Guo, S G; Guan, S H; Wang, G M; Liu, G Y; Sun, H; Wang, B J; Xu, F
2015-01-01
This paper aims to compare the curative effects of persimmon leaf extract and ginkgo biloba extract in the treatment of headache and dizziness caused by vertebrobasilar insufficiency. Sixty patients were observed, who underwent therapy with persimmon leaf extract and ginkgo biloba extract based on the treatment of nimodipine and aspirin. After 30 days, 30 patients treated with persimmon leaf extract and 30 patients with ginkgo biloba extract were examined for changes in hemodynamic indexes and symptoms, such as headache and dizziness. The results showed statistically significant differences of 88.3% for the persimmon leaf extract and 73.1% for the ginkgo biloba extract, P < 0.05. Compared to the group of ginkgo biloba extract, the group of persimmon leaf extract had more apparent improvement in the whole blood viscosity, plasma viscosity, fibrinogen, hematokrit, and platelet adhesion rate, and the difference was statistically significant (P < 0.05 or P < 0.01). Based on these analyses, it can be concluded that persimmon leaf extract is better than ginkgo biloba extract in many aspects, such as cerebral circulation improvement, cerebral vascular expansion, hypercoagulable state lowering and vertebrobasilar insufficiency-induced headache and dizziness relief.
First report of Persimmon cryptic virus and Persimmon virus A in Korea
USDA-ARS?s Scientific Manuscript database
In 2014, a total of 77 persimmon (Diospyros kaki Thunb.) trees from Korean commercial persimmon orchards were surveyed for Persimmon cryptic virus (PeCV) and Persimmon virus A (PeVA). Leaf samples were collected from symptomatic trees with necrosis (two), or mosaic and leaf malformations (one) and 7...
Kawakami, Kayoko; Aketa, Saiko; Sakai, Hiroki; Watanabe, Yusuke; Nishida, Hiroshi; Hirayama, Masao
2011-01-01
The antihypertensive and vasorelaxant effects of water-soluble proanthocyanidins, extracted in persimmon leaf tea, were investigated in spontaneously hypertensive rats, rat aortas, and human umbilical vein endothelial cells. Oral administration of proanthocyanidins significantly decreased the systolic blood pressure of the rats after 4 h, as compared with distilled water controls. A vasorelaxant effect on rat aortas was induced by proanthocyanidins, and it was abolished by removal of the endothelium and inhibition of endothelial nitric oxide synthase and soluble guanylyl cyclase activity. The phosphorylation levels of endothelial nitric oxide synthase (Ser-1177) and the upstream kinase Akt (Ser-473) in umbilical cells also increased in a time-dependent manner after the addition of a proanthocyanidin-rich fraction. These results suggest that the antihypertensive effect of proanthocyanidins in persimmon leaf tea is due to vasorelaxation via an endothelium-dependent nitric oxide/cGMP pathway, and that proanthocyanidins might be useful in dietary lowering of blood pressure.
Determination of persimmon leaf chloride contents using near-infrared spectroscopy (NIRS).
de Paz, José Miguel; Visconti, Fernando; Chiaravalle, Mara; Quiñones, Ana
2016-05-01
Early diagnosis of specific chloride toxicity in persimmon trees requires the reliable and fast determination of the leaf chloride content, which is usually performed by means of a cumbersome, expensive and time-consuming wet analysis. A methodology has been developed in this study as an alternative to determine chloride in persimmon leaves using near-infrared spectroscopy (NIRS) in combination with multivariate calibration techniques. Based on a training dataset of 134 samples, a predictive model was developed from their NIR spectral data. For modelling, the partial least squares regression (PLSR) method was used. The best model was obtained with the first derivative of the apparent absorbance and using just 10 latent components. In the subsequent external validation carried out with 35 external data this model reached r(2) = 0.93, RMSE = 0.16% and RPD = 3.6, with standard error of 0.026% and bias of -0.05%. From these results, the model based on NIR spectral readings can be used for speeding up the laboratory determination of chloride in persimmon leaves with only a modest loss of precision. The intermolecular interaction between chloride ions and the peptide bonds in leaf proteins through hydrogen bonding, i.e. N-H···Cl, explains the ability for chloride determinations on the basis of NIR spectra.
Extraction, purification and anti-radiation activity of persimmon tannin from Diospyros kaki L.f.
Zhou, Zhide; Huang, Yong; Liang, Jintao; Ou, Minglin; Chen, Jiejing; Li, Guiyin
2016-10-01
In this study, persimmon tannin was extracted from Diospyros kaki L.f. using ultrasound-assisted extraction and purified by D101 macroporous resin column chromatography and polysulfone ultrafiltration membrane. The tannin content of the final persimmon tannin extracts was attained to 39.56% calculated as catechin equivalents. Also, the radioprotective effects of persimmon tannin for HEK 293T cells proliferation and apoptosis after Gamma irradiation were investigated by CCK-8, Hoechst 33258 staining, flow cytometry assay and intracellular reactive oxygen species assay (ROS). Persimmon tannin was pre-incubated with HEK 293T cells for 12 h prior to Gamma irradiation. It was found that pretreatment with persimmon tannin increased cell viability and inhibited generation of Gamma-radiation induced ROS in HEK 293T cells exposed to 8 Gy Gamma-radiation. The percentage of apoptotic cells were only 6.7% when the radiation dose was 8 Gy and pretreated with 200 μg/ml of persimmon tannin. All these results indicated that persimmon tannin offered a potent radioprotective effect on cell vitality and cell apoptosis of Gamma-radiation exposure in HEK 293T cells. This study would serve as a pre-clinical evaluation of persimmon tannin for use in people with radiation protection. Copyright © 2016 Elsevier Ltd. All rights reserved.
Martínez-Las Heras, Ruth; Pinazo, Alicia; Heredia, Ana; Andrés, Ana
2017-01-01
This study aims to analyze the antioxidant benefits from persimmon leaf tea, fruit and fibres taking into account their changes along gastrointestinal digestion. The evolution of polyphenols, flavonoids and antioxidant capacity was studied using the recent harmonized in vitro protocol published by Minekus et al. (2014). The digestion was performed with and without digestive enzymes. Results showed aqueous leaf extract was richer in antioxidants than the fruit or the extracted fibres. Nevertheless, persimmon-leaf antioxidants were more sensitive to the digestive environment. In general, the oral conditions greatly affected the antioxidants, while gastric digestion led to slight additional losses. The intestinal step enhanced polyphenols and flavonoids solubility coming from the fruit and fibres. Additionally, the presence of digestive enzymes positively contributed to antioxidant release throughout digestion. Finally, the bioaccessibility of polyphenols, flavonoids and antioxidant activity of persimmon fruit were 1.4, 1.0 and 3.8 times higher than in aqueous leaf extract. Copyright © 2016 Elsevier Ltd. All rights reserved.
Matsumura, Yoko; Ito, Toshihiro; Yano, Hisakazu; Kita, Eiji; Mikasa, Keiichi; Okada, Masatoshi; Furutani, Azusa; Murono, Yuka; Shibata, Mitsuru; Nishii, Yasue; Kayano, Shin-Ichi
2016-09-01
This data article is related to the research article entitled, "Antioxidant potential in non-extractable fraction of dried persimmon (Diospyros kaki Thunb.)" (Matsumura et al., 2016) [1]. We investigated antioxidant activities of the non-extractable fraction of dried persimmon fruits in vitro and in vivo. We evaluated both extracted fraction and non-extractable fraction, and reported that non-extractable fraction may possess significantly antioxidant potential in vivo on the basis of the oxygen radical absorbance capacity (ORAC). We showed our experimental raw data about antioxidant capacity of dried persimmon, plasma triglycerides (TG) and HDL-cholesterol (HDL-C), and this data article might contribute to evaluate real antioxidant capacity of other fruits and vegetables.
Ueda, Kyoko; Kawabata, Ryoko; Irie, Takashi; Nakai, Yoshiaki; Tohya, Yukinobu; Sakaguchi, Takemasa
2013-01-01
Tannins, plant-derived polyphenols and other related compounds, have been utilized for a long time in many fields such as the food industry and manufacturing. In this study, we investigated the anti-viral effects of tannins on 12 different viruses including both enveloped viruses (influenza virus H3N2, H5N3, herpes simplex virus-1, vesicular stomatitis virus, Sendai virus and Newcastle disease virus) and non-enveloped viruses (poliovirus, coxsachievirus, adenovirus, rotavirus, feline calicivirus and mouse norovirus). We found that extracts from persimmon (Diospyros kaki), which contains ca. 22% of persimmon tannin, reduced viral infectivity in more than 4-log scale against all of the viruses tested, showing strong anti-viral effects against a broad range of viruses. Other tannins derived from green tea, acacia and gallnuts were effective for some of the viruses, while the coffee extracts were not effective for any of the virus. We then investigated the mechanism of the anti-viral effects of persimmon extracts by using mainly influenza virus. Persimmon extracts were effective within 30 seconds at a concentration of 0.25% and inhibited attachment of the virus to cells. Pretreatment of cells with the persimmon extracts before virus infection or post-treatment after virus infection did not inhibit virus replication. Protein aggregation seems to be a fundamental mechanism underlying the anti-viral effect of persimmon tannin, since viral proteins formed aggregates when purified virions were treated with the persimmon extracts and since the anti-viral effect was competitively inhibited by a non-specific protein, bovine serum albumin. Considering that persimmon tannin is a food supplement, it has a potential to be utilized as a safe and highly effective anti-viral reagent against pathogenic viruses.
Ueda, Kyoko; Kawabata, Ryoko; Irie, Takashi; Nakai, Yoshiaki; Tohya, Yukinobu; Sakaguchi, Takemasa
2013-01-01
Tannins, plant-derived polyphenols and other related compounds, have been utilized for a long time in many fields such as the food industry and manufacturing. In this study, we investigated the anti-viral effects of tannins on 12 different viruses including both enveloped viruses (influenza virus H3N2, H5N3, herpes simplex virus-1, vesicular stomatitis virus, Sendai virus and Newcastle disease virus) and non-enveloped viruses (poliovirus, coxsachievirus, adenovirus, rotavirus, feline calicivirus and mouse norovirus). We found that extracts from persimmon (Diospyros kaki), which contains ca. 22% of persimmon tannin, reduced viral infectivity in more than 4-log scale against all of the viruses tested, showing strong anti-viral effects against a broad range of viruses. Other tannins derived from green tea, acacia and gallnuts were effective for some of the viruses, while the coffee extracts were not effective for any of the virus. We then investigated the mechanism of the anti-viral effects of persimmon extracts by using mainly influenza virus. Persimmon extracts were effective within 30 seconds at a concentration of 0.25% and inhibited attachment of the virus to cells. Pretreatment of cells with the persimmon extracts before virus infection or post-treatment after virus infection did not inhibit virus replication. Protein aggregation seems to be a fundamental mechanism underlying the anti-viral effect of persimmon tannin, since viral proteins formed aggregates when purified virions were treated with the persimmon extracts and since the anti-viral effect was competitively inhibited by a non-specific protein, bovine serum albumin. Considering that persimmon tannin is a food supplement, it has a potential to be utilized as a safe and highly effective anti-viral reagent against pathogenic viruses. PMID:23372851
Accumulation of uranium by immobilized persimmon tannin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakaguchi, Takashi; Nakajima, Akira
1994-01-01
We have discovered that the extracted juice of unripe astringent persimmon fruit, designated as kakishibu or shibuol, has an extremely high affinity for uranium. To develop efficient adsorbents for uranium, we tried to immobilize kakishibu (persimmon tannin) with various aldehydes and mineral acids. Persimmon tannin immobilized with glutaraldehyde can accumulate 1.71 g (14 mEq U) of uranium per gram of the adsorbent. The uranium accumulating capacity of this adsorbent is several times greater than that of commercially available chelating resins (2-3 mEq/g). Immobilized persimmon tannin has the most favorable features for uranium recovery; high selective adsorption ability, rapid adsorption rate,more » and applicability in both column and batch systems. The uranium retained on immobilized persimmon tannin can be quantitatively and easily eluted with a very dilute acid, and the adsorbent can thus be easily recycled in the adsorption-desorption process. Immobilized persimmon tannin also has a high affinity for thorium. 23 refs., 13 figs., 7 tabs.« less
The Leaf of Diospyros kaki Thumb Ameliorates Renal Oxidative Damage in Mice with Type 2 Diabetes
Choi, Myung-Sook; Jeong, Mi Ji; Park, Yong Bok; Kim, Sang Ryong; Jung, Un Ju
2016-01-01
Diabetic kidney disease is the most common and severe chronic complication of diabetes. The leaf of Diospyros kaki Thumb (persimmon) has been commonly used for herbal tea and medicinal purposes to treat a variety of conditions, including hypertension and atherosclerosis. However, the effect of persimmon leaf on kidney failure has not been investigated. This study aimed to examine the role of persimmon leaf in protecting the diabetes-associated kidney damage in a mouse model of type 2 diabetes. Mice were fed either a normal chow diet with or without powered persimmon leaf (5%, w/w) for 5 weeks. In addition to kidney morphology and blood markers of kidney function, we assessed levels of oxidative stress markers as well as antioxidant enzymes activities and mRNA expression in the kidney. Supplementation of the diet with powered persimmon leaf not only decreased the concentration of blood urea nitrogen in the plasma but also improved glomerular hypertrophy. Furthermore, the persimmon leaf significantly decreased the levels of hydrogen peroxide and lipid peroxide in the kidney. The activities of superoxide dismutase, catalase, and glutathione peroxidase and the mRNA expression of their respective genes were also increased in the kidney of persimmon leaf-supplemented db/db mice. Taken together, these results suggest that supplementation with the persimmon leaf may have protective effects against type 2 diabetes-induced kidney dysfunction and oxidative stress. PMID:28078262
Kim, So-Young; Jeong, Seok-Moon; Kim, Sun-Jung; Jeon, Kyung-Im; Park, Eunju; Park, Hae-Ryong; Lee, Seung-Cheol
2006-04-01
Heat treatment of persimmon peel (PP) increased the antioxidative activity of the 70% ethanolic extract (EE) and water extract (WE) from PP. EE and WE both prevented H2O2-induced DNA damage to human peripheral lymphocytes. The antioxidative and antigenotoxic activities of the PP extracts were significantly affected by heating.
Hernández-Carrión, M; Vázquez-Gutiérrez, J L; Hernando, I; Quiles, A
2014-01-01
Rojo Brillante is an astringent oriental persimmon variety with high levels of bioactive compounds such as soluble tannins, carotenoids, phenolic acids, and dietary fiber. The purpose of this study was to investigate the effects of high hydrostatic pressure (HHP) and pasteurization on the structure of the fruit and on the extractability of certain bioactive compounds. The microstructure was studied using light microscopy, transmission electron microscopy, and low temperature scanning electron microscopy, and certain physicochemical properties (carotenoid and total soluble tannin content, antioxidant activity, fiber content, color, and texture properties) were measured. The structural changes induced by HHP caused a rise in solute circulation in the tissues that could be responsible for the increased carotenoid level and the unchanged antioxidant activity in comparison with the untreated persimmon. In contrast, the changes that took place during pasteurization lowered the tannin content and antioxidant activity. Consequently, HHP treatment could improve the extraction of potentially bioactive compoundsxsts from persimmons. A high nutritional value ingredient to be used when formulating new functional foods could be obtained using HHP. © 2013 Institute of Food Technologists®
Persimmon leaf bio-waste for adsorptive removal of heavy metals from aqueous solution.
Lee, Seo-Yun; Choi, Hee-Jeong
2018-03-01
The aim of this study was to investigate heavy metal removal using waste biomass adsorbent, persimmon leaves, in an aqueous solution. Persimmon leaves, which are biomaterials, have a large number of hydroxyl groups and are highly suitable for removal of heavy metals. Therefore, in this study, we investigated the possibility of removal of Cu, Pb, and Cd in aqueous solution by using raw persimmon leaves (RPL) and dried persimmon leaves (DPL). Removal of heavy metals by RPL and DPL showed that DPL had a 10%-15% higher removal than RPL, and the order of removal efficiency was found to be Pb > Cu > Cd. The pseudo-second order model was a better fit to the heavy metal adsorption experiments using RPL and DPL than the pseudo-first order model. The adsorption of Cu, Pb, and Cd by DPL was more suitable with the Freundlich isothermal adsorption and showed an ion exchange reaction which occurred in the uneven adsorption surface layer. The maximum adsorption capacity of Cu, Pb, and Cd was determined to be 19.42 mg/g, 22.59 mg/g, and 18.26 mg/g, respectively. The result of the adsorption experiments showed that the n value was higher than 2 regardless of the dose, indicating that the heavy metal adsorption on DPL was easy. In the thermodynamic experiment, ΔG° was a negative value, and ΔH° and ΔS° were positive values. It can be seen that the heavy metal adsorption process using DPL was spontaneous in nature and was an endothermic process. Moreover, as the temperature increased, the adsorption increased, and the affinity of heavy metal adsorption to DPL was very good. This experiment, in which heavy metals are removed using the waste biomass of persimmon leaves is an eco-friendly new bioadsorbent method because it can remove heavy metals without using chemicals while utilizing waste recycling. Copyright © 2018 Elsevier Ltd. All rights reserved.
Persimmon-Tannin, an α-Amylase Inhibitor, Retards Carbohydrate Absorption in Rats.
Tsujita, Takahiro
2016-01-01
Inhibitors of carbohydrate-hydrolyzing enzymes play an important role in controlling postprandial blood glucose levels. Thus the effect of persimmon tannin on pancreatic α-amylase and intestinal α-glucosidase has been investigated. Persimmon tannin inhibits pancreatic α-amylase and intestinal α-glucosidase in a concentration-dependent manner with the 50% inhibition concentration (IC50) for amylase, maltase and sucrase being 1.7 μg/mL, 632 μg/mL and 308 μg/mL, respectively. The effect of persimmon-tannin extract on carbohydrate absorption in rats has also been investigated. Oral administration of persimmon tannin to normal rats fed cornstarch (2 g/kg body weight) significantly suppressed the increase in blood glucose levels and the area under the curve (AUC) after starch loading in a dose-dependent manner. The effective dose of persimmon tannin required to achieve 50% suppression of the rise in blood glucose level was estimated to be 300 mg/kg body weight. Administration of persimmon tannin to rats fed maltose or sucrose delayed the increase of blood glucose level and slightly suppressed AUC, but not significantly. These results suggest that persimmon tannin retards absorption of carbohydrate and reduces post-prandial hyperglycemia mainly through inhibition of α-amylase.
Young persimmon ingestion suppresses lipid oxidation in rats.
Fushimi, Saki; Myazawa, Fumiko; Nakagawa, Kiyotaka; Burdeos, Gregor Carpentero; Miyazawa, Teruo
2015-01-01
Persimmon is widely eaten in Asia and the nutritional components of young and mature persimmons differ. Although raw young persimmon has a strong bitter taste and is difficult to eat, the beneficial health effects of young persimmon powder have attracted attention in recent years. Young persimmon has been suggested to have hypolipidemic activity as well as other biological effects. However, there has been little investigation of the beneficial effects of young persimmon. In the present study, we investigated the antioxidative effects of persimmon in an animal study and compared the effects of young persimmon and mature persimmon. Six-week-old male F344 rats were divided into three groups and fed a standard diet, young persimmon diet, or mature persimmon diet for 4 wk. The young persimmon and mature persimmon groups were fed a diet containing 5% (w/w) freeze-dried young or mature persimmon. We analyzed phosphatidylcholine hydroperoxide (PCOOH) levels in the rats as a biomarker of membrane lipid peroxidation. Our study showed that plasma PCOOH levels were significantly lower in the young persimmon group (36.1 ± 28.5 pmol/mL plasma) than in the control group (120 ± 66 pmol/mL plasma). No significant difference was observed between the mature persimmon group (57.3 ± 15.6 pmol/mL plasma) and the control group. It is possible that ascorbic acid and soluble tannin contribute to the difference in the antioxidant effects of young and mature persimmons. These results indicated that intake of young persimmon contributes to the reduction of plasma phospholipid hydroperoxide levels in rats.
2007-01-01
Plant materials derived from the Aloe plant are used as cosmetic ingredients, including Aloe Andongensis Extract, Aloe Andongensis Leaf Juice, Aloe Arborescens Leaf Extract, Aloe Arborescens Leaf Juice, Aloe Arborescens Leaf Protoplasts, Aloe Barbadensis Flower Extract, Aloe Barbadensis Leaf, Aloe Barbadensis Leaf Extract, Aloe Barbadensis Leaf Juice, Aloe Barbadensis Leaf Polysaccharides, Aloe Barbadensis Leaf Water, Aloe Ferox Leaf Extract, Aloe Ferox Leaf Juice, and Aloe Ferox Leaf Juice Extract. These ingredients function primarily as skin-conditioning agents and are included in cosmetics only at low concentrations. The Aloe leaf consists of the pericyclic cells, found just below the plant's skin, and the inner central area of the leaf, i.e., the gel, which is used for cosmetic products. The pericyclic cells produce a bitter, yellow latex containing a number of anthraquinones, phototoxic compounds that are also gastrointestinal irritants responsible for cathartic effects. The gel contains polysaccharides, which can be acetylated, partially acetylated, or not acetylated. An industry established limit for anthraquinones in aloe-derived material for nonmedicinal use is 50 ppm or lower. Aloe-derived ingredients are used in a wide variety of cosmetic product types at concentrations of raw material that are 0.1% or less, although can be as high as 20%. The concentration of Aloe in the raw material also may vary from 100% to a low of 0.0005%. Oral administration of various anthraquinone components results in a rise in their blood concentrations, wide systemic distribution, accumulation in the liver and kidneys, and excretion in urine and feces; polysaccharide components are distributed systemically and metabolized into smaller molecules. aloe-derived material has fungicidal, antimicrobial, and antiviral activities, and has been effective in wound healing and infection treatment in animals. Aloe barbadensis (also known as Aloe vera)-derived ingredients were not toxic
Wijesinghe, Ruchire Eranga; Lee, Seung-Yeol; Kim, Pilun; Jung, Hee-Young; Jeon, Mansik; Kim, Jeehyun
2016-08-12
The feasibility of using the bio-photonic imaging technique to assess symptoms of circular leaf spot (CLS) disease in Diospyros kaki (persimmon) leaf samples was investigated. Leaf samples were selected from persimmon plantations and were categorized into three groups: healthy leaf samples, infected leaf samples, and healthy-looking leaf samples from infected trees. Visually non-identifiable reduction of the palisade parenchyma cell layer thickness is the main initial symptom, which occurs at the initial stage of the disease. Therefore, we established a non-destructive bio-photonic inspection method using a 1310 nm swept source optical coherence tomography (SS-OCT) system. These results confirm that this method is able to identify morphological differences between healthy leaves from infected trees and leaves from healthy and infected trees. In addition, this method has the potential to generate significant cost savings and good control of CLS disease in persimmon fields.
Wijesinghe, Ruchire Eranga; Lee, Seung-Yeol; Kim, Pilun; Jung, Hee-Young; Jeon, Mansik; Kim, Jeehyun
2016-01-01
The feasibility of using the bio-photonic imaging technique to assess symptoms of circular leaf spot (CLS) disease in Diospyros kaki (persimmon) leaf samples was investigated. Leaf samples were selected from persimmon plantations and were categorized into three groups: healthy leaf samples, infected leaf samples, and healthy-looking leaf samples from infected trees. Visually non-identifiable reduction of the palisade parenchyma cell layer thickness is the main initial symptom, which occurs at the initial stage of the disease. Therefore, we established a non-destructive bio-photonic inspection method using a 1310 nm swept source optical coherence tomography (SS-OCT) system. These results confirm that this method is able to identify morphological differences between healthy leaves from infected trees and leaves from healthy and infected trees. In addition, this method has the potential to generate significant cost savings and good control of CLS disease in persimmon fields. PMID:27529250
Diospyros virginiana L. Common Persimmon
Lowell K. Halls
1981-01-01
Common persimmon (Diospyros virginiana), also called simmon, possumwood, and Florida persimmon, is a slow-growing tree of moderate size found on a wide variety of soils and sites. Best growth is in the bottom lands of the Mississippi River Valley. The wood is close grained and sometimes used for special products requiring hardness and strength....
Karaman, Safa; Toker, Ömer Said; Yüksel, Ferhat; Çam, Mustafa; Kayacier, Ahmed; Dogan, Mahmut
2014-01-01
In the present study, persimmon puree was incorporated into the ice cream mix at different concentrations (8, 16, 24, 32, and 40%) and some physicochemical (dry matter, ash, protein, pH, sugar, fat, mineral, color, and viscosity), textural (hardness, stickiness, and work of penetration), bioactive (antiradical activity and total phenolic content), and sensory properties of samples were investigated. The technique for order preference by similarity to ideal solution approach was used for the determination of optimum persimmon puree concentration based on the sensory and bioactive characteristics of final products. Increase in persimmon puree resulted in a decrease in the dry matter, ash, fat, protein contents, and viscosity of ice cream mix. Glucose, fructose, sucrose, and lactose were determined to be major sugars in the ice cream samples including persimmon and increase in persimmon puree concentration increased the fructose and glucose content. Better melting properties and textural characteristics were observed for the samples with the addition of persimmon. Magnesium, K, and Ca were determined to be major minerals in the samples and only K concentration increased with the increase in persimmon content. Bioactive properties of ice cream samples improved and, in general, acetone-water extracts showed higher bioactivity compared with ones obtained using methanol-water extracts. The technique for order preference by similarity to ideal solution approach showed that the most preferred sample was the ice cream containing 24% persimmon puree. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
A Transcriptome Approach Toward Understanding Fruit Softening in Persimmon
Jung, Jihye; Choi, Sang Chul; Jung, Sunghee; Cho, Byung-Kwan; Ahn, Gwang-Hwan; Ryu, Stephen B.
2017-01-01
Persimmon (Diospyros kaki Thunb.), which is a climacteric fruit, softens in 3–5 weeks after harvest. However, little is known regarding the transcriptional changes that underlie persimmon ripening. In this study, high-throughput de novo RNA sequencing was performed to examine differential expression between freshly harvested (FH) and softened (ST) persimmon fruit peels. Using the Illumina HiSeq platform, we obtained 259,483,704 high quality reads and 94,856 transcripts. After the removal of redundant sequences, a total of 31,258 unigenes were predicted, 1,790 of which were differentially expressed between FH and ST persimmon (1,284 up-regulated and 506 down-regulated in ST compared with FH). The differentially expressed genes (DEGs) were further subjected to KEGG pathway analysis. Several pathways were found to be up-regulated in ST persimmon, including “amino sugar and nucleotide sugar metabolism.” Pathways down-regulated in ST persimmon included “photosynthesis” and “carbon fixation in photosynthetic organisms.” Expression patterns of genes in these pathways were further confirmed using quantitative real-time RT-PCR. Ethylene gas production during persimmon softening was monitored with gas chromatography and found to be correlated with the fruit softening. Transcription involved in ethylene biosynthesis, perception and signaling was up-regulated. On the whole, this study investigated the key genes involved in metabolic pathways of persimmon fruit softening, especially implicated in increased sugar metabolism, decreased photosynthetic capability, and increased ethylene production and other ethylene-related functions. This transcriptome analysis provides baseline information on the identity and modulation of genes involved in softening of persimmon fruits and can underpin the future development of technologies to delay softening in persimmon. PMID:28955353
Characterization of a new apscaviroid from American persimmon.
Ito, Takao; Suzaki, Koichi; Nakano, Masaaki; Sato, Akihiko
2013-12-01
A unique circular molecule of 358 nucleotides was detected in American persimmon (Diospyros virginiana L.). The molecule was graft-transmissible and had genetic characteristics of members of the genus Apscaviroid. It had the highest sequence similarity (72-73 %) to citrus viroid VI (CVd-VI) and formed a clade with CVd-VI, citrus dwarfing viroid, and apple dimple fruit viroid in a phylogenetic tree. The molecule was not detected in citrus, unlike CVd-VI, which infects citrus and persimmon, and it was genetically distant from persimmon latent viroid, which infects persimmon only. The genetic and biological features indicated that the molecule may be a member of a new apscaviroid species.
Identification of a new Apscaviroid from Japanese persimmon.
Nakaune, Ryoji; Nakano, Masaaki
2008-01-01
Three viroid-like sequences were detected from Japanese persimmon (Diospyrus kaki Thunb.) by RT-PCR using primers specific for members of the genus Apscaviroid. Based on the sequences, we determined the complete genomic sequences. Two had 92.1-94.3% sequence identity with citrus viroid OS (CVd-OS) and 91.4-96.3% identity with apple fruit crinkle viroid (AFCVd), respectively. Another one, tentatively named persimmon viroid (PVd), had 396 nucleotides and less than 70% sequence identity with known viroids. The secondary structure of PVd is proposed to be rod-like with extensive base pairing and contains the terminal conserved region and the central conserved region characteristic of the genus Apscaviroid. Moreover, we confirmed that the viroids, including PVd, are graft transmissible from persimmon to persimmon and that persimmon is a natural host of these viroids. According to its molecular and biological properties, PVd should be considered a member of a new species in the genus Apscaviroid.
Antimicrobial activity of aqueous extract of leaf and stem extract of Santalum album
Kumar, M. Giriram; Jeyraaj, Indira A.; Jeyaraaj, R.; Loganathan, P.
2006-01-01
The antimicrobial activity of aqueous extract leaf and stem of Santalum album was performed against Escherichia coli, Staphylococcus aureus and Pseudomonas. S. album leaf extract showed inhibition to E.coli (0.8mm), Staphylococcus aureus (1.0mm) and Pseudomonas (1.4mm) were as stem extract showed inhibition on E.coli (0.6mm), Staphylococcus aureus (0.4mm) and seudomonas (1.0mm) respectively. However leaf extract showed significantly higher inhibition when compared to stem extract. This might be due to presence of higher amount of secondary metabolites in the aqueous leaf extract. PMID:22557199
Dong, Xiao-qian; Zou, Bo; Zhang, Ying; Ge, Zhen-zhen; Du, Jing; Li, Chun-mei
2013-12-01
We have established a simple method for preparing large quantities of A-type dimers from peanut skin and persimmon for further structure-activity relationship study. Peanut skins were defatted with hexane and oligomeric proanthocyanidins were extracted from it with 20% of methanol, and the extract was fractionated with ethyl acetate. Persimmon tannin was extracted from persimmon with methanol acidified with 1% hydrochloric acid, after removing the sugar and small phenols, the high molecular weight persimmon tannin was partially cleaved with 6.25% hydrochloric acid in methanol. The ethyl acetate fraction from peanut skins and persimmon tannin cleaved products was chromatographed on AB-8 macroporous resin followed by Toyopearl HW-50F resin to yield about 378.3mg of A-type (epi)catechin (EC) dimer from 1 kg dry peanut skins and 34.3mg of A-type (epi)catechin-3-O-gallate (ECG) dimer and 37.7 mg of A-type (epi)gallocatechin-3-O-gallate (EGCG) dimer from 1 kg fresh persimmon fruit. The antioxidant properties of the A-type and B-type dimers were compared in five different assays, namely, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, 2,2-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical, hydroxyl radical, lipid peroxidation in mice liver homogenate and erythrocyte hemolysis in rat blood. Our results showed that both A-type and B-type dimers showed high antioxidant potency in a dose-dependent manner. In general, B-type dimers showed higher radical scavenging potency than A-type ones with the same subunits in aqueous systems. But in tissue or lipid systems, A-type dimers showed similar or even higher antioxidant potency than B-type ones. © 2013.
Sentandreu, Enrique; Cerdán-Calero, Manuela; Halket, John M; Navarro, José L
2015-06-01
Persimmon fruits have been widely used in traditional medicine owing to their phenolic composition. This research aims to perform a rapid, detailed and affordable study of the profile of low-molecular-weight phenols from persimmon pulp. Two different HPLC-DAD/ESI-MS(n) analyses were performed using a routine three-dimensional ion trap mass spectrometer to analyze the ethanolic extract of persimmon pulp: (1) an untargeted data-dependent analysis to identify the majority of small phenols that included full MS and MS(2) scan events; (2) a targeted data-dependent analysis to identify polymerized phenols (dimers and formic acid adducts) through a source-induced dissociation analysis that included full MS and MS(2) scan events. Thirty-two low-molecular-weight phenols were detected, comprising gallic acid and its glycoside and acyl derivatives, glycosides of p-coumaric, vanillic and cinnamic acids and different flavone di-C-hexosides, most of them reported for the first time in persimmon. The use of a straightforward and affordable methodology of analysis led to obtain an up-to-date profiling of low-molecular-weight phenols in persimmon. The results can help future actions aimed to expand the understanding of the phenolic metabolome of persimmon cultivars. © 2014 Society of Chemical Industry.
Morelli, M; Chiumenti, M; De Stradis, A; La Notte, P; Minafra, A
2015-02-01
Through the application of next generation sequencing, in synergy with conventional cloning of DOP-PCR fragments, two double-stranded RNA (dsRNA) molecules of about 1.5 kbp in size were isolated from leaf tissue of a Japanese persimmon (accession SSPI) from Apulia (southern Italy) showing veinlets necrosis. High-throughput sequencing allowed whole genome sequence assembly, yielding a 1,577 and a 1,491 bp contigs identified as dsRNA-1 and dsRNA-2 of a previously undescribed virus, provisionally named as Persimmon cryptic virus (PeCV). In silico analysis showed that both dsRNA fragments were monocistronic and comprised the RNA-dependent RNA polymerase (RdRp) and the capsid protein (CP) genes, respectively. Phylogenetic reconstruction revealed a close relationship of these dsRNAs with those of cryptoviruses described in woody and herbaceous hosts, recently gathered in genus Deltapartitivirus. Virus-specific primers for RT-PCR, designed in the CP cistron, detected viral RNAs also in symptomless persimmon trees sampled from the same geographical area of SSPI, thus proving that PeCV infection may be fairly common and presumably latent.
Predictive model for consumer preference of a dried, chip-style persimmon product
USDA-ARS?s Scientific Manuscript database
The State of California is a major producer of Asian persimmons (Diospyros kaki), however, there is limited availability of persimmons outside of this region and the fruit’s short harvest season. A dried, chip-style product could increase the geographic area and timeframe in which persimmon growers...
Persimmon (Diospyros kaki) fruit: hidden phytochemicals and health claims
Butt, Masood Sadiq; Sultan, M. Tauseef; Aziz, Mahwish; Naz, Ambreen; Ahmed, Waqas; Kumar, Naresh; Imran, Muhammad
2015-01-01
Currently, nutrition and health linkages focused on emerging strategy of diet based regimen to combat various physiological threats including cardiovascular disorders, oxidative stress, diabetes mellitus, etc. In this context, consumption of fruits and vegetables is gaining considerable importance as safeguard to maintain human health. Likewise, their phytochemicals and bioactive molecules are also becoming popular as promising demulcent against various ailments. The current review is an effort to sum up information regarding persimmon fruit with special reference to its phytochemistry and associated health claims. Accordingly, the role of its certain bioactive molecules like proanthocyanidin, carotenoids, tannins, flavonoids, anthocyanidin, catechin, etc. is highlighted. Owing to rich phytochemistry, persimmon and its products are considered effective in mitigating oxidative damage induced by reactive oxygen species (ROS). The antioxidant potential is too responsible for anti-malignant and anti-melanogenic perspectives of persimmon functional ingredients. Additionally, they are effectual in soothing lifestyle related disparities e.g. cardiovascular disorders and diabetes mellitus. There are proven facts that pharmacological application of persimmon or its functional ingredients like proanthocyanidin may helps against hyperlipidemia and hyperglycemia. Nevertheless, astringent taste and diospyrobezoars formation are creating lacuna to prop up its vitality. In toto, persimmon and its components hold potential as one of effective modules in diet based therapy; however, integrated research and meta-analysis are still required to enhance meticulousness. PMID:27047315
Olea europaea L. leaf extract and derivatives: antioxidant properties.
Briante, Raffaella; Patumi, Maurizio; Terenziani, Stefano; Bismuto, Ettore; Febbraio, Ferdinando; Nucci, Roberto
2002-08-14
This paper reports a very simple and fast method to collect eluates with high amounts of hydroxytyrosol, biotransforming Olea europaea L. leaf extract by a thermophilic beta-glycosidase immobilized on chitosan. Some phenolic compounds in the leaf tissue and in the eluates obtained by biotransformation are identified. To propose the eluates as natural substances from a vegetal source, their antioxidant properties have been compared with those of the leaf extract from which they are originated. The eluates possess a higher concentration of simple phenols, characterized by a stronger antioxidant capacity, than those available in extra virgin olive oils and in many tablets of olive leaf extracts, commercially found as dietetic products and food integrators.
Texture attributes of a persimmon (Diospyros kaki) chip-style product
USDA-ARS?s Scientific Manuscript database
Asian persimmons (Diospyros kaki) are tree fruits that have not yet been widely commercialized into value-added products. A dried, chip-style product (analogous to banana chips) has been developed for persimmons, and the objectives of this work were to characterize the texture of hot-air dried persi...
Min, Ting; Yin, Xue-ren; Chen, Kun-song
2012-01-01
The persimmon fruit is a particularly good model for studying fruit response to hypoxia, in particular, the hypoxia-response ERF (HRE) genes. An anaerobic environment reduces fruit astringency by converting soluble condensed tannins (SCTs) into an insoluble form. Although the physiology of de-astringency has been widely studied, its molecular control is poorly understood. Both CO2 and ethylene treatments efficiently removed the astringency from ‘Mopan’ persimmon fruit, as indicated by a decrease in SCTs. Acetaldehyde, the putative agent for causing de-astringency, accumulated during these treatments, as did activities of the key enzymes of acetaldehyde synthesis, alcohol dehydrogenase (ADH), and pyruvate decarboxylase (PDC). Eight DkADH and DkPDC genes were isolated, and three candidates for a role in de-astringency, DkADH1, DkPDC1, and DkPDC2, were characterized by transcriptional analysis in different tissues. The significance of these specific isoforms was confirmed by principal component analysis. Transient expression in leaf tissue showed that DkPDC2 decreased SCTs. Interactions of six hypoxia-responsive ERF genes and target promoters were tested in transient assays. The results indicated that two hypoxia-responsive ERF genes, DkERF9 and DkERF10, were involved in separately regulating the DkPDC2 and DkADH1 promoters. It is proposed that a DkERF–DkADH/DkPDC cascade is involved in regulating persimmon de-astringency. PMID:23095993
Ocimum sanctum leaf extract induces drought stress tolerance in rice
Pandey, Veena; Ansari, M.W.; Tula, Suresh; Sahoo, R.K.; Bains, Gurdeep; Kumar, J.; Tuteja, Narendra; Shukla, Alok
2016-01-01
ABSTRACT Ocimum leaves are highly enriched in antioxidant components. Thus, its leaf extract, if applied in plants, is believed to efficiently scavenge ROS, thereby preventing oxidative damage under drought stress. Thus, the present study was performed in kharif 2013 and rabi 2014 season to evaluate the effect of aqueous leaf extract of Ocimum sanctum against drought stress in 2 rice genotype under glass house conditions. Here we show that various morpho- physiological (chlorophyll fluorescence, leaf rolling score, leaf tip burn, number of senesced leaves and total dry matter) and biochemical parameters (proline, malondialdehyde and superoxide dismutase content) were amended by Ocimum treatment in both the seasons. Application of Ocimum extract increased expression of dehydrin genes, while reducing expression of aquaporin genes in drought stressed rice plant. Thus, application of Ocimum leaf extract under drought stress can be suggested as a promising strategy to mitigate drought stress in economical, accessible and ecofriendly manner. PMID:26890603
In vitro propagation of persimmon (Diospyros kaki Thunb.).
Giordani, Edgardo; Naval, Mar; Benelli, Carla
2013-01-01
Persimmon (Diospyros kaki Thunb.) is a temperate fruit tree species diffused in all continents. The traditional propagation method adopted by the nursery industry is based on budding/grafting scion cultivars on seedlings from D. kaki, Diospyros lotus, and Diospyros virginiana, the most important species used as rootstock, reproduced by seeds since they are not easy to root. Furthermore, most of nonastringent cultivars of persimmon are not compatible with D. lotus, a rootstock largely utilized because of its hardiness and frost resistance. The main in vitro tissue culture techniques, developed for persimmon, deal with direct regeneration (from dormant buds and root tips), and indirect regeneration through callus from dormant buds, apexes, and leaves. The bottlenecks of micropropagation are (1) the recalcitrance of many cultivars to in vitro establishment, (2) the low multiplication ratio of D. kaki compared to other fruit tree species, (3) the very low rooting ability of ex novo microcuttings both from direct and indirect regeneration, (4) the high sensitivity to transplant from in vitro to in vivo conditions. The development of reliable in vitro regeneration procedures is likely to play a key role for production of both clonal rootstocks and self-rooted cultivars. The general protocol for micropropagation of persimmon reported here is based on the establishment of winter dormant buds in vitro, shoot development, multiplication and elongation, and shoot rooting, using cytokinins (BA or zeatin) in a MS media along with an auxinic pretreatment for rooting induction.
Vázquez-Gutiérrez, José Luis; Quiles, Amparo; Vonasek, Erica; Jernstedt, Judith A; Hernando, Isabel; Nitin, Nitin; Barrett, Diane M
2016-12-01
The "Hachiya" persimmon is the most common astringent cultivar grown in California and it is rich in tannins and carotenoids. Changes in the microstructure and some physicochemical properties during high hydrostatic pressure processing (200-400 MPa, 3 min, 25 ℃) and subsequent refrigerated storage were analyzed in this study in order to evaluate the suitability of this non-thermal technology for preservation of fresh-cut Hachiya persimmons. The effects of high-hydrostatic pressure treatment on the integrity and location of carotenoids and tannins during storage were also analyzed. Significant changes, in particular diffusion of soluble compounds which were released as a result of cell wall and membrane damage, were followed using confocal microscopy. The high-hydrostatic pressure process also induced changes in physicochemical properties, e.g. electrolyte leakage, texture, total soluble solids, pH and color, which were a function of the amount of applied hydrostatic pressure and may affect the consumer acceptance of the product. Nevertheless, the results indicate that the application of 200 MPa could be a suitable preservation treatment for Hachiya persimmon. This treatment seems to improve carotenoid extractability and tannin polymerization, which could improve functionality and remove astringency of the fruit, respectively. © The Author(s) 2016.
Antibacterial and antioxidant activities of Vaccinium corymbosum L. leaf extract
Pervin, Mehnaz; Hasnat, Md Abul; Lim, Beong Ou
2013-01-01
Objective To investigate antibacterial and antioxidant activity of the leaf extract of tropical medicinal herb and food plant Vaccinium corymbosum L. (V. corymbosum). Methods Free radical scavenging activity on DPPH, ABTS, and nitrites were used to analyse phenoic and flavonoid contents of leaf extract. Other focuses included the determination of antioxidant enzymatic activity (SOD, CAT and GPx), metal chelating activity, reduction power, lipid peroxidation inhibition and the prevention of oxidative DNA damage. Antibacterial activity was determined by using disc diffusion for seven strains of bacteria. Results Results found that V. corymbosum leaf extract had significant antibacterial activity. The tested extract displayed the highest activity (about 23.18 mm inhibition zone) against Salmonella typhymurium and the lowest antibacterial activity was observed against Enterococcus faecalis (about 14.08 mm inhibition zone) at 10 mg/ disc. The IC50 values for DPPH, ABTS and radical scavenging activity were 0.120, 0.049 and 1.160 mg/mL, respectively. V. corymbosum leaf extract also showed dose dependent reduction power, lipid peroxidation, DNA damage prevention and significant antioxidant enzymatic activity. Conclusions These findings demonstrate that leaf extract of V. corymbosum could be used as an alternative therapy for antibiotic-resistant bacteria and help prevent various free radical related diseases.
Mechanistic evaluation of Ginkgo biloba leaf extract-induced genotoxicity in L5178Y cells.
Lin, Haixia; Guo, Xiaoqing; Zhang, Suhui; Dial, Stacey L; Guo, Lei; Manjanatha, Mugimane G; Moore, Martha M; Mei, Nan
2014-06-01
Ginkgo biloba has been used for many thousand years as a traditional herbal remedy and its extract has been consumed for many decades as a dietary supplement. Ginkgo biloba leaf extract is a complex mixture with many constituents, including flavonol glycosides and terpene lactones. The National Toxicology Program 2-year cancer bioassay found that G. biloba leaf extract targets the liver, thyroid gland, and nose of rodents; however, the mechanism of G. biloba leaf extract-associated carcinogenicity remains unclear. In the current study, the in vitro genotoxicity of G. biloba leaf extract and its eight constituents was evaluated using the mouse lymphoma assay (MLA) and Comet assay. The underlying mechanisms of G. biloba leaf extract-associated genotoxicity were explored. Ginkgo biloba leaf extract, quercetin, and kaempferol resulted in a dose-dependent increase in the mutant frequency and DNA double-strand breaks (DSBs). Western blot analysis confirmed that G. biloba leaf extract, quercetin, and kaempferol activated the DNA damage signaling pathway with increased expression of γ-H2AX and phosphorylated Chk2 and Chk1. In addition, G. biloba leaf extract produced reactive oxygen species and decreased glutathione levels in L5178Y cells. Loss of heterozygosity analysis of mutants indicated that G. biloba leaf extract, quercetin, and kaempferol treatments resulted in extensive chromosomal damage. These results indicate that G. biloba leaf extract and its two constituents, quercetin and kaempferol, are mutagenic to the mouse L5178Y cells and induce DSBs. Quercetin and kaempferol likely are major contributors to G. biloba leaf extract-induced genotoxicity.
Antioxidant activity of Syzygium cumini leaf gall extracts
Eshwarappa, Ravi Shankara Birur; Iyer, Raman Shanthi; Subbaramaiah, Sundara Rajan; Richard, S Austin; Dhananjaya, Bhadrapura Lakkappa
2014-01-01
Introduction: Free radicals are implicated in several metabolic diseases and the medicinal properties of plants have been explored for their potent antioxidant activities to counteract metabolic disorders. This research highlights the chemical composition and antioxidant potential of leaf gall extracts (aqueous and methanol) of Syzygium cumini (S. cumini), which have been extensively used in traditional medications to treat various metabolic diseases. Methods: The antioxidant activities of leaf gall extracts were examined using diphenylpicrylhydrazyl (DPPH), nitric oxide scavenging, hydroxyl scavenging and ferric reducing power (FRAP) methods. Results: In all the methods, the methanolic extract showed higher antioxidant potential than the standard ascorbic acid. The presence of phenolics, flavonoids, phytosterols, terpenoids, and reducing sugars was identified in both the extracts. When compared, the methanol extract had the highest total phenolic and flavonoid contents at 474±2.2 mg of GAE/g d.w and 668±1.4 mg of QUE/g d.w, respectively. The significant high antioxidant activity can be positively correlated to the high content of total polyphenols/flavonoids of the methanol extract. Conclusion: The present study confirms the folklore use of S. cumini leaves gall extracts as a natural antioxidant and justifies its ethnobotanical use. Further, the result of antioxidant properties encourages the use of S. cumini leaf gall extracts for medicinal health, functional food and nutraceuticals applications. PMID:25035854
Rahman, M M; Ahmad, S H; Mohamed, M T M; Ab Rahman, M Z
2014-01-01
The present research was conducted to discover antimicrobial compounds in methanolic leaf extracts of Jatropha curcas and Andrographis paniculata and ethanolic leaf extract of Psidium guajava and the effectiveness against microbes on flower preservative solution of cut Mokara Red orchid flowers was evaluated. The leaves were analyzed using gas chromatography-mass spectrometry. A total of nine, 66, and 29 compounds were identified in J. curcas, P. guajava, and A. paniculata leaf extracts, with five (88.18%), four (34.66%), and three (50.47%) having unique antimicrobial compounds, respectively. The experimental design on vase life was conducted using a completely randomized design with 10 replications. The flower vase life was about 6 days in the solution containing the P. guajava and A. paniculata leaf extracts at 15 mg/L. Moreover, solution with leaf extracts of A. paniculata had the lowest bacterial count compared to P. guajava and J. curcas. Thus, these leaf extracts revealed the presence of relevant antimicrobial compounds. The leaf extracts have the potential as a cut flower solution to minimize microbial populations and extend flower vase life. However, the activities of specific antimicrobial compounds and double or triple combination leaf extracts to enhance the effectiveness to extend the vase life need to be tested.
Rahman, M. M.; Ahmad, S. H.; Mohamed, M. T. M.; Ab Rahman, M. Z.
2014-01-01
The present research was conducted to discover antimicrobial compounds in methanolic leaf extracts of Jatropha curcas and Andrographis paniculata and ethanolic leaf extract of Psidium guajava and the effectiveness against microbes on flower preservative solution of cut Mokara Red orchid flowers was evaluated. The leaves were analyzed using gas chromatography-mass spectrometry. A total of nine, 66, and 29 compounds were identified in J. curcas, P. guajava, and A. paniculata leaf extracts, with five (88.18%), four (34.66%), and three (50.47%) having unique antimicrobial compounds, respectively. The experimental design on vase life was conducted using a completely randomized design with 10 replications. The flower vase life was about 6 days in the solution containing the P. guajava and A. paniculata leaf extracts at 15mg/L. Moreover, solution with leaf extracts of A. paniculata had the lowest bacterial count compared to P. guajava and J. curcas. Thus, these leaf extracts revealed the presence of relevant antimicrobial compounds. The leaf extracts have the potential as a cut flower solution to minimize microbial populations and extend flower vase life. However, the activities of specific antimicrobial compounds and double or triple combination leaf extracts to enhance the effectiveness to extend the vase life need to be tested. PMID:25250382
Chen, Wenxing; Mo, Rongli; Du, Xiaoyun; Zhang, Qinglin; Luo, Zhengrong
2016-01-01
Chinese pollination-constant non-astringent (C-PCNA) persimmon (Diospyros kaki Thunb.) is considered to be an important germplasm resource for the breeding of PCNA cultivars, though its molecular mechanisms of astringency removal remain to be elucidated. Previously, we showed that the abundance of pyruvate kinase gene transcripts increased rapidly during astringency removal in C-PCNA persimmon fruit. Here, we report the full-length coding sequences of six novel DkPK genes from C-PCNA persimmon fruit isolated based on a complementary DNA (cDNA) library and transcriptome data. The expression patterns of these six DkPK genes and correlations with the soluble proanthocyanidin (PA) content were analyzed during various fruit development stages in different types of persimmon, with DkPK1 showing an expression pattern during the last stage in C-PCNA persimmon that was positively correlated with a decrease in soluble PAs. Phylogenetic analysis revealed that DkPK1 belongs to cytosolic-1 subgroup, and subcellular localization analysis confirmed that DkPK1 is located in the cytosol. Notably, tissue expression profiling revealed ubiquitous DkPK1 expression in different persimmon organs, with the highest expression in seeds. Furthermore, transient over-expression of DkPK1 in persimmon leaves resulted in a significant decrease in the content of soluble PAs but a significant increase in the transcript levels of pyruvate decarboxylase genes (DkPDC1, -3, -4, -5), which catalyze the conversion of pyruvate to acetaldehyde. Thus, we propose that an acetaldehyde-based coagulation effect reduces the content of soluble PAs. Taken together, our results suggest that DkPK1 might be involved in the natural removal of astringency at the last developmental stage in C-PCNA persimmon. This is the first report to identify several novel full-length DkPK genes as well as their potential roles in the natural loss of astringency in C-PCNA persimmon. PMID:26925075
Antimicrobial activity of commercial Olea europaea (olive) leaf extract.
Sudjana, Aurelia N; D'Orazio, Carla; Ryan, Vanessa; Rasool, Nooshin; Ng, Justin; Islam, Nabilah; Riley, Thomas V; Hammer, Katherine A
2009-05-01
The aim of this research was to investigate the activity of a commercial extract derived from the leaves of Olea europaea (olive) against a wide range of microorganisms (n=122). Using agar dilution and broth microdilution techniques, olive leaf extract was found to be most active against Campylobacter jejuni, Helicobacter pylori and Staphylococcus aureus [including meticillin-resistant S. aureus (MRSA)], with minimum inhibitory concentrations (MICs) as low as 0.31-0.78% (v/v). In contrast, the extract showed little activity against all other test organisms (n=79), with MICs for most ranging from 6.25% to 50% (v/v). In conclusion, olive leaf extract was not broad-spectrum in action, showing appreciable activity only against H. pylori, C. jejuni, S. aureus and MRSA. Given this specific activity, olive leaf extract may have a role in regulating the composition of the gastric flora by selectively reducing levels of H. pylori and C. jejuni.
Inhibitory activities of Moringa oleifera leaf extract against α-glucosidase enzyme in vitro
NASA Astrophysics Data System (ADS)
Natsir, H.; Wahab, A. W.; Laga, A.; Arif, A. R.
2018-03-01
Alpha-glucosidase is a key enzyme in the final process of breaking carbohydrates into glucose. Inhibition of α-glucosidase affected more absorption of glucose, so it can reduce hyperglycemia condition. The aims of this study is to determine the effectiveness of inhibition wet and dried Moringa oleifera leaf extract through α-glucosidase activity in vitro. The effectiveness study of inhibition on the activity of α-glucosidase enzyme obtained from white glutinous rice (Oryza sativa glutinosa) was carried out using wet and dried kelor leaf extract of 13% (w/v) with 10 mM α-D-glucopyranoside (PNPG) substrate. A positive control used 1% acarbose and substrate without addition of extract was a negative control. Inhibitory activity was measured using spectrophotometers at a wavelength of 400 nm. The result showed that the inhibition activity against α-glucosidase enzyme of dried leaf extract, wet leaf extract and acarbose was 81,39%, 83,94%, and 95,4%, respectively on pH 7,0. The effectiveness inhibition of the wet Moringa leaf extract was greater than the dried leaf extract. The findings suggest that M. oleifera leaf has the potential to be developed as an alternative food therapy for diabetics.
Antimalarial activity of methanolic leaf extract of Piper betle L.
Al-Adhroey, Abdulelah H; Nor, Zurainee M; Al-Mekhlafi, Hesham M; Amran, Adel A; Mahmud, Rohela
2010-12-28
The need for new compounds active against malaria parasites is made more urgent by the rapid spread of drug-resistance to available antimalarial drugs. The crude methanol extract of Piper betle leaves (50-400 mg/kg) was investigated for its antimalarial activity against Plasmodium berghei (NK65) during early and established infections. The phytochemical and antioxidant potentials of the crude extract were evaluated to elucidate the possibilities of its antimalarial effects. The safety of the extract was also investigated in ICR mice of both sexes by the acute oral toxicity limit test. The leaf extract demonstrated significant (P < 0.05) schizonticidal activity in all three antimalarial evaluation models. Phytochemical screening showed that the leaf extract contains some vital antiplasmodial chemical constituents. The extract also exhibited a potent ability to scavenge the free radicals. The results of acute toxicity showed that the methanol extract of Piper betle leaves is toxicologically safe by oral administration. The results suggest that the Malaysian folklorical medicinal application of the extract of Piper betle leaf has a pharmacological basis.
The potential of papaya leaf extract in controlling Ganoderma boninense
NASA Astrophysics Data System (ADS)
Tay, Z. H.; Chong, K. P.
2016-06-01
Basal Stem Rot (BSR) disease causes significant losses to the oil palm industry. Numerous controls have been applied in managing the disease but no conclusive result was reported. This study investigated the antifungal potential of papaya leaf extracts against Ganoderma boninense, the causal pathogen of BSR. Among the five different solvents tested in extraction of compounds from papaya leaf, methanol and acetone gave the highest yield. In vitro antifungal activity of the methanol and acetone extracts were evaluated against G. boninense using agar dilution at four concentrations: 5 mg mL-1, 15 mg mL-1, 30 mg mL-1and 45 mg mL-1. The results indicated a positive correlation between the concentration of leaf extracts and the inhibition of G. boninense. ED50 of methanol and acetone crude extracts were determined to be 32.016 mg mL-1and 65.268 mg mL-1, respectively. The extracts were later semi-purified using solid phase extraction (SPE) and the nine bioactive compounds were identified: decanoic acid, 2-methyl-, Z,Z-10-12-Hexadecadien-1-ol acetate, dinonanoin monocaprylin, 2-chloroethyl oleate, phenol,4-(1-phenylethyl)-, phenol,2,4-bis(1-phenylethyl)-, phenol-2-(1-phenylethyl)-, ethyl iso-allocholate and 1- monolinoleoylglycerol trimethylsilyl ether. The findings suggest that papaya leaf extracts have the ability to inhibit the growth of G. boninense, where a higher concentration of the extract exhibits better inhibition effects.
Topical Olive Leaf Extract Improves Healing of Oral Mucositis in Golden Hamsters.
Showraki, Najmeh; Mardani, Maryam; Emamghoreishi, Masoumeh; Andishe-Tadbir, Azadeh; Aram, Alireza; Mehriar, Peiman; Omidi, Mahmoud; Sepehrimanesh, Masood; Koohi-Hosseinabadi, Omid; Tanideh, Nader
2016-12-01
Oral mucositis (OM) is a common side effect of anti-cancer drugs and needs significant attention for its prevention. This study aimed to evaluate the healing effects of olive leaf extract on 5-fluorouracil-induced OM in golden hamster. OM was induced in 63 male golden hamsters by the combination of 5-fluorouracil injections (days 0, 5 and 10) and the abrasion of the cheek pouch (days 3 and 4). On day 12, hamsters were received topical olive leaf extract ointment, base of ointment, or no treatment (control) for 5 days. Histopathology evaluations, blood examinations, and tissue malondialdehyde level measurement were performed 1, 3 and 5 days after treatments. Histopathology score and tissue malondialdehyde level were significantly lower in olive leaf extract treated group in comparison with control and base groups ( p = 0.000). Significant decreases in white blood cell, hemoglobin, hematocrit , and mean corpuscular volume and an increase in mean corpuscular hemoglobin concentration were observed in olive leaf extract treated group in comparison with control and base groups ( p < 0.05). Our findings demonstrated that daily application of olive leaf extract ointment had healing effect on 5-fluorouracil induced OM in hamsters. Moreover, the beneficial effect of olive leaf extract on OM might be due to its antioxidant and anti-inflammatory properties.
Hypotheses for common persimmon stand development in mixed-species bottomland hardwood forests
Brian Roy Lockhart
2013-01-01
Common persimmon (Diospyros virginiana L.) is a shade-tolerant tree species found in southern bottomland hardwood forests. It is a desired species due primarily to its large fruit used by many wildlife species. While it has been observed as a component in natural reproduction, persimmon is rarely found as an overstory species in maturing bottomland...
Antioxidant activities of ficus glomerata (moraceae) leaf gall extracts
Eshwarappa, Ravi Shankara Birur; Iyer, Shanthi; Subaramaihha, Sundara Rajan; Richard, S Austin; Dhananjaya, Bhadrapura Lakkappa
2015-01-01
An excess production or decreased scavenging of reactive oxygen species (ROS) has been implicated in the pathogenesis of diverse metabolic disorders such as diabetes, cancer, atherosclerosis and neurodegeneration. Hence the antioxidant therapy has gained an utmost importance in the treatment of such diseases linked to free radicals. The medicinal properties of plants have been investigated and explored for their potent antioxidant activities to counteract metabolic disorders. This research highlights the chemical composition and antioxidant potential of leaf gall extracts (aqueous and methanol) of Ficus glomerata (F. glomerata), which is extensively used in the preparation of traditional medications to treat various metabolic diseases. The presences of phenolics, flavonoids, phytosterols, terpenoids and reducing sugars were identified in both the extracts. In comparison to the aqueous extract, the methanol extract had the highest total phenolic and flavonoid content at 370 ± 3.2 mg of gallic acid equivalent per gram of dry weight (mg GAE/g dw) and 155 ± 3.2 mg of quercetin equivalent per gram of dry weight (mg QUE/g dw), respectively. The antioxidant activities of leaf gall extracts were examined using diphenylpicrylhydrazyl (DPPH), Nitric oxide scavenging, hydroxyl scavenging and ferric reducing power (FRAP) methods. In all the methods, the methanolic extract showed higher antioxidant potential than the aqueous extract. A higher content of both total phenolics and flavonoids were found in the methanolic extract and the significantly high antioxidant activity can be positively correlated to the high content of total polyphenols/flavonoids of the methanol extract. The results of this study confirm the folklore use of F. glomerata leaf gall extracts as a natural antioxidant and justify its ethnobotanical use. Further, the results of antioxidant properties encourage the use of F. glomerata leaf gall extracts for medicinal health, functional food and nutraceuticals
Consumer evaluation of persimmon (Diospyros kaki) varieties for a chip-style product (abstract)
USDA-ARS?s Scientific Manuscript database
Asian persimmons (Diospyros kaki) are grown across the state of California, but the availability of this fruit outside the growing area and harvest season is limited. A dried, chip-style product would extend the geographic area and timeframe in which persimmon growers could sell their fruit. Persi...
Lotus leaf extract and L-carnitine influence different processes during the adipocyte life cycle
2010-01-01
Background The cellular and molecular mechanisms of adipose tissue biology have been studied extensively over the last two decades. Adipose tissue growth involves both an increase in fat cell size and the formation of mature adipocytes from precursor cells. To investigate how natural substances influence these two processes, we examined the effects of lotus leaf extract (Nelumbo nucifera-extract solution obtained from Silab, France) and L-carnitine on human preadipocytes and adipocytes. Methods For our in vitro studies, we used a lotus leaf extract solution alone or in combination with L-carnitine. Utilizing cultured human preadipocytes, we investigated lotus leaf extract solution-induced inhibition of triglyceride incorporation during adipogenesis and possible effects on cell viability. Studies on human adipocytes were performed aiming to elucidate the efficacy of lotus leaf extract solution to stimulate lipolytic activity. To further characterize lotus leaf extract solution-mediated effects, we determined the expression of the transcription factor adipocyte determination and differentiation factor 1 (ADD1/SREBP-1c) on the RNA- and protein level utilizing qRT-PCR and immunofluorescence analysis. Additionally, the effect of L-carnitine on beta-oxidation was analyzed using human preadipocytes and mature adipocytes. Finally, we investigated additive effects of a combination of lotus leaf extract solution and L-carnitine on triglyceride accumulation during preadipocyte/adipocyte differentiation. Results Our data showed that incubation of preadipocytes with lotus leaf extract solution significantly decreased triglyceride accumulation during adipogenesis without affecting cell viability. Compared to controls, adipocytes incubated with lotus leaf extract solution exhibited a significant increase in lipolysis-activity. Moreover, cell populations cultivated in the presence of lotus leaf extract solution showed a decrease in adipocyte differentiation capacity as indicated
Lotus leaf extract and L-carnitine influence different processes during the adipocyte life cycle.
Siegner, Ralf; Heuser, Stefan; Holtzmann, Ursula; Söhle, Jörn; Schepky, Andreas; Raschke, Thomas; Stäb, Franz; Wenck, Horst; Winnefeld, Marc
2010-08-05
The cellular and molecular mechanisms of adipose tissue biology have been studied extensively over the last two decades. Adipose tissue growth involves both an increase in fat cell size and the formation of mature adipocytes from precursor cells. To investigate how natural substances influence these two processes, we examined the effects of lotus leaf extract (Nelumbo nucifera-extract solution obtained from Silab, France) and L-carnitine on human preadipocytes and adipocytes. For our in vitro studies, we used a lotus leaf extract solution alone or in combination with L-carnitine. Utilizing cultured human preadipocytes, we investigated lotus leaf extract solution-induced inhibition of triglyceride incorporation during adipogenesis and possible effects on cell viability. Studies on human adipocytes were performed aiming to elucidate the efficacy of lotus leaf extract solution to stimulate lipolytic activity. To further characterize lotus leaf extract solution-mediated effects, we determined the expression of the transcription factor adipocyte determination and differentiation factor 1 (ADD1/SREBP-1c) on the RNA- and protein level utilizing qRT-PCR and immunofluorescence analysis. Additionally, the effect of L-carnitine on beta-oxidation was analyzed using human preadipocytes and mature adipocytes. Finally, we investigated additive effects of a combination of lotus leaf extract solution and L-carnitine on triglyceride accumulation during preadipocyte/adipocyte differentiation. Our data showed that incubation of preadipocytes with lotus leaf extract solution significantly decreased triglyceride accumulation during adipogenesis without affecting cell viability. Compared to controls, adipocytes incubated with lotus leaf extract solution exhibited a significant increase in lipolysis-activity. Moreover, cell populations cultivated in the presence of lotus leaf extract solution showed a decrease in adipocyte differentiation capacity as indicated by a decrease in the ADD1
USDA-ARS?s Scientific Manuscript database
Although persimmons are native (Diospyros virginiana) to the United States, commercial production consists almost exclusively of the Asian persimmon, Diospyros kaki. Cultivars within this species are classified by their astringency type; non-astringent, astringent, and pollination variant. In the U...
NASA Astrophysics Data System (ADS)
Hastuti, Utami Sri; Ummah, Yunita Putri Irsadul; Khasanah, Henny Nurul
2017-05-01
This research was done to 1) examine the effect of Piper aduncum leaf ethanol extract at certain concentrations against Candida albicans colony growth inhibition in vitro; 2) examine the effect of Peperomia pellucida leaf ethanol extract at certain concentrations toward Candida albicans colony growth inhibition in vitro; and 3) determine the most effective concentration of P. aduncum and P. pellucida leaves ethanol extract against C. albicans colony growth inhibition in vitro. These plant extracts were prepared by the maceration technique using 95% ethanol, and then sterile filtered and evaporated to obtain the filtrate. The filtrate was diluted with sterile distilled water at certain concentrations, i.e.: 0%, 10%, 20%, 30%, 405, 50%, 60%, 70%, 80%, and 90%. The antifungal effect of each leaf extract concentration was examined by the agar diffusion method on Sabouraud Dextrose Agar medium. The research results are: 1) the P.aduncum leaf ethanol extract at some concentrations has an effect against C. albicans colony growth inhibition in vitro; 2) the P.pellucida leaf ethanol extract at some concentrations has an effect against C. albicans colony growth inhibition in vitro; 3) the P. aduncum leaf ethanol extract at 80% is the most effective for C. albicans colony growth inhibition in vitro; and 4) the P. pellucida leaf ethanol extract at 70% is the most effective for C. albicans colony growth inhibition in vitro.
Antioxidant, genotoxic and antigenotoxic activities of daphne gnidium leaf extracts
2012-01-01
Background Plants play a significant role in maintaining human health and improving the quality of human life. They serve humans well as valuable components of food, as well as in cosmetics, dyes, and medicines. In fact, many plant extracts prepared from plants have been shown to exert biological activity in vitro and in vivo. The present study explored antioxidant and antigenotoxic effects of Daphne gnidium leaf extracts. Methods The genotoxic potential of petroleum ether, chloroform, ethyl acetate, methanol and total oligomer flavonoid (TOF) enriched extracts from leaves of Daphne gnidium, was assessed using Escherichia coli PQ37. Likewise, the antigenotoxicity of the same extracts was tested using the “SOS chromotest test”. Antioxidant activities were studied using non enzymatic and enzymatic method: NBT/Riboflavine and xantine oxidase. Results None of the different extracts produced a genotoxic effect, except TOF extract at the lowest tested dose. Our results showed that D. gnidium leaf extracts possess an antigenotoxic effect against the nitrofurantoin a mutagen of reference. Ethyl acetate and TOF extracts were the most effective in inhibiting xanthine oxidase activity. While, methanol extract was the most potent superoxide scavenger when tested with the NBT/Riboflavine assay. Conclusions The present study has demonstrated that D. gnidium leaf extract possess antioxidant and antigenotoxic effects. These activities could be ascribed to compounds like polyphenols and flavonoid. Further studies are required to isolate the active molecules. PMID:22974481
González, Eva; Vegara, Salud; Martí, Nuria; Valero, Manuel; Saura, Domingo
2015-03-01
Technological process for production of non-astringent persimmon (Diospyros kaki Thunb. cv. "Rojo Brillante") juice was described. The degree of fruit ripening expressed as color index (CI) varied between 12.37 and 16.33. Persimmon juice was characterized by determining physicochemical quality parameters as yield, total soluble solids (TSS), pH, titratable acidity (TA), organic acids, and main sugars. A thermal treatment of 90 ºC for 10 s was effective in controlling naturally occurring microorganisms for at least 105 d of storage without significantly affecting production of soluble brown pigments (BPs) and 5-hydroxymethyl furfural (5-HMF), total phenolic compounds (TPC), antioxidant capacity and acceptability of juice by panelists. Storage time affected all and each of the above parameters, reducing BPs, TPC and antioxidant capacity but increasing 5-HMF content. Refrigerated storage enhanced the acceptability of the juices. This information may be used by the juice industry as a starting point for production of pure persimmon juices. © 2015 Institute of Food Technologists®
In vitro Antioxidant and Pharmacognostic Studies of Leaf Extracts of Cajanus cajan (L.) Millsp.
Mahitha, B; Archana, P; Ebrahimzadeh, Md H; Srikanth, K; Rajinikanth, M; Ramaswamy, N
2015-01-01
Cajanus cajan (L.) Millsp is one of the second most dietary legume crops. The leaf extracts may be used as a potential source of natural antioxidant. The ash values, extractive values, total phenolic and flavonoid content, in vitro antioxidant activity of various leaf extracts as well as anatomical investigation of Cajanus cajan were carried out. Physicochemical parameters such as total, acid-insoluble and water-soluble ash values and moisture content of the leaf powder of C. cajan were found to be 9.50%, 1.40 g/100 g, 4.15 g/100 g drug and 6.72%, respectively. Percent yield of acetone, aqueous, ethanol, ethyl acetate and chloroform leaf extracts were 9.0, 10.6, 13.75, 8.7 and 5.8 g/100 g, respectively. Significant amount of phenolic and flavonoid content were observed. The results of the antioxidant activity were found to be concentration-dependent. The IC50 values for DPPH assay determined for aqueous and ethanol extracts were 0.69 and 0.79 mg/ml, respectively. Reducing power is increased with increasing amount of concentration in both aqueous and ethanol leaf extracts. The highest hydroxyl radical scavenging activity reached up to 83.67% in aqueous and 78.75% in ethanol extracts and in phosphomolybdenum assay the aqueous extract showed strong antioxidant capacity up to 55.97 nM gallic acid equivalents/g. It was found that the aqueous extract possessed highest antioxidant activity in all the assays tested. The antioxidant characteristics of leaf extracts are possibly because of the presence of polyphenols. Microscopic study showed the presence of collenchyma, fibres, xylem, phloem, epidermis, trichomes, palisade tissue, basal sheath, pith and cortex in leaf, petiole and pulvinus.
Son, Yu-Ra; Choi, Eun-Hye; Kim, Goon-Tae; Park, Tae-Sik; Shim, Soon-Mi
2016-02-01
The aims of this study were to determine bioactive components of Graviola leaf extracts and to examine the radical scavenging capacity, gene expression and transcription factors of antioxidant enzymes. Rutin, kaempferol-rutinoside, and vitamin U were identified from the steaming and 50% EtOH extracts of Graviola leaves. Graviola leaf extracts effectively scavenged peroxy and nitrogen radicals. 50% EtOH of Graviola leaves provided a 1-2.9 times higher trolox equivalent than the steaming extract. It also had a higher VCEAC. Graviola leaf extracts reduced the generation of reactive oxygen species (ROS) induced by H2O2 in a dose-dependent manner. The 50% EtOH extract of Graviola leaves upregulated SOD1 and Nrf2, but catalase and HMOX1 were not altered by the 50% EtOH extract of Graviola leaves.
Influence of phytochemicals in piper betle linn leaf extract on wound healing.
Lien, Le Thi; Tho, Nguyen Thi; Ha, Do Minh; Hang, Pham Luong; Nghia, Phan Tuan; Thang, Nguyen Dinh
2015-01-01
Wound healing has being extensively investigated over the world. Healing impairment is caused by many reasons including increasing of free-radicals-mediated damage, delaying in granulation tissue formation, reducing in angiogenesis and decreasing in collagen reorganization. These facts consequently lead to chronic wound healing. Piper betle Linn (Betle) leaves have been folklore used as an ingredient of drugs for cutaneous wound treatment. However, the effect of betle leaf on wound healing is not yet well elucidated. In this study, we aimed to investigate the healing efficacy of methanol leaf extract of Piper betle Linn on proliferation of fibroblast NIH3T3 cells as well as full-thickness burn and excision wounds in swiss mice. Scratch wound healing assays were conducted to examine the effects of betle leaf extract on healing activity of fibroblast cells. Burn and excision wounds on swiss mouse skins were created for investigating the wound healing progress caused by the betle leaf extract. Malondialdehyde (MDA) was also evaluated to examine the products of lipid hydroperoxide (LPO) under conditions of with or without betle leaf extract treatment. The results of this study showed that Piper betle Linn leaf extract in methanol increased proliferation of NIH3T3 cells and promoted wound healing in vitro and in vivo with both burn wound and excision wound models. In addition, this extract significant decreased level of malondialdehyde (MDA) in liver of treated-mice compared with that in non-treated mice. Our results suggest that Piper betle Linn can be used as an ingredient in developing natural origin drugs for treatment of cutaneous wounds.
In vitro Antioxidant and Pharmacognostic Studies of Leaf Extracts of Cajanus cajan (L.) Millsp
Mahitha, B.; Archana, P.; Ebrahimzadeh, MD. H.; Srikanth, K.; Rajinikanth, M.; Ramaswamy, N.
2015-01-01
Cajanus cajan (L.) Millsp is one of the second most dietary legume crops. The leaf extracts may be used as a potential source of natural antioxidant. The ash values, extractive values, total phenolic and flavonoid content, in vitro antioxidant activity of various leaf extracts as well as anatomical investigation of Cajanus cajan were carried out. Physicochemical parameters such as total, acid-insoluble and water-soluble ash values and moisture content of the leaf powder of C. cajan were found to be 9.50%, 1.40 g/100 g, 4.15 g/100 g drug and 6.72%, respectively. Percent yield of acetone, aqueous, ethanol, ethyl acetate and chloroform leaf extracts were 9.0, 10.6, 13.75, 8.7 and 5.8 g/100 g, respectively. Significant amount of phenolic and flavonoid content were observed. The results of the antioxidant activity were found to be concentration-dependent. The IC50 values for DPPH assay determined for aqueous and ethanol extracts were 0.69 and 0.79 mg/ml, respectively. Reducing power is increased with increasing amount of concentration in both aqueous and ethanol leaf extracts. The highest hydroxyl radical scavenging activity reached up to 83.67% in aqueous and 78.75% in ethanol extracts and in phosphomolybdenum assay the aqueous extract showed strong antioxidant capacity up to 55.97 nM gallic acid equivalents/g. It was found that the aqueous extract possessed highest antioxidant activity in all the assays tested. The antioxidant characteristics of leaf extracts are possibly because of the presence of polyphenols. Microscopic study showed the presence of collenchyma, fibres, xylem, phloem, epidermis, trichomes, palisade tissue, basal sheath, pith and cortex in leaf, petiole and pulvinus. PMID:26009649
Matshediso, Phatsimo G; Cukrowska, Ewa; Chimuka, Luke
2015-04-01
Pressurised hot water extraction (PHWE) is a "green" technology which can be used for the extraction of essential components in Moringa oleifera leaf extracts. The behaviour of three flavonols (myricetin, quercetin and kaempferol) and total phenolic content (TPC) in Moringa leaf powder were investigated at various temperatures using PHWE. The TPC of extracts from PHWE were investigated using two indicators. These are reducing activity and the radical scavenging activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH). Flavonols content in the PHWE extracts were analysed on high performance liquid chromatography with ultra violet (HPLC-UV) detection. The concentration of kaempferol and myricetin started decreasing at 150 °C while that of quercetin remained steady with extraction temperature. Optimum extraction temperature for flavonols and DPPH radical scavenging activity was found to be 100 °C. The TPC increased with temperature until 150 °C and then decreased while the reducing activity increased. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hepatoprotective activity of Psidium guajava Linn. leaf extract.
Roy, Chanchal K; Kamath, Jagadish V; Asad, Mohammed
2006-04-01
The study was designed to evaluate the hepatoprotective activity of P. guajava in acute experimental liver injury induced by carbon tetrachloride, paracetamol or thioacetamide and chronic liver damage induced by carbon tetrachloride. The effects observed were compared with a known hepatoprotective agent, silymarin. In the acute liver damage induced by different hepatotoxins, P. guajava leaf extracts (250 and 500mg/kg, po) significantly reduced the elevated serum levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase and bilirubin. The higher dose of the extract (500 mg/kg, po) prevented the increase in liver weight when compared to hepatoxin treated control, while the lower dose was ineffective except in the paracetamol induced liver damage. In the chronic liver injury induced by carbon tetrachloride, the higher dose (500 mg/kg, po) of P. guajava leaf extract was found to be more effective than the lower dose (250 mg/kg, po). Histological examination of the liver tissues supported the hepatoprotection. It is concluded that the aqueous extract of leaves of guava plant possesses good hepatoprotective activity.
Mangifera indica L. leaf extract alleviates doxorubicin induced cardiac stress
Bhatt, Laxit; Joshi, Viraj
2017-01-01
Aim: The study was undertaken to evaluate the cardioprotective effect of the alcoholic leaf extract of Mangifera indica L. against cardiac stress caused by doxorubicin (DOX). Materials and Methods: Rats were treated with 100 mg/kg of M. indica leaf extract (MILE) in alone and interactive groups for 21 days. Apart from the normal and MILE control groups, all the groups were subjected to DOX (15 mg/kg, i.p.) toxicity for 21 days and effects of different treatments were analyzed by changes in serum biomarkers, tissue antioxidant levels, electrocardiographic parameters, lipid profile, and histopathological evaluation. Results: The MILE treated group showed decrease in serum biomarker enzyme levels and increase in tissue antioxidants levels. Compared to DOX control group, MILE treated animals showed improvement in lipid profile, electrocardiographic parameters, histological score, and mortality. Conclusion: These findings clearly suggest the protective role of alcoholic leaf extract of M. indica against oxidative stress induced by DOX. PMID:28894627
In vitro erythrocyte membrane stabilization properties of Carica papaya L. leaf extracts
Ranasinghe, Priyanga; Ranasinghe, Pathmasiri; Abeysekera, W. P. Kaushalya M.; Premakumara, G. A. Sirimal; Perera, Yashasvi S.; Gurugama, Padmalal; Gunatilake, Saman B.
2012-01-01
Background: Carica papaya L. fruit juice and leaf extracts are known to have many beneficial medical properties. Recent reports have claimed possible beneficial effects of C. papaya L. leaf juice in treating patients with dengue viral infections. This study aims to evaluate the membrane stabilization potential of C. papaya L. leaf extracts using an in vitro hemolytic assay. Materials and Methods: The study was conducted in between June and August 2010. Two milliliters of blood from healthy volunteers and patients with serologically confirmed current dengue infection were freshly collected and used in the assays. Fresh papaya leaves at three different maturity stages (immature, partly matured, and matured) were cleaned with distilled water, crushed, and the juice was extracted with 10 ml of cold distilled water. Freshly prepared cold water extracts of papaya leaves (1 ml containing 30 μl of papaya leaf extracts, 20 μl from 40% erythrocytes suspension, and 950 μl of phosphate buffered saline) were used in the heat-induced and hypotonic-induced hemolytic assays. In dose response experiments, six different concentrations (9.375, 18.75, 37.5, 75, 150, and 300 μg/ml) of freeze dried extracts of the partly matured leaves were used. Membrane stabilization properties were investigated with heat-induced and hypotonicity-induced hemolysis assays. Results: Extracts of papaya leaves of all three maturity levels showed a significant reduction in heat-induced hemolysis compared to controls (P < 0.05). Papaya leaf extracts of all three maturity levels showed more than 25% inhibition at a concentration of 37.5 μg/ml. The highest inhibition of heat-induced hemolysis was observed at 37.5 μg/ml. Inhibition activity of different maturity levels was not significantly (P < 0.05) different from one another. Heat-induced hemolysis inhibition activity did not demonstrate a linear dose response relationship. At 37.5 μg/ml concentration of the extract, a marked inhibition of
In vitro erythrocyte membrane stabilization properties of Carica papaya L. leaf extracts.
Ranasinghe, Priyanga; Ranasinghe, Pathmasiri; Abeysekera, W P Kaushalya M; Premakumara, G A Sirimal; Perera, Yashasvi S; Gurugama, Padmalal; Gunatilake, Saman B
2012-10-01
Carica papaya L. fruit juice and leaf extracts are known to have many beneficial medical properties. Recent reports have claimed possible beneficial effects of C. papaya L. leaf juice in treating patients with dengue viral infections. This study aims to evaluate the membrane stabilization potential of C. papaya L. leaf extracts using an in vitro hemolytic assay. The study was conducted in between June and August 2010. Two milliliters of blood from healthy volunteers and patients with serologically confirmed current dengue infection were freshly collected and used in the assays. Fresh papaya leaves at three different maturity stages (immature, partly matured, and matured) were cleaned with distilled water, crushed, and the juice was extracted with 10 ml of cold distilled water. Freshly prepared cold water extracts of papaya leaves (1 ml containing 30 μl of papaya leaf extracts, 20 μl from 40% erythrocytes suspension, and 950 μl of phosphate buffered saline) were used in the heat-induced and hypotonic-induced hemolytic assays. In dose response experiments, six different concentrations (9.375, 18.75, 37.5, 75, 150, and 300 μg/ml) of freeze dried extracts of the partly matured leaves were used. Membrane stabilization properties were investigated with heat-induced and hypotonicity-induced hemolysis assays. Extracts of papaya leaves of all three maturity levels showed a significant reduction in heat-induced hemolysis compared to controls (P < 0.05). Papaya leaf extracts of all three maturity levels showed more than 25% inhibition at a concentration of 37.5 μg/ml. The highest inhibition of heat-induced hemolysis was observed at 37.5 μg/ml. Inhibition activity of different maturity levels was not significantly (P < 0.05) different from one another. Heat-induced hemolysis inhibition activity did not demonstrate a linear dose response relationship. At 37.5 μg/ml concentration of the extract, a marked inhibition of hypotonicity-induced hemolysis was observed. C. papaya
Green synthesis of silver nanoparticles from aqueous Aegle marmelos leaf extract
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jagajjanani Rao, K.; Paria, Santanu, E-mail: santanuparia@yahoo.com
Graphical abstract: Silver nanoparticles capped with polyphenols present in Aegle marmelos leaf extract. Display Omitted Highlights: ► Silver nanoparticles are synthesized using Aegle marmelos leaf extract in aqueous media. ► Reduction reaction is fast and occurs at room temperature. ► The presence of polyphenols acts as in situ capping agent. -- Abstract: Synthesis of nanoparticles by green route is an emerging technique drawing more attention recently because of several advantages over the convention chemical routes. The present study reports one-pot synthesis and in situ stabilization of silver nanoparticles using Aegle marmelos leaf extract. Nanoparticles of almost uniform spherical size (∼60more » nm) were synthesized within ∼25 min reaction time at room temperature. The size of particles depends on the ratio of AgNO{sub 3} and leaf extract. The crystallinity, size, and shape of the nanoparticles were characterized by X-ray diffraction, dynamic light scattering, and scanning electron microscopy respectively. The size stability was attained by the capping effect of polyphenolic tannin compound, procatacheuate in the extract. The capped polyphenols can be removed from the particle surface by simple NaOH/methanol wash. The involvement of phenolic compounds in metal ion reduction and capping were supported by UV–visible spectroscopy, infrared spectroscopy, high performance liquid chromatography, and zeta potential measurements.« less
Isolation and Expression of NAC Genes during Persimmon Fruit Postharvest Astringency Removal
Min, Ting; Wang, Miao-Miao; Wang, Hongxun; Liu, Xiaofen; Fang, Fang; Grierson, Donald; Yin, Xue-Ren; Chen, Kun-Song
2015-01-01
NAC genes have been characterized in numerous plants, where they are involved in responses to biotic and abiotic stress, including low oxygen stress. High concentration of CO2 is one of the most effective treatments to remove astringency of persimmon fruit owing to the action of the accumulated anoxia metabolite acetaldehyde. In model plants, NAC genes have been identified as being responsive to low oxygen. However, the possible relationship between NAC transcription factors and persimmon astringency removal remains unexplored. In the present research, treatment with a high concentration of CO2 (95%) effectively removed astringency of “Mopan” persimmon fruit by causing decreases in soluble tannin. Acetaldehyde content increased in response to CO2 treatment concomitantly with astringency removal. Using RNA-seq and Rapid amplification of cDNA ends (RACE), six DkNAC genes were isolated and studied. Transcriptional analysis indicated DkNAC genes responded differentially to CO2 treatment; DkNAC1, DkNAC3, DkNAC5 and DkNAC6 were transiently up-regulated, DkNAC2 was abundantly expressed 3 days after treatment, while the DkNAC4 was suppressed during astringency removal. It is proposed that DkNAC1/3/5/6 could be important candidates as regulators of persimmon astringency removal and the roles of other member are also discussed. PMID:25599529
ANTIFUNGAL POTENTIAL OF LEAF EXTRACTS OF LEGUMINOUS TREES AGAINST SCLEROTIUM ROLFSII.
Sana, Nighat; Shoaib, Amna; Javaid, Arshad
2016-01-01
Sclerotium rolfsii Sacc. is a destructive soil-borne plant pathogen that infects over 500 plant species and causes significant yield losses in many economically important plant species. Synthetic fungicides used to combat the menace also pollute the environment and cause health hazards. In order to search environmental friendly alternatives from natural resources, methanolic extracts of three leguminous tree species namely Acacia nilotica (L.) Willd. ex Delile subsp. indica (Benth.) Brenan, Prosopis juliflora (Sw.) DC. and Albizia lebbeck (L.) Benth. were evaluated for their antifungal activity against S. rolfsii and A. nilotica subsp. indica exhibited the maximum fungicidal potential. Two hundred grams dried leaf material of each of the three test plant species were extracted with methanol for two weeks. After filtration, methanol was evaporated on a rotary evaporator. Malt extract broth was used to make various concentrations of the crude methanolic extracts and their antifungal potential was determined by comparing the fungal biomass in various treatments with control. Chemical composition of methanolic leaf extract of A. nilotica subsp. indica was determined through GC-MS analysis. Methanolic leaf extract of A. nilotica subsp. indica showed the highest fungicidal activity. Fungal biomass was decreased by 17-55% due to various concentrations of this extract over control. Different concentrations of P. juliflora reduced fungal biomass by 3-52%. Fourteen compounds were identified in methanolic extract of A. nilotica subsp. indica . 9,12,15-octadecatrienoic acid, methyl ester, (Z,Z,Z,)- (16.59%) was the most abundant compound followed by 1-pentanol, 2 methyl-, acetate (14.80%); hexanedioic acid, dimethyl ester (13.10%) and cyclotriaconta- 1, 7, 16, 22-tetraone (10.28%). This study concludes that methanolic leaf extract of A. nilotica subsp. indica can be used for management of S. rolfsii .
ANTIFUNGAL POTENTIAL OF LEAF EXTRACTS OF LEGUMINOUS TREES AGAINST SCLEROTIUM ROLFSII
Sana, Nighat; Shoaib, Amna; Javaid, Arshad
2016-01-01
Background: Sclerotium rolfsii Sacc. is a destructive soil-borne plant pathogen that infects over 500 plant species and causes significant yield losses in many economically important plant species. Synthetic fungicides used to combat the menace also pollute the environment and cause health hazards. In order to search environmental friendly alternatives from natural resources, methanolic extracts of three leguminous tree species namely Acacia nilotica (L.) Willd. ex Delile subsp. indica (Benth.) Brenan, Prosopis juliflora (Sw.) DC. and Albizia lebbeck (L.) Benth. were evaluated for their antifungal activity against S. rolfsii and A. nilotica subsp. indica exhibited the maximum fungicidal potential. Materials and Methods: Two hundred grams dried leaf material of each of the three test plant species were extracted with methanol for two weeks. After filtration, methanol was evaporated on a rotary evaporator. Malt extract broth was used to make various concentrations of the crude methanolic extracts and their antifungal potential was determined by comparing the fungal biomass in various treatments with control. Chemical composition of methanolic leaf extract of A. nilotica subsp. indica was determined through GC-MS analysis. Results: Methanolic leaf extract of A. nilotica subsp. indica showed the highest fungicidal activity. Fungal biomass was decreased by 17-55% due to various concentrations of this extract over control. Different concentrations of P. juliflora reduced fungal biomass by 3-52%. Fourteen compounds were identified in methanolic extract of A. nilotica subsp. indica. 9,12,15-octadecatrienoic acid, methyl ester, (Z,Z,Z,)- (16.59%) was the most abundant compound followed by 1-pentanol, 2 methyl-, acetate (14.80%); hexanedioic acid, dimethyl ester (13.10%) and cyclotriaconta- 1, 7, 16, 22-tetraone (10.28%). Conclusion: This study concludes that methanolic leaf extract of A. nilotica subsp. indica can be used for management of S. rolfsii. PMID:28487894
Guan, Changfei; Du, Xiaoyun; Zhang, Qinglin; Ma, Fengwang; Luo, Zhengrong; Yang, Yong
2017-01-01
The astringency of Chinese pollination-constant non-astringent (C-PCNA) persimmon (Diospyros kaki Thunb.) can be naturally removed on the tree. This process is controlled by a single locus and is dominant against other types of persimmons; therefore, this variant is an important candidate for commercial cultivation and the breeding of PCNA cultivars. In our previous study, six full-length coding sequences (CDS) for pyruvate kinase genes (DkPK1-6) were isolated, and DkPK1 is thought to be involved in the natural deastringency of C-PCNA persimmon fruit. Here, we characterize the eight other DkPK genes (DkPK7-14) from C-PCNA persimmon fruit based on transcriptome data. The transcript changes in DkPK7-14 genes and correlations with the proanthocyanidin (PA) content were investigated during different fruit development stages in C-PCNA, J-PCNA, and non-PCNA persimmon; DkPK7 and DkPK8 exhibited up-regulation patterns during the last developmental stage in C-PCNA persimmon that was negatively correlated with the decrease in soluble PAs. Phylogenetic analysis and subcellular localization analysis revealed that DkPK7 and DkPK8 are cytosolic proteins. Notably, DkPK7 and DkPK8 were ubiquitously expressed in various persimmon organs and abundantly up-regulated in seeds. Furthermore, transient over-expression of DkPK7 and DkPK8 in persimmon leaves led to a significant decrease in the content of soluble PAs but a significant increase in the expression levels of the pyruvate decarboxylase (DkPDC) and alcohol dehydrogenase genes (DkADH), which are closely related to acetaldehyde metabolism. The accumulated acetaldehyde that results from the up-regulation of the DkPDC and DkADH genes can combine with soluble PAs to form insoluble PAs, resulting in the removal of astringency from persimmon fruit. Thus, we suggest that both DkPK7 and DkPK8 are likely to be involved in natural deastringency via the up-regulation of DkPDC and DkADH expression during the last developmental stage in C
Anticonvulsant effect of Persea americana Mill (Lauraceae) (Avocado) leaf aqueous extract in mice.
Ojewole, John A O; Amabeoku, George J
2006-08-01
Various morphological parts of Persea americana Mill (Lauraceae) (avocado) are widely used in African traditional medicines for the treatment, management and/or control of a variety of human ailments, including childhood convulsions and epilepsy. This study examined the anticonvulsant effect of the plant's leaf aqueous extract (PAE, 50-800 mg/kg i.p.) against pentylenetetrazole (PTZ)-, picrotoxin (PCT)- and bicuculline (BCL)-induced seizures in mice. Phenobarbitone and diazepam were used as reference anticonvulsant drugs for comparison. Like the reference anticonvulsant agents used, Persea americana leaf aqueous extract (PAE, 100-800 mg/kg i.p.) significantly (p < 0.05-0.001) delayed the onset of, and antagonized, pentylenetetrazole (PTZ)-induced seizures. The plant's leaf extract (PAE, 100-800 mg/kg i.p.) also profoundly antagonized picrotoxin (PCT)-induced seizures, but only weakly antagonized bicuculline (BCL)-induced seizures. Although the data obtained in the present study do not provide conclusive evidence, it would appear that 'avocado' leaf aqueous extract (PAE) produces its anticonvulsant effect by enhancing GABAergic neurotransmission and/or action in the brain. The findings of this study indicate that Persea americana leaf aqueous extract possesses an anticonvulsant property, and thus lends pharmacological credence to the suggested ethnomedical uses of the plant in the management of childhood convulsions and epilepsy.
Anticonvulsant activity of Aloe vera leaf extract in acute and chronic models of epilepsy in mice.
Rathor, Naveen; Arora, Tarun; Manocha, Sachin; Patil, Amol N; Mediratta, Pramod K; Sharma, Krishna K
2014-03-01
The effect of Aloe vera in epilepsy has not yet been explored. This study was done to explore the effect of aqueous extract of Aloe vera leaf powder on three acute and one chronic model of epilepsy. In acute study, aqueous extract of Aloe vera leaf (extract) powder was administered in doses 100, 200 and 400 mg/kg p.o. Dose of 400 mg/kg of Aloe vera leaf extract was chosen for chronic administration. Oxidative stress parameters viz. malondialdehyde (MDA) and reduced glutathione (GSH) were also estimated in brain of kindled animals. In acute study, Aloe vera leaf (extract) powder in a dose-dependent manner significantly decreased duration of tonic hind limb extension in maximal electroshock seizure model, increased seizure threshold current in increasing current electroshock seizure model, and increased latency to onset and decreased duration of clonic convulsion in pentylenetetrazole (PTZ) model as compared with control group. In chronic study, Aloe vera leaf (extract) powder prevented progression of kindling in PTZ-kindled mice. Aloe vera leaf (extract) powder 400 mg/kg p.o. also reduced brain levels of MDA and increased GSH levels as compared to the PTZ-kindled non-treated group. The results of study showed that Aloe vera leaf (extract) powder possessed significant anticonvulsant and anti-oxidant activity. © 2013 Royal Pharmaceutical Society.
Column chromatography isolation of nicotine from tobacco leaf extract (Nicotiana tabaccum L.)
NASA Astrophysics Data System (ADS)
Fathi, Raden Muhammad; Fauzantoro, Ahmad; Rahman, Siti Fauziyah; Gozan, Misri
2018-02-01
Restrictions on the use of dried tobacco leaf for cigarette production must be accompanied by the development of non-cigarette alternative products that are made from tobacco leaves. One of the alternative that can be done is to use the nicotine compound in tobacco leaf extract as medical product, such as Parkinson's medication or to be used as active substance in biopesticide. Nicotine was isolated using column chromatography method with the variation of mobile phase mixture ratio (petroleum ether and ethanol), started from 8:2, 6:4, 4:6, 2:8, to 0:10. All of the chromatographic fraction from each mobile phase's ratio was then tested qualitatively using thin layer chromatography (TLC) and also quantitatively using HPLC instrument. The column chromatography process could isolate 4.006% of nicotine compound from 4.19% tobacco leaf extract's nicotine. It is also known that ethanol is a good solution to be used as chromatography's mobile phase for nicotine isolation from tobacco leaf extract.
Olive leaf extract as a hypoglycemic agent in both human diabetic subjects and in rats.
Wainstein, Julio; Ganz, Tali; Boaz, Mona; Bar Dayan, Yosefa; Dolev, Eran; Kerem, Zohar; Madar, Zecharia
2012-07-01
Olive tree (Olea europaea L.) leaves have been widely used in traditional remedies in European and Mediterranean countries as extracts, herbal teas, and powder. They contain several potentially bioactive compounds that may have hypoglycemic properties. To examine the efficacy of 500 mg oral olive leaf extract taken once daily in tablet form versus matching placebo in improving glucose homeostasis in adults with type 2 diabetes (T2DM). In this controlled clinical trial, 79 adults with T2DM were randomized to treatment with 500 mg olive leaf extract tablet taken orally once daily or matching placebo. The study duration was 14 weeks. Measures of glucose homeostasis including Hba1c and plasma insulin were measured and compared by treatment assignment. In a series of animal models, normal, streptozotocin (STZ) diabetic, and sand rats were used in the inverted sac model to determine the mechanism through which olive leaf extract affected starch digestion and absorption. In the randomized clinical trial, the subjects treated with olive leaf extract exhibited significantly lower HbA1c and fasting plasma insulin levels; however, postprandial plasma insulin levels did not differ significantly by treatment group. In the animal models, normal and STZ diabetic rats exhibited significantly reduced starch digestion and absorption after treatment with olive leaf extract compared with intestine without olive leaf treatment. Reduced digestion and absorption was observed in both the mucosal and serosal sides of the intestine. Though reduced, the decline in starch digestion and absorption did not reach statistical significance in the sand rats. Olive leaf extract is associated with improved glucose homeostasis in humans. Animal models indicate that this may be facilitated through the reduction of starch digestion and absorption. Olive leaf extract may represent an effective adjunct therapy that normalizes glucose homeostasis in individuals with diabetes.
Chin, Chai-Yee; Jalil, Juriyati; Ng, Pei Yuen; Ng, Shiow-Fern
2018-02-15
M.oleifera is a medicinal plant traditionally used for skin sores, sore throat and eye infections. Recently, the wound healing property of the leaves of M. oleifera was has been well demonstrated experimentally in both in vivo and in vitro models. However, there is a lack of research which focuses on formulating M.oleifera into a functional wound dressing. In this study, the M.oleifera leaf standardized aqueous extract with highest potency in vitro migration was formulated into a film for wound healing application. Firstly, M. oleifera leaf were extracted in various solvents (aqueous, 50%, 70% and 100% ethanolic extracts) and standardized by reference standards using UHPLC technique. The extracts were then tested for cell migration and proliferation using HDF and HEK cell lines. M. oleifera leaf aqueous extract was then incorporated into alginate-pectin (SA-PC) based film dressing. The film dressings were characterized for the physicochemical properties and the bioactives release from the M. oleifera leaf extract loaded film dressing was also investigated using Franz diffusion cells. All extracts were found to contain vicenin-2, chlorogenic acid, gallic acid, quercetin, kaempferol, rosmarinic acid and rutin. Among all M. oleifera extracts, aqueous standardized leaf extracts showed the highest human dermal fibroblast and human keratinocytes cells proliferation and migration properties. Among the film formulations, SA-PC (3% w/v) composite film dressing containing M. oleifera aqueous leaf extract was found to possess optimal physicochemical properties as wound dressing. A potentially applicable wound dressing formulated as an alginate-pectin film containing aqueous extracts of M. oleifera has been developed. The dressing would be suitable for wounds with moderate exudates. Copyright © 2017 Elsevier B.V. All rights reserved.
Synthesis and antimicrobial activity of palladium nanoparticles from Prunus × yedoensis leaf extract
USDA-ARS?s Scientific Manuscript database
The eco-friendly production of palladium nanoparticles (PdNPs) by Prunus × yedoensis tree leaf extract was studied for the first time. Initial confirmation of PdNP production was confirmed by a color change from light yellow to dark brown. The optimization parameters show that pH 7, 8% leaf extract,...
Genetic characterization of novel putative rhabdovirus and dsRNA virus from Japanese persimmon.
Ito, Takao; Suzaki, Koichi; Nakano, Masaaki
2013-08-01
Deep-sequencing analysis of nucleic acids from leaf tissue of Japanese persimmon trees exhibiting fruit apex disorder in some fruits detected two molecules that were graft transmitted to healthy seedlings. One of the complete genomes consisted of 13 467 nt and encoded six genes similar to those of plant rhabdoviruses. The virus formed a distinct cluster in the genus Cytorhabdovirus with lettuce necrotic yellows virus, lettuce yellow mottle virus and strawberry crinkle virus in a phylogenetic tree based on the L protein (RNA-dependent RNA polymerase, RdRp). The other consisted of 7475 nt and shared a genome organization similar to those of some insect and fungal viruses having dsRNA genomes. In a phylogenetic tree using the RdRp sequence of several unassigned dsRNA viruses, the virus formed a possible new genus cluster with two insect viruses, Circulifer tenellus virus 1 and Spissistilus festinus virus 1, and one plant virus, cucurbit yellows-associated virus.
Phytochemical screening and quantification of flavonoids from leaf extract of Jatropha curcas Linn.
Ebuehi, O A T; Okorie, N A
2009-01-01
The Jatropha curcas L. (Euphorbiaceae) herb is found in SouthWest, Nigeria and other parts of West Africa, and is claimed to possess anti-hypertensive property. The phytochemical screening and flavonoid quantification of the leaf extract of Jatropha curcas Linn were studied. The phytochemical screening of the methanolic leaf extract of J. curcas L. was carried using acceptable and standard methods. The flavonoid contents of the leaf extract of Jatropha curcas L. were determined using thin layer chromatography (TLC), infrared spectroscopy (IRS) and a reversed phase high performance liquid chromatography (HPLC). The phytochemical screening of the methanolic extract of the leaves of the plant shows the presence of alkaloids, cardiac glycosides, cyanogenic glycosides, phlobatannins, tannins, flavonoids and saponins. To quantify the flavonoid contents of leaf extract of Jatropha curcas L, extracts from the plant samples where examined in a C-18 column with UV detection and isocratic elution with acetonitrile; water (45:55). Levels of flavonoids (flavones) in leaves ranged from 6:90 to 8:85 mg/g dry weight. Results indicate that the methanolic extract of the leaves of Jatropha curcas L. contains useful active ingredients which may serve as potential drug for the treatment of diseases. In addition, a combination of TLC, IRS and HPLC can be used to analyse and quantify the flavonoids present in the leaves of Jatropha curcas L.
Bioavailability of Bioactive Molecules from Olive Leaf Extracts and its Functional Value.
Martín-Vertedor, Daniel; Garrido, María; Pariente, José Antonio; Espino, Javier; Delgado-Adámez, Jonathan
2016-07-01
Olive leaves are an important low-cost source of bioactive compounds. The present study aimed to examine the effect of in vitro digestibility of an olive leaf aqueous extract so as to prove the availability of its phenolic compounds as well as its antioxidant, antimicrobial, and anticancer activity after a simulated digestion process. The total phenolic content was significantly higher in the pure lyophilized extract. Phenolic compounds, however, decreased by 60% and 90% in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF), respectively. Regarding antioxidant activity, it was reduced by 10% and 50% after gastric and intestinal digestion, respectively; despite this fact, high antioxidant capacity was found in both SGF and SIF. Moreover, the olive leaf extract showed an unusual combined antimicrobial action at low concentration, which suggested their great potential as nutraceuticals, particularly as a source of phenolic compounds. Finally, olive leaf extracts produced a general dose-dependent cytotoxic effect against U937 cells. To sum up, these findings suggest that the olive leaf aqueous extract maintains its beneficial properties after a simulated digestion process, and therefore its regular consumption could be helpful in the management and the prevention of oxidative stress-related chronic disease, bacterial infection, or even cancer. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
USDA-ARS?s Scientific Manuscript database
California is the largest U.S. producer of persimmons (Diospyros kaki). Consumer demand for persimmons is driven by their organoleptic and nutritional properties (vitamin C and anti-oxidant contents). Most commercial production is divided between a small number of astringent “Hachiya” and non-astri...
Determination of saponins and flavonoids in ivy leaf extracts using HPLC-DAD.
Yu, Miao; Shin, Young June; Kim, Nanyoung; Yoo, Guijae; Park, SeonJu; Kim, Seung Hyun
2015-04-01
A new method for the determination of six compounds, chlorogenic acid, rutin, nicotiflorin, hederacoside C, hederasaponin B and α-hederin, in ivy leaf extracts using high-performance liquid chromatography with diode array detector was developed. The chromatographic separation was performed on a YMC Hydrosphere C18 analytical column using a gradient elution of 0.1% phosphoric acid and acetonitrile. The method was validated in terms of specificity, linearity (r(2) > 0.9999), precision [relative standard deviation (RSD) < 0.36%] and accuracy (97.4-103.8%). The limit of detection and limit of quantification were <20.32 and 61.56 ng for all analytes, respectively. The tested compounds were found to be stable in the ivy leaf extract from 0 to 48 h, and the RSD value for each compound was <0.90%. The validated method was successfully applied to quantify all six compounds in a 30% ethanol ivy leaf extract and 13 ivy leaf extract products. The results showed that all the tested products satisfied the minimum requirement for the content of hederacoside C. However, there were some differences between the contents of other constituents. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Iwamuro, Masaya; Urata, Haruo; Higashi, Reiji; Nakagawa, Masahiro; Ishikawa, Shin; Shiraha, Hidenori; Okada, Hiroyuki
To investigate the mechanism of phytobezoar dissolution by Coca-Cola(®), persimmon phytobezoar pieces removed from a 60-year-old Japanese woman were analyzed by energy dispersive X-ray spectroscopy. The amount of calcium significantly decreased after dissolution treatment using Coca-Cola(®), suggesting a potential contribution of calcium to dissolution mechanisms. Moreover, immersion in Coca-Cola(®) for 120 hours on the exterior surface revealed that Coca-Cola(®) did not permeate persimmon phytobezoars. This is the first study to investigate the mechanisms of persimmon phytobezoar permeability and dissolution induced by Coca-Cola(®).
Nasiry, Davood; Khalatbary, Ali Reza; Ahmadvand, Hassan; Talebpour Amiri, Fereshteh; Akbari, Esmaeil
2017-10-02
Oxidative stress has a pivotal role in the pathogenesis and development of diabetic peripheral neuropathy (DPN), the most common and debilitating complications of diabetes mellitus. There is accumulating evidence that Juglans regia L. (GRL) leaf extract, a rich source of phenolic components, has hypoglycemic and antioxidative properties. This study aimed to determine the protective effects of Juglans regia L. leaf extract against streptozotocin-induced diabetic neuropathy in rat. The DPN rat model was generated by intraperitoneal injection of a single 55 mg/kg dose of streptozotocin (STZ). A subset of the STZ-induced diabetic rats intragastically administered with GRL leaf extract (200 mg/kg/day) before or after the onset of neuropathy, whereas other diabetic rats received only isotonic saline as the same volume of GRL leaf extract. To evaluate the effects of GRL leaf extract on the diabetic neuropathy various parameters, including histopathology and immunohistochemistry of apoptotic and inflammatory factors were assessed along with nociceptive and biochemical assessments. Degeneration of the sciatic nerves which was detected in the STZ-diabetic rats attenuated after GRL leaf extract administration. Greater caspase-3, COX-2, and iNOS expression could be detected in the STZ-diabetic rats, which were significantly attenuated after GRL leaf extract administration. Also, attenuation of lipid peroxidation and nociceptive response along with improved antioxidant status in the sciatic nerve of diabetic rats were detected after GRL leaf extract administration. In other word, GRL leaf extract ameliorated the behavioral and structural indices of diabetic neuropathy even after the onset of neuropathy, in addition to blood sugar reduction. Our results suggest that GRL leaf extract exert preventive and curative effects against STZ-induced diabetic neuropathy in rats which might be due to its antioxidant, anti-inflammatory, and antiapoptotic properties. Protection against
Ojewole, John A O
2005-05-13
In order to scientifically appraise some of the ethnomedical uses of Bryophyllum pinnatum leaves, the present study was undertaken to investigate the antinociceptive, anti-inflammatory and antidiabetic properties of the plant's leaf aqueous extract in experimental animal models. The antinociceptive effect of the herb's leaf extract was evaluated by the 'hot-plate' and 'acetic acid' test models of pain in mice. The anti-inflammatory and antidiabetic effects of the plant's extract were investigated in rats, using fresh egg albumin-induced pedal (paw) oedema, and streptozotocin (STZ)-induced diabetes mellitus. Diclofenac (DIC, 100 mg/kg) and chlorpropamide (250 mg/kg) were used respectively as reference drugs for comparison. Bryophyllum pinnatum leaf aqueous extract (BPE, 25-800 mg/kg i.p.) produced significant (P<0.05-0.001) antinociceptive effects against thermally- and chemically-induced nociceptive pain stimuli in mice. The plant extract (BPE, 25-800 mg/kg p.o. or i.p.) also significantly (P<0.05-0.001) inhibited fresh egg albumin-induced acute inflammation and caused significant (P<0.05-0.001) hypoglycaemia in rats. The results of this experimental animal study suggest that Bryophyllum pinnatum leaf aqueous extract possesses antinociceptive, anti-inflammatory and hypoglycaemic properties. The different flavonoids, polyphenols, triterpenoids and other chemical constituents of the herb are speculated to account for the observed antinociceptive, anti-inflammatory and antidiabetic properties of the plant.
Dutta, Sangita; Bhattacharyya, Debasish
2013-11-25
Various parts of the plant pineapple (Ananas comosus) are used in traditional medicine worldwide for treatment of a number of diseases and disorders. In folk medicine, pineapple leaf extract was used as an antimicrobial, vermicide, purgative, emmenagoogue, abortifacient, anti-oedema and anti-inflammatory agent. Compared to the fruit and stem extracts of pineapple, information about its leaf extract is limited. The potential of pineapple crown leaf extract as an ethno-medicine has been evaluated in terms of its enzymatic activities related to wound healing, antimicrobial property and toxicity. Major protein components of the extract were revealed by 2-D gel electrophoresis followed by MS/MS analysis. Zymography, DQ-gelatin assay were performed to demonstrate proteolytic, fibrinolytic, gelatinase and collagenase activities. DNase and RNase activities were revealed from agarose gel electrophoresis. Antimicrobial activity was evaluated spectrophotometrically from growth inhibition. Sprague-Dawley rat model was used to measure acute and sub-acute toxicity of the extract by analyzing blood markers. The extract contains several proteins that were clustered under native condition. Proteomic studies indicated presence of fruit bromelain as major protein constituent of the extract. It showed nonspecific protease activity, gelatinolytic, collagenase, fibrinolytic, acid and alkaline phosphatase, peroxidase, DNase and RNase activities along with considerable anti-microbial property. The leaf extract did not induce any toxicity in rats after oral administration of acute and sub-acute doses. Pineapple leaf extract is nontoxic, contains enzymes related to damage tissue repairing, wound healing and possibly prevents secondary infections from microbial organisms. © 2013 Elsevier Ireland Ltd. All rights reserved.
Characterization of green zero-valent iron nanoparticles produced with tree leaf extracts.
Machado, S; Pacheco, J G; Nouws, H P A; Albergaria, J T; Delerue-Matos, C
2015-11-15
In the last decades nanotechnology has become increasingly important because it offers indisputable advantages to almost every area of expertise, including environmental remediation. In this area the synthesis of highly reactive nanomaterials (e.g. zero-valent iron nanoparticles, nZVI) is gaining the attention of the scientific community, service providers and other stakeholders. The synthesis of nZVI by the recently developed green bottom-up method is extremely promising. However, the lack of information about the characteristics of the synthetized particles hinders a wider and more extensive application. This work aims to evaluate the characteristics of nZVI synthesized through the green method using leaves from different trees. Considering the requirements of a product for environmental remediation the following characteristics were studied: size, shape, reactivity and agglomeration tendency. The mulberry and pomegranate leaf extracts produced the smallest nZVIs (5-10 nm), the peach, pear and vine leaf extracts produced the most reactive nZVIs while the ones produced with passion fruit, medlar and cherry extracts did not settle at high nZVI concentrations (931 and 266 ppm). Considering all tests, the nZVIs obtained from medlar and vine leaf extracts are the ones that could present better performances in the environmental remediation. The information gathered in this paper will be useful to choose the most appropriate leaf extracts and operational conditions for the application of the green nZVIs in environmental remediation. Copyright © 2015 Elsevier B.V. All rights reserved.
Elgebaly, Hassan A; Mosa, Nermeen M; Allach, Mariam; El-Massry, Khaled F; El-Ghorab, Ahmed H; Al Hroob, Amir M; Mahmoud, Ayman M
2018-02-01
Olive oil and leaf extract have several health benefits; however, their beneficial effect against fluoxetine-induced liver injury has not been investigated. The present study aimed to scrutinize the impact of fluoxetine on the liver of rats and to evaluate the protective effects of olive oil and leaf extract. Rats received fluoxetine orally at dose of 10 mg/kg body weight for 7 consecutive days. The fluoxetine-induced rats were concurrently treated with olive oil or leaf extract. At the end of the experiment, blood and liver samples were collected for analysis. Fluoxetine administration significantly increased circulating ALT, AST, ALP and the pro-inflammatory cytokines TNF-α and IL-1β levels in rats. Histological analysis showed several alterations, such as inflammatory cells infiltration, hepatocyte vacuolation and dilated sinusoids in the liver of fluoxetine-induced rats. Concurrent supplementation of olive oil and olive leaf extract significantly reduced circulating liver function marker enzymes and pro-inflammatory cytokines, and prevented fluoxetine-induced histological alterations. Both olive oil and leaf extract significantly decreased liver lipid peroxidation and nitric oxide, and ameliorated liver glutathione, superoxide dismutase, catalase and glutathione peroxidase. In addition, olive oil and leaf extract prevented fluoxetine-induced apoptosis in the liver of rats as evidenced by decreased expression of Bax and caspase-3, and up-regulated expression of Bcl-2. In conclusion, olive oil and leaf extract protect against fluoxetine-induced liver injury in rats through attenuation of oxidative stress, inflammation and apoptosis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Moringa oleifera leaf extracts inhibit 6beta-hydroxylation of testosterone by CYP3A4.
Monera, Tsitsi G; Wolfe, Alan R; Maponga, Charles C; Benet, Leslie Z; Guglielmo, Joseph
2008-10-01
Moringa oleifera is a tropical tree often used as a herbal medicine, including by people who test positive for HIV. Since herbal constituents may interact with drugs via inhibition of metabolizing enzymes, we investigated the effects of extracts of M. oleifera on the CYP3A4-mediated 6beta-hydroxylation of testosterone. Methanolic and aqueous leaf and root of extracts of M. oleifera with concentrations between 0.01 and 10 mg/ml were incubated with testosterone and mixed-sex human liver microsomes in the presence of NADPH. Metabolite concentrations were determined by HPLC. The cytotoxicity of the extracts was tested with HepG2 cells using the MTT formazan assay. Significant CYP3A4 inhibitory effects were found, with IC50 values of 0.5 and 2.5 mg/ml for leaf-methanol and leaf-water extracts, respectively. Root extracts were less active. Cytotoxicity was observed only with the leaf-water extract (IC50 = 6 mg/ml). Further investigation is warranted to elucidate the potential of M. oleifera for clinically significant interactions with antiretroviral and other drugs.
Hajihosseini, Shadieh; Setorki, Mahbubeh; Hooshmandi, Zahra
2017-01-01
Medicinal plants have attracted global attention due to their safety as well as their considerable antioxidant content that helps to prevent or ameliorate various disorders including memory impairments. This study was conducted to investigate the effect of beet root ( Beta vulgaris ) leaf extract on scopolamine-induced spatial memory impairments in male Wistar rats. Male Wistar rats were randomly divided into 5 groups (n=10): Control (C), scopolamine 1 mg/kg/day (S), scopolamine+50 mg/kg B. vulgaris leaf extract (S+B 50), scopolamine+100 mg/kg B. vulgaris leaf extract (S+B 100) and scopolamine+200 mg/kg B. vulgaris leaf extract (S+B 200). Morris water maze task was used to assess spatial memory. Serum antioxidant capacity and malondialdehyde (MDA) level were also measured. Group S spent significantly less time in the target quadrant compared to the control group, and the administration of B. vulgaris leaf extract (100 and 200 mg/kg) significantly increased this time (p<0.05). Scopolamine decreased serum antioxidant capacity and increased serum MDA level yet insignificantly. B. vulgaris extract (200 mg/kg) significantly increased the antioxidant capacity and decreased serum MDA level in scopolamine-treated rats (p<0.05). Our results suggested that B. vulgaris leaf extract could ameliorate the memory impairments and exhibited protective effects against scopolamine-induced oxidation. Further investigation is needed to isolate specific antioxidant compounds from B. vulgaris leaf extract with protective effect against brain and memory impairments.
Green Synthesis of Silver Nanoparticles by using Eucalyptus Globulus Leaf Extract
NASA Astrophysics Data System (ADS)
Balamurugan, Madheswaran; Saravanan, Shanmugam
2017-12-01
A single step eco-friendly, energy efficient and economically scalable green method was employed to synthesize silver nanoparticles. In this work, the synthesis of silver nanoparticles using Eucalyptus globulus leaf extract as reducing and capping agent along with water as solvent at normal room temperature is described. Silver nanoparticles were prepared from aqueous silver nitrate solution by adding the leaf extract. The prepared nanoparticles were characterized by using UV-visible Spectrophotometer, X-ray diffractometer, High Resolution Transmission Electron Microscope (HR-TEM) and Fourier Transform Infrared Spectroscope (FTIS). X-ray diffraction studies brought to light the crystalline nature and the face centered cubic structure of the silver nanoparticles. Using HR-TEM. the nano sizes and morphology of the particles were studied. The mean sizes of the prepared silver nanoparticles ranged from 30 to 36 nm. The density of the particles was tuned by varying the molar ratio of silver nitrate. FTIS studies showed the functional group of organic molecules which were located on the surface of the silver nanoparticles. Originating from the leaf extracts, these organic molecules reduced and capped the particles.
Rahman, M M; Ahmad, S H; Lgu, K S
2012-01-01
The effect of leaf extracts of Psidium guajava and Piper betle on prolonging vase life of cut carnation flowers was studied. "Carola" and "Pallas Orange" carnation flowers, at bud stage, were pulsed 24 hours with a floral preservative. Then, flowers were placed in a vase solution containing sprite and a "germicide" (leaf extracts of P. guajava and P. betle, 8-HQC, or a copper coin). Flowers treated with 8-HQC, copper coin, and leaf extracts had longer vase life, larger flower diameter, and higher rate of water uptake compared to control (tap water). The leaf extracts of P. guajava and P. betle showed highest antibacterial and antifungal activities compared to the other treatments. Both showed similar effects on flower quality as the synthetic germicide, 8-HQC. Therefore, these extracts are likely natural germicides to prolong vase life of cut flowers.
Yoon, Leena; Liu, Ya-Nan; Park, Hyunjin; Kim, Hyun-Sook
2015-07-01
We hypothesized that olive leaf extract might alleviate dyslipidemia resulting from estrogen deficiency. Serum lipid profile and mRNA expression of the related genes in the liver and adipose tissue were analyzed after providing olive leaf extract (200 or 400 mg/kg body weight; n=7 for each group) to ovariectomized rats for 10 weeks. After 10 weeks' administration, the rats in the olive leaf extract-administered groups showed significantly lower levels of serum triglyceride and very-low-density lipoprotein (VLDL)-cholesterol compared with the rats in the control group, whereas the administration of olive leaf extract did not significantly change the elevated low-density lipoprotein cholesterol levels. In addition, administration of high dose of olive leaf extract significantly decreased the liver triglyceride and increased serum estradiol levels. mRNA expressions of peroxisome proliferator-activated receptor alpha (PPAR α) and acyl-CoA oxidase (ACO) were not affected by ovariectomy, however, administration of olive leaf extract significantly increased both PPAR α and ACO mRNA expression. Expression of adiponectin mRNA in adipose tissue was significantly decreased in the ovariectomized control group. Rats administered low-dose olive leaf extract showed significantly elevated adiponectin mRNA expression compared with rats in the ovariectomized control group. Even though dose-dependent effects were not observed in most of the measurements, these results suggest that genes involved in lipid metabolism may be regulated by olive leaf extract administration in ovariectomized rats.
Allelopathic potential of Rapanea umbellata leaf extracts.
Novaes, Paula; Imatomi, Maristela; Varela, Rosa M; Molinillo, José M G; Lacret, Rodney; Gualtieri, Sonia C J; Macías, Francisco A
2013-08-01
The stressful conditions associated with the Brazilian savanna (Cerrado) environment were supposed to favor higher levels of allelochemicals in Rapanea umbellata from this ecosystem. The allelopathic potential of R. umbellata leaf extracts was studied using the etiolated wheat coleoptile and standard phytotoxicity bioassays. The most active extract was selected to perform a bioassay-guided isolation, which allowed identifying lutein (1) and (-)-catechin (2) as potential allelochemicals. Finally, the general bioactivity of the two compounds was studied, which indicated that the presence of 1 might be part of the defense mechanisms of this plant. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.
Zhang, Chen; Sanders, Johan P M; Xiao, Ting T; Bruins, Marieke E
2015-01-01
Leaf protein can be obtained cost-efficiently by alkaline extraction, but overuse of chemicals and low quality of (denatured) protein limits its application. The research objective was to investigate how alkali aids protein extraction of green tea leaf residue, and use these results for further improvements in alkaline protein biorefinery. Protein extraction yield was studied for correlation to morphology of leaf tissue structure, protein solubility and hydrolysis degree, and yields of non-protein components obtained at various conditions. Alkaline protein extraction was not facilitated by increased solubility or hydrolysis of protein, but positively correlated to leaf tissue disruption. HG pectin, RGII pectin, and organic acids were extracted before protein extraction, which was followed by the extraction of cellulose and hemi-cellulose. RGI pectin and lignin were both linear to protein yield. The yields of these two components were 80% and 25% respectively when 95% protein was extracted, which indicated that RGI pectin is more likely to be the key limitation to leaf protein extraction. An integrated biorefinery was designed based on these results.
Gu, Hanna; Boonanantanasarn, Kanitsak; Kang, Moonkyu; Kim, Ikhwi; Woo, Kyung Mi; Ryoo, Hyun-Mo; Baek, Jeong-Hwa
2018-01-01
Morinda citrifolia (Noni) leaf is an herbal medicine with application in the domestic treatment of a broad range of conditions, including bone fracture and luxation. However, the basic mechanism underlying the stimulation of osteogenic differentiation by Noni leaf extract remains poorly understood. This study aimed to examine the effect of this extract on osteogenic differentiation and the mechanism by which Noni leaf extract enhances osteogenic differentiation. Aqueous extract of Noni leaves was prepared, and rutin and kaempferol-3-O-rutinoside were identified to be two of its major components. C2C12 and human periodontal ligament (hPDL) cells were used to study the effect of Noni. Noni did not show cytotoxicity at a concentration range of 0.015%-1.0% (w/v%) and significantly enhanced the activity of alkaline phosphatase (ALP) and expression levels of osteoblast differentiation markers, including Runx2, ALP, osterix, and osteocalcin, bone morphogenetic protein 2, Wnt3a, and β-catenin. In addition, Noni enhanced the matrix mineralization of hPDL cells. In the signaling pathways, Noni increased the phosphorylation levels of Akt and GSK3β and nuclear translocation and transcriptional activity of β-catenin, which were attenuated by the addition of Dkk-1, a Wnt inhibitor, or LY294002, a PI3K inhibitor. These results suggest that Noni leaf extract enhances osteogenic differentiation through the PI3K/Akt-dependent activation of Wnt/β-catenin signaling. Noni leaf extract might be a novel alternative medicine for bone and periodontal regeneration in patients with periodontal diseases.
Rahman, M. M.; Ahmad, S. H.; Lgu, K. S.
2012-01-01
The effect of leaf extracts of Psidium guajava and Piper betle on prolonging vase life of cut carnation flowers was studied. “Carola” and “Pallas Orange” carnation flowers, at bud stage, were pulsed 24 hours with a floral preservative. Then, flowers were placed in a vase solution containing sprite and a “germicide” (leaf extracts of P. guajava and P. betle, 8-HQC, or a copper coin). Flowers treated with 8-HQC, copper coin, and leaf extracts had longer vase life, larger flower diameter, and higher rate of water uptake compared to control (tap water). The leaf extracts of P. guajava and P. betle showed highest antibacterial and antifungal activities compared to the other treatments. Both showed similar effects on flower quality as the synthetic germicide, 8-HQC. Therefore, these extracts are likely natural germicides to prolong vase life of cut flowers. PMID:22619568
Duckstein, Sarina M; Lorenz, Peter; Stintzing, Florian C
2012-01-01
Hamamelis virginiana, known for its high level of tannins and other phenolics is widely used for treatment of dermatological disorders. Although reports on hydroalcoholic and aqueous extracts from Hamamelis leaf and bark exist, knowledge on fermented leaf preparations and the underlying conversion processes are still scant. Aqueous Hamamelis leaf extracts were monitored during fermentation and maturation in order to obtain an insight into the bioconversion of tannins and other phenolics. Aliquots taken during the production period were investigated by HPLC-DAD-MS/MS as well as GC-MS after derivatisation into the corresponding trimethylsilyl compounds. In Hamamelis leaf extracts, the main constituents exhibited changes during the observational period of 6 months. By successive depside bond cleavage, the gallotannins were completely transformed into gallic acid after 1 month. Although not completely, kaempferol and quercetin glycosides were also converted during 6 months to yield their corresponding aglycones. Following C-ring fission, phloroglucinol was formed from the A-ring of both flavonols. The B-ring afforded 3-hydroxybenzoic acid from quercetin and 3,4-dihydroxybenzoic acid as well as 2-(4-hydroxyphenyl)-ethanol from kaempferol. Interestingly, hydroxycinnamic acids remained almost stable in the same time range. The present study broadens the knowledge on conversion processes in aqueous fermented extracts containing tannins, flavonol glycosides and hydroxycinnamic acids. In particular, the analogy between the microbial metabolism of phenolics from fermented Hamamelis extracts, fermented sourdough by heterofermentative lactic acid bacteria or conversion of phenolics by the human microbial flora is indicated. Copyright © 2012 John Wiley & Sons, Ltd.
Effect of strawberry (Fragaria × ananassa) leaf extract on diabetic nephropathy in rats
Ibrahim, Doaa S; Abd El-Maksoud, Marwa A E
2015-01-01
Diabetic nephropathy is a clinical syndrome characterized by albuminuria, hypertension and progressive renal insufficiency. The aim of this study was to investigate the effect of strawberry (Fragaria × ananassa) leaf extract on diabetic nephropathy in rats. Streptozotocin (STZ) diabetic rats were orally treated with three doses (50, 100 and 200 mg/kg) of strawberry leaf extract for 30 days. Nephropathy biomarkers in plasma and kidney were examined at the end of the experiment. The three doses of strawberry leaf extract significantly decreased the levels of blood glucose, urea nitrogen, plasma creatinine, kidney injury molecule (Kim)-1, renal malondialdehyde (MDA), tumour necrosis factor alpha (TNF-α), interleukin (IL)- 6 and caspase-3 in diabetic rats. Meanwhile, the levels of plasma insulin, albumin, uric acid, renal catalase (CAT), superoxide dismutase (SOD) and vascular endothelial growth factor A (VEGF-A) were significantly elevated in diabetic rats treated with strawberry leaf extract. These results indicate the role of strawberry leaves extract as anti-diabetic, antioxidant, anti-inflammatory and anti-apoptosis in diabetic nephropathy. PMID:25645466
Moringa oleifera leaf extracts inhibit 6β-hydroxylation of testosterone by CYP3A4
Monera, Tsitsi G.; Wolfe, Alan R.; Maponga, Charles C.; Benet, Leslie Z.; Guglielmo, Joseph
2017-01-01
Background Moringa oleifera is a tropical tree often used as a herbal medicine, including by people who test positive for HIV. Since herbal constituents may interact with drugs via inhibition of metabolizing enzymes, we investigated the effects of extracts of M. oleifera on the CYP3A4-mediated 6ß-hydroxylation of testosterone. Methods Methanolic and aqueous leaf and root of extracts of M. oleifera with concentrations between 0.01 and 10 mg/ml were incubated with testosterone and mixed-sex human liver microsomes in the presence of NADPH. Metabolite concentrations were determined by HPLC. The cytotoxicity of the extracts was tested with HepG2 cells using the MTT formazan assay. Results Significant CYP3A4 inhibitory effects were found, with IC50 values of 0.5 and 2.5 mg/ml for leaf-methanol and leaf-water extracts, respectively. Root extracts were less active. Cytotoxicity was observed only with the leaf-water extract (IC50 = 6 mg/ml). Conclusions Further investigation is warranted to elucidate the potential of M. oleifera for clinically significant interactions with antiretroviral and other drugs. PMID:19745507
Chinnappan, Shobia; Ramachandrappa, Vijayakumar Shettikothanuru; Tamilarasu, Kadhiravan; Krishnan, Uma Maheswari; Pillai, Agiesh Kumar Balakrishna; Rajendiran, Soundravally
2016-04-01
Dengue cases were reported to undergo platelet activation and thrombocytopenia by a poorly understood mechanism. Recent studies suggested that Carica papaya leaf extract could recover the platelet count in dengue cases. However, no studies have attempted to unravel the mechanism of the plant extract in platelet recovery. Since there are no available drugs to treat dengue and considering the significance of C. papaya in dengue treatment, the current study aimed to evaluate two research questions: First one is to study if the C. papaya leaf extract exerts its action directly on platelets and second one is to understand if the extract can specifically inhibit the platelet aggregation during dengue viral infection. Sixty subjects with dengue positive and 60 healthy subjects were recruited in the study. Platelet-rich plasma (PRP) and platelet-poor plasma were prepared from both the dengue-infected and healthy control blood samples. Effect of the leaf extract obtained from C. papaya leaves was assessed on plasma obtained as well as platelets collected from both healthy and dengue-infected individuals. Platelet aggregation was significantly reduced when leaf extract preincubated with dengue plasma was added into control PRP, whereas no change in aggregation when leaf extract incubated-control plasma was added into control PRP. Upon direct addition of C. papaya leaf extract, both dengue PRP and control PRP showed a significant reduction in platelet aggregation. Within the dengue group, PRP from severe and nonsevere cases showed a significant decrease in aggregation without any difference between them. From the study, it is evident that C. papaya leaf extract can directly act on platelet. The present study, the first of its kind, found that the leaf extract possesses a dengue-specific neutralizing effect on dengue viral-infected plasma that may exert a protective role on platelets.
Naz, Rabia; Bano, Asghari; Wilson, Neil L; Guest, David; Roberts, Thomas H
2014-09-01
Leaf rust (Puccinia triticina) is a major disease of wheat. We tested aqueous leaf extracts of Jacaranda mimosifolia (Bignoniaceae), Thevetia peruviana (Apocynaceae), and Calotropis procera (Apocynaceae) for their ability to protect wheat from leaf rust. Extracts from all three species inhibited P. triticina urediniospore germination in vitro. Plants sprayed with extracts before inoculation developed significantly lower levels of disease incidence (number of plants infected) than unsprayed, inoculated controls. Sprays combining 0.6% leaf extracts and 2 mM salicylic acid with the fungicide Amistar Xtra at 0.05% (azoxystrobin at 10 μg/liter + cyproconazole at 4 μg/liter) reduced disease incidence significantly more effectively than sprays of fungicide at 0.1% alone. Extracts of J. mimosifolia were most active, either alone (1.2%) or in lower doses (0.6%) in combination with 0.05% Amistar Xtra. Leaf extracts combined with fungicide strongly stimulated defense-related gene expression and the subsequent accumulation of pathogenesis-related (PR) proteins in the apoplast of inoculated wheat leaves. The level of protection afforded was significantly correlated with the ability of extracts to increase PR protein expression. We conclude that pretreatment of wheat leaves with spray formulations containing previously untested plant leaf extracts enhances protection against leaf rust provided by fungicide sprays, offering an alternative disease management strategy.
Li, Kaikai; Yao, Fen; Du, Jing; Deng, Xiangyi; Li, Chunmei
2018-02-21
Regulation of postprandial blood glucose levels is an effective therapeutic proposal for type 2 diabetes treatment. In this study, the effect of persimmon tannin on starch digestion with different amylose levels was investigated both in vitro and in vivo. Oral administration of persimmon tannin-starch complexes significantly suppressed the increase of blood glucose levels and the area under the curve (AUC) in a dose-dependent manner compared with starch treatment alone in an in vivo rat model. Further study proved that persimmon tannin could not only interact with starch directly but also inhibit α-amylase and α-glucosidase strongly, with IC 50 values of 0.35 and 0.24 mg/mL, separately. In addition, 20 μg/mL of persimmon tannin significantly decreased glucose uptake and transport in Caco-2 cells model. Overall, our data suggested that persimmon tannin may alleviate postprandial hyperglycemia through limiting the digestion of starch as well as inhibiting the uptake and transport of glucose.
Ojewole, J A O
2006-09-01
In many parts of Africa, the leaf, stem-bark, and roots of Psidium guajava Linn. (Family: Myrtaceae) are used traditionally for the management, control, and/or treatment of an array of human disorders. In an effort to scientifically appraise some of the ethnomedical properties of P. guajava leaf, and probe its efficacy and safety, the present study was undertaken to examine the antiinflammatory and analgesic properties of the plant's leaf aqueous extract in some experimental animal paradigms. The antiinflammatory property of the aqueous leaf extract was investigated in rats, using fresh egg albumin-induced pedal (paw) edema, while the analgesic effect of the plant extract was evaluated by the "hot-plate" and "acetic acid" test models of pain in mice. Diclofenac (100 mg/kg, i.p.) and morphine (10 mg/kg, i.p.) were used respectively as standard, reference antiinflammatory and analgesic agents for comparison. P. guajava leaf aqueous extract (PGE, 50-800 mg/kg, i.p.) produced dose-dependent and significant (p < 0.05-0.001) inhibition of fresh egg albumin-induced acute inflammation (edema) in rats. The plant extract (PGE, 50-800 mg/kg, i.p.) also produced dose-dependent and significant (p < 0.05-0.001) analgesic effects against thermally and chemically induced nociceptive pain in mice. The numerous tannins, polyphenolic compounds, flavonoids, ellagic acid, triterpenoids, guiajaverin, quercetin, and other chemical compounds present in the plant are speculated to account for the observed antiinflammatory and analgesic effects of the plant's leaf extract. In summary, the findings of this experimental animal study indicate that the leaf aqueous extract of P. guajava possesses analgesic and antiinflammatory properties, and thus lend pharmacological credence to the suggested ethnomedical, folkloric uses of the plant in the management and/or control of painful, arthritic and other inflammatory conditions in some rural communities of Africa. (c) 2006 Prous Science. All rights
Wen, Tung-Chou; Li, Yuan-Sheng; Rajamani, Karthyayani; Harn, Horng-Jyh; Lin, Shinn-Zong; Chiou, Tzyy-Wen
2018-01-01
In this study, we explored the effect of the water extract of Cinnamomum osmophloeum Kanehira (COK) leaves on hair growth by in vitro and in vivo assays. Using an in vitro 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, it was found that the proliferation of rat vibrissae and human hair dermal papilla cells (hDPCs) was significantly enhanced by the COK leaf extract treatment. As determined by quantitative real-time polymerase chain reaction (RT-PCR), the messenger RNA (mRNA) levels of some hair growth–related factors including vascular endothelial growth factor, keratinocyte growth factor (KGF), and transforming growth factor-β2 were found to be higher in the cultured hDPCs exposed to COK leaf extract than those in the untreated control group. In the hair-depilated C57BL/6 mouse model, the stimulation of hair growth was demonstrated in the group of COK leaf extract treatment. Both photographical and histological observations revealed the promotion of the anagen phase in the hair growth cycle by the COK leaf extract in the C57BL/6 mice. Finally, the ultra performance liquid chromatography (UPLC) showed that the COK extract contained mostly cinnamic aldehyde and a small amount of cinnamic acid. The results suggest that the COK leaf extract may find use for the treatment of hair loss. PMID:29637818
Ramesh, B. N.; Girish, T. K.; Raghavendra, R. H.; Naidu, K. Akhilender; Rao, U. J. S. Prasada; Rao, K. S.
2014-01-01
Background: Amyloidosis, oxidative stress and inflammation have been strongly implicated in neurodegenerative disorders like Alzheimer's disease. Traditionally, Caesalpinia crista and Centella asiatica leaf extracts are used to treat brain related diseases in India. C. crista is used as a mental relaxant drink as well as to treat inflammatory diseases, whereas C. asiatica is reported to be used to enhance memory and to treat dementia. Objective: The present study is aimed to understand the anti-oxidant and anti-inflammatory potential of C. asiatica and C. crista leaf extracts. Materials and Methods: Phenolic acid composition of the aqueous extracts of C. crista and C. asiatica were separated on a reverse phase C18 column (4.6 x 250 mm) using HPLC system. Antioxidant properties of the leaf extracts were determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay and the reducing potential assay. The anti-inflammatory activities of aqueous extracts of C. crista and C. asiatica were studied using 5-lipoxygenase assay. Polymorphonuclear leukocytes (PMNLs) were isolated from blood by Ficoll-Histopaque density gradient followed by hypotonic lysis of erythrocytes. Results: Gallic, protocatechuic, gentisic, chlorogenic, caffeic, p-coumaric and ferulic acids were the phenolic acids identified in C. crista and C. asiatica leaf aqueous extracts. However, gallic acid and ferulic acid contents were much higher in C. crista compared to C. asiatica. Leaf extracts of C. asiatica and C. crista exhibited antioxidant properties and inhibited 5-lipoxygenase (anti-inflammatory) in a dose dependent manner. However, leaf extracts of C. crista had better antioxidant and anti-inflammatory activity compared to that of C. asiatica. The better activity of C. crista is attributed to high gallic acid and ferulic acid compared to C. asiatica. Conclusions: Thus, the leaf extract of C. crista can be a potential therapeutic role for Alzheimer's disease. PMID:24741275
NASA Astrophysics Data System (ADS)
Bindhu, M. R.; Umadevi, M.
2013-01-01
Synthesis of silver nanoparticles using leaf extract of Hibiscus cannabinus has been investigated. The influences of different concentration of H. cannabinus leaf extract, different metal ion concentration and different reaction time on the above cases on the synthesis of nanoparticles were evaluated. The synthesized nanoparticles were characterized using UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). The prepared silver nanoparticles were monodispersed, spherical in shape with the average particle size of 9 nm and shows surface plasmon peak at 446 nm. The study also reveals that the ascorbic acid present in H. cannabinus leaf extract has been used as reducing agent. The prepared silver nanoparticle shows good antimicrobial activity against Escherichia coli, Proteus mirabilis and Shigella flexneri.
NASA Astrophysics Data System (ADS)
Lestari, R. P.; Nissa, C.; Afifah, D. N.; Anjani, G.; Rustanti, N.
2018-02-01
Alternative treatment for metabolic syndrome can be done by providing a diet consist of functional foods or beverages. Synbiotic yoghurt containing binahong leaf extract which high in antioxidant, total LAB and fiber can be selected to reduce the risk of metabolic syndrome. The effect of binahong leaf extract in synbiotic yoghurt against total LAB, antioxidant activity, and acceptance were analyzed. The experiment was done with complete randomized design with addition of binahong leaf extract 0% (control); 0.12%; 0.25%; 0.5% in synbiotic yoghurt. Analysis of total LAB using Total Plate Count test, antioxidant activity using DPPH, and acceptance were analyzed by hedonic test. The addition of binahong leaf extract in various doses in synbiotic yoghurt decreased total LAB without significant effect (p=0,145). There was no effect of addition binahong leaf extract on antioxidant activity (p=0,297). The addition of binahong leaf extract had an effect on color, but not on aroma, texture and taste. The best result was yoghurt synbiotic with addition of 0,12% binahong leaf extract. Conclusion of the research was the addition of binahong leaf extract to synbiotic yogurt did not significantly affect total LAB, antioxidant activity, aroma, texture and taste; but had a significant effect on color.
NASA Astrophysics Data System (ADS)
Yanis Musdja, Muhammad; Mahendra, Feizar; Musir, Ahmad
2017-12-01
Traditionally guava (Psidium guajava L) leaf is used for treatment of various ailments like diarrhea, wounds, rheumatism, anti-allergy, ant-spasmodic, etc, as folk medicine. The aim of this research is to know the effect of hypoglycemia and glucose tolerance of ethanol extract of guava leaf against male white rat. The guajava leaf was obtained from Balitro Bogor. Preparation of guajava leaf extract was done by cold maceration extraction technique using ethanol 70%. Male albino rats were made into diabetics using the alloxan method. Rats were divided into 6 groups, as a comparative drug for anti-hyperglycemic used glibenclamid and as a comparative drug for glucose tolerance used acarbose. The result of blood glucometer test showed that ethanol extract 70% of guajava leaf had effect as anti-hyperglycemic and glucose tolerance with no significant difference with glibenclamid drug as anti-hyperglycemic and acarbose as glucose tolerance drug.
Vital, Pierangeli G; Rivera, Windell L
2011-10-01
To determine the antibacterial, antifungal, antiprotozoal, cytotoxic, and phytochemical properties of ethanol extracts of leaves of Voacanga globosa (Blanco) Merr. (V. globosa). The extracts were tested against bacteria and fungus through disc diffusion assay; against protozoa through growth curve determination, antiprotozoal and cytotoxicity assays. The extract revealed antibacterial activities, inhibiting the growth of Staphylococcus aureus, Bacillus cereus, Pseudomonas aeruginosa, Micrococcus luteus, and Salmonella typhimurium. Antifungal assay showed that it inhibited Candida albicans. The antiprotozoal assay against Trichomonas vaginalis and Entamoeba histolytica showed that V. globosa can inhibit the parasites, wherein the action can be comparable to metronidazole. With the in situ cell death detection kit, Trichomonas vaginalis and Entamoeba histolytica exposed to V. globosa leaf extract was observed to fluoresce simultaneously in red and yellow signals signifying apoptotic-like changes. Preliminary phytochemical screening revealed the chemical composition of plant extract containing alkaloids, saponins, 2-deoxysugars, and hydrolysable tannins. Thus, this study provides scientific evidence on the traditional use of V. globosa leaf extract in treating microbial diseases. Further, the leaf extract can possibly be used to produce alternative forms of antimicrobials. Copyright © 2011 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Wei, Lee Seong; Wee, Wendy; Siong, Julius Yong Fu; Syamsumir, Desy Fitrya
2011-01-01
Peperomia pellucida leaf extract was characterized for its anticancer, antimicrobial, antioxidant activities, and chemical compositions. Anticancer activity of P. pellucida leaf extract was determined through Colorimetric MTT (tetrazolium) assay against human breast adenocarcinoma (MCF-7) cell line and the antimicrobial property of the plant extract was revealed by using two-fold broth micro-dilution method against 10 bacterial isolates. Antioxidant activity of the plant extract was then characterized using α, α-diphenyl-β-picrylhydrazyl (DPPH) radical scavenging method and the chemical compositions were screened and identified using gas chromatography-mass spectrometry (GC-MS). The results of present study indicated that P. pellucida leaf extract possessed anticancer activities with half maximal inhibitory concentration (IC(50)) of 10.4 ± 0.06 µg/ml. The minimum inhibitory concentration (MIC) values were ranged from 31.25 to 125 mg/l in which the plant extract was found to inhibit the growth of Edwardsiella tarda, Escherichia coli, Flavobacterium sp., Pseudomonas aeruginosa and Vibrio cholerae at 31.25 mg/l; Klebsiella sp., Aeromonas hydrophila and Vibrio alginolyticus at 62.5 mg/l; and it was able to control the growth of Salmonella sp. and Vibrio parahaemolyticus at 125 mg/l. At the concentration of 0.625 ppt, the plant extract was found to inhibit 30% of DPPH, free radical. Phytol (37.88%) was the major compound in the plant extract followed by 2-Naphthalenol, decahydro- (26.20%), Hexadecanoic acid, methyl ester (18.31%) and 9,12-Octadecadienoic acid (Z,Z)-, methyl ester (17.61%). Findings from this study indicated that methanol extract of P. pellucida leaf possessed vast potential as medicinal drug especially in breast cancer treatment.
Niu, Kaimin; Kuk, Min; Jung, Haein; Chan, Kokgan; Kim, Sooki
2017-09-01
An increasing concern on resistance to multiple-antibiotics has led to the discovery of novel agents and the establishment of new precaution strategy. Numerous plant sources have been widely studied to reduce virulence of pathogenic bacteria by interfering cell-to-cell based communication called quorum sensing (QS). Leaf extracts of 17 gardening trees were collected and investigated for their anti-QS effects using a sensor strain Chromobacterium violaceum CV026. Methanolic extracts of K4 ( Acer palmatum ), K9 ( Acer pseudosieboldianum ) and K13 ( Cercis chinensis ) leaves were selected for further experiments based on their antagonism effect on QS without inhibiting C. violaceum CV026 growth. Subsequently, the leaf extracts on QS-mediated virulence of Pseudomonas aeruginosa PAO1 involved in biofilm formation, motility, bioluminescence, pyocyanin production, QS molecules production, and Caenorhabditis elegans killing activity were evaluated. The biofilm formation ability and swarming motility of P. aeruginosa PAO1 were decreased approximately 50% in the presence of these leaf extracts at a concentration of 1 mg/mL. The expression level of lecA::lux of P. aeruginosa PAO1 and pyocyanin production were also reduced. The three leaf extracts also decreased autoinducer (AI) production in P. aeruginosa PAO1 without direct degradation, suggesting that AI synthesis might have been suppressed by these extracts. The three leaf extracts also showed anti-infection activity in C. elegans model. Taken together, these results suggest that methanolic leaf extracts of K4, K9 and K13 have the potential to attenuate the virulence of P. aeruginosa PAO1.
Comparative content of total polyphenols and dietary fiber in tropical fruits and persimmon.
Gorinstein, S; Zemser, M; Haruenkit, R; Chuthakorn, R; Grauer, F; Martin-Belloso, O; Trakhtenberg, S
1999-06-01
Recent studies have shown that dietary fiber and polyphenols of vegetables and fruits improve lipid metabolism and prevent the oxidation of low density lipoprotein cholesterol (LDL-C), which hinder the development of atherosclerosis. The goal of this study was to measure the total polyphenol and dietary fiber contents of some tropical fruits (i.e., pineapple, wax apple, rambutan, lichi, guava, and mango) and compare the results to the content of these substances in the better characterized persimmon. It was found that lichi, guava, and ripe mango (cv. Keaw) have 3.35, 4.95, and 6.25 mg of total polyphenols in 100 g fresh fruit, respectively. This is significantly higher than in persimmon, pineapple, wax apple, mature green mango, and rambutan [P < 0.0005 for pineapple (Smooth Cayene variant), wax apple, persimmon, rambutan, mature green mango (cv. Keaw); the value of P < 0.001 is found only for pineapple (Phuket, Queen variant)]. The same relationship was observed for the contents of gallic acid and of dietary fiber. It can be supposed that among the studied fruit, lichi, guava, and ripe mango may be preferable for dietary prevention of atherosclerosis.
Selected chemical compounds in firm and mellow persimmon fruit before and after the drying process.
Senica, Mateja; Veberic, Robert; Grabnar, Jana Jurhar; Stampar, Franci; Jakopic, Jerneja
2016-07-01
Persimmon is a seasonal fruit and only available in fresh form for a short period of each year. In addition to freezing, drying is the simplest substitute for the fresh fruit and accessible throughout the year. The effect of mellowing and drying was evaluated in 'Tipo' persimmon, an astringent cultivar. 'Tipo' firm fruit contained high levels of tannins (1.1 mg g(-1) DW), which were naturally decreased to 0.2 mg g(-1) DW after mellowing. The drying process greatly impacted the contents of carotenoids, total phenols, individual phenolics, tannins, organic acids, sugars and colour parameters in firm and mellow fruit. The reduction of tannins, phenolic compounds and organic acids were accompanied by the increase of sugars and carotenoids, improving the colour of the analysed samples. These results showed that the drying process improved the quality of persimmon products and extended their shelf life. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Luo, C; Zhang, Q L; Luo, Z R
2014-04-16
Oriental persimmon (Diospyros kaki Thunb.) (2n = 6x = 90) is a major commercial and deciduous fruit tree that is believed to have originated in China. However, rare transcriptomic and genomic information on persimmon is available. Using Roche 454 sequencing technology, the transcriptome from RNA of the flowers of D. kaki was analyzed. A total of 1,250,893 reads were generated and 83,898 unigenes were assembled. A total of 42,711 SSR loci were identified from 23,494 unigenes and 289 polymerase chain reaction primer pairs were designed. Of these 289 primers, 155 (53.6%) showed robust PCR amplification and 98 revealed polymorphism between 15 persimmon genotypes, indicating a polymorphic rate of 63.23% of the productive primers for characterization and genotyping of the genus Diospyros. Transcriptome sequence data generated from next-generation sequencing technology to identify microsatellite loci appears to be rapid and cost-efficient, particularly for species with no genomic sequence information available.
Malahubban, M; Alimon, A R; Sazili, A Q; Fakurazi, S; Zakry, F A
2013-09-01
Leaves of Andrographis paniculata and Orthosiphon stamineus were extracted with water, ethanol, methanol and chloroform to assess their potential as antibacterial and antioxidant agents. High performance liquid chromatography analysis showed that the methanolic extracts of A. paniculata and O. stamineus leaves gave the highest amounts of andrographolide and rosmarinic acid, respectively. These leaf extracts exhibited antimicrobial and antioxidant activities and, at the highest concentration tested (200 mg/mL), showed greater inhibitory effects against the Gram positive bacteria Bacillus cereus and Staphylococcus aureus than 10% acetic acid. Andrographis paniculata and O. stamineus methanolic and ethanolic leaf extracts also showed the strongest antioxidant activity as compared with the other extracts tested. The bioactive compounds present in these leaf extracts have the potential to be developed into natural antibacterial and antioxidant agents that may have applications in animal and human health.
Extracellular synthesis of silver nanoparticles using the leaf extract of Coleus amboinicus Lour
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayanan, Kannan Badri; Sakthivel, Natarajan, E-mail: puns2005@gmail.com
2011-10-15
Highlights: {yields} Synthesis of AgNPs using the leaf extract of Coleus amboinicus L. was described. {yields} UV-vis absorption spectra showed the formation of isotrophic AgNPs at 437 nm in 6 h. {yields} XRD analysis showed intense peaks corresponding to fcc structure of AgNPs. {yields} HR-TEM analysis revealed the formation of stable anisotrophic and isotrophic AgNPs. -- Abstract: In the present investigation, Coleus amboinicus Lour. leaf extract-mediated green chemistry approach for the synthesis of silver nanoparticles was described. The nanoparticles were characterized by ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR) and transmissionmore » electron microscopy (TEM). The influence of leaf extract on the control of size and shape of silver nanoparticles is reported. Upon an increase in the concentration of leaf extract, there was a shift in the shape of nanoparticles from anisotrophic nanostructures like triangle, decahedral and hexagonal to isotrophic spherical nanoparticles. Crystalline nature of fcc structured nanoparticles was confirmed by XRD spectrum with peaks corresponding to (1 1 1), (2 0 0), (2 2 0) and (3 1 1) planes and bright circular spots in the selected-area electron diffraction (SAED). Such environment friendly and sustainable methods are non-toxic, cheap and alternative to hazardous chemical procedures.« less
Sukumaran, NatarajaPillai
2014-01-01
The main objective of the present study is to improve the immune power of Cyprinus carpio by using Euphorbia hirta plant leaf extract as immunostimulants. The haematological, immunological and enzymatic studies were conducted on the medicated fish infected with Aeromonas hydrophila pathogen. The results obtained from the haematological studies show that the RBC count, WBC count and haemoglobin content were increased in the infected fish at higher concentration of leaf extract. The feeds with leaf extract of Euphorbia hirta were able to stimulate the specific immune response by increasing the titre value of antibody. It was able to stimulate the antibody production only up to the 5th day, when fed with higher concentrations of (25 g and 50 g) plant leaf extract. The plant extract showed non-specific immune responses such as lysozyme activity, phagocytic ratio, NBT assay, etc. at higher concentration (50 g) and in the same concentration (50 g), the leaf extract of Euphorbia hirta significantly eliminated the pathogen in blood and kidney. It was observed that fish have survival percentage significantly at higher concentration (50 g) of Euphorbia hirta, when compared with the control. The obtained results are statistically significant at P < 0.05 and P < 0.01 levels. This research work suggests that the plant Euphorbia hirta has immunostimulant activity by stimulating both specific and non-specific immunity at higher concentrations. PMID:25405077
Bindhu, M R; Umadevi, M
2013-01-15
Synthesis of silver nanoparticles using leaf extract of Hibiscus cannabinus has been investigated. The influences of different concentration of H. cannabinus leaf extract, different metal ion concentration and different reaction time on the above cases on the synthesis of nanoparticles were evaluated. The synthesized nanoparticles were characterized using UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). The prepared silver nanoparticles were monodispersed, spherical in shape with the average particle size of 9 nm and shows surface plasmon peak at 446 nm. The study also reveals that the ascorbic acid present in H. cannabinus leaf extract has been used as reducing agent. The prepared silver nanoparticle shows good antimicrobial activity against Escherichia coli, Proteus mirabilis and Shigella flexneri. Copyright © 2012 Elsevier B.V. All rights reserved.
Ghonmode, Wasudeo Namdeo; Balsaraf, Omkar D; Tambe, Varsha H; Saujanya, K P; Patil, Ashishkumar K; Kakde, Deepak D
2013-01-01
Background: E. faecalis is the predominant micro-organism recovered from root canal of the teeth where previous endodontic treatment has failed. Thorough debridement and complete elimination of micro-organisms are objectives of an effective endodontic treatment. For many years, intracanal irrigants have been used as an adjunct to enhance antimicrobial effect of cleaning and shaping in endodontics. The constant increase in antibiotic-resistant strains and side-effects of synthetic drugs has promoted researchers to look for herbal alternatives. For thousands of years humans have sought to fortify their health and cure various illnesses with herbal remedies, but only few have been tried and tested to withstand modern scientific scrutiny. The present study was aimed to evaluate alternative, inexpensive simple and effective means of sanitization of the root canal systems. The antimicrobial efficacy of herbal alternatives as endodontic irrigants is evaluated and compared with the standard irrigant sodium hypochlorite. Materials & Methods: Neem leaf extracts, grape seed extracts, 3% Sodium hypochlorite, absolute ethanol, Enterococcus faecalis (ATCC 29212) cultures, Brain heart infusion media. The agar diffusion test was performed in brain heart infusion media and broth. The agar diffusion test was used to measure the zone of inhibition. Results: Neem leaf extracts and grape seed extracts showed zones of inhibition suggesting that they had anti-microbial properties. Neem leaf extracts showed significantly greater zones of inhibition than 3% sodium hypochlorite. Also interestingly grape seed extracts showed zones of inhibition but were not as significant as of neem extracts. Conclusion: Under the limitations of this study, it was concluded that neem leaf extract has a significant antimicrobial effect against E. faecalis. Microbial inhibition potential of neem leaf extract observed in this study opens perspectives for its use as an intracanal medication. How to cite this
JUNG, IL LAE; LEE, JU HYE; KANG, SE CHAN
2015-01-01
It has previously been reported that cold water-extracts of Moringa oleifera leaf have anticancer activity against various human cancer cell lines, including non-small cell lung cancer. In the present study, the anticancer activity of M. oleifera leaf extracts was investigated in human hepatocellular carcinoma HepG2 cells. By the analysis of apoptotic signals, including the induction of caspase or poly(ADP-ribose) polymerase cleavage, and the Annexin V and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assays, it was demonstrated that M. oleifera leaf extracts induce the apoptosis of HepG2 cells. In the hollow fiber assay, oral administration of the leaf extracts significantly reduced (44–52%) the proliferation of the HepG2 cells and A549 non-small cell lung cancer cells. These results support the potential of soluble extracts of M. oleifera leaf as orally administered therapeutics for the treatment of human liver and lung cancers. PMID:26622717
Luo, Yujie; Zhang, Xiaona; Luo, Zhengrong; Zhang, Qinglin; Liu, Jihong
2015-01-21
microRNAs (miRNAs) have been shown to play key roles in regulating gene expression at post-transcriptional level, but miRNAs associated with natural deastringency of Chinese pollination-constant nonastringent persimmon (CPCNA) have never been identified. In this study, two small RNA libraries established using 'Eshi No. 1' persimmon (Diospyros kaki Thunb.; CPCNA) fruits collected at 15 and 20 weeks after flowering (WAF) were sequenced through Solexa platform in order to identify miRNAs involved in deastringency of persimmon. A total of 6,258,487 and 7,634,169 reads were generated for the libraries at 15 and 20 WAF, respectively. Based on sequence similarity and hairpin structure prediction, 236 known miRNAs belonging to 65 miRNA families and 33 novel miRNAs were identified using persimmon transcriptome data. Sixty one of the characterized miRNAs exhibited pronounced difference in the expression levels between 15 and 20 WAF, 17 up-regulated and 44 down-regulated. Expression profiles of 12 conserved and 10 novel miRNAs were validated by stem loop qRT-PCR. A total of 198 target genes were predicted for the differentially expressed miRNAs, including several genes that have been reported to be implicated in proanthocyanidins (PAs, or called tannin) accumulation. In addition, two transcription factors, a GRF and a bHLH, were experimentally confirmed as the targets of dka-miR396 and dka-miR395, respectively. Taken together, the present data unraveled several important miRNAs in persimmon. Among them, miR395p-3p and miR858b may regulate bHLH and MYB, respectively, which are influenced by SPL under the control of miR156j-5p and in turn regulate the structural genes involved in PA biosynthesis. In addition, dka-miR396g and miR2911a may regulate their target genes associated with glucosylation and insolubilization of tannin precursors. All of these miRNAs might play key roles in the regulation of (de)astringency in persimmon fruits under normal development conditions.
Mishra, Amita; Sharma, Amit Kumar; Kumar, Shashank; Saxena, Ajit K; Pandey, Abhay K
2013-01-01
The present study reports the phytochemical profiling, antimicrobial, antioxidant, and anticancer activities of Bauhinia variegata leaf extracts. The reducing sugar, anthraquinone, and saponins were observed in polar extracts, while terpenoids and alkaloids were present in nonpolar and ethanol extracts. Total flavonoid contents in various extracts were found in the range of 11-222.67 mg QE/g. In disc diffusion assays, petroleum ether and chloroform fractions exhibited considerable inhibition against Klebsiella pneumoniae. Several other extracts also showed antibacterial activity against pathogenic strains of E. coli, Proteus spp. and Pseudomonas spp. Minimum bactericidal concentration (MBC) values of potential extracts were found between 3.5 and 28.40 mg/mL. The lowest MBC (3.5 mg/mL) was recorded for ethanol extract against Pseudomonas spp. The antioxidant activity of the extracts was compared with standard antioxidants. Dose dependent response was observed in reducing power of extracts. Polar extracts demonstrated appreciable metal ion chelating activity at lower concentrations (10-40 μg/mL). Many extracts showed significant antioxidant response in beta carotene bleaching assay. AQ fraction of B. variegata showed pronounced cytotoxic effect against DU-145, HOP-62, IGR-OV-1, MCF-7, and THP-1 human cancer cell lines with 90-99% cell growth inhibitory activity. Ethyl acetate fraction also produced considerable cytotoxicity against MCF-7 and THP-1 cell lines. The study demonstrates notable antibacterial, antioxidant, and anticancer activities in B. variegata leaf extracts.
Mishra, Amita; Sharma, Amit Kumar; Kumar, Shashank; Saxena, Ajit K.; Pandey, Abhay K.
2013-01-01
The present study reports the phytochemical profiling, antimicrobial, antioxidant, and anticancer activities of Bauhinia variegata leaf extracts. The reducing sugar, anthraquinone, and saponins were observed in polar extracts, while terpenoids and alkaloids were present in nonpolar and ethanol extracts. Total flavonoid contents in various extracts were found in the range of 11–222.67 mg QE/g. In disc diffusion assays, petroleum ether and chloroform fractions exhibited considerable inhibition against Klebsiella pneumoniae. Several other extracts also showed antibacterial activity against pathogenic strains of E. coli, Proteus spp. and Pseudomonas spp. Minimum bactericidal concentration (MBC) values of potential extracts were found between 3.5 and 28.40 mg/mL. The lowest MBC (3.5 mg/mL) was recorded for ethanol extract against Pseudomonas spp. The antioxidant activity of the extracts was compared with standard antioxidants. Dose dependent response was observed in reducing power of extracts. Polar extracts demonstrated appreciable metal ion chelating activity at lower concentrations (10–40 μg/mL). Many extracts showed significant antioxidant response in beta carotene bleaching assay. AQ fraction of B. variegata showed pronounced cytotoxic effect against DU-145, HOP-62, IGR-OV-1, MCF-7, and THP-1 human cancer cell lines with 90–99% cell growth inhibitory activity. Ethyl acetate fraction also produced considerable cytotoxicity against MCF-7 and THP-1 cell lines. The study demonstrates notable antibacterial, antioxidant, and anticancer activities in B. variegata leaf extracts. PMID:24093108
Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles
Elavazhagan, Tamizhamudu; Arunachalam, Kantha D
2011-01-01
We used an aqueous leaf extract of Memecylon edule (Melastomataceae) to synthesize silver and gold nanoparticles. To our knowledge, this is the first report where M. edule leaf broth was found to be a suitable plant source for the green synthesis of silver and gold nanoparticles. On treatment of aqueous solutions of silver nitrate and chloroauric acid with M. edule leaf extract, stable silver and gold nanoparticles were rapidly formed. The gold nanoparticles were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX) and Fourier transform infra-red spectroscopy (FTIR). The kinetics of reduction of aqueous silver and gold ions during reaction with the M. edule leaf broth were easily analyzed by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to M. edule leaf broth, were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20–50 nm. TEM analysis of gold nanoparticles showed formation of triangular, circular, and hexagonal shapes in the size range 10–45 nm. The resulting silver nanoparticles were predominantly square with uniform size range 50–90 nm. EDAX results confirmed the presence of triangular nanoparticles in the adsorption peak of 2.30 keV. Further FTIR analysis was also done to identify the functional groups in silver and gold nanoparticles. The characterized nanoparticles of M. edule have potential for various medical and industrial applications. Saponin presence in aqueous extract of M. edule is responsible for the mass production of silver and gold nanoparticles. PMID:21753878
Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles.
Elavazhagan, Tamizhamudu; Arunachalam, Kantha D
2011-01-01
We used an aqueous leaf extract of Memecylon edule (Melastomataceae) to synthesize silver and gold nanoparticles. To our knowledge, this is the first report where M. edule leaf broth was found to be a suitable plant source for the green synthesis of silver and gold nanoparticles. On treatment of aqueous solutions of silver nitrate and chloroauric acid with M. edule leaf extract, stable silver and gold nanoparticles were rapidly formed. The gold nanoparticles were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX) and Fourier transform infra-red spectroscopy (FTIR). The kinetics of reduction of aqueous silver and gold ions during reaction with the M. edule leaf broth were easily analyzed by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to M. edule leaf broth, were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20-50 nm. TEM analysis of gold nanoparticles showed formation of triangular, circular, and hexagonal shapes in the size range 10-45 nm. The resulting silver nanoparticles were predominantly square with uniform size range 50-90 nm. EDAX results confirmed the presence of triangular nanoparticles in the adsorption peak of 2.30 keV. Further FTIR analysis was also done to identify the functional groups in silver and gold nanoparticles. The characterized nanoparticles of M. edule have potential for various medical and industrial applications. Saponin presence in aqueous extract of M. edule is responsible for the mass production of silver and gold nanoparticles.
Vennat, B; Pourrat, H; Pouget, M P; Gross, D; Pourrat, A
1988-10-01
The tannins in leaf, bark, and stem extracts of HAMAMELIS VIRGINIANA were analyzed. Four proanthocyanidins were isolated by HPLC. One was a procyanidin polymer containing only one type of flavanol unit; the other three were polymers of procyanidin and prodelphinidin containing two types of flavanol units. A method of assay of hamamelitannin showed the bark extract to be 31 times richer in hamamelitannin than the leaf extract and 87 times richer than the stem extract.
Kawakami, Yuki; Nakamura, Tomomi; Hosokawa, Tomoko; Suzuki-Yamamoto, Toshiko; Yamashita, Hiromi; Kimoto, Masumi; Tsuji, Hideaki; Yoshida, Hideki; Hada, Takahiko; Takahashi, Yoshitaka
2009-01-01
Prostaglandin endoperoxide H synthase (PGHS) is a key enzyme for the synthesis of prostaglandins (PGs) which play important roles in inflammation and carcinogenesis. Because the extract from Psidium guajava is known to have a variety of beneficial effects on our body including the anti-inflammatory, antioxidative and antiproliferative activities, we investigated whether the extract inhibited the catalytic activity of the two PGHS isoforms using linoleic acid as an alternative substrate. The guava leaf extract inhibited the cyclooxygenase reaction of recombinant human PGHS-1 and PGHS-2 as assessed by conversion of linoleic acid to 9- and 13-hydroxyoctadecadienoic acids (HODEs). The guava leaf extract also inhibited the PG hydroperoxidase activity of PGHS-1, which was not affected by nonsteroidal anti-inflammatory drugs (NSAIDs). Quercetin which was one of the major components not only inhibited the cyclooxygenase activity of both isoforms but also partially inhibited the PG hydroperoxidase activity. Overexpression of human PGHS-1 and PGHS-2 in the human colon carcinoma cells increased the DNA synthesis rate as compared with mock-transfected cells which did not express any isoforms. The guava leaf extract not only inhibited the PGE(2) synthesis but also suppressed the DNA synthesis rate in the PGHS-1- and PGHS-2-expressing cells to the same level as mock-transfected cells. These results demonstrate the antiproliferative activity of the guava leaf extract which is at least in part caused by inhibition of the catalytic activity of PGHS isoforms.
Ly, Christina; Ferrier, Jonathan; Gaudet, Jeremiah; Yockell-Lelièvre, Julien; Arnason, John Thor; Gruslin, Andrée; Bainbridge, Shannon
2018-04-01
Perturbations to extravillous trophoblast (EVT) cell migration and invasion are associated with the development of placenta-mediated diseases. Phytochemicals found in the lowbush blueberry plant (Vaccinium angustifolium) have been shown to influence cell migration and invasion in models of tumorigenesis and noncancerous, healthy cells, however never in EVT cells. We hypothesized that the phenolic compounds present in V. angustifolium leaf extract promote trophoblast migration and invasion. Using the HTR-8/SVneo human EVT cell line and Boyden chamber assays, the influence of V. angustifolium leaf extract (0 to 2 × 10 4 ng/ml) on trophoblast cell migration (n = 4) and invasion (n = 4) was determined. Cellular proliferation and viability were assessed using immunoreactivity to Ki67 (n = 3) and trypan blue exclusion assays (n = 3), respectively. At 20 ng/ml, V. angustifolium leaf extract increased HTR-8/SVneo cell migration and invasion (p < .01) and did not affect cell proliferation or viability. Chlorogenic acid was identified as a major phenolic compound of the leaf extract and the most active compound. Evidence from Western blot analysis (n = 3) suggests that the effects of the leaf extract and chlorogenic acid on trophoblast migration and invasion are mediated through an adenosine monophosphate-activated protein (AMP) kinase-dependent mechanism. Further investigations examining the potential therapeutic applications of this natural health product extract and its major chemical compounds in the context of placenta-mediated diseases are warranted. Copyright © 2018 John Wiley & Sons, Ltd.
Dual role of betel leaf extract on thyroid function in male mice.
Panda, S; Kar, A
1998-12-01
The effects of betel leaf extract (0.10, 0.40, 0.80 and 2.0 g kg-1 day-1 for 15 days) on the alterations in thyroid hormone concentrations. lipid peroxidation (LPO) and on the activities of superoxide dismutase (SOD) and catalase (CAT) were investigated in male Swiss mice. Administration of betel leaf extract exhibited a dual role, depending on the different doses. While the lowest dose decreased thyroxine (T4) and increased serum triiodothyronine (T3) concentrations, reverse effects were observed at two higher doses. Higher doses also increased LPO with a concomitant decrease in SOD and CAT activities. However, with the lowest dose most of these effects were reversed. These findings suggest that betel leaf can be both stimulatory and inhibitory to thyroid function, particularly for T3 generation and lipid peroxidation in male mice, depending on the amount consumed.
Antidiarrhoeal activity of leaf methanolic extract of Rauwolfia serpentina.
Ezeigbo, I I; Ezeja, M I; Madubuike, K G; Ifenkwe, D C; Ukweni, I A; Udeh, N E; Akomas, S C
2012-06-01
To evaluate the antidiarrhoeal property of methanol extract of the leaves of Rauwolfia serpentina (R. serpentina) in experimental diarrhoea induced by castor oil in mice. Doses of 100, 200 and 400 mg/kg R. serpentina leaf methanol extracts were administered to castor oil induced diarrhoea mice to determine its antidiarrhoeal activity. All doses of the extract and the reference drug atropine sulphate (3 mg/kg, i.p.) produced a dose-dependent reduction in intestinal weight and fluid volume. The extracts also significantly reduced the intestinal transit in charcoal meal test when compared to diphenoxylate Hcl (5 mg/kg, p.o.). The results show that the extract of R. serpentina leaves has a significant antidiarrhoeal activity and supports its traditional uses in herbal medicine.
Iraklis, Boubourakas; Kanda, Hiroko; Nabeshima, Tomoyuki; Onda, Mayu; Ota, Nao; Koeda, Sota; Hosokawa, Munetaka
2016-08-01
CSVd could not infect Nicotiana benthamiana when the plants were pretreated with crude leaf extract of Capsicum chinense 'Sy-2'. C. chinense leaves were revealed to contain strong RNA-digesting activity. Several studies have identified active antiviral and antiviroid agents in plants. Capsicum plants are known to contain antiviral agents, but the mechanism of their activity has not been determined. We aimed to elucidate the mechanism of Capsicum extract's antiviroid activity. Chrysanthemum stunt viroid (CSVd) was inoculated into Nicotiana benthamiana plants before or after treating the plants with a leaf extract of Capsicum chinense 'Sy-2'. CSVd infection was determined using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) 3 weeks after inoculation. When Capsicum extract was sprayed or painted onto N. benthamiana before inoculation, it was effective in preventing infection by CSVd. To evaluate CSVd digestion activity in leaf extracts, CSVd was mixed with leaf extracts of Mirabilis, Phytolacca, Pelargonium and Capsicum. CSVd-digesting activities were examined by quantifying undigested CSVd using qRT-PCR, and RNA gel blotting permitted visualization of the digested CSVd. Only Capsicum leaf extract digested CSVd, and in the Capsicum treatment, small digested CSVd products were detected by RNA gel blot analysis. When the digesting experiment was performed for various cultivars and species of Capsicum, only cultivars of C. chinense showed strong CSVd-digesting activity. Our observations indicated that Capsicum extract contains strong RNA-digesting activity, leading to the conclusion that this activity is the main mechanism for protection from infection by CSVd through spraying or painting before inoculation. To our knowledge, this is the first report of a strong RNA-digesting activity by a plant extract.
Evidence of oleuropein degradation by olive leaf protein extract.
De Leonardis, Antonella; Macciola, Vincenzo; Cuomo, Francesca; Lopez, Francesco
2015-05-15
The enzymatic activity of raw protein olive leaf extract has been investigated in vivo, on olive leaf homogenate and, in vitro with pure oleuropein and other phenolic substrates. At least two types of enzymes were found to be involved in the degradation of endogenous oleuropein in olive leaves. As for the in vitro experiments, the presence of active polyphenoloxidase and β-glucosidase was determined by HPLC and UV-Visible spectroscopy. Interestingly, both the enzymatic activities were found to change during the storage of olive leaves. Specifically, the protein extracts obtained from fresh leaves showed the presence of both the enzymatic activities, because oleuropein depletion occurred simultaneously with the formation of the oleuropein aglycon, 3,4-DHPEA-EA. In comparison leaves subjected to the drying process showed a polyphenoloxidase activity leading exclusively to the formation of oxidation products responsible for the typical brown coloration of the reaction solution. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ma, Chih-Ming; Cheng, Chih-Lun; Lee, Shang-Chieh; Hong, Gui-Bing
2018-04-30
The aim of this study was to examine the effect of process factors such as ethanol concentration, extraction time and temperature on the extraction yield and the bioactive contents of Tagetes lemmonii leaf extracts using response surface methodology (RSM). ANOVA results showed that the response variables were affected by the ethanol concentration to a very significant degree and by extraction temperature to a lesser degree. GC/MS characterization showed that the extract is rich in bioactive compounds and those present exhibited important biological activities such as antioxidant, insect repellence and insecticidal activities. The results from the toxicity assay demonstrate that the extract obtained from the leaves of Tagetes lemmonii was an effective insect toxin against Tribolium castaneum. The radical scavenging activity and p-anisidine test results of olive oil spiked with different concentrations of leaf extract showed that the phenolic compounds can retard lipid oxidation. Copyright © 2018 Elsevier Inc. All rights reserved.
Immunomodulatory Effect of Gymnema sylvestre (R.Br.) Leaf Extract: An In Vitro Study in Rat Model.
Singh, Vineet Kumar; Dwivedi, Padmanabh; Chaudhary, B R; Singh, Ramesh
2015-01-01
Gymnema sylvestre Wild R.Br (family: Asclepidaceae) is a valuable medicinal plant used in folk medicine to treat diabetes, obesity, asthma etc. in India for antiquity. Diabetes mellitus is a syndrome characterized immunologically by lymphocyte apoptosis and reduced cell-mediated and humoral immunity. Modulation of immune responses to alleviate diseases has been of interest, and traditional herbal medicines may play an important role in this regard. In this study, we aim to evaluate the immunomodulatory potential of methanolic extract of G. sylvestre leaf using rat model. HPLC analysis of leaf extract was carried out for gymnemic acid. The method involves the initial hydrolysis of gymnemic acids, the active ingredients, to a common aglycone followed by the quantitative estimation of gymnemagenin, using gymnemagenin as reference standard. Gymnemic acid content was 2.40% (w/w) in G. sylvestre leaf extract. In vitro immunomodulatory activity of the methanolic extract of G. sylvestre leaf (1-200μg/ml) was evaluated by gauging its effects on nitroblue tetrazolium reduction and nitrite release in rat peritoneal macrophages and on mitogen (ConA, PHA and LPS) induced splenic lymphocyte proliferation. G. sylvestre leaf extract showed significant (<0.05) enhancement in NO and ROS generation in macrophages and in proliferation of lymphocytes in dose dependent manner. EC50 value was 3.10, 3.75 and 2.68 μg/ml for NBT reduction, nitrite release and lymphoproliferation, respectively. Potential effect was observed at 100 μg/ml in NO and ROS generation in macrophages and 20 μg/ml in lymphocyte proliferation. G. sylvestre leaf extract stimulates macrophage reactivity, increasing the level of activity even higher when combined with PMA or LPS. These findings suggest the presence of active compounds, gymnemic acid, in methanolic extract of G. sylvestre leaf that stimulates both myeloid and lymphoid components of immune system, and therefore can restore the innate immune function
Immunomodulatory Effect of Gymnema sylvestre (R.Br.) Leaf Extract: An In Vitro Study in Rat Model
Dwivedi, Padmanabh; Chaudhary, B. R.
2015-01-01
Gymnema sylvestre Wild R.Br (family: Asclepidaceae) is a valuable medicinal plant used in folk medicine to treat diabetes, obesity, asthma etc. in India for antiquity. Diabetes mellitus is a syndrome characterized immunologically by lymphocyte apoptosis and reduced cell-mediated and humoral immunity. Modulation of immune responses to alleviate diseases has been of interest, and traditional herbal medicines may play an important role in this regard. In this study, we aim to evaluate the immunomodulatory potential of methanolic extract of G. sylvestre leaf using rat model. HPLC analysis of leaf extract was carried out for gymnemic acid. The method involves the initial hydrolysis of gymnemic acids, the active ingredients, to a common aglycone followed by the quantitative estimation of gymnemagenin, using gymnemagenin as reference standard. Gymnemic acid content was 2.40% (w/w) in G. sylvestre leaf extract. In vitro immunomodulatory activity of the methanolic extract of G. sylvestre leaf (1–200μg/ml) was evaluated by gauging its effects on nitroblue tetrazolium reduction and nitrite release in rat peritoneal macrophages and on mitogen (ConA, PHA and LPS) induced splenic lymphocyte proliferation. G. sylvestre leaf extract showed significant (<0.05) enhancement in NO and ROS generation in macrophages and in proliferation of lymphocytes in dose dependent manner. EC50 value was 3.10, 3.75 and 2.68μg/ml for NBT reduction, nitrite release and lymphoproliferation, respectively. Potential effect was observed at 100 μg/ml in NO and ROS generation in macrophages and 20 μg/ml in lymphocyte proliferation. G. sylvestre leaf extract stimulates macrophage reactivity, increasing the level of activity even higher when combined with PMA or LPS. These findings suggest the presence of active compounds, gymnemic acid, in methanolic extract of G. sylvestre leaf that stimulates both myeloid and lymphoid components of immune system, and therefore can restore the innate immune function
Alizadeh Behbahani, Behrooz; Tabatabaei Yazdi, Farideh; Shahidi, Fakhri; Noorbakhsh, Hamid; Vasiee, Alireza; Alghooneh, Ali
2018-01-01
In this study, the effects of water, ethanol, methanol and glycerin at five levels (0, 31.25, 83.33, 125 and 250 ml) were investigated on the efficiency of mangrove leaf extraction using mixture optimal design. The antimicrobial effect of the extracts on Streptococcus pneumoniae, Enterococcus faecium and Klebsiella pneumoniae was evaluated using disk diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) methods. The mangrove leaf extraction components were identified through gas chromatography/mass spectrometry (GC/MS). Phytochemical analysis (alkaloids, tannins, saponins, flavone and glycosides) were evaluated based on qualitative methods. Antioxidant activity of extracts was measured using 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant potential (FRAP) methods. Maximum antimicrobial effect was observed in Enterococcus faecium and highest resistance against mangrove leaf extract in Enterococcus faecium and Klebsiella pneumoniae, respectively. Increasing concentration of mangrove extracts had a significant effect (p ≤ 0.05) on inhibition zone diameter. The MICs of the mangrove leaf extraction varied from 4 mg/ml to 16 mg/ml. The optimum formulation was found to contain glycerin (0 ml), water (28.22 ml), methanol (59.83 ml) and ethanol (161.95 ml). The results showed that the highest antioxidant activity was related to optimum extract of mangrove leaf and ethanolic extract respectively. The results of phytochemical screening of Avicennia marina leaves extract showed the existence of alkaloids, tannins, saponins, flavone and glycosides. 2-Propenoic acid, 3-phenyl- was the major compound of Avicennia marina. The results of non-significant lack of fit tests, and F value (14.62) indicated that the model was sufficiently accurate. In addition, the coefficient of variations (16.8%) showed an acceptable reproducibility. Copyright © 2017 Elsevier Ltd. All rights reserved.
Comparative ovicidal activity of Moringa oleifera leaf extracts on Fasciola gigantica eggs
Hegazi, Ahmed G.; Megeed, Kadria N. Abdel; Hassan, Soad E.; Abdelaziz, M. M.; Toaleb, Nagwa I.; Shanawany, Eman E. El; Aboelsoued, Dina
2018-01-01
Background: Fasciolosis is an important zoonotic disease affecting the productive performance of farm animals in Egypt. Aim: The aim of the present study was comparing the ovicidal effect of different extracts as an alcoholic (Methanolic and Ethanolic) and aqueous Moringa oleifera leaf extracts on Fasciola gigantica non-embryonated and developed eggs. Materials and Methods: Tested concentrations of extracts ranged from 12.5 to 800 mg/ml. Nitroxynil was used as reference drug with a dose of 100 mg/ml. Results: M. oleifera alcoholic and aqueous extracts showed a concentration-dependent ovicidal effect on F. gigantica non-embryonated and developed eggs. Based on LC50 values, water extract showed the highest ovicidal activity since it registered the lowest values of 2.6 mg/ml on non-embryonated eggs. Non-embryonated eggs were more susceptible to aqueous extract than developed eggs. On the other hand, the developed eggs were more susceptible to ethanolic extract than non-embryonated eggs even the lowest LC50 (12.38 mg/ml). Conclusion: M. oleifera leaf extracts especially aqueous extract could be a promising step in the field of controlling fascioliasis. Further, in vivo studies are needed to enlighten the therapeutic potential of M. oleifera extracts in treating F. gigantica infection. PMID:29657406
NASA Astrophysics Data System (ADS)
Jayakumarai, G.; Gokulpriya, C.; Sudhapriya, R.; Sharmila, G.; Muthukumaran, C.
2015-12-01
Simple effective and rapid approach for the green synthesis of copper oxide nanoparticles (CONPs) using of Albizia lebbeck leaf extract was investigated in this study. Various instrumental techniques were adopted to characterize the synthesized CONPs, viz. UV-Vis spectroscopy, SEM, TEM, EDS and XRD. The synthesized CONPs were found to be spherical in shape and size less than 100 nm. It could be concluded that A. lebbeck leaf extract can be used as a cheap and effective reducing agent for CONPs production in large scale.
Evaluation of Aqueous Leaf Extract of Cardiospermum halicacabum (L.) on Fertility of Male Rats.
Peiris, L Dinithi C; Dhanushka, M A T; Jayathilake, T A H D G
2015-01-01
Treatment with 100 mg/kg and 200 mg/kg body weight of aqueous leaf extract (ALE) of Cardiospermum halicacabum for 30 days produced a significant dose dependent increase in the sperm counts and sperm motility in both caput and cauda regions. Further, significant increase in serum testosterone level was evident at all applied doses. However, no significant changes in the weight of sex organs were observed. Aqueous leaf extract also increased the number of females impregnated, number of implantations, and number of viable fetuses while decreasing the total number of resorption sites in the pregnant females. However, the total cholesterol level in the serum remained unchanged and there were no records on renotoxicity; nevertheless ALE exhibited a hepatoprotective effect. It was concluded that aqueous leaf extract of Cardiospermum halicacabum enhanced sperm concentration, motility, and testosterone, leading to positive results in fertility.
Pharmacological Studies of Artichoke Leaf Extract and Their Health Benefits.
Ben Salem, Maryem; Affes, Hanen; Ksouda, Kamilia; Dhouibi, Raouia; Sahnoun, Zouheir; Hammami, Serria; Zeghal, Khaled Mounir
2015-12-01
Artichoke (Cynara scolymus) leaf extract was one of the few herbal remedies which the clinical and experimental trials have complemented each other. Both experimental and clinical effects have been verified through extensive biomedical herbal remedy research. Specifically, antioxidant, choleretic, hepatoprotective, bile-enhancing and lipid-lowering effects have been demonstrated, which corresponded with its historical use. Ongoing research seems to indicate that artichoke indeed have medicinal qualities. Most significant appears to be its beneficial effect on the liver. In animal studies, liquid extracts of the roots and leaves of artichoke have demonstrated an ability to protect the liver, with possibly even to help liver cells regenerate. Although research is not yet conclusive, scientists were optimistic that its long-standing use in humans for digestive and bowel problems was indeed justified. It may also play a role in lowering cholesterol and thus help to prevent heart disease. Boiled wild artichoke reduced postprandial glycemic and insulinemic responses in normal subjects but has no effect on metabolic syndrome patients. This article intended to review the wide ranging pharmacological effects of artichoke leaf extract.
Epigenetic Regulation of the Sex Determination Gene MeGI in Polyploid Persimmon.
Akagi, Takashi; Henry, Isabelle M; Kawai, Takashi; Comai, Luca; Tao, Ryutaro
2016-12-01
Epigenetic regulation can add a flexible layer to genetic variation, potentially enabling long-term but reversible cis-regulatory changes to an allele while maintaining its DNA sequence. Here, we present a case in which alternative epigenetic states lead to reversible sex determination in the hexaploid persimmon Diospyros kaki Previously, we elucidated the molecular mechanism of sex determination in diploid persimmon and demonstrated the action of a Y-encoded sex determinant pseudogene called OGI, which produces small RNAs targeting the autosomal gene MeGI, resulting in separate male and female individuals (dioecy). We contrast these findings with the discovery, in hexaploid persimmon, of an additional layer of regulation in the form of DNA methylation of the MeGI promoter associated with the production of both male and female flowers in genetically male trees. Consistent with this model, developing male buds exhibited higher methylation levels across the MeGI promoter than developing female flowers from either monoecious or female trees. Additionally, a DNA methylation inhibitor induced developing male buds to form feminized flowers. Concurrently, in Y-chromosome-carrying trees, the expression of OGI is silenced by the presence of a SINE (short interspersed nuclear element)-like insertion in the OGI promoter. Our findings provide an example of an adaptive scenario involving epigenetic plasticity. © 2016 American Society of Plant Biologists. All rights reserved.
Yang, Sichao; Jiang, Yun; Xu, Liqing; Shiratake, Katsuhiro; Luo, Zhengrong; Zhang, Qinglin
2016-11-01
Persimmon fruits accumulate a large amount of proanthocyanidins (PAs) in "tannin cells" during development that cause the sensation of astringency due to coagulation of oral proteins. Pollination-constant non-astringent (PCNA) is a spontaneous mutant persimmon phenotype that loses its astringency naturally on the tree at maturity; while the more common non-PCNA fruits remain rich in PAs until they are fully ripened. Here, we isolated a DkMATE1 gene encoding a Multidrug And Toxic Compound Extrusion (MATE) family protein from the Chinese PCNA (C-PCNA) 'Eshi 1'. Expression patterns of DkMATE1 were positively correlated with the accumulation of PAs in different types of persimmons fruits during fruit development. An analysis of the inferred amino acid sequences and phylogenetic relationships indicated that DkMATE1 is a putative PA precursor transporter, and subcellular localization assays revealed that DkMATE1 is localized in the vacuolar membrane. Ectopic expression of the DkMATE1 in Arabidopsis tt12 mutant supported that DkMATE1 could complement its biological function in transporting epicatechin 3'-O-glucoside as a PAs precursor from the cytoplasm to vacuole. Furthermore, the transient over-expression and silencing of DkMATE1 in 'Mopanshi' persimmon leaves resulted in a significant increase and a decrease in PA content, respectively. The analysis of cis-elements in DkMATE1 promoter regions indicated that DkMATE1 might be regulated by DkMYB4, another well-known structural gene in persimmon. Overall, our results show that DkMATE1 may be an essential PA precursor membrane transporter that plays an important role in PA biosynthesis in persimmon. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Antidiarrhoeal activity of leaf methanolic extract of Rauwolfia serpentina
Ezeigbo, II; Ezeja, MI; Madubuike, KG; Ifenkwe, DC; Ukweni, IA; Udeh, NE; Akomas, SC
2012-01-01
Objective To evaluate the antidiarrhoeal property of methanol extract of the leaves of Rauwolfia serpentina (R. serpentina) in experimental diarrhoea induced by castor oil in mice. Methods Doses of 100, 200 and 400 mg/kg R. serpentina leaf methanol extracts were administered to castor oil induced diarrhoea mice to determine its antidiarrhoeal activity. Results All doses of the extract and the reference drug atropine sulphate (3 mg/kg, i.p.) produced a dose-dependent reduction in intestinal weight and fluid volume. The extracts also significantly reduced the intestinal transit in charcoal meal test when compared to diphenoxylate Hcl (5 mg/kg, p.o.). Conclusions The results show that the extract of R. serpentina leaves has a significant antidiarrhoeal activity and supports its traditional uses in herbal medicine. PMID:23569944
Dhayalan, Arunachalam; Gracilla, Daniel E; Dela Peña, Renato A; Malison, Marilyn T; Pangilinan, Christian R
2018-01-01
The study investigated the medicinal properties of Spathiphyllum cannifolium (Dryand. ex Sims) Schott as a possible source of antimicrobial compounds. The phytochemical constituents were screened using qualitative methods and the antibacterial and antifungal activities were determined using agar well diffusion method. One-way analysis of variance and Fisher's least significant difference test were used. The phytochemical screening showed the presence of sterols, flavonoids, alkaloids, saponins, glycosides, and tannins in both ethanol and chloroform leaf extracts, but triterpenes were detected only in the ethanol leaf extract. The antimicrobial assay revealed that the chloroform leaf extract inhibited Candida albicans, Escherichia coli, Staphylococcus aureus, Bacillus subtilis, and Pseudomonas aeruginosa , whereas the ethanol leaf extract inhibited E. coli , S. aureus , and B. subtilis only. The ethanol and chloroform leaf extracts exhibited the highest zone of inhibition against B. subtilis . The antifungal assay showed that both the leaf extracts have no bioactivity against Aspergillus niger and C. albicans . Results suggest that chloroform is the better solvent for the extraction of antimicrobial compounds against the test organisms used in this study. Findings of this research will add new knowledge in advancing drug discovery and development in the Philippines.
Epigenetic Regulation of the Sex Determination Gene MeGI in Polyploid Persimmon[OPEN
Kawai, Takashi; Tao, Ryutaro
2016-01-01
Epigenetic regulation can add a flexible layer to genetic variation, potentially enabling long-term but reversible cis-regulatory changes to an allele while maintaining its DNA sequence. Here, we present a case in which alternative epigenetic states lead to reversible sex determination in the hexaploid persimmon Diospyros kaki. Previously, we elucidated the molecular mechanism of sex determination in diploid persimmon and demonstrated the action of a Y-encoded sex determinant pseudogene called OGI, which produces small RNAs targeting the autosomal gene MeGI, resulting in separate male and female individuals (dioecy). We contrast these findings with the discovery, in hexaploid persimmon, of an additional layer of regulation in the form of DNA methylation of the MeGI promoter associated with the production of both male and female flowers in genetically male trees. Consistent with this model, developing male buds exhibited higher methylation levels across the MeGI promoter than developing female flowers from either monoecious or female trees. Additionally, a DNA methylation inhibitor induced developing male buds to form feminized flowers. Concurrently, in Y-chromosome-carrying trees, the expression of OGI is silenced by the presence of a SINE (short interspersed nuclear element)-like insertion in the OGI promoter. Our findings provide an example of an adaptive scenario involving epigenetic plasticity. PMID:27956470
Karuppanan, Muthupillai; Krishnan, Manigandan; Padarthi, Pavankumar; Namasivayam, Elangovan
2014-01-01
To explore the antioxidant and hepatoprotective effect of ethanolic Mangifera indica (EMI) and methanolic Mangifera indica (MMI) leaf extracts in mercuric chloride (HgCl 2 ) induced toxicity in Swiss albino mice. Toxicity in mice was induced with HgCl 2 (5.0 mg/kg, i.p.), followed by oral intervention with EMI and MMI extracts (25 mg and 50 mg/kg. body wt.) for 30 days. The extent of liver damage was assessed from the extents of histopathological, morphological, antioxidant and liver enzymes. Mercuric chloride-induced mice showed an increased cellular damage whereas leaf extracts of EMI and MMI-treated mice showed recovery of damaged hepatocytes. Mercuric chloride intoxicated mice exhibited a significant (p < 0.05) elevation in the liver enzymes (Aspartate amino transferase and Alanine amino transferase) and gradual decline in the cellular radical scavenging enzyme levels (Catalase, Glutathione-s-transferase and Glutathione peroxidase. The combined treatment with EMI and MMI leaf extracts significantly (p < 0.05) reversed these parameters. However, the effects of MMI leaf extract (50 mg/kg) were superior to those of EMI- treated mice possibly due to its potent radical scavenging property. These results suggest that oral supplementation of Mangifera indica extract remarkably reduces hepatotoxicity in mice possibly through its antioxidant potentials. How to cite this article: Karuppanan M, Krishnan M, Padarthi P, Namasivayam E. Hepatoprotec-tive and Antioxidant Effect of Mangifera Indica Leaf Extracts against Mercuric Chloride-induced Liver Toxicity in Mice. Euroasian J Hepato-Gastroenterol 2014;4(1):18-24.
Pasupuleti, Visweswara Rao; Prasad, TNVKV; Shiekh, Rayees Ahmad; Balam, Satheesh Krishna; Narasimhulu, Ganapathi; Reddy, Cirandur Suresh; Rahman, Ismail Ab; Gan, Siew Hua
2013-01-01
Nanotechnology is gaining momentum due to its ability to transform metals into nanoparticles. The synthesis, characterization, and applications of biologically synthesized nanomaterials have become an important branch of nanotechnology. Plant extracts are a cost-effective, ecologically friendly, and efficient alternative for the large-scale synthesis of nanoparticles. In this study, silver nanoparticles (AgNps) were synthesized using Rhinacanthus nasutus leaf extract. After exposing the silver ions to the leaf extract, the rapid reduction of silver ions led to the formation of AgNps in solution. The synthesis was confirmed by ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy. The in vitro antimicrobial activity of the AgNps synthesized using R. nasutus leaf extract was investigated against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumonia, Escherichia coli, Aspergillus niger, and Aspergillus flavus using a disc diffusion method. The AgNps showed potential activity against all of the bacterial strains and fungal colonies, indicating that R. nasutus has the potential to be used in the development of value-added products in the biomedical and nanotechnology-based industries. PMID:24039419
Pasupuleti, Visweswara Rao; Prasad, T N V; Shiekh, Rayees Ahmad; Balam, Satheesh Krishna; Narasimhulu, Ganapathi; Reddy, Cirandur Suresh; Ab Rahman, Ismail; Gan, Siew Hua
2013-01-01
Nanotechnology is gaining momentum due to its ability to transform metals into nanoparticles. The synthesis, characterization, and applications of biologically synthesized nanomaterials have become an important branch of nanotechnology. Plant extracts are a cost-effective, ecologically friendly, and efficient alternative for the large-scale synthesis of nanoparticles. In this study, silver nanoparticles (AgNps) were synthesized using Rhinacanthus nasutus leaf extract. After exposing the silver ions to the leaf extract, the rapid reduction of silver ions led to the formation of AgNps in solution. The synthesis was confirmed by ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy. The in vitro antimicrobial activity of the AgNps synthesized using R. nasutus leaf extract was investigated against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumonia, Escherichia coli, Aspergillus niger, and Aspergillus flavus using a disc diffusion method. The AgNps showed potential activity against all of the bacterial strains and fungal colonies, indicating that R. nasutus has the potential to be used in the development of value-added products in the biomedical and nanotechnology-based industries.
Ahmed, Hanaa H; El-Abhar, Hanan S; Hassanin, Elsayed Abdul Khalik; Abdelkader, Noha F; Shalaby, Mohamed B
2017-11-01
In Egypt, colorectal cancer (CRC) is the 6th cancer in both gender and CRC rates are high in subjects under 40 years of age. This study goaled to determine the development of CRC using relevant biochemical markers and to elucidate the potent mechanism of Ginkgo biloba L. leaf extract in retrogression of experimental CRC. Adult male Sprague-Dawley rats were administered N-methylnitrosourea (N-MNU; 2mg in 0.5ml water/rat) intrarectally thrice a week for five weeks to induce CRC, followed by treatment with either 5-fluorouracil (5-FU; 12.5mg/kg, i.p.) or Ginkgo biloba L. leaf extract in a dose of 0.675 and 1.35g/kg, p.o. respectively. The developed tumor enhanced plasma TGF-β, and Bcl 2 , serum EGF, CEA, CCSA, and MMP-7 significantly. Also, gene expression analysis showed significant upregulation of colonic β-Catenin, K-ras and C-myc genes. Besides, immunohistochemical findings revealed significant increase in COX-2, cyclin D1 and survivin content in colon tissue. These data were further supported by the histological observations. Ginkgo biloba L. leaf extract-treated rats; particularly those treated with dose of 1.35g/kg, exhibited significant reduction in the aforementioned parameters and improvement in the histological organization of the colon tissue. The therapeutic effect of Ginkgo biloba L. leaf extract was comparable with that mediated by 5-FU. The current research proved that Ginkgo biloba L. leaf extract could suppress tumor cell proliferation, promote apoptosis, and mitigat inflammation in vivo. The amelioration of these key events might be linked with the inhibition of Wnt/β-Catenin signaling module. The outcomes of the present investigation encourage the use of Ginkgo biloba L. leaf extract as a complementary and alternative therapeutic approach to abate CRC. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Effect of Methanolic Leaf Extract of Ocimum basilicum L. on Benzene-Induced Hematotoxicity in Mice
Saha, S.; Mukhopadhyay, M. K.; Ghosh, P. D.; Nath, D.
2012-01-01
The aim of the present study was to investigate the protective role of methanolic leaf extract of Ocimum basilicum L. against benzene-induced hematotoxicity in Swiss albino mice. GC analysis and subacute toxicity level of the extract were tested. Mice were randomly divided into three groups among which II and III were exposed to benzene vapour at a dose 300 ppm × 6 hr/day × 5 days/week for 2 weeks and group I was control. Group III of this experiment was treated with the leaf methanolic extract at a dose of 100 mg/kg body weight, a dose in nontoxic range. Hematological parameters (Hb%, RBC and WBC counts), cell cycle regulatory proteins expression and DNA fragmentation analysis of bone marrow cells was performed. There was an upregulation of p53 and p21 and downregulation of levels of CDK2, CDK4, CDK6, and cyclins D1 and E in leaf extract-treated group. DNA was less fragmented in group III compared to group II (P < 0.05). The present study indicates that the secondary metabolites of O. basilicum L. methanolic leaf extract, comprising essential oil monoterpene geraniol and its oxidized form citral as major constituents, have modulatory effect in cell cycle deregulation and hematological abnormalities induced by benzene in mice. PMID:22988471
Antiproliferative and phytochemical analyses of leaf extracts of ten Apocynaceae species
Wong, Siu Kuin; Lim, Yau Yan; Abdullah, Noor Rain; Nordin, Fariza Juliana
2011-01-01
Background: The anticancer properties of Apocynaceae species are well known in barks and roots but less so in leaves. Materials and Methods: In this study, leaf extracts of 10 Apocynaceae species were assessed for antiproliferative (APF) activities using the sulforhodamine B assay. Their extracts were also analyzed for total alkaloid content (TAC), total phenolic content (TPC), and radical scavenging activity (RSA) using the Dragendorff precipitation, Folin–Ciocalteu, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays, respectively. Results: Leaf extracts of Alstonia angustiloba, Calotropis gigantea, Catharanthus roseus, Nerium oleander, Plumeria obtusa, and Vallaris glabra displayed positive APF activities. Extracts of Allamanda cathartica, Cerbera odollam, Dyera costulata, and Kopsia fruticosa did not show any APF activity. Dichloromethane (DCM) extract of C. gigantea, and DCM and DCM:MeOH extracts of V. glabra showed strong APF activities against all six human cancer cell lines. Against breast cancer cells of MCF-7 and MDA-MB-231, DCM extracts of C. gigantea and N. oleander were stronger than or comparable to standard drugs of xanthorrhizol, curcumin, and tamoxifen. All four extracts of N. oleander were effective against MCF-7 cells. Extracts of Kopsia fruticosa had the highest TAC while those of Dyera costulata had the highest TPC and RSA. Extracts of C. gigantea and V. glabra inhibited the growth of all six cancer cell lines while all extracts of N. oleander were effective against MCF-7 cells. Conclusion: Extracts of C. gigantea, V. glabra, and N. oleander therefore showed great promise as potential candidates for anticancer drugs. The wide-spectrum APF activities of these three species are reported for the first time and their bioactive compounds warrant further investigation. PMID:21772753
Zorić, Nataša; Kopjar, Nevenka; Kraljić, Klara; Oršolić, Nada; Tomić, Siniša; Kosalec, Ivan
2016-09-01
Olive leaf extract is characterized by a high content of polyphenols (oleuropein, hydroxytyrosol and their derivatives), which is associated with its therapeutic properties. The objective of the present research was to evaluate the antifungal activity of olive leaf extract against Candida albicans ATCC 10231 and C. dubliniensis CBS 7987 strains. Minimum inhibitory concentrations (MIC) of the extract were determined by several in vitro assays. The extract showed a concentration depended effect on the viability of C. albicans with MIC value of 46.875 mg mL-1 and C. dubliniensis with MIC value 62.5 mg mL-1. Most sensitive methods for testing the antifungal effect of the extracts were the trypan blue exclusion method and fluorescent dye exclusion method while MIC could not be determined by the method according to the EUCAST recommendation suggesting that herbal preparations contain compounds that may interfere with this susceptibility testing. The fluorescent dye exclusion method was also used for the assessment of morphological changes in the nuclei of treated cells. According to the obtained results, olive leaf extract is less effective against the tested strains than hydroxytyrosol, an olive plant constituent tested in our previous study.
Investigation of Some Metals in Leaves and Leaf Extracts of Lippia javanica: Its Daily Intake
Florence, Kunsamala
2017-01-01
Consumption of plant extracts can be a source of essential elements or a route of human exposure to toxicants. Metal concentrations in leaves, leaf brew, and infusion of L. javanica collected from five sites were determined by atomic absorption spectrometry after acid and aqueous extraction. Estimated daily intakes of metals in extracts were compared with recommended dietary allowances. Total metal concentrations in leaves varied with sampling sites (p < 0.05): Mn > Fe > Cu > Cr > Pb for sites SS2–SS5. The highest metal concentrations in leaves were recorded for SS3 (Cu: 15.32 ± 4.53 and Mn: 734.99 ± 105.49), SS5 (Fe: 210.27 ± 17.17), SS2 (Pb: 3.11 ± 0.21), and SS4 (Cr: 4.40 ± 0.75 mg/kg). Leaf infusion appeared to release higher Cu and Mn concentrations in leaves across sites (Cu: 21.65; Mn: 28.01%) than leaf brew (Cu: 11.95; Mn: 19.74%). Lead was not detected in leaf extracts. Estimated dietary intakes of Cr, Cu, Fe, and Mn were below recommended dietary allowances. A 250 ml cup of leaf infusion contributed 0.30–1.18% Cu and 4.46–13.83% Mn to the recommended dietary allowances of these elements per day. Lead did not pose any potential hazard when consumed in tea beverage made from brew and infusion of leaves of L. javanica. PMID:28781598
Evaluation of anti-inflammatory potential of leaf extracts of Skimmia anquetilia
Kumar, Vijender; Bhat, Zulfiqar Ali; Kumar, Dinesh; Khan, NA; Chashoo, IA
2012-01-01
Objective To evaluate anti-inflammatory potential of leaf extract of Skimmia anquetilia by in-vitro and in-vivo anti-inflammatory models. Methods Acute toxicity study was carried out to determine the toxicity level of different extract using acute toxic class method as described in Organization of Economic Co-operation and Development Guidelines No.423. Carrageenan (1% w/w) was administered and inflammation was induced in rat paw. The leaf extracts of Skimmia anquetilia were evaluated for anti-inflammatory activity by in-vitro human red blood cell (HRBC) membrane stabilization method and in-vivo carrangeenan-induced rat paw edema method. Results The in-vitro membrane stabilizing test showed petroleum ether (PE), chloroform (CE), ethyl acetate (EE), methanol (ME) and aqueous extracts (AE) showed 49.44%, 59.39%, 60.15%, 68.40% and 52.18 % protection, respectively as compared to control groups. The in-vivo results of CE, EE and ME showed 58.20%, 60.17% and 67.53% inhibition of inflammation after 6h administration of test drugs in albino rats. The potency of the leaf extracts of Skimmia anquetilia were compared with standard diclofenac (10 mg/kg) which showed 74.18% protection in in-vitro HRBC membrane stabilization test and 71.64% inhibition in in-vivo carrangeenan-induced rat paw edema model. The ME showed a dose dependent significant (P< 0.01) anti-inflammatory activity in human red blood cell membrane stabilization test and reduction of edema in carrageenan induced rat paw edema. Conclusions The present investigation has confirmed the anti-inflammatory activity of Skimmia anquetilia due to presence of bioactive phytoconstitutes for the first time and provide the pharmacological evidence in favor of traditional claim of Skimmia anquetilia as an anti- inflammatory agent. PMID:23569983
Kujawska, Małgorzata; Ewertowska, Małgorzata; Adamska, Teresa; Ignatowicz, Ewa; Flaczyk, Ewa; Przeor, Monika; Kurpik, Monika; Liebert, Jadwiga Jodynis
The leaves of white mulberry (Morus alba L.) contain various polyphenolic compounds possessing strong antioxidant activity and anticancer potential. This study was designed to investigate the chemopreventive effect of aqueous extract of mulberry leaves against N-nitrosodiethylamine (NDEA)-induced liver carcinogenesis. Wistar rats were divided into four groups: control, mulberry extract-treated, NDEA-treated, and mulberry extract plus NDEA-treated. Mulberry extract was given in the diet (1,000 mg/kg b.w./day); NDEA was given in drinking water. Mulberry extract reduced the incidence of hepatocellular carcinoma, dysplastic nodules, lipid peroxidation, protein carbonyl formation, and DNA degradation. Treatment with mulberry leaf extract along with NDEA challenge did not affect the activity of antioxidant enzymes and glutathione content. Treatment with mulberry leaf extract partially protected the livers of rats from NDEA-induced hepatocarcinogenesis and a direct antioxidant mechanism appears to contribute to its anticarcinogenic activity. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Liu, Yihua; Li, Shiliang; Ni, Zhanglin; Qu, Minghua; Zhong, Donglian; Ye, Caifen; Tang, Fubin
2016-01-15
Extreme and uncontrolled usage of pesticides produces a number of problems for vegetation and human health. In this study, the existence of organophosphates (OPs), organochlorines (OCs), pyrethroids (PYs) and fungicides (FUs) were investigated in persimmons/jujubes and their planted soils, which were collected from China. One OP (dimethoate), three OCs (DDT, quintozene and aldrin), six PYs (bifenthrin, fenpropathrin, cyhalothrin, cypermethrin, fenvalerate and deltamethrin) and two FUs (triadimefon and buprofezin) were found in 36.4% of persimmons and 70.8% of jujubes, with concentrations from 1.0 μg/kg to 2945.0 μg/kg. The most frequently detected pesticides in the two fruits were fenpropathrin in persimmons and cypermethrin in jujubes, with the detection frequencies of 30.0% and 22.7%, respectively. The residues of 4.5% (persimmon) and 25.0% (jujube) of samples were higher than the maximum residue limits (MRLs) of China. Compared with the fruits, more types of pesticides and higher residues were observed in their planted soils. The most frequently detected pesticides were HCH in persimmon soil and DDT in jujube soil, with the detection frequencies of 10.9% and 12.7%, respectively. For the tested samples, 39.1% of fruit samples and 63.0% of soil samples with multiple residues (containing more than two pesticides) were noted, even up to 8 residues in fruits and 14 residues in soils. Except for cyhalothrin, the other short-term risks for the tested pesticides in the fruits were below 10%, and the highest long-term risk was 14.13% for aldrin and dieldrin. There was no significant health risk for consumers via consumption of the two fruits. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ishak, Muhamad Safwan; Sahid, Ismail
2014-09-01
A laboratory experiment was conducted to study the allelopathic effects of the aqueous extract of the leaf and seed of Leucaena leucocephala. The aqueous extracts were individually tested on three selected weed species, namely goatweed (Ageratum conyzoides), coat buttons (Tridax procumbens) and lilac tasselflower (Emilia sonchifolia). The allelopathic effects of the leaf and seed extracts on germination, shoot length, root length and fresh weight of each of the selected weed species were determined. Germination of goatweed, coat buttons and lilac tasselflower were inhibited by the aqueous extracts of both the leaf and seed of L. leucocephala and was concentration dependent. Different concentrations of the aqueous extracts showed various germination patterns on the selected weeds species. Seedling length and fresh weight of goatweed, coat buttons and lilac tasselflower were reduced in response to respective increasing concentrations of the seed extracts. Maximum inhibition by the aqueous seed extract was observed more on the root rather than the shoot growth. The aqueous seed extract at T3 concentration reduced root length of goatweed, coat buttons and lilac tasselflower by 95%, 86% and 91% (of the control) respectively. The aqueous seed extract showed greater inhibitory effects than that of the aqueous leaf extract.
Karuppanan, Muthupillai; Krishnan, Manigandan; Padarthi, Pavankumar
2014-01-01
ABSTRACT Background To explore the antioxidant and hepatoprotective effect of ethanolic Mangifera indica (EMI) and methanolic Mangifera indica (MMI) leaf extracts in mercuric chloride (HgCl2) induced toxicity in Swiss albino mice. Materials and methods Toxicity in mice was induced with HgCl2 (5.0 mg/kg, i.p.), followed by oral intervention with EMI and MMI extracts (25 mg and 50 mg/kg. body wt.) for 30 days. Results and discussion The extent of liver damage was assessed from the extents of histopathological, morphological, antioxidant and liver enzymes. Mercuric chloride-induced mice showed an increased cellular damage whereas leaf extracts of EMI and MMI-treated mice showed recovery of damaged hepatocytes. Mercuric chloride intoxicated mice exhibited a significant (p < 0.05) elevation in the liver enzymes (Aspartate amino transferase and Alanine amino transferase) and gradual decline in the cellular radical scavenging enzyme levels (Catalase, Glutathione-s-transferase and Glutathione peroxidase. The combined treatment with EMI and MMI leaf extracts significantly (p < 0.05) reversed these parameters. However, the effects of MMI leaf extract (50 mg/kg) were superior to those of EMI- treated mice possibly due to its potent radical scavenging property. These results suggest that oral supplementation of Mangifera indica extract remarkably reduces hepatotoxicity in mice possibly through its antioxidant potentials. How to cite this article: Karuppanan M, Krishnan M, Padarthi P, Namasivayam E. Hepatoprotec-tive and Antioxidant Effect of Mangifera Indica Leaf Extracts against Mercuric Chloride-induced Liver Toxicity in Mice. Euroasian J Hepato-Gastroenterol 2014;4(1):18-24. PMID:29264314
Zhang, Zhuhong; Chen, Si; Mei, Hu; Xuan, Jiekun; Guo, Xiaoqing; Couch, Letha; Dobrovolsky, Vasily N; Guo, Lei; Mei, Nan
2015-09-30
Ginkgo biloba leaf extract has been shown to increase the incidence in liver tumors in mice in a 2-year bioassay conducted by the National Toxicology Program. In this study, the DNA damaging effects of Ginkgo biloba leaf extract and many of its constituents were evaluated in human hepatic HepG2 cells and the underlying mechanism was determined. A molecular docking study revealed that quercetin, a flavonoid constituent of Ginkgo biloba, showed a higher potential to interact with topoisomerase II (Topo II) than did the other Ginkgo biloba constituents; this in silico prediction was confirmed by using a biochemical assay to study Topo II enzyme inhibition. Moreover, as measured by the Comet assay and the induction of γ-H2A.X, quercetin, followed by keampferol and isorhamnetin, appeared to be the most potent DNA damage inducer in HepG2 cells. In Topo II knockdown cells, DNA damage triggered by Ginkgo biloba leaf extract or quercetin was dramatically decreased, indicating that DNA damage is directly associated with Topo II. DNA damage was also observed when cells were treated with commercially available Ginkgo biloba extract product. Our findings suggest that Ginkgo biloba leaf extract- and quercetin-induced in vitro genotoxicity may be the result of Topo II inhibition.
Zhang, Zhuhong; Chen, Si; Mei, Hu; Xuan, Jiekun; Guo, Xiaoqing; Couch, Letha; Dobrovolsky, Vasily N.; Guo, Lei; Mei, Nan
2015-01-01
Ginkgo biloba leaf extract has been shown to increase the incidence in liver tumors in mice in a 2-year bioassay conducted by the National Toxicology Program. In this study, the DNA damaging effects of Ginkgo biloba leaf extract and many of its constituents were evaluated in human hepatic HepG2 cells and the underlying mechanism was determined. A molecular docking study revealed that quercetin, a flavonoid constituent of Ginkgo biloba, showed a higher potential to interact with topoisomerase II (Topo II) than did the other Ginkgo biloba constituents; this in silico prediction was confirmed by using a biochemical assay to study Topo II enzyme inhibition. Moreover, as measured by the Comet assay and the induction of γ-H2A.X, quercetin, followed by keampferol and isorhamnetin, appeared to be the most potent DNA damage inducer in HepG2 cells. In Topo II knockdown cells, DNA damage triggered by Ginkgo biloba leaf extract or quercetin was dramatically decreased, indicating that DNA damage is directly associated with Topo II. DNA damage was also observed when cells were treated with commercially available Ginkgo biloba extract product. Our findings suggest that Ginkgo biloba leaf extract- and quercetin-induced in vitro genotoxicity may be the result of Topo II inhibition. PMID:26419945
Price, Charles A; Symonova, Olga; Mileyko, Yuriy; Hilley, Troy; Weitz, Joshua S
2011-01-01
Interest in the structure and function of physical biological networks has spurred the development of a number of theoretical models that predict optimal network structures across a broad array of taxonomic groups, from mammals to plants. In many cases, direct tests of predicted network structure are impossible given the lack of suitable empirical methods to quantify physical network geometry with sufficient scope and resolution. There is a long history of empirical methods to quantify the network structure of plants, from roots, to xylem networks in shoots and within leaves. However, with few exceptions, current methods emphasize the analysis of portions of, rather than entire networks. Here, we introduce the Leaf Extraction and Analysis Framework Graphical User Interface (LEAF GUI), a user-assisted software tool that facilitates improved empirical understanding of leaf network structure. LEAF GUI takes images of leaves where veins have been enhanced relative to the background, and following a series of interactive thresholding and cleaning steps, returns a suite of statistics and information on the structure of leaf venation networks and areoles. Metrics include the dimensions, position, and connectivity of all network veins, and the dimensions, shape, and position of the areoles they surround. Available for free download, the LEAF GUI software promises to facilitate improved understanding of the adaptive and ecological significance of leaf vein network structure.
Acute and sub-chronic toxicity of Cajanus cajan leaf extracts.
Tang, Rong; Tian, Ru-Hua; Cai, Jia-Zhong; Wu, Jun-Hui; Shen, Xiao-Ling; Hu, Ying-Jie
2017-12-01
The leaves of Cajanus cajan (L.) Millsp. (Fabaceae) have diverse bioactivities, but little safety data are reported. This study examines the toxicological profiles of C. cajan leaf extracts. The leaves were extracted by water or 90% ethanol to obtain water or ethanol extract (WEC or EEC). EEC was suspended in water and successively fractionated into dichloroform and n-butanol extracts (DEC and BEC). Marker compounds of the extracts were monitored by high-performance liquid chromatography (HPLC). Kunming mice were administered with a single maximum acceptable oral dose (15.0 g/kg for WEC, EEC and BEC and 11.3 g/kg for DEC) to determine death rate or maximal tolerated doses (MTDs). In sub-chronic toxicity investigation, Sprague-Dawley rats were orally given WEC or EEC at 1.5, 3.0 or 6.0 g/kg doses for four weeks and observed for two weeks after dosing to determine toxicological symptoms, histopathology, biochemistry and haematology. Flavonoids and stilbenes in the extracts were assayed. In acute toxicity test, no mortality and noted alterations in weight and behavioural abnormality were observed, and the maximum oral doses were estimated as MTDs. In sub-chronic toxicity study, no mortality and significant variances in haematological and biochemical parameters or organ histopathology were observed, but increased kidney weight in 3.0 g/kg WEC- or 3.0 and 6.0 g/kg EEC-treated female rats, and reduced testes and epididymis weight in EEC-treated male rats were recorded. These changes returned to the level of control after recovery period. Acute and sub-chronic toxicity of Cajanus cajan leaf extracts was not observed.
Wasabi leaf extracts attenuate adipocyte hypertrophy through PPARγ and AMPK.
Oowatari, Yasuo; Ogawa, Tetsuro; Katsube, Takuya; Iinuma, Kiyohisa; Yoshitomi, Hisae; Gao, Ming
2016-08-01
Hypertrophy of adipocytes in obese adipose tissues causes metabolic abnormality by adipocytokine dysregulation, which promotes type 2 diabetes mellitus, hypertension, and dyslipidemia. We investigated the effects of wasabi (Wasabia japonica Matsum) leaf extracts on metabolic abnormalities in SHRSP.Z-Leprfa/IzmDmcr rats (SHRSP/ZF), which are a model of metabolic syndrome. Male SHRSP/ZF rats aged 7 weeks were divided into two groups: control and wasabi leaf extract (WLE) groups, which received water or oral treatment with 4 g/kg/day WLE for 6 weeks. WLE improved the body weight gain and high blood pressure in SHRSP/ZF rats, and the plasma triglyceride levels were significantly lower in the WLE group. Adipocyte hypertrophy was markedly prevented in adipose tissue. The expression of PPARγ and subsequent downstream genes was suppressed in the WLE group adipose tissues. Our data suggest that WLE inhibits adipose hypertrophy by suppressing PPARγ expression in adipose tissue and stimulating the AMPK activity by increased adiponectin.
Retnani, Y; Dan, T M Wardiny; Taryati
2014-04-01
The objective of this study was to apply effect of Morinda citrifolia L. citrifolia L. leaf extract as antibacterial of Salmonella typhimurium on mortality of Day Old Quail (DOQ), egg production and Hen day, hatchability of layer quail. This research was conducted at Laboratory of microbiology and laboratory of poultry nutrition, faculty of animal science, bogor agricultural university and slamet quail farms cilangkap, sukabumi, west java, Indonesia on March-July 2012. Two hundred and forty heads of quail were randomly assigned to four dietary treatments (sixty heads of quail/treatment). Experimental design used was Completely Randomized Design (CRD). The treatments consist of level of biscuit Morinda citrifolia L. Citrifolia L. leaf extract i.e R1 = 0%, R2 = 5%, R3 = 10%, R4 = 15%. The results indicated the treatments had significant effect (p < 0.05) on mortality of Day Old Quail (DOQ). The average mortality of Day Old Quail (DOQ) was given extract Morinda citrifolia L. leaf were R1 (4.00%), R2 (1.00%), R3 (1.33%), R4 (0.67%). The average mortality of Day Old Quail (DOQ) was given 15% extract Morinda citrifolia L. leaf (R4) was lowest than control treatment (R1). The results of the analysis indicated that Morinda citrifolia L. leaf of quail drink had not significant effect (p > 0.05) on egg production, hen day and hatchability. It was concluded that the Morinda citrifolia L. leaf extract 15% can reduce mortality of Day Old Quail (DOQ) and can increase its egg production, hen day and hatchability.
Helmy, Shahinaz A; Morsy, Nashwa F S; Elaby, Shahenda M; Ghaly, Mohammed A A
2017-08-01
The leaves of Moringa oleifera Lam possess some potential medicinal value. The aim of this study was to evaluate the protective effect of M. oleifera leaf powder and its extract against hyperlipidemia in rats. Adult male albino rats were divided into six groups. The first group was fed on a basal diet that served as a negative control, whereas the others were fed on a high-fat diet (HFD) containing moringa leaf powder at 0.737% or 1.475% or administered daily with 200 or 400 mg dry moringa leaf extract/kg bw for 60 days. A positive control group was fed on the HFD. Serum indices related to lipid profile, oxidative status, and liver function were analyzed. Feeding rats on an HFD containing moringa leaf powder at 0.737% or an oral dose of its dry extract at 400 mg/kg bw alleviated the harmful elevation of cholesterol, triglycerides, low-density lipoprotein cholesterol, malondialdehyde, and the activities of alanine aminotransferase and aspartate aminotransferase in serum that were induced by the HFD. This is the first study demonstrating the hypocholesterolemic effect of M. oleifera leaf powder.
2013-01-01
Background Hydrochloric acid is used in oil-well acidizing commonly for improving the crude oil production of the low-permeable reservoirs, while it is a great challenge for the metal instruments involved in the acidification. Developing natural products as oilfield chemicals is a straight way to find less expensive, green and eco-friendly materials. The great plant resources in Qin-ling and Ba-shan Mountain Area of Shannxi Province enable the investigating of new green oil field chemicals. Diospyros Kaki L.f (persimmon), a famous fruit tree is widely planted in Qin-ling and Ba-shan Mountain Area of Shaanxi Province. It has been found that the crude persimmon extracts are complex mixtures containing vitamins, p-coumaric acid, gallic acid, catechin, flavonoids, carotenoids and condensed tannin and so on, which indicates the extracts of persimmon husk suitable to be used as green and eco-friendly corrosion inhibitors. Findings Extracts of persimmon husk were investigated, by using weight loss and potentiodynamic polarisation techniques, as green and eco-friendly corrosion inhibitors of Q235A steel in 1M HCl. The inhibition efficiency of the extracts varied with extract concentration from 10 to 1,000 mg/L. There are some synergistic effects between the extracts and KI, KSCN and HMTA. Potentiodynamic polarization studies indicate that extracts are mixed-type inhibitors. Besides, the extracts were screened for antibacterial activity against oil field microorganisms, and they showed good to moderate activity against SRB, IB and TGB. Conclusions The inhibition efficiency of the extracts varied with extract concentration from 10 to 1,000 mg/L, and the highest reaches to 65.1% with the con concentration of 1,000 mg/L WE. KI, KSCN and HMTA they can enhance the IE of WE effectively to 97.3% at most, but not effective for KI and KSCN to AE. Tafel polarisation measurements indicate the extracts behave as mixed type inhibitor. Investigation of the antibacterial activity against
Michael, J Savarimuthu; Kalirajan, A; Padmalatha, C; Singh, A J A Ranjit
2013-09-01
To investigate the in vitro antioxidant activity and total phenolic content of the methanolic leaf extract of Nyctanthes arbor-tristis L. (NA). The sample was tested using five in vitro antioxidant methods (1, 1-diphenyl-2-picryl hydrazine radical scavenging activity (DPPH), hydroxyl radical-scavenging activity (-OH), nitric oxide scavenging activity (NO), superoxide radical-scavenging activity, and total antioxidant activity) to evaluate the in vitro antioxidant potential of NA and the total phenolic content (Folin-Ciocalteu method). The extract showed good free radical scavenging property which was calculated as an IC50 value. IC50 (Half maximal inhibitory concentration) of the methanolic extract was found to be 57.93 μg·mL(-1) for DPPH, 98.61 μg·mL(-1) for -OH, 91.74 μg·mL(-1) for NO, and 196.07 μg·mL(-1) for superoxide radical scavenging activity. Total antioxidant capacity of the extract was found to be (1198 ± 24.05) mg ascorbic acid for the methanolic extract. Free radical scavenging activity observed in the extracts of NA showed a concentration-dependent reaction. The in vitro scavenging tested for free radicals was reported to be due to high phenolic content in the leaf extract. The leaf extract of NA showed the highest total phenolic content with a value of 78.48 ± 4.2 equivalent mg TAE/g (tannic acid equivalent). N. arbor-tristis leaf extract exhibited potent free radical scavenging activity. The finding suggests that N. arbor-tristis leaves could be a potential source of natural antioxidant. Copyright © 2013 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
Gasmalla, Mohammed Abdalbasit A; Yang, Ruijin; Hua, Xiao
2015-09-01
Optimization of steviol glycosides extraction from Stevia rebaudiana Bertoni leaf was carried out by investigating the effects of isopropyl alcohol concentration (60 %, v/v), time (6-24 min), temperature (30 °C) and sonic power (300-480 W) on extraction of rebaudioside A from Stevia rebaudiana leaves and decolorization of the extract by polymer (Separan AP30 and Resin ADS-7). The results showed that isopropyl alcohol was suitable for the extraction of rebaudioside A from Stevia rebaudiana leaves and the yield of rebaudioside A achieved 35.61 g/100 g when the output power was 360 W and treatment time was 18 min. The sonication had influence on the particle size of stevia leaf and the color of the extracted solution. As the sonication intensity increased, the particle size decreased. The colour of differently treated stevia solutions were significantly different (P < 0.05). Separan AP30 and adsorption resin ADS-7 were performed to remove the colour impurity. The results showed that more than 65 % of the coloured impurity was removed by Separan AP30 combined with Calcium oxide (CaO).
Synthesis of silver nanoparticles using A. indicum leaf extract and their antibacterial activity.
Ashokkumar, S; Ravi, S; Kathiravan, V; Velmurugan, S
2015-01-05
Green synthesis of silver nanoparticles has been achieved using environmentally acceptable plant extract. It is observed that Abutilon indicum leaf extract can reduce silver ions into silver nanoparticles within 15 min of reaction time. The formation and stability of the reduced silver nanoparticles in the colloidal solution were monitored by UV-Vis spectrophotometer analysis. The mean particle diameter of silver nanoparticles was calculated from the XRD pattern. FT-IR spectra of the leaf extract after the development of nanoparticles are determined to allow identification of possible functional groups responsible for the conversion of metal ions to metal nanoparticles. The AgNPs thus obtained showed highly potent antibacterial activity toward Gram-positive (Staphyloccocus aureus and Bacillus subtilis) and Gram-negative (Salmonella typhi and Escherichia coli) microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.
Ramkumar, Govindaraju; Karthi, Sengodan; Muthusamy, Ranganathan; Suganya, Ponnusamy; Natarajan, Devarajan; Kweka, Eliningaya J.; Shivakumar, Muthugounder S.
2016-01-01
Background The resistance status of malaria vectors to different classes of insecticides used for public health has raised concern for vector control programmes. Alternative compounds to supplement the existing tools are important to be searched to overcome the existing resistance and persistence of pesticides in vectors and the environment respectively. The mosquitocidal effects of Glycosmis pentaphylla using different solvents of acetone, methanol, chloroform and ethyl acetate extracts against three medically important mosquito vectors was conducted. Methods Glycosmis pentaphylla plant leaves were collected from Kolli Hills, India. The WHO test procedures for larval and adult bioassays were used to evaluate extracts against mosquito vectors, and the chemical composition of extracts identified using GC-MS analysis. Results The larvicidal and adulticidal activity of G. pentaphylla plant extracts clearly impacted the three species of major mosquitoes vectors. Acetone extracts had the highest larvicidal effect against An. stephensi, Cx. quinquefasciatus and Ae. aegypti with the LC50 and LC90 values of 0.0004, 138.54; 0.2669, 73.7413 and 0.0585, 303.746 mg/ml, respectively. The LC50 and LC90 adulticide values of G. pentaphylla leaf extracts in acetone, methanol, chloroform and ethyl acetate, solvents were as follows for Cx. quinquefasciatus, An. stephensi and Ae. Aegypti: 2.957, 5.458, 2.708, and 4.777, 3.449, 6.676 mg/ml respectively. The chemical composition of G. pentaphylla leaf extract has been found in 20 active compounds. Conclusions The plant leaf extracts of G. pentaphylla bioactive molecules which are effective and can be developed as an eco-friendly approach for larvicides and adulticidal mosquitoes vector control. Detailed identification and characterization of mosquitocidal effect of individual bioactive molecules ingredient may result into biodegradable effective tools for the control of mosquito vectors. PMID:27391146
Ramkumar, Govindaraju; Karthi, Sengodan; Muthusamy, Ranganathan; Suganya, Ponnusamy; Natarajan, Devarajan; Kweka, Eliningaya J; Shivakumar, Muthugounder S
2016-01-01
The resistance status of malaria vectors to different classes of insecticides used for public health has raised concern for vector control programmes. Alternative compounds to supplement the existing tools are important to be searched to overcome the existing resistance and persistence of pesticides in vectors and the environment respectively. The mosquitocidal effects of Glycosmis pentaphylla using different solvents of acetone, methanol, chloroform and ethyl acetate extracts against three medically important mosquito vectors was conducted. Glycosmis pentaphylla plant leaves were collected from Kolli Hills, India. The WHO test procedures for larval and adult bioassays were used to evaluate extracts against mosquito vectors, and the chemical composition of extracts identified using GC-MS analysis. The larvicidal and adulticidal activity of G. pentaphylla plant extracts clearly impacted the three species of major mosquitoes vectors. Acetone extracts had the highest larvicidal effect against An. stephensi, Cx. quinquefasciatus and Ae. aegypti with the LC50 and LC90 values of 0.0004, 138.54; 0.2669, 73.7413 and 0.0585, 303.746 mg/ml, respectively. The LC50 and LC90 adulticide values of G. pentaphylla leaf extracts in acetone, methanol, chloroform and ethyl acetate, solvents were as follows for Cx. quinquefasciatus, An. stephensi and Ae. Aegypti: 2.957, 5.458, 2.708, and 4.777, 3.449, 6.676 mg/ml respectively. The chemical composition of G. pentaphylla leaf extract has been found in 20 active compounds. The plant leaf extracts of G. pentaphylla bioactive molecules which are effective and can be developed as an eco-friendly approach for larvicides and adulticidal mosquitoes vector control. Detailed identification and characterization of mosquitocidal effect of individual bioactive molecules ingredient may result into biodegradable effective tools for the control of mosquito vectors.
Wang, Ning; Wu, Xiaolin; Ku, Lixia; Chen, Yanhui; Wang, Wei
2016-01-01
Leaf morphology is closely related to the growth and development of maize (Zea mays L.) plants and final kernel production. As an important part of the maize leaf, the midrib holds leaf blades in the aerial position for maximum sunlight capture. Leaf midribs of adult plants contain substantial sclerenchyma cells with heavily thickened and lignified secondary walls and have a high amount of phenolics, making protein extraction and proteome analysis difficult in leaf midrib tissue. In the present study, three protein-extraction methods that are commonly used in plant proteomics, i.e., phenol extraction, TCA/acetone extraction, and TCA/acetone/phenol extraction, were qualitatively and quantitatively evaluated based on 2DE maps and MS/MS analysis using the midribs of the 10th newly expanded leaves of maize plants. Microscopy revealed the existence of substantial amounts of sclerenchyma underneath maize midrib epidermises (particularly abaxial epidermises). The spot-number order obtained via 2DE mapping was as follows: phenol extraction (655) > TCA/acetone extraction (589) > TCA/acetone/phenol extraction (545). MS/MS analysis identified a total of 17 spots that exhibited 2-fold changes in abundance among the three methods (using phenol extraction as a control). Sixteen of the proteins identified were hydrophilic, with GRAVY values ranging from -0.026 to -0.487. For all three methods, we were able to obtain high-quality protein samples and good 2DE maps for the maize leaf midrib. However, phenol extraction produced a better 2DE map with greater resolution between spots, and TCA/acetone extraction produced higher protein yields. Thus, this paper includes a discussion regarding the possible reasons for differential protein extraction among the three methods. This study provides useful information that can be used to select suitable protein extraction methods for the proteome analysis of recalcitrant plant tissues that are rich in sclerenchyma cells.
Yokoi, Michinori; Shimoda, Mitsuya
2017-03-01
A low-density polyethylene (LDPE) membrane pouch method was developed to extract volatile flavor compounds from tobacco leaf. Tobacco leaf suspended in water was enclosed in a pouch prepared from a LDPE membrane of specific gravity 0.92 g/cm3 and 0.03 mm thickness and then extracted with diethyl ether. In comparison with direct solvent extraction, LDPE membrane excluded larger and higher boiling point compounds which could contaminate a gas chromatograph inlet and damage a column. Whilst being more convenient than a reduced-pressure steam distillation, it could extract volatile flavor compounds of wide range of molecular weight and polarity. Repeatabilities in the extracted amounts were ranged from 0.38% of 2.3-bipyridyl to 26% of β-ionone, and average value of 39 compounds was 5.9%. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Antidiarrhoeal and antimicrobial activity of Calpurnia aurea leaf extract.
Umer, Shemsu; Tekewe, Alemu; Kebede, Nigatu
2013-01-28
In Ethiopia, Calpurnia aurea is used for the treatment of syphilis, malaria, rabies, diabetes, hypertension, diarrhoea, leishmaniasis, trachoma, elephantiasis, fungal diseases and different swellings. However, despite its traditional usage as an antidiarrhoeal and antimicrobial agent, there is limited or no information regarding its effectiveness and mode of action in diarrhoea which may be caused by Shigella flexneri, Staphylococcus aureus, Escherichia coli and Salmonella typhi. Hence, we evaluated the 80% methanol (MeOH) extract of dried and powdered leaves of C. aurea for its antidiarrhoeal and antimicrobial activities. Swiss albino mice of either sex were divided into five groups (five/group): Group I served as control and received vehicle (1% Tween 80) at a dose of 10 ml/kg orally; Group II served as standard and received loperamide at the dose of 3 mg/kg orally; Groups III, IV and V served as test groups and received the 80% MeOH leaf extract of C. aurea at doses of 100, 200 and 400 mg/kg orally, respectively. Diarrhoea was induced by oral administration of 0.5 ml castor oil to each mouse, 1 h after the above treatments. During an observation period of 4 h, time of onset of diarrhea, total number of faecal output (frequency of defecation) and weight of faeces excreted by the animals were recorded. Data were analyzed using one way analysis of variance followed by Tukey post test. Antimicrobial activity test was conducted using agar well diffusion assay. Clinical isolates tested were Salmonella typhi, Salmonella paratyphi, Salmonella typhimurium, Shigella species, Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. In castor oil induced diarrhea model, the 80% methanol leaf extract of C. aurea at 100, 200 and 400 mg/kg and the standard drug loperamide (3 mg/kg) significantly reduced the time of onset of diarrhea, the frequency of defecation (total number of faecal output) and weight of faeces. C. aurea leaf extract also showed good antimicrobial
Antidiarrhoeal and antimicrobial activity of Calpurnia aurea leaf extract
2013-01-01
Background In Ethiopia, Calpurnia aurea is used for the treatment of syphilis, malaria, rabies, diabetes, hypertension, diarrhoea, leishmaniasis, trachoma, elephantiasis, fungal diseases and different swellings. However, despite its traditional usage as an antidiarrhoeal and antimicrobial agent, there is limited or no information regarding its effectiveness and mode of action in diarrhoea which may be caused by Shigella flexneri, Staphylococcus aureus, Escherichia coli and Salmonella typhi. Hence, we evaluated the 80% methanol (MeOH) extract of dried and powdered leaves of C. aurea for its antidiarrhoeal and antimicrobial activities. Methods Swiss albino mice of either sex were divided into five groups (five/group): Group I served as control and received vehicle (1% Tween 80) at a dose of 10 ml/kg orally; Group II served as standard and received loperamide at the dose of 3 mg/kg orally; Groups III, IV and V served as test groups and received the 80% MeOH leaf extract of C. aurea at doses of 100, 200 and 400 mg/kg orally, respectively. Diarrhoea was induced by oral administration of 0.5 ml castor oil to each mouse, 1 h after the above treatments. During an observation period of 4 h, time of onset of diarrhea, total number of faecal output (frequency of defecation) and weight of faeces excreted by the animals were recorded. Data were analyzed using one way analysis of variance followed by Tukey post test. Antimicrobial activity test was conducted using agar well diffusion assay. Clinical isolates tested were Salmonella typhi, Salmonella paratyphi, Salmonella typhimurium, Shigella species, Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. Results In castor oil induced diarrhea model, the 80% methanol leaf extract of C. aurea at 100, 200 and 400 mg/kg and the standard drug loperamide (3 mg/kg) significantly reduced the time of onset of diarrhea, the frequency of defecation (total number of faecal output) and weight of faeces. C. aurea leaf extract
Singh, S K; Yadav, R P; Singh, A
2010-11-01
The leaf and bark of Thevetia peruviana (Family: Apocynaceae) plant was administered for 24 h to the freshwater fish Catla catla (Hamilton) to evaluate their piscicidal activity in laboratory and cemented pond condition. The LC0 values of lef and bark extracts of different solvents (i.e., acetone, diethyl ether, ethyl alcohol, chloroform and carbon tetrachloride) of this plant to fish Catla catla were determined. The LC50 values of acetone leaf extract of Thevetia peruviana plant is 88.80 mg/L (24h) in laboratory condition and 529.38 mg/L (24h) in cemented pond condition; acetone bark extract of this plant is 99.43 mg/L (24h) in laboratory condition and 591.78 mg/L (24h) in cemented pond condition against freshwater fish Catla catla. Similar trend was also observed in case of other solvent (i.e., diethyl ether, ethyl alcohol, chloroform and carbon tetrachloride) of leaf and bark extracts of Thevetia peruviana plant against freshwater fish Catla catla in laboratory and cemented pond conditions. The acetone leaf and bark extract of this plant was very effective in comparison to other solvent extract in both the conditions. So, the biochemical analysis is taken only acetone leaf and bark extract of Thevetia peruviana plant in laboratory condition. Exposure of sub-lethal doses (40% and 80% of LC,) of acetone leaf and bark extract of this plant over 24 h caused significant (P < 0.05) alterations in total protein, free amino acids, DNA & RNA, protease and acid and alkaline phosphatase activity in muscle, liver and gonadal tissues of fish Catla catla in laboratory condition.
USDA-ARS?s Scientific Manuscript database
Persimmons are an orange flesh fruit produced in temperate climates throughout the world. Varieties within the commercially most important species (Diospyros kaki) are divided into three astringency types- non-astringent, astringent, and pollination variant. In the U.S., California is the largest ...
Ashokkumar, S; Ravi, S; Kathiravan, V; Velmurugan, S
2014-01-01
Biomediated silver nanoparticles were synthesized with the aid of an eco-friendly biomaterial, namely, aqueous Tribulus terrestris extract. Silver nanoparticles were synthesized using a rapid, single step, and completely green biosynthetic method employing aqueous T. terrestris leaf extracts as both the reducing and capping agent. Silver ions were rapidly reduced by aqueous T. terrestris leaf extracts, leading to the formation of highly crystalline silver nanoparticles. An attempt has been made and formation of the silver nanoparticles was verified by surface plasmon spectra using an UV-vis (Ultra violet), spectrophotometer. Morphology and crystalline structure of the prepared silver nanoparticles were characterized by TEM (Transmission Electron Microscope) and XRD (X-ray Diffraction), techniques, respectively. FT-IR (Fourier Transform Infrared), analysis suggests that the obtained silver nanoparticles might be stabilized through the interactions of carboxylic groups, carbonyl groups and the flavonoids present in the T. terrestris extract. Copyright © 2013 Elsevier B.V. All rights reserved.
Zou, Bo; Ge, Zhenzhen; Zhu, Wei; Xu, Ze; Li, Chunmei
2015-12-01
Currently, obesity has become a worldwide health problem. Adipocyte differentiation is closely associated with the onset of obesity. Our previous studies suggested that persimmon tannin might be a potent anti-adipogenic dietary bioactive compound. However, the mechanism of persimmon tannin on adipocyte differentiation is still unknown. The purpose of this study was to investigate the effect of persimmon tannin on adipogenic differentiation in 3T3-L1 preadipocytes and the underlying mechanisms. Adipogenic differentiation was induced by cocktail in the presence or absence of persimmon tannin. Intracellular lipid accumulation was determined by Oil red O staining and enzymatic colorimetric methods. Gene expression and protein levels were measured by real time RT-PCR and Western blot. Persimmon tannin inhibited intracellular lipid accumulation markedly, and the inhibitory effect was largely limited to the early stage of adipocyte differentiation. Persimmon tannin suppressed the expression of C/EBPα and peroxisome proliferator-activated receptor-γ (PPARγ), significantly. Furthermore, genes related to lipogenesis, such as sterol regulatory element-binding protein 1, were down-regulated by persimmon tannin. In addition, adipocyte fatty acid binding protein (aP2), which is a target gene of PPARγ, was suppressed by persimmon tannin notably. Correspondingly, the expression of miR-27a and miR-27b were up-regulated by persimmon tannin from Day 2 to Day 8 significantly. Persimmon tannin inhibited adipocyte differentiation through regulation of PPARγ, C/EBPα and miR-27 in early stage of adipogenesis.
NASA Astrophysics Data System (ADS)
Setyawati, I.; Wiratmini, N. I.; Narayani, I.
2018-03-01
This research examined the phytoestrogen potential of Calliandra calothyrsus leaf extract in prepubertal female rat (Rattus norvegicus). Sixty weaned female rats (21 days old) were divided into five groups i.e. control (K), negative control which was given 0.5% Na CMC suspension (KN) and treatment groups which were given with C. calothyrsus ethanolic leaf extract doses 25 mg/kg bw (P1), 50 mg/kg bw (P2) and 75 mg/kg bw (P3). The treatment suspension was administered 0.5 mL/rat/day by gavage for 28 days, started at the age of 21st days old. The rats were sacrificed and the blood samples were collected from 4 rats / group at the age of 28th, 42nd and 56th days old, each. The concentration of estrogen hormone levels were measured from blood serum by ELISA kit and were read at 450 nm wavelength with an ELISA Spectrophotometer. Data was analyzed statistically by General Linear Model with 95% of confidence. The result showed that rat’s body weight decreased significantly with the higher doses and the longer the treatment of C. calothyrsus leaf extract due to the anti-nutritive activity of calliandra tannins. The estrogen hormone level was significantly increased at the highest dose. The highest estrogen levels were found in the group of female rats which were given the exctract of 75 mg/kg bw until the age of 42nd days. This results showed that there was a phytoestrogen potential in the C. calothyrsus leaf extract.
Choi, Soo-Youn; Hwang, Joon-Ho; Park, Soo-Young; Jin, Yeong-Jun; Ko, Hee-Chul; Moon, Sang-Wook; Kim, Se-Jae
2008-08-01
The goal of this study was to elucidate the antiinflammatory activities of Psidium guajava L. (guava) leaf. To improve the functionality of guava leaf, it was fermented with Phellinus linteus mycelia, Lactobacillus plantarum and Saccharomyces cerevisiae. The ethanol extract from fermented guava leaf inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin E(2) (PGE(2)) production. Western blot analysis showed that fermented guava leaf extract decreased LPS-induced inducible nitric oxide synthase (iNOS) and the cyclooxygenase-2 (COX-2) protein level in RAW 264.7 cells. To investigate the mechanism involved, the study examined the effect of fermented guava leaf extract on LPS-induced nuclear factor-kappaB (NF-kappaB) activation. Fermented guava leaf extract significantly inhibited LPS-induced NF-kappaB transcriptional activity. Immunochemical analysis revealed that fermented guava leaf extract suppressed LPS-induced degradation of I-kappaBalpha. Taken together, the data indicate that fermented guava leaf extract is involved in the inhibition of iNOS and COX-2 via the down-regulation of NF-kappaB pathway, revealing a partial molecular basis for the antiinflammatory properties of fermented guava leaf extract.
Padma, P R; Amonkar, A J; Bhide, S V
1989-03-01
Epidemiological studies have implicated chewing tobacco alone to be more hazardous than chewing tobacco with betel quid. Experimental studies have shown that betel leaf is antimutagenic against standard mutagens like benzo[a]pyrene and dimethylbenz[a]anthracene. Since the tobacco-specific N-nitrosamines (TSNA) are the only carcinogens present in unburnt forms of tobacco, including chewing tobacco, we tested the effect of an extract of betel leaf against the mutagenicity of the two important TSNA, viz., N'-nitrosonornicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, using the Ames Salmonella/microsome assay with TA100 +S9 and the in vivo micronucleus test. In both the test systems it was observed that betel leaf extract suppressed the mutagenic effects of both the nitrosamines to a significant extent.
Hydroethanolic extract of Psidium guajava leaf for induced osteoarthritis using a guinea pig model.
Tanideh, N; Zare, Z; Jamshidzadeh, A; Lotfi, M; Azarpira, Negar; Sepehrimanesh, M; Koohi-Hosseinabadi, O
2017-01-01
We investigated the therapeutic effects of an extract of Psidium guajava (guava) leaf on experimentally induced osteoarthritis in guinea pig. The left knee of 30 male guinea pigs was anesthetized and the cranial cruciate ligament was severed. The animals were followed for 8 weeks until osteoarthritis was confirmed by radiography and histopathology. Animals were divided randomly into five groups; group 1, the ligament was severed and untreated; group 2, the ligament was severed and treated with piascledine, an extract of soybean and avocado; group 3, the ligament was severed and treated with 200 mg/kg hydroethanolic extract of guava; group 4, the ligament was severed and treated with 400 mg/kg hydroethanolic extract of guava; and group 5, control animals without surgery or extracts. Radiological and histopathological evaluations after 8 weeks showed reduced severity of osteoarthritis in the piascledine treatment group compared to group 1. The guava extract also reduce the severity of osteoarthritis compared to controls. Histopathological examination of treatment and control groups showed that treatment the guava extract improved lesions significantly. Hydroethanolic extracts of guava leaf appears to prevent osteoarthritis by inhibition of free radical formation in the knee joint.
Asante, Du-Bois; Effah-Yeboah, Emmanuel; Barnes, Precious; Abban, Heckel Amoabeng; Ameyaw, Elvis Ofori; Boampong, Johnson Nyarko; Ofori, Eric Gyamerah; Dadzie, Joseph Budu
2016-01-01
The young leaves of Vernonia amygdalina are often utilized as vegetable and for medicinal purpose compared to the old leaves. This study was designed to evaluate and compare the antidiabetic effects between ethanolic leaf extracts of old and young V. amygdalina on streptozotocin (STZ) induced diabetic rat for four weeks. Preliminary screening of both young and old ethanolic extracts revealed the presence of the same phytochemicals except flavonoids which was only present in the old V. amygdalina. Difference in antioxidant power between the young and old leaf extracts was statistically significant (p < 0.05). Both leaf extracts produced a significant (p < 0.05) antihyperglycaemic effect. Also results from treated rats revealed increasing effect in some haematological parameters. Similarly, the higher dose (300 mg/kg) of both extracts significantly (p < 0.05) reduced serum ALT, AST, and ALP levels as compared to the diabetic control rats. Results also showed significant (p < 0.05) decrease in LDL-C and VLDL-C in the extract-treated rats with a corresponding increase in HDL-C, as compared to the diabetic control rats. Moreover histopathological analysis revealed ameliorative effect of pathological insults induced by the STZ in the pancreas, liver, and spleen, most significantly the regeneration of the beta cells of the islets of Langerhans in treated rats. PMID:27294153
Reduction of hydrogen peroxide-induced erythrocyte damage by Carica papaya leaf extract.
Okoko, Tebekeme; Ere, Diepreye
2012-06-01
To investigate the in vitro antioxidant potential of Carica papaya (C. papaya) leaf extract and its effect on hydrogen peroxide-induced erythrocyte damage assessed by haemolysis and lipid peroxidation. Hydroxyl radical scavenging activities, hydrogen ion scavenging activity, metal chelating activity, and the ferrous ion reducing ability were assessed as antioxidant indices. In the other experiment, human erythrocytes were treated with hydrogen peroxide to induce erythrocyte damage. The extract (at various concentrations) was subsequently incubated with the erythrocytes and later analysed for haemolysis and lipid peroxidation as indices for erythrocyte damage. Preliminary investigation of the extract showed that the leaf possessed significant antioxidant and free radical scavenging abilities using in vitro models in a concentration dependent manner (P<0.05). The extract also reduced hydrogen peroxide induced erythrocyte haemolysis and lipid peroxidation significantly when compared with ascorbic acid (P<0.05). The IC50 values were 7.33 mg/mL and 1.58 mg/mL for inhibition of haemolysis and lipid peroxidation, respectively. In all cases, ascorbic acid (the reference antioxidant) possessed higher activity than the extract. The findings show that C. papaya leaves possess significant bioactive potential which is attributed to the phytochemicals which act in synergy. Thus, the leaves can be exploited for pharmaceutical and nutritional purposes.
Akagi, Takashi; Katayama-Ikegami, Ayako; Kobayashi, Shozo; Sato, Akihiko; Kono, Atsushi; Yonemori, Keizo
2012-01-01
Proanthocyanidins (PAs) are secondary metabolites that contribute to plant protection and crop quality. Persimmon (Diospyros kaki) has a unique characteristic of accumulating large amounts of PAs, particularly in its fruit. Normal astringent-type and mutant nonastringent-type fruits show different PA accumulation patterns depending on the seasonal expression patterns of DkMyb4, which is a Myb transcription factor (TF) regulating many PA pathway genes in persimmon. In this study, attempts were made to identify the factors involved in DkMyb4 expression and the resultant PA accumulation in persimmon fruit. Treatment with abscisic acid (ABA) and an ABA biosynthesis inhibitor resulted in differential changes in the expression patterns of DkMyb4 and PA biosynthesis in astringent-type and nonastringent-type fruits depending on the development stage. To obtain an ABA-signaling TF, we isolated a full-length basic leucine zipper (bZIP) TF, DkbZIP5, which is highly expressed in persimmon fruit. We also showed that ectopic DkbZIP5 overexpression in persimmon calluses induced the up-regulation of DkMyb4 and the resultant PA biosynthesis. In addition, a detailed molecular characterization using the electrophoretic mobility shift assay and transient reporter assay indicated that DkbZIP5 recognized ABA-responsive elements in the promoter region of DkMyb4 and acted as a direct regulator of DkMyb4 in an ABA-dependent manner. These results suggest that ABA signals may be involved in PA biosynthesis in persimmon fruit via DkMyb4 activation by DkbZIP5. PMID:22190340
Berkovich, Liron; Earon, Gideon; Ron, Ilan; Rimmon, Adam; Vexler, Akiva; Lev-Ari, Shahar
2013-08-19
Fewer than 6% patients with adenocarcinoma of the pancreas live up to five years after diagnosis. Chemotherapy is currently the standard treatment, however, these tumors often develop drug resistance over time. Agents for increasing the cytotoxic effects of chemotherapy or reducing the cancer cells' chemo-resistance to the drugs are required to improve treatment outcome. Nuclear factor kappa B (NF-kB), a pro-inflammatory transcription factor, reportedly plays a significant role in the resistance of pancreatic cancer cells to apoptosis-based chemotherapy. This study investigated the effect of aqueous Moringa Oleifera leaf extract on cultured human pancreatic cancer cells - Panc-1, p34, and COLO 357, and whether it can potentiates the effect of cisplatin chemotherapy on these cells. The effect of Moringa Oleifera leaf extract alone and in combination with cisplatin on the survival of cultured human pancreatic cancer cells was evaluated by XTT-based colorimetric assay. The distribution of Panc-1 cells in the cell cycle following treatment with Moringa leaf extract was evaluated by flow cytometry, and evaluations of protein levels were via immunoblotting. Data of cell survival following combined treatments were analyzed with Calcusyn software. Moringa Oleifera leaf extract inhibited the growth of all pancreatic cell lines tested. This effect was significant in all cells following exposure to ≥0.75 mg/ml of the extract. Exposure of Panc-1 cells to Moringa leaf extract induced an elevation in the sub-G1 cell population of the cell-cycle, and reduced the expression of p65, p-IkBα and IkBα proteins in crude cell extracts. Lastly, Moringa Oleifera leaf extract synergistically enhanced the cytotoxic effect of cisplatin on Panc-1 cells. Moringa Oleifera leaf extract inhibits the growth of pancreatic cancer cells, the cells NF-κB signaling pathway, and increases the efficacy of chemotherapy in human pancreatic cancer cells.
Ikpeme, E V; Ekaluo, U B; Kooffreh, M E; Udensi, O
2011-03-15
This study was aimed at qualitative evaluation of the ethanol seed, leaf and pulp extracts of C. papaya for bioactive compounds and also to investigate their effect on the haematology in male albino rats. A 3 x 4 factorial experimental layout using randomized complete design was adopted. Results show that the phytochemicals found in seed, leaf and pulp were almost the same but however, in varying proportions. Present result also revealed that there were significant effects (p < 0.05) of the extracts on the heamatology of the treated rats, which was blamed on the varying and different variants ofbioactive compounds found in the extracts they were administered with. Suggestively, C. papaya extracts could be used to enhance the production of selected blood parameters, taking issue of dosage into consideration.
Morinda citrifolia edible leaf extract enhanced immune response against lung cancer.
Lim, Swee-Ling; Goh, Yong-Meng; Noordin, M Mustapha; Rahman, Heshu S; Othman, Hemn H; Abu Bakar, Nurul Ain; Mohamed, Suhaila
2016-02-01
Lung cancer causes 1.4 million deaths annually. In the search for functional foods as complementary therapies against lung cancer, the immuno-stimulatory properties of the vegetable Morinda citrifolia leaves were investigated and compared with the anti-cancer drug erlotinib. Lung tumour-induced BALB/c mice were fed with 150 mg kg(-1) or 300 mg kg(-1) body weight of the leaf extract, or erlotinib (50 mg kg(-1) body-weight) for 21 days. The 300 mg kg(-1) body weight extract significantly (and dose-dependently) suppressed lung tumour growth; the extract worked more effectively than the 50 mg kg(-1) body weight erlotinib treatment. The extract significantly increased blood lymphocyte counts, and spleen tissue B cells, T cells and natural killer cells, and reduced the epidermal growth factor receptor (EGFR) which is a lung adenocarcinoma biomarker. The extract also suppressed the cyclooxygenase 2 (COX2) inflammatory markers, and enhanced the tumour suppressor gene (phosphatase and tensin homolog, PTEN). It inhibited tumour growth cellular gene (transformed mouse 3T3 cell double minute 2 (MDM2), V-raf-leukemia viral oncogene 1 (RAF1), and mechanistic target of rapamycin (MTOR)) mRNA expression in the tumours. The extract is rich in scopoletin and epicatechin, which are the main phenolic compounds. The 300 mg kg(-1)Morinda citrifolia leaf 50% ethanolic extract showed promising potential as a complementary therapeutic dietary supplement which was more effective than the 50 mg kg(-1) erlotinib in suppressing lung adenocarcinoma. Part of the mechanisms involved enhancing immune responses, suppressing proliferation and interfering with various tumour growth signalling pathways.
Barrajón-Catalán, Enrique; Taamalli, Amani; Quirantes-Piné, Rosa; Roldan-Segura, Cristina; Arráez-Román, David; Segura-Carretero, Antonio; Micol, Vicente; Zarrouk, Mokhtar
2015-02-01
A new differential metabolomic approach has been developed to identify the phenolic cellular metabolites derived from breast cancer cells treated with a supercritical fluid extracted (SFE) olive leaf extract. The SFE extract was previously shown to have significant antiproliferative activity relative to several other olive leaf extracts examined in the same model. Upon SFE extract incubation of JIMT-1 human breast cancer cells, major metabolites were identified by using HPLC coupled to electrospray ionization quadrupole-time-of-flight mass spectrometry (ESI-Q-TOF-MS). After treatment, diosmetin was the most abundant intracellular metabolite, and it was accompanied by minor quantities of apigenin and luteolin. To identify the putative antiproliferative mechanism, the major metabolites and the complete extract were assayed for cell cycle, MAPK and PI3K proliferation pathways modulation. Incubation with only luteolin showed a significant effect in cell survival. Luteolin induced apoptosis, whereas the whole olive leaf extract incubation led to a significant cell cycle arrest at the G1 phase. The antiproliferative activity of both pure luteolin and olive leaf extract was mediated by the inactivation of the MAPK-proliferation pathway at the extracellular signal-related kinase (ERK1/2). However, the flavone concentration of the olive leaf extract did not fully explain the strong antiproliferative activity of the extract. Therefore, the effects of other compounds in the extract, probably at the membrane level, must be considered. The potential synergistic effects of the extract also deserve further attention. Our differential metabolomics approach identified the putative intracellular metabolites from a botanical extract that have antiproliferative effects, and this metabolomics approach can be expanded to other herbal extracts or pharmacological complex mixtures. Copyright © 2014 Elsevier B.V. All rights reserved.
Elemike, Elias E; Fayemi, Omolola E; Ekennia, Anthony C; Onwudiwe, Damian C; Ebenso, Eno E
2017-04-29
Synthesis of metallic and semiconductor nanoparticles through physical and chemical routes has been extensively reported. However, green synthesized metal nanoparticles are currently in the limelight due to the simplicity, cost-effectiveness and eco-friendliness of their synthesis. This study explored the use of aqueous leaf extract of Costus afer in the synthesis of silver nanoparticles (CA-AgNPs). The optical and structural properties of the resulting silver nanoparticles were studied using UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infra-red spectrophotometer (FTIR). TEM images of the silver nanoparticles confirmed the existence of monodispersed spherical nanoparticles with a mean size of 20 nm. The FTIR spectra affirmed the presence of phytochemicals from the Costus afer leaf extract on the surface of the silver nanoparticles. The electrochemical characterization of a CA-AgNPs/multiwalled carbon nanotubes (MWCNT)-modified electrode was carried out to confirm the charge transfer properties of the nanocomposites. The comparative study showed that the CA-AgNPs/MWCNT-modified electrode demonstrated faster charge transport behaviour. The anodic current density of the electrodes in Fe(CN)₆] 4- /[Fe(CN)₆] 3- redox probe follows the order: GCE/CA-Ag/MWCNT (550 mA/cm²) > GCE/MWCNT (270 mA/cm²) > GCE (80 mA/cm²) > GCE/CA-Ag (7.93 mA/cm²). The silver nanoparticles were evaluated for their antibacterial properties against Gram negative ( Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa ) and Gram positive ( Bacillus subtilis and Staphylococcus aureus ) pathogens. The nanoparticles exhibited better inhibition of the bacterial strains compared to the precursors (leaf extract of Costus afer and silver nitrate). Furthermore, the ability of the nanoparticles to scavenge DPPH radicals at different concentrations was studied using the DPPH radical scavenging assay and compared to
A facile and green preparation of reduced graphene oxide using Eucalyptus leaf extract
NASA Astrophysics Data System (ADS)
Li, Chengyang; Zhuang, Zechao; Jin, Xiaoying; Chen, Zuliang
2017-11-01
In this paper, a green and facile synthesis of reduced graphene oxide (GO) by Eucalyptus leaf extract (EL-RGO) was investigated, which was characterized with ultraviolet-visible spectroscopy (UV), Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and Thermal gravimetric analysis (TG). Eucalyptus leaf extract also play both reducing and capping stabilizing agents prepared EL-RGO as shown a good stability and electrochemical properties. This approach could provide an alternative method to prepare EL-RGO in large-scale production. Moreover, the good electrochemical property and biocompatibility can be used in various applications. In addition, the merit of this study is that both the oxidized products and the reducing agents are environmental friendly by green reduction.
Bhide, S V; Padma, P R; Amonkar, A J
1991-01-01
Earlier studies showed that betel leaf inhibits the mutagenic action of standard mutagens like benzo[a]pyrene and dimethylbenz[a]anthracene. Since tobacco-specific nitrosamines are the major carcinogens present in unburnt forms of tobacco, we studied the effect of an extract of betel leaf on the mutagenic and carcinogenic actions of one of the most potent, 4-(N-nitrosomethylamino)-1-(3-pyridyl)-1-butanone (NNK). Betel-leaf extract and hydroxychavicol suppressed the mutagenicity of NNK in both the Ames and the micronucleus test. In studies in mice, betel-leaf extract reduced the tumorigenic effects of NNK by 25%. Concurrent treatment with the extract also inhibited the decreases in levels of vitamin A in liver and plasma induced by NNK. Betel leaf thus has protective effects against the mutagenic, carcinogenic and adverse metabolic effects of NNK in mice.
NASA Astrophysics Data System (ADS)
Warsi; Sholichah, A. R.
2017-11-01
Basil leaf (Ocimum basilicum L.) contains various compounds such as flavonoid, alkaloid, phenol and essential oil, so it needs to be fractionated to find out the flavonoid compound with the greatest potential as an antioxidant. This research was aimed to know the chemical compound, antioxidant potential of ethanolic extract and ethyl acetate fraction from basil leaf. The basil leaf was extracted by maceration using ethanol 70 %. The crude extract was fractionated with ethyl acetate. The ethanolic extract and ethyl acetate fraction were screened of phytochemical content including identification of flavonoids, alkaloids and polyphenolics. The antioxidant activity of the ethanolic extract and ethyl acetate fraction were tested qualitatively with 2,2-diphenyl-1-picrylhydrazyl (DPPH) and phosphomolybdate. Its antioxidant activity was determined quantitatively using DPPH radical scavenging method. Phytochemical screening test showed that ethanolic extract and ethyl acetate fraction from basil leaf contain flavonoids, polyphenolics, and alkaloids. The qualitative analysis of antioxidant activity of ethanolic extract and ethyl acetate fraction from basil leaf showed an antioxidant activity. The IC50 value of ethanolic extract, ethyl acetate fraction and quercetin were 1,374.00±6.20 389.00±1.00 2.10±0.01μg/mL, respectively. The research showed that antioxidant activity of the ethyl acetate fraction more potential than the ethanol extract of the basil leaf, but less than quercetin.
Heidarian, Esfandiar; Jafari-Dehkordi, Effat; Valipour, Parisa; Ghatreh-Samani, Keihan; Ashrafi-Eshkaftaki, Leila
2017-09-03
Gentamicin in overdose can lead to tubular injury and kidney dysfunction. Some antioxidants can protect kidneys against nephrotoxicity. This study was undertaken to evaluate the protective effects of Pistacia atlantica (P. atlantica) leaf hydroethanolic extract against gentamicin-induced nephrotoxicity in rats. Forty rats were divided into five groups: the first group received a daily intraperitoneal (i.p.) injection of normal saline. The second group received gentamicin (120 mg/kg, i.p.). The third, fourth, and fifth groups were orally treated with 200, 400, and 800 mg/kg of P. atlantica leaf hydroethanolic extract, respectively, and they also received gentamicin (120 mg/kg, i.p.). After seven days, serum malondialdehyde (MDA), creatinine (Cr), urea, uric acid, lipids profile, protein carbonyl (PC), and tumor necrosis factor-α (TNF-α) were determined. Also, a piece of kidney was used to determine catalase (CAT) and superoxide dismutase (SOD) activities, vitamin C, the gene expression of TNF-α, and for subsequent histopathological studies. Treatment with P. atlantica leaf hydroethanolic extract resulted in a significant increase (p < 0.05) in CAT, SOD, vitamin C, and high-density lipoprotein cholesterol, and significantly decreased (p < 0.05) the levels of Cr, urea, uric acid, MDA, PC, triglyceride, total cholesterol, low-density lipoprotein cholesterol, very low-density lipoprotein cholesterol, TNF-α protein, and the gene expression of TNF-α compared with the untreated group. Histopathological studies show that in lymphocyte infiltration, remarkable reduction was observed in P. atlantica leaf hydroethanolic extract-treated groups, compared with the untreated group. The present study suggests that P. atlantica leaf hydroethanolic extract has protective effects against gentamicin-induced nephrotoxicity.
Reduction of hydrogen peroxide-induced erythrocyte damage by Carica papaya leaf extract
Okoko, Tebekeme; Ere, Diepreye
2012-01-01
Objective To investigate the in vitro antioxidant potential of Carica papaya (C. papaya) leaf extract and its effect on hydrogen peroxide-induced erythrocyte damage assessed by haemolysis and lipid peroxidation. Methods Hydroxyl radical scavenging activities, hydrogen ion scavenging activity, metal chelating activity, and the ferrous ion reducing ability were assessed as antioxidant indices. In the other experiment, human erythrocytes were treated with hydrogen peroxide to induce erythrocyte damage. The extract (at various concentrations) was subsequently incubated with the erythrocytes and later analysed for haemolysis and lipid peroxidation as indices for erythrocyte damage. Results Preliminary investigation of the extract showed that the leaf possessed significant antioxidant and free radical scavenging abilities using in vitro models in a concentration dependent manner (P<0.05). The extract also reduced hydrogen peroxide induced erythrocyte haemolysis and lipid peroxidation significantly when compared with ascorbic acid (P<0.05). The IC50 values were 7.33 mg/mL and 1.58 mg/mL for inhibition of haemolysis and lipid peroxidation, respectively. In all cases, ascorbic acid (the reference antioxidant) possessed higher activity than the extract. Conclusions The findings show that C. papaya leaves possess significant bioactive potential which is attributed to the phytochemicals which act in synergy. Thus, the leaves can be exploited for pharmaceutical and nutritional purposes. PMID:23569948
NASA Astrophysics Data System (ADS)
Moodley, Jerushka S.; Babu Naidu Krishna, Suresh; Pillay, Karen; Sershen; Govender, Patrick
2018-03-01
In this study we report on the synthesis of silver nanoparticles (AgNPs) from the leaf extracts of Moringa oleifera using sunlight irradiation as primary source of energy, and its antimicrobial potential. Silver nanoparticle formation was confirmed by surface plasmon resonance at 450 nm and 440 nm, respectively for both fresh and freeze-dried leaf samples. Crystanality of AgNPs was confirmed by transmission electron microscopy, scanning electron microscopy with energy dispersive x-ray spectroscopy and Fourier transform infrared (FTIR) spectroscopy analysis. FTIR spectroscopic analysis suggested that flavones, terpenoids and polysaccharides predominate and are primarily responsible for the reduction and subsequent capping of AgNPs. X-ray diffraction analysis also demonstrated that the size range of AgNPs from both samples exhibited average diameters of 9 and 11 nm, respectively. Silver nanoparticles showed antimicrobial activity on both bacterial and fungal strains. The biosynthesised nanoparticle preparations from M. oleifera leaf extracts exhibit potential for application as broad-spectrum antimicrobial agents.
Effects of potato and lotus leaf extract intake on body composition and blood lipid concentration
Lee, Keuneil; Kim, Jongkyu; Lee, Namju; Park, Sok; Cho, Hyunchul; Chun, Yoonseok
2015-01-01
[Purpose] The purpose of this study was to investigate the effects of potato and lotus leaf extract intake on body composition, abdominal fat, and blood lipid concentration in female university students. [Methods] A total of 19 female university students participated in this 8-week study, and they were randomly assigned into 2 groups; potato and lotus leaf extract (skinny-line) administered group (SKG, n =9) and placebo group (PG, n = 10). The main results of the present study are presented below. [Results] 1) Body mass index, and percent body fat and abdominal fat in students of the SKG showed a decreasing tendency without significant interaction, 2) total cholesterol (TC), triglyceride (TG), and low density lipoprotein (LDL-C) in students of the SKG showed an averagely decreasing tendency and there was a significant interaction of TC only, 3) high density lipoprotein (HDL-C) in students of the SKG showed an increasing tendency without significant interaction, and 4) Z-score of fatness testing interaction in group × repetition did not show a significant interaction; however, there was a significant interaction of TC in group × repetition. Based on these results, 8-week intake of potato and lotus leaf extract had a positive effect of lowering TC. On the other hand, it had no significant effect on other types of lipids and percent body fat changes. [Conclusion] There was a positive tendency of blood lipids in students of the SKG and it seems that potato and lotus leaf extract intake might prevent obesity and improve obesity related syndromes. PMID:25960952
Effect of guava (Psidium guajava L.) leaf extract on glucose uptake in rat hepatocytes.
Cheng, Fang-Chi; Shen, Szu-Chuan; Wu, James Swi-Bea
2009-06-01
People in oriental countries, including Japan and Taiwan, boil guava leaves (Psidium guajava L.) in water and drink the extract as a folk medicine for diabetes. The present study investigated the enhancement of aqueous guava leaf extract on glucose uptake in rat clone 9 hepatocytes and searched for the active compound. The extract was eluted with MeOH-H(2)O solutions through Diaion, Sephadex, and MCI-gel columns to separate into fractions with different polarities. The uptake test of 2-[1-(14)C] deoxy-D-glucose in rat clone 9 hepatocytes was performed to evaluate the hypoglycemic effect of these fractions. The active compound was identified by nuclear magnetic resonance analysis and high-performance liquid chromatography (HPLC). The results revealed that phenolics are the principal component of the extract, that high polarity fractions of the guava leaf extract are enhancers to glucose uptake in rat clone 9 hepatocytes, and that quercetin is the major active compound. We suggest that quercetin in the aqueous extract of guava leaves promotes glucose uptake in liver cells, and contributes to the alleviation of hypoglycemia in diabetes as a consequence.
Biswas, Bipul; Rogers, Kimberly; McLaughlin, Fredrick; Yadav, Anand
2013-01-01
Aim. To determine the antimicrobial potential of guava (Psidium guajava) leaf extracts against two gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and two gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) which are some of foodborne and spoilage bacteria. The guava leaves were extracted in four different solvents of increasing polarities (hexane, methanol, ethanol, and water). The efficacy of these extracts was tested against those bacteria through a well-diffusion method employing 50 μL leaf-extract solution per well. According to the findings of the antibacterial assay, the methanol and ethanol extracts of the guava leaves showed inhibitory activity against gram-positive bacteria, whereas the gram-negative bacteria were resistant to all the solvent extracts. The methanol extract had an antibacterial activity with mean zones of inhibition of 8.27 and 12.3 mm, and the ethanol extract had a mean zone of inhibition of 6.11 and 11.0 mm against B. cereus and S. aureus, respectively. On the basis of the present finding, guava leaf-extract might be a good candidate in the search for a natural antimicrobial agent. This study provides scientific understanding to further determine the antimicrobial values and investigate other pharmacological properties. PMID:24223039
Panax ginseng Leaf Extracts Exert Anti-Obesity Effects in High-Fat Diet-Induced Obese Rats.
Lee, Seul-Gi; Lee, Yoon-Jeong; Jang, Myeong-Hwan; Kwon, Tae-Ryong; Nam, Ju-Ock
2017-09-10
Recent studies have reported that the aerial parts of ginseng contain various saponins, which have anti-oxidative, anti-inflammatory, and anti-obesity properties similar to those of ginseng root. However, the leaf extracts of Korean ginseng have not yet been investigated. In this study, we demonstrate the anti-obesity effects of green leaf and dried leaf extracts (GL and DL, respectively) of ginseng in high-fat diet (HFD)-induced obese rats. The administration of GL and DL to HFD-induced obese rats significantly decreased body weight (by 96.5% and 96.7%, respectively), and epididymal and abdominal adipose tissue mass. Furthermore, DL inhibited the adipogenesis of 3T3-L1 adipocytes through regulation of the expression of key adipogenic regulators, such as peroxisome proliferator-activated receptor (PPAR)-γ and CCAAT/enhancer-binding protein (C/EBP)-α. In contrast, GL had little effect on the adipogenesis of 3T3-L1 adipocytes but greatly increased the protein expression of PPARγ compared with that in untreated cells. These results were not consistent with an anti-obesity effect in the animal model, which suggested that the anti-obesity effect of GL in vivo resulted from specific factors released by other organs, or from increased energy expenditure. To our knowledge, these findings are the first evidence for the anti-obesity effects of the leaf extracts of Korean ginseng in vivo.
Zuhrotun Nisa, Fatma; Astuti, Mary; Murdiati, Agnes; Mubarika Haryana, Sofia
2017-01-01
Breast cancer is the most frequently diagnosed cancer in women. Chemotherapy is the main method of breast cancer treatment but there are side effects. Carica papaya leaves is vegetable foods consumed by most people of Indonesia have potential as anticancer. The aim of this study was to investigate anti-proliferative and apoptotic induced effect of aqueous papaya leaves extracts on human breast cancer cell lines MCF-7. Inhibitory on cell proliferation was measured by MTT assay while apoptosis induction was measured using Annexin V. The results showed that papaya leaf can inhibit the proliferation of human breast cancer cells MCF-7 with IC50 in 1319.25 μg mL-1. The IC50 values of papaya leaf extract was higher than the IC50 value quercetin and doxorubicin. Papaya leaf extract can also induce apoptosis of breast cancer cells MCF-7 about 22.54% for concentration 659.63 μg mL-1 and about 20.73% for concentration 329.81 μg mL-1. The percentage of cell apoptosis of papaya leaf extract lower than doxorubicin but higher than quercetin. This study indicated that papaya leaf extract have potential as anticancer through mechanism anti-proliferation and apoptosis induction.
Min, Ting; Fang, Fang; Ge, Hang; Shi, Yan-na; Luo, Zheng-rong; Yao, Yun-cong; Grierson, Donald; Yin, Xue-ren; Chen, Kun-song
2014-01-01
A hypoxic environment is generally undesirable for most plants and stimulates anaerobic metabolism. It is a beneficial treatment, however, for the removal of astringency from persimmon to improve the fruit quality after harvest. High soluble tannins (SCTs) content is one of most important causes of astringency. High CO2 (95%) treatment effectively reduced SCTs in both “Mopan” and “Gongcheng-shuishi” persimmon fruit by causing increases in acetaldehyde. Using RNA-seq and realtime PCR, twelve ethylene response factor genes (DkERF11-22) were isolated and characterized, to determine those responsive to high CO2 treatment. Only two genes, DkERF19 and DkERF22, showed trans-activation effects on the promoters of deastringency-related genes pyruvate decarboxylase genes (DkPDC2 and DkPDC3) and the transcript levels of these genes was enhanced by hypoxia. Moreover, DkERF19 and the previously isolated DkERF9 had additive effects on activating the DkPDC2 promoter. Taken together, these results provide further evidence that transcriptome changes in the level of DkERF mRNAs regulate deastringency-related genes and their role in the mechanism of persimmon fruit deastringency is discussed. PMID:24805136
2013-01-01
Background Fewer than 6% patients with adenocarcinoma of the pancreas live up to five years after diagnosis. Chemotherapy is currently the standard treatment, however, these tumors often develop drug resistance over time. Agents for increasing the cytotoxic effects of chemotherapy or reducing the cancer cells’ chemo-resistance to the drugs are required to improve treatment outcome. Nuclear factor kappa B (NF-kB), a pro-inflammatory transcription factor, reportedly plays a significant role in the resistance of pancreatic cancer cells to apoptosis-based chemotherapy. This study investigated the effect of aqueous Moringa Oleifera leaf extract on cultured human pancreatic cancer cells - Panc-1, p34, and COLO 357, and whether it can potentiates the effect of cisplatin chemotherapy on these cells. Methods The effect of Moringa Oleifera leaf extract alone and in combination with cisplatin on the survival of cultured human pancreatic cancer cells was evaluated by XTT-based colorimetric assay. The distribution of Panc-1 cells in the cell cycle following treatment with Moringa leaf extract was evaluated by flow cytometry, and evaluations of protein levels were via immunoblotting. Data of cell survival following combined treatments were analyzed with Calcusyn software. Results Moringa Oleifera leaf extract inhibited the growth of all pancreatic cell lines tested. This effect was significant in all cells following exposure to ≥0.75 mg/ml of the extract. Exposure of Panc-1 cells to Moringa leaf extract induced an elevation in the sub-G1 cell population of the cell-cycle, and reduced the expression of p65, p-IkBα and IkBα proteins in crude cell extracts. Lastly, Moringa Oleifera leaf extract synergistically enhanced the cytotoxic effect of cisplatin on Panc-1 cells. Conclusion Moringa Oleifera leaf extract inhibits the growth of pancreatic cancer cells, the cells NF-κB signaling pathway, and increases the efficacy of chemotherapy in human pancreatic cancer cells. PMID
Kulkarni, Paresh; Paul, Rajkumar; Ganesh, N
2010-07-01
Persea americana is much sought after both for the nutritional value of its fruit and the medicinal values of its various plant parts. A chromosomal aberration assay was undertaken to evaluate the potential genotoxicity of crude extracts from avocado fruits and leaves. Chromosomal aberrations were observed in cultured human peripheral lymphocytes exposed to separately increasing concentrations of 50% methanolic extracts of Persea americana fruit and leaves. The groups exposed to leaf and fruit extracts, respectively, showed a concentration-dependent increase in chromosomal aberrations as compared to that in a control group. The mean percentage total aberrant metaphases at 100 mg/kg, 200 mg/kg, and 300 mg/kg concentrations of leaf extract were found respectively to be 58 ± 7.05, 72 ± 6.41, and 78 ± 5.98, which were significantly higher (p < 0.0001 each) than that in the control group (6 ± 3.39). The mean percentage total aberrant metaphases at 100 mg/kg, 200 mg/kg, and 300 mg/kg concentrations of fruit extract were found to be 18 ± 5.49, 40 ± 10.00, and 52 ± 10.20, respectively, which were significantly higher (p = 0.033, p < 0.0001, and p < 0.0001, respectively) than that for control (6 ± 3.39). Acrocentric associations and premature centromeric separation were the two most common abnormalities observed in both the exposed groups. The group exposed to leaf extracts also showed a significant number of a variety of other structural aberrations, including breaks, fragments, dicentrics, terminal deletion, minutes, and Robertsonian translocations. The group exposed to leaf extract showed higher frequency of all types of aberrations at equal concentrations as compared to the group exposed to fruit extract.
Analgesic and Anti-Inflammatory Activities of Leaf Extract of Mallotus repandus (Willd.) Muell. Arg.
Hasan, Md. Mahadi; Uddin, Nizam; Hasan, Md. Rakib; Islam, A. F. M. Mahmudul; Hossain, Md. Monir; Rahman, Akib Bin; Hossain, Md. Sazzad; Chowdhury, Ishtiaque Ahmed; Rana, Md. Sohel
2014-01-01
In folk medicine Mallotus repandus (Willd.) Muell. Arg. is used to treat muscle pain, itching, fever, rheumatic arthritis, snake bite, hepatitis, and liver cirrhosis. This study aimed to evaluate the antinociceptive as well as the anti-inflammatory activities of the methanol extract of leaf. The leaves were extracted with methanol following hot extraction and tested for the presence of phytochemical constituents. Analgesic and anti-inflammatory activities were evaluated using acetic acid induced writhing test, xylene induced ear edema, cotton pellet induced granuloma, and tail immersion methods at doses of 500, 1000, and 2000 mg/kg body weight. The presence of flavonoids, saponins, and tannins was identified in the extract. The extract exhibited considerable antinociceptive and anti-inflammatory activities against four classical models of pain. In acetic acid induced writhing, xylene induced ear edema, and cotton pellet granuloma models, the extract revealed dose dependent activity. Additionally, it increased latency time in tail immersion model. It can be concluded that M. repandus possesses significant antinociceptive potential. These findings suggest that this plant can be used as a potential source of new antinociceptive and anti-inflammatory candidates. The activity of methanol extract is most likely mediated through central and peripheral inhibitory mechanisms. This study justified the traditional use of leaf part of this plant. PMID:25629031
Yuan, Jiao-Jiao; Wang, Cheng-Zhang; Ye, Jian-Zhong; Tao, Ran; Zhang, Yu-Si
2015-02-11
Oleuropein (OE), the main polyphenol in olive leaf extract, is likely to decompose into hydroxytyrosol (HT) and elenolic acid under the action of light, acid, base, high temperature. In the enzymatic process, the content of OE in olive leaf extract and enzyme are key factors that affect the yield of HT. A selective enzyme was screened from among 10 enzymes with a high OE degradation rate. A single factor (pH, temperature, time, enzyme quantity) optimization process and a Box-Behnken design were studied for the enzymatic hydrolysis of 81.04% OE olive leaf extract. Additionally, enzymatic hydrolysis results with different substrates (38.6% and 81.04% OE) were compared and the DPPH antioxidant properties were also evaluated. The result showed that the performance of hydrolysis treatments was best using hemicellulase as a bio-catalyst, and the high purity of OE in olive extract was beneficial to biotransform OE into HT. The optimal enzymatic conditions for achieving a maximal yield of HT content obtained by the regression were as follows: pH 5, temperature 55 °C and enzyme quantity 55 mg. The experimental result was 11.31% ± 0.15%, and the degradation rate of OE was 98.54%. From the present investigation of the antioxidant activity determined by the DPPH method, the phenol content and radical scavenging effect were both decreased after enzymatic hydrolysis by hemicellulase. However, a high antioxidant activity of the ethyl acetate extract enzymatic hydrolysate (IC50 = 41.82 μg/mL) was demonstated. The results presented in this work suggested that hemicellulase has promising and attractive properties for industrial production of HT, and indicated that HT might be a valuable biological component for use in pharmaceutical products and functional foods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Ashit; Mahajan, Ketakee; Bankar, Ashok
Highlights: ► Pomegranate leaf extracts mediated rapid gold nanoparticle (AuNP) synthesis. ► The phyto-inspired AuNPs were size-tuned and characterized. ► The reducing and capping agents in the extract were identified. ► The nanoparticles reacted specifically with arsenate (V) ions. - Abstract: When pomegranate leaf extracts were incubated with chloroauric acid (HAuCl{sub 4}), gold nanoparticles (AuNPs) were synthesized. These were characterized by a variety of techniques. With an increasing content of the leaf extract, a gradual decrease in size and an increase in monodispersity were observed. Transmission electron microscope (TEM) images showed that the phyto-fabricated AuNPs were surrounded by an amorphousmore » layer. Gallic acid in the extract mediated the reduction and a natural decapeptide capped the nanostructures. Blocking of thiol groups in the decapeptide cysteine residues caused the nanoparticles to aggregate. On interaction with arsenate (V) ions, the UV–vis spectra of the nanoparticles showed a decrease in intensity and a red-shift. Energy dispersive spectra confirmed the presence of arsenate associated with the AuNPs. Thus, by using these AuNPs, a method for sensing the toxic arsenate ions could be developed.« less
Gordanian, B.; Behbahani, M.; Carapetian, J.; Fazilati, M.
2014-01-01
The present study was carried out to investigate cytotoxic activity of flower, leaf, stem and root extracts of five Artemisia species against breast cancer cell line (MCF7) and human embryonic kidney normal cell line (HEK293). The studied Artemisia species were A. absinthium, A. vulgaris, A. incana, A. fragrans and A. spicigera. The cytotoxic activity was measured by MTT assay at different concentrations (62.5, 125, 250, 500 μg/ml). Among these five species, methanol extracts of flower, leaf, stem and root of A. absinthium and A. vulgaris exhibited considerable cytotoxic activity. The flower extracts of these two species were found to have higher cytotoxic effect on MCF7 cell with an IC50 value of 221.5 and >500 μg/ml, respectively. Leaf methanol extract of A. incana also showed cytotoxic activity. Cytotoxic activity of different extracts of A. absinthium, A. vulgaris and A. incana against MCF7 was 10%-40% more than HEK293 cells. Not only the extracts of A. spicigera and A. fragrans did not show any cytotoxic effect against both cell lines, but also increased the number of cells. This study revealed that A. absinthium and A. vulgaris may have a great potential to explore new anticancer drugs. PMID:25657777
Brighenti, Fernanda Lourenção; Gaetti-Jardim, Elerson; Danelon, Marcelle; Evangelista, Gustavo Vaz; Delbem, Alberto Carlos Botazzo
2012-08-01
Previous evaluations of Psidium cattleianum leaf extract were not done in conditions similar to the oral environment. The aim of this study was to evaluate the effect of P. cattleianum leaf extract on enamel demineralisation, extracellular polysaccharide formation, and the microbial composition of dental biofilms formed in situ. Ten volunteers took part in this crossover study. They wore palatal appliances containing 4 enamel blocks for 14 days. Each volunteer dripped 20% sucrose 8 times per day on the enamel blocks. Twice a day, deionised water (negative control), extract, or a commercial mouthwash (active control) was dripped after sucrose application. On the 12th and 13th days of the experiment, plaque acidogenicity was measured with a microelectrode, and the pH drop was calculated. On the 14th day, biofilms were harvested and total anaerobic microorganisms (TM), total streptococci (TS), mutans streptococci (MS), and extracellular polysaccharides (EPS) were evaluated. Enamel demineralisation was evaluated by the percentage change of surface microhardness (%ΔSMH) and integrated loss of subsurface hardness (ΔKHN). The researcher was blinded to the treatments during data collection. The extract group showed lower TM, TS, MS, EPS, %ΔSMH, and ΔKHN values than the negative control group. There were no differences between the active and negative control groups regarding MS and EPS levels. There were no differences in pH drop between the extract and active control groups, although they were significantly different from the negative control group. For all other parameters, the extract differed from the active control group. Psidium cattleianum leaf extract exhibits a potential anticariogenic effect. Copyright © 2012 Elsevier Ltd. All rights reserved.
Price, Charles A.; Symonova, Olga; Mileyko, Yuriy; Hilley, Troy; Weitz, Joshua S.
2011-01-01
Interest in the structure and function of physical biological networks has spurred the development of a number of theoretical models that predict optimal network structures across a broad array of taxonomic groups, from mammals to plants. In many cases, direct tests of predicted network structure are impossible given the lack of suitable empirical methods to quantify physical network geometry with sufficient scope and resolution. There is a long history of empirical methods to quantify the network structure of plants, from roots, to xylem networks in shoots and within leaves. However, with few exceptions, current methods emphasize the analysis of portions of, rather than entire networks. Here, we introduce the Leaf Extraction and Analysis Framework Graphical User Interface (LEAF GUI), a user-assisted software tool that facilitates improved empirical understanding of leaf network structure. LEAF GUI takes images of leaves where veins have been enhanced relative to the background, and following a series of interactive thresholding and cleaning steps, returns a suite of statistics and information on the structure of leaf venation networks and areoles. Metrics include the dimensions, position, and connectivity of all network veins, and the dimensions, shape, and position of the areoles they surround. Available for free download, the LEAF GUI software promises to facilitate improved understanding of the adaptive and ecological significance of leaf vein network structure. PMID:21057114
Antimicrobial potential of green synthesized CeO2 nanoparticles from Olea europaea leaf extract.
Maqbool, Qaisar; Nazar, Mudassar; Naz, Sania; Hussain, Talib; Jabeen, Nyla; Kausar, Rizwan; Anwaar, Sadaf; Abbas, Fazal; Jan, Tariq
This article reports the green fabrication of cerium oxide nanoparticles (CeO 2 NPs) using Olea europaea leaf extract and their applications as effective antimicrobial agents. O. europaea leaf extract functions as a chelating agent for reduction of cerium nitrate. The resulting CeO 2 NPs exhibit pure single-face cubic structure, which is examined by X-ray diffraction, with a uniform spherical shape and a mean size 24 nm observed through scanning electron microscopy and transmission electron microscopy. Ultraviolet-visible spectroscopy confirms the characteristic absorption peak of CeO 2 NPs at 315 nm. Fourier transform infrared spectroscopy reflects stretching frequencies at 459 cm -1 , showing utilization of natural components for the production of NPs. Thermal gravimetric analysis predicts the successful capping of CeO 2 NPs by bioactive molecules present in the plant extract. The antimicrobial studies show significant zone of inhibition against bacterial and fungal strains. The higher activities shown by the green synthesized NPs than the plant extract lead to the conclusion that they can be effectively used in biomedical application. Furthermore, reduction of cerium salt by plant extract will reduce environmental impact over chemical synthesis.
Antimicrobial potential of green synthesized CeO2 nanoparticles from Olea europaea leaf extract
Maqbool, Qaisar; Nazar, Mudassar; Naz, Sania; Hussain, Talib; Jabeen, Nyla; Kausar, Rizwan; Anwaar, Sadaf; Abbas, Fazal; Jan, Tariq
2016-01-01
This article reports the green fabrication of cerium oxide nanoparticles (CeO2 NPs) using Olea europaea leaf extract and their applications as effective antimicrobial agents. O. europaea leaf extract functions as a chelating agent for reduction of cerium nitrate. The resulting CeO2 NPs exhibit pure single-face cubic structure, which is examined by X-ray diffraction, with a uniform spherical shape and a mean size 24 nm observed through scanning electron microscopy and transmission electron microscopy. Ultraviolet-visible spectroscopy confirms the characteristic absorption peak of CeO2 NPs at 315 nm. Fourier transform infrared spectroscopy reflects stretching frequencies at 459 cm−1, showing utilization of natural components for the production of NPs. Thermal gravimetric analysis predicts the successful capping of CeO2 NPs by bioactive molecules present in the plant extract. The antimicrobial studies show significant zone of inhibition against bacterial and fungal strains. The higher activities shown by the green synthesized NPs than the plant extract lead to the conclusion that they can be effectively used in biomedical application. Furthermore, reduction of cerium salt by plant extract will reduce environmental impact over chemical synthesis. PMID:27785011
ANTI-INFLAMMATORY ACTIVITY OF EUCALYPTUS SPP. AND PISTASCIA LENTISCUS LEAF EXTRACTS.
Qabaha, Khaled; Ras, Sari Abu; Abbadi, Jehad; Al-Rimawi, Fuad
2016-01-01
Eucalyptus spp. and Pistascia lentiscus are among the Palestinian trees that are traditionally used in folkloric medicine in treating many diseases; leaves of which are thought to have anti-inflammatory, antibacterial and antioxidant effects. The goal of this study is to evaluate the in vitro inhibitory effect of Eucalyptus spp . and Pistascia lentiscus extracts on Lipopolysacaride (LPS)-induced Interlukin-6 (Il-6) and Tumor Necrosis Factor-α (TNF-α) by polymorphonuclear Cells (PMNCs). Polymorphonuclear cells were isolated from the whole blood using Histopaque (Ficol-1077) method and then cultured in an enriched Roswell Park Memorial Institute (RBMI) medium. Supernatants' Interlukin-6 (IL-6) and Tumor Necrosis Factor (TNF-α) levels were determined 24 hour after LPS stimulation. HPLC was employed to determine the concentration of phenolic compounds in the extracts. The concentrations of TNF-α and IL-6 were compared using paired-samples t test. Eucalyptus spp . and Pistascia lentiscus leaves extracts have shown significant reduction in the levels of both Il-6 and TNF-α Gallic acid; a strong anti-inflammatory agent was found to be the major phenolic compound in both leaf extracts. However, other anti-inflammatory phenolic compounds were detected in Pitascia lentiscus extract including syringic acid and p-coumaric acid, while chlorogenic acid was detected in Eucalyptus spp . leaf extract. Reduction in the levels of Il-6 and TNF-α upon the effect of both Eucalyptus spp . and Pistascia lentiscus extract is an indication of their anti-inflammatory effects. Our results may also indicate that the observed anti-inflammatory effect of the above extracts may be due to the presence of gallic acid and other phenolic compounds. List of Abbreviations and Nomenclature: LPS: Lipopolysacaride, Il-6: Interlukin-6, TNF-α: Tumor Necrosis Factor-α, PMNCs: Polymorphonuclear Cells, HPLC: High Performance Liquid Chromatography, ELISA: Enzyme Linked Immune Sorbent Assay, EDTA
ANTI-INFLAMMATORY ACTIVITY OF EUCALYPTUS SPP. AND PISTASCIA LENTISCUS LEAF EXTRACTS
Qabaha, Khaled; Ras, Sari Abu; Abbadi, Jehad; Al-Rimawi, Fuad
2016-01-01
Background: Eucalyptus spp. and Pistascia lentiscus are among the Palestinian trees that are traditionally used in folkloric medicine in treating many diseases; leaves of which are thought to have anti-inflammatory, antibacterial and antioxidant effects. The goal of this study is to evaluate the in vitro inhibitory effect of Eucalyptus spp. and Pistascia lentiscus extracts on Lipopolysacaride (LPS)-induced Interlukin-6 (Il-6) and Tumor Necrosis Factor-α (TNF-α) by polymorphonuclear Cells (PMNCs). Materials and Methods: Polymorphonuclear cells were isolated from the whole blood using Histopaque (Ficol-1077) method and then cultured in an enriched Roswell Park Memorial Institute (RBMI) medium. Supernatants’ Interlukin-6 (IL-6) and Tumor Necrosis Factor (TNF-α) levels were determined 24 hour after LPS stimulation. HPLC was employed to determine the concentration of phenolic compounds in the extracts. The concentrations of TNF-α and IL-6 were compared using paired-samples t test. Results: Eucalyptus spp. and Pistascia lentiscus leaves extracts have shown significant reduction in the levels of both Il-6 and TNF-α Gallic acid; a strong anti-inflammatory agent was found to be the major phenolic compound in both leaf extracts. However, other anti-inflammatory phenolic compounds were detected in Pitascia lentiscus extract including syringic acid and p-coumaric acid, while chlorogenic acid was detected in Eucalyptus spp. leaf extract. Conclusion: Reduction in the levels of Il-6 and TNF-α upon the effect of both Eucalyptus spp. and Pistascia lentiscus extract is an indication of their anti-inflammatory effects. Our results may also indicate that the observed anti-inflammatory effect of the above extracts may be due to the presence of gallic acid and other phenolic compounds. List of Abbreviations and Nomenclature: LPS: Lipopolysacaride, Il-6: Interlukin-6, TNF-α: Tumor Necrosis Factor-α, PMNCs: Polymorphonuclear Cells, HPLC: High Performance Liquid Chromatography
USDA-ARS?s Scientific Manuscript database
Sixty one persimmon (Diospyros kaki Thunb.) selections, including 17 Italian, 11 Spanish, 13 Japanese, six Korean, five Chinese, one Israeli, and eight of unknown origin, were evaluated for genetic differences by AFLP analysis. Relationships among cultivars were evaluated by UPGMA clustering, Neigh...
Formulation and evaluation of antihyperglycemic leaf extracts of Zizyphus spina-christi (L.) Willd.
Nesseem, D I; Michel, C G; Sleem, A A; El-Alfy, T S
2009-02-01
This study deals with the formulation of antihyperglycemic leaf extracts of Zizyphus spina-christi (L.) Willd. A bioactivity guided fractionation of different leaf extracts [defatted ethanol 70% (a), butanol (b), ethanol 70% (c), ethyl acetate (d) and petroleum ether (e) extracts] revealed that extract (c) possessed the highest antihyperglycemic activity followed by (b) and (a). HPLC was adopted for standardization of the extract (c) based on evaluation of the major saponin christinin-A which was used as marker. The detection limit was 9.45 mg/ml for Christinin-A. Extracts (a), (b) and (c) were separately formulated in soft (S) and hard (H) gelatin capsules. Two different formulations (F1 and F2) were tried using different excipients suitable for oral drug delivery. Formula 1, used for soft gelatin capsules [(F1) Sa, Sb, Sc] Formula 2, used for hard gelatin capsules [(F2) - Ha, Hb, Hc]. The recovery rates of the samples of saponin were in the range 99.43-101.86% at 200, 800 microg/ml and 1200 microg/ml. Saponin release rates from different formulae were carried out using dissolution tester USP XXIV. The highest release was obtained from formulation Sc. The release of the extracts followed diffusion mechanism. The selected formula Sc exhibited highest anti-diabetic activity (P < 0.01) on acute and long-term administration and highest saponin release. This formula (Sc) contained poly-oxyethylene (20) cetyl ether (BC-20TX), PEG 400, PEG 6000, purified water, meglyol 810, ascorbic acid and 200 mg of extract (c).
NASA Astrophysics Data System (ADS)
Majumdar, Rakhi; Bag, Braja Gopal; Maity, Nabasmita
2013-09-01
The leaf extract of Acacia nilotica (Babool) is rich in different types of plant secondary metabolites such as flavanoids, tannins, triterpenoids, saponines, etc. We have demonstrated the use of the leaf extract for the synthesis of gold nanoparticles in water at room temperature under very mild conditions. The synthesis of the gold nanoparticles was complete in several minutes, and no extra stabilizing or capping agents were necessary. The size of the nanoparticles could be controlled by varying the concentration of the leaf extract. The gold nanoparticles were characterized by HRTEM, surface plasmon resonance spectroscopy, and X-ray diffraction studies. The synthesized gold nanoparticles have been used as an efficient catalyst for the reduction of 4-nitrophenol to 4-aminophenol in water at room temperature.
Release Profile of Andrographis paniculata Leaf Extract Nanocapsule as α-Glucosidase Inhibitors
NASA Astrophysics Data System (ADS)
Zahrani, K.; Imansari, F.; Utami, T. S.; Arbianti, R.
2017-07-01
Andrographis paniculata is one of 13 leading commodities Indonesian medicinal plants through the Ditjen POM. Andrographolide as main active compound has been shown to have many pharmacological activities, one of which is as α-glucosidase enzyme inhibitors which has clinical potential as an antitumor, antiviral, antidiabetic, and immunoregulator agents. This study aims to do nanoencapsulation of Andrographis paniculatar leaf extract to increase its active compound bioavailability and get a release profile through synthetic fluids media simulation. Nanoencapsulation with ionic gelation method result the encapsulation efficiency and loading capacity values of 73.47% and 46.29% at 2%: 1% of chitosan: STPP ratio. The maximum α-glucosidase inhibition of 37.17% was obtained at 16% concentration. Burst release at gastric pH conditions indicate that most of the drug (in this study is an Andrographis paniculata leaf extract) adsorbed on the surface of the nanoparticles an indicates that the kind of nanoparticle formed is nanosphere.
Nguyen, Thao T; Parat, Marie-Odile; Hodson, Mark P; Pan, Jenny; Shaw, Paul N; Hewavitharana, Amitha K
2015-12-24
In traditional medicine, Carica papaya leaf has been used for a wide range of therapeutic applications including skin diseases and cancer. In this study, we investigated the in vitro cytotoxicity of aqueous and ethanolic extracts of Carica papaya leaves on the human oral squamous cell carcinoma SCC25 cell line in parallel with non-cancerous human keratinocyte HaCaT cells. Two out of four extracts showed a significantly selective effect towards the cancer cells and were found to contain high levels of phenolic and flavonoid compounds. The chromatographic and mass spectrometric profiles of the extracts obtained with Ultra High Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry were used to tentatively identify the bioactive compounds using comparative analysis. The principal compounds identified were flavonoids or flavonoid glycosides, particularly compounds from the kaempferol and quercetin families, of which several have previously been reported to possess anticancer activities. These results confirm that papaya leaf is a potential source of anticancer compounds and warrant further scientific investigation to validate the traditional use of papaya leaf to treat cancer.
Nguyen, Thao T.; Parat, Marie-Odile; Hodson, Mark P.; Pan, Jenny; Shaw, Paul N.; Hewavitharana, Amitha K.
2015-01-01
In traditional medicine, Carica papaya leaf has been used for a wide range of therapeutic applications including skin diseases and cancer. In this study, we investigated the in vitro cytotoxicity of aqueous and ethanolic extracts of Carica papaya leaves on the human oral squamous cell carcinoma SCC25 cell line in parallel with non-cancerous human keratinocyte HaCaT cells. Two out of four extracts showed a significantly selective effect towards the cancer cells and were found to contain high levels of phenolic and flavonoid compounds. The chromatographic and mass spectrometric profiles of the extracts obtained with Ultra High Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry were used to tentatively identify the bioactive compounds using comparative analysis. The principal compounds identified were flavonoids or flavonoid glycosides, particularly compounds from the kaempferol and quercetin families, of which several have previously been reported to possess anticancer activities. These results confirm that papaya leaf is a potential source of anticancer compounds and warrant further scientific investigation to validate the traditional use of papaya leaf to treat cancer. PMID:26712788
Ghaffar, Ammara; Tahir, Mohammad; Lone, Khalid Pervez; Faisal, Bushra; Latif, Waqas
2015-01-01
Gentamicin is an aminoglycoside isolated from Micromonospora purpurea known for its nephrotoxicity. Ficus carica L is known to treat many ailments. This study was designed to investigate the effects of Ficus carica L. (Anjir) leaf extract on renal oxidative stress induced by gentamicin in albino mice. In this laboratory based experimental study 30 mice were divided into three groups, containing 10 mice each. Group A being the control; groups B and C were experimental and treated with gentamicin 200 mg/kg/day intraperitoneally and, Ficus carica L. leaf extract 400 mg/kg/day orally with gentamicin 200 mg/kg/day intraperitoneally respectively for a period of 8 days. Blood samples were taken 24 hours after completion of the experimental period by cardiac puncture under anesthesia and kidneys of each mouse were taken out for microscopic examination. Gentamicin treatment increased serum urea and creatinine levels (group B). Ficus carica L. leaf extract treated animals showed significant reduction in biochemical markers of kidney functions in group C. The histopathological examination of group A showed normal renal structure which was deranged in group B treated with only gentamicin, whereas, group C exhibited marked improvement in histological structure. Ficus carica L. leaf extract is effective in preventing gentamicin induced functional and structural changes in kidney of albino mice.
Yang, Jun-Peng; He, Hao; Lu, Yan-Hua
2014-08-06
Bamboo leaf extract as a food additive has been used for preventing the oxidation of food. In the present study, we investigated the influence of Phyllostachys edulis leaf extract on starch digestion. Orientin, isoorientin, vitexin, and isovitexin were determined as its α-amylase inhibitory constituents. An inhibitory kinetics experiment demonstrated that they competitively inhibit α-amylase with Ki values of respectively 152.6, 11.5, 569.6, and 75.8 μg/mL. Molecular docking showed the four flavones can interact with the active site of α-amylase, and their inhibitory activity was greatly influenced by the glucoside linking position and 3'-hydroxyl. Moreover, the results of starch-iodine complex spectroscopy, X-ray diffraction, and scanning electron microscopy indicated that P. edulis flavonoids retard the digestion of starch not only through interaction with digestive enzymes, but also through interaction with starch. Thus, P. edulis leaf extract can be potentially used as a starch-based food additive for adjusting postprandial hyperglycemia.
Du, X Y; Hu, Q N; Zhang, Q L; Wang, Y B; Luo, Z R
2013-06-06
Retrotransposon-based molecular markers are powerful molecular tools. However, these markers are not readily available due to the difficulty in obtaining species-specific retrotransposon primers. Although recent techniques enabling the rapid isolation of retrotransposon sequences have facilitated primer development, this process nonetheless remains time-consuming and costly. Therefore, research into the transferability of retrotransposon primers developed from one plant species onto others would be of great value. The present study investigated the transferability of retrotransposon primers derived from 'Luotian-tianshi' persimmon (Diospyros kaki Thunb.) across other fruit crops, as well as within the genus using inter-retrotransposon amplified polymorphism molecular marker. Fourteen of the 26 retrotransposon primers tested (53.85%) produced robust and reproducible amplification products across all fruit crops tested, indicating their applicability across plant species. Four of the 13 fruit crops showed the best transferability performances: persimmon, grape, citrus, and peach. Furthermore, similarity coefficients and UPGMA clustering indicated that these primers could further offer a potential tool for germplasm differentiation, parentage identification, genetic diversity assessment, classification, and phylogenetic studies across a variety of plant species. Transferability was further confirmed by examining published primers derived from Rosaceae, Gramineae, and Solanaceae. This study is one of the few currently available studies concerning the transferability of retrotransposon primers across plant species in general, and is the first successful study of the transferability of retrotransposon primers derived from persimmon. The primers presented here will help reduce costs for future retrotransposon primer development and therefore contribute to the popularization of retrotransposon molecular markers.
Pacheco da Silva, Vitor C; Kaydan, Mehmet Bora; Germain, Jean-François; Malausa, Thibaut; Botton, Marcos
2016-01-01
Brazil has the greatest insect diversity in the world; however, little is known about its scale insect species (Hemiptera: Coccomorpha). Mealybugs (Pseudococcidae) have been found in at least 50% of persimmon orchards Diospyros kaki L. in the southern part of the country. In this study three new mealybug species on persimmon trees located in the Serra Gaúcha Region, RS, Brazil, namely, Anisococcus granarae Pacheco da Silva & Kaydan, sp. n., Ferrisia kaki Kaydan & Pacheco da Silva, sp. n. and Pseudococcus rosangelae Pacheco da Silva & Kaydan, sp. n. are described. In addition, an identification key for the genera occurring on fruit orchards and vineyards in Brazil is provided, together with illustrations and molecular data for the new species.
Procópio, Thamara Figueiredo; Fernandes, Kenner Morais; Pontual, Emmanuel Viana; Ximenes, Rafael Matos; de Oliveira, Aline Rafaella Cardoso; Souza, Carolina de Santana; Melo, Ana Maria Mendonça de Albuquerque; Navarro, Daniela Maria do Amaral Ferraz; Paiva, Patrícia Maria Guedes; Martins, Gustavo Ferreira; Napoleão, Thiago Henrique
2015-01-01
In this study, a leaf extract from Schinus terebinthifolius was evaluated for effects on survival, development, and midgut of A. aegypti fourth instar larvae (L4), as well as for toxic effect on Artemia salina. Leaf extract was obtained using 0.15 M NaCl and evaluated for phytochemical composition and lectin activity. Early L4 larvae were incubated with the extract (0.3–1.35%, w/v) for 8 days, in presence or absence of food. Polymeric proanthocyanidins, hydrolysable tannins, heterosid and aglycone flavonoids, cinnamic acid derivatives, traces of steroids, and lectin activity were detected in the extract, which killed the larvae at an LC50 of 0.62% (unfed larvae) and 1.03% (fed larvae). Further, the larvae incubated with the extract reacted by eliminating the gut content. No larvae reached the pupal stage in treatments at concentrations between 0.5% and 1.35%, while in the control (fed larvae), 61.7% of individuals emerged as adults. The extract (1.0%) promoted intense disorganization of larval midgut epithelium, including deformation and hypertrophy of cells, disruption of microvilli, and vacuolization of cytoplasms, affecting digestive, enteroendocrine, regenerative, and proliferating cells. In addition, cells with fragmented DNA were observed. Separation of extract components by solid phase extraction revealed that cinnamic acid derivatives and flavonoids are involved in larvicidal effect of the extract, being the first most efficient in a short time after larvae treatment. The lectin present in the extract was isolated, but did not show deleterious effects on larvae. The extract and cinnamic acid derivatives were toxic to A. salina nauplii, while the flavonoids showed low toxicity. S. terebinthifolius leaf extract caused damage to the midgut of A. aegypti larvae, interfering with survival and development. The larvicidal effect of the extract can be attributed to cinnamic acid derivatives and flavonoids. The data obtained using A. salina indicates that caution
Procópio, Thamara Figueiredo; Fernandes, Kenner Morais; Pontual, Emmanuel Viana; Ximenes, Rafael Matos; de Oliveira, Aline Rafaella Cardoso; Souza, Carolina de Santana; Melo, Ana Maria Mendonça de Albuquerque; Navarro, Daniela Maria do Amaral Ferraz; Paiva, Patrícia Maria Guedes; Martins, Gustavo Ferreira; Napoleão, Thiago Henrique
2015-01-01
In this study, a leaf extract from Schinus terebinthifolius was evaluated for effects on survival, development, and midgut of A. aegypti fourth instar larvae (L4), as well as for toxic effect on Artemia salina. Leaf extract was obtained using 0.15 M NaCl and evaluated for phytochemical composition and lectin activity. Early L4 larvae were incubated with the extract (0.3-1.35%, w/v) for 8 days, in presence or absence of food. Polymeric proanthocyanidins, hydrolysable tannins, heterosid and aglycone flavonoids, cinnamic acid derivatives, traces of steroids, and lectin activity were detected in the extract, which killed the larvae at an LC50 of 0.62% (unfed larvae) and 1.03% (fed larvae). Further, the larvae incubated with the extract reacted by eliminating the gut content. No larvae reached the pupal stage in treatments at concentrations between 0.5% and 1.35%, while in the control (fed larvae), 61.7% of individuals emerged as adults. The extract (1.0%) promoted intense disorganization of larval midgut epithelium, including deformation and hypertrophy of cells, disruption of microvilli, and vacuolization of cytoplasms, affecting digestive, enteroendocrine, regenerative, and proliferating cells. In addition, cells with fragmented DNA were observed. Separation of extract components by solid phase extraction revealed that cinnamic acid derivatives and flavonoids are involved in larvicidal effect of the extract, being the first most efficient in a short time after larvae treatment. The lectin present in the extract was isolated, but did not show deleterious effects on larvae. The extract and cinnamic acid derivatives were toxic to A. salina nauplii, while the flavonoids showed low toxicity. S. terebinthifolius leaf extract caused damage to the midgut of A. aegypti larvae, interfering with survival and development. The larvicidal effect of the extract can be attributed to cinnamic acid derivatives and flavonoids. The data obtained using A. salina indicates that caution
USDA-ARS?s Scientific Manuscript database
This work aimed to characterize the sensory attributes of hot air-dried persimmon (Diospyros kaki) chips, correlate these attributes with consumer hedonic information, and, by doing so, present recommendations for cultivars that are most suitable for hot-air drying. A trained sensory panel evaluated...
Assessment of the antimobial activity of olive leaf extract against foodborne bacterial pathogens
USDA-ARS?s Scientific Manuscript database
Olive leaf extract (OLE) has been used traditionally as an herbal supplement since it contains polyphenolic compounds with beneficial properties ranging from increasing energy levels, lowering blood pressure, and supporting the cardiovascular and immune systems. In addition to the beneficial effect...
Potential Hypoglycaemic and Antiobesity Effects of Senna italica Leaf Acetone Extract.
Malematja, R O; Bagla, V P; Njanje, I; Mbazima, V; Poopedi, K W; Mampuru, L; Mokgotho, M P
2018-01-01
Type II diabetes is on the rise while obesity is one of the strongest risk factors of type II diabetes. The search for a drug for type II that can equally mitigate obesity related complication is desired. The acetone leaf extract of Senna italica was evaluated for its cytotoxic, antiglycation, and lipolytic effect, glucose uptake, and GLUT4 translocation and expression using published methods, while that for adipogenesis and protein expression levels of obesity related adipokines was assessed using adipogenesis assay and mouse adipokine proteome profiler kit, respectively. The possible mechanism of glucose uptake was assessed through the inhibition of PI3K pathway. The extract had no adverse effect on 3T3-L1 cell viability (CC50 > 1000 μ g/ml). High antiglycation effect was attained at 10 mg/ml, while at 25-200 μ g/ml it showed no significant increase in adipogenesis and lipolysis. The extract at 100 μ g/ml was shown to decrease the expression levels of various adipokines and minimal glucose uptake at 50-100 μ g/ml with a nonsignificant antagonistic effect when used in combination with insulin. GLUT4 translocation and expression were attained at 50-100 μ g/ml with an increase in GLUT4 expression when in combination with insulin. The acetone leaf extract of S. italica stimulates glucose uptake through the PI3K-dependent pathway and can serve as a source of therapeutic agent for the downregulation of obesity-associated adipokines in obesity and antiglycation agents.
Qujeq, Durdi; Tatar, Mohsen; Feizi, Farideh; Parsian, Hadi; Sohan Faraji, Alieh; Halalkhor, Sohrab
2013-01-01
Urtica dioica has been known as a plant that decreases blood glucose. Despite the importance of this plant in herbal medicine, relatively little research has been down on effects of this plant on islets yet. The objective of the current study was to evaluate the effect of dried Urtica dioica leaf alcoholic and aqueous extracts on the number and the diameter of the islets and histological parameters in streptozocin-induced diabetic rats. Six rats were used in each group. Group I: Normal rats were administered saline daily for 8 weeks. Group II: Diabetic rats were administered streptozotocin, 50 mg/kg of body weight; Group III: Diabetic rats were administered dried Urtica dioica leaf aqueous extracts for 8 weeks; Group IV: Diabetic rats were administered dried Urtica dioica leaf alcoholic extracts for 8 weeks. The animals, groups of diabetic and normal, were sacrificed by ether anaesthesia. Whole pancreas was dissected. The tissue samples were formalin fixed and paraffin embedded for microscopic examination. Histologic examination and grading were carried out on hematoxylin-eosin stained sections. The effects of administration of dried Urtica dioica leaf alcoholic and aqueous extracts to diabetic rats were determined by histopathologic examination. The pancreas from control rats showed normal pancreatic islets histoarchitecture. Our results also, indicate that the pancreas from diabetic rats show injury of pancreas tissue while the pancreas from diabetic rats treated with dried Urtica dioica leaf alcoholic and aqueous extracts show slight to moderate rearrangement of islets. According to our findings, dried Urtica dioica leaf alcoholic and aqueous extracts can cause a suitable repair of pancreatic tissue in streptozocin-induced diabetic experimental model.
Qujeq, Durdi; Tatar, Mohsen; Feizi, Farideh; Parsian, Hadi; Sohan Faraji, Alieh; Halalkhor, Sohrab
2013-01-01
Urtica dioica has been known as a plant that decreases blood glucose. Despite the importance of this plant in herbal medicine, relatively little research has been down on effects of this plant on islets yet. The objective of the current study was to evaluate the effect of dried Urtica dioica leaf alcoholic and aqueous extracts on the number and the diameter of the islets and histological parameters in streptozocin-induced diabetic rats. Six rats were used in each group. Group I: Normal rats were administered saline daily for 8 weeks. Group II: Diabetic rats were administered streptozotocin, 50 mg/kg of body weight; Group III: Diabetic rats were administered dried Urtica dioica leaf aqueous extracts for 8 weeks; Group IV: Diabetic rats were administered dried Urtica dioica leaf alcoholic extracts for 8 weeks. The animals, groups of diabetic and normal, were sacrificed by ether anaesthesia. Whole pancreas was dissected. The tissue samples were formalin fixed and paraffin embedded for microscopic examination. Histologic examination and grading were carried out on hematoxylin-eosin stained sections. The effects of administration of dried Urtica dioica leaf alcoholic and aqueous extracts to diabetic rats were determined by histopathologic examination. The pancreas from control rats showed normal pancreatic islets histoarchitecture. Our results also, indicate that the pancreas from diabetic rats show injury of pancreas tissue while the pancreas from diabetic rats treated with dried Urtica dioica leaf alcoholic and aqueous extracts show slight to moderate rearrangement of islets. According to our findings, dried Urtica dioica leaf alcoholic and aqueous extracts can cause a suitable repair of pancreatic tissue in streptozocin-induced diabetic experimental model. PMID:24551786
Salvamani, Shamala; Gunasekaran, Baskaran; Shukor, Mohd Yunus; Shaharuddin, Noor Azmi; Sabullah, Mohd Khalizan
2016-01-01
Inflammation and oxidative stress are believed to contribute to the pathology of several chronic diseases including hypercholesterolemia (elevated levels of cholesterol in blood) and atherosclerosis. HMG-CoA reductase inhibitors of plant origin are needed as synthetic drugs, such as statins, which are known to cause adverse effects on the liver and muscles. Amaranthus viridis (A. viridis) has been used from ancient times for its supposedly medically beneficial properties. In the current study, different parts of A. viridis (leaf, stem, and seed) were evaluated for potential anti-HMG-CoA reductase, antioxidant, and anti-inflammatory activities. The putative HMG-CoA reductase inhibitory activity of A. viridis extracts at different concentrations was determined spectrophotometrically by NADPH oxidation, using HMG-CoA as substrate. A. viridis leaf extract revealed the highest HMG-CoA reductase inhibitory effect at about 71%, with noncompetitive inhibition in Lineweaver-Burk plot analysis. The leaf extract showed good inhibition of hydroperoxides, 2,2-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (NO), and ferric ion radicals in various concentrations. A. viridis leaf extract was proven to be an effective inhibitor of hyaluronidase, lipoxygenase, and xanthine oxidase enzymes. The experimental data suggest that A. viridis leaf extract is a source of potent antioxidant and anti-inflammatory agent and may modulate cholesterol metabolism by inhibition of HMG-CoA reductase. PMID:27051453
Pacheco da Silva, Vitor C.; Kaydan, Mehmet Bora; Germain, Jean-François; Malausa, Thibaut; Botton, Marcos
2016-01-01
Abstract Brazil has the greatest insect diversity in the world; however, little is known about its scale insect species (Hemiptera: Coccomorpha). Mealybugs (Pseudococcidae) have been found in at least 50% of persimmon orchards Diospyros kaki L. in the southern part of the country. In this study three new mealybug species on persimmon trees located in the Serra Gaúcha Region, RS, Brazil, namely, Anisococcus granarae Pacheco da Silva & Kaydan, sp. n., Ferrisia kaki Kaydan & Pacheco da Silva, sp. n. and Pseudococcus rosangelae Pacheco da Silva & Kaydan, sp. n. are described. In addition, an identification key for the genera occurring on fruit orchards and vineyards in Brazil is provided, together with illustrations and molecular data for the new species. PMID:27199595
Phytochemical, sub-acute toxicity, and antibacterial evaluation of Cordia sebestena leaf extracts.
Osho, Adeleke; Otuechere, Chiagoziem A; Adeosun, Charles B; Oluwagbemi, Tolu; Atolani, Olubunmi
2016-03-01
In Nigeria, Cordia sebestena (Boraginaceae), an understudied medicinal plant, is used in traditional medicine for the treatment of gastrointestinal disorders. In this study, we investigated the chemical composition, antibacterial potential, and sub-acute toxicity of C. sebestena leaves. Ethyl acetate extracts were analyzed using thin layer chromatography (TLC) and Fourier transform infrared (FTIR) spectrophotometry. The antibacterial potential of the extracts was tested against five standard bacteria, namely Bacillus cereus, Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Clinical observations and blood parameters were used to evaluate the possible toxicity of C. sebestena. The TLC profile yielded 39 fractions, which were pooled to nine combined sub-fractions (A-I). The FTIR spectrum of sub-fraction H indicated the presence of aliphatic C-H stretching vibration at 2922 and 2850 cm-1, C=O stretch at 1734 and 1708 cm-1, and C=C stretch of aromatics and aliphatics at 1464 and (shoulder) 1618 cm-1, respectively. The fractions of the C. sebestena ethyl acetate leaf extract showed antibacterial potential across board, but fraction H had the highest antibacterial activity against B. cereus and S. aureus. The study also indicated the relatively low toxicity profile of the ethyl acetate leaf extract of C. sebestena in the liver of rats. The study showed that C. sebestena leaves have strong antibacterial potential and low toxicity, thereby underlying the scientific basis for their folkloric use in the management of microbial infections and its associated complications.
Gobi, Narayanan; Ramya, Chinnu; Vaseeharan, Baskaralingam; Malaikozhundan, Balasubramanian; Vijayakumar, Sekar; Murugan, Kadarkarai; Benelli, Giovanni
2016-11-01
In this research, we focused on the efficacy of aqueous and ethanol leaf extracts of Psidium guajava L. (guava) based experimental diets on the growth, immune, antioxidant and disease resistance of tilapia, Oreochromis mossambicus following challenge with Aeromonas hydrophila. The experimental diets were prepared by mixing powdered (1, 5 and 10 mg/g) aqueous and ethanol extract of guava leaf with commercial diet. The growth (FW, FCR and SGR), non-specific cellular immune (myeloperoxidase activity, reactive oxygen activity and reactive nitrogen activity) humoral immune (complement activity, antiprotease, alkaline phosphatase activity and lysozyme activity) and antioxidant enzyme responses (SOD, GPX, and CAT) were examined after 30 days of post-feeding. A significant enhancement in the biochemical and immunological parameters of fish were observed fed with experimental diets compared to control. The dietary supplementation of P. guajava leaf extract powder for 30 days significantly reduced the mortality and increased the disease resistance of O. mossambicus following challenge with A. hydrophila at 50 μl (1 × 10 7 cells ml -1 ) compared to control after post-infection. The results suggest that the guava leaf extract could be used as a promising feed additive in aquaculture. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nakano, Ryohei; Ogura, Emi; Kubo, Yasutaka; Inaba, Akitsugu
2003-01-01
Persimmon (Diospyros kaki Thunb.) fruit are usually classified as climacteric fruit; however, unlike typical climacteric fruits, persimmon fruit exhibit a unique characteristic in that the younger the stage of fruit detached, the greater the level of ethylene produced. To investigate ethylene induction mechanisms in detached young persimmon fruit, we cloned three cDNAs encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (DK-ACS1, 2, and -3) and two encoding ACC oxidase (DK-ACO1 and -2) genes involved in ethylene biosynthesis, and we analyzed their expression in various fruit tissues. Ethylene production was induced within a few days of detachment in all fruit tissues tested, accompanied by temporally and spatially coordinated expression of all the DK-ACS and DK-ACO genes. In all tissues except the calyx, treatment with 1-methylcyclopropene, an inhibitor of ethylene action, suppressed ethylene production and ethylene biosynthesis-related gene expression. In the calyx, one ACC synthase gene (DK-ACS2) exhibited increased mRNA accumulation accompanied by a large quantity of ethylene production, and treatment of the fruit with 1-methylcyclopropene did not prevent either the accumulation of DK-ACS2 transcripts or ethylene induction. Furthermore, the alleviation of water loss from the fruit significantly delayed the onset of ethylene production and the expression of DK-ACS2 in the calyx. These results indicate that ethylene biosynthesis in detached young persimmon fruit is initially induced in calyx and is modulated by water loss through transcriptional activation of DK-ACS2. The ethylene produced in the calyx subsequently diffuses to other fruit tissues and acts as a secondary signal that stimulates autocatalytic ethylene biosynthesis in these tissues, leading to a burst of ethylene production.
Ahmed, A Bakrudeen Ali; Rao, A S; Rao, M V
2010-11-01
A methanol extract of Gymnema sylvestre leaf and callus showed anti-diabetic activities through regenerating β-cells. Optimum callus was developed under stress conditions of blue light with 2,4-D (1.5 mg/l) and KN (0.5 mg/l), which induced maximum biomass of green compact callus at 45 days, as determined by growth curve analysis. Leaf and optimum callus extracts contains gymnemic acid, which was analyzed using TLC, HPTLC and HPLC methods. The research reported here deals with leaf and callus extracts of G. sylvestre, which significantly increase the weight of the whole body, liver, pancreas and liver glycogen content in alloxan-induced diabetic rats (Wistar rats). The gymnemic acid of leaf and callus extracts significantly increases the regeneration of β-cells in treated rats, when compared with the standard diabetic rats. It could have potential as a pharmaceutical drug for insulin-dependent diabetes mellitus (IDDM). Copyright © 2010 Elsevier GmbH. All rights reserved.
Gonçalves, Flávia A; Andrade Neto, Manoel; Bezerra, José N S; Macrae, Andrew; Sousa, Oscarina Viana de; Fonteles-Filho, Antonio A; Vieira, Regine H S F
2008-01-01
Guava leaf tea of Psidium guajava Linnaeus is commonly used as a medicine against gastroenteritis and child diarrhea by those who cannot afford or do not have access to antibiotics. This study screened the antimicrobial effect of essential oils and methanol, hexane, ethyl acetate extracts from guava leaves. The extracts were tested against diarrhea-causing bacteria: Staphylococcus aureus, Salmonella spp. and Escherichia coli. Strains that were screened included isolates from seabob shrimp, Xiphopenaeus kroyeri (Heller) and laboratory-type strains. Of the bacteria tested, Staphylococcus aureus strains were most inhibited by the extracts. The methanol extract showed greatest bacterial inhibition. No statistically significant differences were observed between the tested extract concentrations and their effect. The essential oil extract showed inhibitory activity against S. aureus and Salmonella spp. The strains isolated from the shrimp showed some resistance to commercially available antibiotics. These data support the use of guava leaf-made medicines in diarrhea cases where access to commercial antibiotics is restricted. In conclusion, guava leaf extracts and essential oil are very active against S. aureus, thus making up important potential sources of new antimicrobial compounds.
Potential Hypoglycaemic and Antiobesity Effects of Senna italica Leaf Acetone Extract
Njanje, I.; Poopedi, K. W.
2018-01-01
Background Type II diabetes is on the rise while obesity is one of the strongest risk factors of type II diabetes. The search for a drug for type II that can equally mitigate obesity related complication is desired. Methods The acetone leaf extract of Senna italica was evaluated for its cytotoxic, antiglycation, and lipolytic effect, glucose uptake, and GLUT4 translocation and expression using published methods, while that for adipogenesis and protein expression levels of obesity related adipokines was assessed using adipogenesis assay and mouse adipokine proteome profiler kit, respectively. The possible mechanism of glucose uptake was assessed through the inhibition of PI3K pathway. Results The extract had no adverse effect on 3T3-L1 cell viability (CC50 > 1000 μg/ml). High antiglycation effect was attained at 10 mg/ml, while at 25–200 μg/ml it showed no significant increase in adipogenesis and lipolysis. The extract at 100 μg/ml was shown to decrease the expression levels of various adipokines and minimal glucose uptake at 50–100 μg/ml with a nonsignificant antagonistic effect when used in combination with insulin. GLUT4 translocation and expression were attained at 50–100 μg/ml with an increase in GLUT4 expression when in combination with insulin. Conclusion The acetone leaf extract of S. italica stimulates glucose uptake through the PI3K-dependent pathway and can serve as a source of therapeutic agent for the downregulation of obesity-associated adipokines in obesity and antiglycation agents. PMID:29713364
Besada, Cristina; Gil, Rebeca; Bonet, Luis; Quiñones, Ana; Intrigliolo, Diego; Salvador, Alejandra
2016-03-01
In recent years many hectares planted with persimmon trees in E Spain have been diagnosed with chloride toxicity. An effect of this abiotic stress on fruit quality has been reported in different crops. However, the impact of chloride stress on persimmon fruit quality is unknown. The harvest and postharvest quality of persimmons harvested from trees that manifest different intensities of chloride toxicity foliar symptoms was evaluated herein. Our results revealed that fruits from trees under chloride stress conditions underwent chloride accumulation in the calyx, which was more marked the greater the salt stress intensity trees were exposed to. Increased chloride concentrations in the calyx stimulated ethylene production in this tissue. In the fruits affected by slight and moderate chloride stress, calyx ethylene production accelerated the maturity process, as reflected by increased fruit colour and diminished fruit firmness. In the fruits under severe chloride stress, the high ethylene levels in the calyx triggered autocatalytic ethylene production in other fruit tissues, which led fruit maturity to drastically advance. In these fruits effectiveness of CO2 deastringency treatment was not complete and fruit softening enhanced during the postharvest period. Moreover, chloride stress conditions had a marked effect on reducing fruit weight, even in slightly stressed trees. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Sanchís, Elena; Mateos, Milagros; Pérez-Gago, María B
2016-10-01
To prevent enzymatic browning of fresh-cut 'Rojo Brillante' persimmon, different combinations of ascorbic acid (AA) and citric acid (CA) with calcium chloride (CaCl 2 ) were tested in fruit harvested at two maturity stages (MS1 and MS2). Color, firmness, sensory quality, total vitamin C, radical scavenging activity, total phenolic content, and carotenoids were evaluated over nine days of storage at 5 ℃. Antibrowning dips reduced enzymatic browning if compared with the control samples. Selecting fruits with good firmness and the addition of 10 g/l CaCl 2 help prevent loss of firmness of fresh-cut "Rojo Brillante" persimmons treated with acidic solutions as antibrowning agents to control enzymatic browning. The limit of marketability of the persimmon fruit processed at MS1 was significantly reduced by the burst of the disorder known as "flesh browning," and only the samples treated with 10 g/l CA + 10 g/l CaCl 2 maintained a limit of marketability close to seven days. At MS2, all the antibrowning solutions allowed a limit of marketability of seven storage days at 5 ℃. Nutritional quality was not affected by either antibrowning dips or cutting processes, but MS at harvest was. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Ajitha, B.; Ashok Kumar Reddy, Y.; Sreedhara Reddy, P.
2014-07-01
This study reports the simple green synthesis method for the preparation of silver nanoparticles (Ag NPs) using Plectranthus amboinicus leaf extract. The pathway of nanoparticles formation is by means of reduction of AgNO3 by leaf extract, which acts as both reducing and capping agents. Synthesized Ag NPs were subjected to different characterizations for studying the structural, chemical, morphological, optical and antimicrobial properties. The bright circular fringes in SAED pattern and diffraction peaks in XRD profile reveals high crystalline nature of biosynthesized Ag NPs. Morphological studies shows the formation of nearly spherical nanoparticles. FTIR spectrum confirms the existence of various functional groups of biomolecules capping the nanoparticles. UV-visible spectrum displays single SPR band at 428 nm indicating the absence of anisotropic particles. The synthesized Ag NPs exhibited better antimicrobial property towards gram negative Escherichia coli and towards tested Penicillium spp. than other tested microorganisms using disc diffusion method. Finally it has proven that the synthesized bio-inspired Ag NPs have potent antimicrobial effect.
Maqbool, Qaisar; Iftikhar, Sidra; Nazar, Mudassar; Abbas, Fazal; Saleem, Asif; Hussain, Talib; Kausar, Rizwan; Anwaar, Sadaf; Jabeen, Nyla
2017-06-01
In present investigation, copper oxide (CuO) nanostructures have been prepared via green chemistry. Olea europaea leaf extract act as strong chelating agent for tailoring physical as well as bio-medical characteristics of CuO at the nano-size. Physical characterisation such as scanning electron microscope analysis depicts the formation of homogenised spherical shape nanoparticles (NPs) with average size of 42 nm. X-ray diffraction and Fourier transform infrared spectroscopy further confirmed the crystalline pure phase and monoclinic structure. High performance liquid chromatography (HPLC) testing is performed to evaluate the relative concentration of bioactive molecules in the O. europaea leaf extract. From HPLC results capping action of organic molecules around CuO-NPs is hypothesised. The antimicrobial potency of biosynthesised CuO-NPs have been evaluated using colony forming unit (CFU) counting assay and disc diffusion method which shows a significant zone of inhibition against bacterial and fungal strains may be highly potential for future antimicrobial pharmaceutics. Furthermore, reduction of various precursors by plant extract will reduce environmental impact over chemical synthesis.
Anabolic effect of Hibiscus rosasinensis Linn. leaf extracts in immature albino male rats.
Olagbende-Dada, S O; Ezeobika, E N; Duru, F I
2007-01-01
Many plants remedies have been employed in solving man's health needs especially the nutritive value which enhances health living. Aphrodisiac plants are plants with anabolic properties i.e. they help in protein synthesis and enhances sexual abilities in males. They are also known as androgenic plants because their properties are similar to that of androgen a male hormone. Cold aqueous extract of Hibiscus rosasinensis leaves is reported by local traditional practioners in Western Nigeria to be aphrodisiac. To investigate the anabolic properties of Hibiscus rosasinensis. Three groups (8/group) of immature male rats of known weights were administered equal doses of aqueous (cold and hot) and alcoholic extracts of Hibiscus rosasinensis leaves for 8 weeks. The gain in body and isolated sexual organs (testis, epididymis, seminal vesicle and prostate) weights were determined after treatment and compared to the value obtained from a fourth untreated group which served as the control. Section through the testes of both the treated and untreated rats were also examined microscopically and displayed as a photomicrograph for comparism. All data were statistically analysed and displaced in graphic form. Over the 8 weeks of treatment, the control, the cold aqueous extract dosed, hot aqueous extract dosed and alcoholic extract dosed rats gained 8%, 15%, 18% and 22% in body weights respectively. The increase in the weight of testis, epididymis, seminal vesicle and prostate of the alcoholic extract dosed rats was 19%, 30%, 31% and 40% respectively. The anabolic effect of the leaf extracts of H. rosasinensis is hereby established. More work needs to be done on these leaf extracts to know their effect on the gonadotrophin hormones which regulate the activity of the androgens in relation to spermatogenesis.
Wang, Bo; Liu, Heng-Chuan; Hong, Jun-Rong; Li, Hong-Gu; Huang, Cheng-Yu
2007-03-01
To investigate the inhibition effect of Psidium guajava linn (PGL), a leaf water-soluble extract, on the activities of alpha-glucosidases. The PGL water-soluble extract (PGL WE) was obtained by the procedure of distilled water immersion, filtration, extracted fluid concentration and dry of Psidium guajava leaf. The diabetes of Kunming mice was induced by intraperitoneal injection of Streptozotocin (STZ). The small intestinal mucosa of diabetic mice was scraped to make the homogenate for the preparation of alpha-glucosidases. In vitro, the homogenates were incubated with sucrose and maltose. The formed glucose represented the activities of alpha-glucosidases. The Lineweaver-Burk plot was applied to determine the type of alpha-glucosidase activity inhibited. The water-soluble extract from PGL significantly inhibited, in the dose-dependent manner, the activities of alpha-glucosidase from small intestinal mucosa of diabetic mice. The PGL extract inhibition concentration (IC50) to sucrase or maltase was 1.0 g/L or 3.0 g/L respectively. The mixed inhibition type was showed to be the competitive and non-competitive inhibition. The GPL water-soluble extract possesses the potential effect of inhibition on the alpha-glucosidase activity from the small intestinal mucosa of diabetic mouse.
Saniasiaya, Jeyasakthy; Salim, Rosdan; Mohamad, Irfan; Harun, Azian
2017-01-01
Aloe barbadensis miller or Aloe vera has been used for therapeutic purposes since ancient times with antifungal activity known to be amongst its medicinal properties. We conducted a pilot study to determine the antifungal properties of Malaysian Aloe vera leaf extract on otomycosis species including Aspergillus niger and Candida albicans. This laboratory-controlled prospective study was conducted at the Universiti Sains Malaysia. Extracts of Malaysian Aloe vera leaf was prepared in ethanol and solutions via the Soxhlet extraction method. Sabouraud dextrose agar cultured with the two fungal isolates were inoculated with the five different concentrations of each extract (50 g/mL, 25 g/mL, 12.5 g/mL, 6.25 g/mL, and 3.125 g/mL) using the well-diffusion method. Zone of inhibition was measured followed by minimum inhibitory concentration (MIC). For A. niger, a zone of inhibition for alcohol and aqueous extract was seen for all concentrations except 3.125 g/mL. There was no zone of inhibition for both alcohol and aqueous extracts of Aloe vera leaf for C. albicans . The MIC values of aqueous and alcohol extracts were 5.1 g/mL and 4.4 g/mL for A. niger and since no zone of inhibition was obtained for C. albicans the MIC was not determined. The antifungal effect of alcohol extracts of Malaysian Aloe vera leaf is better than the aqueous extract for A. niger ( p < 0.001). Malaysian Aloe vera has a significant antifungal effect towards A. niger.
Glioprotective effects of Ashwagandha leaf extract against lead induced toxicity.
Kumar, Praveen; Singh, Raghavendra; Nazmi, Arshed; Lakhanpal, Dinesh; Kataria, Hardeep; Kaur, Gurcharan
2014-01-01
Withania somnifera (Ashwagandha), also known as Indian Ginseng, is a well-known Indian medicinal plant due to its antioxidative, antistress, antigenotoxic, and immunomodulatory properties. The present study was designed to assess and establish the cytoprotective potential of Ashwagandha leaf aqueous extract against lead induced toxicity. Pretreatment of C6 cells with 0.1% Ashwagandha extract showed cytoprotection against 25 μM to 400 μM concentration of lead nitrate. Further pretreatment with Ashwagandha extract to lead nitrate exposed cells (200 μM) resulted in normalization of glial fibrillary acidic protein (GFAP) expression as well as heat shock protein (HSP70), mortalin, and neural cell adhesion molecule (NCAM) expression. Further, the cytoprotective efficacy of Ashwagandha extract was studied in vivo. Administration of Ashwagandha extract provided significant protection to lead induced altered antioxidant defense that may significantly compromise normal cellular function. Ashwagandha also provided a significant protection to lipid peroxidation (LPx) levels, catalase, and superoxide dismutase (SOD) but not reduced glutathione (GSH) contents in brain tissue as well as peripheral organs, liver and kidney, suggesting its ability to act as a free radical scavenger protecting cells against toxic insult. These results, thus, suggest that Ashwagandha water extract may have the potential therapeutic implication against lead poisoning.
Prado, Ligia Carolina da Silva; Silva, Denise Brentan; de Oliveira-Silva, Grasielle Lopes; Hiraki, Karen Renata Nakamura; Canabrava, Hudson Armando Nunes; Bispo-da-Silva, Luiz Borges
2014-01-01
We applied a taxonomic approach to select the Eugenia dysenterica (Myrtaceae) leaf extract, known in Brazil as "cagaita," and evaluated its gastroprotective effect. The ability of the extract or carbenoxolone to protect the gastric mucosa from ethanol/HCl-induced lesions was evaluated in mice. The contributions of nitric oxide (NO), endogenous sulfhydryl (SH) groups and alterations in HCl production to the extract's gastroprotective effect were investigated. We also determined the antioxidant activity of the extract and the possible contribution of tannins to the cytoprotective effect. The extract and carbenoxolone protected the gastric mucosa from ethanol/HCl-induced ulcers, and the former also decreased HCl production. The blockage of SH groups but not the inhibition of NO synthesis abolished the gastroprotective action of the extract. Tannins are present in the extract, which was analyzed by matrix assisted laser desorption/ionization (MALDI); the tannins identified by fragmentation pattern (MS/MS) were condensed type-B, coupled up to eleven flavan-3-ol units and were predominantly procyanidin and prodelphinidin units. Partial removal of tannins from the extract abolished the cytoprotective actions of the extract. The extract exhibits free-radical-scavenging activity in vitro, and the extract/FeCl3 sequence stained gastric surface epithelial cells dark-gray. Therefore, E. dysenterica leaf extract has gastroprotective effects that appear to be linked to the inhibition of HCl production, the antioxidant activity and the endogenous SH-containing compounds. These pleiotropic actions appear to be dependent on the condensed tannins contained in the extract, which bind to mucins in the gastric mucosa forming a protective coating against damaging agents. Our study highlights the biopharmaceutical potential of E. dysenterica.
Gatouillat, Grégory; Magid, Abdulmagid Alabdul; Bertin, Eric; Okiemy-Akeli, Marie-Genevieve; Morjani, Hamid; Lavaud, Catherine; Madoulet, Claudie
2014-01-01
Alfalfa (Medicago sativa) has been used to cure a wide variety of ailments. However, only a few studies have reported its anticancer effects. In this study, extracts were obtained from alfalfa leaves and their cytotoxic effects were assessed on several sensitive and multidrug-resistant tumor cells lines. Using the mouse leukaemia P388 cell line and its doxorubicin-resistant counterpart (P388/DOX), we showed that the inhibition of cell growth induced by alfalfa leaf extracts was mediated through the induction of apoptosis, as evidenced by DNA fragmentation analysis. The execution of programmed cell death was achieved via the activation of caspase-3, leading to PARP cleavage. Fractionation of toluene extract (To-1), the most active extract obtained from crude extract, led to the identification of 3 terpene derivatives and 5 flavonoids. Among them, (-)-medicarpin, (-)-melilotocarpan E, millepurpan, tricin, and chrysoeriol showed cytotoxic effects in P388 as well as P388/DOX cells. These results demonstrate that alfalfa leaf extract may have interesting potential in cancer chemoprevention and therapy.
Sekiguchi, Hirotaka; Takabayashi, Fumiyo; Deguchi, Yuya; Masuda, Hideki; Toyoizumi, Tomoyasu; Masuda, Shuichi; Kinae, Naohide
2010-01-01
Infection with Helicobacter pylori (H. pylori) can induce gastric disorders, and though its presence cannot explain disease pathogenesis and does not have associations with other factors, it is well known that H. pylori infection causes stomach inflammation following oxidative stress. We examined the suppressive effects of a leaf extract of Wasabia japonica on H. pylori infection and on stress loading in Mongolian gerbils. Following oral administration of wasabi extract of 50 and 200 mg/kg B.W./d for 10 d, the animals were exposed to restraint stress for 90 and 270 min. As for the results, the level of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in the stomach and oxidative DNA damage in peripheral erythrocytes at 270 min significantly increased. That elevation was significantly suppressed by the addition of the leaf extract. We concluded that the simultaneous loading of H. pylori infection and physical stress loading might induce oxidative DNA damage additively, while a leaf extract attenuated this DNA damage in the stomach as well as the peripheral erythrocytes.
Yadav, Arun K; Temjenmongla
2011-10-01
The leaves of Houttuynia cordata Thunb. (Saururaceae) are considered to have anthelmintic properties in the traditional medicine of Naga tribes in Northeast India and, therefore, are used by the natives to treat the intestinal worm infections. In the present study, the anticestodal activity of H. cordata leaf extract was investigated against Hymenolepis diminuta, a zoonotic cestode, in experimentally infected albino rats. For the assessment of anticestodal efficacy, the eggs per gram (EPG) of faeces counts and worm loads of animals were monitored following treatment with 200, 400 and 800 mg/kg p.o. doses of leaf extract to different groups of rats harbouring larval, immature and mature H. diminuta infections. The efficacy of the extract was found to be dose-dependent (P < 0.05). Further, the extract showed its maximum efficacy against the mature Hymenolepis worms. In this case, the 800 mg/kg dose of extract significantly reduced (P < 0.001) the EPG counts of animals by 57.09% and worm load by 75.00%, at post-treatment. In comparison, the reference drug praziquantel at 5 mg/kg showed a reduction in the EPG counts and worm load of experimental animals by 80.37 and 87.50%, respectively. These findings indicate that leaves of H. cordata possess significant anticestodal property and provide a rationale for their use in traditional medicine as an anthelmintic.
Valentim, Diego; Bueno, Carlos Roberto Emerenciano; Marques, Vanessa Abreu Sanches; Vasques, Ana Maria Veiga; Cury, Marina Tolomei Sandoval; Cintra, Luciano Tavares Angelo; Dezan, Eloi
2017-07-03
The aim of this study was to evaluate edemogenic activity and subcutaneous inflammatory reaction induced by Psidium cattleianum leaf extracts associated with Ca(OH)2. Thirty male Wistar rats, split equally into three groups [aqueous extract + Ca(OH)2; ethanolic extract + Ca(OH)2; and propylene glycol + Ca(OH)2], were assessed every 3 h or 6 h (five animals in each period). Under general anesthesia, 0.2 mL of 1% Evans blue per 100 g of body weight was injected into the penile vein and each combination to be evaluated was subcutaneously injected into the dorsal region 30 min thereafter. Edemogenic activity was analyzed by spectrophotometry (λ=630 nm). For inflammatory reaction analysis, 50 rats received four polyethylene tubes (three experimental groups) and an empty tube (control group). The assessments were made at 7, 15, 30, 60, and 90 days, followed by hematoxylin-eosin staining and by the assignment of scores for evaluation of tissue response intensity. Ethanolic extract + Ca(OH)2 yielded the largest edemogenic activity at 3 h. Intergroup differences at 6 h were not significant. The histological analysis showed progressive repair over time (p<0.05) and aqueous and ethanolic extracts produced similar responses to those of the control and Ca(OH)2 + propylene glycol groups. Psidium cattleianum leaf extracts used as Ca(OH)2 vehicles evoked similar tissue response when compared to Ca(OH)2 associated with propylene glycol.
NASA Astrophysics Data System (ADS)
Sharmila, G.; Farzana Fathima, M.; Haries, S.; Geetha, S.; Manoj Kumar, N.; Muthukumaran, C.
2017-06-01
Synthesis of metal nanoparticles through green chemistry route is an emerging eco-friendly approach in the present days. An eco-friendly, biogenic synthesis of palladium nanoparticles (PdNPs) using Filicium decipiens leaf extract was reported in the present study. The synthesized PdNPs were characterized by UV-visible spectroscopy, Transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The PdNPs formation was confirmed by UV-visible spectrophotometer and spherical shaped PdNPs with size range of 2-22 nm was observed in TEM analysis. Energy dispersive X-ray spectroscopy (EDS) analysis confirmed the presence of palladium in the synthesized nanoparticles. The crystalline nature of PdNPs was confirmed by XRD pattern and compared with the standard. The phytochemicals and proteins were identified by their functional groups in FT-IR spectrum and revealed the amide, amine groups present in F. decipiens may have involved in the bio-reduction reaction for PdNPs synthesis. Prepared PdNPs showed potential antibacterial activity against both Gram-positive and Gram-negative bacteria. F. decipiens leaf extract based PdNPs showed high bactericidal activity against Escherichia coli, Pseudomonas aeruginosa as compared to Staphylococcus aureus and Bacillus subtilis Results showed that phytochemicals rich F. decipiens leaf extract may be utilized as an effective non-toxic reducing agent for PdNPs synthesis and prepared PdNPs may useful in biomedical applications.
Ibrahim, M A; Aliyu, A B; Sallau, A B; Bashir, M; Yunusa, I; Umar, T S
2010-05-01
The in vitro and in vivo antitrypanosomal effects of the ethanol extract of Senna occidentalis leaf were investigated. The crude extract exhibited an in vitro activity against Trypanosoma brucei brucei as it completely eliminated parasites' motility within 10 minutes postincubation with 6.66 mg/ml of effective extract concentration. The extract was further used to treat experimentally T. brucei brucei infected rats at concentrations of 100 and 200 mg/kg body weight, beginning on day 5 post infections (p.i.). At the termination of the experiment on Day 11 p.i., the extract significantly (P < 0.05) kept the parasitemia lower than was recorded in the infected untreated rats. All the infected animals developed anemia, the severity of which was significantly (P < 0.05) ameliorated by the extract treatment. The infection caused significant (P < 0.05) increases in serum alanine and aspartate aminotransferases as well as serum urea and creatinine levels. However, treatment of infected animals with the extract significantly (P < 0.05) prevented the trypanosome-induced increase in these biochemical indices. Furthermore, the T. brucei infection caused hepatomegaly and splenomegaly that were significantly (P < 0.05) ameliorated by the extract administration. It was concluded that orally administered ethanol extract of S. occidentalis leaf possessed anti-T. brucei brucei activity and could ameliorate the disease-induced anemia and organ damage.
Liu, Ya-Ling; Lin, Lei-Chen; Tung, Yu-Tang; Ho, Shang-Tse; Chen, Yao-Li; Lin, Chi-Chen; Wu, Jyh-Horng
2017-01-01
Some members of Rhododendron genus are traditionally used as medicinal plants for arthritis, acute and chronic bronchitis, asthma, pain, inflammation, rheumatism, hypertension and metabolic diseases. To the best of our knowledge, there is no report on the protective effects of R. oldhamii leaf extract on non-alcoholic fatty liver disease (NAFLD) in vivo and in vitro . In this study, the effects of R. oldhamii leaf extract on inhibiting the free fatty acid (FFA)-induced accumulation of fat in HepG2 cells and on improving fatty liver syndrome in mice with high fat diet (HFD)-induced NAFLD were investigated. For the in vitro assay, HepG2 cells were treated with FFAs (oleate/palmitate = 2:1) with or without treatment with R. oldhamii leaf ethyl acetate (EtOAc) fraction to observe lipid accumulation using Nile red and oil red O stains. For the in vivo assay, C57BL/6 mice were randomly assigned to three groups ( n = 5), including the normal diet group, the HFD group and the HFD+EtOAc group. After 11 weeks, body weight, serum biochemical indices and the mRNA expressions of the liver tissue, as well as the outward appearance, weight and histopathological analysis of liver and adipose tissues were evaluated. Among the fractions derived from R. oldhamii leaf, the EtOAc fraction exhibited a strong fat-accumulation inhibitory activity. Following reverse-phase high-performance liquid chromatography (HPLC), four specific phytochemicals, including (2 R , 3 R )-astilbin (AS), hyposide (HY), guaijaverin (GU) and quercitrin (QU), were isolated and identified from the EtOAc fraction of R. oldhamii leaf extract. Among them, AS and HY showed excellent fat-accumulation inhibitory activity. Thus, the EtOAc fraction of R. oldhamii leaf and its derived phytochemicals have great potential in preventing FFA-induced fat accumulation. In addition, the EtOAc fraction of R. oldhamii leaf significantly improved fatty liver syndrome and reduced total cholesterol (TC) and triglyceride (TG) in HFD
NASA Astrophysics Data System (ADS)
Kusbandari, A.; Susanti, H.
2017-11-01
Maranta arundinacea L is one of herbaceous plants in Indonesia which have flavonoid content. Flavonoids has antioxidants activity by inhibition of free radical oxidation reactions. The study aims were to determination total phenolic content and antioxidant activity of methanol extract of fresh leaf and tuber of M. arundinacea L by UV-Vis spectrophotometer. The methanol extracts were obtained with maceration and remaseration method of fresh leaves and tubers. The total phenolic content was assayed with visible spectrophotometric using Folin Ciocalteau reagent. The antioxidant activity was assayed with 1,1-diphenyl-2-picrilhidrazil (DPPH) compared to gallic acid. The results showed that methanol extract of tuber and fresh leaf of M. arundinacea L contained phenolic compound with total phenolic content (TPC) in fresh tuber of 3.881±0.064 (% GAE) and fresh leaf is 6.518±0.163 (% b/b GAE). IC50 value from fresh tuber is 1.780±0.0005 μg/mL and IC50 fresh leaf values of 0.274±0.0004 μg/mL while the standard gallic acid is IC50 of 0.640±0.0002 μg/mL.
Brighenti, F L; Luppens, S B I; Delbem, A C B; Deng, D M; Hoogenkamp, M A; Gaetti-Jardim, E; Dekker, H L; Crielaard, W; ten Cate, J M
2008-01-01
Plants naturally produce secondary metabolites that can be used as antimicrobials. The aim of this study was to assess the effects of Psidium cattleianum leaf extract on Streptococcus mutans. The extract (100%) was obtained by decoction of 100 g of leaves in 600 ml of deionized water. To assess killing, S. mutans biofilms were treated with water (negative control) or various extract dilutions [100, 50, 25% (v/v) in water] for 5 or 60 min. To evaluate the effect on protein expression, biofilms were exposed to water or 1.6% (v/v) extract for 120 min, proteins were extracted and submitted to 2-dimensional difference gel electrophoresis. Differentially expressed proteins were identified by mass spectrometry. The effect of 1.6% (v/v) extract on acid production was determined by pH measurements and compared to a water control. Viability was similar after 5 min of treatment with the 100% extract or 60 min with the 50% extract (about 0.03% survival). There were no differences in viability between the biofilms exposed to the 25 or 50% extract after 60 min of treatment (about 0.02% survival). Treatment with the 1.6% extract significantly changed protein expression. The abundance of 24 spots was decreased compared to water (p < 0.05). The extract significantly inhibited acid production (p < 0.05). It is concluded that P. cattleianum leaf extract kills S. mutans grown in biofilms when applied at high concentrations. At low concentrations it inhibits S. mutans acid production and reduces the expression of proteins involved in general metabolism, glycolysis and lactic acid production. (c) 2008 S. Karger AG, Basel
Aiyegoro, Olayinka A; Okoh, Anthony I
2009-11-13
We evaluated the in vitro antioxidant property and phytochemical constituents of the aqueous crude leaf extract of Helichrysum pedunculatum. The scavenging activity on superoxide anions, DPPH, H₂O₂, NO and ABTS; and the reducing power were determined, as well as the flavonoid, proanthocyanidin and phenolic contents of the extract. The extract exhibited scavenging activity towards all radicals tested due to the presence of relatively high total phenol and flavonoids contents. Our findings suggest that H. pedunculatum is endowed with antioxidant phytochemicals and could serve as a base for future drugs.
Aiyegoro, Olayinka A.; Okoh, Anthony I.
2009-01-01
We evaluated the in vitro antioxidant property and phytochemical constituents of the aqueous crude leaf extract of Helichrysum pedunculatum. The scavenging activity on superoxide anions, DPPH, H2O2, NO and ABTS; and the reducing power were determined, as well as the flavonoid, proanthocyanidin and phenolic contents of the extract. The extract exhibited scavenging activity towards all radicals tested due to the presence of relatively high total phenol and flavonoids contents. Our findings suggest that H. pedunculatum is endowed with antioxidant phytochemicals and could serve as a base for future drugs. PMID:20087473
Lu, WenQing; Zhou, XiaoMin
2016-01-01
In our previous study, we have found that persimmon, guava, and sweetsop owned considerably high antioxidant activity and contained high total phenolic contents as well. In order to further supply information on the antibacterial and antioxidant activity of these three tropic fruits, they were extracted by 80% methanol. We then examined the extractions about their phenolic compounds and also studied the extractions and phenolic contents about their minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against twelve targeted pathogens including 8 standard strains (Staphylococcus aureus, Bacillus cereus, Staphylococcus epidermidis, Monilia albican, Escherichia coli, Salmonella typhimurium, Shigella flexneri, and Pseudomonas aeruginosa) and 4 multidrug-resistant strains (methicillin-resistant Staphylococcus aureus, ESBLs-producing Escherichia coli, carbapenems-resistant Pseudomonas aeruginosa, and multidrug-resistant Acinetobacter baumannii), which are common and comprehensive in clinic. We also employed two ways, that is, FRAP and TEAC, to evaluate their antioxidant activities, using ultraviolet and visible spectrophotometer. Our study indicated that the three tropical fruits possessed obvious antioxidant and antibacterial activity, which supported the possibility of developing the fruits into new natural resource food and functional food as well as new natural antimicrobial agent and food preservatives. Moreover, phenolic compounds detected in the fruits could be used as a potential natural antibacterial agent and antioxidant. PMID:27648444
Ou, Zong-Quan; Schmierer, David M; Rades, Thomas; Larsen, Lesley; McDowell, Arlene
2013-02-01
To use an online assay to identify key antioxidants in Sonchus oleraceus leaf extracts and to investigate the effect of leaf position and extraction conditions on antioxidant concentration and activity. Separation of phytochemicals and simultaneous assessment of antioxidant activity were performed online using HPLC and post-column reaction with a free-radical reagent (2, 2-diphenylpicrylhydrazyl, DPPH). Active compounds were identified using nuclear magnetic resonance spectroscopy and mass spectrometry. We applied the online HPLC-DPPH radical assay to evaluate antioxidants in leaves from different positions on the plant and to assess the effect of pre-treatment of leaves with liquid N(2) before grinding, extraction time, extraction temperature and method of concentrating extracts. Key antioxidants identified in S. oleraceus leaf extracts were caftaric acid, chlorogenic acid and chicoric acid. Middle leaves contained the highest total amount of the three key antioxidant compounds, consisting mainly of chicoric acid. Pre-treatment with liquid N(2), increasing the extraction temperature and time and freeze-drying the extract did not enhance the yield of the key antioxidants. The online HPLC-DPPH radical assay was validated as a useful screening tool for investigating individual antioxidants in leaf extracts. Optimized extraction conditions were middle leaves pre-treated with liquid N(2), extraction at 25°C for 0.5 h and solvent removal by rotary evaporation. © 2012 The Authors. JPP © 2012. Royal Pharmaceutical Society.
Shashidhara, S; Bhandarkar, Anant V; Deepak, M
2008-06-01
Successive chloroform, methanol and water extracts of bark and leaves of Albizzia lebbeck were tested for its in vitro mast cell stabilizing effect against compound 48/80. Methanolic extract of leaf and methanolic and water extracts of bark have shown maximum activity comparable to that of disodium chromoglycate.
Observation of Muntingia Calabura’s Leaf Extract as Feed Additive for Livestock Diet
NASA Astrophysics Data System (ADS)
Pujaningsih, R. I.; Sulistiyanto, B.; Sumarsih, S.
2018-02-01
Using of synthetic antioxidants in feedstuffs continuously can cause negative effect for the livestock. This study observed the constituent compounds of cherry leaf powder using format method of descriptive qualitative. Comparative study was done between young and old leaves to identify the content of antioxidant and antimicrobial. Based on the results of phytochemical tests that have been done, old cherry leaves contain compounds of flavonoids more than young cherry leaves. From the results of this study can be concluded that the results of old cherry leaf isolation using soxhlet extraction has antibacterial power against E. coli bacteria, and S. aureus at concentration of 75% have greater inhibitory ability.
In vitro antioxidant activities of leaf and root extracts of Albizia antunesiana harms.
Chipiti, Talent; Ibrahim, Mohammed Auwal; Koorbanally, Neil Anthony; Islam, Md Shahidul
2013-01-01
The antioxidative activities of the ethanol and aqueous extracts of the leaf and root samples of Albizia antunesiana were determined across a series of four in vitro models. The results showed that all the extracts had reducing power (Fe(3+)- Fe2+), DPPH, hydroxyl and nitric oxide radical scavenging abilities. The ethanol root extract had more potent antioxidant power in all the experimental models and possesses a higher total phenol content of 216.6 +/- 6.7 mg/g. The GC-MS analysis of the aqueous and ethanol extracts of the roots and leaves indicated that several aromatic phenolic compounds, a coumarin and some common triterpenoids were present in these extracts. Data from this study suggest that the leaves and roots of Albizia antunesiana possessed antioxidative activities that varied depending on the solvents.
Awakan, Oluwakemi Josephine; Malomo, Sylvia Omonirume; Adejare, Abdullahi Adeyinka; Igunnu, Adedoyin; Atolani, Olubunmi; Adebayo, Abiodun Humphrey; Owoyele, Bamidele Victor
2018-01-01
Anacardium occidentale L. leaf is useful in the treatment of inflammation and asthma, but the bioactive constituents responsible for these activities have not been characterized. Therefore, this study was aimed at identifying the bioactive constituent(s) of A. occidentale ethanolic leaf extract (AOEL) and its solvent-soluble portions, and evaluating their effects on histamine-induced paw edema and bronchoconstriction. The bronchodilatory effect was determined by measuring the percentage protection provided by plant extracts in the histamine-induced bronchoconstriction model in guinea pigs. The anti-inflammatory effect of the extracts on histamine-induced paw edema in rats was determined by measuring the increase in paw diameter, after which the percent edema inhibition was calculated. The extracts were analyzed using gas chromatography-mass spectrometry to identify the bioactive constituents. Column chromatography and Fourier transform infrared spectroscopy were used respectively to isolate and characterize the constituents. The bronchodilatory and anti-inflammatory activities of the isolated bioactive constituent were evaluated. Histamine induced bronchoconstriction in the guinea pigs and edema in the rat paw. AOEL, hexane-soluble portion of AOEL, ethyl acetate-soluble portion of AOEL, and chloroform-soluble portion of AOEL significantly increased bronchodilatory and anti-inflammatory activities (P < 0.05). Oleamide (9-octadecenamide) was identified as the most abundant compound in the extracts and was isolated. Oleamide significantly increased bronchodilatory and anti-inflammatory activities by 32.97% and 98.41%, respectively (P < 0.05). These results indicate that oleamide is one of the bioactive constituents responsible for the bronchodilatory and anti-inflammatory activity of A. occidentale leaf, and can therefore be employed in the management of bronchoconstriction and inflammation. Copyright © 2017 Shanghai Changhai Hospital. Published by Elsevier B
Gomes, Jacyra Antunes dos Santos; Geraldo Amaral, Juliano; Lopes, Norberto Peporine; Tabosa do Egito, Eryvaldo Sócrates; da Silva-Júnior, Arnóbio Antônio; Maria Zucolotto, Silvana
2016-01-01
Snakebites are a serious worldwide public health problem. In Brazil, about 90% of accidents are attributed to snakes from the Bothrops genus. The specific treatment consists of antivenom serum therapy, which has some limitations such as inability to neutralize local effects, difficult access in some regions, risk of immunological reactions, and high cost. Thus, the search for alternative therapies to treat snakebites is relevant. Jatropha mollissima (Euphorbiaceae) is a medicinal plant popularly used in folk medicine as an antiophidic remedy. Therefore, this study aims to evaluate the effect of the aqueous leaf extract from J. mollissima on local effects induced by Bothrops venoms. High Performance Liquid Chromatography with Diode Array Detection analysis and Mass Spectrometry analysis of aqueous leaf extract confirmed the presence of the flavonoids isoschaftoside, schaftoside, isoorientin, orientin, vitexin, and isovitexin. This extract, at 50–200 mg/kg doses administered by intraperitoneal route, showed significant inhibitory potential against local effects induced by Bothrops erythromelas and Bothrops jararaca snake venoms. Local skin hemorrhage, local edema, leukocyte migration, and myotoxicity were significantly inhibited by the extract. These results demonstrate that J. mollissima extract possesses inhibitory potential, especially against bothropic venoms, suggesting its potential as an adjuvant in treatment of snakebites. PMID:27847818
NASA Astrophysics Data System (ADS)
Subba Rao, Y.; Kotakadi, Venkata S.; Prasad, T. N. V. K. V.; Reddy, A. V.; Sai Gopal, D. V. R.
2013-02-01
A simple method for the green synthesis of silver nanoparticles (AgNPs) using aqueous extract of Lakshmi tulasi (Ocimum sanctum) leaf as a reducing and stabilizing agent. AgNPs were rapidly synthesized using aqueous extract of tulasi leaf with AgNO3 solution within 15 min. The green synthesized AgNPs were characterized using physic-chemical techniques viz., UV-Vis, X-ray diffraction (XRD), scanning electron microscope (SEM) coupled with X-ray energy dispersive spectroscopy (EDX) and Fourier transform-infrared spectroscopy (FT-IR). Characterization data reveals that the particles were crystalline in nature and triangle shaped with an average size of 42 nm. The zeta potential of AgNPs were found to be -55.0 mV. This large negative zeta potential value indicates repulsion among AgNPs and their dispersion stability.
Popa, Claudia Valentina; Lungu, Liliana; Cristache, Ligia Florentina; Ciuculescu, Crinu; Danet, Andrei Florin; Farcasanu, Ileana Cornelia
2015-01-01
To gain new insight into the antimicrobial potential of Ailanthus altissima Swingle, ethanol leaf extracts were evaluated for the antifungal effects against the model yeast Saccharomyces cerevisae. The extracts inhibited the yeast growth in a dose-dependent manner, and this effect could be augmented by heat shock, exposure to visible light or exposure to high concentrations of Ca(2+). Using transgenic yeast cells expressing the Ca(2+)-dependent photoprotein, aequorin, it was found that the leaf extracts induced cytosolic Ca(2+) elevation. Experiments on yeast mutants with defects in Ca(2+) transport demonstrated that the cytotoxicity of the A. altissima leaf extracts (AaLEs) was mediated by transient pulses of Ca(2+) ions which were released into the cytosol predominantly from the vacuole. The investigation of the antifungal synergies involving AaLEs may contribute to the development of optimal and safe combination therapies for the treatment of drug-resistant fungal infections.
Roy, Bishnupada; Dutta, B K
2003-11-01
Leaf extract of C. sativa causes paralysis leading to death in larvae of C. samoensis. The extract brought a drastic change in the morphology of sensilla trichoidea and the general body cuticle. The larvae exposed to the leaf extract also showed a significant reduction in the concentration of Mg and Fe, while Mn showed only slight average increase. Since the sensilla trichoidea has nerve connection, it is expected that the toxic principle of the leaf extract has affected the central nervous system. The significant reduction of the level of Fe indicates that the extract could cause the reduction in oxygen binding capacity of the haemolymph, thereby acting as a respiratory poison in addition to its known role as a neurotoxic substance.
Tomiyama, Kiyoshi; Mukai, Yoshiharu; Saito, Masahiro; Watanabe, Kiyoko; Kumada, Hidefumi; Nihei, Tomotaro; Hamada, Nobushiro; Teranaka, Toshio
2016-01-01
The purpose of this study was to evaluate the antibacterial activity against polymicrobial (PM) biofilms of a condensed tannin extracted from astringent persimmon (PS-M), which is contained in refreshing beverages commercially available in Japan. Salivary PM biofilms were formed anaerobically on glass coverslips for 24 and 72 h and were treated for 5 min with sterilized deionized water (DW), 0.05 and 0.2 wt% chlorhexidine digluconate (CHX), and 0.5–4.0 wt% PS-M solution. The colony forming units (CFU/mL) were determined and morphological changes of the biofilms were observed by scanning electron microscopy (SEM). The CFUs were lower in all PS-M and CHX groups compared to the DW group. PS-M exerted a dose-dependent effect. PS-M (1.53 × 107) at a dose of 4.0 wt% had the same effect as 0.2 wt% CHX (2.03 × 107), regardless of the culture period. SEM revealed the biofilm structures were considerably destroyed in the 4.0 wt% PS-M and 0.2 wt% CHX. These findings indicate that the antibacterial effects of PS-M, a naturally derived substance, are comparable to those of CHX. PS-M may keep the oral cavity clean and prevent dental caries and periodontal disease related to dental plaque, as well as systemic disease such as aspiration pneumonitis. PMID:26981533
Ginseng leaf-stem: bioactive constituents and pharmacological functions
Wang, Hongwei; Peng, Dacheng; Xie, Jingtian
2009-01-01
Ginseng root is used more often than other parts such as leaf stem although extracts from ginseng leaf-stem also contain similar active ingredients with pharmacological functions. Ginseng's leaf-stems are more readily available at a lower cost than its root. This article reviews the pharmacological effects of ginseng leaf-stem on some diseases and adverse effects due to excessive consumption. Ginseng leaf-stem extract contains numerous active ingredients, such as ginsenosides, polysaccharides, triterpenoids, flavonoids, volatile oils, polyacetylenic alcohols, peptides, amino acids and fatty acids. The extract contains larger amounts of the same active ingredients than the root. These active ingredients produce multifaceted pharmacological effects on the central nervous system, as well as on the cardiovascular, reproductive and metabolic systems. Ginseng leaf-stem extract also has anti-fatigue, anti-hyperglycemic, anti-obesity, anti-cancer, anti-oxidant and anti-aging properties. In normal use, ginseng leaf-stem extract is quite safe; adverse effects occur only when it is over dosed or is of poor quality. Extracts from ginseng root and leaf-stem have similar multifaceted pharmacological activities (for example central nervous and cardiovascular systems). In terms of costs and source availability, however, ginseng leaf-stem has advantages over its root. Further research will facilitate a wider use of ginseng leaf-stem. PMID:19849852
Charan, Jaykaran; Saxena, Deepak; Goyal, Jagdish Prasad; Yasobant, Sandul
2016-01-01
Dengue is an infectious disease associated with high mortality and morbidity. Being a viral disease, there is no specific drug available for treatment. There are some reports that Carica papaya leaf extract may improve the clinical condition of dengue patients; however, to support this, at present, there is no systematically searched and synthesized evidence available. This systematic review and meta-analysis was designed to search the available evidence related to the efficacy and safety of C. papaya leaf extract in dengue and to synthesize the evidence in meaningful form through meta-analysis so that inference can be drawn. Randomized controlled trials related to the efficacy and safety of C. papaya leaf extract in dengue were searched from PubMed, Cochrane Clinical Trial Registry and Google Scholar. The primary endpoint was mortality, and secondary endpoints were increase in platelet count, hospitalization days, and Grade 3 and 4 adverse events. Data related to primary and secondary endpoints were pooled together and analyzed by review manager (Review Manager (RevMan) Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, Denmark) software. The random effect model was used. The bias was analyzed by the Cochrane risk of bias tool. Total four trials enrolling 439 subjects were included in the analysis. Of 439 subjects, data of 377 subjects were available for analysis. C. papaya leaf extract was found to be associated with increase in platelet count in the overall analysis (mean difference [MD] =20.27 [95% confidence interval (CI) 6.21-34.73; P = 0.005]) and analysis after 4 th day (MD = 28.25 [95% CI 14.14-42.37; P < 0.0001]). After 48 h, there was no significant difference between C. papaya and control group (MD = 13.38 [95% CI - 7.71-34.51; P = 0.21]). There was significant decrease in hospitalization days in the C. papaya group (MD = 1.90 [95% CI 1.62-2.18; P < 0.00001]). Because of nonavailability of data in published clinical trials, mortality
Aleksic, Ivana; Ristivojevic, Petar; Pavic, Aleksandar; Radojević, Ivana; Čomić, Ljiljana R; Vasiljevic, Branka; Opsenica, Dejan; Milojković-Opsenica, Dušanka; Senerovic, Lidija
2018-08-10
Trapa natans L. (water chestnut or water caltrop) is a widespread aquatic plant, which has been cultivated for food and traditional medicine since ancient times. Pharmacological studies showed that water chestnut exhibits the wide range of biological activities, such as antimicrobial, antioxidative, analgesic, anti-inflammatory, as well as antiulcer. Evaluation of anti-virulence potential and toxicity of T. natans methanol (TnM), acetone (TnA) and ethyl acetate (TnEA) leaf extracts. The anti-quorum sensing activity of Tn extracts was addressed by measuring their effects on biofilm formation, swarming motility and pyocyanin and elastase production in Pseudomonas aeruginosa. Specific P. aeruginosa biosensors were used to identify which of the signaling pathways were affected. The lethal and developmental toxicity of extracts were addressed in vivo using the zebrafish (Danio rerio) model system. The phenolic composition of T. natans leafs extracts was analyzed by a linear ion trap-OrbiTrap hybrid mass spectrometer (LTQ OrbiTrapMS) and UHPLC system configured with a diode array detector (DAD) hyphenated with the triple quadrupole mass spectrometer. Subinhibitory concentrations of Tn leaf extracts (0.2 MIC) inhibited pyocyanin and elastase production up to 50% and 60%, respectively, and reduced swarming zones, comparing to non-treated P. aeruginosa. TnA inhibited biofilm formation by 15%, TnM showed a stimulatory effect on biofilm formation up to 20%, while TnEA showed no effect. The bioactive concentrations of TnM and TnA were not toxic in the zebrafish model system. Twenty-two phenolic compounds were tentatively identified in TnM, where thirteen of them were identified in T. natans for the first time. Tn extracts, as well as their major components, ellagic and ferulic acids, demonstrated the ability to interfere with P. aeruginosa Las and PQS signaling pathways. This study demonstrates anti-virulence potential of Tn leaf extracts against medically important pathogen P
Ofusori, David A; Komolafe, Omobola A; Adewole, Olarinde S; Arayombo, Babatunde E; Margolis, Denise; Naicker, Thajasvarie
2016-01-01
To investigate the histological and immunohistochemical effects of aqueous leaf extract of Xylo- pia aethiopica on the pancreas in streptozotocin-induced diabetic rats, 30 adult Wistar rats were divided into three groups (n=10). Group A was the control (administered with equivalent vol- ume of citrate buffer), group B animals were made diabetic by a single intraperitoneal injection of streptozotocin dissolved in citrate buffer (65 mg/kg), group C animals were made diabetic as above and treated with 200mg/kg body weight of aqueous leave extract of Xylopia aethiop- ica for 25 days. Upon animal sacrifice, the pancreas were excised, fixed in 10% formol saline and processed for light microscopy and immunohistochemistry.. The results revealed destruc- tion of the islet cells in the untreated diabetic group as compared with the controls. The extract treated group was characterized by recovery/regenerative processes indicated by improvement in islet morphology. In untreated diabetic rats immunoreactive P-cells were sparse, at variance from the controls. The group treated with aqueous leaf extract of Xylopia aethiopica revealed more intense staining for insulin and significant (p<0.05) increase in the percentage of immuno- labelled surface area when compared with the untreated diabetic group, suggesting the ability of P-cells to secrete insulin in the extract treated rats. We conclude that the aqueous leaf extract of Xylopia aethiopica improves recovery process of P-cells in streptozotocin-induced diabetic rats and might become useful in the management of diabetes related complications.
Vivekanandhan, Singaravelu; Schreiber, Makoto; Mason, Cynthia; Mohanty, Amar Kumar; Misra, Manjusri
2014-01-01
The functionalization of ZnO powders with silver nanoparticles (AgNPs) through a novel maple leaf extract mediated biological process was demonstrated. Maple leaf extract was found to be a very effective bioreduction agent for the reduction of silver ions. The reduction rate of Ag(+) into Ag(0) was found to be much faster than other previously reported bioreduction rates and was comparable to the reduction rates obtained through chemical means. The functionalization of ZnO particles with silver nanoparticles through maple leaf extract mediated bioreduction of silver was investigated through UV-visible spectrophotometry, transmission electron microscopy (TEM), and X-ray diffraction analysis. It was found that the ZnO particles were coated with silver nanoparticles 5-20 nm in diameter. The photocatalytic ability of the ZnO particles functionalized with silver nanoparticles was found to be significantly improved compared to the photocatalytic ability of the neat ZnO particles. The silver functionalized ZnO particles reached 90% degradation of the dye an hour before the neat ZnO particles. Copyright © 2013 Elsevier B.V. All rights reserved.
Ketsuwan, Nitinet; Leelarungrayub, Jirakrit; Kothan, Suchart; Singhatong, Supawatchara
2017-01-01
Vernonia cinerea (VC) Less has been proposed as a medicinal plant with interesting activities, such as an aid for smoking cessation worldwide. Despite its previous clinical success in smoking cessation by exhibiting reduced oxidative stress, it has not been approved. The aim of this study was to investigate various antioxidant activity and active compounds that have not been approved, including the protective activity in human red blood cells (RBCs), from the stem, flower, and leaf extracts of VC Less in vitro. These extracts were tested for their antioxidant activity in scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and analyzed by high-performance liquid chromatography (HPLC) for their active compounds: total tannin, five catechin (C) compounds (epicatechin gallate [ECG], C, epicatechin [EC], epigallocatechin gallate [EGCG], and (-)-epigallocatechin [EGC]), flavonoid, nitrite, nitrate, caffeine, and nicotine. Moreover, antioxidant activities of the extracts were evaluated in 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)-treated RBCs. The results showed that the flower and leaf of VC Less had higher activity than the stem in scavenging DPPH radicals. The tannin content in the flower and leaf was higher than that in the stem. The leaf had the highest content of the five catechins (C, EC, EGCG, ECG, and EGC), the same as in the flavonoid, when compared to the stem and flower. Furthermore, the leaf extract had higher nitrate and nitrite than the stem. Nicotine content was found to be higher in the leaf when compared to the flower. In addition, the leaf showed protective activity in glutathione (GSH), malondialdehyde (MDA), and protein carbonyl, with a dose response in AAPH-oxidized RBCs, the same as in standard EGCG. Thus, this study concluded that radical scavenging and antioxidant compounds such as catechins, flavonoid, nitrate and nitrite, and nicotine are present in different VC Less parts and are included in the AAPH-oxidized RBC model.
Evaluation of Senna singueana leaf extract as an alternative or adjuvant therapy for malaria.
Hiben, Mebrahtom Gebrelibanos; Sibhat, Gereziher Gebremedhin; Fanta, Biruk Sintayehu; Gebrezgi, Haile Desta; Tesema, Shewaye Belay
2016-01-01
The emergence of malarial resistance to most antimalarial drugs is the main factor driving the continued effort to identify/discover new agents for combating the disease. Moreover, the unacceptably high mortality rate in severe malaria has led to the consideration of adjuvant therapies. Senna singueana leaves are traditionally used against malaria and fever. Extracts from the leaves of this plant demonstrated in vitro and in vivo antioxidant activities, which in turn could reduce the severity of malaria. Extracts from the root bark of this plant exhibited antiplasmodial activity; however, the leaves are the more sustainable resource. Thus, S. singueana leaf was selected for in vivo evaluation as a potential alternative or adjuvant therapy for malaria. Using malaria [Plasmodium berghei ANKA, chloroquine (CQ) sensitive]-infected Swiss albino mice of both sexes, 70% ethanol extract of S. singueana leaves (alone and in combination with CQ) was tested for antimalarial activity and adjuvancy potential. The 4-day suppressive test was used to evaluate antimalarial activity. The dose of S. singueana extract administered was safe to mice and exhibited some parasite suppression effect: extract doses of 200 mg/kg/d, 400 mg/kg/d, and 800 mg/kg/d caused 34.54%, 44.52%, and 47.32% parasite suppression, respectively. Concurrent administration of the extract with CQ phosphate at varied dose levels indicated that the percentage of parasite suppression of this combination was higher than administering CQ alone, but less than the sum of the effects of the extract and CQ acting separately. In conclusion, the study indicated that 70% ethanol extract of S. singueana leaf was safe to mice and possessed some parasite suppression effect. Coadministration of the extract with CQ appeared to boost the overall antimalarial effect, indicating that the combination may have a net health benefit if used as an adjuvant therapy.
Ashraf, Aisha; Sarfraz, Raja Adil; Rashid, Muhammad Abid; Mahmood, Adeel; Shahid, Muhammad; Noor, Nadia
2016-10-01
Context Psidium guajava L. (Myrtaceae) leaves are used in traditional medicines for the treatment of cancer, inflammation and other ailments. Objective The current study explores scientific validation for this traditional medication. Materials and methods We used ferric-reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picryl hydrazil (DPPH) assays to estimate antioxidant activity of P. guajava leaf extracts (methanol, hexane and chloroform). Antitumour and in vivo cytotoxic activities were determined using potato disc assay (PDA) and brine shrimp lethality assay, respectively. Three human carcinoma cell lines (KBM5, SCC4 and U266) were incubated with different doses (10-100 μg/mL) of extracts and the anticancer activity was estimated by MTT assay. NF-κB suppressing activity was determined using electrophoretic mobility shift assay (EMSA). Chemical composition of the three extracts was identified by GC-MS. Total phenolic and flavonoid contents were measured by colorimetric assays. Results and discussions The order of antioxidant activity of three extracts was methanol > chloroform > hexane. The IC50 values ranged from 22.73 to 51.65 μg/mL for KBM5; 22.82 to 70.25 μg/mL for SCC4 and 20.97 to 89.55 μg/mL for U266 cells. The hexane extract exhibited potent antitumour (IC50 value = 65.02 μg/mL) and cytotoxic (LC50 value = 32.18 μg/mL) activities. This extract also completely inhibited the TNF-α induced NF-κB activation in KBM5 cells. GC-MS results showed that pyrogallol, palmitic acid and vitamin E were the major components of methanol, chloroform and hexane extracts. We observed significant (p < 0.05) difference in total phenolic and flavonoid contents of different solvent extracts. Conclusion The present study demonstrates that P. guajava leaf extracts play a substantial role against cancer and down-modulate inflammatory nuclear factor kB.
An Unusual Cause of Duodenal Obstruction: Persimmon Phytobezoar.
Fan, Shengxian; Wang, Jing; Li, Yousheng
2016-12-01
Duodenal phytobezoar, an unusual cause of acute duodenal obstruction, is rarely seen. The most common cause of this type of bezoar is persimmon. It frequently arises from underlying gastrointestinal tract pathologies (gastric surgery, etc.). Here, we report the case of a 66-year-old man who had undergone distal gastrectomy with Billroth I reconstruction for gastric cancer and experienced severe epigastric discomfort, abdominal pain, and vomiting for a few days. The abdominal computed tomography scan showed a large-sized mass in the horizontal portion of the duodenum. On following endoscopic examination, a large phytobezoar was revealed in the duodenum. He was treated with endoscopic fragmentation combined with nasogastric Coca-Cola. The patient tolerated the procedure well and resumed a normal oral diet 3 days later.
Ajitha, B; Ashok Kumar Reddy, Y; Sreedhara Reddy, P
2014-07-15
This study reports the simple green synthesis method for the preparation of silver nanoparticles (Ag NPs) using Plectranthus amboinicus leaf extract. The pathway of nanoparticles formation is by means of reduction of AgNO3 by leaf extract, which acts as both reducing and capping agents. Synthesized Ag NPs were subjected to different characterizations for studying the structural, chemical, morphological, optical and antimicrobial properties. The bright circular fringes in SAED pattern and diffraction peaks in XRD profile reveals high crystalline nature of biosynthesized Ag NPs. Morphological studies shows the formation of nearly spherical nanoparticles. FTIR spectrum confirms the existence of various functional groups of biomolecules capping the nanoparticles. UV-visible spectrum displays single SPR band at 428 nm indicating the absence of anisotropic particles. The synthesized Ag NPs exhibited better antimicrobial property towards gram negative Escherichia coli and towards tested Penicillium spp. than other tested microorganisms using disc diffusion method. Finally it has proven that the synthesized bio-inspired Ag NPs have potent antimicrobial effect. Copyright © 2014 Elsevier B.V. All rights reserved.
Gandhi, P Rajiv; Jayaseelan, C; Mary, R Regina; Mathivanan, D; Suseem, S R
2017-10-01
The aim of the present study was to evaluate the acaricidal, pediculicidal and larvicidal effect of synthesized zinc oxide nanoparticles (ZnO NPs) using Momordica charantia leaf extract against the larvae of Rhipicephalus (Boophilus) microplus, adult of Pediculus humanus capitis, and the larvae of Anopheles stephensi, Culex quinquefasciatus. The ZnO NPs were characterized by using UV, XRD, FTIR and SEM-EDX. The SEM image confirms that the synthesized nanoparticles were spherical in shape with a size of 21.32 nm. The results of GC-MS analysis indicates the presence of the major compound of Nonacosane (C 29 H 60 ) in the M. charantia leaf extract. Cattle tick, head lice and mosquito larvae were exposed to a varying concentrations of the synthesized ZnO NPs and M. charantia leaf extract for 24 h. Compared to the leaf aqueous extract, biosynthesized ZnO NPs showed higher toxicity against R. microplus, P. humanus capitis, An. stephensi, and Cx. Quinquefasciatus with the LC 50 values of 6.87, 14.38, 5.42, and 4.87 mg/L, respectively. The findings revealed that synthesized ZnO NPs possess excellent anti-parasitic activity. These results suggest that the green synthesized ZnO NPs has the potential to be used as an ideal ecofriendly approach for the control of R. microplus, P. humanus capitis and the mosquito larvae of An. Stephensi and Cx. quinquefasciatus. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Singhal, Garima; Bhavesh, Riju; Kasariya, Kunal; Sharma, Ashish Ranjan; Singh, Rajendra Pal
2011-07-01
Development of green nanotechnology is generating interest of researchers toward ecofriendly biosynthesis of nanoparticles. In this study, biosynthesis of stable silver nanoparticles was done using Tulsi ( Ocimum sanctum) leaf extract. These biosynthesized nanoparticles were characterized with the help of UV-vis spectrophotometer, Atomic Absorption Spectroscopy (AAS), Dynamic light scattering (DLS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Transmission electron microscopy (TEM). Stability of bioreduced silver nanoparticles was analyzed using UV-vis absorption spectra, and their antimicrobial activity was screened against both gram-negative and gram-positive microorganisms. It was observed that O. sanctum leaf extract can reduce silver ions into silver nanoparticles within 8 min of reaction time. Thus, this method can be used for rapid and ecofriendly biosynthesis of stable silver nanoparticles of size range 4-30 nm possessing antimicrobial activity suggesting their possible application in medical industry.
Palmeri, Rosa; Restuccia, Cristina; Monteleone, Julieta Ines; Sperlinga, Elisa; Siracusa, Laura; Serafini, Mauro; Finamore, Alberto; Spagna, Giovanni
2017-06-01
Olive leaves represent a quantitatively significant by-product of agroindustry. They are rich in phenols, mainly oleuropein, which can be hydrolyzed into several bioactive compounds, including hydroxytyrosol. In this study, water extract from olive leaves 'Biancolilla' was analyzed for polyphenol profile, DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity and protective effect on differentiated Caco-2 cells. The efficacy of two enzymatic treatments in promoting the release of bioactive phenols was investigated: a) enzymatic extract from Wickerhamomyces anomalus, characterized by β-glucosidase and esterase activities; b) commercial β-glucosidase. Composition and bioactivity of the resulting extracts were compared. The results showed that the yeast-treated extract presented hydroxytyrosol content and DPPH radical scavenging activity comparable to those obtained using commercial β-glucosidase; however, it was showed the additional presence of hydroxycinnamic acids. In experiments on Caco-2 cells, the leaf extracts promoted the recovery of cell membrane barrier at different minimum effective concentrations. The high specificity of W. anomalus enzymatic extract may represent an effective tool for the release of bioactive phenols from olive by-products.
Nakano, Ryohei; Ogura, Emi; Kubo, Yasutaka; Inaba, Akitsugu
2003-01-01
Persimmon (Diospyros kaki Thunb.) fruit are usually classified as climacteric fruit; however, unlike typical climacteric fruits, persimmon fruit exhibit a unique characteristic in that the younger the stage of fruit detached, the greater the level of ethylene produced. To investigate ethylene induction mechanisms in detached young persimmon fruit, we cloned three cDNAs encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (DK-ACS1, 2, and -3) and two encoding ACC oxidase (DK-ACO1 and -2) genes involved in ethylene biosynthesis, and we analyzed their expression in various fruit tissues. Ethylene production was induced within a few days of detachment in all fruit tissues tested, accompanied by temporally and spatially coordinated expression of all the DK-ACS and DK-ACO genes. In all tissues except the calyx, treatment with 1-methylcyclopropene, an inhibitor of ethylene action, suppressed ethylene production and ethylene biosynthesis-related gene expression. In the calyx, one ACC synthase gene (DK-ACS2) exhibited increased mRNA accumulation accompanied by a large quantity of ethylene production, and treatment of the fruit with 1-methylcyclopropene did not prevent either the accumulation of DK-ACS2 transcripts or ethylene induction. Furthermore, the alleviation of water loss from the fruit significantly delayed the onset of ethylene production and the expression of DK-ACS2 in the calyx. These results indicate that ethylene biosynthesis in detached young persimmon fruit is initially induced in calyx and is modulated by water loss through transcriptional activation of DK-ACS2. The ethylene produced in the calyx subsequently diffuses to other fruit tissues and acts as a secondary signal that stimulates autocatalytic ethylene biosynthesis in these tissues, leading to a burst of ethylene production. PMID:12529535
Chemical investigations of male and female leaf extracts from Schinus molle L.
Garzoli, Stefania; Laghezza Masci, Valentina; Turchetti, Giovanni; Pesci, Lorenzo; Tiezzi, Antonio; Ovidi, Elisa
2018-05-29
The pepper-tree Schinus molle is an evergreen ornamental plant with various and diversified list of medical uses. In this article we analysed the chemical composition of male and female leaves of this plant during the off-flowering and flowering seasons. The leaf extracts were obtained by using a sequential extraction with solvents of different polarities and the chemical composition was investigated by GC-MS. The results showed a total of twenty-three components, in which elemol is the most abundant constituent followed by bicyclogermacrene, γ-eudesmol, α-eudesmol, β-eudesmol and isocalamendiol. The petroleum ether and diethyl ether extracts from male and female flowering and off-flowering leaves consisted of sesquiterpene hydrocarbons as a major constituent followed by monoterpene hydrocarbons, while the acetone extracts showed a different composition. The obtained results show differences in the chemical composition between male and female and flowering and not flowering.
NASA Astrophysics Data System (ADS)
Sudewi, S.; Lolo, W. A.; Warongan, M.; Rifai, Y.; Rante, H.
2017-11-01
Abelmoschus manihot L. has reported to have flavonoids content. This study aims were to determine the ability of A. manihot extract in counteracting free radical DPPH and determine the content of total flavonoids. A. manihot leaf was taken from 2 regions in North Sulawesi, namely Tomohon and Kotamobagu. The maceration was carried out to extract the active compound in a 96% ethanol solvent. Free radical scavenging analysis was carried out by DPPH and determination of its total flavonoid in the extract was measured using spectrophotometri method. The results showed that A. manihot extract from Tomohon and Kotamobagu could counteract free radical of DPPH with value of free radical activity of 88.151 and 88.801 %, respectively. A. manihot leaf from Kotamobagu has higher total flavonoids content 61.763 mg/g compare to Tomohon 46.679 mg/g which presented as quercetin. A. manihot has antioxidant activity.
Antiulcer activity of the chloroform extract of Bauhinia purpurea leaf.
Hisam, Elly Ezlinda Abdul; Zakaria, Zainul Amiruddin; Mohtaruddin, Norhafizah; Rofiee, Mohd Salleh; Hamid, Hasiah Ab; Othman, Fezah
2012-12-01
Bauhinia purpurea L. (Fabaceae) is a native plant species of many Asian countries, including Malaysia and India. In India, the root, stem, bark, and leaf of B. purpurea are used to treat various ailments, including ulcers and stomach cancer. In an attempt to establish its pharmacological potential, we studied the antiulcer activity of lipid-soluble extract of B. purpurea obtained via extraction of air-dried leaves using chloroform. The rats were administered the chloroform extract (dose range of 100-1000 mg/kg) orally after 24 h fasting. They were subjected to the absolute ethanol- and indomethacin-induced gastric ulcer, and pyloric ligation assays after 30 min. The acute toxicity study was conducted using a single oral dose of 5000 mg/kg extract and the rats were observed for the period of 14 days. omeprazole (30 mg/kg) was used as the standard control. At 5000 mg/kg, the extract produced no sign of toxicity in rats. The extract exhibited significant (p < 0.05) dose-dependent antiulcer activity for the ethanol-induced model. The extract also significantly (p < 0.05) increased the gastric wall mucus production and pH of gastric content, while significantly (p < 0.05) reducing the total volume and total acidity of the gastric content in the pylorus ligation assay. The extract possesses antiulcer, antisecretory and cytoprotective activities, which could be attributed to its flavonoid and tannin content. These findings provide new information regarding the potential of lipid-soluble compounds of B. purpurea for the prevention and treatment of gastric ulcers.
Senna leaf extracts induced Ca(+2) homeostasis in a zoonotic tapeworm Hymenolepis diminuta.
Roy, Saptarshi; Kundu, Suman; Lyndem, Larisha M
2016-10-01
Context Plants and plant products have been used in traditional medicine as anthelmintic agents in human and veterinary medicine. Three species of Senna plant, S. alata (L), S. alexandrina (M) and S. occidentalis (L.) Link (Fabaceae) have been shown to have a vermicidal/vermifugal effect on a zoonotic tapeworm Hymenolepis diminuta (Rudolphi) (Cyclophyllidean). Objective The present study validates the mode of action of these Senna plants on the parasite. The alcoholic leaf extract was determined to obtain information on the intracellular free calcium concentration level. Materials and methods Hymenolepis diminuta was maintained in Sprague-Dawley rat model for 2 months. Live parasites collected from infected rat intestine were exposed to 40 mg/mL concentration of each plant extracts prepared in phosphate buffer saline at 37 °C, till parasite gets paralyzed. The rate of efflux of calcium from the parasite tissue to the medium and the level of intracellular Ca(2+ )concentration were determined by an atomic absorption spectroscopy. Results This study revealed that exposure of the worms to the plant extract leads to disruption in intracellular calcium homeostasis. A significant increase (44.6% and 25%) of efflux in Ca(2+ )from the tissue to the incubated medium was observed. Senna alata showed high rate of efflux (5.32 mg/g) followed by S. alexandria and S. occidentalis (both 4.6 mg/g) compared with control (3.68 mg/g). Discussion and conclusion These results suggest that leaf extracts caused membrane permeability to Ca(2+ )after vacuolization of the tegument under stress and the extracts may contain compound that can be used as a chemotherapeutic agent.
Kim, Sung-Jo; Hwang, Eunmi; Yi, Sun Shin; Song, Ki Duk; Lee, Hak-Kyo; Heo, Tae-Hwe; Park, Sang-Kyu; Jung, Yun Joo; Jun, Hyun Sik
2017-08-01
Hippophae rhamnoides L., also known as sea buckthorn (SBT), possesses a wide range of biological and pharmacological activities. However, the underlying mechanism is largely unknown. The present study examined whether SBT leaf extract could inhibit proliferation and promote apoptosis of rat glioma C6 cells. The results revealed that the treatment with SBT leaf extract inhibited proliferation of rat C6 glioma cells in a dose-dependent manner. SBT-induced reduction of C6 glioma cell proliferation and viability was accompanied by a decrease in production of reactive oxygen species (ROS), which are critical for the proliferation of tumor cells. SBT treatment not only significantly upregulated the expression of the pro-apoptotic protein Bcl-2-associated X (Bax) but also promoted its localization in the nucleus. Although increased expression and nuclear translocation of Bax were observed in SBT-treated C6 glioma cells, the induced nuclear morphological change was distinct from that of typical apoptotic cells in that most of SBT-treated cells were characterized by convoluted nuclei with cavitations and clumps of chromatin. All of these results suggest that SBT leaf extract could inhibit the rapid proliferation of rat C6 glioma cells, possibly by inducing the early events of apoptosis. Thus, SBT may serve as a potential therapeutic candidate for the treatment of glioma.
Antimutagenic and free radical scavenger effects of leaf extracts from Accacia salicina
2011-01-01
Background Three extracts were prepared from the leaves of Accacia salicina; ethyl acetate (EA), chloroform (Chl) and petroleum ether (PE) extracts and was designed to examine antimutagenic, antioxidant potenty and oxidative DNA damage protecting activity. Methods Antioxidant activity of A. salicina extracts was determined by the ability of each extract to protect against plasmid DNA strand scission induced by hydroxyl radicals. An assay for the ability of these extracts to prevent mutations induced by various oxidants in Salmonella typhimurium TA102 and TA 104 strains was conducted. In addition, nonenzymatic methods were employed to evaluate anti-oxidative effects of tested extracts. Results These extracts from leaf parts of A. salicina showed no mutagenicity either with or without the metabolic enzyme preparation (S9). The highest protections against methylmethanesulfonate induced mutagenicity were observed with all extracts and especially chloroform extract. This extract exhibited the highest inhibitiory level of the Ames response induced by the indirect mutagen 2- aminoanthracene. All extracts exhibited the highest ability to protect plasmid DNA against hydroxyl radicals induced DNA damages. The ethyl acetate (EA) and chloroform (Chl) extracts showed with high TEAC values radical of 0.95 and 0.81 mM respectively, against the ABTS.+. Conclusion The present study revealed the antimutagenic and antioxidant potenty of plant extract from Accacia salicina leaves. PMID:22132863
Antimutagenic and free radical scavenger effects of leaf extracts from Accacia salicina.
Boubaker, Jihed; Mansour, Hedi Ben; Ghedira, Kamel; Chekir-Ghedira, Leila
2011-12-01
Three extracts were prepared from the leaves of Accacia salicina; ethyl acetate (EA), chloroform (Chl) and petroleum ether (PE) extracts and was designed to examine antimutagenic, antioxidant potenty and oxidative DNA damage protecting activity. Antioxidant activity of A. salicina extracts was determined by the ability of each extract to protect against plasmid DNA strand scission induced by hydroxyl radicals. An assay for the ability of these extracts to prevent mutations induced by various oxidants in Salmonella typhimurium TA102 and TA 104 strains was conducted. In addition, nonenzymatic methods were employed to evaluate anti-oxidative effects of tested extracts. These extracts from leaf parts of A. salicina showed no mutagenicity either with or without the metabolic enzyme preparation (S9). The highest protections against methylmethanesulfonate induced mutagenicity were observed with all extracts and especially chloroform extract. This extract exhibited the highest inhibitiory level of the Ames response induced by the indirect mutagen 2- aminoanthracene. All extracts exhibited the highest ability to protect plasmid DNA against hydroxyl radicals induced DNA damages. The ethyl acetate (EA) and chloroform (Chl) extracts showed with high TEAC values radical of 0.95 and 0.81 mM respectively, against the ABTS(.+). The present study revealed the antimutagenic and antioxidant potenty of plant extract from Accacia salicina leaves. © 2011 Boubaker et al; licensee BioMed Central Ltd.
Ha, Seung Soo; Lee, Hyun Suk; Jung, Min Kyu; Jeon, Seong Woo; Cho, Chang Min; Kim, Sung Kook; Choi, Yong Hwan
2007-12-01
Bezoars are concretions or hard masses of foreign matter that are found in the gastrointestinal tract. Recent reports have demonstrated the efficacy of Coca-Cola administration for the dissolution of phytobezors. Here we report on a 73-year-old man with a very large gastric persimmon diospyrobezoar, and this caused small intestinal obstruction after partial dissolution with oral and injected Coca-Cola.
USDA-ARS?s Scientific Manuscript database
Olive leaf is a sizable by-product from the olive industry. Its use as antimicrobial/antioxidant ingredient in edible films for fish preservation was evaluated. Olive leaf powder (OLP) and its water/ethanol extract (OLPE) were tested against three foodborne pathogens: Listeria monocytogenes, Escheri...
Indran, M; Mahmood, A A; Kuppusamy, U R
2008-09-01
The effects of Carica papaya leaf (CPL) aqueous extract on alcohol induced acute gastric damage and the immediate blood oxidative stress level were studied in rats. The results showed that gastric ulcer index was significantly reduced in rats pretreated with CPL extract as compared with alcohol treated controls. The in vitro studies using 2,2-Diphenyl-1-Picryl-Hydrazyl (DPPH) assay showed strong antioxidant nature of CPL extract. Biochemical analysis indicated that the acute alcohol induced damage is reflected in the alterations of blood oxidative indices and CPL extract offered some protection with reduction in plasma lipid peroxidation level and increased erythrocyte glutathione peroxidase activity. Carica papaya leaf may potentially serve as a good therapeutic agent for protection against gastric ulcer and oxidative stress.
Morales-Del-Rio, Juan Alfredo; Gutiérrez-Lomelí, Melesio; Robles-García, Miguel Angel; Aguilar, Jose Antonio; Lugo-Cervantes, Eugenia; Guerrero-Medina, Pedro Javier; Ruiz-Cruz, Saul; Cinco-Moroyoqui, Francisco J.; Wong-Corral, Francisco J.; Del-Toro-Sánchez, Carmen Lizette
2015-01-01
Vitex mollis is used in traditional Mexican medicine for the treatment of some ailments. However, there are no studies on what happens to the anti-inflammatory activity or antioxidant properties and total phenolic content of leaves and stem extracts of Vitex mollis during the digestion process; hence, this is the aim of this work. Methanolic, acetonic, and hexanic extracts were obtained from both parts of the plant. Extract yields and anti-inflammatory activity (elastase inhibition) were measured. Additionally, changes in antioxidant activity (DPPH and ABTS) and total phenols content of plant extracts before and after in vitro digestion were determined. The highest elastase inhibition to prevent inflammation was presented by hexanic extracts (leaf = 94.63% and stem = 98.30%). On the other hand, the major extract yield (16.14%), antioxidant properties (ABTS = 98.51% and DPPH = 94.47% of inhibition), and total phenols (33.70 mg GAE/g of dried sample) were showed by leaf methanolic extract. Finally, leaf and stem methanolic extracts presented an antioxidant activity increase of 35.25% and 27.22%, respectively, in comparison to their initial values after in vitro digestion process. All samples showed a decrease in total phenols at the end of the digestion. These results could be the basis to search for new therapeutic agents from Vitex mollis. PMID:26451153
Zhu, Wanqi; Zhu, Baoqing; Li, Yao; Zhang, Yanyan; Zhang, Bolin; Fan, Junfeng
2016-04-15
The ability of acidic (AcW) and alkaline electrolyzed waters (AlW) to improve the flavour of persimmon (Diospyros kaki L.) wine was evaluated. Wines made with AcW (WAcW) were significantly better than wines made with AlW or pure water (PW) in aroma, taste, and colour. Volatile analysis showed that WAcW has high alcohol and ester contents, including 2-phenylethanol, isopentanol, isobutanol, ethyl dodecanoate, phenethyl acetate, and butanedioic acid diethyl ester. The total amino acid content of persimmon slurry soaked with AcW reached 531.2 mg/l, which was much higher than those of the slurries soaked in AlW (381.3 mg/l) and PW (182.7 mg/l). The composition of major amino acids in the AcW-soaked slurry may contribute to the strong ester flavour of WAcW. This is the first report to suggest that electrolyzed functional water (EFW) can be used to improve wine flavour, leading to the possible use of EFW in food processing. Copyright © 2015 Elsevier Ltd. All rights reserved.
Repeated dose 28-days oral toxicity study of Carica papaya L. leaf extract in Sprague Dawley rats.
Afzan, Adlin; Abdullah, Noor Rain; Halim, Siti Zaleha; Rashid, Badrul Amini; Semail, Raja Hazlini Raja; Abdullah, Noordini; Jantan, Ibrahim; Muhammad, Hussin; Ismail, Zakiah
2012-04-10
Carica papaya L. leaves have been used in ethnomedicine for the treatment of fevers and cancers. Despite its benefits, very few studies on their potential toxicity have been described. The aim of the present study was to characterize the chemical composition of the leaf extract from 'Sekaki' C. papaya cultivar by UPLC-TripleTOF-ESI-MS and to investigate the sub-acute oral toxicity in Sprague Dawley rats at doses of 0.01, 0.14 and 2 g/kg by examining the general behavior, clinical signs, hematological parameters, serum biochemistry and histopathology changes. A total of twelve compounds consisting of one piperidine alkaloid, two organic acids, six malic acid derivatives, and four flavonol glycosides were characterized or tentatively identified in the C. papaya leaf extract. In the sub-acute study, the C. papaya extract did not cause mortality nor were treatment-related changes in body weight, food intake, water level, and hematological parameters observed between treatment and control groups. Some biochemical parameters such as the total protein, HDL-cholesterol, AST, ALT and ALP were elevated in a non-dose dependent manner. Histopathological examination of all organs including liver did not reveal morphological alteration. Other parameters showed non-significant differences between treatment and control groups. The present results suggest that C. papaya leaf extract at a dose up to fourteen times the levels employed in practical use in traditional medicine in Malaysia could be considered safe as a medicinal agent.
Soman, Soumya; Ray, J G
2016-10-01
Biological approach to synthesis of metal nanoparticles using aqueous leaf extract is a highly relevant and recent theme in nanotechnological research. Phytosynthesized AgNPs have better inhibitory and antimicrobial effects compared to aqueous leaf extract and silver nitrate. In the present investigation crystalline silver nanoparticles (AgNPs) with size of 10nm have been successfully synthesized using aqueous leaf extract (AQLE) of Ziziphus oenoplia (L.) Mill., which act as both reducing as well as capping agent. The particles were characterized using UV Visible spectroscopy, HRTEM-EDAX, XRD, FT-IR and DLS. An evaluation of the anti bacterial activity was carried out using Agar well diffusion method and MIC determination against four bacterial strains, Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli and Salmonella typhi; the AgNPs exhibited quite high antibacterial activity. Furthermore, bactericidal studies with TEM at different time intervals after AgNPs treatment showed the presence of AgNPs near cell membrane of bacteria at about 30min exposure and the bacterial-lysis was found completed at 24h. This gave an insight on the mechanism of bacterial-lysis by direct damage to the cell membrane. Copyright © 2016 Elsevier B.V. All rights reserved.
Iwalewa, E O; Iwalewa, O J; Adeboye, J O
2003-06-01
The chloroform, methanolic and ether extracts of Vernonia cinerea (Asteraceae; Less) leaf (100, 200 and 400mg/kg intraperitoneally) were tested in: acetic acid-induced writhing in mice, carrageenin-induced oedema and brewer's yeast-induced pyrexia in rats to assess their analgesic, anti-inflammatory, antipyretic and behavioral activities, respectively. The changes in writhings and behavioural activities in mice, the pyrexia and paw volumes in rats were reduced significantly (P<0.05) compared to the control. There was an increase in pain threshold on the oedematous right hind limb paw of the rats. These results indicate that the extracts could possess analgesic, antipyretic and anti-inflammatory properties. All these effects and the changes in the behavioural activities could be suggested as contributory effects to the use of V. cinerea leaf in the treatment of malaria.
Dimo, T; Ntchapda, F; Atchade, A T; Yewah, M P; Kamtchouing, P; Ngassam, P
2005-07-01
Celtis durandii is a medicinal plant widely used in some part of Cameroon for the treatment of cardiovascular disorders. The vasorelaxant effects of the methylene chloride/methanol leaf extract of C. durandii were examined on isolated rat thoracic aorta. The relaxant effects of C. durandii on vascular preparation from rat aorta precontracted with KCl or norepinephrine was concentration dependent. This relaxing effect was significantly reduced with KCl-induced contraction following mechanical damage to the aortic endothelium. Relaxation elicited by C. durandii was not significantly affected by glibenclamide (10(-6) M), a selective inhibitor of K-ATP-dependent channels or tetraethylammonium (10(-6) M), a non selective K+ channel blocker. Indomethacin (10(-6) M) significantly inhibited relaxation induced by the plant extract. These findings indicate that the vasorelaxation effect of the methylene chloride/methanol leaf extract of C. durandii may be mediated at least in part by prostacyclin.
Han, Jae Woo; Shim, Sang Hee; Jang, Kyoung Soo; Choi, Yong Ho; Dang, Quang Le; Kim, Hun; Choi, Gyung Ja
2018-02-01
As an alternative to synthetic pesticides, natural materials such as plant extracts and microbes have been considered to control plant diseases. In this study, methanol extracts of 120 plants were explored for in vivo antifungal activity against Rhizoctonia solani, Botrytis cinerea, Phytophthora infestans, Puccinia triticina, and Blumeria graminis f. sp. hordei. Of the 120 plant extracts, eight plant extracts exhibited a disease control efficacy of more than 90% against at least one of five plant diseases. In particular, a methanol extract of Curcuma zedoaria rhizomes exhibited strong activity against wheat leaf rust caused by P. triticina. When the C. zedoaria methanol extracts were partitioned with various solvents, the layers of n-hexane, methylene chloride, and ethyl acetate showed disease control values of 100, 80, and 43%, respectively, against wheat leaf rust. From the C. zedoaria rhizome extracts, an antifungal substance was isolated and identified as a sesquiterpene ketolactone based on the mass and nuclear magnetic resonance spectral data. The active compound controlled the development of rice sheath blight, wheat leaf rust, and tomato late blight. Considering the in vivo antifungal activities of the sesquiterpene ketolactone and the C. zedoaria extracts, these results suggest that C. zedoaria can be used as a potent fungicide in organic agriculture.
Wang, Yongqiang; Gao, Yujie; Ding, Hui; Liu, Shejiang; Han, Xu; Gui, Jianzhou; Liu, Dan
2017-03-01
A large-scale process to extract flavonoids from Moringa oleifera leaf by subcritical ethanol was developed and HPLC-MS analysis was conducted to qualitatively identify the compounds in the extracts. To optimize the effects of process parameters on the yield of flavonoids, a Box-Behnken design combined with response surface methodology was conducted in the present work. The results indicated that the highest extraction yield of flavonoids by subcritical ethanol extraction could reach 2.60% using 70% ethanol at 126.6°C for 2.05h extraction. Under the optimized conditions, flavonoids yield was substantially improved by 26.7% compared with the traditional ethanol reflux method while the extraction time was only 2h, and obvious energy saving was observed. FRAP and DPPH assays showed that the extracts had strong antioxidant and free radical scavenging activities. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Audah, K. A.; Amsyir, J.; Almasyhur, F.; Hapsari, A. M.; Sutanto, H.
2018-03-01
Antibacterial drugs derived from natural sources play significant roles in the prevention and treatment of bacterial infections since antibiotics have become less effective against many infectious diseases. Mangroves are very potential natural antibacterial sources among great numbers of wild medicinal plants. Bruguiera cylindrica is one of the many mangroves species which spread along Indonesian coastline. The aim of this study was to explore the antibacterial activity of B. cylindrica wet and dried leaf extracts. The wet extracts study was conducted with three different solvents system (water, ethanol, and n-Hexane) against Escherichia coli and Staphylococcus aureus. While, the dried extracts study was conducted with four different solvents system (water, ethanol, chloroform and n-Hexane) against three types of bacteria, Escherichia coli, Staphylococcus epidermidis and Staphylococcus aureus. The study showed that ethanol was the best solvent for extraction of phenolic and flavonoid. Antibacterial actitivity was measured by zone of inhibition which obtained from agar-disk diffusion method. The widest area of zone of inhibition was showed by wet extracts with ethanol against S. aureus and E. coli are 14.30 and 13.30 mm, respectively. While, the zone of inhibition dried extracts with ethanol against S. aureus, S. epidermidis and E. coli are 9.32, 6.59 and 6.20 mm, respectively. In conclusion, both type of extracts showed significant antibacterial activity against gram-positive bacteria as crude extracts.
Lipidomics of tobacco leaf and cigarette smoke.
Dunkle, Melissa N; Yoshimura, Yuta; T Kindt, Ruben; Ortiz, Alexia; Masugi, Eri; Mitsui, Kazuhisa; David, Frank; Sandra, Pat; Sandra, Koen
2016-03-25
Detailed lipidomics experiments were performed on the extracts of cured tobacco leaf and of cigarette smoke condensate (CSC) using high-resolution liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-Q-TOF MS). Following automated solid-phase extraction (SPE) fractionation of the lipid extracts, over 350 lipids could be annotated. From a large-scale study on 22 different leaf samples, it was determined that differentiation based on curing type was possible for both the tobacco leaf and the CSC extracts. Lipids responsible for the classification were identified and the findings were correlated to proteomics data acquired from the same tobacco leaf samples. Prediction models were constructed based on the lipid profiles observed in the 22 leaf samples and successfully allowed for curing type classification of new tobacco leaves. A comparison of the leaf and CSC data provided insight into the lipidome changes that occur during the smoking process. It was determined that lipids which survive the smoking process retain the same curing type trends in both the tobacco leaf and CSC data. Copyright © 2015 Elsevier B.V. All rights reserved.
Ketsuwan, Nitinet; Leelarungrayub, Jirakrit; Kothan, Suchart; Singhatong, Supawatchara
2017-01-01
Vernonia cinerea (VC) Less has been proposed as a medicinal plant with interesting activities, such as an aid for smoking cessation worldwide. Despite its previous clinical success in smoking cessation by exhibiting reduced oxidative stress, it has not been approved. The aim of this study was to investigate various antioxidant activity and active compounds that have not been approved, including the protective activity in human red blood cells (RBCs), from the stem, flower, and leaf extracts of VC Less in vitro. These extracts were tested for their antioxidant activity in scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and analyzed by high-performance liquid chromatography (HPLC) for their active compounds: total tannin, five catechin (C) compounds (epicatechin gallate [ECG], C, epicatechin [EC], epigallocatechin gallate [EGCG], and (−)-epigallocatechin [EGC]), flavonoid, nitrite, nitrate, caffeine, and nicotine. Moreover, antioxidant activities of the extracts were evaluated in 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH)-treated RBCs. The results showed that the flower and leaf of VC Less had higher activity than the stem in scavenging DPPH radicals. The tannin content in the flower and leaf was higher than that in the stem. The leaf had the highest content of the five catechins (C, EC, EGCG, ECG, and EGC), the same as in the flavonoid, when compared to the stem and flower. Furthermore, the leaf extract had higher nitrate and nitrite than the stem. Nicotine content was found to be higher in the leaf when compared to the flower. In addition, the leaf showed protective activity in glutathione (GSH), malondialdehyde (MDA), and protein carbonyl, with a dose response in AAPH-oxidized RBCs, the same as in standard EGCG. Thus, this study concluded that radical scavenging and antioxidant compounds such as catechins, flavonoid, nitrate and nitrite, and nicotine are present in different VC Less parts and are included in the AAPH-oxidized RBC model. PMID
Kharat, Sopan N; Mendhulkar, Vijay D
2016-05-01
The simple, eco-friendly and cost effective method of green synthesis of silver nanoparticle in the leaf extract of medicinal plant Elephantopus scaber L. is illustrated in the present work. The synthesized silver nanoparticles (AgNPs) were characterized with UV-Vis-spectroscopy, nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The UV-spectra show maximum absorbance at 435 nm, NTA analysis shows 78 nm average sizes of nanoparticles, TEM analysis indicates spherical shape of the nanoparticles with the average diameter of 50 nm. The XRD peaks at 2θ range of 30-80° correspond to (111), (200), (220), (311) reflection planes that indicate the structure of metallic silver. FTIR analysis reveals surface capping of phenolic groups. Existence of peaks in the range of 1611 to 1400 cm(-1) indicates the presence of aromatic rings in the leaf extract. The peak at 1109 cm(-1) is due to the presence of OH groups. The antioxidant activity of synthesized nanoparticles was evaluated performing DPPH assay and it is observed that the photosynthesized nanoparticle also possesses antioxidant potentials. Thus, it can be used as potential free radical scavenger. Silver particles have tremendous applications in the field of diagnostics and therapeutics. To this context, the surface coating of plant metabolite constituents has great potentials. Therefore, the present work has been undertaken to synthesize the AgNPs using leaf extract of medicinal plant, E. scaber, to characterize and access their antioxidant properties. Copyright © 2016 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Sakurai, Ryo; Jacobson, Susan K.
2011-01-01
Co-existing with wildlife and maintaining rural livelihoods are common challenges in remote villages in Japan. The authors assess the effects of the Monkey-Persimmon Environmental Education Program developed to reduce wildlife conflicts and to revitalize a community in Nagano Prefecture. Development of a logic model helped guide interviews with…
Cieniak, Carolina; Walshe-Roussel, Brendan; Liu, Rui; Muhammad, Asim; Saleem, Ammar; Haddad, Pierre S; Cuerrier, Alain; Foster, Brian C; Arnason, John T
2015-01-01
The Cree of Eeyou Istchee in Northern Quebec identified Sarracenia purpurea L. as an important plant for the treatment of Type 2 diabetes. Traditionally the plant is used as a decoction (boiling water extract) of the leaf, however, in order to study the extract in a laboratory setting, an 80% ethanol extract was used. In this study, the phytochemistry of both extracts of the leaves was compared and quantified. Two S. purpurea leaf extracts were prepared, one a traditional hot water extract and the other an 80% ethanol extract. Using UPLC-ESI-MS, the extracts were phytochemically compared for 2 triterpenes, betulinic acid and ursolic acid, using one gradient method and for 10 additional substances, including the actives quercetin-3-O-galactoside and morroniside, using a different method. The concentrations of the nine phenolic substances present, as well as an active principle, the iridoid glycoside morroniside, were very similar between the two extracts, with generally slightly higher concentrations of phenolics in the ethanol extract as expected. However, two triterpenes, betulinic acid and ursolic acid, were 107 and 93 times more concentrated, respectively, in the ethanol extract compared to the water extract. The main phytochemical markers and most importantly the antidiabetic active principles, quercetin-3-O-galactoside and morroniside, were present in similar amounts in the two extracts, which predicts similar bioactivity.This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.
Ha, Seung Soo; Lee, Hyun Suk; Jung, Min Kyu; Cho, Chang Min; Kim, Sung Kook; Choi, Yong Hwan
2007-01-01
Bezoars are concretions or hard masses of foreign matter that are found in the gastrointestinal tract. Recent reports have demonstrated the efficacy of Coca-Cola administration for the dissolution of phytobezors. Here we report on a 73-year-old man with a very large gastric persimmon diospyrobezoar, and this caused small intestinal obstruction after partial dissolution with oral and injected Coca-Cola. PMID:18309693
Evaluation of Senna singueana leaf extract as an alternative or adjuvant therapy for malaria
Hiben, Mebrahtom Gebrelibanos; Sibhat, Gereziher Gebremedhin; Fanta, Biruk Sintayehu; Gebrezgi, Haile Desta; Tesema, Shewaye Belay
2015-01-01
The emergence of malarial resistance to most antimalarial drugs is the main factor driving the continued effort to identify/discover new agents for combating the disease. Moreover, the unacceptably high mortality rate in severe malaria has led to the consideration of adjuvant therapies. Senna singueana leaves are traditionally used against malaria and fever. Extracts from the leaves of this plant demonstrated in vitro and in vivo antioxidant activities, which in turn could reduce the severity of malaria. Extracts from the root bark of this plant exhibited antiplasmodial activity; however, the leaves are the more sustainable resource. Thus, S. singueana leaf was selected for in vivo evaluation as a potential alternative or adjuvant therapy for malaria. Using malaria [Plasmodium berghei ANKA, chloroquine (CQ) sensitive]-infected Swiss albino mice of both sexes, 70% ethanol extract of S. singueana leaves (alone and in combination with CQ) was tested for antimalarial activity and adjuvancy potential. The 4-day suppressive test was used to evaluate antimalarial activity. The dose of S. singueana extract administered was safe to mice and exhibited some parasite suppression effect: extract doses of 200 mg/kg/d, 400 mg/kg/d, and 800 mg/kg/d caused 34.54%, 44.52%, and 47.32% parasite suppression, respectively. Concurrent administration of the extract with CQ phosphate at varied dose levels indicated that the percentage of parasite suppression of this combination was higher than administering CQ alone, but less than the sum of the effects of the extract and CQ acting separately. In conclusion, the study indicated that 70% ethanol extract of S. singueana leaf was safe to mice and possessed some parasite suppression effect. Coadministration of the extract with CQ appeared to boost the overall antimalarial effect, indicating that the combination may have a net health benefit if used as an adjuvant therapy. PMID:26870688
Govindarajan, Marimuthu; Rajeswary, Mohan
2015-05-01
Several diseases are associated to the mosquito-human interaction. Mosquitoes are the carriers of severe and well-known illnesses such as malaria, arboviral encephalitis, dengue fever, chikungunya fever, West Nile virus, and yellow fever. These diseases produce significant morbidity and mortality in humans and livestock around the world. In the present study, hexane, benzene, chloroform, ethyl acetate, and methanol extracts of leaf and seed of Albizia lebbeck were assayed for their toxicity against three important vector mosquitoes, viz., Culex quinquefasciatus, Aedes aegypti, and Anopheles stephensi. The mean percent hatchability of the eggs was observed after 48 h post-treatment. The percent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. All the five solvent extracts showed moderate ovicidal activity; however, the methanol extract showed the highest ovicidal activity. One hundred percent mortality was observed at 250, 200, and 150 ppm for leaf methanol extract and 375, 300, and 225 ppm for seed methanol extract of A. lebbeck against C. quinquefasciatus, Ae. aegypti, and An. stephensi, respectively. The adulticidal activity of plant leaf and seed extracts showed moderate toxic effect on the adult mosquitoes after 24 h of exposure period. However, the highest adulticidal activity was observed in the leaf methanol extract of A. lebbeck against An. stephensi where the LC₅₀ and LC₉₀ values were 65.12 and 117.70 ppm, respectively. Compared to leaf extracts, seeds have low potency against three mosquito species. No mortality was recorded in the control. Our data suggest that the crude hexane, benzene, chloroform, ethyl acetate, and methanol solvent extracts of A. lebbeck have the potential to be used as an eco-friendly approach for the control of the An. stephensi, Ae. aegypti, and C. quinquefasciatus. These results suggest that the leaf and seed extracts have the potential to be used as an ideal
Rajkumar, S.; Jebanesan, A.
2005-01-01
The leaf extract of Solanum trilobatum (Solanaceae) was tested under laboratory conditions for oviposition deterrent and skin repellent activities against the adult mosquito Anopheles stephensi. Concentrations of 0.01, 0.025, 0.05, 0.075 and 0.1% reduced egg laying by gravid females from 18 to 99% compared to ethanol-treated controls. In skin repellent tests, concentrations of 0.001, 0.005, 0.01, 0.015, and 0.02 % provided 70 to 120 minutes protection against mosquito bites, whereas the ethanol control provided only 2.2 minutes of protection. Both oviposition deterrent and skin repellent activity were dose dependent. The results suggest that the leaf extract of S. trilobatum is an effective oviposition deterrent and skin repellent against An. stephensi. PMID:16341247
Ojewole, J A O; Kamadyaapa, D R; Gondwe, M M; Moodley, K; Musabayane, C T
2007-01-01
The cardiovascular effects of Persea americana Mill (Lauraceae) aqueous leaf extract (PAE) have been investigated in some experimental animal paradigms. The effects of PAE on myocardial contractile performance was evaluated on guinea pig isolated atrial muscle strips, while the vasodilatory effects of the plant extract were examined on isolated portal veins and thoracic aortic rings of healthy normal Wistar rats in vitro. The hypotensive (antihypertensive) effect of the plant extract was examined in healthy normotensive and hypertensive Dahl salt-sensitive rats in vivo. P americana aqueous leaf extract (25-800 mg/ml) produced concentration-dependent, significant (p < 0.05-0.001), negative inotropic and negative chronotropic effects on guinea pig isolated electrically driven left and spontaneously beating right atrial muscle preparations, respectively. Moreover, PAE reduced or abolished, in a concentration-dependent manner, the positive inotropic and chronotropic responses of guinea pig isolated atrial muscle strips induced by noradrenaline (NA, 10(-10)-10(-5) M), and calcium (Ca(2+), 5-40 mM). PAE (50-800 mg/ml) also significantly reduced (p < 0.05-0.001) or abolished, in a concentration-dependent manner, the rhythmic, spontaneous, myogenic contractions of portal veins isolated from healthy normal Wistar rats. Like acetylcholine (ACh, 10(-8)-10(-5) M), the plant extract (25- 800 mg/ml) produced concentration-related relaxations of isolated endothelium-containing thoracic aortic rings pre-contracted with noradrenaline. The vasorelaxant effects of PAE in the isolated, endothelium-intact aortic rings were markedly inhibited or annulled by N(G)-nitro-L-arginine methyl ester (L-NAME, 10(-5) M), a nitric oxide synthase inhibitor. Furthermore, PAE (25-400 mg/kg iv) caused dose-related, transient but significant reductions (p < 0.05-0.001) in the systemic arterial blood pressure and heart rates of the anaesthetised normotensive and hypertensive rats used. The results of
Flemmig, Jörg; Rusch, Dorothea; Czerwińska, Monika Ewa; Rauwald, Hans-Wilhelm; Arnhold, Jürgen
2014-05-01
We investigated in vitro the ability of a standardised olive leaf dry extract (Ph. Eur.) (OLE) as well as of its single components to circumvent the hydrogen peroxide-induced inhibition of the hypothiocyanite-producing activity of lactoperoxidase (LPO). The rate of hypothiocyanite (⁻OSCN) formation by LPO was quantified by spectrophotometric detection of the oxidation of 5-thio-2-nitrobenzoic acid (TNB). By using excess hydrogen peroxide, we forced the accumulation of inactive enzymatic intermediates which are unable to promote the two-electronic oxidation of thiocyanate. Both OLE and certain extract components showed a strong LPO-reactivating effect. Thereby an o-hydroxyphenolic moiety emerged to be essential for a good reactivity with the inactive LPO redox states. This basic moiety is found in the main OLE components oleuropein, oleacein, hydroxytyrosol, caffeic acid as well as in different other constituents including the OLE flavone luteolin. As LPO is a key player in the humoral immune response, these results propose a new mode of action regarding the well-known bacteriostatic and anti-inflammatory properties of the leaf extract of Olea europaea L. Copyright © 2014 Elsevier Inc. All rights reserved.
Rebai, Olfa; Belkhir, Manel; Boujelben, Adnen; Fattouch, Sami; Amri, Mohamed
2017-04-01
Recent studies demonstrate that glyphosate exposure is associated with oxidative stress and some neurological disorders such as Parkinson's pathology. Therefore, phytochemicals, in particular phenolic compounds, have attracted increasing attention as potential agents for neuroprotection. In the present study, we investigate the impact of glyphosate on the rat brain following i.p. injection and the possible molecular target of neuroprotective activity of the phenolic fraction from Morus alba leaf extract (MALE) and its ability to reduce oxidative damage in the brain. Wistar rats from 180 to 240 g were i.p. treated with a single dose of glyphosate (100 mg kg -1 b.w.) or MALE (100 μg mL -1 kg -1 b.w.) for 2 weeks. Brain homogenates were used to evaluate neurotoxicity induced by the pesticide. For this, biochemical parameters were measured. Data shows that MALE regulated oxidative stress and counteracted glyphosate-induced deleterious effects and oxidative damage in the brain, as it abrogated LDH, protein carbonyls, and malonyldialdehyde. MALE also appears to be able to scavenge H 2 O 2 levels, maintain iron and Ca 2+ homeostasis, and increase SOD activity. Thus, in vivo results showed that mulberry leaf extract is a potent protector against glyphosate-induced toxicity, and its protective effect could result from synergism or antagonism between the various bioactive phenolic compounds in the acetonic fraction from M. alba leaf extract.
2014-01-01
Background The primary objective of the present investigation is to evaluate the antidiabetic, antihyperlidemic and antioxidant activity of the methanolic extract of the Paederia foetida Linn. (PF) leaf extract in the streptozotocin induced diabetic rats. Methods Single intraperitoneal injection (IP) of streptozotocin (60 mg/kg body weight) was used for induction of diabetes is swiss albino (wistar strain) rats. The induction of diabetes was confirmed after 3 days as noticing the increase in blood sugar level of tested rats. PF at a once a daily dose of 100 mg/kg, 250 mg/kg, 500 mg/kg, p.o. along with glibenclamide 10 mg/kg, p.o. was also given for 28 days. On the 28th day rats from all the groups fasted overnight fasted and the blood was collected from the puncturing the retro orbit of the eye under mild anesthetic condition. There collected blood sample was used to determine the antihyperlipidemic, hypoglycemic and antioxidant parameters. Results The oral acute toxicity studies did not show any toxic effect till the dose at 2000 mg/kg. While oral glucose tolerance test showed better glucose tolerance in tested rats. The statistical data indicated that the different dose of the PF significantly increased the body weight, hexokinase, plasma insulin, high density lipoprotein cholesterol, superoxide dismutase, catalase and glutathione peroxides. It also decreases the level of fasting blood glucose, total cholesterol, triglycerides, low density lipoprotein cholesterol, very low density lipoprotein cholesterol, malonaldehyde, glucose-6-phosphate, fructose-1-6-biphosphate and glycated hemoglobin in STZ induced diabetic rats. The histopathology of STZ induce diabetic rats, as expected the test dose of PF extract considerably modulates the pathological condition of various vital organ viz. heart, kidney, liver, pancreas as shown in the histopathology examinations. Conclusions Our investigation has clearly indicated that the leaf extract of Paederia foetida Linn
Colak, Emine; Ustuner, Mehmet Cengiz; Tekin, Neslihan; Colak, Ertugrul; Burukoglu, Dilek; Degirmenci, Irfan; Gunes, Hasan Veysi
2016-01-01
Cynara scolymus is a pharmacologically important medicinal plant containing phenolic acids and flavonoids. Experimental studies indicate antioxidant and hepatoprotective effects of C. scolymus but there have been no studies about therapeutic effects of liver diseases yet. In the present study, hepatocurative effects of C. scolymus leaf extract on carbon tetrachloride (CCl4)-induced oxidative stress and hepatic injury in rats were investigated by serum hepatic enzyme levels, oxidative stress indicator (malondialdehyde-MDA), endogenous antioxidants, DNA fragmentation, p53, caspase 3 and histopathology. Animals were divided into six groups: control, olive oil, CCl4, C. scolymus leaf extract, recovery and curative. CCl4 was administered at a dose of 0.2 mL/kg twice daily on CCl4, recovery and curative groups. Cynara scolymus extract was given orally for 2 weeks at a dose of 1.5 g/kg after CCl4 application on the curative group. Significant decrease of serum alanine-aminotransferase (ALT) and aspartate-aminotransferase (AST) levels were determined in the curative group. MDA levels were significantly lower in the curative group. Significant increase of superoxide dismutase (SOD) and catalase (CAT) activity in the curative group was determined. In the curative group, C. scolymus leaf extract application caused the DNA % fragmentation, p53 and caspase 3 levels of liver tissues towards the normal range. Our results indicated that C. scolymus leaf extract has hepatocurative effects of on CCl4-induced oxidative stress and hepatic injury by reducing lipid peroxidation, providing affected antioxidant systems towards the normal range. It also had positive effects on the pathway of the regulatory mechanism allowing repair of DNA damage on CCl4-induced hepatotoxicity.
Abdel-Gayoum, Abdelgayoum A; Al-Hassan, Abdelrahman A; Ginawi, Ibrahim A; Alshankyty, Ibraheem M
2015-01-01
Amikacin is an important antibiotic, and its use is limited because of the induced nephrotoxicity. Thus, search for natural and synthetic agents that can moderate amikacin toxicity never stopped. The present study aims to investigate the possible ameliorative effects of virgin olive oil and olive leaf extract against the amikacin-induced nephrotoxicity in rat. 48 rats were distributed into 6 groups: 1-Animals of control (C) group were injected intraperitoneally (ip) with saline, 2-(AK); injected ip with amikacin {300 mg/kg/day for 12days}, 3-(OO) group: given olive oil {7 ml/kg/day for 16days}, 4-(OOAK) group: given olive oil as in OO and amikacin for 12days, 5-(OL) group: given olive leaf extract {50 mg/kg/day for 16days}, 6-(OLAK) group: given leaf extract as in OL and amikacin for 12days. Animals were fasted and sacrificed. Serum was used for biochemical analysis and kidneys for histopathology. Serum urea and creatinine were significantly ( P < 0.001) elevated in AK, and significantly dropped in the OOAK and OLAK groups. Serum uric acid was reduced in AK by 45.29%. Kidneys from AK showed necrosis, whereas, those from OOAK and OLAK showed mild histology. The serum triglyceride was decreased by 17.8% in OL, by 37.02% in OOAK and by 31.48% in OLAK. The calculated amikacin effect showed a significant positive correlation with urea ( r = 0.521, P = 0.0004), and a negative correlation with uric acid ( r = 0.58, P < 0.0001). The study confirmed nephrotoxicity of amikacin in rat which was ameliorated by virgin olive oil and by olive leaf extract. Amikacin did not cause dyslipidemia but reduced serum uric acid.
Wang, Peihong; Xiong, Aisheng; Gao, Zhihong; Yu, Xinyi; Li, Man; Hou, Yingjun; Sun, Chao; Qu, Shenchun
2016-01-01
The success of quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) to quantify gene expression depends on the stability of the reference genes used for data normalization. To date, systematic screening for reference genes in persimmon (Diospyros kaki Thunb) has never been reported. In this study, 13 candidate reference genes were cloned from 'Nantongxiaofangshi' using information available in the transcriptome database. Their expression stability was assessed by geNorm and NormFinder algorithms under abiotic stress and hormone stimulation. Our results showed that the most suitable reference genes across all samples were UBC and GAPDH, and not the commonly used persimmon reference gene ACT. In addition, UBC combined with RPII or TUA were found to be appropriate for the "abiotic stress" group and α-TUB combined with PP2A were found to be appropriate for the "hormone stimuli" group. For further validation, the transcript level of the DkDREB2C homologue under heat stress was studied with the selected genes (CYP, GAPDH, TUA, UBC, α-TUB, and EF1-α). The results suggested that it is necessary to choose appropriate reference genes according to the test materials or experimental conditions. Our study will be useful for future studies on gene expression in persimmon. PMID:27513755
Green synthesis of magnetite (Fe3O4) nanoparticles using Graptophyllum pictum leaf aqueous extract
NASA Astrophysics Data System (ADS)
Sari, I. P.; Yulizar, Y.
2017-04-01
Magnetite nanoparticles (MNPs) attracted the attention of many researchers due to their unique properties. In this research, nanoscale magnetite particles have been successfully synthesized through an environmentally friendly method using aqueous extract of Graptophyllum pictum leaf (GPLE). In MNPs formation, GPLE acted as a base source and capping agent. Alkaloids in GPLE were hydrolyzed in water and hydroxilated Fe2+ to form Fe3O4 nanoparticles powder through calcination. After the addition of leaf extract, MNPs formation was observed by color change from pale yellow to dark brown. The synthesized nanoparticles were characterized using UV-Vis spectrophotometer, X-Ray diffraction (XRD), and Fourier transform infra red (FTIR) spectroscopy. The results confirmed that MNPs formation indicated the surface plasmon resonance at a maximum wavelength, λmax 291 nm. The average crystallite size is 23.17 nm. The formed MNPs through green synthesis method promise in various medical applications such as drug carrier and targeted therapy.
Kai, Hisahiro; Fuse, Takuichi; Kunitake, Hisato; Morishita, Kazuhiro; Matsuno, Koji
2014-06-30
The inhibitory effects of blueberry leaves on the proliferation of adult T-cell leukemia (ATL) cell lines have previously been reported. A comparison of blueberry leaf extracts from different cultivars and seasonal variation were investigated regarding their effects on ATL cell line proliferation. The inhibitory effects of 80% ethanol leaf extracts from different blueberry cultivars collected from April to December in 2006 or 2008 were evaluated using two ATL cell lines. The bioactivities of leaf extracts of rabbit-eye blueberry ( Vaccinium virgatum Aiton; RB species), southern highbush blueberry ( V. spp.; SB species), northern highbush blueberry ( V. corymbosum L.; NB species), and wild blueberry ( V. bracteatum Thunb.; WB species) were compared. Of these, leaves of the RB species collected in December showed a significantly stronger inhibitory effect in both cell lines than the SB, NB, or WB species. These results suggest elevated biosynthesis of ATL-preventative bioactive compounds in the leaves of the RB species before the defoliation season.
Kai, Hisahiro; Fuse, Takuichi; Kunitake, Hisato; Morishita, Kazuhiro; Matsuno, Koji
2014-01-01
The inhibitory effects of blueberry leaves on the proliferation of adult T-cell leukemia (ATL) cell lines have previously been reported. A comparison of blueberry leaf extracts from different cultivars and seasonal variation were investigated regarding their effects on ATL cell line proliferation. The inhibitory effects of 80% ethanol leaf extracts from different blueberry cultivars collected from April to December in 2006 or 2008 were evaluated using two ATL cell lines. The bioactivities of leaf extracts of rabbit-eye blueberry (Vaccinium virgatum Aiton; RB species), southern highbush blueberry (V. spp.; SB species), northern highbush blueberry (V. corymbosum L.; NB species), and wild blueberry (V. bracteatum Thunb.; WB species) were compared. Of these, leaves of the RB species collected in December showed a significantly stronger inhibitory effect in both cell lines than the SB, NB, or WB species. These results suggest elevated biosynthesis of ATL-preventative bioactive compounds in the leaves of the RB species before the defoliation season. PMID:28933373
Adeyemi, Olufunmilayo O; Ishola, Ismail O; Okoro, Uzodinma
2013-01-01
Bryophyllum pinnatum Lam. Kurtz (Crassulaceae) is used in traditional African medicine in the treatment of diarrhoea. To investigate the antidiarrhoeal action of the hydroethanolic leaf extract of Bryophyllum pinnatum (BP). Normal intestinal transit, castor oil-induced intestinal transit, castor oil-induced diarrhoea, gastric emptying and enteropooling models in rodents were used to investigate antidiarrhoeal effect. The possible mechanism of antidiarrhoeal activity was investigated using prazosin (1 mg/kg, s.c; α1, adrenoceptor antagonist), yohimbine (1 mg/kg, s.c; α2 adrenoceptor antagonist), propranolol (1 mg/kg, i.p; α- adrenoceptor non-selective antagonist), atropine (1 mg/kg, s.c; muscarinic cholinergic antagonist), pilocarpine (1 mg/kg, s.c; muscarinic cholinergic agonist), and isosorbide dinitrate (IDN) (150 mg/kg, p.o; nitric oxide donor). BP (25-100 mg/kg, p.o) produced dose-dependent and significant (P < 0.001) decrease in intestinal propulsion in normal and castor oil-induced intestinal transit models in comparison to distilled water (10 ml/kg, p.o.) treated control. This antidiarrhoeal effect was inhibited by propranolol pretreatment but yohimbine, prazosin, or atropine pretreatment failed to block this effect. BP treatment reduced the increased peristaltic activity induced by pilocarpine, however, co-treatment with IDN significantly (P < 0.001) enhanced the antidiarrhoeal effect of the extract. In castor oil-induced diarrhoea test, the extract produced a dose-dependent and significant (P < 0.001) increase in onset of diarrhoea, decreased diarrhoea score, the number and weight of wet stools when compared to control. The in vivo antidiarrhoeal index (ADI(in) vivo)) of 53.52 produced by the extract (50 mg/kg, p.o.) was similar to 76.28 ADI(in vivo) produced by morphine (10 mg/kg, s.c.). The extract produced dose- dependent and significant (P < 0.05; P < 0.001) decrease in the weight and volume of intestinal content in the intestinal fluid accumulation
USDA-ARS?s Scientific Manuscript database
Silvopastoral management strategies seek to expand spatial and temporal boundaries of forage production and promote ecosystem integrity through a combination of tree thinning and understory pastures. We determined the effects of water extracts of leaf litter from yellow poplar, Liriodendron tulipife...
Antioxidative, antimicrobial and cytotoxic effects of the phenolics of Leea indica leaf extract
Rahman, Md. Atiar; Imran, Talha bin; Islam, Shahidul
2012-01-01
This study investigated the phytochemical, antioxidative, antimicrobial and cytotoxic effects of Leea indica leaf ethanol extract. Phytochemical values namely total phenolic and flavonoid contents, total antioxidant capacity, DPPH radical scavenging effect, FeCl3 reducing power, DMSO superoxide scavenging effect and Iron chelating effects were studied by established methods. Antibacterial, antifungal and cytotoxic effects were screened by disk diffusion technique, food poison technique and brine shrimp bioassay, respectively. Results showed the total phenolic content 24.00 ± 0.81 g GAE/100 g, total flavonoid content 194.68 ± 2.43 g quercetin/100 g and total antioxidant capacity 106.61 ± 1.84 g AA/100 g dry extract. Significant (P < 0.05) IC50 values compared to respective standards were recorded in DPPH radical scavenging (139.83 ± 1.40 μg/ml), FeCl3 reduction (16.48 ± 0.64 μg/ml), DMSO superoxide scavenging (676.08 ± 5.80 μg/ml) and Iron chelating (519.33 ± 16.96 μg/ml) methods. In antibacterial screening, the extract showed significant (P < 0.05) zone of inhibitions compared to positive controls Ampicillin and Tetracycline against Gram positive Bacillus subtilis, Bacillus cereus, Bacillus megaterium, and Staphylococcus aureus and Gram negative Salmonella typhi, Salmonella paratyphi, Pseudomonas aeroginosa, Shigella dysenteriae, Vibrio cholerae, and Escherichia coli. Significant minimum inhibitory concentrations compared to tetracycline were obtained against the above organisms. In antifungal assay, the extract inhibited the growth of Aspergillus flavus, Candida albicans and Fusarium equisetii by 38.09 ± 0.59, 22.58 ± 2.22, and 22.58 ± 2.22%, respectively. The extract showed a significant LC50 value compared to vincristine sulfate in cytotoxic assay. The results evidenced the potential antioxidative, antimicrobial and cytotoxic capacities of Leea inidica leaf extract to be processed for pharmaceutical use. PMID
Osadebe, Patience O; Okoye, Festus B C; Uzor, Philip F; Nnamani, Nneka R; Adiele, Ijeoma E; Obiano, Nkemakonam C
2012-04-01
To investigate the hepatoprotective and antioxidant activities of Alchornea cordifolia (A. cordifolia) leaf extract. Various solvent fractions of the methanol extract of the leaf of the plant A. cordifolia Mull. Arg (Fam: Euphorbiaceae) were evaluated for hepatoprotective activity by carbon tetrachloride-induced liver damage in rats. The degree of protection was measured by using biochemical parameters such as serum glutamate oxalate transaminase (SGOT/AST), serum glutamate pyruvate transaminase (SGPT/ALT), alkaline phosphatase (ALP) and total bilirubin. The in vitro antioxidant activity of the extract was also evaluated by the 1, 1-diphenyl- 2-picrylhydrazyl (DPPH) free radical scavenging assay. The extract was subjected to preliminary phytochemical screening. The ethyl acetate and chloroform fractions, at a dose of 300 mg/kg, produced significant (P<0.05) hepatoprotection by decreasing the activities of the serum enzymes and bilirubin while there were marked scavenging of the DPPH free radicals by the fractions. The effects were comparable to those of the standard drugs used for the respective experiments, silymarin and ascorbic acid. Alkaloids, flavonoids, saponins and tannins were detected in the phytochemical screening. From this study, it was concluded that the plant of A. cordifolia possesses hepatoprotective as well as antioxidant activities and these activities reside mainly in the ethyl acetate and acetone fractions of methanol leaf extract. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Susanti, R. F.; Natalia, Desy
2016-11-01
In traditional medicine, Physalis angulata which is well known as ceplukan in Indonesia, has been utilized to cure several diseases by conventional extraction in hot water. The investigation of the Swietenia mahagoni extract activity in modern medicine typically utilized organic solvents such as ethanol, methanol, chloroform and hexane in extraction. In this research, subcritical water was used as a solvent instead of organic solvent to extract the Pysalis angulata leaf part. The focus of this research was the investigation of extract drying condition in the presence of filler to preserve the quality of antioxidant in Swietenia mahagoni extract. Filler, which is inert, was added to the extract during drying to help absorb the water while protect the extract from exposure in heat during drying. The effects of filler types, concentrations and oven drying temperatures were investigated to the antioxidant quality covering total phenol and antioxidant activity. Aerosil and microcrystalline cellulose (MCC) were utilized as fillers with concentration was varied from 0-30 wt% for MCC and 0-15 wt% for aerosil. The oven drying temperature was varied from 40-60 oC. The results showed that compare to extract dried without filler, total phenol and antioxidant activity were improved upon addition of filler. The higher the concentration of filler, the better the antioxidant; however it was limited by the homogeneity of filler in the extract. Both of the variables (oven temperature and concentration) played an important role in the improvement of extract quality of Swietenia mahagoni leaf. It was related to the drying time which can be minimized to protect the deterioration of extract from heat. In addition, filler help to provide the powder form of extract instead of the typical extract form which is sticky and oily.
Vaya, Jacob; Mahmood, Saeed
2006-01-01
The total flavonoid content of leaf extracts (70% ethanol) from fig (Ficus carica L.), carob (Ceratonia siliqua L.) and pistachio (Pistacia lentiscus L.) plants were determined by using reverse phase high-performance liquid chromatography (HPLC)-and analyzed by UV/VIS array and electrospray ionization (ESI)-mass spectrometry (MS) detectors. As a base for comparison, flavonoid type and level were also determined in extracts from soybeans and grape seeds. It was found that the major flavonoids in Ficus are quercetin and luteolin, with a total of 631 and 681 mg/kg extract, respectively. In Ceratonia leaves, nine different flavonoids were detected. The major one was myricetin (1486 mg/kg extract), with a similar level in Pistacia (1331 mg/kg extract, myricetin). The present study is the first to report the presence of the isoflavone genistein in the Pistacia leaf, which was discovered to consist of about a third of the genistein level detected in soybean.
Kovendan, Kalimuthu; Murugan, Kadarkarai; Shanthakumar, Shanmugam Perumal; Vincent, Savariar; Hwang, Jiang-Shiou
2012-10-01
Morinda citrifolia leaf extract was tested for larvicidal activity against three medically important mosquito vectors such as malarial vector Anopheles stephensi, dengue vector Aedes aegypti, and filarial vector Culex quinquefasciatus. The plant material was shade dried at room temperature and powdered coarsely. From the leaf, 1-kg powder was macerated with 3.0 L of hexane, chloroform, acetone, methanol, and water sequentially for a period of 72 h each and filtered. The yield of extracts was hexane (13.56 g), chloroform (15.21 g), acetone (12.85 g), methanol (14.76 g), and water (12.92 g), respectively. The extracts were concentrated at reduced temperature on a rotary vacuum evaporator and stored at a temperature of 4°C. The M. citrifolia leaf extract at 200, 300, 400, 500, and 600 ppm caused a significant mortality of three mosquito species. Hexane, chloroform, acetone, and water caused moderate considerable mortality; however, the highest larval mortality was methanolic extract, observed in three mosquito vectors. The larval mortality was observed after 24-h exposure. No mortality was observed in the control. The third larvae of Anopheles stephensi had values of LC(50) = 345.10, 324.26, 299.97, 261.96, and 284.59 ppm and LC(90) = 653.00, 626.58, 571.89, 505.06, and 549.51 ppm, respectively. The Aedes aegypti had values of LC(50) = 361.75, 343.22, 315.40, 277.92, and 306.98 ppm and LC(90) = 687.39, 659.02, 611.35, 568.18, and 613.25 ppm, respectively. The Culex quinquefasciatus had values of LC(50) = 382.96, 369.85, 344.34, 330.42, and 324.64 ppm and LC(90) = 726.18, 706.57, 669.28, 619.63, and 644.47 ppm, respectively. The results of the leaf extract of M. citrifolia are promising as good larvicidal activity against the mosquito vector Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus. This is a new eco-friendly approach for the control of vector control programs. Therefore, this study provides first report on the larvicidal activities against three
Susalit, Endang; Agus, Nafrialdi; Effendi, Imam; Tjandrawinata, Raymond R; Nofiarny, Dwi; Perrinjaquet-Moccetti, Tania; Verbruggen, Marian
2011-02-15
A double-blind, randomized, parallel and active-controlled clinical study was conducted to evaluate the anti-hypertensive effect as well as the tolerability of Olive leaf extract in comparison with Captopril in patients with stage-1 hypertension. Additionally, this study also investigated the hypolipidemic effects of Olive leaf extract in such patients. It consisted of a run-in period of 4 weeks continued subsequently by an 8-week treatment period. Olive (Olea europaea L.) leaf extract (EFLA(®)943) was given orally at the dose of 500 mg twice daily in a flat-dose manner throughout the 8 weeks. Captopril was given at the dosage regimen of 12.5 mg twice daily at start. After 2 weeks, if necessary, the dose of Captopril would be titrated to 25 mg twice daily, based on subject's response to treatment. The primary efficacy endpoint was reduction in systolic blood pressure (SBP) from baseline to week-8 of treatment. The secondary efficacy endpoints were SBP as well as diastolic blood pressure (DBP) changes at every time-point evaluation and lipid profile improvement. Evaluation of BP was performed every week for 8 weeks of treatment; while of lipid profile at a 4-week interval. Mean SBP at baseline was 149.3±5.58 mmHg in Olive group and 148.4±5.56 mmHg in Captopril group; and mean DBPs were 93.9±4.51 and 93.8±4.88 mmHg, respectively. After 8 weeks of treatment, both groups experienced a significant reduction of SBP as well as DBP from baseline; while such reductions were not significantly different between groups. Means of SBP reduction from baseline to the end of study were -11.5±8.5 and -13.7±7.6 mmHg in Olive and Captopril groups, respectively; and those of DBP were -4.8±5.5 and -6.4±5.2 mmHg, respectively. A significant reduction of triglyceride level was observed in Olive group, but not in Captopril group. In conclusion, Olive (Olea europaea) leaf extract, at the dosage regimen of 500 mg twice daily, was similarly effective in lowering systolic and
Effect of Anacardium occidentale leaf extract on human acute lymphoblastic leukaemia cell lines.
Santos, Janaína M; Cury, Nathalia M; Yunes, José A; López, Jorge A; Hernández-Macedo, Maria L
2018-01-16
Anacardium occidentale leaves are used in folk medicine due its therapeutic properties attributed to phenolic compounds. Therefore, this study was undertaken on its hydroethanolic leaf extract (AoHE) to evaluate cytotoxicity and apoptosis induction on acute lymphoblastic leukaemia cells. Results indicated that AoHE interfered in the cell cycle progression, inducing apoptosis by activation of casp3 at lower concentrations, thence, a promising candidate for the development of new cancer drugs.
Antinociceptive and anti-inflammatory effects of Urtica dioica leaf extract in animal models.
Hajhashemi, Valiollah; Klooshani, Vahid
2013-01-01
This study was aimed to examine the antinociceptive and anti-inflammatory effects of Urtica dioica leaf extract in animal models. Hydroalcoholic extract of the plant leaves was prepared by percolation method. Male Swiss mice (25-35 g) and male Wistar rats (180-200 g) were randomly distributed in control, standard drug, and three experimental groups (n=6 in each group). Acetic acid-induced writhing, formalin test, and carrageenan-induced paw edema were used to assess the antinociceptive and anti-inflammatory effects. The extract dose-dependently reduced acetic acid-induced abdominal twitches. In formalin test, the extract at any of applied doses (100, 200, and 400 mg/kg) could not suppress the licking behavior of first phase while doses of 200 and 400 mg/kg significantly inhibited the second phase of formalin test. In carrageenan test, the extract at a dose of 400 mg/kg significantly inhibited the paw edema by 26%. The results confirm the folkloric use of the plant extract in painful and inflammatory conditions. Further studies are needed to characterize the active constituents and the mechanism of action of the plant extract.
Antinociceptive and anti-inflammatory effects of Urtica dioica leaf extract in animal models
Hajhashemi, Valiollah; Klooshani, Vahid
2013-01-01
Objective: This study was aimed to examine the antinociceptive and anti-inflammatory effects of Urtica dioica leaf extract in animal models. Materials and Methods: Hydroalcoholic extract of the plant leaves was prepared by percolation method. Male Swiss mice (25-35 g) and male Wistar rats (180-200 g) were randomly distributed in control, standard drug, and three experimental groups (n=6 in each group). Acetic acid-induced writhing, formalin test, and carrageenan-induced paw edema were used to assess the antinociceptive and anti-inflammatory effects. Results: The extract dose-dependently reduced acetic acid-induced abdominal twitches. In formalin test, the extract at any of applied doses (100, 200, and 400 mg/kg) could not suppress the licking behavior of first phase while doses of 200 and 400 mg/kg significantly inhibited the second phase of formalin test. In carrageenan test, the extract at a dose of 400 mg/kg significantly inhibited the paw edema by 26%. Conclusion: The results confirm the folkloric use of the plant extract in painful and inflammatory conditions. Further studies are needed to characterize the active constituents and the mechanism of action of the plant extract. PMID:25050274
Afshari, Kasra; Samavati, Vahid; Shahidi, Seyed-Ahmad
2015-03-01
The effects of ultrasonic power, extraction time, extraction temperature, and the water-to-raw material ratio on extraction yield of crude polysaccharide from the leaf of Hibiscus rosa-sinensis (HRLP) were optimized by statistical analysis using response surface methodology. The response surface methodology (RSM) was used to optimize HRLP extraction yield by implementing the Box-Behnken design (BBD). The experimental data obtained were fitted to a second-order polynomial equation using multiple regression analysis and also analyzed by appropriate statistical methods (ANOVA). Analysis of the results showed that the linear and quadratic terms of these four variables had significant effects. The optimal conditions for the highest extraction yield of HRLP were: ultrasonic power, 93.59 W; extraction time, 25.71 min; extraction temperature, 93.18°C; and the water to raw material ratio, 24.3 mL/g. Under these conditions, the experimental yield was 9.66±0.18%, which is well in close agreement with the value predicted by the model 9.526%. The results demonstrated that HRLP had strong scavenging activities in vitro on DPPH and hydroxyl radicals. Copyright © 2014 Elsevier B.V. All rights reserved.
Goulas, Vlassios; Papoti, Vassiliki T; Exarchou, Vassiliki; Tsimidou, Maria Z; Gerothanassis, Ioannis P
2010-03-24
The contribution of flavonoids to the overall radical scavenging activity of olive leaf polar extracts, known to be good sources of oleuropein related compounds, was examined. Off line and on line HPLC-DPPH(*) assays were employed, whereas flavonoid content was estimated colorimetrically. Individual flavonoid composition was first assessed by RP-HPLC coupled with diode array and fluorescence detectors and verified by LC-MS detection system. Olive leaf was found a robust source of flavonoids regardless sampling parameters (olive cultivar, leaf age or sampling date). Total flavonoids accounted for the 13-27% of the total radical scavenging activity assessed using the on line protocol. Luteolin 7-O-glucoside was one of the dominant scavengers (8-25%). Taking into consideration frequency of appearance the contribution of luteolin (3-13%) was considered important, too. Our findings support that olive leaf, except for oleuropein and related compounds, is also a stable source of bioactive flavonoids.
Oh, Nam Su; Lee, Ji Young; Joung, Jae Yeon; Kim, Kyung Su; Shin, Yong Kook; Lee, Kwang-Won; Kim, Sae Hun; Oh, Sangnam; Kim, Younghoon
2016-08-01
The objective of this study was to investigate the effect of 2 plant leaf extracts on fermentation mechanisms and health-promoting activities and their potential as a nutraceutical prebiotics ingredient for application in dairy products. The individual active phenolic compounds in the plant extract-supplemented milk and yogurts were also identified. Compared with control fermentation, the plant extracts significantly increased the growth and acidification rate of Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus. In particular, plant extract components, including monosaccharides, formic acid, and hydroxycinnamic acid, such as neo-chlorogenic, chlorogenic, and caffeic acid, together play a stimulatory role and cause this beneficial effect on the growth of yogurt culture bacteria through fermentation. In addition, supplementation with the plant extracts enhanced antioxidant activities with increased total phenolic contents, especially the highest antioxidant activity was observed in yogurt supplemented with Cudrania tricuspidata leaf extract. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Gutterman, Yitzchak; Chauser-Volfson, Elena
2008-10-01
Aloe arborescens plants, originating from the deserts of South Africa, are grown in the Introduction Garden at Sede Boker in the Negev Desert of Israel. In previous studies, we developed agro-technical methods to raise the content of secondary phenol metabolites (SPhMs) in the Aloe leaves. Plants that are subjected to repeated leaf pruning respond by increasing the content of their SPhMs. The SPhMs found in Aloe arborescens include barbaloin, aloenin and derivatives of aloeresin. Such compounds are used for many purposes, including human skin protection from sun and fire burns and high radiation, as products of the pharmaceutics and cosmetics industries, and as food supplements for treating stomach ulcers and diabetes. In the current study, the SPhMs were separated from pruned leaves of the same A. arborescens plants at the same time by two methods: (1) exudation by squeezing the tissues of the leaves, (2) immersion of the leaves' pruned cut bottom in water and collection of the extract. The exudates and extract were frozen, freeze-dried to a powder and the SPhMs were then separated by chromatography. The yield of powder from water extraction from pruned leaves was much lower than the yield from the exudates. However, higher percentages of the powder from the water extraction contained SPhMs (between 80 and 92.7%). The content of powder in leaf exudates from pruned leaves was much higher because the SPhMs were squeezed out from the cells and tissues. However, the percentages of SPhMs in this powder were much lower (between 39 and 62%).
Quirantes-Piné, Rosa; Lozano-Sánchez, Jesús; Herrero, Miguel; Ibáñez, Elena; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto
2013-01-01
Olea europaea L. leaves may be considered a cheap, easily available natural source of phenolic compounds. In a previous study we evaluated the possibility of obtaining bioactive phenolic compounds from olive leaves by pressurised liquid extraction (PLE) for their use as natural anti-oxidants. The alimentary use of these kinds of extract makes comprehensive knowledge of their composition essential. To undertake a comprehensive characterisation of two olive-leaf extracts obtained by PLE using high-performance liquid chromatography coupled to electrospray ionisation and quadrupole time-of-flight mass spectrometry (HPLC-ESI-QTOF-MS). Olive leaves were extracted by PLE using ethanol and water as extraction solvents at 150°C and 200°C respectively. Separation was carried out in a HPLC system equipped with a C₁₈-column working in a gradient elution programme coupled to ESI-QTOF-MS operating in negative ion mode. This analytical platform was able to detect 48 compounds and tentatively identify 31 different phenolic compounds in these extracts, including secoiridoids, simple phenols, flavonoids, cinnamic-acid derivatives and benzoic acids. Lucidumoside C was also identified for the first time in olive leaves. The coupling of HPLC-ESI-QTOF-MS led to the in-depth characterisation of the olive-leaf extracts on the basis of mass accuracy, true isotopic pattern and tandem mass spectrometry (MS/MS) spectra. We may conclude therefore that this analytical tool is very valuable in the study of phenolic compounds in plant matrices. Copyright © 2012 John Wiley & Sons, Ltd.
Lee, S W; Sim, K Y; Wendy, W; Zulhisyam, A K
2016-03-01
This study was revealed the potential of Peperomia pellucida leaf extract as an immunostimulator agent in controlling motile aeromonad septicemia due to Aeromonas hydrophila in red hybrid tilapia, Oreochromis sp. In the present study, minimum inhibitory concentration (MIC) of P. pellucida leaf extract against A. hydrophila was determined through two-fold microbroth dilution method. The plant extract was screening for its active compound using a gas chromatograph mass spectrometer, and the effectiveness of P. pellucida leaf extract as an immunostimulator agent was evaluated. The experimental fish were fed with medicated feed at three different concentrations (25 mg/kg, PP-25; 50 mg/kg, PP-50; and 100 mg/kg, PP-100) of P. pellucida leaf extract for 1 week before they were intraperitoneally exposed to A. hydrophila. Enzyme-linked immunosorbent assay was carried out to determine the value of antibody response to A. hydrophila in fish from a group of fish that received medicated feed, and the percentage of total cumulative mortality of the experimental fish were observed at the end of the experiment. The results showed that the major bioactive compound is phytol (40%), and the MIC value was 31.5 mg/L. The value of antibody response to A. hydrophila in fish from a group of fish which received medicated feed (PP-25, 0.128±0.014 optical density [OD]; PP-50, 0.132±0.003 OD; and PP-100, 0.171±0.02 OD) was found significantly higher (p<0.05) compared to fish did not receive medicated feed (0.00 OD). Whereas, percentage cumulative mortality of fish from all groups of fish received medicated feed (PP-25, 18.0±3.2%; PP-50, 18.2±2.8%; and PP-100, 17.7±1.8%) were found significantly lower (p<0.05) compared to a group of fish did not receive medicated feed (83.2±1.4%). The findings of the present study indicated the huge potential of P. pellucida leaf extract as natural immunostimulator agent for aquaculture uses.
Zhu, Xianfeng; Zhang, Hongxun; Lo, Raymond
2004-12-01
A preliminary antimicrobial disk assay of chloroform, ethyl acetate, and n-butanol extracts of artichoke (Cynara scolymus L.) leaf extracts showed that the n-butanol fraction exhibited the most significant antimicrobial activities against seven bacteria species, four yeasts, and four molds. Eight phenolic compounds were isolated from the n-butanol soluble fraction of artichoke leaf extracts. On the basis of high-performance liquid chromatography/electrospray ionization mass spectrometry, tandem mass spectrometry, and nuclear magnetic resonance techniques, the structures of the isolated compounds were determined as the four caffeoylquinic acid derivatives, chlorogenic acid (1), cynarin (2), 3,5-di-O-caffeoylquinic acid (3), and 4,5-di-O-caffeoylquinic acid (4), and the four flavonoids, luteolin-7-rutinoside (5), cynaroside (6), apigenin-7-rutinoside (7), and apigenin-7-O-beta-D-glucopyranoside (8), respectively. The isolated compounds were examined for their antimicrobial activities on the above microorganisms, indicating that all eight phenolic compounds showed activity against most of the tested organisms. Among them, chlorogenic acid, cynarin, luteolin-7-rutinoside, and cynaroside exhibited a relatively higher activity than other compounds; in addition, they were more effective against fungi than bacteria. The minimum inhibitory concentrations of these compounds were between 50 and 200 microg/mL.
Bhide, S V; Zariwala, M B; Amonkar, A J; Azuine, M A
1991-09-01
The effect of betel leaf extract and some of its constituents, eugenol, hydroxychavicol, beta-carotene and alpha-tocopherol, on benzo[a]pyrene-induced forestomach neoplasia in male Swiss mice was examined. Betel leaf and its constituents decreased the number of papillomas per animal with the maximum protection, considering molar dosage, exhibited by beta-carotene and alpha-tocopherol. Except for beta-carotene, eugenol, hydroxychavicol and alpha-tocopherol increased the levels of reduced glutathione in the liver while glutathione S-transferase activity was enhanced by all except eugenol. Of seven sources, Banarasi betel leaves showed the maximum amounts of beta-carotene and alpha-tocopherol.
Nascimento, Ana Karina Lima; Melo-Silveira, Raniere Fagundes; Dantas-Santos, Nednaldo; Fernandes, Júlia Morais; Zucolotto, Silvana Maria; Rocha, Hugo Alexandre Oliveira; Scortecci, Katia Castanho
2013-01-01
Plukenetia volubilis Linneo, or Sacha inca, is an oleaginous plant from the Euphorbiaceae family. The aim of this work was to perform a chemical and biological analysis of different leaf extracts from P. volubilis such as aqueous extract (AEL), methanol (MEL), ethanol (EEL), chloroform (CEL), and hexane (HEL). Thin layer chromatography analysis revealed the presence of phenolic compounds, steroids, and/or terpenoídes. Furthermore, the antioxidant activities were analyzed by in vitro assays and their effects on cell lineages by in vivo assays. The Total Antioxidant Capacity (TCA) was expressed as equivalent ascorbic acid (EEA/g) and it was observed that the extracts showed values ranging from 59.31 to 97.76 EAA/g. Furthermore, the DPPH assay values ranged from 62.8% to 88.3%. The cell viability assay showed that the extracts were able to reduce viability from cancer cells such as HeLa and A549 cells. The extracts MEL and HEL (250 µg/mL) were able to reduce the proliferation of HeLa cells up to 54.3% and 48.5%, respectively. The flow cytometer results showed that these extracts induce cell death via the apoptosis pathway. On the other hand, the extracts HEL and AEL were able to induce cell proliferation of normal fibroblast 3T3 cells. PMID:24159355
USDA-ARS?s Scientific Manuscript database
This study was made to determine the biological activity of Acalypha alnifolia leaf extract and the microbial insecticide Metarizhium anisopliae against larvae and pupae of the malaria vector Anopheles stephensi. Ethanolic A. alnifolia leaf extract tested against 1st through 4th instars and pupae o...
Antioxidant and antimutagenic potential of Psidium guajava leaf extracts.
Zahin, Maryam; Ahmad, Iqbal; Aqil, Farrukh
2017-04-01
Fruits, vegetables and medicinal herbs rich in phenolics antioxidants contribute toward reduced risk of age-related diseases and cancer. In this study, Psidium guajava leaf extract was fractionated in various organic solvents viz. petroleum ether, benzene, ethyl acetate, ethanl and methanol and tested for their antioxidant and antimutagenic properties. Methanolic fraction showed maximum antioxidant activity comparable to ascorbic acid and butylated hydroxyl toluene (BHT) as tested by DPPH free radical scavenging, phosphomolybdenum, FRAP (Fe3 + reducing power) and CUPRAC (cupric ions (Cu 2+ ) reducing ability) assays. The fraction was analyzed for antimutagenic activities against sodium azide (NaN 3 ), methylmethane sulfonate (MMS), 2-aminofluorene (2AF) and benzo(a)pyrene (BP) in Ames Salmonella tester strains. The methanol extracted fraction at 80 μg/ml concentration inhibited above 70% mutagenicity. Further, phytochemical analysis of methanol fraction that was found to be most active revealed the presence of nine major compounds by gas chromatography-mass spectrometry (GC-MS). This data suggests that guava contains high amount of phenolics responsible for broad-spectrum antimutagenic and antioxidant properties in vitro and could be potential candidates to be explored as modern phytomedicine.
Khan, Zaheer; Bashir, Ommer; Hussain, Javed Ijaz; Kumar, Sunil; Ahmad, Rabia
2012-10-01
Stable silver nanoparticles were synthesized by the reduction of silver ions with a Paan (Piper betel) leaf petiole extract in absence and presence of cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulphate (SDS). The reaction process was simple and convenient to handle, and was monitored using ultraviolet-visible spectroscopy. Absorbance of Ag-nanoparticles increases with the concentrations of Paan leaf extract, acts as reducing, stabilizing and capping agents. The polyphenolic groups of petiole extract are responsible to the rapid reduction of Ag(+) ions into metallic Ag(0). The results indicated that the shape of the spectra, number of peaks and its position strongly depend on the concentration of CTAB, which played a shape-controlling role during the formation of silver nanoparticles in the solutions, whereas SDS has no significant effect. The morphology (spherical, truncated triangular polyhedral plate and some irregular nanoparticles) and crystalline phase of the particles were determined from transmission electron microscopy (TEM) and selected area electron diffraction (SAED). Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dash, Shib Shankar; Bag, Braja Gopal; Hota, Poulami
2015-03-01
A facile one-step green synthesis of stable gold nanoparticles (AuNPs) has been described using chloroauric acid (HAuCl4) and the leaf extract of Lantana camara Linn (Verbenaceae family) at room temperature. The leaf extract enriched in various types of plant secondary metabolites is highly efficient for the reduction of chloroaurate ions into metallic gold and stabilizes the synthesized AuNPs without any additional stabilizing or capping agents. Detailed characterizations of the synthesized gold nanoparticles were carried out by surface plasmon resonance spectroscopy, transmission electron microscopy, dynamic light scattering, Zeta potential, X-ray diffraction and Fourier transform-infrared spectroscopy studies. The synthesized AuNPs have been utilized as a catalyst for the sodium borohydride reduction of 4-nitrophenol to 4-aminophenol in water at room temperature under mild reaction condition. The kinetics of the reduction reaction has been studied spectrophotometrically.
Eluwa, Mokutima A.; Udoaffah, Matilda T.; Vulley, Moses B. G.; Ekanem, Theresa B.; Akpantah, Amabe O.; Asuquo, Olaitan A.; Ekong, Moses B.
2010-01-01
Background: Rauwolfia vomitoria, a tropical shrub, is a medicinal plant used in the treatment of a variety of ailments. It is popular to the locals because of its anti-hypertensive and sedative properties. Aim: This is to find the probable teratogenic effects of ethanolic leaf and root bark extracts of Rauwolfia vomitoria on the morphological and histological features of the fetal heart. Material and Methods: Twenty five female rats weighing between 170-200g were used for this study. The rats were divided into five groups labeled A, B, C, D and E, with each group consisting of five rats. Pregnancy was induced by caging the female rats with sexually matured males. The presence of vaginal plug and tail structures in the vaginal smear the following morning confirmed coition, and it was regarded as day 0 of pregnancy. Group A was given sham treatment of distilled water. Group B and C received respectively 150mg/kg and 250mg/kg body weight doses of ethanolic leaf extract of Rauwolfia vomitoria, and those in groups D and E received respectively 150mg/kg and 250mg/kg body weight doses of ethanolic root bark extract of Rauwolfia vomitoria. These treatments were on days 7-11 of gestation (5 days) with the aid of an orogastric tube. On the day 20 of gestation, the rats were sacrificed and the fetuses examined for gross anomalies, preserved and latter process for histological studies. Results: There were no mortality in this study, and no obvious gross malformations in the fetuses. Histological observations of the fetal heart showed marked distortion of the cardiac muscle nuclei and myocardial fibers in the treated groups particularly those whose mothers received 250mg/kg of the extracts. These effects were more pronounced in the groups whose mothers received the root extract when compared with the control and the groups whose mothers received the leaf extract. Conclusion: This result suggests that high doses of ethanolic leaf and root extracts of Rauwolfia vomitoria may be
Eluwa, Mokutima A; Udoaffah, Matilda T; Vulley, Moses B G; Ekanem, Theresa B; Akpantah, Amabe O; Asuquo, Olaitan A; Ekong, Moses B
2010-12-01
Rauwolfia vomitoria, a tropical shrub, is a medicinal plant used in the treatment of a variety of ailments. It is popular to the locals because of its anti-hypertensive and sedative properties. This is to find the probable teratogenic effects of ethanolic leaf and root bark extracts of Rauwolfia vomitoria on the morphological and histological features of the fetal heart. Twenty five female rats weighing between 170-200g were used for this study. The rats were divided into five groups labeled A, B, C, D and E, with each group consisting of five rats. Pregnancy was induced by caging the female rats with sexually matured males. The presence of vaginal plug and tail structures in the vaginal smear the following morning confirmed coition, and it was regarded as day 0 of pregnancy. Group A was given sham treatment of distilled water. Group B and C received respectively 150mg/kg and 250mg/kg body weight doses of ethanolic leaf extract of Rauwolfia vomitoria, and those in groups D and E received respectively 150mg/kg and 250mg/kg body weight doses of ethanolic root bark extract of Rauwolfia vomitoria. These treatments were on days 7-11 of gestation (5 days) with the aid of an orogastric tube. On the day 20 of gestation, the rats were sacrificed and the fetuses examined for gross anomalies, preserved and latter process for histological studies. There were no mortality in this study, and no obvious gross malformations in the fetuses. Histological observations of the fetal heart showed marked distortion of the cardiac muscle nuclei and myocardial fibers in the treated groups particularly those whose mothers received 250mg/kg of the extracts. These effects were more pronounced in the groups whose mothers received the root extract when compared with the control and the groups whose mothers received the leaf extract. This result suggests that high doses of ethanolic leaf and root extracts of Rauwolfia vomitoria may be cardiotoxic to the developing rat's heart.
Mitsui, Kazuhisa; David, Frank; Tienpont, Bart; Sandra, Koen; Ochiai, Nobuo; Tamura, Hirotoshi; Sandra, Pat
2015-11-27
Micro-vial pyrolysis (PyroVial) was used to study the production of compounds important for the aroma of heat-treated natural products such as tobacco. Firstly, a mixture of glucose and proline was pyrolyzed as model, as this sugar and amino acid are also abundant in tobacco leaf (Nicotiana tobacum L.). The pyrolysate was analyzed using headspace-GC–MS, liquid injection GC–MS and LC–MS. Next, micro-vial pyrolysis in combination with LC–MS was applied to tobacco leaf extract. Using MS deconvolution, molecular feature extraction and differential analysis it was possible to identify Amadori intermediates of the Maillard reaction in the tobacco leaf extract. The intermediate disappeared as was the case for 1-deoxy-1-prolino-β-d-fructose or the concentration decreased in the pyrolysate compared to the original extract such as for the 1-deoxy-1-[2-(3-pyridyl)-1-pyrrolidinyl]-β-d-fructose isomers indicating that Amadori intermediates are important precursors for aroma compound formation.
Spermatoprotective activity of the leaf extract of Psidium guajava Linn.
Akinola, O B; Oladosu, O S; Dosumu, O O
2007-12-01
The leaves of Psidium guajava Linn. (guava) contain several natural antioxidants. We therefore designed the present study to evaluate the effect of ethanol extract of guava leaves on gossypol-associated sperm toxicity in Wistar rats. Animal groups 1, 2, and 3 (n=6 each) were treated orally with crude cottonseed oil to provide 14 mg/kg/d of free gossypol for 53 d. Besides, groups 1 and 2 rats were supplemented orally with 250 mg/kg/d and 500 mg/kg/d respectively of guava leaf extract (GLE) for the same period. Group 4 animals (control, n=6) received normal saline. No significant difference (P>0.05) occurred in the sperm count of group 1 rats compared to control. In animal group 2, significant increase (P<0.05) in sperm count occurred, as opposed to group 3 animals, where this parameter decreased significantly (P<0.05). Besides, mean values of 78 %, 82 %, 30 %, and 65 % respectively were obtained for sperm motility in animal groups 1, 2, 3, and 4. Our findings suggest that ethanol extract of guava leaves possesses beneficial effect on gossypol-associated sperm toxicity, and may therefore enhance male fertility, possibly owing to its rich constituents of natural antioxidants.
Adewale, Osonuga Odusoga; Oduyemi, Osonuga Ifabunmi; Ayokunle, Osonuga
2014-01-01
Objective To determine the effect of graded doses of aqueous leaf extracts of Momordica charantia on fertility hormones of female albino rats. Methods Twenty adult, healthy, female Wistar rats were divided into four groups: low dose (LD), moderate dose (MD) and high dose (HD) groups which received 12.5 g, 25.0 g, 50.0 g of the leaf extract respectively and control group that was given with water ad libatum. Result Estrogen levels reduced by 6.40 nmol/L, 10.80 nmol/L and 28.00 nmol/L in the LD, MD and HD groups respectively while plasma progesterone of rats in the LD, MD and HD groups reduced by 24.20 nmol/L, 40.8 nmol/L and 59.20 nmol/L respectively. Conclusion Our study has shown that the antifertility effect of Momordica charantia is achieved in a dose dependent manner. Hence, cautious use of such medication should be advocated especially when managing couples for infertility. PMID:25183143
NASA Astrophysics Data System (ADS)
Ajitha, B.; Ashok Kumar Reddy, Y.; Reddy, P. Sreedhara
2014-03-01
In this paper we report the green synthesis of silver nanoparticles (Ag NPs) using Tephrosia purpurea leaf extract. The biomolecules present in the leaf extract are responsible for the formation of Ag NPs and they found to play dual role of both reducing as well as capping agents. The high crystallinity of Ag NPs is evident from bright circular spot array of SAED pattern and diffraction peaks in XRD profile. The synthesized Ag NPs are found to be nearly spherical ones with size approximately ∼20 nm. FTIR spectrum evidences the presence of different functional groups of biomolecules participated in encapsulating Ag NPs and the possible mechanism of Ag NPs formation was also suggested. Appearance of yellow color and surface plasmon resonance (SPR) peak at 425 nm confirms the Ag NPs formation. PL spectra showed decrement in luminescence intensity at higher excitation wavelengths. Antimicrobial activity of Ag NPs showed better inhibitory activity towards Pseudomonas spp. and Penicillium spp. compared to other test pathogens using standard Kirby-Bauer disc diffusion assay.
NASA Astrophysics Data System (ADS)
Ajdari, M. R.; Tondro, G. H.; Sattarahmady, N.; Parsa, A.; Heli, H.
2017-12-01
Silver nanoparticles have been synthesized using only Myrtus communis L. leaf extract by a facile procedure without other reagents. The extract played the roles of both reducing and capping agent. The nanoparticles were characterized using field-emission scanning microscopy, and remained stable for at least 3 weeks. Antibacterial activity of the nanoparticles was evaluated toward Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and Enterococcus faecalis based on inhibition zone disk diffusion assays. The minimum inhibitory and bactericidal concentrations of the nanoparticles were obtained. Mechanisms for the antibacterial activity were proposed.
Akagi, Takashi; Ikegami, Ayako; Tsujimoto, Tomoyuki; Kobayashi, Shozo; Sato, Akihiko; Kono, Atsushi; Yonemori, Keizo
2009-01-01
Proanthocyanidins (PAs) are secondary metabolites that contribute to the protection of the plant and also to the taste of the fruit, mainly through astringency. Persimmon (Diospyros kaki) is unique in being able to accumulate abundant PAs in the fruit flesh. Fruits of the nonastringent (NA)-type mutants lose their ability to produce PA at an early stage of fruit development, while those of the normal astringent (A) type remain rich in PA until fully ripened. The expression of many PA pathway genes was coincidentally terminated in the NA type at an early stage of fruit development. The five genes encoding the Myb transcription factor were isolated from an A-type cultivar (Kuramitsu). One of them, DkMyb4, showed an expression pattern synchronous to that of the PA pathway genes in A- and NA-type fruit flesh. The ectopic expression of DkMyb4 in kiwifruit (Actinidia deliciosa) induced PA biosynthesis but not anthocyanin biosynthesis. The suppression of DkMyb4 in persimmon calluses caused a substantial down-regulation of the PA pathway genes and PA biosynthesis. Furthermore, analysis of the DNA-binding ability of DkMyb4 showed that it directly binds to the MYBCORE cis-motif in the promoters of the some PA pathway genes. All our results indicate that DkMyb4 acts as a regulator of PA biosynthesis in persimmon and, therefore, suggest that the reduction in the DkMyb4 expression causes the NA-type-specific down-regulation of PA biosynthesis and resultant NA trait. PMID:19783643
Matsumura, Yoko; Kitabatake, Masahiro; Ouji-Sageshima, Noriko; Yasui, Satsuki; Mochida, Naoko; Nakano, Ryuichi; Kasahara, Kei; Tomoda, Koichi; Yano, Hisakazu; Kayano, Shin-Ichi; Ito, Toshihiro
2017-01-01
Nontuberculous mycobacteria (NTM), including Mycobacterium avium complex (MAC), cause opportunistic chronic pulmonary infections. Notably, MAC susceptibility is regulated by various factors, including the host immune system. Persimmon (Ebenaceae Diospyros kaki Thunb.) tannin is a condensed tannin composed of a polymer of catechin groups. It is well known that condensed tannins have high antioxidant activity and bacteriostatic properties. However, it is hypothesized that condensed tannins might need to be digested and/or fermented into smaller molecules in vivo prior to being absorbed into the body to perform beneficial functions. In this study, we evaluated the effects of soluble persimmon-derived tannins on opportunistic MAC disease. Soluble tannins were hydrolyzed and evaluated by the oxygen radical absorbance capacity (ORAC) method. The ORAC value of soluble tannin hydrolysate was approximately five times greater than that of soluble tannin powder. In addition, soluble tannin hydrolysate exhibited high bacteriostatic activity against MAC in vitro. Furthermore, in an in vivo study, MAC infected mice fed a soluble tannin-containing diet showed significantly higher anti-bacterial activity against MAC and less pulmonary granuloma formation compared with those fed a control diet. Tumor necrosis factor α and inducible nitric oxide synthase levels were significantly lower in lungs of the soluble tannin diet group compared with the control diet group. Moreover, proinflammatory cytokines induced by MAC stimulation of bone marrow-derived macrophages were significantly decreased by addition of soluble tannin hydrolysate. These data suggest that soluble tannin from persimmons might attenuate the pathogenesis of pulmonary NTM infection.
Matsumura, Yoko; Kitabatake, Masahiro; Ouji-Sageshima, Noriko; Yasui, Satsuki; Mochida, Naoko; Nakano, Ryuichi; Kasahara, Kei; Tomoda, Koichi; Yano, Hisakazu; Kayano, Shin-ichi
2017-01-01
Nontuberculous mycobacteria (NTM), including Mycobacterium avium complex (MAC), cause opportunistic chronic pulmonary infections. Notably, MAC susceptibility is regulated by various factors, including the host immune system. Persimmon (Ebenaceae Diospyros kaki Thunb.) tannin is a condensed tannin composed of a polymer of catechin groups. It is well known that condensed tannins have high antioxidant activity and bacteriostatic properties. However, it is hypothesized that condensed tannins might need to be digested and/or fermented into smaller molecules in vivo prior to being absorbed into the body to perform beneficial functions. In this study, we evaluated the effects of soluble persimmon-derived tannins on opportunistic MAC disease. Soluble tannins were hydrolyzed and evaluated by the oxygen radical absorbance capacity (ORAC) method. The ORAC value of soluble tannin hydrolysate was approximately five times greater than that of soluble tannin powder. In addition, soluble tannin hydrolysate exhibited high bacteriostatic activity against MAC in vitro. Furthermore, in an in vivo study, MAC infected mice fed a soluble tannin-containing diet showed significantly higher anti-bacterial activity against MAC and less pulmonary granuloma formation compared with those fed a control diet. Tumor necrosis factor α and inducible nitric oxide synthase levels were significantly lower in lungs of the soluble tannin diet group compared with the control diet group. Moreover, proinflammatory cytokines induced by MAC stimulation of bone marrow-derived macrophages were significantly decreased by addition of soluble tannin hydrolysate. These data suggest that soluble tannin from persimmons might attenuate the pathogenesis of pulmonary NTM infection. PMID:28827842
Narayanan, Retna Kumari; Vadakkepurayil, Kannan
2016-01-01
Introduction The major determinant of the success of root canal treatment depends on meticulous disinfection of the root canal using intracanal irrigants. The most commonly used root canal irrigant is sodium hypochlorite which has disadvantages of cytotoxicity and unpleasant taste. So there is a need to identify a more biocompatible root canal irrigant. Aim The aim of this ex-vivo study was to evaluate the efficacy of 40% honey, 100% neem leaf extract and 5.25% sodium hypochlorite as an intracanal irrigant against the isolated microorganisms from infected root canal. Materials and Methods The samples were collected from infected root canals of 60 primary molar teeth indicated for pulpectomy. Alpha hemolytic Streptococci, gram negative bacilli, Candida, Staphylococci, Lactobacilli, Enterococci, Spore bearing gram positive bacilli and Micrococci were the microorganisms isolated from the samples. The zone of inhibition against the microbial growth was measured by agar well diffusion method. Statistical analysis was done by Repeated Analysis of Variance (ANOVA) and Bonferroni method. Results Statistical analysis showed that the means of the zones of inhibition measured in this study were 18.56mm, 2.09mm and 1.62mm for sodium hypochlorite, 100% neem leaf extract and 40% honey respectively. The significance was greater between sodium hypochlorite and the other two agents as p-value was <0.001. Conclusion The results indicated that 5.25% sodium hypochlorite is more effective as root canal irrigant when compared with 100% neem leaf extract and 40% honey. It was also observed that 100% neem leaf extract has greater antimicrobial effect than 40% honey. PMID:27656571
NASA Astrophysics Data System (ADS)
Apriandanu, D. O. B.; Yulizar, Y.
2017-04-01
Environmentally friendly method for green synthesis of Au nanoparticles (AuNP) using aqueous leaf extract of Tinospora crispa (TLE) was reported. TLE has the ability for reducing and capping AuNP. Identification of active compounds in aqueous leaf extract was obtained by phytochemical analysis and Fourier transform infrared spectroscopy (FTIR). The AuNP-TLE growth was characterized using UV-Vis spectrophotometer. The particle size and the distribution of AuNP were confirmed by particle size analyzer (PSA). AuNP-TLE formation was optimized by varying the extract concentration and time of the synthesis process. UV-Vis absorption spectrum of optimum AuNP formation displayed by the surface plasmon resonance at maximum wavelength of λmax 536 nm. The PSA result showed that AuNP has size distribution of 80.60 nm and stable up to 21 days. TEM images showed that the size of the AuNP is ± 25 nm.
Fazio, Angela; Cerezuela, Rebeca; Panuccio, Maria Rosaria; Cuesta, Alberto; Esteban, Maria Ángeles
2017-07-01
Lavandula multifida is very appreciated by pharmaceutical and cosmetic industries. In Italy is only found in Calabria and Sicily and, at present, urge its valorization due to its high extinction and genetic erosion risks. Possible applications of L. multifida extracts as immunostimulant in fish aquaculture were assayed by using gilthead seabream (Sparus aurata) as a marine fish model, due to its importance in fish aquaculture. The in vitro effects of both aqueous and ethanolic leaf extracts obtained from two Italian populations of L. multifida on head kidney leucocyte activities (viability, phagocytosis, respiratory burst and peroxidase content) were assessed. Furthermore, the possible cytotoxic effects of the extracts on SAF-1 cells and their bactericidal effects on three fish pathogenic bacteria (Vibrio harveyi, Vibrio anguillarum, Aeromonas salmonicida) were also evaluated. All the assays were performed in comparison with leaf extracts obtained from a widely-distributed species as L. angustifolia. Results showed that water and ethanolic leaf extracts obtained from L. multifida enhanced innate immune activities of S. aurata HK leucocytes. Furthermore, SAF-1 cell viability was not affected significantly after being incubated with the extracts. These extracts did not exert any bactericidal activity on the pathogenic bacterial strains tested in the present study. Results obtained in the present work suggested the possibility of use such extracts in in vivo studies in order to corroborate the possibility of their use in aquaculture. Their use could prevent to improve fish defense against pathogenic infections through enhancement of the fish immune status. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ren, Yan-yu; Yang, Hui; Wang, Tao; Wang, Chuang
2016-11-01
Various parts of plants can be used as a raw material for the synthesis of nanoparticles, which is eco-friendly way and does not involve any harmful chemicals. In this project, Ginkgo biloba leaf, an abundantly available medicinal plant in China, was for the first time adopted as a reducing and stabilizing agent to synthesize smaller sized and stable silver nanoparticles (AgNPs). To improve the quality of AgNPs, the reduction was accelerated by changing the concentrations of initial Ag+ (0.02, 0.04, 0.06 and 0.08 mol/L) of the reaction mixture consisting of silver nitrate solution (AgNO3) and Ginkgo biloba leaf extract. At pH = 8 and lower AgNO3 concentration (0.02 mol/L), a colloid consisting of well-dispersed spherical nanoparticles was obtained. The synthesized nanocrystals were successfully characterized by UV-vis and XRD. TEM images revealed the size of the spherical AgNPs ranged between 10-16 nm. FTIR analysis revealed that biological macromolecules with groups of sbnd NH2, sbnd OH, and others were distributed on the surface of the nanoparticles. The biosynthesized AgNPs exhibited good antibacterial activities against gram-negative bacteria and gram-positive bacteria. Compared to traditional chemical methods, Ginkgo biloba leaf extract provides an easy green synthetical way. It is anticipated that the biosynthesized AgNPs can be used in areas such as cosmetics, foods and medical applications.
Warikoo, Radhika; Ray, Ankita; Sandhu, Jasdeep Kaur; Samal, Roopa; Wahab, Naim; Kumar, Sarita
2012-02-01
To assess the larvicidal and irritant activities of the hexane extracts of leaves of Citrus sinensis (C. sinensis) against the early fourth instars and female adults of Aedes aegypti (Ae. aegypti). The larvicidal potential of the prepared leaf extract was evaluated against early fourth instar larvae of Ae. aegypti using WHO protocol. The mortality counts were made after 24 h and LC50 and LC90 values were calculated. The efficacy of extract as mosquito irritant was assessed by contact irritancy assays. Extract-impregnated paper was placed on a glass plate over which a perspex funnel with a hole on the top was kept inverted. Single female adult, 3-day old unfed/blood-fed, was released inside the funnel. After 3 min of acclimatization time, the time taken for the first take-off and total number of flights undertaken during 15 min were scored. The citrus leaf extracts from hexane possessed moderate larvicidal efficiency against dengue vector. The bioassays resulted in an LC50 and LC90 value of 446.84 and 1 370.96 ppm, respectively after 24 h of exposure. However, the extracts were proved to be remarkable irritant against adults Ae. aegypti, more pronounced effects being observed on blood-fed females than unfed females. The extract-impregnated paper was thus proved to be 7-11 times more irritable as compared with the control paper. The hexane extracts from C. sinensis leaves are proved to be reasonably larvicidal but remarkably irritant against dengue vector. Further studies are needed to identify the possible role of extract as adulticide, oviposition deterrent and ovicidal agent. The isolation of active ingredient from the extract could help in formulating strategies for mosquito control.
Warikoo, Radhika; Ray, Ankita; Sandhu, Jasdeep Kaur; Samal, Roopa; Wahab, Naim; Kumar, Sarita
2012-01-01
Objective To assess the larvicidal and irritant activities of the hexane extracts of leaves of Citrus sinensis (C. sinensis) against the early fourth instars and female adults of Aedes aegypti (Ae. aegypti). Methods The larvicidal potential of the prepared leaf extract was evaluated against early fourth instar larvae of Ae. aegypti using WHO protocol. The mortality counts were made after 24 h and LC50 and LC90 values were calculated. The efficacy of extract as mosquito irritant was assessed by contact irritancy assays. Extract-impregnated paper was placed on a glass plate over which a perspex funnel with a hole on the top was kept inverted. Single female adult, 3-day old unfed/blood-fed, was released inside the funnel. After 3 min of acclimatization time, the time taken for the first take-off and total number of flights undertaken during 15 min were scored. Results The citrus leaf extracts from hexane possessed moderate larvicidal efficiency against dengue vector. The bioassays resulted in an LC50 and LC90 value of 446.84 and 1 370.96 ppm, respectively after 24 h of exposure. However, the extracts were proved to be remarkable irritant against adults Ae. aegypti, more pronounced effects being observed on blood-fed females than unfed females. The extract-impregnated paper was thus proved to be 7–11 times more irritable as compared with the control paper. Conclusions The hexane extracts from C. sinensis leaves are proved to be reasonably larvicidal but remarkably irritant against dengue vector. Further studies are needed to identify the possible role of extract as adulticide, oviposition deterrent and ovicidal agent. The isolation of active ingredient from the extract could help in formulating strategies for mosquito control. PMID:23569887
Phytochemical Screening and Acute Oral Toxicity Study of Java Tea Leaf Extracts
Safinar Ismail, Intan; Azam, Amalina Ahmad; Abas, Faridah; Shaari, Khozirah; Sulaiman, Mohd Roslan
2015-01-01
The term Java tea refers to the decoction of Orthosiphon stamineus (OS) Benth (Lamiaceae) leaves, which are widely consumed by the people in Europe and South East Asian countries. The OS leaves are known for their use in traditional medicinal systems as a prophylactic and curative agent for urinary stone, diabetes, and hypertension and also as a diuretic agent. The present study was aimed at evaluating its possible toxicity. Herein, the major phytochemical constituents of microwave dried OS leaf, which is the common drying process for tea sachets in the market, were also identified. The acute oral toxicity test of aqueous, 50% aqueous ethanolic, and ethanolic extracts of OS was performed at a dose of 5000 mg/Kg body weight of Sprague-Dawley rats. During the 14-day study, the animals were observed for any mortality, behavioral, motor-neuronal abnormalities, body weight, and feed-water consumption pattern. The hematological and serum biochemical parameters to assess the kidney and liver functions were carried out, along with the histological analysis of these organs. It was found that all microwave dried OS leaf extracts did not cause any toxic effects or mortality at the administered dose. No abnormality was noticed in all selected parameters in rats of both sexes as compared with their respective control groups. Thus, the possible oral lethal dose for microwave dried Java tea leaves is more than 5000 mg/Kg body weight. PMID:26819955
Salahdeen, Hussein M; Idowu, Gbolahan O; Yemitan, Omoniyi K; Murtala, Babatunde A; Alada, Abdul-Rasak A
2014-05-01
Tridax procumbens leaf extract has a folk reputation as an antihypertensive agent in Nigeria. Evidence suggests that it has a relaxant effect on smooth muscles. The present study was designed to investigate the role of calcium in the vasorelaxant effect of this extract. Concentration-response studies with noradrenaline (NA), KCl and CaCl2 were carried out in rat aortic rings with and without the extract in physiological salt solution (PSS) (n=6 each). Also, the role of intracellular calcium mobilization was studied by measuring the phasic response to NA in Ca2+-free N,N-ethylene glycol tetraacetic acid (EGTA) PSS (n=6). The results showed that the contractile responses to either NA or KCl were attenuated (p<0.05) in the presence of the extract. Also, the extract attenuated the contractile response to CaCl2 in the presence of NA or KCl (p<0.05) in the Ca2+-free EGTA PSS, while the phasic response to NA was significantly (p<0.05) diminished. These results suggest that the vasorelaxant effect of T. procumbens leaf extract may be mediated by a non-specific, non-competitive inhibition of Ca2+ influx as well as by inhibition of Ca2+ mobilization from intracellular stores. This implies that it may contain vasorelaxant agents that may have calcium antagonistic potential.
Kovendan, Kalimuthu; Murugan, Kadarkarai; Naresh Kumar, Arjunan; Vincent, Savariar; Hwang, Jiang-Shiou
2012-02-01
The present study was carried out to establish the properties of Carica papaya leaf extract and bacterial insecticide, spinosad on larvicidal and pupicidal activity against the chikungunya vector, Aedes aegypti. The medicinal plants were collected from the area around Bharathiar University, Coimbatore, India. C. papaya leaf was washed with tap water and shade-dried at room temperature. An electrical blender powdered the dried plant materials (leaves). The powder (500 g) of the leaf was extracted with 1.5 l of organic solvents of methanol for 8 h using a Soxhlet apparatus and then filtered. The crude leaf extracts were evaporated to dryness in a rotary vacuum evaporator. The plant extract showed larvicidal and pupicidal effects after 24 h of exposure; however, the highest larval and pupal mortality was found in the leaf extract of methanol C. papaya against the first- to fourth-instar larvae and pupae of values LC(50) = I instar was 51.76 ppm, II instar was 61.87 ppm, III instar was 74.07 ppm, and IV instar was 82.18 ppm, and pupae was 440.65 ppm, respectively, and bacterial insecticide, spinosad against the first to fourth instar larvae and pupae of values LC(50) = I instar was 51.76 ppm, II instar was 61.87 ppm, III instar was 74.07 ppm, and IV instar was 82.18 ppm, and pupae was 93.44 ppm, respectively. Moreover, combined treatment of values of LC(50) = I instar was 55.77 ppm, II instar was 65.77 ppm, III instar was 76.36 ppm, and IV instar was 92.78 ppm, and pupae was 107.62 ppm, respectively. No mortality was observed in the control. The results that the leaves extract of C. papaya and bacterial insecticide, Spinosad is promising as good larvicidal and pupicidal properties of against chikungunya vector, A. aegypti. This is an ideal eco-friendly approach for the control of chikungunya vector, A. aegypti as target species of vector control programs.
Sarkar, Rhitajit; Hazra, Bibhabasu; Mandal, Nripendranath
2013-02-01
In view of the contribution of iron deposition in the oxidative pathologic process of liver disease, the potential of 70% methanolic extract of C. cajan leaf (CLME) towards antioxidative protection against iron-overload-induced liver damage in mice has been investigated. DPPH radical scavenging and protection of Fenton reaction induced DNA damage was conducted in vitro. Post oral administration of CLME to iron overloaded mice, the levels of antioxidant and serum enzymes, hepatic iron, serum ferritin, lipid peroxidation, and protein carbonyl and hydroxyproline contents were measured, in comparison to deferasirox treated mice. Oral treatment of the plant extract effectively lowered the elevated levels of liver iron, lipid peroxidation, protein carbonyl and hydroxyproline. There was notable increment in the dropped levels of hepatic antioxidants. The dosage of the plant extract not only made the levels of serum enzymes approach normal value, but also counteracted the overwhelmed serum ferritin level. The in vitro studies indicated potential antioxidant activity of CLME. The histopathological observations also substantiated the ameliorative function of the plant extract. Accordingly, it is suggested that Cajanus cajan leaf can be a useful herbal remedy to suppress oxidative damage caused by iron overload.
Chen, Wenxing; Xiong, Yalou; Xu, Liqing; Zhang, Qinglin; Luo, Zhengrong
2017-01-01
Persimmon fruits accumulate a large amount of proanthocyanidins (PAs) during development. PAs cause a dry or puckering sensation due to its astringency. Pollination constant and non-astringent (PCNA) persimmon fruits can lose astringency during fruit ripening. However, little is known about the mechanism of natural de-astringency of Chinese PCNA (CPCNA). To gain insight into the molecular events of CPCNA natural de-astringency, we used mRNA-seq and iTRAQ-based quantitative proteomic analysis to measure changes in genes and proteins expression at two key stages of natural astringency removal (i.e. 10 and 20 weeks after bloom) and water-treated (i.e. 40 °C·12 h) de-astringency fruits. Our analyses show that the three predominantly process in CPCNA de-astringency: (1) water treatment strongly up-regulates glycolysis/acetaldehyde metabolism, (2) expression of genes/proteins involved in PA biosynthetic pathway was remarkably reduced in natural and water-treated de-astringency, (3) sugar metabolism and ethylene related pathway were quite abundant in natural de-astringency. We also found ethylene-related TFs were quite abundant in natural de-astringency, followed by WRKY and NAC transcription factors. These results provide an initial understanding of the predominantly biological processes underlying the natural de-astringency and “coagulation effect” in CPCNA. PMID:28304376
Sato, Akihiko; Yamada, Masahiko
2016-01-01
Oriental persimmon (Diospyros kaki) originated in Eastern Asia, and many indigenous cultivars have been developed in China, Japan, and Korea. These cultivars are classified into four groups based on their natural astringency loss on the tree and seed formation: pollination-constant non-astringent (PCNA), pollination-variant non-astringent (PVNA), pollination-constant astringent (PCA), and pollination-variant astringent (PVA). PCNA is the most desirable type because the fruit can be eaten without any postharvest treatment; therefore, one of the goals of our persimmon breeding programs is to release superior PCNA cultivars. The PCNA genotype is recessive to the other three non-PCNA genotypes, and PCNA-type F1 offspring are obtained exclusively from crosses among PCNA genotypes. Moreover, the number of superior PCNA cross-parents have been limited. In the late 1980s, inbreeding depression became obvious, especially in terms of fruit size, tree vigor, and productivity. To mitigate the inbreeding, a backcross program using PCNA [(non-PCNA × PCNA) × PCNA] was started in 1990. This process, however, was inefficient because only 15% of the offspring were PCNA, and all offspring had to be grown to the fruiting stage. Therefore, molecular markers linked to the PCNA locus were developed for discriminating PCNA offspring. A molecular marker linked to Chinese PCNA has also been developed.
Lee, S. W.; Sim, K. Y.; Wendy, W.; Zulhisyam, A. K.
2016-01-01
Aim: This study was revealed the potential of Peperomia pellucida leaf extract as an immunostimulator agent in controlling motile aeromonad septicemia due to Aeromonas hydrophila in red hybrid tilapia, Oreochromis sp. Materials and Methods: In the present study, minimum inhibitory concentration (MIC) of P. pellucida leaf extract against A. hydrophila was determined through two-fold microbroth dilution method. The plant extract was screening for its active compound using a gas chromatograph mass spectrometer, and the effectiveness of P. pellucida leaf extract as an immunostimulator agent was evaluated. The experimental fish were fed with medicated feed at three different concentrations (25 mg/kg, PP-25; 50 mg/kg, PP-50; and 100 mg/kg, PP-100) of P. pellucida leaf extract for 1 week before they were intraperitoneally exposed to A. hydrophila. Enzyme-linked immunosorbent assay was carried out to determine the value of antibody response to A. hydrophila in fish from a group of fish that received medicated feed, and the percentage of total cumulative mortality of the experimental fish were observed at the end of the experiment. Results: The results showed that the major bioactive compound is phytol (40%), and the MIC value was 31.5 mg/L. The value of antibody response to A. hydrophila in fish from a group of fish which received medicated feed (PP-25, 0.128±0.014 optical density [OD]; PP-50, 0.132±0.003 OD; and PP-100, 0.171±0.02 OD) was found significantly higher (p<0.05) compared to fish did not receive medicated feed (0.00 OD). Whereas, percentage cumulative mortality of fish from all groups of fish received medicated feed (PP-25, 18.0±3.2%; PP-50, 18.2±2.8%; and PP-100, 17.7±1.8%) were found significantly lower (p<0.05) compared to a group of fish did not receive medicated feed (83.2±1.4%). Conclusion: The findings of the present study indicated the huge potential of P. pellucida leaf extract as natural immunostimulator agent for aquaculture uses. PMID
Prasad, TNVKV; Elumalai, EK
2011-01-01
Objective To formulate a simple rapid procedure for bioreduction of silver nanoparticles using aqueous leaves extract of Moringa oleifera (M. oleifera). Methods 10 mL of leaf extract was mixed to 90 mL of 1 mM aqueous of AgNO3 and was heated at 60 - 80 °C for 20 min. A change from brown to reddish color was observed. Characterization using UV-Vis spectrophotometry, Transmission Electron Microscopy (TEM) was performed. Results TEM showed the formation of silver nanoparticles with an average size of 57 nm. Conclusions M. oleifera demonstrates strong potential for synthesis of silver nanoparticles by rapid reduction of silver ions (Ag+ to Ag0). Biological methods are good competents for the chemical procedures, which are eco-friendly and convenient. PMID:23569809
Topalović, Dijana Žukovec; Živković, Lada; Čabarkapa, Andrea; Djelić, Ninoslav; Bajić, Vladan; Dekanski, Dragana; Spremo-Potparević, Biljana
2015-01-01
The thyroid hormones change the rate of basal metabolism, modulating the consumption of oxygen and causing production of reactive oxygen species, which leads to the development of oxidative stress and DNA strand breaks. Olive (Olea europaea L.) leaf contains many potentially bioactive compounds, making it one of the most potent natural antioxidants. The objective of this study was to evaluate the genotoxicity of L-thyroxine and to investigate antioxidative and antigenotoxic potential of the standardized oleuropein-rich dry olive leaf extract (DOLE) against hydrogen peroxide and L-thyroxine-induced DNA damage in human peripheral blood leukocytes by using the comet assay. Various concentrations of the extract were tested with both DNA damage inducers, under two different experimental conditions, pretreatment and posttreatment. Results indicate that L-thyroxine exhibited genotoxic effect and that DOLE displayed protective effect against thyroxine-induced genotoxicity. The number of cells with DNA damage, was significantly reduced, in both pretreated and posttreated samples (P < 0.05). Comparing the beneficial effect of all tested concentrations of DOLE, in both experimental protocols, it appears that extract was more effective in reducing DNA damage in the pretreatment, exhibiting protective role against L-thyroxine effect. This feature of DOLE can be explained by its capacity to act as potent free radical scavenger.
Žukovec Topalović, Dijana; Živković, Lada; Čabarkapa, Andrea; Djelić, Ninoslav; Bajić, Vladan; Spremo-Potparević, Biljana
2015-01-01
The thyroid hormones change the rate of basal metabolism, modulating the consumption of oxygen and causing production of reactive oxygen species, which leads to the development of oxidative stress and DNA strand breaks. Olive (Olea europaea L.) leaf contains many potentially bioactive compounds, making it one of the most potent natural antioxidants. The objective of this study was to evaluate the genotoxicity of L-thyroxine and to investigate antioxidative and antigenotoxic potential of the standardized oleuropein-rich dry olive leaf extract (DOLE) against hydrogen peroxide and L-thyroxine-induced DNA damage in human peripheral blood leukocytes by using the comet assay. Various concentrations of the extract were tested with both DNA damage inducers, under two different experimental conditions, pretreatment and posttreatment. Results indicate that L-thyroxine exhibited genotoxic effect and that DOLE displayed protective effect against thyroxine-induced genotoxicity. The number of cells with DNA damage, was significantly reduced, in both pretreated and posttreated samples (P < 0.05). Comparing the beneficial effect of all tested concentrations of DOLE, in both experimental protocols, it appears that extract was more effective in reducing DNA damage in the pretreatment, exhibiting protective role against L-thyroxine effect. This feature of DOLE can be explained by its capacity to act as potent free radical scavenger. PMID:25789081
Antidiabetic activity of Pongamia pinnata leaf extracts in alloxan-induced diabetic rats
Sikarwar, Mukesh S.; Patil, M.B.
2010-01-01
The antidiabetic activity of Pongamia pinnata ( Family: Leguminosae) leaf extracts was investigated in alloxan-induced diabetic albino rats. A comparison was made between the action of different extracts of P. pinnata and a known antidiabetic drug glibenclamide (600 μg/kg b. wt.). An oral glucose tolerance test (OGTT) was also performed in experimental diabetic rats. The petroleum ether, chloroform, alcohol and aqueous extracts of P. pinnata were obtained by simple maceration method and were subjected to standardization using pharmacognostical and phytochemical screening methods. Dose selection was made on the basis of acute oral toxicity study (50-5000 mg/kg b. w.) as per OECD guidelines. P. pinnata ethanolic extract (PPEE) and aqueous extract (PPAE) showed significant (P < 0.001) antidiabetic activity. In alloxan-induced model, blood glucose levels of these extracts on 7th day of the study were 155.83 ± 11.211mg/dl (PPEE) and 132.00 ± 4.955mg/dl (PPAE) in comparison of diabetic control (413.50 ± 4.752mg/dl) and chloroform extract (210.83 ± 14.912mg/dl). In glucose loaded rats, PPEE exhibited glucose level of 164.50 ± 6.350mg/dl after 30 min and 156.50 ± 4.089mg/dl after 90 min, whereas the levels in PPAE treated animals were 176 ± 3.724mg/dl after 30 min and 110.33 ± 6.687mg/dl after 90 min. These extracts also prevented body weight loss in diabetic rats. The drug has the potential to act as an antidiabetic drug. PMID:21455444
Ecker, Assis; Araujo Vieira, Francielli; de Souza Prestes, Alessandro; Mulling dos Santos, Matheus; Ramos, Angelica; Dias Ferreira, Rafael; Teixeira de Macedo, Gabriel; Vargas Klimaczewski, Claudia; Lopes Seeger, Rodrigo; Teixeira da Rocha, João Batista; de Vargas Barbosa, Nilda B.
2015-01-01
Aqueous-leaf extract of Syzygium cumini and Bauhinia forficata are traditionally used in the treatment of diabetes and cancer, especially in South America, Africa, and Asia. In this study, we analyzed the effects of these extracts on oxidative and mitochondrial parameters in vitro, as well as their protective activities against toxic agents. Phytochemical screenings of the extracts were carried out by HPLC analysis. The in vitro antioxidant capacities were compared by DPPH radical scavenging and Fe2+ chelating activities. Mitochondrial parameters observed were swelling, lipid peroxidation and dehydrogenase activity. The major chemical constituent of S. cumini was rutin. In B. forficata were predominant quercetin and gallic acid. S. cumini reduced DPPH radical more than B. forficata, and showed iron chelating activity at all tested concentrations, while B. forficata had not similar property. In mitochondria, high concentrations of B. forficata alone induced a decrease in mitochondrial dehydrogenase activity, but low concentrations of this extract prevented the effect induced by Fe2++H2O2. This was also observed with high concentrations of S. cumini. Both extracts partially prevented the lipid peroxidation induced by Fe2+/citrate. S. cumini was effective against mitochondrial swelling induced by Ca2+, while B. forficata alone induced swelling more than Ca2+. This study suggests that leaf extract of S. cumini might represent a useful therapeutic for the treatment of diseases related with mitochondrial dysfunctions. On the other hand, the consumption of B. forficata should be avoided because mitochondrial damages were observed, and this possibly may pose risk to human health. PMID:27152111
Mukandiwa, Lillian; Eloff, Jacobus Nicolaas; Naidoo, Vinny
2016-06-01
Mosquitoes are rapidly developing resistance to insecticides that millions of people relied on to protect themselves from the diseases they carry, thereby creating a need to develop new insecticides. Clausena anisata is used traditionally as an insect repellent by various communities in Africa and Asia. For this study, the repellency and adulticidal activities of leaf extracts and compounds isolated from this plant species were evaluated against the yellow fever mosquito, Aedes aegypti. In the topical application assays, using total bites as an indicator, repellency was dose dependent, with the acetone crude extract (15 %) having 93 % repellence and the hexane fraction (7.5 %) 67 % repellence after 3 h. Fractionation resulted in a loss of total repellence. As mosquito-net treating agents, the acetone and hexane extracts of C. anisata, both at 15 %, had average repellences of 46.89 ± 2.95 and 50.13 ± 2.02 %, respectively, 3 h after exposure. The C. anisata acetone extract and its hexane fraction caused mosquito knockdown and eventually death when nebulised into the testing chamber, with an EC50 of 78.9 mg/ml (7.89 %) and 71.6 mg/ml (7.16 %) in the first 15 min after spraying. C. anisata leaf extracts have potential to be included in protection products against mosquitoes due to the repellent and cidal compounds contained therein.
Ajaegbu, Elijah Eze; Danga, Simon Pierre Yinyang; Chijoke, Ikemefuna Uzochukwu; Okoye, Festus Basden Chiedu
2016-03-01
Aedes aegypti is a domestic mosquito and one of the primary vectors for dengue and yellow fever. Since, it is a vector of deadly diseases, its control becomes essential. Medicinal plants may be an alternative to adulticidal agents since they contain rich source of bioactive compounds. This study was designed to determine the adulticidal activity of Spondias mombin leaf methanol crude extract, n-hexane, dichloromethane and ethyl acetate fractions against female adults of Ae. aegypti mosquitoes and isolate active compound(s) responsible for the bioactivity. All leaf extract and fractions were evaluated for adulticidal activity against Ae. aegypti mosquitoes. Adult mortality was observed after 24 h of exposure. The dichloromethane fraction was further purified being the most active fraction using silica gel column chromatography and the active compounds were identified with the aid of HPLC and LC-ESI-MS/MS. The LC50 and LC90 were determined by Probit analysis. Dichloromethane fraction was the most effective fraction with LC50 value of 2172.815 μg/ml. Compounds identified were mainly ellagic acid and 1-O-Galloyl-6-O-luteoyl-α-D-glucose. The S. mombin leaf extracts and fractions proved to be a strong candidate for a natural, safe and stable adulticide, alternative to synthetic adulticide.
Amabeoku, George J; Kabatende, Joseph
2012-01-01
Leaf methanol extract of C. orbiculata L. was investigated for antinociceptive and anti-inflammatory activities using acetic acid writhing and hot-plate tests and carrageenan-induced oedema test in mice and rats, respectively. C. orbiculata (100-400 mg/kg, i.p.) significantly inhibited acetic acid-induced writhing and significantly delayed the reaction time of mice to the hot-plate-induced thermal stimulation. Paracetamol (300 mg/kg, i.p.) significantly inhibited the acetic acid-induced writhing in mice. Morphine (10 mg/kg, i.p.) significantly delayed the reaction time of mice to the thermal stimulation produced with hot plate. Leaf methanol extract of C. orbiculata (50-400 mg/kg, i.p.) significantly attenuated the carrageenan-induced rat paw oedema. Indomethacin (10 mg/kg, p.o.) also significantly attenuated the carrageenan-induced rat paw oedema. The LD(50) value obtained for the plant species was greater than 4000 mg/kg (p.o.). The data obtained indicate that C. orbiculata has antinociceptive and anti-inflammatory activities, justifying the folklore use of the plant species by traditional medicine practitioners in the treatment of painful and inflammatory conditions. The relatively high LD(50) obtained shows that C. orbiculata may be safe in or nontoxic to mice.
Im, Inhwan; Park, Kyung-Ran; Kim, Sung-Moo; Kim, Chulwon; Park, Jeong Ha; Nam, Dongwoo; Jang, Hyeung-Jin; Shim, Bum Sang; Ahn, Kyoo Seok; Mosaddik, Ashik; Sethi, Gautam; Cho, Somi K; Ahn, Kwang Seok
2012-01-01
The leaf extract of guava (Psidium cattleianum Sabine) has traditionally been used for the treatment of diarrhea and diabetes in East Asia and other countries. Recently, the leaf extract has been employed in the therapy of cancer, bacterial infections, and inflammation in experimental models. However, the exact mechanisms of how guava leaf extract inhibits tumor metastasis and invasion are still unknown. In the present study, we investigated in detail the molecular mechanism(s) responsible for the potential antimetastatic and antiinvasive effects of the butanol fraction of guava leaf extract (GBF). Interestingly, we observed for the first time that GBF suppressed both matrix metalloproteinases (MMP)-9 and MMP-2 expression and activity in part through the downregulation of the ERK1/2 activation in lung cancer cells. Also, importantly, the major components of the GBF were identified as d-glucuronic acid, quercetin 3-glucuronide, loganin, and xanthyletin by LC-ESI-MS/MS. Collectively, our data indicate that the guava leaf could reduce the metastasis of lung cancer cells and therefore suggest that it could be advantageously used to control the metastatic process.
Yuniarti, Wiwik Misaco; Lukiswanto, Bambang Sektiari
2017-07-01
Skin burn is a health problem that requires fast and accurate treatment. If not well-treated, the burn will cause various damaging conditions for the patient. The leaf extract of Madeira vine ( Anredera cordifolia (Ten.) Steenis), or popularly known as Binahong in Indonesia, has been used to treat various diseases. The purpose of this research is to determine the effects of leaf extracts of Madeira vine ( A. cordifolia (Ten.) Steenis) on skin burn healing process in rats as an animal model. In this research, there were four treatment groups: G0, G1, G2, and G3, each consisting of five rats. All these rats were given skin burns, using hot metal plates. Then, sulfadiazine was given to G0, 2.5% leaf extract of Madeira vine was given to G1, 5% extract was given to G2, and 10% extract was given to G3, for straight 14 days topically, 3 times a day. At the end of the treatment period, skin excisions were conducted, and histopathological examination was carried out. Microscopic observation on the wound healing process on the collagen deposition, polymorphonuclear infiltration, angiogenesis, and fibrosis showed that G2 had a significant difference with G0, G1, and G3 (p<0.05), while group G0 was significantly different from G1 and G3 (p<0.05). The better burn healing process on G2 allegedly because of the activity of flavonoid, saponin, and tannin, contained in the Madeira vine, which have the antioxidant, anti-inflammatory, and antibacterial effects. The ointment from the 5% leaf extract of Madeira vine ( A. cordifolia (Ten.) Steenis) has been proven to be effective to be used for topical burn therapy.
Yuniarti, Wiwik Misaco; Lukiswanto, Bambang Sektiari
2017-01-01
Aim: Skin burn is a health problem that requires fast and accurate treatment. If not well-treated, the burn will cause various damaging conditions for the patient. The leaf extract of Madeira vine (Anredera cordifolia (Ten.) Steenis), or popularly known as Binahong in Indonesia, has been used to treat various diseases. The purpose of this research is to determine the effects of leaf extracts of Madeira vine (A. cordifolia (Ten.) Steenis) on skin burn healing process in rats as an animal model. Materials and Methods: In this research, there were four treatment groups: G0, G1, G2, and G3, each consisting of five rats. All these rats were given skin burns, using hot metal plates. Then, sulfadiazine was given to G0, 2.5% leaf extract of Madeira vine was given to G1, 5% extract was given to G2, and 10% extract was given to G3, for straight 14 days topically, 3 times a day. At the end of the treatment period, skin excisions were conducted, and histopathological examination was carried out. Result: Microscopic observation on the wound healing process on the collagen deposition, polymorphonuclear infiltration, angiogenesis, and fibrosis showed that G2 had a significant difference with G0, G1, and G3 (p<0.05), while group G0 was significantly different from G1 and G3 (p<0.05). The better burn healing process on G2 allegedly because of the activity of flavonoid, saponin, and tannin, contained in the Madeira vine, which have the antioxidant, anti-inflammatory, and antibacterial effects. Conclusion: The ointment from the 5% leaf extract of Madeira vine (A. cordifolia (Ten.) Steenis) has been proven to be effective to be used for topical burn therapy. PMID:28831227
NASA Astrophysics Data System (ADS)
Roy, Pragyan; Das, Bhagyalaxmi; Mohanty, Abhipsa; Mohapatra, Sujata
2017-11-01
In this study, green synthesis of silver nanoparticles was done using leaf extracts of Azadirachta indica. The flavonoids and terpenoids present in the extract act as both reducing and capping agent. Microbes ( Escherichia coli and Gram-positive bacteria) were isolated from borewell water using selective media. The silver nanoparticles showed antimicrobial activities against Gram-positive bacteria and E. coli. However the silver nanoparticles were more effective against E. coli as compared to Gram-positive bacteria. Various techniques were used to characterize synthesized silver nanoparticles such as DLS and UV-visible spectrophotometer. The absorbance peak was in the range of 420-450 nm, that varied depending upon the variation in the concentration of neem extract. This is a very rapid and cost-effective method for generation of silver nanoparticle at room temperature, however, its exact dose in water purification has to be determined.
Damiani, Natalia; Fernández, Natalia J; Porrini, Martín P; Gende, Liesel B; Álvarez, Estefanía; Buffa, Franco; Brasesco, Constanza; Maggi, Matías D; Marcangeli, Jorge A; Eguaras, Martín J
2014-02-01
A diverse set of parasites and pathogens affects productivity and survival of Apis mellifera honeybees. In beekeeping, traditional control by antibiotics and molecules of synthesis has caused problems with contamination and resistant pathogens. In this research, different Laurus nobilis extracts are tested against the main honeybee pests through an integrated point of view. In vivo effects on bee survival are also evaluated. The ethanol extract showed minimal inhibitory concentration (MIC) values of 208 to 416 μg/mL, having the best antimicrobial effect on Paenibacillus larvae among all substances tested. Similarly, this leaf extract showed a significant antiparasitic activity on Varroa destructor, killing 50 % of mites 24 h after a 30-s exposure, and on Nosema ceranae, inhibiting the spore development in the midgut of adult bees ingesting 1 × 10(4) μg/mL of extract solution. Both ethanol extract and volatile extracts (essential oil, hydrolate, and its main component) did not cause lethal effects on adult honeybees. Thus, the absence of topical and oral toxicity of the ethanol extract on bees and the strong antimicrobial, microsporicidal, and miticidal effects registered in this study place this laurel extract as a promising integrated treatment of bee diseases and stimulates the search for other bioactive phytochemicals from plants.
Pedro, Alessandra C; Moreira, Fernanda; Granato, Daniel; Rosso, Neiva D
2016-05-13
In the current study, response surface methodology (RSM) was used to assess the effects of extraction time and temperature on the content of bioactive compounds and antioxidant activity of purple basil leaf (Ocimum basilicum L.) extracts. The stability of anthocyanins in relation to temperature, light and copigmentation was also studied. The highest anthocyanin content was 67.40 mg/100 g extracted at 30 °C and 60 min. The degradation of anthocyanins with varying temperatures and in the presence of light followed a first-order kinetics and the activation energy was 44.95 kJ/mol. All the extracts exposed to light showed similar half-lives. The extracts protected from light, in the presence of copigments, showed an increase in half-life from 152.67 h for the control to 856.49 and 923.17 h for extract in the presence of gallic acid and phytic acid, respectively. These results clearly indicate that purple basil is a potential source of stable bioactive compounds.
Kabongo-Kayoka, Prudence N; Eloff, Jacobus N; Obi, Chikwelu L; McGaw, Lyndy J
2016-12-01
Treatment of tuberculosis (TB) is a challenge because of multidrug-resistant and extremely drug-resistant strains of Mycobacterium tuberculosis. Plant species contain antimicrobial compounds that may lead to new anti-TB drugs. Previous screening of some tree species from the Anacardiaceae family revealed the presence of antimicrobial activity, justifying further investigations. Leaf extracts of 15 Anacardiaceae tree species were screened for antimycobacterial activity using a twofold serial microdilution assay against the pathogenic Mycobacterium bovis and multidrug resistant M. tuberculosis and rapidly growing mycobacteria, Mycobacterium smegmatis, Mycobacterium fortuitum and Mycobacterium aurum. The vaccine strain, M. bovis and an avirulent strain, H37Ra M. tuberculosis, were also used. Cytotoxicity was assessed using a colorimetric assay against Vero kidney, human hepatoma and murine macrophage cells. Four out of 15 crude acetone extracts showed significant antimycobacterial activity with minimum inhibitory concentration varying from 50 to 100 µg/mL. Searsia undulata had the highest activity against most mycobacteria, followed by Protorhus longifolia. M. fortuitum was the strongest predictor of activity against multidrug-resistant TB (correlation coefficient = 0.65). Bioautography against M. aurum and M. fortuitum worked well as indicators of the Rf values of active compounds yielding strong zones of inhibition. The leaf extracts of S. undulata and P. longifolia had more than ten different antimycobacterial compounds and had low cytotoxicity with LC 50 values above 100 µg/mL. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Silver nano fabrication using leaf disc of Passiflora foetida Linn
NASA Astrophysics Data System (ADS)
Lade, Bipin D.; Patil, Anita S.
2017-06-01
The main purpose of the experiment is to develop a greener low cost SNP fabrication steps using factories of secondary metabolites from Passiflora leaf extract. Here, the leaf extraction process is omitted, and instead a leaf disc was used for stable SNP fabricated by optimizing parameters such as a circular leaf disc of 2 cm (1, 2, 3, 4, 5) instead of leaf extract and grade of pH (7, 8, 9, 11). The SNP synthesis reaction is tried under room temperature, sun, UV and dark condition. The leaf disc preparation steps are also discussed in details. The SNP obtained using (1 mM: 100 ml AgNO3+ singular leaf disc: pH 9, 11) is applied against featured room temperature and sun condition. The UV spectroscopic analysis confirms that sun rays synthesized SNP yields stable nano particles. The FTIR analysis confirms a large number of functional groups such as alkanes, alkyne, amines, aliphatic amine, carboxylic acid; nitro-compound, alcohol, saturated aldehyde and phenols involved in reduction of silver salt to zero valent ions. The leaf disc mediated synthesis of silver nanoparticles, minimizes leaf extract preparation step and eligible for stable SNP synthesis. The methods sun and room temperature based nano particles synthesized within 10 min would be use certainly for antimicrobial activity.
Omar, Hanita; Nordin, Noraziah; Hassandarvish, Pouya; Hajrezaie, Maryam; Azizan, Ainnul Hamidah Syahadah; Fadaeinasab, Mehran; Abdul Majid, Nazia; Abdulla, Mahmood Ameen; Mohd Hashim, Najihah; Mohd Ali, Hapipah
2017-01-01
Actinodaphne sesquipedalis Hook. F. Var. Glabra (Kochummen), also known as “Medang payung” by the Malay people, belongs to the Lauraceae family. In this study, methanol leaf extract of A. sesquipedalis was investigated for their acute toxicity and gastroprotective effects to reduce ulcers in rat stomachs induced by ethanol. The rats were assigned to one of five groups: normal group (group 1), ulcer group (group 2), control positive drug group (group 3) and two experimental groups treated with 150 mg/kg (group 4) and 300 mg/kg (group 5) of leaf extract. The rats were sacrificed an hour after pretreatment with extracts, and their stomach homogenates and tissues were collected for further evaluation. Macroscopic and histological analyses showed that gastric ulcers in rats pretreated with the extract were significantly reduced to an extent that it allowed leukocytes penetration of the gastric walls compared with the ulcer group. In addition, an ulcer inhibition rate of >70% was detected in rats treated with both doses of A. sesquipedalis extract, showing a notable protection of gastric layer. Severe destruction of gastric mucosa was prevented with a high production of mucus and pH gastric contents in both omeprazole-treated and extract-treated groups. Meanwhile, an increase in glycoprotein uptake was observed in pretreated rats through accumulation of magenta color in Periodic Acid Schiff staining assay. Analysis of gastric homogenate from pretreated rats showed a reduction of malondialdehyde and elevation of nitric oxide, glutathione, prostaglandin E2, superoxide dismutase and protein concentration levels in comparison with group 2. Suppression of apoptosis in gastric tissues by upregulation of Hsp70 protein and downregulation of Bax protein was also observed in rats pretreated with extract. Consistent results of a reduction of gastric ulcer and the protection of gastric wall were obtained for rats pretreated with A. sesquipedalis extract, which showed its
Omar, Hanita; Nordin, Noraziah; Hassandarvish, Pouya; Hajrezaie, Maryam; Azizan, Ainnul Hamidah Syahadah; Fadaeinasab, Mehran; Abdul Majid, Nazia; Abdulla, Mahmood Ameen; Mohd Hashim, Najihah; Mohd Ali, Hapipah
2017-01-01
Actinodaphne sesquipedalis Hook. F. Var. Glabra (Kochummen), also known as "Medang payung" by the Malay people, belongs to the Lauraceae family. In this study, methanol leaf extract of A. sesquipedalis was investigated for their acute toxicity and gastroprotective effects to reduce ulcers in rat stomachs induced by ethanol. The rats were assigned to one of five groups: normal group (group 1), ulcer group (group 2), control positive drug group (group 3) and two experimental groups treated with 150 mg/kg (group 4) and 300 mg/kg (group 5) of leaf extract. The rats were sacrificed an hour after pretreatment with extracts, and their stomach homogenates and tissues were collected for further evaluation. Macroscopic and histological analyses showed that gastric ulcers in rats pretreated with the extract were significantly reduced to an extent that it allowed leukocytes penetration of the gastric walls compared with the ulcer group. In addition, an ulcer inhibition rate of >70% was detected in rats treated with both doses of A. sesquipedalis extract, showing a notable protection of gastric layer. Severe destruction of gastric mucosa was prevented with a high production of mucus and pH gastric contents in both omeprazole-treated and extract-treated groups. Meanwhile, an increase in glycoprotein uptake was observed in pretreated rats through accumulation of magenta color in Periodic Acid Schiff staining assay. Analysis of gastric homogenate from pretreated rats showed a reduction of malondialdehyde and elevation of nitric oxide, glutathione, prostaglandin E2, superoxide dismutase and protein concentration levels in comparison with group 2. Suppression of apoptosis in gastric tissues by upregulation of Hsp70 protein and downregulation of Bax protein was also observed in rats pretreated with extract. Consistent results of a reduction of gastric ulcer and the protection of gastric wall were obtained for rats pretreated with A. sesquipedalis extract, which showed its prominent
Salahdeen, Hussein M; Idowu, Gbolahan O; Murtala, Babatunde A
2012-12-01
Tridax procumbens leaf extract induced aortic relaxation in a concentration-dependent manner, for both phenylephrine (PE) and KCl- induced contractions in isolated rat aortic rings. The relaxation effect of the extract on PE-induced contraction was 57% greater than that on KCl- induced contraction. The extract caused dose-dependent relaxations in precontracted isolated rat aorta with phenylephrine; the relaxation was attenuated by the removal of endothelium. However, the relaxation responses to sodium nitroprusside were not significantly abolished by the removal of endothelium. The vasorelaxatory effect of the extract was completely abolished in presence of L-NAME. The results indicate that the vasorelaxant effect of T. procumbens extract is probably mediated by both endothelium-dependent and-independent mechanisms.
Kim, Yong Ok; Johnson, Jon D; Lee, Eun Ju
2005-05-01
We analyzed phenolic compounds and other elements in leaf extracts and compared morphology of three species of the Phytolaccaceae family found in South Korea. To test allelochemical effects of the three Phytolacca species, we also examined seed germination and dry weight of seedlings of Lactuca indica and Sonchus oleraceus treated with leaf extracts. The concentrations of total phenolic compounds were exotic Phytolacca esculenta (3.9 mg/l), native Phytolacca insularis (4.4 mg/l), and exotic Phytolacca americana (10.2 mg/l). There was no significant difference in concentrations between P. esculenta and P. insularis, but the concentration of total phenolics in P. americana was two times higher than either P. esculenta or P. insularis. Analysis of aqueous extracts by HPLC showed seven phenolic compounds (gallic acid, protocatechuic acid, chlorogenic acid, caffeic acid, m-hydroxybenzoic acid, p-coumaric acid, and cinnamic acid). Total phenolics in P. americana were eight to 16 times higher than either P. esculenta or P. insularis, respectively. P. americana inhibited seed germination and dry weight of the two assay species. The phytotoxic effects of the two Phytolacca species were different, despite the fact that P. esculenta and P. insularis had similar levels of total phenolic compounds. We also found that P. americana had invaded Ullung Island, which suggested that P. americana had excellent adaptability to the environment. The three species of Phytolaccaceae in South Korea can be distinguished by their different allelopathic potentials and morphologies.
Enhancement of human skin facial revitalization by moringa leaf extract cream.
Ali, Atif; Akhtar, Naveed; Chowdhary, Farzana
2014-05-01
Solar ultraviolet exposure is the main cause of skin damage by initiation of reactive oxygen species (ROS) leading to skin collagen imperfection and eventually skin roughness. This can be reduced by proper revitalization of skin enhancing younger and healthier appearance. To evaluate the skin facial revitalization effect of a cream formulation containing the Moringa oleifera leaf extract on humans. Active cream containing 3% of the concentrated extract of moringa leaves was developed by entrapping in the inner aqueous phase of cream. Base contained no extract. Skin revitalizing parameters, i.e. surface, volume, texture parameters and surface evaluation of the living skin (SELS) were assessed comparatively after application of the base and active cream on human face using Visioscan(®) VC 98 for a period of 3 months. Surface values were increased by the base and decreased by the active cream. Effects produced for the base and active cream were significant and insignificant, respectively, as observed in the case of surface. Unlike the base, the active cream showed significant effects on skin volume, texture parameters (energy, variance and contrast) and SELS, SEr (skin roughness), SEsc (skin scaliness), SEsm (skin smoothness), and SEw (skin wrinkles) parameters. The results suggested that moringa cream enhances skin revitalization effect and supports anti-aging skin effects.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-21
...] Notice of Availability of a Pest Risk Analysis for the Importation of Fresh Persimmon From the Republic... are advising the public that we have prepared a pest risk analysis that evaluates the risks associated... Africa. We are making the pest risk analysis available to the public for review and comment. DATES: We...
Gadhwal, Ajeet Kumar; Ankit, B S; Chahar, Chitresh; Tantia, Pankaj; Sirohi, P; Agrawal, R P
2016-06-01
Thrombocytopenia in dengue fever is a common and serious complication. However, no specific treatment is available for dengue fever induced thrombocytopenia. In few countries (Pakistan, Malaysia, Sri Lanka and other Asian countries) the leaf extract of Carica papaya has been effectively used for thrombocytopenia. So, the study is planned to access effect of Carica papaya leaf extract on platelet count in dengue fever patients. All participants were randomised into two groups, study group and control group; the study group was given papaya leaf extract capsule of 500 mg once daily and routine supportive treatment for consecutive five days. The controls were given only routine supportive treatment. Daily complete blood counts, platelet counts and haematocrit level, liver function test, renal function test of both groups were observed. On the first day platelet count of study group and control group was (59.82±18.63, 61.06±20.03 thousands, p value 0.36). On the 2nd day platelet count of both study and control groups was not significantly different (61.67±19.46 and 59.93±19.52 thousands, p value 0.20) but on 3rd day platelet count of study group was significantly higher than control group (82.96±16.72, 66.45±17.36 thousands, p value < 0.01). On 4th and 5th day platelet count of study group (122.43±19.36 and 112.47±17.49 thousands respectively) was also significantly higher than the control group (88.75±21.65 and 102.59±19.35 thousands) (p value < 0.01). On 7th day platelet count of study group and control group were not significantly different (124.47±12.35 and 122.46±19.76 thousands respectively, p value 0.08). Average hospitalization period of study group v/s control group was 3.65±0.97 v/s 5.42±0.98 days (p value < 0.01). Average platelet transfusion requirement in study group was significantly less than control group (0.685 units per patient v/s 1.19 units per patient) (p value <0.01). It is concluded that Carica papaya leaf extract increases the
Evidence to Support the Anti-Cancer Effect of Olive Leaf Extract and Future Directions.
Boss, Anna; Bishop, Karen S; Marlow, Gareth; Barnett, Matthew P G; Ferguson, Lynnette R
2016-08-19
The traditional Mediterranean diet (MD) is associated with long life and lower prevalence of cardiovascular disease and cancers. The main components of this diet include high intake of fruit, vegetables, red wine, extra virgin olive oil (EVOO) and fish, low intake of dairy and red meat. Olive oil has gained support as a key effector of health benefits and there is evidence that this relates to the polyphenol content. Olive leaf extract (OLE) contains a higher quantity and variety of polyphenols than those found in EVOO. There are also important structural differences between polyphenols from olive leaf and those from olive fruit that may improve the capacity of OLE to enhance health outcomes. Olive polyphenols have been claimed to play an important protective role in cancer and other inflammation-related diseases. Both inflammatory and cancer cell models have shown that olive leaf polyphenols are anti-inflammatory and protect against DNA damage initiated by free radicals. The various bioactive properties of olive leaf polyphenols are a plausible explanation for the inhibition of progression and development of cancers. The pathways and signaling cascades manipulated include the NF-κB inflammatory response and the oxidative stress response, but the effects of these bioactive components may also result from their action as a phytoestrogen. Due to the similar structure of the olive polyphenols to oestrogens, these have been hypothesized to interact with oestrogen receptors, thereby reducing the prevalence and progression of hormone related cancers. Evidence for the protective effect of olive polyphenols for cancer in humans remains anecdotal and clinical trials are required to substantiate these claims idea. This review aims to amalgamate the current literature regarding bioavailability and mechanisms involved in the potential anti-cancer action of olive leaf polyphenols.
Evidence to Support the Anti-Cancer Effect of Olive Leaf Extract and Future Directions
Boss, Anna; Bishop, Karen S.; Marlow, Gareth; Barnett, Matthew P. G.; Ferguson, Lynnette R.
2016-01-01
The traditional Mediterranean diet (MD) is associated with long life and lower prevalence of cardiovascular disease and cancers. The main components of this diet include high intake of fruit, vegetables, red wine, extra virgin olive oil (EVOO) and fish, low intake of dairy and red meat. Olive oil has gained support as a key effector of health benefits and there is evidence that this relates to the polyphenol content. Olive leaf extract (OLE) contains a higher quantity and variety of polyphenols than those found in EVOO. There are also important structural differences between polyphenols from olive leaf and those from olive fruit that may improve the capacity of OLE to enhance health outcomes. Olive polyphenols have been claimed to play an important protective role in cancer and other inflammation-related diseases. Both inflammatory and cancer cell models have shown that olive leaf polyphenols are anti-inflammatory and protect against DNA damage initiated by free radicals. The various bioactive properties of olive leaf polyphenols are a plausible explanation for the inhibition of progression and development of cancers. The pathways and signaling cascades manipulated include the NF-κB inflammatory response and the oxidative stress response, but the effects of these bioactive components may also result from their action as a phytoestrogen. Due to the similar structure of the olive polyphenols to oestrogens, these have been hypothesized to interact with oestrogen receptors, thereby reducing the prevalence and progression of hormone related cancers. Evidence for the protective effect of olive polyphenols for cancer in humans remains anecdotal and clinical trials are required to substantiate these claims idea. This review aims to amalgamate the current literature regarding bioavailability and mechanisms involved in the potential anti-cancer action of olive leaf polyphenols. PMID:27548217
Fallahi, Sh; Rostami, A; Delfan, B; Pournia, Y; Rashidipour, M
2016-12-01
Giardia lamblia is one of the common causes of worldwide diarrhea in children. Appropriate medicinal treatment for giardiasis is available but there are some evidences of drug resistance, insufficient efficacy, and unpleasant side effects. In order to reach a more natural drug with suitable efficacy and the lowest side effects, the effects of the hydroalcoholic extracts of olive leaf, Satureja khuzestanica , and Allium sativum on G. lamblia cysts were evaluated in vitro, as well as antigiardial effect of the extracts was compared with metronidazole as the drug of choice. 2 and 5 mg of the plants extracts and powder of metronidazole 250 mg pills were added to 1 ml of G. lamblia cysts suspension (containing 5,000 cyst/ml normal saline), and the percentages of bioavailability of G. lamblia cysts were examined at the 2nd and 4th h after exposure and in 4 and 37 °C temperatures using eosin 0.1 % and a haemocytometer. The data were analyzed by multiway ANOVA test, Tukey's test, and the SPSS software, version 18. The examinations demonstrated that olive leaf extract had the most fatality rate on G. lamblia cysts in vitro (37.90 ± 7.01 %), followed by the extract of S. khuzestanica (32.52 ± 9.07 %). Metronidazole 250 mg pills had relatively effective fatality rate on G. lamblia cysts in vitro (28.75 ± 10.30 %), whereas A. sativum (garlic) had the lowest fatality effect on G. lamblia cysts in vitro (22.65 ± 10.47 %). With respect to higher fatality effect of olive leaf and S. khuzestanica extracts compared with metronidazole in vitro, these plants can be used as suitable candidates to make new antigiardial drugs with low side effects and without drug resistance in the treatment of giardiasis in children.
Karthivashan, Govindarajan; Kura, Aminu Umar; Arulselvan, Palanisamy; Md. Isa, Norhaszalina
2016-01-01
N-Acetyl-p-Aminophenol (APAP), also known as acetaminophen, is the most commonly used over-the counter analgesic and antipyretic medication. However, its overdose leads to both liver and kidney damage. APAP-induced toxicity is considered as one of the primary causes of acute liver failure; numerous scientific reports have focused majorly on APAP hepatotoxicity. Alternatively, not many works approach APAP nephrotoxicity focusing on both its mechanisms of action and therapeutic exploration. Moringa oleifera (MO) is pervasive in nature, is reported to possess a surplus amount of nutrients, and is enriched with several bioactive candidates including trace elements that act as curatives for various clinical conditions. In this study, we evaluated the nephro-protective potential of MO leaf extract against APAP nephrotoxicity in male Balb/c mice. A single-dose acute oral toxicity design was implemented in this study. Group 2, 3, 4 and 5 received a toxic dose of APAP (400 mg/kg of bw, i.p) and after an hour, these groups were administered with saline (10 mL/kg), silymarin—positive control (100 mg/kg of bw, i.p), MO leaf extract (100 mg/kg of bw, i.p), and MO leaf extract (200 mg/kg bw, i.p) respectively. Group 1 was administered saline (10 mL/kg) during both the sessions. APAP-treated mice exhibited a significant elevation of serum creatinine, blood urea nitrogen, sodium, potassium and chloride levels. A remarkable depletion of antioxidant enzymes such as SOD, CAT and GSH-Px with elevated MDA levels has been observed in APAP treated kidney tissues. They also exhibited a significant rise in pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) and decreased anti-inflammatory (IL-10) cytokine level in the kidney tissues. Disorganized glomerulus and dilated tubules with inflammatory cell infiltration were clearly observed in the histology of APAP treated mice kidneys. All these pathological changes were reversed in a dose-dependent manner after MO leaf extract treatment
Sato, Akihiko; Yamada, Masahiko
2016-01-01
Oriental persimmon (Diospyros kaki) originated in Eastern Asia, and many indigenous cultivars have been developed in China, Japan, and Korea. These cultivars are classified into four groups based on their natural astringency loss on the tree and seed formation: pollination-constant non-astringent (PCNA), pollination-variant non-astringent (PVNA), pollination-constant astringent (PCA), and pollination-variant astringent (PVA). PCNA is the most desirable type because the fruit can be eaten without any postharvest treatment; therefore, one of the goals of our persimmon breeding programs is to release superior PCNA cultivars. The PCNA genotype is recessive to the other three non-PCNA genotypes, and PCNA-type F1 offspring are obtained exclusively from crosses among PCNA genotypes. Moreover, the number of superior PCNA cross-parents have been limited. In the late 1980s, inbreeding depression became obvious, especially in terms of fruit size, tree vigor, and productivity. To mitigate the inbreeding, a backcross program using PCNA [(non-PCNA × PCNA) × PCNA] was started in 1990. This process, however, was inefficient because only 15% of the offspring were PCNA, and all offspring had to be grown to the fruiting stage. Therefore, molecular markers linked to the PCNA locus were developed for discriminating PCNA offspring. A molecular marker linked to Chinese PCNA has also been developed. PMID:27069391
NASA Astrophysics Data System (ADS)
Sari, M.
2018-04-01
Soap is a compound of sodium or potassium with fatty acids from vegetable oils or solid animal fats, soft or liquid, and foamy. Considering the potential of VCO as the raw material for making soap and supported by the benefits of red betel leaves, then this research is done by making solid bath soap from VCO which is supplemented with Red betel leaf extract. The purpose of this research is to make solid soap from VCO with an extract of red betel leaf based on SNINo.06-3532199. Analyzing VCO oil, which is used for the manufacture of soap, consists of analysis of saponification figures, Iodine number and peroxide number. Has made solid soap from VCO oil with Red betel leaf extract. From the five quality standards established under SNI 06-3532-1994 only two quality standards that can be done that is water quality and the amount of acidity. The percent of water quality obtained is 10% meanwhile the amount of acidity obtained is 9,32%. According to the data, it can be concluded that the solid soap made was not fulfill SNI 06-3532-1994.
First Report of Black Spot Disease Caused by Alternaria alternata on Sweet Persimmon Fruits
Lee, Jung Han; Kim, Jinwoo
2013-01-01
Black spot of sweet persimmon, caused by Alternaria alternata, occurred in an orchard in Gyeongnam province, Korea in 2012. The symptom was appearance of 0.5 to 4 cm black spots on the surface of fruit. The pathogen was isolated from flesh of disease lesions. The causal agent was identified as A. alternata by morphological characteristics and sequencers of the internal transcribed spacer (ITS) 1 and ITS4 regions of rRNA. Artificial inoculation of the pathogen resulted in development of disease symptoms and the re-isolated pathogen showed characteristics of A. alternata. PMID:24198674
Corrêa, Maria Fernanda Paresqui; Ventura, Thatiana Lopes Biá; Muzitano, Michelle Frazão; Dos Anjos da Cruz, Elaine; Bergonzi, Maria Camilla; Bilia, Anna Rita; Rossi-Bergmann, Bartira; Soares Costa, Sônia
2018-07-15
Vochysia divergens Pohl (Vochysiaceae), popularly known as "Cambará", is a tree that is resistant to the seasonal floods in the Pantanal, and usually found in monodominant stands called "Cambarazal". The inhabitants of the Pantanal exploit this tree for medicinal uses. Infusions and decoctions of its leaves are taken as teas, particularly for the treatment of asthma, flu and diarrhea, according to the local tradition transmitted empirically through the generations. To evaluate the beneficial health effects related to the ethnomedicinal uses of V. divergens (Vd) by using biomonitored fractionation of an aqueous leaf extract. The aqueous leaf extract was obtained by decoction, and then the extract was fractionated by a combination of separation techniques including precipitation, organic partition and chromatography. Chromatographic analyses of the active samples were carried out using HPLC-DAD-MS. Flavonoid 1 was isolated from the n-BuOH fraction through classic chromatographic techniques. The inhibitory effects and cytotoxicity of the Vd extract, fractions and flavonoid 1 on NO and TNF-α production were assessed in LPS-stimulated RAW 264.7 macrophage cultures. Additionally, suppression on the proliferation of BALB/c lymphocytes was estimated by [ 3 H] thymidine incorporation. The antioxidant activity of the samples was verified by SNP and DPPH assays and the suppression of the iNOS protein expression was evaluated through Western blotting. The HPLC-DAD-MS analysis of the Vd extract led to the identification of 5-methoxyluteolin-7-O-β-glucopyranoside (2), rutin (4) and the tannin galloyl-HHDP-glucopyranoside (3), besides the main flavonoid 3',5-dimethoxyluteolin-7-O-β-glucopyranoside (1), which was biologically evaluated in comparison with luteolin aglycone. The Vd extract, n-BuOH fraction and flavonoid 1 inhibited NO and TNF-α production by LPS-stimulated macrophages. The reduction of NO levels was mediated mainly by suppression of the iNOS expression. In
NASA Astrophysics Data System (ADS)
Groiss, Silvia; Selvaraj, Raja; Varadavenkatesan, Thivaharan; Vinayagam, Ramesh
2017-01-01
In the present investigation, the leaf extract of Cynometra ramiflora was used to synthesize iron oxide nanoparticles. Within minutes of adding iron sulphate to the leaf extract, iron oxide nanoparticles were formed and thus, the method is very simple and fast. UV-VIS spectra showed the strong absorption band in the visible region. SEM images showed discrete spherical shaped particles and EDS spectra confirmed the iron and oxygen presence. The XRD results depicted the crystalline structure of iron oxide nanoparticles. FT-IR spectra portrayed the existence of functional groups of phytochemicals which are probably involved in the formation and stabilization of nanoparticles. The iron oxide nanoparticles exhibited effective inhibition against E. coli and S. epidermidis which may find its applications in the antibacterial drug development. Furthermore, the catalytic activity of the nanoparticles as Fenton-like catalyst was successfully investigated for the degradation of Rhodamine-B dye. This outcome could play a prominent role in the wastewater treatment.
Dungca, Niña Theresa P
2016-05-26
Eclipta alba, also known as Eclipta prostrata, is a weed of the family Asteraceae found in tropical and subtropical regions widely used in herbal medicine, including treatment of renal diseases. This study aims to evaluate the protective effect of the methanolic leaf extract of Eclipta alba on gentamicin-induced nephrotoxicity in rats. Nephrotoxicity was induced in rats by subcutaneous injection of gentamicin (80mg/kg/day for seven days). Quercetin was used as a positive control. The nephroprotective activity was evaluated by determining blood urea nitrogen, serum creatinine, urinary microprotein, renal catalase and malondialdehyde levels. The extract protected the rat kidneys against gentamicin-induced renal tubular alterations and rises in blood urea nitrogen, serum creatinine, and microprotein levels. Lipid peroxidation and decrement in catalase levels were also ameliorated. The study revealed the protective effect of the methanolic leaf extract of E. alba and suggests that the probable mechanism for the nephroprotection by the extract may be due to its good radical scavenging activity and Fe(3+) ion-reducing ability. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Immunomodulatory effects of Santolina chamaecyparissus leaf extracts on human neutrophil functions.
Boudoukha, Chahra; Bouriche, Hamama; Ortega, Eduardo; Senator, Abderrahmane
2016-01-01
Santolina chamaecyparissus L. (Asteraceae) is an aromatic plant wide spread in the Mediterranean region. It is used in folk medicine for its anti-inflammatory properties. The effects of S. chamaecyparissus aqueous extract (SCAE) and polyphenolic extract (SCPE) on human polymorphonuclear neutrophil (PMN) degranulation, chemotaxis, phagocytosis, and microbicidal capacity were examined in vitro. Aqueous and polyphenolic extracts were prepared from S. chamaecyparissus leaves. The elastase release was used as a marker for measuring PMN degranulation, while chemotaxis was performed using a 48-microwell chemotaxis chamber. The phagocytosis and the microbicidal capacity were evaluated using fresh cultures of Candida albicans. The treatment of neutrophils with different concentrations (10-200 µg/ml) of SCAE and SCPE caused a significant (p < 0.001) and dose-dependent inhibitory effect on elastase release in fMLP/Cytochalasin B (CB)-stimulated neutrophils. Indeed, 100 µg/ml of SCAE exerted an inhibitory effect of 51.97 ± 6.2%, whereas SCPE at the same concentration abolished completely PMN degranulation. Moreover, both extracts inhibited markedly (p < 0.01) fMLP-induced chemotactic migration. At 200 µg/ml, SCAE and SCPE exerted an inhibitory effect of 54.61 ± 7.3% and 57.71 ± 7.44%, respectively. In addition, a decline in both phagocytosis and microbicidal capacity against Candida albicans was observed when PMNs were exposed to 100 and 200 µg/ml of SCAE or SCPE. The exerted effects on neutrophil functions support the anti-inflammatory activity and show new mechanisms of action and effectiveness of S. chamaecyparissus leaf extracts. This plant may be considered as an interesting source of anti-inflammatory and immunomodulatory agents.
Basavegowda, Nagaraj; Lee, Yong Rok
2014-06-01
The present investigation demonstrates a rapid biogenic approach for the synthesis of gold and silver nanoparticles using biologically active and medicinal important Perilla frutescens leaf extract as a reducing and stabilizing agent under ambient conditions. Gold and silver nanoparticles were first synthesized from Perilla frutescens leaf extract which was used as a vegetable and in traditional medicines for a long time in Korea, Japan, and China. The nanoparticles obtained were characterized by UV-vis spectroscopy, transmission electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. Surface plasmon resonance spectra of gold and silver nanoparticles were obtained at 540 and 430 nm and triangular and spherical shape respectively. TEM studies showed that the particle sizes of gold and silver nanoparticles ranges -50 nm and -40 nm respectively. X-ray diffraction studies confirm that the biosynthesized nanoparticles were crystalline gold and silver. Fourier transform infra-red spectroscopy revealed that biomolecules were involved in the synthesis and capping of the nanoparticles produced. XRD and EDX confirmed the formation of gold and silver nanoparticles. This is a simple, efficient and rapid method to synthesize gold and silver nanoparticles at room temperature without use of toxic chemicals. Obtained gold and silver nanoparticles can be used in various biomedical and biotechnological applications.
Skandrani, Ines; Boubaker, Jihed; Bhouri, Wissem; Limem, Ilef; Kilani, Soumaya; Ben Sghaier, Mohamed; Neffati, Aicha; Bouhlel, Ines; Ghedira, Kamel; Chekir-Ghedira, Leila
2010-01-01
The in vitro antiproliferative, apoptotic, and antioxidant activities from leaf extracts of Moricandia arvensis, which are used in traditional cooking and medicines, were investigated. The MTT assay revealed that only TOF (total oligomer flavonoids), ethyl acetate (EA), chloroform (Chl), and petroleum ether (PE) extracts inhibited the proliferation of K562 cells. Apoptosis plays a very important role in the treatment of cancer by promoting the apoptosis of cancer cells and limiting the concurrent death of normal cells. Thus, the possible effects of M. arvensis extracts on the induction of apoptosis in human leukemic cells (K562 cells) were investigated. The electrophoretic analysis of DNA fragmentation confirms that TOF, Chl, PE, and EA extracts provoke DNA fragmentation. Using the lipid peroxidation inhibitory assay, the antioxidant capacity of M. arvensis extracts was evaluated by the ability of each extract to inhibit malondialdehyde formation. It was revealed that EA and TOF extracts are the most active in scavenging the hydroxyl radicals.
Malami, S; Kyari, H; Danjuma, N M; Ya'u, J; Hussaini, I M
2016-09-15
Preparation of Laggera aurita Linn. (Asteraceae) is widely used in traditional medicine to treat various kinds of diseases such as epilepsy, malaria, fever, pain and asthma. Its efficacy is widely acclaimed among communities in Northern Nigeria. The present study is aimed at establishing the possible anticonvulsant effects of the methanol leaf extract of Laggera aurita using acute and chronic anticonvulsant models. Median lethal dose (LD50) was determined in mice and rats via oral and intraperitoneal routes. Anticonvulsant screening of the extract was performed using maximal electroshock-induced seizure test in day-old chicks; pentylenetetrazole-, strychnine- and picrotoxin- induced seizure models in mice. Similarly; its effects on pentylenetetrazole-induce kindling in rats as well as when co-administered with fluphenamic and cyproheptadine in mice, were evaluated. Median lethal dose (LD50) values were found to be >5000mg/kg, p.o. and 2154mg/kg, i.p., each for both rats and mice. The extract showed dose dependent protection against tonic hind limb extension (THLE) and significantly (p<0.05) decreased the mean recovery from seizure in the maximal electroshock-induced seizure. In the pentylenetetrazole-induced seizure model, the extract offered 50% protection at 600mg/kg and also increased the mean onset of seizure at all doses with significant (p<0.05) increase at the highest dose (600mg/kg). Similarly the extract produced significant (p<0.05) increase in the onset of seizures in both strychnine- and picrotoxin- induced seizure models, at all the doses except at 150mg/kg for the picrotoxin model. Co-administration of fluphenamic acid (FFA) (5mg/kg) and the extract (600mg/kg) showed an enhanced effect with percentage protection of 70% while co-administration of FFA (5mg/kg) and phenytoin (5mg/kg) as well phenytoin (5mg/kg) and the extract (600mg/kg) produced an additive effect. Administration of the extract (600mg/kg), phenytoin (20mg/kg) and cyproheptadine (4mg
Botsoglou, Evropi; Govaris, Alexandros; Ambrosiadis, Ioannis; Fletouris, Dimitrios; Papageorgiou, Georgios
2014-01-30
The effect of olive leaf extracts on lipid and protein oxidation of cooked pork patties refrigerated stored for 9 days was evaluated. Patties were prepared from longissimus dorsi muscle of pigs, and dietary supplemented with linseed oil. Results showed that dietary linseed oil modified the fatty acid composition of pork patties by increasing (P ≤ 0.05) n-3 (α-linolenic acid) and decreasing (P ≤ 0.05) n-6 (linoleic acid) fatty acids. Olive leaf extracts at supplementation levels of 200 and, especially, of 300 mg gallic acid equivalents kg⁻¹ meat, delayed lipid oxidation by reducing (P ≤ 0.05) both primary (conjugated dienes and hydroperoxides) and secondary (malondialdehyde) oxidation products. They also inhibited protein oxidation in a concentration-dependent manner by reducing (P ≤ 0.05) protein carbonyls and increasing (P ≤ 0.05) protein sulfhydryls. In addition, they improved sensory attributes of the n-3 enriched patties. Results suggested that olive leaf extracts might be useful to the meat industry as an efficient alternative to synthetic antioxidants. © 2013 Society of Chemical Industry.
Sanchís, Elena; Mateos, Milagros; Pérez-Gago, María B
2017-01-01
The combined effect of antibrowning dips and controlled atmosphere storage on fresh-cut "Rojo Brillante" persimmon quality was investigated. Persimmon slices were dipped in 10 g L -1 ascorbic acid, 10 g L -1 citric acid or water and were stored in different controlled atmospheres at 5 ℃. Controlled atmosphere conditions were 21 kPa O 2 + 10 kPa CO 2 (Atm-B), 21 kPa O 2 + 20 kPa CO 2 (Atm-C), 5 kPa O 2 + 10 kPa CO 2 (Atm-D) and 5 kPa O 2 in the absence of CO 2 (Atm-E). Air (Atm-A) was used as a control. Atmospheres with high CO 2 concentrations induced darkening, associated with a flesh disorder known as "internal flesh browning". Only the samples placed in Atm-E, and treated with 10 g L -1 ascorbic acid or 10 g L -1 citric acid, controlled enzymatic browning, reduced firmness loss and prevented the "internal flesh browning" disorder. The maximum limit of marketability was achieved in the samples treated with 10 g L -1 citric acid and stored in Atm-E for nine storage days at 5 ℃. The total vitamin C, free radical scavenging activity, total phenolic content and total carotenoids of the fresh-cut "Rojo Brillante" persimmons were affected by maturity stage at harvest, whereas antibrowning dips and controlled atmosphere storage had no clear effect. © The Author(s) 2016.
Enhancement of human skin facial revitalization by moringa leaf extract cream
Akhtar, Naveed; Chowdhary, Farzana
2014-01-01
Introduction Solar ultraviolet exposure is the main cause of skin damage by initiation of reactive oxygen species (ROS) leading to skin collagen imperfection and eventually skin roughness. This can be reduced by proper revitalization of skin enhancing younger and healthier appearance. Aim To evaluate the skin facial revitalization effect of a cream formulation containing the Moringa oleifera leaf extract on humans. Material and methods Active cream containing 3% of the concentrated extract of moringa leaves was developed by entrapping in the inner aqueous phase of cream. Base contained no extract. Skin revitalizing parameters, i.e. surface, volume, texture parameters and surface evaluation of the living skin (SELS) were assessed comparatively after application of the base and active cream on human face using Visioscan® VC 98 for a period of 3 months. Results Surface values were increased by the base and decreased by the active cream. Effects produced for the base and active cream were significant and insignificant, respectively, as observed in the case of surface. Unlike the base, the active cream showed significant effects on skin volume, texture parameters (energy, variance and contrast) and SELS, SEr (skin roughness), SEsc (skin scaliness), SEsm (skin smoothness), and SEw (skin wrinkles) parameters. Conclusions The results suggested that moringa cream enhances skin revitalization effect and supports anti-aging skin effects. PMID:25097471
Fabrication Of Biogenic Silver Nanoparticles Using Agricultural Crop Plant Leaf Extracts
NASA Astrophysics Data System (ADS)
Rajani, P.; SriSindhura, K.; Prasad, T. N. V. K. V.; Hussain, O. M.; Sudhakar, P.; Latha, P.; Balakrishna, M.; Kambala, V.; Reddy, K. Raja
2010-10-01
Nanoparticles are being viewed as fundamental building blocks of nanotechnology. Biosynthesis of nanoparticles by plant extracts is currently under exploitation. Use of agricultural crop plant extracts for synthesis of metal nanoparticles would add a new dimension to the agricultural sector in the utilization of crop waste. Silver has long been recognized as having an inhibitory effect towards many bacterial strains and microorganisms commonly present in medical and industrial processes. Four pulse crop plants and three cereal crop plants (Vigna radiata, Arachis hypogaea, Cyamopsis tetragonolobus, Zea mays, Pennisetum glaucum, Sorghum vulgare) were used and compared for their extra cellular synthesis of metallic silver nanoparticles. Stable silver nanoparticles were formed by treating aqueous solution of AgNO3 with the plant leaf extracts as reducing agent at temperatures 50 °C-95 °C. UV-Visible spectroscopy was utilized to monitor the formation of silver nanoparticles. XRD analysis of formed silver nanoparticles revealed face centered cubic structure with (111), (200), (220) and (311) planes. SEM and EDAX analysis confirm the size of the formed silver nanoparticles to be in the range of 50-200 nm. Our proposed work offers a enviro-friendly method for biogenic silver nanoparticles production. This could provide a faster synthesis rate comparable to those of chemical methods and potentially be used in areas such as cosmetics, food and medical applications.
Sadowska, Beata; Budzyńska, Aleksandra; Stochmal, Anna; Żuchowski, Jerzy; Różalska, Barbara
2017-06-01
Original, chemically characterized Sea buckthorn (SBT) twig and leaf extracts were in vitro studied in terms of anti-Candida activity. Minimum inhibitory concentrations (MICs) of the extracts against C. albicans ATCC 10231 ranged: 250 μg/ml (twig), 31.5 μg/ml (leaf), and against C. glabrata G1 (clinical isolate) - 15.6 μg/ml (twig), 3.9 μg/ml (leaf). Next the extracts have been used at their subMIC. Both extracts significantly enhanced activity of fluconazole (FLC) and caspofungin (CAS) against C. albicans and increased their efficacy against C. glabrata, measured by an agar dilution assay combined with the E-test. The extracts inhibited C. albicans morphogenesis such as germ tube and hyphae formation as well as invasion to the "Spider" Agar. Antiadhesive and anti-biofilm activities of the extracts were evaluated by Alamar Blue reduction assay. It showed not significant reduction in the degree of cell adhesion (by 10-15%) but noticeable decrease of biofilm formation (by 80% in the case of SBT-twig extract). In conclusion, this study provided the evidence that SBT extracts, used at non-cytotoxic concentrations for the fibroblasts (IC 50 from 664.8 μg/ml to 1060.4 μg/ml), targeted some of Candida spp. virulence factors essential for the establishment of the infection. SBT twigs, previously regarded as waste material, were shown to be also a valuable source of the substances with promising antimicrobial activity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Keshava, Rohini; Muniyappa, Nagesh; Gope, Rajalakshmi; Ramaswamaiah, Ananthanarayana Saligrama
2016-01-01
Imperata cylindrica, a tall tufted grass which has multiple pharmacological applications is one of the key ingredients in various traditional medicinal formula used in India. Previous reports have shown that I. cylindrica plant extract inhibited cell proliferation and induced apoptosis in various cancer cell lines. To our knowledge, no studies have been published on the effect of I. cylindrica leaf extract on human oral cancers. The present study was undertaken in order to evaluate the anticancer properties of the leaf extract of I. cylindrica using an oral squamous cell carcinoma cell line SCC-9 as an in vitro model system. A methanol extract from dried leaves of I. cylindrica (ICL) was prepared by standard procedures. Effects of the ICL extract on the morphology of SCC-9 cells was visualized by microscopy. Cytotoxicity was determined by MTT assay. Effects of the ICL extract on colony forming ability of SCC-9 cells was evaluated using clonogenic assay. Cell cycle analysis was performed by flow cytometry and induction of apoptosis was determined by DNA fragmentation assay. The ICL extract treatment caused cytotoxicity and induced cell death in vitro in SCC-9 cells in a dose-dependent manner. This treatment also significantly reduced the clonogenic potential and inhibited cell proliferation by arresting the cell cycle in the G2/M phase. Furthermore, DNA fragmentation assays showed that the observed cell death was caused by apoptosis. This is the first report showing the anticancer activity of the methanol extracts from the leaves of I. cylindrica in human oral cancer cell line. Our data indicates that ICL extract could be considered as one of the lead compounds for the formulation of anticancer therapeutic agents to treat/manage human oral cancers. The natural abundance of I. cylindrica and its wide geographic distribution could render it one of the primary resource materials for preparation of anticancer therapeutic agents.
Saidan, Noor Hafizoh; Aisha, Abdalrahim F A; Hamil, Mohd Shahrul Ridzuan; Majid, Amin Malik Shah Abdul; Ismail, Zhari
2015-01-01
Orthosiphon stamineus Benth. (Lamiaceae) is a traditional medicinal plant which has been used in treating various ailments such as kidney diseases, bladder inflammation, arthritis and diabetes. The leaves contain high concentration of phenolic compounds, thus, rosmarinic acid (RA), 3'-hydroxy-5, 6, 7, 4'-tetramethoxyflavone (TMF), sinensetin (SIN) and eupatorin (EUP) were chosen as a marker compounds for standardization of various O. stamineus leaf extracts. The aim was to develop and validate a new high-performance liquid chromatography (HPLC) method for quantification of 4 marker compounds (RA, TMF, SIN, EUP) in various O. stamineus leaf extracts. The method was developed and validated using RP-HPLC-diode-array detection at 320 nm for accuracy, precision and limits of detection and was applied for quantification of it markers in five different extracts prepared in solvents with increasing polarity, using a gradient mobile phase 0.1% formic acid: Acetonitrile at a flow rate of 1 ml/min on reverse phase acclaim polar advantage II C18 column (3 μm, 3 × 150 mm) with 18 min separation time. The developed method provided satisfactory precision, and the accuracy of this method was in the range of 90.2% to 105.5%. All of 4 compounds showed good linearity at R2 > 0.999. The developed method is a simple, cost effective with shorter run time (18 min) in comparison to previous methods (30 min) and utilization of environmental-friendly solvents system. Therefore, this method has the potential to replace currently used methods in the routine standardization work of O. stamineus extracts, raw materials and its commercial products.
Saidan, Noor Hafizoh; Aisha, Abdalrahim F.A.; Hamil, Mohd Shahrul Ridzuan; Majid, Amin Malik Shah Abdul; Ismail, Zhari
2015-01-01
Background: Orthosiphon stamineus Benth. (Lamiaceae) is a traditional medicinal plant which has been used in treating various ailments such as kidney diseases, bladder inflammation, arthritis and diabetes. The leaves contain high concentration of phenolic compounds, thus, rosmarinic acid (RA), 3’-hydroxy-5, 6, 7, 4’-tetramethoxyflavone (TMF), sinensetin (SIN) and eupatorin (EUP) were chosen as a marker compounds for standardization of various O. stamineus leaf extracts. Objective: The aim was to develop and validate a new high-performance liquid chromatography (HPLC) method for quantification of 4 marker compounds (RA, TMF, SIN, EUP) in various O. stamineus leaf extracts. Materials and Methods: The method was developed and validated using RP-HPLC-diode-array detection at 320 nm for accuracy, precision and limits of detection and was applied for quantification of it markers in five different extracts prepared in solvents with increasing polarity, using a gradient mobile phase 0.1% formic acid: Acetonitrile at a flow rate of 1 ml/min on reverse phase acclaim polar advantage II C18 column (3 μm, 3 × 150 mm) with 18 min separation time. Results: The developed method provided satisfactory precision, and the accuracy of this method was in the range of 90.2% to 105.5%. All of 4 compounds showed good linearity at R2 > 0.999. Conclusion: The developed method is a simple, cost effective with shorter run time (18 min) in comparison to previous methods (30 min) and utilization of environmental-friendly solvents system. Therefore, this method has the potential to replace currently used methods in the routine standardization work of O. stamineus extracts, raw materials and its commercial products. PMID:25598631
Sanchís, Elena; Ghidelli, Christian; Sheth, Chirag C; Mateos, Milagros; Palou, Lluís; Pérez-Gago, María B
2017-01-01
The greatest hurdle to the commercial marketing of fresh-cut fruits is related to their higher susceptibility to enzymatic browning, tissue softening, and microbial growth. The aim of this study was to test the efficacy of a pectin-based edible coating and low oxygen modified atmosphere packaging (MAP) to control enzymatic browning and reduce microbial growth of fresh-cut 'Rojo Brillante' persimmon. The survival of Escherichia coli, Salmonella enteritidis and Listeria monocytogenes artificially inoculated on fresh-cut fruit was also assessed. The pectin coating was amended with 500 IU mL -1 nisin (NI) as antimicrobial agent and 10 g kg -1 citric acid and 10 g kg -1 calcium chloride as anti-browning and firming agents, respectively. Persimmon slices were dipped in the coating or in water (control) and packed under 5 kPa O 2 (MAP) or in ambient atmosphere for up to 9 days at 5 °C. Microbial growth, package gas composition, colour, firmness, polyphenol oxidase activity, visual quality and overall sensory flavour of persimmon slices were measured during storage. Coating application combined with active MAP significantly reduced the CO 2 emission and O 2 consumption in the package. The coating was effective in reducing browning and also inhibited the growth of mesophilic aerobic bacteria. Coating also reduced the populations of E. coli, S. enteritidis and L. monocytogenes. The combination of the pectin-based edible coating and active MAP proved to be the most effective treatment to maintain the sensory and microbiological quality of persimmon slices for more than 9 days of storage. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Chromosome-damaging effect of betel leaf.
Sadasivan, G; Rani, G; Kumari, C K
1978-05-01
The chewing of betel leaf with other ingredients is a widespread addiction in India. The chromosome damaging effect was studied in human leukocyte cultures. There was an increase in the frequency of chromatid aberrations when the leaf extract was added to cultures.
Veerakumar, Kaliyan; Govindarajan, Marimuthu; Rajeswary, Mohan
2013-12-01
Mosquitoes act as a vector for most of the life-threatening diseases like malaria, yellow fever, dengue fever, chikungunya fever, filariasis, encephalitis, West Nile Virus infection, etc. Under the Integrated Mosquito Management, emphasis was given on the application of alternative strategies in mosquito control. The continuous application of synthetic insecticides causes development of resistance in vector species, biological magnification of toxic substances through the food chain, and adverse effects on environmental quality and nontarget organisms including human health. Application of active toxic agents from plant extracts as an alternative mosquito control strategy was available from ancient times. These are nontoxic, easily available at affordable prices, biodegradable, and show broad-spectrum target-specific activities against different species of vector mosquitoes. In the present study, the larvicidal activity of silver nanoparticles (AgNPs) synthesized using Sida acuta plant leaf extract against late third instar larvae of Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti was determined. Range of concentrations of synthesized AgNPs (10, 20, 30, 40, and 50 μg/mL) and aqueous leaf extract (50, 100, 150, 200, and 250 μg/mL) were tested against the larvae of C. quinquefasciatus, A. stephensi and A. aegypti. The synthesized AgNPs from S. acuta leaf were highly toxic than crude leaf aqueous extract in three important vector mosquito species. The results were recorded from UV-Vis spectrum, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy analysis. Larvae were exposed to varying concentrations of aqueous crude extract and synthesized AgNPs for 24 h. Considerable mortality was evident after the treatment of S. acuta for all three important vector mosquitoes. The LC50 and LC90 values of S. acuta aqueous leaf extract appeared to be most effective
Nonmutagenicity of betel leaf and its antimutagenic action against environmental mutagens.
Nagabhushan, M; Amonkar, A J; D'Souza, A V; Bhide, S V
1987-01-01
Betel leaf (Piper betel) water and acetone extract are nonmutagenic in S. typhimurium strains with and without S9 mix. Both the extracts suppress the mutagenicity of betel quid mutagens in a dose dependent manner. Moreover both the extracts of betel leaf reduce the mutagenicity of benzo(a)pyrene and dimethylbenzanthracene. Acetone extract is more potent than water extract in inhibiting mutagenicity of environmental mutagens.
Magielse, Joanna; Verlaet, Annelies; Breynaert, Annelies; Keenoy, Begoña Manuel Y; Apers, Sandra; Pieters, Luc; Hermans, Nina
2014-01-01
The in vivo antioxidant activity of a quantified leaf extract of Cynara scolymus (artichoke) was studied. The aqueous artichoke leaf extract (ALE), containing 1.5% caffeoylquinic acid with chlorogenic acid being most abundant (0.30%), and luteolin-7-O-glucoside as major flavonoid (0.15%), was investigated by evaluating the effect on different oxidative stress biomarkers, after 3 wk oral supplementation in the streptozotocin-induced diabetic rat model. Apart from two test groups (0.2 g ALE/kg BW/day and 1 g ALE/kg BW/day, where BW is body weight), a healthy control group, untreated oxidative stress group, and vitamin E treated group (positive control) were included. A 0.2 g/kg BW/day of ALE decreased oxidative stress: malondialdehyde and 8-hydroxydeoxyguanosine levels significantly diminished, whereas erythrocyte glutathione levels significantly increased. A 1.0 g/kg BW/day ALE did not show higher antioxidant activity. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Immunomodulatory activity of methanolic leaf extract of Moringa oleifera in Wistar albino rats
Nfambi, Joshua; Bbosa, Godfrey S.; Sembajwe, Lawrence Fred; Gakunga, James; Kasolo, Josephine N.
2015-01-01
Background Globally, Moringa oleifera is used by different communities to treat various ailments including modulation of the immune system though with limited scientific evidence. Aim To study the immunomodulatory activity of M. oleifera methanolic leaf extract in Wistar albino rats. Methods An experimental laboratory-based study was done following standard methods and procedures. Nine experimental groups (I, II, III, IV, V, VI, VII, VIII, IX) each comprising of six animals were used. Group I received normal saline. Groups II to IX received 200 mg/kg bwt cyclophosphamide at the beginning of the study. Group III received 50 mg/kg bwt of an immunostimulatory drug levamisole. Groups IV to IX were dosed daily for 14 days with extract at doses of 250, 500, and 1000 mg/kg bwt, respectively, using an intragastric tube. Complete blood count (CBC), delayed-type hypersensitivity reaction (DTH), neutrophil adhesion test, and hemagglutination antibody titer were determined using standard methods and procedures. Statistical analysis was performed using GraphPad prism 5.0a Software. Results There was an increment in WBC, lymphocyte, and neutrophil counts at a dose of 1000 mg/kg bwt similar to the levamisole-positive control group. The neutrophil adhesion was statistically significant (p ≤ 0.05) for treatment groups that received 1000 mg/kg bwt (29.94%) and 500 mg/kg bwt at 17.28%. The mean percentage increment in footpad thickness was highest (26.9%) after 8 h of injection of antigen in the footpad of rats dosed 500 mg/kg bwt and this later reduced to 25.6% after 24 h. There was a dose-dependent increment in the mean hemagglutination antibody titer to sheep red blood cells (SRBC) from 10.73±0.57 HA units/μL for the 250 mg/kg bwt to 26.22±1.70 HA units/μL for the 1000 mg/kg bwt. Conclusions Methanolic leaf extract of M. oleifera caused a significant immunostimulatory effect on both the cell-mediated and humoral immune systems in the Wistar albino rats. PMID:26103628
Immunomodulatory activity of methanolic leaf extract of Moringa oleifera in Wistar albino rats.
Nfambi, Joshua; Bbosa, Godfrey S; Sembajwe, Lawrence Fred; Gakunga, James; Kasolo, Josephine N
2015-11-01
Globally, Moringa oleifera is used by different communities to treat various ailments including modulation of the immune system though with limited scientific evidence. The aim was to study the immunomodulatory activity of M. oleifera methanolic leaf extract in Wistar albino rats. An experimental laboratory-based study was done following standard methods and procedures. Nine experimental groups (I, II, III, IV, V, VI, VII, VIII, IX) each comprising of six animals were used. Group I received normal saline. Groups II to IX received 200 mg/kg bwt cyclophosphamide at the beginning of the study. Group III received 50 mg/kg bwt of an immunostimulatory drug levamisole. Groups IV to IX were dosed daily for 14 days with extract at doses of 250, 500, and 1000 mg/kg bwt, respectively, using an intragastric tube. Complete blood count (CBC), delayed-type hypersensitivity reaction (DTH), neutrophil adhesion test, and hemagglutination antibody titer were determined using standard methods and procedures. Statistical analysis was performed using GraphPad prism 5.0a Software. There was an increment in WBC, lymphocyte, and neutrophil counts at a dose of 1000 mg/kg bwt similar to the levamisole-positive control group. The neutrophil adhesion was statistically significant (p≤0.05) for treatment groups that received 1000 mg/kg bwt (29.94%) and 500 mg/kg bwt at 17.28%. The mean percentage increment in footpad thickness was highest (26.9%) after 8 h of injection of antigen in the footpad of rats dosed 500 mg/kg bwt and this later reduced to 25.6% after 24 h. There was a dose-dependent increment in the mean hemagglutination antibody titer to sheep red blood cells (SRBC) from 10.73±0.57 HA units/μL for the 250 mg/kg bwt to 26.22±1.70 HA units/μL for the 1000 mg/kg bwt. Methanolic leaf extract of M. oleifera caused a significant immunostimulatory effect on both the cell-mediated and humoral immune systems in the Wistar albino rats.
Mossini, Simone A. G.; Arrotéia, Carla C.; Kemmelmeier, Carlos
2009-01-01
In vitro trials were conducted to evaluate the effect of Azadirachta indica (neem) extracts on mycelial growth, sporulation, morphology and ochratoxin A production by P. verrucosum and P. brevicompactum. The effect of neem oil extract from seeds and leaf was evaluated at 0.125; 0.25 and 0.5% and 6.25 and 12.5 mg/mL, respectively, in Yeast Extract Sucrose (YES) medium. Ochratoxin A production was evaluated by a thin-layer chromatography technique. Oil extracts exhibited significant (p ≤ 0.05) reduction of growth and sporulation of the fungi. No inhibition of ochratoxin A production was observed. Given its accessibility and low cost, neem oil could be implemented as part of a sustainable integrated pest management strategy for plant disease, as it has been shown to be fungitoxic by inhibition of growth and sporulation. PMID:22069528
Mossini, Simone A G; Arrotéia, Carla C; Kemmelmeier, Carlos
2009-09-01
In vitro trials were conducted to evaluate the effect of Azadirachtaindica (neem) extracts on mycelial growth, sporulation, morphology and ochratoxin A production by P. verrucosum and P. brevicompactum. The effect of neem oil extract from seeds and leaf was evaluated at 0.125; 0.25 and 0.5% and 6.25 and 12.5 mg/mL, respectively, in Yeast Extract Sucrose (YES) medium. Ochratoxin A production was evaluated by a thin-layer chromatography technique. Oil extracts exhibited significant (p ≤ 0.05) reduction of growth and sporulation of the fungi. No inhibition of ochratoxin A production was observed. Given its accessibility and low cost, neem oil could be implemented as part of a sustainable integrated pest management strategy for plant disease, as it has been shown to be fungitoxic by inhibition of growth and sporulation.
An Experimental Evaluation of Adaptogenic Potential of Standardized Epipremnum Aureum Leaf Extract.
Das, Sreemoy Kanti; Sengupta, Pinaki; Mustapha, Mohd Shahimi; Sarker, Md Moklesur Rahman
2017-01-01
Stress is a normal part of everyday life but chronic stress can lead to a variety of stress-related illnesses including hypertension, anxiety, and depression. In the present investigation, standardized leaf extract of Epipremnumaureum was evaluated for its anti-stress potential. For the evaluation of anti-stress activity, groups of mice ( n = 6) were subjected to forced swim stress and anoxic stress tolerance test in mice 1h after daily treatment of E.aureumextract . Diazepam (5 mg/kg) was taken as a reference standard. Urinary vanillylmandelic acid (VMA) and ascorbic acid were selected as noninvasive biomarkers to assess the anti-stress activity and plasma cortisol, blood ascorbic acid, and weight of adrenal were measured. The 24 h urinary excretion of VMA and ascorbic acid were determined by spectrophotometric methods in all groups under normal and stressed conditions. The hematological parameters (neutrophils, lymphocytes, and eosinophils) were also determined. Administration of E.aureumat doses of 400 and 600 mg/kg wasfound to be effective in inhibiting the stress induced urinary biochemical changes in a dose-dependent manner. Treatment with E. aureum extract prevents the rise in blood ascorbic acid and plasma cortisol. Moreover, the extract prevented the increase in weight of adrenal gland also significantly increased the anoxia stress tolerance time. Dose-dependent significant reduction in white blood cell count was observed in anoxic stress tolerance test as compared to stressed group. Hence, the present study provides scientific support for the positiveadaptogenic effect of E. aureum extract.
NASA Astrophysics Data System (ADS)
Prihapsara, F.; Mufidah; Artanti, A. N.; Harini, M.
2018-03-01
The present study was aimed to study the acute and subchronic toxicity of Self Nanoemulsifying Drug Delivery Systems (SNEDDS) from chloroform bay leaf extract with Palm Kernel Oil as carrier. In acute toxicity test, five groups of rat (n=5/groups) were orally treated with Self Nanoemulsifying Drug Delivery Systems (SNEDDS) from chloroform bay leaf extract with doses at 48, 240, 1200 and 6000 mg/kg/day respectively, then the median lethal dose LD50, advers effect and mortality were recorded up to 14 days. Meanwhile, in subchronic toxicity study, 4 groups of rats (n=6/group) received by orally treatment of SNEDDS from chloroform bay leaf extract with doses at 91.75; 183.5; 367 mg/kg/day respectively for 28 days, and biochemical, hematological and histopatological change in tissue such as liver, kidney, and pancreatic were determined. The result show that LD50 is 1045.44 mg/kg. Although histopathological examination of most of the organs exhibited no structural changes, some moderate damage was observed in high‑ dose group animals (367 mg/kg/day). The high dose of SNEDDS extract has shown mild signs of toxicity on organ function test.
Landa, Premysl; Skalova, Lenka; Bousova, Iva; Kutil, Zsofia; Langhansova, Lenka; Lou, Ji-Dong; Vanek, Tomas
2014-01-01
The aim of this study was to evaluate in vitro anti-proliferative (tested on MCF-7, MDA-MB-231, and MCF-10A cell lines) and anti-inflammatory (evaluated as inhibition of prostaglandin E2 synthesis catalyzed by cyclooxygenase-2) effect of various extracts from Vaccinium bracteatum leaves and fruits. The highest anti-proliferative effect possessed leaf dichloromethane extract with IC50 values ranging from 93 to 198 μg/mL. In the case of cyclooxygenase-2 inhibition, n-hexane, dichloromethane, and ethanol fruit extracts showed the best activity with IC50 values = 2.0, 5.4, and 12.7 μg/mL, respectively. These results indicate that V. bracteatum leaves and fruits could be useful source of anti-cancer and anti-inflammatory compounds.
Shah, Navjot; Singh, Rumani; Sarangi, Upasana; Saxena, Nishant; Chaudhary, Anupama; Kaur, Gurcharan; Kaul, Sunil C.; Wadhwa, Renu
2015-01-01
Background Ashwagandha, a traditional Indian herb, has been known for its variety of therapeutic activities. We earlier demonstrated anticancer activities in the alcoholic and water extracts of the leaves that were mediated by activation of tumor suppressor functions and oxidative stress in cancer cells. Low doses of these extracts were shown to possess neuroprotective activities in vitro and in vivo assays. Methodology/Principal Findings We used cultured glioblastoma and neuroblastoma cells to examine the effect of extracts (alcoholic and water) as well as their bioactive components for neuroprotective activities against oxidative stress. Various biochemical and imaging assays on the marker proteins of glial and neuronal cells were performed along with their survival profiles in control, stressed and recovered conditions. We found that the extracts and one of the purified components, withanone, when used at a low dose, protected the glial and neuronal cells from oxidative as well as glutamate insult, and induced their differentiation per se. Furthermore, the combinations of extracts and active component were highly potent endorsing the therapeutic merit of the combinational approach. Conclusion Ashwagandha leaf derived bioactive compounds have neuroprotective potential and may serve as supplement for brain health. PMID:25789768
Cittan, Mustafa; Çelik, Ali
2018-04-01
A simple method was validated for the analysis of 31 phenolic compounds using liquid chromatography-electrospray tandem mass spectrometry. Proposed method was successfully applied to the determination of phenolic compounds in an olive leaf extract and 24 compounds were analyzed quantitatively. Olive biophenols were extracted from olive leaves by using microwave-assisted extraction with acceptable recovery values between 78.1 and 108.7%. Good linearities were obtained with correlation coefficients over 0.9916 from calibration curves of the phenolic compounds. The limits of quantifications were from 0.14 to 3.2 μg g-1. Intra-day and inter-day precision studies indicated that the proposed method was repeatable. As a result, it was confirmed that the proposed method was highly reliable for determination of the phenolic species in olive leaf extracts.
Orthosiphon stamineus Leaf Extract Affects TNF-α and Seizures in a Zebrafish Model
Choo, Brandon Kar Meng; Kundap, Uday P.; Kumari, Yatinesh; Hue, Seow-Mun; Othman, Iekhsan; Shaikh, Mohd Farooq
2018-01-01
Epileptic seizures result from abnormal brain activity and can affect motor, autonomic and sensory function; as well as, memory, cognition, behavior, or emotional state. Effective anti-epileptic drugs (AEDs) are available but have tolerability issues due to their side effects. The Malaysian herb Orthosiphon stamineus, is a traditional epilepsy remedy and possesses anti-inflammatory, anti-oxidant and free-radical scavenging abilities, all of which are known to protect against seizures. This experiment thus aimed to explore if an ethanolic leaf extract of O. stamineus has the potential to be a novel symptomatic treatment for epileptic seizures in a zebrafish model; and the effects of the extract on the expression levels of several genes in the zebrafish brain which are associated with seizures. The results of this study indicate that O. stamineus has the potential to be a novel symptomatic treatment for epileptic seizures as it is pharmacologically active against seizures in a zebrafish model. The anti-convulsive effect of this extract is also comparable to that of diazepam at higher doses and can surpass diazepam in certain cases. Treatment with the extract also counteracts the upregulation of NF-κB, NPY and TNF-α as a result of a Pentylenetetrazol (PTZ) treated seizure. The anti-convulsive action for this extract could be at least partially due to its downregulation of TNF-α. Future work could include the discovery of the active anti-convulsive compound, as well as determine if the extract does not cause cognitive impairment in zebrafish. PMID:29527169
Theophilus, P. A. S.; Victoria, M. J.; Socarras, K. M.; Filush, K. R.; Gupta, K.; Luecke, D. F.; Sapi, E.
2015-01-01
Lyme disease is a tick-borne multisystemic disease caused by Borrelia burgdorferi. Administering antibiotics is the primary treatment for this disease; however, relapse often occurs when antibiotic treatment is discontinued. The reason for relapse remains unknown, but recent studies suggested the possibilities of the presence of antibiotic resistant Borrelia persister cells and biofilms. In this study, we evaluated the effectiveness of whole leaf Stevia extract against B. burgdorferi spirochetes, persisters, and biofilm forms in vitro. The susceptibility of the different forms was evaluated by various quantitative techniques in addition to different microscopy methods. The effectiveness of Stevia was compared to doxycycline, cefoperazone, daptomycin, and their combinations. Our results demonstrated that Stevia had significant effect in eliminating B. burgdorferi spirochetes and persisters. Subculture experiments with Stevia and antibiotics treated cells were established for 7 and 14 days yielding, no and 10% viable cells, respectively compared to the above-mentioned antibiotics and antibiotic combination. When Stevia and the three antibiotics were tested against attached biofilms, Stevia significantly reduced B. burgdorferi forms. Results from this study suggest that a natural product such as Stevia leaf extract could be considered as an effective agent against B. burgdorferi. PMID:26716015
Mordmuang, Auemphon; Voravuthikunchai, Supayang Piyawan
2015-10-01
Antibiotic residues in dairy products as well as emergence of antimicrobial resistance in foodborne pathogens have been recognized as global public health concerns. The present work was aimed to study a potent antibacterial extract from natural product as an alternative treatment for staphylococcal bovine mastitis. Staphylococcal isolates (n=44) were isolated from milk samples freshly squeezed from individual cows. All staphylococcal isolates were resistant to ampicillin, ciprofloxacin, erythromycin, gentamicin, penicillin, except vancomycin. Rhodomyrtus tomentosa leaf ethanolic extract was accessed for its antibacterial activity and anti-inflammatory potential. The extract exhibited profound antibacterial activity against all of staphylococcal isolates with MIC and MBC values ranged from 16-64 μg/ml and 64->128 μg/ml, respectively. Moreover, the extract also exerted anti-protein denaturation and human red blood cell membrane stabilizing activity. The results support the use of R. tomentosa extract that could be applied to cure bovine mastitis and to reduce inflammatory injury caused by the bacterial infections. Copyright © 2015 Elsevier Ltd. All rights reserved.
Salako, Olanrewaju A; Akindele, Abidemi J; Shitta, Omotoyosi M; Elegunde, Olajumoke O; Adeyemi, Olufunmilayo O
2015-12-24
Caladium bicolor (Araceae) is a horticulture plant also used by some traditional medicine practitioners in the treatment of diarrhoea and other gastrointestinal disorders. This study was conducted to evaluate the antidiarrhoeal activity of the aqueous leaf extract of C. bicolor and its possible mechanisms of action in rodents. Normal and castor oil-induced intestinal transit and castor oil-induced diarrhoea tests were carried out in mice while gastric emptying and enteropooling tests were conducted in rats following the administration of distilled water (10 ml/kg, p.o.), C. bicolor extract (1-50mg/kg, p.o.) and loperamide (5mg/kg, p.o.). The probable mechanisms of action of C. bicolor was investigated following pre-treatment with yohimbine (10mg/kg, s.c.; α2-adrenoceptor antagonist), pilocarpine (1mg/kg, s.c.; non-selective muscarinic receptor agonist), prazosin (1mg/kg, s.c.; α1-adrenoceptor antagonist) and propranolol (1mg/kg, i.p.; non-selective β-adrenoceptor antagonist) 15 min prior to administration of C. bicolor extract (50mg/kg, p.o.). After 30 min of pre-treatment with these drugs, the mice were subjected to the castor oil-induced intestinal transit test. C. bicolor extract did not produce significant (p>0.05) effect on normal intestinal transit unlike loperamide which caused significant (p<0.001) inhibition (61.57%). The extract caused significant (p<0.001) dose-dependent inhibition of castor oil-induced intestinal transit with peak effect, 100% inhibition, elicited at the dose of 50mg/kg compared to 86.97% inhibition for loperamide. Yohimbine and pilocarpine most significantly (p<0.001) reversed this effect of the extract. In the castor oil-induced diarrhoea test, the extract (1mg/kg) and loperamide significantly (p<0.05, 0.01) delayed the onset of diarrhoea. For diarrhoea score, the extract (1 and 50mg/kg) inhibited diarrhoea development