extent when ECs were sheared at 21% O(2) than at lower Po(2) or left static at different Po(2). Flow in the presence of an endothelial NO synthase (eNOS) inhibitor or a ONOO(-) scavenger abolished the inhibitory effect. EC transfection with an adenovirus that expresses manganese superoxide dismutase in mitochondria, and not a control virus, blocked the inhibitory effect. Intracellular and mitochondrial O(2)(*-) production was higher in ECs sheared at 21% than at 5% O(2), as determined by dihydroethidium and MitoSOX red fluorescence, respectively, and the latter was, at least in part, NO-dependent. Accumulation of NO metabolites in media of ECs sheared at 21% O(2) was modestly increased compared with ECs sheared at lower Po(2), suggesting that eNOS activity may be higher at 21% O(2). Hence, the hyperoxia of in vitro EC flow studies, via increased NO and mitochondrial O(2)(*-) production, leads to enhanced ONOO(-) formation intramitochondrially and suppression of respiration.

  20. Superoxide and peroxynitrite generation from inducible nitric oxide synthase in macrophages

    PubMed Central

    Xia, Yong; Zweier, Jay L.

    1997-01-01

    Superoxide (O2⨪) and nitric oxide (NO) act to kill invading microbes in phagocytes. In macrophages NO is synthesized by inducible nitric oxide synthase (iNOS, NOS 2) from l-arginine (l-Arg) and oxygen; however, O2⨪ was thought to be produced mainly by NADPH oxidase. Electron paramagnetic resonance (EPR) spin trapping experiments performed in murine macrophages demonstrate a novel pathway of O2⨪ generation. It was observed that depletion of cytosolic l-Arg triggers O2⨪ generation from iNOS. This iNOS-mediated O2⨪ generation was blocked by the NOS inhibitor N-nitro-l-arginine methyl ester or by l-Arg, but not by the noninhibitory enantiomer N-nitro-d-arginine methyl ester. In l-Arg-depleted macrophages iNOS generates both O2⨪ and NO that interact to form the potent oxidant peroxynitrite (ONOO−), which was detected by luminol luminescence and whose formation was blocked by superoxide dismutase, urate, or l-Arg. This iNOS-derived ONOO− resulted in nitrotyrosine formation, and this was inhibited by iNOS blockade. iNOS-mediated O2⨪ and ONOO− increased the antibacterial activity of macrophages. Thus, with reduced l-Arg availability iNOS produces O2⨪ and ONOO− that modulate macrophage function. Due to the existence of l-Arg depletion in inflammation, iNOS-mediated O2⨪ and ONOO− may occur and contribute to cytostatic/cytotoxic actions of macrophages. PMID:9192673

  1. Urinary tract infection in iNOS-deficient mice with focus on bacterial sensitivity to nitric oxide.

    PubMed

    Poljakovic, Mirjana; Persson, Katarina

    2003-01-01

    Inducible nitric oxide synthase (iNOS)-deficient mice were used to examine the role of iNOS in Escherichia coli-induced urinary tract infection (UTI). The toxicity of nitric oxide (NO)/peroxynitrite to bacteria and host was also investigated. The nitrite levels in urine of iNOS+/+ but not iNOS/ mice increased after infection. No differences in bacterial clearance or persistence were noted between the genotypes. In vitro, the uropathogenic E. coli 1177 was sensitive to 3-morpholinosydnonimine, whereas the avirulent E. coli HB101 was sensitive to both NO and 3-morpholinosydnonimine. E. coli HB101 was statistically (P < 0.05) more sensitive to peroxynitrite than E. coli 1177. Nitrotyrosine immunoreactivity was observed in infected bladders of both genotypes and in infected kidneys of iNOS+/+ mice. Myeloperoxidase, neuronal (n)NOS, and endothelial (e)NOS immunoreactivity was observed in inflammatory cells of both genotypes. Our results indicate that iNOS/ and iNOS+/+ mice are equally susceptible to E. coli-induced UTI and that the toxicity of NO to E. coli depends on bacterial virulence. Furthermore, myeloperoxidase and nNOS/eNOS may contribute to nitrotyrosine formation in the absence of iNOS.

  2. Uric acid inhibition of dipeptidyl peptidase IV in vitro is dependent on the intracellular formation of triuret.

    PubMed

    Mohandas, Rajesh; Sautina, Laura; Beem, Elaine; Schuler, Anna; Chan, Wai-Yan; Domsic, John; McKenna, Robert; Johnson, Richard J; Segal, Mark S

    2014-08-01

    Uric acid affects endothelial and adipose cell function and has been linked to diseases such as hypertension, metabolic syndrome, and cardiovascular disease. Interestingly uric acid has been shown to increase endothelial progenitor cell (EPC) mobilization, a potential mechanism to repair endothelial injury. Since EPC mobilization is dependent on activity of the enzyme CD26/dipeptidyl peptidase (DPP)IV, we examined the effect uric acid will have on CD26/DPPIV activity. Uric acid inhibited the CD26/DPPIV associated with human umbilical vein endothelial cells but not human recombinant (hr) CD26/DPPIV. However, triuret, a product of uric acid and peroxynitrite, could inhibit cell associated and hrCD26/DPPIV. Increasing or decreasing intracellular peroxynitrite levels enhanced or decreased the ability of uric acid to inhibit cell associated CD26/DPPIV, respectively. Finally, protein modeling demonstrates how triuret can act as a small molecule inhibitor of CD26/DPPIV activity. This is the first time that uric acid or a uric acid reaction product has been shown to affect enzymatic activity and suggests a novel avenue of research in the role of uric acid in the development of clinically important diseases. Published by Elsevier Inc.

  3. The crystal structure of the C45S mutant of annelid Arenicola marina peroxiredoxin 6 supports its assignment to the mechanistically typical 2-Cys subfamily without any formation of toroid-shaped decamers

    PubMed Central

    Smeets, Aude; Loumaye, Eléonore; Clippe, André; Rees, Jean-François; Knoops, Bernard; Declercq, Jean-Paul

    2008-01-01

    The peroxiredoxins (PRDXs) define a superfamily of thiol-dependent peroxidases able to reduce hydrogen peroxide, alkyl hydroperoxides, and peroxynitrite. Besides their cytoprotective antioxidant function, PRDXs have been implicated in redox signaling and chaperone activity, the latter depending on the formation of decameric high-molecular-weight structures. PRDXs have been mechanistically divided into three major subfamilies, namely typical 2-Cys, atypical 2-Cys, and 1-Cys PRDXs, based on the number and position of cysteines involved in the catalysis. We report the structure of the C45S mutant of annelid worm Arenicola marina PRDX6 in three different crystal forms determined at 1.6, 2.0, and 2.4 Å resolution. Although A. marina PRDX6 was cloned during the search of annelid homologs of mammalian 1-Cys PRDX6s, the crystal structures support its assignment to the mechanistically typical 2-Cys PRDX subfamily. The protein is composed of two distinct domains: a C-terminal domain and an N-terminal domain exhibiting a thioredoxin fold. The subunits are associated in dimers compatible with the formation of intersubunit disulfide bonds between the peroxidatic and the resolving cysteine residues in the wild-type enzyme. The packing of two crystal forms is very similar, with pairs of dimers associated as tetramers. The toroid-shaped decamers formed by dimer association and observed in most typical 2-Cys PRDXs is not present. Thus, A. marina PRDX6 presents structural features of typical 2-Cys PRDXs without any formation of toroid-shaped decamers, suggesting that it should function more like a cytoprotective antioxidant enzyme or a modulator of peroxide-dependent cell signaling rather than a molecular chaperone. PMID:18359859

  4. Effect of lycopene and {beta}-carotene on peroxynitrite-mediated cellular modifications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muzandu, Kaampwe; Ishizuka, Mayumi; Sakamoto, Kentaro Q.

    2006-09-15

    Peroxynitrite formed by the reaction of superoxide and nitric oxide is a highly reactive species with a role in various pathological processes such as cancer, chronic inflammation, and cardiovascular and neurological diseases. In the present study, the effect of the carotenoids, lycopene and {beta}-carotene, on peroxynitrite-mediated modifications in plasmid DNA as well as cellular DNA and proteins were investigated. In pUC18 plasmid DNA, these carotenoids strongly inhibited DNA strand breaks caused by peroxynitrite generated from 3-morpholinosydnonimine (SIN-1). SIN-1 was also used to determine effects on DNA damage and protein tyrosine nitration in Chinese hamster lung fibroblasts. SIN-1 dose-dependently increased nitrationmore » of proteins in cells above basal levels as determined by Western blotting. This nitration was inhibited in the presence of the uric acid as well as lycopene. Physiological concentrations (0.31-10 {mu}M) of lycopene and {beta}-carotene also had protective effects on DNA damage, as measured by the comet assay. Lycopene significantly reduced DNA damage particularly, in the median range of concentrations (2.5 {mu}M). The protective effects of lycopene and {beta}-carotene could be due to their scavenging of reactive oxygen (ROS) and/or nitrogen species (RNS) as they reduce the amount of intracellular ROS/RNS produced following treatment with SIN-1 by as much as 47.5% and 42.4%, respectively. The results obtained in this study suggest that carotenoids may alleviate some of the deleterious effects of peroxynitrite and possibly other reactive nitrogen species as well in vivo.« less

  5. Role of peroxynitrite in the responses induced by heat stress in tobacco BY-2 cultured cells.

    PubMed

    Malerba, Massimo; Cerana, Raffaella

    2018-07-01

    Temperatures above the optimum are sensed as heat stress (HS) by all living organisms and represent one of the major environmental challenges for plants. Plants can cope with HS by activating specific defense mechanisms to minimize damage and ensure cellular functionality. One of the most common effects of HS is the overproduction of reactive oxygen and nitrogen species (ROS and RNS). The role of ROS and RNS in the regulation of many plant physiological processes is well established. On the contrary, in plants very little is known about the physiological role of peroxynitrite (ONOO - ), the RNS species generated by the interaction between NO and O 2 - . In this work, the role of ONOO - on some of the stress responses induced by HS in tobacco BY-2 cultured cells has been investigated by measuring these responses both in the presence and in the absence of 2,6,8-trihydroxypurine (urate), a specific scavenger of ONOO - . The obtained results suggest a potential role for ONOO - in some of the responses induced by HS in tobacco cultured cells. In particular, ONOO - seems implicated in a form of cell death showing apoptotic features and in the regulation of the levels of proteins involved in the response to stress.

  6. Role of Nitric Oxide in MPTP-Induced Dopaminergic Neuron Degeneration

    DTIC Science & Technology

    2004-09-01

    peroxynitrite exposure, that of dityrosine and nitrotyrosine by gas chromatography with mass spectrometry. 6 Quantification will be performed in...following MPTP administration by quantifying the two main products of peroxynitrite oxidation of tyrosine, dityrosine and nitrotyrosine using gas ...effectiveness as a neuroprotective agent was demonstrated against experimental brain ischaemia (21) and disease progression in the R6/2 mouse model of

  7. Bis-reaction-trigger as a strategy to improve the selectivity of fluorescent probes.

    PubMed

    Li, Dan; Cheng, Juan; Wang, Cheng-Kun; Ying, Huazhou; Hu, Yongzhou; Han, Feng; Li, Xin

    2018-06-01

    By the strategy of equipping a fluorophore with two reaction triggers that are tailored to the specific chemistry of peroxynitrite, we have developed a highly selective probe for detecting peroxynitrite in live cells. Sequential response by the two triggers enabled the probe to reveal various degrees of nitrosative stress in live cells via a sensitive emission colour change.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou Jun; Huang Kaixun, E-mail: hxxzrf@mail.hust.edu.c

    Accumulating evidence suggests that peroxynitrite (ONOO{sup -}) is involved in the pathogenesis of insulin resistance. In the current study, we investigated whether insulin resistance in vivo could be mediated by nitration of proteins involved in the early steps of the insulin signal transduction pathway. Exogenous peroxynitrite donated by 3-morpholinosydnonimine hydrochloride (SIN-1) induced in vivo nitration of the insulin receptor beta subunit (IRbeta), insulin receptor substrate (IRS)-1, and protein kinase B/Akt (Akt) in skeletal muscle of mice and dramatically reduced whole-body insulin sensitivity and muscle insulin signaling. Moreover, in high-fat diet (HFD)-fed insulin-resistant mice, we observed enhanced nitration of IRbeta andmore » IRS-1 in skeletal muscle, in parallel with impaired whole-body insulin sensitivity and muscle insulin signaling. Reversal of nitration of these proteins by treatment with the peroxynitrite decomposition catalyst FeTPPS yielded an improvement in whole-body insulin sensitivity and muscle insulin signaling in HFD-fed mice. Taken together, these findings provide new mechanistic insights for the involvement of peroxynitrite in the development of insulin resistance and suggest that nitration of proteins involved in the early steps of insulin signal transduction is a novel molecular mechanism of HFD-induced muscle insulin resistance.« less

  9. Inhibition of nitric oxide synthase expression in activated microglia and peroxynitrite scavenging activity by Opuntia ficus indica var. saboten.

    PubMed

    Lee, Ming Hong; Kim, Jae Yeon; Yoon, Jeong Hoon; Lim, Hyo Jin; Kim, Tae Hee; Jin, Changbae; Kwak, Wie-Jong; Han, Chang-Kyun; Ryu, Jae-Ha

    2006-09-01

    Activated microglia by neuronal injury or inflammatory stimulation overproduce nitric oxide (NO) by inducible nitric oxide synthase (iNOS) and reactive oxygen species (ROS) such as superoxide anion, resulting in neurodegenerative diseases. The toxic peroxynitrite (ONOO-), the reaction product of NO and superoxide anion further contributes to oxidative neurotoxicity. A butanol fraction obtained from 50% ethanol extracts of Opuntia ficus indica var. saboten (Cactaceae) stem (SK OFB901) and its hydrolysis product (SK OFB901H) inhibited the production of NO in LPS-activated microglia in a dose dependent manner (IC50 15.9, 4.2 microg/mL, respectively). They also suppressed the expression of protein and mRNA of iNOS in LPS-activated microglial cells at higher than 30 microg/mL as observed by western blot analysis and RT-PCR experiment. They also inhibited the degradation of I-kappaB-alpha in activated microglia. Moreover, they showed strong activity of peroxynitrite scavenging in a cell free bioassay system. These results imply that Opuntia ficus indica may have neuroprotective activity through the inhibition of NO production by activated microglial cells and peroxynitrite scavenging activity. Copyright (c) 2006 John Wiley & Sons, Ltd.

  10. Role of Nitric Oxide in MPTP-Induced Dopaminergic Neuron Degeneration

    DTIC Science & Technology

    2006-06-01

    peroxynitrite exposure, that of dityrosine and nitrotyrosine by gas chromatography with mass spectrometry. 6 Quantification will be performed in different...MPTP administration by quantifying the two main products of peroxynitrite oxidation of tyrosine, dityrosine and nitrotyrosine using gas ...as a neuroprotective agent was demonstrated against experimental brain ischaemia (21) and disease progression in the R6/2 mouse model of Huntington’s

  11. Ohr plays a central role in bacterial responses against fatty acid hydroperoxides and peroxynitrite

    PubMed Central

    Alegria, Thiago G. P.; Hugo, Martín; Trujillo, Madia; de Oliveira, Marcos Antonio; Miyamoto, Sayuri; Queiroz, Raphael F.; Valadares, Napoleão Fonseca; Garratt, Richard C.; Radi, Rafael; Di Mascio, Paolo; Augusto, Ohara

    2017-01-01

    Organic hydroperoxide resistance (Ohr) enzymes are unique Cys-based, lipoyl-dependent peroxidases. Here, we investigated the involvement of Ohr in bacterial responses toward distinct hydroperoxides. In silico results indicated that fatty acid (but not cholesterol) hydroperoxides docked well into the active site of Ohr from Xylella fastidiosa and were efficiently reduced by the recombinant enzyme as assessed by a lipoamide-lipoamide dehydrogenase–coupled assay. Indeed, the rate constants between Ohr and several fatty acid hydroperoxides were in the 107–108 M−1⋅s−1 range as determined by a competition assay developed here. Reduction of peroxynitrite by Ohr was also determined to be in the order of 107 M−1⋅s−1 at pH 7.4 through two independent competition assays. A similar trend was observed when studying the sensitivities of a ∆ohr mutant of Pseudomonas aeruginosa toward different hydroperoxides. Fatty acid hydroperoxides, which are readily solubilized by bacterial surfactants, killed the ∆ohr strain most efficiently. In contrast, both wild-type and mutant strains deficient for peroxiredoxins and glutathione peroxidases were equally sensitive to fatty acid hydroperoxides. Ohr also appeared to play a central role in the peroxynitrite response, because the ∆ohr mutant was more sensitive than wild type to 3-morpholinosydnonimine hydrochloride (SIN-1 , a peroxynitrite generator). In the case of H2O2 insult, cells treated with 3-amino-1,2,4-triazole (a catalase inhibitor) were the most sensitive. Furthermore, fatty acid hydroperoxide and SIN-1 both induced Ohr expression in the wild-type strain. In conclusion, Ohr plays a central role in modulating the levels of fatty acid hydroperoxides and peroxynitrite, both of which are involved in host–pathogen interactions. PMID:28028230

  12. Arginase Inhibition Restores Peroxynitrite-Induced Endothelial Dysfunction via L-Arginine-Dependent Endothelial Nitric Oxide Synthase Phosphorylation

    PubMed Central

    Nguyen, Minh Cong; Park, Jong Taek; Jeon, Yeong Gwan; Jeon, Byeong Hwa; Hoe, Kwang Lae; Kim, Young Myeong

    2016-01-01

    Purpose Peroxynitrite plays a critical role in vascular pathophysiology by increasing arginase activity and decreasing endothelial nitric oxide synthase (eNOS) activity. Therefore, the aims of this study were to investigate whether arginase inhibition and L-arginine supplement could restore peroxynitrite-induced endothelial dysfunction and determine the involved mechanism. Materials and Methods Human umbilical vein endothelial cells (HUVECs) were treated with SIN-1, a peroxynitrite generator, and arginase activity, nitrite/nitrate production, and expression levels of proteins were measured. eNOS activation was evaluated via Western blot and dimer blot analysis. We also tested nitric oxide (NO) and reactive oxygen species (ROS) production and performed a vascular tension assay. Results SIN-1 treatment increased arginase activity in a time- and dose-dependent manner and reciprocally decreased nitrite/nitrate production that was prevented by peroxynitrite scavenger in HUVECs. Furthermore, SIN-1 induced an increase in the expression level of arginase I and II, though not in eNOS protein. The decreased eNOS phosphorylation at Ser1177 and the increased at Thr495 by SIN-1 were restored with arginase inhibitor and L-arginine. The changed eNOS phosphorylation was consistent in the stability of eNOS dimers. SIN-1 decreased NO production and increased ROS generation in the aortic endothelium, all of which was reversed by arginase inhibitor or L-arginine. NG-Nitro-L-arginine methyl ester (L-NAME) prevented SIN-1-induced ROS generation. In the vascular tension assay, SIN-1 enhanced vasoconstrictor responses to U46619 and attenuated vasorelaxant responses to acetylcholine that were reversed by arginase inhibition. Conclusion These findings may explain the beneficial effect of arginase inhibition and L-arginine supplement on endothelial dysfunction under redox imbalance-dependent pathophysiological conditions. PMID:27593859

  13. Arginase Inhibition Restores Peroxynitrite-Induced Endothelial Dysfunction via L-Arginine-Dependent Endothelial Nitric Oxide Synthase Phosphorylation.

    PubMed

    Nguyen, Minh Cong; Park, Jong Taek; Jeon, Yeong Gwan; Jeon, Byeong Hwa; Hoe, Kwang Lae; Kim, Young Myeong; Lim, Hyun Kyo; Ryoo, Sungwoo

    2016-11-01

    Peroxynitrite plays a critical role in vascular pathophysiology by increasing arginase activity and decreasing endothelial nitric oxide synthase (eNOS) activity. Therefore, the aims of this study were to investigate whether arginase inhibition and L-arginine supplement could restore peroxynitrite-induced endothelial dysfunction and determine the involved mechanism. Human umbilical vein endothelial cells (HUVECs) were treated with SIN-1, a peroxynitrite generator, and arginase activity, nitrite/nitrate production, and expression levels of proteins were measured. eNOS activation was evaluated via Western blot and dimer blot analysis. We also tested nitric oxide (NO) and reactive oxygen species (ROS) production and performed a vascular tension assay. SIN-1 treatment increased arginase activity in a time- and dose-dependent manner and reciprocally decreased nitrite/nitrate production that was prevented by peroxynitrite scavenger in HUVECs. Furthermore, SIN-1 induced an increase in the expression level of arginase I and II, though not in eNOS protein. The decreased eNOS phosphorylation at Ser1177 and the increased at Thr495 by SIN-1 were restored with arginase inhibitor and L-arginine. The changed eNOS phosphorylation was consistent in the stability of eNOS dimers. SIN-1 decreased NO production and increased ROS generation in the aortic endothelium, all of which was reversed by arginase inhibitor or L-arginine. N(G)-Nitro-L-arginine methyl ester (L-NAME) prevented SIN-1-induced ROS generation. In the vascular tension assay, SIN-1 enhanced vasoconstrictor responses to U46619 and attenuated vasorelaxant responses to acetylcholine that were reversed by arginase inhibition. These findings may explain the beneficial effect of arginase inhibition and L-arginine supplement on endothelial dysfunction under redox imbalance-dependent pathophysiological conditions.

  14. Reaction between peroxynitrite and boronates: EPR spin-trapping, HPLC analyses, and quantum mechanical study of the free radical pathway

    PubMed Central

    Sikora, Adam; Zielonka, Jacek; Lopez, Marcos; Dybala-Defratyka, Agnieszka; Joseph, Joy; Marcinek, Andrzej; Kalyanaraman, Balaraman

    2013-01-01

    Recently we showed that peroxynitrite (ONOO−) reacts directly and rapidly with aromatic and aliphatic boronic acids (k ≈ 106 M−1s−1). Product analyses and substrate consumption data indicated that ONOO− reacts stoichiometrically with boronates, yielding the corresponding phenols as the major product (~85–90%), and the remaining products (10–15%) were proposed to originate from free radical intermediates (phenyl and phenoxyl radicals). Here we investigated in detail the minor, free radical pathway of boronate reaction with ONOO−. The electron paramagnetic resonance (EPR) spin-trapping technique was used to characterize the free radical intermediates formed from the reaction between boronates and ONOO−. Using 2-methyl-2-nitrosopropane (MNP) and 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO) spin traps, phenyl radicals were trapped and detected. Although phenoxyl radicals were not detected, the positive effects of molecular oxygen, and inhibitory effects of hydrogen atom donors (acetonitrile, and 2-propanol) and general radical scavengers (GSH, NADH, ascorbic acid and tyrosine) on the formation of phenoxyl radical-derived nitrated product, suggest that phenoxyl radical was formed as the secondary species. We propose that the initial step of the reaction involves the addition of ONOO− to the boron atom in boronates. The anionic intermediate undergoes both heterolytic (major pathway) and homolytic (minor pathway) cleavage of the peroxy (O-O) bond to form phenol and nitrite as a major product (via a non-radical mechanism), or a radical pair PhB(OH)2O•−…•NO2 as a minor product. It is conceivable that phenyl radicals are formed by the fragmentation of PhB(OH)2O•− radical anion. According to the DFT quantum mechanical calculations, the energy barrier for the dissociation of PhB(OH)2O•− radical anion to form phenyl radicals is only a few kcal/mol, suggesting rapid and spontaneous fragmentation of PhB(OH)2O•− radical anion in aqueous media. Biological implications of the minor free radical pathway are discussed in the context of ONOO− detection, using the boronate probes. PMID:21434648

  15. Reaction between peroxynitrite and triphenylphosphonium-substituted arylboronic acid isomers–Identification of diagnostic marker products and biological implications

    PubMed Central

    Sikora, Adam; Zielonka, Jacek; Adamus, Jan; Debski, Dawid; Dybala-Defratyka, Agnieszka; Michalowski, Bartosz; Joseph, Joy; Hartley, Richard C.; Murphy, Michael P.; Kalyanaraman, Balaraman

    2013-01-01

    Aromatic boronic acids react rapidly with peroxynitrite (ONOO−) to yield phenols as major products. This reaction was used to monitor ONOO− formation in cellular systems. Previously, we proposed that the reaction between ONOO− and arylboronates (PhB(OH)2) yields a phenolic product (major pathway) and a radical pair PhB(OH)2O•−…•NO2 (minor pathway). [Sikora A. et al., Chem Res Toxicol 24, 687-97, 2011]. In this study, we investigated the influence of a bulky triphenylphosphonium (TPP) group on the reaction between ONOO− and mitochondria-targeted arylboronate isomers (o-, m-, and p-MitoPhB(OH)2). Results from the electron paramagnetic resonance (EPR) spin-trapping experiments unequivocally showed the presence of a phenyl radical intermediate from meta and para isomers, and not from the ortho isomer. The yield of o-MitoPhNO2 formed from the reaction between o-MitoPhB(OH)2 and ONOO− was not diminished by phenyl radical scavengers, suggesting a rapid fragmentation of the o-MitoPhB(OH)2O•− radical anion with subsequent reaction of the resulting phenyl radical with •NO2 in the solvent cage. The DFT quantum mechanical calculations showed that the energy barrier for the dissociation of o-MitoPhB(OH)2O•− radical anion is significantly lower than that of m-MitoPhB(OH)2O•− and p-MitoPhB(OH)2O•− radical anions. The nitrated product, o-MitoPhNO2, is not formed by nitrogen dioxide radical generated by myeloperoxidase in the presence of nitrite anion and hydrogen peroxide, indicating that this specific nitrated product may be used as a diagnostic marker product for ONOO−. Incubation of o-MitoPhB(OH)2 with RAW 264.7 macrophages activated to produce ONOO− yielded the corresponding phenol o-MitoPhOH as well as the diagnostic nitrated product, o-MitoPhNO2. We conclude that the ortho isomer probe reported here is most suitable for specific detection of ONOO− in biological systems. PMID:23611338

  16. Effect of pre-exposure of human erythrocytes to oxidants on the haemolytic activity of Sticholysin II. A comparison between peroxynitrite and hypochlorous acid.

    PubMed

    Celedón, Gloria; González, Gustavo; Lissi, Eduardo; Cerda, Tania; Bascuñant, Denisse; Lepeley, Marcia; Pazos, Fabiola; Lanio, Maria E; Alvarez, Carlos

    2011-04-01

    Stichodactyla heliantus II (St II) is a haemolytic toxin whose activity depends of the characteristics of red blood cells (RBC). Among the factors that may tune the response of the RBC to the toxin activity stand the oxidative status of the cell. This study investigates how pre-oxidation of RBC modifies St II activity employing two oxidants, peroxynitrite and hypochlorous acid. Results show that peroxynitrite-treated RBC are more resistant to St II activity. On the other hand, hypochlorous acid-treated RBC become more susceptible to St II. This contrasting behaviour of both oxidants is related to the modifications elicited in RBC by both oxidant agents. Peroxynitrite does not modify RBC osmotic fragility but reduces anion transport through band 3 protein. This effect, together with an increase in K+ efflux, can explain the increased resistance to the toxin activity. On the other hand, results obtained with hypochlorous acid can be explained in terms of a disruption of the membrane organization without the compensating effect of a reduction in band 3-mediated anion transport. The present results, obtained employing the effect of a model haemolytic toxin on RBC, emphasize the specificity of the RBC response to different endogenous oxidative agents.

  17. Triosephosphate isomerase tyrosine nitration induced by heme-NaNO2 -H2 O2 or peroxynitrite: Effects of different natural phenolic compounds.

    PubMed

    Gao, Wanxia; Zhao, Jie; Li, Hailing; Gao, Zhonghong

    2017-06-01

    Peroxynitrite and heme peroxidases (or heme)-H 2 O 2 -NaNO 2 system are the two common ways to cause protein tyrosine nitration in vitro, but the effects of antioxidants on reducing these two pathways-induced protein nitration and oxidation are controversial. Both nitrating systems can dose-dependently induce triosephosphate isomerase (TIM) nitration, however, heme-H 2 O 2 -NaNO 2 was less destructive to protein secondary structures and led to more nitrated tyrosine residue than 3-morpholinosydnonimine hydrochloride (SIN-1, a peroxynitrite donor). Both of desferrioxamine and catechin could inhibit TIM nitration induced by heme-H 2 O 2 -NaNO 2 and SIN-1 and protein oxidation induced by SIN-1, but promoted heme-H 2 O 2 -NaNO 2 -induced protein oxidation. Moreover, the antagonism of natural phenolic compounds on SIN-1-induced tyrosine nitration was consistent with their radical scavenging ability, but no similar consensus was found in heme-H 2 O 2 -NaNO 2 -induced nitration. Our results indicated that peroxynitrite and heme-H 2 O 2 -NaNO 2 -induced protein nitration was different, and the later one could be a better model for anti-nitration compounds screening. © 2017 Wiley Periodicals, Inc.

  18. Studies on antioxidant properties of polyphenol-rich extract from berries of Aronia melanocarpa in blood platelets.

    PubMed

    Olas, B; Wachowicz, B; Nowak, P; Kedzierska, M; Tomczak, A; Stochmal, A; Oleszek, W; Jeziorski, A; Piekarski, J

    2008-12-01

    The antioxidant properties of extract from berries of Aronia melanocarpa (chokeberry) containing: anthocyanidines, phenolic acids and quercetine glycosides on oxidative/nitrative stress induced by peroxynitrite (ONOO(-), a powerful physiological oxidant, nitrating species and inflammatory mediator) in human blood platelets were studied in vitro. The extract from A. melanocarpa (5 - 50 microg/mL) significantly inhibited platelet protein carbonylation (measured by ELISA method) and thiol oxidation estimated with 5,5'-dithio-bis(2-nitro-benzoic acid) (DTNB) induced by peroxynitrite (0.1 mM) (IC(50)--35 microg/mL for protein carbonylation, and IC(50)--33 microg/mL for protein thiol oxidation). The tested extract only slightly reduced platelet protein nitration (measured by C- ELISA method). The extract also caused a distinct reduction of platelet lipid peroxidation induced by peroxynitrite. Moreover, in our preliminary experiments we observed that the extract (50 microg/mL) reduced oxidative/nitrative stress in blood platelets from patients with breast cancer. The obtained results indicate that in vitro the extract from A. melanocarpa has the protective effects against peroxynitrite-induced oxidative/nitrative damage to the human platelet proteins and lipids. The extract from A. melanocarpa seems to be also useful as an antioxidant in patients with breast cancer.

  19. Upregulation of FLJ10540, a PI3K-association protein, in rostral ventrolateral medulla impairs brain stem cardiovascular regulation during mevinphos intoxication.

    PubMed

    Tsai, Ching-Yi; Chen, Chang-Han; Chang, Alice Y W; Chan, Julie Y H; Chan, Samuel H H

    2015-01-01

    FLJ10540, originally identified as a microtubule-associated protein, induces cell proliferation and migration during tumorigenesis via the formation of FLJ10540-PI3K complex and enhancement of PI3K kinase activity. Interestingly, activation of PI3K/Akt cascade, leading to upregulation of nitric oxide synthase II (NOS II)/peroxynitrite signaling in the rostral ventrolateral medulla (RVLM), the brain stem site that maintains blood pressure and sympathetic vasomotor tone, mediates the impairment of brain stem cardiovascular regulation induced by the pesticide mevinphos. We evaluated the hypothesis that upregulation of FLJ10540 in the RVLM is upstream to this repertoire of signaling cascade that underpins mevinphos-induced circulatory depression. Microinjection bilaterally of mevinphos (10nmol) into the RVLM of anesthetized Sprague-Dawley rats induced a progressive hypotension that was accompanied by an increase (Phase I), followed by a decrease (Phase II) of an experimental index for baroreflex-mediated sympathetic vasomotor tone. There was augmentation in FLJ10540 mRNA in the RVLM or FLJ10540 protein in RVLM neurons, both of which were causally and temporally related to an augmentation of binding between the catalytic subunit (p110) and regulatory subunit (p85) of PI3K, phosphorylation of Akt at Thr308 site, and NOS II, superoxide or peroxynitrite level in the RVLM. Immunoneutralization of FJL10540 in the RVLM significantly antagonized those biochemical changes, and blunted the progressive hypotension and the reduced baroreflex-mediated sympathetic vasomotor tone during mevinphos intoxication. We conclude that upregulation of FLJ10540 in the RVLM elicits impairment of brain stem cardiovascular regulation that underpins circulatory depression during mevinphos intoxication via activation of PI3K/Akt/NOS II/peroxynitrite signaling cascade in the RVLM. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Superoxide and Peroxynitrite in Atherosclerosis

    NASA Astrophysics Data System (ADS)

    White, C. Roger; Brock, Tommy A.; Chang, Ling-Yi; Crapo, James; Briscoe, Page; Ku, David; Bradley, William A.; Gianturco, Sandra H.; Gore, Jeri; Freeman, Bruce A.; Tarpey, Margaret M.

    1994-02-01

    The role of reactive oxygen species in the vascular pathology associated with atherosclerosis was examined by testing the hypothesis that impaired vascular reactivity results from the reaction of nitric oxide (^.NO) with superoxide (O^-_2), yielding the oxidant peroxynitrite (ONOO^-). Contractility studies were performed on femoral arteries from rabbits fed a cholesterol-supplemented diet. Cholesterol feeding shifted the EC50 for acetylcholine (ACh)-induced relaxation and impaired the maximal response to ACh. We used pH-sensitive liposomes to deliver CuZn superoxide dismutase (SOD; superoxide:superoxide oxidoreductase, EC 1.15.1.1) to critical sites of ^.NO reaction with O^-_2. Intravenously injected liposomes (3000 units of SOD per ml) augmented ACh-induced relaxation in the cholesterol-fed group to a greater extent than in controls. Quantitative immunocytochemistry demonstrated enhanced distribution of SOD in both endothelial and vascular smooth muscle cells as well as in the extracellular matrix. SOD activity in vessel homogenates of liposome-treated rabbits was also increased. Incubation of β very low density lipoprotein with ONOO^- resulted in the rapid formation of conjugated dienes and thiobarbituric acid-reactive substances. Our results suggest that the reaction of O^-_2 with ^.NO is involved in the development of atherosclerotic disease by yielding a potent mediator of lipoprotein oxidation, as well as by limiting ^.NO stimulation of vascular smooth muscle guanylate cyclase activity.

  1. Naringin Attenuates Cerebral Ischemia-Reperfusion Injury Through Inhibiting Peroxynitrite-Mediated Mitophagy Activation.

    PubMed

    Feng, Jinghan; Chen, Xingmiao; Lu, Shengwen; Li, Wenting; Yang, Dan; Su, Weiwei; Wang, Xijun; Shen, Jiangang

    2018-04-07

    Excessive autophagy/mitophagy plays important roles during cerebral ischemia-reperfusion (I/R) injury. Peroxynitrite (ONOO - ), a representative reactive nitrogen species, mediates excessive mitophagy activation and exacerbates cerebral I/R injury. In the present study, we tested the hypothesis that naringin, a natural antioxidant, could inhibit ONOO - -mediated mitophagy activation and attenuate cerebral I/R injury. Firstly, we demonstrated that naringin possessed strong ONOO - scavenging capability and also inhibited the production of superoxide and nitric oxide in SH-SY5Y cells exposed to 10 h oxygen-glucose-deprivation plus 14 h of reoxygenation or ONOO - donor 3-morpholinosydnonimine conditions. Naringin also inhibited the expression of NADPH oxidase subunits and iNOS in rat brains subjected to 2 h ischemia plus 22 h reperfusion. Next, we found that naringin was able to cross the blood-brain barrier, and naringin decreased neurological deficit score, reduced infarct size, and attenuated apoptotic cell death in the ischemia-reperfused rat brains. Furthermore, naringin reduced 3-nitrotyrosine formation, decreased the ratio of LC3-II to LC3-I in mitochondrial fraction, and inhibited the translocation of Parkin to the mitochondria. Taken together, naringin could be a potential therapeutic agent to prevent the brain from I/R injury via attenuating ONOO - -mediated excessive mitophagy.

  2. Protein Tyrosine Nitration: Biochemical Mechanisms and Structural Basis of its Functional Effects

    PubMed Central

    Radi, Rafael

    2012-01-01

    CONSPECTUS The nitration of protein tyrosine residues to 3-nitrotyrosine represents an oxidative postranslational modification that unveils the disruption of nitric oxide (•NO) signaling and metabolism towards pro-oxidant processes. Indeed, excess levels of reactive oxygen species in the presence of •NO or •NO-derived metabolites lead to the formation of nitrating species such as peroxynitrite. Thus, protein 3-nitrotyrosine has been established as a biomarker of cell, tissue and systemic “nitroxidative stress”. Moreover, tyrosine nitration modifies key properties of the amino acid (i.e. phenol group pKa, redox potential, hydrophobicity and volume). Thus, the incorporation of a nitro group (−NO2) to protein tyrosines can lead to profound structural and functional changes, some of which contribute to altered cell and tissue homeostasis. In this Account, I describe our current efforts to define 1) biologically-relevant mechanisms of protein tyrosine nitration and 2) how this modification can cause changes in protein structure and function at the molecular level. First, the relevance of protein tyrosine nitration via free radical-mediated reactions (in both peroxynitrite-dependent or independent pathways) involving the intermediacy of tyrosyl radical (Tyr•) will be underscored. This feature of the nitration process becomes critical as Tyr• can take variable fates, including the formation of 3-nitrotyrosine. Fast kinetic techniques, electron paramagnetic resonance (EPR) studies, bioanalytical methods and kinetic simulations have altogether assisted to characterize and fingerprint the reactions of tyrosine with peroxynitrite and one-electron oxidants and its further evolution to 3-nitrotyrosine. Recent findings show that nitration of tyrosines in proteins associated to biomembranes is linked to the lipid peroxidation process via a connecting reaction that involves the one-electron oxidation of tyrosine by lipid peroxyl radicals (LOO•). Second, immunochemical and proteomic-based studies indicate that protein tyrosine nitration is a selective process in vitro and in vivo, preferentially directed to a subset of proteins, and within those proteins, typically one or two tyrosine residues are site-specifically modified. The nature and site(s) of formation of the proximal oxidizing/nitrating species, the physico-chemical characteristics of the local microenvironment and also structural features of the protein account for part of this selectivity. Then, how this relatively subtle chemical modification in one tyrosine residue can sometimes cause dramatic changes in protein activity has remained elusive. Herein, I will analyze recent structural biology data of two pure and homogenously nitrated mitochondrial proteins (i.e. cytochrome c and MnSOD) to illustrate regio-selectivity and structural effects of tyrosine nitration, and subsequent impact in protein loss- or even gain-of-function. PMID:23157446

  3. Nitrotyrosine localization to dermal nerves in borderline leprosy.

    PubMed

    Schön, T; Hernández-Pando, R; Baquera-Heredia, J; Negesse, Y; Becerril-Villanueva, L E; Eon-Contreras, J C L; Sundqvist, T; Britton, S

    2004-03-01

    Nerve damage is a common and disabling feature of leprosy, with unclear aetiology. It has been reported that the peroxidizing agents of myelin lipids-nitric oxide (NO) and peroxynitrite-are produced in leprosy skin lesions. To investigate the localization of nitrotyrosine (NT)-a local end-product of peroxynitrite-in leprosy lesions where dermal nerves are affected by a granulomatous reaction. We investigated by immunohistochemistry and immunoelectron microscopy the localization of the inducible NO synthase (iNOS) and NT in biopsies exhibiting dermal nerves from patients with untreated leprosy. There were abundant NT-positive and iNOS-positive macrophages in the borderline leprosy granulomas infiltrating peripheral nerves identified by light microscopy, S-100 and neurofilament immunostaining. Immunoelectron microscopy showed NT reactivity in neurofilament aggregates and in the cell wall of Mycobacterium leprae. Our results suggest that NO and peroxynitrite could be involved in the nerve damage following borderline leprosy.

  4. Leghemoglobin is nitrated in functional legume nodules in a tyrosine residue within the heme cavity by a nitrite/peroxide-dependent mechanism.

    PubMed

    Sainz, Martha; Calvo-Begueria, Laura; Pérez-Rontomé, Carmen; Wienkoop, Stefanie; Abián, Joaquín; Staudinger, Christiana; Bartesaghi, Silvina; Radi, Rafael; Becana, Manuel

    2015-03-01

    Protein tyrosine (Tyr) nitration is a post-translational modification yielding 3-nitrotyrosine (NO2 -Tyr). Formation of NO2 -Tyr is generally considered as a marker of nitro-oxidative stress and is involved in some human pathophysiological disorders, but has been poorly studied in plants. Leghemoglobin (Lb) is an abundant hemeprotein of legume nodules that plays an essential role as an O2 transporter. Liquid chromatography coupled to tandem mass spectrometry was used for a targeted search and quantification of NO2 -Tyr in Lb. For all Lbs examined, Tyr30, located in the distal heme pocket, is the major target of nitration. Lower amounts were found for NO2 -Tyr25 and NO2 -Tyr133. Nitrated Lb and other as yet unidentified nitrated proteins were also detected in nodules of plants not receiving NO3- and were found to decrease during senescence. This demonstrates formation of nitric oxide (˙NO) and NO2- by alternative means to nitrate reductase, probably via a ˙NO synthase-like enzyme, and strongly suggests that nitrated proteins perform biological functions and are not merely metabolic byproducts. In vitro assays with purified Lb revealed that Tyr nitration requires NO2- + H2 O2 and that peroxynitrite is not an efficient inducer of nitration, probably because Lb isomerizes it to NO3-. Nitrated Lb is formed via oxoferryl Lb, which generates nitrogen dioxide and tyrosyl radicals. This mechanism is distinctly different from that involved in heme nitration. Formation of NO2 -Tyr in Lb is a consequence of active metabolism in functional nodules, where Lb may act as a sink of toxic peroxynitrite and may play a protective role in the symbiosis. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  5. Extracellular localization of catalase is associated with the transformed state of malignant cells.

    PubMed

    Böhm, Britta; Heinzelmann, Sonja; Motz, Manfred; Bauer, Georg

    2015-12-01

    Oncogenic transformation is dependent on activated membrane-associated NADPH oxidase (NOX). However, the resultant extracellular superoxide anions are also driving the NO/peroxynitrite and the HOCl pathway, which eliminates NOX-expressing transformed cells through selective apoptosis induction. Tumor progression is dependent on dominant interference with intercellular apoptosis-inducing ROS signaling through membrane-associated catalase, which decomposes H2O2 and peroxynitrite and oxidizes NO. Particularly, the decomposition of extracellular peroxynitrite strictly requires membrane-associated catalase. We utilized small interfering RNA (siRNA)-mediated knockdown of catalase and neutralizing antibodies directed against the enzyme in combination with challenging H2O2 or peroxynitrite to determine activity and localization of catalase in cells from three distinct steps of multistage oncogenesis. Nontransformed cells did not generate extracellular superoxide anions and only showed intracellular catalase activity. Transformed cells showed superoxide anion-dependent intercellular apoptosis-inducing ROS signaling in the presence of suboptimal catalase activity in their membrane. Tumor cells exhibited tight control of intercellular apoptosis-inducing ROS signaling through a high local concentration of membrane-associated catalase. These data demonstrate that translocation of catalase to the outside of the cell membrane is already associated with the transformation step. A strong local increase in the concentration of membrane-associated catalase is achieved during tumor progression and is controlled by tumor cell-derived H2O2 and by transglutaminase.

  6. Modification of a single tryptophan residue in human Cu,Zn-superoxide dismutase by peroxynitrite in the presence of bicarbonate.

    PubMed

    Yamakura, F; Matsumoto, T; Fujimura, T; Taka, H; Murayama, K; Imai, T; Uchida, K

    2001-07-09

    Human recombinant Cu,Zn-SOD was reacted with peroxynitrite in a reaction mixture containing 150 mM potassium phosphate buffer (pH 7.4) 25 mM sodium bicarbonate, and 0.1 mM diethylenetriamine pentaacetic acid. Disappearance of fluorescence emission at 350 nm, which could be attributed to modification of a single tryptophan residue, was observed in the modified enzyme with a pH optimum of around 8.4. A fluorescence decrease with the same pH optimum was also observed without sodium bicarbonate, but with less efficiency. Amino acid contents of the modified enzyme showed no significant difference in all amino acids except the loss of a single tryptophan residue of the enzyme. The peroxynitrite-modified enzyme showed an increase in optical absorption around 350 nm and 30% reduced enzyme activity based on the copper contents. The modified enzyme showed the same electron paramagnetic resonance spectrum as that of the control enzyme. The modified Cu,Zn-SOD showed a single protein band in sodium dodecyl sulfate--polyacrylamide gel electrophoresis (SDS--PAGE) and five protein bands in non-denaturing PAGE. From this evidence, we conclude that nitration and/or oxidation of the single tryptophan 32 and partial inactivation of the enzyme activity of Cu,Zn-SOD is caused by a peroxynitrite-carbon dioxide adduct without perturbation of the active site copper integrity.

  7. Arginase in Retinopathy

    PubMed Central

    Narayanan, S. Priya; Rojas, Modesto; Suwanpradid, Jutamas; Toque, Haroldo A.; Caldwell, R. William; Caldwell, Ruth B.

    2013-01-01

    Ischemic retinopathies, such as diabetic retinopathy (DR), retinopathy of prematurity and retinal vein occlusion are a major cause of blindness in developed nations worldwide. Each of these conditions is associated with early neurovascular dysfunction. However, conventional therapies target clinically significant macula edema or neovascularization, which occur much later. Intraocular injections of anti-VEGF show promise in reducing retinal edema, but the effects are usually transient and the need for repeated injections increases the risk of intraocular infection. Laser photocoagulation can control pathological neovascularization, but may impair vision and in some patients the retinopathy continues to progress. Moreover, neither treatment targets early stage disease or promotes repair. This review examines the potential role of the ureahydrolase enzyme arginase as a therapeutic target for the treatment of ischemic retinopathy. Arginase metabolizes L-arginine to form proline, polyamines and glutamate. Excessive arginase activity reduces the L-arginine supply for nitric oxide synthase (NOS), causing it to become uncoupled and produce superoxide and less NO. Superoxide and NO react and form the toxic oxidant peroxynitrite. The catabolic products of polyamine oxidation and glutamate can induce more oxidative stress and DNA damage, both of which can cause cellular injury. Studies indicate that neurovascular injury during retinopathy is associated with increased arginase expression/activity, decreased NO, polyamine oxidation, formation of superoxide and peroxynitrite and dysfunction and injury of both vascular and neural cells. Furthermore, data indicate that the cytosolic isoform arginase I (AI) is involved in hyperglycemia-induced dysfunction and injury of vascular endothelial cells whereas the mitochondrial isoform arginase II (AII) is involved in neurovascular dysfunction and death following hyperoxia exposure. Thus, we postulate that activation of the arginase pathway causes neurovascular injury by uncoupling NOS and inducing polyamine oxidation and glutamate formation, thereby reducing NO and increasing oxidative stress, all of which contribute to the retinopathic process. PMID:23830845

  8. Effects of chronic N-acetylcysteine treatment on the actions of peroxynitrite on aortic vascular reactivity in hypertensive rats.

    PubMed

    Cabassi, A; Dumont, E C; Girouard, H; Bouchard, J F; Le Jossec, M; Lamontagne, D; Besner, J G; de Champlain, J

    2001-07-01

    Peroxynitrite (ONOO-), the product of superoxide and nitric oxide, seems to be involved in vascular alterations in hypertension. To evaluate the effects of ONOO- on endothelium-dependent and independent aortic vascular responsiveness, oxidized/reduced glutathione balance (GSSG/GSH), malondialdehyde aortic content, and the formation of 3-nitrotyrosine (3-NT), a stable marker of ONOO-, in N-acetylcysteine (NAC)-treated normotensive Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR). In SHR only, NAC significantly reduced heart rate and systolic, but not diastolic, blood pressure. It also improved endothelium-dependent aortic relaxation in SHR, but not after exposure to ONOO-. Endothelium-dependent and independent aortic relaxations were markedly impaired by ONOO- in both strains of rat. NAC partially protected SHR against the ONOO- -induced reduction in endothelium-independent relaxation. Aortic GSSG/GSH ratio and malondialdehyde, which were higher in SHR than in WKY rats, showed a greater increase in SHR after exposure to ONOO-. NAC decreased GSSG/GSH and malondialdehyde in both strains of rat before and after exposure to ONOO-. The 3-NT concentration, which was similar in both strains of rat under basal conditions, was greater in SHR than in WKY rats after the addition of ONOO-, with a reduction only in NAC-treated SHR. These findings suggest an increased vulnerability of SHR aortas to the effects of ONOO- as compared with those of WKY rats. The selective improvements produced by NAC, in systolic arterial pressure, heart rate, aortic endothelial function, ONOO- -induced impairment of endothelium-independent relaxation, aortic GSSG/GSH balance, malondialdehyde content and 3-NT formation in SHR suggest that chronic administration of NAC may have a protective effect against aortic vascular dysfunction in the SHR model of hypertension.

  9. Study of interaction of antimutagenic 1,4-dihydropyridine AV-153-Na with DNA-damaging molecules and its impact on DNA repair activity.

    PubMed

    Leonova, Elina; Rostoka, Evita; Sauvaigo, Sylvie; Baumane, Larisa; Selga, Turs; Sjakste, Nikolajs

    2018-01-01

    1,4-dihydropyridines (1,4-DHP) possesses important biochemical and pharmacological properties, including antioxidant and antimutagenic activities. It was shown that the antimutagenic 1,4-dihydropyridine AV-153-Na interacts with DNA. The aim of the current study was to test the capability of the compound to scavenge peroxynitrite and hydroxyl radical, to test intracellular distribution of the compound, and to assess the ability of the compound to modify the activity of DNA repair enzymes and to protect the DNA in living cells against peroxynitrite-induced damage. Peroxynitrite decomposition was assayed by UV spectroscopy, hydroxyl radical scavenging-by EPR spectroscopy. DNA breakage was determined by the "comet method", activity of DNA repair enzymes-using Glyco-SPOT and ExSy-SPOT assays. Intracellular distribution of the compound was studied by laser confocal scanning fluorescence microscopy. Fluorescence spectroscopy titration and circular dichroism spectroscopy were used to study interactions of the compound with human serum albumin. Some ability to scavenge hydroxyl radical by AV-153-Na was detected by the EPR method, but it turned out to be incapable of reacting chemically with peroxynitrite. However, AV-153-Na effectively decreased DNA damage produced by peroxynitrite in cultured HeLa cells. The Glyco-SPOT test essentially revealed an inhibition by AV-153-Na of the enzymes involved thymine glycol repair. Results with ExSy-SPOT chip indicate that AV-153-Na significantly stimulates excision/synthesis repair of 8-oxoguanine (8-oxoG), abasic sites (AP sites) and alkylated bases. Laser confocal scanning fluorescence microscopy demonstrated that within the cells AV-153-Na was found mostly in the cytoplasm; however, a stain in nucleolus was also detected. Binding to cytoplasmic structures might occur due to high affinity of the compound to proteins revealed by spectroscopical methods. Activation of DNA repair enzymes after binding to DNA appears to be the basis for the antimutagenic effects of AV-153-Na.

  10. Beneficial effects of n-acetylcysteine on ischaemic brain injury

    PubMed Central

    Cuzzocrea, Salvatore; Mazzon, Emanuela; Costantino, Giuseppina; Serraino, Ivana; Dugo, Laura; Calabrò, Giusy; Cucinotta, Giovanni; De Sarro, Angela; Caputi, A P

    2000-01-01

    Nitric oxide (NO), peroxynitrite, formed from NO and superoxide anion, poly (ADP-ribole) synthetase have been implicated as mediators of neuronal damage following focal ischaemia. Here we have investigated the effects of n-acetylcysteine (NAC) treatment in Mongolian gerbils subjected to cerebral ischaemia.Treatment of gerbils with NAC (20 mg kg−1 30 min before reperfusion and 1, 2 and 6 h after reperfusion) reduced the formation of post-ischaemic brain oedema, evaluated by water content.NAC also attenuated the increase in the brain levels of malondialdehyde (MDA) and the increase in the hippocampus of myeloperoxidase (MPO) caused by cerebral ischaemia.Positive staining for nitrotyrosine was found in the hippocampus in Mongolian gerbils subjected to cerebral ischaemia. Hippocampus tissue sections from Mongolian gerbils subjected to cerebral ischaemia also showed positive staining for poly (ADP-ribose) synthetase (PARS). The degree of staining for nitrotyrosine and for PARS were markedly reduced in tissue sections obtained from animals that received NAC.NAC treatment increased survival and reduced hyperactivity linked to neurodegeneration induced by cerebral ischaemia and reperfusion.Histological observations of the pyramidal layer of CA1 showed a reduction of neuronal loss in animals that received NAC.These results show that NAC improves brain injury induced by transient cerebral ischaemia. PMID:10903958

  11. The bacterial pigment pyocyanin inhibits the NLRP3 inflammasome through intracellular reactive oxygen and nitrogen species

    PubMed Central

    Virreira Winter, Sebastian; Zychlinsky, Arturo

    2018-01-01

    Inflammasomes are cytosolic complexes that mature and secrete the inflammatory cytokines interleukin 1β (IL-1β) and IL-18 and induce pyroptosis. The NLRP3 (NACHT, LRR, and PYD domains–containing protein 3) inflammasome detects many pathogen- and danger-associated molecular patterns, and reactive oxygen species (ROS)/reactive nitrogen species (RNS) have been implicated in its activation. The phenazine pyocyanin (PCN) is a virulence factor of Pseudomonas aeruginosa and generates superoxide in cells. Here we report that PCN inhibits IL-1β and IL-18 release and pyroptosis upon NLRP3 inflammasome activation in macrophages by preventing speck formation and Caspase-1 maturation. Of note, PCN did not regulate the AIM2 (absent in melanoma 2) or NLRC4 inflammasomes or tumor necrosis factor (TNF) secretion. Imaging of the fluorescent glutathione redox potential sensor Grx1-roGFP2 indicated that PCN provokes cytosolic and nuclear but not mitochondrial redox changes. PCN-induced intracellular ROS/RNS inhibited the NLRP3 inflammasome posttranslationally, and hydrogen peroxide or peroxynitrite alone were sufficient to block its activation. We propose that cytosolic ROS/RNS inhibit the NLRP3 inflammasome and that PCN's anti-inflammatory activity may help P. aeruginosa evade immune recognition. PMID:29414783

  12. Scavenging of reactive oxygen species and prevention of oxidative neuronal cell damage by a novel gallotannin, pistafolia A.

    PubMed

    Wei, Taotao; Sun, Handong; Zhao, Xingyu; Hou, Jingwu; Hou, Aijun; Zhao, Qinshi; Xin, Wenjuan

    2002-03-08

    Pistafolia A is a novel gallotannin isolated from the leaf extract of Pistacia weinmannifolia. In the present investigation, the ability of Pistafolia A to scavenge reactive oxygen species including hydroxyl radicals and superoxide anion was measured by ESR spin trapping technique. The inhibition effect on iron-induced lipid peroxidaiton in liposomes was studied. The protective effects of Pistafolia A against oxidative neuronal cell damage and apoptosis induced by peroxynitrite were also assessed. The results showed that Pistafolia A could scavenge both hydroxyl radicals and superoxide anion dose-dependently and inhibit lipid peroxidation effectively. In cerebellar granule cells pretreated with Pistafolia A, peroxynitrite-induced oxidative neuronal damage and apoptosis were prevented markedly. The antioxidant capacity of Pistafolia A was much more potent then that of the water-soluble analog of vitamin E, Trolox. The results suggested that Pistafolia A might be used as an effective natural antioxidant for the prevention and cure of neuronal diseases associated with the production of peroxynitrite and related reactive oxygen species.

  13. Peroxynitrite scavenging activity of herb extracts.

    PubMed

    Choi, Hye Rhi; Choi, Jae Sue; Han, Yong Nam; Bae, Song Ja; Chung, Hae Young

    2002-06-01

    Peroxynitrite (ONOO(-)) is a cytotoxicant with strong oxidizing properties toward various cellular constituents, including sulphydryls, lipids, amino acids and nucleotides and can cause cell death, lipid peroxidation, carcinogenesis and aging. The aim of this study was to characterize ONOO(-) scavenging constituents from herbs. Twenty-eight herbs were screened for their ONOO(-) scavenging activities with the use of a fluorometric method. The potency of scavenging activity following the addition of authentic ONOO(-) was in the following order: witch hazel bark > rosemary > jasmine tea > sage > slippery elm > black walnut leaf > Queen Anne's lace > Linden flower. The extracts exhibited dose-dependent ONOO(-) scavenging activities. We found that witch hazel (Hamamelis virginiana L.) bark showed the strongest effect for scavenging ONOO(-) of the 28 herbs. Hamamelitannin, the major active component of witch hazel bark, was shown to have a strong ability to scavenge ONOO(-). It is suggested that hamamelitannin might be developed as an effective peroxynitrite scavenger for the prevention of ONOO(-) involved diseases. Copyright 2002 John Wiley & Sons, Ltd.

  14. Parabanic acid is the singlet oxygen specific oxidation product of uric acid.

    PubMed

    Iida, Sayaka; Ohkubo, Yuki; Yamamoto, Yorihiro; Fujisawa, Akio

    2017-11-01

    Uric acid quenches singlet oxygen physically or reacts with it, but the oxidation product has not been previously characterized. The present study determined that the product is parabanic acid, which was confirmed by LC/TOFMS analysis. Parabanic acid was stable at acidic pH (<5.0), but hydrolyzed to oxaluric acid at neutral or alkaline pH. The total yields of parabanic acid and oxaluric acid based on consumed uric acid were ~100% in clean singlet oxygen production systems such as UVA irradiation of Rose Bengal and thermal decomposition of 3-(1,4-dihydro-1,4-epidioxy-4-methyl-1-naphthyl)propionic acid. However, the ratio of the amount of uric acid consumed to the total amount of singlet oxygen generated was less than 1/180, indicating that most of the singlet oxygen was physically quenched. The total yields of parabanic acid and oxaluric acid were high in the uric acid oxidation systems with hydrogen peroxide plus hypochlorite or peroxynitrite. They became less than a few percent in peroxyl radical-, hypochlorite- or peroxynitrite-induced oxidation of uric acid. These results suggest that parabanic acid could be an in vivo probe of singlet oxygen formation because of the wide distribution of uric acid in human tissues and extracellular spaces. In fact, sunlight exposure significantly increased human skin levels of parabanic acid.

  15. The decomposition of peroxynitrite to nitroxyl anion (NO−) and singlet oxygen in aqueous solution

    PubMed Central

    Khan, Ahsan Ullah; Kovacic, Dianne; Kolbanovskiy, Alexander; Desai, Mehul; Frenkel, Krystyna; Geacintov, Nicholas E.

    2000-01-01

    The mechanism of decomposition of peroxynitrite (OONO−) in aqueous sodium phosphate buffer solution at neutral pH was investigated. The OONO− was synthesized by directly reacting nitric oxide with superoxide anion at pH 13. The hypothesis was explored that OONO−, after protonation at pH 7.0 to HOONO, decomposes into 1O2 and HNO according to a spin-conserved unimolecular mechanism. Small aliquots of the concentrated alkaline OONO− solution were added to a buffer solution (final pH 7.0–7.2), and the formation of 1O2 and NO− in high yields was observed. The 1O2 generated was trapped as the transannular peroxide (DPAO2) of 9,10-diphenylanthracene (DPA) dissolved in carbon tetrachloride. The nitroxyl anion (NO−) formed from HNO (pKa 4.5) was trapped as nitrosylhemoglobin (HbNO) in an aqueous methemoglobin (MetHb) solution. In the presence of 25 mM sodium bicarbonate, which is known to accelerate the rate of decomposition of OONO−, the amount of singlet oxygen trapped was reduced by a factor of ≈2 whereas the yield of trapping of NO− by methemoglobin remained unaffected. Because NO3− is known to be the ultimate decomposition product of OONO−, these results suggest that the nitrate anion is not formed by a direct isomerization of OONO−, but by an indirect route originating from NO−. PMID:10716721

  16. Cross-linking of serine racemase dimer by reactive oxygen species and reactive nitrogen species.

    PubMed

    Wang, Wei; Barger, Steven W

    2012-06-01

    Serine racemase (SR) is the only identified enzyme in mammals responsible for isomerization of L-serine to D-serine, a coagonist at N-methyl-D-aspartate (NMDA) receptors in the forebrain. Our previous data showed that an apparent SR dimer resistant to sodium dodecyl sulfate and β-mercaptoethanol was elevated in microglial cells after proinflammatory activation. Because the activation of microglia is typically associated with an oxidative burst, oxidative cross-linking between SR subunits was speculated. In this study, an siRNA technique was employed to confirm the identity of this SR dimer band. The oxidative species potentially responsible for the cross-linking was investigated with recombinant SR protein. The data indicate that nitric oxide, peroxynitrite, and hydroxyl radical were the likely candidates, whereas superoxide and hydrogen peroxide per se failed to contribute. Furthermore, the mechanism of formation of SR dimer by peroxynitrite oxidation was studied by mass spectrometry. A disulfide bond between Cys₆ and Cys₁₁₃ was identified in 3-morpholinosydnonimine hydrochloride (SIN-1)-treated SR monomer and dimer. Activity assays indicated that SIN-1 treatment decreased SR activity, confirming our previous conclusion that noncovalent dimer is the most active form of SR. These findings suggest a compensatory feedback in which the consequences of neuroinflammation might dampen D-serine production to limit excitotoxic stimulation of NMDA receptors. Copyright © 2012 Wiley Periodicals, Inc.

  17. Extracellular superoxide dismutase is necessary to maintain renal blood flow during sepsis development.

    PubMed

    Constantino, Larissa; Galant, Letícia Selinger; Vuolo, Francieli; Guarido, Karla Lorena; Kist, Luiza Wilges; de Oliveira, Giovanna Medeiros Tavares; Pasquali, Matheus Augusto de Bittencourt; de Souza, Cláudio Teodoro; da Silva-Santos, José Eduardo; Bogo, Maurício Reis; Moreira, José Cláudio Fonseca; Ritter, Cristiane; Dal-Pizzol, Felipe

    2017-12-01

    Extracellular superoxide dismutase (ECSOD) protects nitric oxide (NO) bioavailability by decreasing superoxide levels and preventing peroxynitrite generation, which is important in maintaining renal blood flow and in preventing acute kidney injury. However, the profile of ECSOD expression after sepsis is not fully understood. Therefore, we intended to evaluate the content and gene expression of superoxide dismutase (SOD) isoforms in the renal artery and their relation to renal blood flow. Sepsis was induced in Wistar rats by caecal ligation and perforation. Several times after sepsis induction, renal blood flow (12, 24 and 48 h); the renal arterial content of SOD isoforms, nitrotyrosine, endothelial and inducible nitric oxide synthase (e-NOS and i-NOS), and phosphorylated vasodilator-stimulated phosphoprotein (pVASP); and SOD activity (3, 6 and 12 h) were measured. The influence of a SOD inhibitor was also evaluated. An increase in ECSOD content was associated with decreased 3-nitrotyrosine levels. These events were associated with an increase in pVASP content and maintenance of renal blood flow. Moreover, previous treatment with a SOD inhibitor increased nitrotyrosine content and reduced renal blood flow. ECSOD appears to have a major role in decreasing peroxynitrite formation in the renal artery during the early stages of sepsis development, and its application can be important in renal blood flow control and maintenance during septic insult.

  18. Mechanisms of cell signaling by nitric oxide and peroxynitrite: from mitochondria to MAP kinases

    NASA Technical Reports Server (NTRS)

    Levonen, A. L.; Patel, R. P.; Brookes, P.; Go, Y. M.; Jo, H.; Parthasarathy, S.; Anderson, P. G.; Darley-Usmar, V. M.

    2001-01-01

    Many of the biological and pathological effects of nitric oxide (NO) are mediated through cell signaling pathways that are initiated by NO reacting with metalloproteins. More recently, it has been recognized that the reaction of NO with free radicals such as superoxide and the lipid peroxyl radical also has the potential to modulate redox signaling. Although it is clear that NO can exert both cytotoxic and cytoprotective actions, the focus of this overview are those reactions that could lead to protection of the cell against oxidative stress in the vasculature. This will include the induction of antioxidant defenses such as glutathione, activation of mitogen-activated protein kinases in response to blood flow, and modulation of mitochondrial function and its impact on apoptosis. Models are presented that show the increased synthesis of glutathione in response to shear stress and inhibition of cytochrome c release from mitochondria. It appears that in the vasculature NO-dependent signaling pathways are of three types: (i) those involving NO itself, leading to modulation of mitochondrial respiration and soluble guanylate cyclase; (ii) those that involve S-nitrosation, including inhibition of caspases; and (iii) autocrine signaling that involves the intracellular formation of peroxynitrite and the activation of the mitogen-activated protein kinases. Taken together, NO plays a major role in the modulation of redox cell signaling through a number of distinct pathways in a cellular setting.

  19. Lung Macrophages “Digest” Carbon Nanotubes Using a Superoxide/Peroxynitrite Oxidative Pathway

    PubMed Central

    2015-01-01

    In contrast to short-lived neutrophils, macrophages display persistent presence in the lung of animals after pulmonary exposure to carbon nanotubes. While effective in the clearance of bacterial pathogens and injured host cells, the ability of macrophages to “digest” carbonaceous nanoparticles has not been documented. Here, we used chemical, biochemical, and cell and animal models and demonstrated oxidative biodegradation of oxidatively functionalized single-walled carbon nanotubes via superoxide/NO* → peroxynitrite-driven oxidative pathways of activated macrophages facilitating clearance of nanoparticles from the lung. PMID:24871084

  20. A Six-Coordinate Peroxynitrite Low-Spin Iron(III) Porphyrinate Complex—The Product of the Reaction of Nitrogen Monoxide (·NO (g)) with a Ferric-Superoxide Species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Savita K.; Schaefer, Andrew W.; Lim, Hyeongtaek

    Peroxynitrite ( –OON=O, PN) is a reactive nitrogen species (RNS) which can effect deleterious nitrative or oxidative (bio)chemistry. It may derive from reaction of superoxide anion (O 2 •–) with nitric oxide (·NO) and has been suggested to form an as-yet unobserved bound heme-iron-PN intermediate in the catalytic cycle of nitric oxide dioxygenase (NOD) enzymes, which facilitate a ·NO homeostatic process, i.e., its oxidation to the nitrate anion. Here, a discrete six-coordinate low-spin porphyrinate-Fe III complex [(P Im)Fe III( –OON=O)] (P Im; a porphyrin moiety with a covalently tethered imidazole axial “base” donor ligand) has been identified and characterized bymore » various spectroscopies (UV–vis, NMR, EPR, XAS, resonance Raman) and DFT calculations, following its formation at –80 °C by addition of ·NO (g) to the heme-superoxo species, [(P Im)Fe III(O 2 •–)]. DFT calculations confirm that is a six-coordinate low-spin species with the PN ligand coordinated to iron via its terminal peroxidic anionic O atom with the overall geometry being in a cis-configuration. Complex thermally transforms to its isomeric low-spin nitrato form [(P Im)Fe III(NO 3 –)]. While previous (bio)chemical studies show that phenolic substrates undergo nitration in the presence of PN or PN-metal complexes, in the present system, addition of 2,4-di- tert-butylphenol ( 2,4DTBP) to complex does not lead to nitrated phenol; the nitrate complex still forms. Furthermore, DFT calculations reveal that the phenolic H atom approaches the terminal PN O atom (farthest from the metal center and ring core), effecting O–O cleavage, giving nitrogen dioxide (·NO 2) plus a ferryl compound [(P Im)Fe IV=O] (7); this rebounds to give [(P Im)Fe III(NO 3 –)].The generation and characterization of the long sought after ferriheme peroxynitrite complex has been accomplished.« less

  1. A Six-Coordinate Peroxynitrite Low-Spin Iron(III) Porphyrinate Complex—The Product of the Reaction of Nitrogen Monoxide (·NO (g)) with a Ferric-Superoxide Species

    DOE PAGES

    Sharma, Savita K.; Schaefer, Andrew W.; Lim, Hyeongtaek; ...

    2017-11-01

    Peroxynitrite ( –OON=O, PN) is a reactive nitrogen species (RNS) which can effect deleterious nitrative or oxidative (bio)chemistry. It may derive from reaction of superoxide anion (O 2 •–) with nitric oxide (·NO) and has been suggested to form an as-yet unobserved bound heme-iron-PN intermediate in the catalytic cycle of nitric oxide dioxygenase (NOD) enzymes, which facilitate a ·NO homeostatic process, i.e., its oxidation to the nitrate anion. Here, a discrete six-coordinate low-spin porphyrinate-Fe III complex [(P Im)Fe III( –OON=O)] (P Im; a porphyrin moiety with a covalently tethered imidazole axial “base” donor ligand) has been identified and characterized bymore » various spectroscopies (UV–vis, NMR, EPR, XAS, resonance Raman) and DFT calculations, following its formation at –80 °C by addition of ·NO (g) to the heme-superoxo species, [(P Im)Fe III(O 2 •–)]. DFT calculations confirm that is a six-coordinate low-spin species with the PN ligand coordinated to iron via its terminal peroxidic anionic O atom with the overall geometry being in a cis-configuration. Complex thermally transforms to its isomeric low-spin nitrato form [(P Im)Fe III(NO 3 –)]. While previous (bio)chemical studies show that phenolic substrates undergo nitration in the presence of PN or PN-metal complexes, in the present system, addition of 2,4-di- tert-butylphenol ( 2,4DTBP) to complex does not lead to nitrated phenol; the nitrate complex still forms. Furthermore, DFT calculations reveal that the phenolic H atom approaches the terminal PN O atom (farthest from the metal center and ring core), effecting O–O cleavage, giving nitrogen dioxide (·NO 2) plus a ferryl compound [(P Im)Fe IV=O] (7); this rebounds to give [(P Im)Fe III(NO 3 –)].The generation and characterization of the long sought after ferriheme peroxynitrite complex has been accomplished.« less

  2. [Mechanisms of nitroxide-ergic dysregulation in tissues of parodontium in rats under combined excessive sodium nitrate and fluoride intake].

    PubMed

    Богданов, Алексей В; Гришко, Юлия М; Костенко, Виталий А

    2016-01-01

    intake of inorganic nitrates is typically accompanied by production of excessive amount of nitric oxide (NO), which level is maintained by the mechanism of autoregulation known as the NO cycle. Hypothetically, this process may be disrupted with fluorides that are able to suppress arginase pathway of L-arginine metabolism, which competes with NO-synthase pathway. to study mechanisms of disregulation of oxidative (NO-synthase) and non-oxidative (arginase) metabolic pathways of L-arginine in the tissues of periodontium under combined excessive sodium nitrate and fluoride intake. these investigations were carried out on 90 white Wistar rats. Homogenates of parodontium soft tissues were used to assess spectrophotometrically the total activities of NO-synthase (NOS), arginase, ornithine decarboxylase as well as the peroxynitrite concentration. typical for the isolated sodium nitrate administration inhibition of total NOS activity varies under combined administration of nitrate and sodium fluoride and is usually manifested by its hyperactivation that is accompanied by an increase in peroxynitrite concentration. At this time arginase and ornithine decarboxylase activity is observed to be substantially reduced. The administration of aminoguanidine, an iNOS inhibitor, (20 mg/kg, twice a week during the experiment) increases arginase and ornithine decarboxylase activities, and the administration of L-arginine (500 mg/kg, twice a week) results in the increase of arginase activity. The administration of L-selenomethionine, a peroxynitrite scavenger (3 mg/kg, twice a week), and JSH-23 (4-methyl-N-(3-phenylpropyl) benzene-1,2-diamine, an inhibitor of NF-κB activation (1 mg/kg, twice a week) for modeling binary nitrate and fluoride intoxication reduces the total concentration of NOS activity and peroxynitrite concentration, and increases ornithine decarboxylase activity. the combined effect of nitrate and sodium fluoride for 30 days leads to disregulatory increased activity of NO-synthase enzymes and reduction of arginase pathway of L-arginine in the soft tissues of parodontium that is promoted by hyperactivation of iNOS and NF-κB, and increased peroxynitrite production.

  3. [Mechanisms of nitroxide-ergic dysregulation in tissues of parodontium in rats under combined excessive sodium nitrate and fluoride intake].

    PubMed

    Богданов, Алексей В; Гришко, Юлия М; Костенко, Виталий А

    intake of inorganic nitrates is typically accompanied by production of excessive amount of nitric oxide (NO), which level is maintained by the mechanism of autoregulation known as the NO cycle. Hypothetically, this process may be disrupted with fluorides that are able to suppress arginase pathway of L-arginine metabolism, which competes with NO-synthase pathway. to study mechanisms of disregulation of oxidative (NO-synthase) and non-oxidative (arginase) metabolic pathways of L-arginine in the tissues of periodontium under combined excessive sodium nitrate and fluoride intake. these investigations were carried out on 90 white Wistar rats. Homogenates of parodontium soft tissues were used to assess spectrophotometrically the total activities of NO-synthase (NOS), arginase, ornithine decarboxylase as well as the peroxynitrite concentration. typical for the isolated sodium nitrate administration inhibition of total NOS activity varies under combined administration of nitrate and sodium fluoride and is usually manifested by its hyperactivation that is accompanied by an increase in peroxynitrite concentration. At this time arginase and ornithine decarboxylase activity is observed to be substantially reduced. The administration of aminoguanidine, an iNOS inhibitor, (20 mg/kg, twice a week during the experiment) increases arginase and ornithine decarboxylase activities, and the administration of L-arginine (500 mg/kg, twice a week) results in the increase of arginase activity. The administration of L-selenomethionine, a peroxynitrite scavenger (3 mg/kg, twice a week), and JSH-23 (4-methyl-N-(3-phenylpropyl) benzene-1,2-diamine, an inhibitor of NF-κB activation (1 mg/kg, twice a week) for modeling binary nitrate and fluoride intoxication reduces the total concentration of NOS activity and peroxynitrite concentration, and increases ornithine decarboxylase activity. the combined effect of nitrate and sodium fluoride for 30 days leads to disregulatory increased activity of NO-synthase enzymes and reduction of arginase pathway of L-arginine in the soft tissues of parodontium that is promoted by hyperactivation of iNOS and NF-κB, and increased peroxynitrite production.

  4. FORUM: Bioinspired Heme, Heme/non-heme Diiron, Heme/copper and Inorganic NOx Chemistry: ·NO(g) Oxidation, Peroxynitrite-Metal Chemistry and ·NO(g) Reductive Coupling

    PubMed Central

    Schopfer, Mark P.; Wang, Jun; Karlin, Kenneth D.

    2010-01-01

    The focus of this Forum review highlights work from our own laboratories and those of others in the area of biochemical and biologically inspired inorganic chemistry dealing with nitric oxide (nitrogen monoxide, ·NO(g)) and its biological roles and reactions. The latter focus is on (i) oxidation of ·NO(g) to nitrate by nitric oxide dioxygenases (NOD’s), and (ii) reductive coupling of two molecules of ·NO(g) to give N2O(g). In the former case, NOD’s are described and the highlighting of possible peroxynitrite-heme intermediates and consequences of this are given by discussion of recent works with myoglobin and a synthetic heme model system for NOD action. Summaries of recent copper complex chemistries with ·NO(g) and O2(g) leading to peroxynitrite species are given. The coverage of biological reductive coupling of ·NO(g) deals with bacterial nitric oxide reductases (NOR’s) with heme/non-heme diiron active sites, and on heme/Cu oxidases such as cytochrome c oxidase which can mediate the same chemistry. Recent designed protein and synthetic model compound (heme/non-heme diiron or heme/copper) as functional mimics are discussed in some detail. We also highlight examples from the chemical literature, not necessarily involving biologically relevant metal ions, which describe the oxidation of ·NO(g) to nitrate (or nitrite) and possible peroxynitrite intermediates, or reductive coupling of ·NO(g) to give nitrous oxide. PMID:20666386

  5. Metal-catalyzed protein tyrosine nitration in biological systems.

    PubMed

    Campolo, Nicolás; Bartesaghi, Silvina; Radi, Rafael

    2014-11-01

    Protein tyrosine nitration is an oxidative postranslational modification that can affect protein structure and function. It is mediated in vivo by the production of nitric oxide-derived reactive nitrogen species (RNS), including peroxynitrite (ONOO(-)) and nitrogen dioxide ((•)NO₂). Redox-active transition metals such as iron (Fe), copper (Cu), and manganese (Mn) can actively participate in the processes of tyrosine nitration in biological systems, as they catalyze the production of both reactive oxygen species and RNS, enhance nitration yields and provide site-specificity to this process. Early after the discovery that protein tyrosine nitration can occur under biologically relevant conditions, it was shown that some low molecular weight transition-metal centers and metalloproteins could promote peroxynitrite-dependent nitration. Later studies showed that nitration could be achieved by peroxynitrite-independent routes as well, depending on the transition metal-catalyzed oxidation of nitrite (NO₂(-)) to (•)NO₂ in the presence of hydrogen peroxide. Processes like these can be achieved either by hemeperoxidase-dependent reactions or by ferrous and cuprous ions through Fenton-type chemistry. Besides the in vitro evidence, there are now several in vivo studies that support the close relationship between transition metal levels and protein tyrosine nitration. So, the contribution of transition metals to the levels of tyrosine nitrated proteins observed under basal conditions and, specially, in disease states related with high levels of these metal ions, seems to be quite clear. Altogether, current evidence unambiguously supports a central role of transition metals in determining the extent and selectivity of protein tyrosine nitration mediated both by peroxynitrite-dependent and independent mechanisms.

  6. A highly sensitive and selective fluorimetric probe for intracellular peroxynitrite based on photoinduced electron transfer from ferrocene to carbon dots.

    PubMed

    Zhu, Jiali; Sun, Shan; Jiang, Kai; Wang, Yuhui; Liu, Wenqing; Lin, Hengwei

    2017-11-15

    Herein, a highly sensitive and selective fluorimetric nanoprobe for peroxynitrite (ONOO - ) detection based on photoinduced electron transfer (PET) from ferrocene (Fc) to carbon dots (CDs) is reported. The nanoprobe (named CDs-Fc) can be facilely constructed through covalently conjugating CDs and ferrocenecarboxylic acid. Further studies reveal that the energy level of highest occupied molecular orbital (HOMO) of the CDs is lowered with the addition of ONOO - due to its oxidation and nitration capabilities. Thus, an efficient electron transfer from Fc to the excited states of CDs could occur, leading to obvious fluorescence quenching. The fluorescence quenching of the nanoprobe was determined to be peroxynitrite concentrations dependence with a linear range between 4nM to 0.12μM. Thanks to the excellent optical properties of the CDs and efficient electron transfer efficiency from Fc to the excited CDs, the nanoprobe exhibits very high sensitivity to ONOO - with a limit of detection (LOD) of 2.9nM. To the best of our knowledge, this LOD is the highest reported value till today for the detection of peroxynitrite. Besides, the nanoprobe also shows excellent selectivity to ONOO - among a broad range of substances, even including other reactive oxygen/nitrogen species (ROS/RNS). Finally, the nanoprobe was verified to be very low cytotoxicity, and was successfully applied for intracellular ONOO - detection. This work would provide a promising tool for the research of ONOO - in cytobiology and disease diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. [Active forms of oxygen and nitrogen in blood cells of patients with rheumatoid arthritis: effect of laser therapy].

    PubMed

    Ostrakhovich, E A; Ilich-Stoianovich, O; Afanas'ev, I B

    2001-01-01

    Infrared pulse laser therapy was studied for its impact on the production of active forms of oxygen and nitrogen by neutrophils from patients with rheumatoid arthritis (RA). The authors determined the non-activated and PMA-activated production of superoxide anion-radical, peroxynitrite, peripheral neurophilic NAD.PH-oxidase and superoxide dismutase activities, and the red blood cell concentrations of reduced glutathione. Before therapy, non-activation RA neurophilic production of superoxide was much higher than in donors. Laser therapy made this parameter normal. Similarly, neutrophilic peroxynitrite production (defined by dihydrorhodamine oxidation) in RA patients was 1.7 times higher than the normal values. IF-laser therapy decreased peroxynitrite production to the values observed in donors. It is important that the therapy caused increased SOD activity (that was lower in RA patients prior to therapy) up to apparently control values. Thus, IF-laser therapy has a certain antioxidative effect by increasing SOD activity in RA patients' blood cells and reducing the production of highly reactive oxygen and nitrogen forms.

  8. A discrete role for alternative oxidase under hypoxia to increase nitric oxide and drive energy production.

    PubMed

    Vishwakarma, Abhaypratap; Kumari, Aprajita; Mur, Luis A J; Gupta, Kapuganti Jagadis

    2018-03-28

    Alternative oxidase (AOX) is an integral part of the mitochondrial electron transport and can prevent reactive oxygen species (ROS) and nitric oxide (NO) production under non-stressed, normoxic conditions. Here we assessed the roles of AOX by imposing stress under normoxia in comparison to hypoxic conditions using AOX over expressing (AOX OE) and anti-sense (AOX AS) transgenic Arabidopsis seedlings and roots. Under normoxic conditions stress was induced with the defence elicitor flagellin (flg22). AOX OE reduced NO production whilst this was increased in AOX AS. Moreover AOX AS also exhibited an increase in superoxide and therefore peroxynitrite, tyrosine nitration suggesting that scavenging of NO by AOX can prevent toxic peroxynitrite formation under normoxia. In contrast, during hypoxia interestingly we found that AOX is a generator of NO. Thus, the NO produced during hypoxia, was enhanced in AOX OE and suppressed in AOX AS. Additionally, treatment of WT or AOX OE with the AOX inhibitor SHAM inhibited hypoxic NO production. The enhanced levels of NO correlated with expression of non-symbiotic haemoglobin, increased NR activity and ATP production. The ATP generation was suppressed in nia1,2 mutant and non symbiotic haemoglobin antisense line treated with SHAM. Taken together these results suggest that hypoxic NO generation mediated by AOX has a discrete role by feeding into the haemoglobin-NO cycle to drive energy efficiency under conditions of low oxygen tension. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Mechanism of covalent modification of glyceraldehyde-3-phosphate dehydrogenase at its active site thiol by nitric oxide, peroxynitrite and related nitrosating agents.

    PubMed

    Mohr, S; Stamler, J S; Brüne, B

    1994-07-18

    Previous studies have suggested that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) undergoes covalent modification of an active site thiol by a NO.-induced [32P]NAD(+)-dependent mechanism. However, the efficacy of GAPDH modification induced by various NO donors was found to be independent of spontaneous rates of NO. release. To further test the validity of this mechanism, we studied the effects of nitrosonium tertrafluoroborate (BF4NO), a strong NO+ donor. BF4NO potently induces GAPDH labeling by the radioactive nucleotide. In this case, the addition of thiol significantly attenuates enzyme modification by competing for the NO moiety in the formation of RS-NO. Peroxynitrite (ONOO-) also induces GAPDH modification in the presence of thiol, consistent with the notion that this species can transfer NO+ (or NO2+) through the intermediacy of RS-NO. However, the efficiency of this reaction is limited by ONOO- -induced oxidation of protein SH groups at the active site. ONOO- generation appears to account for the modification of GAPDH by SIN-1. Thus, S-nitrosylation of the active site thiol is a prequisite for subsequent post-translational modification with NAD+, and emphasizes the role of NO+ transfer in the initial step of this pathway. Our findings thus provide a uniform mechanism by which nitric oxide and related NO donors initiate non-enzymatic ADP-ribosylation (like) reactions. In biological systems, endogenous RS-NO are likely to support the NO group transfer to thiol-containing proteins.

  10. Peroxynitrite Disrupts Endothelial Caveolae Leading to eNOS Uncoupling and Diminished Flow-Mediated Dilation in Coronary Arterioles of Diabetic Patients

    PubMed Central

    Cassuto, James; Dou, Huijuan; Czikora, Istvan; Szabo, Andras; Patel, Vijay S.; Kamath, Vinayak; Belin de Chantemele, Eric; Feher, Attila; Romero, Maritza J.; Bagi, Zsolt

    2014-01-01

    Peroxynitrite (ONOO−) contributes to coronary microvascular dysfunction in diabetes mellitus (DM). We hypothesized that in DM, ONOO− interferes with the function of coronary endothelial caveolae, which plays an important role in nitric oxide (NO)-dependent vasomotor regulation. Flow-mediated dilation (FMD) of coronary arterioles was investigated in DM (n = 41) and non-DM (n = 37) patients undergoing heart surgery. NO-mediated coronary FMD was significantly reduced in DM patients, which was restored by ONOO− scavenger, iron-(III)-tetrakis(N-methyl-4'pyridyl)porphyrin-pentachloride, or uric acid, whereas exogenous ONOO− reduced FMD in non-DM subjects. Immunoelectron microscopy demonstrated an increased 3-nitrotyrosine formation (ONOO−-specific protein nitration) in endothelial plasma membrane in DM, which colocalized with caveolin-1 (Cav-1), the key structural protein of caveolae. The membrane-localized Cav-1 was significantly reduced in DM and also in high glucose–exposed coronary endothelial cells. We also found that DM patients exhibited a decreased number of endothelial caveolae, whereas exogenous ONOO− reduced caveolae number. Correspondingly, pharmacological (methyl-β-cyclodextrin) or genetic disruption of caveolae (Cav-1 knockout mice) abolished coronary FMD, which was rescued by sepiapterin, the stable precursor of NO synthase (NOS) cofactor, tetrahydrobiopterin. Sepiapterin also restored coronary FMD in DM patients. Thus, we propose that ONOO− selectively targets and disrupts endothelial caveolae, which contributes to NOS uncoupling, and, hence, reduced NO-mediated coronary vasodilation in DM patients. PMID:24353182

  11. Perivascular iron deposits are associated with protein nitration in cerebral experimental autoimmune encephalomyelitis.

    PubMed

    Sands, Scott A; Williams, Rachel; Marshall, Sylvester; LeVine, Steven M

    2014-10-17

    Nitration of proteins, which is thought to be mediated by peroxynitrite, is a mechanism of tissue damage in multiple sclerosis (MS). However, protein nitration can also be catalyzed by iron, heme or heme-associated molecules independent of peroxynitrite. Since microhemorrhages and perivascular iron deposits are present in the CNS of MS patients, we sought to determine if iron is associated with protein nitration. A cerebral model of experimental autoimmune encephalomyelitis (cEAE) was utilized since this model has been shown to have perivascular iron deposits similar to those present in MS. Histochemical staining for iron was used together with immunohistochemistry for nitrotyrosine, eNOS, or iNOS on cerebral sections. Leakage of the blood-brain barrier (BBB) was studied by albumin immunohistochemistry. Iron deposits were colocalized with nitrotyrosine staining around vessels in cEAE mice while control animals revealed minimal staining. This finding supports the likelihood that nitrotyrosine formation was catalyzed by iron or iron containing molecules. Examples of iron deposits were also observed in association with eNOS and iNOS, which could be one source of substrates for this reaction. Extravasation of albumin was present in cEAE mice, but not in control animals. Extravasated albumin may act to limit tissue injury by binding iron and/or heme as well as being a target of nitration, but the protection is incomplete. In summary, iron-catalyzed nitration of proteins is a likely mechanism of tissue damage in MS. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Isomer distribution of hydroxyoctadecadienoates (HODE) and hydroxyeicosatetraenoates (HETE) produced in the plasma oxidation mediated by peroxyl radical, peroxynitrite, hypochlorite, 15-lipoxygenase, and singlet oxygen.

    PubMed

    Umeno, Aya; Morita, Mayuko; Yoshida, Yasukazu; Naito, Yuji; Niki, Etsuo

    2017-12-01

    Free and ester forms of unsaturated fatty acids and cholesterol are oxidized in vivo by multiple oxidants to give diverse products. Some lipid oxidation is mediated by enzymes to selectively give specific products, while others proceed randomly to produce mixtures of many kinds of regioisomers and stereoisomers. The efficacy of antioxidants against lipid oxidation depends on the nature of the oxidants and therefore the identification of oxidant is important for understanding the roles and effects of lipid oxidation and antioxidants in vivo. In the present study, the isomer distribution of hydro(pero)xyoctadecadienoates (H(p)ODEs) and hydro(pero)xyeicosatetraenoates (H(p)ETEs), the most abundant lipid oxidation products found in human plasma, produced in the oxidation of plasma by peroxyl radicals, peroxynitrite, hypochlorite, 15-lipoxygenase, and singlet oxygen were examined. It was shown that 9- and 13-(E,E)-HODEs, 13(S)-(Z,E)-HODE, and 10- and 12-(Z,E)-HODEs were specific lipid oxidation products by free radical, 15-lipoxygenase, and singlet oxygen, respectively. The isomer distribution of HODEs produced by peroxynitrite was similar to that by peroxyl radical, suggesting that the peroxynitrite mediated lipid oxidation proceeds by free radical mechanisms. The production of HODEs and HETEs by hypochlorite was very small. HODEs may be a better biomarker than HETEs since linoleates are oxidized by simpler mechanisms than arachidonates and all the HODEs isomers can be quantified more easily. These products may be used as specific biomarkers for the identification of responsible oxidants and for the assessment of oxidant-specific lipid oxidation levels and effects of antioxidants in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Iron porphyrinate Fe(TPPS) reduces brain cell damage in rats intrastriatally lesioned by quinolinate.

    PubMed

    González-Cortés, Carolina; Salinas-Lara, Citlaltepetl; Gómez-López, Marcos Artemio; Tena-Suck, Martha Lilia; Pérez-De La Cruz, Verónica; Rembao-Bojórquez, Daniel; Pedraza-Chaverrí, José; Gómez-Ruiz, Celedonio; Galván-Arzate, Sonia; Ali, Syed F; Santamaría, Abel

    2008-01-01

    It has been recently demonstrated that the reactive nitrogen species (RNS) peroxynitrite (ONOO(-)) is involved in the neurotoxic pattern produced by quinolinic acid in the rat brain [V. Pérez-De La Cruz, C. González-Cortés, S. Galván-Arzate, O.N. Medina-Campos, F. Pérez-Severiano, S.F. Ali, J. Pedraza-Chaverrí, A. Santamaría, Excitotoxic brain damage involves early peroxynitrite formation in a model of Huntington's disease in rats: protective role of iron porphyrinate 5,10,15,20-tetrakis (4-sulfonatophenyl)porphyrinate iron (III), Neuroscience 135 (2005) 463-474.]. The aim of this work was to investigate whether ONOO(-) can also be responsible for morphological alterations and inflammatory events in the same paradigm. For this purpose, we evaluated the effect of a pre-treatment with the iron porphyrinate Fe(TPPS), a well-known ONOO(-) decomposition catalyst (10 mg/kg, i.p., 120 min before lesion), on the quinolinate-induced striatal cell damage and immunoreactivities to glial-fibrilar acidic protein (GFAP), interleukin 6 (IL-6) and inducible nitric oxide synthase (iNOS), one and seven days after the intrastriatal infusion of quinolinate (240 nmol/microl) to rats. The striatal tissue from animals lesioned by quinolinate showed a significant degree of damage and enhanced immunoreactivities to GFAP, IL-6 and iNOS, both at 1 and 7 days post-lesion. Pre-treatment of rats with Fe(TPPS) significantly attenuated or prevented all these markers at both post-lesion times tested, except for GFAP immunoreactivity at 7 days post-lesion and iNOS immunoreactivity at 1 day post-lesion. Altogether, our results suggest that ONOO(-) is actively participating in triggering inflammatory events and morphological alterations in the toxic model produced by quinolinate, since the use of agents affecting its formation, such as Fe(TPPS), are effective experimental tools to reduce the brain lesions associated to excitotoxic and oxidative damage.

  14. The kinetics of the reaction of nitrogen dioxide with iron(II)- and iron(III) cytochrome c.

    PubMed

    Domazou, Anastasia S; Gebicka, Lidia; Didik, Joanna; Gebicki, Jerzy L; van der Meijden, Benjamin; Koppenol, Willem H

    2014-04-01

    The reactions of NO2 with both oxidized and reduced cytochrome c at pH 7.2 and 7.4, respectively, and with N-acetyltyrosine amide and N-acetyltryptophan amide at pH 7.3 were studied by pulse radiolysis at 23 °C. NO2 oxidizes N-acetyltyrosine amide and N-acetyltryptophan amide with rate constants of (3.1±0.3)×10(5) and (1.1±0.1)×10(6) M(-1) s(-1), respectively. With iron(III)cytochrome c, the reaction involves only its amino acids, because no changes in the visible spectrum of cytochrome c are observed. The second-order rate constant is (5.8±0.7)×10(6) M(-1) s(-1) at pH 7.2. NO2 oxidizes iron(II)cytochrome c with a second-order rate constant of (6.6±0.5)×10(7) M(-1) s(-1) at pH 7.4; formation of iron(III)cytochrome c is quantitative. Based on these rate constants, we propose that the reaction with iron(II)cytochrome c proceeds via a mechanism in which 90% of NO2 oxidizes the iron center directly-most probably via reaction at the solvent-accessible heme edge-whereas 10% oxidizes the amino acid residues to the corresponding radicals, which, in turn, oxidize iron(II). Iron(II)cytochrome c is also oxidized by peroxynitrite in the presence of CO2 to iron(III)cytochrome c, with a yield of ~60% relative to peroxynitrite. Our results indicate that, in vivo, NO2 will attack preferentially the reduced form of cytochrome c; protein damage is expected to be marginal, the consequence of formation of amino acid radicals on iron(III)cytochrome c. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Aqueous reactive species induced by a PCB surface micro-discharge air plasma device: a quantitative study

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Li, Fanying; Chen, Hai-Lan; Kong, Michael G.

    2017-11-01

    This paper presents a quantitative investigation on aqueous reactive species induced by air plasma generated from a printed circuit board surface micro-discharge (SMD) device. Under the conditions amenable for proliferation of mammalian cells, concentrations of ten types of reactive oxygen and nitrogen species (RONS) in phosphate buffering solution (PBS) are measured by chemical fluorescent assays and electron spin resonance spectroscopy (ESR). Results show that concentrations of several detected RNS (NO2- , NO3- , peroxynitrites, and NO2\\centerdot ) are higher than those of ROS (H2O2, O2\\centerdot - , and 1O2) in the air plasma treated solution. Concentrations of NO3- can reach 150 times of H2O2 with 60 s plasma treatment. For short-lived species, the air plasma generates more copious peroxynitrite than other RONS including NO2\\centerdot , O2\\centerdot - , 1O2, and N{{O}\\centerdot } in PBS. In addition, the existence of reaction between H2O2 and NO2- /HNO2 to produce peroxynitrite is verified by the chemical scavenger experiments. The reaction relations between detected RONS are also discussed.

  16. Melatonin and the electron transport chain.

    PubMed

    Hardeland, Rüdiger

    2017-11-01

    Melatonin protects the electron transport chain (ETC) in multiple ways. It reduces levels of ·NO by downregulating inducible and inhibiting neuronal nitric oxide synthases (iNOS, nNOS), thereby preventing excessive levels of peroxynitrite. Both ·NO and peroxynitrite-derived free radicals, such as ·NO 2 , hydroxyl (·OH) and carbonate radicals (CO 3 · - ) cause blockades or bottlenecks in the ETC, by ·NO binding to irons, protein nitrosation, nitration and oxidation, changes that lead to electron overflow or even backflow and, thus, increased formation of superoxide anions (O 2 · - ). Melatonin improves the intramitochondrial antioxidative defense by enhancing reduced glutathione levels and inducing glutathione peroxidase and Mn-superoxide dismutase (Mn-SOD) in the matrix and Cu,Zn-SOD in the intermembrane space. An additional action concerns the inhibition of cardiolipin peroxidation. This oxidative change in the membrane does not only initiate apoptosis or mitophagy, as usually considered, but also seems to occur at low rate, e.g., in aging, and impairs the structural integrity of Complexes III and IV. Moreover, elevated levels of melatonin inhibit the opening of the mitochondrial permeability transition pore and shorten its duration. Additionally, high-affinity binding sites in mitochondria have been described. The assumption of direct binding to the amphipathic ramp of Complex I would require further substantiation. The mitochondrial presence of the melatonin receptor MT 1 offers the possibility that melatonin acts via an inhibitory G protein, soluble adenylyl cyclase, decreased cAMP and lowered protein kinase A activity, a signaling pathway shown to reduce Complex I activity in the case of a mitochondrial cannabinoid receptor.

  17. Paradoxical effects of vitamin C in Chagas disease.

    PubMed

    Castanheira, J R P T; Castanho, R E P; Rocha, H; Pagliari, C; Duarte, M I S; Therezo, A L S; Chagas, E F B; Martins, L P A

    2018-05-05

    Trypanosoma cruzi infection stimulates inflammatory mediators which cause oxidative stress, and the use of antioxidants can minimize the sequelae of Chagas disease. In order to evaluate the efficacy of vitamin C in minimizing oxidative damage in Chagas disease, we orally administered ascorbic acid to Swiss mice infected with 5.0 × 10 4 trypomastigote forms of T. cruzi QM2 strain. These animals were treated for 60 days to investigate the acute phase and 180 days for the chronic phase. During the acute phase, the animals in the infected and treated groups demonstrated lower parasitemia and inflammatory processes were seen in more mice in these groups, probably due to the higher concentration of nitric oxide, which led to the formation of peroxynitrite. The decrease in reduced glutathione concentration in this group showed a circulating oxidant state, and this antioxidant was used to regenerate vitamin C. During the chronic phase, the animals in the infected and treated group showed a decrease in ferric reducing ability of plasma and uric acid concentrations as well as mobilization of bilirubin (which had higher plasma concentration), demonstrating cooperation between endogenous non-enzymatic antioxidants to combat increased oxidative stress. However, lower ferrous oxidation in xylenol orange concentrations was found in the infected and treated group, suggesting that vitamin C provided biological protection by clearing the peroxynitrite, attenuating the chronic inflammatory process in the tissues and favoring greater survival in these animals. Complex interactions were observed between the antioxidant systems of the host and parasite, with paradoxical actions of vitamin C. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. [Effect of arsenic and its compounds on the circulatory system].

    PubMed

    Sieradzki, A; Skoczyńska, A; Andrzejak, R

    2000-01-01

    Arsenic is a metal which occurs widely in both occupational and physical environments. Therefore, its easy accessibility and high toxicity raise the question on whether arsenic, particularly in relatively small doses, can cause damage of relevant molecular, biochemical and clinical significance to the cardiovascular system. The present review is focused on the confirmed and potential mechanisms of arsenic effect on the function and structure of vascular endothelium (nitric oxide, peroxynitrite), its role in stimulating the oxidative species formation (hydroxyperoxide, superoxide and lipid peroxide formation), as well as in decreasing the antioxidative response (enzymes: superoxide dysmutase, catalase, glutation peroxidase), its cytotoxic effects, including immunotoxic properties, arsenic action in the signal transduction pathways network (kinases and DNA transcription factors), impact on cell proliferation, differentiation and apoptosis, not to mention its interference with DNA synthesis and repair processes. Apart from mechanisms of arsenic action, the article provides the up-to-date information on various cardiovascular diseases of the established or presumed arsenic origin.

  19. Peroxynitrite induces apoptosis of mouse cochlear hair cells via a Caspase-independent pathway in vitro.

    PubMed

    Cao, Zhixin; Yang, Qianqian; Yin, Haiyan; Qi, Qi; Li, Hongrui; Sun, Gaoying; Wang, Hongliang; Liu, Wenwen; Li, Jianfeng

    2017-11-01

    Peroxynitrite (ONOO - ) is a potent and versatile oxidant implicated in a number of pathophysiological processes. The present study was designed to investigate the effect of ONOO - on the cultured cochlear hair cells (HCs) of C57BL/6 mice in vitro as well as the possible mechanism underlying the action of such an oxidative stress. The in vitro primary cultured cochlear HCs were subjected to different concentrations of ONOO - , then, the cell survival and morphological changes were examined by immunofluorescence and transmission electron microscopy (TEM), the apoptosis was determined by Terminal deoxynucleotidyl transferase dUNT nick end labeling (TUNEL) assay, the mRNA expressions of Caspase-3, Caspase-8, Caspase-9, Apaf1, Bcl-2, and Bax were analyzed by RT-PCR, and the protein expressions of Caspase-3 and AIF were assessed by immunofluorescence. This work demonstrated that direct exposure of primary cultured cochlear HCs to ONOO - could result in a base-to-apex gradient injury of HCs in a concentration-dependent manner. Furthermore, ONOO - led to much more losses of outer hair cells than inner hair cells mainly through the induction of apoptosis of HCs as evidenced by TEM and TUNEL assays. The mRNA expressions of Caspase-8, Caspase-9, Apaf1, and Bax were increased and, meanwhile, the mRNA expression of Bcl-2 was decreased in response to ONOO - treatment. Of interesting, the expression of Caspase-3 had no significant change, whereas, the expression alteration of AIF was observed. These results suggested that ONOO - can effectively damage the survival of cochlear HCs via triggering the apoptotic pathway. The findings from this work suggest that ONOO - -induced apoptosis is mediated, at least in part, via a Caspase-independent pathway in cochlear HCs.

  20. The Effect of Neighboring Methionine Residue on Tyrosine Nitration & Oxidation in Peptides Treated with MPO, H2O2, & NO2- or Peroxynitrite and Bicarbonate: Role of Intramolecular Electron-Transfer Mechanism?

    PubMed Central

    Zhang, Hao; Zielonka, Jacek; Sikora, Adam; Joseph, Joy; Xu, Yingkai; Kalyanaraman, B.

    2009-01-01

    Recent reports suggest that intramolecular electron-transfer reactions can profoundly affect the site and specificity of tyrosyl nitration and oxidation in peptides and proteins. Here we investigated the effects of methionine on tyrosyl nitration and oxidation induced by myeloperoxidase (MPO), H2O2 and NO2- and peroxynitrite (ONOO-) or ONOO- and bicarbonate (HCO3-) in model peptides, tyrosylmethionine (YM), tyrosylphenylalanine (YF) and tyrosine. Nitration and oxidation products of these peptides were analysed by HPLC with UV/Vis and fluorescence detection, and mass spectrometry; radical intermediates were identified by electron paramagnetic resonance (EPR)-spin-trapping. We have previously shown (Zhang et al., J. Biol. Chem. (2005) 280, 40684-40698) that oxidation and nitration of tyrosyl residue was inhibited in tyrosylcysteine(YC)-type peptides as compared to free tyrosine. Here we show that methionine, another sulfur-containing amino acid, does not inhibit nitration and oxidation of a neighboring tyrosine residue in the presence of ONOO- (or ONOOCO2-) or MPO/H2O2/NO2- system. Nitration of tyrosyl residue in YM was actually stimulated under the conditions of in situ generation of ONOO- (formed by reaction of superoxide with nitric oxide during SIN-1 decomposition), as compared to YF, YC and tyrosine. The dramatic variations in tyrosyl nitration profiles caused by methionine and cysteine residues have been attributed to differences in the direction of intramolecular electron transfer mechanism in these peptides. Further confirmation of HPLC data analysis was obtained by steady-state radiolysis and photolysis experiments. Potential implications of the intramolecular electron-transfer mechanism in mediating selective nitration of protein tyrosyl groups are discussed. PMID:19056332

  1. Concurrent targeting of nitrosative stress-PARP pathway corrects functional, behavioral and biochemical deficits in experimental diabetic neuropathy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negi, Geeta; Kumar, Ashutosh; Sharma, Shyam S., E-mail: sssharma@niper.ac.in

    2010-01-01

    Peroxynitrite mediated nitrosative stress, an indisputable initiator of DNA damage and overactivation of poly(ADP-ribose) polymerase (PARP), a nuclear enzyme activated after sensing DNA damage, are two crucial pathogenetic mechanisms in diabetic neuropathy. The intent of the present study was to investigate the effect of combination of a peroxynitrite decomposition catalyst (PDC), FeTMPyP and a PARP inhibitor, 4-ANI against diabetic peripheral neuropathy. The end points of evaluation of the study included motor nerve conduction velocity (MNCV) and nerve blood flow (NBF) for evaluating nerve functions; thermal hyperalgesia and mechanical allodynia for assessing nociceptive alterations, malondialdehyde and peroxynitrite levels to detect oxidativemore » stress-nitrosative stress; NAD concentration in sciatic nerve to assess overactivation of PARP. Additionally immunohistochemical studies for nitrotyrosine and Poly(ADP-ribose) (PAR) was also performed. Treatment with the combination of FeTMPyP and 4-ANI led to significant improvement in nerve functions and pain parameters and also attenuated the oxidative-nitrosative stress markers. Further, the combination also reduced the overactivation of PARP as evident from increased NAD levels and decreased PAR immunopositivity in sciatic nerve microsections. Thus, it can be concluded that treatment with the combination of a PDC and PARP inhibitor attenuates alteration in peripheral nerves in diabetic neuropathy (DN).« less

  2. Peroxynitrite mediates programmed cell death both in papillar cells and in self-incompatible pollen in the olive (Olea europaea L.)

    PubMed Central

    Serrano, Irene; Romero-Puertas, María C.; Rodríguez-Serrano, María; Sandalio, Luisa M.; Olmedilla, Adela

    2012-01-01

    Programmed cell death (PCD) has been found to be induced after pollination both in papillar cells and in self-incompatible pollen in the olive (Olea europaea L.). Reactive oxygen species (ROS) and nitric oxide (NO) are known to be produced in the pistil and pollen during pollination but their contribution to PCD has so far remained elusive. The possible role of ROS and NO was investigated in olive pollen–pistil interaction during free and controlled pollination and it was found that bidirectional interaction appears to exist between the pollen and the stigma, which seems to regulate ROS and NO production. Biochemical evidence strongly suggesting that both O2˙− and NO are essential for triggering PCD in self-incompatibility processes was also obtained. It was observed for the first time that peroxynitrite, a powerful oxidizing and nitrating agent generated during a rapid reaction between O2˙− and NO, is produced during pollination and that this is related to an increase in protein nitration which, in turn, is strongly associated with PCD. It may be concluded that peroxynitrite mediates PCD during pollen–pistil interaction in Olea europaea L. both in self-incompatible pollen and papillar cells. PMID:22140239

  3. Agmatine attenuates silica-induced pulmonary fibrosis.

    PubMed

    El-Agamy, D S; Sharawy, M H; Ammar, E M

    2014-06-01

    There is a large body of evidence that nitric oxide (NO) formation is implicated in mediating silica-induced pulmonary fibrosis. As a reactive free radical, NO may not only contribute to lung parenchymal tissue injury but also has the ability to combine with superoxide and form a highly reactive toxic species peroxynitrite that can induce extensive cellular toxicity in the lung tissues. This study aimed to explore the effect of agmatine, a known NO synthase inhibitor, on silica-induced pulmonary fibrosis in rats. Male Sprague Dawley rats were treated with agmatine for 60 days following a single intranasal instillation of silica suspension (50 mg in 0.1 ml saline/rat). The results revealed that agmatine attenuated silica-induced lung inflammation as it decreased the lung wet/dry weight ratio, protein concentration, and the accumulation of the inflammatory cells in the bronchoalveolar lavage fluid. Agmatine showed antifibrotic activity as it decreased total hydroxyproline content of the lung and reduced silica-mediated lung inflammation and fibrosis in lung histopathological specimen. In addition, agmatine significantly increased superoxide dismutase (p < 0.001) and reduced glutathione (p < 0.05) activities with significant decrease in the lung malondialdehyde (p < 0.001) content as compared to the silica group. Agmatine also reduced silica-induced overproduction of pulmonary nitrite/nitrate as well as tumor necrosis factor α. Collectively, these results demonstrate the protective effects of agmatine against the silica-induced lung fibrosis that may be attributed to its ability to counteract the NO production, lipid peroxidation, and regulate cytokine effects. © The Author(s) 2014.

  4. Trifluoperazine inhibits acetaminophen-induced hepatotoxicity and hepatic reactive nitrogen formation in mice and in freshly isolated hepatocytes.

    PubMed

    Banerjee, Sudip; Melnyk, Stepan B; Krager, Kimberly J; Aykin-Burns, Nukhet; McCullough, Sandra S; James, Laura P; Hinson, Jack A

    2017-01-01

    The hepatotoxicity of acetaminophen (APAP) occurs by initial metabolism to N-acetyl-p-benzoquinone imine which depletes GSH and forms APAP-protein adducts. Subsequently, the reactive nitrogen species peroxynitrite is formed from nitric oxide (NO) and superoxide leading to 3-nitrotyrosine in proteins. Toxicity occurs with inhibited mitochondrial function. We previously reported that in hepatocytes the nNOS (NOS1) inhibitor NANT inhibited APAP toxicity, reactive nitrogen and oxygen species formation, and mitochondrial dysfunction. In this work we examined the effect of trifluoperazine (TFP), a calmodulin antagonist that inhibits calcium induced nNOS activation, on APAP hepatotoxicity and reactive nitrogen formation in murine hepatocytes and in vivo . In freshly isolated hepatocytes TFP inhibited APAP induced toxicity, reactive nitrogen formation (NO, GSNO, and 3-nitrotyrosine in protein), reactive oxygen formation (superoxide), loss of mitochondrial membrane potential, decreased ATP production, decreased oxygen consumption rate, and increased NADH accumulation. TFP did not alter APAP induced GSH depletion in the hepatocytes or the formation of APAP protein adducts which indicated that reactive metabolite formation was not inhibited. Since we previously reported that TFP inhibits the hepatotoxicity of APAP in mice without altering hepatic APAP-protein adduct formation, we examined the APAP treated mouse livers for evidence of reactive nitrogen formation. 3-Nitrotyrosine in hepatic proteins and GSNO were significantly increased in APAP treated mouse livers and decreased in the livers of mice treated with APAP plus TFP. These data are consistent with a hypothesis that APAP hepatotoxicity occurs with altered calcium metabolism, activation of nNOS leading to increased reactive nitrogen formation, and mitochondrial dysfunction.

  5. Profilin-1 Promotes the Development of Hypertension-induced Artery Remodeling

    PubMed Central

    Wang, Yan; Zhang, Jun; Gao, Haiqing; Zhao, Shaohua; Ji, Xiang; Liu, Xiangju; You, Beian; Li, Xiao

    2014-01-01

    Hypertension is associated with the structural remodeling and stiffening of arteries and is known to increase cardiovascular risk. In the present study, we investigated the effects of overexpression and knock down of profilin-1 on the vascular structural remodeling in spontaneous hypertensive rats (SHRs) using an adenovirus injection to knock down or overexpress profilin-1 mRNA. As a control, blank adenovirus was injected into age-matched SHRs and Wistar-Kyoto rats (WKYs). We quantified arterial structural remodeling through morphological methods, with thoracic aortas stained with hematoxylin–eosin and picosirius red. Western blotting was performed to measure the protein expression of inducible nitric oxide synthase (iNOS) and p38 mitogen-activated protein kinase (p38), and peroxynitrite was quantified by immunohistochemical staining. Overexpression of profilin-1 significantly promoted aortic remodeling, including an increase in vessel size, wall thickness, and collagen content, whereas the knockdown of profilin-1 could reverse these effects. In addition, the expression of phosphorylated p38, iNOS and peroxynitrite was significantly upregulated in SHRs with profilin-1 overexpression along with an increased level of interleukin- 6 (IL-6). These changes could be reversed by knockdown of profilin-1. Our results demonstrate a crucial role for profilin-1 in hypertension-induced arterial structural remodeling at least in part through the p38–iNOS–peroxynitrite pathway. PMID:24399041

  6. Nitric oxide-induced calcium release: activation of type 1 ryanodine receptor by endogenous nitric oxide.

    PubMed

    Kakizawa, Sho; Yamazawa, Toshiko; Iino, Masamitsu

    2013-01-01

    Ryanodine receptors (RyRs), located in the sarcoplasmic/endoplasmic reticulum (SR/ER) membrane, are required for intracellular Ca2+ release that is involved in a wide range of cellular functions. In addition to Ca2+-induced Ca2+ release in cardiac cells and voltage-induced Ca2+ release in skeletal muscle cells, we recently identified another mode of intracellular Ca2+ mobilization mediated by RyR, i.e., nitric oxide-induced Ca2+ release (NICR), in cerebellar Purkinje cells. NICR is evoked by neuronal activity, is dependent on S-nitrosylation of type 1 RyR (RyR1) and is involved in the induction of long-term potentiation (LTP) of cerebellar synapses. In this addendum, we examined whether peroxynitrite, which is produced by the reaction of nitric oxide with superoxide, may also have an effect on the Ca2+ release via RyR1 and the cerebellar LTP. We found that scavengers of peroxynitrite have no significant effect either on the Ca2+ release via RyR1 or on the cerebellar LTP. We also found that an application of a high concentration of peroxynitrite does not reproduce neuronal activity-dependent Ca2+ release in Purkinje cells. These results support that NICR is induced by endogenous nitric oxide produced by neuronal activity through S-nitrosylation of RyR1.

  7. Revealing mechanisms of selective, concentration-dependent potentials of 4-hydroxy-2-nonenal to induce apoptosis in cancer cells through inactivation of membrane-associated catalase.

    PubMed

    Bauer, Georg; Zarkovic, Neven

    2015-04-01

    Tumor cells generate extracellular superoxide anions and are protected against superoxide anion-mediated intercellular apoptosis-inducing signaling by the expression of membrane-associated catalase. 4-Hydroxy-2-nonenal (4-HNE), a versatile second messenger generated during lipid peroxidation, has been shown to induce apoptosis selectively in malignant cells. The findings described in this paper reveal the strong, concentration-dependent potential of 4-HNE to specifically inactivate extracellular catalase of tumor cells both indirectly and directly and to consequently trigger apoptosis in malignant cells through superoxide anion-mediated intercellular apoptosis-inducing signaling. Namely, 4-HNE caused apoptosis selectively in NOX1-expressing tumor cells through inactivation of their membrane-associated catalase, thus reactivating subsequent intercellular signaling through the NO/peroxynitrite and HOCl pathways, followed by the mitochondrial pathway of apoptosis. Concentrations of 4-HNE of 1.2 µM and higher directly inactivated membrane-associated catalase of tumor cells, whereas at lower concentrations, 4-HNE triggered a complex amplificatory pathway based on initial singlet oxygen formation through H2O2 and peroxynitrite interaction. Singlet-oxygen-dependent activation of the FAS receptor and caspase-8 increased superoxide anion generation by NOX1 and amplification of singlet oxygen generation, which allowed singlet-oxygen-dependent inactivation of catalase. 4-HNE and singlet oxygen cooperate in complex autoamplificatory loops during this process. The finding of these novel anticancer pathways may be useful for understanding the role of 4-HNE in the control of malignant cells and for the optimization of ROS-dependent therapeutic approaches including antioxidant treatments. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Chemical Model Systems for Cellular Nitros(yl)ation Reactions

    PubMed Central

    Daiber, Andreas; Schildknecht, Stefan; Müller, Johanna; Bachschmid, Markus M.; Ullrich, Volker

    2014-01-01

    S-nitros(yl)ation belongs to the redox-based posttranslational modifications of proteins but the underlying chemistry is controversial. In contrast to current concepts involving the autoxidation of nitric oxide (•NO, nitrogen monoxide), we and others have proposed the formation of peroxynitrite (oxoperoxonitrate(1-)) as an essential intermediate. This requires low cellular fluxes of •NO and superoxide (•O2−), for which model systems have been introduced. We here propose two new systems for nitros(yl)ation that avoid the shortcomings of previous models. Based on the thermal decomposition of 3-morpholinosydnonimine, equal fluxes of •NO and •O2− were generated and modulated by the addition of •NO donors or Cu,Zn-superoxide dismutase. As reactants for S-nitros(yl)ation, NADP+-dependent isocitrate dehydrogenase and glutathione were employed, for which optimal S-nitros(yl)ation was observed at nanomolar fluxes of •NO and •O2− at a ratio of about 3:1. The previously used reactants phenol and diaminonaphthalene, (C- and N-nitrosation) demonstrated potential participation of multiple pathways for nitros(yl)ation. According to our data, neither peroxynitrite nor autoxidation of •NO was as efficient as the 3•NO/1•O2− system in mediating S-nitros(yl)ation. In theory this could lead to an elusive nitrosonium (nitrosyl cation)-like species in the first step and to N2O3 in the subsequent reaction. Which of these two species or whether both together will participate in biological S-nitros(yl)ation remains to be elucidated. Finally, we developed several hypothetical scenarios to which the described U flux model could apply, providing conditions that allow either direct electrophilic substitution at a thiolate or S-nitros(yl)ation via transnitrosation from S-nitrosoglutathione. PMID:19477267

  9. Peroxynitrite Upregulates Angiogenic Factors VEGF-A, BFGF, and HIF-1α in Human Corneal Limbal Epithelial Cells

    PubMed Central

    Ashki, Negin; Chan, Ann M.; Qin, Yu; Wang, Wei; Kiyohara, Meagan; Lin, Lin; Braun, Jonathan; Wadehra, Madhuri; Gordon, Lynn K.

    2014-01-01

    Purpose. Corneal neovascularization (NV) is a sight-threatening condition often associated with infection, inflammation, prolonged contact lens use, corneal burns, and acute corneal graft rejection. Macrophages recruited to the cornea release nitric oxide (NO) and superoxide anion (O2−), which react together to form the highly toxic molecule peroxynitrite (ONOO−). The role of ONOO− in upregulating multiple angiogenic factors in cultured human corneal limbal epithelial (HCLE) cells was investigated. Methods. Human corneal limbal epithelial cells were incubated with 500 μM of ONOO− donor for various times. VEGF-A, BFGF, and hypoxic-inducible factor-alpha (HIF-1α) were investigated via Western blot and RT-PCR was performed for VEGF. Functional assays using human umbilical vein endothelial cells (HUVEC) used conditioned media from ONOO−-exposed HCLE cells. Secreted VEGF from conditioned media was detected and analyzed using ELISA. Results. Increased angiogenic factors were observed as early as 4 hours after HCLE exposure to ONOO−. HIF-1 expression was seen at 4, 6, and 8 hours post-ONOO− exposure (P < 0.05). BFGF expression was elevated at 4 hours and peaked at 8 hours after treatment with ONOO− (P < 0.005). Increased VEGF-A gene expression was observed at 6 and 8 hours post-ONOO− treatment. Functional assays using conditioned media showed increased HUVEC migration and tube formation. Conclusions. Exposure to elevated extracellular concentrations of ONOO− results in upregulation of angiogenic factors in HCLE cells. It is possible that, in the setting of inflammation or infection, that exposure to ONOO− could be one contributor to the complex initiators of corneal NV. Validation in vivo would identify an additional potential control point for corneal NV. PMID:24398102

  10. Peroxynitrite upregulates angiogenic factors VEGF-A, BFGF, and HIF-1α in human corneal limbal epithelial cells.

    PubMed

    Ashki, Negin; Chan, Ann M; Qin, Yu; Wang, Wei; Kiyohara, Meagan; Lin, Lin; Braun, Jonathan; Wadehra, Madhuri; Gordon, Lynn K

    2014-03-19

    Corneal neovascularization (NV) is a sight-threatening condition often associated with infection, inflammation, prolonged contact lens use, corneal burns, and acute corneal graft rejection. Macrophages recruited to the cornea release nitric oxide (NO) and superoxide anion (O2(-)), which react together to form the highly toxic molecule peroxynitrite (ONOO(-)). The role of ONOO(-) in upregulating multiple angiogenic factors in cultured human corneal limbal epithelial (HCLE) cells was investigated. Human corneal limbal epithelial cells were incubated with 500 μM of ONOO(-) donor for various times. VEGF-A, BFGF, and hypoxic-inducible factor-alpha (HIF-1α) were investigated via Western blot and RT-PCR was performed for VEGF. Functional assays using human umbilical vein endothelial cells (HUVEC) used conditioned media from ONOO(-)-exposed HCLE cells. Secreted VEGF from conditioned media was detected and analyzed using ELISA. Increased angiogenic factors were observed as early as 4 hours after HCLE exposure to ONOO(-). HIF-1 expression was seen at 4, 6, and 8 hours post-ONOO(-) exposure (P < 0.05). BFGF expression was elevated at 4 hours and peaked at 8 hours after treatment with ONOO(-) (P < 0.005). Increased VEGF-A gene expression was observed at 6 and 8 hours post-ONOO(-) treatment. Functional assays using conditioned media showed increased HUVEC migration and tube formation. Exposure to elevated extracellular concentrations of ONOO(-) results in upregulation of angiogenic factors in HCLE cells. It is possible that, in the setting of inflammation or infection, that exposure to ONOO(-) could be one contributor to the complex initiators of corneal NV. Validation in vivo would identify an additional potential control point for corneal NV.

  11. Singlet molecular oxygen generated by biological hydroperoxides.

    PubMed

    Miyamoto, Sayuri; Martinez, Glaucia R; Medeiros, Marisa H G; Di Mascio, Paolo

    2014-10-05

    The chemistry behind the phenomenon of ultra-weak photon emission has been subject of considerable interest for decades. Great progress has been made on the understanding of the chemical generation of electronically excited states that are involved in these processes. Proposed mechanisms implicated the production of excited carbonyl species and singlet molecular oxygen in the mechanism of generation of chemiluminescence in biological system. In particular, attention has been focused on the potential generation of singlet molecular oxygen in the recombination reaction of peroxyl radicals by the Russell mechanism. In the last ten years, our group has demonstrated the generation of singlet molecular oxygen from reactions involving the decomposition of biologically relevant hydroperoxides, especially from lipid hydroperoxides in the presence of metal ions, peroxynitrite, HOCl and cytochrome c. In this review we will discuss details on the chemical aspects related to the mechanism of singlet molecular oxygen generation from different biological hydroperoxides. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. C-Terminal Tyrosine Residue Modifications Modulate the Protective Phosphorylation of Serine 129 of α-Synuclein in a Yeast Model of Parkinson's Disease

    PubMed Central

    Lázaro, Diana F.; Pinho, Raquel; Valerius, Oliver; Outeiro, Tiago F.; Braus, Gerhard H.

    2016-01-01

    Parkinson´s disease (PD) is characterized by the presence of proteinaceous inclusions called Lewy bodies that are mainly composed of α-synuclein (αSyn). Elevated levels of oxidative or nitrative stresses have been implicated in αSyn related toxicity. Phosphorylation of αSyn on serine 129 (S129) modulates autophagic clearance of inclusions and is prominently found in Lewy bodies. The neighboring tyrosine residues Y125, Y133 and Y136 are phosphorylation and nitration sites. Using a yeast model of PD, we found that Y133 is required for protective S129 phosphorylation and for S129-independent proteasome clearance. αSyn can be nitrated and form stable covalent dimers originating from covalent crosslinking of two tyrosine residues. Nitrated tyrosine residues, but not di-tyrosine-crosslinked dimers, contributed to αSyn cytotoxicity and aggregation. Analysis of tyrosine residues involved in nitration and crosslinking revealed that the C-terminus, rather than the N-terminus of αSyn, is modified by nitration and di-tyrosine formation. The nitration level of wild-type αSyn was higher compared to that of A30P mutant that is non-toxic in yeast. A30P formed more dimers than wild-type αSyn, suggesting that dimer formation represents a cellular detoxification pathway in yeast. Deletion of the yeast flavohemoglobin gene YHB1 resulted in an increase of cellular nitrative stress and cytotoxicity leading to enhanced aggregation of A30P αSyn. Yhb1 protected yeast from A30P-induced mitochondrial fragmentation and peroxynitrite-induced nitrative stress. Strikingly, overexpression of neuroglobin, the human homolog of YHB1, protected against αSyn inclusion formation in mammalian cells. In total, our data suggest that C-terminal Y133 plays a major role in αSyn aggregate clearance by supporting the protective S129 phosphorylation for autophagy and by promoting proteasome clearance. C-terminal tyrosine nitration increases pathogenicity and can only be partially detoxified by αSyn di-tyrosine dimers. Our findings uncover a complex interplay between S129 phosphorylation and C-terminal tyrosine modifications of αSyn that likely participates in PD pathology. PMID:27341336

  13. C-Terminal Tyrosine Residue Modifications Modulate the Protective Phosphorylation of Serine 129 of α-Synuclein in a Yeast Model of Parkinson's Disease.

    PubMed

    Kleinknecht, Alexandra; Popova, Blagovesta; Lázaro, Diana F; Pinho, Raquel; Valerius, Oliver; Outeiro, Tiago F; Braus, Gerhard H

    2016-06-01

    Parkinson´s disease (PD) is characterized by the presence of proteinaceous inclusions called Lewy bodies that are mainly composed of α-synuclein (αSyn). Elevated levels of oxidative or nitrative stresses have been implicated in αSyn related toxicity. Phosphorylation of αSyn on serine 129 (S129) modulates autophagic clearance of inclusions and is prominently found in Lewy bodies. The neighboring tyrosine residues Y125, Y133 and Y136 are phosphorylation and nitration sites. Using a yeast model of PD, we found that Y133 is required for protective S129 phosphorylation and for S129-independent proteasome clearance. αSyn can be nitrated and form stable covalent dimers originating from covalent crosslinking of two tyrosine residues. Nitrated tyrosine residues, but not di-tyrosine-crosslinked dimers, contributed to αSyn cytotoxicity and aggregation. Analysis of tyrosine residues involved in nitration and crosslinking revealed that the C-terminus, rather than the N-terminus of αSyn, is modified by nitration and di-tyrosine formation. The nitration level of wild-type αSyn was higher compared to that of A30P mutant that is non-toxic in yeast. A30P formed more dimers than wild-type αSyn, suggesting that dimer formation represents a cellular detoxification pathway in yeast. Deletion of the yeast flavohemoglobin gene YHB1 resulted in an increase of cellular nitrative stress and cytotoxicity leading to enhanced aggregation of A30P αSyn. Yhb1 protected yeast from A30P-induced mitochondrial fragmentation and peroxynitrite-induced nitrative stress. Strikingly, overexpression of neuroglobin, the human homolog of YHB1, protected against αSyn inclusion formation in mammalian cells. In total, our data suggest that C-terminal Y133 plays a major role in αSyn aggregate clearance by supporting the protective S129 phosphorylation for autophagy and by promoting proteasome clearance. C-terminal tyrosine nitration increases pathogenicity and can only be partially detoxified by αSyn di-tyrosine dimers. Our findings uncover a complex interplay between S129 phosphorylation and C-terminal tyrosine modifications of αSyn that likely participates in PD pathology.

  14. Detection and Localization of Markers of Oxidative Stress by In Situ Methods: Application in the Study of Alzheimer Disease

    PubMed Central

    Moreira, Paula I.; Sayre, Lawrence M.; Zhu, Xiongwei; Nunomura, Akihiko; Smith, Mark A.; Perry, George

    2018-01-01

    Oxidative stress is a key factor involved in the development and progression of Alzheimer disease (AD), and it is well documented that free radical oxidative damage, particularly of neuronal lipids, proteins, nucleic acids, and sugars, is extensive in brains of AD patients. The complex chemistry of peroxynitrite has been the subject of intense study and is now evident that there are two principal pathways for protein modification: the first one involves homolytic hydroxyl radical-like chemistry that results in protein-based carbonyls and the second involves electrophilic nitration of vulnerable side chains, in particular the electron-rich aromatic rings of Tyr and Trp. In the presence of buffering bicarbonate, peroxynitrite forms a CO2 adduct, which augments its reactivity. Formation of 3-nitrotyrosine by this route has become the classical protein marker specifically for the presence of peroxynitrite. Protein-based carbonyls can be detected by two methods: (i) derivatization with 2,4-dinitrophenylhydrazine (DNPH) and detection of the protein-bound hydrazones using an enzyme-linked anti-2,4-dinitrophenyl antibody and (ii) derivatization with biotin-hydrazide and detection of the protein-bound acyl hydrazone with enzyme-linked avidin or streptavidin. Glycation of proteins by reducing sugars (Maillard reaction) results in a profile of time-dependent adduct evolution rendering susceptibility to oxidative elaboration. In addition, oxidative stress can result in oxidized sugar derivatives which can subsequently modify protein through a process known as glycoxidation. Of more general importance, oxidative stress results in lipid peroxidation and the production of a range of electrophilic and mostly bifunctional aldehydes that modify numerous proteins. The more important protein modifications are referred to as advanced glycation end products (AGEs) and advanced lipoxidation end products (ALEs). Protein modification can result in both non-cross-link and cross-link AGEs and ALEs, the latter arising from the potential bifunctional reactivity, such as that of the lipid-derived modifiers 4-hydroxy-2-nonenal (HNE) and malondialdehyde (MDA). Oxidative damage to nucleic acids results in base modification, substitutions, and deletions. Among the most common modifications, 8-hydroxyguanosine (8OHG) is considered a signature of oxidative damage to nucleic acid. Cells are not passive to increased oxygen radical production but rather upregulate protective responses. In neurodegenerative diseases, heme oxygenase-1 (HO-1) induction is coincident with the formation of neurofibrillary tangles. This enzyme thatconverts heme, a prooxidant, to biliverdin/bilirubin (antioxidants) and free iron has been considered an antioxidant enzyme. But seen in the context of arresting apoptosis, HO-1 and tau may play a role in maintaining the neurons free from the apoptotic signal (cytochrome c), since tau has strong iron-binding sites. Given the importance of iron as a catalyst for the generation of reactive oxygen species, changes in proteins associated with iron homeostasis can be used as an index of cellular responses. One such class of proteins is the iron regulatory proteins (IRPs) that respond to cellular iron concentrations by regulating the translation of proteins involved in iron uptake, storage, and utilization. Therefore, IRPs are considered to be the central control components of cellular iron concentration. PMID:20013193

  15. Detection and localization of markers of oxidative stress by in situ methods: application in the study of Alzheimer disease.

    PubMed

    Moreira, Paula I; Sayre, Lawrence M; Zhu, Xiongwei; Nunomura, Akihiko; Smith, Mark A; Perry, George

    2010-01-01

    Oxidative stress is a key factor involved in the development and progression of Alzheimer disease (AD), and it is well documented that free radical oxidative damage, particularly of neuronal lipids, proteins, nucleic acids, and sugars, is extensive in brains of AD patients. The complex chemistry of peroxynitrite has been the subject of intense study and is now evident that there are two principal pathways for protein modification: the first one involves homolytic hydroxyl radical-like chemistry that results in protein-based carbonyls and the second involves electrophilic nitration of vulnerable side chains, in particular the electron-rich aromatic rings of Tyr and Trp. In the presence of buffering bicarbonate, peroxynitrite forms a CO(2) adduct, which augments its reactivity. Formation of 3-nitrotyrosine by this route has become the classical protein marker specifically for the presence of peroxynitrite. Protein-based carbonyls can be detected by two methods: (i) derivatization with 2,4-dinitrophenylhydrazine (DNPH) and detection of the protein-bound hydrazones using an enzyme-linked anti-2,4-dinitrophenyl antibody and (ii) derivatization with biotin-hydrazide and detection of the protein-bound acyl hydrazone with enzyme-linked avidin or streptavidin. Glycation of proteins by reducing sugars (Maillard reaction) results in a profile of time-dependent adduct evolution rendering susceptibility to oxidative elaboration. In addition, oxidative stress can result in oxidized sugar derivatives which can subsequently modify protein through a process known as glycoxidation. Of more general importance, oxidative stress results in lipid peroxidation and the production of a range of electrophilic and mostly bifunctional aldehydes that modify numerous proteins. The more important protein modifications are referred to as advanced glycation end products (AGEs) and advanced lipoxidation end products (ALEs). Protein modification can result in both non-cross-link and cross-link AGEs and ALEs, the latter arising from the potential bifunctional reactivity, such as that of the lipid-derived modifiers 4-hydroxy-2-nonenal (HNE) and malondialdehyde (MDA). Oxidative damage to nucleic acids results in base modification, substitutions, and deletions. Among the most common modifications, 8-hydroxyguanosine (8OHG) is considered a signature of oxidative damage to nucleic acid.Cells are not passive to increased oxygen radical production but rather upregulate protective responses. In neurodegenerative diseases, heme oxygenase-1 (HO-1) induction is coincident with the formation of neurofibrillary tangles. This enzyme that converts heme, a prooxidant, to biliverdin/bilirubin (antioxidants) and free iron has been considered an antioxidant enzyme. But seen in the context of arresting apoptosis, HO-1 and tau may play a role in maintaining the neurons free from the apoptotic signal (cytochrome c), since tau has strong iron-binding sites. Given the importance of iron as a catalyst for the generation of reactive oxygen species, changes in proteins associated with iron homeostasis can be used as an index of cellular responses. One such class of proteins is the iron regulatory proteins (IRPs) that respond to cellular iron concentrations by regulating the translation of proteins involved in iron uptake, storage, and utilization. Therefore, IRPs are considered to be the central control components of cellular iron concentration.

  16. Chronic intermittent hypoxia and acetaminophen induce synergistic liver injury in mice.

    PubMed

    Savransky, Vladimir; Reinke, Christian; Jun, Jonathan; Bevans-Fonti, Shannon; Nanayakkara, Ashika; Li, Jianguo; Myers, Allen C; Torbenson, Michael S; Polotsky, Vsevolod Y

    2009-02-01

    Obstructive sleep apnoea (OSA) leads to chronic intermittent hypoxia (CIH) during sleep. Obstructive sleep apnoea has been associated with liver injury. Acetaminophen (APAP; known as paracetamol outside the USA) is one of the most commonly used drugs which has known hepatotoxicity. The goal of the present study was to examine whether CIH increases liver injury, hepatic oxidative stress and inflammation induced by chronic APAP treatment. Adult C57BL/6J mice were exposed to CIH or intermittent air (IA) for 4 weeks. Mice in both groups were treated with intraperitoneal injections of either APAP (200 mg kg(-1)) or normal saline daily. A combination of CIH and APAP caused liver injury, with marked increases in serum alanine aminotransferase, aspartate aminotransferase (AST), gamma-glutamyl transferase and total bilirubin levels, whereas CIH alone induced only elevation in serum AST levels. Acetaminophen alone did not affect serum levels of liver enzymes. Histopathology revealed hepatic necrosis and increased apoptosis in mice exposed to CIH and APAP, whereas the liver remained intact in all other groups. Mice exposed to CIH and APAP exhibited decreased hepatic glutathione in conjunction with a fivefold increase in nitrotyrosine levels, suggesting formation of toxic peroxynitrite in hepatocytes. Acetaminophen or CIH alone had no effect on either glutathione or nitrotyrosine. A combination of CIH and APAP caused marked increases in pro-inflammatory chemokines, monocyte chemoattractant protein-1 and macrophage inflammatory protein-2, which were not observed in mice exposed to CIH or APAP alone. We conclude that CIH and chronic APAP treatment lead to synergistic liver injury, which may have clinical implications for patients with OSA.

  17. Chronic Intermittent Hypoxia and Acetaminophen Induce Synergistic Liver Injury

    PubMed Central

    Savransky, Vladimir; Reinke, Christian; Jun, Jonathan; Bevans-Fonti, Shannon; Nanayakkara, Ashika; Li, Jianguo; Myers, Allen C.; Torbenson, Michael S.; Polotsky, Vsevolod Y.

    2010-01-01

    Obstructive sleep apnea (OSA) leads to chronic intermittent hypoxia (CIH) during sleep. OSA has been associated with liver injury. Acetaminophen (APAP) is one of the most commonly used drugs, which has known hepatotoxicity. The goal of the present study was to examine whether CIH increases liver injury, hepatic oxidative stress and inflammation induced by chronic APAP treatment. C57BL/6J mice were exposed to CIH or intermittent air (IA) for 4 weeks. Mice in both groups were treated with intraperitoneal injections of either APAP (200 mg/kg) or normal saline daily. A combination of CIH and APAP caused liver injury with marked increases in serum alanine aminotransferase, aspartate aminotransferase (AST), gamma glutamyl transferase and total bilirubin levels, whereas CIH alone induced only elevation in serum AST levels. APAP alone did not affect serum levels of liver enzymes. Histopathology revealed hepatic necrosis and increased apoptosis in mice exposed to CIH and APAP, whereas the liver remained intact in all other groups. Mice exposed to CIH and APAP exhibited decreased hepatic glutathione in conjunction with a five-fold increase in nitrotyrosine levels, suggesting formation of toxic peroxynitrite in hepatocytes. APAP or CIH alone had no effect on either glutathione or nitrotyrosine. A combination of CIH and APAP caused marked increases in pro-inflammatory chemokines, monocyte chemoattractant protein-1 and macrophage inflammatory protein-2, which were not observed in mice exposed to CIH or APAP alone. We conclude that CIH and chronic APAP treatment lead to synergistic liver injury, which may have clinical implications for patients with OSA. PMID:19028810

  18. Reversible near-infrared fluorescent probe introducing tellurium to mimetic glutathione peroxidase for monitoring the redox cycles between peroxynitrite and glutathione in vivo.

    PubMed

    Yu, Fabiao; Li, Peng; Wang, Bingshuai; Han, Keli

    2013-05-22

    The redox homeostasis between peroxynitrite and glutathione is closely associated with the physiological and pathological processes, e.g. vascular tissue prolonged relaxation and smooth muscle preparations, attenuation hepatic necrosis, and activation matrix metalloproteinase-2. We report a near-infrared fluorescent probe based on heptamethine cyanine, which integrates with telluroenzyme mimics for monitoring the changes of ONOO(-)/GSH levels in cells and in vivo. The probe can reversibly respond to ONOO(-) and GSH and exhibits high selectivity, sensitivity, and mitochondrial target. It is successfully applied to visualize the changes of redox cycles during the outbreak of ONOO(-) and the antioxidant GSH repair in cells and animal. The probe would provide a significant advance on the redox events involved in the cellular redox regulation.

  19. Melanin Protects Paracoccidioides brasiliensis from the Effects of Antimicrobial Photodynamic Inhibition and Antifungal Drugs

    PubMed Central

    Baltazar, Ludmila Matos; Werneck, Silvia Maria Cordeiro; Soares, Betânia Maria; Ferreira, Marcus Vinicius L.; Souza, Danielle G.; Pinotti, Marcos; Santos, Daniel Assis

    2015-01-01

    Paracoccidioidomycosis (PCM) is a public health concern in Latin America and South America that when not correctly treated can lead to patient death. In this study, the influence of melanin produced by Paracoccidioides spp. on the effects of treatment with antimicrobial photodynamic inhibition (aPI) and antifungal drugs was evaluated. aPI was performed using toluidine blue (TBO) as a photosensitizer and a 630-nm light-emitting diode (LED) light. The antifungals tested were itraconazole and amphotericin B. We evaluated the effects of each approach, aPI or antifungals, against nonmelanized and melanized yeast cells by performing susceptibility tests and by quantifying oxidative and nitrosative bursts during the experiments. aPI reduced nonmelanized cells by 3.0 log units and melanized cells by 1.3 log units. The results showed that melanization protects the fungal cell, probably by acting as a scavenger of nitric oxide and reactive oxygen species, but not of peroxynitrite. Melanin also increased the MICs of itraconazole and amphotericin B, and the drugs were fungicidal for nonmelanized and fungistatic for melanized yeast cells. Our study shows that melanin production by Paracoccidioides yeast cells serves a protective function during aPI and treatment with itraconazole and amphotericin B. The results suggest that melanin binds to the drugs, changing their antifungal activities, and also acts as a scavenger of reactive oxygen species and nitric oxide, but not of peroxynitrite, indicating that peroxynitrite is the main radical that is responsible for fungal death after aPI. PMID:25896704

  20. Inactivation of brain mitochondrial Lon protease by peroxynitrite precedes electron transport chain dysfunction.

    PubMed

    Stanyer, Lee; Jorgensen, Wenche; Hori, Osamu; Clark, John B; Heales, Simon J R

    2008-09-01

    The accumulation of oxidatively modified proteins has been shown to be a characteristic feature of many neurodegenerative disorders and its regulation requires efficient proteolytic processing. One component of the mitochondrial proteolytic system is Lon, an ATP-dependent protease that has been shown to degrade oxidatively modified aconitase in vitro and may thus play a role in defending against the accumulation of oxidized matrix proteins in mitochondria. Using an assay system that allowed us to distinguish between basal and ATP-stimulated Lon protease activity, we have shown in isolated non-synaptic rat brain mitochondria that Lon protease is highly susceptible to oxidative inactivation by peroxynitrite (ONOO(-)). This susceptibility was more pronounced with regard to ATP-stimulated activity, which was inhibited by 75% in the presence of a bolus addition of 1mM ONOO(-), whereas basal unstimulated activity was inhibited by 45%. Treatment of mitochondria with a range of peroxynitrite concentrations (10-1000 microM) revealed that a decline in Lon protease activity preceded electron transport chain (ETC) dysfunction (complex I, II-III and IV) and that ATP-stimulated activity was approximately fivefold more sensitive than basal Lon protease activity. Furthermore, supplementation of mitochondrial matrix extracts with reduced glutathione, following ONOO(-) exposure, resulted in partial restoration of basal and ATP-stimulated activity, thus suggesting possible redox regulation of this enzyme complex. Taken together these findings suggest that Lon protease may be particularly vulnerable to inactivation in conditions associated with GSH depletion and elevated oxidative stress.

  1. The Contribution of Singlet Oxygen to Insulin Resistance

    PubMed Central

    2017-01-01

    Insulin resistance contributes to the development of diabetes and cardiovascular dysfunctions. Recent studies showed that elevated singlet oxygen-mediated lipid peroxidation precedes and predicts diet-induced insulin resistance (IR), and neutrophils were suggested to be responsible for such singlet oxygen production. This review highlights literature suggesting that insulin-responsive cells such as endothelial cells, hepatocytes, adipocytes, and myocytes also produce singlet oxygen, which contributes to insulin resistance, for example, by generating bioactive aldehydes, inducing endoplasmic reticulum (ER) stress, and modifying mitochondrial DNA. In these cells, nutrient overload leads to the activation of Toll-like receptor 4 and other receptors, leading to the production of both peroxynitrite and hydrogen peroxide, which react to produce singlet oxygen. Cytochrome P450 2E1 and cytochrome c also contribute to singlet oxygen formation in the ER and mitochondria, respectively. Endothelial cell-derived singlet oxygen is suggested to mediate the formation of oxidized low-density lipoprotein which perpetuates IR, partly through neutrophil recruitment to adipose tissue. New singlet oxygen-involving pathways for the formation of IR-inducing bioactive aldehydes such as 4-hydroperoxy-(or hydroxy or oxo)-2-nonenal, malondialdehyde, and cholesterol secosterol A are proposed. Strategies against IR should target the singlet oxygen-producing pathways, singlet oxygen quenching, and singlet oxygen-induced cellular responses. PMID:29081894

  2. The Contribution of Singlet Oxygen to Insulin Resistance.

    PubMed

    Onyango, Arnold N

    2017-01-01

    Insulin resistance contributes to the development of diabetes and cardiovascular dysfunctions. Recent studies showed that elevated singlet oxygen-mediated lipid peroxidation precedes and predicts diet-induced insulin resistance (IR), and neutrophils were suggested to be responsible for such singlet oxygen production. This review highlights literature suggesting that insulin-responsive cells such as endothelial cells, hepatocytes, adipocytes, and myocytes also produce singlet oxygen, which contributes to insulin resistance, for example, by generating bioactive aldehydes, inducing endoplasmic reticulum (ER) stress, and modifying mitochondrial DNA. In these cells, nutrient overload leads to the activation of Toll-like receptor 4 and other receptors, leading to the production of both peroxynitrite and hydrogen peroxide, which react to produce singlet oxygen. Cytochrome P450 2E1 and cytochrome c also contribute to singlet oxygen formation in the ER and mitochondria, respectively. Endothelial cell-derived singlet oxygen is suggested to mediate the formation of oxidized low-density lipoprotein which perpetuates IR, partly through neutrophil recruitment to adipose tissue. New singlet oxygen-involving pathways for the formation of IR-inducing bioactive aldehydes such as 4-hydroperoxy-(or hydroxy or oxo)-2-nonenal, malondialdehyde, and cholesterol secosterol A are proposed. Strategies against IR should target the singlet oxygen-producing pathways, singlet oxygen quenching, and singlet oxygen-induced cellular responses.

  3. Comparative study of the antioxidant and reactive oxygen species scavenging properties in the extracts of the fruits of Terminalia chebula, Terminalia belerica and Emblica officinalis

    PubMed Central

    2010-01-01

    Background Cellular damage caused by reactive oxygen species (ROS) has been implicated in several diseases, and hence natural antioxidants have significant importance in human health. The present study was carried out to evaluate the in vitro antioxidant and reactive oxygen species scavenging activities of Terminalia chebula, Terminalia belerica and Emblica officinalis fruit extracts. Methods The 70% methanol extracts were studied for in vitro total antioxidant activity along with phenolic and flavonoid contents and reducing power. Scavenging ability of the extracts for radicals like DPPH, hydroxyl, superoxide, nitric oxide, hydrogen peroxide, peroxynitrite, singlet oxygen, hypochlorous acid were also performed to determine the potential of the extracts. Results The ability of the extracts of the fruits in exhibiting their antioxative properties follow the order T. chebula >E. officinalis >T. belerica. The same order is followed in their flavonoid content, whereas in case of phenolic content it becomes E. officinalis >T. belerica >T. chebula. In the studies of free radicals' scavenging, where the activities of the plant extracts were inversely proportional to their IC50 values, T. chebula and E. officinalis were found to be taking leading role with the orders of T. chebula >E. officinalis >T. belerica for superoxide and nitric oxide, and E. officinalis >T. belerica >T. chebula for DPPH and peroxynitrite radicals. Miscellaneous results were observed in the scavenging of other radicals by the plant extracts, viz., T. chebula >T. belerica >E. officinalis for hydroxyl, T. belerica >T. chebula >E. officinalis for singlet oxygen and T. belerica >E. officinalis >T. chebula for hypochlorous acid. In a whole, the studied fruit extracts showed quite good efficacy in their antioxidant and radical scavenging abilities, compared to the standards. Conclusions The evidences as can be concluded from the study of the 70% methanol extract of the fruits of Terminalia chebula, Terminalia belerica and Emblica officinalis, imposes the fact that they might be useful as potent sources of natural antioxidant. PMID:20462461

  4. The peroxynitrite donor 3-morpholinosydnonimine induces reversible changes in electrophysiological properties of neurons of the guinea-pig spinal cord.

    PubMed

    Ashki, N; Hayes, K C; Bao, F

    2008-09-22

    Elevated concentrations of nitric oxide (NO) and peroxynitrite (ONOO(-)) are present within the CNS following neurotrauma and are implicated in the pathogenesis of the accompanying neurologic deficits. We tested the hypothesis that elevated extracellular concentrations of ONOO(-), introduced by the donor 3-morpholinosydnonimine (SIN-1), induce reversible axonal conduction deficits in neurons of the guinea-pig spinal cord. The compound action potential (CAP) and compound membrane potential (CMP) of excised ventral cord white matter were recorded before, during, and after, bathing the tissue (30 min) in varying concentrations (0.125-2.0 mM) of SIN-1 (3.75-60 microM ONOO(-)). The principal results were rapid onset, concentration-dependent, reductions in amplitude of the CAP (P<0.05). At a concentration of 0.25 mM of SIN-1 the reduction in CAP amplitude was fully reversible and was not accompanied by any changes in CMP. At higher concentrations of SIN-1 (> or =0.5 mM) the reversibility was incomplete and there was concurrent depolarization of the CMP. These electrophysiological changes were not evident when the donor had been a priori depleted of ONOO(-) by uric acid or was co-administered with the ONOO(-) scavenger ebselen (3 mM). Immuno-fluorescence staining for nitrotyrosine (Ntyr) revealed extensive nitration of tyrosine residues in neurons exposed to higher concentrations of SIN-1. These results are the first to demonstrate that ONOO(-) induces reversible conduction deficits within axons of the spinal cord. The dissociation of CAP and CMP changes at low concentrations of SIN-1, when the CAP changes were reversible and there was no evidence of nitration of tyrosine residues, is consistent with ONOO(-)-induced alteration in Na+ channel conductance in the axolemma. The results support the view that ONOO(-) contributes to both reversible and non-reversible neurologic deficits following neurotrauma. The reversal of immune-mediated conduction deficits may contribute to spontaneous neurologic deficits following neurotrauma.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akerstroem, Sara; Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 17177 Solna; Gunalan, Vithiagaran

    Nitric oxide is an important molecule playing a key role in a broad range of biological process such as neurotransmission, vasodilatation and immune responses. While the anti-microbiological properties of nitric oxide-derived reactive nitrogen intermediates (RNI) such as peroxynitrite, are known, the mechanism of these effects are as yet poorly studied. Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) belongs to the family Coronaviridae, was first identified during 2002-2003. Mortality in SARS patients ranges from between 6 to 55%. We have previously shown that nitric oxide inhibits the replication cycle of SARS-CoV in vitro by an unknown mechanism. In this study, we havemore » further investigated the mechanism of the inhibition process of nitric oxide against SARS-CoV. We found that peroxynitrite, an intermediate product of nitric oxide in solution formed by the reaction of NO with superoxide, has no effect on the replication cycle of SARS-CoV, suggesting that the inhibition is either directly effected by NO or a derivative other than peroxynitrite. Most interestingly, we found that NO inhibits the replication of SARS-CoV by two distinct mechanisms. Firstly, NO or its derivatives cause a reduction in the palmitoylation of nascently expressed spike (S) protein which affects the fusion between the S protein and its cognate receptor, angiotensin converting enzyme 2. Secondly, NO or its derivatives cause a reduction in viral RNA production in the early steps of viral replication, and this could possibly be due to an effect on one or both of the cysteine proteases encoded in Orf1a of SARS-CoV.« less

  6. Polymer therapeutics and the EPR effect.

    PubMed

    Maeda, Hiroshi

    History of the EPR (enhanced permeability and retention) effect is discussed, which goes back to the analyses of molecular pathology in bacterial infection and edema (extravasation) formation. The first mediator we found for extravasation was bradykinin. Later on, were found nitric oxide and superoxide, then formation of peroxynitrite, that activates procollagenase. In this inflammatory setting many other vascular mediators are involved that are also common to cancer vasculature. Obviously cancer vasculature is defective architechtally, and this makes macromolecular drugs more permeable through the vascular wall. The importance of this pathophysiological event of EPR effect can be applied to macromolecular drug-delivery, or tumor selective delivery, which takes hours to achieve in the primary as well as metastatic tumors, not to mention of the inflamed tissues. The retention of the EPR means that such drugs will be retained in tumor tissues more than days to weeks. This was demonstrated initially, and most dramatically, using SMANCS, a protein-polymer conjugated-drug dissolved in lipid contrast medium (Lipiodol) by administering intraarterially. For disseminating the EPR concept globally, or in the scientific community, Professor Ruth Duncan played a key role at the early stage, as she worked extensively on polymer- therapeutics, and knew its importance.

  7. PTEN, a negative regulator of PI3K/Akt signaling, sustains brain stem cardiovascular regulation during mevinphos intoxication.

    PubMed

    Tsai, Ching-Yi; Wu, Jacqueline C C; Fang, Chi; Chang, Alice Y W

    2017-09-01

    Activation of PI3K/Akt signaling, leading to upregulation of nitric oxide synthase II (NOS II)/peroxynitrite cascade in the rostral ventrolateral medulla (RVLM), the brain stem site that maintains blood pressure and sympathetic vasomotor tone, underpins cardiovascular depression induced by the organophosphate pesticide mevinphos. By exhibiting dual-specificity protein- and lipid-phosphatase activity, phosphatase and tensin homolog (PTEN) directly antagonizes the PI3K/Akt signaling by dephosphorylation of phosphatidylinositol-3,4,5-trisphosphate, the lipid product of PI3K. Based on the guiding hypothesis that PTEN may sustain brain stem cardiovascular regulation during mevinphos intoxication as a negative regulator of PI3K/Akt signaling in the RVLM, we aimed in this study to clarify the mechanistic role of PTEN in mevinphos-induced circulatory depression. Microinjection bilaterally of mevinphos (10 nmol) into the RVLM of anesthetized Sprague-Dawley rats induced a progressive hypotension and a decrease in baroreflex-mediated sympathetic vasomotor tone. There was progressive augmentation in PTEN activity as reflected by a decrease in the oxidized form of PTEN in the RVLM during mevinhpos intoxication, without significant changes in the mRNA or protein level of PTEN. Loss-of-function manipulations of PTEN in the RVLM by immunoneutralization, pharmacological blockade or siRNA pretreatment significantly potentiated the increase in Akt activity or NOS II/peroxynitrite cascade in the RVLM, enhanced the elicited hypotension and exacerbated the already reduced baroreflex-mediated sympathetic vasomotor tone. We conclude that augmented PTEN activity via a decrease of its oxidized form in the RVLM sustains brain stem cardiovascular regulation during mevinphos intoxication via downregulation of the NOS II/peroxynitrite cascade as a negative regulator of PI3K/Akt signaling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Activation of PI3K/Akt signaling in rostral ventrolateral medulla impairs brain stem cardiovascular regulation that underpins circulatory depression during mevinphos intoxication.

    PubMed

    Tsai, Ching-Yi; Chang, Alice Y W; Chan, Julie Y H; Chan, Samuel H H

    2014-03-01

    As the most widely used pesticides in the globe, the organophosphate compounds are understandably linked with the highest incidence of suicidal poisoning. Whereas the elicited toxicity is often associated with circulatory depression, the underlying mechanisms require further delineation. Employing the pesticide mevinphos as our experimental tool, we evaluated the hypothesis that transcriptional upregulation of nitric oxide synthase II (NOS II) by NF-κB on activation of the PI3K/Akt cascade in the rostral ventrolateral medulla (RVLM), the brain stem site that maintains blood pressure and sympathetic vasomotor tone, underpins the circulatory depressive effects of organophosphate poisons. Microinjection of mevinphos (10 nmol) bilaterally into the RVLM of anesthetized Sprague-Dawley rats induced a progressive hypotension that was accompanied sequentially by an increase (Phase I) and a decrease (Phase II) of an experimental index for the baroreflex-mediated sympathetic vasomotor tone. There were also progressive augmentations in PI3K or Akt enzyme activity and phosphorylation of p85 or Akt(Thr308) subunit in the RVLM that were causally related to an increase in NF-κB transcription activity and elevation in NOS II or peroxynitrite expression. Loss-of-function manipulations of PI3K or Akt in the RVLM significantly antagonized the reduced baroreflex-mediated sympathetic vasomotor tone and hypotension during Phase II mevinphos intoxication, and blunted the increase in NF-κB/NOS II/peroxynitrite signaling. We conclude that activation of the PI3K/Akt cascade, leading to upregulation of NF-κB/NOS II/peroxynitrite signaling in the RVLM, elicits impairment of brain stem cardiovascular regulation that underpins circulatory depression during mevinphos intoxication. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Antioxidants, endothelial dysfunction, and DCS: in vitro and in vivo study.

    PubMed

    Wang, Qiong; Mazur, Aleksandra; Guerrero, François; Lambrechts, Kate; Buzzacott, Peter; Belhomme, Marc; Theron, Michaël

    2015-12-15

    Reactive oxygen species (ROS) production is a well-known effect in individuals after an undersea dive. This study aimed to delineate the links between ROS, endothelial dysfunction, and decompression sickness (DCS) through the use of antioxidants in vitro and in vivo. The effect of N-acetylcysteine (NAC) on superoxide and peroxynitrite, nitric oxide (NO) generation, and cell viability during in vitro diving simulation were analyzed. Also analyzed was the effect of vitamin C and NAC on plasma glutathione thiol and thiobarbituric acid reactive substances (TBARS), plasma angiotensin-converting enzyme (ACE) activity, and angiotensin-II and DCS morbidity during in vivo diving simulation. During an in vitro diving simulation, vascular endothelial cells showed overproduction of superoxide and peroxynitrite, obvious attenuation of NO generation, and promotion of cell death, all of which were reversed by NAC treatment. After in vivo diving simulation, plasma ACE activity and angiotensin-II level were not affected. The plasma level of glutathione thiol was downregulated after the dive, which was attenuated partially by NAC treatment. Plasma TBARS level was upregulated; however, either NAC or vitamin C treatment failed to prevent DCS morbidity. During in vitro simulation, endothelial superoxide and peroxynitrite-mediated oxidative stress were involved in the attenuation of NO availability and cell death. This study is the first attempt to link oxidative stress and DCS occurrence, and the link could not be confirmed in vivo. Even in the presence of antioxidants, ROS and bubbles generated during diving and/or decompression might lead to embolic or biochemical stress and DCS. Diving-induced oxidative stress might not be the only trigger of DCS morbidity. Copyright © 2015 the American Physiological Society.

  10. Neutrophil elastase-induced elastin degradation mediates macrophage influx and lung injury in 60% O2-exposed neonatal rats.

    PubMed

    Masood, Azhar; Yi, Man; Belcastro, Rosetta; Li, Jun; Lopez, Lianet; Kantores, Crystal; Jankov, Robert P; Tanswell, A Keith

    2015-07-01

    Neutrophil (PMNL) influx precedes lung macrophage (LM) influx into the lung following exposure of newborn pups to 60% O2. We hypothesized that PMNL were responsible for the signals leading to LM influx. This was confirmed when inhibition of PMNL influx with a CXC chemokine receptor-2 antagonist, SB-265610, also prevented the 60% O2-dependent LM influx, LM-derived nitrotyrosine formation, and pruning of small arterioles. Exposure to 60% O2 was associated with increased lung contents of neutrophil elastase and α-elastin, a marker of denatured elastin, and a decrease in elastin fiber density. This led us to speculate that neutrophil elastase-induced elastin fragments were the chemokines that led to a LM influx into the 60% O2-exposed lung. Inhibition of neutrophil elastase with sivelestat or elafin attenuated the LM influx. Sivelestat also attenuated the 60% O2-induced decrease in elastin fiber density. Daily injections of pups with an antibody to α-elastin prevented the 60% O2-dependent LM influx, impaired alveologenesis, and impaired small vessel formation. This suggests that neutrophil elastase inhibitors may protect against neonatal lung injury not only by preventing structural elastin degradation, but also by blocking elastin fragment-induced LM influx, thus preventing tissue injury from LM-derived peroxynitrite formation. Copyright © 2015 the American Physiological Society.

  11. Mechanism of pyrogallol red oxidation induced by free radicals and reactive oxidant species. A kinetic and spectroelectrochemistry study.

    PubMed

    Atala, E; Velásquez, G; Vergara, C; Mardones, C; Reyes, J; Tapia, R A; Quina, F; Mendes, M A; Speisky, H; Lissi, E; Ureta-Zañartu, M S; Aspée, A; López-Alarcón, C

    2013-05-02

    Pyrogallol red (PGR) presents high reactivity toward reactive (radical and nonradical) species (RS). This property of PGR, together with its characteristic spectroscopic absorption in the visible region, has allowed developing methodologies aimed at evaluating the antioxidant capacity of foods, beverages, and human fluids. These methods are based on the evaluation of the consumption of PGR induced by RS and its inhibition by antioxidants. However, at present, there are no reports regarding the degradation mechanism of PGR, limiting the extrapolation to how antioxidants behave in different systems comprising different RS. In the present study, we evaluate the kinetics of PGR consumption promoted by different RS (peroxyl radicals, peroxynitrite, nitrogen dioxide, and hypochlorite) using spectroscopic techniques and detection of product by HPLC mass spectrometry. The same pattern of oxidation and spectroscopic properties of the products is observed, independently of the RS employed. Mass analysis indicates the formation of only one product identified as a quinone derivative, excluding the formation of peroxides or hydroperoxides and/or chlorinated compounds, in agreement with FOX's assays and oxygen consumption experiments. Cyclic voltammetry, carried out at different pH's, shows an irreversible oxidation of PGR, indicating the initial formation of a phenoxy radical and a second charge transfer reaction generating an ortho-quinone derivative. Spectroelectrochemical oxidation of PGR shows oxidation products with identical UV-visible absorption properties to those observed in RS-induced oxidation.

  12. A novel mitochondria-targeted two-photon fluorescent probe for dynamic and reversible detection of the redox cycles between peroxynitrite and glutathione.

    PubMed

    Sun, Chunlong; Du, Wen; Wang, Peng; Wu, Yang; Wang, Baoqin; Wang, Jun; Xie, Wenjun

    2017-12-16

    Redox homeostasis is important for maintenance of normal physiological functions within cells. Redox state of cells is primarily a consequence of precise balance between levels of reducing equivalents and reactive oxygen species. Redox homeostasis between peroxynitrite (ONOO - ) and glutathione (GSH) is closely associated with physiological and pathological processes, such as prolonged relaxation in vascular tissues and smooth muscle preparations, attenuation of hepatic necrosis, and activation of matrix metalloproteinase-2. We report a two-photon fluorescent probe (TP-Se) based on water-soluble carbazole-based compound, which integrates with organic selenium, to monitor changes in ONOO - /GSH levels in cells. This probe can reversibly respond to ONOO - and GSH and exhibits high selectivity, sensitivity, and mitochondrial targeting. The probe was successfully applied to visualize changes in redox cycles during ONOO - outbreak and antioxidant GSH repair in cells. The probe will lead to significant development on redox events involved in cellular redox regulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Isolation and quantitative analysis of peroxynitrite scavengers from Artemisia princeps var. orientalis.

    PubMed

    Nugroho, Agung; Lee, Kang Ro; Alam, Md Badrul; Choi, Jae Sue; Park, Hee-Juhn

    2010-05-01

    Young and mature Artemisia princeps var. orientalis (APO, Compositae) are used as a health food and a medicinal plant, respectively, in Korea. Here, we identified the in vitro potent peroxynitrite (ONOO(-))-scavenging effect (IC(50), 0.26 microg/mL) of the components from the EtOAc fraction. Octadecylsilane column chromatography on the EtOAc fraction yielded two caffeoylquinic acid compounds, 3,5-di-O-caffeoyl-muco-quinic acid (1) and methyl 4,5-di-O-caffeoylquinate (2) by NMR spectroscopic data, which have not been reported before from APO. The IC(50) values of compounds 1 and 2 were 0.18 +/- 0.01 microg/mL and 0.12 +/- 0.00 microg/mL, respectively, lower than that of the positive control (L-penicillamine). HPLC data indicated that young APO (1: 30.3 mg/g dried weight, 2: 27.7 mg/g) contained considerably higher quantities of the two caffeoylquinic acids than mature APO (1: 1.77 mg/g dried weight, 2: 4.10 mg/g).

  14. Structure-activity relationships of neoechinulin A analogues with cytoprotection against peroxynitrite-induced PC12 cell death.

    PubMed

    Kimoto, Kuniaki; Aoki, Toshiaki; Shibata, Yasushi; Kamisuki, Shinji; Sugawara, Fumio; Kuramochi, Kouji; Nakazaki, Atsuo; Kobayashi, Susumu; Kuroiwa, Kenji; Watanabe, Nobuo; Arai, Takao

    2007-10-01

    Neoechinulin A, an alkaloid from Eurotium rubrum Hiji025, protected neuronal PC12 cells against cell death induced by peroxynitrite derived from SIN-1 (3-(4-morpholinyl)sydnonimine hydrochloride). In this study, we investigated the structure-activity relationships of neoechinulin A and a set of its analogues by using assays to measure anti-nitration and antioxidant activities and cytoprotection against SIN-1-induced PC12 cell death. The presence of the diketopiperazine ring was essential for both the antioxidant and anti-nitration activities of neoechinulin A derivatives. Nevertheless, a derivative lacking the diketopiperazine ring could still protect PC12 cells against SIN-1 cytotoxicity. An acyclic analogue completely lost the cytoprotective effect while retaining its antioxidant/anti-nitration activities. Pre-incubation of the cells with neoechinulin A for at least 12 hours was essential for the cells to gain SIN-1 resistance. These results suggest that neoechinulin A endows the cells with cytoprotection through a biological effect different from the apparent antioxidant/anti-nitration activities.

  15. Scavenging of peroxynitrite by phycocyanin and phycocyanobilin from Spirulina platensis: protection against oxidative damage to DNA.

    PubMed

    Bhat, V B; Madyastha, K M

    2001-07-13

    Peroxynitrite (ONOO(-)) is known to inactivate important cellular targets and also mediate oxidative damage in DNA. The present study has demonstrated that phycocyanin, a biliprotein from spirulina platensis and its chromophore, phycocyanobilin (PCB), efficiently scavenge ONOO(-), a potent physiological inorganic toxin. Scavenging of ONOO(-) by phycocyanin and PCB was established by studying their interaction with ONOO(-) and quantified by using competition kinetics of pyrogallol red bleaching assay. The relative antioxidant ratio and IC(50) value clearly indicate that phycocyanin is a more efficient ONOO(-) scavenger than PCB. The present study has also shown that PCB significantly inhibits the ONOO(-)-mediated single-strand breaks in supercoiled plasmid DNA in a dose-dependent manner with an IC(50) value of 2.9 +/- 0.6 microM. These results suggest that phycocyanin, has the ability to inhibit the ONOO(-)-mediated deleterious biological effects and hence has the potential to be used as a therapeutic agent. Copyright 2001 Academic Press.

  16. Chromium(IV)–Peroxo Complex Formation and Its Nitric Oxide Dioxygenase Reactivity

    PubMed Central

    Yokoyama, Atsutoshi; Han, Jung Eun; Cho, Jaeheung; Kubo, Minoru; Ogura, Takashi; Siegler, Maxime A.; Karlin, Kenneth D.; Nam, Wonwoo

    2012-01-01

    The O2 and NO reactivity of a Cr(II) complex bearing a 12-membered tetraazamacrocyclic TMC ligand, [CrII(12-TMC)(Cl)]+ (1), and the NO reactivity of its peroxo derivative, [CrIV(12-TMC)(O2)(Cl)]+ (2), are described. By contrast to the previously reported Cr(III)-superoxo complex, [CrIII(14-TMC)(O2)(Cl)]+, a Cr(IV)-peroxo complex (2) is formed in the reaction of 1 and O2. Full spectroscopic and X-ray analysis reveals that 2 possesses a side-on η2-peroxo ligation. A quantitative reaction of 2 with NO affords a reduction in Cr oxidation state and production of a Cr(III)-nitrato complex, [CrIII(12-TMC)(NO3)(Cl)]+ (3). The latter is suggested to form via a Cr(III)-peroxynitrite intermediate. A Cr(II)-nitrosyl complex, [CrII(12-TMC)(NO)(Cl)]+ (4), derived from 1 andNO could also be synthesized; however, it does not react with O2. PMID:22950528

  17. Mechanisms and kinetic profiles of superoxide-stimulated nitrosative processes in cells using a diaminofluorescein probe.

    PubMed

    Damasceno, Fernando Cruvinel; Facci, Rômulo Rodrigues; da Silva, Thalita Marques; Toledo, José Carlos

    2014-12-01

    In this study, we examined the mechanisms and kinetic profiles of intracellular nitrosative processes using diaminofluorescein (DAF-2) as a target in RAW 264.7 cells. The intracellular formation of the fluorescent, nitrosated product diaminofluorescein triazol (DAFT) from both endogenous and exogenous nitric oxide (NO) was prevented by deoxygenation and by cell membrane-permeable superoxide (O2(-)) scavengers but not by extracellular bovine Cu,Zn-SOD. In addition, the DAFT formation rate decreased in the presence of cell membrane-permeable Mn porphyrins that are known to scavenge peroxynitrite (ONOO(-)) but was enhanced by HCO3(-)/CO2. Together, these results indicate that nitrosative processes in RAW 264.7 cells depend on endogenous intracellular O2(-) and are stimulated by ONOO(-)/CO2-derived radical oxidants. The N2O3 scavenger sodium azide (NaN3) only partially attenuated the DAFT formation rate and only with high NO (>120 nM), suggesting that DAFT formation occurs by nitrosation (azide-susceptible DAFT formation) and predominantly by oxidative nitrosylation (azide-resistant DAFT formation). Interestingly, the DAFT formation rate increased linearly with NO concentrations of up to 120-140 nM but thereafter underwent a sharp transition and became insensitive to NO. This behavior indicates the sudden exhaustion of an endogenous cell substrate that reacts rapidly with NO and induces nitrosative processes, consistent with the involvement of intracellular O2(-). On the other hand, intracellular DAFT formation stimulated by a fixed flux of xanthine oxidase-derived extracellular O2(-) that also occurs by nitrosation and oxidative nitrosylation increased, peaked, and then decreased with increasing NO, as previously observed. Thus, our findings complementarily show that intra- and extracellular O2(-)-dependent nitrosative processes occurring by the same chemical mechanisms do not necessarily depend on NO concentration and exhibit different unusual kinetic profiles with NO dynamics, depending on the biological compartment in which NO and O2(-) interact. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. The formation of reactive species having hydroxyl radical-like reactivity from UV photolysis of N-nitrosodimethylamine (NDMA): kinetics and mechanism.

    PubMed

    Kwon, Bum Gun; Kim, Jong-Oh; Namkung, Kyu Cheol

    2012-10-15

    This study focuses on the detailed mechanism by which N-nitrosodimethylamine (NDMA) is photolyzed to form oxidized products, i.e., NO(2)(-) and NO(3)(-), and reveals a key reactive species produced during the photolysis of NDMA. Under acidic conditions, NO(2)(-) formed from the photodecomposition of NDMA was more prevalent than NO(3)(-). In this result, key species for the formation of NO(2)(-) are presumably N(2)O(3) and N(2)O(4) as termination products as well as NO and O(2) as reactants. Conversely, under alkaline conditions, NO(3)(-) was more prevalent than NO(2)(-). For this result, a key species for NO(3)(-) formation is presumably peroxynitrite (ONOO(-)). A detailed mechanistic study was performed with a competition reaction (or kinetics) between NDMA and p-nitrosodimethylaniline (PNDA) probe for hydroxyl radical (OH). It is fortuitous that the second-order rate constant for NDMA with an unknown reactive species (URS) was 5.13×10(8) M(-1) s(-1), which was similar to its published value for the reaction of NDMA+OH. Our study results showed that a key reactive species generated during NDMA photo-decomposition had hydroxyl radical-like reactivity and in particular, under alkaline conditions, it is most likely ONOO(-) as a source of nitrate ion. Therefore, for the first time, we experimentally report that an URS having OH-like reactivity can be formed during photochemical NDMA decomposition. This URS could contribute to the formations of NO(2)(-) and NO(3)(-). Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Potential in vitro antioxidant and protective effects of Gymnema montanum H. on alloxan-induced oxidative damage in pancreatic beta-cells, HIT-T15.

    PubMed

    Ramkumar, Kunga Mohan; Manjula, Chinnasamy; Sankar, Lakshmanan; Suriyanarayanan, Sarvajayakesavalu; Rajaguru, Palanisamy

    2009-09-01

    The present study describes the antioxidant activities of ethanol extract from Gymnema montanum (GLEt) which is an endemic plant of India. Antioxidant activity of the GLEt was studied in vitro based on scavenging of hydroxyl radicals, superoxide anions, nitric oxide, hydrogen peroxide, peroxynitrite, reducing power and inhibition of lipid peroxidation estimated in terms of thiobarbituric acid reactive substances (TBARS). Further, we examined its protective effect against alloxan-induced oxidative stress in pancreatic beta-cells, HIT-T15 by measuring the free radical generation, malonaldehyde formation and antioxidant levels such as CAT, GPx and GSH. Results showed that G. montanum leaves exhibited significant antioxidant activities measured by various in vitro model systems. The HIT-T15 cell line studies showed the tendency of GLEt to increase antioxidant levels meanwhile decrease the free radical formation and inhibit the lipid peroxidation. The antioxidant activity was found to be well correlated with the phenolic phytochemicals present in the extract. GC-MS analyses revealed the presence of few phenolic compounds in the extract. As this plant has already been demonstrated for a variety of medicinal properties from our laboratory, results of this study suggest that G. montanum is an interesting source for antioxidant compounds and useful for various therapeutic applications.

  20. Peripheral artery disease, redox signaling, oxidative stress - Basic and clinical aspects.

    PubMed

    Steven, Sebastian; Daiber, Andreas; Dopheide, Jörn F; Münzel, Thomas; Espinola-Klein, Christine

    2017-08-01

    Reactive oxygen and nitrogen species (ROS and RNS, e.g. H 2 O 2 , nitric oxide) confer redox regulation of essential cellular signaling pathways such as cell differentiation, proliferation, migration and apoptosis. At higher concentrations, ROS and RNS lead to oxidative stress and oxidative damage of biomolecules (e.g. via formation of peroxynitrite, fenton chemistry). Peripheral artery disease (PAD) is characterized by severe ischemic conditions in the periphery leading to intermittent claudication and critical limb ischemia (end stage). It is well known that redox biology and oxidative stress play an important role in this setting. We here discuss the major pathways of oxidative stress and redox signaling underlying the disease progression with special emphasis on the contribution of inflammatory processes. We also highlight therapeutic strategies comprising pharmacological (e.g. statins, angiotensin-converting enzyme inhibitors, phosphodiesterase inhibition) and non-pharmacological (e.g. exercise) interventions. Both of these strategies induce potent indirect antioxidant and anti-inflammatory mechanisms that may contribute to an improvement of PAD associated complications and disease progression by removing excess formation of ROS and RNS (e.g. by ameliorating primary complications such as hyperlipidemia and hypertension) as well as the normalization of the inflammatory phenotype suppressing the progression of atherosclerosis. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Nitric oxide-related species-induced protein oxidation: reversible, irreversible, and protective effects on enzyme function of papain.

    PubMed

    Väänänen, Antti J; Kankuri, Esko; Rauhala, Pekka

    2005-04-15

    Protein oxidation, irreversible modification, and inactivation may play key roles in various neurodegenerative disorders. Therefore, we studied the effects of the potentially in vivo occurring nitric oxide-related species on two different markers of protein oxidation: protein carbonyl generation on bovine serum albumine (BSA) and loss of activity of a cysteine-dependent protease, papain, in vitro by using Angeli's salt, papanonoate, SIN-1, and S-nitrosoglutathione (GSNO) as donors of nitroxyl, nitric oxide, peroxynitrite, and nitrosonium ions, respectively. Angeli's salt, SIN-1, and papanonoate (0-1000 microM) all generated a concentration-dependent increase in carbonyl formation on BSA (107, 60, and 45%, respectively). GSNO did not affect carbonyl formation. Papain was inhibited by Angeli's salt, SIN-1, papanonoate, and GSNO with IC50 values of 0.62, 2.3, 54, and 80 microM, respectively. Angeli's salt (3.16 microM)-induced papain inactivation was only partially reversible, while the effects of GSNO (316 microM) and papanonoate (316 microM) were reversible upon addition of excess DTT. The Angeli's salt-mediated DTT-irreversible inhibition of papain was prevented by GSNO or papanonoate pretreatment, hypothetically through mixed disulfide formation or S-nitrosylation of the catalytically critical thiol group of papain. These results, for the first time, compare the generation of carbonyls in proteins by Angeli's salt, papanonoate, and SIN-1. Furthermore, these results suggest that S-nitrosothiols may have a novel function in protecting critical thiols from irreversible oxidative damage.

  2. Molecular visualizing and quantifying immune-associated peroxynitrite fluxes in phagocytes and mouse inflammation model.

    PubMed

    Li, Zan; Yan, Shi-Hai; Chen, Chen; Geng, Zhi-Rong; Chang, Jia-Yin; Chen, Chun-Xia; Huang, Bing-Huan; Wang, Zhi-Lin

    2017-04-15

    Reactions of peroxynitrite (ONOO - ) with biomolecules can lead to cytotoxic and cytoprotective events. Due to the difficulty of directly and unambiguously measuring its levels, most of the beneficial effects associated with ONOO - in vivo remain controversial or poorly characterized. Recently, optical imaging has served as a powerful noninvasive approach to studying ONOO - in living systems. However, ratiometric probes for ONOO - are currently lacking. Herein, we report the design, synthesis, and biological evaluation of F 482 , a novel fluorescence indicator that relies on ONOO - -induced diene oxidation. The remarkable sensitivity, selectivity, and photostability of F 482 enabled us to visualize basal ONOO - in immune-stimulated phagocyte cells and quantify its generation in phagosomes by high-throughput flow cytometry analysis. With the aid of in vivo ONOO - imaging in a mouse inflammation model assisted by F 482 , we envision that F 482 will find widespread applications in the study of the ONOO - biology associated with physiological and pathological processes in vitro and in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Sex differences in nitrosative stress during renal ischemia.

    PubMed

    Rodríguez, Francisca; Nieto-Cerón, Susana; Fenoy, Francisco J; López, Bernardo; Hernández, Isabel; Martinez, Raquel Rodado; Soriano, Ma José González; Salom, Miguel G

    2010-11-01

    Females suffer a less severe ischemic acute renal failure than males, apparently because of higher nitric oxide (NO) bioavailability and/or lower levels of oxidative stress. Because the renal ischemic injury is associated with outer medullary (OM) endothelial dysfunction, the present study evaluated sex differences in OM changes of NO and peroxynitrite levels (by differential pulse voltammetry and amperometry, respectively) during 45 min of ischemia and 60 min of reperfusion in anesthetized Sprague-Dawley rats. Endothelial nitric oxide synthase (eNOS) and neuronal nitric oxide synthase (nNOS) protein expression and their phosphorylated forms [peNOS(Ser1177) and pnNOS(Ser1417)], 3-nitrotyrosine, reduced sulfhydryl groups (-SH), and glomerular filtration rate (GFR) were also determined. No sex differences were observed in monomeric eNOS and nNOS expression, NO, or 3-nitrotyrosine levels in nonischemic kidneys, but renal -SH content was higher in females. Ischemia increased dimeric/monomeric eNOS and nNOS ratio more in females, but the dimeric phosphorylated peNOS(Ser1177) and pnNOS(Ser1417) forms rose similarly in both sexes, indicating no sex differences in nitric oxide synthase activation. However, NO levels increased more in females than in males (6,406.0 ± 742.5 and 4,058.2 ± 272.35 nmol/l respectively, P < 0.05), together with a lower increase in peroxynitrite current (5.5 ± 0.7 vs. 12.7 ± 1.5 nA, P < 0.05) and 3-nitrotyrosine concentration, (28.7 ± 3.7 vs. 48.7 ± 3.7 nmol/mg protein, P < 0.05) in females than in males and a better preserved GFR after ischemia in females than in males (689.7 ± 135.0 and 221.4 ± 52.5 μl·min(-1)·g kidney wt(-1), P < 0.01). Pretreatment with the antioxidants N-acetyl-L-cysteine or ebselen abolished sex differences in peroxynitrite, nitrotyrosine, and GFR, suggesting that a greater oxidative and nitrosative stress worsens renal damage in males.

  4. Antioxidant Protects against Increases in Low Molecular Weight Hyaluronan and Inflammation in Asphyxiated Newborn Pigs Resuscitated with 100% Oxygen

    PubMed Central

    Akgul, Yucel; Ramgopal, Mrithyunjay; Mija, Dan S.; Cheong, Naeun; Longoria, Christopher; Mahendroo, Mala; Nakstad, Britt; Saugstad, Ola D.; Savani, Rashmin C.

    2012-01-01

    Background Newborn resuscitation with 100% oxygen is associated with oxidative-nitrative stresses and inflammation. The mechanisms are unclear. Hyaluronan (HA) is fragmented to low molecular weight (LMW) by oxidative-nitrative stresses and can promote inflammation. We examined the effects of 100% oxygen resuscitation and treatment with the antioxidant, N-acetylcysteine (NAC), on lung 3-nitrotyrosine (3-NT), LMW HA, inflammation, TNFα and IL1ß in a newborn pig model of resuscitation. Methods & Principal Findings Newborn pigs (n = 40) were subjected to severe asphyxia, followed by 30 min ventilation with either 21% or 100% oxygen, and were observed for the subsequent 150 minutes in 21% oxygen. One 100% oxygen group was treated with NAC. Serum, bronchoalveolar lavage (BAL), lung sections, and lung tissue were obtained. Asphyxia resulted in profound hypoxia, hypercarbia and metabolic acidosis. In controls, HA staining was in airway subepithelial matrix and no 3-NT staining was seen. At the end of asphyxia, lavage HA decreased, whereas serum HA increased. At 150 minutes after resuscitation, exposure to 100% oxygen was associated with significantly higher BAL HA, increased 3NT staining, and increased fragmentation of lung HA. Lung neutrophil and macrophage contents, and serum TNFα and IL1ß were higher in animals with LMW than those with HMW HA in the lung. Treatment of 100% oxygen animals with NAC blocked nitrative stress, preserved HMW HA, and decreased inflammation. In vitro, peroxynitrite was able to fragment HA, and macrophages stimulated with LMW HA increased TNFα and IL1ß expression. Conclusions & Significance Compared to 21%, resuscitation with 100% oxygen resulted in increased peroxynitrite, fragmentation of HA, inflammation, as well as TNFα and IL1ß expression. Antioxidant treatment prevented the expression of peroxynitrite, the degradation of HA, and also blocked increases in inflammation and inflammatory cytokines. These findings provide insight into potential mechanisms by which exposure to hyperoxia results in systemic inflammation. PMID:22701723

  5. Human microvascular dysfunction and apoptotic injury induced by AL amyloidosis light chain proteins.

    PubMed

    Migrino, Raymond Q; Truran, Seth; Gutterman, David D; Franco, Daniel A; Bright, Megan; Schlundt, Brittany; Timmons, Mitchell; Motta, Angelica; Phillips, Shane A; Hari, Parameswaran

    2011-12-01

    Light chain amyloidosis (AL) involves overproduction of amyloidogenic light chain proteins (LC) leading to heart failure, yet the mechanisms underlying tissue toxicity remain unknown. We hypothesized that LC induces endothelial dysfunction in non-AL human microvasculature and apoptotic injury in human coronary artery endothelial cells (HCAECs). Adipose arterioles (n = 34, 50 ± 3 yr) and atrial coronary arterioles (n = 19, 68 ± 2 yr) from non-AL subjects were cannulated. Adipose arteriole dilator responses to acetylcholine/papaverine were measured at baseline and 1 h exposure to LC (20 μg/ml) from biopsy-proven AL subjects (57 ± 11 yr) without and with antioxidant cotreatment. Coronary arteriole dilation to bradykinin/papaverine was measured post-LC exposure. HCAECs were exposed to 1 or 24 h of LC. LC reduced dilation to acetylcholine (10(-4) M: 41.6 ± 7 vs. 85.8 ± 2.2% control, P < 0.001) and papaverine (81.4 ± 4.6 vs. 94.8 ± 1.3% control, P < 0.01) in adipose arterioles and to bradykinin (10(-6) M: 68.6 ± 6.2 vs. 90.9 ± 1.6% control, P < 0.001) but not papaverine in coronary arterioles. There was an increase in superoxide and peroxynitrite in arterioles treated with LC. Adipose arteriole dilation was restored by cotreatment with polyethylene glycol-superoxide dismutase and tetrahydrobiopterin but only partially restored by mitoquinone (mitochondria-targeted antioxidant) and gp91ds-tat (NADPH oxidase inhibitor). HCAECs exposed to LC showed reduced NO and increased superoxide, peroxynitrite, annexin-V, and propidium iodide compared with control. Brief exposure to physiological amounts of LC induced endothelial dysfunction in human adipose and coronary arterioles and increased apoptotic injury in coronary artery endothelial cells likely as a result of oxidative stress, reduced NO bioavailability, and peroxynitrite production. Microvascular dysfunction and injury is a novel mechanism underlying AL pathobiology and is a potential target for therapy.

  6. The Intracellular Redox Stress Caused by Hexavalent Chromium is Selective for Proteins that Have Key Roles in Cell Survival and Thiol Redox Control

    PubMed Central

    Myers, Judith M.; Antholine, William E.; Myers, Charles R.

    2011-01-01

    Hexavalent chromium [Cr(VI)] compounds (e.g. chromates) are strong oxidants that readily enter cells where they are reduced to reactive Cr intermediates that can directly oxidize some cell components and can promote the generation of reactive oxygen and nitrogen species. Inhalation is a major route of exposure which directly exposes the bronchial epithelium. Previous studies with non-cancerous human bronchial epithelial cells (BEAS-2B) demonstrated that Cr(VI) treatment results in the irreversible inhibition of thioredoxin reductase (TrxR) and the oxidation of thioredoxins (Trx) and peroxiredoxins (Prx). The mitochondrial Trx/Prx system is somewhat more sensitive to Cr(VI) than the cytosolic Trx/Prx system, and other redox-sensitive mitochondrial functions are subsequently affected including electron transport complexes I and II. Studies reported here show that Cr(VI) does not cause indiscriminant thiol oxidation, and that the Trx/Prx system is among the most sensitive of cellular protein thiols. Trx/Prx oxidation is not unique to BEAS-2B cells, as it was also observed in primary human bronchial epithelial cells. Increasing the intracellular levels of ascorbate, an endogenous Cr(VI) reductant, did not alter the effects on TrxR, Trx, or Prx. The peroxynitrite scavenger MnTBAP did not protect TrxR, Trx, Prx, or the electron transport chain from the effects of Cr(VI), implying that peroxynitrite is not required for these effects. Nitration of tyrosine residues of TrxR was not observed following Cr(VI) treatment, further ruling out peroxynitrite as a significant contributor to the irreversible inhibition of TrxR. Cr(VI) treatments that disrupt the TrxR/Trx/Prx system did not cause detectable mitochondrial DNA damage. Overall, the redox stress that results from Cr(VI) exposure shows selectivity for key proteins which are known to be important for redox signaling, antioxidant defense, and cell survival. PMID:21237240

  7. Cyclic GMP protects human macrophages against peroxynitrite-induced apoptosis.

    PubMed

    Shaw, Catherine A; Webb, David J; Rossi, Adriano G; Megson, Ian L

    2009-05-07

    Nitric oxide (NO) can be both pro- and anti-apoptotic in various cell types, including macrophages. This apparent paradox may result from the actions of NO-related species generated in the microenvironment of the cell, for example the formation of peroxynitrite (ONOO-). In this study we have examined the ability of NO and ONOO- to evoke apoptosis in human monocyte-derived macrophages (MDMvarphi), and investigated whether preconditioning by cyclic guanosine monophosphate (cGMP) is able to limit apoptosis in this cell type. Characterisation of the NO-related species generated by (Z)-1- [2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA/NO) and 1,2,3,4-oxatriazolium, 5-amino-3-(3,4-dichlorophenyl)-, chloride (GEA-3162) was performed by electrochemistry using an isolated NO electrode and electron paramagnetic resonance (EPR) spectrometry. Mononuclear cells were isolated from peripheral blood of healthy volunteers and cultured to allow differentiation into MDMvarphi. Resultant MDMvarphi were treated for 24 h with DETA/NO (100 - 1000 muM) or GEA-3162 (10 - 300 muM) in the presence or absence of BAY 41-2272 (1 muM), isobutylmethylxanthine (IBMX; 1 muM), 1H- [1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one (ODQ; 20 muM) or 8-bromo-cGMP (1 mM). Apoptosis in MDMvarphi was assessed by flow cytometric analysis of annexin V binding in combination with propidium iodide staining. Electrochemistry and EPR revealed that DETA/NO liberated free NO radical, whilst GEA-3162 concomitantly released NO and O2-, and is therefore a ONOO- generator. NO (DETA/NO) had no effect on cell viability, but ONOO- (GEA-3162) caused a concentration-dependent induction of apoptosis in MDMvarphi. Preconditioning of MDMvarphi with NO in combination with the phosphodiesterase inhibitor, 3-Isobutyl-1-methylxanthine (IBMX), or the NO-independent stimulator of soluble guanylate cyclase, BAY 41-2272, significantly attenuated ONOO--induced apoptosis in a cGMP-dependent manner. These results demonstrate disparities between the ability of NO and ONOO- to induce apoptosis in human MDMvarphi. Furthermore, this study provides evidence for a novel cGMP-dependent pre-conditioning mechanism to limit ONOO--induced apoptosis in human MDMvarphi.

  8. Attenuation of ischemia-reperfusion-induced alterations in intracellular Ca2+ in cardiomyocytes from hearts treated with N-acetylcysteine and N-mercaptopropionylglycine.

    PubMed

    Saini-Chohan, Harjot K; Dhalla, Naranjan S

    2009-12-01

    This study was undertaken to test whether Ca(2+)-handling abnormalities in cardiomyocytes after ischemia-reperfusion (I/R) are prevented by antioxidants such as N-acetyl L-cysteine (NAC), which is known to reduce oxidative stress by increasing the glutathione redox status, and N-(2-mercaptopropionyl)-glycine (MPG), which scavenges both peroxynitrite and hydroxyl radicals. For this purpose, isolated rat hearts were subjected to 30 min of global ischemia followed by 30 min of reperfusion, and cardiomyocytes were prepared to monitor changes in the intracellular concentration of free Ca(2+) ([Ca(2+)](i)). Marked depression in the left ventricular developed pressure and elevation in the left ventricular end-diastolic pressure in I/R hearts were attenuated by treatment with NAC or MPG. Cardiomyocytes obtained from I/R hearts showed an increase in the basal level of [Ca(2+)](i) as well as augmentation of the low Na(+)-induced increase in [Ca(2+)](i), with no change in the KCl-induced increase in [Ca(2+)](i). These I/R-induced alterations in Ca(2+) handling by cardiomyocytes were attenuated by treatment of hearts with NAC or MPG. Furthermore, reduction in the isoproterenol-, ATP-, ouabain-, and caffeine-induced increases in [Ca(2+)](i) in cardiomyocytes from I/R hearts were limited by treatment with NAC or MPG. The increases in the basal [Ca(2+)](i), unlike the KCl-induced increase in [Ca(2+)](i), were fully or partially prevented by both NAC and MPG upon exposing cardiomyocytes to hypoxia-reoxygenation, H(2)O(2), or a mixture of xanthine and xanthine oxidase. These results suggest that improvement in cardiac function of I/R hearts treated with NAC or MPG was associated with attenuation of changes in Ca(2+) handling by cardiomyocytes, and the results support the view that oxidative stress due to oxyradical generation and peroxynitrite formation plays an important role in the development of intracellular Ca(2+) overload in cardiomyocytes as a consequence of I/R injury.

  9. Role of cytochrome P450 2E1 in protein nitration and ubiquitin-mediated degradation during acetaminophen toxicity.

    PubMed

    Abdelmegeed, Mohamed A; Moon, Kwan-Hoon; Chen, Chi; Gonzalez, Frank J; Song, Byoung-Joon

    2010-01-01

    It is well established that following a toxic dose of acetaminophen (APAP), nitrotyrosine protein adducts (3-NT), a hallmark of peroxynitrite production, were colocalized with necrotic hepatic centrilobular regions where cytochrome P450 2E1 (CYP2E1) is highly expressed, suggesting that 3-NT formation may be essential in APAP-mediated toxicity. This study was aimed at investigating the relationship between CYP2E1 and nitration (3-NT formation) followed by ubiquitin-mediated degradation of proteins in wild-type and Cyp2e1-null mice exposed to APAP (200 and 400mg/kg) for 4 and 24h. Markedly increased centrilobular liver necrosis and 3-NT formation were only observed in APAP-exposed wild-type mice in a dose- and time-dependent manner, confirming an important role for CYP2E1 in APAP biotransformation and toxicity. However, the pattern of 3-NT protein adducts, not accompanied by concurrent activation of nitric oxide synthase (NOS), was similar to that of protein ubiquitination. Immunoblot analysis further revealed that immunoprecipitated nitrated proteins were ubiquitinated in APAP-exposed wild-type mice, confirming the fact that nitrated proteins are more susceptible than the native proteins for ubiquitin-dependent degradation, resulting in shorter half-lives. For instance, cytosolic superoxide dismutase (SOD1) levels were clearly decreased and immunoprecipitated SOD1 was nitrated and ubiquitinated, likely leading to its accelerated degradation in APAP-exposed wild-type mice. These data suggest that CYP2E1 appears to play a key role in 3-NT formation, protein degradation, and liver damage, which is independent of NOS, and that decreased levels of many proteins in the wild-type mice (compared with Cyp2e1-null mice) likely contribute to APAP-related toxicity.

  10. Elevated free nitrotyrosine levels, but not protein-bound nitrotyrosine or hydroxyl radicals, throughout amyotrophic lateral sclerosis (ALS)-like disease implicate tyrosine nitration as an aberrant in vivo property of one familial ALS-linked superoxide dismutase 1 mutant.

    PubMed

    Bruijn, L I; Beal, M F; Becher, M W; Schulz, J B; Wong, P C; Price, D L; Cleveland, D W

    1997-07-08

    Mutations in superoxide dismutase 1 (SOD1; EC 1.15.1.1) are responsible for a proportion of familial amyotrophic lateral sclerosis (ALS) through acquisition of an as-yet-unidentified toxic property or properties. Two proposed possibilities are that toxicity may arise from imperfectly folded mutant SOD1 catalyzing the nitration of tyrosines [Beckman, J. S., Carson, M., Smith, C. D. & Koppenol, W. H. (1993) Nature (London) 364, 584] through use of peroxynitrite or from peroxidation arising from elevated production of hydroxyl radicals through use of hydrogen peroxide as a substrate [Wiedau-Pazos, M., Goto, J. J., Rabizadeh, S., Gralla, E. D., Roe, J. A., Valentine, J. S. & Bredesen, D. E. (1996) Science 271, 515-518]. To test these possibilities, levels of nitrotyrosine and markers for hydroxyl radical formation were measured in two lines of transgenic mice that develop progressive motor neuron disease from expressing human familial ALS-linked SOD1 mutation G37R. Relative to normal mice or mice expressing high levels of wild-type human SOD1, 3-nitrotyrosine levels were elevated by 2- to 3-fold in spinal cords coincident with the earliest pathological abnormalities and remained elevated in spinal cord throughout progression of disease. However, no increases in protein-bound nitrotyrosine were found during any stage of SOD1-mutant-mediated disease in mice or at end stage of sporadic or SOD1-mediated familial human ALS. When salicylate trapping of hydroxyl radicals and measurement of levels of malondialdehyde were used, there was no evidence throughout disease progression in mice for enhanced production of hydroxyl radicals or lipid peroxidation, respectively. The presence of elevated nitrotyrosine levels beginning at the earliest stages of cellular pathology and continuing throughout progression of disease demonstrates that tyrosine nitration is one in vivo aberrant property of this ALS-linked SOD1 mutant.

  11. The Effect of Reagents Mimicking Oxidative Stress on Fibrinogen Function

    PubMed Central

    Štikarová, Jana; Kotlín, Roman; Riedel, Tomáš; Suttnar, Jiří; Pimková, Kristýna; Chrastinová, Leona; Dyr, Jan E.

    2013-01-01

    Fibrinogen is one of the plasma proteins most susceptible to oxidative modification. It has been suggested that modification of fibrinogen may cause thrombotic/bleeding complications associated with many pathophysiological states of organism. We exposed fibrinogen molecules to three different modification reagents—malondialdehyde, sodium hypochlorite, and peroxynitrite—that are presented to various degrees in different stages of oxidative stress. We studied the changes in fibrin network formation and platelet interactions with modified fibrinogens under flow conditions. The fastest modification of fibrinogen was caused by hypochlorite. Fibers from fibrinogen modified with either reagent were thinner in comparison with control fibers. We found that platelet dynamic adhesion was significantly lower on fibrinogen modified with malondialdehyde and significantly higher on fibrinogen modified either with hypochlorite or peroxynitrite reflecting different prothrombotic/antithrombotic properties of oxidatively modified fibrinogens. It seems that, in the complex reactions ongoing in living organisms at conditions of oxidation stress, hypochlorite modifies proteins (e.g., fibrinogen) faster and more preferentially than malondialdehyde. It suggests that the prothrombotic effects of prior fibrinogen modifications may outweigh the antithrombotic effect of malondialdehyde-modified fibrinogen in real living systems. PMID:24235886

  12. Protein tyrosine nitration in pea roots during development and senescence

    PubMed Central

    Corpas, Francisco J.

    2013-01-01

    Protein tyrosine nitration is a post-translational modification mediated by reactive nitrogen species (RNS) that is associated with nitro-oxidative damage. No information about this process is available in relation to higher plants during development and senescence. Using pea plants at different developmental stages (ranging from 8 to 71 days), tyrosine nitration in the main organs (roots, stems, leaves, flowers, and fruits) was analysed using immunological and proteomic approaches. In the roots of 71-day-old senescent plants, nitroproteome analysis enabled the identification a total of 16 nitrotyrosine-immunopositive proteins. Among the proteins identified, NADP-isocitrate dehydrogenase (ICDH), an enzyme involved in the carbon and nitrogen metabolism, redox regulation, and responses to oxidative stress, was selected to evaluate the effect of nitration. NADP-ICDH activity fell by 75% during senescence. Analysis showed that peroxynitrite inhibits recombinant cytosolic NADP-ICDH activity through a process of nitration. Of the 12 tyrosines present in this enzyme, mass spectrometric analysis of nitrated recombinant cytosolic NADP-ICDH enabled this study to identify the Tyr392 as exclusively nitrated by peroxynitrite. The data as a whole reveal that protein tyrosine nitration is a nitric oxide-derived PTM prevalent throughout root development and intensifies during senescence. PMID:23362300

  13. [Effect of enalapril on nitric oxide synthesis, oxidative metabolism, and vascular tone in aging rats].

    PubMed

    Sahach, V F; Baziliuk, O V; Stepanenko, L H; Korkach, Iu P; Kotsiuruba, A V

    2007-01-01

    Endothelium-dependent and endothelium-independent reactions of relaxations of vascular smooth muscle (VSM) were examined in the aorta preparations of the two groups (6-8 and 21-22 month). The studies also two NO synthase (NOS) isoform activity--inducible (iNOS) and constitutive (cNOS), activity of arginase and nitrate reductase and the content of high-molecular nitrosothiols (HMNT) and low-molecular nitrosothiols (LMNT) and stable metabolites of NO (NO(-)2, NO(-)3). Aging rats demonstrated only endothelium-dependent responses of VSM to acethylcholine lowering. This endothelial dysfunction depend on high activity of arginase, iNOS and salvage (by nitrate reductase) NO synthesis, both reactive oxigen species (ROS) (by xanthine oxidase) and peroxynitrite generation, as well as low activity of constitutive (eNOS, nNOS) NO synthesis. Angiotensin-converting enzyme inhibitor (enalapril) administration (20 mg/kg, 30 or 55 days) up regalate constitutive NO synthesis by arginase, iNOS, nitrate reductase activity and ROS and peroxynitrite generation inhibition thus restore endothelium-dependent relaxations of VSM in aging rats. The result obtained suggest a new roles for the renin-angiotensin system in vascular tone regulation. Thus enalapril might serve as a novel tool to prevent aging-associated endothelial dysfunction.

  14. Endothelial dysfunction as a predictor of cardiovascular disease in type 1 diabetes

    PubMed Central

    Bertoluci, Marcello C; Cé, Gislaine V; da Silva, Antônio MV; Wainstein, Marco V; Boff, Winston; Puñales, Marcia

    2015-01-01

    Macro and microvascular disease are the main cause of morbi-mortality in type 1 diabetes (T1DM). Although there is a clear association between endothelial dysfunction and atherosclerosis in type 2 diabetes, a cause-effect relationship is less clear in T1DM. Although endothelial dysfunction (ED) precedes atherosclerosis, it is not clear weather, in recent onset T1DM, it may progress to clinical macrovascular disease. Moreover, endothelial dysfunction may either be reversed spontaneously or in response to intensive glycemic control, long-term exercise training and use of statins. Acute, long-term and post-prandial hyperglycemia as well as duration of diabetes and microalbuminuria are all conditions associated with ED in T1DM. The pathogenesis of endothelial dysfunction is closely related to oxidative-stress. NAD(P)H oxidase over activity induces excessive superoxide production inside the mitochondrial oxidative chain of endothelial cells, thus reducing nitric oxide bioavailability and resulting in peroxynitrite formation, a potent oxidant agent. Moreover, oxidative stress also uncouples endothelial nitric oxide synthase, which becomes dysfunctional, inducing formation of superoxide. Other important mechanisms are the activation of both the polyol and protein kinase C pathways as well as the presence of advanced glycation end-products. Future studies are needed to evaluate the potential clinical applicability of endothelial dysfunction as a marker for early vascular complications in T1DM. PMID:26069717

  15. Characterization and quantification of endogenous fatty acid nitroalkene metabolites in human urine[S

    PubMed Central

    Salvatore, Sonia R.; Vitturi, Dario A.; Baker, Paul R. S.; Bonacci, Gustavo; Koenitzer, Jeffrey R.; Woodcock, Steven R.; Freeman, Bruce A.; Schopfer, Francisco J.

    2013-01-01

    The oxidation and nitration of unsaturated fatty acids transforms cell membrane and lipoprotein constituents into mediators that regulate signal transduction. The formation of 9-NO2-octadeca-9,11-dienoic acid and 12-NO2-octadeca-9,11-dienoic acid stems from peroxynitrite- and myeloperoxidase-derived nitrogen dioxide reactions as well as secondary to nitrite disproportionation under the acidic conditions of digestion. Broad anti-inflammatory and tissue-protective responses are mediated by nitro-fatty acids. It is now shown that electrophilic fatty acid nitroalkenes are present in the urine of healthy human volunteers (9.9 ± 4.0 pmol/mg creatinine); along with electrophilic 16- and 14-carbon nitroalkenyl β-oxidation metabolites. High resolution mass determinations and coelution with isotopically-labeled metabolites support renal excretion of cysteine-nitroalkene conjugates. These products of Michael addition are in equilibrium with the free nitroalkene pool in urine and are displaced by thiol reaction with mercury chloride. This reaction increases the level of free nitroalkene fraction >10-fold and displays a KD of 7.5 × 10−6 M. In aggregate, the data indicates that formation of Michael adducts by electrophilic fatty acids is favored under biological conditions and that reversal of these addition reactions is critical for detecting both parent nitroalkenes and their metabolites. The measurement of this class of mediators can constitute a sensitive noninvasive index of metabolic and inflammatory status. PMID:23620137

  16. Deliquescence behavior of photo-irradiated single NaNO3 droplets

    NASA Astrophysics Data System (ADS)

    Seng, Samantha; Guo, Fangqin; Tobon, Yeny A.; Ishikawa, Tomoki; Moreau, Myriam; Ishizaka, Shoji; Sobanska, Sophie

    2018-06-01

    Nitrate-containing particles are ubiquitous in the troposphere because of their secondary production due to anthropogenic emissions of NOx from the combustion of fossil fuels. Nitrate ions are recognized as photoactive species that may contribute to the formation of oxidants in the atmosphere through heterogeneous photochemical reactions. The chemical transformation of aerosol particles in the atmosphere often leads to modification of the particles' hygroscopic properties. Although the photo-transformation of nitrate ions into nitrite within aerosol particles has been investigated, the influence of the photoproducts formation on the hygroscopic behavior of particles has not been reported. In this study, we examined the hygroscopic properties of single, ultraviolet-irradiated NaNO3 droplets using Raman microspectrometry. We are the first demonstrated that irradiating NaNO3 particles affects their hygroscopic behavior. For short-term exposures, regarding hygroscopic behavior, the irradiated particles exhibited two-stage transitions that were clearly reproduced in the experimental NaNO3-NaNO2 phase diagram. The production of NO2- decreased the deliquescence relative humidity values. For long irradiation times (>5 h), these values are even more affected by the additional production of peroxynitrite and carbonate ions in individual droplets. The NaNO3-NaNO2 deliquescence phase diagram cannot explain the hygroscopic behavior of long-term irradiated particles. Finally, we demonstrated the influence that CO2 has on the photo-transformation process in NaNO3 droplets.

  17. Testing of WW-85

    DTIC Science & Technology

    2005-11-21

    secondary ROS, superoxide (O2 -) and hydrogen peroxide (H2O2), the latter can react via Fenton chemistry with cellular metal ions to produce additional ·OH...nitrogen dioxide (NO2), and nitrosonium cation. Oxidations of thiols, sulfides, transition metal complexes, deoxyribose, phenols and other...respiratory chain and disruption of the zinc-thiolate center at the active site of enzymes. Peroxynitrite has been shown to inhibit a variety of ion

  18. The NO/ONOO-Cycle as the Central Cause of Heart Failure

    PubMed Central

    Pall, Martin L.

    2013-01-01

    The NO/ONOO-cycle is a primarily local, biochemical vicious cycle mechanism, centered on elevated peroxynitrite and oxidative stress, but also involving 10 additional elements: NF-κB, inflammatory cytokines, iNOS, nitric oxide (NO), superoxide, mitochondrial dysfunction (lowered energy charge, ATP), NMDA activity, intracellular Ca2+, TRP receptors and tetrahydrobiopterin depletion. All 12 of these elements have causal roles in heart failure (HF) and each is linked through a total of 87 studies to specific correlates of HF. Two apparent causal factors of HF, RhoA and endothelin-1, each act as tissue-limited cycle elements. Nineteen stressors that initiate cases of HF, each act to raise multiple cycle elements, potentially initiating the cycle in this way. Different types of HF, left vs. right ventricular HF, with or without arrhythmia, etc., may differ from one another in the regions of the myocardium most impacted by the cycle. None of the elements of the cycle or the mechanisms linking them are original, but they collectively produce the robust nature of the NO/ONOO-cycle which creates a major challenge for treatment of HF or other proposed NO/ONOO-cycle diseases. Elevated peroxynitrite/NO ratio and consequent oxidative stress are essential to both HF and the NO/ONOO-cycle. PMID:24232452

  19. Myeloid-derived suppressor cells in murine AIDS inhibit B-cell responses in part via soluble mediators including reactive oxygen and nitrogen species, and TGF-β

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rastad, Jessica L.

    2016-12-15

    Monocytic myeloid-derived suppressor cells (M-MDSCs) were increased during LP-BM5 retroviral infection, and were capable of suppressing not only T-cell, but also B-cell responses. In addition to previously demonstrating iNOS- and VISTA-dependent M-MDSC mechanisms, in this paper, we detail how M-MDSCs utilized soluble mediators, including the reactive oxygen and nitrogen species superoxide, peroxynitrite, and nitric oxide, and TGF-β, to suppress B cells in a predominantly contact-independent manner. Suppression was independent of cysteine-depletion and hydrogen peroxide production. When two major mechanisms of suppression (iNOS and VISTA) were eliminated in double knockout mice, M-MDSCs from LP-BM5-infected mice were able to compensate using other,more » soluble mechanisms in order to maintain suppression of B cells. The IL-10 producing regulatory B-cell compartment was among the targets of M-MDSC-mediated suppression. -- Highlights: •LP-BM5-expanded M-MDSCs utilized soluble mediators nitric oxide, superoxide, peroxynitrite, and TGF-β to suppress B cells. •When two major mechanisms of suppression were eliminated through knockouts, M-MDSCs maintained suppression. •M-MDSCs from LP-BM5-infected mice decreased proliferation of IL-10 producing regulatory B cells.« less

  20. Superoxide Dismutase Mimics: Chemistry, Pharmacology, and Therapeutic Potential

    PubMed Central

    Rebouças, Júlio S.; Spasojević, Ivan

    2010-01-01

    Abstract Oxidative stress has become widely viewed as an underlying condition in a number of diseases, such as ischemia–reperfusion disorders, central nervous system disorders, cardiovascular conditions, cancer, and diabetes. Thus, natural and synthetic antioxidants have been actively sought. Superoxide dismutase is a first line of defense against oxidative stress under physiological and pathological conditions. Therefore, the development of therapeutics aimed at mimicking superoxide dismutase was a natural maneuver. Metalloporphyrins, as well as Mn cyclic polyamines, Mn salen derivatives and nitroxides were all originally developed as SOD mimics. The same thermodynamic and electrostatic properties that make them potent SOD mimics may allow them to reduce other reactive species such as peroxynitrite, peroxynitrite-derived CO3·−, peroxyl radical, and less efficiently H2O2. By doing so SOD mimics can decrease both primary and secondary oxidative events, the latter arising from the inhibition of cellular transcriptional activity. To better judge the therapeutic potential and the advantage of one over the other type of compound, comparative studies of different classes of drugs in the same cellular and/or animal models are needed. We here provide a comprehensive overview of the chemical properties and some in vivo effects observed with various classes of compounds with a special emphasis on porphyrin-based compounds. Antioxid. Redox Signal. 13, 877–918. PMID:20095865

  1. Effect of oxidative stress on Rho kinase II and smooth muscle contraction in rat stomach.

    PubMed

    Al-Shboul, Othman; Mustafa, Ayman

    2015-06-01

    Recent studies have shown that both Rho kinase signaling and oxidative stress are involved in the pathogenesis of a number of human diseases, such as diabetes mellitus, hypertension, and atherosclerosis. However, very little is known about the effect of oxidative stress on the gastrointestinal (GI) smooth muscle Rho kinase pathway. The aim of the current study was to investigate the effect of oxidative stress on Rho kinase II and muscle contraction in rat stomach. The peroxynitrite donor 3-morpholinosydnonimine (SIN-1), hydrogen peroxide (H2O2), and peroxynitrite were used to induce oxidative stress. Rho kinase II expression and ACh-induced activity were measured in control and oxidant-treated cells via specifically designed enzyme-linked immunosorbent assay (ELISA) and activity assay kits, respectively. Single smooth muscle cell contraction was measured via scanning micrometry in the presence or absence of the Rho kinase blocker, Y-27632 dihydrochloride. All oxidant agents significantly increased ACh-induced Rho kinase II activity without affecting its expression level. Most important, oxidative stress induced by all three agents augmented ACh-stimulated muscle cell contraction, which was significantly inhibited by Y-27632. In conclusion, oxidative stress activates Rho kinase II and enhances contraction in rat gastric muscle, suggesting an important role in GI motility disorders associated with oxidative stress.

  2. UV-induced Melanin Chemiexcitation: A New Mode of Melanoma Pathogenesis.

    PubMed

    Brash, Douglas E

    2016-06-01

    Mutations in sunlight-induced melanoma arise from cyclobutane pyrimidine dimers (CPDs), DNA photoproducts usually created picoseconds after an ultraviolet (UV) photon is absorbed at thymine or cytosine. Surprisingly, we found that, in melanocytes, CPDs were generated for hours after UVA or UVB exposure. These "dark CPDs" constituted the majority of CPDs in cultured human and murine melanocytes and in mouse skin, and they were most prominent in skin containing pheomelanin, the melanin responsible for blonde and red hair. The mechanism was also a surprise. Dark cyclobutane pyrimidine dimers (CPDs) arise when ultraviolet (UV)-induced superoxide and nitric oxide combine to form peroxynitrite, one of the few biological molecules capable of exciting an electron. This process, termed "chemiexcitation," is the source of bioluminescence in lower organisms. Excitation occurred in fragments of melanin, creating a quantum triplet state that had the energy of a UV photon but which induced CPDs by radiationless energy transfer to DNA. UVA and peroxynitrite also solubilized melanin and permeabilized the nuclear membrane, allowing melanin to enter. Melanin is evidently carcinogenic as well as protective. Chemiexcitation may also trigger pathogenesis in internal tissues because the same chemistry should arise wherever superoxide and nitric oxide arise near cells that contain melanin. © The Author(s) 2016.

  3. Cyclic GMP protects human macrophages against peroxynitrite-induced apoptosis

    PubMed Central

    Shaw, Catherine A; Webb, David J; Rossi, Adriano G; Megson, Ian L

    2009-01-01

    Background Nitric oxide (NO) can be both pro- and anti-apoptotic in various cell types, including macrophages. This apparent paradox may result from the actions of NO-related species generated in the microenvironment of the cell, for example the formation of peroxynitrite (ONOO-). In this study we have examined the ability of NO and ONOO- to evoke apoptosis in human monocyte-derived macrophages (MDMϕ), and investigated whether preconditioning by cyclic guanosine monophosphate (cGMP) is able to limit apoptosis in this cell type. Methods Characterisation of the NO-related species generated by (Z)-1- [2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA/NO) and 1,2,3,4-oxatriazolium, 5-amino-3-(3,4-dichlorophenyl)-, chloride (GEA-3162) was performed by electrochemistry using an isolated NO electrode and electron paramagnetic resonance (EPR) spectrometry. Mononuclear cells were isolated from peripheral blood of healthy volunteers and cultured to allow differentiation into MDMϕ. Resultant MDMϕ were treated for 24 h with DETA/NO (100 – 1000 μM) or GEA-3162 (10 – 300 μM) in the presence or absence of BAY 41–2272 (1 μM), isobutylmethylxanthine (IBMX; 1 μM), 1H- [1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one (ODQ; 20 μM) or 8-bromo-cGMP (1 mM). Apoptosis in MDMϕ was assessed by flow cytometric analysis of annexin V binding in combination with propidium iodide staining. Results Electrochemistry and EPR revealed that DETA/NO liberated free NO radical, whilst GEA-3162 concomitantly released NO and O2-, and is therefore a ONOO- generator. NO (DETA/NO) had no effect on cell viability, but ONOO- (GEA-3162) caused a concentration-dependent induction of apoptosis in MDMϕ. Preconditioning of MDMϕ with NO in combination with the phosphodiesterase inhibitor, 3-Isobutyl-1-methylxanthine (IBMX), or the NO-independent stimulator of soluble guanylate cyclase, BAY 41–2272, significantly attenuated ONOO--induced apoptosis in a cGMP-dependent manner. Conclusion These results demonstrate disparities between the ability of NO and ONOO- to induce apoptosis in human MDMϕ. Furthermore, this study provides evidence for a novel cGMP-dependent pre-conditioning mechanism to limit ONOO--induced apoptosis in human MDMϕ. PMID:19422695

  4. Sensing hypoxia by mitochondria: a unifying hypothesis involving S-nitrosation.

    PubMed

    Ullrich, Volker; Schildknecht, Stefan

    2014-01-10

    Sudden hypoxia requires a rapid response in tissues with high energy demand. Mitochondria are rapid sensors for a lack of oxygen, but no consistent mechanism for the sensing process and the subsequent counter-regulation has been described. In the present hypothesis review, we suggest an oxygen-sensing mechanism by mitochondria that is initiated at low oxygen tension by electrons from the respiratory chain, leading to the reduction of intracellular nitrite to nitric oxide ((•)NO) that would subsequently compete with oxygen for binding to cytochrome c oxidase. This allows superoxide ((•)O2(-)) formation in hypoxic areas, leading to S-nitrosation and the inhibition of mitochondrial Krebs cycle enzymes. With more formation of (•)O2(-), peroxynitrite is generated and known to damage the connection between the mitochondrial matrix and the outer membrane. A fundamental question on a regulatory mechanism is its reversibility. Readmission of oxygen and opening of the mitochondrial KATP-channel would allow electrons from glycerol-3-phosphate to selectively reduce the ubiquinone pool to generate (•)O2(-) at both sides of the inner mitochondrial membrane. On the cytosolic side, superoxide is dismutated and will support H2O2/Fe(2+)-dependent transcription processes and on the mitochondrial matrix side, it could lead to the one-electron reduction and reactivation of S-nitrosated proteins. It remains to be elucidated up to which stage the herein proposed silencing of mitochondria remains reversible and when irreversible changes that ultimately lead to classical reperfusion injury are initiated.

  5. Role of the catechol group in the antioxidant and neuroprotective effects of virgin olive oil components in rat brain.

    PubMed

    De La Cruz, J P; Ruiz-Moreno, M I; Guerrero, A; López-Villodres, J A; Reyes, J J; Espartero, J L; Labajos, M T; González-Correa, J A

    2015-05-01

    The aim of the present study was to determine the role of the catechol group in the antioxidant and neuroprotective effects of minor components of virgin olive oil in rat brain tissue. Hydroxytyrosol ethyl ether (HT, 2 OH), tyrosol ethyl ether (Ty, 1 OH) and 3,4-di-ortho-methylidene-hydroxytyrosol ethyl ether (MET, no OH) were compared. Oxidative stress was induced with ferrous salts (lipid peroxidation induction), diethylmaleate (depletion of glutathione) and hypoxia-reoxygenation in brain slices. Lipid peroxidation was inhibited in direct proportion to the number of OH groups: HT>Ty>MET. Exposure to HT led to partial recovery of the glutathione system after chemical inhibition or hypoxia-reoxygenation. All three compounds inhibited cell death in hypoxia-reoxygenation experiments (HT≥Ty>MET). Peroxynitrite formation (3-nitrotyrosine) and inflammatory mediators (prostaglandin E2 and interleukin 1ß) were inhibited by all three compounds. In conclusion, the presence of OH groups in the molecule of these phenolic compounds from virgin olive oil is a determinant factor in their antioxidant effect in brain tissue, but this antioxidant effect is not the only explanation for their neuroprotective effect. Copyright © 2015. Published by Elsevier Inc.

  6. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds.

    PubMed

    Lipton, S A; Choi, Y B; Pan, Z H; Lei, S Z; Chen, H S; Sucher, N J; Loscalzo, J; Singel, D J; Stamler, J S

    1993-08-12

    Congeners of nitrogen monoxide (NO) are neuroprotective and neurodestructive. To address this apparent paradox, we considered the effects on neurons of compounds characterized by alternative redox states of NO: nitric oxide (NO.) and nitrosonium ion (NO+). Nitric oxide, generated from NO. donors or synthesized endogenously after NMDA (N-methyl-D-aspartate) receptor activation, can lead to neurotoxicity. Here, we report that NO.- mediated neurotoxicity is engendered, at least in part, by reaction with superoxide anion (O2.-), apparently leading to formation of peroxynitrite (ONOO-), and not by NO. alone. In contrast, the neuroprotective effects of NO result from downregulation of NMDA-receptor activity by reaction with thiol group(s) of the receptor's redox modulatory site. This reaction is not mediated by NO. itself, but occurs under conditions supporting S-nitrosylation of NMDA receptor thiol (reaction or transfer of NO+). Moreover, the redox versatility of NO allows for its interconversion from neuroprotective to neurotoxic species by a change in the ambient redox milieu. The details of this complex redox chemistry of NO may provide a mechanism for harnessing neuroprotective effects and avoiding neurotoxicity in the central nervous system.

  7. Stem bromelain-induced macrophage apoptosis and activation curtail Mycobacterium tuberculosis persistence.

    PubMed

    Mahajan, Sahil; Chandra, Vemika; Dave, Sandeep; Nanduri, Ravikanth; Gupta, Pawan

    2012-08-01

    Mycobacterium tuberculosis, the causative agent of tuberculosis, has a remarkable ability to usurp its host's innate immune response, killing millions of infected people annually. One approach to manage infection is prevention through the use of natural agents. In this regard, stem bromelain (SBM), a pharmacologically active member of the sulfhydryl proteolytic enzyme family, obtained from Ananas comosus and possessing a remarkable ability to induce the innate and acquired immune systems, is important. We evaluated SBM's ability to induce apoptosis and free-radical generation in macrophages. We also studied antimycobacterial properties of SBM and its effect on foamy macrophages. SBM treatment of peritoneal macrophages resulted in the upregulation of proapoptotic proteins and downregulation of antiapoptotic proteins. Additionally, SBM treatment activated macrophages, curtailed the levels of free glutathione, and augmented the production of hydrogen peroxide, superoxide anion, peroxynitrite, and nitric oxide. SBM cleaves CD36 and reduced the formation of foam cells, the hallmark of M. tuberculosis infection. These conditions created an environment for the increased clearance of M. tuberculosis. Together these data provide a mechanism for antimycobacterial activity of SBM and provide important insights for the use of cysteine proteases as immunomodulatory agents.

  8. Reciprocal regulation of the nitric oxide and cyclooxygenase pathway in pathophysiology: relevance and clinical implications

    PubMed Central

    Kim, Sangwon F.; Mollace, Vincenzo

    2013-01-01

    The nitric oxide (NO) and cyclooxygenase (COX) pathways share a number of similarities. Nitric oxide is the mediator generated from the NO synthase (NOS) pathway, and COX converts arachidonic acid to prostaglandins, prostacyclin, and thromboxane A2. Two major forms of NOS and COX have been identified to date. The constitutive isoforms critically regulate several physiological states. The inducible isoforms are overexpressed during inflammation in a variety of cells, producing large amounts of NO and prostaglandins, which may underlie pathological processes. The cross-talk between the COX and NOS pathways was initially reported by Salvemini and colleagues in 1993, when they demonstrated in a series of in vitro and in vivo studies that NO activates the COX enzymes to produce increased amounts of prostaglandins. Those studies led to the concept that COX enzymes represent important endogenous “receptor” targets for amplifying or modulating the multifaceted roles of NO in physiology and pathology. Since then, numerous studies have furthered our mechanistic understanding of these interactions in pathophysiological settings and delineated potential clinical outcomes. In addition, emerging evidence suggests that the canonical nitroxidative species (NO, superoxide, and/or peroxynitrite) modulate biosynthesis of prostaglandins through non-COX-related pathways. This article provides a comprehensive state-of-the art overview in this area. PMID:23389111

  9. Inducible nitric oxide synthase (NOS-2) in subarachnoid hemorrhage: Regulatory mechanisms and therapeutic implications.

    PubMed

    Iqbal, Sana; Hayman, Erik G; Hong, Caron; Stokum, Jesse A; Kurland, David B; Gerzanich, Volodymyr; Simard, J Marc

    2016-01-01

    Aneurysmal subarachnoid hemorrhage (SAH) typically carries a poor prognosis. Growing evidence indicates that overabundant production of nitric oxide (NO) may be responsible for a large part of the secondary injury that follows SAH. Although SAH modulates the activity of all three isoforms of nitric oxide synthase (NOS), the inducible isoform, NOS-2, accounts for a majority of NO-mediated secondary injuries after SAH. Here, we review the indispensable physiological roles of NO that must be preserved, even while attempting to downmodulate the pathophysiologic effects of NO that are induced by SAH. We examine the effects of SAH on the function of the various NOS isoforms, with a particular focus on the pathological effects of NOS-2 and on the mechanisms responsible for its transcriptional upregulation. Finally, we review interventions to block NOS-2 upregulation or to counteract its effects, with an emphasis on the potential therapeutic strategies to improve outcomes in patients afflicted with SAH. There is still much to be learned regarding the apparently maladaptive response of NOS-2 and its harmful product NO in SAH. However, the available evidence points to crucial effects that, on balance, are adverse, making the NOS-2/NO/peroxynitrite axis an attractive therapeutic target in SAH.

  10. Nitric oxide and superoxide mediate diesel particle effects in cytokine-treated mice and murine lung epithelial cells — implications for susceptibility to traffic-related air pollution

    PubMed Central

    2012-01-01

    Background Epidemiologic studies associate childhood exposure to traffic-related air pollution with increased respiratory infections and asthmatic and allergic symptoms. The strongest associations between traffic exposure and negative health impacts are observed in individuals with respiratory inflammation. We hypothesized that interactions between nitric oxide (NO), increased during lung inflammatory responses, and reactive oxygen species (ROS), increased as a consequence of traffic exposure ─ played a key role in the increased susceptibility of these at-risk populations to traffic emissions. Methods Diesel exhaust particles (DEP) were used as surrogates for traffic particles. Murine lung epithelial (LA-4) cells and BALB/c mice were treated with a cytokine mixture (cytomix: TNFα, IL-1β, and IFNγ) to induce a generic inflammatory state. Cells were exposed to saline or DEP (25 μg/cm2) and examined for differential effects on redox balance and cytotoxicity. Likewise, mice undergoing nose-only inhalation exposure to air or DEP (2 mg/m3 × 4 h/d × 2 d) were assessed for differential effects on lung inflammation, injury, antioxidant levels, and phagocyte ROS production. Results Cytomix treatment significantly increased LA-4 cell NO production though iNOS activation. Cytomix +  DEP-exposed cells incurred the greatest intracellular ROS production, with commensurate cytotoxicity, as these cells were unable to maintain redox balance. By contrast, saline + DEP-exposed cells were able to mount effective antioxidant responses. DEP effects were mediated by: (1) increased ROS including superoxide anion (O2˙-), related to increased xanthine dehydrogenase expression and reduced cytosolic superoxide dismutase activity; and (2) increased peroxynitrite generation related to interaction of O2˙- with cytokine-induced NO. Effects were partially reduced by superoxide dismutase (SOD) supplementation or by blocking iNOS induction. In mice, cytomix +  DEP-exposure resulted in greater ROS production in lung phagocytes. Phagocyte and epithelial effects were, by and large, prevented by treatment with FeTMPyP, which accelerates peroxynitrite catalysis. Conclusions During inflammation, due to interactions of NO and O2˙-, DEP-exposure was associated with nitrosative stress in surface epithelial cells and resident lung phagocytes. As these cell types work in concert to provide protection against inhaled pathogens and allergens, dysfunction would predispose to development of respiratory infection and allergy. Results provide a mechanism by which individuals with pre-existing respiratory inflammation are at increased risk for exposure to traffic-dominated urban air pollution. PMID:23151036

  11. Investigation of Drug-Induced Hepatotoxicity and Its Remediation Pathway with Reaction-Based Fluorescent Probes.

    PubMed

    Cheng, Dan; Xu, Wang; Yuan, Lin; Zhang, Xiaobing

    2017-07-18

    Drug-induced liver injury (DILI) is considered a serious problem related to public health, due to its unpredictability and acute response. The level of peroxynitrite (ONOO - ) generated in liver has long been regarded as a biomarker for the prediction and measurement of DILI. Herein we present two reaction-based fluorescent probes (Naph-ONOO - and Rhod-ONOO - ) for ONOO - through a novel and universally applicable mechanism: ONOO - -mediated deprotection of α-keto caged fluorophores. Among them, Rhod-ONOO - can selectively accumulate and react in mitochondria, one of the main sources of ONOO - , with a substantial lower nanomolar sensitivity of 43 nM. The superior selectivity and sensitivity of two probes enable real-time imaging of peroxynitrite generation in lipopolysaccharide-stimulated live cells, with a remarkable difference from cells doped with other interfering reactive oxygen species, in either one- or two-photon imaging modes. More importantly, we elucidated the drug-induced hepatotoxicity pathway with Rhod-ONOO - and revealed that CYP450/CYP2E1-mediated enzymatic metabolism of acetaminophen leads to ONOO - generation in liver cells. This is the first time to showcase the drug-induced hepatotoxicity pathways by use of a small-molecule fluorescent probe. We hence conclude that fluorescent probes can engender a deeper understanding of reactive species and their pathological revelations. The reaction-based fluorescent probes will be a potentially useful chemical tool to assay drug-induced hepatotoxicity.

  12. Autoamplificatory singlet oxygen generation sensitizes tumor cells for intercellular apoptosis-inducing signaling.

    PubMed

    Bauer, Georg

    2018-06-01

    Tumor cells express NADPH oxidase-1 (NOX1) in their membrane and control NOX1-based intercellular reactive oxygen and nitrogen species (ROS/RNS)-dependent apoptosis-inducing signaling through membrane-associated catalase and superoxide dismutase. of tumor cells with high concentrations of H 2 O 2 , peroxnitrite, HOCl, or increasing the concentration of cell-derived NO causes initial generation of singlet oxygen and local inactivation of membrane-associated catalase. As a result, free peroxynitrite and H 2 O 2 interact and generate secondary singlet oxygen. Inactivation of further catalase molecules by secondary singlet oxygen leads to auto-amplification of singlet oxygen generation and catalase inactivation. This allows reactivation of intercellular ROS/RNS-signaling and selective apoptosis induction in tumor cells. The initial singlet oxygen generation seems to be the critical point in this complex biochemical multistep mechanism. Initial singlet oxygen generation requires the interaction between distinct tumor cell-derived ROS and RNS and may also depend on either the induction of NO synthase expression or NOX1 activation through the FAS receptor. FAS receptor activation can be achieved by singlet oxygen. Autoamplificatory generation of singlet oxygen through the interaction between peroxynitrite and hydrogen peroxide inherits a rich potential for the establishment of synergistic effects that may be instrumental for novel approaches of tumor therapy with high selectivity towards malignant cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The structural damages of lens crystallins induced by peroxynitrite and methylglyoxal, two causative players in diabetic complications and preventive role of lens antioxidant components.

    PubMed

    Moghadam, Sogand Sasan; Oryan, Ahmad; Kurganov, Boris I; Tamaddon, Ali-Mohammad; Alavianehr, Mohammad Mehdi; Moosavi-Movahedi, Ali Akbar; Yousefi, Reza

    2017-10-01

    Peroxynitrite (PON) and methylglyoxal (MGO), two diabetes-associated compounds, are believed to be important causative players in development of diabetic cataracts. In the current study, different spectroscopic methods, gel electrophoresis, lens culture and microscopic assessments were applied to examine the impact of individual, subsequent or simultaneous modification of lens crystallins with MGO and PON on their structure, oligomerization and aggregation. The protein modifications were confirmed with detection of the significantly increased quantity of carbonyl groups and decreased levels of sulfhydryl, tyrosine and tryptophan. Also, lens proteins modification with these chemical agents was accompanied with important structural alteration, oligomerization, disulfide/chromophore mediated protein crosslinking and important proteolytic instability. All these structural damages were more pronounced when the lens proteins were modified in the presence of both mentioned chemical agents, either in sequential or simultaneous manner. Ascorbic acid and glutathione, as the main components of lens antioxidant defense mechanism, were also capable to markedly prevent the damaging effects of PON and MGO on lens crystallins, as indicated by gel electrophoresis. The results of this study may highlight the importance of lens antioxidant defense system in protection of crystallins against the structural insults induced by PON and MGO during chronic hyperglycemia in the diabetic patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Ultrasensitive peroxynitrite-based luminescence with L-012 as a screening system for antioxidative/antinitrating substances, e.g. Tylenol (acetaminophen), 4-OH tempol, quercetin and carboxy-PTIO.

    PubMed

    Van Dyke, Knox; Ghareeb, Erica; Van Dyke, Mark; Van Thiel, David H

    2007-01-01

    Previously our group developed a water-soluble antioxidant screening system using the luminescence of the reaction of peroxynitrite and luminol. In the present study we replaced luminol with the luminol-like compound L-012. This increases the production of luminescence approximately 100-fold and therefore, with a higher signal:noise ratio, this new system can detect antioxidation and antinitration effects at lower doses of the inhibitor. We studied acetaminophen (Tylenol) and its metabolite 3-nitroacetaminophen, tyrosine and nitrotyrosine and all these substances were inhibitory in a dose-responsive manner and below micromolar amounts. In addition quercetin, a polyphenol, was highly active (below micromolar amounts) as an antioxidant and antinitrating compound. 4-OH tempol, the stable free radical, superoxide dismutase (SOD) mimetic, was inhibitory in a dose-responsive manner and below micromolar amounts. Carboxy-PTIO was inhibitory at 10 times micromolar amount but not below that dose, which may be related to colour quenching, since the drug is deeply blue, or possibly it is an inhibitor with a slow kinetic profile. Finally, the amino acid tyrosine has been found to be inhibitory in micromolar amounts, similar to acetaminophen. This indicates that tyrosine can act as an antioxidant and antinitration target alone or conjugated in protein, e.g. insulin. (c) 2007 John Wiley & Sons, Ltd.

  15. Biological Activities of Reactive Oxygen and Nitrogen Species: Oxidative Stress versus Signal Transduction

    PubMed Central

    Weidinger, Adelheid; Kozlov, Andrey V.

    2015-01-01

    In the past, reactive oxygen and nitrogen species (RONS) were shown to cause oxidative damage to biomolecules, contributing to the development of a variety of diseases. However, recent evidence has suggested that intracellular RONS are an important component of intracellular signaling cascades. The aim of this review was to consolidate old and new ideas on the chemical, physiological and pathological role of RONS for a better understanding of their properties and specific activities. Critical consideration of the literature reveals that deleterious effects do not appear if only one primary species (superoxide radical, nitric oxide) is present in a biological system, even at high concentrations. The prerequisite of deleterious effects is the formation of highly reactive secondary species (hydroxyl radical, peroxynitrite), emerging exclusively upon reaction with another primary species or a transition metal. The secondary species are toxic, not well controlled, causing irreversible damage to all classes of biomolecules. In contrast, primary RONS are well controlled (superoxide dismutase, catalase), and their reactions with biomolecules are reversible, making them ideal for physiological/pathophysiological intracellular signaling. We assume that whether RONS have a signal transducing or damaging effect is primarily defined by their quality, being primary or secondary RONS, and only secondly by their quantity. PMID:25884116

  16. A review of the proposed role of neutrophils in rodent amebic liver abscess models

    PubMed Central

    Campos-Rodríguez, Rafael; Gutiérrez-Meza, Manuel; Jarillo-Luna, Rosa Adriana; Drago-Serrano, María Elisa; Abarca-Rojano, Edgar; Ventura-Juárez, Javier; Cárdenas-Jaramillo, Luz María; Pacheco-Yepez, Judith

    2016-01-01

    Host invasion by Entamoeba histolytica, the pathogenic agent of amebiasis, can lead to the development of amebic liver abscess (ALA). Due to the difficulty of exploring host and amebic factors involved in the pathogenesis of ALA in humans, most studies have been conducted with animal models (e.g., mice, gerbils, and hamsters). Histopathological findings reveal that the chronic phase of ALA in humans corresponds to lytic or liquefactive necrosis, whereas in rodent models there is granulomatous inflammation. However, the use of animal models has provided important information on molecules and mechanisms of the host/parasite interaction. Hence, the present review discusses the possible role of neutrophils in the effector immune response in ALA in rodents. Properly activated neutrophils are probably successful in eliminating amebas through oxidative and non-oxidative mechanisms, including neutrophil degranulation, the generation of free radicals (O2−, H2O2, HOCl) and peroxynitrite, the activation of NADPH-oxidase and myeloperoxidase (MPO) enzymes, and the formation of neutrophil extracellular traps (NETs). On the other hand, if amebas are not eliminated in the early stages of infection, they trigger a prolonged and exaggerated inflammatory response that apparently causes ALAs. Genetic differences in animals and humans are likely to be key to a successful host immune response. PMID:26880421

  17. Analysis of hydroxylation and nitration products of D-phenylalanine for in vitro and in vivo radical determination using high-performance liquid chromatography and photodiode array detection.

    PubMed

    Oeckl, Patrick; Ferger, Boris

    2009-05-15

    D-phenylalanine is capable of trapping reactive oxygen species (ROS) and reactive nitrogen species (RNS) by forming three major hydroxylation (o-, m-, p-tyrosine) and two major nitration products (nitrophenylalanine, nitrotyrosine). Here, we show how a method for the analysis of these phenylalanine derivatives was established using isocratic HPLC (Nucleosil120, C18 column) coupled with photodiode array detection and validated for cell-free in vitro and in vivo determination of radical formation. An ideal separation was achieved using a mobile phase consisting of 5% acetonitrile, 50mM KH(2)PO(4), pH 3.0, a column temperature of 35 degrees C and a flow rate of 1.0 mL/min. Limits of detection were in the range of 5-100 nM. Linearity was given within 5 nM-100 microM (correlation coefficient >0.999). Retention times as well as peak heights exhibited a high precision (RSD:

  18. Structure, chaperone-like activity and allergenicity profile of bovine caseins upon peroxynitrite modification: New evidences underlying mastitis pathomechanisms.

    PubMed

    Sadeghian, Tanaz; Tavaf, Zohreh; Oryan, Ahmad; Shokouhi, Raheleh; Pourpak, Zahra; Moosavi-Movahedi, Ali Akbar; Yousefi, Reza

    2018-01-01

    Mastitis, an inflammatory reaction frequently develops in response to intra-mammary bacterial infection‌‌, may induce the generation of peroxynitrite (PON)‌ which is a highly potent reactive oxygen and nitrogen species. Caseins as the intrinsically unfolded proteins seem feasible substrates to react with PON. Therefore, in the current study, structural and functional aspects of both β-casein (β-CN) and whole casein fraction (WCF) were evaluated after PON modification, using a variety of techniques. Modification of the bovine caseins with PON results in an important enhancement in the carbonyl, nitrotryptophan, nitrotyrosine and dityrosine content of these proteins‌. The results of fluorescence and far UV-CD assessments suggested significant structural alteration of caseins upon PON-modification. The chaperone-like activity of β-casein was significantly altered after PON modification. The results of scanning electron microscopy suggest that bovine caseins display unique morphological features after treatment with PON. Also, the PON-modified caseins preserved their allergenicity profile and displayed partial resistance against digestion by the pancreatic proteases. Ascorbic acid, an important antioxidant component of milk, was also capable to significantly prevent the PON-induced structural damages in bovine milk caseins. In conclusion, our results suggest that PON may have significant role in the structural and functional alteration of milk caseins. Also, the PON-induced structural damaging effects of caseins might be effectively prevented by a sufficient level of milk antioxidant components particularly by ascorbic acid. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Molecular action mechanism against apoptosis by aqueous extract from guava budding leaves elucidated with human umbilical vein endothelial cell (HUVEC) model.

    PubMed

    Hsieh, Chiu-Lan; Huang, Chien-Ning; Lin, Yuh-Charn; Peng, Robert Y

    2007-10-17

    Chronic cardiovascular and neurodegenerative complications induced by hyperglycemia have been considered to be associated most relevantly with endothelial cell damages (ECD). The protective effects of the aqueous extract of Psidium guajava L. budding leaves (PE) on the ECD in human umbilical vein endothelial cell (HUVEC) model were investigated. Results revealed that glyoxal (GO) and methylglyoxal (MGO) resulting from the glycative and autoxidative reactions of the high blood sugar glucose (G) evoked a huge production of ROS and NO, which in turn increased the production of peroxynitrite, combined with the activation of the nuclear factor kappaB (NFkappaB), leading to cell apoptosis. High plasma glucose activated p38-MAPK, and high GO increased the expressions of p38-MAPK and JNK-MAPK, whereas high MGO levels induced the activity of ERK-MAPK. Glucose and dicarbonyl compounds were all found to be good inducers of intracellular PKCs, which together with MAPK acted as the upstream triggering factor to activate NFkappaB. Conclusively, high plasma glucose together with dicarbonyl compounds can trigger the signaling pathways of MAPK and PKC and induce cell apoptosis through ROS and peroxynitrite stimulation and finally by NFkappaB activation. Such effects of PE were ascribed to its high plant polyphenolic (PPP) contents, the latter being potent ROS inhibitors capable of blocking the glycation of proteins, which otherwise could have brought forth severe detrimental effects to the cells.

  20. Evaluation of Antioxidant and Free Radical Scavenging Capacities of Polyphenolics from Pods of Caesalpinia pulcherrima

    PubMed Central

    Hsu, Feng-Lin; Huang, Wei-Jan; Wu, Tzu-Hua; Lee, Mei-Hsien; Chen, Lih-Chi; Lu, Hsiao-Jen; Hou, Wen-Chi; Lin, Mei-Hsiang

    2012-01-01

    Thirteen polyphenolics were isolated from fresh pods of Caesalpinia pulcherrima using various methods of column chromatography. The structures of these polyphenolics were elucidated as gallic acid (1), methyl gallate (2), 6-O-galloyl-d-glucoside (3), methyl 6-O-galloyl-β-d-glucoside (4), methyl 3,6-di-O-galloyl-α-d-glucopyranoside (5), gentisic acid 5-O-α-d-(6′-O-galloyl)glucopyranoside (6), guaiacylglycerol 4-O-β-d-(6′-O-galloyl)glucopyranoside (7), 3-methoxy-4-hydroxyphenol 1-O-β-d-(6′-O-galloyl) glucopyranoside (8), (+)-gallocatechin (9), (+)-catechin (10), (+)-gallocatechin 3-O-gallate (11), myricetin 3-rhamnoside (12), and ampelopsin (13). All isolated compounds were tested for their antioxidant activities in the 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl, and peroxynitrite radicals scavenging assays. Among those compounds, 11, 12, and 2 exhibited the best DPPH-, hydroxyl-, and peroxynitrite radical-scavenging activities, respectively. Compound 7 is a new compound, and possesses better scavenging activities towards DPPH but has equivalent hydroxyl radical scavenging activity when compared to BHT. The paper is the first report on free radical scavenging properties of components of the fresh pods of Caesalpinia pulcherrima. The results obtained from the current study indicate that the free radical scavenging property of fresh pods of Caesalpinia pulcherrima may be one of the mechanisms by which this herbal medicine is effective in several free radical mediated diseases. PMID:22754350

  1. Targets of vascular protection in acute ischemic stroke differ in type 2 diabetes

    PubMed Central

    Kelly-Cobbs, Aisha I.; Prakash, Roshini; Li, Weiguo; Pillai, Bindu; Hafez, Sherif; Coucha, Maha; Johnson, Maribeth H.; Ogbi, Safia N.; Fagan, Susan C.

    2013-01-01

    Hemorrhagic transformation is an important complication of acute ischemic stroke, particularly in diabetic patients receiving thrombolytic treatment with tissue plasminogen activator, the only approved drug for the treatment of acute ischemic stroke. The objective of the present study was to determine the effects of acute manipulation of potential targets for vascular protection [i.e., NF-κB, peroxynitrite, and matrix metalloproteinases (MMPs)] on vascular injury and functional outcome in a diabetic model of cerebral ischemia. Ischemia was induced by middle cerebral artery occlusion in control and type 2 diabetic Goto-Kakizaki rats. Treatment groups received a single dose of the peroxynitrite decomposition catalyst 5,10,15,20-tetrakis(4-sulfonatophenyl)prophyrinato iron (III), the nonspecific NF-κB inhibitor curcumin, or the broad-spectrum MMP inhibitor minocycline at reperfusion. Poststroke infarct volume, edema, hemorrhage, neurological deficits, and MMP-9 activity were evaluated. All acute treatments reduced MMP-9 and hemorrhagic transformation in diabetic groups. In addition, acute curcumin and minocycline therapy reduced edema in these animals. Improved neurological function was observed in varying degrees with treatment, as indicated by beam-walk performance, modified Bederson scores, and grip strength; however, infarct size was similar to untreated diabetic animals. In control animals, all treatments reduced MMP-9 activity, yet bleeding was not improved. Neuroprotection was only conferred by curcumin and minocycline. Uncovering the underlying mechanisms contributing to the success of acute therapy in diabetes will advance tailored stroke therapies. PMID:23335797

  2. Oxidative stress upregulates the NMDA receptor on cerebrovascular endothelium.

    PubMed

    Betzen, Christian; White, Robin; Zehendner, Christoph M; Pietrowski, Eweline; Bender, Bianca; Luhmann, Heiko J; Kuhlmann, Christoph R W

    2009-10-15

    N-methyl-d-aspartate receptor (NMDA-R)-mediated oxidative stress has been implicated in blood-brain barrier (BBB) disruption in a variety of neuropathological diseases. Although some interactions between both phenomena have been elucidated, possible influences of reactive oxygen species (ROS) on the NMDA-R itself have so far been neglected. The objective of this study was to examine how the cerebroendothelial NMDA-R is affected by exposure to oxidative stress and to assess possible influences on BBB integrity. RT-PCR confirmed several NMDA-R subunits (NR1, NR2B-D) expressed in the bEnd3 cell line (murine cerebrovascular endothelial cells). NR1 protein expression after exposure to ROS was observed via in-cell Western. The functionality of the expressed NMDA-R was determined by measuring DiBAC fluorescence in ROS-preexposed cells upon stimulation with the specific agonist NMDA. Finally, the effects on barrier integrity were evaluated using the ECIS system to detect changes in monolayer impedance upon NMDA-R stimulation after exposure to ROS. The expression of NR1 significantly (p<0.001) increased 72 h after 30 min exposure to superoxide (+33.8+/-7.5%), peroxynitrite (+84.9+/-10.7%), or hydrogen peroxide (+92.8+/-7.6%), resulting in increased cellular response to NMDA-R stimulation and diminished monolayer impedance. We conclude that oxidative stress upregulates NMDA-R on cerebrovascular endothelium and thus heightens susceptibility to glutamate-induced BBB disruption.

  3. The role of free radicals in traumatic brain injury.

    PubMed

    O'Connell, Karen M; Littleton-Kearney, Marguerite T

    2013-07-01

    Traumatic brain injury (TBI) is a significant cause of death and disability in both the civilian and the military populations. The primary impact causes initial tissue damage, which initiates biochemical cascades, known as secondary injury, that expand the damage. Free radicals are implicated as major contributors to the secondary injury. Our review of recent rodent and human research reveals the prominent role of the free radicals superoxide anion, nitric oxide, and peroxynitrite in secondary brain injury. Much of our current knowledge is based on rodent studies, and the authors identified a gap in the translation of findings from rodent to human TBI. Rodent models are an effective method for elucidating specific mechanisms of free radical-induced injury at the cellular level in a well-controlled environment. However, human TBI does not occur in a vacuum, and variables controlled in the laboratory may affect the injury progression. Additionally, multiple experimental TBI models are accepted in rodent research, and no one model fully reproduces the heterogeneous injury seen in humans. Free radical levels are measured indirectly in human studies based on assumptions from the findings from rodent studies that use direct free radical measurements. Further study in humans should be directed toward large samples to validate the findings in rodent studies. Data obtained from these studies may lead to more targeted treatment to interrupt the secondary injury cascades.

  4. Cell-permeable, mitochondrial-targeted, peptide antioxidants.

    PubMed

    Szeto, Hazel H

    2006-04-21

    Cellular oxidative injury has been implicated in aging and a wide array of clinical disorders including ischemia-reperfusion injury; neurodegenerative diseases; diabetes; inflammatory diseases such as atherosclerosis, arthritis, and hepatitis; and drug-induced toxicity. However, available antioxidants have not proven to be particularly effective against many of these disorders. A possibility is that some of the antioxidants do not reach the relevant sites of free radical generation, especially if mitochondria are the primary source of reactive oxygen species (ROS). The SS (Szeto-Schiller) peptide antioxidants represent a novel approach with targeted delivery of antioxidants to the inner mitochondrial membrane. The structural motif of these SS peptides centers on alternating aromatic residues and basic amino acids (aromatic-cationic peptides). These SS peptides can scavenge hydrogen peroxide and peroxynitrite and inhibit lipid peroxidation. Their antioxidant action can be attributed to the tyrosine or dimethyltyrosine residue. By reducing mitochondrial ROS, these peptides inhibit mitochondrial permeability transition and cytochrome c release, thus preventing oxidant-induced cell death. Because these peptides concentrate >1000-fold in the inner mitochondrial membrane, they prevent oxidative cell death with EC50 in the nM range. Preclinical studies support their potential use for ischemia-reperfusion injury and neurodegenerative disorders. Although peptides have often been considered to be poor drug candidates, these small peptides have excellent "druggable" properties, making them promising agents for many diseases with unmet needs.

  5. Myeloperoxidase potentiates nitric oxide-mediated nitrosation.

    PubMed

    Lakshmi, Vijaya M; Nauseef, William M; Zenser, Terry V

    2005-01-21

    Nitrosation is an important reaction elicited by nitric oxide (NO). To better understand how nitrosation occurs in biological systems, we assessed the effect of myeloperoxidase (MPO), a mediator of inflammation, on nitrosation observed during NO autoxidation. Nitrosation of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ; 10 mum) to 2-nitrosoamino-3-methylimidazo[4,5-f]quinoline (N-NO-IQ) was monitored by HPLC. Using the NO donor spermine NONOate at pH 7.4, MPO potentiated N-NO-IQ formation. The minimum effective quantity of necessary components was 8.5 nm MPO, 0.25 mum H(2)O(2)/min, and 0.024 mum NO/min. Autoxidation was only detected at >/=1.2 mum NO/min. MPO potentiation was not affected by a 40-fold excess flux of H(2)O(2) over NO or less than a 2.4-fold excess flux of NO over H(2)O(2). Potentiation was due to an 8.8-fold increased affinity of MPO-derived nitrosating species for IQ. Autoxidation was inhibited by azide, suggesting involvement of the nitrosonium ion, NO(+). MPO potentiation was inhibited by NADH, but not azide, suggesting oxidative nitrosylation with NO(2)(.) or an NO(2)(.)-like species. MPO nonnitrosative oxidation of IQ with 0.3 mm NO(2)(-) at pH 5.5 was inhibited by azide, but not NADH, demonstrating differences between MPO oxidation of IQ with NO compared with NO(2)(-). Using phorbol ester-stimulated human neutrophils, N-NO-IQ formation was increased with superoxide dismutase and inhibited by catalase and NADH, but not NaN(3). This is consistent with nitrosation potentiation by MPO, not peroxynitrite. Increased N-NO-IQ formation was not detected with polymorphonuclear neutrophils from two unrelated MPO-deficient patients. Results suggest that the highly diffusible stable gas NO could initiate nitrosation at sites of neutrophil infiltration.

  6. Glutathione Metabolism and Parkinson’s Disease

    PubMed Central

    Smeyne, Michelle

    2013-01-01

    It has been established that oxidative stress, defined as the condition when the sum of free radicals in a cell exceeds the antioxidant capacity of the cell, contributes to the pathogenesis of Parkinson’s disease. Glutathione is a ubiquitous thiol tripeptide that acts alone, or in concert with enzymes within cells to reduce superoxide radicals, hydroxyl radicals and peroxynitrites. In this review, we examine the synthesis, metabolism and functional interactions of glutathione, and discuss how this relates to protection of dopaminergic neurons from oxidative damage and its therapeutic potential in Parkinson’s disease. PMID:23665395

  7. Molecular biological effects of selective neuronal nitric oxide synthase inhibition in ovine lung injury

    PubMed Central

    Westphal, Martin; Enkhbaatar, Perenlei; Wang, Jianpu; Pazdrak, Konrad; Nakano, Yoshimitsu; Hamahata, Atsumori; Jonkam, Collette C.; Lange, Matthias; Connelly, Rhykka L.; Kulp, Gabriela A.; Cox, Robert A.; Hawkins, Hal K.; Schmalstieg, Frank C.; Horvath, Eszter; Szabo, Csaba; Traber, Lillian D.; Whorton, Elbert; Herndon, David N.; Traber, Daniel L.

    2010-01-01

    Neuronal nitric oxide synthase is critically involved in the pathogenesis of acute lung injury resulting from combined burn and smoke inhalation injury. We hypothesized that 7-nitroindazole, a selective neuronal nitric oxide synthase inhibitor, blocks central molecular mechanisms involved in the pathophysiology of this double-hit insult. Twenty-five adult ewes were surgically prepared and randomly allocated to 1) an uninjured, untreated sham group (n = 7), 2) an injured control group with no treatment (n = 7), 3) an injury group treated with 7-nitroindazole from 1-h postinjury to the remainder of the 24-h study period (n = 7), or 4) a sham-operated group subjected only to 7-nitroindazole to judge the effects in health. The combination injury was associated with twofold increased activity of neuronal nitric oxide synthase and oxidative/nitrosative stress, as indicated by significant increases in plasma nitrate/nitrite concentrations, 3-nitrotyrosine (an indicator of peroxynitrite formation), and malondialdehyde lung tissue content. The presence of systemic inflammation was evidenced by twofold, sixfold, and threefold increases in poly(ADP-ribose) polymerase, IL-8, and myeloperoxidase lung tissue concentrations, respectively (each P < 0.05 vs. sham). These molecular changes were linked to tissue damage, airway obstruction, and pulmonary shunting with deteriorated gas exchange. 7-Nitroindazole blocked, or at least attenuated, all these pathological changes. Our findings suggest 1) that nitric oxide formation derived from increased neuronal nitric oxide synthase activity represents a pivotal reactive agent in the patho-physiology of combined burn and smoke inhalation injury and 2) that selective neuronal nitric oxide synthase inhibition represents a goal-directed approach to attenuate the degree of injury. PMID:19965980

  8. In Vivo Formation of Electron Paramagnetic Resonance-Detectable Nitric Oxide and of Nitrotyrosine Is Not Impaired during Murine Leishmaniasis

    PubMed Central

    Giorgio, Selma; Linares, Edlaine; Ischiropoulos, Harry; Von Zuben, Fernando José; Yamada, Aureo; Augusto, Ohara

    1998-01-01

    Recent studies have provided evidence for a dual role of nitric oxide (NO) during murine leishmaniasis. To explore this problem, we monitored the formation of NO and its derived oxidants during the course of Leishmania amazonensis infection in tissues of susceptible (BALB/c) and relatively resistant (C57BL/6) mice. NO production was detected directly by low-temperature electron paramagnetic resonance spectra of animal tissues. Both mouse strains presented detectable levels of hemoglobin nitrosyl (HbNO) complexes and of heme nitrosyl and iron-dithiol-dinitrosyl complexes in the blood and footpad lesions, respectively. Estimation of the nitrosyl complex levels demonstrated that most of the NO is synthesized in the footpad lesions. In agreement, immunohistochemical analysis of the lesions demonstrated the presence of nitrotyrosine in proteins of macrophage vacuoles and parasites. Since macrophages lack myeloperoxidase, peroxynitrite is likely to be the nitrating NO metabolite produced during the infection. The levels of HbNO complexes in the blood reflected changes occurring during the infection such as those in parasite burden and lesion size. The maximum levels of HbNO complexes detected in the blood of susceptible mice were higher than those of C57BL/6 mice but occurred at late stages of infection and were accompanied by the presence of bacteria in the cutaneous lesions. The results indicate that the local production of NO is an important mechanism for the elimination of parasites if it occurs before the parasite burden becomes too high. From then on, elevated production of NO and derived oxidants aggravates the inflammatory process with the occurrence of a hypoxic environment that may favor secondary infections. PMID:9453645

  9. Free radical scavenging actions of three Trifolium species in the protection of blood plasma antioxidant capacity in vitro.

    PubMed

    Kolodziejczyk-Czepas, Joanna; Nowak, Pawel; Moniuszko-Szajwaj, Barbara; Kowalska, Iwona; Stochmal, Anna

    2015-01-01

    Three clover [Trifolium L. (Leguminosae)] species were selected on the basis of data from traditional medicine, phytochemical profiles, and agricultural significance. The in vitro evaluations of free radical scavenging properties, ferric reducing abilities, and antioxidant effects of extracts from T. pratense L. (crude extract and phenolic fraction), T. pallidum L., and T. scabrum L. (phenolic fractions) were performed. Activities of the Trifolium extracts were determined at their final concentrations of 1.5-50 µg/ml. Free radical scavenging properties of methanol extract solutions were estimated by the reduction of DPPH(•) and ABTS(•) radicals. Measurements of the total antioxidant capacity (TAC) were carried out to assess the antioxidant activities of the extracts in human blood plasma under conditions of oxidative stress, induced by 200 μM peroxynitrite. The phenolic fraction of T. pratense displayed the strongest ABTS(•) and DPPH(•) radical scavenging effects (EC50 value of 21.69 and 12.27 µg/ml, respectively). The EC50 value for T. pallidum extract attained 29.77 and 30.06 µg/ml. The two remaining extracts were less potent scavengers (EC50 value higher than 50 µg/ml). Similar differences were obtained during evaluation of the ferric reducing abilities. Analysis of antioxidant properties of the extracts in blood plasma did not provide such evident differences in their actions, however, it indicated that the T. pratense phenolic fraction displayed the strongest effect. The examined Trifolium extracts partly protected blood plasma and enhanced its non-enzymatic antioxidant defense against harmful action of peroxynitrite in vitro.

  10. Biological activity of clovers - free radical scavenging ability and antioxidant action of six Trifolium species.

    PubMed

    Kolodziejczyk-Czepas, Joanna; Nowak, Pawel; Kowalska, Iwona; Stochmal, Anna

    2014-10-01

    Clovers were chosen on the basis of traditional medicine recommendations, agricultural value, or available information on their promising chemical profiles. This study evaluates and compares free radical scavenging and antioxidant properties of six clover species: Trifolium alexandrinum L. (Leguminosae), Trifolium fragiferum L., Trifolium hybridum L., Trifolium incarnatum L., Trifolium resupinatum var. majus Boiss., and Trifolium resupinatum var. resupinatum L. Free radical scavenging activity of the extracts (1.5-50 µg/ml) was estimated by reduction of 1,1-diphenyl-2-picrylhydrazyl (DPPH(•)) and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic) acid (ABTS(•)) radicals. The Trifolium extract effects on total antioxidant capacity of blood plasma were determined by the reduction of ABTS(•+) and DPPH(•) radicals, as well as with the use of the ferric reducing ability of plasma (FRAP) assay. The UPLC analysis of chemical profiles of the examined extracts showed the presence of three or four groups of phenolic substances, including phenolic acids, clovamides, isoflavones, and other flavonoids. The measurements of free radical scavenging and ferric reducing ability of the examined clover extracts revealed the strongest effect for T. alexandrinum. Furthermore, antioxidant activity assays in human plasma have shown protective effects of all extracts against peroxynitrite-induced reduction of total antioxidant capacity. Trifolium plants may be a rich source of bioactive substances with antioxidant properties. The examined extracts displayed free radical scavenging action and partly protected blood plasma against peroxynitrite-induced oxidative stress; however, the beneficial effects of T. alexandrinum and T. incarnatum seem to be slightly higher.

  11. A new class of fast-response and highly selective fluorescent probes for visualizing peroxynitrite in live cells, subcellular organelles, and kidney tissue of diabetic rats.

    PubMed

    Miao, Junfeng; Huo, Yingying; Liu, Qian; Li, Zhe; Shi, Heping; Shi, Yawei; Guo, Wei

    2016-11-01

    Peroxynitrite (ONOO(-)) is an extremely powerful oxidant in biological systems, and can react with a wide variety of molecular targets including proteins, lipids, and nucleic acids, eventually resulting in a series of disease states such as diabetes, Alzheimer's disease, cancer, arthritis, autoimmune, and other disorders. In this work, we present a new class of ONOO(-) fluorescent probes by exploiting the ONOO(-)-triggered N-oxidation and N-nitrosation reactions of aromatic tertiary amine for the first time. The as-obtained fluorescent probe A2 could detect ONOO(-) with quite fast fluorescence off-on response (within seconds), ultrasensitivity (detection limit: <2 nM), and excellent selectivity over a series of biologically relevant reactive oxygen species as well as metal cations. With the probe, the endogenous ONOO(-) in activated RAW264.7 murine macrophage, EA.hy926 endothelial cells after oxygen glucose deprivation and reoxygenation (OGD/RO), and kidney tissue of diabetic rats has been successfully visualized. Based on the molecular platform of A2, we further develop its mitochondria- and lysosome-targetable fluorescent probes Mito-A2 and Lyso-A2 by installing the corresponding targeting groups to alkoxy unit of A2, and confirm their abilities to image ONOO(-) in mitochondria and lysosomes, respectively, by co-localization assays. It is greatly expected that these probes can serve as useful imaging tools for clarifying the distribution and pathophysiological functions of ONOO(-) in cells, subcellular organelles, and animal tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Enhanced electrocatalytic activity of graphene-gold nanoparticles hybrids for peroxynitrite electrochemical detection on hemin-based electrode.

    PubMed

    Wang, Beibei; Ji, Xueping; Ren, Jujie; Ni, Ruixing; Wang, Lin

    2017-12-01

    A simple, ultrasensitive peroxynitrite anion (ONOO - ) electrochemical sensing platform was developed by immobilizing hemin on a density controllable electrochemically reduced graphene oxide-Au nanoparticles (ERGO-AuNPs) nanohybrids. The ERGO-AuNPs in situ nanohybrids were produced onto a glass carbon electrode (GCE) by one-step electrodeposition, the density of which could be easily controlled by electrodeposited time. The morphology of ERGO-AuNPs nanohybrids was characterized by a scanning electron microscope (SEM). The ERGO-AuNPs nanohybrids showed a high electrocatalytic activity for immobilized-hemin, because the nanostructures hybrids could effectively promote electron transfer rate between hemin and the electrode. Due to nanohybrids-enhanced catalytic effect for hemin, they were firstly selected for use as a highly sensitive electrochemical platform for ONOO - detection. The resulted sensor showed a high electrocatalytic activity toward ONOO - oxidation, being free from the electroactive interferents, including nitrite, nitrate, dopamine and uric acid at an applied potential of 0.7V. The sensor exhibited a high sensitivity of 123.1nAμM -1 and a lower detection limit of 0.1μM, and a wide linear range of 2.4×10 -6 to 5.5×10 -5 M, which could be attributed to the synergy between ERGO and AuNPs in hybrids. The nanohybrids in situ preparation and ONOO - detection methods would be beneficial to developing other sensing interface and have promising applications in biological molecules analysis and clinical diagnostic. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Erdosteine and ebselen as useful agents in intestinal ischemia/reperfusion injury.

    PubMed

    Tunc, Turan; Uysal, Bulent; Atabek, Cuneyt; Kesik, Vural; Caliskan, Bahadir; Oztas, Emin; Ersoz, Nail; Oter, Sukru; Guven, Ahmet

    2009-08-01

    Reactive oxygen and nitrogen species generated during reperfusion of the tissue are characteristic of ischemia/reperfusion (I/R) injury. The purpose of the present study was to investigate whether erdosteine and ebselen, molecules with antioxidant properties and peroxynitrite scavenging capability, respectively, can reduce oxidative stress and histological damage in the rat small bowel subjected to mesenteric I/R injury. Forty Sprague-Dawley rats were divided into five groups equally: sham, I/R, I/R plus erdosteine, I/R plus ebselen, and I/R plus erdosteine and ebselen. Intestinal ischemia for 45 min and reperfusion for 3 d were carried out. Ileal specimens were obtained to determine the tissue levels of malondialdehide (MDA), protein carbonyl content (PCC), superoxide dismutase (SOD), glutathione peroxidase (GPx), nitrite/nitrate (NO(x)) level and histological changes. Intestinal I/R resulted in increased tissue MDA, PCC, and NO(x) levels and decreased SOD and GPx activities. Both erdosteine and ebselen alone significantly decreased MDA, PCC, and NO(x) levels and increased antioxidant enzymes activities, but all values were different from control. These changes almost returned to control values in the group treated with erdostein and ebselen. Histopathologically, the intestinal injury in rats treated with erdosteine and ebselen as well as combination were less than I/R group. Both erdosteine and ebselen were able to attenuate I/R injury of the intestine via inhibition of lipid peroxidation and protein oxidation, maintenance of antioxidant, and free radical scavenger properties. Nevertheless, combination treatment showed more promising results, suggesting that scavenging peroxynitrite nearby antioxidant activity is important in preventing intestinal I/R injury.

  14. Method for quantifying nitromethane in blood as a potential biomarker of halonitromethane exposure.

    PubMed

    Alwis, K Udeni; Blount, Benjamin C; Silva, Lalith K; Smith, Mitchell M; Loose, Karl-Hermann

    2008-04-01

    The cytotoxicity and genotoxicity of nitromethane and its halogenated analogues in mammals raise concerns about potential toxicity to humans. This study shows that halonitromethanes are not stable in human blood and undergo dehalogenation to form nitromethane. We quantified nitromethane in human blood using solid-phase microextraction (SPME) headspace sampling coupled with gas chromatography (GC) and high resolution mass spectrometry (HRMS). The limit of detection was 0.01 microg/L with a linear calibration curve spanning 3 orders of magnitude. This method employs isotope dilution to precisely quantify trace amounts of nitromethane (coefficient of variation <6%). At three spiked concentrations of nitromethane, method accuracy ranged from 88 to 99%. We applied this method to blood samples collected from 632 people with no known occupational exposure to nitromethane or halonitromethanes. Nitromethane was detected in all blood samples tested (range: 0.28-3.79 microg/L, median: 0.66 microg/L). Time-course experiments with trichloronitromethane- and tribromonitromethane-spiked blood showed that nitromethane was the major product formed (1 nmole tribromonitromethane formed 0.59 nmole of nitromethane, whereas 1 nmole trichloronitromethane formed 0.77 nmole nitromethane). Nitromethane may form endogenously from peroxynitrite: nitromethane concentrations increased proportionately in blood samples spiked with peroxynitrite. Blood nitromethane can be a biomarker of exposure to both nitromethane and halonitromethanes. This sensitive, accurate, and precise analytical method can be used to determine baseline blood nitromethane level in the general population. It can also be used to study the health impact from exposure to nitromethane and halonitromethanes in occupational environments and to assess trichloronitromethane (chloropicrin) exposure in chemical terrorism investigations.

  15. S-Nitroglutathione, a product of the reaction between peroxynitrite and glutathione that generates nitric oxide.

    PubMed

    Balazy, M; Kaminski, P M; Mao, K; Tan, J; Wolin, M S

    1998-11-27

    Peroxynitrite (ONOO-) has been shown in studies on vascular relaxation and guanylate cyclase activation to react with glutathione (GSH), generating an intermediate product that promotes a time-dependent production of nitric oxide (NO). In this study, reactions of ONOO- with GSH produced a new substance, which was characterized by liquid chromatography, ultraviolet spectroscopy, and electrospray tandem mass spectrometry. The mass spectrometric data provided evidence that the product of this reaction was S-nitroglutathione (GSNO2) and that S-nitrosoglutathione (GSNO) was not a detectable product of this reaction. Further evidence was obtained by comparison of the spectral and chromatographic properties with synthetic standards prepared by reaction of GSH with nitrosonium or nitronium borofluorates. Both the synthetic and ONOO-/GSH-derived GSNO2 generated a protonated ion, GSNO2H+, at m/z 353, which was unusually resistant to decomposition under collision activation, and no fragmentation was observed at collision energy of 25 eV. In contrast, an ion at m/z 337 (GSNOH+), generated from the synthetic GSNO, readily fragmented with the abundant loss of NO at 9 eV. Reactions of ONOO- with GSH resulted in the generation of NO, which was detected by the head space/NO-chemiluminescence analyzer method. The generation of NO was inhibited by the presence of glucose and/or CO2 in the buffers employed. Synthetic GSNO2 spontaneously generated NO in a manner that was not significantly altered by glucose or CO2. Thus, ONOO- reacts with GSH to form GSNO2, and GSNO2 decomposes in a manner that generates NO.

  16. On the antioxidant properties of kynurenic acid: free radical scavenging activity and inhibition of oxidative stress.

    PubMed

    Lugo-Huitrón, R; Blanco-Ayala, T; Ugalde-Muñiz, P; Carrillo-Mora, P; Pedraza-Chaverrí, J; Silva-Adaya, D; Maldonado, P D; Torres, I; Pinzón, E; Ortiz-Islas, E; López, T; García, E; Pineda, B; Torres-Ramos, M; Santamaría, A; La Cruz, V Pérez-De

    2011-01-01

    Kynurenic acid (KYNA) is an endogenous metabolite of the kynurenine pathway for tryptophan degradation and an antagonist of both N-methyl-D-aspartate (NMDA) and alpha-7 nicotinic acetylcholine (α7nACh) receptors. KYNA has also been shown to scavenge hydroxyl radicals (OH) under controlled conditions of free radical production. In this work we evaluated the ability of KYNA to scavenge superoxide anion (O(2)(-)) and peroxynitrite (ONOO(-)). The scavenging ability of KYNA (expressed as IC(50) values) was as follows: OH=O(2)(-)>ONOO(-). In parallel, the antiperoxidative and scavenging capacities of KYNA (0-150 μM) were tested in cerebellum and forebrain homogenates exposed to 5 μM FeSO(4) and 2.5 mM 3-nitropropionic acid (3-NPA). Both FeSO(4) and 3-NPA increased lipid peroxidation (LP) and ROS formation in a significant manner in these preparations, whereas KYNA significantly reduced these markers. Reactive oxygen species (ROS) formation were determined in the presence of FeSO(4) and/or KYNA (0-100 μM), both at intra and extracellular levels. An increase in ROS formation was induced by FeSO(4) in forebrain and cerebellum in a time-dependent manner, and KYNA reduced this effect in a concentration-dependent manner. To further know whether the effect of KYNA on oxidative stress is independent of NMDA and nicotinic receptors, we also tested KYNA (0-100 μM) in a biological preparation free of these receptors - defolliculated Xenopus laevis oocytes - incubated with FeSO(4) for 1 h. A 3-fold increase in LP and a 2-fold increase in ROS formation were seen after exposure to FeSO(4), whereas KYNA attenuated these effects in a concentration-dependent manner. In addition, the in vivo formation of OH evoked by an acute infusion of FeSO(4) (100 μM) in the rat striatum was estimated by microdialysis and challenged by a topic infusion of KYNA (1 μM). FeSO(4) increased the striatal OH production, while KYNA mitigated this effect. Altogether, these data strongly suggest that KYNA, in addition to be a well-known antagonist acting on nicotinic and NMDA receptors, can be considered as a potential endogenous antioxidant. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Salvianolic acid A inhibits calpain activation and eNOS uncoupling during focal cerebral ischemia in mice.

    PubMed

    Mahmood, Qaisar; Wang, Guang-Fa; Wu, Gang; Wang, Huan; Zhou, Chang-Xin; Yang, Hong-Yu; Liu, Zhi-Rong; Han, Feng; Zhao, Kui

    2017-02-15

    Salvianolic acid A (SAA) is obtained from Chinese herb Salviae Miltiorrhizae Bunge (Labiatae), has been reported to have the protective effects against cardiovascular and neurovascular diseases. The aim of present study was to investigate the relationship between the effectiveness of SAA against neurovascular injury and its effects on calpain activation and endothelial nitric oxide synthase (eNOS) uncoupling. SAA or vehicle was given to C57BL/6 male mice for seven days before the occlusion of middle cerebral artery (MCAO) for 60min. High-resolution positron emission tomography scanner (micro-PET) was used for small animal imaging to examine glucose metabolism. Rota-rod time and neurological deficit scores were calculated after 24h of reperfusion. The volume of infarction was determined by Nissl-staining. The calpain proteolytic activity and eNOS uncoupling were determined by western blot analysis. SAA administration increased glucose metabolism and ameliorated neuronal damage after brain ischemia, paralleled with decreased neurological deficit and volume of infarction. In addition, SAA pretreatment inhibited eNOS uncoupling and calpain proteolytic activity. Furthermore, SAA inhibited peroxynitrite (ONOO - ) generation and upregulates AKT, FKHR and ERK phosphorylation. These findings strongly suggest that SAA elicits a neurovascular protective role through the inhibition of eNOS uncoupling and ONOO - formation. Moreover, SAA attenuates spectrin and calcineurin breakdown and therefore protects the brain against ischemic/reperfusion injury. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Endocellular regulation by free radicals and hydrogen peroxide: key determinants of the inflammatory response.

    PubMed

    Vitetta, Luis; Linnane, Anthony W

    2014-04-01

    The formations of reactive oxygen species (ROS) and reactive nitrogen species (RNS) have long been considered as major contributors to the dysregulation of the inflammatory response. Reactive oxygen species and RNS productions often are reported to be associated with the development of chronic diseases and acceleration of the aging process. Mechanistically, this association has linked the phenomena of oxidative stress with the occurrence of random deleterious modifications of macromolecules with progressive development of pro-inflammatory conditions promoting age-associated systemic diseases. On the contrary the so-called random modification of macromolecules is incorrect rather ROS and RNS are molecular regulators (second messengers) and not universal toxins whose overproduction should be annulled by antioxidants. We have previously reviewed the physiological role of superoxide anion (and hydrogen peroxide) and nitric oxide (and peroxynitrite) and concluded that these reactive molecular species behave as pro-oxidant second messengers. Reactive oxygen species and RNS are produced at specific cellular locations and are essential for both the normal physiological function of the metabolome and the regulated inflammatory response. This brings into question the whole concept of the orally administering of antioxidant molecular species to down-regulate or abrogate an overproduction of free radical activity. There are no human clinical trials that demonstrate that small molecules, the so-called antioxidants (e.g., vitamins C, vitamin E and beta-carotene), confer a favorable clinical outcome of long-lasting control of inflammation.

  19. Playing with Cardiac “Redox Switches”: The “HNO Way” to Modulate Cardiac Function

    PubMed Central

    Tocchetti, Carlo G.; Stanley, Brian A.; Murray, Christopher I.; Sivakumaran, Vidhya; Donzelli, Sonia; Mancardi, Daniele; Pagliaro, Pasquale; Gao, Wei Dong; van Eyk, Jennifer; Kass, David A.; Wink, David A.

    2011-01-01

    Abstract The nitric oxide (NO•) sibling, nitroxyl or nitrosyl hydride (HNO), is emerging as a molecule whose pharmacological properties include providing functional support to failing hearts. HNO also preconditions myocardial tissue, protecting it against ischemia-reperfusion injury while exerting vascular antiproliferative actions. In this review, HNO's peculiar cardiovascular assets are discussed in light of its unique chemistry that distinguish HNO from NO• as well as from reactive oxygen and nitrogen species such as the hydroxyl radical and peroxynitrite. Included here is a discussion of the possible routes of HNO formation in the myocardium and its chemical targets in the heart. HNO has been shown to have positive inotropic/lusitropic effects under normal and congestive heart failure conditions in animal models. The mechanistic intricacies of the beneficial cardiac effects of HNO are examined in cellular models. In contrast to β-receptor/cyclic adenosine monophosphate/protein kinase A-dependent enhancers of myocardial performance, HNO uses its “thiophylic” nature as a vehicle to interact with redox switches such as cysteines, which are located in key components of the cardiac electromechanical machinery ruling myocardial function. Here, we will briefly review new features of HNO's cardiovascular effects that when combined with its positive inotropic/lusitropic action may render HNO donors an attractive addition to the current therapeutic armamentarium for treating patients with acutely decompensated congestive heart failure. Antioxid. Redox Signal. 14, 1687–1698. PMID:21235349

  20. Endoplasmic reticulum stress-regulated CXCR3 pathway mediates inflammation and neuronal injury in acute glaucoma

    PubMed Central

    Ha, Y; Liu, H; Xu, Z; Yokota, H; Narayanan, S P; Lemtalsi, T; Smith, S B; Caldwell, R W; Caldwell, R B; Zhang, W

    2015-01-01

    Acute glaucoma is a leading cause of irreversible blindness in East Asia. The mechanisms underlying retinal neuronal injury induced by a sudden rise in intraocular pressure (IOP) remain obscure. Here we demonstrate that the activation of CXCL10/CXCR3 axis, which mediates the recruitment and activation of inflammatory cells, has a critical role in a mouse model of acute glaucoma. The mRNA and protein expression levels of CXCL10 and CXCR3 were significantly increased after IOP-induced retinal ischemia. Blockade of the CXCR3 pathway by deleting CXCR3 gene significantly attenuated ischemic injury-induced upregulation of inflammatory molecules (interleukin-1β and E-selectin), inhibited the recruitment of microglia/monocyte to the superficial retina, reduced peroxynitrite formation, and prevented the loss of neurons within the ganglion cell layer. In contrast, intravitreal delivery of CXCL10 increased leukocyte recruitment and retinal cell apoptosis. Inhibition of endoplasmic reticulum (ER) stress with chemical chaperones partially blocked ischemic injury-induced CXCL10 upregulation, whereas induction of ER stress with tunicamycin enhanced CXCL10 expression in retina and primary retinal ganglion cells. Interestingly, deleting CXCR3 attenuated ER stress-induced retinal cell death. In conclusion, these results indicate that ER stress-medicated activation of CXCL10/CXCR3 pathway has an important role in retinal inflammation and neuronal injury after high IOP-induced ischemia. PMID:26448323

  1. Spatial and temporal regulation of the metabolism of reactive oxygen and nitrogen species during the early development of pepper (Capsicum annuum) seedlings

    PubMed Central

    Airaki, Morad; Leterrier, Marina; Valderrama, Raquel; Chaki, Mounira; Begara-Morales, Juan C.; Barroso, Juan B.; del Río, Luis A.; Palma, José M.; Corpas, Francisco J.

    2015-01-01

    Background and Aims The development of seedlings involves many morphological, physiological and biochemical processes, which are controlled by many factors. Some reactive oxygen and nitrogen species (ROS and RNS, respectively) are implicated as signal molecules in physiological and phytopathological processes. Pepper (Capsicum annuum) is a very important crop and the goal of this work was to provide a framework of the behaviour of the key elements in the metabolism of ROS and RNS in the main organs of pepper during its development. Methods The main seedling organs (roots, hypocotyls and green cotyledons) of pepper seedlings were analysed 7, 10 and 14 d after germination. Activity and gene expression of the main enzymatic antioxidants (catalase, ascorbate–glutathione cycle enzymes), NADP-generating dehydrogenases and S-nitrosoglutathione reductase were determined. Cellular distribution of nitric oxide (·NO), superoxide radical (O2·–) and peroxynitrite (ONOO–) was investigated using confocal laser scanning microscopy. Key Results The metabolism of ROS and RNS during pepper seedling development was highly regulated and showed significant plasticity, which was co-ordinated among the main seedling organs, resulting in correct development. Catalase showed higher activity in the aerial parts of the seedling (hypocotyls and green cotyledons) whereas roots of 7-d-old seedlings contained higher activity of the enzymatic components of the ascorbate glutathione cycle, NADP-isocitrate dehydrogenase and NADP-malic enzyme. Conclusions There is differential regulation of the metabolism of ROS, nitric oxide and NADP dehydrogenases in the different plant organs during seedling development in pepper in the absence of stress. The metabolism of ROS and RNS seems to contribute significantly to plant development since their components are involved directly or indirectly in many metabolic pathways. Thus, specific molecules such as H2O2 and NO have implications for signalling, and their temporal and spatial regulation contributes to the success of seedling establishment. PMID:25808658

  2. Influence of vitamin C and vitamin E on redox signaling: Implications for exercise adaptations.

    PubMed

    Cobley, James N; McHardy, Helen; Morton, James P; Nikolaidis, Michalis G; Close, Graeme L

    2015-07-01

    The exogenous antioxidants vitamin C (ascorbate) and vitamin E (α-tocopherol) often blunt favorable cell signaling responses to exercise, suggesting that redox signaling contributes to exercise adaptations. Current theories posit that this antioxidant paradigm interferes with redox signaling by attenuating exercise-induced reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation. The well-documented in vitro antioxidant actions of ascorbate and α-tocopherol and characterization of the type and source of the ROS/RNS produced during exercise theoretically enable identification of redox-dependent mechanisms responsible for the blunting of favorable cell signaling responses to exercise. This review aimed to apply this reasoning to determine how the aforementioned antioxidants might attenuate exercise-induced ROS/RNS production. The principal outcomes of this analysis are (1) neither antioxidant is likely to attenuate nitric oxide signaling either directly (reaction with nitric oxide) or indirectly (reaction with derivatives, e.g., peroxynitrite); (2) neither antioxidant reacts appreciably with hydrogen peroxide, a key effector of redox signaling; (3) ascorbate but not α-tocopherol has the capacity to attenuate exercise-induced superoxide generation; and (4) alternate mechanisms, namely pro-oxidant side reactions and/or reduction of bioactive oxidized macromolecule adducts, are unlikely to interfere with exercise-induced redox signaling. Out of all the possibilities considered, ascorbate-mediated suppression of superoxide generation with attendant implications for hydrogen peroxide signaling is arguably the most cogent explanation for blunting of favorable cell signaling responses to exercise. However, this mechanism is dependent on ascorbate accumulating at sites rich in NADPH oxidases, principal contributors to contraction-mediated superoxide generation, and outcompeting nitric oxide and superoxide dismutase isoforms. The major conclusions of this review are: (1) direct evidence for interference of ascorbate and α-tocopherol with exercise-induced ROS/RNS production is lacking; (2) theoretical analysis reveals that both antioxidants are unlikely to have a major impact on exercise-induced redox signaling; and (3) it is worth considering alternate redox-independent mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Integrated approach to nitric oxide in animals and plants (mechanism and bioactivity): cell signaling and radicals.

    PubMed

    Kovacic, Peter; Somanathan, Ratnasamy

    2011-04-01

    Nitric oxide was first the object of extensive investigation in animals. It has been designated as the most widespread signaling molecule. An overview is presented with emphasis on cell signaling, mechanism, and physiological activity. Hence, a basis is provided for comparison of NO in plants with a similar approach. Mechanistically, cell signaling, electron transfer, radicals, and antioxidants are involved. A role is played by NO derivatives, such as peroxynitrite, nitroxyl, nitrite, nitrate, and S-nitroso derivatives. Comparison is made with ethylene. The multifaceted, interdisciplinary approach provides novel insight.

  4. In silico studies on tryparedoxin peroxidase of Leishmania infantum: structural aspects.

    PubMed

    Singh, Bishal Kumar; Dubey, Vikash Kumar

    2009-09-01

    Tryparedoxin peroxidase (TryP) is a key enzyme of the trypanothione-dependent metabolism for removal of oxidative stress in leishmania. These enzymes function as antioxidants through their peroxidase and peroxynitrite reductase activities. Inhibitors of this enzyme are presumed to be antilesihmania drugs and structural studies are prerequisite of rational drug design. We have constructed three dimensional structure of TryP of Leishmania infantum using comparative modeling. Structural analysis reveals several interesting features. Moreover, it shows remarkable structural difference with human host glutathione peroxidase, an enzyme involved in similar function and TryP from Leishmania major.

  5. Nitric Oxide Dependent Degradation of Polyethylene Glycol-Modified Single-Walled Carbon Nanotubes: Implications for Intra-Articular Delivery.

    PubMed

    Bhattacharya, Kunal; Sacchetti, Cristiano; Costa, Pedro M; Sommertune, Jens; Brandner, Birgit D; Magrini, Andrea; Rosato, Nicola; Bottini, Nunzio; Bottini, Massimo; Fadeel, Bengt

    2018-03-01

    Polyethylene glycol (PEG)-modified carbon nanotubes have been successfully employed for intra-articular delivery in mice without systemic or local toxicity. However, the fate of the delivery system itself remains to be understood. In this study 2 kDa PEG-modified single-walled carbon nanotubes (PNTs) are synthesized, and trafficking and degradation following intra-articular injection into the knee-joint of healthy mice are studied. Using confocal Raman microspectroscopy, PNTs can be imaged in the knee-joint and are found to either egress from the synovial cavity or undergo biodegradation over a period of 3 weeks. Raman analysis discloses that PNTs are oxidatively degraded mainly in the chondrocyte-rich cartilage and meniscus regions while PNTs can also be detected in the synovial membrane regions, where macrophages can be found. Furthermore, using murine chondrocyte (ATDC-5) and macrophage (RAW264.7) cell lines, biodegradation of PNTs in activated, nitric oxide (NO)-producing chondrocytes, which is blocked upon pharmacological inhibition of inducible nitric oxide synthase (iNOS), can be shown. Biodegradation of PNTs in macrophages is also noted, but after a longer period of incubation. Finally, cell-free degradation of PNTs upon incubation with the peroxynitrite-generating compound, SIN-1 is demonstrated. The present study paves the way for the use of PNTs as delivery systems in the treatment of diseases of the joint. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The origin of comets - Implications for planetary formation

    NASA Technical Reports Server (NTRS)

    Weissman, P. R.

    1985-01-01

    Primordial and episodic theories for the origin of comets are discussed. The implications of the former type for the origin of the solar system are considered. Candidate sites for the formation of comets are compared. The possible existence of a massive inner Oort cloud is discussed.

  7. Differential effects of peroxynitrite on contractile protein properties in fast- and slow-twitch skeletal muscle fibers of rat.

    PubMed

    Dutka, T L; Mollica, J P; Lamb, G D

    2011-03-01

    Oxidative modification of contractile proteins is thought to be a key factor in muscle weakness observed in many pathophysiological conditions. In particular, peroxynitrite (ONOO(-)), a potent short-lived oxidant, is a likely candidate responsible for this contractile dysfunction. In this study ONOO(-) or 3-morpholinosydnonimine (Sin-1, a ONOO(-) donor) was applied to rat skinned muscle fibers to characterize the effects on contractile properties. Both ONOO(-) and Sin-1 exposure markedly reduced maximum force in slow-twitch fibers but had much less effect in fast-twitch fibers. The rate of isometric force development was also reduced without change in the number of active cross bridges. Sin-1 exposure caused a disproportionately large decrease in Ca(2+) sensitivity, evidently due to coproduction of superoxide, as it was prevented by Tempol, a superoxide dismutase mimetic. The decline in maximum force with Sin-1 and ONOO(-) treatments could be partially reversed by DTT, provided it was applied before the fiber was activated. Reversal by DTT indicates that the decrease in maximum force was due at least in part to oxidation of cysteine residues. Ascorbate caused similar reversal, further suggesting that the cysteine residues had undergone S-nitrosylation. The reduction in Ca(2+) sensitivity, however, was not reversed by either DTT or ascorbate. Western blot analysis showed cross-linking of myosin heavy chain (MHC) I, appearing as larger protein complexes after ONOO(-) exposure. The findings suggest that ONOO(-) initially decreases maximum force primarily by oxidation of cysteine residues on the myosin heads, and that the accompanying decrease in Ca(2+) sensitivity is likely due to other, less reversible actions of hydroxyl or related radicals.

  8. A novel model for rapid induction of apoptosis in spiral ganglions of mice.

    PubMed

    Lee, Ji Eun; Nakagawa, Takayuki; Kim, Tae Soo; Iguchi, Fukuichiro; Endo, Tsuyoshi; Dong, Youyi; Yuki, Kazuo; Naito, Yasushi; Lee, Sang Heun; Ito, Juichi

    2003-06-01

    The survival of the spiral ganglion (SG) is a critical issue in preservation of hearing. Research on topics related to this issue requires a mouse experimental model because such a model has advantages including use of genetic information and knockout or "knockin" mice. Thus, the aim of the study was to establish a mouse model for induction of apoptosis of SG neurons with a definite time course. Laboratory study using experimental animals. C57BL/6 mice were used as experimental animals and were subjected to direct application of cisplatin into the inner ear. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay and immunostaining for Neurofilament 200-kD (NF) and peripherin were used for analysis of SG degeneration. In addition, generation of peroxynitrite in affected spiral ganglions was examined by immunostaining for nitrotyrosine. Cellular location of activated caspase-9 and cytochrome-c in dying SG neurons were examined for analysis of cell death pathway. The TUNEL assay and immunohistochemical analysis for NF and peripherin indicated that type I neurons in spiral ganglions were deleted through the apoptotic pathway over time. Spiral ganglion neurons treated with cisplatin exhibited expression of nitrotyrosine, indicating induction of peroxynitrite by cisplatin. In dying SG neurons, expression of activated caspase-9 and translocation of cytochrome-c from mitochondria to cytoplasm were observed, indicating the mitochondrial pathway of apoptosis. The predictable fashion of induction of apoptosis in SG neurons over a well-defined time course in the model in the study will aid studies of the molecular mechanism of cell death and elucidation of a strategy for prevention of SG degeneration.

  9. Bartter/Gitelman syndromes as a model to study systemic oxidative stress in humans.

    PubMed

    Maiolino, Giuseppe; Azzolini, Matteo; Rossi, Gian Paolo; Davis, Paul A; Calò, Lorenzo A

    2015-11-01

    Reactive oxygen species (ROS) are intermediates in reduction-oxidation reactions that begin with the addition of one electron to molecular oxygen, generating the primary ROS superoxide, which in turn interacts with other molecules to produce secondary ROS, such as hydrogen peroxide, hydroxyl radical, and peroxynitrite. ROS are continuously produced during metabolic processes and are deemed to play an important role in cardiovascular diseases, namely, myocardial hypertrophy and fibrosis and atherosclerosis, via oxidative damage of lipids, proteins, and deoxyribonucleic acid. Angiotensin II (Ang II) is a potent vasoactive agent that also exerts mitogenic, proinflammatory, and profibrotic effects through several signaling pathways, in part involving ROS, particularly superoxide and hydrogen peroxide. Moreover, Ang II stimulates NADPH oxidases, leading to higher ROS generation and oxidative stress. Bartter/Gitelman syndrome patients, despite elevated plasma renin activity, Ang II, and aldosterone levels, exhibit reduced peripheral resistance, normal/low blood pressure, and blunted pressor effect of vasoconstrictors. In addition, notwithstanding the activation of the renin-angiotensin system and the increased plasma levels of Ang II, these patients display decreased production of ROS, reduced oxidative stress, and increased antioxidant defenses. In fact, Bartter/Gitelman syndrome patients are characterized by reduced levels of p22(phox) gene expression and undetectable plasma peroxynitrite levels, while showing increased plasma antioxidant power and expression of antioxidant enzymes, such as heme oxygenase-1. In conclusion, multifarious data suggest that Bartter and Gitelman syndrome patients are a model of low oxidative stress and high antioxidant defenses. The contribution offered by the study of these syndromes in elucidating the molecular mechanisms underlying this favorable status could offer chances for new therapeutic targets in disease characterized by high levels of reactive oxygen species. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Modulation of nitric oxide-mediated metal release from metallothionein by the redox state of glutathione in vitro.

    PubMed

    Khatai, Leila; Goessler, Walter; Lorencova, Helena; Zangger, Klaus

    2004-06-01

    Metallothioneins (MTs) release bound metals when exposed to nitric oxide. At inflammatory sites, both metallothionein and inducible nitric oxide synthase (iNOS) are induced by the same factors and the zinc released from metallothionein by NO suppresses both the induction and activity of iNOS. In a search for a possible modulatory mechanism of this coexpression of counteracting proteins, we investigated the role of the glutathione redox state in vitro because the oxidation state of thiols is involved in the metal binding in Cd-S or Zn-S clusters found in metallothioneins, and NO also binds to reduced glutathione via S-nitrosation. Using a variety of techniques, we found that NO and also ONOO(-)-mediated metal release from purified MTs is suppressed by reduced glutathione (GSH), but not by oxidized glutathione. Considering the millimolar concentrations of GSH present in mammalian cells, the metal release from MTs by NO should play no role in living systems. Therefore, the fact that it has been observed in vivo points to a hitherto unknown mechanism or additional compound(s) being involved in this physiologically relevant reaction and as long as this additional factor is not found experimental results on the MT-NO interaction should be treated with caution. Contrary to the peroxynitrite-induced activation of guanylyl cyclase, where GSH is needed, we found that the metal release from metallothionein by peroxynitrite is not enhanced, but also suppressed by reduced glutathione. In addition, we show that zinc, the major natural metal ligand in mammalian MTs and suppressor of iNOS, is released more readily under the influence of NO than cadmium, but in contrast to the MT isoform 1, the amount of metal released from the beta-domain of MT-2 is comparable to that from the alpha-domain.

  11. Orderly arranged fluorescence dyes as a highly efficient chemiluminescence resonance energy transfer probe for peroxynitrite.

    PubMed

    Wang, Zhihua; Teng, Xu; Lu, Chao

    2015-03-17

    Chemiluminescence (CL) probes for reactive oxygen species (ROS) are commonly based on a redox reaction between a CL reagent and ROS, leading to poor selectivity toward a specific ROS. The energy-matching rules in the chemiluminescence resonance energy transfer (CRET) process between a specific ROS donor and a suitable fluorescence dye acceptor is a promising method for the selective detection of ROS. Nevertheless, higher concentrations of fluorescence dyes can lead to the intractable aggregation-caused quenching effect, decreasing the CRET efficiency. In this report, we fabricated an orderly arranged structure of calcein-sodium dodecyl sulfate (SDS) molecules to improve the CRET efficiency between ONOOH* donor and calcein acceptor. Such orderly arranged calcein-SDS composites can distinguish peroxynitrite (ONOO(-)) from a variety of other ROS owing to the energy matching in the CRET process between ONOOH* donor and calcein acceptor. Under the optimal experimental conditions, ONOO(-) could be assayed in the range of 1.0-20.0 μM, and the detection limit for ONOO(-) [signal-to-noise ratio (S/N) = 3] was 0.3 μM. The proposed strategy has been successfully applied in both detecting ONOO(-) in cancer mouse plasma samples and monitoring the generation of ONOO(-) from 3-morpholinosydnonimine (SIN-1). Recoveries from cancer mouse plasma samples were in the range of 96-105%. The success of this work provides a unique opportunity to develop a CL tool to monitor ONOO(-) with high selectivity in a specific manner. Improvement of selectivity and sensitivity of CL probes holds great promise as a strategy for developing a wide range of probes for various ROS by tuning the types of fluorescence dyes.

  12. Nitric Oxide Production in the Striatum and Cerebellum of a Rat Model of Preterm Global Perinatal Asphyxia.

    PubMed

    Barkhuizen, M; Van de Berg, W D J; De Vente, J; Blanco, C E; Gavilanes, A W D; Steinbusch, H W M

    2017-04-01

    Encephalopathy due to perinatal asphyxia (PA) is a major cause of neonatal morbidity and mortality in the period around birth. Preterm infants are especially at risk for cognitive, attention and motor impairments. Therapy for this subgroup is limited to supportive care, and new targets are thus urgently needed. Post-asphyxic excitotoxicity is partially mediated by excessive nitric oxide (NO) release. The aims of this study were to determine the timing and distribution of nitric oxide (NO) production after global PA in brain areas involved in motor regulation and coordination. This study focused on the rat striatum and cerebellum, as these areas also affect cognition or attention, in addition to their central role in motor control. NO/peroxynitrite levels were determined empirically with a fluorescent marker on postnatal days P5, P8 and P12. The distributions of neuronal NO synthase (nNOS), cyclic guanosine monophosphate (cGMP), astroglia and caspase-3 were determined with immunohistochemistry. Apoptosis was additionally assessed by measuring caspase-3-like activity from P2-P15. On P5 and P8, increased intensity of NO-associated fluorescence and cGMP immunoreactivity after PA was apparent in the striatum, but not in the cerebellum. No changes in nNOS immunoreactivity or astrocytes were observed. Modest changes in caspase-3-activity were observed between groups, but the overall time course of apoptosis over the first 11 days of life was similar between PA and controls. Altogether, these data suggest that PA increases NO/peroxynitrite levels during the first week after birth within the striatum, but not within the cerebellum, without marked astrogliosis. Therapeutic benefits of interventions that reduce endogenous NO production would likely be greater during this time frame.

  13. Protein kinase Cδ oxidation contributes to ERK inactivation in lupus T cells.

    PubMed

    Gorelik, Gabriela J; Yarlagadda, Sushma; Patel, Dipak R; Richardson, Bruce C

    2012-09-01

    CD4+ T cells from patients with active lupus have impaired ERK pathway signaling that decreases DNA methyltransferase expression, resulting in DNA demethylation, overexpression of immune genes, and autoimmunity. The ERK pathway defect is due to impaired phosphorylation of T(505) in the protein kinase Cδ (PKCδ) activation loop. However, the mechanisms that prevent PKCδ T(505) phosphorylation in lupus T cells are unknown. Others have reported that oxidative modifications, and nitration in particular, of T cells as well as serum proteins correlate with lupus disease activity. We undertook this study to test our hypothesis that nitration inactivates PKCδ, contributing to impaired ERK pathway signaling in lupus T cells. CD4+ T cells were purified from lupus patients and controls and then stimulated with phorbol myristate acetate (PMA). Signaling protein levels, nitration, and phosphorylation were quantitated by immunoprecipitation and immunoblotting of T cell lysates. Transfections were performed by electroporation. Treating CD4+ T cells with peroxynitrite nitrated PKCδ, preventing PKCδ T(505) phosphorylation and inhibiting ERK pathway signaling similar to that observed in lupus T cells. Patients with active lupus had higher nitrated T cell PKCδ levels than did controls, which correlated directly with disease activity, and antinitrotyrosine immunoprecipitations demonstrated that nitrated PKCδ, but not unmodified PKCδ, was refractory to PMA-stimulated T(505) phosphorylation, similar to PKCδ in peroxynitrite-treated cells. Oxidative stress causes PKCδ nitration, which prevents its phosphorylation and contributes to the decreased ERK signaling in lupus T cells. These results identify PKCδ as a link between oxidative stress and the T cell epigenetic modifications in lupus. Copyright © 2012 by the American College of Rheumatology.

  14. Antioxidant and free radical scavenging activity of Spondias pinnata

    PubMed Central

    Hazra, Bibhabasu; Biswas, Santanu; Mandal, Nripendranath

    2008-01-01

    Background Many diseases are associated with oxidative stress caused by free radicals. Current research is directed towards finding naturally-occurring antioxidants of plant origin. The aim of the present study was to evaluate the in vitro antioxidant activities of Spondias pinnata stem bark extract. Methods A 70% methanol extract of Spondias pinnata stem bark was studied in vitro for total antioxidant activity, for scavenging of hydroxyl radicals, superoxide anions, nitric oxide, hydrogen peroxide, peroxynitrite, singlet oxygen and hypochlorous acid, and for iron chelating capacity, reducing power, and phenolic and flavonoid contents. Results The extract showed total antioxidant activity with a trolox equivalent antioxidant concentration (TEAC) value of 0.78 ± 0.02. The IC50 values for scavenging of free radicals were 112.18 ± 3.27 μg/ml, 13.46 ± 0.66 μg/ml and 24.48 ± 2.31 μg/ml for hydroxyl, superoxide and nitric oxide, respectively. The IC50 for hydrogen peroxide scavenging was 44.74 ± 25.61 mg/ml. For the peroxynitrite, singlet oxygen and hypochlorous acid scavenging activities the IC50 values were 716.32 ± 32.25 μg/ml, 58.07 ± 5.36 μg/ml and 127.99 ± 6.26 μg/ml, respectively. The extract was found to be a potent iron chelator with IC50 = 66.54 ± 0.84 μg/ml. The reducing power was increased with increasing amounts of extract. The plant extract (100 mg) yielded 91.47 ± 0.004 mg/ml gallic acid-equivalent phenolic content and 350.5 ± 0.004 mg/ml quercetin-equivalent flavonoid content. Conclusion The present study provides evidence that a 70% methanol extract of Spondias pinnata stem bark is a potential source of natural antioxidants. PMID:19068130

  15. Targeting nitrative stress for attenuating cisplatin-induced downregulation of cochlear LIM domain only 4 and ototoxicity.

    PubMed

    Jamesdaniel, Samson; Rathinam, Rajamani; Neumann, William L

    2016-12-01

    Cisplatin-induced ototoxicity remains a primary dose-limiting adverse effect of this highly effective anticancer drug. The clinical utility of cisplatin could be enhanced if the signaling pathways that regulate the toxic side-effects are delineated. In previous studies, we reported cisplatin-induced nitration of cochlear proteins and provided the first evidence for nitration and downregulation of cochlear LIM domain only 4 (LMO4) in cisplatin ototoxicity. Here, we extend these findings to define the critical role of nitrative stress in cisplatin-induced downregulation of LMO4 and its consequent ototoxic effects in UBOC1 cell cultures derived from sensory epithelial cells of the inner ear and in CBA/J mice. Cisplatin treatment increased the levels of nitrotyrosine and active caspase 3 in UBOC1 cells, which was detected by immunocytochemical and flow cytometry analysis, respectively. The cisplatin-induced nitrative stress and apoptosis were attenuated by co-treatment with SRI110, a peroxynitrite decomposition catalyst (PNDC), which also attenuated the cisplatin-induced downregulation of LMO4 in a dose-dependent manner. Furthermore, transient overexpression of LMO4 in UBOC1 cells prevented cisplatin-induced cytotoxicity while repression of LMO4 exacerbated cisplatin-induced cell death, indicating a direct link between LMO4 protein levels and cisplatin ototoxicity. Finally, auditory brainstem responses (ABR) recorded from CBA/J mice indicated that co-treatment with SRI110 mitigated cisplatin-induced hearing loss. Together, these results suggest that cisplatin-induced nitrative stress leads to a decrease in the levels of LMO4, downregulation of LMO4 is a critical determinant in cisplatin-induced ototoxicity, and targeting peroxynitrite could be a promising strategy for mitigating cisplatin-induced hearing loss. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Dark chocolate reduces endothelial dysfunction after successive breath-hold dives in cool water.

    PubMed

    Theunissen, Sigrid; Schumacker, Julie; Guerrero, François; Tillmans, Frauke; Boutros, Antoine; Lambrechts, Kate; Mazur, Aleksandra; Pieri, Massimo; Germonpré, Peter; Balestra, Costantino

    2013-12-01

    The aim of this study is to observe the effects of dark chocolate on endothelial function after a series of successive apnea dives in non-thermoneutral water. Twenty breath-hold divers were divided into two groups: a control group (8 males and 2 females) and a chocolate group (9 males and 1 female). The control group was asked to perform a series of dives to 20 m adding up to 20 min in the quiet diving pool of Conflans-Ste-Honorine (Paris, France), water temperature was 27 °C. The chocolate group performed the dives 1 h after ingestion of 30 g of dark chocolate. Flow-mediated dilatation (FMD), digital photoplethysmography, nitric oxide (NO), and peroxynitrite ONOO−) levels were measured before and after each series of breath-hold dives. A significant decrease in FMD was observed in the control group after the dives (95.28 ± 2.9 % of pre-dive values, p < 0.001) while it was increased in the chocolate group (104.1 ± 2.9 % of pre-dive values, p < 0.01). A decrease in the NO level was observed in the control group (86.76 ± 15.57 %, p < 0.05) whereas no difference was shown in the chocolate group (98.44 ± 31.86 %, p > 0.05). No differences in digital photoplethysmography and peroxynitrites were observed between before and after the dives. Antioxidants contained in dark chocolate scavenge free radicals produced during breath-hold diving. Ingestion of 30 g of dark chocolate 1 h before the dive can thus prevent endothelial dysfunction which can be observed after a series of breath-hold dives.

  17. Role of endothelial dysfunction in modulating the plasma redox homeostasis in visceral leishmaniasis.

    PubMed

    Chowdhury, Kaustav Dutta; Sen, Gargi; Sarkar, Avik; Biswas, Tuli

    2011-07-01

    Evidence in the literature suggests that down-regulation of nitric oxide (NO) is associated with the pathophysiological conditions during visceral leishmaniasis (VL). Here we have investigated the mechanism that leads to the down regulation of systemic NO in the infected condition. Moreover, we have determined whether down regulation of NO is associated with increased generation of reactive oxygen species (ROS) during this disease. Therapeutic strategy targeting signaling molecules of these events was evaluated. Plasma protein-nitrotyrosine was examined by ELISA kit. Generation of superoxides and peroxynitrites was investigated by flow cytometry. NO bioavailability in endothelial cells was evaluated using DAF-2DA fluorescence. Ceramide contents were evaluated using FACS analysis, HPTLC and HPLC. L. donovani infected reticulo-endothelial cells regulated the activity of eNOS and NAD(P)H oxidase in the endothelial cells through the generation of intercellular messenger, ceramide. Activation of SMases played an important role in the generation of ceramide in animals during chronic infection. These events led to generation of ROS within endothelial cells. Modulation of redox status of plasma and accumulation of ROS in endothelial cells were critically involved in the regulation of NO bioavailability in plasma of the infected animal. Endothelial dysfunction and decline of NO were resulted from an increased production of superoxide where upregulation of eNOS expression appeared as an ineffective compensatory event. Inhibition of ceramide generation increased NO bioavailability, prevented endothelial dysfunction and concomitant oxidative stress. Decreased NO bioavailability and endothelial dysfunction were the downstream of ceramide signaling cascade. ROS accumulation promoted peroxynitrite generation and reduced NO bioavailability. Inhibition of ceramide generation may be a potential therapeutic option in preventing the co-morbidity associated with VL. 2011 Elsevier B.V. All rights reserved.

  18. Peroxynitrite induces destruction of the tetrahydrobiopterin and heme in endothelial nitric oxide synthase: transition from reversible to irreversible enzyme inhibition†

    PubMed Central

    Chen, Weiguo; Druhan, Lawrence J.; Chen, Chun-An; Hemann, Craig; Chen, Yeong-Renn; Berka, Vladimir; Tsai, Ah-Lim; Zweier, Jay L.

    2010-01-01

    Endothelial nitric oxide synthase (eNOS) is an important regulator of vascular and cardiac function. Peroxynitrite (ONOO−) inactivates eNOS, but questions remain regarding the mechanisms of this process. It has been reported that inactivation is due to oxidation of the eNOS zinc-thiolate cluster, rather than the cofactor tetrahydrobiopterin (BH4); however, this remains highly controversial. Therefore, we investigated the mechanisms of ONOO−-induced eNOS dysfunction and their dose-dependence. Exposure of human eNOS to ONOO− resulted in a dose-dependent loss of activity with a marked destabilization of the eNOS dimer. HPLC analysis indicated that both free and eNOS-bound BH4 were oxidized during exposure to ONOO−; however, full oxidation of protein bound biopterin required higher ONOO− levels. Additionally, ONOO− triggered changes in UV/Visible spectrum and heme content of the enzyme. Pre-incubation of eNOS with BH4 decreased dimer destabilization and heme alteration. Addition of BH4 to the ONOO−-destabilized eNOS dimer only partially rescued enzyme function. In contrast to ONOO− treatment, incubation with the zinc chelator TPEN with removal of enzyme-bound zinc did not change the eNOS activity or stability of the SDS-resistant eNOS dimer, demonstrating that the dimer stabilization induced by BH4 does not require zinc occupancy of the zinc-thiolate cluster. While ONOO− treatment was observed to induce loss of Zn-binding this can not account for the loss of enzyme activity. Therefore, ONOO−-induced eNOS inactivation is primarily due to oxidation of BH4 and irreversible destruction of the heme/heme-center. PMID:20184376

  19. Mitigating peroxynitrite mediated mitochondrial dysfunction in aged rat brain by mitochondria-targeted antioxidant MitoQ.

    PubMed

    Maiti, Arpan Kumar; Spoorthi, B C; Saha, Nimai Chandra; Panigrahi, Ashis Kumar

    2018-05-17

    Although reactive oxygen species mediated oxidative stress is a well-documented mechanism of aging, recent evidences indicate involvement of nitrosative stress in the same. As mitochondrial dysfunction is considered as one of the primary features of aging, the present study was designed to understand the involvement of nitrosative stress by studying the impact of a mitochondria-targeted antioxidant MitoQ, a peroxynitrite (ONOO - ) scavenger, on mitochondrial functions. Four groups of rats were included in this study: Group I: Young-6 months (-MitoQ), Group II: Aged-22 months (- MitoQ), Group III: Young-6 months (+ MitoQ), Group IV: Aged-22 months (+ MitoQ). The rats belonging to group III and IV were treated with oral administration of MitoQ (500 μM) daily through drinking water for 5 weeks. MitoQ efficiently suppressed synaptosomal lipid peroxidation and protein oxidation accompanied by diminution of nitrite production and protein bound 3-nitrotyrosine. MitoQ normalized enhanced caspase 3 and 9 activities in aged rat brains and efficiently reversed ONOO - mediated mitochondrial complex I and IV inhibition, restored mitochondrial ATP production and lowered mitochondrial membrane potential loss. To ascertain these findings, a mitochondrial in vitro model (iron/ascorbate) was used involving different free radical scavengers and anti-oxidants. MitoQ provided better protection compared to mercaptoethylguanidine, N-nitro-L-arginine-methyl ester and superoxide dismutase establishing the predominancy of ONOO - in the process compared to • NO and O 2 •- . These results clearly highlight the involvement of nitrosative stress in aging process with MitoQ having therapeutic potential to fight against ONOO - mediated aging deficits.

  20. Reactions of atomic oxygen with the chlorate ion and the perchlorate ion

    NASA Astrophysics Data System (ADS)

    Anan'ev, Vladimir; Miklin, Mikhail; Kriger, Ludmila

    2014-06-01

    The reactions of the chlorate ion with atomic oxygen formed under photolysis of the nitrate ion introduced to potassium chlorate crystal by co-crystallization were studied by optical and infrared absorption spectroscopy. The perchlorate ion was found to form in solids as product of addition reaction of singlet atomic oxygen, formed under dissociation of the peroxynitrite ion - the product of isomerization of the excited nitrate ion. Triplet atomic oxygen does not react with the chlorate ion. The atomic oxygen formed under photolysis of the nitrate ion introduced to potassium perchlorate crystal by co-crystallization does not react with the perchlorate ion.

  1. Near-optimal reconfiguration and maintenance of close spacecraft formations.

    PubMed

    Lovell, T A; Tragesser, S G

    2004-05-01

    This paper investigates orbit guidance algorithms for formation flying experiments. The relative motion of one satellite about a reference satellite is formulated in terms of a set of parameters that clearly describe the size, shape, and orientation of the formation. A nominal three-impulse burn maneuver algorithm is presented that is applicable for both reconfiguration and maintenance of spacecraft formations. Two methods of implementing the algorithm are discussed, one involving fixed times between each burn and one allowing the wait times to vary. The implications of employing four or more impulses for maneuvers are assessed. Examples applying the algorithm to various formation scenarios are presented, along with practical implications of each result.

  2. Identification of copper/zinc superoxide dismutase as a novel nitric oxide-regulated gene in rat glomerular mesangial cells and kidneys of endotoxemic rats.

    PubMed

    Frank, S; Zacharowski, K; Wray, G M; Thiemermann, C; Pfeilschifter, J

    1999-05-01

    To define the mechanism of nitric oxide (NO) action in the glomerulus, we attempted to identify genes that are regulated by NO in rat glomerular mesangial cells. We identified a Cu/Zn superoxide dismutase (SOD) that was strongly induced in these cells by treatment with S-nitroso-glutathione as a NO-donating agent. Bacterial lipopolysaccharide (LPS) acutely decreased Cu/Zn SOD mRNA levels. The LPS-mediated decrease in Cu/Zn SOD is reversed by endogenously produced NO, as LPS also induced a delayed strong iNOS expression in these cells in vitro, which is accompanied by increased Cu/Zn SOD expression. NO dependency of Cu/Zn SOD mRNA recovery could be demonstrated by inhibition of this process by L-NG-monomethylarginine, an inhibitor of NOS enzymatic activity. To demonstrate the in vivo relevance of our observations, we have chosen LPS-treated rats as a model for induction of a systemic inflammatory response. In these animals, we demonstrate a direct coupling of Cu/Zn SOD expression levels to the presence of NO, as Cu/Zn SOD mRNA levels declined during acute inflammation in the presence of a selective inhibitor of iNOS. We propose that the up-regulation of Cu/Zn SOD by endogenous NO may serve as an adaptive, protective mechanism to prevent the formation of toxic quantities of peroxynitrite in conditions associated with iNOS induction during endotoxic shock.

  3. Synthesis and characterization of lithium oxonitrate (LiNO)

    PubMed Central

    Switzer, Christopher H.; Miller, Thomas W.; Farmer, Patrick J.; Fukuto, Jon M.

    2012-01-01

    The oxonitrate (1−) anion (NO−), the one-electron reduction product of nitric oxide and conjugate base of HNO, has not been synthesized and isolated due to the inherent reactivity of this anion. The large scale synthesis and characterization of a stable NO− salt is described here. The lithium salt of oxonitrate (LiNO) was formed by the deprotonation of N-hydroxybenzenesulfonamide with phenyllithium in aprotic, deoxygenated conditions. LiNO exhibited antiferromagnetic paramagnetism as determined by SQUID magnetometry, consistent with a triplet ground state of NO−. LiNO reacted with HCl to yield nitrous oxide consistent with HNO formation and dimerization. LiNO consumed O2 in a pH-dependent manner to initially produce peroxynitrite and eventually nitrite. Consistent with the reduction potential of NO, LiNO exhibited an oxidation potential of approximately +0.80 V as determined by reactions with a series of viologen electron acceptors. LiNO also reacted with ferric tetraphenylporphyrin chloride (Fe(TPP)Cl), potassium tetracyanonickelate (K2Ni(CN)4) and nitrosobenzene in a manner that is identical to other HNO/NO− donors. We conclude that the physical and chemical characteristics of LiNO are indistinguishable from the experimentally and theoretically derived data on oxonitrrate (1−) anion. The bulk synthesis and isolation of a stable 3NO− salt described here allows the chemical and physical properties of this elusive nitrogen oxide to be thoroughly studied as this once elusive nitrogen oxide is now attainable. PMID:23107606

  4. Hemoglobin redox reactions and red blood cell aging.

    PubMed

    Rifkind, Joseph M; Nagababu, Enika

    2013-06-10

    The physiological mechanism(s) for recognition and removal of red blood cells (RBCs) from circulation after 120 days of its lifespan is not fully understood. Many of the processes thought to be associated with the removal of RBCs involve oxidative stress. We have focused on hemoglobin (Hb) redox reactions, which is the major source of RBC oxidative stress. The importance of Hb redox reactions have been shown to originate in large parts from the continuous slow autoxidation of Hb producing superoxide and its dramatic increase under hypoxic conditions. In addition, oxidative stress has been shown to be associated with redox reactions that originate from Hb reactions with nitrite and nitric oxide (NO) and the resultant formation of highly toxic peroxynitrite when NO reacts with superoxide released during Hb autoxidation. The interaction of Hb, particularly under hypoxic conditions with band 3 of the RBC membrane is critical for the generating the RBC membrane changes that trigger the removal of cells from circulation. These changes include exposure of antigenic sites, increased calcium leakage into the RBC, and the resultant leakage of potassium out of the RBC causing cell shrinkage and impaired deformability. The need to understand the oxidative damage to specific membrane proteins that result from redox reactions occurring when Hb is bound to the membrane. Proteomic studies that can pinpoint the specific proteins damaged under different conditions will help elucidate the cellular aging processes that result in cells being removed from circulation.

  5. Experimental studies on possible regulatory role of nitric oxide on the differential effects of chronic predictable and unpredictable stress on adaptive immune responses.

    PubMed

    Thakur, Tarun; Gulati, Kavita; Rai, Nishant; Ray, Arunabha

    2017-09-01

    The present study was designed to investigate the effects of chronic predictable stress (CPS) and chronic unpredictable stress (CUS) on immunological responses in KLH-sensitized rats and involvement of NOergic signaling pathways mediating such responses. Male Wistar rats (200-250g) were exposed to either CPS or CUS for 14days and IgG antibody levels and delayed type hypersensitivity (DTH) response was determined to assess changes in adaptive immunity. To evaluate the role of nitric oxide during such immunomodulation, biochemical estimation of stable metabolite of nitric oxide (NOx) and 3-nitrotyrosine (3-NT, a marker of peroxynitrite formation) were done in both blood and brain. Chronic stress exposure resulted in suppression of IgG and DTH response and elevated NOx and 3-NT levels, with a difference in magnitude of response in CPS vs CUS. Pretreatment with aminoguanidine (iNOS inhibitor) caused further reduction of adaptive immune responses and attenuated the increased NOx and 3-NT levels in CPS or CUS exposed rats. On the other hand 7-NI (nNOS inhibitor) did not significantly affect these estimated parameters. The results suggest involvement of iNOS and lesser/no role of nNOS during modulation of adaptive immunity to stress. Thus, the result showed that predictability of stressors results in differential degree of modulation of immune responses and complex NO-mediated signaling mechanisms may be involved during responses. Copyright © 2017. Published by Elsevier B.V.

  6. Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems.

    PubMed

    Blokhina, Olga; Fagerstedt, Kurt V

    2010-04-01

    Plant mitochondria differ from their mammalian counterparts in many respects, which are due to the unique and variable surroundings of plant mitochondria. In green leaves, plant mitochondria are surrounded by ample respiratory substrates and abundant molecular oxygen, both resulting from active photosynthesis, while in roots and bulky rhizomes and fruit carbohydrates may be plenty, whereas oxygen levels are falling. Several enzymatic complexes in mitochondrial electron transport chain (ETC) are capable of reactive oxygen species (ROS) formation under physiological and pathological conditions. Inherently connected parameters such as the redox state of electron carriers in the ETC, ATP synthase activity and inner mitochondrial membrane potential, when affected by external stimuli, can give rise to ROS formation via complexes I and III, and by reverse electron transport (RET) from complex II. Superoxide radicals produced are quickly scavenged by superoxide dismutase (MnSOD), and the resulting H(2)O(2) is detoxified by peroxiredoxin-thioredoxin system or by the enzymes of ascorbate-glutathione cycle, found in the mitochondrial matrix. Arginine-dependent nitric oxide (NO)-releasing activity of enzymatic origin has been detected in plant mitochondria. The molecular identity of the enzyme is not clear but the involvement of mitochondria-localized enzymes responsible for arginine catabolism, arginase and ornithine aminotransferase has been shown in the regulation of NO efflux. Besides direct control by antioxidants, mitochondrial ROS production is tightly controlled by multiple redundant systems affecting inner membrane potential: NAD(P)H-dependent dehydrogenases, alternative oxidase (AOX), uncoupling proteins, ATP-sensitive K(+) channel and a number of matrix and intermembrane enzymes capable of direct electron donation to ETC. NO removal, on the other hand, takes place either by reactions with molecular oxygen or superoxide resulting in peroxynitrite, nitrite or nitrate ions or through interaction with non-symbiotic hemoglobins or glutathione. Mitochondrial ROS and NO production is tightly controlled by multiple redundant systems providing the regulatory mechanism for redox homeostasis and specific ROS/NO signaling.

  7. Insights into the degradation of (CF3)2CHOCH3 and its oxidative product (CF3)2CHOCHO & the formation and catalytic degradation of organic nitrates

    NASA Astrophysics Data System (ADS)

    Bai, Feng-Yang; Jia, Zi-Man; Pan, Xiu-Mei

    2018-06-01

    In this work, a systematic investigation of the atmospheric oxidation mechanism of (CF3)2CXOCH3 and their oxidative products (CF3)2CXOCHO (X = H, F) initiated by OH radical or Cl atom is performed by density functional theory. This study reveals that the introduction of NO and O2 promotes the formation of organic nitrates, which are hygroscopic and are inclined to form secondary organic aerosols (SOA) and can affect the air quality. The rate constants of the individual reactions are found to be in agreement with the experimental results. One of the intriguing findings of this work is that the peroxynitrite of (CF3)2CHOCH2OONO formed from the subsequent reactions of (CF3)2CHOCH3 is more favorable to isomerize to organic nitrate (CF3)2CHOCH2ONO2 than to dissociate into alkoxy radical (CF3)2CHOCH2O and NO2 because of the lower energy barrier of isomerization. The second significant observation is that the organic nitrate can be degraded more favorably with the presence of NH3, CH3NH2, and CH3NHCH3 than its naked decomposition reaction (CF3)2CHOCH2ONO2→(CF3)2CHOCHO + HONO. The ammonium salt, a vital part of haze, is harmful to human health and can be formed in the existence of the NH3, CH3NH2, and CH3NHCH3. In addition, the toxic substance of peroxyalkyl nitrate (CF3)2CHOC(O)ONO2 which can reduce the visibility of the atmosphere is produced as the primary subsequent oxidation product of (CF3)2CHOCHO in a NO-rich environment. The main species detected experimentally are confirmed by this study. The computational results are crucial to risk assessment and pollution prevention of the volatile organic compounds (VOCs).

  8. A study of the mechanisms involved in the neurotoxic action of 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy') on dopamine neurones in mouse brain

    PubMed Central

    Colado, M Isabel; Camarero, Jorge; Mechan, Annis O; Sanchez, Veronica; Esteban, Blanca; Elliott, J Martin; Green, A Richard

    2001-01-01

    Administration of 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy') to mice produces acute hyperthermia and long-term degeneration of striatal dopamine nerve terminals. Attenuation of the hyperthermia decreases the neurodegeneration. We have investigated the mechanisms involved in producing the neurotoxic loss of striatal dopamine. MDMA produced a dose-dependent loss in striatal dopamine concentration 7 days later with 3 doses of 25 mg kg−1 (3 h apart) producing a 70% loss. Pretreatment 30 min before each MDMA dose with either of the N-methyl-D-aspartate antagonists AR-R15896AR (20, 5, 5 mg kg−1) or MK-801 (0.5 mg kg−1×3) failed to provide neuroprotection. Pretreatment with clomethiazole (50 mg kg−1×3) was similarly ineffective in protecting against MDMA-induced dopamine loss. The free radical trapping compound PBN (150 mg kg−1×3) was neuroprotective, but it proved impossible to separate neuroprotection from a hypothermic effect on body temperature. Pretreatment with the nitric oxide synthase (NOS) inhibitor 7-NI (50 mg kg−1×3) produced neuroprotection, but also significant hypothermia. Two other NOS inhibitors, S-methyl-L-thiocitrulline (10 mg kg−1×3) and AR-R17477AR (5 mg kg−1×3), provided significant neuroprotection and had little effect on MDMA-induced hyperthermia. MDMA (20 mg kg−1) increased 2,3-dihydroxybenzoic acid formation from salicylic acid perfused through a microdialysis tube implanted in the striatum, indicating increased free radical formation. This increase was prevented by AR-R17477AR administration. Since AR-R17477AR was also found to have no radical trapping activity this result suggests that MDMA-induced neurotoxicity results from MDMA or dopamine metabolites producing radicals that combine with NO to form tissue-damaging peroxynitrites. PMID:11739248

  9. Indirect detection of superoxide in RAW 264.7 macrophage cells using microchip electrophoresis coupled to laser-induced fluorescence.

    PubMed

    de Campos, Richard P S; Siegel, Joseph M; Fresta, Claudia G; Caruso, Giuseppe; da Silva, José A F; Lunte, Susan M

    2015-09-01

    Superoxide, a naturally produced reactive oxygen species (ROS) in the human body, is involved in many pathological and physiological signaling processes. However, if superoxide formation is left unregulated, overproduction can lead to oxidative damage to important biomolecules, such as DNA, lipids, and proteins. Superoxide can also lead to the formation of peroxynitrite, an extremely hazardous substance, through its reaction with endogenously produced nitric oxide. Despite its importance, quantitative information regarding superoxide production is difficult to obtain due to its high reactivity and low concentrations in vivo. MitoHE, a fluorescent probe that specifically reacts with superoxide, was used in conjunction with microchip electrophoresis (ME) and laser-induced fluorescence (LIF) detection to investigate changes in superoxide production by RAW 264.7 macrophage cells following stimulation with phorbol 12-myristate 13-acetate (PMA). Stimulation was performed in the presence and absence of the superoxide dismutase (SOD) inhibitors, diethyldithiocarbamate (DDC) and 2-metoxyestradiol (2-ME). The addition of these inhibitors resulted in an increase in the amount of superoxide specific product (2-OH-MitoE(+)) from 0.08 ± 0.01 fmol (0.17 ± 0.03 mM) in native cells to 1.26 ± 0.06 fmol (2.5 ± 0.1 mM) after PMA treatment. This corresponds to an approximately 15-fold increase in intracellular concentration per cell. Furthermore, the addition of 3-morpholino-sydnonimine (SIN-1) to the cells during incubation resulted in the production of 0.061 ± 0.006 fmol (0.12 ± 0.01 mM) of 2-OH-MitoE(+) per cell on average. These results demonstrate that indirect superoxide detection coupled with the use of SOD inhibitors and a separation method is a viable method to discriminate the 2-OH-MitoE(+) signal from possible interferences.

  10. RTG resource book for western states and provinces: Final proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Western Interstate Energy Board held a workshop and liaison activities among western states, provinces, and utilities on the formation of Regional Transmission Groups (RTGs). Purpose of the activities was to examine the policy implications for western states and provinces in the formation of RTGs in the West, the implications for western ratepayers and utilities of the RTG formation and potential impacts of RTGs on the western electricity system. The workshop contributed to fulfilling the transmission access and competition objectives of Title VII of the Energy Policy Act of 1992.

  11. Clinical implications of acute pelvicaliceal hematoma formation during percutaneous catheter nephrostomy insertion.

    PubMed

    Stewart, Jessica K; Smith, Tony P; Kim, Charles Y

    To determine the clinical implications of acute pelvicaliceal hematoma formation during percutaneous catheter nephrostomy (PCN) insertion. Collecting system hematoma burden was retrospectively assessed for 694 PCN insertions in 502 patients. Pelvicaliceal hematoma formation occurred in 146 kidneys (21%) in 136 patients. Clinically significant blood loss occurred in 3 patients with hematomas within one week compared to 4 patients without hematomas (p=0.39). Twenty-four patients with hematomas underwent catheter exchange within one week, compared to 55 patients without hematomas (p=0.49). Pelvicaliceal hematoma formation after PCN insertion is not uncommon and is associated with very rare clinical sequelae. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Enhancement of antioxidant effects of naringin after atmospheric pressure dielectric barrier discharge plasma treatment.

    PubMed

    Kim, Tae Hoon; Jang, Soo Jeung; Chung, Hyung-Wook; Kim, Hyun-Joo; Yong, Hae In; Choe, Wonho; Jo, Cheorun

    2015-03-15

    Naringin is the natural chief bitter flavonoid found in Citrus species. Herein, bitter naringin was treated with atmospheric pressure plasma to afford two new converted flavonoids, narinplasmins A (2) and B (3), along with the known compound, 2R-naringin. The structures of the two new naringin derivatives were elucidated on the basis of spectroscopic methods. The antioxidant activity of all isolates was evaluated based on 1,1-diphenyl-2-picrylhydrazyl and peroxynitrite (ONOO(-)) scavenging assays. The new flavanone glycoside 2 containing a methoxyalkyl group exhibited significantly improved antioxidant properties in these assays relative to the parent naringin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Spatial and temporal regulation of the metabolism of reactive oxygen and nitrogen species during the early development of pepper (Capsicum annuum) seedlings.

    PubMed

    Airaki, Morad; Leterrier, Marina; Valderrama, Raquel; Chaki, Mounira; Begara-Morales, Juan C; Barroso, Juan B; del Río, Luis A; Palma, José M; Corpas, Francisco J

    2015-09-01

    The development of seedlings involves many morphological, physiological and biochemical processes, which are controlled by many factors. Some reactive oxygen and nitrogen species (ROS and RNS, respectively) are implicated as signal molecules in physiological and phytopathological processes. Pepper (Capsicum annuum) is a very important crop and the goal of this work was to provide a framework of the behaviour of the key elements in the metabolism of ROS and RNS in the main organs of pepper during its development. The main seedling organs (roots, hypocotyls and green cotyledons) of pepper seedlings were analysed 7, 10 and 14 d after germination. Activity and gene expression of the main enzymatic antioxidants (catalase, ascorbate-glutathione cycle enzymes), NADP-generating dehydrogenases and S-nitrosoglutathione reductase were determined. Cellular distribution of nitric oxide ((·)NO), superoxide radical (O2 (·-)) and peroxynitrite (ONOO(-)) was investigated using confocal laser scanning microscopy. The metabolism of ROS and RNS during pepper seedling development was highly regulated and showed significant plasticity, which was co-ordinated among the main seedling organs, resulting in correct development. Catalase showed higher activity in the aerial parts of the seedling (hypocotyls and green cotyledons) whereas roots of 7-d-old seedlings contained higher activity of the enzymatic components of the ascorbate glutathione cycle, NADP-isocitrate dehydrogenase and NADP-malic enzyme. There is differential regulation of the metabolism of ROS, nitric oxide and NADP dehydrogenases in the different plant organs during seedling development in pepper in the absence of stress. The metabolism of ROS and RNS seems to contribute significantly to plant development since their components are involved directly or indirectly in many metabolic pathways. Thus, specific molecules such as H2O2 and NO have implications for signalling, and their temporal and spatial regulation contributes to the success of seedling establishment. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Peroxynitrite and hydrogen peroxide elicit similar cellular stress responses mediated by the Ccp1 sensor protein.

    PubMed

    Martins, Dorival; Bakas, Iolie; McIntosh, Kelly; English, Ann M

    2015-08-01

    Peroxynitrite [ONOO(H)] is an oxidant associated with deleterious effects in cells. Because it is an inorganic peroxide that reacts rapidly with peroxidases, we speculated that cells may respond to ONOO(H) and H2O2 challenge in a similar manner. We exposed yeast cells to SIN-1, a well-characterized ONOO(H) generator, and observed stimulation of catalase and peroxiredoxin (Prx) activities. Previously, we reported that H2O2 challenge increases these activities in wild-type cells and in cells producing the hyperactive mutant H2O2 sensor Ccp1(W191F) but not in Ccp1-knockout cells (ccp1Δ). We find here that the response of ccp1Δ and ccp1(W191F) cells to SIN-1 mirrors that to H2O2, identifying Ccp1 as a sensor of both peroxides. SIN-1 simultaneously releases (•)NO and O2(•-), which react to form ONOO(H), but exposure of the three strains separately to an (•)NO donor (spermine-NONOate) or an O2(•-) generator (paraquat) mainly depresses catalase or Prx activity, whereas co-challenge with the NONOate and paraquat stimulates these activities. Because Ccp1 appears to sense ONOO(H) in cells, we examined its reaction with ONOO(H) in vitro and found that peroxynitrous acid (ONOOH) rapidly (k2>10(6)M(-1)s(-1)) oxidizes purified Ccp1 to an intermediate with spectral and ferrocytochrome-oxidizing properties indistinguishable from those of its well-characterized compound I formed with H2O2. Importantly, the nitrite released from ONOOH is not oxidized to (•)NO2 by Ccp1(׳)s compound I, unlike peroxidases involved in immune defense. Overall, our results reveal that yeast cells mount a common antioxidant response to ONOO(H) and H2O2, with Ccp1 playing a pivotal role as an inorganic peroxide sensor. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Endothelial dysfunction in the microcirculation of patients with obstructive sleep apnea.

    PubMed

    Patt, Brian T; Jarjoura, David; Haddad, Diane N; Sen, Chandan K; Roy, Sashwati; Flavahan, Nicholas A; Khayat, Rami N

    2010-12-15

    Obstructive sleep apnea (OSA) is a risk factor for cardiovascular disease. We hypothesized that patients with OSA and no cardiovascular disease have oxidant-related microcirculatory endothelial dysfunction. To evaluate the microcirculation in OSA. This study included seven patients with OSA and seven age- and weight-matched control subjects (mean age, 38 yr; mean body mass index, 32.5 kg/m²). All participants were free of cardiovascular risk factors. Participants received measurement of brachial artery flow-mediated dilation and forearm subcutaneous biopsy. Patients underwent repeated tests 12 weeks after treatment. Microcirculatory endothelial cells were isolated, and immunohistochemistry staining for peroxynitrite in the microcirculation was performed. Flow-mediated dilation was lower in patients than in control subjects at baseline (mean ± SEM: 5.7 ± 0.5 vs. 9.5 ± 0.6; P = 0.02) and increased after treatment (5.7-7.3; change, 1.7 ± 0.6; P = 0.04). Microcirculatory peroxynitrite deposit was higher in patients compared with control subjects (44.0 ± 1.6 vs. 21.8 ± 1.9 stain density units; P < 0.001) and decreased after treatment from 44.0 to 30.5 stain density units (change, -13.5 ± 2.9; P = 0.009). In patients, transcription of endothelial nitric oxide synthase decreased from 5.2 to -1.3 after treatment (change, 6.5 ± 2.5; P = 0.05), and transcription of superoxide dismutase1 decreased from -4.0 to -12.3 after treatment (change, -8.3 ± 2.1; P = 0.01). These changes persisted after adjustment for weight and underlying severity of OSA. This is the first direct evaluation of the microcirculation in OSA. Patients with OSA with low cardiovascular risk status had increased oxidant production in the microcirculation and endothelial dysfunction, both of which improved with treatment. Endothelial nitric oxide synthase transcription decreased with treatment.

  16. Endothelial Dysfunction in the Microcirculation of Patients with Obstructive Sleep Apnea

    PubMed Central

    Patt, Brian T.; Jarjoura, David; Haddad, Diane N.; Sen, Chandan K.; Roy, Sashwati; Flavahan, Nicholas A.; Khayat, Rami N.

    2010-01-01

    Rationale: Obstructive sleep apnea (OSA) is a risk factor for cardiovascular disease. We hypothesized that patients with OSA and no cardiovascular disease have oxidant-related microcirculatory endothelial dysfunction. Objectives: To evaluate the microcirculation in OSA. Methods: This study included seven patients with OSA and seven age- and weight-matched control subjects (mean age, 38 yr; mean body mass index, 32.5 kg/m2). All participants were free of cardiovascular risk factors. Participants received measurement of brachial artery flow-mediated dilation and forearm subcutaneous biopsy. Patients underwent repeated tests 12 weeks after treatment. Microcirculatory endothelial cells were isolated, and immunohistochemistry staining for peroxynitrite in the microcirculation was performed. Measurements and Main Results: Flow-mediated dilation was lower in patients than in control subjects at baseline (mean ± SEM: 5.7 ± 0.5 vs. 9.5 ± 0.6; P = 0.02) and increased after treatment (5.7–7.3; change, 1.7 ± 0.6; P = 0.04). Microcirculatory peroxynitrite deposit was higher in patients compared with control subjects (44.0 ± 1.6 vs. 21.8 ± 1.9 stain density units; P < 0.001) and decreased after treatment from 44.0 to 30.5 stain density units (change, −13.5 ± 2.9; P = 0.009). In patients, transcription of endothelial nitric oxide synthase decreased from 5.2 to −1.3 after treatment (change, 6.5 ± 2.5; P = 0.05), and transcription of superoxide dismutase1 decreased from −4.0 to −12.3 after treatment (change, −8.3 ± 2.1; P = 0.01). These changes persisted after adjustment for weight and underlying severity of OSA. Conclusions: This is the first direct evaluation of the microcirculation in OSA. Patients with OSA with low cardiovascular risk status had increased oxidant production in the microcirculation and endothelial dysfunction, both of which improved with treatment. Endothelial nitric oxide synthase transcription decreased with treatment. PMID:20656942

  17. Early intervention of tyrosine nitration prevents vaso-obliteration and neovascularization in ischemic retinopathy.

    PubMed

    Abdelsaid, Mohammed A; Pillai, Bindu A; Matragoon, Suraporn; Prakash, Roshini; Al-Shabrawey, Mohamed; El-Remessy, Azza B

    2010-01-01

    Diabetic retinopathy and retinopathy of prematurity are blinding disorders that follow a pathological pattern of ischemic retinopathy and affect premature infants and working-age adults. Yet, the treatment options are limited to laser photocoagulation. The goal of this study is to elucidate the molecular mechanism and examine the therapeutic effects of inhibiting tyrosine nitration on protecting early retinal vascular cell death and late neovascularization in the ischemic retinopathy model. Ischemic retinopathy was developed by exposing neonatal mice to 75% oxygen [postnatal day (p) 7-p12] followed by normoxia (21% oxygen) (p12-p17). Peroxynitrite decomposition catalyst 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato iron III chloride (FeTPPS) (1 mg/kg), the nitration inhibitor epicatechin (10 mg/kg) or the thiol donor N-acetylcysteine (NAC, 150 mg/kg) were administered (p7-p12) or (p7-p17). Vascular endothelial cells were incubated at hyperoxia (40% oxygen) or normoxia (21% oxygen) for 48 h. Vascular density was determined in retinal flat mounts labeled with isolectin B4. Expression of vascular endothelial growth factor, caspase-3, and poly(ADP ribose) polymerase (PARP), activation of Akt and p38 mitogen-activated protein kinase (MAPK), and tyrosine nitration of the phosphatidylinositol (PI) 3-kinase p85 subunit were analyzed by Western blot. Hyperoxia-induced peroxynitrite caused endothelial cell apoptosis as indicated by expression of cleaved caspase-3 and PARP leading to vaso-obliteration. These effects were associated with significant tyrosine nitration of the p85 subunit of PI 3-kinase, decreased Akt activation, and enhanced p38 MAPK activation. Blocking tyrosine nitration of PI 3-kinase with epicatechin or NAC restored Akt phosphorylation, and inhibited vaso-obliteration at p12 and neovascularization at p17 comparable with FeTPPS. Early inhibition of tyrosine nitration with use of epicatechin or NAC can represent safe and effective vascular-protective agents in ischemic retinopathy.

  18. Plasma membrane calcium ATPase 4 (PMCA4) co-ordinates calcium and nitric oxide signaling in regulating murine sperm functional activity.

    PubMed

    Olli, Kristine E; Li, Kun; Galileo, Deni S; Martin-DeLeon, Patricia A

    2018-01-01

    Reduced sperm motility (asthenospermia) and resulting infertility arise from deletion of the Plasma Membrane Ca 2+ -ATPase 4 (Pmca4) gene which encodes the highly conserved Ca 2+ efflux pump, PMCA4. This is the major Ca 2+ clearance protein in murine sperm. Since the mechanism underlying asthenospermia in PMCA4's absence or reduced activity is unknown, we investigated if sperm PMCA4 negatively regulates nitric oxide synthases (NOSs) and when absent NO, peroxynitrite, and oxidative stress levels are increased. Using co-immunoprecipitation (Co-IP) and Fluorescence Resonance Energy Transfer (FRET), we show an association of PMCA4 with the NOSs in elevated cytosolic [Ca 2+ ] in capacitated and Ca 2+ ionophore-treated sperm and with neuronal (nNOS) at basal [Ca 2+ ] (ucapacitated sperm). FRET efficiencies for PMCA4-eNOS were 35% and 23% in capacitated and uncapacitated sperm, significantly (p < 0.01) different, with the molecules being <10 nm apart. For PMCA4-nNOS, this interaction was seen only for capacitated sperm where FRET efficiency was 24%, significantly (p < 0.05) higher than in uncapacitated sperm (6%). PMCA4 and the NOSs were identified as interacting partners in a quaternary complex that includes Caveolin1, which co-immunoprecipitated with eNOS in a Ca 2+ -dependent manner. In Pmca4 -/- sperm NOS activity was elevated twofold in capacitated/uncapacitated sperm (vs. wild-type), accompanied by a twofold increase in peroxynitrite levels and significantly (p < 0.001) increased numbers of apoptotic germ cells. The data support a quaternary complex model in which PMCA4 co-ordinates Ca 2+ and NO signaling to maintain motility, with increased NO levels resulting in asthenospermia in Pmca4 -/- males. They suggest the involvement of PMCA4 mutations in human asthenospermia, with diagnostic relevance. © 2017 Wiley Periodicals, Inc.

  19. Transcriptional up-regulation of nitric oxide synthase II by nuclear factor-kappaB at rostral ventrolateral medulla in a rat mevinphos intoxication model of brain stem death.

    PubMed

    Chan, Julie Y H; Wu, Carol H Y; Tsai, Ching-Yi; Cheng, Hsiao-Lei; Dai, Kuang-Yu; Chan, Samuel H H; Chang, Alice Y W

    2007-06-15

    As the origin of a 'life-and-death' signal that reflects central cardiovascular regulatory failure during brain stem death, the rostral ventrolateral medulla (RVLM) is a suitable neural substrate for mechanistic delineation of this vital phenomenon. Using a clinically relevant animal model that employed the organophosphate pesticide mevinphos (Mev) as the experimental insult, we evaluated the hypothesis that transcriptional up-regulation of nitric oxide synthase I or II (NOS I or II) gene expression by nuclear factor-kappaB (NF-kappaB) on activation of muscarinic receptors in the RVLM underlies brain stem death. In Sprague-Dawley rats maintained under propofol anaesthesia, co-microinjection of muscarinic M2R (methoctramine) or M4R (tropicamide), but not M1R (pirenzepine) or M3R (4-diphenylacetoxy-N-dimethylpiperidinium) antagonist significantly reduced the enhanced NOS I-protein kinase G signalling ('pro-life' phase) or augmented NOS II-peroxynitrite cascade ('pro-death' phase) in ventrolateral medulla, blunted the biphasic increase and decrease in baroreceptor reflex-mediated sympathetic vasomotor tone that reflect the transition from life to death, and diminished the elevated DNA binding activity or nucleus-bound translocation of NF-kappaB in RVLM neurons induced by microinjection of Mev into the bilateral RVLM. However, NF-kappaB inhibitors (diethyldithiocarbamate or pyrrolidine dithiocarbamate) or double-stranded kappaB decoy DNA preferentially antagonized the augmented NOS II-peroxynitrite cascade and the associated cardiovascular depression exhibited during the 'pro-death' phase. We conclude that transcriptional up-regulation of NOS II gene expression by activation of NF-kappaB on selective stimulation of muscarinic M2 or M4 subtype receptors in the RVLM underlies the elicited cardiovascular depression during the 'pro-death' phase in our Mev intoxication model of brain stem death.

  20. Neuroprotective Efficacy of Mitochondrial Antioxidant MitoQ in Suppressing Peroxynitrite-Mediated Mitochondrial Dysfunction Inflicted by Lead Toxicity in the Rat Brain.

    PubMed

    Maiti, Arpan Kumar; Saha, Nimai Chandra; More, Sunil S; Panigrahi, Ashish Kumar; Paul, Goutam

    2017-04-01

    Lead (Pb) is one of the most pollutant metals that accumulate in the brain mitochondria disrupting mitochondrial structure and function. Though oxidative stress mediated by reactive oxygen species remains the most accepted mechanism of Pb neurotoxicity, some reports suggest the involvement of nitric oxide ( • NO) and reactive nitrogen species in Pb-induced neurotoxicity. But the impact of Pb neurotoxicity on mitochondrial respiratory enzyme complexes remains unknown with no relevant report highlighting the involvement of peroxynitrite (ONOO - ) in it. Herein, we investigated these effects in in vivo rat model by oral application of MitoQ, a known mitochondria-specific antioxidant with ONOO - scavenging activity. Interestingly, MitoQ efficiently alleviated ONOO - -mediated mitochondrial complexes II, III and IV inhibition, increased mitochondrial ATP production and restored mitochondrial membrane potential. MitoQ lowered enhanced caspases 3 and 9 activities upon Pb exposure and also suppressed synaptosomal lipid peroxidation and protein oxidation accompanied by diminution of nitrite production and protein-bound 3-nitrotyrosine. To ascertain our in vivo findings on mitochondrial dysfunction, we carried out similar experiments in the presence of different antioxidants and free radical scavengers in the in vitro SHSY5Y cell line model. MitoQ provided better protection compared to mercaptoethylguanidine, N-nitro-L-arginine methyl ester and superoxide dismutase suggesting the predominant involvement of ONOO - compared to • NO and O 2 •- . However, dimethylsulphoxide and catalase failed to provide protection signifying the noninvolvement of • OH and H 2 O 2 in the process. The better protection provided by MitoQ in SHSY5Y cells can be attributed to the fact that MitoQ targets mitochondria whereas mercaptoethylguanidine, N-nitro-L-arginine methyl ester and superoxide dismutase are known to target mainly cytoplasm and not mitochondria. Taken together the results from the present study clearly brings out the potential of MitoQ against ONOO - -induced toxicity upon Pb exposure indicating its therapeutic potential in metal toxicity.

  1. Molecular mechanisms of a novel selenium-based complementary medicine which confers protection against hyperandrogenism-induced polycystic ovary.

    PubMed

    Rezvanfar, M A; Rezvanfar, M A; Ahmadi, A; Shojaei-Saadi, H A; Baeeri, M; Abdollahi, M

    2012-08-01

    The objective was to evaluate ovarian functionality and oxidative response in hyperandrogenism-induced polycystic ovary (PCO) and the protective effects of immunomodulator drug (IMOD), an electromagnetically-treated, selenium-based, herbal medicine. Daily oral administration of letrozole (1 mg/kg) for 21 consecutive days induced ovarian cysts in female rats. An effective dose of IMOD (30 mg/kg per day) was given intraperitoneally for 21 days. Biomarkers of ovarian function, serum concentrations of estradiol, progesterone, testosterone, and ovarian prostaglandin-E (PGE), were analyzed. To determine the role of oxidative stress (OS) in hyperandrogenism-induced PCO, concentrations of cellular lipid peroxidation (LPO), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), peroxynitrite (ONOO), and tumor necrosis factor (TNF)-α as a marker of inflammation and apoptosis were measured in serum and ovaries. Letrozole-induced PCO resulted in significant increases in concentrations of lipid peroxidation and peroxynitrite in serum and ovary, but significantly decreased superoxide dismutase, catalase, and glutathione peroxidase. Serum concentrations of testosterone and TNF-α, and ovarian prostaglandin-E were increased (P < 0.001) in animals with cysts versus control, whereas estradiol and progesterone were decreased (P < 0.01 and P < 0.001, respectively). When compared with controls, letrozole induced irregular cycles and PCO characterized by a high incidence of subcapsular ovarian cysts with a diminished granulosa cell layer, luteinized granulosa cells in the cyst wall, significantly more atretic preantral and antral follicles, and absence of CL. There were almost no intact primary, secondary, and tertiary follicles in PCO rats. All end points assessed were significantly improved by IMOD and reached close to normal levels. In conclusion, the present study provided evidence that toxic free radicals and TNF-α were involved in the pathogenesis of PCO; furthermore, IMOD prevented ovarian histopathologic, endocrine, and biochemical alterations induced by hyperandrogenism. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Non-hydrolyzed in digestive tract and blood natural L-carnosine peptide ("bioactivated Jewish penicillin") as a panacea of tomorrow for various flu ailments: signaling activity attenuating nitric oxide (NO) production, cytostasis, and NO-dependent inhibition of influenza virus replication in macrophages in the human body infected with the virulent swine influenza A (H1N1) virus.

    PubMed

    Babizhayev, Mark A; Deyev, Anatoliy I; Yegorov, Yegor E

    2013-01-01

    Influenza (flu) is caused by a highly contagious virus that is spread by coughs and sneezes. Flu symptoms include high fever, chills and sweating, sore throat, weakness, headache, muscle and joint pains, and cough. Older people and those with an underlying medical condition are more likely to develop serious complications, including secondary bacterial pneumonia, primary influenza pneumonia, and inflammation of the brain or heart. There are three types of flu virus: A, B, and C. The flu virus has a unique ability to change its surface structure. This allows it to escape recognition by the body's immune system and cause widespread illness (epidemics and pandemics). Most cases of influenza occur within a 6- to 8-week period during winter and spring. Epidemics occur when there are minor changes in the nature of the virus so that more people within a community are susceptible. Influenza A is more likely to cause epidemics. Pandemics (worldwide epidemics) occur when there are major changes in the virus so that the disease affects a large proportion of people in a geographic region or on more than one continent. The findings presented in this article have many important implications for understanding the influenza A (H1N1) viral pathogenesis, prevention, and treatment. Direct viral cytotoxicity (referred cytopathic effect) is only a fraction of several types of events induced by virus infection. Nitric oxide and oxygen free radicals such as superoxide anion (O2-·) are generated markedly in influenza A (including H1N1) virus-infected host boosts, and these molecular species are identified as the potent pathogenic agents. The mutual interaction of nitric oxide (NO) with O2-· resulting in the formation of peroxynitrite is operative in the pathogenic mechanism of influenza virus pneumonia. Influenza virus infection involves pathological events in which oxygen free radicals play an important role in the pathogenesis. The toxicity and reactivity of oxygen radicals generated in excessive amounts mediate the overreaction of the host's immune response against the organs or tissues in which viruses are replicating, and this may explain the mechanism of tissue injuries observed in influenza virus infection of various types. In this article, the types of protection of carnosine in its bioavailable non-hydrolyzed forms in formulations are considered against reactive oxygen radical species-dependent injury, peroxynitrite damage, and other types of viral injuries in which impaired immune responses to viral pathogens are usually involved. Carnosine (β-alanyl-L-histidine) shows the pharmacological intracellular correction of NO release, which might be one of the important factors of natural immunity in controlling the initial stages of influenza A virus infection (inhibition of virus replication) and virus-induced regulation of cytokine gene expression. The protective effects of orally applied non-hydrolyzed formulated species of carnosine include at least the direct interaction with NO, inhibition of cytotoxic NO-induced proinflammatory condition, and attenuation of the effects of cytokines and chemokines that can exert profound effects on inflammatory cells. These data are consistent with the hypothesis that natural products, such as chicken soup and chicken breast extracts rich in carnosine and its derivative anserine (β-alanyl-1-methyl-L-histidine), could contribute to the pathogenesis and prevention of influenza virus infections and cold but have a limitation due to the susceptibility to enzymatic hydrolysis of dipeptides with serum carnosinase and urine excretion after oral ingestion of a commercial chicken extract. The formulations of non-hydrolyzed in digestive tract and blood natural carnosine peptide and isopeptide (γ-glutamyl-carnosine) products, manufactured at the cGMP-certified facility and patented by the authors, have promise in the control and prevention of influenza A (H1N1) virus infection, cough, and cold.

  3. "Straitjacket" or "Springboard for Sustainable Learning"? The Implications of Formative Assessment Practices in Vocational Learning Cultures

    ERIC Educational Resources Information Center

    Davies, Jenifer; Ecclestone, Kathryn

    2008-01-01

    In contrast to theoretical and empirical insights from research into formative assessment in compulsory schooling, understanding the relationship between formative assessment, motivation and learning in vocational education has been a topic neglected by researchers. The Improving Formative Assessment project (IFA) addresses this gap, using a…

  4. Concurrent Formative Evaluation: Guidelines and Implications for Multimedia Designers.

    ERIC Educational Resources Information Center

    Northrup, Pamela Taylor

    1995-01-01

    Discusses formative evaluation for multimedia instruction and presents guidelines for formatively evaluating multimedia instruction concurrent with analysis, design, and development. Data collection criteria that include group involvement, data collection strategies, and information to be gathered are presented, and rapid prototypes and…

  5. Attention improves memory by suppressing spiking-neuron activity in the human anterior temporal lobe.

    PubMed

    Wittig, John H; Jang, Anthony I; Cocjin, John B; Inati, Sara K; Zaghloul, Kareem A

    2018-06-01

    We identify a memory-specific attention mechanism in the human anterior temporal lobe, an area implicated in semantic processing and episodic memory formation. Spiking neuron activity is suppressed and becomes more reliable in preparation for verbal memory formation. Intracranial electroencephalography signals implicate this region as a source of executive control for attentional selection. Consistent with this interpretation, its surgical removal causes significant memory impairment for attended words relative to unattended words.

  6. Hawthorn extract reduces infarct volume and improves neurological score by reducing oxidative stress in rat brain following middle cerebral artery occlusion.

    PubMed

    Elango, Chinnasamy; Jayachandaran, Kasevan Sawaminathan; Niranjali Devaraj, S

    2009-12-01

    In our present investigation the neuroprotective effect of alcoholic extract of Hawthorn (Crataegus oxycantha) was evaluated against middle cerebral artery occlusion induced ischemia/reperfusion injury in rats. Male Sprague-Dawley rats were pretreated with 100 mg/kg body weight of the extract by oral gavage for 15 days. The middle cerebral artery was then occluded for 75 min followed by 24 h of reperfusion. The pretreated rats showed significantly improved neurological behavior with reduced brain infarct when compared to vehicle control rats. The glutathione level in brain was found to be significantly (p<0.05) low in vehicle control rats after 24 h of reperfusion when compared to sham operated animals. However, in Hawthorn extract pretreated rats the levels were found to be close to that of sham. Malondialdehyde levels in brain of sham and pretreated group were found to be significantly lower than the non-treated vehicle group (p<0.05). The nitric oxide levels in brain were measured and found to be significantly (p<0.05) higher in vehicle than in sham or extract treated rats. Our results suggest that Hawthorn extract which is a well known prophylactic for cardiac conditions may very well protect the brain against ischemia-reperfusion. The reduced brain damage and improved neurological behavior after 24 h of reperfusion in Hawthorn extract pretreated group may be attributed to its antioxidant property which restores glutathione levels, circumvents the increase in lipid peroxidation and nitric oxide levels thereby reducing peroxynitrite formation and free radical induced brain damage.

  7. An overview of mechanisms of redox signaling.

    PubMed

    Forman, Henry Jay; Ursini, Fulvio; Maiorino, Matilde

    2014-08-01

    A principal characteristic of redox signaling is that it involves an oxidation-reduction reaction or covalent adduct formation between the sensor signaling protein and second messenger. Non-redox signaling may involve alteration of the second messenger as in hydrolysis of GTP by G proteins, modification of the signaling protein as in farnesylation, or simple non-covalent binding of an agonist or second messenger. The chemistry of redox signaling is reviewed here. Specifically we have described how among the so-called reactive oxygen species, only hydroperoxides clearly fit the role of a second messenger. Consideration of reaction kinetics and cellular location strongly suggests that for hydroperoxides, particular protein cysteines are the targets and that the requirements for redox signaling is that these cysteines are in microenvironments in which the cysteine is ionized to the thiolate, and a proton can be donated to form a leaving group. The chemistry described here is the same as occurs in the cysteine and selenocysteine peroxidases that are generally considered the primary defense against oxidative stress. But, these same enzymes can also act as the sensors and transducer for signaling. Conditions that would allow specific signaling by peroxynitrite and superoxide are also defined. Signaling by other electrophiles, which includes lipid peroxidation products, quinones formed from polyphenols and other metabolites also involves reaction with specific protein thiolates. Again, kinetics and location are the primary determinants that provide specificity required for physiological signaling although enzymatic catalysis is not likely involved. This article is part of a Special Issue entitled "Redox Signalling in the Cardiovascular System". Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Hypochlorous Acid Reacts with the N-Terminal Methionines of Proteins to Give Dehydromethionine, a Potential Biomarker for Neutrophil-Induced Oxidative Stress†

    PubMed Central

    Beal, Jennifer L.; Foster, Steven B.; Ashby, Michael T.

    2009-01-01

    Electrophilic halogenating agents, including hypohalous acids and haloamines, oxidize free methionine and the N-terminal methionines of peptides and proteins (e.g., Met-1 of anti-inflammatory peptide 1 and ubiquitin) to produce dehydromethionine (a five-membered isothiazolidinium heterocycle). Amide derivatives of methionine are oxidized to the corresponding sulfoxide derivatives under the same reaction conditions (e.g., Met-3 of anti-inflammatory peptide 1). Other biological oxidants, including hydrogen peroxide and peroxynitrite, also only produce the corresponding sulfoxides. Hypothiocyanite does not react with methionine residues. It is suggested that dehydromethionine may be a useful biomarker for the myeloperoxidase-induced oxidative stress associated with many inflammatory diseases. PMID:19839600

  9. The Abdominal Aortic Aneurysm and Intraluminal Thrombus: Current Concepts of Development and Treatment

    PubMed Central

    Piechota-Polanczyk, Aleksandra; Jozkowicz, Alicja; Nowak, Witold; Eilenberg, Wolf; Neumayer, Christoph; Malinski, Tadeusz; Huk, Ihor; Brostjan, Christine

    2015-01-01

    The pathogenesis of the abdominal aortic aneurysm (AAA) shows several hallmarks of atherosclerotic and atherothrombotic disease, but comprises an additional, predominant feature of proteolysis resulting in the degradation and destabilization of the aortic wall. This review aims to summarize the current knowledge on AAA development, involving the accumulation of neutrophils in the intraluminal thrombus and their central role in creating an oxidative and proteolytic environment. Particular focus is placed on the controversial role of heme oxygenase 1/carbon monoxide and nitric oxide synthase/peroxynitrite, which may exert both protective and damaging effects in the development of the aneurysm. Treatment indications as well as surgical and pharmacological options for AAA therapy are discussed in light of recent reports. PMID:26664891

  10. The coordination chemistry of nitrosyl in cyanoferrates. An exhibit of bioinorganic relevant reactions.

    PubMed

    Olabe, José A

    2008-07-28

    Sodium nitroprusside (SNP, Na(2)[Fe(CN)(5)(NO)].2H(2)O) is a widely used NO-donor hypotensive agent, containing the formally described nitrosonium (NO(+)) ligand, which may be redox-interconverted to the corresponding one-electron (NO) and two-electron (NO(-)/HNO) reduced bound species. Thus, the chemistry of the three nitrosyl ligands may be explored with adequate, biologically relevant substrates. The nitrosonium complex, [Fe(CN)(5)(NO)](2-), is formed through a reductive nitrosylation reaction of [Fe(III)(CN)(5)(H(2)O)](2-) with NO, or, alternatively, through the coordination of NO(2)(-) to [Fe(II)(CN)(5)(H(2)O)](3-) and further proton-assisted dehydration. It is extremely inert toward NO(+)-dissociation, and behaves as an electrophile toward different bases: OH(-), amines, thiolates, etc. Also, SNP releases NO upon UV-vis photo-activation, with formation of [Fe(III)(CN)(5)(H(2)O)](2-). The more electron rich [Fe(CN)(5)(NO)](3-) may be prepared from [Fe(II)(CN)(5)(H(2)O)](3-) and NO, and is also highly inert toward the dissociation of NO (k = 1.6 x 10(-5) s(-1), 25.0 degrees C, pH 10.2). It reacts with O(2) leading to SNP, with the intermediacy of a peroxynitrite adduct. The [Fe(CN)(5)(NO)](3-) ion is labile toward the release of trans-cyanide, forming the [Fe(CN)(4)(NO)](2-) ion. Both complexes exist in a pH-dependent equilibrium, and decompose thermally in the hours time scale, releasing cyanides and NO. The latter may further bind to [Fe(CN)(4)(NO)](2-) with formation of a singlet dinitrosyl species, [Fe(CN)(4)(NO)(2)](2-), which in turn is unstable toward disproportionation into SNP and N(2)O, and toward the parallel formation of a tetrahedral paramagnetic dinitrosyl compound, [Fe(CN)(2)(NO)(2)]. Emerging studies with the putative nitroxyl complex, [Fe(CN)(5)(HNO)](3-), should allow for a complete picture of the three nitrosyl ligands in the same pentacyano fragment. The present Perspective, based on an adequate characterization of structural and spectroscopic properties, will focus on the kinetic and mechanistic description of the above mentioned reactions, which display a versatile scenario, fundamentally related to the biologically relevant processes associated with NO reactivity.

  11. Nitric Oxide Synthase and Cyclooxygenase Pathways: A Complex Interplay in Cellular Signaling.

    PubMed

    Sorokin, Andrey

    2016-01-01

    The cellular reaction to external challenges is a tightly regulated process consisting of integrated processes mediated by a variety of signaling molecules, generated as a result of modulation of corresponding biosynthetic systems. Both, nitric oxide synthase (NOS) and cyclooxygenase (COX) systems, consist of constitutive forms (NOS1, NOS3 and COX-1), which are mostly involved in housekeeping tasks, and inducible forms (NOS2 and COX-2), which shape the cellular response to stress and variety of bioactive agents. The complex interplay between NOS and COX pathways can be observed at least at three levels. Firstly, products of NOS and Cox systems can mediate the regulation and the expression of inducible forms (NOS2 and COX-2) in response of similar and dissimilar stimulus. Secondly, the reciprocal modulation of cyclooxygenase activity by nitric oxide and NOS activity by prostaglandins at the posttranslational level has been shown to occur. Mechanisms by which nitric oxide can modulate prostaglandin synthesis include direct S-nitrosylation of COX and inactivation of prostaglandin I synthase by peroxynitrite, product of superoxide reaction with nitric oxide. Prostaglandins, conversely, can promote an increased association of dynein light chain (DLC) (also known as protein inhibitor of neuronal nitric oxide synthase) with NOS1, thereby reducing its activity. The third level of interplay is provided by intracellular crosstalk of signaling pathways stimulated by products of NOS and COX which contributes significantly to the complexity of cellular signaling. Since modulation of COX and NOS pathways was shown to be principally involved in a variety of pathological conditions, the dissection of their complex relationship is needed for better understanding of possible therapeutic strategies. This review focuses on implications of interplay between NOS and COX for cellular function and signal integration.

  12. Manganese Superoxide Dismutase Is a Promising Target for Enhancing Chemosensitivity of Basal-Like Breast Carcinoma

    PubMed Central

    Kumar, Alan Prem; Loo, Ser Yue; Shin, Sung Won; Tan, Tuan Zea; Eng, Chon Boon; Singh, Rajeev; Putti, Thomas Choudary; Ong, Chee Wee; Salto-Tellez, Manuel; Goh, Boon Cher; Park, Joo In; Thiery, Jean Paul; Pervaiz, Shazib

    2014-01-01

    Abstract Aims: Although earlier reports highlighted a tumor suppressor role for manganese superoxide dismutase (MnSOD), recent evidence indicates increased expression in a variety of human cancers including aggressive breast carcinoma. In the present article, we hypothesized that MnSOD expression is significantly amplified in the aggressive breast carcinoma basal subtype, and targeting MnSOD could be an attractive strategy for enhancing chemosensitivity of this highly aggressive breast cancer subtype. Results: Using MDA-MB-231 and BT549 as a model of basal breast cancer cell lines, we show that knockdown of MnSOD decreased the colony-forming ability and sensitized the cells to drug-induced cell death, while drug resistance was associated with increased MnSOD expression. In an attempt to develop a clinically relevant approach to down-regulate MnSOD expression in patients with basal breast carcinoma, we employed activation of the peroxisome proliferator-activated receptor gamma (PPARγ) to repress MnSOD expression; PPARγ activation significantly reduced MnSOD expression, increased chemosensitivity, and inhibited tumor growth. Moreover, as a proof of concept for the clinical use of PPARγ agonists to decrease MnSOD expression, biopsies derived from breast cancer patients who had received synthetic PPARγ ligands as anti-diabetic therapy had significantly reduced MnSOD expression. Finally, we provide evidence to implicate peroxynitrite as the mechanism involved in the increased sensitivity to chemotherapy induced by MnSOD repression. Innovation and Conclusion: These data provide evidence to link increased MnSOD expression with the aggressive basal breast cancer, and underscore the judicious use of PPARγ ligands for specifically down-regulating MnSOD to increase the chemosensitivity of this subtype of breast carcinoma. Antioxid. Redox Signal. 20, 2326–2346. PMID:23964924

  13. The formation of galaxies

    NASA Technical Reports Server (NTRS)

    Efstathiou, G.; Silk, J.

    1983-01-01

    Current models of galaxy formation are examined in a review of recent observational and theoretical studies. Observational data on elliptical galaxies, disk galaxies, luminosity functions, clustering, and angular fluctuations in the cosmic microwave background are summarized. Theoretical aspects discussed include the origin and early evolution of small fluctuations, matter and radiation fluctuations, the formation of large-scale structure, dissipationless galaxy formation, galaxy mergers, dissipational galaxy formation, and the implications of particle physics (GUTs, massive neutrinos, and gravitinos) for cosmology.

  14. Coffee melanoidins: structures, mechanisms of formation and potential health impacts.

    PubMed

    Moreira, Ana S P; Nunes, Fernando M; Domingues, M Rosário; Coimbra, Manuel A

    2012-09-01

    During the roasting process, coffee bean components undergo structural changes leading to the formation of melanoidins, which are defined as high molecular weight nitrogenous and brown-colored compounds. As coffee brew is one of the main sources of melanoidins in the human diet, their health implications are of great interest. In fact, several biological activities, such as antioxidant, antimicrobial, anticariogenic, anti-inflammatory, antihypertensive, and antiglycative activities, have been attributed to coffee melanoidins. To understand the potential of coffee melanoidin health benefits, it is essential to know their chemical structures. The studies undertaken to date dealing with the structural characterization of coffee melanoidins have shown that polysaccharides, proteins, and chlorogenic acids are involved in coffee melanoidin formation. However, exact structures of coffee melanoidins and mechanisms involved in their formation are far to be elucidated. This paper systematizes the available information and provides a critical overview of the knowledge obtained so far about the structure of coffee melanoidins, mechanisms of their formation, and their potential health implications.

  15. Gender, Assessment and Students' Literacy Learning: Implications for Formative Assessment

    ERIC Educational Resources Information Center

    Murphy, Patricia; Ivinson, Gabrielle

    2005-01-01

    Formative assessment is intended to develop students' capacity to learn and increase the effectiveness of teaching. However, the extent to which formative assessment can meet these aims depends on the relationship between its conception and current conceptions of learning. In recent years concern about sex group differences in achievement has led…

  16. Chemokine GPCR Signaling Inhibits β-Catenin during Zebrafish Axis Formation

    PubMed Central

    Wu, Shu-Yu; Shin, Jimann; Sepich, Diane S.; Solnica-Krezel, Lilianna

    2012-01-01

    Embryonic axis formation in vertebrates is initiated by the establishment of the dorsal Nieuwkoop blastula organizer, marked by the nuclear accumulation of maternal β-catenin, a transcriptional effector of canonical Wnt signaling. Known regulators of axis specification include the canonical Wnt pathway components that positively or negatively affect β-catenin. An involvement of G-protein coupled receptors (GPCRs) was hypothesized from experiments implicating G proteins and intracellular calcium in axis formation, but such GPCRs have not been identified. Mobilization of intracellular Ca2+ stores generates Ca2+ transients in the superficial blastomeres of zebrafish blastulae when the nuclear accumulation of maternal β-catenin marks the formation of the Nieuwkoop organizer. Moreover, intracellular Ca2+ downstream of non-canonical Wnt ligands was proposed to inhibit β-catenin and axis formation, but mechanisms remain unclear. Here we report a novel function of Ccr7 GPCR and its chemokine ligand Ccl19.1, previously implicated in chemotaxis and other responses of dendritic cells in mammals, as negative regulators of β-catenin and axis formation in zebrafish. We show that interference with the maternally and ubiquitously expressed zebrafish Ccr7 or Ccl19.1 expands the blastula organizer and the dorsoanterior tissues at the expense of the ventroposterior ones. Conversely, Ccr7 or Ccl19.1 overexpression limits axis formation. Epistatic analyses demonstrate that Ccr7 acts downstream of Ccl19.1 ligand and upstream of β-catenin transcriptional targets. Moreover, Ccl19/Ccr7 signaling reduces the level and nuclear accumulation of maternal β-catenin and its axis-inducing activity and can also inhibit the Gsk3β -insensitive form of β-catenin. Mutational and pharmacologic experiments reveal that Ccr7 functions during axis formation as a GPCR to inhibit β-catenin, likely by promoting Ca2+ transients throughout the blastula. Our study delineates a novel negative, Gsk3β-independent control mechanism of β-catenin and implicates Ccr7 as a long-hypothesized GPCR regulating vertebrate axis formation. PMID:23055828

  17. Hydrate-Bearing Clayey Sediments: Morphology, Physical Properties, Production and Engineering/Geological Implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Sheng; Santamarina, J. Carlos

    Fine-grained sediments host more than 90 percent of global gas hydrate accumulation. However, hydrate formation in clay-dominated sediments is less understood and characterized than other types of hydrate occurrence. There is an inadequate understanding of hydrate formation mechanisms, segregation structures, hydrate lens topology, system connectivity, and physical macro-scale properties of clay-dominated hydrate-bearing sediments. This situation hinders further analyses of the global carbon budget as well as engineering challenges/solutions related to hydrate instability and production. This project studies hydrate-bearing clay-dominated sediments with emphasis on the enhanced fundamental understanding of hydrate formation and resulting morphology, the development laboratory techniques to emulate naturalmore » hydrate formations, the assessment of analytical tools to predict physical properties, the evaluation of engineering and geological implications, and the advanced understanding of gas production potential from finegrained sediments.« less

  18. Meiosis, unreduced gametes, and parthenogenesis: implications for engineering clonal seed formation in crops.

    PubMed

    Ronceret, Arnaud; Vielle-Calzada, Jean-Philippe

    2015-06-01

    Meiosis and unreduced gametes. Sexual flowering plants produce meiotically derived cells that give rise to the male and female haploid gametophytic phase. In the ovule, usually a single precursor (the megaspore mother cell) undergoes meiosis to form four haploid megaspores; however, numerous mutants result in the formation of unreduced gametes, sometimes showing female specificity, a phenomenon reminiscent of the initiation of gametophytic apomixis. Here, we review the developmental events that occur during female meiosis and megasporogenesis at the light of current possibilities to engineer unreduced gamete formation. We also provide an overview of the current understanding of mechanisms leading to parthenogenesis and discuss some of the conceptual implications for attempting the induction of clonal seed production in cultivated plants.

  19. Acetaminophen-induced liver injury in rats and mice: Comparison of protein adducts, mitochondrial dysfunction, and oxidative stress in the mechanism of toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGill, Mitchell R.; Williams, C. David; Xie, Yuchao

    2012-11-01

    Acetaminophen (APAP) overdose is the most common cause of acute liver failure in the West. In mice, APAP hepatotoxicity can be rapidly induced with a single dose. Because it is both clinically relevant and experimentally convenient, APAP intoxication has become a popular model of liver injury. Early data demonstrated that rats are resistant to APAP toxicity. As a result, mice are the preferred species for mechanistic studies. Furthermore, recent work has shown that the mechanisms of APAP toxicity in humans are similar to mice. Nevertheless, some investigators still use rats. New mechanistic information from the last forty years invites amore » reevaluation of the differences between these species. Comparison may provide interesting insights and confirm or exclude the rat as an option for APAP studies. To this end, we treated rats and mice with APAP and measured parameters of liver injury, APAP metabolism, oxidative stress, and activation of the c-Jun N-terminal kinase (JNK). Consistent with earlier data, we found that rats were highly resistant to APAP toxicity. Although overall APAP metabolism was similar in both species, mitochondrial protein adducts were significantly lower in rats. Accordingly, rats also had less oxidative stress. Finally, while mice showed extensive activation and mitochondrial translocation of JNK, this could not be detected in rat livers. These data support the hypothesis that mitochondrial dysfunction is critical for the development of necrosis after APAP treatment. Because mitochondrial damage also occurs in humans, rats are not a clinically relevant species for studies of APAP hepatotoxicity. Highlights: ► Acetaminophen overdose causes severe liver injury only in mice but not in rats. ► APAP causes hepatic GSH depletion and protein adduct formation in rats and mice. ► Less protein adducts were measured in rat liver mitochondria compared to mouse. ► No oxidant stress, peroxynitrite formation or JNK activation was present in rats. ► The limited mitochondrial adducts in rats are insufficient to trigger cell necrosis.« less

  20. Role of oxidative stress in multiparity-induced endothelial dysfunction.

    PubMed

    Tawfik, Huda E; Cena, Jonathan; Schulz, Richard; Kaufman, Susan

    2008-10-01

    Multiparity is associated with increased risk of cardiovascular disease. We tested whether multiparity induces oxidative stress in rat vascular tissue. Coronary arteries and thoracic aorta were isolated from multiparous and age-matched virgin rats. Relaxation to ACh and sodium nitroprusside (SNP) was measured by wire myography. We also tested the effect of the superoxide dismutase mimetic MnTE2PyP (30 microM), the NADPH oxidase inhibitor apocynin (10 microM), and the peroxynitrite scavenger FeTPPs (10 microM) on ACh-mediated relaxation in coronary arteries. Vascular superoxide anion was measured using the luminol derivative L-012 and nitric oxide (NO) generation by the Griess reaction. Multiparity reduced maximal response and sensitivity to ACh in coronary arteries [maximal relaxation (E(max)): multiparous 49+/-3% vs. virgins 95%+/-3%; EC(50): multiparous 135+/-1 nM vs. virgins 60+/-1 nM], and in aortic rings (E(max): multiparous 38+/-3% vs. virgins 79+/-4%; EC(50): multiparous 160+/-2 nM vs. virgins 90+/-3 nM). Coronary arteries from the two groups relaxed similarly to SNP. Superoxide anions formation was significantly higher in both coronary arteries (2.8-fold increase) and aorta (4.1-fold increase) from multiparous rats compared with virgins. In multiparous rats, incubation with MnTE2PyP, apocynin, and FeTPPs improved maximal relaxation to ACh (MnTE2PyP: 74+/-5%; vehicle: 41+/-5%; apocynin: 73+/-3% vs. vehicle: 41+/-3%; FeTPPs: 72+/-3% vs. vehicle: 46+/-3%) and increased sensitivity (EC(50): MnTE2PyP: 61+/-0.5 nM vs. vehicle: 91+/-1 nM; apocynin: 45+/-3 nM vs. vehicle: 91+/-6 nM; FeTPP: 131 +/- 2 nM vs. vehicle: 185+/-1 nM). Multiparity also reduced total nitrate/nitrite levels (multiparous: 2.5+/-2 micromol/mg protein vs. virgins: 7+/-1 micromol/mg protein) and endothelial nitric oxide synthase protein levels (multiparous: 0.53+/-0.1 protein/actin vs. virgins: 1.0+/-0.14 protein/actin). These data suggest that multiparity induces endothelial dysfunction through decreased NO bioavailability and increased reactive oxygen species formation.

  1. Nitric Oxide and Mitochondrial Function in Neurological Diseases.

    PubMed

    Ghasemi, Mehdi; Mayasi, Yunis; Hannoun, Anas; Eslami, Seyed Majid; Carandang, Raphael

    2018-04-15

    Mitochondria are key cellular organelles that play crucial roles in the energy production and regulation of cellular metabolism. Accumulating evidence suggests that mitochondrial activity can be modulated by nitric oxide (NO). As a key neurotransmitter in biologic systems, NO mediates the majority of its function through activation of the cyclic guanylyl cyclase (cGC) signaling pathway and S-nitrosylation of a variety of proteins involved in cellular functioning including those involved in mitochondrial biology. Moreover, excess NO or the formation of reactive NO species (RNS), e.g., peroxynitrite (ONOO - ), impairs mitochondrial functioning and this, in conjunction with nuclear events, eventually affects neuronal cell metabolism and survival, contributing to the pathogenesis of several neurodegenerative diseases. In this review we highlight the possible mechanisms underlying the noxious effects of excess NO and RNS on mitochondrial function including (i) negative effects on electron transport chain (ETC); (ii) ONOO - -mediated alteration in mitochondrial permeability transition; (iii) enhanced mitochondrial fragmentation and autophagy through S-nitrosylation of key proteins involved in this process such as dynamin-related protein 1 (DRP-1) and Parkin/PINK1 (protein phosphatase and tensin homolog-induced kinase 1) complex; (iv) alterations in the mitochondrial metabolic pathways including Krebs cycle, glycolysis, fatty acid metabolism, and urea cycle; and finally (v) mitochondrial ONOO - -induced nuclear toxicity and subsequent release of apoptosis-inducing factor (AIF) from mitochondria, causing neuronal cell death. These proposed mechanisms highlight the multidimensional nature of NO and its signaling in the mitochondrial function. Understanding the mechanisms by which NO mediates mitochondrial (dys)function can provide new insights into the treatment of neurodegenerative diseases. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Acetaminophen-Induced Hepatotoxicity in Mice Occurs with Inhibition of Activity and Nitration of Mitochondrial Manganese Superoxide Dismutase

    PubMed Central

    Agarwal, Rakhee; MacMillan-Crow, Lee Ann; Rafferty, Tonya M.; Saba, Hamida; Roberts, Dean W.; Fifer, E. Kim; James, Laura P.

    2011-01-01

    In overdose the analgesic/antipyretic acetaminophen (APAP) is hepatotoxic. Toxicity is mediated by initial hepatic metabolism to N-acetyl-p-benzoquinone imine (NAPQI). After low doses NAPQI is efficiently detoxified by GSH. However, in overdose GSH is depleted, NAPQI covalently binds to proteins as APAP adducts, and oxygen/nitrogen stress occurs. Toxicity is believed to occur by mitochondrial dysfunction. Manganese superoxide dismutase (MnSOD) inactivation by protein nitration has been reported to occur during other oxidant stress-mediated diseases. MnSOD is a critical mitochondrial antioxidant enzyme that prevents peroxynitrite formation within the mitochondria. To examine the role of MnSOD in APAP toxicity, mice were treated with 300 mg/kg APAP. GSH was significantly reduced by 65% at 0.5 h and remained reduced from 1 to 4 h. Serum alanine aminotransferase did not significantly increase until 4 h and was 2290 IU/liter at 6 h. MnSOD activity was significantly reduced by 50% at 1 and 2 h. At 1 h, GSH was significantly depleted by 62 and 80% at nontoxic doses of 50 and 100 mg/kg, respectively. No further GSH depletion occurred with hepatotoxic doses of 200 and 300 mg/kg APAP. A dose response decrease in MnSOD activity was observed for APAP at 100, 200, and 300 mg/kg. Immunoprecipitation of MnSOD from livers of APAP-treated mice followed by Western blot analysis revealed nitrated MnSOD. APAP-MnSOD adducts were not detected. Treatment of recombinant MnSOD with NAPQI did not produce APAP protein adducts. The data indicate that MnSOD inactivation by nitration is an early event in APAP-induced hepatic toxicity. PMID:21205919

  3. Nitromedicine: translating alternative medicine to evidence based medicine and redefining disease (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Halasa, Salaheldin; Arany, Praveen; Hamblin, Michael R.

    2016-03-01

    Nitromedicine is a new medical treatment paradigm, focused on increasing nitric oxide (NO) bioavailability and modulating redox-signaling pathways combined with phototherapy, electrotherapy and stem cell therapy. It has been known since the discovery of the biological role of NO in the 1980s, that supplying NO donors such can have many beneficial effects in different conditions by stimulating stem cells and modulating the immune response, but there also exists a substantial risk of side-effects with long-term use. Excess NO can inhibit mitochondrial metabolism by binding to cytochrome c oxidase (CCO) and can also produce reactive nitrogen species (Peroxynitrite) by interacting with reactive oxygen species (ROS). To avoid these potential damaging side-effects we propose to combine the use of NO donors with three additional components. Firstly we believe that addition of antioxidants such as hydrogen sulfide donors, polyphenols and vitamins can neutralize ROS and RNS. Secondly we believe that application of appropriate wavelengths and dosages of light (blue, red or near infrared depending on the exact condition being treated) will dissociate NO from CCO (and other storage sites) thus restoring mitochondrial ATP production and stimulating healing in many situations. Thirdly delivering electrons to the body might help to saturate the free radicals with electrons, eliminate underlying oxidative stress, stabilize mitochondria, prevent further formation of pathological free radicals and increase the nitric oxide bioavailability. This combination therapy may be applied to treat a large variety of oxidative stressed related diseases such as degenerative diseases, immunological diseases, chronic infectious diseases, cancers and a broad range of unmet medical needs involving chronic inflammation with an emphasis on pain management.

  4. Heme oxygenase-1 induction by (S)-enantiomer of YS-51 (YS-51S), a synthetic isoquinoline alkaloid, inhibits nitric oxide production and nuclear factor-kappaB translocation in ROS 17/2.8 cells activated with inflammatory stimulants.

    PubMed

    Chaea, Han-Jung; Kim, Hyung-Ryong; Kang, Young Jin; Hyun, Kwang Chul; Kim, Hye Jung; Seo, Han Geuk; Lee, Jae Heun; Yun-Choi, Hye Sook; Chang, Ki Churl

    2007-12-05

    Activation of the inducible nitric oxide synthase (iNOS) pathway contributes to inflammation-induced osteoporosis by suppressing bone formation and causing osteoblast apoptosis. We investigated the mechanism of action by which YS-51S, a synthetic isoquinoline alkaloid, inhibits iNOS expression and nitric oxide (NO) production in ROS 17/28 osteoblast cells activated with the mixture of TNF-alpha, IFN-gamma and LPS (MIX). YS-51S, concentration- and time-dependently, increased heme oxygenase (HO-1) expression. Treatment with YS-51S 1 h prior to MIX significantly reduced MIX-induced NO production and iNOS expression with the IC50 to NO production of 47+/-3.3 microM. Electrophoretic mobility shift assay (EMSA) and western blot analysis showed that YS-51S inhibited MIX-mediated activation and translocation of NF-kappaB to nucleus by suppressing the degradation of its inhibitory protein IkappaBalpha in cytoplasm. YS-51S also reduced NF-kappaB-luciferase activity. In addition, an HO-1 inhibitor ZnPPIX, antagonized the inhibitory effect of YS-51S on iNOS expression and DNA strand break induced by MIX, indicating prevention of NO production by YS-51S is associated with HO-1 activity. Moreover, YS-51S inhibited the oxidation of cytochrome c(2+) by peroxynitrite (PN). Our results indicated that YS-51S may be beneficial in NO-mediated inflammatory conditions such as rheumatoid arthritis by alleviating iNOS expression and NO-mediated cell death of osteoblast with 1) inducing HO-1 expression, 2) interfering the activation of NF-kappaB and 3) quenching of PN.

  5. N-acetylcysteine prevents nitrosative stress-associated depression of blood pressure and heart rate in streptozotocin diabetic rats.

    PubMed

    Nagareddy, Prabhakara Reddy; Xia, Zhengyuan; MacLeod, Kathleen M; McNeill, John H

    2006-04-01

    Previous studies have indicated that cardiovascular abnormalities such as depressed blood pressure and heart rate occur in streptozotocin (STZ) diabetic rats. Chronic diabetes, which is associated with increased expression of inducible nitric oxide synthase (iNOS) and oxidative stress, may produce peroxynitrite/nitrotyrosine and cause nitrosative stress. We hypothesized that nitrosative stress causes cardiovascular depression in STZ diabetic rats and therefore can be corrected by reducing its formation. Control and STZ diabetic rats were treated orally for 9 weeks with N-acetylcysteine (NAC), an antioxidant and inhibitor of iNOS. At termination, the mean arterial blood pressure (MABP) and heart rate (HR) were measured in conscious rats. Nitrotyrosine and endothelial nitric oxide synthase (eNOS) and iNOS expression were assessed in the heart and mesenteric arteries by immunohistochemistry and Western blot experiments. Untreated diabetic rats showed depressed MABP and HR that was prevented by treatment with NAC. In untreated diabetic rats, levels of 15-F(2t)-isoprostane, an indicator of lipid peroxidation increased, whereas plasma nitric oxide and antioxidant concentrations decreased. Furthermore, decreased eNOS and increased iNOS expression were associated with elevated nitrosative stress in blood vessel and heart tissue of untreated diabetic rats. N-acetylcysteine treatment of diabetic rats not only restored the antioxidant capacity but also reduced the expression of iNOS and nitrotyrosine and normalized the expression of eNOS to that of control rats in heart and superior mesenteric arteries. The results suggest that nitrosative stress depress MABP and HR following diabetes. Further studies are required to elucidate the mechanisms involved in nitrosative stress mediated depression of blood pressure and heart rate.

  6. Nitric oxide synthase-I containing cortical interneurons co-express antioxidative enzymes and anti-apoptotic Bcl-2 following focal ischemia: evidence for direct and indirect mechanisms towards their resistance to neuropathology.

    PubMed

    Bidmon, H J; Emde, B; Kowalski, T; Schmitt, M; Mayer, B; Kato, K; Asayama, K; Witte, O W; Zilles, K

    2001-09-01

    Neuronal nitric oxide-I is constitutively expressed in approximately 2% of cortical interneurons and is co-localized with gamma-amino butric acid, somatostatin or neuropeptide Y. These interneurons additionally express high amounts of glutamate receptors which mediate the glutamate-induced hyperexcitation following cerebral injury, under these conditions nitric oxide production increases contributing to a potentiation of oxidative stress. However, perilesional nitric oxide synthase-I containing neurons are known to be resistant to ischemic and excitotoxic injury. In vitro studies show that nitrosonium and nitroxyl ions inactivate N-methyl-D-aspartate receptors, resulting in neuroprotection. The question remains of how these cells are protected against their own high intracellular nitric oxide production after activation. In this study, we investigated immunocytochemically nitric oxide synthase-I containing cortical neurons in rats after unilateral, cortical photothrombosis. In this model of focal ischemia, perilesional, constitutively nitric oxide synthase-I containing neurons survived and co-expressed antioxidative enzymes, such as manganese- and copper-zinc-dependent superoxide dismutases, heme oxygenase-2 and cytosolic glutathione peroxidase. This enhanced antioxidant expression was accompanied by a strong perinuclear presence of the antiapoptotic Bcl-2 protein. No colocalization was detectable with upregulated heme oxygenase-1 in glia and the superoxide and prostaglandin G(2)-producing cyclooxygenase-2 in neurons. These results suggest that nitric oxide synthase-I containing interneurons are protected against intracellular oxidative damage and apoptosis by Bcl-2 and several potent antioxidative enzymes. Since nitric oxide synthase-I positive neurons do not express superoxide-producing enzymes such as cyclooxygenase-1, xanthine oxidase and cyclooxygenase-2 in response to injury, this may additionally contribute to their resistance by reducing their internal peroxynitrite, H(2)O(2)-formation and caspase activation.

  7. Vitamin C revisited.

    PubMed

    Oudemans-van Straaten, Heleen M; Spoelstra-de Man, Angelique Me; de Waard, Monique C

    2014-08-06

    This narrative review summarizes the role of vitamin C in mitigating oxidative injury-induced microcirculatory impairment and associated organ failure in ischemia/reperfusion or sepsis. Preclinical studies show that high-dose vitamin C can prevent or restore microcirculatory flow impairment by inhibiting activation of nicotinamide adenine dinucleotide phosphate-oxidase and inducible nitric oxide synthase, augmenting tetrahydrobiopterin, preventing uncoupling of oxidative phosphorylation, and decreasing the formation of superoxide and peroxynitrite, and by directly scavenging superoxide. Vitamin C can additionally restore vascular responsiveness to vasoconstrictors, preserve endothelial barrier by maintaining cyclic guanylate phosphatase and occludin phosphorylation and preventing apoptosis. Finally, high-dose vitamin C can augment antibacterial defense. These protective effects against overwhelming oxidative stress due to ischemia/reperfusion, sepsis or burn seems to mitigate organ injury and dysfunction, and promote recovery after cardiac revascularization and in critically ill patients, in the latter partially in combination with other antioxidants. Of note, several questions remain to be solved, including optimal dose, timing and combination of vitamin C with other antioxidants. The combination obviously offers a synergistic effect and seems reasonable during sustained critical illness. High-dose vitamin C, however, provides a cheap, strong and multifaceted antioxidant, especially robust for resuscitation of the circulation. Vitamin C given as early as possible after the injurious event, or before if feasible, seems most effective. The latter could be considered at the start of cardiac surgery, organ transplant or major gastrointestinal surgery. Preoperative supplementation should consider the inhibiting effect of vitamin C on ischemic preconditioning. In critically ill patients, future research should focus on the use of short-term high-dose intravenous vitamin C as a resuscitation drug, to intervene as early as possible in the oxidant cascade in order to optimize macrocirculation and microcirculation and limit cellular injury.

  8. Active site CP-loop dynamics modulate substrate binding, catalysis, oligomerization, stability, over-oxidation and recycling of 2-Cys Peroxiredoxins.

    PubMed

    Kamariah, Neelagandan; Eisenhaber, Birgit; Eisenhaber, Frank; Grüber, Gerhard

    2018-04-01

    Peroxiredoxins (Prxs) catalyse the rapid reduction of hydrogen peroxide, organic hydroperoxide and peroxynitrite, using a fully conserved peroxidatic cysteine (C P ) located in a conserved sequence Pxxx(T/S)xxC P motif known as C P -loop. In addition, Prxs are involved in cellular signaling pathways and regulate several redox-dependent process related disease. The effective catalysis of Prxs is associated with alterations in the C P -loop between reduced, Fully Folded (FF), and oxidized, Locally Unfolded (LU) conformations, which are linked to dramatic changes in the oligomeric structure. Despite many studies, little is known about the precise structural and dynamic roles of the C P -loop on Prxs functions. Herein, the comprehensive biochemical and biophysical studies on Escherichia coli alkyl hydroperoxide reductase subunit C (EcAhpC) and the C P -loop mutants, EcAhpC-F45A and EcAhpC-F45P reveal that the reduced form of the C P -loop adopts conformational dynamics, which is essential for effective peroxide reduction. Furthermore, the point mutants alter the structure and dynamics of the reduced form of the C P -loop and, thereby, affect substrate binding, catalysis, oligomerization, stability and overoxidiation. In the oxidized form, due to restricted C P -loop dynamics, the EcAhpC-F45P mutant favours a decamer formation, which enhances the effective recycling by physiological reductases compared to wild-type EcAhpC. In addition, the study reveals that residue F45 increases the specificity of Prxs-reductase interactions. Based on these studies, we propose an evolution of the C P -loop with confined sequence conservation within Prxs subfamilies that might optimize the functional adaptation of Prxs into various physiological roles. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. An in vitro examination of the antioxidant and anti-inflammatory properties of buckwheat honey.

    PubMed

    van den Berg, A J J; van den Worm, E; van Ufford, H C Quarles; Halkes, S B A; Hoekstra, M J; Beukelman, C J

    2008-04-01

    Hydroxyl radical and hypochlorite anion formed at the wound site from superoxide anion produced by activated polymorphonuclear neutrophils (PMNs) are considered important factors in impaired wound healing. Superoxide anion may also react with nitric oxide produced by macrophages to form peroxynitrite, a third strong oxidant that damages surrounding tissue. In order to select honey for use in wound-healing products, different samples were compared for their capacity to reduce levels of reactive oxygen species (ROS) in vitro. Honey samples were tested in assays for inhibition of ROS production by activated human PMNs, antioxidant activity (scavenging of superoxide anion in a cell-free system) and inhibition of human complement (reducing levels of ROS by limiting formation of complement factors that attract and stimulate PMNs). For buckwheat honey (NewYork, US), moisture and free acid content were determined by refractive index measurement and potentiometric titration respectively. Honey constituents other than sugars were investigated by thin layer chromatography, using natural product reagent to detect phenolic compounds. Constituents with antioxidant properties were detected by spraying the chromatogram with DPPH. Although most honey samples were shown to be active, significant differences were observed, with the highly active honey exceeding the activities of samples with minor effects by factors of 4 to 30. Most pronounced activities were found for American buckwheat honey from the state of NewYork. Phenolic constituents of buckwheat honey were shown to have antioxidant activity. As buckwheat honey was most effective in reducing ROS levels, it was selected for use in wound-healing products. The major antioxidant properties in buckwheat honey derive from its phenolic constituents, which are present in relatively large amounts. Its phenolic compounds may also exert antibacterial activity, whereas its low pH and high free acid content may assist wound healing.

  10. Differences in immunolocalization of Kim-1, RPA-1, and RPA-2 in kidneys of gentamicin-, cisplatin-, and valproic acid-treated rats: potential role of iNOS and nitrotyrosine.

    PubMed

    Zhang, Jun; Goering, Peter L; Espandiari, Parvaneh; Shaw, Martin; Bonventre, Joseph V; Vaidya, Vishal S; Brown, Ronald P; Keenan, Joe; Kilty, Cormac G; Sadrieh, Nakissa; Hanig, Joseph P

    2009-08-01

    The present study compared the immunolocalization of Kim-1, renal papillary antigen (RPA)-1, and RPA-2 with that of inducible nitric oxide synthase (iNOS) and nitrotyrosine in kidneys of gentamicin sulfate (Gen)- and cisplatin (Cis)-treated rats. The specificity of acute kidney injury (AKI) biomarkers, iNOS, and nitrotyrosine was evaluated by dosing rats with valproic acid (VPA). Sprague-Dawley (SD) rats were injected subcutaneously (sc) with 100 mg/kg/day of Gen for six or fourteen days; a single intraperitoneal (ip) dose of 1, 3, or 6 mg/kg of Cis; or 650 mg/kg/day of VPA (ip) for four days. In Gen-treated rats, Kim-1 was expressed in the epithelial cells, mainly in the S1/S2 segments but less so in the S3 segment, and RPA-1 was increased in the epithelial cells of collecting ducts (CD) in the cortex. Spatial expression of iNOS or nitrotyrosine with Kim-1 or RPA-1 was detected. In Cis-treated rats, Kim-1 was expressed only in the S3 segment cells, and RPA-1 and RPA-2 were increased in the epithelial cells of medullary CD or medullary loop of Henle (LH), respectively. Spatial expression of iNOS or nitrotyrosine with RPA-1 or RPA-2 was also identified. These findings suggest that peroxynitrite formation may be involved in the pathogenesis of Gen and Cis nephrotoxicity and that Kim-1, RPA-1, and RPA-2 have the potential to serve as site-specific biomarkers for Gen or Cis AKI.

  11. Anticorrosive Microbial Polysaccharides: Structure-Function Relationships

    USDA-ARS?s Scientific Manuscript database

    Water-soluble microbial polysaccharides are often implicated in biofilm formation and are believed to mediate cell-cell aggregation and adhesion to surfaces. Generally, biofilm formation is considered harmful or undesirable, as it leads to increased drag, plugging of pores, dimished heat transfer, ...

  12. FACTORS IMPLICATED IN AMPHIBIAN POPULATION DECLINES IN THE UNITED STATES

    EPA Science Inventory

    Factors adversely affecting amphibian populations in the US were evaluated using information from species accounts written in a standardized format by multiple authors (Volume 2 of this book). For each species, factors implicated by the authors (i.e., known or suspected) as affec...

  13. Reduction of Radiation-Induced Vascular Nitrosative Stress by the Vitamin E Analog {gamma}-Tocotrienol: Evidence of a Role for Tetrahydrobiopterin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berbee, Maaike; Fu Qiang; Boerma, Marjan

    2011-03-01

    Purpose: The vitamin E analog {gamma}-tocotrienol (GT3) is a powerful radioprotector. GT3 reduces postradiation vascular peroxynitrite production, an effect dependent on inhibition of hydroxy-methylglutaryl-coenzyme A reductase. Hydroxy-methylglutaryl-coenzyme A reductase inhibitors mediate their pleiotropic effects via endothelial nitric oxide synthase that requires the cofactor tetrahydrobiopterin (BH4). This study investigated the effects of radiation on BH4 bioavailability and of GT3 on BH4 metabolism. Methods and Materials: Mice were exposed to 8.5 Gy of total body irradiation (TBI). Lung BH4 and total biopterin concentrations were measured 0, 3.5, 7, 14, and 21 days after TBI by use of differential oxidation followed by high-performancemore » liquid chromatography. The effect of exogenous GT3 and BH4 treatment on postradiation vascular oxidative stress and bone marrow colony-forming units were assessed in vivo. The effect of GT3 on endothelial cell apoptosis and endothelial expression of guanosine triphosphate (GTP) cyclohydrolase 1 (GTPCH), GTPCH feedback regulatory protein (GFRP), GFRP transcription, GFRP protein levels, and GFRP-GTPCH protein binding was determined in vitro. Results: Compared with baseline levels, lung BH4 concentrations decreased by 24% at 3.5 days after TBI, an effect that was reversed by GT3. At 14 and 21 days after TBI, compensatory increases in BH4 (58% and 80%, respectively) were observed. Relative to vehicle-treated controls, both GT3 and BH4 supplementation reduced postirradiation vascular peroxynitrite production at 3.5 days (by 66% and 33%, respectively), and BH4 resulted in a 68% increase in bone marrow colony-forming units. GT3 ameliorated endothelial cell apoptosis and reduced endothelial GFRP protein levels and GFRP-GTPCH binding by decreasing transcription of the GFRP gene. Conclusions: BH4 bioavailability is reduced in the early postradiation phase. Exogenous administration of BH4 reduces postirradiation vascular oxidative stress. GT3 potently reduces the expression of GFRP, one of the key regulatory proteins in the BH4 pathway, and may thus exert some of its beneficial effects on postradiation free radical production partly by counteracting the decrease in BH4.« less

  14. Attenuation of Skeletal Muscle and Renal Injury to the Lower Limb following Ischemia-Reperfusion Using mPTP Inhibitor NIM-811

    PubMed Central

    Garbaisz, David; Turoczi, Zsolt; Aranyi, Peter; Fulop, Andras; Rosero, Oliver; Hermesz, Edit; Ferencz, Agnes; Lotz, Gabor; Harsanyi, Laszlo; Szijarto, Attila

    2014-01-01

    Introduction Operation on the infrarenal aorta and large arteries of the lower extremities may cause rhabdomyolysis of the skeletal muscle, which in turn may induce remote kidney injury. NIM-811 (N-metyl-4-isoleucine-cyclosporine) is a mitochondria specific drug, which can prevent ischemic-reperfusion (IR) injury, by inhibiting mitochondrial permeability transition pores (mPTP). Objectives Our aim was to reduce damages in the skeletal muscle and the kidney after IR of the lower limb with NIM-811. Materials and methods Wistar rats underwent 180 minutes of bilateral lower limb ischemia and 240 minutes of reperfusion. Four animal groups were formed called Sham (receiving vehicle and sham surgery), NIM-Sham (receiving NIM-811 and sham surgery), IR (receiving vehicle and surgery), and NIM-IR (receiving NIM-811 and surgery). Serum, urine and histological samples were taken at the end of reperfusion. NADH-tetrazolium staining, muscle Wet/Dry (W/D) ratio calculations, laser Doppler-flowmetry (LDF) and mean arterial pressure (MAP) monitoring were performed. Renal peroxynitrite concentration, serum TNF-α and IL-6 levels were measured. Results Less significant histopathological changes were observable in the NIM-IR group as compared with the IR group. Serum K+ and necroenzyme levels were significantly lower in the NIM-IR group than in the IR group (LDH: p<0.001; CK: p<0.001; K+: p = 0.017). Muscle mitochondrial viability proved to be significantly higher (p = 0.001) and renal function parameters were significantly better (creatinine: p = 0.016; FENa: p<0.001) in the NIM-IR group in comparison to the IR group. Serum TNF-α and IL-6 levels were significantly lower (TNF-α: p = 0.003, IL-6: p = 0.040) as well as W/D ratio and peroxynitrite concentration were significantly lower (p = 0.014; p<0.001) in the NIM-IR group than in the IR group. Conclusion NIM-811 could have the potential of reducing rhabdomyolysis and impairment of the kidney after lower limb IR injury. PMID:24968303

  15. Attenuation of skeletal muscle and renal injury to the lower limb following ischemia-reperfusion using mPTP inhibitor NIM-811.

    PubMed

    Garbaisz, David; Turoczi, Zsolt; Aranyi, Peter; Fulop, Andras; Rosero, Oliver; Hermesz, Edit; Ferencz, Agnes; Lotz, Gabor; Harsanyi, Laszlo; Szijarto, Attila

    2014-01-01

    Operation on the infrarenal aorta and large arteries of the lower extremities may cause rhabdomyolysis of the skeletal muscle, which in turn may induce remote kidney injury. NIM-811 (N-metyl-4-isoleucine-cyclosporine) is a mitochondria specific drug, which can prevent ischemic-reperfusion (IR) injury, by inhibiting mitochondrial permeability transition pores (mPTP). Our aim was to reduce damages in the skeletal muscle and the kidney after IR of the lower limb with NIM-811. Wistar rats underwent 180 minutes of bilateral lower limb ischemia and 240 minutes of reperfusion. Four animal groups were formed called Sham (receiving vehicle and sham surgery), NIM-Sham (receiving NIM-811 and sham surgery), IR (receiving vehicle and surgery), and NIM-IR (receiving NIM-811 and surgery). Serum, urine and histological samples were taken at the end of reperfusion. NADH-tetrazolium staining, muscle Wet/Dry (W/D) ratio calculations, laser Doppler-flowmetry (LDF) and mean arterial pressure (MAP) monitoring were performed. Renal peroxynitrite concentration, serum TNF-α and IL-6 levels were measured. Less significant histopathological changes were observable in the NIM-IR group as compared with the IR group. Serum K+ and necroenzyme levels were significantly lower in the NIM-IR group than in the IR group (LDH: p<0.001; CK: p<0.001; K+: p = 0.017). Muscle mitochondrial viability proved to be significantly higher (p = 0.001) and renal function parameters were significantly better (creatinine: p = 0.016; FENa: p<0.001) in the NIM-IR group in comparison to the IR group. Serum TNF-α and IL-6 levels were significantly lower (TNF-α: p = 0.003, IL-6: p = 0.040) as well as W/D ratio and peroxynitrite concentration were significantly lower (p = 0.014; p<0.001) in the NIM-IR group than in the IR group. NIM-811 could have the potential of reducing rhabdomyolysis and impairment of the kidney after lower limb IR injury.

  16. Shear-induced endothelial mechanotransduction: the interplay between reactive oxygen species (ROS) and nitric oxide (NO) and the pathophysiological implications

    PubMed Central

    2014-01-01

    Hemodynamic shear stress, the blood flow-generated frictional force acting on the vascular endothelial cells, is essential for endothelial homeostasis under normal physiological conditions. Mechanosensors on endothelial cells detect shear stress and transduce it into biochemical signals to trigger vascular adaptive responses. Among the various shear-induced signaling molecules, reactive oxygen species (ROS) and nitric oxide (NO) have been implicated in vascular homeostasis and diseases. In this review, we explore the molecular, cellular, and vascular processes arising from shear-induced signaling (mechanotransduction) with emphasis on the roles of ROS and NO, and also discuss the mechanisms that may lead to excessive vascular remodeling and thus drive pathobiologic processes responsible for atherosclerosis. Current evidence suggests that NADPH oxidase is one of main cellular sources of ROS generation in endothelial cells under flow condition. Flow patterns and magnitude of shear determine the amount of ROS produced by endothelial cells, usually an irregular flow pattern (disturbed or oscillatory) producing higher levels of ROS than a regular flow pattern (steady or pulsatile). ROS production is closely linked to NO generation and elevated levels of ROS lead to low NO bioavailability, as is often observed in endothelial cells exposed to irregular flow. The low NO bioavailability is partly caused by the reaction of ROS with NO to form peroxynitrite, a key molecule which may initiate many pro-atherogenic events. This differential production of ROS and RNS (reactive nitrogen species) under various flow patterns and conditions modulates endothelial gene expression and thus results in differential vascular responses. Moreover, ROS/RNS are able to promote specific post-translational modifications in regulatory proteins (including S-glutathionylation, S-nitrosylation and tyrosine nitration), which constitute chemical signals that are relevant in cardiovascular pathophysiology. Overall, the dynamic interplay between local hemodynamic milieu and the resulting oxidative and S-nitrosative modification of regulatory proteins is important for ensuing vascular homeostasis. Based on available evidence, it is proposed that a regular flow pattern produces lower levels of ROS and higher NO bioavailability, creating an anti-atherogenic environment. On the other hand, an irregular flow pattern results in higher levels of ROS and yet lower NO bioavailability, thus triggering pro-atherogenic effects. PMID:24410814

  17. A model complex of a possible intermediate in the mechanism of action of peptide deformylase: first example of an (N2S)zinc(II)-formate complex.

    PubMed

    Chang, S C; Sommer, R D; Rheingold, A L; Goldberg, D P

    2001-11-21

    The synthesis and crystallographic characterization of a new (N2S)zinc-alkyl complex and (N2S)zinc-formate complex is described; the bonding mode of the formate complex has implications for the mechanism of action of the enzyme peptide deformylase.

  18. Magnetite Formation from Thermal Decomposition of Siderite: Implications for Inorganic Magnetite Formation in Martian Meteorite ALH84001

    NASA Technical Reports Server (NTRS)

    Morris, RIchard V.

    2002-01-01

    A biogenic mechanism for formation of a subpopulation magnetite in Martian meteorite ALH84001 has been suggested [McKay et al., 1996; Thomas-Keprta, et al., 2000]. We are developing experimental evidence for an alternating working hypothesis, that the subpopulation was produced inorganically by the thermal decomposition of siderite [Golden et al., 2000].

  19. Empirical studies of software design: Implications for SSEs

    NASA Technical Reports Server (NTRS)

    Krasner, Herb

    1988-01-01

    Implications for Software Engineering Environments (SEEs) are presented in viewgraph format for characteristics of projects studied; significant problems and crucial problem areas in software design for large systems; layered behavioral model of software processes; implications of field study results; software project as an ecological system; results of the LIFT study; information model of design exploration; software design strategies; results of the team design study; and a list of publications.

  20. Integrins in bone metastasis formation and potential therapeutic implications.

    PubMed

    Clëzardin, P

    2009-11-01

    Integrins constitute a family of cell surface receptors that are heterodimers composed of noncovalently associated alpha and beta subunits. Integrins bind to extracellular matrix proteins and immunogobulin superfamily molecules. They exert a stringent control on cell migration, survival and proliferation. However, their expression and functions are often deregulated in cancer, and many lines of evidence implicate them as key regulators during progression from primary tumor growth to metastasis. Here, we review the role of integrins in bone metastasis formation and present evidence that the use of integrin-targeted therapeutic agents may be an efficient strategy to block tumor metastasis.

  1. Giant planets and their satellites: What are the relationships between their properties and how they formed

    NASA Technical Reports Server (NTRS)

    Stevenson, David J.

    1991-01-01

    The following subject areas are covered: (1) the mass distribution; (2) interior models; (3) atmospheric compositions and their implications; (4) heat flows and their implications; (5) satellite systems; (6) temperatures in the solar nebula; and (7) giant planet formation.

  2. Topographic and Roughness Characteristics of the Vastitas Borealis Formation on Mars Described by Fractal Statistics

    NASA Technical Reports Server (NTRS)

    Garneau, S.; Plaut, J. J.

    2000-01-01

    The surface roughness of the Vastitas Borealis Formation on Mars was analyzed with fractal statistics. Root mean square slopes and fractal dimensions were calculated for 74 topographic profiles. Results have implications for radar scattering models.

  3. Thermal Implications of the Iron Rain Model for Core Formation on Asteroid 4 Vesta

    NASA Astrophysics Data System (ADS)

    Kiefer, W. S.

    2018-05-01

    The abundance of moderately siderophile elements on Vesta implies that core formation occurred by iron rain sinking through a silicate magma ocean. This requires an internal temperature of at least 1400–1475°C and very rapid accretion.

  4. Kepler Planet Formation

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2015-01-01

    Kepler has vastly increased our knowledge of planets and planetary systems located close to stars. The new data shows surprising results for planetary abundances, planetary spacings and the distribution of planets on a mass-radius diagram. The implications of these results for theories of planet formation will be discussed.

  5. Nitric oxide (NO.) stabilizes whereas nitrosonium (NO+) enhances filopodial outgrowth by rat retinal ganglion cells in vitro.

    PubMed

    Cheung, W S; Bhan, I; Lipton, S A

    2000-06-16

    Recent observations suggest that nitric oxide (NO(.)) can increase or decrease growth cone motility. Here, these apparently paradoxical results are explained by distinct actions of different NO-related species. Filopodial morphology of 223 rat retinal ganglion cells was monitored under computer-enhanced video microscopy in the presence of NO synthase (NOS) substrates or inhibitors, donors of specific NO-related species, and membrane-permeant cyclic nucleotide analogs. Physiological NOS activity induced filopodial outgrowth, whereas inhibition of NOS stabilized filopodia. Similar to NOS, nitrosonium (NO(+) transfer) and peroxynitrite (ONOO(-)), which can regulate the activity of growth-associated proteins by S-nitrosylation and oxidation, respectively, induced filopodial outgrowth. In contrast, NO(.), which stimulates guanylate cyclase to increase cGMP, stabilized filopodial activity. Thus disparate NO-related species may offer a dynamic process of filopodial growth regulation.

  6. Formation of 3D cholesterol crystals from 2D nucleation sites in lipid bilayer membranes: implications for atherosclerosis.

    PubMed

    Varsano, Neta; Fargion, Iael; Wolf, Sharon G; Leiserowitz, Leslie; Addadi, Lia

    2015-02-04

    Atherosclerosis is the major precursor of cardiovascular disease. The formation of cholesterol crystals in atherosclerotic plaques is associated with the onset of acute pathology. The cholesterol crystals induce physical injury in the plaque core, promoting cell apoptosis and triggering an increased inflammatory response. Herein we address the question of how cholesterol crystal formation occurs in atherosclerosis. We demonstrate that three-dimensional (3D) cholesterol crystals can undergo directed nucleation from bilayer membranes containing two-dimensional (2D) cholesterol crystalline domains. We studied crystal formation on supported lipid bilayers loaded with exogenous cholesterol and labeled using a monoclonal antibody that specifically recognizes ordered cholesterol arrays. Our findings show that 3D crystals are formed exclusively on the bilayer regions where there are segregated 2D cholesterol crystalline domains and that they form on the domains. This study has potentially significant implications for our understanding of the crucial step in the mechanism by which atherosclerotic lesions form.

  7. Formative Assessment and the Design of Instructional Systems.

    ERIC Educational Resources Information Center

    Sadler, D. Royce

    1989-01-01

    Discusses the nature and function of formative assessment in the development of students' expertise for evaluating the quality of their own work. Highlights include the transition from teacher-supplied feedback to learner self-monitoring; qualitative judgments; communicating standards to students; multicriterion judgments; and implications for the…

  8. Beyond Interdisciplinary Teaming: Findings and Implications of the NASSP National Middle Level Study.

    ERIC Educational Resources Information Center

    Hackmann, Donald G.; Petzko, Vicki N.; Valentine, Jerry W.; Clark, Donald C.; Nori, John R.; Lucas, Stephen E.

    2002-01-01

    Reports trends and implications of interdisciplinary teaming practices in middle schools, based on findings from a national survey. Noting that nearly 80 percent of schools currently implement teaming, challenges principals and teachers to move beyond simple formation of teams to the creation of an infrastructure that supports high-performing…

  9. Implications of Transnational Adoption Status for Adult Korean Adoptees

    ERIC Educational Resources Information Center

    Langrehr, Kimberly J.; Yoon, Eunju; Hacker, Jason; Caudill, Kathy

    2015-01-01

    This study used a consensual qualitative research method to explore the implications of transnational adoption in the lives of 12 adult Korean adoptees. From the analysis, 6 domains emerged: (a) adoption history and preadoptive memories, (b) meaning of adoption, (c) adoptive family dynamics, (d) racism, (e) identity formation, and (f) counseling…

  10. FACTORS IMPLICATED IN AMPHIBIAN POPULATION DECLINES IN THE US, AND AN EVALUATION OF THE CASE FOR INVASIVE SPECIES

    EPA Science Inventory

    Factors known or suspected to be adversely affecting native amphibian populations in the US were identified using information from 267 species accounts written in a standardized format by multiple authors in a forthcoming book. Land use was the most frequently implicated adverse ...

  11. Formative Assessment: A Cybernetic Viewpoint

    ERIC Educational Resources Information Center

    Roos, Bertil; Hamilton, David

    2005-01-01

    This paper considers alternative assessment, feedback and cybernetics. For more than 30 years, debates about the bi-polarity of formative and summative assessment have served as surrogates for discussions about the workings of the mind, the social implications of assessment and, as important, the role of instruction in the advancement of learning.…

  12. Astrophysical Implications of the Binary Black-hole Merger GW150914

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; and; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-02-01

    The discovery of the gravitational-wave (GW) source GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black hole (BH) systems that inspiral and merge within the age of the universe. Such BH mergers have been predicted in two main types of formation models, involving isolated binaries in galactic fields or dynamical interactions in young and old dense stellar environments. The measured masses robustly demonstrate that relatively “heavy” BHs (≳ 25 {M}⊙ ) can form in nature. This discovery implies relatively weak massive-star winds and thus the formation of GW150914 in an environment with a metallicity lower than about 1/2 of the solar value. The rate of binary-BH (BBH) mergers inferred from the observation of GW150914 is consistent with the higher end of rate predictions (≳ 1 Gpc-3 yr-1) from both types of formation models. The low measured redshift (z≃ 0.1) of GW150914 and the low inferred metallicity of the stellar progenitor imply either BBH formation in a low-mass galaxy in the local universe and a prompt merger, or formation at high redshift with a time delay between formation and merger of several Gyr. This discovery motivates further studies of binary-BH formation astrophysics. It also has implications for future detections and studies by Advanced LIGO and Advanced Virgo, and GW detectors in space.

  13. Astrophysical Implications of the Binary Black Hole Merger GW150914

    NASA Technical Reports Server (NTRS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; hide

    2016-01-01

    The discovery of the gravitational-wave (GW) source GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black hole (BH) systems that in spiral and merge within the age of the universe. Such BH mergers have been predicted in two main types of formation models, involving isolated binaries in galactic fields or dynamical interactions in young and old dense stellar environments. The measured masses robustly demonstrate that relatively heavy BHs (> or approx. 25 Stellar Mass) can form in nature. This discovery implies relatively weak massive-star winds and thus the formation of GW150914 in an environment with a metallicity lower than about 12 of the solar value. The rate of binary-BH (BBH) mergers inferred from the observation of GW150914 is consistent with the higher end of rate predictions (> or approx. 1/cu Gpc/yr) from both types of formation models. The low measured redshift (z approx. = 0.1) of GW150914 and the low inferred metallicity of the stellar progenitor imply either BBH formation in a low-mass galaxy in the local universe and a prompt merger, or formation at high redshift with a time delay between formation and merger of several Gyr. This discovery motivates further studies of binary-BH formation astrophysics. It also has implications for future detections and studies by Advanced LIGO and Advanced Virgo, and GW detectors in space.

  14. Cosmic Rays and Gamma-Rays in Large-Scale Structure

    NASA Astrophysics Data System (ADS)

    Inoue, Susumu; Nagashima, Masahiro; Suzuki, Takeru K.; Aoki, Wako

    2004-12-01

    During the hierarchical formation of large scale structure in the universe, the progressive collapse and merging of dark matter should inevitably drive shocks into the gas, with nonthermal particle acceleration as a natural consequence. Two topics in this regard are discussed, emphasizing what important things nonthermal phenomena may tell us about the structure formation (SF) process itself. 1. Inverse Compton gamma-rays from large scale SF shocks and non-gravitational effects, and the implications for probing the warm-hot intergalactic medium. We utilize a semi-analytic approach based on Monte Carlo merger trees that treats both merger and accretion shocks self-consistently. 2. Production of 6Li by cosmic rays from SF shocks in the early Galaxy, and the implications for probing Galaxy formation and uncertain physics on sub-Galactic scales. Our new observations of metal-poor halo stars with the Subaru High Dispersion Spectrograph are highlighted.

  15. Measurement of moisture in smoldering smoke and implications for fog

    Treesearch

    Gary L. Achtemeier

    2006-01-01

    Smoke from wildland burning in association with fog has been implicated as a visibility hazard over roadways in the southern United States. A project began in 2002 to determine whether moisture released during the smoldering phases of southern prescribed burns could contribute to fog formation. Temperature and relative humidity measurements were taken from 27...

  16. Trajectories of Adolescent Hostile-Aggressive Behavior and Family Climate: Longitudinal Implications for Young Adult Romantic Relationship Competence

    ERIC Educational Resources Information Center

    Fosco, Gregory M.; Van Ryzin, Mark J.; Xia, Mengya; Feinberg, Mark E.

    2016-01-01

    The formation and maintenance of young adult romantic relationships that are free from violence and are characterized by love, connection, and effective problem-solving have important implications for later well-being and family functioning. In this study, we examined adolescent hostile-aggressive behavior (HAB) and family relationship quality as…

  17. Curcumin overcomes the inhibitory effect of nitric oxide on Leishmania.

    PubMed

    Chan, Marion Man-Ying; Adapala, Naga Suresh; Fong, Dunne

    2005-04-01

    Upon Leishmania infection, macrophages are activated to produce nitrogen and oxygen radicals simultaneously. It is well established that the infected host cells rely on nitric oxide (NO) as the major weapon against the intracellular parasite. In India where leishmaniasis is endemic, the spice turmeric is used prolifically in food and for insect bites. Curcumin, the active principle of turmeric, is a scavenger of NO. This report shows that curcumin protects promastigotes and amastigotes of the visceral species, Leishmania donovani, and promastigotes of the cutaneous species, L. major, against the actions of S-nitroso-N-acetyl-D,L-penicillamine (SNAP) and DETANONOate, which release NO, 3-morpholino-sydnonimine hydrochloride (SIN-1), which releases NO and superoxide, and peroxynitrite, which is formed from the reaction of NO with superoxide. Thus, curcumin, as an antioxidant, is capable of blocking the action of both NO and NO congeners on the Leishmania parasite.

  18. Poly(ADP-ribose) polymerase inhibition reveals a potential mechanism to promote neuroprotection and treat neuropathic pain.

    PubMed

    Komirishetty, Prashanth; Areti, Aparna; Gogoi, Ranadeep; Sistla, Ramakrishna; Kumar, Ashutosh

    2016-10-01

    Neuropathic pain is triggered by the lesions to peripheral nerves which alter their structure and function. Neuroprotective approaches that limit the pathological changes and improve the behavioral outcome have been well explained in different experimental models of neuropathy but translation of such strategies to clinics has been disappointing. Experimental evidences revealed the role of free radicals, especially peroxynitrite after the nerve injury. They provoke oxidative DNA damage and consequent over-activation of the poly(ADP-ribose) polymerase (PARP) upregulates pro-inflammatory pathways, causing bioenergetic crisis and neuronal death. Along with these changes, it causes mitochondrial dysfunction leading to neuronal apoptosis. In related preclinical studies agents that neutralize the free radicals and pharmacological inhibitors of PARP have shown benefits in treating experimental neuropathy. This article reviews the involvement of PARP over-activation in trauma induced neuropathy and therapeutic significance of PARP inhibitors in the experimental neuropathy and neuropathic pain.

  19. Chemical Changes in Nonthermal Plasma-Treated N-Acetylcysteine (NAC) Solution and Their Contribution to Bacterial Inactivation.

    PubMed

    Ercan, Utku K; Smith, Josh; Ji, Hai-Feng; Brooks, Ari D; Joshi, Suresh G

    2016-02-02

    In continuation of our previous reports on the broad-spectrum antimicrobial activity of atmospheric non-thermal dielectric barrier discharge (DBD) plasma treated N-Acetylcysteine (NAC) solution against planktonic and biofilm forms of different multidrug resistant microorganisms, we present here the chemical changes that mediate inactivation of Escherichia coli. In this study, the mechanism and products of the chemical reactions in plasma-treated NAC solution are shown. UV-visible spectrometry, FT-IR, NMR, and colorimetric assays were utilized for chemical characterization of plasma treated NAC solution. The characterization results were correlated with the antimicrobial assays using determined chemical species in solution in order to confirm the major species that are responsible for antimicrobial inactivation. Our results have revealed that plasma treatment of NAC solution creates predominantly reactive nitrogen species versus reactive oxygen species, and the generated peroxynitrite is responsible for significant bacterial inactivation.

  20. Effects of maternal subclinical hypothyroidism on amniotic fluid cells oxidative status.

    PubMed

    Novakovic, Tanja R; Dolicanin, Zana C; Djordjevic, Natasa Z

    2018-06-01

    In this study, we researched the effects of maternal subclinical hypothyroidism on the amniotic fluid cells oxidative metabolism during the first trimester of pregnancy. Oxidative stress and damage biomarkers were assayed in the amniotic fluid cells of healthy and pregnant women with subclinical hypothyroidism. Obtained results show that amniotic fluid cells of pregnant women with subclinical hypothyroidism have significantly higher concentrations of oxidative stress biomarkers (superoxide anion, nitric oxide, peroxynitrite) and oxidative damage (lipid peroxide and micronuclei frequency), but lower concentrations of hydrogen peroxide and oxidized glutathione in comparison to healthy pregnant women. We also showed that oxidative stress biomarkers were positively correlated with micronuclei frequency and lipid peroxide concentration in amniotic fluid cells of pregnant women with subclinical hypothyroidism. The present study provides the first evidence for prooxidative effects of maternal subclinical hypothyroidism on the fetus obtained by the estimating oxidative metabolism in the amniotic fluid cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Chemical Changes in Nonthermal Plasma-Treated N-Acetylcysteine (NAC) Solution and Their Contribution to Bacterial Inactivation

    PubMed Central

    Ercan, Utku K.; Smith, Josh; Ji, Hai-Feng; Brooks, Ari D.; Joshi, Suresh G.

    2016-01-01

    In continuation of our previous reports on the broad-spectrum antimicrobial activity of atmospheric non-thermal dielectric barrier discharge (DBD) plasma treated N-Acetylcysteine (NAC) solution against planktonic and biofilm forms of different multidrug resistant microorganisms, we present here the chemical changes that mediate inactivation of Escherichia coli. In this study, the mechanism and products of the chemical reactions in plasma-treated NAC solution are shown. UV-visible spectrometry, FT-IR, NMR, and colorimetric assays were utilized for chemical characterization of plasma treated NAC solution. The characterization results were correlated with the antimicrobial assays using determined chemical species in solution in order to confirm the major species that are responsible for antimicrobial inactivation. Our results have revealed that plasma treatment of NAC solution creates predominantly reactive nitrogen species versus reactive oxygen species, and the generated peroxynitrite is responsible for significant bacterial inactivation. PMID:26832829

  2. Nitric oxide and related factors linked to oxidation and inflammation as possible biomarkers of heart failure.

    PubMed

    Bonafede, Roberto; Manucha, Walter

    As a prevalent cardiovascular disease, heart failure is one of the leading causes of morbidity and premature mortality. Therefore, there is a special interest in the study of efficient markers associated with risk and / or prediction of cardiovascular events. Multiple candidates are proposed, especially those involved in oxidative and inflammatory processes typical of cardiovascular disease, such as superoxide anion, nitric oxide, and peroxynitrite. There is a lack of knowledge on the potential usefulness of these systems as biomarkers. This review aims to contribute to a better understanding of these systems, as well as an improved patient profile. Furthermore, a deep knowledge of these complex systems would also allow proposing new lines of research for the development of new therapeutic tools as a promising start for new approaches to this disease. Copyright © 2018 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Inactivation of myeloma cancer cells by helium and argon plasma jets: The effect comparison and the key reactive species

    NASA Astrophysics Data System (ADS)

    Chen, Zeyu; Cui, Qingjie; Chen, Chen; Xu, Dehui; Liu, Dingxin; Chen, H. L.; Kong, Michael G.

    2018-02-01

    In plasma cancer therapy, the inactivation of cancer cells under plasma treatment is closely related to the reactive oxygen and nitrogen species (RONS) induced by plasmas. Quantitative study on the plasma-induced RONS that related to cancer cells apoptosis is critical for advancing the research of plasma cancer therapy. In this paper, the effects of several reactive species on the inactivation of LP-1 myeloma cancer cells are comparatively studied with variable working gas composition, surrounding gas composition, and discharge power. The results show that helium plasma jet has a higher cell inactivation efficiency than argon plasma jet under the same discharge power. By comparing the concentration of aqueous phase reactive species and the cell inactivation efficiency under different working gases and discharge powers, it is demonstrated that the inactivation efficiency of LP-1 myeloma cancer cells is strongly correlated with the concentration of peroxynitrite (ONOOH/ONOO-).

  4. Schools and Religious Communities' Contributions to the Religious Formation of Christian Youth

    ERIC Educational Resources Information Center

    de Kock, A.

    2015-01-01

    This article questions the implications of tribal forms of religious socialization for (religious) schools' and communities' contributions to the religious formation of Christian youth. It clarifies that the religious education of a new generation of young Christians requires authorities and communities to connect in a worldwide pedagogical space…

  5. Rewriting My Autobiography: The Legal and Ethical Implications of Memory-Dampening Agents

    ERIC Educational Resources Information Center

    Aoki, Cynthia R. A.

    2008-01-01

    The formation and recall of memories are fundamental aspects of life and help preserve the complex collection of experiences that provide us with a sense of identity and autonomy. Scientists have recently started to investigate pharmacological agents that inhibit or "dampen" the strength of memory formation and recall. The development of…

  6. Environmental implications of iron fuel borne catalysts and their effects on diesel particulate formation and composition

    EPA Science Inventory

    Metal fuel borne catalysts can be used with diesel fuels to effectively reduce engine out particle mass emissions. Mixed with the fuel, the metals become incorporated as nanometer-scale occlusions with soot during its formation and are available to promote in-cylinder soot oxida...

  7. Feldspar diagenesis in the Frio Formation, Brazoria County, Texas Gulf Coast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Land, L.S.; Milliken, K.L.

    1981-07-01

    Tremendous quantities of detrital feldspar have been dissolved or albitized below about 14000 ft (4267 m) in the Frio Formation (Oligocene), Chocolate Bayou Field, Brazoria County, Texas. Some sandstones no longer contain any unmodified detrital feldspar grains. Material transfer involved in these reactions is immense, affecting at least 15% of the rock volume. Thus, albitization has important implications for several other diagenetic processes that involve feldspars or their components. These processes include formation of secondary porosity, precipitation of quartz and carbonate cements, and the evolution of Na-Ca-Cl formation water.

  8. Physiological and molecular biochemical mechanisms of bile formation

    PubMed Central

    Reshetnyak, Vasiliy Ivanovich

    2013-01-01

    This review considers the physiological and molecular biochemical mechanisms of bile formation. The composition of bile and structure of a bile canaliculus, biosynthesis and conjugation of bile acids, bile phospholipids, formation of bile micellar structures, and enterohepatic circulation of bile acids are described. In general, the review focuses on the molecular physiology of the transporting systems of the hepatocyte sinusoidal and apical membranes. Knowledge of physiological and biochemical basis of bile formation has implications for understanding the mechanisms of development of pathological processes, associated with diseases of the liver and biliary tract. PMID:24259965

  9. Inhibition of overexpression of Giα proteins and nitroxidative stress contribute to sodium nitroprusside-induced attenuation of high blood pressure in SHR.

    PubMed

    Hossain, Ekhtear; Sarkar, Oli; Li, Yuan; Anand-Srivastava, Madhu B

    2018-03-01

    We earlier showed that vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats (SHR) exhibit enhanced expression of Giα proteins which was attributed to the decreased levels of nitric oxide (NO), because elevation of the intracellular levels of NO by NO donors; sodium nitroprusside (SNP) and S-Nitroso-N-acetyl-DL-penicillamine (SNAP), attenuated the enhanced expression of Giα proteins. Since the enhanced expression of Giα proteins is implicated in the pathogenesis of hypertension, the present study was undertaken to investigate if treatment of SHR with SNP could also attenuate the development of high blood pressure (BP) and explore the underlying molecular mechanisms. Intraperitoneal injection of SNP at a concentration of 0.5 mg/kg body weight twice a week for 2 weeks into SHR attenuated the high blood pressure by about 80 mmHg without affecting the BP in WKY rats. SNP treatment also attenuated the enhanced levels of superoxide anion (O 2 - ), hydrogen peroxide (H 2 O 2 ), peroxynitrite (ONOO - ), and NADPH oxidase activity in VSMC from SHR to control levels. In addition, the overexpression of different subunits of NADPH oxidase; Nox-1, Nox-2, Nox-4, P 22phox , and P 47phox , and Giα proteins in VSMC from SHR were also attenuated by SNP treatment. On the other hand, SNP treatment augmented the decreased levels of intracellular NO, eNOS, and cGMP in VSMC from SHR. These results suggest that SNP treatment attenuates the development of high BP in SHR through the elevation of intracellular levels of cGMP and inhibition of the enhanced levels of Giα proteins and nitroxidative stress. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  10. The production of nitric oxide in EL4 lymphoma cells overexpressing growth hormone.

    PubMed

    Arnold, Robyn E; Weigent, Douglas A

    2003-01-01

    Growth hormone (GH) is produced by immunocompetent cells and has been implicated in the regulation of a multiplicity of functions in the immune system involved in growth and activation. However, the actions of endogenous or lymphocyte GH and its contribution to immune reactivity when compared with those of serum or exogenous GH are still unclear. In the present study, we overexpressed lymphocyte GH in EL4 lymphoma cells, which lack the GH receptor (GHR), to determine the role of endogenous GH in nitric oxide (NO) production and response to genotoxic stress. Western blot analysis demonstrated that the levels of GH increased approximately 40% in cells overexpressing GH (GHo) when compared with cells with vector alone. The results also show a substantial increase in NO production in cells overexpressing GH that could be blocked by N(G)-monomethyl-L-arginine (L-NMMA), an L-arginine analogue that competitively inhibits all three isoforms of nitric oxide synthase (NOS). No evidence was obtained to support an increase in peroxynitrite in cells overexpressing GH. Overexpression of GH increased NOS activity, inducible nitric oxide synthase (iNOS) promoter activity, and iNOS protein expression, whereas endothelial nitric oxide synthase and neuronal nitric oxide synthase protein levels were essentially unchanged. In addition, cells overexpressing GH showed increased arginine transport ability and intracellular arginase activity when compared with control cells. GH overexpression appeared to protect cells from the toxic effects of the DNA alkylating agent methyl methanesulfonate. This possibility was suggested by maintenance of the mitochondrial transmembrane potential in cells overexpressing GH when compared with control cells that could be blocked by L-NMMA. Taken together, the data support the notion that lymphocyte GH, independently of the GH receptor, may play a key role in the survival of lymphocytes exposed to stressful stimuli via the production of NO.

  11. Hydroxyhydroperoxide (HHP) Formation From H2O2 Addition to Carbonyls in the Aqueous Phase and Its Environmental Implications

    NASA Astrophysics Data System (ADS)

    Zhao, R.; Soong, R.; Simpson, A. J.; Abbatt, J.

    2012-12-01

    Organic peroxides are major components of secondary organic aerosol (SOA), affecting the toxicity of SOA and its oxidative capacity. Hydroxyhydroperoxide (HHP) is a class of organic peroxide observed in ambient air, rain water, and cloud water. However, the formation pathway of HHPs remains under debate, with one potential path via reaction of water with Criegee Intermediates. The current study focuses on a formation mechanism involving reversible nucleophilic addition of H2O2 to aldehydes. This formation pathway of HHPs has been known for decades, but has long been considered as a minor reaction. This is because HHPs were observed to decompose rapidly into H2O2 and the corresponding aldehydes in dilute aqueous solutions. In the current study, proton transfer reaction mass spectrometry (PTR-MS) and proton nuclear magnetic resonance (1H NMR) spectrometry were employed to determine the equilibrium constants (Keq) of H2O2 addition to a variety of atmospherically relevant carbonyls in the aqueous phase. HHP formation was insignificant from ketones and methacrolein, but was significant from formaldehyde, acetaldehyde and propionaldehyde. The Keq values ranged from 80 to 150 M-1 at 25 °C. Based on these values, the environmental implications of HHP formation via this pathway suggest that HHP formation is unlikely to be significant in cloud water. However, in aerosol liquid water, where the concentrations of aldehydes and H2O2 can be at the mM level, this pathway may be significant.

  12. A transposon mutant library of Bacillus cereus ATCC 10987 reveals novel genes required for biofilm formation and implicates motility as an important factor for pellicle-biofilm formation.

    PubMed

    Okshevsky, Mira; Louw, Matilde Greve; Lamela, Elena Otero; Nilsson, Martin; Tolker-Nielsen, Tim; Meyer, Rikke Louise

    2018-04-01

    Bacillus cereus is one of the most common opportunistic pathogens causing foodborne illness, as well as a common source of contamination in the dairy industry. B. cereus can form robust biofilms on food processing surfaces, resulting in food contamination due to shedding of cells and spores. Despite the medical and industrial relevance of this species, the genetic basis of biofilm formation in B. cereus is not well studied. In order to identify genes required for biofilm formation in this bacterium, we created a library of 5000 +  transposon mutants of the biofilm-forming strain B. cereusATCC 10987, using an unbiased mariner transposon approach. The mutant library was screened for the ability to form a pellicle biofilm at the air-media interface, as well as a submerged biofilm at the solid-media interface. A total of 91 genes were identified as essential for biofilm formation. These genes encode functions such as chemotaxis, amino acid metabolism and cellular repair mechanisms, and include numerous genes not previously known to be required for biofilm formation. Although the majority of disrupted genes are not directly responsible for motility, further investigations revealed that the vast majority of the biofilm-deficient mutants were also motility impaired. This observation implicates motility as a pivotal factor in the formation of a biofilm by B. cereus. These results expand our knowledge of the fundamental molecular mechanisms of biofilm formation by B. cereus. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  13. An Evolution of Distance Learning Issues: From Exporting to Enhancing the Classroom Experience

    ERIC Educational Resources Information Center

    Johnstone, Sally M.

    2004-01-01

    There are many different formats being used for distance learning and each has implications for institutional and public policies. With almost 90% of U.S. public colleges and universities offering distance learning courses, it is important for all members of the academy to be aware of these implications as they consider their own involvement in…

  14. Cisplatin carbonato complexes. Implications for uptake, antitumor properties, and toxicity.

    PubMed

    Centerwall, Corey R; Goodisman, Jerry; Kerwood, Deborah J; Dabrowiak, James C

    2005-09-21

    The reaction of aquated cisplatin with carbonate which is present in culture media and blood is described. The first formed complex is a monochloro monocarbonato species, which upon continued exposure to carbonate slowly forms a biscarbonato complex. The formation of carbonato species under conditions that simulate therapy may have important implications for uptake, antitumor properties, and toxicity of cisplatin.

  15. Shock wave trauma leads to inflammatory response and morphological activation in macrophage cell lines, but does not induce iNOS or NO synthesis.

    PubMed

    Günther, Mattias; Plantman, Stefan; Gahm, Caroline; Sondén, Anders; Risling, Mårten; Mathiesen, Tiit

    2014-12-01

    Experimental CNS trauma results in post-traumatic inflammation for which microglia and macrophages are vital. Experimental brain contusion entails iNOS synthesis and formation of free radicals, NO and peroxynitrite. Shock wave trauma can be used as a model of high-energy trauma in cell culture. It is known that shock wave trauma causes sub-lytic injury and inflammatory activation in endothelial cells. Mechanical disruption of red blood cells can induce iNOS synthesis in experimental systems. However, it is not known whether trauma can induce activation and iNOS synthesis in inflammatory cell lines with microglial or macrophage lineage. We studied the response and activation in two macrophage cell lines and the consequence for iNOS and NO formation after shock wave trauma. Two macrophage cell lines from rat (NR8383) and mouse (RAW264.7) were exposed to shock wave trauma by the Flyer Plate method. The cellular response was investigated by Affymetrix gene arrays. Cell survival and morphological activation was monitored for 24 h in a Cell-IQ live cell imaging system. iNOS induction and NO synthesis were analyzed by Western blot, in cell Western IR-immunofluorescence, and Griess nitrite assay. Morphological signs of activation were detected in both macrophage cell lines. The activation of RAW264.7 was statistically significant (p < 0.05), but activation of NR8383 did not pass the threshold of statistical significance alpha (p > 0.05). The growth rate of idle cells was unaffected and growth arrest was not seen. Trauma did not result in iNOS synthesis or NO induction. Gene array analyses showed high enrichment for inflammatory response, G-protein coupled signaling, detection of stimulus and chemotaxis. Shock wave trauma combined with low LPS stimulation instead led to high enrichment in apoptosis, IL-8 signaling, mitosis and DNA-related activities. LPS/IFN-ɣ stimulation caused iNOS and NO induction and morphological activation in both cell lines. Shock wave trauma by the Flyer Plate method caused an inflammatory response and morphological signs of activation in two macrophage cell lines, while iNOS induction appeared to require humoral signaling by LPS/IFN-ɣ. Our findings indicated that direct energy transfer by trauma can activate macrophages directly without humoral mediators, which comprises a novel activation mechanism of macrophages.

  16. Chondrites and the Protoplanetary Disk, Part 2

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Contents include the following: On the Dynamical Evolution of a Nebula and Its Effect on Dust Coagulation and the Formation of Centimeter-sized Particles. The Mineralogy and Grain Properties of the Disk Surfaces in Three Herbig Ae/Be Stars. Astrophysical Observations of Disk Evolution Around Solar Mass Stars. The Systematic Petrology of Chondrites: A Consistent Approach to Assist Classification and Interpretation. Understanding Our Origins: Formation of Sun-like Stars in H II Region Environments. Chondrule Crystallization Experiments. Formation of SiO2-rich Chondrules by Fractional Condensation. Refractory Forsterites from Murchison (CM2) and Yamato 81020 (CO3.0) Chondrites: Cathodoluminescence, Chemical Compositions and Oxygen Isotopes. Apparent I-Xe Cooling Rates of Chondrules Compared with Silicates from the Colomera Iron Meteorite. Chondrule Formation in Planetesimal Bow Shocks: Physical Processes in the Near Vicinity of the Planetesimal. Genetic Relationships Between Chondrules, Rims and Matrix. Chondrite Fractionation was Cosmochemical; Chondrule Fractionation was Geochemical. Chondrule Formation and Accretion of Chondrite Parent Bodies: Environmental Constraints. Amoeboid Olivine Aggregates from the Semarkona LL3.0 Chondrite. The Evolution of Solids in Proto-Planetary Disks. New Nickel Vapor Pressure Measurements: Possible Implications for Nebular Condensates. Chemical, Mineralogical and Isotopic Properties of Chondrules: Clues to Their Origin. Maximal Size of Chondrules in Shock-Wave Heating Model: Stripping of Liquid Surface in Hypersonic Rarefied Gas Flow. The Nature and Origin of Interplanetary Dust: High Temperature Components. Refractory Relic Components in Chondrules from Ordinary Chondrites. Constraints on the Origin of Chondrules and CAIs from Short-lived and Long-lived Radionuclides. The Genetic Relationship Between Refractory Inclusions and Chondrules. Contemporaneous Chondrule Formation Between Ordinary and Carbonaceous Chondrites. Chondrules and Isolated Grains in the Fountain Hills Bencubbinite. Implications of Chondrule Formation in a Gas of Solar Composition. Implications of Meteoritic Cl-36 Abundance for the Origin of Short-lived Radionuclides in the Early Solar System. Size Sorting and the Chondrule Size Spectrum. Comparative Study of Refractory Inclusions from Different Groups of Chondrites. In Situ Investigation of Mg Isotope Distributions in an Allende CAI by Combined LA-ICPMS and SIMS Analyses Photochemical Speciation of Oxygen Isotopes in the Solar Nebula.

  17. Vesicle coating and uncoating: controlling the formation of large COPII-coated carriers

    PubMed Central

    Townley, Anna K

    2009-01-01

    The basic mechanisms underlying the formation of coated vesicles are now defined in considerable detail. This article highlights recent developments in our understanding of the problem of exporting large macromolecular cargo such as procollagen from the endoplasmic reticulum and discusses the implications that this has for cell and tissue organisation and human disease. PMID:20401317

  18. Vesicle coating and uncoating: controlling the formation of large COPII-coated carriers.

    PubMed

    Townley, Anna K; Stephens, David J

    2009-08-26

    The basic mechanisms underlying the formation of coated vesicles are now defined in considerable detail. This article highlights recent developments in our understanding of the problem of exporting large macromolecular cargo such as procollagen from the endoplasmic reticulum and discusses the implications that this has for cell and tissue organisation and human disease.

  19. Another Face of the Hero: "The Matrix" as Modern Hero-Quest.

    ERIC Educational Resources Information Center

    Stroud, Scott R.

    This paper analyzes the interesting narrative structure of the hero-quest myth contained within the 1999 film, "The Matrix," and explicates the implications of this message upon the audience. Initially, the relevance of myth to movies and the format of Joseph Campbell's hero-quest is illustrated. This format is then applied to "The…

  20. Implementation of Formative Assessment Strategies as Perceived by High School Students and Teachers: Professional Development Implications

    ERIC Educational Resources Information Center

    Burns, Rosemary

    2010-01-01

    The purpose of this research study was to investigate the level of implementation of formative assessment strategies among Rhode Island high school teachers and students in three districts. Furthermore, the research analyzed the relationship of the disciplines taught, the amount and kinds of professional development teachers had, and district…

  1. Formative Research to Identify Perceptions of E-Cigarettes in College Students: Implications for Future Health Communication Campaigns

    ERIC Educational Resources Information Center

    Case, Kathleen; Crook, Brittani; Lazard, Allison; Mackert, Michael

    2016-01-01

    Objective: This formative study examined perceptions of e-cigarettes in college students with the goal of informing future health communication campaigns. Differences between e-cigarette users and nonusers were also examined. Participants: Thirty undergraduate students were recruited from a large southwestern public university (15 users, 15…

  2. Attitude Formation in Introductory Science Courses: An Application of Dissonance Theory.

    ERIC Educational Resources Information Center

    Crawley, Frank E.

    This paper describes the results and implications of an investigation, based on dissonance theory, into attitude formation in introductory college science courses. The results of the study show that students who learned in ways they preferred registered a more positive attitude toward the course than did those who learned in ways they did not…

  3. Debiasing comparative optimism and increasing worry for health outcomes.

    PubMed

    Rose, Jason P

    2012-11-01

    Comparative optimism - feeling at less personal risk for negative outcomes than one's peers - has been linked to reduced prevention efforts. This study examined a novel debiasing technique aimed at simultaneously reducing both indirectly and directly measured comparative optimism. Before providing direct comparative estimates, participants provided absolute self and peer estimates in a joint format (same computer screen) or a separate format (different computer screens). Relative to the separate format condition, participants in the joint format condition showed (1) lower comparative optimism in absolute/indirect measures, (2) lower direct comparative optimism, and (3) heightened worry. Implications for risk perception screening are discussed.

  4. Family Formation Processes: Assessing the Need for a New Nationally Representative Household Panel Survey in the United States

    PubMed Central

    Manning, Wendy D.

    2015-01-01

    The American family has undergone rapid transformation. Careful measurement attention to family formation is important because families are at the heart of numerous decisions, roles, and responsibilities with implications for understanding the well-being of families, adults and children. This paper considers whether there is a need for a new household panel study that addresses family formation. This paper consists of a review of the recent body of population-based, American surveys and finds a considerable gap in the ability to study the implications of families for the health and well-being of Americans. Earlier panel surveys used to assess family life anchored questions around marital events, but changes in family patterns require attention to a more diverse set of family forms. The paper concludes with recommendations for a multi-purpose panel study. The key challenge is to keep to pace with complexity and changes in American family life while at the same time maintaining a parsimonious set of survey questions. PMID:26612969

  5. On the matter of synovial fluid lubrication: implications for Metal-on-Metal hip tribology.

    PubMed

    Myant, Connor; Cann, Philippa

    2014-06-01

    Artificial articular joints present an interesting, and difficult, tribological problem. These bearing contacts undergo complex transient loading and multi axes kinematic cycles, over extremely long periods of time (>10 years). Despite extensive research, wear of the bearing surfaces, particularly metal-metal hips, remains a major problem. Comparatively little is known about the prevailing lubrication mechanism in artificial joints which is a serious gap in our knowledge as this determines film formation and hence wear. In this paper we review the accepted lubrication models for artificial hips and present a new concept to explain film formation with synovial fluid. This model, recently proposed by the authors, suggests that interfacial film formation is determined by rheological changes local to the contact and is driven by aggregation of synovial fluid proteins. The implications of this new mechanism for the tribological performance of new implant designs and the effect of patient synovial fluid properties are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Nouvelles données biostratigraphiques et sédimentologiques des formations carbonifères de la région de Bouqachmir (Maroc central). Implications sur la paléogéographie des bassins carbonifères nord-mésétiensNew biostratigraphic and sedimentological data of the Carboniferous formations in the Bouqachmir area (central Morocco). Implications on the palaeogeography of the north Mesetian Carboniferous basins

    NASA Astrophysics Data System (ADS)

    Izart, Alain; Tahiri, Abdelfatah; El Boursoumi, Abdou; Vachard, Daniel; Saidi, Mariam; Chèvremont, Philippe; Berkhli, Mostafa

    2001-02-01

    New Visean formations and biozones of foraminifera were defined on the Bouqachmir map. The new biozonation concerns the Moroccan biozone, Cfm1, which is subdivided into two subzones, Cfm1a and Cfm1b. This map exhibited, from north-west to south-east, the Tilouine, Bouqachmir-Tougouroulmès and Fourhal turbiditic basins. The first one, from Tournaisian to Late Visean, was the equivalent of the Sidi Bettache basin, located westwards. The second extended the Tilouine basin eastwards during the Visean. The third was a basin from Visean to Westphalian. They were separated by the Zaer-Oulmes and El Hammam horsts, else emerged or immersed, bordered by faults and with materials feeding chaotic deposits.

  7. The African Renaissance, NEPAD and Skills Formation: An Identification of Key Policy Tensions

    ERIC Educational Resources Information Center

    Tikly, Leon

    2003-01-01

    The aim of the article is to critically consider the implications of the African Renaissance project for skills formation policies and priorities with a focus on the education and training systems of sub-Saharan Africa. The article commences with an account of the origins of the African Renaissance idea and its latest incarnation in the New…

  8. The Ethics of Spiritual Formation for a Christian Puerto Rican in a Postmodern Urban Context

    ERIC Educational Resources Information Center

    Escobar Arcay, David A.

    2011-01-01

    This article examines the ministry-ethical implications and meanings of spiritual formation grounded in the so called "culture wars" and then in light of identity, the postmodern condition and the urban context. It highlights the tensions the church faces between being conformed to the world and being conformed to the image of Jesus…

  9. Skill Formation and Utilisation in the Post-Soviet Transition: Higher Education Planning in Post-Soviet Georgia

    ERIC Educational Resources Information Center

    Gvaramadze, Irakli

    2010-01-01

    Changes in the former Soviet system had a dramatic influence on higher education in Georgia. The main objective of the current article is to analyse implications of the post-Soviet transition for the skill formation and skill utilisation system in Georgia. In particular, the study analyses recent trends in Georgian higher education including…

  10. Mechanisms for the Formation of Thymine Under Astrophysical Conditions and Implications for the Origin of Life

    PubMed Central

    Bera, Partha P.; Nuevo, Michel; Materese, Christopher K.; Sandford, Scott A.; Lee, Timothy J.

    2018-01-01

    Nucleobases are the carriers of the genetic information in RNA and DNA for all life on Earth. Their presence in meteorites clearly indicates that compounds of biological importance can form via non-biological processes in extraterrestrial environments. Recent experimental studies have shown that the pyrimidine-based nucleobases uracil and cytosine can be easily formed from the ultraviolet irradiation of pyrimidine in H2O-rich ice mixtures that simulate astrophysical processes. In contrast, thymine, which is found only in DNA, is more difficult to form under the same experimental conditions, as its formation usually requires a higher photon dose. Earlier quantum chemical studies confirmed that the reaction pathways were favorable provided that several H2O molecules surrounded the reactants. However, the present quantum chemical study shows that the formation of thymine is limited because of the inefficiency of the methylation of pyrimidine and its oxidized derivatives in an H2O ice, as supported by the laboratory studies. Our results constrain the formation of thymine in astrophysical environments and thus the inventory of organic molecules delivered to the early Earth, and have implications for the role of thymine and DNA in the origin of life. PMID:27083722

  11. Mechanisms for the formation of thymine under astrophysical conditions and implications for the origin of life

    NASA Astrophysics Data System (ADS)

    Bera, Partha P.; Nuevo, Michel; Materese, Christopher K.; Sandford, Scott A.; Lee, Timothy J.

    2016-04-01

    Nucleobases are the carriers of the genetic information in ribonucleic acid and deoxyribonucleic acid (DNA) for all life on Earth. Their presence in meteorites clearly indicates that compounds of biological importance can form via non-biological processes in extraterrestrial environments. Recent experimental studies have shown that the pyrimidine-based nucleobases uracil and cytosine can be easily formed from the ultraviolet irradiation of pyrimidine in H2O-rich ice mixtures that simulate astrophysical processes. In contrast, thymine, which is found only in DNA, is more difficult to form under the same experimental conditions, as its formation usually requires a higher photon dose. Earlier quantum chemical studies confirmed that the reaction pathways were favorable provided that several H2O molecules surrounded the reactants. However, the present quantum chemical study shows that the formation of thymine is limited because of the inefficiency of the methylation of pyrimidine and its oxidized derivatives in an H2O ice, as supported by the laboratory studies. Our results constrain the formation of thymine in astrophysical environments and thus the inventory of organic molecules delivered to the early Earth and have implications for the role of thymine and DNA in the origin of life.

  12. Chlorinated Cyanurates: Method Interferences and Application Implications

    EPA Science Inventory

    Experiments were conducted to investigate method interferences, residual stability, regulated DBP formation, and a water chemistry model associated with the use of Dichlor & Trichlor in drinking water.

  13. Synthetic modeling chemistry of iron-sulfur clusters in nitric oxide signaling.

    PubMed

    Fitzpatrick, Jessica; Kim, Eunsuk

    2015-08-18

    Nitric oxide (NO) is an important signaling molecule that is involved in many physiological and pathological functions. Iron-sulfur proteins are one of the main reaction targets for NO, and the [Fe-S] clusters within these proteins are converted to various iron nitrosyl species upon reaction with NO, of which dinitrosyl iron complexes (DNICs) are the most prevalent. Much progress has been made in identifying the origin of cellular DNIC generation. However, it is not well-understood which other products besides DNICs may form during [Fe-S] cluster degradation nor what effects DNICs and other degradation products can have once they are generated in cells. Even more elusive is an understanding of the manner by which cells cope with unwanted [Fe-S] modifications by NO. This Account describes our synthetic modeling efforts to identify cluster degradation products derived from the [2Fe-2S]/NO reaction in order to establish their chemical reactivity and repair chemistry. Our intent is to use the chemical knowledge that we generate to provide insight into the unknown biological consequences of cluster modification. Our recent advances in three different areas are described. First, new reaction conditions that lead to the formation of previously unrecognized products during the reaction of [Fe-S] clusters with NO are identified. Hydrogen sulfide (H2S), a gaseous signaling molecule, can be generated from the reaction between [2Fe-2S] clusters and NO in the presence of acid or formal H• (e(-)/H(+)) donors. In the presence of acid, a mononitrosyl iron complex (MNIC) can be produced as the major iron-containing product. Second, cysteine analogues can efficiently convert MNICs back to [2Fe-2S] clusters without the need for any other reagents. This reaction is possible for cysteine analogues because of their ability to labilize NO from MNICs and their capacity to undergo C-S bond cleavage, providing the necessary sulfide for [2Fe-2S] cluster formation. Lastly, unique dioxygen reactivity of various types of DNICs has been established. N-bound neutral {Fe(NO)2}(10) DNICs react with O2 to generate low-temperature stable peroxynitrite (ONOO(-)) species, which then carry out nitration chemistry in the presence of phenolic substrates, relevant to tyrosine nitration chemistry. The reaction between S-bound anionic {Fe(NO)2}(9) DNICs and O2 results in the formation of Roussin's red esters (RREs) and thiol oxidation products, chemistry that may be important in biological cysteine oxidation. The N-bound cationic {Fe(NO)2}(9) DNICs can spontaneously release NO, and this property can be utilized in developing a new class of NO-donating agents with anti-inflammatory activity.

  14. The L-Type Voltage-Gated Calcium Channel Ca [subscript V] 1.2 Mediates Fear Extinction and Modulates Synaptic Tone in the Lateral Amygdala

    ERIC Educational Resources Information Center

    Temme, Stephanie J.; Murphy, Geoffrey G.

    2017-01-01

    L-type voltage-gated calcium channels (LVGCCs) have been implicated in both the formation and the reduction of fear through Pavlovian fear conditioning and extinction. Despite the implication of LVGCCs in fear learning and extinction, studies of the individual LVGCC subtypes, Ca[subscript V]1.2 and Ca[subscript V] 1.3, using transgenic mice have…

  15. What we-authors, reviewers and editors of scientific work-can learn from the analytical history of biological 3-nitrotyrosine.

    PubMed

    Tsikas, Dimitrios

    2017-07-15

    Tyrosine and tyrosine residues in proteins are attacked by the reactive oxygen and nitrogen species peroxynitrite (O=N-OO - ) to generate 3-nitrotyrosine (3-NT) and 3-nitrotyrosine-proteins (3-NTProt), respectively. 3-NT and 3-NTProt are widely accepted as biomarkers of nitr(os)ative stress. Over the years many different analytical methods have been reported for 3-NT and 3-NTProt. Reported concentrations often differ by more than three orders of magnitude, indicative of serious analytical problems. Strategies to overcome pre-analytical and analytical shortcomings and pitfalls have been proposed. The present review investigated whether recently published work on the quantitative measurement of biological 3-nitrotyrosine did adequately consider the analytical past of this biomolecule. 3-Nitrotyrosine was taken as a representative of biomolecules that occur in biological samples in the pM-to-nM concentration range. This examination revealed that in many cases the main protagonists involved in the publication of scientific work, i.e., authors, reviewers and editors, failed to do so. Learning from the analytical history of 3-nitrotyrosine means advancing analytical and biological science and implies the following key issues. (1) Choosing the most reliable analytical approach in terms of sensitivity and accuracy; presently this is best feasible by stable-isotope dilution tandem mass spectrometry coupled with gas chromatography (GC-MS/MS) or liquid chromatography (LC-MS/MS). (2) Minimizing artificial formation of 3-nitrotyrosine during sample work up, a major pitfall in 3-nitrotyrosine analysis. (3) Validating adequately the final method in the intendent biological matrix and the established concentration range. (4) Inviting experts in the field for critical evaluation of the novelty and reliability of the proposed analytical method, placing special emphasis on the compliance of the analytical outcome with 3-nitrotyrosine concentrations obtained by validated GC-MS/MS and LC-MS/MS methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Antioxidant capacity of polychaetes occurring at a natural CO2 vent system: Results of an in situ reciprocal transplant experiment.

    PubMed

    Ricevuto, E; Benedetti, M; Regoli, F; Spicer, J I; Gambi, M C

    2015-12-01

    Ocean acidification (OA) is occurring at a fast rate, resulting in changes of carbonate chemistry in the oceans and in lowering of the pH. Previous studies have documented significant changes in the antioxidant defenses of marine species in response to OA. Here, selected polychaete species, Platynereis dumerilii, Polyophthalmus pictus and Syllis prolifera, were sampled from a natural CO2 vent system (pH = 7.3) and from a non-venting 'control' site (pH = 8.1), and reciprocally transplanted in these areas for 30 days. Total antioxidant capacity toward different forms of oxyradicals was compared in native and transplanted polychaetes: the aim was to assess whether the environmental conditions at the vent site would act as a prooxidant stressor, and the capability of polychaetes to modulate their antioxidant capacity to counteract a varied oxyradicals formation. None of the investigated species enhanced the antioxidant potential during the experiment. A significant reduction of the capability to neutralize different forms of oxyradicals was observed in P. pictus and, partially, in S. prolifera when transplanted from control to naturally-acidified conditions. On the other hand, populations of P. dumerilii originating from the vent and of S. prolifera from both control and acidified sites, showed higher constitutive antioxidant efficiency toward peroxyl radicals and peroxynitrite, which may allow them to cope with short-term and chronic exposure to higher oxidative pressure without further enhancement of antioxidant defenses. Since low pH - high pCO2 is the greatest environmental difference between the control and the vent sites, we suggest that the pro-oxidant challenge due to such peculiarities may have different biological consequences in different polychaete species. Some appear more susceptible to oxidative effects, while others acquire a long term acclimatization to vent conditions through the enhancement of their basal antioxidant protection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. An Antioxidant Extract of the Insectivorous Plant Drosera burmannii Vahl. Alleviates Iron-Induced Oxidative Stress and Hepatic Injury in Mice

    PubMed Central

    Das, Abhishek; Panja, Sourav; Mandal, Nripendranath

    2015-01-01

    Free iron typically leads to the formation of excess free radicals, and additional iron deposition in the liver contributes to the oxidative pathologic processes of liver disease. Many pharmacological properties of the insectivorous plant Drosera burmannii Vahl. have been reported in previous studies; however, there is no evidence of its antioxidant or hepatoprotective potential against iron overload. The antioxidant activity of 70% methanolic extract of D. burmannii (DBME) was evaluated. DBME showed excellent DPPH, hydroxyl, hypochlorous, superoxide, singlet oxygen, nitric oxide, peroxynitrite radical and hydrogen peroxide scavenging activity. A substantial iron chelation (IC50 = 40.90 ± 0.31 μg/ml) and supercoiled DNA protection ([P]50 = 50.41 ± 0.55 μg) were observed. DBME also displayed excellent in vivo hepatoprotective activity in iron-overloaded Swiss albino mice compared to the standard desirox treatment. Administration of DBME significantly normalized serum enzyme levels and restored liver antioxidant enzymes levels. DBME lowered the raised levels of liver damage parameters, also reflected from the morphological analysis of the liver sections. DBME also reduced liver iron content by 115.90% which is also seen by Perls’ staining. A phytochemical analysis of DBME confirms the presence of various phytoconstituents, including phenols, flavonoids, carbohydrates, tannins, alkaloids and ascorbic acid. Alkaloids, phenols and flavonoids were abundantly found in DBME. An HPLC analysis of DBME revealed the presence of purpurin, catechin, tannic acid, reserpine, methyl gallate and rutin. Purpurin, tannic acid, methyl gallate and rutin displayed excellent iron chelation but exhibited cytotoxicity toward normal (WI-38) cells; while DBME found to be non-toxic to the normal cells. These findings suggest that the constituents present in DBME contributed to its iron chelation activity. Additional studies are needed to determine if DBME can be used as a treatment for iron overload diseases. PMID:26010614

  18. Synthesis and antioxidant activity of peptide-based ebselen analogues.

    PubMed

    Satheeshkumar, Kandhan; Mugesh, Govindasamy

    2011-04-18

    A series of di- and tripeptide-based ebselen analogues has been synthesized. The compounds were characterized by (1)H, (13)C, and (77)Se NMR spectroscopy and mass spectral techniques. The glutathione peroxidase (GPx)-like antioxidant activity has been studied by using H(2)O(2) , tert-butyl hydroperoxide (tBuOOH), and cumene hydroperoxide (Cum-OOH) as substrates, and glutathione (GSH) as a cosubstrate. Although all the peptide-based compounds have a selenazole ring similar to that of ebselen, the GPx activity of these compounds highly depends on the nature of the peptide moiety attached to the nitrogen atom of the selenazole ring. It was observed that the introduction of a phenylalanine (Phe) amino acid residue in the N-terminal reduces the activity in all three peroxide systems. On the other hand, the introduction of aliphatic amino acid residues such as valine (Val) significantly enhances the GPx activity of the ebselen analogues. The difference in the catalytic activity of dipeptide-based ebselen derivatives can be ascribed mainly to the change in the reactivity of these compounds toward GSH and peroxide. Although the presence of the Val-Ala-CO(2) Me moiety facilitates the formation of a catalytically active selenol species, the reaction of ebselen analogues that has a Phe-Ile-CO(2) Me residue with GSH does not generate the corresponding selenol. To understand the antioxidant activity of the peptide-based ebselen analogues in the absence of GSH, these compounds were studied for their ability to inhibit peroxynitrite (PN)-mediated nitration of bovine serum albumin (BSA) and oxidation of dihydrorhodamine 123. In contrast to the GPx activity, the PN-scavenging activity of the Phe-based peptide analogues was found to be comparable to that of the Val-based compounds. However, the introduction of an additional Phe residue to the ebselen analogue that had a Val-Ala dipeptide significantly reduced the potency of the parent compound in PN-mediated nitration. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Oxidative stress and vascular inflammation in aging.

    PubMed

    El Assar, Mariam; Angulo, Javier; Rodríguez-Mañas, Leocadio

    2013-12-01

    Vascular aging, a determinant factor for cardiovascular disease and health status in the elderly, is now viewed as a modifiable risk factor. Impaired endothelial vasodilation is a early hallmark of arterial aging that precedes the clinical manifestations of vascular dysfunction, the first step to cardiovascular disease and influencing vascular outcomes in the elderly. Accordingly, the preservation of endothelial function is thought to be an essential determinant of healthy aging. With special attention on the effects of aging on the endothelial function, this review is focused on the two main mechanisms of aging-related endothelial dysfunction: oxidative stress and inflammation. Aging vasculature generates an excess of the reactive oxygen species (ROS), superoxide and hydrogen peroxide, that compromise the vasodilatory activity of nitric oxide (NO) and facilitate the formation of the deleterious radical, peroxynitrite. Main sources of ROS are mitochondrial respiratory chain and NADPH oxidases, although NOS uncoupling could also account for ROS generation. In addition, reduced antioxidant response mediated by erythroid-2-related factor-2 (Nrf2) and downregulation of mitochondrial manganese superoxide dismutase (SOD2) contributes to the establishment of chronic oxidative stress in aged vessels. This is accompanied by a chronic low-grade inflammatory phenotype that participates in defective endothelial vasodilation. The redox-sensitive transcription factor, nuclear factor-κB (NF-κB), is upregulated in vascular cells from old subjects and drives a proinflammatory shift that feedbacks oxidative stress. This chronic NF-κB activation is contributed by increased angiotensin-II signaling and downregulated sirtuins and precludes adequate cellular response to acute ROS generation. Interventions targeted to recover endogenous antioxidant capacity and cellular stress response rather than exogenous antioxidants could reverse oxidative stress-inflammation vicious cycle in vascular aging. Lifestyle attitudes such as caloric restriction and exercise training appear as effective ways to overcome defective antioxidant response and inflammation, favoring successful vascular aging and decreasing the risk for cardiovascular disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Identifying initial molecular targets of PDT: protein and lipid oxidation products

    NASA Astrophysics Data System (ADS)

    Oleinick, Nancy L.; Kim, Junhwan; Rodriguez, Myriam E.; Xue, Liang-yan; Kenney, Malcolm E.; Anderson, Vernon E.

    2009-06-01

    Photodynamic Therapy (PDT) generates singlet oxygen (1O2) which oxidizes biomolecules in the immediate vicinity of its formation. The phthalocyanine photosensitizer Pc 4 localizes to mitochondria and endoplasmic reticulum, and the primary targets of Pc 4-PDT are expected to be lipids and proteins of those membranes. The initial damage then causes apoptosis in cancer cells via the release of cytochrome c (Cyt-c) from mitochondria into the cytosol, followed by the activation of caspases. That damage also triggers the induction of autophagy, an attempt by the cells to eliminate damaged organelles, or when damage is too extensive, to promote cell death. Cyt-c is bound to the cytosolic side of the mitochondrial inner membrane through association with cardiolipin (CL), a phospholipid containing four unsaturated fatty acids and thus easily oxidized by 1O2 or by other oxidizing agents. Increasing evidence suggests that oxidation of CL loosens its association with Cyt-c, and that the peroxidase activity of Cyt-c can oxidize CL. In earlier studies of Cyt-c in homogeneous medium by MALDI-TOF-MS and LC-ESI-MS, we showed that 1O2 generated by Pc 4-PDT oxidized histidine, methionine, tryptophan, and unexpectedly phenylalanine but not tyrosine. Most of the oxidation products were known to be formed by other oxidizing agents, such as hydroxyl radical, superoxide radical anion, and peroxynitrite. However, two products of histidine were unique to 1O2 and may be useful for reporting the action of 1O2 in cells and tissues. These products, as well as CL oxidation products, have now been identified in liposomes and mitochondria after Pc 4-PDT. In mitochondria, the PDT dose-dependent oxidations can be related to specific changes in mitochondrial function, Bcl-2 photodamage, and Cyt-c release. Thus, the role of PDT-generated 1O2 in oxidizing Cyt-c and CL and the interplay between protein and lipid targets may be highly relevant to understanding one mechanism for cell killing by PDT.

  1. Melatonin influences NO/NOS pathway and reduces oxidative and nitrosative stress in a model of hypoxic-ischemic brain damage.

    PubMed

    Blanco, Santos; Hernández, Raquel; Franchelli, Gustavo; Ramos-Álvarez, Manuel Miguel; Peinado, María Ángeles

    2017-01-30

    In this work, using a rat model combining ischemia and hypobaric hypoxia (IH), we evaluate the relationships between the antioxidant melatonin and the cerebral nitric oxide/nitric oxide synthase (NO/NOS) system seeking to ascertain whether melatonin exerts its antioxidant protective action by balancing this key pathway, which is highly involved in the cerebral oxidative and nitrosative damage underlying these pathologies. The application of the IH model increases the expression of the three nitric oxide synthase (NOS) isoforms, as well as nitrogen oxide (NOx) levels and nitrotyrosine (n-Tyr) impacts on the cerebral cortex. However, melatonin administration before IH makes nNOS expression response earlier and stronger, but diminishes iNOS and n-Tyr expression, while both eNOS and NOx remain unchanged. These results were corroborated by nicotine adenine dinucleotide phosphate diaphorase (NADPH-d) staining, as indicative of in situ NOS activity. In addition, the rats previously treated with melatonin exhibited a reduction in the oxidative impact evaluated by thiobarbituric acid reactive substances (TBARS). Finally, IH also intensified glial fibrillary acidic protein (GFAP) expression, reduced hypoxia-inducible factor-1alpha (HIF-1α), but did not change nuclear factor kappa B (NF-κB); meanwhile, melatonin did not significantly affect any of these patterns after the application of the IH model. The antioxidant melatonin acts on the NO/NOS system after IH injury balancing the release of NO, reducing peroxynitrite formation and protecting from nitrosative/oxidative damage. In addition, this paper raises questions concerning the classical role of some controversial molecules such as NO, which are of great consequence in the final fate of hypoxic neurons. We conclude that melatonin protects the brain from hypoxic/ischemic-derived damage in the first steps of the ischemic cascade, influencing the NO/NOS pathway and reducing oxidative and nitrosative stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. A Comprehensive Evaluation of H2SO4 formation from OH and sCI pathways in high BVOC environments

    NASA Astrophysics Data System (ADS)

    Kim, S.; Seco, R.; Park, J. H.; Guenther, A. B.; Smith, J. N.; Kuang, C.; Bustillos, J. O. V.; Tota, J.; Souza, R. A. F. D.

    2014-12-01

    The recently highlighted importance of stabilized Criegee intermediates (sCI) as an oxidant for atmospheric SO2 triggered a number of studies to assess the atmospheric implications of H2SO4 formation from the sCI reaction pathway. In addition, it has not been clear why new particle formation events are not observed in the Amazon rain forest. The mostly widely speculated reason has been a very low H2SO4 level. We will present quantitative assessments of SO2 oxidation by sCI leading to the H2SO4 production using a comprehensive observational dataset from a tropical rainforest study during the GOAmazon field campaign at the T3 site in Manacapuru, Amazonas, Brazil. To our best knowledge, this is the first observation of H2SO4 and OH in Amazon and is unique for all tropical sites due to the accompanying comprehensive gas and aerosol observations such as CO, NOX, SO2, VOCs, and physical and chemical characteristics of aerosols. We will discuss observed H2SO4 levels during the GOAmazon field campaigns to demonstrate 1) H2SO4 formation potential from OH and sCI oxidation pathways by contrasting extremely clean and relatively polluted air masses and 2) the Implications of the observed H2SO4 levels in new particle formation and particle growth events.

  3. SOA Formation from the Atmospheric Oxidation of 2-Methyl-3-Buten-2-ol and Its Implications for PM2.5

    EPA Science Inventory

    The formation of secondary organic aerosol (SOA) generated by irradiating 2-methyl-3-buten-2-01 (MBO) in the presence and/or absence of NOx H2O2, and/or SO2 was examined. Experiments were conducted. in smog chambers operated either in dyna....

  4. Social factors shaping the formation of a multi-stakeholder trails network group for the Monongahela National Forest, West Virginia

    Treesearch

    Karen Robinson; Steven Selin; Chad Pierskalla

    2009-01-01

    This paper reports the results and management implications of a longitudinal research study examining the social factors affecting the formation of a trails network advisory group for the Monongahela National Forest (MNF) in West Virginia. A collaborative process of creating an MNF trails network with input from local users and stakeholders has been largely...

  5. Comment on self-consistent model of black hole formation and evaporation

    NASA Astrophysics Data System (ADS)

    Ho, Pei-Ming

    2015-08-01

    In an earlier work, Kawai et al. proposed a model of black-hole formation and evaporation, in which the geometry of a collapsing shell of null dust is studied, including consistently the back reaction of its Hawking radiation. In this note, we illuminate the implications of their work, focusing on the resolution of the information loss paradox and the problem of the firewall.

  6. A new assay format for NF-kappaB based on a DNA triple helix and a fluorescence resonance energy transfer.

    PubMed

    Altevogt, Dominik; Hrenn, Andrea; Kern, Claudia; Clima, Lilia; Bannwarth, Willi; Merfort, Irmgard

    2009-10-07

    Herein we report a feasibility study for a new concept to detect DNA binding protein NF-kappaB based on a DNA triple helix formation in combination with a fluorescence resonance energy transfer (FRET). The new principle avoids expensive antibodies and radioactivity and might have implications for assays of other DNA binding proteins.

  7. Understanding Children's Concept Formation and Writing Emergence from the Perspective of Graphical Multi-Signification: Evidence and Pedagogical Implications

    ERIC Educational Resources Information Center

    Wu, Li-Yuan

    2013-01-01

    This qualitative study examined children's concept formation and writing emergence from the perspective of graphical multi-signification by observing the free drawing activities provided by four girls and six boys, aged four to five, in a Chinese class at a Chinese heritage language school in the USA. Children's capacity for graphical…

  8. Do Babies Matter? The Effect of Family Formation on the Lifelong Careers of Academic Men and Women.

    ERIC Educational Resources Information Center

    Mason, Mary Ann; Goulden, Marc

    2002-01-01

    Examines family formation and its effects on the career lives of both women and men academics from the time they receive their doctorates until 20 years later. Finds that there is a consistent and large gap in achieving tenure between women who have early babies and men who have early babies. Discusses policy implications. (EV)

  9. Dipeptide Formation from Amino Acid Monomer Induced by keV Ion Irradiation: An Implication for Physicochemical Repair by Radiation Itself

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Yuan, Hang; Wang, Xiangqin; Yu, Zengliang

    2008-02-01

    An identification of Phe dipeptide from L-phenylalanine monomers after keV nitrogen and argon ion implantation, by using the HPLC (high performance liquid chromatography) and LC-MS(liquid chromatography mass spectrometer) methods is reported. The results showed a similar yield behavior for both ion species, namely: 1) the yield of dipeptides under alkalescent conditions was distinctly higher than that under acidic or neutral conditions; 2) for different ion species, the dose-yield curves tracked a similar trend which was called a counter-saddle curve. The dipeptide formation may implicate a recombination repair mechanism of damaged biomolecules that energetic ions have left in their wake. Accordingly a physicochemical self-repair mechanism by radiation itself for the ion-beam radiobiological effects is proposed.

  10. Cigarette Smoke and Inflammation: Role in Cerebral Aneurysm Formation and Rupture

    PubMed Central

    Chalouhi, Nohra; Ali, Muhammad S.; Starke, Robert M.; Jabbour, Pascal M.; Tjoumakaris, Stavropoula I.; Gonzalez, L. Fernando; Rosenwasser, Robert H.; Koch, Walter J.; Dumont, Aaron S.

    2012-01-01

    Smoking is an established risk factor for subarachnoid hemorrhage yet the underlying mechanisms are largely unknown. Recent data has implicated a role of inflammation in the development of cerebral aneurysms. Inflammation accompanying cigarette smoke exposure may thus be a critical pathway underlying the development, progression, and rupture of cerebral aneurysms. Various constituents of the inflammatory response appear to be involved including adhesion molecules, cytokines, reactive oxygen species, leukocytes, matrix metalloproteinases, and vascular smooth muscle cells. Characterization of the molecular basis of the inflammatory response accompanying cigarette smoke exposure will provide a rational approach for future targeted therapy. In this paper, we review the current body of knowledge implicating cigarette smoke-induced inflammation in cerebral aneurysm formation/rupture and attempt to highlight important avenues for future investigation. PMID:23316103

  11. Jurassic Lake T'oo'dichi': a large alkaline, saline lake, Morrison Formation, eastern Colorado Plateau

    USGS Publications Warehouse

    Turner, C.E.; Fishman, N.S.

    1991-01-01

    Recognition of alkaline, saline-lake deposits in the Morrison Formation significantly alters interpretations of depositional environments of this formation, and it also has important implications for paleoclimatic interpretation. Late Jurassic climate was apparently much more arid than had previously been thought. In fact, sedimentologic evidence suggests that the lake basin was typically dry for extended periods and enjoyed only brief wet intervals. This conclusion has important consequences for environmental interpretation of the habitat that was favorable for large herbivorous dinosaurs, which thrived in the Late Jurassic. -from Authors

  12. Evidence for the Involvement of Lfc and Tctex-1 in Axon Formation

    PubMed Central

    Conde, Cecilia; Arias, Cristina; Robin, Maria; Li, Aiqun; Saito, Masaki; Chuang, Jen-Zen; Nairn, Angus C.; Sung, Ching-Hwa; Cáceres, Alfredo

    2013-01-01

    RhoA and Rac play key and opposite roles during neuronal polarization. We now show that Lfc, a guanosine nucleotide exchange factor (GEF), localizes to the Golgi apparatus and growth cones of developing neurons and negatively regulates neurite sprouting and axon formation through a Rho signaling pathway. Tctex-1, a dynein light chain implicated in axon outgrowth by modulating actin dynamics and Rac activity, colocalizes and physically interacts with Lfc, thus inhibiting its GEF activity, decreasing Rho-GTP levels, and functionally antagonizing Lfc during neurite formation. PMID:20463241

  13. Star formation and extinct radioactivities

    NASA Technical Reports Server (NTRS)

    Cameron, A. G. W.

    1984-01-01

    An assessment is made of the evidence for the existence of now-extinct radioactivities in primitive solar system material, giving attention to implications for the early stages of sun and solar system formation. The characteristics of possible disturbances in dense molecular clouds which can initiate the formation of cloud cores is discussed, with emphasis on these disturbances able to generate fresh radioactivities. A one-solar mass red giant star on the asymptotic giant branch appears to have been the best candidate to account for the short-lived extinct radioactivities in the early solar system.

  14. Western Medusa Fossae Formation: Dust and Dunes

    NASA Image and Video Library

    2015-09-16

    This beautifully contrasted infrared-color image shows an area approximately 600 by 900 meters. This is a close-up from NASA Mars Reconnaissance Orbiter spacecraft of the western Medusa Fossae formation where we can see dust-covered rocky, bedrock surfaces beige and a bluish-tinted sand sheet that transitions into several dunes. The bluish sand is thought to originate from the bedrock that lies beneath the dust. If true, this has implications for the composition of the formation, which has been highly debated over the years. http://photojournal.jpl.nasa.gov/catalog/PIA19939

  15. Amyloid-β annular protofibrils evade fibrillar fate in Alzheimer disease brain.

    PubMed

    Lasagna-Reeves, Cristian A; Glabe, Charles G; Kayed, Rakez

    2011-06-24

    Annular protofibrils (APFs) represent a new and distinct class of amyloid structures formed by disease-associated proteins. In vitro, these pore-like structures have been implicated in membrane permeabilization and ion homeostasis via pore formation. Still, evidence for their formation and relevance in vivo is lacking. Herein, we report that APFs are in a distinct pathway from fibril formation in vitro and in vivo. In human Alzheimer disease brain samples, amyloid-β APFs were associated with diffuse plaques, but not compact plaques; moreover, we show the formation of intracellular APFs. Our results together with previous studies suggest that the prevention of amyloid-β annular protofibril formation could be a relevant target for the prevention of amyloid-β toxicity in Alzheimer disease.

  16. Numerical simulation of the formation of a spiral galaxy

    NASA Astrophysics Data System (ADS)

    Williams, P. R.; Nelson, A. H.

    2001-08-01

    A simulation is described in which the numerical galaxy formed compares favourably in every measurable respect with contemporary bright spiral galaxies, including the formation of a distinct stellar bulge and large scale spiral arm shocks in the gas component. This is achieved in spite of the fact that only idealized proto-galactic initial conditions were used, and only simple phenomenological prescriptions for the physics of the interstellar medium (ISM) and star formation were implemented. In light of the emphasis in recent literature on the importance of the link between galaxy formation and models of the universe on cosmological scales, on the details of the physics of the ISM and star formation, and on apparent problems therein, the implications of this result are discussed.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This paper reports a coral reef formation theory that has implications for hydrocarbon exploration. The theory states that many coral reefs and carbonate buildups from at and are dependent upon nutrient rich fluids seeping through the seabed.

  18. Numerical Simulation of Vortex Ring Formation in the Presence of Background Flow: Implications for Squid Propulsion

    NASA Astrophysics Data System (ADS)

    Jiang, Houshuo; Grosenbaugh, Mark A.

    2002-11-01

    Numerical simulations are used to study the laminar vortex ring formation in the presence of background flow. The numerical setup includes a round-headed axisymmetric body with a sharp-wedged opening at the posterior end where a column of fluid is pushed out by a piston inside the body. The piston motion is explicitly included into the simulations by using a deforming mesh. The numerical method is verified by simulating the standard vortex ring formation process in quiescent fluid for a wide range of piston stroke to cylinder diameter ratios (Lm/D). The results from these simulations confirm the existence of a universal formation time scale (formation number) found by others from experimental and numerical studies. For the case of vortex ring formation by the piston/cylinder arrangement in a constant background flow (i.e. the background flow is in the direction of the piston motion), the results show that a smaller fraction of the ejected circulation is delivered into the leading vortex ring, thereby decreasing the formation number. The mechanism behind this reduction is believed to be related to the modification of the shear layer profile between the jet flow and the background flow by the external boundary layer on the outer surface of the cylinder. In effect, the vorticity in the jet is cancelled by the opposite signed vorticity in the external boundary layer. Simulations using different end geometries confirm the general nature of the phenomenon. The thrust generated from the jet and the drag forces acting on the body are calculated with and without background flow for different piston programs. The implications of these results for squid propulsion are discussed.

  19. Cross-formational flow of water into coalbed methane reservoirs: controls on relative permeability curve shape and production profile

    PubMed Central

    Karacan, C. Özgen

    2017-01-01

    Coalbed methane (CBM) wells tend to produce large volumes of water, especially when there is hydraulic connectivity between coalbed and nearby formations. Cross-formational flow between producing coal and adjacent formations can have significant production and environmental implications, affecting economic viability of production from these shallow reservoirs. Such flows can also affect how much gas can be removed from a coalbed prior to mining and thus can have implications for methane control in mining as well. The aim of this paper is to investigate the impact of water flow from an external source into coalbed on production performance and also on reservoir variables including cleat porosity and relative permeability curves derived from production data analysis. A reservoir model is constructed to investigate the production performance of a CBM well when cross-formational flow is present between the coalbed and the overlying formation. Results show that cleat porosity calculated by analysis of production data can be more than one order of magnitude higher than actual cleat porosity. Due to hydraulic connectivity, water saturation within coalbed does not considerably change for a period of time, and hence, the peak of gas production is delayed. Upon depletion of the overlying formation, water saturation in coalbed quickly decreases. Rapid decline of water saturation in the coalbed corresponds to a sharp increase in gas production. As an important consequence, when cross-flow is present, gas and water relative permeability curves, derived from simulated production data, have distinctive features compared to the initial relative permeability curves. In the case of cross-flow, signatures of relative permeability curves are concave downward and low gas permeability for a range of water saturation, followed by rapid increase afterward for water and gas, respectively. The results and analyses presented in this work can help to assess the impact of cross-formational flow on reservoir variables derived from production data analysis and can also contribute to identifying hydraulic connectivity between coalbed and adjacent formations. PMID:28626492

  20. Carbon Disulfide (CS2) Mechanisms in Formation of Atmospheric Carbon Dioxide (CO2) Formation from Unconventional Shale Gas Extraction and Processing Operations and Global Climate Change.

    PubMed

    Rich, Alisa L; Patel, Jay T

    2015-01-01

    Carbon disulfide (CS2) has been historically associated with the production of rayon, cellophane, and carbon tetrachloride. This study identifies multiple mechanisms by which CS2 contributes to the formation of CO2 in the atmosphere. CS2 and other associated sulfide compounds were found by this study to be present in emissions from unconventional shale gas extraction and processing (E&P) operations. The breakdown products of CS2; carbonyl sulfide (COS), carbon monoxide (CO), and sulfur dioxide (SO2) are indirect greenhouse gases (GHGs) that contribute to CO2 levels in the atmosphere. The heat-trapping nature of CO2 has been found to increase the surface temperature, resulting in regional and global climate change. The purpose of this study is to identify five mechanisms by which CS2 and the breakdown products of CS2 contribute to atmospheric concentrations of CO2. The five mechanisms of CO2 formation are as follows: Chemical Interaction of CS2 and hydrogen sulfide (H2S) present in natural gas at high temperatures, resulting in CO2 formation;Combustion of CS2 in the presence of oxygen producing SO2 and CO2;Photolysis of CS2 leading to the formation of COS, CO, and SO2, which are indirect contributors to CO2 formation;One-step hydrolysis of CS2, producing reactive intermediates and ultimately forming H2S and CO2;Two-step hydrolysis of CS2 forming the reactive COS intermediate that reacts with an additional water molecule, ultimately forming H2S and CO2. CS2 and COS additionally are implicated in the formation of SO2 in the stratosphere and/or troposphere. SO2 is an indirect contributor to CO2 formation and is implicated in global climate change.

  1. Group IIA secretory phospholipase A2 (GIIA) mediates apoptotic death during NMDA receptor activation in rat primary cortical neurons.

    PubMed

    Chiricozzi, Elena; Fernandez-Fernandez, Seila; Nardicchi, Vincenza; Almeida, Angeles; Bolaños, Juan Pedro; Goracci, Gianfrancesco

    2010-03-01

    Phospholipases A(2) (PLA(2)) participate in neuronal death signalling pathways because of their ability to release lipid mediators, although the contribution of each isoform and mechanism of neurotoxicity are still elusive. Using a novel fluorogenic method to assess changes in a PLA(2) activity by flow cytometry, here we show that the group IIA secretory phospholipase A(2) isoform (GIIA) was specifically activated in cortical neurons following stimulation of N-methyl-d-aspartate glutamate receptor subtype (NMDAR). For activation, GIIA required Ca(2+) and reactive oxygen/nitrogen species, and inhibition of its activity fully prevented NMDAR-mediated neuronal apoptotic death. Superoxide, nitric oxide or peroxynitrite donors stimulated GIIA activity, which mediated neuronal death. Intriguingly, we also found that GIIA activity induced mitochondrial superoxide production after NMDAR stimulation. These results reveal a novel role for GIIA in excitotoxicity both as target and producer of superoxide in a positive-loop of activation that may contribute to the propagation of neurodegeneration.

  2. Chronicles in drug discovery.

    PubMed

    Davies, Shelley L; Ferrer, Elisa; Moral, Maria Angels

    2006-06-01

    Chronicles in Drug Discovery features special interest reports on advances in drug discovery. This month we highlight new options to prevent oral mucositis, a treatment-limiting adverse effect of chemotherapy. Studies are currently focusing on mechanism-based therapies to prevent or repair DNA damage to epithelial and submucosal cells and the cascade or events that follow to cause tissue damage or analgesics to ease the associated oral cavity pain. Therapeutic limitations also exist for the use of the highly effective antibiotic gentamicin, as it evokes acute renal failure. Mechanistic investigations have shed some light on potential targets: the kallikreins, peroxynitrite-related pathways, superoxide production and the accumulation of aminoglycosides. New antibiotic strategies for trachoma, the leading cause of preventable blindness, are also explored along with studies to aid the development of vaccine candidates. Finally, we discuss the utility of allosteric-potentiating ligands to modulate nicotinic acetylcholine receptors, mimicking the reward/addictive effects of nicotine, as potential strategies for smoking cessation. (c) 2006 Prous Science. All rights reserved.

  3. The Antitumor Effect of Singlet Oxygen.

    PubMed

    Bauer, Georg

    2016-11-01

    Tumor cells are protected against intercellular apoptosis-inducing signaling through expression of membrane-associated catalase and superoxide dismutase. Exogenous singlet oxygen derived from activated photosensitizers or from cold atmospheric plasma causes local inactivation of protective catalase which is followed by the generation of secondary extracellular singlet oxygen. This process is specific for tumor cells and is driven by a complex interaction between H 2 O 2 and peroxynitrite. Secondary singlet oxygen has the potential for autoamplification of its generation, resulting in optimal inactivation of protective catalase and reactivation of intercellular apoptosis-inducing signaling. An increase in the endogenous NO concentration also causes inactivation of catalase and autoamplificatory generation of secondary singlet oxygen. This principle is essential for the antitumor activity of secondary plant products, such as cyanidins and other inhibitors of NO dioxygenase. It seems that the action of the established chemotherapeutic taxol and the recently established antitumor effect of certain azoles are based on the same principles. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  4. Applications of plasma sources for nitric oxide medicine

    NASA Astrophysics Data System (ADS)

    Vasilets, Victor; Shekhter, Anatoly; Pekshev, Alexander

    2013-09-01

    Nitric oxide (NO) has important roles in the function of many tissues and organs. Wound healing processes are always accompanying by the increase of nitric oxide concentration in wound tissue. These facts suggest a possible therapeutic use of various NO donors for the acceleration of the wound healing and treatment of other diseases. Our previous studies indicated that gaseous NO flow produced by air-plasma generators acts beneficially on the wound healing. This beneficial effect could be caused by the mechanism involving peroxynitrite as an intermediate. As a result of mobilization of various antioxidant reactions more endogenous NO molecules become available as signaling molecules. to regulate the metabolic processes in wound tissue. In this paper different air plasma sources generated therapeutic concentrations of NO are discussed. The concentration of NO and other therapeutically important gas products are estimated by thermodynamic simulation. Synergy effects of NO with other plasma components are discussed as a factor enhancing therapeutic results. Some new medical application of plasma devices are presented. Advanced Plasma Therapies Inc.

  5. How is edaravone effective against acute ischemic stroke and amyotrophic lateral sclerosis?

    PubMed Central

    Watanabe, Kazutoshi; Tanaka, Masahiko; Yuki, Satoshi; Hirai, Manabu; Yamamoto, Yorihiro

    2018-01-01

    Edaravone is a low-molecular-weight antioxidant drug targeting peroxyl radicals among many types of reactive oxygen species. Because of its amphiphilicity, it scavenges both lipid- and water-soluble peroxyl radicals by donating an electron to the radical. Thus, it inhibits the oxidation of lipids by scavenging chain-initiating water-soluble peroxyl radicals and chain-carrying lipid peroxyl radicals. In 2001, it was approved in Japan as a drug to treat acute-phase cerebral infarction, and then in 2015 it was approved for amyotrophic lateral sclerosis (ALS). In 2017, the U.S. Food and Drug Administration also approved edaravone for treatment of patients with ALS. Its mechanism of action was inferred to be scavenging of peroxynitrite. In this review, we focus on the radical-scavenging characteristics of edaravone in comparison with some other antioxidants that have been studied in clinical trials, and we summarize its pharmacological action and clinical efficacy in patients with acute cerebral infarction and ALS. PMID:29371752

  6. Hydrogen as a New Class of Radioprotective Agent

    PubMed Central

    Qian, Liren; Shen, Jianliang; Chuai, Yunhai; Cai, Jianming

    2013-01-01

    It is well known that most of the ionizing radiation-induced damage is caused by hydroxyl radicals (·OH) follows radiolysis of H2O. Molecular hydrogen (H2) has antioxidant activities by selectively reducing ·OH and peroxynitrite(ONOO-). We firstly hypothesized and demonstrated the radioprotective effect of H2 in vitro and in vivo, which was also repeated on different experimental animal models by different departments. A randomized, placebo-controlled study showed that consumption of hydrogen-rich water reduces the biological reaction to radiation-induced oxidative stress without compromising anti-tumor effects. These encouraging results suggested that H2 represents a potentially novel preventative strategy for radiation-induced oxidative injuries. H2 is explosive. Therefore, administration of hydrogen-rich solution (physiological saline/pure water/other solutions saturated with H2) may be more practical in daily life and more suitable for daily consumption. This review focuses on major scientific and clinical advances of hydrogen-rich solution/H2 as a new class of radioprotective agent. PMID:24155664

  7. siRNA-based Analysis of the Abrogation of the Protective Function of Membrane-associated Catalase of Tumor Cells.

    PubMed

    Bauer, Georg

    2017-02-01

    Tumor cells, in contrast to non-malignant cells, show sustained expression of membrane-associated NADPH oxidase-1 and therefore generate extracellular superoxide anions and their dismutation product H 2 O 2 In order to prevent intercellular reactive oxygen species/reactive nitrogen species (ROS/RNS)-dependent apoptosis-inducing signaling, tumor cells need to express membrane-associated catalase that interferes with HOCl and nitric oxide/peroxynitrite signaling. Catalase is attached to tumor cells through the activity of transglutaminase-2 and is prevented from superoxide anion-dependent inhibition through coexpression of membrane-associated superoxide dismutase. Therefore, specific inhibition of membrane-associated catalase should reactivate intercellular ROS/RNS-dependent apoptosis-inducing signaling. These processes are analyzed here through small interfering RNA-mediated knockdown of essential signaling compounds. This allows to establish a rather comprehensive picture of intercellular ROS/RNS signaling that may be instrumental for future therapeutic approaches. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  8. Hydroalcoholic extracts of Indian medicinal plants can help in amelioration from oxidative stress through antioxidant properties.

    PubMed

    Sarkar, Rhitajit; Mandal, Nripendranath

    2012-01-01

    The in vitro study of the antioxidant properties of the hydroalcoholic extracts of various Indian medicinal plants can logically help to develop a better and safer way of amelioration from oxidative stress. As aimed, the present study has been done to estimate and thereby conclude regarding the antioxidant activities of a few Indian medicinal plants, viz., Terminalia chebula, Terminalia belerica, Emblica officinalis, Caesalpinia crista, Cajanus cajan, and Tinospora cordifolia. The extracts of the plants have been subjected to the evaluation of antioxidant properties through scavenging assays for reactive oxygen species like superoxide, nitric oxide, peroxynitrite, hypochlorous acid, singlet oxygen, etc. and measurement of TEAC values and other phytochemical parameters. The phenolic and flavonoid contents of each plant have been found to be correlated to their individual antioxidant activity. The results showed the hydroalcoholic extracts of the plants were efficient indicators of their antioxidant capacity thus concreting their basis to be used as natural antioxidant.

  9. The Classification and Geomorphic Implications of Thaw Lakes on the Arctic Coastal Plain, Alaska

    DTIC Science & Technology

    1975-12-01

    Plain is underlain by ice-rich marine sediments , the product of several marine transgressions and regressions. Numerous thaw lake basins of...variable morphology and distribution have developed on the perennially frozen sediments (permafrost) of this low-lying plain. Most notable are the large...mechanism of thaw lake formation was recognized whereby sediment laden ice rafts initiated thawing of the permafrost and formation of lake basins

  10. Mechanisms for the formation of thymine under astrophysical conditions and implications for the origin of life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bera, Partha P., E-mail: Partha.P.Bera@nasa.gov, E-mail: Timothy.J.Lee@nasa.gov; Nuevo, Michel; Materese, Christopher K.

    Nucleobases are the carriers of the genetic information in ribonucleic acid and deoxyribonucleic acid (DNA) for all life on Earth. Their presence in meteorites clearly indicates that compounds of biological importance can form via non-biological processes in extraterrestrial environments. Recent experimental studies have shown that the pyrimidine-based nucleobases uracil and cytosine can be easily formed from the ultraviolet irradiation of pyrimidine in H{sub 2}O-rich ice mixtures that simulate astrophysical processes. In contrast, thymine, which is found only in DNA, is more difficult to form under the same experimental conditions, as its formation usually requires a higher photon dose. Earlier quantummore » chemical studies confirmed that the reaction pathways were favorable provided that several H{sub 2}O molecules surrounded the reactants. However, the present quantum chemical study shows that the formation of thymine is limited because of the inefficiency of the methylation of pyrimidine and its oxidized derivatives in an H{sub 2}O ice, as supported by the laboratory studies. Our results constrain the formation of thymine in astrophysical environments and thus the inventory of organic molecules delivered to the early Earth and have implications for the role of thymine and DNA in the origin of life.« less

  11. Mechanisms for the Formations of the Thymine Under Astrophysical Conditions and Implications for the Origin of Life

    NASA Technical Reports Server (NTRS)

    Bera, Partha P.; Nuevo, Michel; Materese, Christopher K.; Sandford, Scott A.; Lee, Timothy J.

    2016-01-01

    Nucleobases are the carriers of the genetic information in ribonucleic acid and deoxyribonucleic acid (DNA) for all life on Earth. Their presence in meteorites clearly indicates that compounds of biological importance can form via non-biological processes in extraterrestrial environments. Recent experimental studies have shown that the pyrimidine-based nucleobases uracil and cytosine can be easily formed from the ultraviolet irradiation of pyrimidine in H2O-rich ice mixtures that simulate astrophysical processes. In contrast, thymine, which is found only in DNA, is more difficult to form under the same experimental conditions, as its formation usually requires a higher photon dose. Earlier quantum chemical studies confirmed that the reaction pathways were favorable provided that several H2O molecules surrounded the reactants. However, the present quantum chemical study shows that the formation of thymine is limited because of the inefficiency of the methylation of pyrimidine and its oxidized derivatives in an H2O ice, as supported by the laboratory studies. Our results constrain the formation of thymine in astrophysical environments and thus the inventory of organic molecules delivered to the early Earth and have implications for the role of thymine and DNA in the origin of life.

  12. Inhibition of cholesterol oxidation products (COPs) formation in emulsified porcine patties by phenolic-rich avocado (Persea americana Mill.) extracts.

    PubMed

    Rodríguez-Carpena, Javier-Germán; Morcuende, David; Petrón, María Jesus; Estévez, Mario

    2012-03-07

    The effect of phenolic-rich extracts from avocado peel on the formation of cholesterol oxidation products (COPs) in porcine patties subjected to cooking and chill storage was studied. Eight COPs (7α-hydroxycholesterol, 7β-hydroxycholesterol, 7-ketocholesterol, 20α-hydroxycholesterol, 25-hydroxycholesterol, cholestanetriol, 5,6β-epoxycholesterol, and 5,6α-epoxycholesterol) were identified and quantified by GC-MS. The addition of avocado extracts (∼600 GAE/kg patty) to patties significantly inhibited the formation of COPs during cooking. Cooked control (C) patties contained a larger variety and greater amounts of COPs than the avocado-treated (T) counterparts. COPs sharply increased in cooked patties during the subsequent chilled storage. This increase was significantly higher in C patties than in the T patties. Interestingly, the amount of COPs in cooked and chilled T patties was similar to those found in cooked C patties. The mechanisms implicated in cholesterol oxidation in a processed meat product, the protective effect of avocado phenolics, and the potential implication of lipid and protein oxidation are thoroughly described in the present paper.

  13. A TNF-Regulated Recombinatorial Macrophage Immune Receptor Implicated in Granuloma Formation in Tuberculosis

    PubMed Central

    Streich, Roswita; Breysach, Caroline; Raddatz, Dirk; Oniga, Septimia; Peccerella, Teresa; Findeisen, Peter; Kzhyshkowska, Julia; Gratchev, Alexei; Schweyer, Stefan; Saunders, Bernadette; Wessels, Johannes T.; Möbius, Wiebke; Keane, Joseph; Becker, Heinz; Ganser, Arnold; Neumaier, Michael; Kaminski, Wolfgang E.

    2011-01-01

    Macrophages play a central role in host defense against mycobacterial infection and anti- TNF therapy is associated with granuloma disorganization and reactivation of tuberculosis in humans. Here, we provide evidence for the presence of a T cell receptor (TCR) αβ based recombinatorial immune receptor in subpopulations of human and mouse monocytes and macrophages. In vitro, we find that the macrophage-TCRαβ induces the release of CCL2 and modulates phagocytosis. TNF blockade suppresses macrophage-TCRαβ expression. Infection of macrophages from healthy individuals with mycobacteria triggers formation of clusters that express restricted TCR Vβ repertoires. In vivo, TCRαβ bearing macrophages abundantly accumulate at the inner host-pathogen contact zone of caseous granulomas from patients with lung tuberculosis. In chimeric mouse models, deletion of the variable macrophage-TCRαβ or TNF is associated with structurally compromised granulomas of pulmonary tuberculosis even in the presence of intact T cells. These results uncover a TNF-regulated recombinatorial immune receptor in monocytes/macrophages and demonstrate its implication in granuloma formation in tuberculosis. PMID:22114556

  14. A Rich Morphological Diversity of Biosaline Drying Patterns Is Generated by Different Bacterial Species, Different Salts and Concentrations: Astrobiological Implications

    NASA Astrophysics Data System (ADS)

    Gómez Gómez, José María; Medina, Jesús; Rull, Fernando

    2016-07-01

    Biosaline formations (BSFs) are complex self-organized biomineral patterns formed by "hibernating" bacteria as the biofilm that contains them dries out. They were initially described in drying biofilms of Escherichia coli cells + NaCl. Due to their intricate 3-D morphology and anhydrobiosis, these biomineralogical structures are of great interest in astrobiology. Here we report experimental data obtained with various alkali halide salts (NaF, NaCl, NaBr, LiCl, KCl, CsCl) on BSF formation with E. coli and Bacillus subtilis bacteria at two saline concentrations: 9 and 18 mg/mL. Our results indicate that, except for LiCl, which is inactive, all the salts assayed are active during BSF formation and capable of promoting the generation of distinctive drying patterns at each salt concentration. Remarkably, the BSFs produced by these two bacterial species produce characteristic architectural hallmarks as the BSF dries. The potential biogenicity of these biosaline drying patterns is studied, and the astrobiological implications of these findings are discussed.

  15. Mechanisms of DNA damage repair in adult stem cells and implications for cancer formation.

    PubMed

    Weeden, Clare E; Asselin-Labat, Marie-Liesse

    2018-01-01

    Maintenance of genomic integrity in tissue-specific stem cells is critical for tissue homeostasis and the prevention of deleterious diseases such as cancer. Stem cells are subject to DNA damage induced by endogenous replication mishaps or exposure to exogenous agents. The type of DNA lesion and the cell cycle stage will invoke different DNA repair mechanisms depending on the intrinsic DNA repair machinery of a cell. Inappropriate DNA repair in stem cells can lead to cell death, or to the formation and accumulation of genetic alterations that can be transmitted to daughter cells and so is linked to cancer formation. DNA mutational signatures that are associated with DNA repair deficiencies or exposure to carcinogenic agents have been described in cancer. Here we review the most recent findings on DNA repair pathways activated in epithelial tissue stem and progenitor cells and their implications for cancer mutational signatures. We discuss how deep knowledge of early molecular events leading to carcinogenesis provides insights into DNA repair mechanisms operating in tumours and how these could be exploited therapeutically. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Transcriptome profiling of radiata pine branches reveals new insights into reaction wood formation with implications in plant gravitropism.

    PubMed

    Li, Xinguo; Yang, Xiaohui; Wu, Harry X

    2013-11-08

    Formation of compression (CW) and opposite wood (OW) in branches and bent trunks is an adaptive feature of conifer trees in response to various displacement forces, such as gravity, wind, snow and artificial bending. Several previous studies have characterized tracheids, wood and gene transcription in artificially or naturally bent conifer trunks. These studies have provided molecular basis of reaction wood formation in response to bending forces and gravity stimulus. However, little is known about reaction wood formation and gene transcription in conifer branches under gravity stress. In this study SilviScan® technology was used to characterize tracheid and wood traits in radiate pine (Pinus radiata D. Don) branches and genes differentially transcribed in CW and OW were investigated using cDNA microarrays. CW drastically differed from OW in tracheids and wood traits with increased growth, thicker tracheid walls, larger microfibril angle (MFA), higher density and lower stiffness. However, CW and OW tracheids had similar diameters in either radial or tangential direction. Thus, gravity stress largely influenced wood growth, secondary wall deposition, cellulose microfibril orientation and wood properties, but had little impact on primary wall expansion. Microarray gene transcription revealed about 29% of the xylem transcriptomes were significantly altered in CW and OW sampled in both spring and autumn, providing molecular evidence for the drastic variation in tracheid and wood traits. Genes involved in cell division, cellulose biosynthesis, lignin deposition, and microtubules were mostly up-regulated in CW, conferring its greater growth, thicker tracheid walls, higher density, larger MFA and lower stiffness. However, genes with roles in cell expansion and primary wall formation were differentially transcribed in CW and OW, respectively, implicating their similar diameters of tracheid walls and different tracheid lengths. Interestingly, many genes related to hormone and calcium signalling as well as various environmental stresses were exclusively up-regulated in CW, providing important clues for earlier molecular signatures of reaction wood formation under gravity stimulus. The first comprehensive investigation of tracheid characteristics, wood properties and gene transcription in branches of a conifer species revealed more accurate and new insights into reaction wood formation in response to gravity stress. The identified differentially transcribed genes with diverse functions conferred or implicated drastic CW and OW variation observed in radiata pine branches. These genes are excellent candidates for further researches on the molecular mechanisms of reaction wood formation with a view to plant gravitropism.

  17. Heterocyclic amines: occurrence and prevention in cooked food.

    PubMed Central

    Robbana-Barnat, S; Rabache, M; Rialland, E; Fradin, J

    1996-01-01

    This article deals with the mutagenic heterocyclic amines, especially the aminoimidazoazaarenes family, isolated from cooked foods. The conditions which lead to their occurrence in foods are discussed. This formation primarily depends on the characteristics of the food, such as the type of the food and the presence of precursors, water, and lipids. Secondarily, it depends on the cooking modes where the temperature is considered to be the most important factor involved in their formation. As their formation during cooking represents a health risk, we present some ways and means to limit their formation by alternative cooking methods that tend to decrease heterocyclic amine concentrations in foods as they are implicated in cancer risks. PMID:8919766

  18. Planets around pulsars - Implications for planetary formation

    NASA Technical Reports Server (NTRS)

    Bodenheimer, Peter

    1993-01-01

    Data on planets around pulsars are summarized, and different models intended to explain the formation mechanism are described. Both theoretical and observational evidence suggest that very special circumstances are required for the formation of planetary systems around pulsars, namely, the prior presence of a millisecond pulsar with a close binary companion, probably a low mass main-sequence star. It is concluded that the discovery of two planets around PSR 1257+12 is important for better understanding the problems of dynamics and stellar evolution. The process of planetary formation should be learned through intensive studies of the properties of disks near young objects and application of techniques for detection of planets around main-sequence solar-type stars.

  19. The Brain, Learning, and Technology.

    ERIC Educational Resources Information Center

    Deters, Thomas J.

    1999-01-01

    New research findings on memory and learning systems have implications for continuing medical education in terms of format and length of learning activities, age of learners, and psychological factors such as stress and mental fatigue. (SK)

  20. Expanding the Visibility of Women's Work: Policy Implications.

    ERIC Educational Resources Information Center

    Messias, DeAnne K. Hilfinger; Regev, Hanna; Im, Eun-Ok; Spiers, Judith A.; Van, Paulina; Meleis, Afaf Ibrahim

    1997-01-01

    Social conceptualization and media images of women's work affect health and social policy formation. Nurses can expand the visibility of women's work and promote gender-sensitive policies within and outside the profession. (SK)

  1. Therapeutic implication of L-phenylalanine aggregation mechanism and its modulation by D-phenylalanine in phenylketonuria

    PubMed Central

    Singh, Virender; Rai, Ratan Kumar; Arora, Ashish; Sinha, Neeraj; Thakur, Ashwani Kumar

    2014-01-01

    Self-assembly of phenylalanine is linked to amyloid formation toxicity in phenylketonuria disease. We are demonstrating that L-phenylalanine self-assembles to amyloid fibrils at varying experimental conditions and transforms to a gel state at saturated concentration. Biophysical methods including nuclear magnetic resonance, resistance by alpha-phenylglycine to fibril formation and preference of protected phenylalanine to self-assemble show that this behaviour of L-phenylalanine is governed mainly by hydrophobic interactions. Interestingly, D-phenylalanine arrests the fibre formation by L-phenylalanine and gives rise to flakes. These flakes do not propagate further and prevent fibre formation by L-phenylalanine. This suggests the use of D-phenylalanine as modulator of L-phenylalanine amyloid formation and may qualify as a therapeutic molecule in phenylketonuria. PMID:24464217

  2. Therapeutic implication of L-phenylalanine aggregation mechanism and its modulation by D-phenylalanine in phenylketonuria.

    PubMed

    Singh, Virender; Rai, Ratan Kumar; Arora, Ashish; Sinha, Neeraj; Thakur, Ashwani Kumar

    2014-01-27

    Self-assembly of phenylalanine is linked to amyloid formation toxicity in phenylketonuria disease. We are demonstrating that L-phenylalanine self-assembles to amyloid fibrils at varying experimental conditions and transforms to a gel state at saturated concentration. Biophysical methods including nuclear magnetic resonance, resistance by alpha-phenylglycine to fibril formation and preference of protected phenylalanine to self-assemble show that this behaviour of L-phenylalanine is governed mainly by hydrophobic interactions. Interestingly, D-phenylalanine arrests the fibre formation by L-phenylalanine and gives rise to flakes. These flakes do not propagate further and prevent fibre formation by L-phenylalanine. This suggests the use of D-phenylalanine as modulator of L-phenylalanine amyloid formation and may qualify as a therapeutic molecule in phenylketonuria.

  3. Electrostatic interactions lead to the formation of asymmetric collagen-phosphophoryn aggregates.

    PubMed

    Dahl, Thomas; Veis, Arthur

    2003-01-01

    In bone and dentin the formation and mineralization of the extra cellular matrix structure is a complex process highly dependent on intermolecular interactions. In dentin, the phosphophoryns (PP) and type I collagen (COL1) are the major constituents implicated in mineralization. Thus, as a first step in understanding the tissue organization, we have initiated a study of their interaction as a function of pH, ionic strength, and relative concentrations or mixing ratios. Complex formation has been analyzed by dynamic light scattering to detect aggregate formation and by rotary shadowing electron microscopy (EM) to determine aggregate shape. The EM data showed that at the pH values studied, the PP-COL1 interaction leads to the formation of large fibrillar aggregates in which the PP are present along the fibril surfaces. The quantitative phase distribution data showed a 1/1 molar equivalence at the maximum aggregation point, not at electrostatic PP-COL1 equivalence. As the ionic strength was raised, the PP-COL1 aggregates became smaller but the binding and asymmetric fibrillar aggregation persisted. In EM, the PP appear as dense spheres. Along the surfaces of the collagen aggregates, the PP are larger and more open or extended, suggesting that COL1-bound PP may undergo a conformational change, opening up so that a single PP molecule might interact with and electrostatically link several COL1 molecules. This might have important implications for dentin structure, stability, and mineralization.

  4. Embedded Clusters

    NASA Astrophysics Data System (ADS)

    Ascenso, Joana

    The past decade has seen an increase of star formation studies made at the molecular cloud scale, motivated mostly by the deployment of a wealth of sensitive infrared telescopes and instruments. Embedded clusters, long recognised as the basic units of coherent star formation in molecular clouds, are now seen to inhabit preferentially cluster complexes tens of parsecs across. This chapter gives an overview of some important properties of the embedded clusters in these complexes and of the complexes themselves, along with the implications of viewing star formation as a molecular-cloud scale process rather than an isolated process at the scale of clusters.

  5. Peroxiredoxin-1 protects estrogen receptor α from oxidative stress-induced suppression and is a protein biomarker of favorable prognosis in breast cancer

    PubMed Central

    2014-01-01

    Introduction Peroxiredoxin-1 (PRDX1) is a multifunctional protein, acting as a hydrogen peroxide (H2O2) scavenger, molecular chaperone and immune modulator. Although differential PRDX1 expression has been described in many tumors, the potential role of PRDX1 in breast cancer remains highly ambiguous. Using a comprehensive antibody-based proteomics approach, we interrogated PRDX1 protein as a putative biomarker in estrogen receptor (ER)-positive breast cancer. Methods An anti-PRDX1 antibody was validated in breast cancer cell lines using immunoblotting, immunohistochemistry and reverse phase protein array (RPPA) technology. PRDX1 protein expression was evaluated in two independent breast cancer cohorts, represented on a screening RPPA (n = 712) and a validation tissue microarray (n = 498). In vitro assays were performed exploring the functional contribution of PRDX1, with oxidative stress conditions mimicked via treatment with H2O2, peroxynitrite, or adenanthin, a PRDX1/2 inhibitor. Results In ER-positive cases, high PRDX1 protein expression is a biomarker of improved prognosis across both cohorts. In the validation cohort, high PRDX1 expression was an independent predictor of improved relapse-free survival (hazard ratio (HR) = 0.62, 95% confidence interval (CI) = 0.40 to 0.96, P = 0.032), breast cancer-specific survival (HR = 0.44, 95% CI = 0.24 to 0.79, P = 0.006) and overall survival (HR = 0.61, 95% CI = 0.44 to 0.85, P = 0.004). RPPA screening of cancer signaling proteins showed that ERα protein was upregulated in PRDX1 high tumors. Exogenous H2O2 treatment decreased ERα protein levels in ER-positive cells. PRDX1 knockdown further sensitized cells to H2O2- and peroxynitrite-mediated effects, whilst PRDX1 overexpression protected against this response. Inhibition of PRDX1/2 antioxidant activity with adenanthin dramatically reduced ERα levels in breast cancer cells. Conclusions PRDX1 is shown to be an independent predictor of improved outcomes in ER-positive breast cancer. Through its antioxidant function, PRDX1 may prevent oxidative stress-mediated ERα loss, thereby potentially contributing to maintenance of an ER-positive phenotype in mammary tumors. These results for the first time imply a close connection between biological activity of PRDX1 and regulation of estrogen-mediated signaling in breast cancer. PMID:25011585

  6. The Role of Epithelial-Mesenchymal Transition in the Formation of Normal and Neoplastic Mammary Epithelial Stem Cells

    DTIC Science & Technology

    2011-09-01

    separating stem cell and non- stem cell populations of normal and breast cancer cells and identified EMT transcription factors most likely involved in... stem cell biology. Preliminary results directly demonstrate that transient induction of EMT increases the number of mammary epithelial stem cells...EMT and entrance into a stem - cell state. The outcome of these experiments holds important implications for the mechanisms controlling the formation of

  7. Post-Deposition (and Ongoing?) Modification of Caloris Ejecta Blocks

    NASA Astrophysics Data System (ADS)

    Wright, J.; Conway, S. J.; Balme, M. R.; Rothery, D. A.

    2018-05-01

    Caloris ejecta blocks have been modified by mass-wasting that has persisted long after their formation. Volatiles may be involved in this process. Block geomorphology therefore has implications for Mercury's interior volatile content.

  8. Formative versus reflective measurement: an illustration using work-family balance.

    PubMed

    Ellwart, Thomas; Konradt, Udo

    2011-01-01

    The aim of this article is to propose the formative measurement approach that can be used in various constructs of applied psychology. To illustrate this approach, the authors will (a) discuss the distinction between commonly used principal-factor (reflective) measures in comparison to the composite (formative) latent variable model, which is often applied in other disciplines such as marketing or engineering, and (b) point out the advantages and limitations of formative specifications using the example of the work-family balance (WFB) construct. Data collected from 2 large cross-sectional field studies confirm the reliability and validity of formative WFB measures as well as its predictive value regarding criteria of WFB (i.e., job satisfaction, family satisfaction, and life satisfaction). Last, the specific informational value of each formative indicator will be demonstrated and discussed in terms of practical implications for the assessment in different psychological fields.

  9. Media depictions of health topics: challenge and stigma formats.

    PubMed

    Smith, Rachel

    2007-01-01

    This article explored the notion that media depictions of health concerns come in one of two formats: challenge and stigma. After explicating the five features that should appear in challenge format and the seven features of stigma formats, we analyzed the content of health messages in magazines, brochures, and posters (n = 75) in a metropolitan area. The results of a two-factor confirmatory factor model showed that the five suggested features for challenge formats did, indeed, appear together (alpha = .76), and the seven features for stigma formats, also, appeared together (alpha = .90), and showed no residual relationship. In other words, the results suggest that media depictions of health topics appear in either challenge or stigma formats (r = - .87). Health issues appearing in magazine advertisements and articles presented messages in challenge formats, while brochures and posters from largely nonprofit and government groups depicted health issues in stigma formats. Some health topics appeared most often in challenge formats (including cancer, heart disease, and scoliosis), while others appeared in stigma formats (including tuberculosis, hepatitis, smoking, and sexually transmitted diseases [STDs]). Findings suggest that media depictions of health differ, and the implications of stigma and challenge formats are discussed.

  10. Requirement for Parp-1 and DNA ligases 1 or 3 but not of Xrcc1 in chromosomal translocation formation by backup end joining

    PubMed Central

    Soni, Aashish; Siemann, Maria; Grabos, Martha; Murmann, Tamara; Pantelias, Gabriel E.; Iliakis, George

    2014-01-01

    In mammalian cells, ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) are repaired in all phases of the cell cycle predominantly by classical, DNA-PK-dependent nonhomologous end joining (D-NHEJ). Homologous recombination repair (HRR) is functional during the S- and G2-phases, when a sister chromatid becomes available. An error-prone, alternative form of end joining, operating as backup (B-NHEJ) functions robustly throughout the cell cycle and particularly in the G2-phase and is thought to backup predominantly D-NHEJ. Parp-1, DNA-ligases 1 (Lig1) and 3 (Lig3), and Xrcc1 are implicated in B-NHEJ. Chromosome and chromatid translocations are manifestations of erroneous DSB repair and are crucial culprits in malignant transformation and IR-induced cell lethality. We analyzed shifts in translocation formation deriving from defects in D-NHEJ or HRR in cells irradiated in the G2-phase and identify B-NHEJ as the main DSB repair pathway backing up both of these defects at the cost of a large increase in translocation formation. Our results identify Parp-1 and Lig1 and 3 as factors involved in translocation formation and show that Xrcc1 reinforces the function of Lig3 in the process without being required for it. Finally, we demonstrate intriguing connections between B-NHEJ and DNA end resection in translocation formation and show that, as for D-NHEJ and HRR, the function of B-NHEJ facilitates the recovery from the G2-checkpoint. These observations advance our understanding of chromosome aberration formation and have implications for the mechanism of action of Parp inhibitors. PMID:24748665

  11. Requirement for Parp-1 and DNA ligases 1 or 3 but not of Xrcc1 in chromosomal translocation formation by backup end joining.

    PubMed

    Soni, Aashish; Siemann, Maria; Grabos, Martha; Murmann, Tamara; Pantelias, Gabriel E; Iliakis, George

    2014-06-01

    In mammalian cells, ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) are repaired in all phases of the cell cycle predominantly by classical, DNA-PK-dependent nonhomologous end joining (D-NHEJ). Homologous recombination repair (HRR) is functional during the S- and G2-phases, when a sister chromatid becomes available. An error-prone, alternative form of end joining, operating as backup (B-NHEJ) functions robustly throughout the cell cycle and particularly in the G2-phase and is thought to backup predominantly D-NHEJ. Parp-1, DNA-ligases 1 (Lig1) and 3 (Lig3), and Xrcc1 are implicated in B-NHEJ. Chromosome and chromatid translocations are manifestations of erroneous DSB repair and are crucial culprits in malignant transformation and IR-induced cell lethality. We analyzed shifts in translocation formation deriving from defects in D-NHEJ or HRR in cells irradiated in the G2-phase and identify B-NHEJ as the main DSB repair pathway backing up both of these defects at the cost of a large increase in translocation formation. Our results identify Parp-1 and Lig1 and 3 as factors involved in translocation formation and show that Xrcc1 reinforces the function of Lig3 in the process without being required for it. Finally, we demonstrate intriguing connections between B-NHEJ and DNA end resection in translocation formation and show that, as for D-NHEJ and HRR, the function of B-NHEJ facilitates the recovery from the G2-checkpoint. These observations advance our understanding of chromosome aberration formation and have implications for the mechanism of action of Parp inhibitors. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Disrupted prediction-error signal in psychosis: evidence for an associative account of delusions

    PubMed Central

    Corlett, P. R.; Murray, G. K.; Honey, G. D.; Aitken, M. R. F.; Shanks, D. R.; Robbins, T.W.; Bullmore, E.T.; Dickinson, A.; Fletcher, P. C.

    2012-01-01

    Delusions are maladaptive beliefs about the world. Based upon experimental evidence that prediction error—a mismatch between expectancy and outcome—drives belief formation, this study examined the possibility that delusions form because of disrupted prediction-error processing. We used fMRI to determine prediction-error-related brain responses in 12 healthy subjects and 12 individuals (7 males) with delusional beliefs. Frontal cortex responses in the patient group were suggestive of disrupted prediction-error processing. Furthermore, across subjects, the extent of disruption was significantly related to an individual’s propensity to delusion formation. Our results support a neurobiological theory of delusion formation that implicates aberrant prediction-error signalling, disrupted attentional allocation and associative learning in the formation of delusional beliefs. PMID:17690132

  13. How I learned to stop worrying and love calcineurin

    PubMed Central

    Sindreu, Carlos Balet; Storm, Daniel R

    2009-01-01

    Many kinases have been implicated in memory formation, but a new study suggests that a phosphatase, calcineurin, is important for the long-lasting nature of emotional memories by making them resistant to extinction. PMID:18437188

  14. Thyroid hormone regulation of adult intestinal stem cells: Implications on intestinal development and homeostasis.

    PubMed

    Sun, Guihong; Roediger, Julia; Shi, Yun-Bo

    2016-12-01

    Organ-specific adult stem cells are essential for organ homeostasis, tissue repair and regeneration. The formation of such stem cells often takes place during postembryonic development, a period around birth in mammals when plasma thyroid hormone concentration is high. The life-long self-renewal of the intestinal epithelium has made mammalian intestine a valuable model to study the function and regulation and adult stem cells. On the other hand, much less is known about how the adult intestinal stem cells are formed during vertebrate development. Here, we will review some recent progresses on this subject, focusing mainly on the formation of the adult intestine during Xenopus metamorphosis. We will discuss the role of thyroid hormone signaling pathway in the process and potential molecular conservations between amphibians and mammals as well as the implications in organ homeostasis and human diseases.

  15. The Effect of Nickel on Iron Isotope Fractionation and Implications for the Earth's Core

    NASA Astrophysics Data System (ADS)

    Reagan, M. M.; Shahar, A.; Elardo, S. M.; Liu, J.; Xiao, Y.; Mao, W. L.

    2017-12-01

    The Earth's core is thought to be composed mainly of an iron-rich iron nickel (FeNi) alloy. Therefore, determining the behavior of these alloys at core conditions is crucial for interpreting and constraining geophysical and geochemical models. Understanding the effect of nickel on iron isotope fractionation can shed light on planetary core formation. We collected a series of phonon excitation spectra using nuclear resonant inelastic x-ray scattering (NRIXS) on 57Fe-enriched FeNi alloys with varying (Fe0.9Ni0.1, Fe0.8Ni0.2, Fe0.7Ni0.3) nickel content in a diamond anvil cell at pressures up to 50 GPa. All three alloys studied exhibited differences from pure Fe, indicating that increasing nickel content could have an effect on iron isotope fractionation which would have implications for planetary core formation and provide constraints the bulk composition for terrestrial planets.

  16. Implication of high dynamic range and wide color gamut content distribution

    NASA Astrophysics Data System (ADS)

    Lu, Taoran; Pu, Fangjun; Yin, Peng; Chen, Tao; Husak, Walt

    2015-09-01

    High Dynamic Range (HDR) and Wider Color Gamut (WCG) content represents a greater range of luminance levels and a more complete reproduction of colors found in real-world scenes. The current video distribution environments deliver Standard Dynamic Range (SDR) signal. Therefore, there might be some significant implication on today's end-to-end ecosystem from content creation to distribution and finally to consumption. For SDR content, the common practice is to apply compression on Y'CbCr 4:2:0 using gamma transfer function and non-constant luminance 4:2:0 chroma subsampling. For HDR and WCG content, it is desirable to examine if such signal format still works well for compression, and it is interesting to know if the overall system performance can be further improved by exploring different signal formats and processing workflows. In this paper, we will provide some of our insight into those problems.

  17. Soil stabilization by a prokaryotic desert crust - Implications for Precambrian land biota

    NASA Technical Reports Server (NTRS)

    Campbell, S. E.

    1979-01-01

    The ecology of the cyanophyte-dominated stromatolitic mat forming the ground cover over desert areas of Utah and Colorado is investigated and implications for the formation of mature Precambrian soils are discussed. The activation of the growth of the two species of filamentous cyanophyte identified and the mobility of their multiple trichromes upon wetting are observed, accompanied by the production and deposition of a sheath capable of accreting and stabilizing sand and clay particles. The formation of calcium carbonate precipitates upon the repeated wetting and drying of desert crust is noted, and it is suggested that the desert crust community may appear in fossil calcrete deposits as lithified microscopic tubes and cellular remains of algal trichromes. The invasion of dry land by both marine and freshwater algae on the model of the desert crust is proposed to be responsible for the accumulation, stabilization and biogenic modification of mature Precambrian soils.

  18. Objective measurement of complex multimodal and multidimensional display formats: a common metric for predicting format effectiveness

    NASA Astrophysics Data System (ADS)

    Marshak, William P.; Darkow, David J.; Wesler, Mary M.; Fix, Edward L.

    2000-08-01

    Computer-based display designers have more sensory modes and more dimensions within sensory modality with which to encode information in a user interface than ever before. This elaboration of information presentation has made measurement of display/format effectiveness and predicting display/format performance extremely difficult. A multivariate method has been devised which isolates critical information, physically measures its signal strength, and compares it with other elements of the display, which act like background noise. This common Metric relates signal-to-noise ratios (SNRs) within each stimulus dimension, then combines SNRs among display modes, dimensions and cognitive factors can predict display format effectiveness. Examples with their Common Metric assessment and validation in performance will be presented along with the derivation of the metric. Implications of the Common Metric in display design and evaluation will be discussed.

  19. Bubble formation during pulsed laser ablation: mechanism and implications

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Ton G. J. M.; Jansen, E. Duco; Motamedi, Massoud; Welch, Ashley J.; Borst, Cornelius

    1993-07-01

    Holmium ((lambda) equals 2.09 micrometers ) and excimer ((lambda) equals 308 nm) lasers are used for ablation of tissue. In a previous study it was demonstrated that both excimer and holmium laser pulses produce fast expanding and collapsing vapor bubbles. To investigate whether the excimer induced bubble is caused by vaporization of water, the threshold fluence for bubble formation at a bare fiber tip in water was compared between the excimer laser (pulse length 115 ns) and the Q-switched and free-running holmium lasers (pulse length 1 microsecond(s) to 250 microsecond(s) , respectively). To induce bubble formation by excimer laser light in water, the absorber oxybuprocaine-hydrochloride (OBP-HCl) was added to the water. Fast flash photography was used to measure the threshold fluence as a function of the water temperature (6 - 90 degree(s)C) at environmental pressure. The ultraviolet excimer laser light is strongly absorbed by blood. Therefore, to document the implications of bubble formation at fluences above the tissue ablation threshold, excimer laser pulses were delivered in vitro in hemoglobin solution and in vivo in the femoral artery of the rabbit. We conclude that the principal content of the fast bubble induced by a 308 nm excimer laser pulse is water vapor. Therefore, delivery of excimer laser pulses in a water or blood environment will cause fast expanding water vapor bubbles, which may induce mechanical damage to adjacent tissue.

  20. Klebsiella pneumoniae yfiRNB operon affects biofilm formation, polysaccharide production and drug susceptibility.

    PubMed

    Huertas, Mónica G; Zárate, Lina; Acosta, Iván C; Posada, Leonardo; Cruz, Diana P; Lozano, Marcela; Zambrano, María M

    2014-12-01

    Klebsiella pneumoniae is an opportunistic pathogen important in hospital-acquired infections, which are complicated by the rise of drug-resistant strains and the capacity of cells to adhere to surfaces and form biofilms. In this work, we carried out an analysis of the genes in the K. pneumoniae yfiRNB operon, previously implicated in biofilm formation. The results indicated that in addition to the previously reported effect on type 3 fimbriae expression, this operon also affected biofilm formation due to changes in cellulose as part of the extracellular matrix. Deletion of yfiR resulted in enhanced biofilm formation and an altered colony phenotype indicative of cellulose overproduction when grown on solid indicator media. Extraction of polysaccharides and treatment with cellulase were consistent with the presence of cellulose in biofilms. The enhanced cellulose production did not, however, correlate with virulence as assessed using a Caenorhabditis elegans assay. In addition, cells bearing mutations in genes of the yfiRNB operon varied with respect to the WT control in terms of susceptibility to the antibiotics amikacin, ciprofloxacin, imipenem and meropenem. These results indicated that the yfiRNB operon is implicated in the production of exopolysaccharides that alter cell surface characteristics and the capacity to form biofilms--a phenotype that does not necessarily correlate with properties related with survival, such as resistance to antibiotics. © 2014 The Authors.

  1. Magma reservoirs and neutral buoyancy zones on Venus - Implications for the formation and evolution of volcanic landforms

    NASA Technical Reports Server (NTRS)

    Head, James W.; Wilson, Lionel

    1992-01-01

    The production of magma reservoirs and neutral buoyancy zones (NBZs) on Venus and the implications of their development for the formation and evolution of volcanic landforms are examined. The high atmospheric pressure on Venus reduces volatile exsolution and generally serves to inhibit the formation of NBZs and shallow magma reservoirs. For a range of common terrestrial magma-volatile contents, magma ascending and erupting near or below mean planetary radius (MPR) should not stall at shallow magma reservoirs; such eruptions are characterized by relatively high total volumes and effusion rates. For the same range of volatile contents at 2 km above MPR, about half of the cases result in the direct ascent of magma to the surface and half in the production of neutral buoyancy zones. NBZs and shallow magma reservoirs begin to appear as gas content increases and are nominally shallower on Venus than on earth. For a fixed volatile content, NBZs become deeper with increasing elevation: over the range of elevations treated in this study (-1 km to +4.4 km) depths differ by a factor of 2-4. Factors that may account for the low height of volcanoes on Venus are discussed.

  2. Formation of an Oceanic Transform Fault During Continental Rifting

    NASA Astrophysics Data System (ADS)

    Illsley-Kemp, F.; Bull, J. M.; Keir, D.; Gerya, T.; Pagli, C.; Gernon, T.; Ayele, A.; Goitom, B.; Hammond, J. O. S.; Kendall, J. M.

    2017-12-01

    We integrate evidence from surface faults, geodetic measurements, local seismicity, and 3D numerical modelling of the subaerial Afar continental rift to show that an oceanic-style transform fault is forming during the final stages of continental breakup. Transform faults are a fundamental tenet of plate tectonics, connecting offset extensional segments of mid-ocean ridges, and are vital in palaeotectonic reconstructions of passive margins. The current consensus is that transform faults initiate after the onset of seafloor spreading. However this inference has been difficult to test given the lack of observations of transform fault formation. We present the first direct observation of transform fault initiation, and shed unprecedented light on their formation mechanisms. We demonstrate that they originate during late-stage continental rifting, earlier in the rifting cycle than previously thought. Our results have important implications for reconstructing the breakup history of the continents. Palaeotectonic reconstructions that use transform fault terminations as an indicator of the continent-ocean boundary may have placed the continent-ocean boundary landward of its true location. This will have led to an overestimation of the age of continental breakup of between 8-18 Myr. Our results therefore have significant implications for studies that rely on accurate dating of continental breakup events.

  3. Small-sized mesotheriines (Mesotheriidae, Notoungulata) from Northwestern Argentina: Systematic, chronological, and paleobiogeographic implications

    NASA Astrophysics Data System (ADS)

    Armella, M. A.; Nasif, N. L.; Cerdeño, E.

    2018-04-01

    The Neogene outcrops in Northwestern Argentina have provided many fossil mammals, particularly notoungulates. However, the fossil record of the early stages of the late Miocene is scarce. The present study describes two mesotheriine specimens from Las Arcas Formation (underlying the Chiquimil Formation dated at 9.14 ± 0.09 Ma; Catamarca Province) and Saladillo Formation (dated at 10 ± 0.3 Ma; Tucumán Province), represented by a left maxillary fragment with complete M1-3 and a right isolated M3, respectively. The main feature of these pieces is their small size, significantly smaller than that of the Miocene genera Eutypotherium, Typotheriopsis, and Pseudotypotherium, recorded in Argentina. In contrast, these mesotheriines are closer to specimens known from Bolivia. The comparative analysis allows us to refer the material herein described to Plesiotypotherium aff. P. achirense and Mesotheriinae indet., with all cautions inherent to the incompleteness of the material. In turn, the paleobiogeographic implication of these new records is approached. A relationship concerning phylogenetic aspects, size, temporal range, and distribution pattern is proposed, taking into account the small size of the studied material in a temporal context of medium to large-sized mesotheriines.

  4. New isotopic clues to solar system formation

    NASA Technical Reports Server (NTRS)

    Lee, T.

    1979-01-01

    The presence of two new extinct nuclides Al-26 and Pd-107 with half lives of approximately one million years in the early solar system implies that there were nucleosynthetic activities involving a great many elements almost at the instant of solar system formation. Rate gas and oxygen isotopic abundance variations ('anomalies') relative to the 'cosmic' composition were observed in a variety of planetary objects, which indicates that isotopic heterogeneities caused by the incomplete mixing of distinct nucleosynthesis components permeate the entire solar system. These new results have major implications for cosmochronology, nucleosynthesis theory, star formation, planetary heating, and the genetic relationship between different planetary bodies

  5. Ice formation in subglacial Lake Vostok, Central Antarctica

    NASA Astrophysics Data System (ADS)

    Souchez, R.; Petit, J. R.; Tison, J.-L.; Jouzel, J.; Verbeke, V.

    2000-09-01

    The investigation of chemical and isotopic properties in the lake ice from the Vostok ice core gives clues to the mechanisms involved in ice formation within the lake. A small lake water salinity can be reasonably deduced from the chemical data. Possible implications for the water circulation of Lake Vostok are developed. The characteristics of the isotopic composition of the lake ice indicate that ice formation in Lake Vostok occurred by frazil ice crystal generation due to supercooling as a consequence of rising waters and a possible contrast in water salinity. Subsequent consolidation of the developed loose ice crystals results in the accretion of ice to the ceiling of the lake.

  6. Ripple formation in unilamellar-supported lipid bilayer revealed by FRAPP.

    PubMed

    Harb, Frédéric; Simon, Anne; Tinland, Bernard

    2013-12-01

    The mechanisms of formation and conditions of the existence of the ripple phase are fundamental thermodynamic questions with practical implications for medicine and pharmaceuticals. We reveal a new case of ripple formation occurring in unilamellar-supported bilayers in water, which results solely from the bilayer/support interaction, without using lipid mixtures or specific ions. This ripple phase is detected by FRAPP using diffusion coefficient measurements as a function of temperature: a diffusivity plateau is observed. It occurs in the same temperature range where ripple phase existence has been observed using other methods. When AFM experiments are performed in the appropriate temperature range the ripple phase is confirmed.

  7. New Mesotheriidae (Mammalia, Notoungulata, Typotheria), geochronology and tectonics of the Caragua area, northernmost Chile

    NASA Astrophysics Data System (ADS)

    Flynn, John J.; Croft, Darin A.; Charrier, Reynaldo; Wyss, André R.; Hérail, Gérard; García, Marcelo

    2005-05-01

    Few mammal fossils were known from the Altiplano or adjoining parts of northern Chile until recently. We report a partial mesotheriid palate from the vicinity of Caragua (Huaylas Formation) in northernmost Chile. The new material helps resolve contradictory taxonomic assignments (and age implications) of the two mesotheriid specimens previously reported from the area. Herein we refer all three mesotheriid specimens to a new taxon, Caraguatypotherium munozi, which is closely related to Plesiotypotherium, Typotheriopsis, Pseudotypotherium, and Mesotherium. This phylogenetic placement permits a revised biochronologic estimate of a post-Friasian/pre-Huayquerian (˜15-9 Ma) age for the Huaylas Formation, consistent with new radioisotopic dates from the upper Huaylas Formation and its bracketing stratigraphic units. Improved geochronologic control for the Huaylas Formation has important implications for the timing of tectonic events in the Precordillera/Altiplano of northern Chile. Structural, stratigraphic, and temporal data suggest the onset of rapid, progressive deformation shortly after the deposition of the older Zapahuira Formation, continuing at least partly through deposition of the Huaylas Formation. Deposition of the Huaylas Formation was short lived (between ˜10-12 Ma), possibly stemming from activity on the Copaquilla-Tignámar Fault in the eastern Precordillera. This deformation is associated with the development of the Oxaya Anticline and activity of the Ausipar Fault west of the study region on the frontal limb of the anticline in the westernmost Precordillera. Faulting and folding occurred rapidly, beginning at ˜11.4 Ma (shortly after deposition of the youngest extrusives of the Zapahuira Formation) and before ˜10.7 Ma (the age of the gently dipping horizons within the upper Huaylas Formation that overlie the mammal fossils and an intraformational unconformity). Mesotheriids are the only Tertiary fossil mammals known from the Precordillera of northernmost Chile thus far; the group is common and diverse in faunas from the Altiplano of Bolivia (and a fauna recently recovered from the Chilean Altiplano), in contrast to most higher-latitude and tropical assemblages. This distinctiveness indicates that intermediate latitudes may have been biogeographically distinct and served as a center of diversification for mesotheriids and other groups of indigenous South American mammals.

  8. Implications of Martian Phyllosilicate Formation Conditions to the Early Climate on Mars

    NASA Astrophysics Data System (ADS)

    Bishop, J. L.; Baker, L.; Fairén, A. G.; Michalski, J. R.; Gago-Duport, L.; Velbel, M. A.; Gross, C.; Rampe, E. B.

    2017-12-01

    We propose that short-term warmer and wetter environments, occurring sporadically in a generally cold early Mars, enabled formation of phyllosilicate-rich outcrops on the surface of Mars without requiring long-term warm and wet conditions. We are investigating phyllosilicate formation mechanisms including CO2 and H2O budgets to provide constraints on the early martian climate. We have evaluated the nature and stratigraphy of phyllosilicate-bearing surface units on Mars based on i) phyllosilicate-forming environments on Earth, ii) phyllosilicate reactions in the lab, and iii) modeling experiments involving phyllosilicates and short-range ordered (SRO) materials. The type of phyllosilicates that form on Mars depends on temperature, water/rock ratio, acidity, salinity and available ions. Mg-rich trioctahedral smectite mixtures are more consistent with subsurface formation environments (crustal, hydrothermal or alkaline lakes) up to 400 °C and are not associated with martian surface environments. In contrast, clay profiles dominated by dioctahedral Al/Fe-smectites are typically formed in subaqueous or subaerial surface environments. We propose models describing formation of smectite-rich outcrops and laterally extensive vertical profiles of Fe/Mg-smectites, sulfates, and Al-rich clay assemblages formed in surface environments. Further, the presence of abundant SRO materials without phyllosilicates could mark the end of the last warm and wet episode on Mars supporting smectite formation. Climate Implications for Early Mars: Clay formation reactions proceed extremely slowly at cool temperatures. The thick smectite outcrops observed on Mars through remote sensing would require standing water on Mars for hundreds of millions of years if they formed in waters 10-15 °C. However, warmer temperatures could have enabled faster production of these smectite-rich beds. Sporadic warming episodes to 30-40 °C could have enabled formation of these smectites over only tens or hundreds of thousands of years instead. Our analyses of the phyllosilicate record on Mars point to a scenario of brief warm and wet conditions that accounts for formation of substantial smectite clays in many locations, geologic features resulting from liquid water across the planet, and a generally cold and dry climate.

  9. Methane Recovery from Hydrate-bearing Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Carlos Santamarina; Costas Tsouris

    2011-04-30

    Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane are trapped in the form of hydrates. Methane hydrate can be an energy resource, contribute to global warming, or cause seafloor instability. This study placed emphasis on gas recovery from hydrate bearing sediments and related phenomena. The unique behavior of hydrate-bearing sediments required the development of special research tools, including new numerical algorithms (tube- and pore-network models) and experimental devices (high pressure chambers and micromodels). Therefore, the research methodology combined experimental studies, particle-scale numerical simulations,more » and macro-scale analyses of coupled processes. Research conducted as part of this project started with hydrate formation in sediment pores and extended to production methods and emergent phenomena. In particular, the scope of the work addressed: (1) hydrate formation and growth in pores, the assessment of formation rate, tensile/adhesive strength and their impact on sediment-scale properties, including volume change during hydrate formation and dissociation; (2) the effect of physical properties such as gas solubility, salinity, pore size, and mixed gas conditions on hydrate formation and dissociation, and it implications such as oscillatory transient hydrate formation, dissolution within the hydrate stability field, initial hydrate lens formation, and phase boundary changes in real field situations; (3) fluid conductivity in relation to pore size distribution and spatial correlation and the emergence of phenomena such as flow focusing; (4) mixed fluid flow, with special emphasis on differences between invading gas and nucleating gas, implications on relative gas conductivity for reservoir simulations, and gas recovery efficiency; (5) identification of advantages and limitations in different gas production strategies with emphasis; (6) detailed study of CH4-CO2 exchange as a unique alternative to recover CH4 gas while sequestering CO2; (7) the relevance of fines in otherwise clean sand sediments on gas recovery and related phenomena such as fines migration and clogging, vuggy structure formation, and gas-driven fracture formation during gas production by depressurization.« less

  10. Professional Identity Formation and the Clinician-Scientist: A Paradigm for a Clinical Career Combining Two Distinct Disciplines.

    PubMed

    Rosenblum, Norman D; Kluijtmans, Manon; Ten Cate, Olle

    2016-12-01

    The clinician-scientist role is critical to the future of health care, and in 2010, the Carnegie Report on Educating Physicians focused attention on the professional identity of practicing clinicians. Although limited in number, published studies on the topic suggest that professional identity is likely a critical factor that determines career sustainability. In contrast to clinicians with a singular focus on clinical practice, clinician-scientists combine two major disciplines, clinical medicine and scientific research, to bridge discovery and clinical care. Despite its importance to advancing medical practice, the clinician-scientist career faced a variety of threats, which have been identified recently by the 2014 National Institutes of Health Physician Scientist Workforce. Yet, professional identity development in this career pathway is poorly understood. This Perspective focuses on the challenges to the clinician-scientist's professional identity and its development. First, the authors identify the particular challenges that arise from the different cultures of clinical care and science and the implications for clinician-scientist professional identity formation. Next, the authors synthesize insights about professional identity development within a dual-discipline career and apply their analysis to a discussion about the implications for clinician-scientist identity formation. Although not purposely developed to address identity formation, the authors highlight those elements within clinician-scientist training and career development programs that may implicitly support identity development. Finally, the authors highlight a need to identify empirically the elements that compose and determine clinician-scientist professional identity and the processes that shape its formation and sustainability.

  11. Localized comedo formation after cobalt irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myskowski, P.L.; Safai, B.

    1981-10-01

    Following Cobalt-60 irradiation for a left frontotemporal tumor, a 61-year-old woman developed comedones on the forehead. These changes responded to conventional acne therapy with retinoic acid. Multiple acneigenic factors were implicated in the pathogenesis of her lesions.

  12. Alternative end-joining repair pathways are the ultimate backup for abrogated classical non-homologous end-joining and homologous recombination repair: Implications for the formation of chromosome translocations.

    PubMed

    Iliakis, George; Murmann, Tamara; Soni, Aashish

    2015-11-01

    DNA double strand breaks (DSB) are the most deleterious lesions for the integrity of the genome, as their misrepair can lead to the formation of chromosome translocations. Cells have evolved two main repair pathways to suppress the formation of these genotoxic lesions: homology-dependent, error-free homologous recombination repair (HRR), and potentially error-prone, classical, DNA-PK-dependent non-homologous end-joining (c-NHEJ). The most salient feature of c-NHEJ, speed, will largely suppress chromosome translocation formation, while sequence alterations at the junction remain possible. It is now widely accepted that when c-NHEJ is inactivated, globally or locally, an alternative form of end-joining (alt-EJ) removes DSBs. Alt-EJ operates with speed and fidelity markedly lower than c-NHEJ, causing thus with higher probability chromosome translocations, and generating more extensive sequence alterations at the junction. Our working hypothesis is that alt-EJ operates as a backup to c-NHEJ. Recent results show that alt-EJ can also backup abrogated HRR in G2 phase cells, again at the cost of elevated formation of chromosome translocations. These observations raise alt-EJ to a global rescuing mechanism operating on ends that have lost their chromatin context in ways that compromise processing by HRR or c-NHEJ. While responsible for eliminating from the genome highly cytotoxic DNA ends, alt-EJ provides this function at the price of increased translocation formation. Here, we analyze recent literature on the mechanisms of chromosome translocation formation and propose a functional hierarchy among DSB processing pathways that makes alt-EJ the global backup pathway. We discuss possible ramifications of this model in cellular DSB management and pathway choice, and analyze its implications in radiation carcinogenesis and the design of novel therapeutic approaches. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Coupling Effects of Unsteady River Discharges and Wave Conditions on Mouth Bar Formation

    NASA Astrophysics Data System (ADS)

    Gao, W.; Shao, D.; Zheng Bing, W.; Yang, W.; Sun, T.; Cui, B.

    2017-12-01

    As a key morphological unit at delta front, the evolution of mouth bar is of critical importance to channel bifurcation and the formation of deltaic distributaries, and therefore have received wide attention, primarily using numerical modelling approaches. Notably, the existing numerical modelling studies were mostly carried out under the assumption that most of the sediments are delivered to the ocean during bankfull discharge stages, so is the most significant deltaic morphological evolution, and hence periods of relatively low river discharge were `safely' neglected, leaving out the effects of unsteadiness of river discharge on the relevant morphodynamic processes altogether. However, the above assumption is worth reviewing in the context of combined fluvial and marine forcing as the relative wave strength has been repeatedly proved to be a critical parameter in estuarine-deltaic morphodynamics. In natural deltas, the period of high river discharge may or may not coincide with the occurrence of maximum wave strength, which further complicates their coupling effects. To assess the coupling effects of unsteady river discharges and wave conditions on mouth bar formation, numerical experiments using Delft3D-SWAN were conducted in this study. A host of combined high-and-low river discharges coupled with varying wave strengths were assumed to mimic the natural variability. Numerical simulation results suggest the existence of three regimes for mouth bar formation, namely, nonexistence of mouth bar (G1), formation of ephemeral mouth bar (G2) and formation of stable mouth bar (G3), which were dictated by the relative wave strength during both onset and reworking stages as well as the reworking time. Implications of the mouth bar formation regimes on delta distributary networks were also discussed. The findings have implications for coastal management at estuaries and deltas such as erosion prevention and mitigation, water and sediment regulation scheme, etc.

  14. Evolution of Hot Gas in Elliptical Galaxies

    NASA Technical Reports Server (NTRS)

    Mathews, William G.

    2004-01-01

    This theory grant was awarded to study the curious nature, origin and evolution of hot gas in elliptical galaxies and their surrounding groups. Understanding the properties of this X-ray emitting gas has profound implications over the broad landscape of modern astrophysics: cosmology, galaxy formation, star formation, cosmic metal enrichment, galactic structure and dynamics, and the physics of hot gases containing dust and magnetic fields. One of our principal specific objectives was to interpret the marvelous new observations from the XMM and Chandru satellite X-ray telescopes.

  15. Evaluation of the Implications of Nanoscale Architectures on Contextual Knowledge Discovery and Memory: Self-Assembled Architectures and Memory

    DTIC Science & Technology

    2008-05-01

    patterns. Our strategy to nucleate Ag nanoparticles has been to use a templating protein (e.g., streptavidin) that has been chemically pre- charged with...assembly is used to direct the formation of switching devices and wires to create logic circuitry, memory, and I/O interfaces . We can control the reaction...determines the formation of structures (through complementarity ). Sequence design is important because it determines many aspects of the target DNA

  16. On the formation and evolution of clumps of galaxies in an expanding universe

    NASA Technical Reports Server (NTRS)

    Norman, C. A.; Silk, J.

    1978-01-01

    Results are derived for the development of phase-space clumps of mass points in a background spectrum of gravitational-potential fluctuations. The Vlasov equation and the pair correlation equation (in the weak coupling limit) are solved exactly in an Einstein-de Sitter cosmology, and the plasma-clumping theory is used to identify terms that yield important collective effects. Various astrophysical implications are discussed, including the formation of large-scale inhomogeneity and the enhanced generation of correlations in the distribution of galaxies.

  17. Orientale multi-ringed basin interior and implications for the petrogenesis of lunar highland samples

    NASA Technical Reports Server (NTRS)

    Head, J. W.

    1974-01-01

    The lunar Orientale basin is a 900 km diam circular topographic depression covering an area of over 700,000 sq km on the western limb of the moon. Three major rings surround the central Mare Orientale. Orientale basin structures are considered along with Orientale basin deposits and the sequence of formation of structures and deposits. It is found that the structures and facies are related in time and mode of origin to the formation of a major impact crater approximately 620 km in diam. The study suggests that the Orientale basin configuration is very nearly the same as its geometry at its time of formation. The formation of multiringed basins such as Orientale provides a mechanism for an instantaneous production of tremendous volumes of melted lunar crystal material.

  18. Epigenetic mechanisms in fear conditioning: Implications for treating post-traumatic stress disorder

    PubMed Central

    Kwapis, Janine L.; Wood, Marcelo A.

    2014-01-01

    Post-traumatic stress disorder (PTSD) and other anxiety disorders stemming from dysregulated fear memory are problematic and costly. Understanding the molecular mechanisms that contribute to the formation and maintenance of these persistent fear associations is critical to developing treatments for PTSD. Epigenetic mechanisms, which control gene expression to produce long-lasting changes in cellular function, may support the formation of fear memory underlying PTSD. Here, we address the role of epigenetic mechanisms in the formation, storage, updating, and extinction of fear memories and discuss methods of targeting these epigenetic mechanisms to reduce the initial formation of fear memory or to enhance its extinction. Epigenetic mechanisms may provide a novel target for pharmaceutical and other treatments to reduce aversive memory contributing to PTSD. PMID:25220045

  19. C-glycosylation reactions of sulfur-substituted glycosyl donors: evidence against the role of neighboring-group participation.

    PubMed

    Beaver, Matthew G; Billings, Susan B; Woerpel, K A

    2008-02-13

    Nucleophilic substitution reactions of C-4 sulfur-substituted tetrahydropyran acetals revealed that neighboring-group participation does not control product formation. Spectroscopic evidence for the formation of an intermediate sulfonium ion is provided, as are data from nucleophilic substitution reactions demonstrating that products are formed from oxocarbenium ion intermediates. The selectivity was not sensitive to solvent or to which Lewis acid was employed. The identity of the heteroatom at the C-4 position also did not significantly impact diastereoselectivity. Consequently, neighboring-group participation was not responsible for the formation of either the major or the minor products. These studies implicate a Curtin-Hammett kinetic scenario in which the formation of a low-energy intermediate does not necessitate its involvement in the product-forming pathway.

  20. Leptin regulates bone formation via the sympathetic nervous system

    NASA Technical Reports Server (NTRS)

    Takeda, Shu; Elefteriou, Florent; Levasseur, Regis; Liu, Xiuyun; Zhao, Liping; Parker, Keith L.; Armstrong, Dawna; Ducy, Patricia; Karsenty, Gerard

    2002-01-01

    We previously showed that leptin inhibits bone formation by an undefined mechanism. Here, we show that hypothalamic leptin-dependent antiosteogenic and anorexigenic networks differ, and that the peripheral mediators of leptin antiosteogenic function appear to be neuronal. Neuropeptides mediating leptin anorexigenic function do not affect bone formation. Leptin deficiency results in low sympathetic tone, and genetic or pharmacological ablation of adrenergic signaling leads to a leptin-resistant high bone mass. beta-adrenergic receptors on osteoblasts regulate their proliferation, and a beta-adrenergic agonist decreases bone mass in leptin-deficient and wild-type mice while a beta-adrenergic antagonist increases bone mass in wild-type and ovariectomized mice. None of these manipulations affects body weight. This study demonstrates a leptin-dependent neuronal regulation of bone formation with potential therapeutic implications for osteoporosis.

  1. Radioactive elements on Mercury's surface from MESSENGER: implications for the planet's formation and evolution.

    PubMed

    Peplowski, Patrick N; Evans, Larry G; Hauck, Steven A; McCoy, Timothy J; Boynton, William V; Gillis-Davis, Jeffery J; Ebel, Denton S; Goldsten, John O; Hamara, David K; Lawrence, David J; McNutt, Ralph L; Nittler, Larry R; Solomon, Sean C; Rhodes, Edgar A; Sprague, Ann L; Starr, Richard D; Stockstill-Cahill, Karen R

    2011-09-30

    The MESSENGER Gamma-Ray Spectrometer measured the average surface abundances of the radioactive elements potassium (K, 1150 ± 220 parts per million), thorium (Th, 220 ± 60 parts per billion), and uranium (U, 90 ± 20 parts per billion) in Mercury's northern hemisphere. The abundance of the moderately volatile element K, relative to Th and U, is inconsistent with physical models for the formation of Mercury requiring extreme heating of the planet or its precursor materials, and supports formation from volatile-containing material comparable to chondritic meteorites. Abundances of K, Th, and U indicate that internal heat production has declined substantially since Mercury's formation, consistent with widespread volcanism shortly after the end of late heavy bombardment 3.8 billion years ago and limited, isolated volcanic activity since.

  2. The Role of Lactate-Mediated Metabolic Coupling between Astrocytes and Neurons in Long-Term Memory Formation

    PubMed Central

    Steinman, Michael Q.; Gao, Virginia; Alberini, Cristina M.

    2016-01-01

    Long-term memory formation, the ability to retain information over time about an experience, is a complex function that affects multiple behaviors, and is an integral part of an individual’s identity. In the last 50 years many scientists have focused their work on understanding the biological mechanisms underlying memory formation and processing. Molecular studies over the last three decades have mostly investigated, or given attention to, neuronal mechanisms. However, the brain is composed of different cell types that, by concerted actions, cooperate to mediate brain functions. Here, we consider some new insights that emerged from recent studies implicating astrocytic glycogen and glucose metabolisms, and particularly their coupling to neuronal functions via lactate, as an essential mechanism for long-term memory formation. PMID:26973477

  3. Models of Students' Thinking Concerning the Greenhouse Effect and Teaching Implications.

    ERIC Educational Resources Information Center

    Koulaidis, Vasilis; Christidou, Vasilia

    1999-01-01

    Primary school students (n=40) ages 11 and 12 years were interviewed concerning their conceptions of the greenhouse effect. Analysis of the data led to the formation of seven distinct models of thinking regarding this phenomenon. (Author/CCM)

  4. Gravity observations and Bouguer anomaly values for eastern Tennessee

    USGS Publications Warehouse

    Watkins, J.S.; Yuval, Zvi

    1971-01-01

    Principal facts for gravity data in eastern Tennessee are presented in computer printout format. These data were used in preparation of Watkins, J. S., 1964, Regional geologic implications of the gravity and magnetic fields of a part of eastern Tennessee.

  5. ASR/DEF-damaged bent caps : shear tests and field implications.

    DOT National Transportation Integrated Search

    2009-08-01

    Over the last decade, a number of reinforced concrete bent caps within Houston, Texas have exhibited premature concrete damage (cracking, spalling and a loss of material : strength) due to alkali-silica reaction (ASR) and/or delayed ettringite format...

  6. Mass Spectrometry Based Mechanistic Insights into Formation of Tris Conjugates: Implications on Protein Biopharmaceutics

    NASA Astrophysics Data System (ADS)

    Kabadi, Pradeep G.; Sankaran, Praveen Kallamvalliillam; Palanivelu, Dinesh V.; Adhikary, Laxmi; Khedkar, Anand; Chatterjee, Amarnath

    2016-10-01

    We present here extensive mass spectrometric studies on the formation of a Tris conjugate with a therapeutic monoclonal antibody. The results not only demonstrate the reactive nature of the Tris molecule but also the sequence and reaction conditions that trigger this reactivity. The results corroborate the fact that proteins are, in general, prone to conjugation and/or adduct formation reactions and any modification due to this essentially leads to formation of impurities in a protein sample. Further, the results demonstrate that the conjugation reaction happens via a succinimide intermediate and has sequence specificity. Additionally, the data presented in this study also shows that the Tris formation is produced in-solution and is not an in-source phenomenon. We believe that the facts given here will open further avenues on exploration of Tris as a conjugating agent as well as ensure that the use of Tris or any ionic buffer in the process of producing a biopharmaceutical drug is monitored closely for the presence of such conjugate formation.

  7. Star formation in globular clusters and dwarf galaxies and implications for the early evolution of galaxies

    NASA Technical Reports Server (NTRS)

    Lin, Douglas N. C.; Murray, Stephen D.

    1991-01-01

    Based upon the observed properties of globular clusters and dwarf galaxies in the Local Group, we present important theoretical constraints on star formation in these systems. These constraints indicate that protoglobular cluster clouds had long dormant periods and a brief epoch of violent star formation. Collisions between protocluster clouds triggered fragmentation into individual stars. Most protocluster clouds dispersed into the Galactic halo during the star formation epoch. In contrast, the large spread in stellar metallicity in dwarf galaxies suggests that star formation in their pregenitors was self-regulated: we propose the protocluster clouds formed from thermal instability in the protogalactic clouds and show that a population of massive stars is needed to provide sufficient UV flux to prevent the collapsing protogalactic clouds from fragmenting into individual stars. Based upon these constraints, we propose a unified scenario to describe the early epochs of star formation in the Galactic halo as well as the thick and thin components of the Galactic disk.

  8. Neutrino masses, neutrino oscillations, and cosmological implications

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1982-01-01

    Theoretical concepts and motivations for considering neutrinos having finite masses are discussed and the experimental situation on searches for neutrino masses and oscillations is summarized. The solar neutrino problem, reactor, deep mine and accelerator data, tri decay experiments and double beta-decay data are considered and cosmological implications and astrophysical data relating to neutrino masses are reviewed. The neutrino oscillation solution to the solar neutrino problem, the missing mass problem in galaxy halos and galaxy cluster galaxy formation and clustering, and radiative neutrino decay and the cosmic ultraviolet background radiation are examined.

  9. Pt L3,2-edge whiteline anomaly and its implications for the chemical behaviour of Pt 5d5/2 and 5d3/2 electronic states - a study of Pt-Au nanowires and nanoparticles

    NASA Astrophysics Data System (ADS)

    Sham, T. K.; Ward, M. J.; Murphy, M. W.; Liu, L. J.; Han, W. Q.

    2013-04-01

    We report the L3,2-edge whiteline anomaly observed in PtAu nanowire, PtAu and Pt nanoparticles deposited on Si nanowire, and their comparison with that of Pt metal. It is found that charge redistribution upon the formation of these materials can indeed be tracked with the L3,2 whiteline intensity. The implications of these findings are discussed.

  10. Dynamical Simulations of HD 69830

    NASA Astrophysics Data System (ADS)

    Payne, Matthew J.; Ford, Eric B.; Wyatt, Mark C.; Booth, Mark

    2009-02-01

    Previous studies have developed models for the growth and migration of three planets orbiting HD 69830. We perform n-body simulations using MERCURY (Chambers 1999) to explore the implications of these models for: 1) the excitation of planetary orbits via planet-planet interactions, 2) the accretion and clearing of a putative planetesimal disk, 3) the distribution of planetesimal orbits following migration, and 4) the implications for the origin of the observed infrared emission from the HD 69830 system. We report preliminary results that suggest new constraints on the formation of HD 69830.

  11. Seligman's Helplessness: Who Shall Overcome?

    ERIC Educational Resources Information Center

    Gregory, Mary K.

    1975-01-01

    The author discusses Seligman's research on helplessness: how it is learned, what factors influence its formation, how it is unlearned and the implications of his research for counseling depressed clients. The author clains that directive counseling would be quite helpful for depressed and helpless clients. (SE)

  12. Research in Review. Malnutrition and Children's Development.

    ERIC Educational Resources Information Center

    Stevens, Joseph H., Jr.; Baxter, Delia H.

    1981-01-01

    Indicates how various degrees of malnutrition affect children's development. Reviews research conducted in several developing countries and the United States, and describes the nutritional status of children in the United States. Implications for nutrition programs, research and policy formation are pointed out. (Author/RH)

  13. Alliance Building in the Information and Online Database Industry.

    ERIC Educational Resources Information Center

    Alexander, Johanna Olson

    2001-01-01

    Presents an analysis of information industry alliance formation using environmental scanning methods. Highlights include why libraries and academic institutions should be interested; a literature review; historical context; industry and market structures; commercial and academic models; trends; and implications for information providers,…

  14. "The Wonder Years" of XML.

    ERIC Educational Resources Information Center

    Gazan, Rich

    2000-01-01

    Surveys the current state of Extensible Markup Language (XML), a metalanguage for creating structured documents that describe their own content, and its implications for information professionals. Predicts that XML will become the common language underlying Web, word processing, and database formats. Also discusses Extensible Stylesheet Language…

  15. Integrated Chemical and Toxicological Investigation of UV-Chlorine/Chloramine Drinking Water Treatment

    EPA Science Inventory

    As the use of alternative drinking water treatment increases, it is important to understand potential public health•implications associated with these processes. The objective of this study was to evaluate the formation of disinfection byproducts (DBPs) and cytotoxicity of ...

  16. l-Arginine is a Radioprotector for Hematopoietic Progenitor Cells

    PubMed Central

    Pearce, Linda L.; Zheng, Xichen; Martinez-Bosch, Sandra; Kerr, Patrick P.; Khlangwiset, Pornsri; Epperly, Michael W.; Fink, Mitchell P.; Greenberger, Joel S.; Peterson, Jim

    2012-01-01

    l-Arginine is shown to protect hematopoietic progenitor (32D cl 3) cells from death due to exposure to γ radiation (137Cs). Some of the other intermediates in the urea cycle, namely ornithine and citrulline, plus urea itself, were not found to have any significant impact on cell survival after irradiation. Intriguingly, supplementation of irradiated cells with l-arginine results in decreased production of peroxynitrite, suggesting that suppression of superoxide generation by nitric oxide synthase in one or more microenvironments is an important factor in the observed radioprotection. The absence of any radioprotective effect of l-arginine in cells at 3% oxygen also confirms the involvement of one or more oxygen-derived species. Knockdown experiments with nitric oxide synthase (NOS) siRNAs in cells and NOS knockout animals confirm that the observed radioprotection is associated with nNOS (NOS-1). l-Arginine also ameliorates the transient inhibition of the electron-transport chain complex I that occurs within 30 min of completing the dose (10 Gy) and that appears to be a functional marker for postirradiation mitochondrial oxidant production. PMID:22175298

  17. Global Profiling of Reactive Oxygen and Nitrogen Species in Biological Systems

    PubMed Central

    Zielonka, Jacek; Zielonka, Monika; Sikora, Adam; Adamus, Jan; Joseph, Joy; Hardy, Micael; Ouari, Olivier; Dranka, Brian P.; Kalyanaraman, Balaraman

    2012-01-01

    Herein we describe a high-throughput fluorescence and HPLC-based methodology for global profiling of reactive oxygen and nitrogen species (ROS/RNS) in biological systems. The combined use of HPLC and fluorescence detection is key to successful implementation and validation of this methodology. Included here are methods to specifically detect and quantitate the products formed from interaction between the ROS/RNS species and the fluorogenic probes, as follows: superoxide using hydroethidine, peroxynitrite using boronate-based probes, nitric oxide-derived nitrosating species with 4,5-diaminofluorescein, and hydrogen peroxide and other oxidants using 10-acetyl-3,7-dihydroxyphenoxazine (Amplex® Red) with and without horseradish peroxidase, respectively. In this study, we demonstrate real-time monitoring of ROS/RNS in activated macrophages using high-throughput fluorescence and HPLC methods. This global profiling approach, simultaneous detection of multiple ROS/RNS products of fluorescent probes, developed in this study will be useful in unraveling the complex role of ROS/RNS in redox regulation, cell signaling, and cellular oxidative processes and in high-throughput screening of anti-inflammatory antioxidants. PMID:22139901

  18. The effect of N-acetylcysteine on cardiac contractility to dobutamine in rats with streptozotocin-induced diabetes.

    PubMed

    Cheng, Xing; Xia, Zhengyuan; Leo, Joyce M; Pang, Catherine C Y

    2005-09-05

    We examined if myocardial depression at the acute phase of diabetes (3 weeks after injection of streptozotocin, 60 mg/kg i.v.) is due to activation of inducible nitric oxide synthase and production of peroxynitrite, and if treatment with N-acetylcysteine (1.2 g/day/kg for 3 weeks, antioxidant) improves cardiac function. Four groups of rats were used: control, N-acetylcysteine-treated control, diabetic and N-acetylcysteine-treated diabetic. Pentobarbital-anaesthetized diabetic rats, relative to the controls, had reduced left ventricular contractility to dobutamine (1-57 microg/min/kg). The diabetic rats also had increased myocardial levels of thiobarbituric acid reactive substances, immunostaining of inducible nitric oxide synthase and nitrotyrosine, and similar baseline 15-F2t-isoprostane. N-acetylcysteine did not affect responses in the control rats; but increased cardiac contractility to dobutamine, reduced myocardial immunostaining of inducible nitric oxide synthase and nitrotyrosine and level of 15-F2t-isoprostane, and increased cardiac contractility to dobutamine in the diabetic rats. Antioxidant supplementation in diabetes reduces oxidative stress and improves cardiac function.

  19. Ebselen: A thioredoxin reductase-dependent catalyst for {alpha}-tocopherol quinone reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang Jianguo; Zhong Liangwei; Zhao Rong

    2005-09-01

    The thioredoxin system, composed of thioredoxin (Trx), thioredoxin reductase (TrxR), and NADPH, is a powerful protein disulfide reductase system with a broad substrate specificity. Recently the selenazol drug ebselen was shown to be a substrate for both mammalian TrxR and Trx. We examined if {alpha}-tocopherol quinone (TQ), a product of {alpha}-tocopherol oxidation, is reduced by ebselen in the presence of TrxR, since TQ was not a substrate for the enzyme itself. Ebselen reduction of TQ in the presence of TrxR was caused by ebselen selenol, generated from fast reduction of ebselen by the enzyme. TQ has no intrinsic antioxidant activity,more » while the product of reduction of TQ, {alpha}-tocopherolhydroquinone (TQH{sub 2}), is a potent antioxidant. The thioredoxin system dependence of ebselen to catalyze reduction of other oxidized species, such as hydrogen peroxide, dehydroascorbate, and peroxynitrite, is discussed. The ability of ebselen to reduce TQ via the thioredoxin system is a novel mechanism to explain the effects of the drug as an antioxidant in vivo.« less

  20. Regulation of the Cardiac Muscle Ryanodine Receptor by O2 Tension and S-Nitrosoglutathione†

    PubMed Central

    Sun, Junhui; Yamaguchi, Naohiro; Xu, Le; Eu, Jerry P.; Stamler, Jonathan S.; Meissner, Gerhard

    2009-01-01

    The cardiac and skeletal muscle sarcoplasmic reticulum ryanodine receptor Ca2+ release channels contain thiols that are potential targets of endogenously produced reactive oxygen and nitrogen intermediates. Previously, we showed that the skeletal muscle ryanodine receptor (RyR1) has O2-sensitive thiols; only when these thiols are in the reduced state (pO2 ~ 10 mmHg) can physiological concentrations of NO (nanomolar) activate RyR1. Here, we report that cardiac muscle ryanodine receptor (RyR2) activity also depends on pO2, but unlike RyR1, RyR2 was not activated or S-nitrosylated directly by NO. Rather, activation and S-nitrosylation of RyR2 required S-nitrosoglutathione. The effects of peroxynitrite were indiscriminate on RyR1 and RyR2. Our results indicate that both RyR1 and RyR2 are pO2-responsive yet point to different mechanisms by which NO and S-nitrosoglutathione influence cardiac and skeletal muscle sarcoplasmic reticulum Ca2+ release. PMID:19053230

  1. Reactive Oxygen and Nitrogen Species Regulate Inducible Nitric Oxide Synthase Function Shifting the Balance of Nitric Oxide and Superoxide Production

    PubMed Central

    Sun, Jian; Druhan, Lawrence J.; Zweier, Jay L.

    2014-01-01

    Inducible NOS (iNOS) is induced in diseases associated with inflammation and oxidative stress, and questions remain regarding its regulation. We demonstrate that reactive oxygen / nitrogen species (ROS/RNS) dose-dependently regulate iNOS function. Tetrahydrobiopterin (BH4)-replete iNOS was exposed to increasing concentrations of ROS/RNS and activity was measured with and without subsequent BH4 addition. Peroxynitrite (ONOO−) produced the greatest change in NO generation rate, ~95% decrease, and BH4 only partially restored this loss of activity. Superoxide (O2.−) greatly decreased NO generation, however, BH4 addition restored this activity. Hydroxyl radical (.OH) mildly decreases NO generation in a BH4-dependent manner. iNOS was resistant to H2O2 with only slightly decreased NO generation with up to millimolar concentrations. In contrast to the inhibition of NO generation, ROS enhanced O2.− production from iNOS, while ONOO− had the opposite effect. Thus, ROS promote reversible iNOS uncoupling, while ONOO− induces irreversible enzyme inactivation and decreases both NO and O2.− production. PMID:19932078

  2. Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers.

    PubMed

    Bronte, Vincenzo; Kasic, Tihana; Gri, Giorgia; Gallana, Keti; Borsellino, Giovanna; Marigo, Ilaria; Battistini, Luca; Iafrate, Massimo; Prayer-Galetti, Tommaso; Pagano, Francesco; Viola, Antonella

    2005-04-18

    Immunotherapy may provide valid alternative therapy for patients with hormone-refractory metastatic prostate cancer. However, if the tumor environment exerts a suppressive action on antigen-specific tumor-infiltrating lymphocytes (TIL), immunotherapy will achieve little, if any, success. In this study, we analyzed the modulation of TIL responses by the tumor environment using collagen gel matrix-supported organ cultures of human prostate carcinomas. Our results indicate that human prostatic adenocarcinomas are infiltrated by terminally differentiated cytotoxic T lymphocytes that are, however, in an unresponsive status. We demonstrate the presence of high levels of nitrotyrosines in prostatic TIL, suggesting a local production of peroxynitrites. By inhibiting the activity of arginase and nitric oxide synthase, key enzymes of L-arginine metabolism that are highly expressed in malignant but not in normal prostates, reduced tyrosine nitration and restoration of TIL responsiveness to tumor were achieved. The metabolic control exerted by the tumor on TIL function was confirmed in a transgenic mouse prostate model, which exhibits similarities with human prostate cancer. These results identify a novel and dominant mechanism by which cancers induce immunosuppression in situ and suggest novel strategies for tumor immunotherapy.

  3. Free radical scavenging abilities of polypeptide from Chlamys farreri

    NASA Astrophysics Data System (ADS)

    Han, Zhiwu; Chu, Xiao; Liu, Chengjuan; Wang, Yuejun; Mi, Sun; Wang, Chunbo

    2006-09-01

    We investigated the radical scavenging effect and antioxidation property of polypeptide extracted from Chlamys farreri (PCF) in vitro using chemiluminescence and electron spin resonance (ESR) methods. We examined the scavenging effects of PCF on superoxide anions (O{2/-}), hydroxyl radicals (OH·), peroxynitrite (ONOO-) and the inhibiting capacity of PCF on peroxidation of linoleic acid. Our experiment suggested that PCF could scavenge oxygen free radicals including superoxide anions (O{2/-}) (IC50=0.3 mg/ml), hydroxyl radicals (OH·) (IC50=0.2 μg/ml) generated from the reaction systems and effectively inhibit the oxidative activity of ONOO- (IC50=0.2 mg/ml). At 1.25 mg/ml of PCF, the inhibition ratio on lipid peroxidation of linoleic acid was 43%. The scavenging effect of PCF on O{2/-}, OH· and ONOO- free radicals were stronger than those of vitamin C but less on lipid peroxidation of linoleic acid. Thus PCF could scavenge free radicals and inhibit the peroxidation of linoleic acid in vitro. It is an antioxidant from marine products and potential for industrial production in future.

  4. Prooxidative effects of aspartame on antioxidant defense status in erythrocytes of rats.

    PubMed

    Prokic, Marko D; Paunovic, Milica G; Matic, Milos M; Djordjevic, Natasa Z; Ognjanovic, Branka I; Stajn, Andras S; Saicic, Zorica S

    2014-12-01

    Since aspartame (L-aspartyl-L-phenylalanine methyl ester, ASP) is one of the most widely used artificial sweeteners, the aim of the present study was to investigate its effects on serum glucose and lipid levels as well as its effects on oxidative/antioxidative status in erythrocytes of rats. The experiment included two groups of animals: the control group was administered with water only, while the experimental group was orally administered with ASP (40 mg/kg b.w.) daily, for a period of six weeks. When compared with the control group, the group administrated with ASP indicated higher values of serum glucose, cholesterol and triglycerides. Significantly increased concentrations of superoxide anion (O2 .-), hydrogen peroxide (H2O2), peroxynitrite (?N??-) and lipid peroxides (LPO) were recorded in the erythrocytes of ASP treated group in comparison to the control group. In the course of chronic ASP administration, the following was observed: the concentration of reduced glutathione (GSH) and the activity of catalase (CAT) increased. Thus, these findings suggest that long-term consumption of ASP leads to hyperglycemia and hyperlipidemia, as well as to oxidative stress in erythrocytes.

  5. Capsofulvesins A-C, cholinesterase inhibitors from Capsosiphon fulvescens.

    PubMed

    Fang, Zhe; Yang Jeong, Su; Ah Jung, Hyun; Sue Choi, Jae; Sun Min, Byung; Hee Woo, Mi

    2012-01-01

    Activity-directed isolation of the n-hexane and dichloromethane fractions of Capsosiphon fulvescens resulted in the identification of four new glycolipids (1-3): (2S)-1-O-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-2-O-(4Z,7Z,10Z,13Z-hexadecatetraenoyl)-3-O-β-D-galactopyranosyl glycerol (1, capsofulvesin A), (2S)-l-O-(9Z,12Z,15Z-octadecatrienoyl)-2-O-(10Z,13Z-hexadecadienoyl)-3-O-β-D-galactopyranosyl glycerol (2, capsofulvesin B), (2S)-1-O-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-3-O-β-D-galacatopyranosyl glycerol (3, capsofulvesin C). Compounds 1-6 exhibited acetylcholinesterase (AChE) inhibitory activities with IC(50) values ranging from 50.90 to 82.83 µM, whereas 2-6 showed butyrylcholinesterase (BChE) inhibitory activities with IC(50) values of 114.75-185.55 µM. Although most of the compounds isolated lacked scavenging activity for 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and peroxynitrite (ONOO(-)), compound 8 showed ONOO(-) scavenging activity with an IC(50) value of 26.23 µg/mL.

  6. Suitability of TBA method for the evaluation of the oxidative effect of non-water-soluble and water-soluble rosemary extracts.

    PubMed

    Wada, Mitsuhiro; Nagano, Minori; Kido, Hirotsugu; Ikeda, Rie; Kuroda, Naotaka; Nakashima, Kenichiro

    2011-01-01

    The antioxidative effects of rosemary and grape-seed extracts spiked in human plasma were examined using the thiobarbituric acid (TBA) method. The TBA values of plasma spiked with reagents to generate reactive oxygen species, such as singlet oxygen ((1)O(2)), hydroxyl radicals ((·)OH), peroxynitrite (ONOO(-)), and superoxide anions (O(2)(·-)), were measured by a flow injection analysis method with fluorescence (FL) detection. TBA values obtained by the addition of 50 mg/mL of rosemary extracts for (1)O(2), (·)OH, ONOO(-), and O(2)(·-) increased to 964 ± 65%, 1063 ± 61%, 758 ± 78%, and 698 ± 41%, respectively (n = 3, P < 0.01), whereas the values with 1 mg/mL of grape-seed extracts or tocopherol decreased (40.2 - 66.3%). Furthermore, the antioxidative effects of rosemary extract in rat plasma, spiked with reagents to generate (·)OH, were examined by high-performance liquid chromatography with FL detection. No peak, other than TBA-malondialdehyde, could be detected using wavelengths of 532 (λ(ex)) and 553 nm (λ(em)).

  7. Biochemistry of free radicals: from electrons to tissues.

    PubMed

    Boveris, A

    1998-01-01

    Free radicals are chemical species with an unpaired electron in the outer valence orbitals. The unpaired electron makes them paramagnetic (physics) and relatively reactive (chemistry). The free radicals that are normal metabolites in aerobic biological systems have varied reactivities, ranging from the high reactivity of hydroxyl radical (t1/2 = 10(-9) s) to the low reactivity of melanins (t1/2 = days). The univalent reduction of oxygen that takes place in mammalian organs produces superoxide radicals at a rate of about 2% of the total oxygen uptake. The primary production of superoxide radicals sustains a free radical chain reaction involving a series of reactive oxygen species (hydrogen peroxide, hydroxyl and peroxyl radical and singlet oxygen). Nitric oxide is almost unreactive as free radical except for its termination reaction with superoxide radical to yield the strong oxidant peroxynitrite. Nitric oxide also reacts with ubiquinol in a redox reaction, with cytochrome oxidase competitively with oxygen, and oxymyoglobin and oxyhemoglobin displacing oxygen. Septic shock and endotoxemia produce muscle dysfunction and oxidative stress due to increased steady state concentrations of reactive oxygen and nitrogen species.

  8. Capturing the sublimity of a free radical gas.

    PubMed

    Leong, S K

    1999-12-01

    This paper reviews the work related to nitric oxide (NO) done by the author and his postgraduates and colleagues in the past 7 years in the National University of Singapore. Our work shows that (i) NADPH-d and NO synthase (NOS) are often but not always identical; (ii) NO (as indicated by NADPH-d histochemistry and NOS immunohistochemistry) is generated in some endocrine (thyroid, parathyroid and ultimobranchial glands) and immune (thymus and bursa of Fabricius) organs and the cochlea. It is noted from the above studies that NO could possibly regulate blood flow through the various organs via its presence in the vascular endothelial cells and also via nitrergic neurons innervating the blood vessels. It could also regulate the activity of the secretary cells of these organs by being present in them, as well as acting through nitrergic neurons closely related to them. The paper also examines the Janus-faced nature of NO as a neuroprotective and neurodestructive agent, and the apparent noninvolvement of peroxynitrite and inducible NOS in neuronal death occurring in the red nucleus and nucleus dorsalis after spinal cord hemisection.

  9. Association between MTHFR variant and diabetic neuropathy.

    PubMed

    Kakavand Hamidi, Armita; Radfar, Mania; Amoli, Mahsa M

    2018-02-01

    Methylene-tetrahydrofolate reductase (MTHFR) gene variant may play an important role in the pathophysiology of diabetes and its complications due to its influence on plasma homocysteine levels and also its effect on scavenging peroxynitrite radicals. Diabetic peripheral neuropathy (DPN) is one of the most common diabetic chronic complications. The aim of this study was to investigate the relationship between diabetic neuropathy and MTHFR gene C677T and 1298A ⁄C polymorphisms. Patients with type 2 diabetes N=248 were enrolled in the study, consisting of patients with neuropathy (N=141) and patients without neuropathy (N=107). MTHFR C677T polymorphism was analyzed using polymerase chain reaction followed by restriction fragment length polymorphism (PCR-RFLP) of genomic DNA for genotyping of samples. 1298A/C polymorphism was evaluated using ARMS-PCR. There was a significant difference in MTHFR polymorphism between the groups with and without neuropathy. Our results suggest that MTHFR 677 variant confer risk for diabetic neuropathy among Iranian patients with type 2 diabetes. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  10. Neuroprotective Effect of Hydroxytyrosol in Experimental Diabetic Retinopathy: Relationship with Cardiovascular Biomarkers.

    PubMed

    González-Correa, José Antonio; Rodríguez-Pérez, María Dolores; Márquez-Estrada, Lucía; López-Villodres, Juan Antonio; Reyes, José Julio; Rodriguez-Gutierrez, Guillermo; Fernández-Bolaños, Juan; De La Cruz, José Pedro

    2018-01-24

    The aim of the study was to test the neuroprotective effect of hydroxytyrosol (HT) on experimental diabetic retinopathy. Animals were divided in four groups: (1) control nondiabetic rats, (2) streptozotocin-diabetic rats (DR), (3) DR treated with 1 mg/kg/day p.o. HT, and (4) DR treated with 5 mg/kg/day p.o. HT. Treatment with HT was started 7 days before inducing diabetes and was maintained for 2 months. In the DR group, total area occupied by extracellular matrix was increased, area occupied by retinal cells was decreased; both returned to near-control values in DR rats treated with HT. The number of retinal ganglion cells in DR was significantly lower (44%) than in the control group, and this decrease was smaller after HT treatment (34% and 9.1%). Linear regression analysis showed that prostacyclin, platelet aggregation, peroxynitrites, and the dose of 5 mg/kg/day HT significantly influenced retinal ganglion cell count. In conclusion, HT exerted a neuroprotective effect on diabetic retinopathy, and this effect correlated significantly with changes in some cardiovascular biomarkers.

  11. Total Antioxidant Capacity and Characterization of Nitraria tangutorum Fruit Extract by Rapid Bioassay-Directed Fractionation.

    PubMed

    Rana, Jat; Missler, Stephen R; Persons, Kathryn; Han, Johnson; Li, Teric

    2016-09-01

    In recent years, the role of reactive nitrogen and oxygen species (RNOS) in human disease has been the subject of considerable study. This has led to research on the potential benefit of natural products as dietary antioxidants to mitigate oxidative stress caused by increased RNOS associated with tissue damage. Five physiologically relevant reactive species include peroxyl radical, hydroxyl radical, peroxynitrite anion, superoxide radical anion, and singlet oxygen. Excessive amounts of these species can lead to the degradation of important biomolecules in vivo, and dietary antioxidants have been shown to inhibit damage both in vitro and in vivo. In this investigation, we have discovered that an extract of the fruit from Nitraria tangutorum Bobr. (Tangut white thorn) demonstrates significant antioxidant capacity against all five reactive species. Rapid bioassay-directed fractionation was used to identify antioxidant phytochemicals by collecting fractions from HPLC effluent into 96 well microplates and testing for antioxidant activity against the 2,2-diphenyl-1-picrylhydrazyl radical. Two different classes of phytochemicals, anthocyanins and flavonoids, were associated with antioxidant activity. Active components were further characterized by UV-Vis spectroscopy and high-resolution MS.

  12. Natural products as potential anticonvulsants: caffeoylquinic acids.

    PubMed

    Kim, Hyo Geun; Oh, Myung Sook

    2012-03-01

    Current anticonvulsant therapies are generally directed at symptomatic treatment by suppressing excitability within the brain. Consequently, they have adverse effects such as cognitive impairment, dependence, and abuse. The need for more effective and less toxic anticonvulsants has generated renewed interest in natural products for the treatment of convulsions. Caffeoylquinic acids (CQs) are naturally occurring phenolic acids that are distributed widely in plants. There has been increasing interest in the biological activities of CQs in diseases of the central nervous system. In this issue, Nugroho et al. give evidence for the anticonvulsive effect of a CQ-rich extract from Aster glehni Franchet et Sckmidt. They optimized the extract solvent conditions, resulting in high levels of CQs and peroxynitrite-scavenging activity. Then, they investigated the sedative and anticonvulsive effects in pentobarbital- and pentylenetetrazole-induced models in mice. The CQ-rich extract significantly inhibited tonic convulsions as assessed by onset time, tonic extent, and mortality. They suggested that the CQ-rich extract from A. glehni has potential for treating convulsions. This report provides preclinical data which may be used for the development of anticonvulsants from natural products.

  13. nNOS inhibitors attenuate methamphetamine-induced dopaminergic neurotoxicity but not hyperthermia in mice.

    PubMed

    Itzhak, Y; Martin, J L; Ail, S F

    2000-09-11

    Methamphetamine (METH)-induced dopaminergic neurotoxicity is associated with hyperthermia. We investigated the effect of several neuronal nitric oxide synthase (nNOS) inhibitors on METH-induced hyperthermia and striatal dopaminergic neurotoxicity. Administration of METH (5 mg/kg; q. 3 h x 3) to Swiss Webster mice produced marked hyperthermia and 50-60% depletion of striatal dopaminergic markers 72 h after METH administration. Pretreatment with the nNOS inhibitors S-methylthiocitrulline (SMTC; 10 mg/kg) or 3-bromo-7-nitroindazole (3-Br-7-NI; 20 mg/kg) before each METH injection did not affect the persistent hyperthermia produced by METH, but afforded protection against the depletion of dopaminergic markers. A low dose (25 mg/kg) of the nNOS inhibitor 7-nitroindazole (7-NI) did not affect METH-induced hyperthermia, but a high dose (50 mg/kg) produced significant hypothermia. These findings indicate that low dose of selective nNOS inhibitors protect against METH-induced neurotoxicity with no effect on body temperature and support the hypothesis that nitric oxide (NO) and peroxynitrite have a major role in METH-induced dopaminergic neurotoxicity.

  14. Neuroprotective Effect of Hydroxytyrosol in Experimental Diabetes Mellitus.

    PubMed

    Reyes, José Julio; Villanueva, Beatriz; López-Villodres, Juan Antonio; De La Cruz, José Pedro; Romero, Lidia; Rodríguez-Pérez, María Dolores; Rodriguez-Gutierrez, Guillermo; Fernández-Bolaños, Juan; González-Correa, José Antonio

    2017-06-07

    The aim of the study was to analyze the possible neuroprotective effect of hydroxytyrosol (HT) in diabetic animals in a model of hypoxia-reoxygenation. Rats (10 animals/group) were distributed in five groups: nondiabetic rats, control diabetic rats (DR), and DR rats treated for 2 months with 1, 5, or 10 mg/kg/day po HT. At the end of follow-up, an experimental model of hypoxia-reoxygenation in brain slices was tested. The DR group showed increased cell death, oxidative and nitrosative stress, and an increase in brain inflammatory mediators. These alterations were significantly greater in DR than in normoglycemic animals. HT significantly reduced oxidative (38.5-52.4% lipid peroxidation) and nitrosative stress (48.0-51.0% nitric oxide and 43.9-75.2% peroxynitrite concentration) and brain inflammatory mediators (18.6-40.6% prostaglandin E 2 and 17.0-65.0% interleukin 1β concentration). Cell death was reduced by 25.9, 37.5, and 41.0% after the administration of 1, 5, or 10 mg/kg/day. The administration of HT in rats with experimental diabetes thus had a neuroprotective effect.

  15. Print versus electronic journals: a preliminary investigation into the effect of journal format on research processes*

    PubMed Central

    Sathe, Nila A.; Grady, Jenifer L.; Giuse, Nunzia B.

    2002-01-01

    Purpose: To begin investigating the impact of electronic journals on research processes such as information seeking, the authors conducted a pilot journal-use study to test the hypothesis that patrons use print and electronic journals differently. Methodology: We placed fifteen high-use print titles also available in electronic format behind the circulation desk; patrons were asked to complete a survey upon requesting a journal. We also conducted a parallel survey of patrons using library computers. Both surveys asked patrons to identify themselves by user category and queried them about their journal use. Results: During the month-long study, patrons completed sixty-nine surveys of electronic and ninety surveys of print journal use. Results analysis indicated that fellows, students, and residents preferred electronic journals, and faculty preferred print journals. Patrons used print journals for reading articles and scanning contents; they employed electronic journals for printing articles and checking references. Users considered electronic journals easier to access and search than print journals; however, they reported that print journals had higher quality text and figures. Discussion/Conclusion: This study is an introductory step in examining how electronic journals affect research processes. Our data revealed that there were distinct preferences in format among categories. In addition to collection management implications for libraries, these data also have implications for publishers and educators; current electronic formats do not facilitate all types of uses and thus may be changing learning patterns as well. PMID:11999183

  16. Alternative mechanisms alter the emergent properties of self-organization in mussel beds

    PubMed Central

    Liu, Quan-Xing; Weerman, Ellen J.; Herman, Peter M. J.; Olff, Han; van de Koppel, Johan

    2012-01-01

    Theoretical models predict that spatial self-organization can have important, unexpected implications by affecting the functioning of ecosystems in terms of resilience and productivity. Whether and how these emergent effects depend on specific formulations of the underlying mechanisms are questions that are often ignored. Here, we compare two alternative models of regular spatial pattern formation in mussel beds that have different mechanistic descriptions of the facilitative interactions between mussels. The first mechanism involves a reduced mussel loss rate at high density owing to mutual protection between the mussels, which is the basis of prior studies on the pattern formation in mussels. The second mechanism assumes, based on novel experimental evidence, that mussels feed more efficiently on top of mussel-generated hummocks. Model simulations point out that the second mechanism produces very similar types of spatial patterns in mussel beds. Yet the mechanisms predict a strikingly contrasting effect of these spatial patterns on ecosystem functioning, in terms of productivity and resilience. In the first model, where high mussel densities reduce mussel loss rates, patterns are predicted to strongly increase productivity and decrease the recovery time of the bed following a disturbance. When pattern formation is generated by increased feeding efficiency on hummocks, only minor emergent effects of pattern formation on ecosystem functioning are predicted. Our results provide a warning against predictions of the implications and emergent properties of spatial self-organization, when the mechanisms that underlie self-organization are incompletely understood and not based on the experimental study. PMID:22418256

  17. Australian general practitioner attitudes to clinical practice guidelines and some implications for translating osteoarthritis care into practice.

    PubMed

    Basedow, Martin; Runciman, William B; Lipworth, Wendy; Esterman, Adrian

    2016-11-01

    Clinical practice guidelines (CPGs) have been shown to improve processes of care and health outcomes, but there is often a discrepancy between recommendations for care and clinical practice. This study sought to explore general practitioner (GP) attitudes towards CPGs, in general and specifically for osteoarthritis (OA), with the implications for translating OA care into practice. A self-administered questionnaire was conducted in January 2013 with a sample of 228 GPs in New South Wales and South Australia. Seventy-nine GPs returned questionnaires (response rate 35%). Nearly all GPs considered that CPGs support decision-making in practice (94%) and medical education (92%). Very few respondents regarded CPGs as a threat to clinical autonomy, and most recognised that individual patient circumstances must be taken into account. Shorter CPG formats were preferred over longer and more comprehensive formats, with preferences being evenly divided among respondents for short, 2-3-page summaries, flowcharts or algorithms and single page checklists. GPs considered accessibility to CPGs to be important, and electronic formats were popular. Familiarity and use of The Royal Australian College of General Practitioners OA Guideline was poor, with most respondents either not aware of it (30%; 95% confidence interval (CI) 27 - 41%), had never used it (19%; 95% CI 12 - 29%) or rarely used it (34%; 95% CI 25-45%). If CPGs are to assist with the translation of evidence into practice, they must be easily accessible and in a format that encourages use.

  18. Ar-40 to Ar-39 dating of pseudotachylites from the Witwatersrand basin, South Africa, with implications for the formation of the Vredefort Dome

    NASA Technical Reports Server (NTRS)

    Trieloff, M.; Kunz, J.; Jessberger, E. K.; Reimold, W. U.; Boer, R. H.; Jackson, M. C.

    1992-01-01

    The formation of the Vredefort Dome, a structure in excess of 100 km in diameter and located in the approximate center of the Witwatersrand basin, is still the subject of lively geological controversy. It is widely accepted that its formation seems to have taken place in a single sudden event, herein referred to as the Vredefort event, accompanied by the release of gigantic amounts of energy. It is debated, however, whether this central event was an internal one, i.e., a cryptoexplosion triggered by volcanic or tectonic processes, or the impact of an extraterrestrial body. The results of this debate are presented.

  19. Formation of the Protein Corona: The Interface between Nanoparticles and the Immune System.

    PubMed

    Barbero, Francesco; Russo, Lorenzo; Vitali, Michele; Piella, Jordi; Salvo, Ignacio; Borrajo, Mireya L; Busquets-Fité, Marti; Grandori, Rita; Bastús, Neus G; Casals, Eudald; Puntes, Victor

    2017-12-01

    The interaction of inorganic nanoparticles and many biological fluids often withstands the formation of a Protein Corona enveloping the nanoparticle. This Protein Corona provides the biological identity to the nanoparticle that the immune system will detect. The formation of this Protein Corona depends not only on the composition of the nanoparticle, its size, shape, surface state and exposure time, but also on the type of media, nanoparticle to protein ratio and the presence of ions and other molecular species that interfere in the interaction between proteins and nanoparticles. This has important implications on immune safety, biocompatibility and the use of nanoparticles in medicine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Sn diffusion during Ni germanide growth on Ge1-xSnx

    NASA Astrophysics Data System (ADS)

    Demeulemeester, J.; Schrauwen, A.; Nakatsuka, O.; Zaima, S.; Adachi, M.; Shimura, Y.; Comrie, C. M.; Fleischmann, C.; Detavernier, C.; Temst, K.; Vantomme, A.

    2011-11-01

    We report on the redistribution of Sn during Ni germanide formation on Ge1-xSnx/ and its influence on the thin film growth and properties. These results show that the reaction involves the formation of Ni5Ge3 and NiGe. Sn redistributes homogenously in both phases, in which the Sn/Ge ratio retains the ratio of the as-deposited Ge1-xSnx film. Sn continues to diffuse after full NiGe formation and segregates in two regions: (1) at the interface between the germanide and Ge1-xSnx and (2) at the surface, which has major implications for the thin film and contact properties.

Top