Liu, Jie; Gao, Yuansheng; Negash, Sewite; Longo, Lawrence D; Raj, J Usha
2009-03-01
Chronic hypoxia during the course of pregnancy is a common insult to the fetus. However, its long-term effect on the pulmonary vasculature in adulthood has not been described. In this study, the vasorelaxation responses of conduit pulmonary arteries in adult female sheep that were chronically hypoxic as fetuses and raised postnatally at sea level were investigated. Vessel tension studies revealed that endothelium-dependent relaxation responses were attenuated in pulmonary arteries from adult sheep that experienced prenatal hypoxia. Endothelial nitric oxide synthase (eNOS) protein expression was unchanged, but eNOS activity was significantly decreased in pulmonary arteries from prenatally hypoxic sheep. Protein expression of eNOS partners, caveolin-1, calmodulin, and heat shock protein 90 (Hsp90) did not change following prenatal hypoxia. However, the association between eNOS and caveolin-1, its inhibitory binding partner, was significantly increased, whereas association between eNOS and its stimulatory partners calmodulin and Hsp90 was greatly decreased. Furthermore, phosphorylation of Ser(1177) in eNOS decreased, whereas phosphorylation of Thr(495) increased, in the prenatally hypoxic pulmonary arteries, events that are related to eNOS activity. These data demonstrate that prenatal hypoxia results in persistent abnormalities in endothelium-dependent relaxation responses of pulmonary arteries in adult sheep due to decreased eNOS activity resulting from altered posttranslational regulation.
Liu, Jie; Gao, Yuansheng; Negash, Sewite; Longo, Lawrence D.; Raj, J. Usha
2009-01-01
Chronic hypoxia during the course of pregnancy is a common insult to the fetus. However, its long-term effect on the pulmonary vasculature in adulthood has not been described. In this study, the vasorelaxation responses of conduit pulmonary arteries in adult female sheep that were chronically hypoxic as fetuses and raised postnatally at sea level were investigated. Vessel tension studies revealed that endothelium-dependent relaxation responses were attenuated in pulmonary arteries from adult sheep that experienced prenatal hypoxia. Endothelial nitric oxide synthase (eNOS) protein expression was unchanged, but eNOS activity was significantly decreased in pulmonary arteries from prenatally hypoxic sheep. Protein expression of eNOS partners, caveolin-1, calmodulin, and heat shock protein 90 (Hsp90) did not change following prenatal hypoxia. However, the association between eNOS and caveolin-1, its inhibitory binding partner, was significantly increased, whereas association between eNOS and its stimulatory partners calmodulin and Hsp90 was greatly decreased. Furthermore, phosphorylation of Ser1177 in eNOS decreased, whereas phosphorylation of Thr495 increased, in the prenatally hypoxic pulmonary arteries, events that are related to eNOS activity. These data demonstrate that prenatal hypoxia results in persistent abnormalities in endothelium-dependent relaxation responses of pulmonary arteries in adult sheep due to decreased eNOS activity resulting from altered posttranslational regulation. PMID:19136582
Kadi, A; de Isla, N; Moby, V; Lacolley, P; Labrude, P; Stoltz, J F; Menu, P
2014-01-01
Nitric oxide is implicated in the target action of Nebivolol, a selective β1 adrenoceptor blocker used in hypertension treatment. As the Nitric Oxide (NO) production and the actin cytoskeleton are linked, the aim of this work was to study the involvement of actin cytoskeleton on mechanism of action of Nebivolol in cultured endothelial cells. We studied the effect of Nebivolol (200 μM) on actin filaments remodeling and its impact on NO production and eNOS activation. Results showed that Nebivolol perturbs actin filaments polymerization, increases NO production and eNOS activity between 30 minutes and 1 h. Stabilization of actin filaments with phalloïdine (50 μM) abolishes Nebivolol effects on eNOS activation and NO production. Furthermore, Rho-kinase activity decreased during the first hour of Nebivolol treatment, then increased after 3 h, while actin filaments repolymerized, eNOS activation and NO production decreased. In SMCs, Nebivolol induced a decrease in the Rho-kinase activity from 1 h until 24 h of incubation. In conclusion, we suggest that Nebivolol induced NO production in Endothelial Cells (ECs) via complementary actions between actin cytoskeleton remodeling inducing eNOS activation and Rho-kinase implication. The effect of Nebivolol on ECs occurs during the first hour, this effect on SMCs seems to be maintained until 24 h, explaining persisted action of Nebivolol observed in vivo.
Musicki, Biljana; Champion, Hunter C.; Hsu, Lewis L.; Bivalacqua, Trinity J.; Burnett, Arthur L.
2017-01-01
INTRODUCTION Sickle cell disease (SCD)-associated priapism is characterized by endothelial nitric oxide synthase (eNOS) dysfunction in the penis. However, the mechanism of decreased eNOS function/activation in the penis in association with SCD is not known. AIMS Our hypothesis in the present study was that eNOS is functionally inactivated in the SCD penis in association with impairments in eNOS posttranslational phosphorylation and the enzyme’s interactions with its regulatory proteins. METHODS Sickle cell transgenic (sickle) mice were used as an animal model of SCD. Wild type (WT) mice served as controls. Penes were excised at baseline for molecular studies. eNOS phosphorylation on Ser-1177 (positive regulatory site) and Thr-495 (negative regulatory site), total eNOS, and phosphorylated AKT (upstream mediator of eNOS phosphorylation on Ser-1177) expressions, and eNOS interactions with heat shock protein 90 (HSP90) and caveolin-1 were measured by Western blot. Constitutive NOS catalytic activity was measured by conversion of L-[14C]arginine-to-L-[14C]citrulline in the presence of calcium. MAIN OUTCOME MEASURES Molecular mechanisms of eNOS dysfunction in the sickle mouse penis. RESULTS eNOS phosphorylated on Ser-1177, an active portion of eNOS, was decreased in the sickle mouse penis compared to WT penis. eNOS interaction with its positive protein regulator HSP90, but not with its negative protein regulator caveolin-1, and phosphorylated AKT expression, as well as constitutive NOS activity, were also decreased in the sickle mouse penis compared to WT penis. eNOS phosphorylated on Thr-495, total eNOS, HSP90, and caveolin-1 protein expressions in the penis were not affected by SCD. CONCLUSION These findings provide a molecular basis for chronically reduced eNOS function in the penis by SCD, which involves decreased eNOS phosphorylation on Ser-1177 and decreased eNOS-HSP90 interaction. PMID:21143412
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagane, Masaki; Yasui, Hironobu; Sakai, Yuri
2015-01-02
Highlights: • eNOS activity is increased in BAECs exposed to X-rays. • ATM is involved in this increased eNOS activity. • HSP90 modulates the radiation-induced activation of ATM and eNOS. - Abstract: In this study, the involvement of ataxia telangiectasia mutated (ATM) kinase and heat shock protein 90 (HSP90) in endothelial nitric oxide synthase (eNOS) activation was investigated in X-irradiated bovine aortic endothelial cells. The activity of nitric oxide synthase (NOS) and the phosphorylation of serine 1179 of eNOS (eNOS-Ser1179) were significantly increased in irradiated cells. The radiation-induced increases in NOS activity and eNOS-Ser1179 phosphorylation levels were significantly reduced bymore » treatment with either an ATM inhibitor (Ku-60019) or an HSP90 inhibitor (geldanamycin). Geldanamycin was furthermore found to suppress the radiation-induced phosphorylation of ATM-Ser1181. Our results indicate that the radiation-induced eNOS activation in bovine aortic endothelial cells is regulated by ATM and HSP90.« less
Liu, Songling; Premont, Richard T; Rockey, Don C
2014-06-27
Nitric oxide (NO) is a critical regulator of vascular tone and plays an especially prominent role in liver by controlling portal blood flow and pressure within liver sinusoids. Synthesis of NO in sinusoidal endothelial cells by endothelial nitric-oxide synthase (eNOS) is regulated in response to activation of endothelial cells by vasoactive signals such as endothelins. The endothelin B (ETB) receptor is a G-protein-coupled receptor, but the mechanisms by which it regulates eNOS activity in sinusoidal endothelial cells are not well understood. In this study, we built on two previous strands of work, the first showing that G-protein βγ subunits mediated activation of phosphatidylinositol 3-kinase and Akt to regulate eNOS and the second showing that eNOS directly bound to the G-protein-coupled receptor kinase-interacting protein 1 (GIT1) scaffold protein, and this association stimulated NO production. Here we investigated the mechanisms by which the GIT1-eNOS complex is formed and regulated. GIT1 was phosphorylated on tyrosine by Src, and Y293F and Y554F mutations reduced GIT1 phosphorylation as well as the ability of GIT1 to bind to and activate eNOS. Akt phosphorylation activated eNOS (at Ser(1177)), and Akt also regulated the ability of Src to phosphorylate GIT1 as well as GIT1-eNOS association. These pathways were activated by endothelin-1 through the ETB receptor; inhibiting receptor-activated G-protein βγ subunits blocked activation of Akt, GIT1 tyrosine phosphorylation, and ET-1-stimulated GIT1-eNOS association but did not affect Src activation. These data suggest a model in which Src and Akt cooperate to regulate association of eNOS with the GIT1 scaffold to facilitate NO production. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Taylor, Sarah Y.; Dixon, Hannah M.; Yoganayagam, Shobana; Price, Natalie; Lang, Derek
2013-01-01
Folic acid enhances endothelial function and improves outcome in primary prevention of cardiovascular disease. The exact intracellular signalling mechanisms involved remain elusive and were therefore the subject of this study. Particular focus was placed on folic acid-induced changes in posttranslational modifications of endothelial nitric oxide synthase (eNOS). Cultured endothelial cells were exposed to folic acid in the absence or presence of phosphatidylinositol-3' kinase/Akt (PI3K/Akt) inhibitors. The phosphorylation status of eNOS was determined via western blotting. The activities of eNOS and PI3K/Akt were evaluated. The interaction of eNOS with caveolin-1, Heat-Shock Protein 90 and calmodulin was studied using co-immunoprecipitation. Intracellular localisation of eNOS was investigated using sucrose gradient centrifugation and confocal microscopy. Folic acid promoted eNOS dephosphorylation at negative regulatory sites, and increased phosphorylation at positive regulatory sites. Modulation of phosphorylation status was concomitant with increased cGMP concentrations, and PI3K/Akt activity. Inhibition of PI3K/Akt revealed specific roles for this kinase pathway in folic acid-mediated eNOS phosphorylation. Regulatory protein and eNOS protein associations were altered in favour of a positive regulatory effect in the absence of bulk changes in intracellular eNOS localisation. Folic acid-mediated eNOS activation involves the modulation of eNOS phosphorylation status at multiple residues and positive changes in important protein–protein interactions. Such intracellular mechanisms may in part explain improvements in clinical vascular outcome following folic acid treatment. PMID:23796957
Krishnan, Manickam; Janardhanan, Preethi; Roman, Linda; Reddick, Robert L; Natarajan, Mohan; van Haperen, Rien; Habib, Samy L; de Crom, Rini; Mohan, Sumathy
2015-10-01
The balance of nitric oxide (NO) versus superoxide generation has a major role in the initiation and progression of endothelial dysfunction. Under conditions of high glucose, endothelial nitric oxide synthase (eNOS) functions as a chief source of superoxide rather than NO. In order to improve NO bioavailability within the vessel wall in type-1 diabetes, we investigated treatment strategies that improve eNOS phosphorylation and NO-dependent vasorelaxation. We evaluated methods to increase the eNOS activity by (1) feeding Ins2(Akita) spontaneously diabetic (type-1) mice with l-arginine in the presence of sepiapterin, a precursor of tetrahydrobiopterin; (2) preventing eNOS/NO deregulation by the inclusion of inhibitor kappa B kinase beta (IKKβ) inhibitor, salsalate, in the diet regimen in combination with l-arginine and sepiapterin; and (3) independently increasing eNOS expression to improve eNOS activity and associated NO production through generating Ins2(Akita) diabetic mice that overexpress human eNOS predominantly in vascular endothelial cells. Our results clearly demonstrated that diet supplementation with l-arginine, sepiapterin along with salsalate improved phosphorylation of eNOS and enhanced vasorelaxation of thoracic/abdominal aorta in type-1 diabetic mice. More interestingly, despite the overexpression of eNOS, the in-house generated transgenic eNOS-GFP (TgeNOS-GFP)-Ins2(Akita) cross mice showed an unanticipated effect of reduced eNOS phosphorylation and enhanced superoxide production. Our results demonstrate that enhancement of endogenous eNOS activity by nutritional modulation is more beneficial than increasing the endogenous expression of eNOS by gene therapy modalities.
Quintero-Troconis, E; Buelvas, N; Carrasco-López, C; Domingo-Sananes, M R; González-González, L; Ramírez-Molina, R; Osorio, L; Lobo-Rojas, A; Cáceres, A J; Michels, P A; Acosta, H; Quiñones, W; Concepción, J L
Purification of enolase (ENO) from the cytosol of Trypanosoma cruzi indicated that it may interact with at least five other proteins. Two of them were identified as metallocarboxypeptidase-1 (TcMCP-1) and a putative acireductone dioxygenase (ARDp). Subcellular localization studies confirmed the presence of ARDp in the cytosol, as is the case for ENO and TcMCP-1. Analysis of the ARDp sequence showed that this protein has two domains, an N-terminal ARD and a C-terminal TRP14 (thioredoxin-related protein) domain. The interactions between ENO, TcMCP-1 and ARDp were confirmed for the natural proteins from the trypanosome (using size-exclusion chromatography and co-immunoprecipitation from a cytosolic fraction) and recombinant forms (using ELISA ligand-binding assay and ENO activity assays). The ELISA ligand-binding assays permitted to verify the optimal physicochemical conditions for the interactions (representative for the physiological conditions) and to determine the affinity constants (Kd): ENO/ARDp: 9.54 ± 0.82 nM, ARDp/ENO 10.05 ± 1.11 nM, and ENO/TcMCP-1: 5.66 ± 0.61 nM. The data also show that the interaction between TcMCP-1 and ARDp is mediated by ENO acting as a "bridge". Furthermore, considerable inhibition of the ENO activity, up to 85%, is observed when the enzyme interacts with TcMCP-1 and ARDp simultaneously. All these data confirm that the interaction between ENO, TcMCP-1 and ARDp, occurring in T. cruzi's cytosol, modulates the ENO activity and suggest a possible physiological mechanism for regulation of the ENO activity by the protein-protein interaction. Copyright © 2018 Elsevier B.V. All rights reserved.
Stromal cell-derived factor 2 is critical for Hsp90-dependent eNOS activation.
Siragusa, Mauro; Fröhlich, Florian; Park, Eon Joo; Schleicher, Michael; Walther, Tobias C; Sessa, William C
2015-08-18
Endothelial nitric oxide synthase (eNOS) catalyzes the conversion of l-arginine and molecular oxygen into l-citrulline and nitric oxide (NO), a gaseous second messenger that influences cardiovascular physiology and disease. Several mechanisms regulate eNOS activity and function, including phosphorylation at Ser and Thr residues and protein-protein interactions. Combining a tandem affinity purification approach and mass spectrometry, we identified stromal cell-derived factor 2 (SDF2) as a component of the eNOS macromolecular complex in endothelial cells. SDF2 knockdown impaired agonist-stimulated NO synthesis and decreased the phosphorylation of eNOS at Ser(1177), a key event required for maximal activation of eNOS. Conversely, SDF2 overexpression dose-dependently increased NO synthesis through a mechanism involving Akt and calcium (induced with ionomycin), which increased the phosphorylation of Ser(1177) in eNOS. NO synthesis by iNOS (inducible NOS) and nNOS (neuronal NOS) was also enhanced upon SDF2 overexpression. We found that SDF2 was a client protein of the chaperone protein Hsp90, interacting preferentially with the M domain of Hsp90, which is the same domain that binds to eNOS. In endothelial cells exposed to vascular endothelial growth factor (VEGF), SDF2 was required for the binding of Hsp90 and calmodulin to eNOS, resulting in eNOS phosphorylation and activation. Thus, our data describe a function for SDF2 as a component of the Hsp90-eNOS complex that is critical for signal transduction in endothelial cells. Copyright © 2015, American Association for the Advancement of Science.
Stromal cell–derived factor 2 is critical for Hsp90-dependent eNOS activation
Siragusa, Mauro; Fröhlich, Florian; Park, Eon Joo; Schleicher, Michael; Walther, Tobias C.; Sessa, William C.
2016-01-01
Endothelial nitric oxide synthase (eNOS) catalyzes the conversion of l-arginine and molecular oxygen into l-citrulline and nitric oxide (NO), a gaseous second messenger that influences cardiovascular physiology and disease. Several mechanisms regulate eNOS activity and function, including phosphorylation at Ser and Thr residues and protein-protein interactions. Combining a tandem affinity purification approach and mass spectrometry, we identified stromal cell–derived factor 2 (SDF2) as a component of the eNOS macromolecular complex in endothelial cells. SDF2 knockdown impaired agonist-stimulated NO synthesis and decreased the phosphorylation of eNOS at Ser1177, a key event required for maximal activation of eNOS. Conversely, SDF2 overexpression dose-dependently increased NO synthesis through a mechanism involving Akt and calcium (induced with ionomycin), which increased the phosphorylation of Ser1177 in eNOS. NO synthesis by iNOS (inducible NOS) and nNOS (neuronal NOS) was also enhanced upon SDF2 overexpression. We found that SDF2 was a client protein of the chaperone protein Hsp90, interacting preferentially with the M domain of Hsp90, which is the same domain that binds to eNOS. In endothelial cells exposed to vascular endothelial growth factor (VEGF), SDF2 was required for the binding of Hsp90 and calmodulin to eNOS, resulting in eNOS phosphorylation and activation. Thus, our data describe a function for SDF2 as a component of the Hsp90-eNOS complex that is critical for signal transduction in endothelial cells. PMID:26286023
Wu, Yong; Zhang, Cheng; Dong, Yunzhou; Wang, Shuangxi; Song, Ping; Viollet, Benoit; Zou, Ming-Hui
2012-01-01
The aim of the present study was to test the hypothesis that the cardiovascular-protective effects of eicosapentaenoic acid (EPA) may be due, in part, to its ability to stimulate the AMP-activated protein kinase (AMPK)-induced endothelial nitric oxide synthase (eNOS) activation. The role of AMPK in EPA-induced eNOS phosphorylation was investigated in bovine aortic endothelial cells (BAEC), in mice deficient of either AMPKα1 or AMPKα2, in eNOS knockout (KO) mice, or in Apo-E/AMPKα1 dual KO mice. EPA-treatment of BAEC increased both AMPK-Thr172 phosphorylation and AMPK activity, which was accompanied by increased eNOS phosphorylation, NO release, and upregulation of mitochondrial uncoupling protein-2 (UCP-2). Pharmacologic or genetic inhibition of AMPK abolished EPA-enhanced NO release and eNOS phosphorylation in HUVEC. This effect of EPA was absent in the aortas isolated from either eNOS KO mice or AMPKα1 KO mice fed a high-fat, high-cholesterol (HFHC) diet. EPA via upregulation of UCP-2 activates AMPKα1 resulting in increased eNOS phosphorylation and consequent improvement of endothelial function in vivo. PMID:22532857
The Akt1-eNOS axis illustrates the specificity of kinase-substrate relationships in vivo.
Schleicher, Michael; Yu, Jun; Murata, Takahisa; Derakhshan, Berhad; Atochin, Dimitriy; Qian, Li; Kashiwagi, Satoshi; Di Lorenzo, Annarita; Harrison, Kenneth D; Huang, Paul L; Sessa, William C
2009-08-04
Akt1 is critical for many in vivo functions; however, the cell-specific substrates responsible remain to be defined. Here, we examine the importance of endothelial nitric oxide synthase (eNOS) as an Akt1 substrate by generating Akt1-deficient mice (Akt1(-/-) mice) carrying knock-in mutations (serine to aspartate or serine to alanine substitutions) of the critical Akt1 phosphorylation site on eNOS (serine 1176) that render the enzyme "constitutively active" or "less active." The eNOS mutations did not influence several phenotypes in Akt1(-/-) mice; however, the defective postnatal angiogenesis characteristic of Akt1(-/-) mice was rescued by crossing the Akt1(-/-) mice with mice carrying the constitutively active form of eNOS, but not by crossing with mice carrying the less active eNOS mutant. This genetic rescue resulted in the stabilization of hypoxia-inducible factor 1alpha (HIF-1alpha) and increased production of HIF-1alpha-responsive genes in vivo and in vitro. Thus, Akt1 regulates angiogenesis largely through phosphorylation of eNOS and NO-dependent signaling.
Elms, Shawn; Chen, Feng; Wang, Yusi; Qian, Jin; Askari, Bardia; Yu, Yanfang; Pandey, Deepesh; Iddings, Jennifer; Caldwell, Ruth B.
2013-01-01
Reduced production of nitric oxide (NO) is one of the first indications of endothelial dysfunction and precedes overt cardiovascular disease. Increased expression of Arginase has been proposed as a mechanism to account for diminished NO production. Arginases consume l-arginine, the substrate for endothelial nitric oxide synthase (eNOS), and l-arginine depletion is thought to competitively reduce eNOS-derived NO. However, this simple relationship is complicated by the paradox that l-arginine concentrations in endothelial cells remain sufficiently high to support NO synthesis. One mechanism proposed to explain this is compartmentalization of intracellular l-arginine into distinct, poorly interchangeable pools. In the current study, we investigated this concept by targeting eNOS and Arginase to different intracellular locations within COS-7 cells and also BAEC. We found that supplemental l-arginine and l-citrulline dose-dependently increased NO production in a manner independent of the intracellular location of eNOS. Cytosolic arginase I and mitochondrial arginase II reduced eNOS activity equally regardless of where in the cell eNOS was expressed. Similarly, targeting arginase I to disparate regions of the cell did not differentially modify eNOS activity. Arginase-dependent suppression of eNOS activity was reversed by pharmacological inhibitors and absent in a catalytically inactive mutant. Arginase did not directly interact with eNOS, and the metabolic products of arginase or downstream enzymes did not contribute to eNOS inhibition. Cells expressing arginase had significantly lower levels of intracellular l-arginine and higher levels of ornithine. These results suggest that arginases inhibit eNOS activity by depletion of substrate and that the compartmentalization of l-arginine does not play a major role. PMID:23792682
Cai, Shijie; Alp, Nicholas J; McDonald, Denise; Smith, Ian; Kay, Jonathan; Canevari, Laura; Heales, Simon; Channon, Keith M
2002-09-01
Tetrahydrobiopterin (BH4) is an essential cofactor for endothelial nitric oxide synthase (eNOS) activity. BH4 levels are regulated by de novo biosynthesis; the rate-limiting enzyme is GTP cyclohydrolase I (GTPCH). BH4 activates and promotes homodimerisation of purified eNOS protein, but the intracellular mechanisms underlying BH4-mediated eNOS regulation in endothelial cells remain less clear. We aimed to investigate the role of BH4 levels in intracellular eNOS regulation, by targeting the BH4 synthetic pathway as a novel strategy to modulate intracellular BH4 levels. We constructed a recombinant adenovirus, AdGCH, encoding human GTPCH. We infected human endothelial cells with AdGCH, investigated the changes in intracellular biopterin levels, and determined the effects on eNOS enzymatic activity, protein levels and dimerisation. GTPCH gene transfer in EAhy926 endothelial cells increased BH4 >10-fold compared with controls (cells alone or control adenovirus infection), and greatly enhanced NO production in a dose-dependent, eNOS-specific manner. We found that eNOS was principally monomeric in control cells, whereas GTPCH gene transfer resulted in a striking increase in eNOS homodimerisation. Furthermore, the total amounts of both native eNOS protein and a recombinant eNOS-GFP fusion protein were significantly increased following GTPCH gene transfer. These findings suggest that GTPCH gene transfer is a valid approach to increase BH4 levels in human endothelial cells, and provide new evidence for the relative importance of different mechanisms underlying BH4-mediated eNOS regulation in intact human endothelial cells. Additionally, these observations suggest that GTPCH may be a rational target to augment endothelial BH4 and normalise eNOS activity in endothelial dysfunction states.
Yang, Po-Min; Huang, Yu-Ting; Zhang, Yu-Qi; Hsieh, Chia-Wen; Wung, Being-Sun
2016-12-01
The production of nitric oxide (NO) by endothelial NO synthase (eNOS) plays a major role in maintaining vascular homeostasis. This study elucidated the potential role of carbon monoxide (CO)-releasing molecules (CORMs) in NO production and explored the underlying mechanisms in endothelial cells. We observed that 25μM CORM-2 could increase NO production and stimulate an increase in the intracellular Ca 2+ level. Furthermore, ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetra acetic acid caused CORM-2-induced NO production, which was abolished by 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid tetraacetoxy-methyl ester (BAPTA-AM), indicating that intracellular Ca 2+ release plays a major role in eNOS activation. The inhibition of the IP3 receptor diminished the CORM-2-induced intracellular Ca 2+ increase and NO production. Furthermore, CORM-2 induced eNOS Ser 1179 phosphorylation and eNOS dimerization, but it did not alter eNOS expression. CORM-2 (25μM) also prolonged Akt phosphorylation, lasting for at least 12h. Pretreatment with phosphatidylinositol 3-kinase inhibitors (wortmannin or LY294002) inhibited the increases in NO production and phosphorylation but did not affect eNOS dimerization. CORM-2-induced eNOS Ser 1179 phosphorylation was intracellularly calcium-dependent, because pretreatment with an intracellular Ca 2+ chelator (BAPTA-AM) inhibited this process. Although CORM-2 increases intracellular reactive oxygen species (ROS), pretreatment with antioxidant enzyme catalase and N-acetyl-cysteine did not abolish the CORM-2-induced eNOS activity or phosphorylation, signifying that ROS is not involved in this activity. Hence, CORM-2 enhances eNOS activation through intracellular calcium release, Akt phosphorylation, and eNOS dimerization. Copyright © 2016 Elsevier Inc. All rights reserved.
Ladurner, Angela; Schmitt, Christoph A.; Schachner, Daniel; Atanasov, Atanas G.; Werner, Ernst R.; Dirsch, Verena M.; Heiss, Elke H.
2012-01-01
Long-term exposure to ascorbate is known to enhance endothelial nitric oxide synthase (eNOS) activity by stabilizing the eNOS cofactor tetrahydrobiopterin (BH4). We investigated acute effects of ascorbate on eNOS function in primary (HUVEC) and immortalized human endothelial cells (EA.hy926), aiming to provide a molecular explanation for the rapid vasodilatation seen in vivo upon administration of ascorbate. Enzymatic activity of eNOS and intracellular BH4 levels were assessed by means of an arginine–citrulline conversion assay and HPLC analysis, respectively. Over a period of 4 h, ascorbate steadily increased eNOS activity, although endothelial BH4 levels remained unchanged compared to untreated control cells. Immunoblot analyses revealed that as early as 5 min after treatment ascorbate dose-dependently increased phosphorylation at eNOS-Ser1177 and concomitantly decreased phosphorylation at eNOS-Thr495, a phosphorylation pattern indicative of increased eNOS activity. By employing pharmacological inhibitors, siRNA-mediated knockdown approaches, and overexpression of the catalytic subunit of protein phosphatase 2A (PP2A), we show that this effect was at least partly owing to reduction of PP2A activity and subsequent activation of AMP-activated kinase. In this report, we unravel a novel mechanism for how ascorbate rapidly activates eNOS independent of its effects on BH4 stabilization. PMID:22542797
Ugusman, Azizah; Zakaria, Zaiton; Hui, Chua Kien; Nordin, Nor Anita Megat Mohd
2010-07-01
Nitric oxide produced by endothelial nitric oxide synthase (eNOS) possesses multiple anti-atherosclerotic properties. Hence, enhanced expression of eNOS and increased Nitric oxide levels may protect against the development of atherosclerosis. Piper sarmentosum is a tropical plant with antioxidant and anti-inflammatory activities. This study aimed to investigate the effects of Piper sarmentosum on the eNOS and Nitric oxide pathway in cultured human umbilical vein endothelial cells (HUVECs). HUVECS WERE DIVIDED INTO FOUR GROUPS: control, treatment with 180 microM hydrogen peroxide (H(2)O(2)), treatment with 150 microg/mL aqueous extract of Piper sarmentosum, and concomitant treatment with aqueous extract of PS and H(2)O(2) for 24 hours. Subsequently, HUVECs were harvested and eNOS mRNA expression was determined using qPCR. The eNOS protein level was measured using ELISA, and the eNOS activity and Nitric oxide level were determined by the Griess reaction. Human umbilical vein endothelial cells treated with aqueous extract of Piper sarmentosum showed a marked induction of Nitric oxide. Treatment with PS also resulted in increased eNOS mRNA expression, eNOS protein level and eNOS activity in HUVECs. Aqueous extract of Piper sarmentosum may improve endothelial function by promoting NO production in HUVECs.
Auger, Cyril; Chaabi, Mehdi; Anselm, Eric; Lobstein, Annelise; Schini-Kerth, Valérie B
2010-07-01
Phenolic extracts from red wine (RWPs) have been shown to induce nitric oxide (NO)-mediated vasoprotective effects, mainly by causing the PI3-kinase/Akt-dependent activation of endothelial NO synthase (eNOS). RWPs contain several hundreds of phenolic compounds. The aim of the present study was to identify red wine phenolic compounds capable of activating eNOS in endothelial cells using multi-step fractionation. The red wine phenolic extract was fractionated using Sephadex LH-20 and preparative RP-HPLC approaches. The ability of a fraction to activate eNOS was assessed by determining the phosphorylation level of Akt and eNOS by Western blot analysis, and NO formation by electron spin resonance spectroscopy. Tentative identification of phenolic compounds in fractions was performed by MALDI-TOF and HPLC-MS techniques. Separation of RWPs by Sephadex LH-20 generated nine fractions (fractions A to I), of which fractions F, G, H and I caused significant eNOS activation. Fraction F was then subjected to semi-preparative RP-HPLC to generate ten subfractions (subfraction SF1 to SF10), all of which caused eNOS activation. The active fractions and subfractions contained mainly procyanidins and anthocyanins. Isolation of phenolic compounds from SF9 by semi-preparative RP-HLPC lead to the identification of petunidin-O-coumaroyl-glucoside as a potent activator of eNOS.
Functional significance of differential eNOS translocation
Sánchez, Fabiola A.; Savalia, Nirav B.; Durán, Ricardo G.; Lal, Brajesh K.; Boric, Mauricio P.; Durán, Walter N.
2006-01-01
Nitric oxide (NO) regulates flow and permeability. ACh and platelet-activating factor (PAF) lead to endothelial NO synthase (eNOS) phosphorylation and NO release. While ACh causes only vasodilation, PAF induces vasoconstriction and hyperpermeability. The key differential signaling mechanisms for discriminating between vasodilation and hyperpermeability are unknown. We tested the hypothesis that differential translocation may serve as a regulatory mechanism of eNOS to determine specific vascular responses. We used ECV-304 cells permanently transfected with eNOS-green fluorescent protein (ECVeNOS-GFP) and demonstrated that the agonists activate eNOS and reproduce their characteristic endothelial permeability effects in these cells. We evaluated eNOS localization by lipid raft analysis and immunofluorescence microscopy. After PAF and ACh, eNOS moves away from caveolae. eNOS distributes both in the plasma membrane and Golgi in control cells. ACh (10−5 M, 10−4 M) translocated eNOS preferentially to the trans-Golgi network (TGN) and PAF (10−7 M) preferentially to the cytosol. We suggest that PAF-induced eNOS translocation preferentially to cytosol reflects a differential signaling mechanism related to changes in permeability, whereas ACh-induced eNOS translocation to the TGN is related to vasodilation. PMID:16679407
Chen, Weiguo; Druhan, Lawrence J.; Chen, Chun-An; Hemann, Craig; Chen, Yeong-Renn; Berka, Vladimir; Tsai, Ah-Lim; Zweier, Jay L.
2010-01-01
Endothelial nitric oxide synthase (eNOS) is an important regulator of vascular and cardiac function. Peroxynitrite (ONOO−) inactivates eNOS, but questions remain regarding the mechanisms of this process. It has been reported that inactivation is due to oxidation of the eNOS zinc-thiolate cluster, rather than the cofactor tetrahydrobiopterin (BH4); however, this remains highly controversial. Therefore, we investigated the mechanisms of ONOO−-induced eNOS dysfunction and their dose-dependence. Exposure of human eNOS to ONOO− resulted in a dose-dependent loss of activity with a marked destabilization of the eNOS dimer. HPLC analysis indicated that both free and eNOS-bound BH4 were oxidized during exposure to ONOO−; however, full oxidation of protein bound biopterin required higher ONOO− levels. Additionally, ONOO− triggered changes in UV/Visible spectrum and heme content of the enzyme. Pre-incubation of eNOS with BH4 decreased dimer destabilization and heme alteration. Addition of BH4 to the ONOO−-destabilized eNOS dimer only partially rescued enzyme function. In contrast to ONOO− treatment, incubation with the zinc chelator TPEN with removal of enzyme-bound zinc did not change the eNOS activity or stability of the SDS-resistant eNOS dimer, demonstrating that the dimer stabilization induced by BH4 does not require zinc occupancy of the zinc-thiolate cluster. While ONOO− treatment was observed to induce loss of Zn-binding this can not account for the loss of enzyme activity. Therefore, ONOO−-induced eNOS inactivation is primarily due to oxidation of BH4 and irreversible destruction of the heme/heme-center. PMID:20184376
Shi, Yi; Lüscher, Thomas F.; Camici, Giovanni G.
2014-01-01
Background The aging gene p66Shc, is an important mediator of oxidative stress-induced vascular dysfunction and disease. In cultured human aortic endothelial cells (HAEC), p66Shc deletion increases endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) bioavailability via protein kinase B. However, the putative role of the NO pathway on p66Shc activation remains unclear. This study was designed to elucidate the regulatory role of the eNOS/NO pathway on p66Shc activation. Methods and Results Incubation of HAEC with oxidized low density lipoprotein (oxLDL) led to phosphorylation of p66Shc at Ser-36, resulting in an enhanced production of superoxide anion (O2 -). In the absence of oxLDL, inhibition of eNOS by small interfering RNA or L-NAME, induced p66Shc phosphorylation, suggesting that basal NO production inhibits O2 - production. oxLDL-induced, p66Shc-mediated O2- was prevented by eNOS inhibition, suggesting that when cells are stimulated with oxLDL eNOS is a source of reactive oxygen species. Endogenous or exogenous NO donors, prevented p66Shc activation and reduced O2- production. Treatment with tetrahydrobiopterin, an eNOS cofactor, restored eNOS uncoupling, prevented p66Shc activation, and reduced O2- generation. However, late treatment with tetrahydropterin did not yield the same result suggesting that eNOS uncoupling is the primary source of reactive oxygen species. Conclusions The present study reports that in primary cultured HAEC treated with oxLDL, p66Shc-mediated oxidative stress is derived from eNOS uncoupling. This finding contributes novel information on the mechanisms of p66Shc activation and its dual interaction with eNOS underscoring the importance eNOS uncoupling as a putative antioxidant therapeutical target in endothelial dysfunction as observed in cardiovascular disease. PMID:25247687
Shi, Yi; Lüscher, Thomas F; Camici, Giovanni G
2014-01-01
The aging gene p66Shc, is an important mediator of oxidative stress-induced vascular dysfunction and disease. In cultured human aortic endothelial cells (HAEC), p66Shc deletion increases endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) bioavailability via protein kinase B. However, the putative role of the NO pathway on p66Shc activation remains unclear. This study was designed to elucidate the regulatory role of the eNOS/NO pathway on p66Shc activation. Incubation of HAEC with oxidized low density lipoprotein (oxLDL) led to phosphorylation of p66Shc at Ser-36, resulting in an enhanced production of superoxide anion (O2-). In the absence of oxLDL, inhibition of eNOS by small interfering RNA or L-NAME, induced p66Shc phosphorylation, suggesting that basal NO production inhibits O2- production. oxLDL-induced, p66Shc-mediated O2- was prevented by eNOS inhibition, suggesting that when cells are stimulated with oxLDL eNOS is a source of reactive oxygen species. Endogenous or exogenous NO donors, prevented p66Shc activation and reduced O2- production. Treatment with tetrahydrobiopterin, an eNOS cofactor, restored eNOS uncoupling, prevented p66Shc activation, and reduced O2- generation. However, late treatment with tetrahydropterin did not yield the same result suggesting that eNOS uncoupling is the primary source of reactive oxygen species. The present study reports that in primary cultured HAEC treated with oxLDL, p66Shc-mediated oxidative stress is derived from eNOS uncoupling. This finding contributes novel information on the mechanisms of p66Shc activation and its dual interaction with eNOS underscoring the importance eNOS uncoupling as a putative antioxidant therapeutical target in endothelial dysfunction as observed in cardiovascular disease.
García, Celina; Nuñez-Anita, Rosa Elvira; Thebault, Stéphanie; Arredondo Zamarripa, David; Jeziorsky, Michael C; Martínez de la Escalera, Gonzalo; Clapp, Carmen
2014-03-01
Endothelial nitric oxide synthase (eNOS)-derived nitric oxide is a major vasorelaxing factor and a mediator of vasopermeability and angiogenesis. Vasoinhibins, a family of antiangiogenic prolactin fragments that include 16 K prolactin, block most eNOS-mediated vascular effects. Vasoinhibins activate protein phosphatase 2A, causing eNOS inactivation through dephosphorylation of eNOS at serine residue 1179 in bovine endothelial cells and thereby blocking vascular permeability. In this study, we examined whether human eNOS phosphorylation at S1177 (analogous to bovine S1179) influences other actions of vasoinhibins. Bovine umbilical vein endothelial cells were stably transfected with human wild-type eNOS (WT) or with phospho-mimetic (S1177D) or non-phosphorylatable (S1177A) eNOS mutants. Vasoinhibins inhibited the increases in eNOS activity, migration, and proliferation following the overexpression of WT eNOS but did not affect these responses in cells expressing S1177D and S1177A eNOS mutants. We conclude that eNOS inhibition by dephosphorylation of S1177 is fundamental for the inhibition of endothelial cell migration and proliferation by vasoinhibins.
Peleli, Maria; Zollbrecht, Christa; Montenegro, Marcelo F; Hezel, Michael; Zhong, Jianghong; Persson, Erik G; Holmdahl, Rikard; Weitzberg, Eddie; Lundberg, Jon O; Carlström, Mattias
2016-10-01
Xanthine oxidoreductase (XOR) is generally known as the final enzyme in purine metabolism and as a source of reactive oxygen species (ROS). In addition, this enzyme has been suggested to mediate nitric oxide (NO) formation via reduction of inorganic nitrate and nitrite. This NO synthase (NOS)-independent pathway for NO generation is of particular importance during certain conditions when NO bioavailability is diminished due to reduced activity of endothelial NOS (eNOS) or increased oxidative stress, including aging and cardiovascular disease. The exact interplay between NOS- and XOR-derived NO generation is not fully elucidated yet. The aim of the present study was to investigate if eNOS deficiency is associated with changes in XOR expression and activity and the possible impact on nitrite, NO and ROS homeostasis. Plasma levels of nitrate and nitrite were similar between eNOS deficient (eNOS -/- ) and wildtype (wt) mice. XOR activity was upregulated in eNOS -/- compared with wt, but not in nNOS -/- , iNOS -/- or wt mice treated with the non-selective NOS inhibitor L-NAME. Following an acute dose of nitrate, plasma nitrite increased more in eNOS -/- compared with wt, and this augmented response was abolished by the selective XOR inhibitor febuxostat. Livers from eNOS -/- displayed higher nitrite reducing capacity compared with wt, and this effect was attenuated by febuxostat. Dietary supplementation with nitrate increased XOR expression and activity, but concomitantly reduced superoxide generation. The latter effect was also seen in vitro after nitrite administration. Treatment with febuxostat elevated blood pressure in eNOS -/- , but not in wt mice. A high dose of dietary nitrate reduced blood pressure in naïve eNOS -/- mice, and again this effect was abolished by febuxostat. In conclusion, eNOS deficiency is associated with an upregulation of XOR facilitating the nitrate-nitrite-NO pathway and decreasing the generation of ROS. This interplay between XOR and eNOS is proposed to play a significant role in NO homeostasis and blood pressure regulation. Copyright © 2016 Elsevier Inc. All rights reserved.
Min, Jiho; Jin, Yoon-Mi; Moon, Je-Sung; Sung, Min-Sun; Jo, Sangmee Ahn; Jo, Inho
2006-06-01
Although hypoxia is known to induce upregulation of endothelial NO synthase (eNOS) gene expression, the underlying mechanism is largely unclear. In this study, we show that hypoxia increases eNOS gene expression through the binding of phosphorylated cAMP-responsive element binding (CREB) protein (pCREB) to the eNOS gene promoter. Hypoxia (1% O2) increased both eNOS expression and NO production, peaking at 24 hours, in bovine aortic endothelial cells, and these increases were accompanied by increases in pCREB. Treatment with the protein kinase A inhibitor H-89 or transfection with dominant-negative inhibitor of CREB reversed the hypoxia-induced increases in eNOS expression and NO production, with concomitant inhibition of the phosphorylation of CREB induced by hypoxia, suggesting an involvement of protein kinase A/pCREB-mediated pathway. To map the regulatory elements of the eNOS gene responsible for pCREB binding under hypoxia, we constructed an eNOS gene promoter (-1600 to +22 nucleotides) fused with a luciferase reporter gene [pGL2-eNOS(-1600)]. Hypoxia (for 24-hour incubation) increased the promoter activity by 2.36+/-0.18-fold in the bovine aortic endothelial cells transfected with pGL2-eNOS(-1600). However, progressive 5'-deletion from -1600 to -873 completely attenuated the hypoxia-induced increase in promoter activity. Electrophoretic mobility shift, anti-pCREB antibody supershift, and site-specific mutation analyses showed that pCREB is bound to the Tax-responsive element (TRE) site, a cAMP-responsive element-like site, located at -924 to -921 of the eNOS promoter. Our data demonstrate that the interaction between pCREB and the Tax-responsive element site within the eNOS promoter may represent a novel mechanism for the mediation of hypoxia-stimulated eNOS gene expression.
Nakamura, Noriko; Dai, Qunsheng; Williams, Jason; Goulding, Eugenia H.; Willis, William D.; Brown, Paula R.; Eddy, Edward M.
2013-01-01
ABSTRACT Sperm utilize glycolysis to generate ATP required for motility, and several spermatogenic cell-specific glycolytic isozymes are associated with the fibrous sheath (FS) in the principal piece of the sperm flagellum. We used proteomics and molecular biology approaches to confirm earlier reports that a novel enolase is present in mouse sperm. We then found that a pan-enolase antibody, but not antibodies to ENO2 and ENO3, recognized a protein in the principal piece of the mouse sperm flagellum. Database analyses identified two previously uncharacterized enolase family-like candidate genes, 64306537H0Rik and Gm5506. Northern analysis indicated that 64306537H0Rik (renamed Eno4) was transcribed in testes of mice by Postnatal Day 12. To determine the role of ENO4, we generated mice using embryonic stem cells in which an Eno4 allele was disrupted by a gene trap containing a beta galactosidase (beta-gal) reporter (Eno4+/Gt). Expression of beta-gal occurred in the testis, and male mice homozygous for the gene trap allele (Eno4Gt/Gt) were infertile. Epididymal sperm numbers were 2-fold lower and sperm motility was reduced substantially in Eno4Gt/Gt mice compared to wild-type mice. Sperm from Eno4Gt/Gt mice had a coiled flagellum and a disorganized FS. The Gm5506 gene encodes a protein identical to ENO1 and also is transcribed at a low level in testis. We conclude that ENO4 is required for normal assembly of the FS and provides most of the enolase activity in sperm and that Eno1 and/or Gm5506 may encode a minor portion of the enolase activity in sperm. PMID:23446454
The Akt1-eNOS Axis Illustrates the Specificity of Kinase-Substrate Relationships in Vivo
Schleicher, Michael; Yu, Jun; Murata, Takahisa; Derakhshan, Berhad; Atochin, Dimitriy; Qian, Li; Kashiwagi, Satoshi; Lorenzo, Annarita Di; Harrison, Kenneth D.; Huang, Paul L.; Sessa, William C.
2016-01-01
Akt1 is critical for many in vivo functions; however, the cell-specific substrates responsible remain to be defined. Here, we examine the importance of endothelial nitric oxide synthase (eNOS) as an Akt1 substrate by generating Akt1-deficient mice (Akt1−/− mice) carrying knock-in mutations (serine to aspartate or serine to alanine substitutions) of the critical Akt1 phosphorylation site on eNOS (serine 1176) that render the enzyme “constitutively active” or “less active.” The eNOS mutations did not influence several phenotypes in Akt1−/− mice; however, the defective postnatal angiogenesis characteristic of Akt1−/− mice was rescued by crossing the Akt1−/− mice with mice carrying the constitutively active form of eNOS, but not by crossing with mice carrying the less active eNOS mutant. This genetic rescue resulted in the stabilization of hypoxia-inducible factor 1α (HIF-1α) and increased production of HIF-1α–responsive genes in vivo and in vitro. Thus, Akt1 regulates angiogenesis largely through phosphorylation of eNOS and NO-dependent signaling. PMID:19654415
Konopinski, Ryszard; Krishnan, Manickam; Roman, Linda; Bera, Alakesh; Hongying, Zheng; Habib, Samy L.; Mohan, Sumathy
2015-01-01
Endothelial nitric oxide (NO) synthase (eNOS) is the predominant isoform that generates NO in the blood vessels. Many different regulators, including heat shock protein 90 (Hsp90), govern eNOS function. Hsp90-dependent phosphorylation of eNOS is a critical event that determines eNOS activity. In our earlier study we demonstrated an inhibitor-κB kinase-β (IKKβ)-Hsp90 interaction in a high-glucose environment. In the present study we further define the putative binding domain of IKKβ on Hsp90. Interestingly, IKKβ binds to the middle domain of Hsp90, which has been shown to interact with eNOS to stimulate its activity. This new finding suggests a tighter regulation of eNOS activity than was previously assumed. Furthermore, addition of purified recombinant IKKβ to the eNOS-Hsp90 complex reduces the eNOS-Hsp90 interaction and eNOS activity, indicating a competition for Hsp90 between eNOS and IKKβ. The pathophysiological relevance of the IKKβ-Hsp90 interaction has also been demonstrated using in vitro vascular endothelial growth factor-mediated signaling and an Ins2Akita in vivo model. Our study further defines the preferential involvement of α- vs. β-isoforms of Hsp90 in the IKKβ-eNOS-Hsp90 interaction, even though both Hsp90α and Hsp90β stimulate NO production. These studies not only reinforce the significance of maintaining a homeostatic balance of eNOS and IKKβ within the cell system that regulates NO production, but they also confirm that the IKKβ-Hsp90 interaction is favored in a high-glucose environment, leading to impairment of the eNOS-Hsp90 interaction, which contributes to endothelial dysfunction and vascular complications in diabetes. PMID:25652452
Li, Huige; Xia, Ning; Brausch, Isolde; Yao, Ying; Förstermann, Ulrich
2004-09-01
Nitric oxide (NO) produced by endothelial nitric-oxide synthase (eNOS) represents an antithrombotic and anti-atherosclerotic principle in the vasculature. Hence, an enhanced expression of eNOS in response to pharmacological interventions could provide protection against cardiovascular diseases. In EA.hy 926 cells, a cell line derived from human umbilical vein endothelial cells (HUVECs), an artichoke leaf extract (ALE) increased the activity of the human eNOS promoter (determined by luciferase reporter gene assay). An organic subfraction from ALE was more potent in this respect than the crude extract, whereas an aqueous subfraction of ALE was without effect. ALE and the organic subfraction thereof also increased eNOS mRNA expression (measured by an RNase protection assay) and eNOS protein expression (determined by Western blot) both in EA.hy 926 cells and in native HUVECs. NO production (measured by NO-ozone chemiluminescence) was increased by both extracts. In organ chamber experiments, ex vivo incubation (18 h) of rat aortic rings with the organic subfraction of ALE enhanced the NO-mediated vasodilator response to acetylcholine, indicating that the up-regulated eNOS remained functional. Caffeoylquinic acids and flavonoids are two major groups of constituents of ALE. Interestingly, the flavonoids luteolin and cynaroside increased eNOS promoter activity and eNOS mRNA expression, whereas the caffeoylquinic acids cynarin and chlorogenic acid were without effect. Thus, in addition to the lipid-lowering and antioxidant properties of artichoke, an increase in eNOS gene transcription may also contribute to its beneficial cardiovascular profile. Artichoke flavonoids are likely to represent the active ingredients mediating eNOS up-regulation.
Abudukadier, Abulizi; Fujita, Yoshihito; Obara, Akio; Ohashi, Akiko; Fukushima, Toru; Sato, Yuichi; Ogura, Masahito; Nakamura, Yasuhiko; Fujimoto, Shimpei; Hosokawa, Masaya; Hasegawa, Hiroyuki; Inagaki, Nobuya
2013-01-01
Endothelial nitric oxide synthase (eNOS) dysfunction induces insulin resistance and glucose intolerance. Tetrahydrobiopterin (BH4) is an essential cofactor of eNOS that regulates eNOS activity. In the diabetic state, BH4 is oxidized to 7,8-dihydrobiopterin, which leads to eNOS dysfunction owing to eNOS uncoupling. The current study investigates the effects of BH4 on glucose metabolism and insulin sensitivity in diabetic mice. Single administration of BH4 lowered fasting blood glucose levels in wild-type mice with streptozotocin (STZ)-induced diabetes and alleviated eNOS dysfunction by increasing eNOS dimerization in the liver of these mice. Liver has a critical role in glucose-lowering effects of BH4 through suppression of hepatic gluconeogenesis. BH4 activated AMP kinase (AMPK), and the suppressing effect of BH4 on gluconeogenesis was AMPK-dependent. In addition, the glucose-lowering effect and activation of AMPK by BH4 did not appear in mice with STZ-induced diabetes lacking eNOS. Consecutive administration of BH4 in ob/ob mice ameliorated glucose intolerance and insulin resistance. Taken together, BH4 suppresses hepatic gluconeogenesis in an eNOS-dependent manner, and BH4 has a glucose-lowering effect as well as an insulin-sensitizing effect in diabetic mice. BH4 has potential in the treatment of type 2 diabetes. PMID:23649519
Crataegus Special Extract WS 1442 Effects on eNOS and microRNA 155.
Wang, Xinwen; Liang, Yan; Shi, Jian; Zhu, Hao-Jie; Bleske, Barry E
2018-04-16
Increased expression of microRNA 155 (miR-155) results in a decrease in endothelial nitric oxide synthase (eNOS) expression and impaired endothelial function. Factors that have been shown to increase expression of miR-155 may be mitigated by WS 1442, an extract of hawthorn leaves and flowers ( Crataegus special extract) that contains a range of pharmacologically active substances including oligomeric proanthocyanidins and flavonoids. The purpose of this study is to determine the effect of WS 1442 on the expression of miR-155 and eNOS in the presence of tumor necrosis factor (TNF- α ). Human umbilical vein endothelial cells (HUVECs) were studied after the exposure to TNF- α , with or without simvastatin (positive control) and WS 1442. The expression levels of eNOS, phosphorylated eNOS, and miR-155 in the different HUVEC treatment groups were determined by western blot and quantitative real-time polymerase chain reaction, respectively. To evaluate the effect of WS 1442 on the eNOS activity, the medium and intracellular nitrate/nitrite (NO) concentrations were also analyzed using a colorimetric Griess assay kit. The results demonstrated that TNF- α upregulated miR-155 expression and decreased eNOS expression and NO concentrations. WS 1442 also increased miR-155 expression and decreased eNOS expression but, unlike TNF- α , increased phosphorylated eNOS expression and NO concentrations. Surprisingly, WS 1442 increased miR-155 expression; however, WS 1442 mitigated the overall negative effect of miR-155 on decreasing eNOS expression by increasing expression of phosphorylated eNOS and resulting in an increase in NO concentrations. In the setting where miR-155 may be expressed, WS 1442 may offer vascular protection by increasing the expression of phosphorylated eNOS. Georg Thieme Verlag KG Stuttgart · New York.
Endothelial CaMKII as a regulator of eNOS activity and NO-mediated vasoreactivity
Murthy, Shubha; Koval, Olha M.; Ramiro Diaz, Juan M.; Kumar, Santosh; Nuno, Daniel; Scott, Jason A.; Allamargot, Chantal; Zhu, Linda J.; Broadhurst, Kim; Santhana, Velarchana; Kutschke, William J.; Irani, Kaikobad; Lamping, Kathryn G.; Grumbach, Isabella M.
2017-01-01
The multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a serine/threonine kinase important in transducing intracellular Ca2+ signals. While in vitro data regarding the role of CaMKII in the regulation of endothelial nitric oxide synthase (eNOS) are contradictory, its role in endothelial function in vivo remains unknown. Using two novel transgenic models to express CaMKII inhibitor peptides selectively in endothelium, we examined the effect of CaMKII on eNOS activation, NO production, vasomotor tone and blood pressure. Under baseline conditions, CaMKII activation was low in the aortic wall. Consistently, systolic and diastolic blood pressure, heart rate and plasma NO levels were unaltered by endothelial CaMKII inhibition. Moreover, endothelial CaMKII inhibition had no significant effect on NO-dependent vasodilation. These results were confirmed in studies of aortic rings transduced with adenovirus expressing a CaMKII inhibitor peptide. In cultured endothelial cells, bradykinin treatment produced the anticipated rapid influx of Ca2+ and transient CaMKII and eNOS activation, whereas CaMKII inhibition blocked eNOS phosphorylation on Ser-1179 and dephosphorylation at Thr-497. Ca2+/CaM binding to eNOS and resultant NO production in vitro were decreased under CaMKII inhibition. Our results demonstrate that CaMKII plays an important role in transient bradykinin-driven eNOS activation in vitro, but does not regulate NO production, vasorelaxation or blood pressure in vivo under baseline conditions. PMID:29059213
Musicki, Biljana; Liu, Tongyun; Strong, Travis D; Lagoda, Gwen A; Bivalacqua, Trinity J; Burnett, Arthur L
2010-05-01
Estrogens control vaginal blood flow during female sexual arousal mostly through nitric oxide (NO). Although vascular effects of estrogens are attributed to an increase in endothelial NO production, the mechanisms of endothelial NO synthase (eNOS) regulation by estrogens in the vagina are largely unknown. Our hypothesis was that estrogens regulate eNOS post-translationally in the vagina, providing a mechanism to affect NO bioavailability without changes in eNOS protein expression. We measured eNOS phosphorylation and eNOS interaction with caveolin-1 and heat shock protein 90 (HSP90) in the distal and proximal vagina of female rats at diestrus, 7 days after ovariectomy and 2 days after replacement of ovariectomized rats with estradiol-17beta (15 microg). Molecular mechanisms of eNOS regulation by estrogen in the rat vagina. We localized phospho-eNOS (Ser-1177) immunohistochemically to the endothelium lining blood vessels and vaginal sinusoids. Estrogen withdrawal decreased phosphorylation of eNOS on its positive regulatory site (Ser-1177) and increased eNOS binding to its negative regulator caveolin-1 (without affecting eNOS/HSP90 interaction), and they were both normalized by estradiol replacement. Protein expressions of phosphorylated Akt (protein kinase B) and extracellular signal-regulated protein kinase 1/2 (ERK1/2) were not affected by estrogen status, suggesting that the effect of estrogens on eNOS (Ser-1177) phosphorylation was not mediated by activated AKT or ERK1/2. eNOS phosphorylation on its negative regulatory site (Ser-114) was increased in the vagina by estrogen withdrawal and normalized by estradiol replacement, implying that the maintenance of low phosphorylation of eNOS on this site by estradiol may limit eNOS interaction with caveolin-1 and preserve the enzyme's activity. Total eNOS, inducible NOS, caveolin-1, and HSP90 protein expressions were not affected by ovariectomy or estradiol replacement in the distal or proximal vagina. These results define novel estrogen signaling mechanisms in the vagina which involve eNOS phosphorylation and eNOS-caveolin-1 interaction.
Musicki, Biljana; Liu, Tongyun; Strong, Travis D.; Lagoda, Gwen A.; Bivalacqua, Trinity J.; Burnett, Arthur L.
2010-01-01
Introduction Estrogens control vaginal blood flow during female sexual arousal mostly through nitric oxide (NO). Although vascular effects of estrogens are attributed to an increase in endothelial NO production, the mechanisms of endothelial NO synthase (eNOS) regulation by estrogens in the vagina are largely unknown. Aims Our hypothesis was that estrogens regulate eNOS post-translationally in the vagina, providing a mechanism to affect NO bioavailability without changes in eNOS protein expression. Methods We measured eNOS phosphorylation and eNOS interaction with caveolin-1 and heat shock protein 90 (HSP90) in the distal and proximal vagina of female rats at diestrus, 7 days after ovariectomy and 2 days after replacement of ovariectomized rats with estradiol-17β (15 μg). Main Outcome Measures Molecular mechanisms of eNOS regulation by estrogen in the rat vagina. Results We localized phospho-eNOS (Ser-1177) immunohistochemically to the endothelium lining blood vessels and vaginal sinusoids. Estrogen withdrawal decreased phosphorylation of eNOS on its positive regulatory site (Ser-1177) and increased eNOS binding to its negative regulator caveolin-1 (without affecting eNOS/HSP90 interaction), and they were both normalized by estradiol replacement. Protein expressions of phosphorylated Akt (protein kinase B) and extracellular signal-regulated protein kinase 1/2 (ERK1/2) were not affected by estrogen status, suggesting that the effect of estrogens on eNOS (Ser-1177) phosphorylation was not mediated by activated AKT or ERK1/2. eNOS phosphorylation on its negative regulatory site (Ser-114) was increased in the vagina by estrogen withdrawal and normalized by estradiol replacement, implying that the maintenance of low phosphorylation of eNOS on this site by estradiol may limit eNOS interaction with caveolin-1 and preserve the enzyme's activity. Total eNOS, inducible NOS, caveolin-1, and HSP90 protein expressions were not affected by ovariectomy or estradiol replacement in the distal or proximal vagina. Conclusions These results define novel estrogen signaling mechanisms in the vagina which involve eNOS phosphorylation and eNOS-caveolin-1 interaction. PMID:20233295
Augeri, Amanda L; Tsongalis, Gregory J; Van Heest, Jaci L; Maresh, Carl M; Thompson, Paul D; Pescatello, Linda S
2009-06-01
A polymorphism (-786 T>C) in the promoter region of the endothelial nitric oxide synthase gene (eNOS) has important functional characteristics. We examined the influence of eNOS -786 T>C (rs2070744) on the BP and NO response to acute dynamic exercise. Subjects (n=49, 43.7+/-1.4 yr) had pre- to Stage-1 hypertension (145.6+/-1.5/85.9+/-1.1 mmHg). Volunteers performed three experiments; a non-exercise control session, and two cycle exercise bouts at 40% (LIGHT) and 60% (MODERATE) of peak oxygen consumption. Subjects wore an ambulatory BP monitor upon leaving the laboratory. NO was measured by chemiluminescence assay before (baseline), during, and after the experiments. eNOS genotypes were determined by polymerase chain reaction and restriction enzyme digestion. Repeated measure ANOVA tested if BP and NO differed over time among experiments and by eNOS genotypes (n=25, TT; n=24, TC/CC). Among carriers of the eNOS C(786) allele, systolic BP (SBP) was reduced 5.3+/-2.4 mmHg after MODERATE versus non-exercise control over 9h compared to those with the eNOS T786T genotype (p<0.05). Under these conditions, SBP tended to be lower 4.6+/-2.9 mmHg after LIGHT (p=0.076). The exercise-induced diastolic BP and NO responses were not different from non-exercise control between eNOS genotype (p>0.05). Men who were carriers of the eNOS C(786) allele responded more favorably to the antihypertensive effects of aerobic exercise than men with the eNOS T786T genotype. The eNOS C(786) allele is associated with reduced eNOS gene transcription and promoter activity. Future work is needed to determine how exercise may override genetic predispositions to down regulate eNOS gene activity.
Yi, Bing; Ozerova, Maria; Zhang, Guan-Xin; Yan, Guijun; Huang, Shengdong; Sun, Jianxin
2015-10-01
Endothelial nitric oxide synthase (eNOS) is an important regulator of vascular function and its expression is regulated at post-transcriptional levels through a yet unknown mechanism. The purpose of this study is to elucidate the post-transcriptional factors regulating eNOS expression and function in endothelium. To elucidate the molecular basis of tumor necrosis factor (TNF)-α-mediated eNOS mRNA instability, biotinylated eNOS 3'-untranslational region (UTR) was used to purify its associated proteins by RNA affinity chromatography from cytosolic fractions of TNF-α-stimulated human umbilical vein endothelial cells (HUVECs). We identified 2 cytosolic proteins, with molecular weight of 52 and 57 kDa, which specifically bind to eNOS 3'-UTR in response to TNF-α stimulation. Matrix-assisted laser desorption ionization time-of-flight mass spectrometric analysis identified the 57-kDa protein as polypyrimidine tract-binding protein 1 (PTB1). RNA gel mobility shift and UV cross-linking assays demonstrated that PTB1 binds to a UCUU-rich sequence in eNOS 3'-UTR, and the C-terminal half of PTB1 is critical to this interaction. Importantly, PTB1 overexpression leads to decreased activity of luciferase gene fused with eNOS 3'-UTR as well as reduced eNOS expression and activity in human ECs. In HUVECs, we show that TNF-α markedly increased PTB1 expression, whereas adenovirus-mediated PTB1 overexpression decreased eNOS mRNA stability and reduced protein expression and endothelium-dependent relaxation. Furthermore, knockdown of PTB1 substantially attenuated TNF-α-induced destabilization of eNOS transcript and downregulation of eNOS expression. These results indicate that PTB1 is essential for regulating eNOS expression at post-transcriptional levels and suggest a novel therapeutic target for treatment of vascular diseases associated with inflammatory endothelial dysfunction. © 2015 American Heart Association, Inc.
Afolayan, Adeleye J; Eis, Annie; Alexander, Maxwell; Michalkiewicz, Teresa; Teng, Ru-Jeng; Lakshminrusimha, Satyan; Konduri, Girija G
2016-01-01
Impaired vasodilation in persistent pulmonary hypertension of the newborn (PPHN) is characterized by mitochondrial dysfunction. We investigated the hypothesis that a decreased endothelial nitric oxide synthase level leads to impaired mitochondrial biogenesis and function in a lamb model of PPHN induced by prenatal ductus arteriosus constriction. We ventilated PPHN lambs with 100% O2 alone or with inhaled nitric oxide (iNO). We treated pulmonary artery endothelial cells (PAECs) from normal and PPHN lambs with detaNONOate, an NO donor. We observed decreased mitochondrial (mt) DNA copy number, electron transport chain (ETC) complex subunit levels, and ATP levels in PAECs and lung tissue of PPHN fetal lambs at baseline compared with gestation matched controls. Phosphorylation of AMP-activated kinase (AMPK) and levels of peroxisome proliferator-activated receptor-γ coactivator 1-α (PGC-1α) and sirtuin-1, which facilitate mitochondrial biogenesis, were decreased in PPHN. Ventilation with 100% O2 was associated with larger decreases in ETC subunits in the lungs of PPHN lambs compared with unventilated PPHN lambs. iNO administration, which facilitated weaning of FiO2 , partly restored mtDNA copy number, ETC subunit levels, and ATP levels. DetaNONOate increased eNOS phosphorylation and its interaction with heat shock protein 90 (HSP90); increased levels of superoxide dismutase 2 (SOD2) mRNA, protein, and activity; and decreased the mitochondrial superoxide levels in PPHN-PAECs. Knockdown of eNOS decreased ETC protein levels in control PAECs. We conclude that ventilation with 100% O2 amplifies oxidative stress and mitochondrial dysfunction in PPHN, which are partly improved by iNO and weaning of oxygen. Copyright © 2016 the American Physiological Society.
Michel, J B; Feron, O; Sase, K; Prabhakar, P; Michel, T
1997-10-10
Nitric oxide is synthesized in diverse mammalian tissues by a family of calmodulin-dependent nitric oxide synthases. The endothelial isoform of nitric oxide synthase (eNOS) is targeted to the specialized signal-transducing membrane domains termed plasmalemmal caveolae. Caveolin, the principal structural protein in caveolae, interacts with eNOS and leads to enzyme inhibition in a reversible process modulated by Ca2+-calmodulin (Michel, J. B., Feron, O., Sacks, D., and Michel, T. (1997) J. Biol. Chem. 272, 15583-15586). Caveolin also interacts with other structurally distinct signaling proteins via a specific region identified within the caveolin sequence (amino acids 82-101) that appears to subserve the role of a "scaffolding domain." We now report that the co-immunoprecipitation of eNOS with caveolin is completely and specifically blocked by an oligopeptide corresponding to the caveolin scaffolding domain. Peptides corresponding to this domain markedly inhibit nitric oxide synthase activity in endothelial membranes and interact directly with the enzyme to inhibit activity of purified recombinant eNOS expressed in Escherichia coli. The inhibition of purified eNOS by the caveolin scaffolding domain peptide is competitive and completely reversed by Ca2+-calmodulin. These studies establish that caveolin, via its scaffolding domain, directly forms an inhibitory complex with eNOS and suggest that caveolin inhibits eNOS by abrogating the enzyme's activation by calmodulin.
Xiong, Yan; Huo, Yingqing; Han, Jingyan; Yang, Xiao; Zhang, Rongli; Zhu, De-Sheng; Klein-Heßling, Stefan; Zhang, Xiaoyu; Han, Xiaofan; Li, Yanli; Shen, Bin; He, Yulong; Shibuya, Masabumi; Feng, Gen-Sheng; Luo, Jincai
2011-01-01
The intracellular signaling mechanisms underlying postnatal angiogenesis are incompletely understood. Herein we show that Grb-2–associated binder 1 (Gab1) plays a critical role in ischemic and VEGF-induced angiogenesis. Endothelium-specific Gab1 KO (EGKO) mice displayed impaired angiogenesis in the ischemic hindlimb despite normal induction of VEGF expression. Matrigel plugs with VEGF implanted in EGKO mice induced fewer capillaries than those in control mice. The vessels and endothelial cells (ECs) derived from EGKO mice were defective in vascular sprouting and tube formation induced by VEGF. Biochemical analyses revealed a substantial reduction of endothelial NOS (eNOS) activation in Gab1-deficient vessels and ECs following VEGF stimulation. Interestingly, the phosphorylation of Akt, an enzyme known to promote VEGF-induced eNOS activation, was increased in Gab1-deficient vessels and ECs whereas protein kinase A (PKA) activity was significantly decreased. Introduction of an active form of PKA rescued VEGF-induced eNOS activation and tube formation in EGKO ECs. Reexpression of WT or mutant Gab1 molecules in EGKO ECs revealed requirement of Gab1/Shp2 association for the activation of PKA and eNOS. Taken together, these results identify Gab1 as a critical upstream signaling component in VEGF-induced eNOS activation and tube formation, which is dependent on PKA. Of note, this pathway is conserved in primary human ECs for VEGF-induced eNOS activation and tube formation, suggesting considerable potential in treatment of human ischemic diseases. PMID:21282639
Tabit, Corey E; Shenouda, Sherene M; Holbrook, Monica; Fetterman, Jessica L; Kiani, Soroosh; Frame, Alissa A; Kluge, Matthew A; Held, Aaron; Dohadwala, Mustali; Gokce, Noyan; Farb, Melissa; Rosenzweig, James; Ruderman, Neil; Vita, Joseph A; Hamburg, Naomi M
2013-01-01
Background Abnormal endothelial function promotes atherosclerotic vascular disease in diabetes. Experimental studies indicate that disruption of endothelial insulin signaling through the activity of protein kinase C-β (PKCβ) and nuclear factor κB (NFκB) reduces nitric oxide availability. We sought to establish whether similar mechanisms operate in the endothelium in human diabetes mellitus. Methods and Results We measured protein expression and insulin response in freshly isolated endothelial cells from patients with Type 2 diabetes mellitus (n=40) and non-diabetic controls (n=36). Unexpectedly, we observed 1.7-fold higher basal endothelial nitric oxide synthase (eNOS) phosphorylation at serine 1177 in patients with diabetes (P=0.007) without a difference in total eNOS expression. Insulin stimulation increased eNOS phosphorylation in non-diabetic subjects but not in diabetic patients (P=0.003) consistent with endothelial insulin resistance. Nitrotyrosine levels were higher in diabetic patients indicating endothelial oxidative stress. PKCβ expression was higher in diabetic patients and was associated with lower flow-mediated dilation (r=−0.541, P=0.02) Inhibition of PKCβ with LY379196 reduced basal eNOS phosphorylation and improved insulin-mediated eNOS activation in patients with diabetes. Endothelial NFκB activation was higher in diabetes and was reduced with PKCβ inhibition. Conclusions We provide evidence for the presence of altered eNOS activation, reduced insulin action and inflammatory activation in the endothelium of patients with diabetes. Our findings implicate PKCβ activity in endothelial insulin resistance. PMID:23204109
Assanasen, Chatchawin; Mineo, Chieko; Seetharam, Divya; Yuhanna, Ivan S.; Marcel, Yves L.; Connelly, Margery A.; Williams, David L.; de la Llera-Moya, Margarita; Shaul, Philip W.; Silver, David L.
2005-01-01
The binding of HDL to scavenger receptor–BI (SR-BI) mediates cholesterol movement. HDL also induces multiple cellular signals, which in endothelium occur through SR-BI and converge to activate eNOS. To determine the molecular basis of a signaling event induced by HDL, we examined the proximal mechanisms in HDL activation of eNOS. In endothelial cells, HDL and methyl-β-cyclodextrin caused comparable eNOS activation, whereas cholesterol-loaded methyl-β-cyclodextrin had no effect. Phosphatidylcholine-loaded HDL caused greater stimulation than native HDL, and blocking antibody against SR-BI, which prevents cholesterol efflux, prevented eNOS activation. In a reconstitution model in COS-M6 cells, wild-type SR-BI mediated eNOS activation by both HDL and small unilamellar vesicles (SUVs), whereas the SR-BI mutant AVI, which is incapable of efflux to SUV, transmitted signal by only HDL. In addition, eNOS activation by methyl-β-cyclodextrin was SR-BI dependent. Studies of mutant and chimeric class B scavenger receptors revealed that the C-terminal cytoplasmic PDZ-interacting domain and the C-terminal transmembrane domains of SR-BI are both necessary for HDL signaling. Furthermore, we demonstrated direct binding of cholesterol to the C-terminal transmembrane domain using a photoactivated derivative of cholesterol. Thus, HDL signaling requires cholesterol binding and efflux and C-terminal domains of SR-BI, and SR-BI serves as a cholesterol sensor on the plasma membrane. PMID:15841181
Subramani, Jaganathan; Kundumani-Sridharan, Venkatesh; Hilgers, Rob H. P.; Owens, Cade; Das, Kumuda C.
2016-01-01
Reversible glutathionylation plays a critical role in protecting protein function under conditions of oxidative stress generally and for endothelial nitric-oxide synthase (eNOS) specifically. Glutathione-dependent glutaredoxin-mediated deglutathionylation of eNOS has been shown to confer protection in a model of heart damage termed ischemia-reperfusion injury, motivating further study of eNOS deglutathionylation in general. In this report, we present evidence for an alternative mechanism of deglutathionylation. In this pathway thioredoxin (Trx), a small cellular redox protein, is shown to rescue eNOS from glutathionylation during ischemia-reperfusion in a GSH-independent manner. By comparing mice with global overexpression of Trx and mice with cardiomyocyte-specific overexpression of Trx, we demonstrate that vascular Trx-mediated deglutathionylation of eNOS protects against ischemia-reperfusion-mediated myocardial infarction. Trx deficiency in endothelial cells promoted eNOS glutathionylation and reduced its enzymatic activity, whereas increased levels of Trx led to deglutathionylated eNOS. Thioredoxin-mediated deglutathionylation of eNOS in the coronary artery in vivo protected against reperfusion injury, even in the presence of normal levels of GSH. We further show that Trx directly interacts with eNOS, and we confirmed that Cys-691 and Cys-910 are the glutathionylated sites, as mutation of these cysteines partially rescued the decrease in eNOS activity, whereas mutation of a distal site, Cys-384, did not. Collectively, this study shows for the first time that Trx is a potent deglutathionylating protein in vivo and in vitro that can deglutathionylate proteins in the presence of high levels of GSSG in conditions of oxidative stress. PMID:27587398
PECAM1 regulates flow-mediated Gab1 tyrosine phosphorylation and signaling
Xu, Suowen; Ha, Chang Hoon; Wang, Weiye; Xu, Xiangbin; Yin, Meimei; Jin, Felix Q.; Mastrangelo, Michael; Koroleva, Marina; Fujiwara, Keigi; Jin, Zheng Gen
2016-01-01
Endothelial dysfunction, characterized by impaired activation of endothelial nitric oxide (NO) synthase (eNOS) and ensued decrease of NO production, is a common mechanism of various cardiovascular pathologies, including hypertension and atherosclerosis. Laminar blood flow-mediated specific signaling cascades modulate vascular endothelial cells (ECs) structure and functions. We have previously shown that flow-stimulated Gab1 (Grb2-associated binder-1) tyrosine phosphorylation mediates eNOS activation in ECs, which in part confers laminar flow atheroprotective action. However, the molecular mechanisms whereby flow regulates Gab1 tyrosine phosphorylation and its downstream signaling events remain unclear. Here we show that platelet endothelial cell adhesion molecule-1 (PECAM1), a key molecule in an endothelial mechanosensing complex, specifically mediates Gab1 tyrosine phosphorylation and its downstream Akt and eNOS activation in ECs upon flow rather than hepatocyte growth factor (HGF) stimulation. Small interfering RNA (siRNA) targeting PECAM1 abolished flow- but not HGF-induced Gab1 tyrosine phosphorylation and Akt, eNOS activation as well as Gab1 membrane translocation. Protein-tyrosine phosphatase SHP2, which has been shown to interact with Gab1, was involved in flow signaling and HGF signaling, as SHP2 siRNA diminished the flow- and HGF-induced Gab1 tyrosine phosphorylation, membrane localization and downstream signaling. Pharmacological inhibition of PI3K decreased flow-, but not HGF-mediated Gab1 phosphorylation and membrane localization as well as eNOS activation. Finally, we observed that flow-mediated Gab1 and eNOS phosphorylation in vivo induced by voluntary wheel running was reduced in PECAM1 knockout mice. These results demonstrate a specific role of PECAM1 in flow-mediated Gab1 tyrosine phosphorylation and eNOS signaling in ECs. PMID:26706435
Pooja; Ghosh, Dishari; Bhargava, Kalpana; Sethy, Niroj Kumar
2018-06-09
The lower inhaled oxygen per volume at high altitude poses an intimidating challenge for humans to survive and reproduce. Indigenous populations of the Himalayas reportedly exhibit higher microcirculatory blood flow accompanied by higher orders of magnitude of nitric oxide (NO) products in lung, plasma and red blood cells as a vascular adaptation strategy for hypobaric hypoxia. The precise mechanism of such observed higher NO metabolites for hypoxia adaptation remains elusive. Studying high altitude native Ladakhi women, we observed significant higher eNOS mRNA and protein in blood/plasma as compared to lowland women. We also observed higher level of plasma l-citrulline and NOx (nitrates and nitrites) with concomitant lower levels of arginase mRNA and protein further suggesting higher eNOS activity and NO bioavailability. Interestingly, middle aged postmenopausal Ladakhi women exhibited significantly higher level of eNOS activity, NOx and cGMP as compared to age matched lowland women. Preferential phosphorylation of eNOS on stimulatory Ser1177 and Ser615 as well as dephosphorylation of inhibitory Thr495 site contributed to higher NO availability in Ladakhi women irrespective of age. We also observed higher levels of eNOS activating humoral factors like bradykinin and estrogen in both young and middle-aged Ladakhi women. These results suggest that an altered phosphorylation status, together with an enhanced expression of eNOS and potential humoral endothelial activators, are involved in enhanced activation of the eNOS-NO-cGMP pathway in Ladakhi women irrespective of age, reinforcing the hypothesis that NO metabolites play a major role in Himalayan pattern of hypoxia adaptation. Copyright © 2018 Elsevier Inc. All rights reserved.
S-Nitrosylation and the Development of Pulmonary Hypertension
2009-02-14
GSNO-R associates with eNOS; overexpression of GSNO-R alters eNOS phosphorylation at serine 1177, a residue implicated in eNOS activation; castration ...prevents the development of PAH in response to unregulated delivery of SNOs; and GSNO-R activity in castrated mice is equal to that of female mice...hypertension in normal cattle . Circ Res 10: 172-177, 1962. 10. Vogel JHK, weaver WF, Rose RL, Blount SG Jr. Grover RG. Pulmonary hypertension on
Nuclear Glycolytic Enzyme Enolase of Toxoplasma gondii Functions as a Transcriptional Regulator
Mouveaux, Thomas; Oria, Gabrielle; Werkmeister, Elisabeth; Slomianny, Christian; Fox, Barbara A.; Bzik, David J.; Tomavo, Stanislas
2014-01-01
Apicomplexan parasites including Toxoplasma gondii have complex life cycles within different hosts and their infectivity relies on their capacity to regulate gene expression. However, little is known about the nuclear factors that regulate gene expression in these pathogens. Here, we report that T. gondii enolase TgENO2 is targeted to the nucleus of actively replicating parasites, where it specifically binds to nuclear chromatin in vivo. Using a ChIP-Seq technique, we provide evidence for TgENO2 enrichment at the 5′ untranslated gene regions containing the putative promoters of 241 nuclear genes. Ectopic expression of HA-tagged TgENO1 or TgENO2 led to changes in transcript levels of numerous gene targets. Targeted disruption of TgENO1 gene results in a decrease in brain cyst burden of chronically infected mice and in changes in transcript levels of several nuclear genes. Complementation of this knockout mutant with ectopic TgENO1-HA fully restored normal transcript levels. Our findings reveal that enolase functions extend beyond glycolytic activity and include a direct role in coordinating gene regulation in T. gondii. PMID:25153525
Musicki, Biljana; Bivalacqua, Trinity J.; Champion, Hunter C.; Burnett, Arthur L.
2014-01-01
Introduction Sickle cell disease (SCD)-associated vasculopathy in the penis is characterized by aberrant nitric oxide and phosphodiesterase (PDE) 5 signaling, and by increased oxidative stress. Preliminary clinical trials show that continuous treatment with PDE5 inhibitor sildenafil unassociated with sexual activity decreases priapic activity in patients with SCD. However, the mechanism of its vasculoprotective effect in the penis remains unclear. Aims We evaluated whether continuous administration of PDE5 inhibitor sildenafil promotes eNOS function at posttranslational levels and decreases superoxide-producing enzyme NADPH oxidase activity in the sickle cell mouse penis. Methods SCD transgenic mice were used as an animal model of SCD. WT mice served as controls. Mice received treatment with the PDE5 inhibitor sildenafil (100 mg/kg/day) or vehicle for 3 weeks. eNOS phosphorylation on Ser-1177 (positive regulatory site), eNOS interactions with heat-shock protein 90 (HSP90) (positive regulator), phosphorylated AKT (upstream mediator of eNOS phosphorylation on Ser-1177), an NADPH oxidase catalytic subunit gp91(phox), and a marker of oxidative stress (4-hydroxy-2-nonenal [HNE]) were measured by Western blot. Main Outcome Measures Effect of continuous sildenafil treatment on eNOS posttranslational activation, NADPH oxidase catalytic subunit, and oxidative stress in the penis of the sickle cell mouse. Results Continuous treatment with sildenafil reversed (P < 0.05) the abnormalities in protein expressions of P-eNOS (Ser-1177), eNOS/HSP90 interaction, P-AKT, protein expression of gp91(phox), and 4-HNE, in the sickle cell mouse penis. Sildenafil treatment of WT mice did not affect any of these parameters. Conclusion Our findings that sildenafil enhances eNOS activation and inhibits NADPH oxidase function in the sickle cell mouse penis offers a vasculoprotective molecular basis for the therapeutic effect of sildenafil in the penis in association with SCD. PMID:24251665
Musicki, Biljana; Bivalacqua, Trinity J; Champion, Hunter C; Burnett, Arthur L
2014-02-01
Sickle cell disease (SCD)-associated vasculopathy in the penis is characterized by aberrant nitric oxide and phosphodiesterase (PDE) 5 signaling, and by increased oxidative stress. Preliminary clinical trials show that continuous treatment with PDE5 inhibitor sildenafil unassociated with sexual activity decreases priapic activity in patients with SCD. However, the mechanism of its vasculoprotective effect in the penis remains unclear. We evaluated whether continuous administration of PDE5 inhibitor sildenafil promotes eNOS function at posttranslational levels and decreases superoxide-producing enzyme NADPH oxidase activity in the sickle cell mouse penis. SCD transgenic mice were used as an animal model of SCD. WT mice served as controls. Mice received treatment with the PDE5 inhibitor sildenafil (100 mg/kg/day) or vehicle for 3 weeks. eNOS phosphorylation on Ser-1177 (positive regulatory site), eNOS interactions with heat-shock protein 90 (HSP90) (positive regulator), phosphorylated AKT (upstream mediator of eNOS phosphorylation on Ser-1177), an NADPH oxidase catalytic subunit gp91(phox), and a marker of oxidative stress (4-hydroxy-2-nonenal [HNE]) were measured by Western blot. Effect of continuous sildenafil treatment on eNOS posttranslational activation, NADPH oxidase catalytic subunit, and oxidative stress in the penis of the sickle cell mouse. Continuous treatment with sildenafil reversed (P < 0.05) the abnormalities in protein expressions of P-eNOS (Ser-1177), eNOS/HSP90 interaction, P-AKT, protein expression of gp91(phox), and 4-HNE, in the sickle cell mouse penis. Sildenafil treatment of WT mice did not affect any of these parameters. Our findings that sildenafil enhances eNOS activation and inhibits NADPH oxidase function in the sickle cell mouse penis offers a vasculoprotective molecular basis for the therapeutic effect of sildenafil in the penis in association with SCD. © 2013 International Society for Sexual Medicine.
Figueroa, Xavier F.; González, Daniel R.; Puebla, Mariela; Acevedo, Juan P.; Rojas-Libano, Daniel; Durán, Walter N.; Boric, Mauricio P.
2013-01-01
Background/Aims Endothelial nitric oxide synthase (eNOS) is associated with caveolin-1 (Cav-1) in plasma membrane. We tested the hypothesis that eNOS activation by shear stress in resistance vessels depends on synchronized phosphorylation, dissociation from Cav-1 and translocation of the membrane-bound enzyme to Golgi and cytosol. Methods In isolated, perfused rat arterial mesenteric beds, we evaluated the effect of changes in flow rate (2–10 mL/min), on NO production, eNOS phosphorylation at serine 1177, eNOS subcellular distribution and co-immunoprecipitation with Cav-1, in the presence or absence of extracellular Ca2+. Results Increases in flow induced a biphasic rise in NO production: a rapid transient phase (3–5-min) that peaked during the first 15-sec, followed by a sustained phase, which lasted until the end of stimulation. Concomitantly, flow caused a rapid translocation of eNOS from the microsomal compartment to the cytosol and Golgi, paralleled by an increase in eNOS phosphorylation and a reduction in eNOS-Cav-1 association. Transient NO production, eNOS translocation, and dissociation from Cav-1 depended on extracellular Ca2+, while sustained NO production was abolished by the PI3K-Akt blocker wortmannin. Conclusions In intact resistance vessels, changes in flow induce NO production by transient Ca2+-dependent eNOS translocation from membrane to intracellular compartments and sustained Ca2+-independent PI3K-Akt-mediated phosphorylation. PMID:24217770
Ladurner, Angela; Schachner, Daniel; Schueller, Katharina; Pignitter, Marc; Heiss, Elke H; Somoza, Veronika; Dirsch, Verena M
2014-10-17
Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a polyphenolic natural product mainly present in grape skin, berries and peanuts. In the vasculature resveratrol is thought to boost endothelial function by increasing endothelial nitric oxide synthase (eNOS) expression, by enhancing eNOS activity, and by reduction of reactive oxygen species (ROS) levels. Recent studies show that dietary resveratrol is metabolized in the liver and intestine into resveratrol-sulfate and -glucuronide derivatives questioning the relevance of multiple reported mechanistic in vitro data on resveratrol. In this study, we compare side by side different physiologically relevant resveratrol metabolites (resveratrol sulfates- and -glucuronides) and their parent compound in their influence on eNOS enzyme activity, endothelial NO release, and intracellular ROS levels. In contrast to resveratrol, none of the tested resveratrol metabolites elevated eNOS enzyme activity and endothelial NO release or affected intracellular ROS levels, leaving the possibility that not tested metabolites are active and able to explain in vivo findings.
Salt Inactivates Endothelial Nitric Oxide Synthase in Endothelial Cells12
Li, Juan; White, James; Guo, Ling; Zhao, Xiaomin; Wang, Jiafu; Smart, Eric J.; Li, Xiang-An
2009-01-01
There is a 1–4 mmol/L rise in plasma sodium concentrations in individuals with high salt intake and in patients with essential hypertension. In this study, we used 3 independent assays to determine whether such a small increase in sodium concentrations per se alters endothelial nitric oxide synthase (eNOS) function and contributes to hypertension. By directly measuring NOS activity in living bovine aortic endothelial cells, we demonstrated that a 5-mmol/L increase in salt concentration (from 137 to 142 mmol/L) caused a 25% decrease in NOS activity. Importantly, the decrease in NOS activity was in a salt concentration-dependent manner. The NOS activity was decreased by 25, 45, and 70%, with the increase of 5, 10, and 20 mmol/L of NaCl, respectively. Using Chinese hamster ovary cells stably expressing eNOS, we confirmed the inhibitory effects of salt on eNOS activity. The eNOS activity was unaffected in the presence of equal milliosmol of mannitol, which excludes an osmotic effect. Using an ex vivo aortic angiogenesis assay, we demonstrated that salt attenuated the nitric oxide (NO)-dependent proliferation of endothelial cells. By directly monitoring blood pressure changes in response to salt infusion, we found that in vivo infusion of salt induced an acute increase in blood pressure in a salt concentration-dependent manner. In conclusion, our findings demonstrated that eNOS is sensitive to changes in salt concentration. A 5-mmol/L rise in salt concentration, within the range observed in essential hypertension patients or in individuals with high salt intake, could significantly suppress eNOS activity. This salt-induced reduction in NO generation in endothelial cells may contribute to the development of hypertension. PMID:19176751
Salt inactivates endothelial nitric oxide synthase in endothelial cells.
Li, Juan; White, James; Guo, Ling; Zhao, Xiaomin; Wang, Jiafu; Smart, Eric J; Li, Xiang-An
2009-03-01
There is a 1-4 mmol/L rise in plasma sodium concentrations in individuals with high salt intake and in patients with essential hypertension. In this study, we used 3 independent assays to determine whether such a small increase in sodium concentrations per se alters endothelial nitric oxide synthase (eNOS) function and contributes to hypertension. By directly measuring NOS activity in living bovine aortic endothelial cells, we demonstrated that a 5-mmol/L increase in salt concentration (from 137 to 142 mmol/L) caused a 25% decrease in NOS activity. Importantly, the decrease in NOS activity was in a salt concentration-dependent manner. The NOS activity was decreased by 25, 45, and 70%, with the increase of 5, 10, and 20 mmol/L of NaCl, respectively. Using Chinese hamster ovary cells stably expressing eNOS, we confirmed the inhibitory effects of salt on eNOS activity. The eNOS activity was unaffected in the presence of equal milliosmol of mannitol, which excludes an osmotic effect. Using an ex vivo aortic angiogenesis assay, we demonstrated that salt attenuated the nitric oxide (NO)-dependent proliferation of endothelial cells. By directly monitoring blood pressure changes in response to salt infusion, we found that in vivo infusion of salt induced an acute increase in blood pressure in a salt concentration-dependent manner. In conclusion, our findings demonstrated that eNOS is sensitive to changes in salt concentration. A 5-mmol/L rise in salt concentration, within the range observed in essential hypertension patients or in individuals with high salt intake, could significantly suppress eNOS activity. This salt-induced reduction in NO generation in endothelial cells may contribute to the development of hypertension.
Ramirez-Sanchez, Israel; Maya, Lisandro; Ceballos, Guillermo
2011-01-01
The consumption of cacao-derived (i.e., cocoa) products provides beneficial cardiovascular effects in healthy subjects as well as individuals with endothelial dysfunction such as smokers, diabetics, and postmenopausal women. The vascular actions of cocoa are related to enhanced nitric oxide (NO) production. These actions can be reproduced by the administration of the cacao flavanol (−)-epicatechin (EPI). To further understand the mechanisms behind the vascular action of EPI, we investigated the effects of Ca2+ depletion on endothelial nitric oxide (NO) synthase (eNOS) activation/phosphorylation and translocation. Human coronary artery endothelial cells were treated with EPI or with bradykinin (BK), a well-known Ca2+-dependent eNOS activator. Results demonstrate that both EPI and BK induce increases in intracellular calcium and NO levels. However, under Ca2+-free conditions, EPI (but not BK) is still capable of inducing NO production through eNOS phosphorylation at serine 615, 633, and 1177. Interestingly, EPI-induced translocation of eNOS from the plasmalemma was abolished upon Ca2+ depletion. Thus, under Ca2+-free conditions, EPI can stimulate NO synthesis independent of calmodulin binding to eNOS and of its translocation into the cytoplasm. We also examined the effect of EPI on the NO/cGMP/vasodilator-stimulated phosphoprotein (VASP) pathway activation in isolated Ca2+-deprived canine mesenteric arteries. Results demonstrate that under these conditions, EPI induces the activation of this vasorelaxation-related pathway and that this effect is inhibited by pretreatment with nitro-l-arginine methyl ester, suggesting a functional relevance for this phenomenon. PMID:21209365
Hofmann, Alejandro; Gosemann, Jan-Hendrik; Takahashi, Toshiaki; Friedmacher, Florian; Duess, Johannes W; Puri, Prem
2014-08-01
Caveolin-1 (Cav-1) exerts major regulatory functions on intracellular signaling pathways originating at the plasma membrane. Cav-1 is a key regulator in adverse lung remodeling and the development of pulmonary hypertension (PH) regulating vasomotor tone through its ability to reduce nitric oxide (NO) production. This low-output endothelial NO synthase (eNOS) derived NO maintains normal pulmonary vascular homeostasis. Cav-1 deficiency leads to increased bioavailability of NO, which has been linked to increased nitrosative stress. Inhibition of eNOS reduced oxidant production and reversed PH, supporting the concept that Cav-1 regulation of eNOS activity is crucial to endothelial homeostasis in lungs. We designed this study to investigate the hypothesis that expression of Cav-1 is downregulated while eNOS expression is upregulated by the pulmonary endothelium in the nitrofen-induced congenital diaphragmatic hernia (CDH). Pregnant rats were exposed to nitrofen or vehicle on day 9.5 (D9.5). Fetuses were sacrificed on D21 and divided into nitrofen and control groups. Quantitative real-time polymerase chain reaction, Western blotting, and confocal immunofluorescence were performed to determine pulmonary gene expression levels and protein expression of Cav-1 and eNOS. Pulmonary Cav-1 gene expression levels were significantly decreased, while eNOS gene expression was significantly increased in nitrofen-induced CDH(+). Western blotting and confocal microscopy revealed decreased pulmonary Cav-1 protein expression, while eNOS protein expression was increased in CDH(+) compared to controls. The striking evidence of markedly decreased gene and protein expression of Cav-1 with concurrently increased eNOS gene and protein expression in the pulmonary vasculature suggests that activation of eNOS secondary to Cav-1 deficiency may play an important role in the pathogenesis of PH in the nitrofen-induced CDH. © 2014 Wiley Periodicals, Inc.
Ramírez, Marco A; Morales, Jorge; Cornejo, Marcelo; Blanco, Elias H; Mancilla-Sierpe, Edgardo; Toledo, Fernando; Beltrán, Ana R; Sobrevia, Luis
2018-04-01
l-Arginine is taken up via the cationic amino acid transporters (system y + /CATs) and system y + L in human umbilical vein endothelial cells (HUVECs). l-Arginine is the substrate for endothelial NO synthase (eNOS) which is activated by intracellular alkalization, but nothing is known regarding modulation of system y + /CATs and system y + L activity, and eNOS activity by the pHi in HUVECs. We studied whether an acidic pHi modulates l-arginine transport and eNOS activity in HUVECs. Cells loaded with a pH-sensitive probe were subjected to 0.1-20 mmol/L NH 4 Cl pulse assay to generate pHi 7.13-6.55. Before pHi started to recover, l-arginine transport (0-20 or 0-1000 μmol/L, 10 s, 37 °C) in the absence or presence of 200 μmol/L N-ethylmaleimide (NEM) (system y + /CATs inhibitor) or 2 mmol/L l-leucine (systemy + L substrate) was measured. Protein abundance for eNOS and serine 1177 or threonine 495 phosphorylated eNOS was determined. The results show that intracellular acidification reduced system y + L but not system y + /CATs mediated l-arginine maximal transport capacity due to reduced maximal velocity. Acidic pHi reduced NO synthesis and eNOS serine 1177 phosphorylation. Thus, system y + L activity is downregulated by an acidic pHi, a phenomenon that may result in reduced NO synthesis in HUVECs. Copyright © 2018 Elsevier B.V. All rights reserved.
Liu, Zhenguo; Jiang, Yuehua; Hao, Hong; Gupta, Kalpna; Xu, Jian; Chu, Ling; McFalls, Edward; Zweier, Jay; Verfaillie, Catherine; Bache, Robert J
2007-09-01
This study was designed to investigate the developmental expression of endothelial nitric oxide synthase (eNOS) during stem cell differentiation into endothelial cells and to examine the functional status of the newly differentiated endothelial cells. Mouse adult multipotent progenitor cells (MAPCs) were used as the source of stem cells and were induced to differentiate into endothelial cells with vascular endothelial growth factor (VEGF) in serum-free medium. Expression of eNOS in the cells during differentiation was evaluated with real-time PCR, nitric oxide synthase (NOS) activity, and Western blot analysis. It was found that eNOS, but no other NOS, was present in undifferentiated MAPCs. eNOS expression disappeared in the cells immediately after induction of differentiation. However, eNOS expression reoccurred at day 7 during differentiation. Increasing eNOS mRNA, protein content, and activity were observed in the cells at days 14 and 21 during differentiation. The differentiated endothelial cells formed dense capillary networks on growth factor-reduced Matrigel. VEGF-stimulated phosphorylation of extracellular signal-regulated kinase (ERK)-1 and ERK-2 occurred in these cells, which was inhibited by NOS inhibitor N(G)-nitro-L-arginine methyl ester. In conclusion, these data demonstrate that eNOS is present in MAPCs and is dynamically expressed during the differentiation of MAPCs into endothelial cells in vitro.
Hocher, Berthold; Haumann, Hannah; Rahnenführer, Jan; Reichetzeder, Christoph; Kalk, Philipp; Pfab, Thiemo; Tsuprykov, Oleg; Winter, Stefan; Hofmann, Ute; Li, Jian; Püschel, Gerhard P.; Lang, Florian; Schuppan, Detlef; Schwab, Matthias; Schaeffeler, Elke
2016-01-01
ABSTRACT Maternal environmental factors can impact on the phenotype of the offspring via the induction of epigenetic adaptive mechanisms. The advanced fetal programming hypothesis proposes that maternal genetic variants may influence the offspring's phenotype indirectly via epigenetic modification, despite the absence of a primary genetic defect. To test this hypothesis, heterozygous female eNOS knockout mice and wild type mice were bred with male wild type mice. We then assessed the impact of maternal eNOS deficiency on the liver phenotype of wild type offspring. Birth weight of male wild type offspring born to female heterozygous eNOS knockout mice was reduced compared to offspring of wild type mice. Moreover, the offspring displayed a sex specific liver phenotype, with an increased liver weight, due to steatosis. This was accompanied by sex specific differences in expression and DNA methylation of distinct genes. Liver global DNA methylation was significantly enhanced in both male and female offspring. Also, hepatic parameters of carbohydrate metabolism were reduced in male and female offspring. In addition, male mice displayed reductions in various amino acids in the liver. Maternal genetic alterations, such as partial deletion of the eNOS gene, can affect liver metabolism of wild type offspring without transmission of the intrinsic defect. This occurs in a sex specific way, with more detrimental effects in females. This finding demonstrates that a maternal genetic defect can epigenetically alter the phenotype of the offspring, without inheritance of the defect itself. Importantly, these acquired epigenetic phenotypic changes can persist into adulthood. PMID:27175980
Gopalakrishna, Deepak; Pennington, Samantha; Karaa, Amel; Clemens, Mark G
2016-07-01
It has been shown that microcirculation is hypersensitized to endothelin1 (ET-1) following endotoxin (lipopolysaccharide [LPS]) treatment leading to an increased vasopressor response. This may be related in part to decreased activation of endothelial nitric oxide synthase (eNOS) by ET-1. eNOS can also be uncoupled to produce superoxide (O2). This aberrant eNOS activity could further contribute to the hyperconstriction and injury caused by ET-1 following LPS. We therefore tested whether LPS affects ROS production by vascular endothelial cells and whether and how this effect is altered by ET-1. Human umbilical vein endothelial cells (HUVEC) or human microvascular endothelial cells (HMEC) were subjected to a 6-h treatment with LPS (250 ng/mL) or LPS and sepiapterin (100 μM) followed by a 30-min treatment with 100 μM L-Iminoethyl Ornithine (L-NIO) an irreversible eNOS inhibitor and 30-min treatment with ET-1 (10 nM). Conversion of [H]L-arginine to [H]L-citrulline was used to measure eNOS activity. Superoxide dismutase (SOD) inhibitable reduction of Cytochrome-C, dihydro carboxy fluorescein (DCF), and Mitosox was used to estimate ROS. LT-SDS PAGE was used to assess the degree of monomerization of the eNOS homodimer. Stimulation of HUVECs with ET-1 significantly increased NO synthesis by 1.4-fold (P < 0.05). ET-1 stimulation of LPS-treated HUVECs failed to increase NO production. Western blot for eNOS protein showed no change in eNOS protein levels. LPS alone resulted in an insignificant increase in ROS production as measured by cytochrome C that was increased 4.6-fold by ET-1 stimulation (P < 0.05). L-NIO significantly decreased ET-1-induced ROS production (P < 0.05). Sepiapterin significantly decreased ROS production in both; unstimulated and ET-1-stimulated LPS-treated groups, but did not restore NO production. DCF experiments confirmed intracellular ROS while Mitosox suggested a non-mitochondrial source. ET-1 treatment following a chronic LPS stress significantly monomerized the eNOS homodimer that was inhibited by sepiapterin loading. The two concomitant phenomena of decreased NO production and increased ROS formation seem to be multifactorial in nature with ROS production dependent upon pterin availability.
Crystal structure of enolase from Drosophila melanogaster.
Sun, Congcong; Xu, Baokui; Liu, Xueyan; Zhang, Zhen; Su, Zhongliang
2017-04-01
Enolase is an important enzyme in glycolysis and various biological processes. Its dysfunction is closely associated with diseases. Here, the enolase from Drosophila melanogaster (DmENO) was purified and crystallized. A crystal of DmENO diffracted to 2.0 Å resolution and belonged to space group R32. The structure was solved by molecular replacement. Like most enolases, DmENO forms a homodimer with conserved residues in the dimer interface. DmENO possesses an open conformation in this structure and contains conserved elements for catalytic activity. This work provides a structural basis for further functional and evolutionary studies of enolase.
Nguyen, Minh Cong; Park, Jong Taek; Jeon, Yeong Gwan; Jeon, Byeong Hwa; Hoe, Kwang Lae; Kim, Young Myeong
2016-01-01
Purpose Peroxynitrite plays a critical role in vascular pathophysiology by increasing arginase activity and decreasing endothelial nitric oxide synthase (eNOS) activity. Therefore, the aims of this study were to investigate whether arginase inhibition and L-arginine supplement could restore peroxynitrite-induced endothelial dysfunction and determine the involved mechanism. Materials and Methods Human umbilical vein endothelial cells (HUVECs) were treated with SIN-1, a peroxynitrite generator, and arginase activity, nitrite/nitrate production, and expression levels of proteins were measured. eNOS activation was evaluated via Western blot and dimer blot analysis. We also tested nitric oxide (NO) and reactive oxygen species (ROS) production and performed a vascular tension assay. Results SIN-1 treatment increased arginase activity in a time- and dose-dependent manner and reciprocally decreased nitrite/nitrate production that was prevented by peroxynitrite scavenger in HUVECs. Furthermore, SIN-1 induced an increase in the expression level of arginase I and II, though not in eNOS protein. The decreased eNOS phosphorylation at Ser1177 and the increased at Thr495 by SIN-1 were restored with arginase inhibitor and L-arginine. The changed eNOS phosphorylation was consistent in the stability of eNOS dimers. SIN-1 decreased NO production and increased ROS generation in the aortic endothelium, all of which was reversed by arginase inhibitor or L-arginine. NG-Nitro-L-arginine methyl ester (L-NAME) prevented SIN-1-induced ROS generation. In the vascular tension assay, SIN-1 enhanced vasoconstrictor responses to U46619 and attenuated vasorelaxant responses to acetylcholine that were reversed by arginase inhibition. Conclusion These findings may explain the beneficial effect of arginase inhibition and L-arginine supplement on endothelial dysfunction under redox imbalance-dependent pathophysiological conditions. PMID:27593859
Nguyen, Minh Cong; Park, Jong Taek; Jeon, Yeong Gwan; Jeon, Byeong Hwa; Hoe, Kwang Lae; Kim, Young Myeong; Lim, Hyun Kyo; Ryoo, Sungwoo
2016-11-01
Peroxynitrite plays a critical role in vascular pathophysiology by increasing arginase activity and decreasing endothelial nitric oxide synthase (eNOS) activity. Therefore, the aims of this study were to investigate whether arginase inhibition and L-arginine supplement could restore peroxynitrite-induced endothelial dysfunction and determine the involved mechanism. Human umbilical vein endothelial cells (HUVECs) were treated with SIN-1, a peroxynitrite generator, and arginase activity, nitrite/nitrate production, and expression levels of proteins were measured. eNOS activation was evaluated via Western blot and dimer blot analysis. We also tested nitric oxide (NO) and reactive oxygen species (ROS) production and performed a vascular tension assay. SIN-1 treatment increased arginase activity in a time- and dose-dependent manner and reciprocally decreased nitrite/nitrate production that was prevented by peroxynitrite scavenger in HUVECs. Furthermore, SIN-1 induced an increase in the expression level of arginase I and II, though not in eNOS protein. The decreased eNOS phosphorylation at Ser1177 and the increased at Thr495 by SIN-1 were restored with arginase inhibitor and L-arginine. The changed eNOS phosphorylation was consistent in the stability of eNOS dimers. SIN-1 decreased NO production and increased ROS generation in the aortic endothelium, all of which was reversed by arginase inhibitor or L-arginine. N(G)-Nitro-L-arginine methyl ester (L-NAME) prevented SIN-1-induced ROS generation. In the vascular tension assay, SIN-1 enhanced vasoconstrictor responses to U46619 and attenuated vasorelaxant responses to acetylcholine that were reversed by arginase inhibition. These findings may explain the beneficial effect of arginase inhibition and L-arginine supplement on endothelial dysfunction under redox imbalance-dependent pathophysiological conditions.
Shin, Hwa Kyoung; Salomone, Salvatore; Potts, E Michelle; Lee, Sae-Won; Millican, Eric; Noma, Kensuke; Huang, Paul L; Boas, David A; Liao, James K; Moskowitz, Michael A; Ayata, Cenk
2007-05-01
Rho-kinase is a serine threonine kinase that increases vasomotor tone via its effects on both endothelium and smooth muscle. Rho-kinase inhibition reduces cerebral infarct size in wild type, but not endothelial nitric oxide synthase deficient (eNOS-/-) mice. The mechanism may be related to Rho-kinase activation under hypoxic/ischemic conditions and impaired vasodilation because of downregulation of eNOS activity. To further implicate Rho-kinase in impaired vascular relaxation during hypoxia/ischemia, we exposed isolated vessels from rat and mouse to 60 mins of hypoxia, and showed that hypoxia reversibly abolished acetylcholine-induced eNOS-dependent relaxation, and that Rho-kinase inhibitor hydroxyfasudil partially preserved this relaxation during hypoxia. We, therefore, hypothesized that if hypoxia-induced Rho-kinase activation acutely impairs vasodilation in ischemic cortex, in vivo, then Rho-kinase inhibitors would acutely augment cerebral blood flow (CBF) as a mechanism by which they reduce infarct size. To test this, we studied the acute cerebral hemodynamic effects of Rho-kinase inhibitors in ischemic core and penumbra during distal middle cerebral artery occlusion (dMCAO) in wild-type and eNOS-/- mice using laser speckle flowmetry. When administered 60 mins before or immediately after dMCAO, Rho-kinase inhibitors hydroxyfasudil and Y-27632 reduced the area of severely ischemic cortex. However, hydroxyfasudil did not reduce the area of CBF deficit in eNOS-/- mice, suggesting that its effect on CBF within the ischemic cortex is primarily endothelium-dependent, and not mediated by its direct vasodilator effect on vascular smooth muscle. Our results suggest that Rho-kinase negatively regulates eNOS activity in acutely ischemic brain, thereby worsening the CBF deficit. Therefore, rapid nontranscriptional upregulation of eNOS activity by small molecule inhibitors of Rho-kinase may be a viable therapeutic approach in acute stroke.
Ladurner, Angela; Schachner, Daniel; Schueller, Katharina; Pignitter, Marc; Heiss, Elke H.; Somoza, Veronika; Dirsch, Verena M.
2015-01-01
Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a polyphenolic natural product mainly present in grape skin, berries and peanuts. In the vasculature resveratrol is thought to boost endothelial function by increasing endothelial nitric oxide synthase (eNOS) expression, by enhancing eNOS activity, and by reduction of reactive oxygen species (ROS) levels. Recent studies show that dietary resveratrol is metabolized in the liver and intestine into resveratrol-sulfate and -glucuronide derivatives questioning the relevance of multiple reported mechanistic in vitro data on resveratrol. In this study, we compare side by side different physiologically relevant resveratrol metabolites (resveratrol sulfates- and -glucuronides) and their parent compound in their influence on eNOS enzyme activity, endothelial NO release, and intracellular ROS levels. In contrast to resveratrol, none of the tested resveratrol metabolites elevated eNOS enzyme activity and endothelial NO release or affected intracellular ROS levels, leaving the possibility that not tested metabolites are active and able to explain in vivo findings. PMID:25329867
PGC-1α dictates endothelial function through regulation of eNOS expression
Craige, Siobhan M.; Kröller-Schön, Swenja; Li, Chunying; Kant, Shashi; Cai, Shenghe; Chen, Kai; Contractor, Mayur M.; Pei, Yongmei; Schulz, Eberhard; Keaney, John F.
2016-01-01
Endothelial dysfunction is a characteristic of many vascular related diseases such as hypertension. Peroxisome proliferator activated receptor gamma, coactivator 1α (PGC-1α) is a unique stress sensor that largely acts to promote adaptive responses. Therefore, we sought to define the role of endothelial PGC-1α in vascular function using mice with endothelial specific loss of function (PGC-1α EC KO) and endothelial specific gain of function (PGC-1α EC TG). Here we report that endothelial PGC-1α is suppressed in angiotensin-II (ATII)-induced hypertension. Deletion of endothelial PGC-1α sensitized mice to endothelial dysfunction and hypertension in response to ATII, whereas PGC-1α EC TG mice were protected. Mechanistically, PGC-1α promotes eNOS expression and activity, which is necessary for protection from ATII-induced dysfunction as mice either treated with an eNOS inhibitor (LNAME) or lacking eNOS were no longer responsive to transgenic endothelial PGC-1α expression. Finally, we determined that the orphan nuclear receptor, estrogen related receptor α (ERRα) is required to coordinate the PGC-1α -induced eNOS expression. In conclusion, endothelial PGC-1α expression protects from vascular dysfunction by promoting NO• bioactivity through ERRα induced expression of eNOS. PMID:27910955
Zago, Anderson Saranz; Park, Joon-Young; Fenty-Stewart, Nicola; Silveira, Leonardo Reis; Kokubun, Eduardo; Brown, Michael D
2010-11-01
The polymorphisms of endothelial nitric oxide synthase (eNOS) are associated with reduced eNOS activity. Aerobic exercise training (AEX) may influence resting nitric oxide (NO) production, oxidative stress and blood pressure. The purpose of this study was to investigate the effect of AEX on the relationship among blood pressure, eNOS gene polymorphism and oxidative stress in pre-hypertensive older people. 118 pre-hypertensive subjects (59 ± 6 years) had blood samples collected after a 12 h overnight fast for assessing plasma NO metabolites (NOx) assays, thiobarbituric acid reactive substances (T-BARS) and superoxide dismutase activity (ecSOD). eNOS polymorphism (T-786C and G-894T) was done by standard PCR methods. All people were divided according to the genotype results (G1: TT/GG, G2: TT/GT + TT, G3: TC + CC/GG, G4: TC + CC/GT + TT). All parameters were measured before and after 6 months of AEX (70% of VO(2 max)). At baseline, no difference was found in systolic and diastolic blood pressure, ecSOD and T-BARS activity. Plasma NOx levels were significantly different between G1 (19 ± 1 μM) and G4 (14.2 ± 0.6 μM) and between G2 (20.1 ± 1.7 μM) and G4 (14.2 ± 0.6 μM). Therefore, reduced NOx concentration in G4 group occurred only when the polymorphisms were associated, suggesting that these results are more related to genetic factors than NO-scavenging effect. After AEX, the G4 increased NOx values (17.2 ± 1.2 μM) and decreased blood pressure. G1, G3 and G4 decreased T-BARS levels. These results suggest the AEX can modulate the NOx concentration, eNOS activity and the relationship among eNOS gene polymorphism, oxidative stress and blood pressure especially in C (T-786C) and T (G-894T) allele carriers.
Effects of endogenous nitric oxide and of DETA NONOate in arteriogenesis.
Troidl, Kerstin; Tribulova, Silvia; Cai, Wei-Jun; Rüding, Inka; Apfelbeck, Hanna; Schierling, Wilma; Troidl, Christian; Schmitz-Rixen, Thomas; Schaper, Wolfgang
2010-02-01
Previous studies showed that targeted endothelial nitric oxide synthase (eNOS) disruption in mice with femoral artery occlusion does not impede and transgenic eNOS overexpression does not stimulate collateral artery growth after femoral artery occlusion, suggesting that nitric oxide from eNOS does not play a role in arteriogenesis. However, pharmacologic nitric oxide synthase inhibition with L-NAME markedly blocks arteriogenesis, suggestive of an important role of nitric oxide. To solve the paradox, we studied targeted deletion of eNOS and of inducible nitric oxide synthase (iNOS) in mice and found that only iNOS knockout could partially inhibit arteriogenesis. However, the combination of eNOS knockout and treatment with the iNOS inhibitor L-NIL completely abolished arteriogenesis. mRNA transcription studies (reverse transcriptase-polymerase chain reaction) performed on collateral arteries of rats showed that eNOS and especially iNOS (but not neural nitric oxide synthase) become upregulated in shear stress-stimulated collateral vessels, which supports the hypothesis that nitric oxide is necessary for arteriogenesis but that iNOS plays an important part. This was strengthened by the observation that the nitric oxide donor DETA NONOate strongly stimulated collateral artery growth, activated perivascular monocytes, and increased proliferation markers. Shear stress-induced nitric oxide may activate the innate immune system and activate iNOS. In conclusion, arteriogenesis is completely dependent on the presence of nitric oxide, a large part of it coming from mononuclear cells.
Kim, Joohwan; Lee, Kyu-Sun; Kim, Ji-Hee; Lee, Dong-Keon; Park, Minsik; Choi, Seunghwan; Park, Wonjin; Kim, Suji; Choi, Yoon Kyung; Hwang, Jong Yun; Choe, Jongseon; Won, Moo-Ho; Jeoung, Dooil; Lee, Hansoo; Ryoo, Sungwoo; Ha, Kwon-Soo; Kwon, Young-Guen; Kim, Young-Myeong
2017-03-01
Preeclampsia is an inflammatory disease with endothelial cell dysfunction that occurs via decreased endothelial nitric oxide synthase/nitric oxide (eNOS/NO) activity. Aspirin reduces the incidence of hypertensive pregnancy complications. However, the underlying mechanism has not been clearly explained. Here, we found that tumor necrosis factor (TNF)-α, microRNA (miR)-155, and eNOS levels as well as endothelial redox phenotype were differentially regulated in preeclamptic patients, implying the involvement of TNF-α- and redox signal-mediated miR-155 biogenesis and eNOS downregulation in the pathogenesis of preeclampsia. Aspirin prevented the TNF-α-mediated increase in miR-155 biogenesis and decreases in eNOS expression and NO/cGMP production in cultured human umbilical vein endothelial cells (HUVECs). Similar effects of aspirin were also observed in HUVECs treated with H 2 O 2 . The preventive effects of aspirin was associated with the inhibition of nuclear factor-κB (NF-κB)-dependent MIR155HG (miR-155 host gene) expression. Aspirin recovered the TNF-α-mediated decrease in wild-type, but not mutant, eNOS 3'-untranslated region reporter activity, whose effect was blocked by miR-155 mimic. Moreover, aspirin prevented TNF-α-mediated endothelial cell dysfunction associated with impaired vasorelaxation, angiogenesis, and trophoblast invasion, and the preventive effects were blocked by miR-155 mimic or an eNOS inhibitor. Aspirin rescued TNF-α-mediated eNOS downregulation coupled with endothelial dysfunction by inhibiting NF-κB-dependent transcriptional miR-155 biogenesis. Thus, the redox-sensitive NF-κB/miR-155/eNOS axis may be crucial in the pathogenesis of vascular disorders including preeclampsia. Copyright © 2017 Elsevier Inc. All rights reserved.
Xing, Feiyue; Liu, Jing; Mo, Yongyan; Liu, Zhifeng; Qin, Qinghe; Wang, Jingzhen; Fan, Zhenhua; Long, Yutian; Liu, Na; Zhao, Kesen; Jiang, Yong
2009-01-01
Human endothelial nitric oxide synthase (eNOS) plays a pivotal role in maintaining blood pressure homeostasis and vascular integrity. It has recently been reported that mitogen-activated protein kinases (MAPKs) are intimately implicated in expression of eNOS. However detailed mechanism mediated by them remains to be clarified. In this study, eNOS gene transactivity in human umbilical vein endothelial cells was up-regulated by stimulation of lysophosphatidylcholine (LPC). The stimulation of LPC highly activated both extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK), with differences in the dynamic processes of activation between them. Unexpectedly, p38 MAPK could not be activated by the stimulation of LPC. The activation of JNK signalling pathway by overexpression of JNK or its upstream kinase active mutant up-regulated the transactivity of eNOS significantly, but the activation of p38 signalling pathway down-regulated it largely. The inhibition of either ERK1/2 or JNK signalling pathway by kinase-selective inhibitors could markedly block the induction of the transactivity by LPC. It was observed by electrophoretic mobility shift assay that LPC stimulated both SP1 and AP1 DNA binding activity to go up. Additionally using decoy oligonucleotides proved that SP1 was necessary for maintaining the basal or stimulated transactivity, whereas AP1 contributed mainly to the increase of the stimulated transactivity. These findings indicate that the up-regulation of the eNOS gene transactivity by LPC involves the enhancement of SP1 transcription factor by the activation of JNK and ERK1/2 signalling pathways and AP1 transcription factor by the activation of JNK signalling pathway. PMID:18624763
Cortical actin nanodynamics determines nitric oxide release in vascular endothelium.
Fels, Johannes; Jeggle, Pia; Kusche-Vihrog, Kristina; Oberleithner, Hans
2012-01-01
The release of the main vasodilator nitric oxide (NO) by the endothelial NO synthase (eNOS) is a hallmark of endothelial function. We aim at elucidating the underlying mechanism how eNOS activity depends on cortical stiffness (К(cortex)) of living endothelial cells. It is hypothesized that cortical actin dynamics determines К(cortex) and directly influences eNOS activity. By combined atomic force microscopy and fluorescence imaging we generated mechanical and optical sections of single living cells. This approach allows the discrimination between К(cortex) and bulk cell stiffness (К(bulk)) and, additionally, the simultaneous analysis of submembranous actin web dynamics. We show that К(cortex) softens when cortical F-actin depolymerizes and that this shift from a gel-like stiff cortex to a soft G-actin rich layer, triggers the stiffness-sensitive eNOS activity. The results implicate that stiffness changes in the ∼100 nm phase of the submembranous actin web, without affecting К(bulk), regulate NO release and thus determines endothelial function.
Mahmood, Qaisar; Wang, Guang-Fa; Wu, Gang; Wang, Huan; Zhou, Chang-Xin; Yang, Hong-Yu; Liu, Zhi-Rong; Han, Feng; Zhao, Kui
2017-02-15
Salvianolic acid A (SAA) is obtained from Chinese herb Salviae Miltiorrhizae Bunge (Labiatae), has been reported to have the protective effects against cardiovascular and neurovascular diseases. The aim of present study was to investigate the relationship between the effectiveness of SAA against neurovascular injury and its effects on calpain activation and endothelial nitric oxide synthase (eNOS) uncoupling. SAA or vehicle was given to C57BL/6 male mice for seven days before the occlusion of middle cerebral artery (MCAO) for 60min. High-resolution positron emission tomography scanner (micro-PET) was used for small animal imaging to examine glucose metabolism. Rota-rod time and neurological deficit scores were calculated after 24h of reperfusion. The volume of infarction was determined by Nissl-staining. The calpain proteolytic activity and eNOS uncoupling were determined by western blot analysis. SAA administration increased glucose metabolism and ameliorated neuronal damage after brain ischemia, paralleled with decreased neurological deficit and volume of infarction. In addition, SAA pretreatment inhibited eNOS uncoupling and calpain proteolytic activity. Furthermore, SAA inhibited peroxynitrite (ONOO - ) generation and upregulates AKT, FKHR and ERK phosphorylation. These findings strongly suggest that SAA elicits a neurovascular protective role through the inhibition of eNOS uncoupling and ONOO - formation. Moreover, SAA attenuates spectrin and calcineurin breakdown and therefore protects the brain against ischemic/reperfusion injury. Copyright © 2016 Elsevier GmbH. All rights reserved.
Wei, Xiaochao; Schneider, Jochen G.; Shenouda, Sherene M.; Lee, Ada; Towler, Dwight A.; Chakravarthy, Manu V.; Vita, Joseph A.; Semenkovich, Clay F.
2011-01-01
Endothelial dysfunction leads to lethal vascular complications in diabetes and related metabolic disorders. Here, we demonstrate that de novo lipogenesis, an insulin-dependent process driven by the multifunctional enzyme fatty-acid synthase (FAS), maintains endothelial function by targeting endothelial nitric-oxide synthase (eNOS) to the plasma membrane. In mice with endothelial inactivation of FAS (FASTie mice), eNOS membrane content and activity were decreased. eNOS and FAS were physically associated; eNOS palmitoylation was decreased in FAS-deficient cells, and incorporation of labeled carbon into eNOS-associated palmitate was FAS-dependent. FASTie mice manifested a proinflammatory state reflected as increases in vascular permeability, endothelial inflammatory markers, leukocyte migration, and susceptibility to LPS-induced death that was reversed with an NO donor. FAS-deficient endothelial cells showed deficient migratory capacity, and angiogenesis was decreased in FASTie mice subjected to hindlimb ischemia. Insulin induced FAS in endothelial cells freshly isolated from humans, and eNOS palmitoylation was decreased in mice with insulin-deficient or insulin-resistant diabetes. Thus, disrupting eNOS bioavailability through impaired lipogenesis identifies a novel mechanism coordinating nutritional status and tissue repair that may contribute to diabetic vascular disease. PMID:21098489
Armour, K E; Armour, K J; Gallagher, M E; Gödecke, A; Helfrich, M H; Reid, D M; Ralston, S H
2001-02-01
Nitric oxide (NO) is a pleiotropic signaling molecule that is produced by bone cells constitutively and in response to diverse stimuli such as proinflammatory cytokines, mechanical strain, and sex hormones. Endothelial nitric oxide synthase (eNOS) is the predominant NOS isoform expressed in bone, but its physiological role in regulating bone metabolism remains unclear. Here we studied various aspects of bone metabolism in female mice with targeted disruption of the eNOS gene. Mice with eNOS deficiency (eNOS KO) had reduced bone mineral density, and cortical thinning when compared with WT controls and histomorphometric analysis of bone revealed profound abnormalities of bone formation, with reduced osteoblast numbers, surfaces and mineral apposition rate. Studies in vitro showed that osteoblasts derived from eNOS KO mice had reduced rates of growth when compared with WT and were less well differentiated as reflected by lower levels of alkaline phosphatase activity. Mice with eNOS deficiency lost bone normally following ovariectomy but exhibited a significantly blunted anabolic response to high dose exogenous estrogen. We conclude that the eNOS pathway plays an essential role in regulating bone mass and bone turnover by modulating osteoblast function.
2012-01-01
Background Recent studies have shown that fatty acid-binding protein 4 (FABP4) plasma levels are associated with impaired endothelial function in type 2 diabetes (T2D). In this work, we analysed the effect of FABP4 on the insulin-mediated nitric oxide (NO) production by endothelial cells in vitro. Methods In human umbilical vascular endothelial cells (HUVECs), we measured the effects of FABP4 on the insulin-mediated endothelial nitric oxide synthase (eNOS) expression and activation and on NO production. We also explored the impact of exogenous FABP4 on the insulin-signalling pathway (insulin receptor substrate 1 (IRS1) and Akt). Results We found that eNOS expression and activation and NO production are significantly inhibited by exogenous FABP4 in HUVECs. FABP4 induced an alteration of the insulin-mediated eNOS pathway by inhibiting IRS1 and Akt activation. These results suggest that FABP4 induces endothelial dysfunction by inhibiting the activation of the insulin-signalling pathway resulting in decreased eNOS activation and NO production. Conclusion These findings provide a mechanistic linkage between FABP4 and impaired endothelial function in diabetes, which leads to an increased cardiovascular risk. PMID:22709426
Sandovici, Maria; Henning, Robert H; Hut, Roelof A; Strijkstra, Arjen M; Epema, Anne H; van Goor, Harry; Deelman, Leo E
2004-09-01
Hibernating animals transiently reduce renal function during their hypothermic periods (torpor), while completely restoring it during their periodical rewarming to euthermia (arousal). Moreover, structural integrity of the kidney is preserved throughout the hibernation. Nitric oxide (NO) generated by endothelial nitric oxide synthase (eNOS) is a crucial vasodilatory mediator and a protective factor in the kidney. We investigated renal NOS expression in hibernating European ground squirrels after 1 day and 7 days of torpor (torpor short, TS, and torpor long, TL, respectively), at 1.5 and at 10 h of rewarming (arousal short, AS, and arousal long, AL, respectively), and in continuously euthermic animals after hibernation (EU). For that purpose, we performed NOS activity assay, immunohistochemistry and real-time PCR analysis. Immunohistochemistry revealed a decreased glomerular eNOS expression in hibernating animals (TS, TL, AS, and AL) compared to non-hibernating animals (EU, p < 0.05), whereas no difference was found in the expression of interstitial eNOS. Expression of iNOS and nNOS did not differ between all groups. The reduced glomerular eNOS was associated with a significantly lower eNOS mRNA levels and NOS activity of whole kidney during torpor and arousal (TS, TL, AS, and AL) compared to EU. In all methods used, torpid and aroused squirrels did not differ. These results demonstrate differential regulation of eNOS in glomeruli and interstitium of hibernating animals, which is unaffected during arousal. The differential regulation of eNOS may serve to reduce ultrafiltration without jeopardizing tubular structures during hibernation.
Chandra, Saurav B; Mohan, Sumathy; Ford, Bridget M; Huang, Lei; Janardhanan, Preethi; Deo, Kaiwalya S; Cong, Linlin; Muir, Eric R; Duong, Timothy Q
2016-06-01
Reduced bioavailability of nitric oxide due to impaired endothelial nitric oxide synthase (eNOS) activity is a leading cause of endothelial dysfunction in diabetes. Enhancing eNOS activity in diabetes is a potential therapeutic target. This study investigated basal cerebral blood flow and cerebrovascular reactivity in wild-type mice, diabetic mice (Ins2(Akita+/-)), nondiabetic eNOS-overexpressing mice (TgeNOS), and the cross of two transgenic mice (TgeNOS-Ins2(Akita+/-)) at six months of age. The cross was aimed at improving eNOS expression in diabetic mice. The major findings were: (i) Body weights of Ins2(Akita+/-) and TgeNOS-Ins2(Akita+/-) were significantly different from wild-type and TgeNOS mice. Blood pressure of TgeNOS mice was lower than wild-type. (ii) Basal cerebral blood flow of the TgeNOS group was significantly higher than cerebral blood flow of the other three groups. (iii) The cerebrovascular reactivity in the Ins2(Akita+/-) mice was significantly lower compared with wild-type, whereas that in the TgeNOS-Ins2(Akita+/-) was significantly higher compared with the Ins2(Akita+/-) and TgeNOS groups. Overexpression of eNOS rescued cerebrovascular dysfunction in diabetic animals, resulting in improved cerebrovascular reactivity. These results underscore the possible role of eNOS in vascular dysfunction in the brain of diabetic mice and support the notion that enhancing eNOS activity in diabetes is a potential therapeutic target. © The Author(s) 2015.
Walther, Stefanie; Pluteanu, Florentina; Renz, Susanne; Nikonova, Yulia; Maxwell, Joshua T; Yang, Li-Zhen; Schmidt, Kurt; Edwards, Joshua N; Wakula, Paulina; Groschner, Klaus; Maier, Lars S; Spiess, Joachim; Blatter, Lothar A; Pieske, Burkert; Kockskämper, Jens
2014-09-01
Urocortin 2 (Ucn2) is a cardioactive peptide exhibiting beneficial effects in normal and failing heart. In cardiomyocytes, it elicits cAMP- and Ca(2+)-dependent positive inotropic and lusitropic effects. We tested the hypothesis that, in addition, Ucn2 activates cardiac nitric oxide (NO) signaling and elucidated the underlying signaling pathways and mechanisms. In isolated rabbit ventricular myocytes, Ucn2 caused concentration- and time-dependent increases in phosphorylation of Akt (Ser473, Thr308), endothelial NO synthase (eNOS) (Ser1177), and ERK1/2 (Thr202/Tyr204). ERK1/2 phosphorylation, but not Akt and eNOS phosphorylation, was suppressed by inhibition of MEK1/2. Increased Akt phosphorylation resulted in increased Akt kinase activity and was mediated by corticotropin-releasing factor 2 (CRF2) receptors (astressin-2B sensitive). Inhibition of phosphatidylinositol 3-kinase (PI3K) diminished both Akt as well as eNOS phosphorylation mediated by Ucn2. Inhibition of protein kinase A (PKA) reduced Ucn2-induced phosphorylation of eNOS but did not affect the increase in phosphorylation of Akt. Conversely, direct receptor-independent elevation of cAMP via forskolin increased phosphorylation of eNOS but not of Akt. Ucn2 increased intracellular NO concentration ([NO]i), [cGMP], [cAMP], and cell shortening. Inhibition of eNOS suppressed the increases in [NO]i and cell shortening. When both PI3K-Akt and cAMP-PKA signaling were inhibited, the Ucn2-induced increases in [NO]i and cell shortening were attenuated. Thus, in rabbit ventricular myocytes, Ucn2 causes activation of cAMP-PKA, PI3K-Akt, and MEK1/2-ERK1/2 signaling. The MEK1/2-ERK1/2 pathway is not required for stimulation of NO signaling in these cells. The other two pathways, cAMP-PKA and PI3K-Akt, converge on eNOS phosphorylation at Ser1177 and result in pronounced and sustained cellular NO production with subsequent stimulation of cGMP signaling. Copyright © 2014 the American Physiological Society.
Liu, Yong; Mladinov, Domagoj; Pietrusz, Jennifer L.; Usa, Kristie; Liang, Mingyu
2009-01-01
Aims Hypertensive and other effects of excess glucocorticoids might be in part mediated by the suppression of endothelial nitric oxide synthase (eNOS) expression. We studied the transcriptional and biochemical mechanisms that mediate or modulate the suppression of eNOS expression by glucocorticoids. Methods and results We found that a mere three-fold increase in the concentration of the natural glucocorticoid cortisol (from 30 to 100 nmol/L) significantly decreased the expression level of eNOS in human endothelial cells. Deletion analysis of the eNOS promoter indicated that the segment within −119 bp upstream from the transcription start site was significantly involved in the effect of cortisol. Site-directed mutagenesis and chromatin immunoprecipitation analyses demonstrated the presence of a suppressive glucocorticoid response element (GRE) at −111 to −105 bp. 11β-hydroxysteroid dehydrogenases (11β-HSD) catalyse the interconversion of active and inactive glucocorticoids. The suppression of 11β-HSD2 using small interfering RNA markedly exacerbated the inhibition of eNOS by cortisol. The suppression of 11β-HSD1 abolished the inhibition of eNOS expression by cortisol. Conclusion We identified the first GRE in the eNOS promoter region and demonstrated that endogenous 11β-HSD1 and 11β-HSD2 play significant and distinct roles in modulating the effect of glucocorticoids on eNOS expression. PMID:18716005
Figueroa, Xavier F; González, Daniel R; Martínez, Agustín D; Durán, Walter N; Boric, Mauricio P
2002-01-01
Studies in cultured cells show that activation of endothelial nitric oxide (NO) synthase (eNOS) requires the dissociation of this enzyme from its inhibitory association with caveolin-1 (Cav-1), and perhaps its translocation from plasma membrane caveolae to other cellular compartments. We investigated the hypothesis that in vivo NO-dependent vasodilatation is associated with the translocation of eNOS from the cell membrane. To this end, we applied ACh topically (10-100 μm for 10 min) to the hamster cheek pouch microcirculation and measured NO production, blood flow and vessel diameter, and assessed subcellular eNOS distribution by Western blotting. Baseline NO production was 54.4 ± 5.2 pmol min−1 (n = 16). ACh increased NO release, caused arteriolar and venular dilatation and elevated microvascular flow. These responses were inhibited by NG-nitro-L-arginine (30 μm). The maximal increase in NO production induced by 10 μm and 100 μm ACh was 45 ± 20 % and 111 ± 33 %, respectively; the corresponding blood flow increases were 50 ± 10 % and 130 ± 24 %, respectively (n = 4-6). Both responses followed a similar time course, although increases in NO preceded flow changes. In non-stimulated tissues, eNOS was distributed mainly in the microsomal fraction. ACh-induced vasodilatation was associated with eNOS translocation to the cytosolic and Golgi-enriched fractions. After 1.5, 3.0 or 6.0 min of application, 10 μm ACh decreased the level of membrane-bound eNOS by -13 ± 4 %, -60 ± 4 % and -19 ± 17 %, respectively; at the same time points, 100 μm ACh reduced microsomal eNOS content by -38 ± 9 %, -61 ± 16 % and -40 ± 18 %, respectively (n = 4-5). In all cases, microsomal Cav-1 content did not change. The close ACh concentration dependence and the concomitance between eNOS subcellular redistribution and NO release support the concept that eNOS translocation from the plasma membrane is part of an activation mechanism that induces NO-dependent vasodilatation in vivo. PMID:12411531
Wang, Mingming; Chen, Minchun; Ding, Yi; Zhu, Zhihui; Zhang, Yikai; Wei, Peifeng; Wang, Jingwen; Qiao, Yi; Li, Liang; Li, Yuwen; Wen, Aidong
2015-01-01
Vascular endothelial cells play an important role in modulating anti-thrombus and maintaining the natural function of vascular by secreting many active substances. β-boswellic acid (β-BA) is an active triterpenoid compound from the extract of boswellia serrate. In this study, it is demonstrated that β-BA ameliorates plasma coagulation parameters, protects endothelium from blood stasis induced injury and prevents blood stasis induced impairment of endothelium-dependent vasodilatation. Moreover, it is found that β-BA significantly increases nitric oxide (NO) and cyclic guanosine 3’, 5’-monophosphate (cGMP) levels in carotid aortas of blood stasis rats. To stimulate blood stasis-like conditions in vitro, human umbilical vein endothelial cells (HUVECs) were exposed to transient oxygen and glucose deprivation (OGD). Treatment of β-BA significantly increased intracellular NO level. Western blot and immunofluorescence as well as immunohistochemistry reveal that β-BA increases phosphorylation of enzyme nitric oxide synthase (eNOS) at Ser1177. In addition, β-BA mediated endothelium-dependent vasodilatation can be markedly blocked by eNOS inhibitor L-NAME in blood stasis rats. In OGD treated HUEVCs, the protective effect of β-BA is attenuated by knockdown of eNOS. In conclusion, the above findings provide convincing evidence for the protective effects of β-BA on blood stasis induced endothelial dysfunction by eNOS signaling pathway. PMID:26482008
Changes in eNOS phosphorylation contribute to increased arteriolar NO release during juvenile growth
Kang, Lori S.; Nurkiewicz, Timothy R.; Wu, Guoyao
2012-01-01
Nitric oxide (NO) mediates a major portion of arteriolar endothelium-dependent dilation in adults, but indirect evidence has suggested that NO contributes minimally to these responses in the young. Isolated segments of arterioles were studied in vitro to verify this age-related increase in NO release and investigate the mechanism by which it occurs. Directly measured NO release induced by ACh or the Ca2+ ionophore A-23187 was five- to sixfold higher in gracilis muscle arterioles from 42- to 46-day-old (juvenile) rats than in those from 25- to 28-day-old (weanling) rats. There were no differences between groups in arteriolar endothelial NO synthase (eNOS) expression or tetrahydrobiopterin levels, and arteriolar l-arginine levels were lower in juvenile vessels than in weanling vessels (104 ± 6 vs.126 ± 3 pmol/mg). In contrast, agonist-induced eNOS Thr495 dephosphorylation and eNOS Ser1177 phosphorylation (events required for maximal activity) were up to 30% and 65% greater, respectively, in juvenile vessels. Juvenile vessels did not show increased expression of enzymes that mediate these events [protein phosphatases 1 and 2A and PKA and PKB (Akt)] or heat shock protein 90, which facilitates Ser1177 phosphorylation. However, agonist-induced colocalization of heat shock protein 90 with eNOS was 34–66% greater in juvenile vessels than in weanling vessels, and abolition of this difference with geldanamycin also abolished the difference in Ser1177 phosphorylation between groups. These findings suggest that growth-related increases in arteriolar NO bioavailability may be due at least partially to changes in the regulation of eNOS phosphorylation and increased signaling activity, with no change in the abundance of eNOS signaling proteins. PMID:22140037
Amour, Julien; Brzezinska, Anna K.; Weihrauch, Dorothee; Billstrom, Amie R.; Zielonka, Jacek; Krolikowski, John G.; Bienengraeber, Martin W.; Warltier, David C.; Pratt, Philip F.; Kersten, Judy R.
2009-01-01
Background Nitric oxide is known to be essential for early anesthetic (APC) and ischemic (IPC) preconditioning of myocardium. Heat shock protein 90 (Hsp90) regulates endothelial nitric oxide synthase (eNOS) activity. In this study, we tested the hypothesis that Hsp90-eNOS interactions modulate APC and IPC. Methods Myocardial infarct size was measured in rabbits after coronary occlusion and reperfusion in the absence or presence of preconditioning with 30 min of isoflurane (APC) or 5 min of coronary artery occlusion (IPC), and with or without pre-treatment with geldanamycin or radicicol, two chemically distinct Hsp90 inhibitors, or NG-nitro-L-arginine methylester, a non-specific NOS inhibitor. Isoflurane-dependent nitric oxide production was measured (ozone chemiluminescence) in human coronary artery endothelial cells or mouse cardiomyocytes, in the absence or presence of Hsp90 inhibitors or NG-nitro-L-arginine methylester. Interactions between Hsp90 and eNOS, and eNOS activation were assessed with immunoprecipitation, immunoblotting, and confocal microscopy. Results APC and IPC decreased infarct size (50% and 59%, respectively) and this action was abolished by Hsp90 inhibitors. NG-nitro-L-arginine methylester blocked APC but not IPC. Isoflurane increased nitric oxide production in human coronary artery endothelial cells, concomitantly with an increase in Hsp90-eNOS interaction (immunoprecipitation, immunoblotting, and immunohistochemistry). Pretreatment with Hsp90 inhibitors abolished isoflurane-dependent nitric oxide production and decreased Hsp90-eNOS interactions. Isoflurane did not increase nitric oxide production in mouse cardiomyocytes and eNOS was below the level of detection. Conclusion The results indicate that Hsp90 plays a critical role in mediating APC and IPC through protein-protein interactions, and suggest that endothelial cells are important contributors to nitric oxide-mediated signalling during APC. PMID:19194158
Suksawat, Manida; Techasen, Anchalee; Namwat, Nisana; Yongvanit, Puangrat; Khuntikeo, Narong; Titapun, Attapon; Koonmee, Supinda; Loilome, Watcharin
2017-08-01
Endothelial nitric oxide synthase (eNOS) is an isoform of the enzyme nitric oxide synthase (NOS) which is constitutively expressed in endothelial cells and plays important roles in vasodilation. We previously reported the importance of eNOS activation in cholangiocarcinoma (CCA) tissues and cell lines. The present study aims to investigate the relative abundance of eNOS and phosphorylated eNOS (P-eNOS) and their upstream regulators VEGFR3, VEGFC, EphA3 and ephrin-A1, in the Opisthorchis viverrini (Ov)/N-nitrosodimethylamine (NDMA)-induced hamster CCA model and in human CCA by semiquantitative immunohistochemical analysis of the relevant tissues. Results from the hamster model suggested an increase in eNOS and P-eNOS and upstream regulators during CCA genesis. In human CCA, high immunohistochemical staining intensity of all investigated proteins was associated with the presence of metastasis. A pairwise analysis of the staining data for eNOS and its upstream regulators showed that a concurrent increase in eNOS/VEGFR3, eNOS/ephrin-A1, eNOS/VEGFC and eNOS/EphA3 was significantly associated with metastasis. An increase in eNOS/VEGFR3, eNOS/ephrin-A1 was also associated with non-papillary type CCA. Additionally, an increase in eNOS and P-eNOS was significantly correlated with a high micro-vessel level (P=0.04). Our results indicate that the development of CCA involves upregulation of eNOS and P-eNOS and their regulators. This may drive angiogenesis and metastasis in CCA. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Motta-Mejia, Carolina; Kandzija, Neva; Zhang, Wei; Mhlomi, Vuyane; Cerdeira, Ana Sofia; Burdujan, Alexandra; Tannetta, Dionne; Dragovic, Rebecca; Sargent, Ian L; Redman, Christopher W; Kishore, Uday; Vatish, Manu
2017-08-01
Preeclampsia, a multisystem hypertensive disorder of pregnancy, is associated with increased systemic vascular resistance. Placentae from patients with preeclampsia have reduced levels of endothelial nitric oxide synthase (eNOS) and, thus, less nitric oxide (NO). Syncytiotrophoblast extracellular vesicles (STBEV), comprising microvesicles (STBMV) and exosomes, carry signals from the syncytiotrophoblast to the mother. We hypothesized that STBEV-bound eNOS (STBEV-eNOS), capable of producing NO, are released into the maternal circulation. Dual-lobe ex vivo placental perfusion and differential centrifugation was used to isolate STBEV from preeclampsia (n=8) and normal pregnancies (NP; n=11). Plasma samples of gestational age-matched preeclampsia and NP (n=6) were used to isolate circulating STBMV. STBEV expressed placental alkaline phosphatase, confirming placental origin. STBEV coexpressed eNOS, but not inducible nitric oxide synthase, confirmed using Western blot, flow cytometry, and immunodepletion. STBEV-eNOS produced NO, which was significantly inhibited by N G -nitro-l-arginine methyl ester (eNOS inhibitor; P <0.05) but not by N -(3-(aminomethyl) bezyl) acetamidine) (inducible nitric oxide synthase inhibitor). STBEV-eNOS catalytic activity was confirmed by visualizing eNOS dimerization. STBEV-eNOS was more abundant in uterine vein compared with peripheral blood, indicating placental origin. STBEV isolated from preeclampsia-perfused placentae had lower levels of STBEV-eNOS (STBMV; P <0.05) and overall lower NO activity (STBMV, not significant; syncytiotrophoblast extracellular exosomes, P <0.05) compared with those from NP. Circulating plasma STBMV from preeclampsia women had lower STBEV-eNOS expression compared with that from NP women ( P <0.01). This is the first observation of functional eNOS expressed on STBEV from NP and preeclampsia placentae, as well as in plasma. The lower STBEV-eNOS NO production seen in preeclampsia may contribute to the decreased NO bioavailability in this disease. © 2017 The Authors.
2017-01-01
Endothelial nitric-oxide synthase (eNOS) and its bioactive product, nitric oxide (NO), mediate many endothelial cell functions, including angiogenesis and vascular permeability. For example, vascular endothelial growth factor (VEGF)-mediated angiogenesis is inhibited upon reduction of NO bioactivity both in vitro and in vivo. Moreover, genetic disruption or pharmacological inhibition of eNOS attenuates angiogenesis during tissue repair, resulting in delayed wound closure. These observations emphasize that eNOS-derived NO can promote angiogenesis. Intriguingly, eNOS activity is regulated by nitric-oxide synthase trafficking inducer (NOSTRIN), which sequesters eNOS, thereby attenuating NO production. This has prompted significant interest in NOSTRIN's function in endothelial cells. We show here that NOSTRIN affects the functional transcriptome of endothelial cells by down-regulating several genes important for invasion and angiogenesis. Interestingly, the effects of NOSTRIN on endothelial gene expression were independent of eNOS activity. NOSTRIN also affected the expression of secreted cytokines involved in inflammatory responses, and ectopic NOSTRIN overexpression functionally restricted endothelial cell proliferation, invasion, adhesion, and VEGF-induced capillary tube formation. Furthermore, NOSTRIN interacted directly with TNF receptor-associated factor 6 (TRAF6), leading to the suppression of NFκB activity and inhibition of AKT activation via phosphorylation. Interestingly, TNF-α-induced NFκB pathway activation was reversed by NOSTRIN. We found that the SH3 domain of NOSTRIN is involved in the NOSTRIN-TRAF6 interaction and is required for NOSTRIN-induced down-regulation of endothelial cell proteins. These results have broad biological implications, as aberrant NOSTRIN expression leading to deactivation of the NFκB pathway, in turn triggering an anti-angiogenic cascade, might inhibit tumorigenesis and cancer progression. PMID:28235804
Fetterman, Jessica L.; Holbrook, Monica; Flint, Nir; Feng, Bihua; Bretón-Romero, Rosa; Linder, Erika A.; Berk, Brittany D.; Duess, Mai-Ann; Farb, Melissa G.; Gokce, Noyan; Shirihai, Orian S.; Hamburg, Naomi M.; Vita, Joseph A.
2016-01-01
Background Endothelial dysfunction contributes to cardiovascular disease in diabetes mellitus. Autophagy is a multistep mechanism for removal of damaged proteins and organelles from the cell. Under diabetic conditions, inadequate autophagy promotes cellular dysfunction and insulin resistance in non-vascular tissue. We hypothesized that impaired autophagy contributes to endothelial dysfunction in diabetes mellitus. Methods and Results We measured autophagy markers and endothelial nitric oxide synthase (eNOS) activation in freshly isolated endothelial cells from diabetic subjects (n=45) and non-diabetic controls (n=41). p62 levels were higher in cells from diabetics (34.2±3.6 vs. 20.0±1.6, P=0.001), indicating reduced autophagic flux. Bafilomycin inhibited insulin-induced activation of eNOS (−21±5% vs. 64±22%, P=0.003) in cells from controls, confirming that intact autophagy is necessary for eNOS signaling. In endothelial cells from diabetics, activation of autophagy with spermidine restored eNOS activation, suggesting that impaired autophagy contributes to endothelial dysfunction (P=0.01). Indicators of autophagy initiation including the number of LC3-bound puncta and beclin 1 expression were similar in diabetics and controls, whereas an autophagy terminal phase indicator, the lysosomal protein Lamp2a, was higher in diabetics. In endothelial cells under diabetic conditions, the beneficial effect of spermidine on eNOS activation was blocked by autophagy inhibitors bafilomycin or 3-methyladenine. Blocking the terminal stage of autophagy with bafilomycin increased p62 (P=0.01) in cells from diabetics to a lesser extent than in cells from controls (P=0.04), suggesting ongoing, but inadequate autophagic clearance. Conclusion Inadequate autophagy contributes to endothelial dysfunction in patients with diabetes and may be a target for therapy of diabetic vascular disease. PMID:26926601
Fetterman, Jessica L; Holbrook, Monica; Flint, Nir; Feng, Bihua; Bretón-Romero, Rosa; Linder, Erika A; Berk, Brittany D; Duess, Mai-Ann; Farb, Melissa G; Gokce, Noyan; Shirihai, Orian S; Hamburg, Naomi M; Vita, Joseph A
2016-04-01
Endothelial dysfunction contributes to cardiovascular disease in diabetes mellitus. Autophagy is a multistep mechanism for the removal of damaged proteins and organelles from the cell. Under diabetic conditions, inadequate autophagy promotes cellular dysfunction and insulin resistance in non-vascular tissue. We hypothesized that impaired autophagy contributes to endothelial dysfunction in diabetes mellitus. We measured autophagy markers and endothelial nitric oxide synthase (eNOS) activation in freshly isolated endothelial cells from diabetic subjects (n = 45) and non-diabetic controls (n = 41). p62 levels were higher in cells from diabetics (34.2 ± 3.6 vs. 20.0 ± 1.6, P = 0.001), indicating reduced autophagic flux. Bafilomycin inhibited insulin-induced activation of eNOS (64.7 ± 22% to -47.8 ± 8%, P = 0.04) in cells from controls, confirming that intact autophagy is necessary for eNOS signaling. In endothelial cells from diabetics, activation of autophagy with spermidine restored eNOS activation, suggesting that impaired autophagy contributes to endothelial dysfunction (P = 0.01). Indicators of autophagy initiation including the number of LC3-bound puncta and beclin 1 expression were similar in diabetics and controls, whereas an autophagy terminal phase indicator, the lysosomal protein Lamp2a, was higher in diabetics. In endothelial cells under diabetic conditions, the beneficial effect of spermidine on eNOS activation was blocked by autophagy inhibitors bafilomycin or 3-methyladenine. Blocking the terminal stage of autophagy with bafilomycin increased p62 (P = 0.01) in cells from diabetics to a lesser extent than in cells from controls (P = 0.04), suggesting ongoing, but inadequate autophagic clearance. Inadequate autophagy contributes to endothelial dysfunction in patients with diabetes and may be a target for therapy of diabetic vascular disease. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Li, Lei; Hisamoto, Koji; Kim, Kyung Hee; Haynes, M Page; Bauer, Philip M; Sanjay, Archana; Collinge, Mark; Baron, Roland; Sessa, William C; Bender, Jeffrey R
2007-10-16
Little is known about the tyrosine kinase c-Src's function in the systemic circulation, in particular its role in arterial responses to hormonal stimuli. In human aortic and venous endothelial cells, c-Src is indispensable for 17beta-estradiol (E2)-stimulated phosphatidylinositol 3-kinase/Akt/endothelial NO synthase (eNOS) pathway activation, a possible mechanism in E2-mediated vascular protection. Here we show that c-Src supports basal and E2-stimulated NO production and is required for E2-induced vasorelaxation in murine aortas. Only membrane c-Src is structurally and functionally involved in E2-induced eNOS activation. Independent of c-Src kinase activity, c-Src is associated with an N-terminally truncated estrogen receptor alpha variant (ER46) and eNOS in the plasma membrane through its "open" (substrate-accessible) conformation. In the presence of E2, c-Src kinase is activated by membrane ER46 and in turn phosphorylates ER46 for subsequent ER46 and c-Src membrane recruitment, the assembly of an eNOS-centered membrane macrocomplex, and membrane-initiated eNOS activation. Overall, these results provide insights into a critical role for the tyrosine kinase c-Src in estrogen-stimulated arterial responses, and in membrane-initiated rapid signal transduction, for which obligate complex assembly and localization require the c-Src substrate-accessible structure.
Tanigaki, Keiji; Chambliss, Ken L.; Yuhanna, Ivan S.; Sacharidou, Anastasia; Ahmed, Mohamed; Atochin, Dmitriy N.; Huang, Paul L.
2016-01-01
Modest elevations in C-reactive protein (CRP) are associated with type 2 diabetes. We previously revealed in mice that increased CRP causes insulin resistance and mice globally deficient in the CRP receptor Fcγ receptor IIB (FcγRIIB) were protected from the disorder. FcγRIIB is expressed in numerous cell types including endothelium and B lymphocytes. Here we investigated how endothelial FcγRIIB influences glucose homeostasis, using mice with elevated CRP expressing or lacking endothelial FcγRIIB. Whereas increased CRP caused insulin resistance in mice expressing endothelial FcγRIIB, mice deficient in the endothelial receptor were protected. The insulin resistance with endothelial FcγRIIB activation was due to impaired skeletal muscle glucose uptake caused by attenuated insulin delivery, and it was associated with blunted endothelial nitric oxide synthase (eNOS) activation in skeletal muscle. In culture, CRP suppressed endothelial cell insulin transcytosis via FcγRIIB activation and eNOS antagonism. Furthermore, in knock-in mice harboring constitutively active eNOS, elevated CRP did not invoke insulin resistance. Collectively these findings reveal that by inhibiting eNOS, endothelial FcγRIIB activation by CRP blunts insulin delivery to skeletal muscle to cause insulin resistance. Thus, a series of mechanisms in endothelium that impairs insulin movement has been identified that may contribute to type 2 diabetes pathogenesis. PMID:27207525
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yanagisawa, Y.; Nishimura, H.; Matsuki, H.
Establishment of an exposure-effect relationship was attempted between personal nitrogen dioxide (NO/sub 2/) exposure and urinary hydroxyproline to creatinine ratio of approximately 800 adult women, who were mothers of primary schoolchildren living in two communities around Tokyo. Daily average of the personal NO/sub 2/ exposure (ENO/sub 2/) was measured during wintertime by a newly developed personal monitor exposed for 24 hours. The hydroxyproline to creatinine ratio (HOP:C) in the urine sample collected early in the morning of the day for ENO/sub 2/ measurement was used as a biochemical indicator of the health effect of NO/sub 2/ exposure. The HOP:C wasmore » found to have significant correlation with ENO/sub 2/ and number of cigarettes smoked actively and passively. ENO/sub 2/, however, had no correlation with the intensity of the smoking levels; they might affect HOP:C independently. Stepwise multiple regression analysis revealed that HOP:C could be predicted by ENO/sub 2/ and smoking habits at a high confidence level. The regression analysis of the active smokers group indicated that a few cigarettes was enough to increase the HOP:C, while in the case of passive smoking, HOP:C increased proportionally to the number of cigarettes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun Yang; Sumi, Daigo; Kumagai, Yoshito
2006-07-01
Although 2,4,6-trinitrotoluene (TNT) has been found to uncouple nitric oxide synthase (NOS), thereby leading to reactive oxygen species (ROS), cellular response against TNT still remains unclear. Exposure of bovine aortic endothelial cells (BAECs) to TNT (100 {mu}M) resulted in serine 1179 phosphorylation of endothelial NOS (eNOS). With specific inhibitors (wortmannin and LY294002), we found that PI3K/Akt signaling participated in the eNOS phosphorylation caused by TNT, whereas the ERK pathway did not. ROS were generated following exposure of BAECs to TNT. However, TNT-mediated phosphorylation of either eNOS or Akt was drastically blocked by NAC and PEG-CAT. Interestingly, pretreatment with apocynin, amore » specific inhibitor for NADPH oxidase, diminished the phosphorylation of eNOS and Akt. These results suggest that TNT affects NADPH oxidase, thereby generating hydrogen peroxide, which is capable of activating PI3K/Akt signaling associated with eNOS Ser 1179 phosphorylation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Jinah; Lee, Hyun-Il; Chang, Young-Sun
2007-05-25
A natural ligand of peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}), 15-deoxy-{delta}{sup 12,14}-prostaglandin J{sub 2} (15d-PGJ{sub 2}), decreases endothelial nitric oxide synthase (eNOS) expression by an unknown mechanism. Here we found that 15d-PGJ{sub 2}-induced eNOS reduction is inversely associated with heat shock protein 70 (HSP70) induction in endothelial cells. Treatment of cells with 15d-PGJ{sub 2} decreased eNOS protein expression in a concentration- and time-dependent manner, but independently of PPAR{gamma} with no effect on mRNA levels. Although 15d-PGJ{sub 2} elicited endothelial apoptosis, inhibition of both pan-caspases and cathepsins failed to reverse reduction of eNOS protein. Interestingly, we observed that 15d-PGJ{sub 2} induced HSP70more » in a dose-dependent manner. Immunoprecipitation and heat shock treatment demonstrated that eNOS reduction was strongly related to HSP70 induction. Cellular fractionation revealed that treatment with 15d-PGJ{sub 2} increased eNOS distribution 2.5-fold from soluble to insoluble fractions. These findings provide new insights into mechanisms whereby eNOS regulation by 15d-PGJ{sub 2} is related to HSP70 induction.« less
Guillou, Clément; Derambure, Céline; Fréret, Manuel; Verdet, Mathieu; Avenel, Gilles; Golinski, Marie-Laure; Sabourin, Jean-Christophe; Loarer, François Le; Adriouch, Sahil; Boyer, Olivier; Lequerré, Thierry; Vittecoq, Olivier
2015-01-01
Objective To evaluate the ability of the glycolytic enzyme alpha-enolase (ENO1) or its immunodominant peptide (pEP1) to reduce the severity of CIA in DBA/1 mice when injected in a prophylactic way. Methods Mice were treated with mouse ENO1 or pEP1 one day prior to collagen II immunization. Clinical assessment was evaluated using 4 parameters (global and articular scores, ankle thickness and weight). Titers of serum anti-ENO1, anti-cyclic citrullinated peptides (anti-CCP) and anti-CII (total IgG and IgG1/IgG2a isotypes) antibodies were measured by ELISA at different time-points. Disease activity was assessed by histological analysis of both anterior and hind paws at the end of experimentation. Results Prophylactic injection of 100 μg of ENO1 reduced severity of CIA. Serum levels of anti-CII antibodies were reduced in ENO1-treated mice. Concordantly, ENO1-treated mice joints presented less severe histological signs of arthritis. ENO1 did not induce a shift toward a Th2 response since IgG1/IgG2a ratio of anti-CII antibodies remained unchanged and IL-4 serum levels were similar to those measured in the control group. Conclusions Pre-immunization with ENO1 or its immunodominant peptide pEP1 reduces CIA severity at the clinical, immunological and histological levels. Effects of pEP1 were less pronounced. This immunomodulatory effect is associated with a reduction in anti-CII antibodies production but is not due to a Th1/Th2 shift. PMID:26302382
Musicki, Biljana; Liu, Tongyun; Lagoda, Gwen A.; Strong, Travis D.; Sezen, Sena F.; Johnson, Justin M.; Burnett, Arthur L.
2010-01-01
INTRODUCTION Hypercholesterolemia induces erectile dysfunction (ED) mostly by increasing oxidative stress and impairing endothelial function in the penis, but the mechanisms regulating reactive oxygen species (ROS) production in the penis are not understood. AIMS We evaluated whether hypercholesterolemia activates nicotinamide adenine dinucleotide phosphate (NAD[P]H) oxidase in the penis, providing an initial source of ROS to induce endothelial nitric oxide synthase (eNOS) uncoupling and endothelial dysfunction resulting in ED. METHODS Low-density-lipoprotein receptor (LDLR)–null mice were fed Western diet for 4 weeks to induce early-stage hyperlipidemia. Wild type (WT) mice fed regular chow served as controls. Mice received NAD(P)H oxidase inhibitor apocynin (10 mM in drinking water) or vehicle. Erectile function was assessed in response to cavernous nerve electrical stimulation. Markers of endothelial function (phospho [P]-vasodilator-stimulated-protein [VASP]-Ser-239), oxidative stress (4-hydroxy-2-nonenal [HNE]), sources of ROS (eNOS uncoupling and NAD[P]H oxidase subunits p67phox, p47phox, and gp91phox), P-eNOS-Ser-1177, and eNOS were measured by Western blot in penes. MAIN OUTCOME MEASURES Molecular mechanisms of ROS generation and endothelial dysfunction in hypercholesterolemia-induced ED. RESULTS Erectile response was significantly (P<0.05) reduced in hypercholesterolemic LDLR-null mice compared to WT mice. Relative to WT mice, hypercholesterolemia increased (P<0.05) protein expressions of NAD(P)H oxidase subunits p67phox, p47phox and gp91phox, eNOS uncoupling, and 4-HNE-modified proteins, and reduced (P<0.05) P-VASP-Ser-239 expression in the penis. Apocynin treatment of LDLR-null mice preserved (P<0.05) maximal intracavernosal pressure, and reversed (P < 0.05) the abnormalities in protein expressions of gp67phox and gp47phox, 4-HNE, P-VASP-Ser-239, and eNOS uncoupling in the penis. Apocynin treatment of WT mice did not affect any of these parameters. Protein expressions of P-eNOS-Ser-1177 and total eNOS were unaffected by hypercholesterolemia. CONCLUSION Activated NAD(P)H oxidase in the penis is an initial source of oxidative stress resulting in eNOS uncoupling, thus providing a mechanism of eNOS uncoupling and endothelial dysfunction in hypercholesterolemia-induced ED. PMID:20626609
Bai, Feng; Pang, Xue-Fen; Zhang, Li-Hui; Wang, Ning-Ping; McKallip, Robert J; Garner, Ronald E; Zhao, Zhi-Qing
2016-05-15
This study tested the hypothesis that angiotensin II (Ang II) AT1 receptor is involved in development of hypertension and cardiac fibrosis via modifying ACE2 activity, eNOS expression and CD44-hyaluronan interaction. Male Sprague-Dawley rats were subjected to Ang II infusion (500ng/kg/min) using osmotic minipumps up to 4weeks and the AT1 receptor blocker, telmisartan was administered by gastric gavage (10mg/kg/day) during Ang II infusion. Our results indicated that Ang II enhances AT1 receptor, downregulates AT2 receptor, ACE2 activity and eNOS expression, and increases CD44 expression and hyaluronidase activity, an enzyme for hyaluronan degradation. Further analyses revealed that Ang II increases blood pressure and augments vascular/interstitial fibrosis. Comparison of the Ang II group, treatment with telmisartan significantly increased ACE2 activity and eNOS expression in the intracardiac vessels and intermyocardium. These changes occurred in coincidence with decreased blood pressure. Furthermore, the locally-expressed AT1 receptor was downregulated, as evidenced by an increased ratio of the AT2 over AT1 receptor (1.4±0.4% vs. 0.4±0.1% in Ang II group, P<0.05). Along with these modulations, telmisartan inhibited membrane CD44 expression and hyaluronidase activity, decreased populations of macrophages and myofibroblasts, and reduced expression of TGFβ1 and Smads. Collagen I synthesis and tissue fibrosis were attenuated as demonstrated by the less extensive collagen-rich area. These results suggest that the AT1 receptor is involved in development of hypertension and cardiac fibrosis. Selective activating ACE2/eNOS and inhibiting CD44/HA interaction might be considered as the therapeutic targets for attenuating Ang II induced deleterious cardiovascular effects. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hien, Tran Thi; Kim, Nak Doo; Pokharel, Yuba Raj
2010-08-01
We previously showed that ginsenosides increase nitric oxide (NO) production in vascular endothelium and that ginsenoside Rg3 (Rg3) is the most active one among ginseng saponins. However, the mechanism for Rg3-mediated nitric oxide production is still uncertain. In this study, we determined whether Rg3 affects phosphorylation and expression of endothelial nitric oxide synthase (eNOS) in ECV 304 human endothelial cells. Rg3 increased both the phosphorylation and the expression of eNOS in a concentration-dependent manner and a maximal effect was found at 10 {mu}g/ml of Rg3. The enzyme activities of phosphatidylinositol 3-kinase (PI3-kinase), c-Jun N-terminal kinase (JNK), and p38 kinase weremore » enhanced as were estrogen receptor (ER)- and glucocorticoid receptor (GR)-dependent reporter gene transcriptions in Rg3-treated endothelial cells. Rg3-induced eNOS phosphorylation required the ER-mediated PI3-kinase/Akt pathway. Moreover, Rg3 activates AMP-activated protein kinase (AMPK) through up-regulation of CaM kinase II and Rg3-stimulated eNOS phosphorylation was reversed by AMPK inhibition. The present results provide a mechanism for Rg3-stimulated endothelial NO production.« less
Zgheel, Faraj; Alhosin, Mahmoud; Rashid, Sherzad; Burban, Mélanie; Auger, Cyril; Schini-Kerth, Valérie B.
2014-01-01
Aims Omega-3 fatty acid products containing eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have vasoprotective effects, in part, by stimulating the endothelial formation of nitric oxide (NO). This study determined the role of the EPA:DHA ratio and amount, and characterized the mechanism leading to endothelial NO synthase (eNOS) activation. Methods and Results EPA:DHA 6∶1 and 9∶1 caused significantly greater endothelium-dependent relaxations in porcine coronary artery rings than EPA:DHA 3∶1, 1∶1, 1∶3, 1∶6, 1∶9, EPA and DHA alone, and EPA:DHA 6∶1 with a reduced EPA + DHA amount, which were inhibited by an eNOS inhibitor. Relaxations to EPA:DHA 6∶1 were insensitive to cyclooxygenase inhibition, and reduced by inhibitors of either oxidative stress, Src kinase, PI3-kinase, p38 MAPK, MEK, or JNK. EPA:DHA 6∶1 induced phosphorylation of Src, Akt, p38 MAPK, ERK, JNK and eNOS; these effects were inhibited by MnTMPyP. EPA:DHA 6∶1 induced the endothelial formation of ROS in coronary artery sections as assessed by dihydroethidium, and of superoxide anions and hydrogen peroxide in cultured endothelial cells as assessed by electron spin resonance with the spin probe CMH, and the Amplex Red based assay, respectively. Conclusion Omega-3 fatty acids cause endothelium-dependent NO-mediated relaxations in coronary artery rings, which are dependent on the EPA:DHA ratio and amount, and involve an intracellular activation of the redox-sensitive PI3-kinase/Akt and MAPKs pathways to activate eNOS. PMID:25133540
Zgheel, Faraj; Alhosin, Mahmoud; Rashid, Sherzad; Burban, Mélanie; Auger, Cyril; Schini-Kerth, Valérie B
2014-01-01
Omega-3 fatty acid products containing eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have vasoprotective effects, in part, by stimulating the endothelial formation of nitric oxide (NO). This study determined the role of the EPA:DHA ratio and amount, and characterized the mechanism leading to endothelial NO synthase (eNOS) activation. EPA:DHA 6∶1 and 9∶1 caused significantly greater endothelium-dependent relaxations in porcine coronary artery rings than EPA:DHA 3∶1, 1∶1, 1∶3, 1∶6, 1∶9, EPA and DHA alone, and EPA:DHA 6∶1 with a reduced EPA + DHA amount, which were inhibited by an eNOS inhibitor. Relaxations to EPA:DHA 6∶1 were insensitive to cyclooxygenase inhibition, and reduced by inhibitors of either oxidative stress, Src kinase, PI3-kinase, p38 MAPK, MEK, or JNK. EPA:DHA 6∶1 induced phosphorylation of Src, Akt, p38 MAPK, ERK, JNK and eNOS; these effects were inhibited by MnTMPyP. EPA:DHA 6∶1 induced the endothelial formation of ROS in coronary artery sections as assessed by dihydroethidium, and of superoxide anions and hydrogen peroxide in cultured endothelial cells as assessed by electron spin resonance with the spin probe CMH, and the Amplex Red based assay, respectively. Omega-3 fatty acids cause endothelium-dependent NO-mediated relaxations in coronary artery rings, which are dependent on the EPA:DHA ratio and amount, and involve an intracellular activation of the redox-sensitive PI3-kinase/Akt and MAPKs pathways to activate eNOS.
Chow‐Shi‐Yée, Mélanie; Briard, Jennie G.; Grondin, Mélanie; Averill‐Bates, Diana A.
2016-01-01
Abstract Efficient cryopreservation of cells at ultralow temperatures requires the use of substances that help maintain viability and metabolic functions post‐thaw. We are developing new technology where plant proteins are used to substitute the commonly‐used, but relatively toxic chemical dimethyl sulfoxide. Recombinant forms of four structurally diverse wheat proteins, TaIRI‐2 (ice recrystallization inhibition), TaBAS1 (2‐Cys peroxiredoxin), WCS120 (dehydrin), and TaENO (enolase) can efficiently cryopreserve hepatocytes and insulin‐secreting INS832/13 cells. This study shows that TaIRI‐2 and TaENO are internalized during the freeze–thaw process, while TaBAS1 and WCS120 remain at the extracellular level. Possible antifreeze activity of the four proteins was assessed. The “splat cooling” method for quantifying ice recrystallization inhibition activity (a property that characterizes antifreeze proteins) revealed that TaIRI‐2 and TaENO are more potent than TaBAS1 and WCS120. Because of their ability to inhibit ice recrystallization, the wheat recombinant proteins TaIRI‐2 and TaENO are promising candidates and could prove useful to improve cryopreservation protocols for hepatocytes and insulin‐secreting cells, and possibly other cell types. TaENO does not have typical ice‐binding domains, and the TargetFreeze tool did not predict an antifreeze capacity, suggesting the existence of nontypical antifreeze domains. The fact that TaBAS1 is an efficient cryoprotectant but does not show antifreeze activity indicates a different mechanism of action. The cryoprotective properties conferred by WCS120 depend on biochemical properties that remain to be determined. Overall, our results show that the proteins' efficiencies vary between cell types, and confirm that a combination of different protection mechanisms is needed to successfully cryopreserve mammalian cells. PMID:26889747
Chow-Shi-Yée, Mélanie; Briard, Jennie G; Grondin, Mélanie; Averill-Bates, Diana A; Ben, Robert N; Ouellet, François
2016-05-01
Efficient cryopreservation of cells at ultralow temperatures requires the use of substances that help maintain viability and metabolic functions post-thaw. We are developing new technology where plant proteins are used to substitute the commonly-used, but relatively toxic chemical dimethyl sulfoxide. Recombinant forms of four structurally diverse wheat proteins, TaIRI-2 (ice recrystallization inhibition), TaBAS1 (2-Cys peroxiredoxin), WCS120 (dehydrin), and TaENO (enolase) can efficiently cryopreserve hepatocytes and insulin-secreting INS832/13 cells. This study shows that TaIRI-2 and TaENO are internalized during the freeze-thaw process, while TaBAS1 and WCS120 remain at the extracellular level. Possible antifreeze activity of the four proteins was assessed. The "splat cooling" method for quantifying ice recrystallization inhibition activity (a property that characterizes antifreeze proteins) revealed that TaIRI-2 and TaENO are more potent than TaBAS1 and WCS120. Because of their ability to inhibit ice recrystallization, the wheat recombinant proteins TaIRI-2 and TaENO are promising candidates and could prove useful to improve cryopreservation protocols for hepatocytes and insulin-secreting cells, and possibly other cell types. TaENO does not have typical ice-binding domains, and the TargetFreeze tool did not predict an antifreeze capacity, suggesting the existence of nontypical antifreeze domains. The fact that TaBAS1 is an efficient cryoprotectant but does not show antifreeze activity indicates a different mechanism of action. The cryoprotective properties conferred by WCS120 depend on biochemical properties that remain to be determined. Overall, our results show that the proteins' efficiencies vary between cell types, and confirm that a combination of different protection mechanisms is needed to successfully cryopreserve mammalian cells. © 2016 The Protein Society.
G894T endothelial nitric oxide synthase polymorphism and ischemic stroke in Morocco
Diakite, Brehima; Hamzi, Khalil; Slassi, Ilham; EL Yahyaoui, Mohammed; EL Alaoui, Moulay M.F.; Habbal, Rachida; Sellama, Nadifi
2014-01-01
Nitric oxide plays a major role in the regulation of cerebral blood flow and loss of its function leads to alteration of the vascular relaxation given its central role in the physiology of the vascular system. G894T eNOS polymorphism could have adverse effects on the expression and activity of endothelial nitric oxide synthase, which can result in functional impairment of the endothelium and contribute to the development of ischemic stroke in the different models of transmission. In this study, genotyping with PCR-RFLP and HRM (high resolution melting) methods were conducted on 165 ischemic stroke patients as well as 182 controls. The goal here was to compare genotyping with PCR-RLFP primer sequences of eNOS gene (size < 300 bp) to HRM. Our data suggests a statistically significant association between G894T eNOS polymorphism and ischemic stroke in recessive, dominant and additive models with P < 0.05 and odds ratio of 2.68 (1.08–6.70), 1.78 (1.16–2.73), and 1.71 (1.21–2.43) respectively. In sum, although the sample size is relatively small, it suggests that G894T eNOS polymorphism could be a potentially important genetic marker of ischemic stroke in the Moroccan population. Future studies should be conducted in this direction taking into consideration the functional activity of eNOS. PMID:25606419
Doboszyńska, Teresa; Andronowska, Aneta
2002-01-01
Abstract: Immunohistochemical localization and distribution of nitric oxide synthase (eNOS), endothelin (ET-1) and endothelin beta receptor (ETB-R) were investigated in precollector and collector lymph vessels in the broad ligament of the uterus during different phases of the estrous cycle in pigs. The polyclonal antibody for ET-1 and ETB-R and monoclonal antibody for eNOS isoform were used to perform observations on the light microscopic level. Immunoreactivities to ET-1, ETB-R and eNOS were observed in the endothelium of precollector and collector lymphangions but not in smooth muscle cells of the lymphatics examined. The staining for eNOS in the endothelial cells of all studied lymphatic vessels was stronger comparing to ET-1 and ETB-R. During the estrous cycle, only eNOS showed the correlation with the particular phases of the estrous cycle. The differences between ET-1 and ETB-R immunoreactivities were very slight and rather independent of the size or type of the lymphatic lymphangions and estrous cycle. The highest immunoreactivity level for eNOS was displayed by collector lymphangions with widened lumen in the follicular phase comparing to the precollector ones. During the luteal phase, a slight decrease in the reaction intensity was observed. The immunoreactivities for ET-1 in the endothelium of the studied vessels was not comparable with the presence or with the reactivity level of ETB-R. Optically stronger immunoreaction for ETB-R was observed in the cytoplasm of collector lymphangions in the follicular phase. eNOS, ET-1 and ETB-R were also present in the cytoplasm of the lymphatic valves. These results suggest that ET-1 and eNOS can play a role in the mechanisms regulating the vascular contractile activity, promoting lymph flow during the estrous cycle in the porcine broad ligament.
A central role of eNOS in the protective effect of wine against metabolic syndrome.
Leighton, Federico; Miranda-Rottmann, Soledad; Urquiaga, Inés
2006-01-01
The positive health effects derived from moderate wine consumption are pleiotropic. They appear as improvements in cardiovascular risk factors such as plasma lipids, haemostatic mechanisms, endothelial function and antioxidant defences. The active principles would be ethanol and mainly polyphenols. Results from our and other laboratories support the unifying hypothesis that the improvements in risk factors after red wine consumption are mediated by endothelial nitric oxide synthase (eNOS). Many genes are involved, but the participation of eNOS would be a constant feature. The metabolic syndrome is a cluster of metabolic risk factors associated with high risk of cardiovascular disease (CVD). The National Cholesterol Education Programmmes Adult Treatment Panel III (NCEPATP III) clinical definition of the metabolic syndrome requires the presence of at least three risk factors, from among abdominal obesity, high plasma triacylglycerols, low plasma HDL, high blood pressure and high fasting plasma glucose. The molecular mechanisms responsible for the metabolic syndrome are not known. Since metabolic syndrome apparently affects 10-30% of the population in the world, research on its pathogenesis and control is needed. The recent finding that eNOS knockout mice present a cluster of cardiovascular risk factors comparable to those of the metabolic syndrome suggests that defects in eNOS function may cause human metabolic syndrome. These mice are hypertensive, insulin resistant and dyslipidemic. Further support for a pathogenic role of eNOS comes from the finding in humans that eNOS polymorphisms associate with insulin resistance and diabetes, with hypertension, with inflammatory and oxidative stress markers and with albuminuria. So, the data sustain the hypothesis that eNOS enhancement should reduce metabolic syndrome incidence and its consequences. Therefore red wine, since it enhances eNOS function, should be considered as a potential tool for the control of metabolic syndrome. This hypothesis is supported by epidemiological observations and needs experimental validation in human intervention studies. Copyright (c) 2005 John Wiley & Sons, Ltd.
A PP2A-mediated feedback mechanism controls Ca2+-dependent NO synthesis under physiological oxygen.
Keeley, Thomas P; Siow, Richard C M; Jacob, Ron; Mann, Giovanni E
2017-12-01
Intracellular O 2 is a key regulator of NO signaling, yet most in vitro studies are conducted in atmospheric O 2 levels, hyperoxic with respect to the physiologic milieu. We investigated NO signaling in endothelial cells cultured in physiologic (5%) O 2 and stimulated with histamine or shear stress. Culture of cells in 5% O 2 (>5 d) decreased histamine- but not shear stress-stimulated endothelial (e)NOS activity. Unlike cells adapted to a hypoxic environment (1% O 2 ), those cultured in 5% O 2 still mobilized sufficient Ca 2+ to activate AMPK. Enhanced expression and membrane targeting of PP2A-C was observed in 5% O 2 , resulting in greater interaction with eNOS in response to histamine. Moreover, increased dephosphorylation of eNOS in 5% O 2 was Ca 2+ -sensitive and reversed by okadaic acid or PP2A-C siRNA. The present findings establish that Ca 2+ mobilization stimulates both NO synthesis and PP2A-mediated eNOS dephosphorylation, thus constituting a novel negative feedback mechanism regulating eNOS activity not present in response to shear stress. This, coupled with enhanced NO bioavailability, underpins differences in NO signaling induced by inflammatory and physiologic stimuli that are apparent only in physiologic O 2 levels. Furthermore, an explicit delineation between physiologic normoxia and genuine hypoxia is defined here, with implications for our understanding of pathophysiological hypoxia.-Keeley, T. P., Siow, R. C. M., Jacob, R., Mann, G. E. A PP2A-mediated feedback mechanism controls Ca 2+ -dependent NO synthesis under physiological oxygen. © The Author(s).
NASA Technical Reports Server (NTRS)
Go, Y. M.; Levonen, A. L.; Moellering, D.; Ramachandran, A.; Patel, R. P.; Jo, H.; Darley-Usmar, V. M.
2001-01-01
Oxidized low-density lipoprotein (oxLDL) is known to activate a number of signal transduction pathways in endothelial cells. Among these are the c-Jun NH(2)-terminal kinase (JNK), also known as stress-activated protein kinase, and extracellular signal-regulated kinase (ERK). These mitogen-activated protein kinases (MAP kinase) determine cell survival in response to environmental stress. Interestingly, JNK signaling involves redox-sensitive mechanisms and is activated by reactive oxygen and nitrogen species derived from both NADPH oxidases, nitric oxide synthases (NOS), peroxides, and oxidized low-density lipoprotein (oxLDL). The role of endothelial NOS (eNOS) in the activation of JNK in response to oxLDL has not been examined. Herein, we show that on exposure of endothelial cells to oxLDL, both ERK and JNK are activated through independent signal transduction pathways. A key role of eNOS activation through a phosphatidylinositol-3-kinase-dependent mechanism leading to phosphorylation of eNOS is demonstrated for oxLDL-dependent activation of JNK. Moreover, we show that activation of ERK by oxLDL is critical in protection against the cytotoxicity of oxLDL.
d'Uscio, Livius V; Smith, Leslie A; Katusic, Zvonimir S
2011-12-01
In the present study, we used the hph-1 mouse, which displays GTP-cyclohydrolase I (GTPCH I) deficiency, to test the hypothesis that loss of tetrahydrobiopterin (BH(4)) in conduit and small arteries activates compensatory mechanisms designed to protect vascular wall from oxidative stress induced by uncoupling of endothelial nitric oxide synthase (eNOS). Both GTPCH I activity and BH(4) levels were reduced in the aortas and small mesenteric arteries of hph-1 mice. However, the BH(4)-to-7,8-dihydrobiopterin ratio was significantly reduced only in hph-1 aortas. Furthermore, superoxide anion and 3-nitrotyrosine production were significantly enhanced in aortas but not in small mesenteric arteries of hph-1 mice. In contrast to the aorta, protein expression of copper- and zinc-containing superoxide dismutase (CuZnSOD) was significantly increased in small mesenteric arteries of hph-1 mice. Protein expression of catalase was increased in both aortas and small mesenteric arteries of hph-1 mice. Further analysis of endothelial nitric oxide synthase (eNOS)/cyclic guanosine monophosphate (cGMP) signaling demonstrated that protein expression of phosphorylated Ser(1177)-eNOS as well as basal cGMP levels and hydrogen peroxide was increased in hph-1 aortas. Increased production of hydrogen peroxide in hph-1 mice aortas appears to be the most likely mechanism responsible for phosphorylation of eNOS and elevation of cGMP. In contrast, upregulation of CuZnSOD and catalase in resistance arteries is sufficient to protect vascular tissue from increased production of reactive oxygen species generated by uncoupling of eNOS. The results of our study suggest that anatomical origin determines the ability of vessel wall to cope with oxidative stress induced by uncoupling of eNOS.
Koo, Hee Sun; Kim, Kwan Chang
2011-01-01
Background and Objectives Nitric oxide (NO) is a major endothelium dependent vasomediator and growth inhibitor. NO synthesis is catalyzed by endothelial nitric oxide synthase (eNOS), and NO can also produce peroxynitrite, which activates matrix metalloproteinases (MMPs). The purpose of this study was to determine the gene expression of eNOS and MMP-2 in the lungs of a rat model of pulmonary hypertension after bosentan treatment. Materials and Methods Six-week-old male Sprague-Dawley rats were treated as follows: control group, subcutaneous (sc) injection of saline; monocrotaline (MCT) group, sc injection of MCT (60 mg/kg); and bosentan group, sc injection of MCT (60 mg/kg) plus 20 mg/day bosentan orally. The rats were sacrificed after 1, 5, 7, 14 and 28 days. Results The right ventricle/(left ventricle+septum) ratio significantly increased in the MCT group compared to the control group on day 14 and 28. The expression of eNOS messenger ribonucleic acid was significantly increased in the MCT group compared to the control group on day 28. MMP-2 gene expression was significantly increased in the MCT-treated rats compared to the control group on day 5 and 28. Following bosentan treatment to reduce pulmonary hypertension, the expression levels of MMP-2 gene were significantly decreased on day 7 and 28. eNOS and tissue inhibitor of MMPs genes were also significantly decreased on day 28 after bosentan treatment. Conclusion These results suggest that elevated eNOS expression may be responsible for MMP-2 activation. The causal relationship between eNOS and MMP-2 and their role in pulmonary hypertension require further investigations. PMID:21430993
Murat, Nergiz; Korhan, Peyda; Kizer, Onur; Evcim, Sinem; Kefi, Aykut; Demir, Ömer; Gidener, Sedef; Atabey, Neşe; Esen, Ahmet Adil
2016-01-01
Oxidative stress dependent-decrease in nitric oxide (NO) bioavailability plays an integral role in hypercholesterolemia-induced erectile dysfunction (ED). Resveratrol has been demonstrated to exert beneficial effects against oxidative stress and improve NO bioavailability. The protective and restorative potentials of resveratrol on endothelium-dependent relaxations were evaluated in hypercholesterolemic rabbit corpus cavernosum (CC). Hypercholesterolemia was induced by administering 2% cholesterol diet (CD) (w/w) to the rabbits for 6 weeks. Two different protocols were applied to test the effects of resveratrol on hypercholesterolemia-induced ED. In Protocol-1 (P1), resveratrol was administrated to the rabbits simultaneously with CD in order to evaluate the protective effect, and for Protocol-2 (P2), resveratrol was administrated for 6 weeks after termination of CD in order to evaluate the restorative effect. Endothelium-dependent relaxations of CC were evaluated by using organ bath studies. In order to elucidate the possible molecular mechanisms, we measured endothelial NO synthase (eNOS) and phosphovasodilator-stimulated phosphoprotein (VASP) expressions and activations, NADPH oxidase, superoxide dismutase (SOD), and catalase (CAT) and glutathione peroxidase (GPx) activity in cavernosal tissues obtained at the end of the study. Resveratrol showed an improvement in the endothelium-dependent relaxation responses in vitro. We demonstrated significantly increased activatory-phosphorylation (p[S1177]-eNOS) and activated phosphovasodilator-stimulated phosphoprotein (phospho-VASP) levels, but reduced phosphorylation (p[T495]-eNOS) of eNOS and NADPH oxidase activity in the resveratrol-administered HC animals compared with hypercholesterolemic control rabbits in the P1. In the P2, resveratrol exhibited an improvement in endothelium-dependent relaxation responses and more pronounced effects on eNOS activation. Resveratrol administration, either simultaneously with HC diet or after HC, caused an improvement in the endothelium-dependent relaxation responses in the CC, suggesting its potential in both protective and restorative purposes in hypercholesterolemic rabbit CC. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
Casey, Darren P; Ueda, Kenichi; Wegman-Points, Lauren; Pierce, Gary L
2017-10-01
We determined if local increases in brachial artery shear during repetitive muscle contractions induce changes in protein expression of endothelial nitric oxide synthase (eNOS) and/or phosphorylated (p-)eNOS at Ser 1177 , the primary activation site on eNOS, in endothelial cells (ECs) of humans. Seven young male subjects (25 ± 1 yr) performed 20 separate bouts (3 min each) of rhythmic forearm exercise at 20% of maximum over a 2-h period. Each bout of exercise was separated by 3 min of rest. An additional six male subjects (24 ± 1 yr) served as time controls (no exercise). ECs were freshly isolated from the brachial artery using sterile J-wires through an arterial catheter at baseline and again after the 2-h exercise or time control period. Expression of eNOS or p-eNOS Ser 1177 in ECs was determined via immunofluorescence. Brachial artery mean shear rate was elevated compared with baseline and the time control group throughout the 2-h exercise protocol ( P < 0.001). p-eNOS Ser 1177 expression was increased 57% in ECs in the exercise group [0.06 ± 0.01 vs. 0.10 ± 0.02 arbitrary units (au), P = 0.02] but not in the time control group (0.08 ± 0.01 vs. 0.07 ± 0.01 au, P = 0.72). In contrast, total eNOS expression did not change in either the exercise (0.13 ± 0.04 vs. 0.12 ± 0.03 au) or time control (0.12 ± 0.03 vs. 0.11 ± 0.03 au) group ( P > 0.05 for both). Our novel results suggest that elevations in brachial artery shear increase eNOS Ser 1177 phosphorylation in the absence of changes in total eNOS in ECs of young healthy male subjects, suggesting that this model is sufficient to alter posttranslational modification of eNOS activity in vivo in humans. NEW & NOTEWORTHY Elevations in brachial artery shear in response to forearm exercise increased endothelial nitric oxide synthase Ser 1177 phosphorylation in brachial artery endothelial cells of healthy humans. Our present study provides the first evidence in humans that muscle contraction-induced increases in conduit arterial shear lead to in vivo posttranslational modification of endothelial nitric oxide synthase activity in endothelial cells. Copyright © 2017 the American Physiological Society.
Mees, Barend; Récalde, Alice; Loinard, Céline; Tempel, Dennie; Godinho, Marcia; Vilar, José; van Haperen, Rien; Lévy, Bernard; de Crom, Rini; Silvestre, Jean-Sébastien
2011-01-01
Bone marrow-derived mononuclear cells (BMMNCs) enhance postischemic neovascularization, and their therapeutic use is currently under clinical investigation. However, cardiovascular risk factors, including diabetes mellitus and hypercholesterolemia, lead to the abrogation of BMMNCs proangiogenic potential. NO has been shown to be critical for the proangiogenic function of BMMNCs, and increased endothelial NO synthase (eNOS) activity promotes vessel growth in ischemic conditions. We therefore hypothesized that eNOS overexpression could restore both the impaired neovascularization response and decreased proangiogenic function of BMMNCs in clinically relevant models of diabetes and hypercholesterolemia. Transgenic eNOS overexpression in diabetic, atherosclerotic, and wild-type mice induced a 1.5- to 2.3-fold increase in postischemic neovascularization compared with control. eNOS overexpression in diabetic or atherosclerotic BMMNCs restored their reduced proangiogenic potential in ischemic hind limb. This effect was associated with an increase in BMMNC ability to differentiate into cells with endothelial phenotype in vitro and in vivo and an increase in BMMNCs paracrine function, including vascular endothelial growth factor A release and NO-dependent vasodilation. Moreover, although wild-type BMMNCs treatment resulted in significant progression of atherosclerotic plaque in ischemic mice, eNOS transgenic atherosclerotic BMMNCs treatment even had antiatherogenic effects. Cell-based eNOS gene therapy has both proangiogenic and antiatherogenic effects and should be further investigated for the development of efficient therapeutic neovascularization designed to treat ischemic cardiovascular disease. PMID:21224043
Zamorano, Patricia; Marín, Natalie; Córdova, Francisco; Aguilar, Alejandra; Meininger, Cynthia; Boric, Mauricio P; Golenhofen, Nikola; Contreras, Jorge E; Sarmiento, José; Durán, Walter N; Sánchez, Fabiola A
2017-07-01
We tested the hypothesis that platelet-activating factor (PAF) induces S -nitrosylation of vasodilator-stimulated phosphoprotein (VASP) as a mechanism to reduce microvascular endothelial barrier integrity and stimulate hyperpermeability. PAF elevated S -nitrosylation of VASP above baseline levels in different endothelial cells and caused hyperpermeability. To ascertain the importance of endothelial nitric oxide synthase (eNOS) subcellular location in this process, we used ECV-304 cells transfected with cytosolic eNOS (GFPeNOSG2A) and plasma membrane eNOS (GFPeNOSCAAX). PAF induced S -nitrosylation of VASP in cells with cytosolic eNOS but not in cells wherein eNOS is anchored to the cell membrane. Reconstitution of VASP knockout myocardial endothelial cells with cysteine mutants of VASP demonstrated that S -nitrosylation of cysteine 64 is associated with PAF-induced hyperpermeability. We propose that regulation of VASP contributes to endothelial cell barrier integrity and to the onset of hyperpermeability. S -nitrosylation of VASP inhibits its function in barrier integrity and leads to endothelial monolayer hyperpermeability in response to PAF, a representative proinflammatory agonist. NEW & NOTEWORTHY Here, we demonstrate that S -nitrosylation of vasodilator-stimulated phosphoprotein (VASP) on C64 is a mechanism for the onset of platelet-activating factor-induced hyperpermeability. Our results reveal a dual role of VASP in endothelial permeability. In addition to its well-documented function in barrier integrity, we show that S -nitrosylation of VASP contributes to the onset of endothelial permeability. Copyright © 2017 the American Physiological Society.
Kataoka, Hiroki; Murakami, Ryuichiro; Numaguchi, Yasushi; Okumura, Kenji; Murohara, Toyoaki
2010-06-25
Decrease in endothelial nitric oxide synthase (eNOS) expression is one of the adverse outcomes of endothelial dysfunction. Tumor necrosis factor-alpha (TNF-alpha) is known to decrease eNOS expression and is an important mediator of endothelial dysfunction. We hypothesized that an angiotensin II type 1 (AT1) receptor blocker would improve endothelial function via not only inhibition of the angiotensin II signaling but also inhibition of the TNF-alpha-mediated signaling. Therefore we investigated whether an AT1 receptor blocker would restore the TNF-alpha-induced decrease in eNOS expression in cultured human umbilical vein endothelial cells (HUVEC). Pretreatment of HUVEC with an antioxidant (superoxide dismutase, alpha-tocopherol) or AT1 receptor blockers (olmesartan or candesartan) restored the TNF-alpha-dependent reduction of eNOS. The AT1 receptor blocker decreased the TNF-alpha-dependent increase of 8-isoprostane. The superoxide dismutase activities in HUVEC were stable during AT1 receptor blocker treatment, and the AT1 receptor blocker did not scavenge superoxide directly. The AT1 receptor blocker also decreased TNF-alpha-induced phosphorylation of I kappaB alpha and cell death. These results suggest that AT1 receptor blockers are able to ameliorate TNF-alpha-dependent eNOS reduction or cell injury by inhibiting superoxide production or nuclear factor-kappaB activation. (c) 2010 Elsevier B.V. All rights reserved.
Kikuchi, Akira; Nakazato, Takeru; Ito, Katsuhiko; Nojima, Yosui; Yokoyama, Takeshi; Iwabuchi, Kikuo; Bono, Hidemasa; Toyoda, Atsushi; Fujiyama, Asao; Sato, Ryoichi; Tabunoki, Hiroko
2017-01-13
Various insect species have been added to genomic databases over the years. Thus, researchers can easily obtain online genomic information on invertebrates and insects. However, many incorrectly annotated genes are included in these databases, which can prevent the correct interpretation of subsequent functional analyses. To address this problem, we used a combination of dry and wet bench processes to select functional genes from public databases. Enolase is an important glycolytic enzyme in all organisms. We used a combination of dry and wet bench processes to identify functional enolases in the silkworm Bombyx mori (BmEno). First, we detected five annotated enolases from public databases using a Hidden Markov Model (HMM) search, and then through cDNA cloning, Northern blotting, and RNA-seq analysis, we revealed three functional enolases in B. mori: BmEno1, BmEno2, and BmEnoC. BmEno1 contained a conserved key amino acid residue for metal binding and substrate binding in other species. However, BmEno2 and BmEnoC showed a change in this key amino acid. Phylogenetic analysis showed that BmEno2 and BmEnoC were distinct from BmEno1 and other enolases, and were distributed only in lepidopteran clusters. BmEno1 was expressed in all of the tissues used in our study. In contrast, BmEno2 was mainly expressed in the testis with some expression in the ovary and suboesophageal ganglion. BmEnoC was weakly expressed in the testis. Quantitative RT-PCR showed that the mRNA expression of BmEno2 and BmEnoC correlated with testis development; thus, BmEno2 and BmEnoC may be related to lepidopteran-specific spermiogenesis. We identified and characterized three functional enolases from public databases with a combination of dry and wet bench processes in the silkworm B. mori. In addition, we determined that BmEno2 and BmEnoC had species-specific functions. Our strategy could be helpful for the detection of minor genes and functional genes in non-model organisms from public databases.
Batova, Suzan; DeWever, Julie; Godfraind, Théophile; Balligand, Jean-Luc; Dessy, Chantal; Feron, Olivier
2006-08-01
Amlodipine is a calcium channel blocker (CCB) known to stimulate nitric oxide production from endothelial cells. Whether this ancillary property can be related to the capacity of amlodipine to concentrate and alter the structure of cholesterol-containing membrane bilayers is a matter of investigation. Here, we reasoned that since the endothelial nitric oxide synthase is, in part, expressed in cholesterol-rich plasmalemmal microdomains (e.g., caveolae and rafts), amlodipine could interfere with this specific locale of the enzyme and thereby modulate NO production in endothelial cells. Using a method combining lubrol-based extraction and subcellular fractionation on sucrose gradient, we found that amlodipine, but not verapamil or nifedipine, induced the segregation of endothelial NO synthase (eNOS) from caveolin-enriched low-density membranes (8+/-2% vs. 42+/-3% in untreated condition; P<0.01). We then performed co-immunoprecipitation experiments and found that amlodipine dose-dependently disrupted the caveolin/eNOS interaction contrary to other calcium channel blockers, and potentiated the stimulation of NO production by agonists such as bradykinin and vascular endothelial growth factor (VEGF) (+138+/-28% and +183+/-27% over values obtained with the agonist alone, respectively; P<0.01). Interestingly, we also documented that the dissociation of the caveolin/eNOS heterocomplex induced by amlodipine was not mediated by the traditional calcium-dependent calmodulin binding to eNOS and that recombinant caveolin expression could compete with the stimulatory effects of amlodipine on eNOS activity. Finally, we showed that the amlodipine-triggered, caveolin-dependent mechanism of eNOS activation was independent of other pleiotropic effects of the CCB such as superoxide anion scavenging and angiotensin-converting enzyme (ACE) inhibition. This study unravels the modulatory effects of amlodipine on caveolar integrity and the capacity of caveolin to maintain eNOS in its vicinity in the absence of any detectable changes in intracellular calcium levels. The resulting increase in caveolin-free eNOS potentiates the NO production in response to agonists including VEGF and bradykinin. More generally, this work opens new avenues of treatment for drugs able to structurally alter signaling pathways concentrated in caveolae.
Sugiyama, Toru; Levy, Bruce D; Michel, Thomas
2009-05-08
Tetrahydrobiopterin (BH4) is a key redox-active cofactor in endothelial isoform of NO synthase (eNOS) catalysis and is an important determinant of NO-dependent signaling pathways. BH4 oxidation is observed in vascular cells in the setting of the oxidative stress associated with diabetes. However, the relative roles of de novo BH4 synthesis and BH4 redox recycling in the regulation of eNOS bioactivity remain incompletely defined. We used small interference RNA (siRNA)-mediated "knockdown" GTP cyclohydrolase-1 (GTPCH1), the rate-limiting enzyme in BH4 biosynthesis, and dihydrofolate reductase (DHFR), an enzyme-recycling oxidized BH4 (7,8-dihydrobiopterin (BH2)), and studied the effects on eNOS regulation and biopterin metabolism in cultured aortic endothelial cells. Knockdown of either DHFR or GTPCH1 attenuated vascular endothelial growth factor (VEGF)-induced eNOS activity and NO production; these effects were recovered by supplementation with BH4. In contrast, supplementation with BH2 abolished VEGF-induced NO production. DHFR but not GTPCH1 knockdown increased reactive oxygen species (ROS) production. The increase in ROS production seen with siRNA-mediated DHFR knockdown was abolished either by simultaneous siRNA-mediated knockdown of eNOS or by supplementing with BH4. In contrast, addition of BH2 increased ROS production; this effect of BH2 was blocked by BH4 supplementation. DHFR but not GTPCH1 knockdown inhibited VEGF-induced dephosphorylation of eNOS at the inhibitory site serine 116; these effects were recovered by supplementation with BH4. These studies demonstrate a striking contrast in the pattern of eNOS regulation seen by the selective modulation of BH4 salvage/reduction versus de novo BH4 synthetic pathways. Our findings suggest that the depletion of BH4 is not sufficient to perturb NO signaling, but rather that concentration of intracellular BH2, as well as the relative concentrations of BH4 and BH2, together play a determining role in the redox regulation of eNOS-modulated endothelial responses.
Predescu, Sanda; Knezevic, Ivana; Bardita, Cristina; Neamu, Radu Florin; Brovcovych, Viktor; Predescu, Dan
2013-01-01
The spatial and functional relationship between platelet activating factor-receptor (PAF-R) and nitric oxide synthase (eNOS) in the lateral plane of the endothelial plasma membrane is poorly characterized. In this study, we used intact mouse pulmonary endothelial cells (ECs) as well as endothelial plasma membrane patches and subcellular fractions to define a new microdomain of plasmalemma proper where the two proteins colocalize and to demonstrate how PAF-mediated nitric oxide (NO) production fine-tunes ECs function as gatekeepers of vascular permeability. Using fluorescence microscopy and immunogold labeling electron microscopy (EM) on membrane patches we demonstrate that PAF-R is organized as clusters and colocalizes with a subcellular pool of eNOS, outside recognizable vesicular profiles. Moreover, PAF-induced acid sphingomyelinase activation generates a ceramide-based microdomain on the external leaflet of plasma membrane, inside of which a signalosome containing eNOS shapes PAF-stimulated NO production. Real-time measurements of NO after PAF-R ligation indicated a rapid (5 to 15 min) increase in NO production followed by a > 45 min period of reduction to basal levels. Moreover, at the level of this new microdomain, PAF induces a dynamic phosphorylation/dephosphorylation of Ser, Thr and Tyr residues of eNOS that correlates with NO production. Altogether, our findings establish the existence of a functional partnership PAF-R/eNOS on EC plasma membrane, at the level of PAF-induced ceramide plasma membrane microdomains, outside recognized vesicular profiles. PMID:24086643
Romic, Snjezana; Tepavcevic, Snezana; Zakula, Zorica; Milosavljevic, Tijana; Stojiljkovic, Mojca; Zivkovic, Maja; Popovic, Milan; Stankovic, Aleksandra; Koricanac, Goran
2013-06-01
Fructose-rich diets (FRD) cause cardiac insulin resistance manifested by impairment of Akt/endothelial NO synthase (eNOS) signalling. In contrast, oestradiol (E2) activates this signalling pathway in the heart. To study the ability of E2 to revert the detrimental effect of fructose on cardiac Akt/eNOS, female rats were subjected to a FRD and ovariectomy followed with or without E2 replacement. We also analysed the effects of the FRD and E2 on cardiac extracellular signal-regulated kinase (Erk 1/2) signalling related to their role in cardiac hypertrophy development. Expression of Akt, eNOS and Erk 1/2, as well as regulatory phosphorylations of these molecules were determined. The protein expression of cardiac Akt and eNOS was not affected by the diet or E2 treatment. However, the FRD was accompanied by a decrease in Akt phosphorylation at Ser(473) and Thr(308), and eNOS at Ser(1177), while the phosphorylation of eNOS at Thr(495) was increased. E2 replacement in ovariectomised fructose-fed rats caused a reversion of the diet effect on Akt and eNOS serine phosphorylation, but mostly had no effect on threonine phosphorylation of the molecules. The FRD and E2 treatment did not influence Erk 1/2 expression and phosphorylation and heart mass as well. The data show that E2 selectively suppress the negative effects of a FRD on Akt/eNOS signalling and probably point to the different effects of E2 on kinase/phosphatase pathways responsible for phosphorylation/dephosphorylation of Akt and eNOS. Furthermore, the results suggest that the heart of females in the reproductive period is partially protected against the damaging effects of increasedfructose intake.
Mees, Barend; Récalde, Alice; Loinard, Céline; Tempel, Dennie; Godinho, Marcia; Vilar, José; van Haperen, Rien; Lévy, Bernard; de Crom, Rini; Silvestre, Jean-Sébastien
2011-01-01
Bone marrow-derived mononuclear cells (BMMNCs) enhance postischemic neovascularization, and their therapeutic use is currently under clinical investigation. However, cardiovascular risk factors, including diabetes mellitus and hypercholesterolemia, lead to the abrogation of BMMNCs proangiogenic potential. NO has been shown to be critical for the proangiogenic function of BMMNCs, and increased endothelial NO synthase (eNOS) activity promotes vessel growth in ischemic conditions. We therefore hypothesized that eNOS overexpression could restore both the impaired neovascularization response and decreased proangiogenic function of BMMNCs in clinically relevant models of diabetes and hypercholesterolemia. Transgenic eNOS overexpression in diabetic, atherosclerotic, and wild-type mice induced a 1.5- to 2.3-fold increase in postischemic neovascularization compared with control. eNOS overexpression in diabetic or atherosclerotic BMMNCs restored their reduced proangiogenic potential in ischemic hind limb. This effect was associated with an increase in BMMNC ability to differentiate into cells with endothelial phenotype in vitro and in vivo and an increase in BMMNCs paracrine function, including vascular endothelial growth factor A release and NO-dependent vasodilation. Moreover, although wild-type BMMNCs treatment resulted in significant progression of atherosclerotic plaque in ischemic mice, eNOS transgenic atherosclerotic BMMNCs treatment even had antiatherogenic effects. Cell-based eNOS gene therapy has both proangiogenic and antiatherogenic effects and should be further investigated for the development of efficient therapeutic neovascularization designed to treat ischemic cardiovascular disease. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
The Saccharomyces cerevisiae enolase-related regions encode proteins that are active enolases.
Kornblatt, M J; Richard Albert, J; Mattie, S; Zakaib, J; Dayanandan, S; Hanic-Joyce, P J; Joyce, P B M
2013-02-01
In addition to two genes (ENO1 and ENO2) known to code for enolase (EC4.2.1.11), the Saccharomyces cerevisiae genome contains three enolase-related regions (ERR1, ERR2 and ERR3) which could potentially encode proteins with enolase function. Here, we show that products of these genes (Err2p and Err3p) have secondary and quaternary structures similar to those of yeast enolase (Eno1p). In addition, Err2p and Err3p can convert 2-phosphoglycerate to phosphoenolpyruvate, with kinetic parameters similar to those of Eno1p, suggesting that these proteins could function as enolases in vivo. To address this possibility, we overexpressed the ERR2 and ERR3 genes individually in a double-null yeast strain lacking ENO1 and ENO2, and showed that either ERR2 or ERR3 could complement the growth defect in this strain when cells are grown in medium with glucose as the carbon source. Taken together, these data suggest that the ERR genes in Saccharomyces cerevisiae encode a protein that could function in glycolysis as enolase. The presence of these enolase-related regions in Saccharomyces cerevisiae and their absence in other related yeasts suggests that these genes may play some unique role in Saccharomyces cerevisiae. Further experiments will be required to determine whether these functions are related to glycolysis or other cellular processes. Copyright © 2012 John Wiley & Sons, Ltd.
Du, Yunfeng; Navab, Mohamad; Shen, Melody; Hill, James; Pakbin, Payam; Sioutas, Constantinos; Hsiai, Tzung K; Li, Rongsong
2013-07-05
Exposure to airborne particulate pollutants is intimately linked to vascular oxidative stress and inflammatory responses with clinical relevance to atherosclerosis. Particulate matter (PM) has been reported to induce endothelial dysfunction and atherosclerosis. Here, we tested whether ambient ultrafine particles (UFP, diameter <200 nm) modulate eNOS activity in terms of nitric oxide (NO) production via protein S-glutathionylation. Treatment of human aortic endothelial cells (HAEC) with UFP significantly reduced NO production. UFP-mediated reduction in NO production was restored in the presence of JNK inhibitor (SP600125), NADPH oxidase inhibitor (Apocynin), anti-oxidant (N-acetyl cysteine), and superoxide dismutase mimetics (Tempol and MnTMPyP). UFP exposure increased the GSSG/GSH ratio and eNOS S-glutathionylation, whereas over-expression of Glutaredoxin-1 (to inhibit S-glutathionylation) restored UFP-mediated reduction in NO production by nearly 80%. Thus, our findings suggest that eNOS S-glutathionylation is a potential mechanism underlying ambient UFP-induced reduction of NO production. Copyright © 2013 Elsevier Inc. All rights reserved.
Du, Yunfeng; Navab, Mohamad; Shen, Melody; Hill, James; Pakbin, Payam; Sioutas, Constantinos; Hsiai, Tzung; Li, Rongsong
2013-01-01
Exposure to airborne particulate pollutants is intimately linked to vascular oxidative stress and inflammatory responses with clinical relevance to atherosclerosis. Particulate matter (PM) has been reported to induce endothelial dysfunction and atherosclerosis. Here, we tested whether ambient ultrafine particles (UFP, diameter < 200 nm) modulate eNOS activity in terms of nitric oxide (NO) production via protein S-glutathionylation. Treatment of human aortic endothelial cells (HAEC) with UFP significantly reduced NO production. UFP-mediated reduction in NO production was restored in the presence of JNK inhibitor (SP600125), NADPH oxidase inhibitor (Apocynin), anti-oxidant (N-acetyl cysteine), and superoxide dismutase mimetics (Tempol and MnTMPyP). UFP exposure increased the GSSG/GSH ratio and eNOS S-glutathionylation, whereas over-expression of Glutaredoxin-1 (to inhibit S-glutathionylation) restored UFP-mediated reduction in NO production by nearly 80%. Thus, our findings suggest that eNOS S-glutathionylation is a potential mechanism underlying ambient UFP-induced reduction of NO production. PMID:23751346
Xie, Liping; Liu, Zhen; Lu, Hui; Zhang, Wen; Mi, Qiongyu; Li, Xiaozhen; Tang, Yan; Chen, Qi; Ferro, Albert; Ji, Yong
2012-01-01
BACKGROUND AND PURPOSE One key mechanism for endothelial dysfunction is endothelial NOS (eNOS) uncoupling, whereby eNOS generates superoxide (O2•−) rather than NO. We explored the effect of pyridoxine on eNOS uncoupling induced by oxidized low-density lipoprotein (ox-LDL) in human umbilical vein endothelial cells (HUVECs) and the potential molecular mechanism. EXPERIMENTAL APPROACH HUVECs were incubated with ox-LDL with/without pyridoxine, NG-nitro-L-arginine methylester (L-NAME), chelerythrine chloride (CHCI) or apocynin. Endothelial O2•− was measured using lucigenin chemiluminescence, and O2•−-sensitive fluorescent dye dihydroethidium (DHE). NO levels were measured by chemiluminescence, PepTag Assay for non-radioactive detection of PKC activity, depletion of PKCα and p47phox by siRNA silencing and the states of phospho-eNOS Thr495, total-eNOS, phospho-PKCα/βII, total PKC, phospho-PKCα, total PKCα and p47phox were measured by Western blot. KEY RESULTS Ox-LDL significantly increased O2•− production and reduced NO levels released from HUVECs; an effect reversed by eNOS inhibitor, L-NAME. Pyridoxine pretreatment significantly inhibited ox-LDL-induced O2•− generation and preserved NO levels. Pyridoxine also prevented the ox-LDL-induced reduction in phospho-eNOS Thr495 and PKC activity. These protective effects of pyridoxine were abolished by the PKC inhibitor, CHCI, or siRNA silencing of PKCα. However, depletion of p47phox or treatment with the NADPH oxidase inhibitor, apocynin, had no influence on these effects. Also, cytosol p47phox expression was unchanged by the different treatments. CONCLUSIONS AND IMPLICATIONS Pyridoxine mitigated eNOS uncoupling induced by ox-LDL. This protectant effect was related to phosphorylation of eNOS Thr495 stimulated by PKCα, not via NADPH oxidase. These results provide support for the use of pyridoxine in ox-LDL-related vascular endothelial dysfunction. PMID:21797845
Gender, exercise training, and eNOS expression in porcine skeletal muscle arteries.
Laughlin, M Harold; Welshons, Wade V; Sturek, Michael; Rush, James W E; Turk, James R; Taylor, Julia A; Judy, Barbara M; Henderson, Kyle K; Ganjam, V K
2003-07-01
Our purpose was to determine the effects of gender and exercise training on endothelial nitric oxide synthase (eNOS) and superoxide dismutase (SOD) protein content of porcine skeletal muscle arteries and to evaluate the role of 17beta-estradiol (E2) in these effects. We measured eNOS and SOD content with immunoblots and immunohistochemistry in femoral and brachial arteries of trained and sedentary male and female pigs and measured estrogen receptor (ER) mRNA and alpha-ER and beta-ER protein in aortas of male and female pigs. Results indicate that female arteries contain more eNOS than male arteries and that exercise training increases eNOS content independent of gender. Male and female pigs expressed similar levels of alpha-ER mRNA and protein and similar amounts beta-ER protein in their arteries. E2 concentrations as measured by RIA were 180 +/- 34 pg/ml in male sera and approximately 5 pg/ml in female sera, and neither was changed by training. However, bioassay indicated that biologically active estrogen equivalent to only 35 +/- 5 pg/ml was present in male sera. E2 in female pigs, whether measured by RIA or bioassay, was approximately 24 pg/ml at peak estrous and 2 pg/ml on day 5 diestrus. The free fraction of E2 in sera did not explain the low measurements, relative to RIA, of E2. We conclude that 1). gender has significant influence on eNOS and SOD content of porcine skeletal muscle arteries; 2). the effects of gender and exercise training vary among arteries of different anatomic origin; 3). male sera contains compounds that cause RIA to overestimate circulating estrogenic activity; and 4). relative to human men, the male pig is not biologically estrogenized by high levels of E2 reported by RIA, whereas in female pigs E2 levels are lower than in the blood of human women.
Tomada, I; Negrão, R; Almeida, H; Neves, D
2014-04-01
Long-term consumption of high-fat diets negatively interferes with metabolic status and promotes endothelial dysfunction and inflammation. In the cavernous tissue, these outcomes become conspicuous in the elderly and strongly affect penile erection, a vascular process highly dependent on local nitric oxide bioavailability. Although epidemiological data links erectile dysfunction to nutritional patterns, the underlying molecular mechanisms remain unclear. Therefore, we investigated the effects of long-term high-fat diet on endothelial nitric oxide synthase (eNOS)-Sirtuin-1 axis and Akt/eNOS phosphorylation in the cavernous tissue of Sprague-Dawley rats, and compared with energy-restricted animals. We demonstrated that high-fat diet intake led to a noteworthy decrease in eNOS phosphorylation at Ser1177 residue through the Akt pathway, which seems to be compensated by upregulation of phosphorylation at Ser615, but without an increment in nitric oxide production. These results are accompanied by an increase of systemic inflammatory markers and upregulation of the inducible NOS and of the deacetylase Sirtuin-1 in the cavernous tissue to levels apparently detrimental to cells and to metabolic homeostasis. Conversely, in long-term energy-restricted animals, the rate of phosphorylation of eNOS at Ser1177 diminished, but the activation of the enzyme increased through phosphorylation of eNOS at Ser615, resulting in an enhancement in nitric oxide bioavailability. Taken together, our results demonstrate that long-term nutritional conditions override the influence of age on the eNOS expression and activation in rat cavernous tissue.
Low shear stress induces vascular eNOS uncoupling via autophagy-mediated eNOS phosphorylation.
Zhang, Jun-Xia; Qu, Xin-Liang; Chu, Peng; Xie, Du-Jiang; Zhu, Lin-Lin; Chao, Yue-Lin; Li, Li; Zhang, Jun-Jie; Chen, Shao-Liang
2018-05-01
Uncoupled endothelial nitric oxide synthase (eNOS) produces O 2 - instead of nitric oxide (NO). Earlier, we reported rapamycin, an autophagy inducer and inhibitor of cellular proliferation, attenuated low shear stress (SS) induced O 2 - production. Nevertheless, it is unclear whether autophagy plays a critical role in the regulation of eNOS uncoupling. Therefore, this study aimed to investigate the modulation of autophagy on eNOS uncoupling induced by low SS exposure. We found that low SS induced endothelial O 2 - burst, which was accompanied by reduced NO release. Furthermore, inhibition of eNOS by L-NAME conspicuously attenuated low SS-induced O 2 - releasing, indicating eNOS uncoupling. Autophagy markers such as LC3 II/I ratio, amount of Beclin1, as well as ULK1/Atg1 were increased during low SS exposure, whereas autophagic degradation of p62/SQSTM1 was markedly reduced, implying impaired autophagic flux. Interestingly, low SS-induced NO reduction could be reversed by rapamycin, WYE-354 or ATG5 overexpression vector via restoration of autophagic flux, but not by N-acetylcysteine or apocynin. eNOS uncoupling might be ascribed to autophagic flux blockade because phosphorylation of eNOS Thr495 by low SS or PMA stimulation was also regulated by autophagy. In contrast, eNOS acetylation was not found to be regulated by low SS and autophagy. Notably, although low SS had no influence on eNOS Ser1177 phosphorylation, whereas boosted eNOS Ser1177 phosphorylation by rapamycin were in favor of the eNOS recoupling through restoration of autophagic flux. Taken together, we reported a novel mechanism for regulation of eNOS uncoupling by low SS via autophagy-mediated eNOS phosphorylation, which is implicated in geometrical nature of atherogenesis. Copyright © 2018 Elsevier B.V. All rights reserved.
Bentur, Ohad S; Chernichovski, Tamara; Ingbir, Merav; Weinstein, Talia; Schwartz, Idit F
2016-10-01
Dimethyl sulfoxide (DMSO) is a solvent that is commonly used in medicine. Conflicting data exist as to its effects on endothelial function. Endothelial cell dysfunction (ECD) is characterized by decreased endothelial nitric oxide synthase (eNOS) activity. Cationic amino acid transporter-1 (CAT-1), the specific arginine transporter for eNOS, has been shown to modulate eNOS activity. We hypothesize that DMSO inhibits eNOS activity through modulation of its selective arginine supplier CAT-1. We studied the effect of DMSO on arginine transport, NO2/NO3 generation as an index of NO production, as well as CAT-1 and Protein Kinase C alpha (PKC-α) (CAT-1 inhibitor) protein expression in human umbilical vein endothelial cell cultures (HUVECs). DMSO 2.5% and 3.5% (v/v) significantly attenuated arginine transport, a phenomenon which was prevented by co-incubation with l-arginine (1 mM). The aforementioned findings were accompanied by a decrease in NO2/NO3 generation. DMSO significantly increased the abundance of phosphorylated CAT-1 (the inactive form) and phosphorylated PKC-α protein, an effect that was attenuated by l-arginine. GO 6976 (PKC-α antagonist) prevented the decrease in arginine transport caused by DMSO. DMSO also induced profound transient morphological changes in HUVECs' structure but these were not related to its effect on arginine transport. In conclusion, DMSO inhibits NO generation by endothelial cells through modulation of CAT-1 activity. Copyright © 2016 Elsevier Inc. All rights reserved.
Endothelial Dysfunction in Human Diabetes is mediated by Wnt5a-JNK Signaling
Bretón-Romero, Rosa; Feng, Bihua; Holbrook, Monika; Farb, Melissa G.; Fetterman, Jessica L.; Linder, Erika A.; Berk, Brittany D.; Masaki, Nobuyuki; Weisbrod, Robert M.; Inagaki, Elica; Gokce, Noyan; Fuster, Jose J.; Walsh, Kenneth; Hamburg, Naomi M.
2016-01-01
Objectives Endothelial dysfunction is linked to insulin resistance, inflammatory activation and increased cardiovascular risk in diabetes mellitus; however the mechanisms remain incompletely understood. Recent studies have identified pro-inflammatory signaling of Wnt5a through JNK as a regulator of metabolic dysfunction with potential relevance to vascular function. We sought to gain evidence that increased activation of Wnt5a-JNK signaling contributes to impaired endothelial function in patients with diabetes mellitus. Approach We measured flow-mediated dilation of the brachial artery and characterized freshly isolated endothelial cells by protein expression, eNOS activation, and nitric oxide production in from 85 subjects with Type 2 diabetes mellitus (n=42) and age- and sex-matched non-diabetic controls (n=43) and in human aortic endothelial cells treated with Wnt5a. Results Endothelial cells from patients with diabetes displayed 1.3-fold higher Wnt5a levels (P=0.01) along with 1.4-fold higher JNK activation (P<0.01) without a difference in total JNK levels. Higher JNK activation was associated with lower flow-mediated dilation, consistent with endothelial dysfunction (r=0.53, P=0.02). Inhibition of Wnt5a and JNK signaling restored insulin and A23187-mediated eNOS activation and improved nitric oxide production in endothelial cells from patients with diabetes. In endothelial cells from non-diabetic controls, rWnt5a treatment inhibited eNOS activation replicating the diabetic endothelial phenotype. In HAECs, Wnt5a-induced impairment of eNOS activation and nitric oxide production was reversed by Wnt5a and JNK inhibition. Conclusions Our findings demonstrate that non-canonical Wnt5a signaling and JNK activity contributes to vascular insulin resistance and endothelial dysfunction and may represent a novel therapeutic opportunity to protect the vasculature in patients with diabetes. PMID:26800561
Endothelial Dysfunction in Human Diabetes Is Mediated by Wnt5a-JNK Signaling.
Bretón-Romero, Rosa; Feng, Bihua; Holbrook, Monika; Farb, Melissa G; Fetterman, Jessica L; Linder, Erika A; Berk, Brittany D; Masaki, Nobuyuki; Weisbrod, Robert M; Inagaki, Elica; Gokce, Noyan; Fuster, Jose J; Walsh, Kenneth; Hamburg, Naomi M
2016-03-01
Endothelial dysfunction is linked to insulin resistance, inflammatory activation, and increased cardiovascular risk in diabetes mellitus; however, the mechanisms remain incompletely understood. Recent studies have identified proinflammatory signaling of wingless-type family member (Wnt) 5a through c-jun N-terminal kinase (JNK) as a regulator of metabolic dysfunction with potential relevance to vascular function. We sought to gain evidence that increased activation of Wnt5a-JNK signaling contributes to impaired endothelial function in patients with diabetes mellitus. We measured flow-mediated dilation of the brachial artery and characterized freshly isolated endothelial cells by protein expression, eNOS activation, and nitric oxide production in 85 subjects with type 2 diabetes mellitus (n=42) and age- and sex-matched nondiabetic controls (n=43) and in human aortic endothelial cells treated with Wnt5a. Endothelial cells from patients with diabetes mellitus displayed 1.3-fold higher Wnt5a levels (P=0.01) along with 1.4-fold higher JNK activation (P<0.01) without a difference in total JNK levels. Higher JNK activation was associated with lower flow-mediated dilation, consistent with endothelial dysfunction (r=0.53, P=0.02). Inhibition of Wnt5a and JNK signaling restored insulin and A23187-mediated eNOS activation and improved nitric oxide production in endothelial cells from patients with diabetes mellitus. In endothelial cells from nondiabetic controls, rWnt5a treatment inhibited eNOS activation replicating the diabetic endothelial phenotype. In human aortic endothelial cells, Wnt5a-induced impairment of eNOS activation and nitric oxide production was reversed by Wnt5a and JNK inhibition. Our findings demonstrate that noncanonical Wnt5a signaling and JNK activity contribute to vascular insulin resistance and endothelial dysfunction and may represent a novel therapeutic opportunity to protect the vasculature in patients with diabetes mellitus. © 2016 American Heart Association, Inc.
Identification and characterization of Taenia solium enolase as a plasminogen-binding protein.
Ayón-Núñez, Dolores A; Fragoso, Gladis; Espitia, Clara; García-Varela, Martín; Soberón, Xavier; Rosas, Gabriela; Laclette, Juan P; Bobes, Raúl J
2018-06-01
The larval stage of Taenia solium (cysticerci) is the causal agent of human and swine cysticercosis. When ingested by the host, T. solium eggs are activated and hatch in the intestine, releasing oncospheres that migrate to various tissues and evolve into cysticerci. Plasminogen (Plg) receptor proteins have been reported to play a role in migration processes for several pathogens. This work is aimed to identify Plg-binding proteins in T. solium cysticerci and determine whether T. solium recombinant enolase (rTsEnoA) is capable of specifically binding and activating human Plg. To identify Plg-binding proteins, a 2D-SDS-PAGE ligand blotting was performed, and recognized spots were identified by MS/MS. Seven proteins from T. solium cysticerci were found capable of binding Plg: fascicilin-1, fasciclin-2, enolase, MAPK, annexin, actin, and cytosolic malate dehydrogenase. To determine whether rTsEnoA binds human Plg, a ligand blotting was performed and the results were confirmed by ELISA both in the presence and absence of εACA, a competitive Plg inhibitor. Finally, rTsEnoA-bound Plg was activated to plasmin in the presence of tPA. To better understand the evolution of enolase isoforms in T. solium, a phylogenetic inference analysis including 75 enolase amino acid sequences was conducted. The origin of flatworm enolase isoforms, except for Eno4, is independent of their vertebrate counterparts. Therefore, herein we propose to designate tapeworm protein isoforms as A, B, C, and 4. In conclusion, recombinant enolase showed a strong plasminogen binding and activating activity in vitro. T. solium enolase could play a role in parasite invasion along with other plasminogen-binding proteins. Copyright © 2018 Elsevier B.V. All rights reserved.
Schini-Kerth, Valérie B; Auger, Cyril; Kim, Jong-Hun; Etienne-Selloum, Nelly; Chataigneau, Thierry
2010-05-01
Numerous studies indicate that regular intake of polyphenol-rich beverages (red wine and tea) and foods (chocolate, fruit, and vegetables) is associated with a protective effect on the cardiovascular system in humans and animals. Beyond the well-known antioxidant properties of polyphenols, several other mechanisms have been shown to contribute to their beneficial cardiovascular effects. Indeed, both experimental and clinical studies indicate that polyphenols improve the ability of endothelial cells to control vascular tone. Experiments with isolated arteries have shown that polyphenols cause nitric oxide (NO)-mediated endothelium-dependent relaxations and increase the endothelial formation of NO. The polyphenol-induced NO formation is due to the redox-sensitive activation of the phosphatidylinositol3-kinase/Akt pathway leading to endothelial NO synthase (eNOS) activation subsequent to its phosphorylation on Ser 1177. Besides the phosphatidylinositol3-kinase/Akt pathway, polyphenols have also been shown to activate eNOS by increasing the intracellular free calcium concentration and by activating estrogen receptors in endothelial cells. In addition to causing a rapid and sustained activation of eNOS by phosphorylation, polyphenols can increase the expression level of eNOS in endothelial cells leading to an increased formation of NO. Moreover, the polyphenol-induced endothelium-dependent relaxation also involves endothelium-derived hyperpolarizing factor, besides NO, in several types of arteries. Altogether, polyphenols have the capacity to improve the endothelial control of vascular tone not only in several experimental models of cardiovascular diseases such as hypertension but also in healthy and diseased humans. Thus, these experimental and clinical studies highlight the potential of polyphenol-rich sources to provide vascular protection in health and disease.
Kim, Jong Hun; Auger, Cyril; Kurita, Ikuko; Anselm, Eric; Rivoarilala, Lalainasoa Odile; Lee, Hyong Joo; Lee, Ki Won; Schini-Kerth, Valérie B
2013-11-30
This study examined the ability of Aronia melanocarpa (chokeberry) juice, a rich source of polyphenols, to cause NO-mediated endothelium-dependent relaxations of isolated coronary arteries and, if so, to determine the underlying mechanism and the active polyphenols. A. melanocarpa juice caused potent endothelium-dependent relaxations in porcine coronary artery rings. Relaxations to A. melanocarpa juice were minimally affected by inhibition of the formation of vasoactive prostanoids and endothelium-derived hyperpolarizing factor-mediated responses, and markedly reduced by N(ω)-nitro-l-arginine (endothelial NO synthase (eNOS) inhibitor), membrane permeant analogs of superoxide dismutase and catalase, PP2 (Src kinase inhibitor), and wortmannin (PI3-kinase inhibitor). In cultured endothelial cells, A. melanocarpa juice increased the formation of NO as assessed by electron paramagnetic resonance spectroscopy using the spin trap iron(II)diethyldithiocarbamate, and reactive oxygen species using dihydroethidium. These responses were associated with the redox-sensitive phosphorylation of Src, Akt and eNOS. A. melanocarpa juice-derived fractions containing conjugated cyanidins and chlorogenic acids induced the phosphorylation of Akt and eNOS. The present findings indicate that A. melanocarpa juice is a potent stimulator of the endothelial formation of NO in coronary arteries; this effect involves the phosphorylation of eNOS via the redox-sensitive activation of the Src/PI3-kinase/Akt pathway mostly by conjugated cyanidins and chlorogenic acids. Copyright © 2013. Published by Elsevier Inc.
Mun, Chin Hee; Lee, Won Taek; Park, Kyung Ah; Lee, Jong Eun
2010-09-01
Nitric oxide (NO) production by endothelial nitric oxide synthase (eNOS) plays a protective role in cerebral ischemia by maintaining vascular permeability, whereas NO derived from neuronal and inducible NOS is neurotoxic and can participate in neuronal damage occurring in ischemia. Matrix metalloproteinases (MMPs) are up-regulated by ischemic injury and degrade the basement membrane if brain vessels to promote cell death and tissue injury. We previously reported that agmatine, synthesized from L-arginine by arginine decarboxylase (ADC) which is expressed in endothelial cells, has shown a direct increased eNOS expression and decreased MMPs expression in bEnd3 cells. But, there are few reports about the regulation of eNOS by agmatine in ischemic animal model. In the present study, we examined the expression of eNOS and MMPs by agmatine treatment after transient global ischemia in vivo. Global ischemia was induced with four vessel occlusion (4-VO) and agmatine (100 mg/kg) was administered intraperitoneally at the onset of reperfusion. The animals were euthanized at 6 and 24 hours after global ischemia and prepared for other analysis. Global ischemia led severe neuronal damage in the rat hippocampus and cerebral cortex, but agmatine treatment protected neurons from ischemic injury. Moreover, the level and expression of eNOS was increased by agmatine treatment, whereas inducible NOS (iNOS) and MMP-9 protein expressions were decreased in the brain. These results suggest that agmatine protects microvessels in the brain by activation eNOS as well as reduces extracellular matrix degradation during the early phase of ischemic insult.
Tan, Xing-Lin; Xue, Yue-Qiang; Ma, Tao; Wang, Xiaofang; Li, Jing Jing; Lan, Lubin; Malik, Kafait U; McDonald, Michael P; Dopico, Alejandro M; Liao, Francesca-Fang
2015-06-24
Cerebral infarction due to thrombosis leads to the most common type of stroke and a likely cause of age-related cognitive decline and dementia. Endothelial nitric oxide synthase (eNOS) generates NO, which plays a crucial role in maintaining vascular function and exerting an antithrombotic action. Reduced eNOS expression and eNOS polymorphisms have been associated with stroke and Alzheimer's disease (AD), the most common type of dementia associated with neurovascular dysfunction. However, direct proof of such association is lacking. Since there are no reports of complete eNOS deficiency in humans, we used heterozygous eNOS(+/-) mice to mimic partial deficiency of eNOS, and determine its impact on cerebrovascular pathology and perfusion of cerebral vessels. Combining cerebral angiography with immunohistochemistry, we found thrombotic cerebral infarctions in eNOS(+/-) mice as early as 3-6 months of age but not in eNOS(+/+) mice at any age. Remarkably, vascular occlusions in eNOS(+/-) mice were found almost exclusively in three areas: temporoparietal and retrosplenial granular cortexes, and hippocampus this distribution precisely matching the hypoperfused areas identified in preclinical AD patients. Moreover, progressive cerebral amyloid angiopaphy (CAA), blood brain barrier (BBB) breakdown, and cognitive impairment were also detected in aged eNOS(+/-) mice. These data provide for the first time the evidence that partial eNOS deficiency results in spontaneous thrombotic cerebral infarctions that increase with age, leading to progressive CAA and cognitive impairments. We thus conclude that eNOS(+/-) mouse may represent an ideal model of ischemic stroke to address early and progressive damage in spontaneously-evolving chronic cerebral ischemia and thus, study vascular mechanisms contributing to vascular dementia and AD.
Ubiad1 Is an Antioxidant Enzyme that Regulates eNOS Activity by CoQ10 Synthesis
Mugoni, Vera; Postel, Ruben; Catanzaro, Valeria; De Luca, Elisa; Turco, Emilia; Digilio, Giuseppe; Silengo, Lorenzo; Murphy, Michael P.; Medana, Claudio; Stainier, Didier Y.R.; Bakkers, Jeroen; Santoro, Massimo M.
2013-01-01
Summary Protection against oxidative damage caused by excessive reactive oxygen species (ROS) by an antioxidant network is essential for the health of tissues, especially in the cardiovascular system. Here, we identified a gene with important antioxidant features by analyzing a null allele of zebrafish ubiad1, called barolo (bar). bar mutants show specific cardiovascular failure due to oxidative stress and ROS-mediated cellular damage. Human UBIAD1 is a nonmitochondrial prenyltransferase that synthesizes CoQ10 in the Golgi membrane compartment. Loss of UBIAD1 reduces the cytosolic pool of the antioxidant CoQ10 and leads to ROS-mediated lipid peroxidation in vascular cells. Surprisingly, inhibition of eNOS prevents Ubiad1-dependent cardiovascular oxidative damage, suggesting a crucial role for this enzyme and nonmitochondrial CoQ10 in NO signaling. These findings identify UBIAD1 as a nonmitochondrial CoQ10-forming enzyme with specific cardiovascular protective function via the modulation of eNOS activity. PMID:23374346
Haeussler, Dagmar J.; Pimentel, David R.; Hou, Xiuyun; Burgoyne, Joseph R.; Cohen, Richard A.; Bachschmid, Markus M.
2013-01-01
We demonstrate for the first time that endomembrane-delimited H-Ras mediates VEGF-induced activation of endothelial nitric-oxide synthase (eNOS) and migratory response of human endothelial cells. Using thiol labeling strategies and immunofluorescent cell staining, we found that only 31% of total H-Ras is S-palmitoylated, tethering the small GTPase to the plasma membrane but leaving the function of the large majority of endomembrane-localized H-Ras unexplained. Knockdown of H-Ras blocked VEGF-induced PI3K-dependent Akt (Ser-473) and eNOS (Ser-1177) phosphorylation and nitric oxide-dependent cell migration, demonstrating the essential role of H-Ras. Activation of endogenous H-Ras led to recruitment and phosphorylation of eNOS at endomembranes. The loss of migratory response in cells lacking endogenous H-Ras was fully restored by modest overexpression of an endomembrane-delimited H-Ras palmitoylation mutant. These studies define a newly recognized role for endomembrane-localized H-Ras in mediating nitric oxide-dependent proangiogenic signaling. PMID:23548900
Yu, Hong; Dai, Wangde; Yang, Zhe; Romaguera, Rita L; Kirkman, Paul; Rowe, Vincent L
2005-01-01
The objective of this study was to examine the effect of tissue plasminogen activator (tPA) and endothelial nitric oxide synthase (eNOS) on thrombosis and neointimal hyperplasia on a polytetrafluoroethylene (PTFE) graft seeded with smooth muscle cells (SMCs). SMCs retrovirally transduced with tPA and eNOS genes were seeded on PTFE grafts and then implanted into the infrarenal rabbit aorta. Thrombosis and neointimal hyperplasia on the grafts were examined after 30 and 100 days of implantation. At 30 days of implantation, thrombus was observed on the luminal surface of both unseeded and SMC seeded control grafts, whereas grafts seeded with SMCs secreting tPA were nearly free of thrombus. At 100 days, the neointima on grafts seeded with tPA transduced SMCs was significantly thicker (925 +/- 150 microm, n = 5) than neointima on the other grafts (range, 132 to 374 microm; P < .001). Neointima thickness on grafts seeded with eNOS transduced SMCs (154 +/- 27 microm) was similar to that of unseeded grafts (132 +/- 16 microm, P > .05); both were thinner than those on grafts seeded with SMCs transduced with only lacZ gene (287 +/- 35 microm). The ratio of seeded cells in the neointima was significantly higher on SMC/tPA grafts (46% +/- 8%) than SMC/NOS grafts (21% +/- 6%, P < .05), indicating tPA transduced cells proliferated more than eNOS transduced cells. Engineered tPA expression in seeded SMCs causes significantly more neointimal hyperplasia, despite the favorable inhibition of luminal thrombus. eNOS expression in the seeded cells inhibits neointimal hyperplasia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Xinghua; Miao, Xiaobing; Wu, Yaxun
Enolases are glycolytic enzymes responsible for the ATP-generated conversion of 2-phosphoglycerate to phosphoenolpyruvate. In addition to the glycolytic function, Enolase 1 (ENO1) has been reported up-regulation in several tumor tissues. In this study, we investigated the expression and biologic function of ENO1 in Non-Hodgkin's Lymphomas (NHLs). Clinically, by western blot analysis we observed that ENO1 expression was apparently higher in diffuse large B-cell lymphoma than in the reactive lymphoid tissues. Subsequently, immunohistochemical staining of 144 NHLs suggested that the expression of ENO1 was significantly lower in the indolent lymphomas compared with the progressive lymphomas. Further, we identified ENO1 as anmore » independent prognostic factor, and it was significantly correlated with overall survival of NHL patients. In addition, we found that ENO1 could promote cell proliferation, regulate cell cycle associated gene and PI3K/AKT signaling pathway in NHLs. Finally, we verified that ENO1 participated in the process of lymphoma cell adhesion mediated drug resistance (CAM-DR). Adhesion to FN or HS5 cells significantly protected OCI-Ly8 and Daudi cells from cytotoxicity compared with those cultured in suspension, and these effects were attenuated when transfected with ENO1-siRNA. Based on the study, we propose that inhibition of ENO1 expression may be a novel strategy for therapy for NHLs patients, and it may be a target for drug resistance. - Highlights: • ENO1 expression is reversely correlated with clinical outcomes of patients with NHLs. • ENO1 promotes the proliferation of NHL cells. • ENO1 regulates cell adhesion mediated drug resistance.« less
Abundance of endothelial nitric oxide synthase in newborn intrapulmonary arteries.
Hislop, A. A.; Springall, D. R.; Buttery, L. D.; Pollock, J. S.; Haworth, S. G.
1995-01-01
A monoclonal antibody to endothelial NOS (eNOS) was used to demonstrate the distribution and density of eNOS in the developing porcine lung. Lung tissue from large white pigs aged from less than 5 minutes to 3 months was immunostained and, using light microscopy, distribution of eNOS was assessed by a semiquantitative scoring system. At all ages eNOS was located on the endothelial cells of pulmonary and bronchial arteries and veins. Immunoreactivity for eNOS was greater in the larger, more proximal pulmonary arteries than at the periphery. In the lung of newborn pigs immunoreactivity for eNOS was present in arteries of all sizes but some showed no positive staining. At 2-3 days of age almost all arteries showed positive immunoreactivity. By 3 months of age the amount of eNOS had decreased and was less than that seen in the newborn. The highest level of eNOS was seen immediately after birth when the pulmonary arteries are dilating. eNOS may therefore play an important part in adaptation to extra-uterine life. Images Figure 3 Figure 1 Figure 2 PMID:7552590
Zuniga, Eveline; Melville, Priscilla A; Saidenberg, André B S; Laes, Marco A; Gonsales, Fernanda F; Salaberry, Sandra R S; Gregori, Fabio; Brandão, Paulo E; dos Santos, Franklin G B; Lincopan, Nilton E; Benites, Nilson R
2015-12-01
This study aimed to elucidate aspects of the epidemiology of bovine subclinical mastitis through the assessment of genes encoding MSCRAMM (microbial surface components recognizing adhesive matrix molecules - a group of adhesins) and protein Bap (implicated in biofilm formation), in coagulase-positive (CPS) and coagulase-negative (CNS) Staphylococcus isolated from subclinical mastitis. Milk samples were collected for microbiological exams, somatic cell count (SCC) and a survey of the genes coding for MSCRAMM (cna, eno, ebpS, fnbA, fnbB and fib) and biofilm-associated protein Bap (bap) in 106 Staphylococcus spp. isolates using PCR. The frequencies of occurrence of eno (82.1%), fnbA (72.6%), fib (71.7%) and bap (56.6%) were higher (P < 0.0001) compared with the other assessed genes (cna, ebpS and fnbB). The higher frequency of occurrence (P < 0.005) of the bap gene in CNS compared with CPS suggests that in these species biofilm formation is an important mechanism for the persistence of the infection. The medians of the SCCs in the samples where eno, fnbA, fib and bap genes were detected were higher compared with Staphylococcus without the assessed genes (P < 0.05) and negative samples (P < 0.01), which indicated that the presence of these MSCRAMM may be related to a higher intensity of the inflammatory process. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hayashi, Toshio; Matsui-Hirai, Hisako; Miyazaki-Akita, Asaka; Fukatsu, Akiko; Funami, Jun; Ding, Qun-Fang; Kamalanathan, Sumitra; Hattori, Yuichi; Ignarro, Louis J.; Iguchi, Akihisa
2006-01-01
Senescence may contribute to the pathogenesis of atherosclerosis. Although the bioavailability of nitric oxide (NO) is limited in senescence, the effect of NO on senescence and its relationship to cardiovascular risk factors have not been investigated fully. We studied these factors by investigating senescence-associated β-galactosidase (SA-β-gal) and human telomerase activity in human umbilical venous endothelial cells (HUVECs). Treatment with NO donor (Z)-1-[2-(2-aminoethyl)-N-(2-aminoethyl)amino]diazen-1-ium-1,2-diolate (DETA-NO) and transfection with endothelial NO synthase (eNOS) into HUVECs each decreased the number of SA-β-gal positive cells and increased telomerase activity. The NOS inhibitor NG-nitro-l-arginine methyl ester (l-NAME) abolished the effect of eNOS transfection. The physiological concentration of 17β-estradiol activated hTERT, decreased SA-β-gal-positive cells, and caused cell proliferation. However, ICI 182780, an estrogen receptor-specific antagonist, and l-NAME each inhibited these effects. Finally, we investigated the effect of NO bioavailability on high glucose-promoted cellular senescence of HUVECs. Inhibition by eNOS transfection of this cellular senescence under high glucose conditions was less pronounced. Treatment with l-arginine or l-citrulline of eNOS-transfected cells partially inhibited, and combination of l-arginine and l-citrulline with antioxidants strongly prevented, high glucose-induced cellular senescence. These data demonstrate that NO can prevent endothelial senescence, thereby contributing to the anti-senile action of estrogen. The ingestion of NO-boosting substances, including l-arginine, l-citrulline, and antioxidants, can delay endothelial senescence under high glucose. We suggest that the delay in endothelial senescence through NO and/or eNOS activation may have clinical utility in the treatment of atherosclerosis in the elderly. PMID:17075048
Zhao, Yingshuai; Wang, Liuyi; He, Shanshan; Wang, Xiaoyan; Shi, Weili
2017-05-20
Valsartan (VAL), an antagonist of angiotensin II receptor type 1, has antihypertensive and multiple cardiovascular protective effects. The pleiotropic functions of VAL are related to the increased synthesis and biological activity of intravascular nitric oxide (NO). In this study, the role and mechanisms of VAL in the synthesis of NO were examined in human umbilical vein endothelial cells (HUVECs). Ten µmol/L of VAL was used to treat EA.hy926 cells for 30 minutes, 1, 3, 6, 12, and 24 hours, and three concentrations of VAL (i.e., 10, 1, and 0.1 µmol/L) were used to treat EA.hy926 cells for 24 hours. The cells were divided into five groups: control, VAL, VAL + Compound C (adenosine monophosphate-activated protein kinase [AMPK] inhibitor, 1 µmol/L), VAL + LY294002 (Akt [protein kinase B] inhibitor, 10 µmol/L), and VAL + L-nitro-arginine methyl ester (L-NAME, endothelial NO synthase [eNOS] inhibitor, 500 µmol/L) groups. The NO content in the VAL-treated HUVEC line (EA.hy926) was detected using the nitrate reductase method, and western blot was used to detect the phosphorylation of Akt, AMPK, and eNOS, as well as the changes in total protein levels. VAL increased NO synthesis in EA.hy926 cells in time- and dose-dependent manners (p < 0.05) and the intracellular phosphorylation levels of Akt, AMPK, and eNOS at the corresponding time points. LY294002, Compound C, and L-NAME could inhibit the VAL-promoted NO synthesis. VAL activated Akt, AMPK, and eNOS, thus promoting NO synthesis and playing a protective role in endothelial cells. These results partially explained the mechanisms underlying the cardiovascular protective effects of VAL.
Reyes, Levy A; Boslett, James; Varadharaj, Saradhadevi; De Pascali, Francesco; Hemann, Craig; Druhan, Lawrence J; Ambrosio, Giuseppe; El-Mahdy, Mohamed; Zweier, Jay L
2015-09-15
In the postischemic heart, coronary vasodilation is impaired due to loss of endothelial nitric oxide synthase (eNOS) function. Although the eNOS cofactor tetrahydrobiopterin (BH4) is depleted, its repletion only partially restores eNOS-mediated coronary vasodilation, indicating that other critical factors trigger endothelial dysfunction. Therefore, studies were performed to characterize the unidentified factor(s) that trigger endothelial dysfunction in the postischemic heart. We observed that depletion of the eNOS substrate NADPH occurs in the postischemic heart with near total depletion from the endothelium, triggering impaired eNOS function and limiting BH4 rescue through NADPH-dependent salvage pathways. In isolated rat hearts subjected to 30 min of ischemia and reperfusion (I/R), depletion of the NADP(H) pool occurred and was most marked in the endothelium, with >85% depletion. Repletion of NADPH after I/R increased NOS-dependent coronary flow well above that with BH4 alone. With combined NADPH and BH4 repletion, full restoration of NOS-dependent coronary flow occurred. Profound endothelial NADPH depletion was identified to be due to marked activation of the NAD(P)ase-activity of CD38 and could be prevented by inhibition or specific knockdown of this protein. Depletion of the NADPH precursor, NADP(+), coincided with formation of 2'-phospho-ADP ribose, a CD38-derived signaling molecule. Inhibition of CD38 prevented NADP(H) depletion and preserved endothelium-dependent relaxation and NO generation with increased recovery of contractile function and decreased infarction in the postischemic heart. Thus, CD38 activation is an important cause of postischemic endothelial dysfunction and presents a novel therapeutic target for prevention of this dysfunction in unstable coronary syndromes.
Mendes Garrido Abregú, Facundo; Gobetto, María Natalia; Juriol, Lorena Vanesa; Caniffi, Carolina; Elesgaray, Rosana; Tomat, Analía Lorena; Arranz, Cristina
2018-06-01
Micronutrient malnutrition during intrauterine and postnatal growth may program cardiovascular diseases in adulthood. We examined whether moderate zinc restriction in male and female rats throughout fetal life, lactation and/or postweaning growth induces alterations that can predispose to the onset of vascular dysfunction in adulthood. Female Wistar rats were fed low- or control zinc diets from pregnancy to offspring weaning. After weaning, offspring were fed either a low- or a control zinc diet until 81 days. We evaluated systolic blood pressure (SBP), thoracic aorta morphology, nitric oxide (NO) system and vascular reactivity in 6- and/or 81-day-old offspring. At day 6, zinc-deficient male and female offspring showed a decrease in aortic NO synthase (NOS) activity accompanied by an increase in oxidative stress. Zinc-deficient 81-day-old male rats exhibited an increase in collagen deposition in tunica media, as well as lower activity of endothelial NOS (eNOS) that could not be reversed with an adequate zinc diet during postweaning life. Zinc deficiency programmed a reduction in eNOS protein expression and higher SBP only in males. Adult zinc-deficient rats of both sexes showed reduced vasodilator response dependent on eNOS activity and impaired aortic vasoconstrictor response to angiotensin-II associated with alterations in intracellular calcium mobilization. Female rats were less sensitive to the effects of zinc deficiency and exhibited higher eNOS activity and/or expression than males, without alterations in SBP or aortic histology. This work strengthens the importance of a balanced intake of micronutrients during perinatal growth to ensure adequate vascular function in adult life. Copyright © 2018 Elsevier Inc. All rights reserved.
Dere, E; Frisch, C; De Souza Silva, M A; Gödecke, A; Schrader, J; Huston, J P
2001-01-01
Proceeding from previous findings of a beneficial effect of endothelial nitric oxide synthase (eNOS) gene inactivation on negatively reinforced water maze performance, we asked whether this improvement in place learning capacities also holds for a positively reinforced radial maze task. Unlike its beneficial effects on the water maze task, eNOS gene inactivation did not facilitate radial maze performance. The acquisition performance over the days of place learning did not differ between eNOS knockout (eNOS-/-) and wild-type mice (eNOS+/+). eNOS-/- mice displayed a slight and eNOS+/+ mice a more severe working memory deficit in the place learning version of the radial maze compared to the genetic background C57BL/6 strain. Possible differential effects of eNOS inactivation, related to differences in reinforcement contingencies between the Morris water maze and radial maze tasks, behavioral strategy requirements, or to different emotional and physiological concomitants inherent in the two tasks are discussed. These task-unique characteristics might be differentially affected by the reported anxiogenic and hypertensional effects of eNOS gene inactivation. Post-mortem determination of acetylcholine concentrations in diverse brain structures revealed that acetylcholine and choline contents were not different between eNOS-/- and eNOS+/+ mice, but were increased in eNOS+/+ mice compared to C57BL/6 mice in the frontal cortex. Our findings demonstrate that phenotyping of learning and memory capacities should not rely on one learning task only, but should include tasks employing both negative and positive reinforcement contingencies in order to allow valid statements regarding differences in learning capacities between rodent strains.
NASA Technical Reports Server (NTRS)
Chang, Shih-Hung
1991-01-01
Two approaches are used to extend the essentially non-oscillatory (ENO) schemes to treat conservation laws with stiff source terms. One approach is the application of the Strang time-splitting method. Here the basic ENO scheme and the Harten modification using subcell resolution (SR), ENO/SR scheme, are extended this way. The other approach is a direct method and a modification of the ENO/SR. Here the technique of ENO reconstruction with subcell resolution is used to locate the discontinuity within a cell and the time evolution is then accomplished by solving the differential equation along characteristics locally and advancing in the characteristic direction. This scheme is denoted ENO/SRCD (subcell resolution - characteristic direction). All the schemes are tested on the equation of LeVeque and Yee (NASA-TM-100075, 1988) modeling reacting flow problems. Numerical results show that these schemes handle this intriguing model problem very well, especially with ENO/SRCD which produces perfect resolution at the discontinuity.
Yao, Li; Lu, Ping; Li, Yumei; Yang, Lijing; Feng, Hongxuan; Huang, Yong; Zhang, Dandan; Chen, Jianguo; Zhu, Daling
2013-01-15
Pulmonary arterial hypertension is a life-threatening disease lacking effective therapies. Osthole is a natural coumarin compound isolated from Angelica pubescens Maxim., which possesses hypotensive effect. Although its effects on isolated thoracic aorta (systemic circulating system) are clarified, it remains unclear whether Osthole relaxes isolated pulmonary arteries (PAs) (pulmonary circulating system). The aim of this study was to investigate the effects of Osthole on isolated PAs and the underlying mechanisms. We examined PA relaxation induced by Osthole in isolated human and rat PA rings with force-electricity transducers, the expression and activity of endothelial nitric oxide synthase (eNOS) and protein kinase B (Akt) with western blot, and nitric oxide (NO) production using DAF-FM DA fluorescent indicator. The results showed that Osthole elicited a dose-dependent vasorelaxation activity with phenylephrine-precontracted human and rat PA rings, which can be diminished by endothelium denudation and inhibition of eNOS, while having no effect on rat mesenteric arteries. Osthole increased NO release as well as activation of Akt and eNOS, indicated with increased phosphorylations of Akt at Ser-473 and eNOS at Ser-1177 in endothelial cells. PI3K inhibitor LY294002 also blocked Osthole induced vasodilation. In summary, dilative effect of Osthole was dependent on endothelial integrity and NO production, and was mediated by endothelial PI3K/Akt-eNOS-NO pathway. These may provide a new pulmonary vasodilator for the therapy of pulmonary arterial hypertension. Copyright © 2012 Elsevier B.V. All rights reserved.
Marín, N.; Zamorano, P.; Carrasco, R.; Mujica, P.; González, FG.; Quezada, C.; Meininger, CJ.; Boric, MP.; Durán, WN.; Sánchez, FA.
2014-01-01
Rationale Endothelial adherens junction proteins constitute an important element in the control of microvascular permeability. Platelet-activating factor (PAF) increases permeability to macromolecules via translocation of eNOS to cytosol and stimulation of eNOS-derived NO signaling cascade. The mechanisms by which NO signaling regulates permeability at adherens junctions are still incompletely understood. Objective We explored the hypothesis that PAF stimulates hyperpermeability via S-nitrosation (SNO) of adherens junction proteins. Methods and Results We measured PAF-stimulated S-nitrosation of β-catenin and p120-catenin (p120) in three cell lines: ECV-eNOSGFP, EAhy926 (derived from human umbilical vein) and CVEC (derived from bovine heart endothelium) and in the mouse cremaster muscle in vivo. SNO correlated with diminished abundance of β-catenin and p120 at the adherens junction and with hyperpermeability. TNF-α increased NO production and caused similar increase in S-nitrosation as PAF. To ascertain the importance of eNOS subcellular location in this process, we used ECV-304 cells transfected with cytosolic eNOS (GFPeNOSG2A) and plasma membrane eNOS (GFPeNOSCAAX). PAF induced S-nitrosation of β-catenin and p120 and significantly diminished association between these proteins in cells with cytosolic eNOS but not in cells wherein eNOS is anchored to the cell membrane. Inhibitors of NO production and of S-nitrosation blocked PAF-induced S-nitrosation and hyperpermeability whereas inhibition of the cGMP pathway had no effect. Mass spectrometry analysis of purified p120 identified cysteine 579 as the main S-nitrosated residue in the region that putatively interacts with VE-cadherin. Conclusions Our results demonstrate that agonist-induced SNO contributes to junctional membrane protein changes that enhance endothelial permeability. PMID:22777005
Jensen, Amanda R; Drucker, Natalie A; Ferkowicz, Michael J; Markel, Troy A
2018-04-01
Umbilical-derived mesenchymal stromal cells (USCs) have shown promise in the protection of ischemic organs. We hypothesized that USCs would improve mesenteric perfusion, preserve intestinal histological architecture, and limit inflammation by nitric oxide-dependent mechanisms following intestinal ischemia/reperfusion (IR) injury. Adult wild-type C57BL/6J (WT) and endothelial nitric oxide synthase knock out (eNOS KO) mice were used: (1) WT IR + vehicle, (2) WT IR + USC, (3) eNOS KO IR + vehicle, and (4) eNOS KO IR + USC. Mice were anesthetized, and a midline laparotomy was performed. The superior mesenteric artery was clamped with a nonoccluding clamp for 60-min. Following IR, mice were treated with an injection of 250 μL phosphate buffered saline or 2 × 10 6 USCs suspended in 250-μL phosphate buffered saline solution. Mesenteric perfusion images were acquired using laser Doppler imaging. Perfusion was analyzed as a percentage of baseline. At 24 h, mice were euthanized, and intestines were harvested. Intestines were evaluated for injury, and data were analyzed using the Mann-Whitney or Kruskal-Wallis tests. Intestinal mesenteric perfusion was significantly improved in WT mice treated with USC therapy compared with eNOS KOs. Intestinal histological architecture was preserved with USC therapy in WT mice. However, in eNOS KO mice, this benefit was abolished. Finally, the presence of several cytokines and growth factors were significantly improved in WT mice compared with eNOS KO mice treated with USCs. The benefits of USC-mediated therapy following intestinal IR injury likely occur via nitric oxide-dependent pathways. Further studies are required to define the molecular mechanisms by which USCs activate endothelial nitric oxide synthase to bring about their protective effects. Copyright © 2017 Elsevier Inc. All rights reserved.
Soh, Maureen; Dunlevy, Jane R.; Garrett, Scott H.; Allen, Christina; Sens, Donald A.; Zhou, Xu Dong; Sens, Mary Ann; Somji, Seema
2012-01-01
Neuron specific enolase (ENO2, γ-enolase) is a biomarker used to help identify neuroendocrine differentiation in tumors. This laboratory has shown that ENO2 might be a biomarker for exposure to cadmium and arsenite. In this study these observations are extended to the urothelial cell, where environmental exposures are strongly linked to urothelial cancer. The UROtsa urothelial cell line and its Cd+2- and As+3-transformed counterparts were used as the model. Acute exposure of the UROtsa cells to both As+3- and Cd+2-caused significant increases in ENO2 expression. Treatment with the histone deacetlyase inhibitor was also shown to significantly increase the expression of ENO2 mRNA. The expression of ENO2 was significantly elevated in the Cd+2- and As+3-transformed UROtsa cells and tumor transplants. In contrast, ENO1, was unaffected by exposure to As+3 or Cd+2. Immunofluorescence showed ENO2 associated with both the nucleus and cytoplasm and cytoplasmic ENO2 co-localized with ENO1. The findings extend the evidence suggesting a link between As+3 and Cd+2 exposure and neuroendocrine differentiation in tumors. The results suggest that ENO2 might be a biomarker of human exposure to Cd+2 and As+3 that operates through histone modification. PMID:22613180
Garczorz, Wojciech; Francuz, Tomasz; Gmiński, Jan; Likus, Wirginia; Siemianowicz, Krzysztof; Jurczak, Teresa; Strzałka-Mrozik, Barbara
2011-01-01
Endothelial dysfunction plays an important role in the development of atherosclerosis. Elastin-derived peptides (EDP), hyperglycemia, hypercholesterolemia and oxidized LDL have a proven proatherosclerotic potential. Nitric oxide generated by endothelial nitric oxide synthase (eNOS; EC 1.14.13.39) is an important vasorelaxant. Here we studied the influence of those proatherosclerotic factors on eNOS gene and protein expression in artery-derived endothelial cells. Human umbilical artery endothelial cells (HUAEC) were incubated with or without: glucose (270 mg/dl), LDL (200 mg/dl), oxidized LDL (oxLDL 25 mg/dl) or κ-elastin (0.5 and 2.5 µg/ml). Gene expression was assessed by real time RT-PCR, whilst the eNOS protein by ELISA. In cells incubated with 2.5 µg/ml of κ-elastin, a 31 % increase of eNOS mRNA expression was observed, but the protein level remained unchanged. OxLDL, LDL and glucose decreased the eNOS protein level by 74 %, 37 % and 29 %, respectively. OxLDL decreased eNOS mRNA by 42 %. LDL non-significantly decreased eNOS mRNA expression. An elevated glucose level did not affect the eNOS mRNA expression. Hyperglycemia and an elevated level of LDL, particularly oxLDL, decreased the level of eNOS protein in endothelial cells. As κ-elastin did not decrease the expression of eNOS gene in HUAEC, the proatherogenic properties of elastin-derived peptides are unlikely to be due to their influence on eNOS.
Numerical experiments on the accuracy of ENO and modified ENO schemes
NASA Technical Reports Server (NTRS)
Shu, Chi-Wang
1990-01-01
Further numerical experiments are made assessing an accuracy degeneracy phenomena. A modified essentially non-oscillatory (ENO) scheme is proposed, which recovers the correct order of accuracy for all the test problems with smooth initial conditions and gives comparable results with the original ENO schemes for discontinuous problems.
ENO1 Overexpression in Pancreatic Cancer Patients and Its Clinical and Diagnostic Significance
Yin, Hang; Wang, Lei
2018-01-01
We investigated in this study the expression of ENO1 in tissues and plasma of PDAC patients to evaluate its clinicopathological and diagnostic significance. ENO1 protein expression was detected in tissue microarray of human PDAC and adjacent noncancer tissues. Electrochemiluminescence immunoassay and amplified luminescent proximity homogeneous assay (AlphaLISA) were performed to measure CA19-9 and ENO1 concentration in plasma from PDAC patients and healthy controls. We demonstrated that ENO1 overexpression is positively correlated with clinical stage, lymph node metastasis, and poor prognosis of PDAC; ENO1 may function as a hopeful candidate diagnostic marker in combination with CA19-9 in PDAC diagnosis. PMID:29483925
Long, Yang; Yan, Jianghong; Luo, Suxin; Liu, Zhenguo; Xia, Yong
2017-11-15
Endothelial nitric oxide synthase (eNOS) plays central roles in cardiovascular regulation and disease. eNOS function is critically affected by O-linked N-acetylglucosamine (O-GlcNAc) modification. The present method for measuring O-GlcNAcylated eNOS relies on immunoprecipitation. Such method exhibits low detection efficiency and is also costly. We here report a simplified assay by employing the high binding affinity of eNOS with the 2',5'-ADP-Sepharose resins. Together with the O-GlcNAc antibody, this assay readily allows the detection of O-GlcNAcylated eNOS in both cultured endothelial cells and rat vascular tissues. By using this assay, we demonstrate that eNOS O-GlcNAcylation is markedly elevated in the vessels of diabetic rats. Thus, a 2',5'-ADP-Sepharose-based pull-down assay is developed to measure O-GlcNAcylated eNOS. This assay is simple and efficient in detecting O-GlcNAcylated eNOS in cultured cells and animal tissues under both normal and disease conditions. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhong, Weiqiang; Zhou, Tian-Biao; Jiang, Zongpei
2015-04-01
Association between endothelial nitric oxide synthase (eNOS) gene polymorphism and Henoch-Schönlein purpura (HSP)/Henoch-Schönlein purpura nephritis (HSPN) risk is still controversial. A meta-analysis was performed to evaluate the association between eNOS gene polymorphism and HSP/HSPN susceptibility. A predefined literature search and selection of eligible relevant studies were performed to collect data from electronic database. Three articles were identified for the analysis of association between eNOS gene polymorphism and HSPN/HSP risk. eNOS G894T gene polymorphism was not associated with HSPN susceptibility and the risk of patients with HSP developing into HSPN. Interestingly, eNOS G894T T allele and GG genotype were associated with HSP susceptibility, but not the TT genotype. eNOS T786C TT genotype was associated with HSPN susceptibility, but not C allele and CC genotype. Furthermore, eNOS T786C gene polymorphism was not associated with HSP risk and the risk of patients with HSP developing into HSPN. In conclusion, eNOS T786C TT genotype was associated with and eNOS G894T T allele and GG genotype were associated with HSP susceptibility. However, more studies should be performed in the future.
Wang, Wei-Xia; Li, Kai-Long; Chen, Yang; Lai, Feng-Xiang; Fu, Qiang
2015-01-01
The enolase [EC 4.2.1.11] is an essential enzyme in the glycolytic pathway catalyzing the conversion of 2-phosphoglycerate (2-PGE) to phosphoenolpyruvate (PEP). In this study, a full-length cDNA encoding α-enolase was cloned from rice brown planthopper (Nilaparvata lugens) and is provisionally designated as NlEno1. The cDNA sequence of NlEno1 was 1,851 bp with an open reading frame (ORF) of 1,305 bp and encoding 434 amino acids. The deduced protein shares high identity of 80–87% with ENO1-like protein from Hemiptera, Diptera, and Lepidoptera speices. The NlEno1 showed the highest mRNA expression level in hemolymph, followed by fat body, salivary gland, ovaries and egg, and showed trace mRNA levels in testis. The mRNA of NlEno1 showed up-regulated level in virulent N. lugens population Mudgo, IR56 and IR42 when compared with TN1 population. Injection of double-stranded RNA (dsRNA) of NlEno1 into the adults significantly down-regulated the NlEno1 mRNA level along with decreased eggs and offspring. Moreover, injection of NlEno1-dsRNA decreased mRNA level of Vitellogenin (Vg) gene. These results showed that the NlEno1, as a key glycolytic enzyme, may play roles in regulation of fecundity and adaptation of N. lugens to resistant rice varieties. PMID:26056319
Endothelial nitric oxide synthase in red blood cells: Key to a new erythrocrine function?☆
Cortese-Krott, Miriam M.; Kelm, Malte
2014-01-01
Red blood cells (RBC) have been considered almost exclusively as a transporter of metabolic gases and nutrients for the tissues. It is an accepted dogma that RBCs take up and inactivate endothelium-derived NO via rapid reaction with oxyhemoglobin to form methemoglobin and nitrate, thereby limiting NO available for vasodilatation. Yet it has also been shown that RBCs not only act as “NO sinks”, but exert an erythrocrine function – i.e an endocrine function of RBC – by synthesizing, transporting and releasing NO metabolic products and ATP, thereby potentially controlling systemic NO bioavailability and vascular tone. Recent work from our and others laboratory demonstrated that human RBCs carry an active type 3, endothelial NO synthase (eNOS), constitutively producing NO under normoxic conditions, the activity of which is compromised in patients with coronary artery disease. In this review we aim to discuss the potential role of red cell eNOS in RBC signaling and function, and to critically revise evidence to this date showing a role of non-endothelial circulating eNOS in cardiovascular pathophysiology. PMID:24494200
Boot, J D; de Ridder, L; de Kam, M L; Calderon, C; Mascelli, M A; Diamant, Z
2008-11-01
Exhaled nitric oxide (eNO) is an established, noninvasive biomarker of active airway inflammation in (atopic) asthma. Treatment with anti-inflammatory therapy, such as inhaled corticosteroids, effectively decreases eNO levels. The NIOX MINO (MINO) is a hand-held, relatively inexpensive, electrochemical device that has been shown to yield comparable eNO measurements to the NIOX stationary unit. To compare measurements of MINO with another widely used and validated stationary chemiluminescence analyzer, the Ecomedics (ECO). We performed subsequent eNO measurements on ECO and MINO in 50 subjects (19 healthy volunteers, 18 healthy smokers and 13 non-smoking, atopic asthmatics, not on controller therapy) on two visits 4-10 days apart. The mean of three acceptable measurements by ECO and the first acceptable measurement with the MINO were used for analysis. Both devices yielded reproducible eNO values for all subjects on both visits, with an overall CV of 22.7% (ECO) and 18.3% (MINO). A significant correlation was found between both devices (r=0.97, p<0.0001). Bland-Altman plots showed a high degree of agreement for the entire study population (mean difference MINO vs ECO=-10%; 95% limit of agreement were -36% and +28%) and in the three individual subgroups. Exhaled NO values measured with the MINO are reproducible and in agreement with the ECO. Our results add further evidence to the reliability of the MINO and warrant its applicability in research and clinical practice.
eNOS uncoupling in cardiovascular diseases--the role of oxidative stress and inflammation.
Karbach, Susanne; Wenzel, Philip; Waisman, Ari; Munzel, Thomas; Daiber, Andreas
2014-01-01
Many cardiovascular diseases and drug-induced complications are associated with - or even based on - an imbalance between the formation of reactive oxygen and nitrogen species (RONS) and antioxidant enzymes catalyzing the break-down of these harmful oxidants. According to the "kindling radical" hypothesis, the formation of RONS may trigger in certain conditions the activation of additional sources of RONS. According to recent reports, vascular dysfunction in general and cardiovascular complications such as hypertension, atherosclerosis and coronary artery diseases may be connected to inflammatory processes. The present review is focusing on the uncoupling of endothelial nitric oxide synthase (eNOS) by different mechanisms involving so-called "redox switches". The oxidative depletion of tetrahydrobiopterin (BH4), oxidative disruption of the dimeric eNOS complex, S-glutathionylation and adverse phosphorylation as well as RONS-triggered increases in levels of asymmetric dimethylarginine (ADMA) will be discussed. But also new concepts of eNOS uncoupling and state of the art detection of this process will be described. Another part of this review article will address pharmaceutical interventions preventing or reversing eNOS uncoupling and thereby normalize vascular function in a given disease setting. We finally turn our attention to the inflammatory mechanisms that are also involved in the development of endothelial dysfunction and cardiovascular disease. Inflammatory cell and cytokine profiles as well as their interactions, which are among the kindling mechanisms for the development of vascular dysfunction will be discussed on the basis of the current literature.
Ruan, Jiapeng; Mouveaux, Thomas; Light, Samuel H.; ...
2015-03-01
In addition to catalyzing a central step in glycolysis, enolase assumes a remarkably diverse set of secondary functions in different organisms, including transcription regulation as documented for the oncogene c-Myc promoter-binding protein 1. The apicomplexan parasite Toxoplasma gondii differentially expresses two nuclear-localized, plant-like enolases: enolase 1 (TgENO1) in the latent bradyzoite cyst stage and enolase 2 (TgENO2) in the rapidly replicative tachyzoite stage. A 2.75 Å resolution crystal structure of bradyzoite enolase 1, the second structure to be reported of a bradyzoite-specific protein inToxoplasma, captures an open conformational state and reveals that distinctive plant-like insertions are located on surface loops.more » The enolase 1 structure reveals that a unique residue, Glu164, in catalytic loop 2 may account for the lower activity of this cyst-stage isozyme. Recombinant TgENO1 specifically binds to a TTTTCT DNA motif present in the cyst matrix antigen 1 (TgMAG1) gene promoter as demonstrated by gel retardation. Furthermore, direct physical interactions of both nuclear TgENO1 and TgENO2 with the TgMAG1 gene promoter are demonstrated n vivo using chromatin immunoprecipitation (ChIP) assays. Structural and biochemical studies reveal that T. gondii enolase functions are multifaceted, including the coordination of gene regulation in parasitic stage development. Lastly, enolase 1 provides a potential lead in the design of drugs against Toxoplasma brain cysts.« less
Effects of atorvastatin and T-786C polymorphism of eNOS gene on plasma metabolic lipid parameters.
Zago, Vanessa Helena de Souza; Santos, José Eduardo Tanus dos; Danelon, Mirian Regina Gardin; Silva, Roger Marcelo Mesquita da; Panzoldo, Natália Baratella; Parra, Eliane Soler; Alexandre, Fernanda; Virgínio, Vítor Wilson de Moura; Quintão, Eder Carlos Rocha; Faria, Eliana Cotta de
2013-01-01
Endothelial nitric oxide synthase (eNOS) activity may be modulated by high-density lipoprotein cholesterol (HDL-C), statins or polymorphisms, such as the T-786C of eNOS. This study aimed at evaluating if the T-786C polymorphism is associated with changes of atorvastatin effects on the lipid profile, on the concentrations of metabolites of nitric oxide (NO) and of high sensitivity C-reactive protein (hsCRP). Thirty male volunteers, asymptomatic, aged between 18 and 56 years were genotyped and classified according to absence (TT, n = 15) or presence (CC, n = 15) of the polymorphism. They were randomly selected for the use of placebo or atorvastatin (10 mg/day/14 days). After each treatment lipids, lipoproteins, HDL2 and HDL3 composition, cholesteryl ester transfer protein (CETP) activity, metabolites of NO and hsCRP were evaluated. The comparisons between genotypes after placebo showed an increase in CETP activity in a polymorphism-dependent way (TT, 12±7; CC, 22±12; p < 0.05). The interaction analyses between treatments indicated that atorvastatin has an effect on cholesterol, LDL, nitrite and lipid-protein ratios (HDL2 and HDL3) (p < 0.001) in both genotypes. Interestingly, we observed genotype/drug interactions on CETP (p < 0.07) and lipoprotein (a) (Lp(a)) (p < 0.056), leading to a borderline decrease in CETP, but with no effect on Lp(a). HsCRP showed no alteration. These results suggest that statin treatment may be relevant for primary prevention of atherosclerosis in patients with the T-786C polymorphism of eNOS, considering the effects on lipid metabolism.
Varshney, Rohan; Ali, Quaisar; Wu, Chengxiang; Sun, Zhongjie
2016-11-01
The objective of this study is to investigate whether stem cell delivery of secreted Klotho (SKL), an aging-suppressor protein, attenuates monocrotaline-induced pulmonary vascular dysfunction and remodeling. Overexpression of SKL in mesenchymal stem cells (MSCs) was achieved by transfecting MSCs with lentiviral vectors expressing SKL-green fluorescent protein (GFP). Four groups of rats were treated with monocrotaline, whereas an additional group was given saline (control). Three days later, 4 monocrotaline-treated groups received intravenous delivery of nontransfected MSCs, MSC-GFP, MSC-SKL-GFP, and PBS, respectively. Ex vivo vascular relaxing responses to acetylcholine were diminished in small pulmonary arteries (PAs) in monocrotaline-treated rats, indicating pulmonary vascular endothelial dysfunction. Interestingly, delivery of MSCs overexpressing SKL (MSC-SKL-GFP) abolished monocrotaline-induced pulmonary vascular endothelial dysfunction and PA remodeling. Monocrotaline significantly increased right ventricular systolic blood pressure, which was attenuated significantly by MSC-SKL-GFP, indicating improved PA hypertension. MSC-SKL-GFP also attenuated right ventricular hypertrophy. Nontransfected MSCs slightly, but not significantly, improved PA hypertension and pulmonary vascular endothelial dysfunction. MSC-SKL-GFP attenuated monocrotaline-induced inflammation, as evidenced by decreased macrophage infiltration around PAs. MSC-SKL-GFP increased SKL levels, which rescued the downregulation of SIRT1 (Sirtuin 1) expression and endothelial NO synthase (eNOS) phosphorylation in the lungs of monocrotaline-treated rats. In cultured endothelial cells, SKL abolished monocrotaline-induced downregulation of eNOS activity and NO levels and enhanced cell viability. Therefore, stem cell delivery of SKL is an effective therapeutic strategy for pulmonary vascular endothelial dysfunction and PA remodeling. SKL attenuates monocrotaline-induced PA remodeling and PA smooth muscle cell proliferation, likely by reducing inflammation and restoring SIRT1 levels and eNOS activity. © 2016 American Heart Association, Inc.
Ponce, Reynaldo; León-Janampa, Nancy; Gilman, Robert H; Liendo, Ruddy; Roncal, Elisa; Luis, Sueline; Quiñones-Garcia, Stefany; Silverstein, Zach; García, Hector H; Gonzales, Armando; Sheen, Patricia; Zimic, Mirko; Pajuelo, Mónica
2018-06-06
Cysticercosis is a worldwide parasitic disease of humans and pigs principally caused by infection with the larvae of the pork tapeworm Taenia solium. Through the use of the recently-made-available T. solium genome, we identified a gene within a novel 1448 bp ORF that theoretically encodes for a 433 amino acid-long protein and predicted to be an α-enolase closely related to enolases of other flatworms. Additional bioinformatic analyses revealed a putative plasminogen-binding region on this protein, suggesting a potential role for this protein in pathogenesis. On this basis, we isolated the mRNA encoding for this presumptive enolase from T. solium metacestodes and reverse-transcribed it into cDNA before subsequently cloning and expressing it in both E. coli (rEnoTs) and insect cells (rEnoTsBac), in a 6xHis tagged manner. The molecular weights of these two recombinant proteins were ∼48 and ∼50 kDa, respectively, with the differences likely attributable to differential glycosylation. We used spectrophotometric assays to confirm the enolase nature of rEnoTs as well as to measure its enzymatic activity. The resulting estimates of specific activity (60.000 U/mg) and K m (0.091 mM) are quite similar to the catalytic characteristics of enolases of other flatworms. rEnoTs also exhibited high immunogenicity, eliciting a strong polyclonal antibody response in immunized rabbits. We subsequently employed rEnoTsBac for use in an ELISA aimed at discriminating between healthy pigs and those infected with T. solium. This diagnostic assay exhibited a sensitivity of 88.4% (95% CI, 74.92%-96.11%) and a specificity of 83.7% (95% CI: 69.29%-93.19%). In conclusión, this study reports on and enzymatically characterizes a novel enolase from T. solium metacestode, and shows a potential use as an immunodiagnostic for porcine cysticercosis. Copyright © 2018. Published by Elsevier Inc.
Chen, Zhenfei; Qi, Yinliang; Gao, Chao
2015-01-01
MicroRNA-22 (miR-22) was previously reported to elicit cardiac myocyte hypertrophy and had an anti-apoptotic effect on neurons. However, its effects on cardiac myocyte apoptosis and cardiac function during ischemia and reperfusion (I/R) are not clear. In the present study, we demonstrate that pre-administration of miR-22 mimic reduced I/R-induced cardiac dysfunction significantly in a rat model. We found that miR-22 overexpression inhibited cardiac myocyte apoptosis, and reduced cardiac remodeling during I/R. Significant cardiac myocyte apoptosis was also observed in a cardiac myocyte model after hypoxia/reoxygenation (H/R), a representative process of I/R. Further experiments showed that eNOS activity and the following NO production were significantly decreased during I/R and H/R, while such decrease was inhibited by overexpression of miR-22. Mechanistically, overexpression of miR-22 had little effect on the total protein level of eNOS, but restored the level of p-eNOS (Ser1177) which was down-regulated during H/R. Further RT-PCR results demonstrated that Caveolin 3 (Cav3), an upstream negative regulator of eNOS, was upregulated during H/R, resulting in a decrease of p-eNOS. However, such upregulation of Cav3 transcript level was inhibited directly by miR-22 during H/R, leading to a restored p-eNOS level and followed NO production in cardiac myocytes. Together, the present study revealed that miR-22 down-regulated Cav3, leading to restored eNOS activity and NO production, which further inhibited cardiac myocyte apoptosis and promoted cardiac function after I/R. Of clinical interest, the present study may highlight miR-22 as a potential therapeutic agent for reducing I/R induced cardiac injury. PMID:26191152
Bubb, Kristen J; Kok, Cindy; Tang, Owen; Rasko, Nathalie B; Birgisdottir, Asa B; Hansen, Thomas; Ritchie, Rebecca; Bhindi, Ravinay; Reisman, Scott A; Meyer, Colin; Ward, Keith; Karimi Galougahi, Keyvan; Figtree, Gemma A
2017-07-01
The novel synthetic triterpenoid, bardoxolone methyl, has the ability to upregulate cytoprotective proteins via induction of the nuclear factor erythroid-2-related factor 2 (Nrf2) pathway. This makes it a promising therapeutic agent in disease states characterized by dysregulated oxidative signalling. We have examined the effect of a Nrf2 activator, dihydro-CDDO-trifluoroethyl amide (DH404), a derivative of bardoxolone methyl, on post-infarct cardiac remodeling in rats. DH404, administered from day 2 post myocardial infarction (MI: 30min transient ischemia followed by reperfusion) resulted in almost complete protection against adverse ventricular remodeling as assessed at day 28 (left ventricular end-systolic area: sham 0.14±0.01cm 2 , MI vehicle 0.29±0.04cm 2 vs. MI DH404 0.18±0.02cm 2 , P<0.05); infarct size (21.3±3.4% MI vehicle vs. 10.9±2.3% MI DH404, P<0.05) with associated benefits on systolic function (fractional shortening: sham 71.9±2.6%, MI vehicle 36.2±1.9% vs. MI DH404 58.6±4.0%, P<0.05). These structural and functional benefits were associated with lower myocardial expression of atrial natriuretic peptide (ANP, P<0.01 vs. MI vehicle), and decreased fibronectin (P<0.01 vs. MI vehicle) in DH404-treated MI rats at 28 days. MI increased glutathionylation of endothelial nitric oxide synthase (eNOS) in vitro - a molecular switch that uncouples the enzyme, increasing superoxide production and decreasing nitric oxide (NO) bioavailability. MI-induced eNOS glutathionylation was substantially ameliorated by DH404. An associated increase in glutaredoxin 1 (Grx1) co-immunoprecipitation with eNOS without a change in expression was mechanistically intriguing. Indeed, in parallel in vitro experiments, silencing of Grx1 abolished the protective effect of DH404 against Angiotensin II-induced eNOS uncoupling. The bardoxolone derivative DH404 significantly attenuated cardiac remodeling post MI, at least in part, by re-coupling of eNOS and increasing the functional interaction of Grx1 with eNOS. This agent may have clinical benefits protecting against post MI cardiomyopathy. Copyright © 2017. Published by Elsevier Inc.
Panisello-Roselló, Arnau; Verde, Eva; Amine Zaouali, Mohamed; Flores, Marta; Alva, Norma; Lopez, Alexandre; Folch-Puy, Emma; Hotter, Georgina; Adam, René; Roselló-Catafau, Joan
2017-01-01
The 26S proteasome is the central proteolytic machinery of the ubiquitin proteasome system (UPS), which is involved in the degradation of ubiquitinated protein substrates. Recently, UPS inhibition has been shown to be a key factor in fatty liver graft preservation during organ cold storage using University of Wisconsin solution (UW) and Institute Georges Lopez (IGL-1) solutions. However, the merits of IGL-1 and histidine-tryptophan-ketoglutarate (HTK) solutions for fatty liver preservation have not been compared. Fatty liver grafts from obese Zücker rats were preserved for 24 h at 4 °C. Aspartate aminotransferase and alanine aminotransferase (AST/ALT), glutamate dehydrogenase (GLDH), ATP, adenosine monophosphate protein kinase (AMPK), e-NOS, proteasome activity and liver polyubiquitinated proteins were determined. IGL-1 solution prevented ATP breakdown during cold-storage preservation of steatotic livers to a greater extent than HTK solution. There were concomitant increases in AMPK activation, e-NOS (endothelial NOS (NO synthase)) expression and UPS inhibition. UPS activity is closely related to the composition of the solution used to preserve the organ. IGL-1 solution provided significantly better protection against ischemia-reperfusion for cold-stored fatty liver grafts than HTK solution. The effect is exerted through the activation of the protective AMPK signaling pathway, an increase in e-NOS expression and a dysregulation of the UPS. PMID:29088097
Arraj, M; Lemmer, B
2006-01-01
The nitric oxide (NO) system is involved in the regulation of the cardiovascular system in controlling central and peripheral vascular tone and cardiac functions. It was the aim of this study to investigate in wild-type C57BL/6 and endothelial nitric oxide synthase (eNOS) knock-out mice (eNOS-/-) the contribution of NO on the circadian rhythms in heart rate (HR), motility (motor activity [MA]), and body temperature (BT) under various environmental conditions. Experiments were performed in 12:12 h of a light:dark cycle (LD), under free-run in total darkness (DD), and after a phase delay shift of the LD cycle by -6 h (i.e., under simulation of a westward time zone transition). All parameters were monitored by radiotelemetry in freely moving mice. In LD, no significant differences in the rhythms of HR and MA were observed between the two strains of mice. BT, however, was significantly lower during the light phase in eNOS-/- mice, resulting in a significantly greater amplitude. The period of the free-running rhythm in DD was slightly shorter for all variables, though not significant. In general, rhythmicity was greater in eNOS-/- than in C57 mice both in LD and DD. After a delay shift of the LD cycle, HR and BT were resynchronized to the new LD schedule within 5-6 days, and resynchronization of MA occurred within 2-3 days. The results in telemetrically instrumented mice show that complete knock-out of the endothelial NO system--though expressed in the suprachiasmatic nuclei and in peripheral tissues--did not affect the circadian organization of heart rate and motility. The circadian regulation of the body temperature was slightly affected in eNOS-/- mice.
A meta-analysis of eNOS and ACE gene polymorphisms and risk of pre-eclampsia in women.
Shaik, A P; Sultana, A; Bammidi, V K; Sampathirao, K; Jamil, K
2011-10-01
A meta-analyses of endothelial nitric oxide synthase (eNOS) and angiotensin-converting enzyme (ACE) gene polymorphisms in pre-eclampsia was performed. We shortlisted 33 studies (17 for ACE; 16 for eNOS gene polymorphisms), of which 29 articles (16 for ACE and 15 for eNOS) were analysed. Overall, 1,620 cases with pre-eclampsia and 2,158 controls were analysed for intron 16 insertion-deletion polymorphism in ACE gene. A total of 1,610 subjects with pre-eclampsia and 2,875 controls were analysed for the Glu298Asp in eNOS gene. Overall, the random-effects odds ratio (OR) with Glu298Asp in eNOS gene was 0.958 (95% confidence intervals, CI 0.747-1.228, p > 0.05), and for the insertion-deletion/ACE polymorphism was 0.987 (95% CI 0.698-1.395, p > 0.05). Significant heterogeneity was observed in the studies that evaluated polymorphisms in ACE (Q value = 55.6; I(2) = 73; p value = 0.000); and eNOS (Q value = 37.2; I(2) = 62.4; p value = 0.001) polymorphisms. No significant risk of pre-eclampsia was observed in both eNOS and ACE genes with these polymorphisms.
Martínez-Fernández, Leyre; Pons, Zara; Margalef, Maria; Arola-Arnal, Anna; Muguerza, Begoña
2015-03-01
Physiological concentrations (1 μM) of 15 flavonoids were evaluated in human umbilical vein endothelial cells in the presence of hydrogen peroxide (H₂O₂) for their ability to affect endothelial nitric oxide synthase (eNOS) and endothelin-1 (ET-1) expression in order to establish the structural basis of their bioactivity. Flavonoid effects on eNOS transcription factor Krüpple like factor-2 (KLF-2) expression were also evaluated. All studied flavonoids appeared to be effective compounds for counteracting the oxidative stress-induced effects on vascular gene expression, indicating that flavonoids are an excellent source of functional endothelial regulator products. Notably, the more effective flavonoids for KLF-2 up-regulation resulted in the highest values for eNOS expression, showing that the increment of eNOS expression would take place through KLF-2 induction. Structure-activity relationship studies showed that the combinations of substructures on flavonoid skeleton that regulate eNOS expression are made up of the following elements: glycosylation and hydroxylation of C-ring, double bond C2=C3 at C-ring, methoxylation and hydroxylation of B-ring, ketone group in C4 at C-ring and glycosylation in C7 of A-ring, while flavonoid features involved in the reduction of vasoconstrictor ET-1 expression are as follows: double bond C2=C3 at C-ring glycosylation in C7 of A-ring and ketone group in C4 of C-ring. Copyright © 2015 Elsevier Inc. All rights reserved.
Okoye, B.; Losty, P.; Fisher, M.; Wilmott, I.; Lloyd, D.
1998-01-01
AIMS—To study the effect of prenatal glucocorticoid treatment on endothelial nitric oxide synthase (eNOS) expression in rats with congenital diaphragmatic hernia (CDH). METHODS—CDH was induced in fetal rats by the maternal administration of nitrofen on day 9.5 of gestation. Dexamethasone was administered on days 18.5 and 19.5 before delivery of the fetuses on days 20.5and 21.5. Pulmonary eNOS protein expression was studied by western immunoblotting and immunohistochemistry. RESULTS—On day 20.5, eNOS expression was significantly reduced in CDH pups compared with normal control rats. Dexamethasone treated CDH pups had eNOS concentrations equivalent to those of normal animals. By day 21.5, however, there was no detectable difference in eNOS expression between the experimental groups. CONCLUSIONS—eNOS is deficient in near term (day 20.5) CDH rats. Dexamethasone restores eNOS expression in these animals to that seen in normal rat lungs. At term, the precise role of eNOS in the pathophysiology of CDH remains uncertain. PMID:9713033
Khemais-Benkhiat, Sonia; Idris-Khodja, Noureddine; Ribeiro, Thais Porto; Silva, Grazielle Caroline; Abbas, Malak; Kheloufi, Marouane; Lee, Jung-Ok; Toti, Florence; Auger, Cyril; Schini-Kerth, Valérie B
2016-12-01
Endothelial senescence, characterized by an irreversible cell cycle arrest, oxidative stress, and downregulation of endothelial nitric oxide synthase (eNOS), has been shown to promote endothelial dysfunction leading to the development of age-related vascular disorders. This study has assessed the possibility that the local angiotensin system promotes endothelial senescence in coronary artery endothelial cells and also the protective effect of the Crataegus extract WS1442, a quantified hawthorn extract. Serial passaging from P1 to P4 (replicative senescence) and treatment of P1 endothelial cells with the eNOS inhibitor L-NAME (premature senescence) promoted acquisition of markers of senescence, enhanced ROS formation, decreased eNOS expression, and upregulation of angiotensin-converting enzyme (ACE) and AT1 receptors. Increased SA-β-gal activity and the upregulation of ACE and AT1R in senescent cells were prevented by antioxidants, an ACE inhibitor, and by an AT1 receptor blocker. WS1442 prevented SA-β-gal activity, the downregulation of eNOS, and oxidative stress in P3 cells. These findings indicate that the impairment of eNOS-derived nitric oxide formation favors a pro-oxidant response triggering the local angiotensin system, which, in turn, promotes endothelial senescence. Such a sequence of events can be effectively inhibited by a standardized polyphenol-rich extract mainly by targeting the oxidative stress. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Sánchez-Gómez, Francisco J; Calvo, Enrique; Bretón-Romero, Rosa; Fierro-Fernández, Marta; Anilkumar, Narayana; Shah, Ajay M; Schröder, Katrin; Brandes, Ralf P; Vázquez, Jesús; Lamas, Santiago
2015-12-01
Laminar shear stress (LSS) triggers signals that ultimately result in atheroprotection and vasodilatation. Early responses are related to the activation of specific signaling cascades. We investigated the participation of redox-mediated modifications and in particular the role of hydrogen peroxide (H2O2) in the sulfenylation of redox-sensitive phosphatases. Exposure of vascular endothelial cells to short periods of LSS (12 dyn/cm(2)) resulted in the generation of superoxide radical anion as detected by the formation of 2-hydroxyethidium by HPLC and its subsequent conversion to H2O2, which was corroborated by the increase in the fluorescence of the specific peroxide sensor HyPer. By using biotinylated dimedone we detected increased total protein sulfenylation in the bovine proteome, which was dependent on NADPH oxidase 4 (NOX4)-mediated generation of peroxide. Mass spectrometry analysis allowed us to identify the phosphatase SHP2 as a protein susceptible to sulfenylation under LSS. Given the dependence of FAK activity on SHP2 function, we explored the role of FAK under LSS conditions. FAK activation and subsequent endothelial NO synthase (eNOS) phosphorylation were promoted by LSS and both processes were dependent on NOX4, as demonstrated in lung endothelial cells isolated from NOX4-null mice. These results support the idea that LSS elicits redox-sensitive signal transduction responses involving NOX4-dependent generation of hydrogen peroxide, SHP2 sulfenylation, and ulterior FAK-mediated eNOS activation. Copyright © 2015 Elsevier Inc. All rights reserved.
Morus alba extract modulates blood pressure homeostasis through eNOS signaling.
Carrizzo, Albino; Ambrosio, Mariateresa; Damato, Antonio; Madonna, Michele; Storto, Marianna; Capocci, Luca; Campiglia, Pietro; Sommella, Eduardo; Trimarco, Valentina; Rozza, Francesco; Izzo, Raffaele; Puca, Annibale A; Vecchione, Carmine
2016-10-01
Morus alba is a promising phytomedicine cultivated in oriental countries that is extensively used to prevent and treat various cardiovascular problems. To date, despite its beneficial effects, the molecular mechanisms involved remain unclear. Thus, we investigate the vascular and haemodynamic effects of Morus alba extract in an experimental model focusing our attention on the molecular mechanisms involved. Through vascular reactivity studies, we demonstrate that Morus alba extract evokes endothelial vasorelaxation through a nitric oxide-dependent pathway. Our molecular analysis highlights an increase in endothelial nitric oxide synthase (eNOS) phosphorylation. In vivo administration of Morus alba extract reduces blood pressure levels exclusively in wild-type mice, whereas it fails to evoke any haemodynamic effects in eNOS-deficient mice. Molecular analyses revealed that its beneficial action on vasculature is mediated by the activation of two important proteins that act as stress sensors and chaperones: PERK and heat shock protein 90. Finally, Morus alba extract exerts antihypertensive action in an experimental model of arterial hypertension. Through its action on eNOS signaling, Morus alba extract could act as a food supplement for the regulation of cardiovascular system, mainly in clinical conditions characterized by eNOS dysfunction, such as arterial hypertension. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
On the application of subcell resolution to conservation laws with stiff source terms
NASA Technical Reports Server (NTRS)
Chang, Shih-Hung
1989-01-01
LeVeque and Yee recently investigated a one-dimensional scalar conservation law with stiff source terms modeling the reacting flow problems and discovered that for the very stiff case most of the current finite difference methods developed for non-reacting flows would produce wrong solutions when there is a propagating discontinuity. A numerical scheme, essentially nonoscillatory/subcell resolution - characteristic direction (ENO/SRCD), is proposed for solving conservation laws with stiff source terms. This scheme is a modification of Harten's ENO scheme with subcell resolution, ENO/SR. The locations of the discontinuities and the characteristic directions are essential in the design. Strang's time-splitting method is used and time evolutions are done by advancing along the characteristics. Numerical experiment using this scheme shows excellent results on the model problem of LeVeque and Yee. Comparisons of the results of ENO, ENO/SR, and ENO/SRCD are also presented.
Anselm, Eric; Socorro, Vanesca Frota Madeira; Dal-Ros, Stéphanie; Schott, Christa; Bronner, Christian; Schini-Kerth, Valérie B
2009-03-01
This study determined whether the Crataegus (Hawthorn species) special extract WS 1442 stimulates the endothelial formation of nitric oxide (NO), a vasoprotective factor, and characterized the underlying mechanism. Vascular reactivity was assessed in porcine coronary artery rings, reactive oxygen species (ROS) formation in artery sections by microscopy, and phosphorylation of Akt and endothelial NO synthase (eNOS) in endothelial cells by Western blot analysis. WS 1442 caused endothelium-dependent relaxations in coronary artery rings, which were reduced by N-nitro-L-arginine (a competitive inhibitor of NO synthase) and by charybdotoxin plus apamin (two inhibitors of endothelium-derived hyperpolarizing factor-mediated responses). Relaxations to WS 1442 were inhibited by intracellular ROS scavengers and inhibitors of Src and PI3-kinase, but not by an estrogen receptor antagonist. WS 1442 stimulated the endothelial formation of ROS in artery sections, and a redox-sensitive phosphorylation of Akt and eNOS in endothelial cells. WS 1442 induced endothelium-dependent NO-mediated relaxations of coronary artery rings through the redox-sensitive Src/PI3-kinase/Akt-dependent phosphorylation of eNOS.
Off-line exhaled nitric oxide measurements in children.
Barreto, M; Villa, M P; Martella, S; Falasca, C; Guglielmi, F; Pagani, J; Darder, M T; Ronchetti, R
2001-08-01
The concentration of exhaled nitric oxide (eNO) is a useful marker of asthmatic bronchial inflammation. eNO can now be measured away from the laboratory (off-line), even in children. Short exhalation maneuvers (8 sec) and small samples (1 L) of exhaled gas are probably sufficient in children, but more information is needed about the effect of different measurement conditions. As a preliminary step before conducting epidemiological studies in schoolchildren, we investigated the effects of expiratory flow, dead space, and expiratory time on eNO concentrations collected in 1-L mylar collection bags. We studied 101 cooperative subjects (62 males) aged 5-18 years (30 healthy volunteers, 51 asthmatics, and 20 children with various other respiratory diseases) in our pulmonary function laboratory. On-line and off-line eNO were compared in a single session, and analyzed with a Sievers NOA 280 nitric oxide analyzer. For both methods of collecting expired gas, subjects did a single exhalation without breath-holding against an expiratory pressure 10 cm H(2)O. We investigated the effects of expiratory flow, dead space, and exhalation time on eNO; we also compared on-line and off-line eNO measurements, and the repeatability of both techniques at a given flow rate. Expiratory flows of 58 mL/sec provided more reproducible data than lower flows (coefficient of repeatability 1.1 ppb for 58 mL/sec vs. 2.8 for 27 mL/sec vs. 5.7 for 18 mL/sec). eNO concentrations were about 25% higher in off-line than in on-line recordings if the initial 250 mL of exhaled gas were not eliminated, and 37% higher if exhalation lasted longer (16 sec vs. 8 sec). Eliminating 250 mL of dead space and shortening the filling time to 8 sec yielded off-line eNO values close to those on-line (geometric mean off-line eNO 14.4 ppb, 95% confidence interval: 12.2-17.0) vs. on-line eNO 13.8 ppb (95% confidence interval: 11.6-16.5). On-line and off-line results were highly correlated (r = 0.996, P = 0.000) and had similar coefficients of variation (on-line eNO 2.6%, off-line 2.8%). Neither agreement nor repeatability of eNO measurements were affected by disease status or baseline FEV(1) (% predicted values). Once standardized, the off-line eNO technique using 1-L gas collection bags will provide results similar to those recorded on-line. Copyright 2001 Wiley-Liss, Inc.
Wood, Katherine C.; Cortese-Krott, Miriam M.; Kovacic, Jason C.; Noguchi, Audrey; Liu, Virginia B.; Wang, Xunde; Raghavachari, Nalini; Boehm, Manfred; Kato, Gregory J.; Kelm, Malte; Gladwin, Mark T.
2013-01-01
Objective Mice genetically deficient in endothelial nitric oxide synthase (eNOS−/−) are hypertensive with lower circulating nitrite levels, indicating the importance of constitutively produced nitric oxide (NO•) to blood pressure regulation and vascular homeostasis. While the current paradigm holds that this bioactivity derives specifically from expression of eNOS in endothelium, circulating blood cells also express eNOS protein. A functional red cell eNOS that modulates vascular NO• signaling has been proposed. Approach and Results To test the hypothesis that blood cells contribute to mammalian blood pressure regulation via eNOS-dependent NO• generation, we cross-transplanted WT and eNOS−/− mice, producing chimeras competent or deficient for eNOS expression in circulating blood cells. Surprisingly, we observed a significant contribution of both endothelial and circulating blood cell eNOS to blood pressure and systemic nitrite levels, the latter being a major component of the circulating NO• reservoir. These effects were abolished by the NOS inhibitor L-NAME and repristinated by the NOS substrate L-Arginine, and were independent of platelet or leukocyte depletion. Mouse erythrocytes were also found to carry an eNOS protein and convert 14C-Arginine into 14C-Citrulline in a NOS-dependent fashion. Conclusions These are the first studies to definitively establish a role for a blood borne eNOS, using cross transplant chimera models, that contributes to the regulation of blood pressure and nitrite homeostasis. This work provides evidence suggesting that erythrocyte eNOS may mediate this effect. PMID:23702660
Space chimp Enos returns to Patrick Air Force Base
NASA Technical Reports Server (NTRS)
1961-01-01
Enos the chimpanzee that orbited the earth twice in a Mercury spacecraft arrives back at Patrick Air Force Base. Enos landed some 220 nautical miles south of Bermuda and was picked up up by the U.S.S. Stormes.
Romero, Mariana; Caniffi, Carolina; Bouchet, Gonzalo; Costa, María A; Elesgaray, Rosana; Arranz, Cristina; Tomat, Analía L
2015-01-01
The aim of this study was to investigate the effects of chronic treatment with atrial natriuretic peptide (ANP) on renal function, nitric oxide (NO) system, oxidative stress, collagen content and apoptosis in kidneys of spontaneously hypertensive rats (SHR), as well as sex-related differences in the response to the treatment. 10 week-old male and female SHR were infused with ANP (100 ng/h/rat) or saline (NaCl 0.9%) for 14 days (subcutaneous osmotic pumps). Systolic blood pressure (SBP) was recorded and diuresis and natriuresis were determined. After treatment, renal NO synthase (NOS) activity and eNOS expression were evaluated. Thiobarbituric acid-reactive substances (TBARS), glutathione concentration and glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities were determined in the kidney. Collagen was identified in renal slices by Sirius red staining and apoptosis by Tunel assay. Female SHR showed lower SBP, oxidative stress, collagen content and apoptosis in kidney, and higher renal NOS activity and eNOS protein content, than males. ANP lowered SBP, increased diuresis, natriuresis, renal NOS activity and eNOS expression in both sexes. Renal response to ANP was more marked in females than in males. In kidney, ANP reduced TBARS, renal collagen content and apoptosis, and increased glutathione concentration and activity of GPx and SOD enzymes in both sexes. Female SHR exhibited less organ damage than males. Chronic ANP treatment would ameliorate hypertension and end-organ damage in the kidney by reducing oxidative stress, increasing NO-system activity, and diminishing collagen content and apoptosis, in both sexes.
Romero, Mariana; Caniffi, Carolina; Bouchet, Gonzalo; Costa, María A.; Elesgaray, Rosana; Arranz, Cristina; Tomat, Analía L.
2015-01-01
Objective The aim of this study was to investigate the effects of chronic treatment with atrial natriuretic peptide (ANP) on renal function, nitric oxide (NO) system, oxidative stress, collagen content and apoptosis in kidneys of spontaneously hypertensive rats (SHR), as well as sex-related differences in the response to the treatment. Methods 10 week-old male and female SHR were infused with ANP (100 ng/h/rat) or saline (NaCl 0.9%) for 14 days (subcutaneous osmotic pumps). Systolic blood pressure (SBP) was recorded and diuresis and natriuresis were determined. After treatment, renal NO synthase (NOS) activity and eNOS expression were evaluated. Thiobarbituric acid-reactive substances (TBARS), glutathione concentration and glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities were determined in the kidney. Collagen was identified in renal slices by Sirius red staining and apoptosis by Tunel assay. Results Female SHR showed lower SBP, oxidative stress, collagen content and apoptosis in kidney, and higher renal NOS activity and eNOS protein content, than males. ANP lowered SBP, increased diuresis, natriuresis, renal NOS activity and eNOS expression in both sexes. Renal response to ANP was more marked in females than in males. In kidney, ANP reduced TBARS, renal collagen content and apoptosis, and increased glutathione concentration and activity of GPx and SOD enzymes in both sexes. Conclusions Female SHR exhibited less organ damage than males. Chronic ANP treatment would ameliorate hypertension and end-organ damage in the kidney by reducing oxidative stress, increasing NO-system activity, and diminishing collagen content and apoptosis, in both sexes. PMID:25774801
Bearden, Shawn E
2007-09-01
Little is known of the vasomotor responses of skeletal muscle arterioles during and following muscle contraction. We hypothesized that aging leads to impaired arteriolar responses to muscle contraction and recovery. Nitric oxide (NO) availability, which is age dependent, has been implicated in components of these kinetics. Therefore, we also hypothesized that changes in the kinetics of vascular responses are associated with the NO pathway. Groups were young (3 mo), old (24 mo), endothelial NO synthase knockout (eNOS-/-), and N(G)-nitro-L-arginine (L-NA)-treated male and female C57BL/6 mice. The kinetics of vasodilation during and following 1 min of contractions of the gluteus maximus muscle were recorded in second-order (regional distribution) and third-order (local control) arterioles. Baseline, peak (during contraction), and maximal diameters (pharmacological) were not affected by age or sex. The kinetics of dilation and recovery were not different between males and females at the young age. There was a significant slowing of vasodilation at the onset of contractions (approximately 2-fold; P < 0.05) and a significant speeding of recovery ( approximately 5-fold; P < 0.05) in old males vs. old females and vs. young eNOS-/-, and L-NA did not affect the kinetics at the onset of muscle contraction. eNOS-/- mimicked the rapid recovery of old males in second-order arterioles; acute NO production (L-NA) explained approximately 50% of this effect. These data demonstrate fundamental age-related differences between the sexes in the dynamic function of skeletal muscle arterioles. Understanding how youthful function persists in females but not males may provide therapeutic insight into clinical interventions to maintain dynamic microvascular control of nutrient supply with age.
"Non alcoholic fatty liver disease and eNOS dysfunction in humans".
Persico, Marcello; Masarone, Mario; Damato, Antonio; Ambrosio, Mariateresa; Federico, Alessandro; Rosato, Valerio; Bucci, Tommaso; Carrizzo, Albino; Vecchione, Carmine
2017-03-07
NAFLD is associated to Insulin Resistance (IR). IR is responsible for Endothelial Dysfunction (ED) through the impairment of eNOS function. Although eNOS derangement has been demonstrated in experimental models, no studies have directly shown that eNOS dysfunction is associated with NAFLD in humans. The aim of this study is to investigate eNOS function in NAFLD patients. Fifty-four NAFLD patients were consecutively enrolled. All patients underwent clinical and laboratory evaluation and liver biopsy. Patients were divided into two groups by the presence of NAFL or NASH. We measured vascular reactivity induced by patients' platelets on isolated mice aorta rings. Immunoblot assays for platelet-derived phosphorylated-eNOS (p-eNOS) and immunohistochemistry for hepatic p-eNOS have been performed to evaluate eNOS function in platelets and liver specimens. Flow-mediated-dilation (FMD) was also performed. Data were compared with healthy controls. Twenty-one (38, 8%) patients had NAFL and 33 (61, 7%) NASH. No differences were found between groups and controls except for HOMA and insulin (p < 0.0001). Vascular reactivity demonstrated a reduced function induced from NAFLD platelets as compared with controls (p < 0.001), associated with an impaired p-eNOS in both platelets and liver (p < 0.001). NAFL showed a higher impairment of eNOS phosphorylation in comparison to NASH (p < 0.01). In contrast with what observed in vitro, the vascular response by FMD was worse in NASH as compared with NAFL. Our data showed, for the first time in humans, that NAFLD patients show a marked eNOS dysfunction, which may contribute to a higher CV risk. eNOS dysfunction observed in platelets and liver tissue didn't match with FMD.
Silva, Bruno M; Barbosa, Thales C; Neves, Fabricia J; Sales, Allan K; Rocha, Natalia G; Medeiros, Renata F; Pereira, Felipe S; Garcia, Vinicius P; Cardoso, Fabiane T; Nobrega, Antonio C L
2014-12-01
Polymorphisms in the endothelial nitric oxide synthase (eNOS) gene decrease expression and activation of eNOS in vitro, which is associated with lower post-exercise increase in vasodilator reactivity in vivo. However, it is unknown whether such polymorphisms are associated with other eNOS-related phenotypes during recovery from exercise. Therefore, we investigated the impact of an eNOS haplotype containing polymorphic alleles at loci -786 and 894 on the recovery of cardiovascular autonomic function from exercise. Sedentary, non-obese, healthy subjects were enrolled [n = 107, age 32 ± 1 years (mean ± SEM)]. Resting autonomic modulation (heart rate variability, systolic blood pressure variability, and spontaneous baroreflex sensitivity) and vascular reactivity (forearm hyperemic response post-ischemia) were assessed at baseline, 10, 60, and 120 min after a maximal cardiopulmonary exercise test. Besides, autonomic function was assessed by heart rate recovery (HRR) immediately after peak exercise. Haplotype analysis showed that vagal modulation (i.e., HF n.u.) was significantly higher, combined sympathetic and vagal modulation (i.e., LF/HF) was significantly lower and total blood pressure variability was significantly lower post-exercise in a haplotype containing polymorphic alleles (H2) compared to a haplotype with wild type alleles (H1). HRR was similar between groups. Corroborating previous evidence, H2 had significantly lower post-exercise increase in vasodilator reactivity than H1. In conclusion, a haplotype containing polymorphic alleles at loci -786 and 894 had enhanced recovery of autonomic modulation from exercise, along with unchanged HRR, and attenuated vasodilator reactivity. Then, these results suggest an autonomic compensatory response of a direct deleterious effect of eNOS polymorphisms on the vascular function. Copyright © 2014 Elsevier B.V. All rights reserved.
Hartnett, M. Elizabeth; Martiniuk, David; Byfield, Grace; Geisen, Pete; Zeng, Gefei; Bautch, Victoria L.
2008-01-01
Purpose To study the effects of vascular endothelial growth factor (VEGF) on endothelial nitric oxide synthetase (eNOS) and retinal vascular tortuosity and cleavage planes in a rat model of retinopathy of prematurity (ROP). Methods Within 4 hours of birth, pups and mothers were cycled between 50% and 10% oxygen daily. At postnatal day (p)12, pups received either intravitreous anti-rat neutralizing antibody to VEGF or control nonimmune rat IgG in one eye and returned to oxygen cycling until p14 when they were placed in room air (RA) for 4 days (50/10 oxygen-induced retinopathy [50/10 OIR]). Tortuosity indices and endothelial cleavage plane angles relative to the long axes of the major retinal vessels during anaphase were calculated from phosphohistone- and Alexa-isolectin-stained retinal flatmounts. Some retinas were processed for eNOS protein or phosphorylated/total eNOS. Results Retinas from 50/10 OIR had increased tortuosity over time with peaks at p12 and p14 (P < 0.001 vs. RA) before the development of intravitreous neovascularization, which peaked at p18. Compared with RA, eNOS/actin in 50/10 OIR retinas was increased at p12 (P = 0.0003) and p14 (P = 0.047). Inhibition of VEGF with a neutralizing antibody decreased tortuosity and caused endothelial mitosis cleavage planes to orient in favor of vessel elongation but did not affect eNOS protein or activation. Conclusions In the 50/10 OIR model, a model with relevance to ROP, arteriolar tortuosity, and venous dilation are increased through VEGF, which influences the orientation of endothelial cell cleavage in major arterioles and veins, independent of eNOS. PMID:18378573
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruan, Jiapeng; Mouveaux, Thomas; Light, Samuel H.
2015-03-01
The second crystal structure of a parasite protein preferentially enriched in the brain cyst of T. gondii has been solved at 2.75 Å resolution. Bradyzoite enolase 1 is reported to have differential functions as a glycolytic enzyme and a transcriptional regulator in bradyzoites. In addition to catalyzing a central step in glycolysis, enolase assumes a remarkably diverse set of secondary functions in different organisms, including transcription regulation as documented for the oncogene c-Myc promoter-binding protein 1. The apicomplexan parasite Toxoplasma gondii differentially expresses two nuclear-localized, plant-like enolases: enolase 1 (TgENO1) in the latent bradyzoite cyst stage and enolase 2 (TgENO2)more » in the rapidly replicative tachyzoite stage. A 2.75 Å resolution crystal structure of bradyzoite enolase 1, the second structure to be reported of a bradyzoite-specific protein in Toxoplasma, captures an open conformational state and reveals that distinctive plant-like insertions are located on surface loops. The enolase 1 structure reveals that a unique residue, Glu164, in catalytic loop 2 may account for the lower activity of this cyst-stage isozyme. Recombinant TgENO1 specifically binds to a TTTTCT DNA motif present in the cyst matrix antigen 1 (TgMAG1) gene promoter as demonstrated by gel retardation. Furthermore, direct physical interactions of both nuclear TgENO1 and TgENO2 with the TgMAG1 gene promoter are demonstrated in vivo using chromatin immunoprecipitation (ChIP) assays. Structural and biochemical studies reveal that T. gondii enolase functions are multifaceted, including the coordination of gene regulation in parasitic stage development. Enolase 1 provides a potential lead in the design of drugs against Toxoplasma brain cysts.« less
Park, Sun Haeng; Kim, Ji Hyun; Park, Se Jin; Bae, Sun Sik; Choi, Young Whan; Hong, Jin Woo; Choi, Byung Tae; Shin, Hwa Kyoung
2011-12-08
Uncaria sinensis (US) has been used in traditional Korean medicine to treat vascular disease and to relieve various neurological symptoms. Scientific evidence related to the effectiveness or action mechanism of US on cerebrovascular disease has not been examined experimentally. Here, we investigated the cerebrovascular protective effect of US extracts on photothrombotic ischemic injury in mice. US hexane extracts (HEUS), ethyl acetate extracts (EAEUS) and methanol extracts (MEUS) were administered intraperitoneally 30 min before ischemic insults. Focal cerebral ischemia was induced in C57BL/6J mice and endothelial nitric oxide synthase knockout (eNOS KO) mice by photothrombotic cortical occlusion. We evaluated the infarct volume, neurological score and the activation of Akt and eNOS in ischemic brain. HEUS more significantly reduced infarct volume and edema than did EAEUS and MEUS following photothrombotic cortical occlusion. HEUS produced decreased infarct volume and edema size, and improved neurological function in a concentration-dependent manner (10, 50, and 100 mg/kg). However, HEUS did not reduce brain infarction in eNOS KO mice, suggesting that the protective effect of HEUS is primarily endothelium-dependent. Furthermore, HEUS (10-300 μg/ml) produced a concentration-dependent relaxation in mouse aorta and rat basilar artery, which was not seen in eNOS KO mouse aorta, suggesting that HEUS cause vasodilation via an eNOS-dependent mechanism. This correlated with increased phosphorylation of Akt and eNOS in the brains of HEUS-treated mice. HEUS prevent cerebral ischemic damage by regulating Akt/eNOS signaling. US, herbal medicine, may be the basis of a novel strategy for the therapy of stroke. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Kay, H H; Grindle, K M; Magness, R R
2000-03-01
We undertook this investigation to explore the effects of ethanol exposure on nitric oxide synthase levels and nitric oxide release. Our hypothesis was that ethanol exposure modifies nitric oxide activity within the placenta as a result of oxidative stress. Four 10-g samples of term normal human placental villous tissue were perifused with nonrecirculating Dulbecco's modified Eagle's medium and 25-mmol/L N-[2-hydroxyethyl]piperazine-N'-[2-ethanesulfonic acid] with 0-, 50-, 100-, or 200-mmol/L ethanol. After 2 hours of exposure, tissue was removed, fixed, and frozen for analysis. Immunohistochemical analysis was performed for subtype I or neuronal nitric oxide synthase (nNOS), subtype II or inducible nitric oxide synthase (iNOS), and subtype III or endothelial nitric oxide synthase (eNOS) localization. Western blot analysis was performed for eNOS quantitation. Cyclic guanosine monophosphate and copper-zinc superoxide dismutase levels were measured by electroimmunoassay and kinetic assay, respectively. Nitric oxide release was analyzed by a Sievers nitric oxide analyzer. Immunohistochemical examination confirmed that only eNOS was localized to the syncytiotrophoblasts. After ethanol exposure, eNOS protein expression increased 2.5- to 3.0-fold over that of the control. Tissue cyclic guanosine monophosphate content and nitric oxide release into the effluent were decreased, whereas superoxide dismutase levels were increased at higher ethanol levels (P <.05). Ethanol exposure appears to induce oxidative stress, which may account for the decreased nitric oxide release, because nitric oxide may be shunted toward scavenging free radicals. Increased eNOS protein expression may be a response to the increased demand for nitric oxide. Decreased nitric oxide availability could adversely affect placental blood flow regulation, which could, in turn, account for the growth restriction seen in ethanol-exposed fetuses.
Su, Le; Han, Lei; Ge, Fei; Zhang, Shang Li; Zhang, Yun; Zhao, Bao Xiang; Zhao, Jing; Miao, Jun Ying
2012-10-15
Manufactured nanoparticles are currently used for many fields. However, their potential toxicity provides a growing concern for human health. In our previous study, we prepared novel magnetic nanoparticles (MNPs), which could effectively remove heavy metal ions and cationic dyes from aqueous solution. To understand its biocompatibility, we investigated the effect of the nanoparticles on the function of vascular endothelial cells. The results showed that the nanoparticles were taken up by human umbilical vein endothelial cells (HUVECs) and could inhibit cell proliferation at 400 μg/ml. An increase in nitric oxide (NO) production and endothelial nitric oxide synthase (eNOS) activity were induced, which companied with the decrease in caveolin-1 level. The endothelium in the aortic root was damaged and the NO level in serum was elevated after treated mice with 20mg/kg nanoparticles for 3 days, but it was integrated after treated with 5mg/kg nanoparticles. Meanwhile, an increase in eNOS activity and decrease in caveolin-1 level were induced in the endothelium. The data suggested that the low concentration of nanoparticles could not affect the function and viability of VECs. The high concentration of nanoparticles could inhibit VEC proliferation through elevation of the eNOS activity and NO production and thus present toxicity. Copyright © 2012 Elsevier B.V. All rights reserved.
García-Ortiz, Almudena; Martín-Cofreces, Noa B.; Ibiza, Sales; Ortega, Ángel; Izquierdo-Álvarez, Alicia; Trullo, Antonio; Victor, Víctor M.; Calvo, Enrique; Sot, Begoña; Martínez-Ruiz, Antonio; Vázquez, Jesús; Sánchez-Madrid, Francisco
2017-01-01
The actin cytoskeleton coordinates the organization of signaling microclusters at the immune synapse (IS); however, the mechanisms involved remain poorly understood. We show here that nitric oxide (NO) generated by endothelial nitric oxide synthase (eNOS) controls the coalescence of protein kinase C-θ (PKC-θ) at the central supramolecular activation cluster (c-SMAC) of the IS. eNOS translocated with the Golgi to the IS and partially colocalized with F-actin around the c-SMAC. This resulted in reduced actin polymerization and centripetal retrograde flow of β-actin and PKC-θ from the lamellipodium-like distal (d)-SMAC, promoting PKC-θ activation. Furthermore, eNOS-derived NO S-nitrosylated β-actin on Cys374 and impaired actin binding to profilin-1 (PFN1), as confirmed with the transnitrosylating agent S-nitroso-L-cysteine (Cys-NO). The importance of NO and the formation of PFN1-actin complexes on the regulation of PKC-θ was corroborated by overexpression of PFN1- and actin-binding defective mutants of β-actin (C374S) and PFN1 (H119E), respectively, which reduced the coalescence of PKC-θ at the c-SMAC. These findings unveil a novel NO-dependent mechanism by which the actin cytoskeleton controls the organization and activation of signaling microclusters at the IS. PMID:28394935
Molecular characterization of enolase gene from Taenia multiceps.
Li, W H; Qu, Z G; Zhang, N Z; Yue, L; Jia, W Z; Luo, J X; Yin, H; Fu, B Q
2015-10-01
Taenia multiceps is a cestode parasite with its larval stage, known as Coenurus cerebralis, mainly encysts in the central nervous system of sheep and other livestocks. Enolase is a key glycolytic enzyme and represents multifunction in most organisms. In the present study, a 1617bp full-length cDNA encoding enolase was cloned from T. multiceps and designated as TmENO. A putative encoded protein of 433 amino acid residues that exhibited high similarity to helminth parasites. The recombinant TmENO protein (rTmENO) showed the catalytic and plasminogen-binding characteristics after the TmENO was subcloned and expressed in the pET30a(+) vector. The TmENO gene was transcribed during the adult and larval stages and was also identified in both cyst fluid and as a component of the adult worms and the metacestode by western blot analysis. Taken together, our results will facilitate further structural characterization for TmENO and new potential control strategies for T. multiceps. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dabiré, Hubert; Barthélémy, Inès; Blanchard-Gutton, Nicolas; Sambin, Lucien; Sampedrano, Carolina Carlos; Gouni, Vassiliki; Unterfinger, Yves; Aguilar, Pablo; Thibaud, Jean-Laurent; Ghaleh, Bijan; Bizé, Alain; Pouchelon, Jean-Louis; Blot, Stéphane; Berdeaux, Alain; Hittinger, Luc; Chetboul, Valérie; Su, Jin Bo
2012-01-01
Little is known about the vascular function and expression of endothelial and neuronal nitric oxide synthases (eNOS and nNOS) in Duchenne muscular dystrophy (DMD). Bradykinin is involved in the regulation of eNOS expression induced by angiotensin-converting enzyme inhibitors. We characterized the vascular function and eNOS and nNOS expression in a canine model of DMD and evaluated the effects of chronic bradykinin treatment. Vascular function was examined in conscious golden retriever muscular dystrophy (GRMD) dogs with left ventricular dysfunction (measured by echocardiography) and in isolated coronary arteries. eNOS and nNOS proteins in carotid arteries were measured by western blot and cyclic guanosine monophosphate (cGMP) content was analyzed by radioimmunoassay. Compared with controls, GRMD dogs had an impaired vasodilator response to acetylcholine. In isolated coronary artery, acetylcholine-elicited relaxation was nearly absent in placebo-treated GRMD dogs. This was explained by reduced nNOS and eNOS proteins and cGMP content in arterial tissues. Chronic bradykinin infusion (1 μg/min, 4 weeks) restored in vivo and in vitro vascular response to acetylcholine to the level of control dogs. This effect was NO-mediated through upregulation of eNOS and nNOS expression. In conclusion, this study is the first to demonstrate that DMD is associated with NO-mediated vascular endothelial dysfunction linked to an altered expression of eNOS and nNOS, which can be overcome by bradykinin. PMID:22193759
Influence of coronary artery diameter on eNOS protein content
NASA Technical Reports Server (NTRS)
Laughlin, M. H.; Turk, J. R.; Schrage, W. G.; Woodman, C. R.; Price, E. M.
2003-01-01
The purpose of this study was to test the hypothesis that the content of endothelial nitric oxide synthase (eNOS) protein (eNOS protein/g total artery protein) increases with decreasing artery diameter in the coronary arterial tree. Content of eNOS protein was determined in porcine coronary arteries with immunoblot analysis. Arteries were isolated in six size categories from each heart: large arteries [301- to 2,500-microm internal diameter (ID)], small arteries (201- to 300-microm ID), resistance arteries (151- to 200-microm ID), large arterioles (101- to 150-microm ID), intermediate arterioles (51- to 100-microm ID), and small arterioles(<50-microm ID). To obtain sufficient protein for analysis from small- and intermediate-sized arterioles, five to seven arterioles 1-2 mm in length were pooled into one sample for each animal. Results establish that the number of smooth muscle cells per endothelial cell decreases from a number of 10 to 15 in large coronary arteries to 1 in the smallest arterioles. Immunohistochemistry revealed that eNOS is located only in endothelial cells in all sizes of coronary artery and in coronary capillaries. Contrary to our hypothesis, eNOS protein content did not increase with decreasing size of coronary artery. Indeed, the smallest coronary arterioles had less eNOS protein per gram of total protein than the large coronary arteries. These results indicate that eNOS protein content is greater in the endothelial cells of conduit arteries, resistance arteries, and large arterioles than in small coronary arterioles.
Grandvuillemin, Isabelle; Buffat, Christophe; Boubred, Farid; Lamy, Edouard; Fromonot, Julien; Charpiot, Philippe; Simoncini, Stephanie; Sabatier, Florence; Dignat-George, Françoise; Peyter, Anne-Christine; Simeoni, Umberto; Yzydorczyk, Catherine
2018-05-09
Individuals born after intrauterine growth restriction (IUGR) are at increased risk of developing cardiovascular diseases in adulthood, notably hypertension (HTN). Alterations in the vascular system, particularly impaired endothelium-dependent vasodilation, may play an important role in long-term effects of IUGR. Whether such vascular dysfunction precedes HTN has not been fully established in individuals born after IUGR. Moreover, the intimate mechanisms of altered endothelium-dependent vasodilation remain incompletely elucidated. We therefore investigated, using a rat model of IUGR, whether impaired endothelium-dependent relaxation precedes the development of HTN and whether key components of the L-Arginine-nitric oxide (NO) pathway are involved in its pathogenesis. Pregnant rats were fed with a control (CTRL, 23% casein) or low-protein diet (LP, 9% casein) to induce IUGR. Systolic blood pressure (SBP) was measured by tail-cuff plethysmography in 5- and 8-week-old male offspring. Aortic rings were isolated to investigate relaxation to acetylcholine, NO production, eNOS protein content, arginase activity, and superoxide anion production. SBP was not different at 5 weeks, but significantly increased in 8-week-old LP vs. CRTL offspring. In 5-week-old LP vs. CRTL males, endothelium-dependent vasorelaxation was significantly impaired, but restored by pre-incubation with L-Arginine or the arginase inhibitor BEC; NO production was significantly reduced, but restored by L-Arginine pretreatment; total eNOS protein, dimer/monomer ratio, and arginase activity were significantly increased; superoxide anion production was significantly enhanced, but normalized by pretreatment with the NOS inhibitor L-NNA. In this model, IUGR leads to early-impaired endothelium-dependent vasorelaxation, resulting from arginase up-regulation and eNOS uncoupling, which precedes the development of HTN.
Schirmer, Stephan H; Degen, Achim; Baumhäkel, Magnus; Custodis, Florian; Schuh, Lisa; Kohlhaas, Michael; Friedrich, Erik; Bahlmann, Ferdinand; Kappl, Reinhard; Maack, Christoph; Böhm, Michael; Laufs, Ulrich
2012-05-01
Collateral arteries protect tissue from ischaemia. Heart rate correlates with vascular events in patients with arterial obstructive disease. Here, we tested the effect of heart-rate reduction (HRR) on collateral artery growth. The I(f)-channel inhibitor ivabradine reduced heart rate by 11% in wild-type and 15% in apolipoprotein E (ApoE)(-/-) mice and restored endothelium-dependent relaxation in aortic rings of ApoE(-/-) mice. Microsphere perfusion and angiographies demonstrated that ivabradine did not change hindlimb perfusion in wild-type mice but improved perfusion in ApoE(-/-) mice from 40.5 ± 15.8-60.2 ± 18.5% ligated/unligated hindlimb. Heart rate reduction (13%) with metoprolol failed to improve endothelial function and perfusion. Protein expression of endothelial nitric oxide synthase (eNOS), phosphorylated eNOS, and eNOS activity were increased in collateral tissue following ivabradine treatment of ApoE(-/-) mice. Co-treatment with nitric oxide-inhibitor N (G)-nitro-L-arginine methyl ester abolished the effects of ivabradine on arteriogenesis. Following ivabradine, classical inflammatory cytokine expression was lowered in ApoE(-/-) circulating mononuclear cells and in plasma, but unaltered in collateral-containing hindlimb tissue, where numbers of perivascular macrophages also remained unchanged. However, ivabradine reduced expression of anti-arteriogenic cytokines CXCL10and CXCL11 and of smooth muscle cell markers smoothelin and desmin in ApoE(-/-) hindlimb tissue. Endothelial nitric oxide synthase and inflammatory cytokine expression were unchanged in wild-type mice. Ivabradine did not affect cytokine production in HUVECs and THP1 mononuclear cells and had no effect on the membrane potential of HUVECs in patch-clamp experiments. Ivabradine-induced HRR stimulates adaptive collateral artery growth. Important contributing mechanisms include improved endothelial function, eNOS activity, and modulation of inflammatory cytokine gene expression.
Xu, Jie; Jia, Xiuyue; Gu, Yang; Lewis, David F; Gu, Xin; Wang, Yuping
2017-06-01
Increased microparticle (MP) shedding by placental trophoblasts contributes to maternal vascular inflammatory response and endothelial dysfunction in preeclampsia. Vitamin D has beneficial effects in pregnancy; however, its effect on trophoblast MP release has not been investigated. To investigate if vitamin D could protect trophoblasts from oxidative stress-induced MP release. Placental trophoblasts were isolated from uncomplicated and preeclamptic placentas. Effects of vitamin D on MP release induced by oxidative stress inducer CoCl2 were studied. Annexin V+ MPs were assessed by flow cytometry. Expression of caveolin-1, endothelial nitric oxide synthase (eNOS), procaspase-3, cleaved caspase-3, and Rho-associated coiled-coil protein kinase 1 (ROCK1) in trophoblasts and trophoblast-derived MPs were determined by Western blot. Trophoblasts from preeclamptic pregnancies released significantly more MPs than cells from uncomplicated pregnancies (P < 0.01). CoCl2-induced increase in MP release was associated with upregulation of caveolin-1 and downregulation of eNOS expression in trophoblasts (P < 0.05), which could be attenuated by 1,25(OH)2D3. Moreover, 1,25(OH)2D3 could also inhibit CoCl2-induced procaspase-3 cleavage and ROCK1 activation in trophoblasts. Consistently, CoCl2-induced upregulation of procaspase-3, cleaved caspase-3, and ROCK1 expression in trophoblast-derived MPs were also reduced in cells treated with 1,25(OH)2D3. Placental trophoblasts from preeclamptic pregnancies released more MP than cells from uncomplicated pregnancies. Oxidative stress-induced increase in MP shedding is associated with upregulation of caveolin-1 and downregulation of eNOS expression in placental trophoblasts. Inhibition of caspase-3 cleavage and ROCK1 activation, together with upregulation of eNOS expression, could be the potential cellular/molecular mechanism(s) of vitamin D protective effects on placental trophoblasts. Copyright © 2017 Endocrine Society
Fujii, Naoto; Meade, Robert D.; Alexander, Lacy M.; Akbari, Pegah; Foudil-bey, Imane; Louie, Jeffrey C.; Boulay, Pierre
2015-01-01
Nitric oxide synthase (NOS) contributes to sweating and cutaneous vasodilation during exercise in younger adults. We hypothesized that endothelial NOS (eNOS) and neuronal NOS (nNOS) mediate NOS-dependent sweating, whereas eNOS induces NOS-dependent cutaneous vasodilation in younger adults exercising in the heat. Further, aging may upregulate inducible NOS (iNOS), which may attenuate sweating and cutaneous vasodilator responses. We hypothesized that iNOS inhibition would augment sweating and cutaneous vasodilation in exercising older adults. Physically active younger (n = 12, 23 ± 4 yr) and older (n = 12, 60 ± 6 yr) adults performed two 30-min bouts of cycling at a fixed rate of metabolic heat production (400 W) in the heat (35°C). Sweat rate and cutaneous vascular conductance (CVC) were evaluated at four intradermal microdialysis sites with: 1) lactated Ringer (control), 2) nNOS inhibitor (nNOS-I, NPLA), 3) iNOS inhibitor (iNOS-I, 1400W), or 4) eNOS inhibitor (eNOS-I, LNAA). In younger adults during both exercise bouts, all inhibitors decreased sweating relative to control, albeit a lower sweat rate was observed at iNOS-I compared with eNOS-I and nNOS-I sites (all P < 0.05). CVC at the eNOS-I site was lower than control in younger adults throughout the intermittent exercise protocol (all P < 0.05). In older adults, there were no differences between control and iNOS-I sites for sweating and CVC during both exercise bouts (all P > 0.05). We show that iNOS and eNOS are the main contributors to NOS-dependent sweating and cutaneous vasodilation, respectively, in physically active younger adults exercising in the heat, and that iNOS inhibition does not alter sweating or cutaneous vasodilation in exercising physically active older adults. PMID:26586908
Fujii, Naoto; Meade, Robert D; Alexander, Lacy M; Akbari, Pegah; Foudil-Bey, Imane; Louie, Jeffrey C; Boulay, Pierre; Kenny, Glen P
2016-02-01
Nitric oxide synthase (NOS) contributes to sweating and cutaneous vasodilation during exercise in younger adults. We hypothesized that endothelial NOS (eNOS) and neuronal NOS (nNOS) mediate NOS-dependent sweating, whereas eNOS induces NOS-dependent cutaneous vasodilation in younger adults exercising in the heat. Further, aging may upregulate inducible NOS (iNOS), which may attenuate sweating and cutaneous vasodilator responses. We hypothesized that iNOS inhibition would augment sweating and cutaneous vasodilation in exercising older adults. Physically active younger (n = 12, 23 ± 4 yr) and older (n = 12, 60 ± 6 yr) adults performed two 30-min bouts of cycling at a fixed rate of metabolic heat production (400 W) in the heat (35°C). Sweat rate and cutaneous vascular conductance (CVC) were evaluated at four intradermal microdialysis sites with: 1) lactated Ringer (control), 2) nNOS inhibitor (nNOS-I, NPLA), 3) iNOS inhibitor (iNOS-I, 1400W), or 4) eNOS inhibitor (eNOS-I, LNAA). In younger adults during both exercise bouts, all inhibitors decreased sweating relative to control, albeit a lower sweat rate was observed at iNOS-I compared with eNOS-I and nNOS-I sites (all P < 0.05). CVC at the eNOS-I site was lower than control in younger adults throughout the intermittent exercise protocol (all P < 0.05). In older adults, there were no differences between control and iNOS-I sites for sweating and CVC during both exercise bouts (all P > 0.05). We show that iNOS and eNOS are the main contributors to NOS-dependent sweating and cutaneous vasodilation, respectively, in physically active younger adults exercising in the heat, and that iNOS inhibition does not alter sweating or cutaneous vasodilation in exercising physically active older adults. Copyright © 2016 the American Physiological Society.
Santhanam, Anantha Vijay R.; d’Uscio, Livius V.; He, Tongrong; Katusic, Zvonimir S.
2012-01-01
Peroxisome proliferator-activated receptor delta (PPARδ) is ubiquitously expressed in the vasculature, including cerebral circulation. The role of PPARδ in metabolism of tetrahydrobiopterin (BH4) has not been studied in the cerebral microvasculature. In the present study, the effects of PPARδ agonist GW501516 on uncoupling of endothelial nitric oxide synthase (eNOS) were determined in cerebral microvessels of BH4-deficient hph-1 mice. Wild-type (B6CBA) and hph-1 mice were orally gavaged with a selective PPARδ activator, GW501516 (2 mg/kg/day) for 14 days, and thereafter, cerebral microvessels were isolated and studied. Treatment of hph-1 mice with GW501516 significantly reduced oxidation of BH4 and increased the ratio of BH4 to 7,8-BH2 (P<0.05, n=6–9). Attenuation of L-NAME-inhibitable superoxide anion levels by GW501516 demonstrated that activation of PPARδ might prevent uncoupling of endothelial nitric oxide synthase (eNOS, P<0.05, n=6–9). Western blotting studies demonstrated that GW501516 selectively increased the endothelial expressions of CuZn superoxide dismutase (P<0.05, n=6–9) and catalase (P<0.05, n=6–8). PPARδ activation increased the total nitrite and nitrate (NO2 + NO3) content in cerebral microvessels (P<0.05, n=6). Obtained results suggest that in vivo activation of PPARδ prevents eNOS uncoupling, restores bioavailability of NO and may help preserve endothelial function in the BH4-deficient cerebral circulation. PMID:22982594
Santhanam, Anantha Vijay R; d'Uscio, Livius V; He, Tongrong; Katusic, Zvonimir S
2012-11-05
Peroxisome proliferator-activated receptor delta (PPARδ) is ubiquitously expressed in the vasculature, including cerebral circulation. The role of PPARδ in metabolism of tetrahydrobiopterin (BH₄) has not been studied in the cerebral microvasculature. In the present study, the effects of PPARδ agonist GW501516 on uncoupling of endothelial nitric oxide synthase (eNOS) were determined in cerebral microvessels of BH₄-deficient hph-1 mice. Wild-type (B6CBA) and hph-1 mice were orally gavaged with a selective PPARδ activator, GW501516 (2 mg/kg/day) for 14 days, and thereafter, cerebral microvessels were isolated and studied. Treatment of hph-1 mice with GW501516 significantly reduced oxidation of BH₄ and increased the ratio of BH₄ to 7,8-BH₂ (P<0.05, n=6-9). Attenuation of L-NAME-inhibitable superoxide anion levels by GW501516 demonstrated that activation of PPARδ might prevent uncoupling of endothelial nitric oxide synthase (eNOS, P<0.05, n=6-9). Western blotting studies demonstrated that GW501516 selectively increased the endothelial expressions of CuZn superoxide dismutase (P<0.05, n=6-9) and catalase (P<0.05, n=6-8). PPARδ activation increased the total nitrite and nitrate (NO₂+NO₃) content in cerebral microvessels (P<0.05, n=6). Obtained results suggest that in vivo activation of PPARδ prevents eNOS uncoupling, restores bioavailability of NO and may help preserve endothelial function in the BH₄-deficient cerebral circulation. Copyright © 2012 Elsevier B.V. All rights reserved.
Rahimi, Zohreh; Vaisi-Raygani, Asad; Rahimi, Ziba; Parsian, Abbas
2012-02-01
The present study investigated the influence of insertion (I)/deletion (D) polymorphism of the angiotensin II-converting enzyme (ACE) gene in combination with endothelial nitric oxide (eNOS) G894T polymorphism on the predisposition to diabetic nephropathy (DN). Using polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism (PCR-RFLP) method, the ACE and eNOS polymorphisms were genotyped in 72 microalbuminuric, 68 macroalbuminuric and 72 normoalbuinuric type 2 diabetes mellitus (T2DM) patients from Western Iran. The presence of eNOS T or ACE D allele was not associated with increased risk of macroalbuminuria (odds ratio (OR) = 1.36, P = 0.27 and OR = 1.6, P = 0.062, respectively). However, in the presence of both alleles there was a trend towards increased risk of macroalbuminuria (fivefold, P = 0.05). Our study indicates that the concomitant presence of both ACE D and eNOS T alleles tends to be associated with an elevation risk of macroalbuminuria compared with the presence of each polymorphism alone. This risk could be attributed to the increasing activity of ACE and angiotensin II level in the presence of D allele and decreasing NO production in the presence of T allele accelerating diabetic nephropathy. © 2011 The Authors. Nephrology © 2011 Asian Pacific Society of Nephrology.
NASA Astrophysics Data System (ADS)
Pan, Susu; Tian, Yong; Li, Ming; Zhao, Jiuyan; Zhu, Lanlan; Zhang, Wei; Gu, Haiwei; Wang, Haidong; Shi, Jianbo; Fang, Xiang; Li, Penghui; Chen, Huanwen
2015-03-01
Exhaled nitric oxide (eNO) is a useful biomarker of various physiological conditions, including asthma and other pulmonary diseases. Herein a fast and sensitive analytical method has been developed for the quantitative detection of eNO based on extractive electrospray ionization mass spectrometry (EESI-MS). Exhaled NO molecules selectively reacted with 2-phenyl-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) reagent, and eNO concentration was derived based on the EESI-MS response of 1-oxyl-2-phenyl-4, 4, 5, 5-tetramethylimidazoline (PTI) product. The method allowed quantification of eNO below ppb level (~0.02 ppbv) with a relative standard deviation (RSD) of 11.6%. In addition, eNO levels of 20 volunteers were monitored by EESI-MS over the time period of 10 hrs. Long-term eNO response to smoking a cigarette was recorded, and the observed time-dependent profile was discussed. This work extends the application of EESI-MS to small molecules (<30 Da) with low proton affinity and collision-induced dissociation efficiency, which are usually poorly visible by conventional ion trap mass spectrometers. Long-term quantitative profiling of eNO by EESI-MS opens new possibilities for the research of human metabolism and clinical diagnosis.
enoLOGOS: a versatile web tool for energy normalized sequence logos
Workman, Christopher T.; Yin, Yutong; Corcoran, David L.; Ideker, Trey; Stormo, Gary D.; Benos, Panayiotis V.
2005-01-01
enoLOGOS is a web-based tool that generates sequence logos from various input sources. Sequence logos have become a popular way to graphically represent DNA and amino acid sequence patterns from a set of aligned sequences. Each position of the alignment is represented by a column of stacked symbols with its total height reflecting the information content in this position. Currently, the available web servers are able to create logo images from a set of aligned sequences, but none of them generates weighted sequence logos directly from energy measurements or other sources. With the advent of high-throughput technologies for estimating the contact energy of different DNA sequences, tools that can create logos directly from binding affinity data are useful to researchers. enoLOGOS generates sequence logos from a variety of input data, including energy measurements, probability matrices, alignment matrices, count matrices and aligned sequences. Furthermore, enoLOGOS can represent the mutual information of different positions of the consensus sequence, a unique feature of this tool. Another web interface for our software, C2H2-enoLOGOS, generates logos for the DNA-binding preferences of the C2H2 zinc-finger transcription factor family members. enoLOGOS and C2H2-enoLOGOS are accessible over the web at . PMID:15980495
Wang, Bo; Guo, Xiaowang; Zeng, Chao; Xu, Yong; Shen, Liangliang; Cheng, Ke; Xia, Yuesheng; Li, Xiumin; Wang, Haichang; Fan, Li; Wang, Xiaoming
2014-01-01
Baicalin, the main active ingredient of the Scutellaria root, exerts anti-oxidant and anti-apoptotic effects in cardiovascular diseases. However, the therapeutic mechanism of baicalin remains unknown. Cultured neonatal rat cardiomyocytes were pre-treated with baicalin (0–50 µM) for 24 h, and subsequently treated with tunicamycin (100 ng/ml). Cell viability was detected by MTT assay, and cell damage was determined by LDH release and TUNEL assay. The expression of CHOP, JNK, caspase-3, eNOS was analyzed by western blot. NO was measured by DAF-FM staining. As a result, treatment with baicalin significantly reduced apoptosis induced by ER stress inducer tunicamycin in cardiomyocytes. Molecularly, baicalin ameliorated tunicamycin-induced ER stress by downregulation of CHOP. In addition, baicalin inverted tunicamycin-induced decreases of eNOS mRNA and protein levels, phospho eNOS and NO production through CHOP pathway. However, the protective effects of baicalin were significantly decreased in cardiomyocytes treated with L-NAME, which suppressed activation of nitric oxide synthase. In conclusion, our results implicate that baicalin could protect cardiomyocytes from ER stress-induced apoptosis via CHOP/eNOS/NO pathway, and suggest the therapeutic values of baicalin against ER stress-associated cardiomyocyte apoptosis. PMID:24520378
ROLE OF ENDOTHELIAL NITRIC OXIDE SYNTHETASE IN ARTERIOGENESIS AFTER STROKE IN MICE
CUI, X.; CHOPP, M.; ZACHAREK, A.; ZHANG, C.; ROBERTS, C.; CHEN, J.
2009-01-01
Arteriogenesis supports restored perfusion in the ischemic brain and improves long-term functional outcome after stroke. We investigate the role of endothelial nitric oxide synthetase (eNOS) and an NO donor, [(Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl) aminio] diazen-1-ium-1, 2-diolate (DETA-NONOate), in promoting arteriogenesis after stroke. Adult wild-type (WT, n=18) and eNOS-knockout (eNOS-/-, n=36) mice were subjected to transient (2.5 hours) right middle cerebral artery occlusion (MCAo) and were treated with or without DETA-NONOate (0.4 mg/kg) 24 hours after MCAo. Functional evaluation was performed. Animals were sacrificed 3 days after MCAo for arterial cell culture studies, or 14 days for immunohistochemical analysis. Consistent with previous studies, eNOS-/- mice exhibited a higher mortality rate (p<0.05, n=18/group) and more severe neurological functional deficit after MCAo than WT mice (p<0.05, n=12/group). Decreased arteriogenesis, was evident in eNOS-/- mice compared with WT mice, as demonstrated by reduced vascular smooth muscle cell (VSMC) proliferation, arterial density and diameter in the ischemic brain. eNOS-/- mice treated with DETA-NONOate had a significantly decreased mortality rate and improved functional recovery, and exhibited enhanced arteriogenesis identified by increased VSMC proliferation, and upregulated arterial density and diameter compared to eNOS-/- mice after stroke (p<0.05, n=12/group). To elucidate the mechanisms underlying eNOS/NO mediated arteriogenesis, VSMC migration was measured in vitro. Arterial cell migration significantly decreased in the cultured common carotid artery (CCA) derived from eNOS-/- mice 3 days after MCAo compared to WT arterial cells. DETA-NONOate-treatment significantly attenuated eNOS-/--induced decrease of arterial cell migration compared to eNOS-/- control artery (p<0.05. n=6/group). Using VSMC culture, DETA-NONOate significantly increased VSMC migration, while inhibition of NOS significantly decreased VSMC migration (p<0.05. n=6/group). Our data indicated that eNOS not only promotes vascular dilation but also increases VSMC proliferation and migration, and thereby enhances arteriogenesis after stroke. Therefore, increase eNOS may play an important role in regulating of arteriogenesis after stroke. PMID:19154781
Role of endothelial nitric oxide synthetase in arteriogenesis after stroke in mice.
Cui, X; Chopp, M; Zacharek, A; Zhang, C; Roberts, C; Chen, J
2009-03-17
Arteriogenesis supports restored perfusion in the ischemic brain and improves long-term functional outcome after stroke. We investigate the role of endothelial nitric oxide synthetase (eNOS) and a nitric oxide (NO) donor, (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl) amino] diazen-1-ium-1, 2-diolate (DETA-NONOate), in promoting arteriogenesis after stroke. Adult wild-type (WT, n=18) and eNOS-knockout (eNOS(-/-), n=36) mice were subjected to transient (2.5 h) right middle cerebral artery occlusion (MCAo) and were treated with or without DETA-NONOate (0.4 mg/kg) 24 h after MCAo. Functional evaluation was performed. Animals were sacrificed 3 days after MCAo for arterial cell culture studies, or 14 days for immunohistochemical analysis. Consistent with previous studies, eNOS(-/-) mice exhibited a higher mortality rate (P<0.05, n=18/group) and more severe neurological functional deficit after MCAo than WT mice (P<0.05, n=12/group). Decreased arteriogenesis, was evident in eNOS(-/-) mice compared with WT mice, as demonstrated by reduced vascular smooth muscle cell (VSMC) proliferation, arterial density and diameter in the ischemic brain. eNOS(-/-) mice treated with DETA-NONOate had a significantly decreased mortality rate and improved functional recovery, and exhibited enhanced arteriogenesis identified by increased VSMC proliferation, and upregulated arterial density and diameter compared to eNOS(-/-) mice after stroke (P<0.05, n=12/group). To elucidate the mechanisms underlying eNOS/NO mediated arteriogenesis, VSMC migration was measured in vitro. Arterial cell migration significantly decreased in the cultured common carotid artery (CCA) derived from eNOS(-/-) mice 3 days after MCAo compared to WT arterial cells. DETA-NONOate-treatment significantly attenuated eNOS(-/-)-induced decrease of arterial cell migration compared to eNOS(-/-) control artery (P<0.05; n=6/group). Using VSMC culture, DETA-NONOate significantly increased VSMC migration, while inhibition of NOS significantly decreased VSMC migration (P<0.05; n=6/group). Our data indicated that eNOS not only promotes vascular dilation but also increases VSMC proliferation and migration, and thereby enhances arteriogenesis after stroke. Therefore, increase eNOS may play an important role in regulating of arteriogenesis after stroke.
Azani, Alireza; Hosseinzadeh, Asghar; Azadkhah, Roya; Zonouzi, Ali Akbar Poursadegh; Zonouzi, Ahmad Poursadegh; Aftabi, Younes; Khani, Hourieh; Heidary, Leida; Danaii, Shahla; Bargahi, Nasrin; Pouladi, Nasser; Hosseini, Sayed Mostafa
2017-08-01
Many lines of evidence suggest that reduced production of nitric oxide (NO) due to single nucleotide polymorphisms in endothelial nitric oxide synthase (eNOS) gene may affect the implantation and maintenance of pregnancy. Accordingly, our objective was to investigate whether the eNOS polymorphisms (-786 T>C, intron 4 b/a VNTR and 894 G>T) and haplotypes may be associated with increased susceptibility to recurrent pregnancy loss (RPL). A total of 130 women with a history of two or more unexplained consecutive first trimester miscarriages and 110 ethnically matched women with at least two normal pregnancies and no history of pregnancy loss were included in the study as cases and controls, respectively. To identify the genotypes, we used polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism (PCR-RFLP) methods In addition, an in silico analysis was conducted to predict the possible effects of the eNOS 894 G>T polymorphism on the structure and function of eNOS mRNA and protein using prediction servers. Our findings revealed that the prevalence of eNOS -786 T>C polymorphism, eNOS -786C allele and TC+CC genotype in cases were significantly higher than those in healthy controls (p<0.05). Also, the combination genotypes -786TT/4b4a and -786TT/894GG were significantly associated with reduced risk of RPL. We also found that the C-4a-G haplotype of the eNOS gene studied polymorphisms was significantly associated with a predisposition to RPL (odds ratio, 3.219; 95% confidence interval, 1.649-6.282; p=0.0003). The in silico analysis showed that the eNOS 894 G>T polymorphism couldn't affects eNOS mRNA and protein significantly. Our findings provide evidence to support the hypothesis that eNOS -786 T>C polymorphism and the -786C-4a-894G haplotype are associated with the high risk of RPL. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Woodman, C. R.; Schrage, W. G.; Rush, J. W.; Ray, C. A.; Price, E. M.; Hasser, E. M.; Laughlin, M. H.
2001-01-01
We tested the hypothesis that hindlimb unweighting (HLU) decreases endothelium-dependent vasodilation and expression of endothelial nitric oxide synthase (eNOS) and superoxide dismutase-1 (SOD-1) in arteries of skeletal muscle with reduced blood flow during HLU. Sprague-Dawley rats (300-350 g) were exposed to HLU (n = 15) or control (n = 15) conditions for 14 days. ACh-induced dilation was assessed in muscle with reduced [soleus (Sol)] or unchanged [gastrocnemius (Gast)] blood flow during HLU. eNOS and SOD-1 expression were measured in feed arteries (FA) and in first-order (1A), second-order (2A), and third-order (3A) arterioles. Dilation to infusion of ACh in vivo was blunted in Sol but not Gast. In arteries of Sol muscle, HLU decreased eNOS mRNA and protein content. eNOS mRNA content was significantly less in Sol FA (35%), 1A arterioles (25%) and 2A arterioles (18%). eNOS protein content was less in Sol FA (64%) and 1A arterioles (65%) from HLU rats. In arteries of Gast, HLU did not decrease eNOS mRNA or protein. SOD-1 mRNA expression was less in Sol 2A arterioles (31%) and 3A arterioles (29%) of HLU rats. SOD-1 protein content was less in Sol FA (67%) but not arterioles. SOD-1 mRNA and protein content were not decreased in arteries from Gast. These data indicate that HLU decreases endothelium-dependent vasodilation, eNOS expression, and SOD-1 expression primarily in arteries of Sol muscle where blood flow is reduced during HLU.
Some results on numerical methods for hyperbolic conservation laws
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang Huanan.
1989-01-01
This dissertation contains some results on the numerical solutions of hyperbolic conservation laws. (1) The author introduced an artificial compression method as a correction to the basic ENO schemes. The method successfully prevents contact discontinuities from being smeared. This is achieved by increasing the slopes of the ENO reconstructions in such a way that the essentially non-oscillatory property of the schemes is kept. He analyzes the non-oscillatory property of the new artificial compression method by applying it to the UNO scheme which is a second order accurate ENO scheme, and proves that the resulting scheme is indeed non-oscillatory. Extensive 1-Dmore » numerical results and some preliminary 2-D ones are provided to show the strong performance of the method. (2) He combines the ENO schemes and the centered difference schemes into self-adjusting hybrid schemes which will be called the localized ENO schemes. At or near the jumps, he uses the ENO schemes with the field by field decompositions, otherwise he simply uses the centered difference schemes without the field by field decompositions. The method involves a new interpolation analysis. In the numerical experiments on several standard test problems, the quality of the numerical results of this method is close to that of the pure ENO results. The localized ENO schemes can be equipped with the above artificial compression method. In this way, he dramatically improves the resolutions of the contact discontinuities at very little additional costs. (3) He introduces a space-time mesh refinement method for time dependent problems.« less
Education Network of Ontario: Content/Curriculum Models for the Internet-Connected Classroom.
ERIC Educational Resources Information Center
Beam, Mary
The Education Network of Ontario (ENO) is a telecommunications corporation creating an access and applications network for and by Ontario's 130,000-member education community. When educators register with ENO, they receive full industry-standard Internet and Intranet services in English and French. ENO/REO works from school or home. Statistics…
De Filippis, Elena Anna
2007-01-01
Diabetes is associated with accelerated atherosclerosis and macrovascular complications are a major cause of morbidity and mortality in this disease. Although our understanding of vascular pathology has lately greatly improved, the mechanism(s) underlying enhanced atherosclerosis in diabetes remain unclear. Endothelial cell dysfunction is emerging as a key component in the pathophysiology of cardiovascular abnormalities associated with diabetes. Although it has been established that endothelium plays a critical role in overall homeostasis of the vessels, vascular smooth muscle cells (vSMC) in the arterial intima have a relevant part in the development of atherosclerosis in diabetes. However, high glucose induced alterations in vSMC behaviour are not fully characterized. Several studies have reported that impaired nitric oxide (NO) synthesis and/or actions are often present in diabetes and endothelial dysfunction. Furthermore, although endothelial cells are by far the main site of vascular NO synthesis, vSMC do express nitric oxyde synthases (NOSs) and NO synthesis in vSMC might be important in vessel’s function. Although it is known that vSMC contribute to vascular pathology in diabetes by their change from a quiescent state to an activated proliferative and migratory phenotype (termed phenotypic modulation), whether this altered phenotypic modulation might also involve alterations in the nitrergic systems is still controversial. Our recent data indicate that, in vivo, chronic hyperglycemia might induce an increased number of vSMC proliferative clones which persist in culture and are associated with increased eNOS expression and activity. However, upregulation of eNOS and increased NO synthesis occur in the presence of a marked concomitant increase of O2− production. Since NO bioavailabilty might not be increased in high glucose stimulated vSMC, it is tempting to hypothesize that the proliferative phenotype observed in cells from diabetic rats is associated with a redox imbalance responsible quenching and/or trapping of NO, with the consequent loss of its biological activity. This might provide new insight on the mechanisms responsible for accelerated atherosclerosis in diabetes. PMID:18850175
Mao, Mao; Sudhahar, Varadarajan; Ansenberger-Fricano, Kristine; Fernandes, Denise C.; Tanaka, Leonardo Y.; Fukai, Tohru; Laurindo, Francisco R.M.; Mason, Ronald P.; Vasquez-Vivar, Jeannette; Minshall, Richard D.; Stadler, Krisztian; Bonini, Marcelo G.
2012-01-01
Nitroglycerin (GTN) has been clinically used to treat angina pectoris and acute heart episodes for over 100 years. The effects of GTN have long been recognized and active research has contributed to the unraveling of numerous metabolic routes capable of converting GTN to the potent vasoactive messenger nitric oxide. Recently, the mechanism by which minute doses of GTN elicit robust pharmacological responses was revisited and eNOS activation was implicated as an important route mediating vasodilation induced by low GTN doses (1–50 nM). Here, we demonstrate that at such concentrations the pharmacologic effects of nitroglycerin are largely dependent on the phosphatidylinositol 3-kinase, Akt/PKB, and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) signal transduction axis. Furthermore, we demonstrate that nitroglycerin-dependent accumulation of 3,4,5-InsP3, probably because of inhibition of PTEN, is important for eNOS activation, conferring a mechanistic basis for GTN pharmacological action at pharmacologically relevant doses. PMID:22037515
Modulation of endothelial nitric oxide by plant-derived products.
Schmitt, Christoph A; Dirsch, Verena M
2009-09-01
Nitric oxide (NO), produced by endothelial nitric oxide synthase (eNOS), is recognised as a central anti-inflammatory and anti-atherogenic principle in the vasculature. Decreased availability of NO in the vasculature promotes the progression of cardiovascular diseases. Epidemiological and clinical studies have demonstrated that a growing list of natural products, as components of the daily diet or phytomedical preparations, may improve vascular function by enhancing NO bioavailability. In this article we first outline common pathways modulating endothelial NO production or bioavailability to provide a basis for subsequent mechanistic discussions. Then we comprehensively review natural products and plant extracts known to positively influence eNOS activity and/or endothelial function in vitro or in vivo. We will discuss red wine, highlighting polyphenols, oligomeric procyanidins (OPC) and resveratrol as modulators of endothelial NO production. Other dietary products and their active components known to activate eNOS include cocoa (OPC and its monomer (-)-epicatechin), pomegranates (polyphenols), black and green tea (flavanoids, especially epigallocatechin gallate), olive oil (oleic acid and polyphenols), soy (genistein), and quercetin, one of the most abundant flavonoids in plants. In addition, phytomedical preparations made from ginkgo, hawthorn and ginseng, as well as formulations used in traditional Chinese Medicine, have been shown to affect endothelial NO production. Recurring phytochemical patterns among active fractions and purified compounds are discussed. In summary, there is increasing evidence that several single natural products and plant extracts influence endothelial NO production. Identification of such compounds and characterisation of their cellular actions may increase our knowledge of the regulation of endothelial NO production and could provide valuable clues for the prevention or treatment of cardiovascular diseases.
Panda, Vandana Sanjeev; Shinde, Priyanka Mangesh
2016-12-01
BackgroundSpinacia oleracea known as spinach is a green-leafy vegetable consumed by people across the globe. It is reported to possess potent medicinal properties by virtue of its numerous antioxidant phytoconstituents, together termed as the natural antioxidant mixture (NAO). The present study compares the antacid effect of raw spinach juice with an antioxidant-rich methanolic extract of spinach (NAOE) in an artificial stomach model. MethodsThe pH of NAOE at various concentrations (50, 100 and 200 mg/mL) and its neutralizing effect on artificial gastric acid was determined and compared with that of raw spinach juice, water, the active control sodium bicarbonate (SB) and a marketed antacid preparation ENO. A modified model of Vatier's artificial stomach was used to determine the duration of consistent neutralization of artificial gastric acid for the test compounds. The neutralizing capacity of test compounds was determined in vitro using the classical titration method of Fordtran. Results NAOE (50, 100 and 200 mg/mL), spinach juice, SB and ENO showed significantly better acid-neutralizing effect, consistent duration of neutralization and higher antacid capacity when compared with water. Highest antacid activity was demonstrated by ENO and SB followed by spinach juice and NAOE200. Spinach juice exhibited an effect comparable to NAOE (200 mg/mL). ConclusionsThus, it may be concluded that spinach displays significant antacid activity be it in the raw juice form or as an extract in methanol.
Prognostic factors of Bell's palsy and Ramsay Hunt syndrome
Cai, Zhengyi; Li, Huijing; Wang, Xun; Niu, Xiaoting; Ni, Peiqi; Zhang, Wanli; Shao, Bei
2017-01-01
Abstract The aim of this study was to compare clinical characteristics, electroneurography (ENoG) results, and functional outcomes of patients with Bell's palsy (BP) and Ramsay Hunt syndrome (RHS). Around 57 patients with BP and 23 patients with RHS were enrolled in this study from January 2010 and September 2015. Both clinical characteristics and ENoG results were recorded at hospital admission. The evaluations of functional outcomes were conducted with House–Brackmann (H-B) grading system at 6-month follow-up. There were no significant differences in age, gender proportion, initial H-B grades, time before commencement of treatment and the presence of comorbid disease in 2 groups. However, the final H-B grades at 6-month follow-up were significantly better in BP patients than RHS patients. The results of ENoG showed that degeneration index (DI) was significantly higher in the RHS group than the BP group. But no significant difference was found in the value of prolonged latency time (PLT) between the 2 groups. In multivariate analysis, age and ENoG DI were independently associated with functional outcome of recovery in the BP group (OR 0.167, 95% CI 0.038–0.622, P = 0.009 and OR 0.289 95% CI 0.107–0.998, P = 0.050, respectively). However, in the RHS group, only ENoG DI was related to the final H-B grades (OR 0.067, 95% CI 0.005–0.882, P = 0.040). Spearman's rank correlation analysis showed that higher age and ENoG DI were related to poorer prognosis in 2 groups (P < 0.05). PLT was related to functional outcomes only in the BP group (rs = 0.460, P < 0.001). The receiver operating characteristic (ROC) of ENoG DI analysis revealed that the cutoff value was 67.0% for BP prognosis and 64.5% for RHS prognosis. What's more, patients with hypertension or diabetes mellitus had both higher final H-B grade and ENoG DI than those without the same comorbidity. Patients with RHS had poorer prognosis than those with BP. Some factors including age, ENoG DI, and the presence of disease influenced recovery from BP and RHS. The present study demonstrated that BP patients with ENoG DI < 67.0% and RHS patients with ENoG DI < 65.5% had a greater opportunity for recovery within half a year. PMID:28079835
Förstermann, Ulrich; Li, Huige
2011-01-01
Nitric oxide (NO) produced by the endothelium is an important protective molecule in the vasculature. It is generated by the enzyme endothelial NO synthase (eNOS). Similar to all NOS isoforms, functional eNOS transfers electrons from nicotinamide adenine dinucleotide phosphate (NADPH), via the flavins flavin adenine dinucleotide and flavin mononucleotide in the carboxy-terminal reductase domain, to the heme in the amino-terminal oxygenase domain. Here, the substrate L-arginine is oxidized to L-citrulline and NO. Cardiovascular risk factors such as diabetes mellitus, hypertension, hypercholesterolaemia or cigarette smoking reduce bioactive NO. These risk factors lead to an enhanced production of reactive oxygen species (ROS) in the vessel wall. NADPH oxidases represent major sources of this ROS and have been found upregulated in the presence of cardiovascular risk factors. NADPH-oxidase-derived superoxide avidly reacts with eNOS-derived NO to form peroxynitrite (ONOO-). The essential NOS cofactor (6R-)5,6,7,8-tetrahydrobiopterin (BH4) is highly sensitive to oxidation by this ONOO-. In BH4 deficiency, oxygen reduction uncouples from NO synthesis, thereby converting NOS to a superoxide-producing enzyme. Among conventional drugs, compounds interfering with the renin-angiotensin-aldosterone system and statins can reduce vascular oxidative stress and increase bioactive NO. In recent years, we have identified a number of small molecules that have the potential to prevent eNOS uncoupling and, at the same time, enhance eNOS expression. These include the protein kinase C inhibitor midostaurin, the pentacyclic triterpenoids ursolic acid and betulinic acid, the eNOS enhancing compounds AVE9488 and AVE3085, and the polyphenolic phytoalexin trans-resveratrol. Such compounds enhance NO production from eNOS also under pathophysiological conditions and may thus have therapeutic potential. PMID:21198553
Byun, Hayoung; Cho, Yang-Sun; Jang, Jeon Yeob; Chung, Kyu Whan; Hwang, Soojin; Chung, Won-Ho; Hong, Sung Hwa
2013-10-01
To evaluate the prognostic and predictive value of electroneuronography (ENoG) in acute severe inflammatory facial paralysis, including Bell's palsy and Ramsay Hunt syndrome (RHS). Prospective observational study. Patients with acute severe facial paralysis of House-Brackmann (H-B) grade IV or worse and diagnosed with Bell's palsy or RHS were enrolled from August 2007 to July 2011. After treatment with oral corticosteroid, antiviral agent, and protective eye care, patients were followed up until recovery or 12 months from onset. Sixty-six patients with Bell's palsy and 22 with RHS were included. Multiple logistic regression analysis showed significant effect of ENoG value on recovery in both Bell's palsy and RHS. Values of ENoG were significantly worse in RHS than Bell's palsy. Chance of early recovery within 6 weeks after correction of ENoG effect was still significantly worse in RHS. Logistic regression analysis showed 90% chance of recovery within 6 months, expected with ENoG values of 69.2% degeneration (Bell's palsy) and 59.3% (RHS). The receiver operating characteristics (ROC) curves showed ENoG values of 82.5% (Bell's palsy) and 78.0% (RHS) as a critical cutoff value of nonrecovery until 1 year, with the best sensitivity and specificity. A higher chance of recovery was expected with better ENoG in Bell's palsy and RHS. Based on our data, nonrecovery is predicted in patients with ENoG value greater than 82.5% in Bell's palsy, and 78% in RHS. 4. Copyright © 2013 The American Laryngological, Rhinological and Otological Society, Inc.
Harvey, Nicholas C.; Lillycrop, Karen A.; Garratt, Emma; Sheppard, Allan; McLean, Cameron; Burdge, Graham; Slater-Jefferies, Jo; Rodford, Joanne; Crozier, Sarah; Inskip, Hazel; Emerald, Bright Starling; Gale, Catharine R; Hanson, Mark; Gluckman, Peter; Godfrey, Keith; Cooper, Cyrus
2013-01-01
Aim Our previous work has shown associations between childhood adiposity and perinatal methylation status of several genes in umbilical cord tissue, including endothelial nitric oxide synthase (eNOS). There is increasing evidence that eNOS is important in bone metabolism; we therefore related the methylation status of the eNOS gene promoter in stored umbilical cord to childhood bone size and density in a group of 9-year old children. Methods We used Sequenom MassARRAY to assess the methylation status of 2 CpGs in the eNOS promoter, identified from our previous study, in stored umbilical cords of 66 children who formed part of a Southampton birth cohort and who had measurements of bone size and density at age 9 years (Lunar DPXL DXA instrument). Results Percentage methylation varied greatly between subjects. For one of the two CpGs, eNOS chr7:150315553+, after taking account of age and sex there was a strong positive association between methylation status and the child’s whole body bone area (r=0.28,p=0.02), bone mineral content (r=0.34,p=0.005) and areal bone mineral density (r=0.34,p=0.005) at age 9 years. These associations were independent of previously documented maternal determinants of offspring bone mass. Conclusions Our findings suggest an association between methylation status at birth of a specific CpG within the eNOS promoter and bone mineral content in childhood. This supports a role for eNOS in bone growth and metabolism and implies that its contribution may at least in part occur during early skeletal development. PMID:22159788
Hao, Hui-Feng; Liu, Li-Mei; Pan, Chun-Shui; Wang, Chuan-She; Gao, Yuan-Sheng; Fan, Jing-Yu; Han, Jing-Yan
2017-01-01
Objectives: To examine the protective effect of Rhynchophylline (Rhy) on vascular endothelial function in spontaneous hypertensive rats (SHRs) and the underlying mechanism. Methods: Intrarenal arteries of SHRs and Wistar rats were suspended in myograph for force measurement. Expression and phosphorylation of endothelial nitric oxide (NO) synthase (eNOS), Akt, and Src kinase (Src) were examined by Western blotting. NO production was assayed by ELISA. Results: Rhy time- and concentration-dependently improved endothelium-dependent relaxation in the renal arteries from SHRs, but had no effect on endothelium-independent relaxation in SHR renal arteries. Wortmannin (an inhibitor of phosphatidylinositol 3-kinase) or PP2 (an inhibitor of Src) inhibited the improvement of relaxation in response to acetylcholine by 12 h-incubation with 300 μM Rhy. Western blot analysis revealed that Rhy elevated phosphorylations of eNOS, Akt, and Src in SHR renal arteries. Moreover, wortmannin reversed the increased phosphorylations of Akt and eNOS induced by Rhy, but did not affect the phosphorylation of Src. Furthermore, the enhanced phosphorylations of eNOS, Akt, and Src were blunted by PP2. Importantly, Rhy increased NO production and this effect was blocked by inhibition of Src or PI3K/Akt. Conclusion: The present study provides evidences for the first time that Rhy ameliorates endothelial dysfunction in SHRs through the activation of Src-PI3K/Akt-eNOS signaling pathway. PMID:29187825
Peddireddy, Vidyullatha; Badabagni, Siva Prasad; Gundimeda, Sandhya Devi; Mundluru, Hema Prasad
2018-01-01
The role of ACE and eNOS gene polymorphisms and their association with various cancers were reported. However, their role in the lung cancer is unclear. In this study, we analyzed eNOS and ACE gene polymorphisms and the risk of non-small cell lung cancer (NSCLC) in South Indian population. For the eNOS gene, the homozygous "AA" genotypic frequency was significantly associated with NSCLC with an overall risk of 3.6-fold (P = 0.006, odds ratio = 3.58, 95% confidence interval = 1.66, 7.723). The heterozygous "I/D" genotypic frequency of ACE gene was significantly higher in NSCLC patients when compared to the controls with a 2.29-fold risk for NSCLC. Multiple regression analyses indicated that gender, smoking status, and polymorphisms in eNOS and ACE genes as the strongest predicting factors for an increased susceptibility to NSCLC. We report for the first time that polymorphisms in the eNOS "A/A" (homozygous mutant) and ACE "I/D" genotypes might contribute to the increased risk of NSCLC in the South Indian population. © 2016 John Wiley & Sons Ltd.
Li, Shi-Ting; Pan, Jing; Hua, Xu-Ming; Liu, Hong; Shen, Sa; Liu, Jia-Fu; Li, Bin; Tao, Bang-Bao; Ge, Xiao-Li; Wang, Xu-Hui; Shi, Juan-Hong; Wang, Xiao-Qiang
2014-02-01
Several lines of evidence demonstrated that endothelial nitric oxide synthase (eNOS) confers protective effects during cerebral ischemia. In this study, we explored the underlying cellular and molecular mechanisms of neuroprotection by eNOS. A series of in vivo and in vitro ischemic models were employed to study the role of eNOS in maintaining neuronal survival and to identify the downstream factors. The current data showed that pretreatment with a specific eNOS inhibitor, L-N5-(1-iminoethyl) ornithine (L-NIO), aggravated the neuronal loss in the rat cerebral ischemic model, accompanied by reduction in brain-derived neurotrophic factor (BDNF) level, which was consistent with the findings in an oxygen-glucose deprivation model (OGD) with two neuronal cells: primary rat cortical neurons and human neuroblastoma SH-SY5Y cells. Furthermore, the extensive neuronal loss induced by L-NIO was totally abolished by exogenous BDNF in both in vitro and in vivo models. On the other hand, eNOS overexpression through an adenoviral vector exerted a prominent protective effect on the neuronal cells subject to OGD, and the protective effect was totally abrogated by a neutralizing anti-BDNF antibody. Collectively, our results indicate that the neuroprotection of neuron-derived eNOS against the cerebral ischemia was mediated through the regulation of BDNF secretion. In conclusion, our discovery provides a novel explanation for the neuroprotective effect of eNOS under pathological ischemic conditions such as stroke. © 2014 John Wiley & Sons Ltd.
Azimi, Mina; Nikanfar, Masoud; Khakikhatibi, Fatemeh; Rahbarghazi, Reza; Nourazarian, Seyed Manuchehr; Biray Avci, Cigir; Nourazarian, Alireza
2017-09-01
According to evidence, Alzheimer's disease is known as one of the most serious neurodegenerative diseases, for which hypertension has been observed to be a key risk factor. Therefore, this study aims to examine the relationship between the PIN1 and eNOS genes expression, as well as serum levels and hypertension in Alzheimer's disease sufferers. Blood samples were obtained from subjects who were divided into four groups: the control group, normotensive Alzheimer's patients, the Alzheimer's sufferers group with hypertension, and the healthy group with only hypertension, considering the inhibition of confounding factors. Thereafter, eNOS and PIN1 genes expression along with serum levels were studied. Based on the obtained results, a statistically significant correlation didn't exist between serum level of PIN1 and the systolic and diastolic blood pressure, between serum level of eNOS and diastolic blood pressure in the norm tension Alzheimer's disease patients, between serum levels of PIN1, eNOS and systolic blood pressure, and between serum eNOS and systolic and diastolic blood pressure in the patients with hypertension (p<0.05). According to the results obtained from this study, measuring the serum levels of eNOS and Pin1 may contribute to the prognosis, prevention, and monitoring of hypertension and also to the reduction of death rates from cardiovascular diseases in Alzheimer's disease. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sun, Tao; Cao, Lei; Ping, Na-Na; Wu, Yue; Liu, Dong-Zheng; Cao, Yong-Xiao
2016-03-01
Formononetin, a phytoestrogen, can improve arterial endothelial cell function by upregulating endothelial nitric oxide synthase (eNOS). The estrogen receptor plays an important role in the regulation of eNOS. This study investigated the hypothesis that formononetin upregulates eNOS through estrogen receptors and MAPK pathways. The rat superior mesenteric arteries were cultured with formononetin or formononetin plus inhibitors for 24 h. The isometric tension of the arteries was measured using a myograph system. The mRNA and protein expression levels of eNOS were determined by real-time PCR and immunohistochemistry, respectively. Acetylcholine (ACh) relaxed the mesenteric arteries precontracted with 5-hydroxytryptamine. This relaxation could be enhanced by formononetin. The removal of endothelium or incubation with l-NAME (a NOS inhibitor) completely abolished the formononetin-enhanced relaxation induced by ACh, suggesting that the formononetin-enhanced vasodilatation is dependent on endothelium and NO pathway. The estrogen receptor inhibitor ICI 182780 attenuated the formononetin-enhanced vasodilatation induced by ACh, suggesting that the formononetin-enhanced arterial relaxation is mediated by the estrogen receptor. Formononetin increased the mRNA and protein expression levels of eNOS. ICI 182780, U0126 (an ERK1/2 inhibitor) and SP600125 (a JNK inhibitor) prevented the increases in arterial relaxation and eNOS levels. Formononetin upregulates eNOS expression in mesenteric arteries via estrogen receptors, ERK1/2 and JNK pathways. © 2016 Royal Pharmaceutical Society, Journal of Pharmacy and Pharmacology.
Zanetti, Michela; Gortan Cappellari, Gianluca; Burekovic, Ismet; Barazzoni, Rocco; Stebel, Marco; Guarnieri, Gianfranco
2010-11-01
Aging is characterized by activation of inducible over endothelial nitric oxide synthase (iNOS and eNOS), impaired antioxidant activity and increased oxidative stress, which reduces nitric oxide bioavailability and causes endothelial dysfunction. Caloric restriction (CR) blunts oxidative stress. We investigated whether CR impacts endothelial dysfunction in aging and the underlying mechanisms. Aortas from young (YC, 6 months of age) and old (OC, 24 months of age) rats ad-libitum fed and from old rats caloric-restricted for 3-weeks (OR, 26%) were investigated. Endothelium-dependent vasorelaxation was impaired in OC, associated with reduced eNOS and increased iNOS expression (P<0.05). Aortic nitrite was similar in OC and YC, but the contribution of calcium-independent NOS to total NOS activity was increased whereas that of calcium-dependent NOS was reduced (p≤0.0003). Plasma thiobarbituric acid-reactive substances (TBARS) were elevated in OC as well as aortic nitrotyrosine (P<0.05). Expression of manganese superoxide dismutase (MnSOD) and total SOD activity were impaired in OC (P<0.05 vs. YC), whereas copper-zinc (CuZn) SOD expression was similar in OC and YC. CR restored endothelial dysfunction in old rats, reduced iNOS expression, total nitrite and calcium-independent NOS activity in aorta (P<0.05) without changes in eNOS expression and calcium-dependent NOS activity. Sirtuin-1 expression did not differ among groups. Plasma TBARS and aortic nitrotyrosine were reduced (P<0.05) in OR compared with OC. In OR CuZnSOD protein and SOD activity increased (P<0.05) without changes in MnSOD expression. Short-term CR improves age-related endothelial dysfunction. Reversal of altered iNOS/eNOS ratio, reduced oxidative stress and increased SOD enzyme activity rather than enhanced NO production appear to be involved in this effect. Copyright © 2010 Elsevier Inc. All rights reserved.
Beckman, Joshua A.; Liao, James K.; Hurley, Shauna; Garrett, Leslie A.; Chui, Daoshan; Mitra, Debi; Creager, Mark A.
2009-01-01
Cigarette smoking impairs endothelial function. Hydroxymethylglutaryl (HMG) CoA reductase inhibitors (statins) may favorably affect endothelial function via nonlipid mechanisms. We tested the hypothesis that statins would improve endothelial function independent of changes in lipids in cigarette smokers. Twenty normocholesterolemic cigarette smokers and 20 matched healthy control subjects were randomized to atorvastatin 40 mg daily or placebo for 4 weeks, washed out for 4 weeks, and then crossed-over to the other treatment. Baseline low-density lipoprotein (LDL) levels were similar in smokers and healthy subjects, 103±22 versus 95±27 mg/dL, respectively (P=NS) and were reduced similarly in smokers and control subjects by atorvastatin, to 55±30 and 58±20 mg/dL, respectively (P=NS). Vascular ultrasonography was used to determine brachial artery, flow-mediated, endothelium-dependent, and nitroglycerin-mediated, endothelium-independent vasodilation. To elucidate potential molecular mechanisms that may account for changes in endothelial function, skin biopsy specimens were assayed for eNOS mRNA, eNOS activity, and nitrotyrosine. Endothelium-dependent vasodilation was less in smokers than nonsmoking control subjects during placebo treatment, 8.0±0.6% versus 12.1±1.1%, (P=0.003). Atorvastatin increased endothelium-dependent vasodilation in smokers to 10.5±1.3% (P=0.017 versus placebo) but did not change endothelium-dependent vasodilation in control subjects (to 11.0±0.8%, P=NS). Endothelium-independent vasodilation did not differ between groups during placebo treatment and was not significantly affected by atorvastatin. Multivariate analysis did not demonstrate any association between baseline lipid levels or the change in lipid levels and endothelium-dependent vasodilation. Cutaneous nitrotyrosine levels and skin microvessel eNOS mRNA, but not ENOS activity, were increased in smokers compared with controls but unaffected by atorvastatin treatment. Atorvastatin restores endothelium-dependent vasodilation in normocholesterolemic cigarette smokers independent of changes in lipids. These results are consistent with a lipid-independent vascular benefit of statins but could not be explained by changes in eNOS message and tissue oxidative stress. These findings implicate a potential role for statin therapy to restore endothelial function and thereby investigate vascular disease in cigarette smokers. PMID:15178637
Musicki, Biljana; Champion, Hunter C; Becker, Robyn E; Liu, Tongyun; Kramer, Melissa F; Burnett, Arthur L
2005-07-01
Despite demonstrated clinical efficacy of sildenafil for the temporary treatment of erectile dysfunction, the possibility that sildenafil used long-term durably augments erectile ability remains unclear. We investigated whether continuous long-term administration of sildenafil at clinically relevant levels to aged rats "primes" the penis for improved erectile ability and involves nitric oxide (NO) or RhoA/Rho-kinase signaling pathways. In aged, but not young rats, sildenafil prolonged erection and increased the protein expressions of phosphorylated endothelial NO synthase (eNOS) at serine-1177 and phosphorylated Akt at serine-473 in penes. Only in the young rat penis, protein expressions of phosphodiesterase-5 and phosphomyosin phosphatase target subunit 1, a marker of Rho-kinase activity, were increased by sildenafil. Sildenafil inhibited phosphodiesterase-5 activity in penes of young and aged rats coincident with assayed free plasma levels of the drug equivalent to clinically therapeutic measurements. We conclude that erectile ability can be enhanced under preconditions of erectile impairment by long-term inhibition of phosphodiesterase-5 and that the effect is mediated by Akt-dependent eNOS phosphorylation. The lack of erectile ability enhancement in young rats by long-term phosphodiesterase-5 inhibition may relate to restrained NO signaling by phosphodiesterase-5 up-regulation, lack of incremental Akt and eNOS phosphorylation, and heightened Rho-kinase signaling in the penis.
Pérez, Francisco R; Venegas, Fabiola; González, Magdalena; Andrés, Sergio; Vallejos, Catalina; Riquelme, Gloria; Sierralta, Jimena; Michea, Luis
2009-06-01
Recent studies have shown that the epithelial sodium channel (ENaC) is expressed in vascular tissue. However, the role that ENaC may play in the responses to vasoconstrictors and NO production has yet to be addressed. In this study, the contractile responses of perfused pressurized small-diameter rat mesenteric arteries to phenylephrine and serotonin were reduced by ENaC blockade with amiloride (75.1+/-3.2% and 16.9+/-2.3% of control values, respectively; P<0.01) that was dose dependent (EC(50)=88.9+/-1.6 nmol/L). Incubation with benzamil, another ENaC blocker, had similar effects. alpha, beta, and gamma ENaC were identified in small-diameter rat mesenteric arteries using RT-PCR and Western blot with specific antibodies. In situ hybridization and immunohistochemistry localized ENaC expression to the tunica media and endothelium of small-diameter rat mesenteric arteries. Patch-clamp experiments demonstrated that primary cultures of mesenteric artery endothelial cells expressed amiloride-sensitive sodium currents. Mechanical ablation of the endothelium or inhibition of eNOS with N(omega)-nitro-L-arginine inhibited the reduction in contractility caused by ENaC blockers. ENaC inhibitors increased eNOS phosphorylation (Ser 1177) and Akt phosphorylation (Ser 473). The presence of the phosphoinositide 3-kinase inhibitor LY294002 blunted Akt phosphorylation and eNOS phosphorylation and the decrease in the response to phenylephrine caused by blockers of ENaC, indicating that the phosphoinositide 3-kinase/Akt pathway was activated after ENaC inhibition. Finally, we observed that the effects of blockers of ENaC were flow dependent and that the vasodilatory response to shear stress was enhanced by ENaC blockade. Our results identify a previously unappreciated role for ENaC as a negative modulator of eNOS and NO production in resistance arteries.
Shashar, Moshe; Chernichovski, Tamara; Pasvolsky, Oren; Levi, Sharon; Grupper, Ayelet; Hershkovitz, Rami; Weinstein, Talia; Schwartz, Idit F
2017-01-01
Vascular endothelial growth factor (VEGF) is an endothelium-specific peptide that stimulates angiogenesis via two receptor tyrosine kinases, Flt-1 and KDR. Endothelial nitric oxide synthase (eNOS) plays a major role in VEGF signaling. Delivery of arginine to membrane bound eNOS by the cationic amino acid transporter-1 (CAT-1) has been shown to modulate eNOS activity. The current studies were designed to test the hypothesis that VEGF enhances eNOS activity via modulation of arginine transport by CAT-1. Using radio-labeled arginine, {[3H] L-arginine} uptake was determined in human umbilical vein endothelial cells (HUVEC) following incubation with VEGF with and without silencing the VEGF receptors Flt-1 or KDR. Subsequently, western blotting for CAT-1, PKCα, ERK 1/2, JNK, and their phosphorylated forms were performed. NO generation was measured by the Griess reaction. VEGF (50 and 100 ng/ml) significantly augmented endothelial arginine transport in a time dependent manner, an effect which was prevented by Sunitinib (2 µM), a multi targeted receptor tyrosine kinase inhibitor. The increase in arginine transport velocities by VEGF was not affected by silencing Flt-1 while silencing KDR abrogated VEGF effect. Furthermore, incubating cells with 50 and 100 ng of VEGF for 30 minutes significantly augmented CAT-1 abundance. The expression of PKC-α, JNK, and ERK1/2 and their phosphorylated forms were unchanged following incubation of HUVEC with VEGF. The concentration of NO2/NO3 following incubation with VEGF was significantly higher than from untreated cells. This increase was significantly attenuated by silencing KDR. VEGF increases arginine transport via modulation of CAT-1 in endothelial cells. This effect is exclusively dependent on KDR rather than Flt-1. © 2017 The Author(s). Published by S. Karger AG, Basel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bi, Rui; Bao, Chunrong; Jiang, Lianyong
Pulmonary artery endothelial dysfunction is associated with pulmonary arterial hypertension (PAH). Based on recent studies showing that microRNA (miR)-27b is aberrantly expressed in PAH, we hypothesized that miR-27b may contribute to pulmonary endothelial dysfunction and vascular remodeling in PAH. The effect of miR-27b on pulmonary endothelial dysfunction and the underlying mechanism were investigated in human pulmonary artery endothelial cells (HPAECs) in vitro and in a monocrotaline (MCT)-induced model of PAH in vivo. miR-27b expression was upregulated in MCT-induced PAH and inversely correlated with the levels of peroxisome proliferator-activated receptor (PPAR)-γ, and miR-27b inhibition attenuated MCT-induced endothelial dysfunction and remodeling and prevented PAHmore » associated right ventricular hypertrophy and systolic pressure in rats. PPARγ was confirmed as a direct target of miR-27b in HPAECs and shown to mediate the effect of miR-27b on the disruption of endothelial nitric oxide synthase (eNOS) coupling to Hsp90 and the suppression of NO production associated with the PAH phenotype. We showed that miR-27b plays a role endothelial function and NO release and elucidated a potential mechanism by which miR-27b regulates Hsp90-eNOS and NO signaling by modulating PPARγ expression, providing potential therapeutic targets for the treatment of PAH. - Highlights: • miR-27b plays a role in endothelial function and NO release. • miR-27b inhibition ameliorates MCT-induced endothelial dysfunction and PAH. • miR-27b targets PPARγ in HPAECs. • miR-27b regulates PPARγ dependent Hsp90-eNOS and NO signaling.« less
Epigallocatechin 3-gallate inhibits 7-ketocholesterol-induced monocyte-endothelial cell adhesion.
Yamagata, Kazuo; Tanaka, Noriko; Suzuki, Koichi
2013-07-01
7-Ketocholesterol (7KC) induces monocytic adhesion to endothelial cells, and induces arteriosclerosis while high-density lipoprotein (HDL) inhibits monocytic adhesion to the endothelium. Epigallocatechin 3-gallate (EGCG) was found to have a protective effect against arteriosclerosis. Therefore, the purpose of this study was to examine the possible HDL-like mechanisms of EGCG in endothelial cells by investigating whether EGCG inhibits 7KC-induced monocyte-endothelial cell adhesion by activating HDL-dependent signal transduction pathways. 7KC and/or EGCG were added to human endothelial cells (ISO-HAS), and the adhesion of pro-monocytic U937 cells was examined. The expression of genes associated with HDL effects such as Ca(2+)/calmodulin-dependent kinase II (CaMKKII), liver kinase B (LKD1), PSD-95/Dlg/ZO-1 kinase 1 (PDZK1), phosphatidylinositol 3-kinase (PI3K), intercellular adhesion molecule-1 (ICAM-1), monocyte chemotactic protein-1 (MCP-1), and endothelial nitric oxide synthase (eNOS) was examined by RT-PCR, and ICAM-1 protein expression was evaluated by western blot (WB). Production of reactive oxygen species (ROS) was examined with H2DCFDA. 7KC significantly induced adhesion of U937 cells to human endothelial cells while significantly increasing gene expressions of ICAM-1 and MCP-1 and decreasing eNOS and CaMKKII gene expressions. EGCG inhibited 7KC-induced monocytic adhesion to endothelial cells, and induced expression of eNOS and several genes involved in the CaMKKII pathway. Stimulation of endothelial cells with EGCG produced intracellular ROS, whereas treatment with N-acetylcysteine (NAC) blocked EGCG-induced expression of eNOS and CaMKKII. These results suggest that inhibition of monocyte-endothelial cell adhesion by EGCG is associated with CaMKKII pathway activation by ROS. Inhibition of 7KC-induced monocyte-endothelial cell adhesion induced by EGCG may function similarly to HDL. Copyright © 2013 Elsevier Inc. All rights reserved.
López-Canales, Jorge Skiold; Lozano-Cuenca, Jair; López-Canales, Oscar Alberto; Aguilar-Carrasco, José Carlos; Aranda-Zepeda, Lidia; López-Sánchez, Pedro; Castillo-Henkel, Enrique Fernando; López-Mayorga, Ruth Mery; Valencia-Hernández, Ignacio
2015-01-01
The present study aimed to investigate the possible influence of several inhibitors and blockers on the vascular effect produced by the acute in vitro application of rosuvastatin to phenylephrine-precontracted aortic rings from rats with a semi-solid, cafeteria-style (CAF) diet. It also aimed to examine the effects of rosuvastatin on the expression of endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase, constitutive cyclooxygenase, and inducible cyclooxygenase in aortic rings from rats with a CAF diet. From comparisons of the effect on phenylephrine-precontracted aortic rings extracted from rats with two different diets (a standard and a CAF diet), it was found that 10−9–10−5-mol/L rosuvastatin produced lower concentration-dependent vasorelaxation on rings from the CAF diet group. The vasorelaxant effect was unaffected by the vehicle, but it was significantly attenuated by 10−5-mol/L NG-nitro-l-arginine methyl ester, 10−2-mol/L tetraethylammonium, 10−3-mol/L 4-aminopyridine, 10−7-mol/L apamin plus 10−7-mol/L charybdotoxin, 10−5-mol/L indomethacin, or 10−5-mol/L cycloheximide. Moreover, in aortic rings from rats with a CAF diet, rosuvastatin enhanced the expression of eNOS, inducible nitric oxide synthase, constitutive cyclooxygenase, and inducible cyclooxygenase. The acute in vitro application of rosuvastatin to phenylephrine-precontracted aortic rings from rats with a CAF diet had a vasorelaxant effect. Overall, the present results suggest that the stimulation of eNOS, the opening of Ca2+-activated and voltage-activated K+ channels, the stimulation of prostaglandin synthesis and enhanced protein levels of eNOS, inducible nitric oxide synthase, constitutive cyclooxygenase, and inducible cyclooxygenase are involved in this relaxant effect. PMID:25881486
Pang, Yefei; Dong, Jing; Thomas, Peter
2015-05-15
Progesterone exerts beneficial effects on the human cardiovascular system by inducing rapid increases in nitric oxide (NO) production in vascular endothelial cells, but the receptors mediating these nongenomic progesterone actions remain unclear. Using human umbilical vein endothelial cells (HUVECs) as a model, we show that progesterone binds to plasma membranes of HUVECs with the characteristics of membrane progesterone receptors (mPRs). The selective mPR agonist Org OD 02-0 had high binding affinity for the progesterone receptor on HUVEC membranes, whereas nuclear PR (nPR) agonists R5020 and medroxyprogesterone acetate displayed low binding affinities. Immunocytochemical and Western blot analyses confirmed that mPRs are expressed in HUVECs and are localized on their plasma membranes. NO levels increased rapidly after treatment with 20 nM progesterone, Org OD 02-0, and a progesterone-BSA conjugate but not with R5020, suggesting that this progesterone action is at the cell surface and initiated through mPRs. Progesterone and Org OD 02-0 (20 nM) also significantly increased endothelial nitric oxide synthase (eNOS) activity and eNOS phosphorylation. Knockdown of mPRα expression by treatment with small-interfering RNA (siRNA) blocked the stimulatory effects of 20 nM progesterone on NO production and eNOS phosphorylation, whereas knockdown of nPR was ineffective. Treatment with PI3K/Akt and MAP kinase inhibitors blocked the stimulatory effects of progesterone, Org OD 02-0, and progesterone-BSA on NO production and eNOS phosphorylation and also prevented progesterone- and Org OD 02-0-induced increases in Akt and ERK phosphorylation. The results suggest that progesterone stimulation of NO production in HUVECs is mediated by mPRα and involves signaling through PI3K/Akt and MAP kinase pathways. Copyright © 2015 the American Physiological Society.
Anselm, Eric; Chataigneau, Marta; Ndiaye, Mamadou; Chataigneau, Thierry; Schini-Kerth, Valérie B
2007-01-15
An enhanced endothelial formation of nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF), is thought to contribute to the protective effect of moderate consumption of red wine on coronary diseases. The present study has characterized endothelium-dependent relaxations to Concord grape juice (CGJ), a non-alcoholic rich source of grape-derived polyphenols, in the coronary artery. Porcine coronary artery rings were suspended in organ chambers for the measurement of changes in isometric tension in the presence of indomethacin. NO formation was assessed by electron spin resonance spectroscopy, and the phosphorylation of Src, Akt and endothelial NO synthase (eNOS) by Western blot analysis in cultured endothelial cells. Endothelium-dependent relaxations to CGJ were slightly but significantly reduced by L-NA, not affected by charybdotoxin (CTX) plus apamin (APA, two inhibitors of EDHF-mediated responses) whereas the combination of L-NA, CTX plus APA reduced maximal relaxation to about 50%. In the presence of CTX plus APA, relaxations to CGJ were markedly reduced by the membrane permeant mimetic of superoxide dismutase (SOD), MnTMPyP, the membrane permeant analogue of catalase polyethyleneglycol-catalase (PEG-catalase), PP2, an inhibitor of Src kinase, and by wortmannin, an inhibitor of the PI3-kinase. CGJ stimulated the formation of reactive oxygen species and the N(omega)-nitro-L-arginine-, PP2- and wortmannin-sensitive formation of NO in endothelial cells. The formation of NO was associated with a redox-sensitive and time-dependent phosphorylation of Src, Akt and eNOS. CGJ induces endothelium-dependent relaxations of coronary arteries, which involve a NO-mediated component and also, to a minor extent, an EDHF-mediated component. In addition, CGJ-induced NO formation is due to the redox-sensitive activation of Src kinase with the subsequent PI3-kinase/Akt-dependent phosphorylation of eNOS.
Lee, Soo Vin; Choi, Kyung Ha; Choi, Young Whan; Hong, Jin Woo; Baek, Jin Ung; Choi, Byung Tae; Shin, Hwa Kyoung
2014-04-01
Polygonum multiflorum is a traditional Korean medicine that has been utilized widely in East Asian countries as a longevity agent. Clinical studies have demonstrated that Polygonum multiflorum improves hypercholesterolemia, coronary heart disease, neurosis and other diseases commonly associated with aging. However, scientific evidence defining the protective effects and mechanisms of Polygonum multiflorum against ischemic stroke is incomplete. In the present study, we investigated the cerebrovascular protective effects of Polygonum multiflorum against ischemic brain injury using an in vivo photothrombotic mouse model. To examine the underlying mechanism of action, we utilized an in vitro human brain microvascular endothelial cell (HBMEC) culture system. Hexane extracts (HEPM), ethyl acetate extracts (EAEPM) and methanol extracts (MEPM) of Polygonum multiflorum (100 mg/kg) were administered intraperitoneally 30 min prior to ischemic insult. Focal cerebral ischemia was induced in C57BL/6J mice and endothelial nitric oxide synthase knockout (eNOS KO) mice by photothrombotic cortical occlusion. We evaluated the infarct volume, as well as neurological and motor function, 24 h after ischemic brain injury. Following ischemic insult, HEPM induced a significant reduction in infarct volume and subsequent neurological deficits, compared with EAEPM and MEPM. HEPM significantly decreased infarct size and improved neurological and motor function, which was not observed in eNOS KO mice, suggesting that this cerebroprotective effect is primarily an eNOS-dependent mechanism. In vitro, HEPM effectively promoted NO production, however these effects were inhibited by the NOS inhibitor, L-NAME and the PI3K/Akt inhibitor, LY-294002. Furthermore, HEPM treatment resulted in increased phosphorylation-dependent activation of Akt and eNOS in HBMEC, suggesting that HEPM increased NO production via phosphorylation-dependent activation of Akt and eNOS. In conclusion, HEPM prevents cerebral ischemic damage through an eNOS-dependent mechanism, and thus may have clinical applications as a protective agent against neurological injury in stroke.
eNOS-uncoupling in age-related erectile dysfunction
Johnson, JM; Bivalacqua, TJ; Lagoda, GA; Burnett, AL; Musicki, B
2011-01-01
Aging is associated with ED. Although age-related ED is attributed largely to increased oxidative stress and endothelial dysfunction in the penis, the molecular mechanisms underlying this effect are not fully defined. We evaluated whether endothelial nitric oxide synthase (eNOS) uncoupling in the aged rat penis is a contributing mechanism. Correlatively, we evaluated the effect of replacement with eNOS cofactor tetrahydrobiopterin (BH4) on erectile function in the aged rats. Male Fischer 344 ‘young’ (4-month-old) and ‘aged’ (19-month-old) rats were treated with a BH4 precursor sepiapterin (10 mg/kg intraperitoneally) or vehicle for 4 days. After 1-day washout, erectile function was assessed in response to electrical stimulation of the cavernous nerve. Endothelial dysfunction (eNOS uncoupling) and oxidative stress (thiobarbituric acid reactive substances, TBARS) were measured by conducting western blot in penes samples. Erectile response was significantly reduced in aged rats, whereas eNOS uncoupling and TBARS production were significantly increased in the aged rat penis compared with young rats. Sepiapterin significantly improved erectile response in aged rats and prevented increase in TBARS production, but did not affect eNOS uncoupling in the penis of aged rats. These findings suggest that aging induces eNOS uncoupling in the penis, resulting in increased oxidative stress and ED. PMID:21289638
Facial nerve paralysis associated with temporal bone masses.
Nishijima, Hironobu; Kondo, Kenji; Kagoya, Ryoji; Iwamura, Hitoshi; Yasuhara, Kazuo; Yamasoba, Tatsuya
2017-10-01
To investigate the clinical and electrophysiological features of facial nerve paralysis (FNP) due to benign temporal bone masses (TBMs) and elucidate its differences as compared with Bell's palsy. FNP assessed by the House-Brackmann (HB) grading system and by electroneurography (ENoG) were compared retrospectively. We reviewed 914 patient records and identified 31 patients with FNP due to benign TBMs. Moderate FNP (HB Grades II-IV) was dominant for facial nerve schwannoma (FNS) (n=15), whereas severe FNP (Grades V and VI) was dominant for cholesteatomas (n=8) and hemangiomas (n=3). The average ENoG value was 19.8% for FNS, 15.6% for cholesteatoma, and 0% for hemangioma. Analysis of the correlation between HB grade and ENoG value for FNP due to TBMs and Bell's palsy revealed that given the same ENoG value, the corresponding HB grade was better for FNS, followed by cholesteatoma, and worst in Bell's palsy. Facial nerve damage caused by benign TBMs could depend on the underlying pathology. Facial movement and ENoG values did not correlate when comparing TBMs and Bell's palsy. When the HB grade is found to be unexpectedly better than the ENoG value, TBMs should be included in the differential diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Boo, Yong Chool; Hwang, Jinah; Sykes, Michelle; Michell, Belinda J.; Kemp, Bruce E.; Lum, Hazel; Jo, Hanjoong
2002-01-01
Shear stress stimulates nitric oxide (NO) production by phosphorylating endothelial NO synthase (eNOS) at Ser(1179) in a phosphoinositide-3-kinase (PI3K)- and protein kinase A (PKA)-dependent manner. The eNOS has additional potential phosphorylation sites, including Ser(116), Thr(497), and Ser(635). Here, we studied these potential phosphorylation sites in response to shear, vascular endothelial growth factor (VEGF), and 8-bromocAMP (8-BRcAMP) in bovine aortic endothelial cells (BAEC). All three stimuli induced phosphorylation of eNOS at Ser(635), which was consistently slower than that at Ser(1179). Thr(497) was rapidly dephosphorylated by 8-BRcAMP but not by shear and VEGF. None of the stimuli phosphorylated Ser(116). Whereas shear-stimulated Ser(635) phosphorylation was not affected by phosphoinositide-3-kinase inhibitors wortmannin and LY-294002, it was blocked by either treating the cells with a PKA inhibitor H89 or infecting them with a recombinant adenovirus-expressing PKA inhibitor. These results suggest that shear stress stimulates eNOS by two different mechanisms: 1) PKA- and PI3K-dependent and 2) PKA-dependent but PI3K-independent pathways. Phosphorylation of Ser(635) may play an important role in chronic regulation of eNOS in response to mechanical and humoral stimuli.
Varadharaj, Saradhadevi; Kelly, Owen J.; Khayat, Rami N.; Kumar, Purnima S.; Ahmed, Naseer; Zweier, Jay L.
2017-01-01
In vascular diseases, including hypertension and atherosclerosis, vascular endothelial dysfunction (VED) occurs secondary to altered function of endothelial nitric oxide synthase (eNOS). A novel redox regulated pathway was identified through which eNOS is uncoupled due to S-glutathionylation of critical cysteine residues, resulting in superoxide free radical formation instead of the vasodilator molecule, nitric oxide. In addition, the redox sensitive cofactor tetrahydrobiopterin, BH4, is also essential for eNOS coupling. Antioxidants, either individually or combined, can modulate eNOS uncoupling by scavenging free radicals or impairing specific radical generating pathways, thus preventing oxidative stress and ameliorating VED. Epidemiological evidence and dietary guidelines suggest that diets high in antioxidants, or antioxidant supplementation, could preserve vascular health and prevent cardiovascular diseases (CVDs). Therefore, the purpose of this review is to highlight the possible role of dietary antioxidants in regulating eNOS function and uncoupling which is critical for maintenance of vascular health with normal blood flow/circulation and prevention of VED. We hypothesize that a conditioned dietary approach with suitable antioxidants may limit systemic oxidation, maintain a beneficial ratio of reduced to oxidized glutathione, and other redox markers, and minimize eNOS uncoupling serving to prevent CVD and possibly other chronic diseases. PMID:29164133
NASA Astrophysics Data System (ADS)
Namjou, K.; Roller, C. B.; Reich, T. E.; Jeffers, J. D.; McMillen, G. L.; McCann, P. J.; Camp, M. A.
2006-11-01
A liquid-nitrogen free mid-infrared tunable diode laser absorption spectroscopy (TDLAS) system equipped with a folded-optical-path astigmatic Herriott cell was used to measure levels of exhaled nitric oxide (eNO) and exhaled carbon dioxide (eCO2) in breath. Quantification of absolute eNO concentrations was performed using NO/CO2 absorption ratios measured by the TDLAS system coupled with absolute eCO2 concentrations measured with a non-dispersive infrared sensor. This technique eliminated the need for routine calibrations using standard cylinder gases. The TDLAS system was used to measure eNO in children and adults (n=799, ages 5 to 64) over a period of more than one year as part of a field study. Volunteers for the study self-reported data including age, height, weight, and health status. The resulting data were used to assess system performance and to generate eNO and eCO2 distributions, which were found to be log-normal and Gaussian, respectively. There were statistically significant differences in mean eNO levels for males and females as well as for healthy and steroid naïve asthmatic volunteers not taking corticosteroid therapies. Ambient NO levels affected measured eNO concentrations only slightly, but this effect was not statistically significant.
Vásquez, Gustavo; Sanhueza, Felipe; Vásquez, Rodrigo; González, Marcelo; Martín, Rody San; Casanello, Paola; Sobrevia, Luis
2004-01-01
Gestational diabetes is associated with increased l-arginine transport and nitric oxide (NO) synthesis, and reduced adenosine transport in human umbilical vein endothelial cells (HUVEC). Adenosine increases endothelial l-arginine/NO pathway via A2 purinoceptors in HUVEC from normal pregnancies. It is unknown whether the effect of gestational diabetes is associated with activation of these purinoceptors or altered expression of human cationic amino acid transporter 1 (hCAT-1) or human equilibrative nucleoside transporter 1 (hENT1), or endothelial NO synthase (eNOS) in HUVEC. Cells were isolated from normal or gestational diabetic pregnancies and cultured up to passage 2. Gestational diabetes increased hCAT-1 mRNA expression (2.4-fold) and activity, eNOS mRNA (2.3-fold), protein level (2.1-fold), and phosphorylation (3.8-fold), but reduced hENT1 mRNA expression (32%) and activity. Gestational diabetes increased extracellular adenosine (2.7 μm), and intracellular l-arginine (1.9 mm) and l-citrulline (0.7 mm) levels compared with normal cells (0.05 μm, 0.89 mm, 0.35 mm, respectively). Incubation of HUVEC from normal pregnancies with 1 μm nitrobenzylthioinosine (NBMPR) mimicked the effect of gestational diabetes, but NBMPR was ineffective in diabetic cells. Gestational diabetes and NBMPR effects involved eNOS, PKC and p42/44mapk activation, and were blocked by the A2a purinoceptor antagonist ZM-241385. Thus, gestational diabetes increases the l-arginine/NO pathway involving activation of mitogen-activated protein (MAP) kinases, protein kinase C (PKC) and NO cell signalling cascades following activation of A2a purinoceptors by extracellular adenosine. A functional relationship is proposed between adenosine transport and modulation of l-arginine transport and NO synthesis in HUVEC, which could be determinant in regulating vascular reactivity in diabetes mellitus. PMID:15272035
Salsoso, R; Guzmán-Gutiérrez, E; Sáez, T; Bugueño, K; Ramírez, M A; Farías, M; Pardo, F; Leiva, A; Sanhueza, C; Mate, A; Vázquez, C; Sobrevia, L
2015-03-01
Preeclampsia is associated with impaired placental vasodilation and reduced endothelial nitric oxide synthase (eNOS) activity in the foetoplacental circulation. Adenosine and insulin stimulate vasodilation in endothelial cells, and this activity is mediated by adenosine receptor activation in uncomplicated pregnancies; however, this activity has yet to be examined in preeclampsia. Early onset preeclampsia is associated with severe placental vasculature alterations that lead to altered foetus growth and development, but whether late-onset preeclampsia (LOPE) alters foetoplacental vascular function is unknown. Vascular reactivity to insulin (0.1-1000 nmol/L, 5 min) and adenosine (1 mmol/L, 5 min) was measured in KCl-preconstricted human umbilical vein rings from normal and LOPE pregnancies using a wire myograph. The protein levels of human cationic amino acid transporter 1 (hCAT-1), adenosine receptor subtypes, total and Ser¹¹⁷⁷- or Thr⁴⁹⁵-phosphorylated eNOS were detected via Western blot, and L-arginine transport (0-1000 μmol/L L-arginine, 3 μCi/mL L-[³H]arginine, 20 s, 37 °C) was measured in the presence or absence of insulin and adenosine receptor agonists or antagonists in human umbilical vein endothelial cells (HUVECs) from normal and LOPE pregnancies. LOPE increased the maximal L-arginine transport capacity and hCAT-1 and eNOS expression and activity compared with normal conditions. The A(2A) adenosine receptor (A(2A)AR) antagonist ZM-241385 blocked these effects of LOPE. Insulin-mediated umbilical vein ring relaxation was lower in LOPE pregnancies than in normal pregnancies and was restored using the A(2A)AR antagonist. The reduced foetoplacental vascular response to insulin may result from A(2A)AR activation in LOPE pregnancies. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhang, Guang-Fen; Wang, Nan; Shi, Jin-Yun; Xu, Shi-Xia; Li, Xiao-Min; Ji, Mu-Huo; Zuo, Zhi-Yi; Zhou, Zhi-Qiang; Yang, Jian-Jun
2013-09-01
Converging evidence shows that the acute administration of a sub-anaesthetic dose ketamine produces fast-acting and robust antidepressant properties in patients suffering from major depressive disorder. However, the underlying mechanisms have not been fully elucidated. The present study aimed to investigate the role of the L-arginine-nitric oxide pathway in the antidepressant effects of ketamine in rats performing the forced swimming test (FST). Ketamine (10 mg/kg) significantly decreased immobility times in the FST and the activities of total nitric oxide synthases (T-NOS), inducible NOS (iNOS), and endothelial NOS (eNOS) in the rat hippocampus. Interestingly, the plasma activities of T-NOS, iNOS, and eNOS increased after administration of ketamine. Furthermore, the activities of neuronal NOS (nNOS) did not change significantly in either the hippocampus or plasma after ketamine administration. The antidepressant effects of ketamine were prevented by pre-treatment with l-arginine (750 mg/kg). Pre-treatment with the NOS inhibitor L-NG-nitroarginine methyl ester at a sub-antidepressant dose of 50 mg/kg and ketamine at a sub-antidepressant dose of 3 mg/kg reduced immobility time in the FST compared to treatment with either drug alone. None of the drugs affected crossing and rearing scores in the open field test. These results suggest that the L-arginine-nitric oxide pathway is involved in the antidepressant effects of ketamine observed in rats in the FST and this involvement is characterised by the inhibition of brain T-NOS, iNOS, and eNOS activities. Copyright © 2013 Elsevier Inc. All rights reserved.
Maltsev, Alexander V; Kokoz, Yuri M; Evdokimovskii, Edward V; Pimenov, Oleg Y; Reyes, Santiago; Alekseev, Alexey E
2014-03-01
Evidence suggests that intracellular Ca(2+) levels and contractility of cardiomyocytes can be modulated by targeting receptors other than already identified adrenergic or non-adrenergic sarcolemmal receptors. This study uncovers the presence in myocardial cells of adrenergic α2 (α2-AR) and imidazoline I1 (I1R) receptors. In isolated left ventricular myocytes generating stationary spontaneous Ca(2+) transients in the absence of triggered action potentials, the prototypic agonist of both receptors agmatine can activate corresponding signaling cascades with opposing outcomes on nitric oxide (NO) synthesis and intracellular Ca(2+) handling. Specifically, activation of α2-AR signaling through PI3 kinase and Akt/protein kinase B stimulates NO production and abolishes Ca(2+) transients, while targeting of I1R signaling via phosphatidylcholine-specific phospholipase C (PC-PLC) and protein kinase C (PKC) suppresses NO synthesis and elevates averaged intracellular Ca(2+). We identified that endothelial NO synthase (eNOS) is a major effector for both signaling cascades. According to the established eNOS transitions between active (Akt-dependent) and inactive (PKC-dependent) conformations, we suggest that balance between α2-AR and I1R signaling pathways sets eNOS activity, which by defining operational states of myocellular sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) can adjust Ca(2+) re-uptake and thereby cardiac inotropy. These results indicate that the conventional catalog of cardiomyocyte sarcolemmal receptors should be expanded by the α2-AR and I1R populations, unveiling previously unrecognized targets for endogenous ligands as well as for existing and potential pharmacological agents in cardiovascular medicine. Copyright © 2014 Elsevier Ltd. All rights reserved.
Akolkar, Gauri; Bagchi, Ashim K; Ayyappan, Prathapan; Jassal, Davinder S; Singal, Pawan K
2017-04-01
An increase in oxidative stress is suggested to be the main cause in Doxorubicin (Dox)-induced cardiotoxicity. However, there is now evidence that activation of inducible nitric oxide synthase (iNOS) and nitrosative stress are also involved. The role of vitamin C (Vit C) in the regulation of nitric oxide synthase (NOS) and reduction of nitrosative stress in Dox-induced cardiotoxicity is unknown. The present study investigated the effects of Vit C in the mitigation of Dox-induced changes in the levels of nitric oxide (NO), NOS activity, protein expression of NOS isoforms, and nitrosative stress as well as cytokines TNF-α and IL-10 in isolated cardiomyocytes. Cardiomyocytes isolated from adult Sprague-Dawley rats were segregated into four groups: 1 ) control, 2 ) Vit C (25 µM), 3 ) Dox (10 µM), and 4 ) Vit C + Dox. Dox caused a significant increase in the generation of superoxide radical (O 2 ·- ), peroxynitrite, and NO, and these effects of Dox were blunted by Vit C. Dox increased the expression of iNOS and altered protein expression as well as activation of endothelial NOS (eNOS). These changes were prevented by Vit C. Dox induced an increase in the ratio of monomeric/dimeric eNOS, promoting the production of O 2 ·- , which was prevented by Vit C by increasing the stability of the dimeric form of eNOS. Vit C protected against the Dox-induced increase in TNFα as well as a reduction in IL-10. These results suggest that Vit C provides cardioprotection by reducing oxidative/nitrosative stress and inflammation via a modulation of Dox-induced increase in the NO levels and NOS activity. Copyright © 2017 the American Physiological Society.
Casadei Gardini, Andrea; Faloppi, Luca; Aprile, Giuseppe; Brunetti, Oronzo; Caparello, Chiara; Corbelli, Jody; Chessa, Luchino; Bruno, Daniele; Ercolani, Giorgio; Leonetti, Alessandro; de Stefano, Giorgio; Farella, Nunzia; Foschi, Francesco Giuseppe; Lanzi, Arianna; Dadduzio, Vincenzo; Marisi, Giorgia; Masi, Gianluca; Negri, Francesca V; Pagan, Flavia; Santini, Daniele; Scarpi, Emanuela; Silletta, Marianna; Silvestris, Nicola; Tamburini, Emiliano; Tassinari, Davide; Vivaldi, Caterina; Gentilucci, Umberto Vespasiani; Zagonel, Vittorina; Calvetti, Lorenzo; Cascinu, Stefano; Frassineti, Giovanni Luca; Scartozzi, Mario
2017-12-01
Introduction Although sorafenib is the upfront standard of care for advanced hepatocellular carcinoma (HCC), molecular predictors of efficacy have not been identified yet. In the ALICE-1 study, rs2010963 of VEGF-A and VEGF-C proved to be independent predictive factors for progression-free survival (PFS) and overall survival (OS) in multivariate analysis. The ALICE-1 study results were confirmed in the ALICE-2 study, in which VEGF and VEGFR SNPs were analyzed. In the ePHAS study we analyzed the SNPs of eNOS. In univariate analysis, patients homozygous for an eNOS haplotype (HT1: T-4b at eNOS-786/eNOS VNTR) had significantly shorter median PFS and OS than those with other haplotypes. These data were confirmed in the validation set. Methods This nonpharmacological, interventional, prospective multicenter study aims to determine whether eNOS, HIF-1, VEGF, Ang2 and VEGFR polymorphisms play a role in predicting the objective response rate, PFS, and OS of advanced HCC patients treated with sorafenib. The study will involve 160 advanced HCC patients with Child-Pugh class A disease. The primary aim is to validate the prognostic or predictive roles of eNOS, Ang2, HIF-1, VEGF and VEGFR polymorphisms in relation to the clinical outcome (PFS) of HCC patients treated with sorafenib. Conclusions Overall, our data may suggest that polymorphism analysis of the VEGF, VEGFR-2, HIF and eNOS genes can identify HCC patients who are more likely to benefit from sorafenib.
Hur, Dong Min; Lee, Young Hee; Kim, Sung Hoon; Park, Jung Mi; Kim, Ji Hyun; Yong, Sang Yeol; Shinn, Jong Mock; Oh, Kyung Joon
2013-01-01
Objective To examine the neurophysiologic status in patients with idiopathic facial nerve palsy (Bell's palsy) and Ramsay Hunt syndrome (herpes zoster oticus) within 7 days from onset of symptoms, by comparing the amplitude of compound muscle action potentials (CMAP) of facial muscles in electroneuronography (ENoG) and transcranial magnetic stimulation (TMS). Methods The facial nerve conduction study using ENoG and TMS was performed in 42 patients with Bell's palsy and 14 patients with Ramsay Hunt syndrome within 7 days from onset of symptoms. Denervation ratio was calculated as CMAP amplitude evoked by ENoG or TMS on the affected side as percentage of the amplitudes on the healthy side. The severity of the facial palsy was graded according to House-Brackmann facial grading scale (H-B FGS). Results In all subjects, the denervation ratio in TMS (71.53±18.38%) was significantly greater than the denervation ratio in ENoG (41.95±21.59%). The difference of denervation ratio between ENoG and TMS was significantly smaller in patients with Ramsay Hunt syndrome than in patients with Bell's palsy. The denervation ratio of ENoG or TMS did not correlated significantly with the H-B FGS. Conclusion In the electrophysiologic study for evaluation in patients with facial palsy within 7 days from onset of symptoms, ENoG and TMS are useful in gaining additional information about the neurophysiologic status of the facial nerve and may help to evaluate prognosis and set management plan. PMID:23525840
Abdel Rahman, Mohamed F.; Hashad, Ingy M.; Abdel-Maksoud, Sahar M.; Farag, Nabil M.; Abou-Aisha, Khaled
2012-01-01
Aim: The aim of this study was to detect endothelial nitric oxide synthase (eNOS) Glu298Asp gene variants in a random sample of the Egyptian population, compare it with those from other populations, and attempt to correlate these variants with serum levels of nitric oxide (NO). The association of eNOS genotypes or serum NO levels with the incidence of acute myocardial infarction (AMI) was also examined. Methods: One hundred one unrelated healthy subjects and 104 unrelated AMI patients were recruited randomly from the 57357 Hospital and intensive care units of El Demerdash Hospital and National Heart Institute, Cairo, Egypt. eNOS genotypes were determined by polymerase chain reaction–restriction fragment length polymorphism. Serum NO was determined spectrophotometrically. Results: The genotype distribution of eNOS Glu298Asp polymorphism determined for our sample was 58.42% GG (wild type), 33.66% GT, and 7.92% TT genotypes while allele frequencies were 75.25% and 24.75% for G and T alleles, respectively. No significant association between serum NO and specific eNOS genotype could be detected. No significant correlation between eNOS genotype distribution or allele frequencies and the incidence of AMI was observed. Conclusion: The present study demonstrated the predominance of the homozygous genotype GG over the heterozygous GT and homozygous TT in random samples of Egyptian population. It also showed the lack of association between eNOS genotypes and mean serum levels of NO, as well as the incidence of AMI. PMID:22731641
Transnitrosylation: A Factor in Nitric Oxide-Mediated Penile Erection
Goetz, Tabitha; La Favor, Justin D.; Burnett, Arthur L.
2016-01-01
Introduction Nitric oxide (NO) signaling can be mediated not only through classical cGMP, but also through S-nitrosylation. The impact of S-nitrosylation on erectile function and in NO regulation and oxidative stress in the penis, however, remains poorly understood. Aims To characterize the role of GSNOR, a major regulator of S-nitrosylation homeostasis, on erection physiology and on eNOS function and oxidative/nitrosative stress in the penis. Materials and Methods Adult GSNOR-deficient and WT mice were used. Erectile function was assessed in response to electrical stimulation of the cavernous nerve. Total NO in penile homogenates was measured by Griess reaction. Protein S-nitrosylation, endothelial NO synthase (eNOS) phosphorylation on Ser-1177 (positive regulatory site), eNOS uncoupling, and markers of oxidative stress (4-hydroxy-2-nonenal [4-HNE], malondialdehyde, and nitrotyrosine) in the penis were measured by Western blot. Main outcome measures Erectile function, eNOS function and oxidative stress in the penis of GSNOR-deficient mice. Results Erectile function was intact in GSNOR-deficient mice. Total S-nitrosylated proteins were increased (p<0.05) in the GSNOR−/− compared to WT mouse penis. While eNOS phosphorylation on Ser-1177 did not differ between the GSNOR−/− and WT mouse penis at baseline, electrical stimulation of the cavernous nerve increased (p<0.05) P-eNOS in the WT mouse penis, but failed to increase P-eNOS in the GSNOR−/− mouse penis. Total NO production was decreased (p<0.05), while eNOS uncoupling, 4-HNE, malondialdehyde, and nitrotyrosine were increased (p<0.05) in the GSNOR-deficient mouse penis compared to that of WT mice. Conclusion Transnitrosylation mechanisms play an important role in regulating NO bioactivity in the penis. Deficiency of GSNOR leads to eNOS dysfunction and increased oxidative damage, suggesting that homeostatic eNOS function in the penis is governed by transnitrosylation. PMID:27114194
Dash, Biraja C; Thomas, Dilip; Monaghan, Michael; Carroll, Oliver; Chen, Xizhe; Woodhouse, Kimberly; O'Brien, Timothy; Pandit, Abhay
2015-10-01
Critical limb ischemia is a major clinical problem. Despite rigorous treatment regimes, there has been only modest success in reducing the rate of amputations in affected patients. Reduced level of blood flow and enhanced inflammation are the two major pathophysiological changes that occur in the ischemic tissue. The objective of this study was to develop a controlled dual gene delivery system capable of delivering therapeutic plasmid eNOS and IL-10 in a temporal manner. In order to deliver multiple therapeutic genes, an elastin-like polypeptide (ELP) based injectable system was designed. The injectable system was comprised of hollow spheres and an in situ-forming gel scaffold of elastin-like polypeptide capable of carrying gene complexes, with an extended manner release profile. In addition, the ELP based injectable system was used to deliver human eNOS and IL-10 therapeutic genes in vivo. A subcutaneous dose response study showed enhanced blood vessel density in the treatment groups of eNOS (20 μg) and IL-10 (10 μg)/eNOS (20 μg) and reduced inflammation with IL-10 (10 μg) alone. Next, we carried out a hind-limb ischemia model comparing the efficacy of the following interventions; Saline; IL-10, eNOS and IL-10/eNOS. The selected dose of eNOS, exhibited enhanced angiogenesis. IL-10 treatment groups showed reduction in the level of inflammatory cells. Furthermore, we demonstrated that eNOS up-regulated major proangiogenic growth factors such as vascular endothelial growth factors, platelet derived growth factor B, and fibroblast growth factor 1, which may explain the mechanism of this approach. These factors help in formation of a stable vascular network. Thus, ELP injectable system mediating non-viral delivery of human IL10-eNOS is a promising therapy towards treating limb ischemia. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mahmoodi, Khalil; Nasehi, Leila; Karami, Elham; Soltanpour, Mohammad Soleiman
2016-01-01
Purpose: The endothelial nitric oxide synthase (eNOS) G894T polymorphism has been reported to cause endothelial dysfunction and may have a role in the development of coronary artery disease (CAD). The aim of the present study was to investigate the association of eNOS G894T genetic polymorphism and plasma levels of nitric oxide (NO) with CAD risk in an Iranian population. Materials and Methods: We studied 200 patients with angiographically documented CAD and 100 matched controls. Analysis of G894T genetic polymorphism of eNOS was performed by polymerase chain reaction-restriction fragment length polymorphism method. Plasma levels of NO were determined using Griess method. Biochemical analysis was conducted by routine colorimetric methods. Results: Plasma levels of NO were significantly lower in CAD patients than control subjects (41.60±12.70 vs. 55.48±16.57, P=0.001). Also, the mean plasma levels of NO were significantly lower in T allele carriers of eNOS G894T polymorphism than G allele carriers (P<0.001). The genotype distribution and minor T allele frequency of eNOS G894T polymorphism significantly differed between CAD patients and control subjects (P<0.05). However, no significant association was found between the eNOS G894T polymorphism and the severity of CAD (number of diseased vessel) or the lipid profile of CAD patients (P>0.05). Conclusion: Reduced plasma level of NO is associated with increased risk of CAD in our population. Moreover, eNOS G894T polymorphism is a significant risk factor for CAD development via reducing the plasma levels of NO. However, eNOS G894T polymorphism is not a contributing factor for the severity of CAD. PMID:27699157
Muid, S; Froemming, G R A; Ali, A M; Nawawi, H
2013-12-01
The effects of spaceflight on cardiovascular health are not necessarily seen immediately after astronauts have returned but can be delayed. It is important to investigate the long term effects of spaceflight on protein and gene expression of inflammation and endothelial activation as a predictor for the development of atherosclerosis and potential cardiovascular problems. The objectives of this study were to investigate the (a) protein and gene expression of inflammation and endothelial activation, (b) expression of nuclear factor kappa B (NFκB), signal transducer and activator of transcription-3 (STAT-3) and endothelial nitric oxide synthase (eNOS) in human umbilical vein endothelial cells (HUVEC) 3 months post-space flight travel compared to ground controls. HUVEC cultured on microcarriers in fluid processing apparatus were flown to the International Space Station (ISS) by the Soyuz TMA-11 rocket. After landing, the cells were detached from microcarriers and recultured in T-25 cm(2) culture flasks (Revived HUVEC). Soluble protein expression of IL-6, TNF-α, ICAM-1, VCAM-1 and e-selectin were measured by ELISA. Gene expression of these markers and in addition NFκB, STAT-3 and eNOS were measured. Spaceflight induced IL-6 and ICAM-1 remain elevated even after 3 months post spaceflight travel and this is mediated via STAT-3 pathway. The downregulation of eNOS expression in revived HUVEC cells suggests a reduced protection of the cells and the surrounding vessels against future insults that may lead to atherosclerosis. It would be crucial to explore preventive measures, in relation to atherosclerosis and its related complications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Soyoung; Mohan, Srinidi; Fung, Ho-Leung, E-mail: hlfung@buffalo.edu
2011-11-04
Highlights: Black-Right-Pointing-Pointer Our findings provide a possible solution to the 'L-arginine paradox'. Black-Right-Pointing-Pointer Extracellular L-arginine concentration is the major determinant of NO production. Black-Right-Pointing-Pointer Cellular L-arginine action is limited by cellular ARG transport, not the K{sub m} of NOS. Black-Right-Pointing-Pointer We explain how L-arginine supplementation can work to increase endothelial function. -- Abstract: We examined the relative contributory roles of extracellular vs. intracellular L-arginine (ARG) toward cellular activation of endothelial nitric oxide synthase (eNOS) in human endothelial cells. EA.hy926 human endothelial cells were incubated with different concentrations of {sup 15}N{sub 4}-ARG, ARG, or L-arginine ethyl ester (ARG-EE) for 2 h.more » To modulate ARG transport, siRNA for ARG transporter (CAT-1) vs. sham siRNA were transfected into cells. ARG transport activity was assessed by cellular fluxes of ARG, {sup 15}N{sub 4}-ARG, dimethylarginines, and L-citrulline by an LC-MS/MS assay. eNOS activity was determined by nitrite/nitrate accumulation, either via a fluorometric assay or by{sup 15}N-nitrite or estimated {sup 15}N{sub 3}-citrulline concentrations when {sup 15}N{sub 4}-ARG was used to challenge the cells. We found that ARG-EE incubation increased cellular ARG concentration but no increase in nitrite/nitrate was observed, while ARG incubation increased both cellular ARG concentration and nitrite accumulation. Cellular nitrite/nitrate production did not correlate with cellular total ARG concentration. Reduced {sup 15}N{sub 4}-ARG cellular uptake in CAT-1 siRNA transfected cells vs. control was accompanied by reduced eNOS activity, as determined by {sup 15}N-nitrite, total nitrite and {sup 15}N{sub 3}-citrulline formation. Our data suggest that extracellular ARG, not intracellular ARG, is the major determinant of NO production in endothelial cells. It is likely that once transported inside the cell, ARG can no longer gain access to the membrane-bound eNOS. These observations indicate that the 'L-arginine paradox' should not consider intracellular ARG concentration as a reference point.« less
Naringin ameliorates endothelial dysfunction in fructose-fed rats.
Malakul, Wachirawadee; Pengnet, Sirinat; Kumchoom, Chanon; Tunsophon, Sakara
2018-03-01
High fructose consumption is associated with metabolic disorders including hyperglycemia and dyslipidemia, in addition to endothelial dysfunction. Naringin, a flavonoid present in citrus fruit, has been reported to exhibit lipid lowering, antioxidant, and cardiovascular protective properties. Therefore, the present study investigated the effect of naringin on fructose-induced endothelial dysfunction in rats and its underlying mechanisms. Male Sprague-Dawley rats were given 10% fructose in drinking water for 12 weeks, whereas control rats were fed drinking water alone. Naringin (100 mg/kg) was orally administered to fructose fed rats during the last 4 weeks of the study. Following 12 weeks, blood samples were collected for measurement of blood glucose, serum lipid profile and total nitrate/nitrite (NOx). Vascular function was assessed by isometric tension recording. Aortic expression of endothelial nitric oxide synthase (eNOS), phosphorylated eNOS (p-eNOS), and nitrotyrosine were evaluated by western blot analysis. Fructose feeding induced increased levels of blood glucose, total cholesterol, triglyceride, and low density lipoprotein. In rat aortae, fructose reduced acethycholine-induced vasorelaxation, without affecting sodium nitroprusside-induced vasorelaxation. Treatment of fructose-fed rats with naringin restored fructose-induced metabolic alterations and endothelial dysfunction. Fructose-fed rats also exhibited decreased serum NOx level, reduced eNOS and p-eNOS protein expression, and enhanced nitrotyrosine expression in aortae. These alterations were improved by naringin treatment. The results of the present study suggested that naringin treatment preserves endothelium-dependent relaxation in aortae from fructose fed rats. This effect is primarily mediated through an enhanced NO bioavailability via increased eNOS activity and decreased NO inactivated to peroxynitrite in aortae.
Ota, Hidetaka; Akishita, Masahiro; Akiyoshi, Takuyu; Kahyo, Tomoaki; Setou, Mitsutoshi; Ogawa, Sumito; Iijima, Katsuya; Eto, Masato; Ouchi, Yasuyoshi
2012-01-01
Oxidative stress and atherosclerosis-related vascular disorders are risk factors for cognitive decline with aging. In a small clinical study in men, testosterone improved cognitive function; however, it is unknown how testosterone ameliorates the pathogenesis of cognitive decline with aging. Here, we investigated whether the cognitive decline in senescence-accelerated mouse prone 8 (SAMP8), which exhibits cognitive impairment and hypogonadism, could be reversed by testosterone, and the mechanism by which testosterone inhibits cognitive decline. We found that treatment with testosterone ameliorated cognitive function and inhibited senescence of hippocampal vascular endothelial cells of SAMP8. Notably, SAMP8 showed enhancement of oxidative stress in the hippocampus. We observed that an NAD+-dependent deacetylase, SIRT1, played an important role in the protective effect of testosterone against oxidative stress-induced endothelial senescence. Testosterone increased eNOS activity and subsequently induced SIRT1 expression. SIRT1 inhibited endothelial senescence via up-regulation of eNOS. Finally, we showed, using co-culture system, that senescent endothelial cells promoted neuronal senescence through humoral factors. Our results suggest a critical role of testosterone and SIRT1 in the prevention of vascular and neuronal aging. PMID:22238626
Vascular Repair by Circumferential Cell Therapy Using Magnetic Nanoparticles and Tailored Magnets.
Vosen, Sarah; Rieck, Sarah; Heidsieck, Alexandra; Mykhaylyk, Olga; Zimmermann, Katrin; Bloch, Wilhelm; Eberbeck, Dietmar; Plank, Christian; Gleich, Bernhard; Pfeifer, Alexander; Fleischmann, Bernd K; Wenzel, Daniela
2016-01-26
Cardiovascular disease is often caused by endothelial cell (EC) dysfunction and atherosclerotic plaque formation at predilection sites. Also surgical procedures of plaque removal cause irreversible damage to the EC layer, inducing impairment of vascular function and restenosis. In the current study we have examined a potentially curative approach by radially symmetric re-endothelialization of vessels after their mechanical denudation. For this purpose a combination of nanotechnology with gene and cell therapy was applied to site-specifically re-endothelialize and restore vascular function. We have used complexes of lentiviral vectors and magnetic nanoparticles (MNPs) to overexpress the vasoprotective gene endothelial nitric oxide synthase (eNOS) in ECs. The MNP-loaded and eNOS-overexpressing cells were magnetic, and by magnetic fields they could be positioned at the vascular wall in a radially symmetric fashion even under flow conditions. We demonstrate that the treated vessels displayed enhanced eNOS expression and activity. Moreover, isometric force measurements revealed that EC replacement with eNOS-overexpressing cells restored endothelial function after vascular injury in eNOS(-/-) mice ex and in vivo. Thus, the combination of MNP-based gene and cell therapy with custom-made magnetic fields enables circumferential re-endothelialization of vessels and improvement of vascular function.
Damoulis, Petros D; Drakos, Dimitrios E; Gagari, Eleni; Kaplan, David L
2007-11-01
Bone marrow-derived mesenchymal stem cells (BMSC) are a powerful tool for tissue engineering and can be used in the regeneration of bone and other tissues. Nitric oxide (NO) produced by the endothelial NO synthase (eNOS) plays an important role in bone development and healing. We hypothesized that NO plays a role in osteogenic differentiation of BMSC cultured in three-dimensional silk scaffolds. eNOS protein was measured by Western Analysis and its activity was assessed by measuring nitrite in culture supernatants. Mineralization was evaluated through calcium deposition and the expression of genes associated with osteogenic differentiation (collagen I, RUNX2, and osteocalcin) was quantified using real-time RT-PCR. eNOS was consistently expressed with minor fluctuations, but NO production significantly increased at later time points (weeks 4 and 5). Addition of a competitive NOS inhibitor (L-NAME) resulted in a modest decrease in calcium deposition, which became statistically significant in week 5. This was preceded by a dramatic decrease in RUNX2 and osteocalcin expression in week 4. These results support our hypothesis and implicate NO as an important player in bone tissue engineering.
de Cavanagh, Elena M V; Ferder, León F; Ferder, Marcelo D; Stella, Inés Y; Toblli, Jorge E; Inserra, Felipe
2010-12-01
Renin-angiotensin system (RAS) modulation by high dietary sodium may contribute to salt-induced hypertension, oxidative stress, and target organ damage. We investigated whether angiotensin II (Ang-II) type 1 (AT1)-receptor blockade (losartan) could protect the aorta and renal arteries from combined hypertension- and high dietary salt-related oxidative stress. Spontaneously hypertensive rats (3-month-old, n = 10/group) received tap water (SHR), water containing 1.5% NaCl (SHR+S), 1.5% NaCl and 30 mg losartan/kg/day (SHR+S+L), or 50 mg atenolol/kg/day (SHR+S+A). Atenolol was used for comparison. Ten Wistar-Kyoto rats (WKY) were controls. Systolic blood pressure (SBP) was determined by tail plethysmography. After 5 months of treatment, vascular remodeling and oxidative stress (superoxide production and NAD(P)H-oxidase activity (chemiluminescence), malondialdehyde (MDA) content (high-performance liquid chromatography), endothelial nitric oxide synthase (eNOS) activity [(14)C-arginine to (14)C citrulline], CuZn-SOD activity (spectrophotometry)) were studied. In SHR, salt-loading significantly aggravated hypertension, urinary protein excretion, intraparenchymal renal artery (IPRArt) perivascular fibrosis, aortic and renal artery oxidative stress, and induced endothelial cell loss in IPRArts. In salt-loaded SHR, 5-month losartan and atenolol treatments similarly reduced SBP, but only losartan significantly prevented (i) urinary protein excretion increase, (ii) or attenuated hypertension-related vascular remodeling, (iii) aortic MDA accumulation, (iv) renal artery eNOS activity lowering, and (v) aortic and renal artery superoxide dismutase (SOD) activity reduction. In SHR+S, the contributions to aortic superoxide production were as follows: uncoupled eNOS > xanthine oxidase (XO) > NAD(P)H oxidase. In this salt-sensitive genetic hypertension model, losartan protects from hypertension- and high dietary salt-related vascular oxidative stress, exceeding the benefits of BP reduction. Also, during salt overload, BP-independent factors contribute to vascular remodeling, at least part of which derive from AT1-receptor activation.
Cocks, Matthew; Shaw, Christopher S; Shepherd, Sam O; Fisher, James P; Ranasinghe, Aaron M; Barker, Thomas A; Tipton, Kevin D; Wagenmakers, Anton J M
2013-01-01
Sprint interval training (SIT) has been proposed as a time efficient alternative to endurance training (ET) for increasing skeletal muscle oxidative capacity and improving certain cardiovascular functions. In this study we sought to make the first comparisons of the structural and endothelial enzymatic changes in skeletal muscle microvessels in response to ET and SIT. Sixteen young sedentary males (age 21 ± SEM 0.7 years, BMI 23.8 ± SEM 0.7 kg m−2) were randomly assigned to 6 weeks of ET (40–60 min cycling at ∼65%, 5 times per week) or SIT (4–6 Wingate tests, 3 times per week). Muscle biopsies were taken from the m. vastus lateralis before and following 60 min cycling at 65% to measure muscle microvascular endothelial eNOS content, eNOS serine1177 phosphorylation, NOX2 content and capillarisation using quantitative immunofluorescence microscopy. Whole body insulin sensitivity, arterial stiffness and blood pressure were also assessed. ET and SIT increased skeletal muscle microvascular eNOS content (ET 14%; P < 0.05, SIT 36%; P < 0.05), with a significantly greater increase observed following SIT (P < 0.05). Sixty minutes of moderate intensity exercise increased eNOS ser1177 phosphorylation in all instances (P < 0.05), but basal and post-exercise eNOS ser1177 phosphorylation was lower following both training modes. All microscopy measures of skeletal muscle capillarisation (P < 0.05) were increased with SIT or ET, while neither endothelial nor sarcolemmal NOX2 was changed. Both training modes reduced aortic stiffness and increased whole body insulin sensitivity (P < 0.05). In conclusion, in sedentary males SIT and ET are effective in improving muscle microvascular density and eNOS protein content. PMID:22946099
Huang, Shu-Yi; Chou, Pai-Chien; Wang, Tsai-Yu; Lo, Yu-Lun; Joa, Wen-Ching; Chen, Li-Fei; Sheng, Te-Fang; Chung, Kian Fan; Wang, Chun-Hua; Kuo, Han-Pin
2016-04-01
Asthmatic patients with fixed airway obstruction (FAO) and patients with chronic obstructive pulmonary disease (COPD) share similarities in terms of irreversible pulmonary function impairment. Exhaled nitric oxide (eNO) has been documented as a marker of airway inflammation in asthma, but not in COPD. To examine whether the basal eNO level and the change after exercise may differentiate asthmatics with FAO from COPD, 27 normal subjects, 60 stable asthmatics, and 62 stable COPD patients were studied. Asthmatics with FAO (n = 29) were defined as showing a postbronchodilator FEV1/forced vital capacity (FVC) ≤70% and FEV1 less than 80% predicted after inhaled salbutamol (400 μg). COPD with dynamic hyperinflation (n = 31) was defined as a decrease in inspiratory capacity (ΔIC%) after a 6 minute walk test (6MWT). Basal levels of eNO were significantly higher in asthmatics and COPD patients compared to normal subjects. The changes in eNO after 6MWT were negatively correlated with the percent change in IC (r = -0.380, n = 29, P = 0.042) in asthmatics with FAO. Their levels of basal eNO correlated with the maximum mid-expiratory flow (MMEF % predicted) before and after 6MWT. In COPD patients with air-trapping, the percent change of eNO was positively correlated to ΔIC% (rs = 0.404, n = 31, P = 0.024). We conclude that asthma with FAO may represent residual inflammation in the airways, while dynamic hyperinflation in COPD may retain NO in the distal airspace. eNO changes after 6MWT may differentiate the subgroups of asthma or COPD patients and will help toward delivery of individualized therapy for airflow obstruction.
Huang, Shu-Yi; Chou, Pai-Chien; Wang, Tsai-Yu; Lo, Yu-Lun; Joa, Wen-Ching; Chen, Li-Fei; Sheng, Te-Fang; Chung, Kian Fan; Wang, Chun-Hua; Kuo, Han-Pin
2016-01-01
Abstract Asthmatic patients with fixed airway obstruction (FAO) and patients with chronic obstructive pulmonary disease (COPD) share similarities in terms of irreversible pulmonary function impairment. Exhaled nitric oxide (eNO) has been documented as a marker of airway inflammation in asthma, but not in COPD. To examine whether the basal eNO level and the change after exercise may differentiate asthmatics with FAO from COPD, 27 normal subjects, 60 stable asthmatics, and 62 stable COPD patients were studied. Asthmatics with FAO (n = 29) were defined as showing a postbronchodilator FEV1/forced vital capacity (FVC) ≤70% and FEV1 less than 80% predicted after inhaled salbutamol (400 μg). COPD with dynamic hyperinflation (n = 31) was defined as a decrease in inspiratory capacity (ΔIC%) after a 6 minute walk test (6MWT). Basal levels of eNO were significantly higher in asthmatics and COPD patients compared to normal subjects. The changes in eNO after 6MWT were negatively correlated with the percent change in IC (r = −0.380, n = 29, P = 0.042) in asthmatics with FAO. Their levels of basal eNO correlated with the maximum mid-expiratory flow (MMEF % predicted) before and after 6MWT. In COPD patients with air-trapping, the percent change of eNO was positively correlated to ΔIC% (rs = 0.404, n = 31, P = 0.024). We conclude that asthma with FAO may represent residual inflammation in the airways, while dynamic hyperinflation in COPD may retain NO in the distal airspace. eNO changes after 6MWT may differentiate the subgroups of asthma or COPD patients and will help toward delivery of individualized therapy for airflow obstruction. PMID:27082615
Luo, Jian-Quan; Wen, Jia-Gen; Zhou, Hong-Hao; Chen, Xiao-Ping; Zhang, Wei
2014-01-01
Background Researches have revealed that the endothelial nitric oxide synthase (eNOS) gene G894T polymorphism is associated with the risk of Myocardial infarction (MI), but the results remain conflicting. Objective and Methods A meta-analysis was conducted to investigate the association between eNOS G894T polymorphism and MI. Published studies from PubMed, Embase, CNKI and CBM databases were retrieved. The pooled odds ratios (ORs) for the association between eNOS G894T polymorphism and MI and their corresponding 95% confidence intervals (CIs) were estimated using the random- or fixed- effect model. Results A total of 34 studies including 8229 cases and 12839 controls were identified for the meta-analysis. The eNOS G894T polymorphism was significantly associated with MI under a homozygous genetic model (OR = 1.41, 95% CI = 1.08–1.84; P = 0.012), a recessive genetic model (OR = 1.35, 95% CI = 1.06–1.70; P = 0.014), a dominant genetic model (OR = 1.18, 95% CI = 1.04–1.34; P = 0.009). In the subgroup analysis by ethnicity (non-Asian and Asian), no significant association was observed between eNOS G894T polymorphism and MI risk among non-Asians (P>0.05), but a positive significant association was found among Asians (P<0.05). Conclusions The eNOS G894T polymorphism is associated with increased MI risk in Asians. The results indicate that ethnicity plays important roles in the association between eNOS G894T polymorphism and MI. PMID:24498040
Menou, A; Babeanu, D; Paruit, H N; Ordureau, A; Guillard, S; Chambellan, A
2017-08-21
Nitric oxide (NO) can be used to detect respiratory or ciliary diseases. Fractional exhaled nitric oxide (FeNO) measurement can reflect ongoing eosinophilic airway inflammation and has a diagnostic utility as a test for asthma screening and follow-up while nasal nitric oxide (nNO) is a valuable screening tool for the diagnosis of primary ciliary dyskinesia. The possibility of collecting airway gas samples in an offline manner offers the advantage to extend these measures and improve the screening and management of these diseases, but normal values from healthy children and teens remain sparse. Samples were consecutively collected using the offline method for eNO and nNO chemiluminescence measurement in 88 and 31 healthy children and teens, respectively. Offline eNO measurement was also performed in 30 consecutive children with naïve asthma and/or respiratory allergy. The normal offline eNO value was determined by the following regression equation -8.206 + 0.176 × height. The upper limit of the norm for the offline eNO value was 27.4 parts per billion (ppb). A separate analysis was performed in children, pre-teens and teens, for which offline eNO was 13.6 ± 4.7 ppb, 16.3 ± 13.7 ppb and 20.0 ± 7.2 ppb, respectively. The optimal cut-off value of the offline eNO to predict asthma or respiratory allergies was 23.3 ppb, with a sensitivity and specificity of 77% and 91%, respectively. Mean offline nNO was determined at 660 ppb with the lower limit of the norm at 197 ppb. The use of offline eNO and nNO normal values should favour the widespread screening of respiratory diseases in children of school age in their usual environment.
Sridulyakul, P; Chakraphan, D; Bhattarakosol, P; Patumraj, S
2003-01-01
To compare the level of endothelial nitric oxide synthase (eNOS) expression produced in heart and lung vascular tissue, the protein content was determined using Western blot analysis with the enhancement of image processing. Heart and lung extracts from 12 and 24 weeks from control (CON) and streptozotocin-induced diabetic (DM) rats were collected for Western blot analysis. Using monoclonal antibody against rat eNOS protein (140 kDa), the eNOS-protein bands were detected with enhanced chemiluminescence (ECL; Amersham) and exposured to film (Hyperfilm-ECL; Amersham). Images of eNOS bands on each film were then scanned and saved to digital files. Using Global Lab Image software, the number of pixels in each digital file was counted and calibrated for eNOS-protein content. For the CON and DM groups, the mean values of eNOS-protein contents were calculated and expressed as a percentage of total protein content, 5 micrograms. It was found that the eNOS level in DM hearts was significantly decreased, as compared to age-matched CON hearts. On the other hand, eNOS levels in DM lungs was increased, compared to CON lungs. Therefore, it may be concluded that high, not low, flow-mediated eNOS expression is a good measure of hyperglycemic-induced endothelial dysfunction.
Marin-Medina, A; Brambila-Tapia, A J L; Picos-Cárdenas, V J; Gallegos-Arreola, M P; Figuera, L E
2016-10-24
Fabry disease (FD) is an inherited X-linked lysosomal disease that causes renal failure in a high percentage of affected individuals. The eNOS gene encodes for endothelial nitric oxide synthase, which plays an important role in glomerular hemodynamics. This gene has two main polymorphisms (Glu298Asp and 4b/a) that have been studied in the context of many different diseases, including those involving cardiovascular and renal alterations. Considering the lack of information regarding eNOS variants and FD, we investigated whether there were associations between eNOS genetic variants and renal function parameters in Mexican patients with FD and renal impairment. In total, 15 FD patients with renal alterations were included in the present study, and associations between eNOS polymorphisms and renal function parameters (urea, creatinine, and GFR) were evaluated. The Asp298 and 4a alleles of the eNOS gene were found to be significantly associated with increased levels of urea and creatinine, and a decreased glomerular filtration rate in FD patients, and this association behaved in a co-dominant fashion. Our results coincide with previous reports showing an association between these polymorphisms and kidney disease, and along with other studies regarding their role in the nitric oxide pathway, suggest that these variants affect the severity of nephropathy in patients with FD.
Fu, Feng; Zhang, Wei; Su, Feifei; Liu, Fange; Ji, Lele; Gao, Feng; Su, Hui; Sun, Xin; Zhang, Haifeng
2015-01-01
Patients with prehypertension are more likely to progress to manifest hypertension than those with optimal or normal blood pressure. However, the mechanisms underlying the development from prehypertension to hypertension still remain largely elusive and the drugs for antihypertensive treatment in prehypertension are absent. Here we determined the effects of magnolol (MAG) on blood pressure and aortic vasodilatation to insulin, and investigated the underlying mechanisms. Four-week-old male spontaneous hypertensive rats (SHR) and age-matched normotensive Wistar-Kyoto (WKY) control rats were used. Our results shown that treatment of young SHRs with MAG (100 mg/kg/day, o.g.) for 3 weeks decreased blood pressure, improved insulin-induced aorta vasodilation, restored Akt and eNOS activation stimulated by insulin, and increased PPARγ and decreased TRB3 expressions. In cultured human umbilical vein endothelial cells (HUVECs), MAG incubation increased PPARγ, decreased TRB3 expressions, and restored insulin-induced phosphorylated Akt and eNOS levels and NO production, which was blocked by both PPARγ antagonist and siRNA targeting PPARγ. Improved insulin signaling in HUVECs by MAG was abolished by upregulating TRB3 expression. In conclusion, treatment of young SHRs with MAG beginning at the prehypertensive stage decreases blood pressure via improving vascular insulin resistance that is at least partly attributable to upregulated PPARγ, downregulated TRB3 and consequently increased Akt and eNOS activations in blood vessels in SHRs. PMID:25793876
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Shan; Division of Cardiology, Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong; Wong, Siu Ling
Research highlights: {yields} Low-concentration oxidized LDL enhances angiogenesis through nitric oxide (NO). {yields} Oxidized LDL increases intracellular NO levels via eNOS phosphorylation. {yields} Akt/PI3K signaling mediates oxidized LDL-induced eNOS phosphorylation. -- Abstract: It has long been considered that oxidized low-density lipoprotein (oxLDL) causes endothelial dysfunction and is remarkably related to the development of atherosclerosis. However, the effect of oxLDL at very low concentration (<10 {mu}g/ml) on the endothelial cells remains speculative. Nitric oxide (NO) has a crucial role in the endothelial cell function. In this study, we investigated the effect of oxLDL at low concentration on NO production and proliferation,more » migration, tube formation of the human coronary artery endothelial cells (HCAEC). Results showed that oxLDL at 5 {mu}g/ml enhanced HCAEC proliferation, migration and tube formation. These phenomena were accompanied by an increased intracellular NO production. L-NAME (a NOS inhibitor), LY294002 and wortmannin (PI3K inhibitors) could abolish oxLDL-induced angiogenic effects and prevent NO production in the HCAEC. The phosphorylation of Akt, PI3K and eNOS were up-regulated by oxLDL, which was attenuated by LY294002. Our results suggested that oxLDL at low concentration could promote in-vitro angiogenesis and activate nitric oxide synthesis through PI3K/Akt/eNOS pathway in HCAEC.« less
Induction of calcium-dependent nitric oxide synthases by sex hormones.
Weiner, C P; Lizasoain, I; Baylis, S A; Knowles, R G; Charles, I G; Moncada, S
1994-05-24
We have examined the effects of pregnancy and sex hormones on calcium-dependent and calcium-independent nitric oxide synthases (NOSs) in the guinea pig. Pregnancy (near term) caused a > 4-fold increase in the activity of calcium-dependent NOS in the uterine artery and at least a doubling in the heart, kidney, skeletal muscle, esophagus, and cerebellum. The increase in NOS activity in the cerebellum during pregnancy was inhibited by the estrogen-receptor antagonist tamoxifen. Treatment with estradiol (but not progesterone) also increased calcium-dependent NOS activity in the tissues examined from both females and males. Testosterone increased calcium-dependent NOS only in the cerebellum. No significant change in calcium-independent NOS activity was observed either during pregnancy or after the administration of any sex hormone. Both pregnancy and estradiol treatment increased the amount of mRNAs for NOS isozymes eNOS and nNOS in skeletal muscle, suggesting that the increases in NOS activity result from enzyme induction. Thus both eNOS and nNOS are subject to regulation by estrogen, an action that could explain some of the changes that occur during pregnancy and some gender differences in physiology and pathophysiology.
Effects of novel muscarinic M3 receptor ligand C1213 in pulmonary arterial hypertension models.
Ahmed, Mohamed; VanPatten, Sonya; Lakshminrusimha, Satyan; Patel, Hardik; Coleman, Thomas R; Al-Abed, Yousef
2016-12-01
Pulmonary hypertension (PH) is a complex disease comprising a pathologic remodeling and thickening of the pulmonary vessels causing an after load on the right heart ventricle that can result in ventricular failure. Triggered by oxidative stress, episodes of hypoxia, and other undetermined causes, PH is associated with poor outcomes and a high rate of morbidity. In the neonate, this disease has a similar etiology but is further complicated by the transition to breathing after birth, which requires a reduction in vascular resistance. Persistent pulmonary hypertension of the newborn (PPHN) is one form of PH that is frequently unresponsive to current therapies including inhaled nitric oxide (due to lack of proper absorption and diffusion), and other therapeutics targeting signaling mediators in vascular endothelium and smooth muscle. The need for novel agents, which target distinct pathways in pulmonary hypertension, remains. Herein, we investigated the therapeutic effects of novel muscarinic receptor ligand C1213 in models of PH We demonstrated that via M3 muscarinic receptors, C1213 induced activating- eNOS phosphorylation (serine-1177), which is known to lead to nitric oxide (NO) production in endothelial cells. Using signaling pathway inhibitors, we discovered that AKT and calcium signaling contributed to eNOS phosphorylation induced by C1213. As expected for an eNOS-stimulating agent, in ex vivo and in vivo models, C1213 triggered pulmonary vasodilation and induced both pulmonary artery and systemic blood pressure reductions demonstrating its potential value in PH and PPHN In brief, this proof-of-concept study provides evidence that an M3 muscarinic receptor functionally selective ligand stimulates downstream pathways leading to antihypertensive effects using in vitro, ex vivo, and in vivo models of PH. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Zhang, Hanrui; Morgan, Brandon; Potter, Barry J.; Ma, Lixin; Dellsperger, Kevin C.; Ungvari, Zoltan
2010-01-01
Resveratrol is a natural phytophenol that exhibits cardioprotective effects. This study was designed to elucidate the mechanisms by which resveratrol protects against diabetes-induced cardiac dysfunction. Normal control (m-Leprdb) mice and type 2 diabetic (Leprdb) mice were treated with resveratrol orally for 4 wk. In vivo MRI showed that resveratrol improved cardiac function by increasing the left ventricular diastolic peak filling rate in Leprdb mice. This protective role is partially explained by resveratrol's effects in improving nitric oxide (NO) production and inhibiting oxidative/nitrative stress in cardiac tissue. Resveratrol increased NO production by enhancing endothelial NO synthase (eNOS) expression and reduced O2·− production by inhibiting NAD(P)H oxidase activity and gp91phox mRNA and protein expression. The increased nitrotyrosine (N-Tyr) protein expression in Leprdb mice was prevented by the inducible NO synthase (iNOS) inhibitor 1400W. Resveratrol reduced both N-Tyr and iNOS expression in Leprdb mice. Furthermore, TNF-α mRNA and protein expression, as well as NF-κB activation, were reduced in resveratrol-treated Leprdb mice. Both Leprdb mice null for TNF-α (dbTNF−/dbTNF− mice) and Leprdb mice treated with the NF-κB inhibitor MG-132 showed decreased NAD(P)H oxidase activity and iNOS expression as well as elevated eNOS expression, whereas m-Leprdb mice treated with TNF-α showed the opposite effects. Thus, resveratrol protects against cardiac dysfunction by inhibiting oxidative/nitrative stress and improving NO availability. This improvement is due to the role of resveratrol in inhibiting TNF-α-induced NF-κB activation, therefore subsequently inhibiting the expression and activation of NAD(P)H oxidase and iNOS as well as increasing eNOS expression in type 2 diabetes. PMID:20675566
Chen, Lei L; Zhu, Jing; Schumacher, Jonathan; Wei, Chongjuan; Ramdas, Latha; Prieto, Victor G; Jimenez, Arnie; Velasco, Marco A; Tripp, Sheryl R; Andtbacka, Robert H I; Gouw, Launce; Rodgers, George M; Zhang, Liansheng; Chan, Benjamin K; Cassidy, Pamela B; Benjamin, Robert S; Leachman, Sancy A; Frazier, Marsha L
2017-01-01
We demonstrate that SCF-KIT signaling induces synthesis and secretion of endothelin-3 (ET3) in human umbilical vein endothelial cells and melanoma cells in vitro, gastrointestinal stromal tumors, human sun-exposed skin, and myenteric plexus of human colon post-fasting in vivo. This is the first report of a physiological mechanism of ET3 induction. Integrating our finding with supporting data from literature leads us to discover a previously unreported pathway of nitric oxide (NO) generation derived from physiological endothelial NO synthase (eNOS) or neuronal NOS (nNOS) activation (referred to as the KIT-ET3-NO pathway). It involves: (1) SCF-expressing cells communicate with neighboring KIT-expressing cells directly or indirectly (cleaved soluble SCF). (2) SCF-KIT signaling induces timely local ET3 synthesis and secretion. (3) ET3 binds to ETBR on both sides of intercellular space. (4) ET3-binding-initiated-ETBR activation increases cytosolic Ca2+, activates cell-specific eNOS or nNOS. (5) Temporally- and spatially-precise NO generation. NO diffuses into neighboring cells, thus acts in both SCF- and KIT-expressing cells. (6) NO modulates diverse cell-specific functions by NO/cGMP pathway, controlling transcriptional factors, or other mechanisms. We demonstrate the critical physiological role of the KIT-ET3-NO pathway in fulfilling high demand (exceeding basal level) of endothelium-dependent NO generation for coping with atherosclerosis, pregnancy, and aging. The KIT-ET3-NO pathway most likely also play critical roles in other cell functions that involve dual requirement of SCF-KIT signaling and NO. New strategies (e.g. enhancing the KIT-ET3-NO pathway) to harness the benefit of endogenous eNOS and nNOS activation and precise NO generation for correcting pathophysiology and restoring functions warrant investigation.
Zhu, Jing; Schumacher, Jonathan; Wei, Chongjuan; Ramdas, Latha; Prieto, Victor G.; Jimenez, Arnie; Velasco, Marco A.; Tripp, Sheryl R.; Andtbacka, Robert H. I.; Gouw, Launce; Rodgers, George M.; Zhang, Liansheng; Chan, Benjamin K.; Cassidy, Pamela B.; Benjamin, Robert S.; Leachman, Sancy A.; Frazier, Marsha L.
2017-01-01
We demonstrate that SCF-KIT signaling induces synthesis and secretion of endothelin-3 (ET3) in human umbilical vein endothelial cells and melanoma cells in vitro, gastrointestinal stromal tumors, human sun-exposed skin, and myenteric plexus of human colon post-fasting in vivo. This is the first report of a physiological mechanism of ET3 induction. Integrating our finding with supporting data from literature leads us to discover a previously unreported pathway of nitric oxide (NO) generation derived from physiological endothelial NO synthase (eNOS) or neuronal NOS (nNOS) activation (referred to as the KIT-ET3-NO pathway). It involves: (1) SCF-expressing cells communicate with neighboring KIT-expressing cells directly or indirectly (cleaved soluble SCF). (2) SCF-KIT signaling induces timely local ET3 synthesis and secretion. (3) ET3 binds to ETBR on both sides of intercellular space. (4) ET3-binding-initiated-ETBR activation increases cytosolic Ca2+, activates cell-specific eNOS or nNOS. (5) Temporally- and spatially-precise NO generation. NO diffuses into neighboring cells, thus acts in both SCF- and KIT-expressing cells. (6) NO modulates diverse cell-specific functions by NO/cGMP pathway, controlling transcriptional factors, or other mechanisms. We demonstrate the critical physiological role of the KIT-ET3-NO pathway in fulfilling high demand (exceeding basal level) of endothelium-dependent NO generation for coping with atherosclerosis, pregnancy, and aging. The KIT-ET3-NO pathway most likely also play critical roles in other cell functions that involve dual requirement of SCF-KIT signaling and NO. New strategies (e.g. enhancing the KIT-ET3-NO pathway) to harness the benefit of endogenous eNOS and nNOS activation and precise NO generation for correcting pathophysiology and restoring functions warrant investigation. PMID:28880927
Glu298Asp eNOS gene polymorphism causes attenuation in nonexercising muscle vasodilatation.
Dias, Rodrigo G; Alves, Maria-Janieire N N; Pereira, Alexandre C; Rondon, Maria Urbana P B; Dos Santos, Marcelo R; Krieger, José E; Krieger, Marta H; Negrão, Carlos E
2009-04-10
The influence of Glu298Asp endothelial nitric oxide synthase (eNOS) polymorphism in exercise-induced reflex muscle vasodilatation is unknown. We hypothesized that nonexercising forearm blood flow (FBF) responses during handgrip isometric exercise would be attenuated in individuals carrying the Asp298 allele. In addition, these responses would be mediated by reduced eNOS function and NO-mediated vasodilatation or sympathetic vasoconstriction. From 287 volunteers previously genotyped, we selected 33 healthy individuals to represent three genotypes: Glu/Glu [n = 15, age 43 +/- 3 yr, body mass index (BMI) 22.9 +/- 0.3 kg/m(2)], Glu/Asp (n = 9, age 41 +/- 3 yr, BMI 23.7 +/- 1.0 kg/m(2)), and Asp/Asp (n = 9, age 40 +/- 4 yr, BMI 23.5 +/- 0.9 kg/m(2)). Heart rate (HR), mean blood pressure (MBP), and FBF (plethysmography) were recorded for 3 min at baseline and 3 min during isometric handgrip exercise. Baseline HR, MBP, FBF, and forearm vascular conductance (FVC) were similar among genotypes. FVC responses to exercise were significantly lower in Asp/Asp when compared with Glu/Asp and Glu/Glu (Delta = 0.07 +/- 0.14 vs. 0.64 +/- 0.20 and 0.57 +/- 0.09 units, respectively; P = 0.002). Further studies showed that intra-arterial infusion of NG-monomethyl-L-arginine (L-NMMA) did not change FVC responses to exercise in Asp/Asp, but significantly reduced FVC in Glu/Glu (Delta = 0.79 +/- 0.14 vs. 0.14 +/- 0.09 units). Thus the differences between Glu/Glu and Asp/Asp were no longer observed (P = 0.62). l-NMMA + phentolamine increased similarly FVC responses to exercise in Glu/Glu and Asp/Asp (P = 0.43). MBP and muscle sympathetic nerve activity increased significant and similarly throughout experimental protocols in Glu/Glu and Asp/Asp. Individuals who are homozygous for the Asp298 allele of the eNOS enzyme have attenuated nonexercising muscle vasodilatation in response to exercise. This genotype difference is due to reduced eNOS function and NO-mediated vasodilatation, but not sympathetic vasoconstriction.
Priviero, Fernanda B M; Jin, Li-Ming; Ying, Zhekang; Teixeira, Cleber E; Webb, R Clinton
2010-04-01
We tested the hypothesis that the basal release of nitric oxide (NO) from endothelial cells modulates contractile activity in the corpus cavernosum (CC) via inhibition of the RhoA/Rho-kinase signaling pathway. Cavernosal strips from wild-type (WT), endothelial nitric-oxide synthase knockout [eNOS(-/-)], and neuronal nitric-oxide synthase knockout [nNOS(-/-)] mice were mounted in myographs, and isometric force was recorded. mRNA and protein expression of key molecules in the RhoA/Rho-kinase pathway were analyzed by real-time polymerase chain reaction and Western blot, respectively. The cGMP levels were determined. The Rho-kinase inhibitors (R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide (Y-27632) and (S)-(+)-2-methyl-1-[(4-methyl-5-isoquinolinyl)sulfonyl] homopiperazine (H-1152) reduced cavernosal contractions evoked by phenylephrine or electrical field stimulation (EFS) in a concentration-dependent manner, although this inhibition was less effective in tissues from eNOS(-/-) mice. Y-27632 enhanced relaxations induced by sodium nitroprusside, EFS, and NO (administered as acidified NaNO2) without affecting the cGMP content of the cavernosal strips. This enhancement was less prominent in CC from eNOS(-/-). The protein expression of RhoA, Rho-guanine dissociation inhibitor, and Rho-kinase beta did not differ among the strains. However, in eNOS(-/-) CC, the protein expression of Rho-kinase alpha and both mRNA and protein expression of p115-Rho-associated guanine exchange factor (RhoGEF), PDZ-RhoGEF, and leukemia-associated RhoGEF were up-regulated. Phosphorylation of MYPT1 at Thr696 was higher in tissues from eNOS(-/-) mice. A high concentration of Y-27632 significantly enhanced NO release in CC stimulated by EFS. These results suggest a basal release of NO from endothelial cells, which inhibits contractions mediated by the RhoA/Rho-kinase pathway and modulates the expression of proteins related to this pathway in mouse CC. It indicates that endothelial integrity is essential to the maintenance of erectile function.
Targeting NADPH oxidase decreases oxidative stress in the transgenic sickle cell mouse penis.
Musicki, Biljana; Liu, Tongyun; Sezen, Sena F; Burnett, Arthur L
2012-08-01
Sickle cell disease (SCD) is a state of chronic vasculopathy characterized by endothelial dysfunction and increased oxidative stress, but the sources and mechanisms responsible for reactive oxygen species (ROS) production in the penis are unknown. We evaluated whether SCD activates NADPH oxidase, induces endothelial nitric oxide synthase (eNOS) uncoupling, and decreases antioxidants in the SCD mouse penis. We further tested the hypothesis that targeting NADPH oxidase decreases oxidative stress in the SCD mouse penis. SCD transgenic (sickle) mice were used as an animal model of SCD. Hemizygous (hemi) mice served as controls. Mice received an NADPH oxidase inhibitor apocynin (10 mM in drinking water) or vehicle. Penes were excised at baseline for molecular studies. Markers of oxidative stress (4-hydroxy-2-nonenal [HNE]), sources of ROS (eNOS uncoupling and NADPH oxidase subunits p67(phox) , p47(phox) , and gp91(phox) ), and enzymatic antioxidants (superoxide dismutase [SOD]1, SOD2, catalase, and glutathione peroxidase-1 [GPx1]) were measured by Western blot in penes. Sources of ROS, oxidative stress, and enzymatic antioxidants in the SCD penis. Relative to hemi mice, SCD increased (P<0.05) protein expression of NADPH oxidase subunits p67(phox) , p47(phox) , and gp91(phox) , 4-HNE-modified proteins, induced eNOS uncoupling, and reduced Gpx1 expression in the penis. Apocynin treatment of sickle mice reversed (P<0.05) the abnormalities in protein expressions of p47(phox) , gp91(phox) (but not p67(phox) ) and 4-HNE, but only slightly (P>0.05) prevented eNOS uncoupling in the penis. Apocynin treatment of hemi mice did not affect any of these parameters. NADPH oxidase and eNOS uncoupling are sources of oxidative stress in the SCD penis; decreased GPx1 further contributes to oxidative stress. Inhibition of NADPH oxidase upregulation decreases oxidative stress, implying a major role for NADPH oxidase as a ROS source and a potential target for improving vascular function in the SCD mouse penis. © 2012 International Society for Sexual Medicine.
Targeting NADPH Oxidase Decreases Oxidative Stress in the Transgenic Sickle Cell Mouse Penis
Musicki, Biljana; Liu, Tongyun; Sezen, Sena F.; Burnett, Arthur L.
2012-01-01
Introduction Sickle cell disease (SCD) is a state of chronic vasculopathy characterized by endothelial dysfunction and increased oxidative stress, but the sources and mechanisms responsible for reactive oxygen species (ROS) production in the penis are unknown. Aims We evaluated whether SCD activates NADPH oxidase, induces endothelial nitric oxide synthase (eNOS) uncoupling, and decreases antioxidants in the SCD mouse penis. We further tested the hypothesis that targeting NADPH oxidase decreases oxidative stress in the SCD mouse penis. Methods SCD transgenic (sickle) mice were used as an animal model of SCD. Hemizygous (hemi) mice served as controls. Mice received an NADPH oxidase inhibitor apocynin (10 mM in drinking water) or vehicle. Penes were excised at baseline for molecular studies. Markers of oxidative stress (4-hydroxy-2-nonenal [HNE]), sources of ROS (eNOS uncoupling and NADPH oxidase subunits p67phox, p47phox, and gp91phox), and enzymatic antioxidants (superoxide dismutase [SOD]1, SOD2, catalase, and glutathione peroxidase-1 [GPx1]) were measured by Western blot in penes. Main Outcome Measures Sources of ROS, oxidative stress, and enzymatic antioxidants in the SCD penis. Results Relative to hemi mice, SCD increased (P < 0.05) protein expression of NADPH oxidase subunits p67phox, p47phox, and gp91phox, 4-HNE-modified proteins, induced eNOS uncoupling, and reduced Gpx1 expression in the penis. Apocynin treatment of sickle mice reversed (P < 0.05) the abnormalities in protein expressions of p47phox, gp91phox (but not p67phox) and 4-HNE, but only slightly (P > 0.05) prevented eNOS uncoupling in the penis. Apocynin treatment of hemi mice did not affect any of these parameters. Conclusion NADPH oxidase and eNOS uncoupling are sources of oxidative stress in the SCD penis; decreased GPx1 further contributes to oxidative stress. Inhibition of NADPH oxidase upregulation decreases oxidative stress, implying a major role for NADPH oxidase as a ROS source and a potential target for improving vascular function in the SCD mouse penis. PMID:22620981
Extending the Applicability of Exact Nuclear Overhauser Enhancements to Large Proteins and RNA.
Nichols, Parker; Born, Alexandra; Henen, Morkos; Strotz, Dean; Chi, Celestine N; Güntert, Peter; Vögeli, Beat Rolf
2018-06-08
Distance-dependent NOEs are one of the most popular and important experimental restraints for calculating NMR structures. Despite this, they are mostly employed as semi-quantitative upper distance bounds, which discards a wealth of information that is encoded in the cross-relaxation rate constant. Information that is lost includes exact distances between protons and dynamics that occur on the sub-millisecond time-scale. Our recently introduced exact measurement of the NOE (eNOE) requires little additional experimental effort relative to other NMR observables. So far, we have used eNOEs to calculate multi-state ensembles of proteins up to ~150 residues. Here, we briefly revisit the eNOE methodology and present two new directions for the use of eNOEs: Applications to large proteins and RNA. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chalupsky, Karel; Kračun, Damir; Kanchev, Ivan; Bertram, Katharina; Görlach, Agnes
2015-11-10
Nitric oxide (NO) derived from endothelial NO synthase (eNOS) has been implicated in the adaptive response to hypoxia. An imbalance between 5,6,7,8-tetrahydrobiopterin (BH4) and 7,8-dihydrobiopterin (BH2) can result in eNOS uncoupling and the generation of superoxide instead of NO. Dihydrofolate reductase (DHFR) can recycle BH2 to BH4, leading to eNOS recoupling. However, the role of DHFR and eNOS recoupling in the response to hypoxia is not well understood. We hypothesized that increasing the capacity to recycle BH4 from BH2 would improve NO bioavailability as well as pulmonary vascular remodeling (PVR) and right ventricular hypertrophy (RVH) as indicators of pulmonary hypertension (PH) under hypoxic conditions. In human pulmonary artery endothelial cells and murine pulmonary arteries exposed to hypoxia, eNOS was uncoupled as indicated by reduced superoxide production in the presence of the nitric oxide synthase inhibitor, L-(G)-nitro-L-arginine methyl ester (L-NAME). Concomitantly, NO levels, BH4 availability, and expression of DHFR were diminished under hypoxia. Application of folic acid (FA) restored DHFR levels, NO bioavailability, and BH4 levels under hypoxia. Importantly, FA prevented the development of hypoxia-induced PVR, right ventricular pressure increase, and RVH. FA-induced upregulation of DHFR recouples eNOS under hypoxia by improving BH4 recycling, thus preventing hypoxia-induced PH. FA might serve as a novel therapeutic option combating PH.
Bernatchez, Pascal; Sharma, Arpeeta; Bauer, Philip M.; Marin, Ethan; Sessa, William C.
2011-01-01
Aberrant regulation of eNOS and associated NO release are directly linked with various vascular diseases. Caveolin-1 (Cav-1), the main coat protein of caveolae, is highly expressed in endothelial cells. Its scaffolding domain serves as an endogenous negative regulator of eNOS function. Structure-function analysis of Cav-1 has shown that phenylalanine 92 (F92) is critical for the inhibitory actions of Cav-1 toward eNOS. Herein, we show that F92A–Cav-1 and a mutant cell–permeable scaffolding domain peptide called Cavnoxin can increase basal NO release in eNOS-expressing cells. Cavnoxin reduced vascular tone ex vivo and lowered blood pressure in normal mice. In contrast, similar experiments performed with eNOS- or Cav-1–deficient mice showed that the vasodilatory effect of Cavnoxin is abolished in the absence of these gene products, which indicates a high level of eNOS/Cav-1 specificity. Mechanistically, biochemical assays indicated that noninhibitory F92A–Cav-1 and Cavnoxin specifically disrupted the inhibitory actions of endogenous Cav-1 toward eNOS and thereby enhanced basal NO release. Collectively, these data raise the possibility of studying the inhibitory influence of Cav-1 on eNOS without interfering with the other actions of endogenous Cav-1. They also suggest a therapeutic application for regulating the eNOS/Cav-1 interaction in diseases characterized by decreased NO release. PMID:21804187
Xia, Zhengyuan; Liu, Min; Wu, Yong; Sharma, Vijay; Luo, Tao; Ouyang, Jingping; McNeill, John H
2006-11-21
The circulatory inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) is increased in pathological conditions, such as diabetes, which initiate or exacerbate vascular endothelial injury. Both nitric oxide (NO) and reactive oxygen species may play a dual role (i.e., inhibiting or promoting) in TNF-alpha-induced endothelial cell apoptosis. We investigated the effects of the antioxidant N-acetylcysteine on TNF-alpha-induced apoptosis in human vascular endothelial cell (cell line ECV304) apoptosis, NO production and lipid peroxidation. Cultured vascular endothelial cell (ECV304) were either not treated (control), or treated with TNF-alpha (40 ng/ml) alone or TNF-alpha in the presence of N-acetylcysteine at 30 mmol/l or 1 mmol/l, respectively, for 24 h. Cell viability was measured by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay. Cell apoptosis was assessed by flow cytometry. TNF-alpha-induced endothelial cell apoptosis was associated with increased inducible NO synthase but reduced endothelial NO synthase (eNOS) protein expression. NO production and the levels of the lipid peroxidation product malondialdehyde were concomitantly increased. Treatment with NAC at 30 mmol/l restored eNOS expression and further increased NO production as compared to TNF-alpha alone, resulting in improved cell viability and reduced apoptosis. This was accompanied by increased superoxide dismutase activity, increased glutathione peroxidase production and reduced malondialdehyde levels. N-acetylcysteine at 1 mmol/l, however, did not have significant effects on TNF-alpha-induced endothelial cell apoptosis and cell viability despite it slightly enhanced glutathione peroxidase production. N-acetylcysteine attenuation of TNF-alpha-induced human vascular endothelial cell apoptosis is associated with the restoration of eNOS expression.
Stanišić, Jelena; Korićanac, Goran; Ćulafić, Tijana; Romić, Snježana; Stojiljković, Mojca; Kostić, Milan; Pantelić, Marija; Tepavčević, Snežana
2016-01-15
Increase in fructose consumption together with decrease in physical activity contributes to the development of metabolic syndrome and consequently cardiovascular diseases. The current study examined the preventive role of exercise on defects in cardiac insulin signaling and function of endothelial nitric oxide synthase (eNOS) in fructose fed rats. Male Wistar rats were divided into control, sedentary fructose (received 10% fructose for 9 weeks) and exercise fructose (additionally exposed to low intensity exercise) groups. Concentration of triglycerides, glucose, insulin and visceral adipose tissue weight were determined to estimate metabolic syndrome development. Expression and/or phosphorylation of cardiac insulin receptor (IR), insulin receptor substrate 1 (IRS1), tyrosine-specific protein phosphatase 1B (PTP1B), Akt, extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and eNOS were evaluated. Fructose overload increased visceral adipose tissue, insulin concentration and homeostasis model assessment index. Exercise managed to decrease visceral adiposity and insulin level and to increase insulin sensitivity. Fructose diet increased level of cardiac PTP1B and pIRS1 (Ser307), while levels of IR and ERK1/2, as well as pIRS1 (Tyr 632), pAkt (Ser473, Thr308) and pERK1/2 were decreased. These disturbances were accompanied by reduced phosphorylation of eNOS at Ser1177. Exercise managed to prevent most of the disturbances in insulin signaling caused by fructose diet (except phosphorylation of IRS1 at Tyr 632 and phosphorylation and protein expression of ERK1/2) and consequently restored function of eNOS. Low intensity exercise could be considered as efficient treatment of cardiac insulin resistance induced by fructose diet. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Matsumoto, Sachiko; Shimabukuro, Michio; Fukuda, Daiju; Soeki, Takeshi; Yamakawa, Ken; Masuzaki, Hiroaki; Sata, Masataka
2014-01-31
Azilsartan, an angiotensin II type 1 (AT1) receptor blocker (ARB), has a higher affinity for and slower dissociation from AT1 receptors and shows stronger inverse agonism compared to other ARBs. Possible benefits of azilsartan in diabetic vascular dysfunction have not been established. We measured vascular reactivity of aortic rings in male KKAy diabetic mice treated with vehicle, 0.005% azilsartan, or 0.005% candesartan cilexetil for 3 weeks. Expression of markers of inflammation and oxidative stress was measured using semiquantitative RT-PCR in the vascular wall, perivascular fat, and skeletal muscle. Phosphorylation of endothelial nitric oxide synthase (eNOS) at Ser1177 and Thr495 was measured using Western blotting, and the ratio of phosphorylation at Ser1177 to phosphorylation at Thr495 was used as a putative indicator of vascular eNOS activity. (1) Vascular endothelium-dependent relaxation with acetylcholine in KKAy mice was improved by azilsartan treatment compared to candesartan cilexetil; (2) the ratio of Ser1177/Thr495 phosphorylation of eNOS was impaired in KKAy and was effectively restored by azilsartan; (3) anomalies in the expression levels of monocyte chemotactic protein 1 (MCP1), F4/80, NAD(P)H oxidase (Nox) 2, and Nox4 of the aortic wall and in the expression of TNFα in the perivascular fat were strongly attenuated by azilsartan compared to candesartan cilexetil. These results provide evidence that azilsartan prevents endothelial dysfunction in diabetic mice, more potently than does candesartan cilexetil. Azilsartan's higher affinity for and slower dissociation from AT1 receptors may underlie its efficacy in diabetic vascular dysfunction via a dual effect on uncoupled eNOS and on Nox.
High order filtering methods for approximating hyperbolic systems of conservation laws
NASA Technical Reports Server (NTRS)
Lafon, F.; Osher, S.
1991-01-01
The essentially nonoscillatory (ENO) schemes, while potentially useful in the computation of discontinuous solutions of hyperbolic conservation-law systems, are computationally costly relative to simple central-difference methods. A filtering technique is presented which employs central differencing of arbitrarily high-order accuracy except where a local test detects the presence of spurious oscillations and calls upon the full ENO apparatus to remove them. A factor-of-three speedup is thus obtained over the full-ENO method for a wide range of problems, with high-order accuracy in regions of smooth flow.
High-order ENO schemes applied to two- and three-dimensional compressible flow
NASA Technical Reports Server (NTRS)
Shu, Chi-Wang; Erlebacher, Gordon; Zang, Thomas A.; Whitaker, David; Osher, Stanley
1991-01-01
High order essentially non-oscillatory (ENO) finite difference schemes are applied to the 2-D and 3-D compressible Euler and Navier-Stokes equations. Practical issues, such as vectorization, efficiency of coding, cost comparison with other numerical methods, and accuracy degeneracy effects, are discussed. Numerical examples are provided which are representative of computational problems of current interest in transition and turbulence physics. These require both nonoscillatory shock capturing and high resolution for detailed structures in the smooth regions and demonstrate the advantage of ENO schemes.
Xu, Bei; Bobek, Gabriele; Makris, Angela; Hennessy, Annemarie
2017-03-01
Medications used to control hypertension in pregnancy also improve trophoblast and endothelial cellular interaction in vitro. Tumour necrosis factor-α (TNF-α) inhibits trophoblast and endothelial cellular interactions and simultaneously decreases endothelial nitric oxide synthase (eNOS) expression. This study investigated whether antihypertensive medications improved these cellular interactions by modulating eNOS and inducible nitric oxide synthase (iNOS) expression. Human uterine myometrial microvascular endothelial cells (UtMVECs) were pre-incubated with (or without) low dose TNF-α (0.5 ng/mL) or TNF-α plus soluble fms-like tyrosine kinase-1 (sFlt-1) (100 ng/mL). The endothelial cells were cultured on Matrigel. After endothelial cellular networks appeared, trophoblast derived HTR-8/SVneo cells were co-cultured in the presence of clinically relevant doses of methyldopa, labetalol, hydralazine or clonidine for 24 hours. Cells were retrieved from the Matrigel to extract mRNA and eNOS and iNOS expression were examined by quantitative PCR. Methyldopa, labetalol, hydralazine and clonidine reversed the inhibitory effect of TNF-α on eNOS mRNA expression. After pre-incubating endothelial cells with TNF-α and sFlt-1, all the medications except methyldopa lost their effect on eNOS mRNA expression. In the absence of TNF-α, antihypertensive medications did not change eNOS expression. The mRNA expression of iNOS was not affected by TNF-α or any medications. This study shows that selected antihypertensive medications used in the treatment of hypertension in pregnancy increase eNOS expression in vitro when induced by the inflammatory TNF-α. The anti-angiogenic molecule sFlt-1 may antagonise the potential benefit of these medications by interfering with the NOS pathway. © 2016 John Wiley & Sons Australia, Ltd.
Wang, Meng; Yang, Xiao-Yu; Zhang, De-Lin
2016-01-01
Toxoplasma gondii is an obligate intracellular parasitic protozoan that can infect almost all species of warm-blooded animals. As any chemical-based drugs could not act against the tissue cyst stage of T. gondii, vaccination may be one of the ideal control strategies. In the present study, two new vaccine candidates, named TgENO2 and TgTrxLp, were purified from Escherichia coli with pET-30a(+) expression system and then were injected into BALB/c mice to evaluate the protective efficacy against acute and chronic toxoplasmosis. The results showed that both the recombinant proteins, either alone or in combination, could elicit strong humoral and cellular immune responses with a higher level of IgG antibodies, IFN-γ, IL-2, CD4+, and CD8+ T cells as compared to those in mice from control groups. After acute challenge with tachyzoites of the GJS strain, mice immunized with rTgTrxLp (8 ± 2.77 d), rTgENO2 (7.4 ± 1.81 d), and rTgTrxLp + rTgENO2 (8.38 ± 4.57 d) proteins showed significantly longer survival time than those that received Freund's adjuvant (6.78 ± 2.08 d) and PBS (6.38 ± 4.65 d) (χ 2 = 9.687, df = 4, P = 0.046). The protective immunity of rTgTrxLp, rTgENO2, and rTgTrxLp + rTgENO2 proteins against chronic T. gondii infection showed 69.77%, 58.14%, and 20.93% brain cyst reduction as compared to mice that received PBS. The present study suggested that both TgENO2 and TgTrxLp were potential candidates for the development of multicomponent vaccines against toxoplasmosis. PMID:27803923
Jiang, Hongye; Chen, Tingjin; Sun, Hengchang; Tang, Zeli; Yu, Jinyun; Lin, Zhipeng; Ren, Pengli; Zhou, Xinyi; Huang, Yan; Li, Xuerong; Yu, Xinbing
2017-01-01
Clonorchiasis, caused by the consumption of raw or undercooked freshwater fish containing infective metacercariae of Clonorchis sinensisis (C.sinensis), remains a common public health problem. New effective prevention strategies are still urgent to control this food-borne infectious disease. The previous studies suggested Bacillus subtilis (B. subtilis) spores was an ideal vaccines delivery system, and the C.sinensis enolase (CsENO) was a potential vaccine candidate against clonorchiasis. In the current study, we detected CsENO-specific IgM levels by ELISA in sera, intestinal mucus and skin mucus in grass carps (Ctenopharyngodon idella) through oral administration with B. subtilis spores surface expressing CsENO. In addition, immune-related genes expression was also measured by qRT-PCR. Grass carps orally treated with B. subtilis spores or normal forages were used as controls. The results of ELISA manifested that specific IgM levels of grass carps in CsENO group in sera, intestine mucus and skin mucus almost significantly increased from week 4 post the first oral administration when compared to the two control groups. The levels of specific IgM reached its peak in intestine mucus firstly, then in sera, and last in skin mucus. qRT-PCR results showed that 5 immune-related genes expression had different degree of rising trend in CsENO group when compared to the two control groups. Our study demonstrated that orally administrated with B. subtilis spores expressing CsENO induced innate and adaptive immunity, systemic and local mucosal immunity, and humoral and cellular immunity. Our work may pave the way to clarify the exact mechanisms of protective efficacy elicited by B. subtilis spores expressing CsENO and provide new ideas for vaccine development against C. sinensis infection. Copyright © 2016 Elsevier Ltd. All rights reserved.
Khatami, Mehri; Ratki, Farzaneh Morteza; Tajfar, Saba; Akrami, Fatemeh
2017-09-01
Congenital heart defects are structural cardiovascular malformations that arise from abnormal formation of the heart or major blood vessels during the fetal period. To investigate the association of 4 single nucleotide polymorphisms (SNPs) in the MTHFD1, eNOS, CBS and ACE genes, we evaluated their relationship with CHD in Iranian patients. In this case-control study, a total of 102 children with CHD and 98 control children were enrolled. Four SNPs including MTHFD1 G1958A, eNOS G894T, CBS C-4673G and ACE A2350G were genotyped by PCR-SSCP, Multiplex ARMS PCR and PCR-RFLP methods and confirmed by direct sequencing. We genotyped 102 patients and 98 controls for four polymorphisms by statistically analysis. There were three SNPs including MTHFD1 G1958A, eNOS G894T and ACE A2350G which might increase the risk of CHD, but CBS C-4673G was not significantly different between patients and controls. (P = 0.017, P = 0.048, P = 0.025 and P = 0.081 respectively). The allele frequencies of three SNPs for MTHFD1 G1958A, eNOS G894T and ACE A2350G in CHD are higher than that in control. Our results show that there is a significant relationship between MTHFD1 G1958A, eNOS G894T and ACE A2350G polymorphisms with CHD. Therefore, The AA and GA genotypes of MTHFD1 G1958A, TT and GT genotypes of eNOS G894T and the AA and GA genotypes of ACE A2350G are susceptible factors for CHD and may increase the risk of CHD. Copyright © 2017. Published by Elsevier Taiwan.
Lin, Weiwei; Huang, Wei; Hu, Min; Brunekreef, Bert; Zhang, Yuanhang; Liu, Xingang; Cheng, Hong; Gehring, Ulrike; Li, Chengcai; Tang, Xiaoyan
2011-01-01
Background: Epidemiologic evidence for a causative association between black carbon (BC) and health outcomes is limited. Objectives: We estimated associations and exposure–response relationships between acute respiratory inflammation in schoolchildren and concentrations of BC and particulate matter with an aerodynamic diameter of ≤ 2.5 μm (PM2.5) in ambient air before and during the air pollution intervention for the 2008 Beijing Olympics. Methods: We measured exhaled nitric oxide (eNO) as an acute respiratory inflammation biomarker and hourly mean air pollutant concentrations to estimate BC and PM2.5 exposure. We used 1,581 valid observations of 36 subjects over five visits in 2 years to estimate associations of eNO with BC and PM2.5 according to generalized estimating equations with polynomial distributed-lag models, controlling for body mass index, asthma, temperature, and relative humidity. We also assessed the relative importance of BC and PM2.5 with two-pollutant models. Results: Air pollution concentrations and eNO were clearly lower during the 2008 Olympics. BC and PM2.5 concentrations averaged over 0–24 hr were strongly associated with eNO, which increased by 16.6% [95% confidence interval (CI), 14.1–19.2%] and 18.7% (95% CI, 15.0–22.5%) per interquartile range (IQR) increase in BC (4.0 μg/m3) and PM2.5 (149 μg/m3), respectively. In the two-pollutant model, estimated effects of BC were robust, but associations between PM2.5 and eNO decreased with adjustment for BC. We found that eNO was associated with IQR increases in hourly BC concentrations up to 10 hr after exposure, consistent with effects primarily in the first hours after exposure. Conclusions: Recent exposure to BC was associated with acute respiratory inflammation in schoolchildren in Beijing. Lower air pollution levels during the 2008 Olympics also were associated with reduced eNO. PMID:21642045
Sanchez, Tino W.; Zhang, Guangyu; Li, Jitian; Dai, Liping; Mirshahidi, Saied; Wall, Nathan R.; Yates, Clayton; Wilson, Colwick; Montgomery, Susanne; Zhang, Jian-Ying; Casiano, Carlos A.
2016-01-01
African American (AA) men suffer from a disproportionately high incidence and mortality of prostate cancer (PCa) compared with other racial/ethnic groups. Despite these disparities, African American men are underrepresented in clinical trials and in studies on PCa biology and biomarker discovery. We used immunoseroproteomics to profile antitumor autoantibody responses in AA and European American (EA) men with PCa, and explored differences in these responses. This minimally invasive approach detects autoantibodies to tumor-associated antigens that could serve as clinical biomarkers and immunotherapeutic agents. Sera from AA and EA men with PCa were probed by immunoblotting against PC3 cell proteins, with AA sera showing stronger immunoreactivity. Mass spectrometry analysis of immunoreactive protein spots revealed that several AA sera contained autoantibodies to a number of proteins associated with both the glycolysis and plasminogen pathways, particularly to alpha-enolase (ENO1). The proteomic data is deposited in ProteomeXchange with identifier PXD003968. Analysis of sera from 340 racially diverse men by enzyme-linked immunosorbent assays (ELISA) showed higher frequency of anti-ENO1 autoantibodies in PCa sera compared with control sera. We observed differences between AA-PCa and EA-PCa patients in their immunoreactivity against ENO1. Although EA-PCa sera reacted with higher frequency against purified ENO1 in ELISA and recognized by immunoblotting the endogenous cellular ENO1 across a panel of prostate cell lines, AA-PCa sera reacted weakly against this protein by ELISA but recognized it by immunoblotting preferentially in metastatic cell lines. These race-related differences in immunoreactivity to ENO1 could not be accounted by differential autoantibody recognition of phosphoepitopes within this antigen. Proteomic analysis revealed differences in the posttranslational modification profiles of ENO1 variants differentially recognized by AA-PCa and EA-PCa sera. These intriguing results suggest the possibility of race-related differences in the antitumor autoantibody response in PCa, and have implications for defining novel biological determinants of PCa health disparities. PMID:27742740
Musicki, Biljana; Burnett, Arthur L.
2016-01-01
Erectile dysfunction (ED) associated with type 2 diabetes mellitus (T2DM) involves dysfunctional nitric oxide (NO) signaling and increased oxidative stress in the penis. However, the mechanisms of endothelial NO synthase (eNOS) and neuronal NO synthase (nNOS) dysregulation, and the sources of oxidative stress, are not well defined, particularly at the human level. The objective of this study was to define whether uncoupled eNOS and nNOS, and NADPH oxidase upregulation, contribute to the pathogenesis of ED in T2DM men. Penile erectile tissue was obtained from 9 T2DM patients with ED who underwent penile prosthesis surgery for ED, and from 6 control patients without T2DM or ED who underwent penectomy for penile cancer. The dimer-to-monomer protein expression ratio, an indicator of uncoupling for both eNOS and nNOS, total protein expressions of eNOS and nNOS, as well as protein expressions of NADPH oxidase catalytic subunit gp91phox (an enzymatic source of oxidative stress) and 4-hydroxy-2-nonenal [4-HNE] and nitrotyrosine (markers of oxidative stress) were measured by Western blot in this tissue. In the erectile tissue of T2DM men, eNOS and nNOS uncoupling and protein expressions of NADPH oxidase subunit gp91phox, 4-HNE- and nitrotyrosine-modified proteins were significantly (p<0.05) increased compared to control values. Total eNOS and nNOS protein expressions were not significantly different between the groups. In conclusion, mechanisms of T2DM-associated ED in the human penis may involve uncoupled eNOS and nNOS and NADPH oxidase upregulation. Our description of molecular factors contributing to the pathogenesis of T2DM-associated ED at the human level is relevant for advancing clinically therapeutic approaches to restore erectile function in T2DM patients. PMID:28076881
Phospho-eNOS Ser-1176 is associated with the nucleoli and the Golgi complex in C6 rat glioma cells.
Klinz, Franz-Josef; Herberg, Natalie; Arnhold, Stefan; Addicks, Klaus; Bloch, Wilhelm
2007-06-29
Enzymatic activity of endothelial nitric oxide synthase (eNOS) is controlled by posttranslational modifications, protein-protein interactions, and subcellular localization. For example, N-terminal fatty acid modifications target eNOS to the Golgi complex where it becomes phosphorylated. We show here by immunofluorescence analysis that phospho-eNOS Ser-1176 is enriched in the perinuclear region of interphase C6 rat glioma cells. Confocal double immunofluorescence microscopy with the Golgi marker protein 58K revealed that phospho-eNOS Ser-1176 is associated with the Golgi complex. Surprisingly, we observed several spots in the nucleus of C6 cells that were positive for phospho-eNOS Ser-1176. Confocal double immunofluorescence analysis with the nucleolus marker protein fibrillarin revealed that within the nucleus phospho-eNOS Ser-1176 is exclusively associated with the nucleoli. It is known that in mitotic cells nucleoli are lost during prophase and rebuild during telophase. In agreement with this, we find no nucleoli-like distribution of phospho-eNOS Ser-1176 in metaphase and anaphase C6 glioma cells. Our finding that phospho-eNOS Ser-1176 is selectively associated with the nucleoli points to a so far unknown role for eNOS in interphase glioma cells.
Gürdal, Hakan; Can, Alp; Uğur, Mehmet
2005-01-01
Prolonged exposure (6–12 h) of rat aorta to alpha1-adrenergic receptor (α1AR) agonist phenylephrine (Phe) leads to a decrease in α1AR-mediated vasoconstriction. This reduced responsiveness to α1AR stimulation was strongly dependent on the intactness of the endothelium. We examined the effect of Phe on nitric oxide synthase (NOS) activity by measuring the conversion of [3H]L-arginine to [3H]L-citrulline in rat aorta or in endothelial cells isolated from rat aorta. Phe stimulation increased NOS activity in control aortas. This response was antagonized by prazosin. However, Phe increased neither the activity of NOS nor intracellular Ca2+ in the isolated endothelial cells from the control aortas, whereas acetylcholine (Ach) was able to stimulate both responses in these cells. This result suggests that Phe stimulates α1AR on vascular smooth muscle cells and has an indirect influence on endothelial cells to increase NOS activity. In Phe-exposed aortic rings, basal NOS activity was found to have increased compared to vehicle-exposed control rings. Stimulation with Phe or Ach caused a small increase over basal NOS activity in these preparations. Prolonged exposure to Phe also caused an enhancement of Ach-mediated vasorelaxation in rat aorta. Immunoblot and reverse transcription–polymerase chain reaction experiments showed that prolonged exposure of rat aorta to Phe resulted in an increased expression of eNOS, but not iNOS. This increase was antagonized by nonselective antagonist prazosin. Immunohistochemical staining experiments also showed that expression of eNOS increased in endothelial cells after Phe exposure of the aortas. These results, all together, showed that prolonged exposure of rat aorta to α1AR agonist Phe enhanced the expression of eNOS and basal NOS activity, which probably causes a decreased vasocontractile response to Phe or to other agonists such as 5HT (5-hydroxytryptamine) in rat aorta. This phenomenon can be considered more as a functional antagonism of vasocontractile response to agonists mediated by endothelium than a specific desensitization of α1AR-mediated signalling in vascular smooth muscle cells. PMID:15753950
Wu, Muzhou; Tsirka, Stella E
2009-08-15
Multiple sclerosis (MS) is a demyelinating autoimmune disease characterized by infiltration of T cells into the central nervous system (CNS) after compromise of the blood-brain barrier. A model used to mimic the disease in mice is experimental autoimmune encephalomyelitis (EAE). In this report, we examine the clinical and histopathological course of EAE in eNOS-deficient (eNOS-/-) mice to determine the role of nitric oxide (NO) derived from this enzyme in the disease progression. We find that eNOS-/- mice exhibit a delayed onset of EAE that correlates with delayed BBB breakdown, thus suggesting that NO production by eNOS underlies the T cell infiltration into the CNS. However, the eNOS-/- mice also eventually exhibit more severe EAE and delayed recovery, indicating that NO undertakes dual roles in MS/EAE, one proinflammatory that triggers disease onset, and the other neuroprotective that promotes recovery from disease exacerbation events.
Huang, Chih-Yuan; Wang, Liang-Chao; Shan, Yan-Shen; Pan, Chia-Hsin; Tsai, Kuen-Jer
2015-06-23
Delayed cerebral vasospasm is an important pathological feature of subarachnoid hemorrhage (SAH). The cause of vasospasm is multifactorial. Impairs nitric oxide availability and endothelial nitric oxide synthase (eNOS) dysfunction has been reported to underlie vasospasm. Memantine, a low-affinity uncompetitive N-methyl-d-aspartate (NMDA) blocker has been proven to reduce early brain injury after SAH. This study investigated the effect of memantine on attenuation of vasospasm and restoring eNOS functionality. Male Sprague-Dawley rats weighing 350-450 g were randomly divided into three weight-matched groups, sham surgery, SAH + vehicle, and SAH + memantine groups. The effects of memantine on SAH were evaluated by assessing the severity of vasospasm and the expression of eNOS. Memantine effectively ameliorated cerebral vasospasm by restoring eNOS functionality. Memantine can prevent vasospasm in experimental SAH. Treatment strategies may help combat SAH-induced vasospasm in the future.
Genetic polymorphisms of eNOS, hormone receptor status, and survival of breast cancer.
Choi, Ji-Yeob; Lee, Kyoung-Mu; Noh, Dong-Young; Ahn, Sei-Hyun; Lee, Jong-Eun; Han, Wonshik; Jang, In-Jin; Shin, Sang-Goo; Yoo, Keun-Young; Hayes, Richard B; Kang, Daehee
2006-11-01
The endothelial cell-specific form of nitric oxide synthase (eNOS) may play an important role in tumor progression via angiogenesis or apoptosis. We studied eNOS -786T > C and 894G > T (Glu298Asp), two functionally significant SNPs, in relation to hazard of breast cancer recurrence or death in 873 women with incident, non-metastatic breast cancer, recruited from two teaching hospitals in Seoul, Korea, 1995-2002. Hazards were estimated by Cox proportional hazard models, in relation to genotype, adjusting for hormone receptor status, lymph node involvement, and tumor size. Women carriers of the eNOS -786C allele had significantly increased hazards of breast cancer recurrence or death, compared with women having the TT genotype (HR = 2.1, 95% CI = 1.03-4.33); risks increased up to 3-fold in ER positive cases (HR = 3.2, 95% CI = 0.95-10.50). The hazard was also increased in eNOS 894T carriers, however, it did not reach statistical significance (HR = 1.8, 95% CI = 0.85-3.93). The combined genotypes containing -786C or 894T was associated with a 2.5-fold risk, compared to the TT-GG genotypes, the most dominant genotype combination (95% CI = 1.29-4.68), with the greatest risks in ER positive cases (HR = 4.9, 95% CI = 1.31-18.36). These results indicate that the eNOS -786C polymorphism, and possibly the 894T polymorphism, are associated with breast cancer recurrence and death, particularly in women with ER positive tumors.
Lee, Ji Hoon; Kim, Sun Mi; Yang, Hea Eun; Lee, Jang Woo
2014-01-01
Objective To assess the practical diagnostic value of facial nerve antidromic evoked potential (FNAEP), we compared it with the diagnostic value of the electroneurography (ENoG) test in Bell's palsy. Methods In total, 20 patients with unilateral Bell's palsy were recruited. Between the 1st and 17th days after the onset of facial palsy, FNAEP and ENoG tests were conducted. The degeneration ratio and FNAEP latency difference between the affected and unaffected sides were calculated in all subjects. Results In all patients, FNAEP showed prolonged latencies on the affected side versus the unaffected side. The difference was statistically significant. In contrast, there was no significant difference between sides in the normal control group. In 8 of 20 patients, ENoG revealed a degeneration ratio less than 50%, but FNAEP show a difference of more than 0.295±0.599 ms, the average value of normal control group. This shows FNAEP could be a more sensitive test for Bell's palsy diagnosis than ENoG. In particular, in 10 patients tested within 7 days after onset, an abnormal ENoG finding was noted in only four of them, but FNAEP showed a significant latency difference in all patients at this early stage. Thus, FANEP was more sensitive in detecting facial nerve injury than the ENoG test (p=0.031). Conclusion FNAEP has some clinical value in the diagnosis of facial nerve degeneration. It is important that FNAEP be considered in patients with facial palsy at an early stage and integrated with other relevant tests. PMID:25024963
Chalupsky, Karel; Kračun, Damir; Kanchev, Ivan; Bertram, Katharina
2015-01-01
Abstract Aims: Nitric oxide (NO) derived from endothelial NO synthase (eNOS) has been implicated in the adaptive response to hypoxia. An imbalance between 5,6,7,8-tetrahydrobiopterin (BH4) and 7,8-dihydrobiopterin (BH2) can result in eNOS uncoupling and the generation of superoxide instead of NO. Dihydrofolate reductase (DHFR) can recycle BH2 to BH4, leading to eNOS recoupling. However, the role of DHFR and eNOS recoupling in the response to hypoxia is not well understood. We hypothesized that increasing the capacity to recycle BH4 from BH2 would improve NO bioavailability as well as pulmonary vascular remodeling (PVR) and right ventricular hypertrophy (RVH) as indicators of pulmonary hypertension (PH) under hypoxic conditions. Results: In human pulmonary artery endothelial cells and murine pulmonary arteries exposed to hypoxia, eNOS was uncoupled as indicated by reduced superoxide production in the presence of the nitric oxide synthase inhibitor, L-(G)-nitro-L-arginine methyl ester (L-NAME). Concomitantly, NO levels, BH4 availability, and expression of DHFR were diminished under hypoxia. Application of folic acid (FA) restored DHFR levels, NO bioavailability, and BH4 levels under hypoxia. Importantly, FA prevented the development of hypoxia-induced PVR, right ventricular pressure increase, and RVH. Innovation: FA-induced upregulation of DHFR recouples eNOS under hypoxia by improving BH4 recycling, thus preventing hypoxia-induced PH. Conclusion: FA might serve as a novel therapeutic option combating PH. Antioxid. Redox Signal. 23, 1076–1091. PMID:26414244
Alhusban, Ahmed; Kozak, Anna; Pillai, Bindu; Ahmed, Heba; Sayed, Mohammed A; Johnson, Maribeth H; Ishrat, Tauheed; Ergul, Adviye; Fagan, Susan C
2017-01-01
Stroke is a leading cause of adult disability worldwide. Improving stroke outcome requires an orchestrated interplay that involves up regulation of pro-survival pathways and a concomitant suppression of pro-apoptotic mediators. In this investigation, we assessed the involvement of eNOS in the AT1 blocker-mediated protective and pro-recovery effects in animals with hypertension. We also evaluated the effect of acute eNOS inhibition in hypertensive animals. To achieve these goals, spontaneously hypertensive rats (SHR) were implanted with blood pressure transmitters, and randomized to receive either an eNOS inhibitor (L-NIO) or saline one hour before cerebral ischemia induction. After 3 hours of ischemia, animals were further randomized to receive either candesartan or saline at the time of reperfusion and sacrificed either 24 hours or 7 days later. Candesartan induced an early protective effect that was independent of eNOS inhibition (50% improvement in motor function). However, the protective effect of candesartan was associated with about five fold up regulation of BDNF expression and about three fold reduction in ER stress markers, in an eNOS dependent manner. The early benefit of a single dose of candesartan, present at 24 hours after stroke, was diminished at 7 days, perhaps due to a failure to induce an angiogenic response in these hypertensive animals. In conclusion, our findings demonstrate an early prorecovery effect of candesartan at both functional and molecular levels. Candesartan induced prorecovery signaling was mediated through eNOS. This effect was not maintained at 7 days after experimental ischemia.
WNT5A-JNK regulation of vascular insulin resistance in human obesity.
Farb, Melissa G; Karki, Shakun; Park, Song-Young; Saggese, Samantha M; Carmine, Brian; Hess, Donald T; Apovian, Caroline; Fetterman, Jessica L; Bretón-Romero, Rosa; Hamburg, Naomi M; Fuster, José J; Zuriaga, María A; Walsh, Kenneth; Gokce, Noyan
2016-12-01
Obesity is associated with the development of vascular insulin resistance; however, pathophysiological mechanisms are poorly understood. We sought to investigate the role of WNT5A-JNK in the regulation of insulin-mediated vasodilator responses in human adipose tissue arterioles prone to endothelial dysfunction. In 43 severely obese (BMI 44±11 kg/m 2 ) and five metabolically normal non-obese (BMI 26±2 kg/m 2 ) subjects, we isolated arterioles from subcutaneous and visceral fat during planned surgeries. Using videomicroscopy, we examined insulin-mediated, endothelium-dependent vasodilator responses and characterized adipose tissue gene and protein expression using real-time polymerase chain reaction and Western blot analyses. Immunofluorescence was used to quantify endothelial nitric oxide synthase (eNOS) phosphorylation. Insulin-mediated vasodilation was markedly impaired in visceral compared to subcutaneous vessels from obese subjects (p<0.001), but preserved in non-obese individuals. Visceral adiposity was associated with increased JNK activation and elevated expression of WNT5A and its non-canonical receptors, which correlated negatively with insulin signaling. Pharmacological JNK antagonism with SP600125 markedly improved insulin-mediated vasodilation by sixfold (p<0.001), while endothelial cells exposed to recombinant WNT5A developed insulin resistance and impaired eNOS phosphorylation (p<0.05). We observed profound vascular insulin resistance in the visceral adipose tissue arterioles of obese subjects that was associated with up-regulated WNT5A-JNK signaling and impaired endothelial eNOS activation. Pharmacological JNK antagonism markedly improved vascular endothelial function, and may represent a potential therapeutic target in obesity-related vascular disease. © The Author(s) 2016.
Chen, Rongchun; Peng, Xiaofeng; Du, Weimin; Wu, Yang; Huang, Bo; Xue, Lai; Wu, Qin; Qiu, Hongmei; Jiang, Qingsong
2015-05-01
To investigate the potential effect of curcumin on cardiomyocyte hypertrophy and a possible mechanism involving the PPARγ/Akt/NO signaling pathway in diabetes. The cardiomyocyte hypertrophy induced by high glucose (25.5mmol/L) and insulin (0.1μmol/L) (HGI) and the antihypertrophic effect of curcumin were evaluated in primary culture by measuring the cell surface area, protein content and atrial natriuretic factor (ANF) mRNA expression. The mRNA and protein expressions were assayed by reverse transcription PCR and Western blotting, whereas the NO concentration and endothelial NO synthase (eNOS) activity were determined using nitrate reduction and ELISA methods, respectively. The cardiomyocyte hypertrophy induced by HGI was characterized by increasing ANF mRNA expression, total protein content, and cell surface area, with downregulated mRNA and protein expressions of both PPARγ and Akt, which paralleled the declining eNOS mRNA expression, eNOS content, and NO concentration. The effects of HGI were inhibited by curcumin (1, 3, 10μmol/L) in a concentration-dependent manner. GW9662 (10μmol/L), a selective PPARγ antagonist, could abolish the effects of curcumin. LY294002 (20μmol/L), an Akt blocker, and N(G)-nitro-l-arginine-methyl ester (100μmol/L), a NOS inhibitor, could also diminish the effects of curcumin. The results suggested that curcumin supplementation can improve HGI-induced cardiomyocytes hypertrophy in vitro through the activation of PPARγ/Akt/NO signaling pathway. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
WNT5A-JNK regulation of vascular insulin resistance in human obesity
Farb, Melissa G; Karki, Shakun; Park, Song-Young; Saggese, Samantha M; Carmine, Brian; Hess, Donald T; Apovian, Caroline; Fetterman, Jessica L; Bretón-Romero, Rosa; Hamburg, Naomi M; Fuster, José J; Zuriaga, María A; Walsh, Kenneth; Gokce, Noyan
2017-01-01
Obesity is associated with the development of vascular insulin resistance; however, pathophysiological mechanisms are poorly understood. We sought to investigate the role of WNT5A-JNK in the regulation of insulin-mediated vasodilator responses in human adipose tissue arterioles prone to endothelial dysfunction. In 43 severely obese (BMI 44±11 kg/m2) and five metabolically normal non-obese (BMI 26±2 kg/m2) subjects, we isolated arterioles from subcutaneous and visceral fat during planned surgeries. Using videomicroscopy, we examined insulin-mediated, endothelium-dependent vasodilator responses and characterized adipose tissue gene and protein expression using real-time polymerase chain reaction and Western blot analyses. Immunofluorescence was used to quantify endothelial nitric oxide synthase (eNOS) phosphorylation. Insulin-mediated vasodilation was markedly impaired in visceral compared to subcutaneous vessels from obese subjects (p<0.001), but preserved in non-obese individuals. Visceral adiposity was associated with increased JNK activation and elevated expression of WNT5A and its non-canonical receptors, which correlated negatively with insulin signaling. Pharmacological JNK antagonism with SP600125 markedly improved insulin-mediated vasodilation by sixfold (p<0.001), while endothelial cells exposed to recombinant WNT5A developed insulin resistance and impaired eNOS phosphorylation (p<0.05). We observed profound vascular insulin resistance in the visceral adipose tissue arterioles of obese subjects that was associated with up-regulated WNT5A-JNK signaling and impaired endothelial eNOS activation. Pharmacological JNK antagonism markedly improved vascular endothelial function, and may represent a potential therapeutic target in obesity-related vascular disease. PMID:27688298
Kondrashov, Alexey; Vranková, Stanislava; Dovinová, Ima; Ševčík, Rudolf; Parohová, Jana; Barta, Andrej; Pecháňová, Olga; Kovacsová, Maria
2012-01-01
We aimed to perform a chemical analysis of both Alibernet red wine and an alcohol-free Alibernet red wine extract (AWE) and to investigate the effects of AWE on nitric oxide and reactive oxygen species production as well as blood pressure development in normotensive Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHRs). Total antioxidant capacity together with total phenolic and selected mineral content was measured in wine and AWE. Young 6-week-old male WKY and SHR were treated with AWE (24,2 mg/kg/day) for 3 weeks. Total NOS and SOD activities, eNOS and SOD1 protein expressions, and superoxide production were determined in the tissues. Both antioxidant capacity and phenolic content were significantly higher in AWE compared to wine. The AWE increased NOS activity in the left ventricle, aorta, and kidney of SHR, while it did not change NOS activity in WKY rats. Similarly, increased SOD activity in the plasma and left ventricle was observed in SHR only. There were no changes in eNOS and SOD1 expressions. In conclusion, phenolics and minerals included in AWE may contribute directly to increased NOS and SOD activities of SHR. Nevertheless, 3 weeks of AWE treatment failed to affect blood pressure of SHR. PMID:22720118
Ren, Ya-Ping; Sun, Li; Jiang, Wei; Hu, Chun-Ping
2005-05-01
To investigate the effects of glycosides of tripterygium wilfordii (GTW), methyltestosterone and Zhuanggushenjin capsule on nitric oxide synthase (NOS) in rat testes. Forty-five rats were equally divided into 5 groups, and respectively given GTW [10 mg/(kg x d)], methyltestosterone [2 mg/(kg x d)], Zhuanggushenjin capsule [0.3 g/(kg x d)], distilled water plus Tween 80 (control I), and distilled water alone (control II) for 4 weeks. At the end of the 5th week, the immunochemical ABC method was used to observe the effects of the three drugs on the NOS positive Leydig cells of the rats. Compared with control II, the GTW group had a significant decrease in the numbers of nNOS and eNOS positive Leydig cells, the methyltestosterone group showed an increase in the number of nNOS but a decrease in that of eNOS positive Leydig cells, and the Zhuanggushenjin group had an increase in the numbers of both nNOS and eNOS positive Leydig cells. GTW can reduce NO production by inhibiting eNOS and nNOS, and hence influence the spermatogenic process. Zhuanggushenjin capsule plays an important role in improving male sexual function by enhancing nNOS and eNOS expression and NO synthesis.
Hardie, Kim R; Cooksley, Clare; Green, Andrew D; Winzer, Klaus
2003-03-01
Production of the signalling molecule (autoinducer-2) synthesized by LuxS has been proposed to be pivotal to a universal mechanism of inter-species bacterial cell-cell communication (quorum sensing); however recently the function of LuxS has been noted to be integral to central metabolism since it contributes to the activated methyl cycle. This paper shows that when Helicobacter pylori LuxS is overproduced in Escherichia coli, it forms cross-linkable multimers. These multimers persist at comparable levels after 24 h of growth if glucose is omitted from the growth medium; however, the levels of extracellular autoinducer-2 decline (Glucose Retention of AI-2 Levels: GRAIL). Glycerol, maltose, galactose, ribose and L-arabinose could substitute for glucose, but lactose, D-arabinose, acetate, citrate and pyruvate could not. Mutations in (i). metabolic pathways (glycolytic enzymes eno, pgk, pgm; galactose epimerase; the Pta-AckA pathway), (ii). sugar transport (pts components, rbs operon, mgl, trg), and (iii). regulators involved in conventional catabolic repression (crp, cya), cAMP-independent catabolite repression (creC, fruR, rpoS,) the stringent response (relA, spoT) and the global carbon storage regulator (csrA) did not prevent GRAIL. Although the basis of GRAIL remains uncertain, it is clear that the mechanism is distinct from conventional catabolite repression. Moreover, GRAIL is not due to inactivation of the enzymic activity of LuxS, since in E. coli, LuxS contained within stationary-phase cells grown in the absence of glucose maintains its activity in vitro.
Fallahi, Ali Asghar; Shekarfroush, Shahnaz; Rahimi, Mostafa; Jalali, Amirhossain; Khoshbaten, Ali
2016-03-01
High-intensity interval training (HIIT) increases energy expenditure and mechanical energy efficiency. Although both uncoupling proteins (UCPs) and endothelial nitric oxide synthase (eNOS) affect the mechanical efficiency and antioxidant capacity, their effects are inverse. The aim of this study was to determine whether the alterations of cardiac UCP2, UCP3, and eNOS mRNA expression following HIIT are in favor of increased mechanical efficiency or decreased oxidative stress. Wistar rats were divided into five groups: control group (n=12), HIIT for an acute bout (AT1), short term HIIT for 3 and 5 sessions (ST3 and ST5), long-term training for 8 weeks (LT) (6 in each group). The rats of the training groups were made to run on a treadmill for 60 min in three stages: 6 min running for warm-up, 7 intervals of 7 min running on treadmill with a slope of 5° to 20° (4 min with an intensity of 80-110% VO2max and 3 min at 50-60% VO2max), and 5-min running for cool-down. The control group did not participate in any exercise program. Rats were sacrificed and the hearts were extracted to analyze the levels of UCP2, UCP3 and eNOS mRNA by RT-PCR. UCP3 expression was increased significantly following an acute training bout. Repeated HIIT for 8 weeks resulted in a significant decrease in UCPs mRNA and a significant increase in eNOS expression in cardiac muscle. This study indicates that Long term HIIT through decreasing UCPs mRNA and increasing eNOS mRNA expression may enhance energy efficiency and physical performance.
Yu, Jinyun; Chen, Tingjin; Xie, Zhizhi; Liang, Pei; Qu, Honglin; Shang, Mei; Mao, Qiang; Ning, Dan; Tang, Zeli; Shi, Mengchen; Zhou, Lina; Huang, Yan; Yu, Xinbing
2015-07-01
Caused by the consumption of raw or undercooked freshwater fish containing infective metacercariae of Clonorchis sinensis, human clonorchiasis remains a major public health problem in China. In previous study, we had expressed enolase from C. sinensis (CsENO) on the surface of Bacillus subtilis spore and the recombinant spore induced a pronounced protection in terms of reduced worm burden and eggs per gram feces, suggesting B. subtilis spore as an ideal vehicle for antigen delivery by oral treatment and CsENO as a promising vaccine candidate against clonorchiasis. In the current study, we detected CsENO-specific IgG and IgA levels both in serum and in intestinal mucus from rats orally administrated with B. subtilis spore surface expressing CsENO by ELISA. Lysozyme levels in serum and in intestinal mucus were analyzed too. In addition, IgA-secreting cells in intestine epithelium of the rats were detected by immunohistochemistry assay. The intestinal villi lengths of duodenum, jejunum, and ileum were also measured. Rats orally treated with B. subtilis spore or normal saline were used as controls. Our results showed that, compared with the control groups, oral administration of B. subtilis spore expressing CsENO induced both systemic and local mucosal immune response. The recombinant spores also enhanced non-specific immune response in rats. The spores had no side effect on liver function. Moreover, it might facilitate food utilization and digestion of the rats. Our work will pave the way to clarify the involved mechanisms of protective efficacy elicited by B. subtilis spore expressing CsENO and encourage us to carry out more assessment trails of the oral treated spore to develop vaccine against clonorchiasis.
Gender hormones and the progression of experimental polycystic kidney disease.
Stringer, Kenneth D; Komers, Radko; Osman, Shukri A; Oyama, Terry T; Lindsley, Jessie N; Anderson, Sharon
2005-10-01
Male gender is a risk factor for progression of autosomal-dominant polycystic kidney disease (ADPKD), clinically and in the Han:SPRD rat model. Orchiectomy limits progression, but mechanisms of the detrimental effect of androgen, and/or beneficial effects of estrogen, are not known. This protocol tested the hypothesis that male gender (intact androgen status) promotes progression, while female gender (intact estrogen status) is protective; and that these disease-modifying effects are due to changes in expression of known fibrotic mediators. Studies were performed in male and female noncystic control (+/+) and cystic (+/-) rats subjected to orchiectomy, ovariectomy, or sham operation. At 12 weeks of age, renal function was measured. Blood and kidneys were taken for measurement of plasma and renal renin, endothelin (ET-1), endothelial nitric oxide synthase (eNOS), and vascular endothelial growth factor (VEGF), using biochemical, protein expression, and immunohistochemical methods. Cystic male rats exhibited significantly reduced glomerular filtration (GFR) and effective renal plasma flow (ERPF) rates, with suppression of plasma and renal renin, up-regulation of renal ET-1 and eNOS, and down-regulation of renal VEGF expression. Orchiectomy attenuated the fall in GFR and ERPF, while numerically limiting changes in eNOS and VEGF. Female rats exhibited less cystic growth, with normal renin status, lesser elevation of renal ET-1, and proportionately lesser changes in VEGF and eNOS. Ovariectomy led to higher blood pressure and reduced GFR and ERPF, with a trend toward upregulation of ET-1, and significant down-regulation of VEGF and eNOS. Female gender is protective, but ovariectomy attenuates the protective effect of female gender, in association with changes in renal expression of ET-1, VEGF, and eNOS. The accelerated disease in male rats can be attenuated by orchiectomy and consequent changes in expression of disease mediators.
Fallahi, Ali Asghar; Shekarfroush, Shahnaz; Rahimi, Mostafa; Jalali, Amirhossain; Khoshbaten, Ali
2016-01-01
Objective(s): High-intensity interval training (HIIT) increases energy expenditure and mechanical energy efficiency. Although both uncoupling proteins (UCPs) and endothelial nitric oxide synthase (eNOS) affect the mechanical efficiency and antioxidant capacity, their effects are inverse. The aim of this study was to determine whether the alterations of cardiac UCP2, UCP3, and eNOS mRNA expression following HIIT are in favor of increased mechanical efficiency or decreased oxidative stress. Materials and Methods: Wistar rats were divided into five groups: control group (n=12), HIIT for an acute bout (AT1), short term HIIT for 3 and 5 sessions (ST3 and ST5), long-term training for 8 weeks (LT) (6 in each group). The rats of the training groups were made to run on a treadmill for 60 min in three stages: 6 min running for warm-up, 7 intervals of 7 min running on treadmill with a slope of 5° to 20° (4 min with an intensity of 80-110% VO2max and 3 min at 50-60% VO2max), and 5-min running for cool-down. The control group did not participate in any exercise program. Rats were sacrificed and the hearts were extracted to analyze the levels of UCP2, UCP3 and eNOS mRNA by RT-PCR. Results: UCP3 expression was increased significantly following an acute training bout. Repeated HIIT for 8 weeks resulted in a significant decrease in UCPs mRNA and a significant increase in eNOS expression in cardiac muscle. Conclusion: This study indicates that Long term HIIT through decreasing UCPs mRNA and increasing eNOS mRNA expression may enhance energy efficiency and physical performance. PMID:27114795
The effect of acute exposure to hyperbaric oxygen on respiratory system mechanics in the rat.
Rubini, Alessandro; Porzionato, Andrea; Zara, Susi; Cataldi, Amelia; Garetto, Giacomo; Bosco, Gerardo
2013-10-01
This study was designed to investigate the possible effects of acute hyperbaric hyperoxia on respiratory mechanics of anaesthetised, positive-pressure ventilated rats. We measured respiratory mechanics by the end-inflation occlusion method in nine rats previously acutely exposed to hyperbaric hyperoxia in a standard fashion. The method allows the measurements of respiratory system elastance and of both the "ohmic" and of the viscoelastic components of airway resistance, which respectively depend on the newtonian pressure dissipation due to the ohmic airway resistance to air flow, and on the viscoelastic pressure dissipation caused by respiratory system tissues stress-relaxation. The activities of inducible and endothelial NO-synthase in the lung's tissues (iNOS and eNOS respectively) also were investigated. Data were compared with those obtained in control animals. We found that the exposure to hyperbaric hyperoxia increased respiratory system elastance and both the "ohmic" and viscoelastic components of inspiratory resistances. These changes were accompanied by increased iNOS but not eNOS activities. Hyperbaric hyperoxia was shown to acutely induce detrimental effects on respiratory mechanics. A possible causative role was suggested for increased nitrogen reactive species production because of increased iNOS activity.
Flow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases
NASA Technical Reports Server (NTRS)
Boo, Yong Chool; Jo, Hanjoong
2003-01-01
Vascular endothelial cells are directly and continuously exposed to fluid shear stress generated by blood flow. Shear stress regulates endothelial structure and function by controlling expression of mechanosensitive genes and production of vasoactive factors such as nitric oxide (NO). Though it is well known that shear stress stimulates NO production from endothelial nitric oxide synthase (eNOS), the underlying molecular mechanisms remain unclear and controversial. Shear-induced production of NO involves Ca2+/calmodulin-independent mechanisms, including phosphorylation of eNOS at several sites and its interaction with other proteins, including caveolin and heat shock protein-90. There have been conflicting results as to which protein kinases-protein kinase A, protein kinase B (Akt), other Ser/Thr protein kinases, or tyrosine kinases-are responsible for shear-dependent eNOS regulation. The functional significance of each phosphorylation site is still unclear. We have attempted to summarize the current status of understanding in shear-dependent eNOS regulation.
Rezende, Tiago M; Sponton, Carlos H G; Malagrino, Pamella A; Bezerra, Marcos A C; Penteado, Carla F F; Zanesco, Angelina
2011-12-01
Presence of endothelial nitric oxide synthase (eNOS) gene polymorphism has been associated with cardiovascular disease (CVD) whereas exercise training (EX) promotes beneficial effects on CVD which is related to increased nitric oxide levels (NO). To evaluate if women with eNOS gene polymorphism at position-G894T would be less responsive to EX than those who did not carry T allele. Women were trained 3 days/week, 40 minutes session during 6 months. Cardio-biochemical parameters and genetic analysis were performed in a double-blind fashion. Plasma NOx- levels were similar in both groups at baseline (GG genotype: 18.44±3.28 μM) and (GT+TT genotype: 17.19±2.43 μM) and after EX (GG: 29.20±4.33 and GT+TT: 27.38±3.12 μM). A decrease in blood pressure was also observed in both groups. The presence of eNOS polymorphism does not affect the beneficial effects of EX in women.
Tiwari, Raksha; Sullivan, J; Czuprynski, C J
2009-09-01
Histophilus somni (H. somni) is a gram-negative bacterial pathogen that causes respiratory, reproductive, and central nervous system disease in cattle. The hallmark of systemic H. somni infection is diffused vasculitis that can lead to an acute central nervous system disease known as thrombotic meningoencephalitis (TME). Because platelet endothelial cell adhesion molecule-1 (PECAM-1) and endothelial nitric oxide synthase (eNOS) play fundamental roles in maintaining homeostasis in blood vessels, we sought to determine if PECAM-1 and eNOS expression play a role in events related to the pathogenesis of TME. Our findings demonstrate that neutrophil transmigration across H. somni-treated TBBEC (SV-40 transformed bovine brain endothelial cell line) was reduced by treatment with anti-PECAM-1 antibodies. Confocal microscopy indicated that H. somni treatment leads to redistribution of PECAM-1 and eNOS on the surface of TBBEC. These findings suggest that PECAM-1 and eNOS may play a role in the early pathogenesis of TME.
Colombo, M G; Andreassi, M G; Paradossi, U; Botto, N; Manfredi, S; Masetti, S; Rossi, G; Clerico, A; Biagini, A
2002-01-01
Background: Genetic variants of endothelial nitric oxide synthase (eNOS) could influence individual susceptibility to coronary artery disease. Objective: To assess whether Glu298→Asp polymorphism of the eNOS gene is associated with the occurrence and severity of angiographically defined coronary artery disease in the Italian population. Methods: Polymerase chain reaction/restriction fragment length polymorphism analysis was done to detect the Glu298→Asp variant of the eNOS gene in 201 patients with coronary artery disease and 114 controls. The severity of coronary artery disease was expressed by the number of affected vessels and by the Duke scoring system. Results: The frequencies of the eNOS Glu/Glu, Glu/Asp, and Asp/Asp genotypes in the coronary artery disease group were significantly different from those of controls (45.3%, 38.8%, and 15.9% v 42.1%, 51.8%, and 6.1%, respectively; χ2 = 8.589, p = 0.0136). In comparison with subjects who had a Glu298 allele in the eNOS gene, the risk of coronary artery disease was increased among Asp/Asp carriers (odds ratio 2.9, 95% confidence interval 1.2 to 6.8, p = 0.01) and was independent of the other common risk factors (p = 0.04). There was a significant association between the eNOS Glu298→Asp variant and both the number of stenosed vessels (mean (SEM), 2.3 (0.1) for Asp/Asp v 1.9 (0.1) and 1.8 (0.1) for Glu/Glu and Glu/Asp, respectively; p = 0.01) and the Duke score (56.1 (3.1) for Asp/Asp v 46.7 (2.0) and 46.1 (1.9) for Glu/Glu and Glu/Asp, respectively; p = 0.02). Conclusions: Glu298→Asp polymorphism of the eNOS gene appears to be associated with the presence, extent, and severity of angiographically assessed coronary artery disease. PMID:12010932
Cebova, Martina; Klimentova, Jana; Janega, Pavol; Pechanova, Olga
2017-01-01
Aronia melanocarpa has attracted scientific interest due to its dense contents of different polyphenols. We aimed to analyse effects of Aronia melanocarpa (AME) extract on blood pressure (BP), lipid peroxidation, cytokine level, total NOS activity in the left ventricle (LV), and aorta of L-NAME-induced hypertensive rats. 12-week-old male WKY rats were assigned to the control group and groups treated with AME extract (57.90 mg/kg/day), L-NAME (40 mg/kg/day), or combination of L-NAME (40 mg/kg/day) and AME (57.90 mg/kg/day) in tap water for 3 weeks. NOS activity, eNOS protein expression, and conjugated diene (CD) concentration were determined in the LV and aorta. After 3 weeks of L-NAME treatment, BP was increased by 28% and concomitant treatment with AME reduced it by 21%. NOS activity of the LV and aorta in the L-NAME group was decreased by about 40%, while AME increased it almost on the control level. AME-induced eNOS upregulation may contribute to increase NOS activity. Moreover, AME decreased CD concentration in the LV and aorta and TNF- α and IL-6 production in the plasma were increased by L-NAME treatment. In conclusion, our results showed that active substances of Aronia melanocarpa may have a positive effect on blood pressure, NOS activity, and proinflammatory processes in L-NAME-induced hypertension.
Lipid Emulsion Attenuates Acetylcholine-Induced Relaxation in Isolated Rat Aorta
Ok, Seong-Ho; Lee, Soo Hee; Yu, Jongsun; Park, Jungchul; Shin, Il-Woo; Lee, Youngju; Cho, Hyunhoo; Choi, Mun-Jeoung; Baik, Jiseok; Hong, Jeong-Min; Han, Jeong Yeol; Lee, Heon Keun; Chung, Young-Kyun; Sohn, Ju-Tae
2015-01-01
We investigated the effect of Lipofundin MCT/LCT and Intralipid on acetylcholine-induced nitric oxide- (NO-) mediated relaxation in rat aorta to determine which lipid emulsion (LE) is more potent in terms of inhibition of NO-induced relaxation. Dose-response curves of responses induced by acetylcholine, the calcium ionophore A23187, and sodium nitroprusside were generated using isolated rat aorta with or without LE. The effect of Lipofundin MCT/LCT on acetylcholine-induced endothelial nitric oxide synthase (eNOS) phosphorylation in human umbilical vein endothelial cells (HUVECs) was investigated using western blotting. Lipofundin MCT/LCT (0.1 and 0.2%) attenuated acetylcholine-induced relaxation in endothelium-intact aorta with or without tiron, whereas 0.2% Intralipid only inhibited relaxation. Lipofundin MCT/LCT inhibited relaxation induced by the calcium ionophore A23187 and sodium nitroprusside in endothelium-intact aorta, but Lipofundin MCT/LCT had no effect on sodium nitroprusside-induced relaxation in the endothelium-denuded aorta. Combined pretreatment with l-arginine plus Lipofundin MCT/LCT increased acetylcholine-induced maximal relaxation in endothelium-intact aorta compared with Lipofundin MCT/LCT alone. l-Arginine attenuated Lipofundin MCT/LCT-mediated inhibition of acetylcholine-induced eNOS phosphorylation in HUVECs. Taken together, Lipofundin MCT/LCT attenuated acetylcholine-induced NO-mediated relaxation via an inhibitory effect on the endothelium including eNOS, which is proximal to activation of guanylyl cyclase. PMID:26273653
Lipid Emulsion Attenuates Acetylcholine-Induced Relaxation in Isolated Rat Aorta.
Ok, Seong-Ho; Lee, Soo Hee; Yu, Jongsun; Park, Jungchul; Shin, Il-Woo; Lee, Youngju; Cho, Hyunhoo; Choi, Mun-Jeoung; Baik, Jiseok; Hong, Jeong-Min; Han, Jeong Yeol; Lee, Heon Keun; Chung, Young-Kyun; Sohn, Ju-Tae
2015-01-01
We investigated the effect of Lipofundin MCT/LCT and Intralipid on acetylcholine-induced nitric oxide- (NO-) mediated relaxation in rat aorta to determine which lipid emulsion (LE) is more potent in terms of inhibition of NO-induced relaxation. Dose-response curves of responses induced by acetylcholine, the calcium ionophore A23187, and sodium nitroprusside were generated using isolated rat aorta with or without LE. The effect of Lipofundin MCT/LCT on acetylcholine-induced endothelial nitric oxide synthase (eNOS) phosphorylation in human umbilical vein endothelial cells (HUVECs) was investigated using western blotting. Lipofundin MCT/LCT (0.1 and 0.2%) attenuated acetylcholine-induced relaxation in endothelium-intact aorta with or without tiron, whereas 0.2% Intralipid only inhibited relaxation. Lipofundin MCT/LCT inhibited relaxation induced by the calcium ionophore A23187 and sodium nitroprusside in endothelium-intact aorta, but Lipofundin MCT/LCT had no effect on sodium nitroprusside-induced relaxation in the endothelium-denuded aorta. Combined pretreatment with l-arginine plus Lipofundin MCT/LCT increased acetylcholine-induced maximal relaxation in endothelium-intact aorta compared with Lipofundin MCT/LCT alone. L-Arginine attenuated Lipofundin MCT/LCT-mediated inhibition of acetylcholine-induced eNOS phosphorylation in HUVECs. Taken together, Lipofundin MCT/LCT attenuated acetylcholine-induced NO-mediated relaxation via an inhibitory effect on the endothelium including eNOS, which is proximal to activation of guanylyl cyclase.
eNOS Deficiency Predisposes Podocytes to Injury in Diabetes
Yuen, Darren A.; Stead, Bailey E.; Zhang, Yanling; White, Kathryn E.; Kabir, M. Golam; Thai, Kerri; Advani, Suzanne L.; Connelly, Kim A.; Takano, Tomoko; Zhu, Lei; Cox, Alison J.; Kelly, Darren J.; Gibson, Ian W.; Takahashi, Takamune; Harris, Raymond C.
2012-01-01
Endothelial nitric oxide synthase (eNOS) deficiency may contribute to the pathogenesis of diabetic nephropathy in both experimental models and humans, but the underlying mechanism is not fully understood. Here, we studied two common sequelae of endothelial dysfunction in diabetes: glomerular capillary growth and effects on neighboring podocytes. Streptozotocin-induced diabetes increased glomerular capillary volume in both C57BL/6 and eNOS−/− mice. Inhibiting the vascular endothelial growth factor receptor attenuated albuminuria in diabetic C57BL/6 mice but not in diabetic eNOS−/− mice, even though it inhibited glomerular capillary enlargement in both. In eNOS−/− mice, an acute podocytopathy and heavy albuminuria occurred as early as 2 weeks after inducing diabetes, but treatment with either captopril or losartan prevented these effects. In vitro, serum derived from diabetic eNOS−/− mice augmented actin filament rearrangement in cultured podocytes. Furthermore, conditioned medium derived from eNOS−/− glomerular endothelial cells exposed to both high glucose and angiotensin II activated podocyte RhoA. Taken together, these results suggest that the combined effects of eNOS deficiency and hyperglycemia contribute to podocyte injury, highlighting the importance of communication between endothelial cells and podocytes in diabetes. Identifying mediators of this communication may lead to the future development of therapies targeting endothelial dysfunction in albuminuric individuals with diabetes. PMID:22997257
Penumathsa, Suresh Varma; Thirunavukkarasu, Mahesh; Samuel, Samson Mathews; Zhan, Lijun; Maulik, Gautam; Bagchi, Manashi; Bagchi, Debasis; Maulik, Nilanjana
2009-01-01
Diabetes, one of the major risk factors of metabolic syndrome culminates in the development of Ischemic Heart Disease (IHD). Refined diets that lack micronutrients, mainly trivalent chromium (Cr(3+)) have been identified as the contributor in the rising incidence of diabetes. We investigated the effect of niacin-bound chromium (NBC) during ischemia/reperfusion (IR) injury in streptozotocin induced diabetic rats. Rats were randomized into: Control (Con); Diabetic (Dia) and Diabetic rats fed with NBC (Dia+NBC). After 30 days of treatment, the isolated hearts were subjected to 30 min of global ischemia followed by 2 h of reperfusion. NBC treatment demonstrated significant increase in left ventricular functions and significant reduction in infarct size and cardiomyocyte apoptosis in Dia+NBC compared with Dia. Increased Glut-4 translocation to the lipid raft fractions was also observed in Dia+NBC compared to Dia. Reduced Cav-1 and increased Cav-3 expression along with phosphorylation of Akt, eNOS and AMPK might have resulted in increased Glut-4 translocation in Dia+NBC. Our results indicate that the cardioprotective effect of NBC is mediated by increased activation of AMPK, Akt and eNOS resulting in increased translocation of Glut-4 to the caveolar raft fractions thereby alleviating the effects of IR injury in the diabetic myocardium.
Microbial content of household dust associated with exhaled NO in asthmatic children.
Exhaled nitric oxide (eNO) is increasingly used as a non-invasive measure of airway inflammation. Despite this, little information exists regarding the potential effects of indoor microbial components on eNO. We determined the influence of microbial contaminants in house dust and...
SIRT1 reduces endothelial activation without affecting vascular function in ApoE-/- mice
Stein, Sokrates; Schäfer, Nicola; Breitenstein, Alexander; Besler, Christian; Winnik, Stephan; Lohmann, Christine; Heinrich, Kathrin; Brokopp, Chad E.; Handschin, Christoph; Landmesser, Ulf; Tanner, Felix C.; Lüscher, Thomas F.; Matter, Christian M.
2010-01-01
Excessive production of reactive oxygen species (ROS) contributes to progression of atherosclerosis, at least in part by causing endothelial dysfunction and inflammatory activation. The class III histone deacetylase SIRT1 has been implicated in extension of lifespan. In the vasculature,SIRT1 gain-of-function using SIRT1 overexpression or activation has been shown to improve endothelial function in mice and rats via stimulation of endothelial nitric oxide (NO) synthase (eNOS). However, the effects of SIRT1 loss-of-function on the endothelium in atherosclerosis remain to be characterized. Thus, we have investigated the endothelial effects of decreased endogenous SIRT1 in hypercholesterolemic ApoE-/- mice. We observed no difference in endothelial relaxation and eNOS (Ser1177) phosphorylation between 20-week old male atherosclerotic ApoE-/- SIRT1+/- and ApoE-/- SIRT1+/+ mice. However, SIRT1 prevented endothelial superoxide production, inhibited NF-κB signaling, and diminished expression of adhesion molecules. Treatment of young hypercholesterolemic ApoE-/- SIRT1+/- mice with lipopolysaccharide to boost NF-κB signaling led to a more pronounced endothelial expression of ICAM-1 and VCAM-1 as compared to ApoE-/- SIRT1+/+ mice. In conclusion, endogenous SIRT1 diminishes endothelial activation in ApoE-/- mice, but does not affect endothelium-dependent vasodilatation. PMID:20606253
Berenyiova, A.; Drobna, M.; Lukac, S.
2016-01-01
This study investigated the effects of subchronic (−)-epicatechin (Epi) treatment on locomotor activity and hypertension development in young spontaneously hypertensive rats (SHR). Epi was administered in drinking water (100 mg/kg/day) for 2 weeks. Epi significantly prevented the development of hypertension (138 ± 2 versus 169 ± 5 mmHg, p < 0.001) and reduced total distance traveled in the open-field test (22 ± 2 versus 35 ± 4 m, p < 0.01). In blood, Epi significantly enhanced erythrocyte deformability, increased total antioxidant capacity, and decreased nitrotyrosine concentration. In the aorta, Epi significantly increased nitric oxide (NO) synthase (NOS) activity and elevated the NO-dependent vasorelaxation. In the left heart ventricle, Epi increased NOS activity without altering gene expressions of nNOS, iNOS, and eNOS. Moreover, Epi reduced superoxide production in the left heart ventricle and the aorta. In the brain, Epi increased nNOS gene expression (in the brainstem and cerebellum) and eNOS expression (in the cerebellum) but had no effect on overall NOS activity. In conclusion, Epi prevented the development of hypertension and reduced locomotor hyperactivity in young SHR. These effects resulted from improved cardiovascular NO bioavailability concurrently with increased erythrocyte deformability, without changes in NO production in the brain. PMID:27885334
Arga, M; Bakirtas, A; Topal, E; Turktas, I
2015-04-01
The interrelation between airway inflammation, bronchial hyperresponsiveness (BHR) and atopy remains controversial. The aim of this study was to document whether exhaled nitric oxide (eNO) may be used as a surrogate marker that predicts BHR to adenosine 5'-monophosphate (AMP) in steroid-naive school children with asthma. This study was a retrospective analysis of steroid-naive school age children with atopic and non-atopic asthma. All patients whose eNO levels had been measured and who had been challenged with both methacholine (MCH) and AMP were included. Receiver operation characteristic analysis was performed, in both the atopic and the non-atopic groups, to evaluate the ability of eNO to detect the BHR to AMP. One hundred and sixteen patients, sixty-nine (59.5%) of whom had been atopic, were included in the analysis. In the atopic group, eNO values were significantly higher in patients with BHR to AMP compared to those without BHR to AMP (51.9 ± 16.9 p.p.b. vs. 33.7 ± 16.4 p.p.b.; P < 0.001), whereas in the non-atopic group, the differences were not statistically significant (29.7 ± 16.9 p.p.b. vs. 22.6 ± 8.1 p.p.b.; P = 0.152). In the atopic group, eNO levels (R(2) : 0.401; β: 0.092; 95% CI: 1.19-14.42; OR: 7.12; P = 0.008) were found to be the only independent factor for BHR to AMP, whereas none of the parameters predicted BHR to AMP in the non-atopic group. The best cut-off value of eNO that significantly predicts BHR to AMP was 33.3 p.p.b. in the atopic group (P < 0.001), whereas a significant cut-off value for eNO that predicts BHR to AMP was not determined in the non-atopic group (P = 0.142). An eNO ≤ 17.4 p.p.b. has 100% negative predictive values and 100% sensitivity and 60.47% PPV for prediction of BHR to AMP in the atopic group. Exhaled NO may be used to predict BHR to AMP in atopic but not in non-atopic steroid-naïve asthmatic children. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Susilo, Imam; Devi, Anita; Purwandhono, Azham; Hadi Warsito, Sunaryo
2017-05-01
Wound healing is a physiological process that occurs progressively through overlapping phases. Tissue oxygenation is an important part of the complex regulation for wound healing. Hyperbaric Oxygen (HBO) therapy is a method of increasing oxygen delivery to tissues. The therapy improves tissue oxygenation and stimulates the formation of H2O2 as a secondary messenger for Tumour Necrosis Factor alpha (TNF α), e-NOS, VEGF and Nuclear Factor Kappa Beta phosphorylation (NF-Kb) which play an important role in the rapid transcription of a wide variety of genes in response to extracellular stimuli. This study aims to determine the effects of Hyperbaric Oxygen therapy in enhancing the expressions of e-NOS, TNF-α, VEGF and wound healing. This study is an animal study with a ‘randomized control group of pre-test and post test design’ on 28 Wistar rats. Randomly, the rats were divided into 4 groups with 7 rats in each group. The HBO treatment group 1 received 5 sessions of HBO 2.4 ATA in 3 × 30 minutes; the HBO treatment group 2 received 10 sessions of HBO 2.4 ATA in 3 × 30 minutes; and each of the control groups were without HBO. Each of the 28 male rats were given a full thickness excisional wound of 1 × 1cm. Examinations of e-NOS, TNF-α, VEGF expressions and wound healing were performed on day-0 (pre-HBO) and day-5 HBO or on day-0 (pre-HBO) and day-10 HBO. The resultsshowthat the Hyperbaric Oxygen therapy can improve e-NOS (p=0.02), TNF-α (p= 0.02), VEGF expression (p=0.02) and wound healing (p=0.002) significantly in the provision of HBO 2.4 ATA for 3 × 30 minutes in 5 sessions over 5 consecutive days. While the 10 sessions of HBO 2.4 ATA for 3 × 30 minutes over 10 consecutive days only increase e-NOS (p=0.02), TNF-α (p=0.04), VEGF expression significantly (p=0.03) but do not improve wound healing significantly (p=0.3) compared with no HBO. The study concludes that HBO can improve the expressions of e-NOS, TNF-α, VEGF and wound healing in the provision of HBO 2.4 ATA for 3 × 30 minutes in 5 sessions, while the 10 sessions of HBO 2.4 ATA for 3 × 30 minutes only increase e-NOS, TNF-α, VEGF expression but do not improve wound healing.
Haines, Ricci J; Corbin, Karen D; Pendleton, Laura C; Eichler, Duane C
2012-07-27
Endothelial nitric-oxide synthase (eNOS) utilizes l-arginine as its principal substrate, converting it to l-citrulline and nitric oxide (NO). l-Citrulline is recycled to l-arginine by two enzymes, argininosuccinate synthase (AS) and argininosuccinate lyase, providing the substrate arginine for eNOS and NO production in endothelial cells. Together, these three enzymes, eNOS, AS, and argininosuccinate lyase, make up the citrulline-NO cycle. Although AS catalyzes the rate-limiting step in NO production, little is known about the regulation of AS in endothelial cells beyond the level of transcription. In this study, we showed that AS Ser-328 phosphorylation was coordinately regulated with eNOS Ser-1179 phosphorylation when bovine aortic endothelial cells were stimulated by either a calcium ionophore or thapsigargin to produce NO. Furthermore, using in vitro kinase assay, kinase inhibition studies, as well as protein kinase Cα (PKCα) knockdown experiments, we demonstrate that the calcium-dependent phosphorylation of AS Ser-328 is mediated by PKCα. Collectively, these findings suggest that phosphorylation of AS at Ser-328 is regulated in accordance with the calcium-dependent regulation of eNOS under conditions that promote NO production and are in keeping with the rate-limiting role of AS in the citrulline-NO cycle of vascular endothelial cells.
Eguchi, Kumiko; Shindo, Tomohiko; Ito, Kenta; Ogata, Tsuyoshi; Kurosawa, Ryo; Kagaya, Yuta; Monma, Yuto; Ichijo, Sadamitsu; Kasukabe, Sachie; Miyata, Satoshi; Yoshikawa, Takeo; Yanai, Kazuhiko; Taki, Hirofumi; Kanai, Hiroshi; Osumi, Noriko; Shimokawa, Hiroaki
2018-05-22
Therapeutic focused-ultrasound to the hippocampus has been reported to exert neuroprotective effects on dementia. In the present study, we examined whether the whole-brain LIPUS (low-intensity pulsed ultrasound) therapy is effective and safe in 2 mouse models of dementia (vascular dementia, VaD and Alzheimer's disease, AD), and if so, to elucidate the common underlying mechanism(s) involved. We used bilateral carotid artery stenosis (BCAS) model with micro-coils in male C57BL/6 mice as a VaD model and 5XFAD transgenic mice as an AD model. We applied the LIPUS therapy (1.875 MHz, 6.0 kHz, 32cycles) to the whole brain. In both models, the LIPUS therapy markedly ameliorated cognitive impairments (Y-maze test and/or passive avoidance test) associated with improved cerebral blood flow (CBF). Mechanistically, the LIPUS therapy significantly increased CD31-positive endothelial cells and Olig2-positive oligodendrocyte precursor cells (OPCs) in the VaD model, while it reduced Iba-1-positive microglias and amyloid-β (Aβ) plaque in the AD model. In both models, endothelium-related genes were significantly upregulated in RNA-sequencing, and expressions of endothelial nitric oxide synthase (eNOS) and neurotrophins were upregulated in Western blotting. Interestingly, the increases in glia cells and neurotrophin expressions showed significant correlations with eNOS expression. Importantly, these beneficial effects of LIPUS were absent in eNOS-knockout mice. These results indicate that the whole-brain LIPUS is an effective and non-invasive therapy for dementia by activating specific cells corresponding to each pathology, for which eNOS activation plays an important role as a common mechanism. Copyright © 2018. Published by Elsevier Inc.
Adverse Effects of Simulated Hyper- and Hypo-Phosphatemia on Endothelial Cell Function and Viability
Zeng, Caihong; Rakheja, Dinesh; Zhu, Jiankun; Ye, Ting; Hutcheson, Jack; Vaziri, Nosratola D.; Liu, Zhihong; Mohan, Chandra; Zhou, Xin J.
2011-01-01
Background Dysregulaiton of phosphate homeostasis as occurs in chronic kidney disease is associated with cardiovascular complications. It has been suggested that both hyperphosphatemia and hypophosphatemia can cause cardiovascular disease. The molecular mechanisms by which high or low serum phosphate levels adversely affect cardiovascular function are poorly understood. The purpose of this study was to explore the mechanisms of endothelial dysfunction in the presence of non-physiologic phosphate levels. Methodology/Principal Findings We studied the effects of simulated hyper- and hypophosphatemia in human umbilical vein endothelial cells in vitro. We found both simulated hyperphosphatemia and hypophosphatemia decrease eNOS expression and NO production. This was associated with reduced intracellular calcium, increased protein kinase C β2 (PKCβ2), reduced cell viability, and increased apoptosis. While simulated hyperphosphatemia was associated with decreased Akt/p-Akt, Bcl-xl/Bax ratios, NFkB-p65 and p-Erk abundance, simulated hypophosphatemia was associated with increased Akt/p-Akt and Bcl-xl/Bax ratios and p-Mek, p38, and p-p38 abundance. Conclusions/Significance This is the first demonstration of endothelial dysfunction with hypophosphatemia. Our data suggests that both hyperphosphatemia and hypophosphatemia decrease eNOS activity via reduced intracellular calcium and increased PKCβ2. Hyperphosphatemia also appears to reduce eNOS transcription via reduced signaling through PI3K/Akt/NF-kB and MAPK/NF-kB pathways. On the other hand, hypophosphatemia appears to activate these pathways. Our data provides the basis for further studies to elucidate the relationship between altered phosphate homeostasis and cardiovascular disease. As a corollary, our data suggests that the level of phosphate in the culture media, if not in the physiologic range, may inadvertently affect experimental results. PMID:21858050
Kong, Xiang; Ma, Ming-Zhe; Qin, Li; Zhang, Yan; Li, Xiao-Yong; Wang, Guo-Dong; Su, Qing; Zhang, Dao-You
2014-09-01
This study was designed to investigate the underlying mechanisms of synergistic antihypertensive effect produced by combination therapy of losartan and pioglitazone in metabolic syndrome (MS) rats. An MS model was induced by feeding rats a high-fat, high-sodium diet and 20% sucrose solution. Losartan (20 mg/kg/day), pioglitazone (10 mg/kg/day), and their combination were orally administered for eight consecutive weeks. Systolic blood pressure (SBP) and mean arterial pressure (MAP) were measured using the tail-cuff method and carotid arterial catheterization, respectively. The aortas were isolated and in vitro vascular reactivity studies were performed. The protein expression of angiotensin type 1 receptor (AT1), endothelial nitric oxide synthase (eNOS), phosphorylated eNOS and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit p47(phox), level of nitrotyrosine as well as activity of eNOS and NADPH oxidase in aortas of MS rats were detected. After eight weeks of treatment, the SBP and MAP in the losartan (115 ± 5 and 106 ± 6 mmHg), pioglitazone (130 ± 6 and 118 ± 6 mmHg), and combination therapy (105 ± 6 and 98 ± 5 mmHg) groups were lower than those in the model group (150 ± 8 and 136 ± 9 mmHg). Combination therapy of losartan and pioglitazone reduced BP more than either monotherapy, and showed additive effects on improving endothelial dysfunction and abolishing the increased vascular responsiveness to angiotensin II. These synergistic effects were associated with further reductions in protein expression of p47(phox) and AT1, NADPH oxidase activity, and nitrotyrosine level. Our data indicate that combined treatment exerts more beneficial effects on lowering BP and improving vascular lesions. © The Author(s) 2013.
Sharma, Ashok Kumar; Bharti, Saurabh; Bhatia, Jagriti; Nepal, Saroj; Malik, Salma; Ray, Ruma; Kumari, Santosh; Arya, Dharamvir Singh
2012-11-01
Increased oxidative stress and inflammation in obesity are the central and causal components in the pathogenesis and progression of cardiometabolic syndrome (CMetS). The aim of the study was to determine the potential role of sesamol (a natural powerful antioxidant and anti-inflammatory phenol derivative of sesame oil) in chronic high-cholesterol/high-fat diet (HFD)-induced CMetS in rats and to explore the molecular mechanism driving this activity. Rats were fed with HFD (55% calorie from fat and 2% cholesterol) for 60 days to induce obesity, dyslipidemia, insulin resistance (IR), hepatic steatosis and hypertension. On the 30th day, rats with total cholesterol >150 mg/dl were considered hypercholesterolemic and administered sesamol 2, 4 and 8 mg/kg per day for the next 30 days. Sesamol treatment decreased IR, hyperinsulinemia, hyperglycemia, dyslipidemia, TNF-α, IL-6, leptin, resistin, highly sensitive C-reactive protein (hs-CRP), hepatic transaminases and alkaline phosphatase, along with normalization of adiponectin, nitric oxide and arterial pressures in a dose-dependent fashion. Increased TBARS, nitrotyrosine and decreased antioxidant enzyme activities were also amended in HFD rats. Similarly, sesamol normalized hepatic steatosis and ultrastructural pathological alteration in hepatocytes, although the effect was more pronounced at 8 mg/kg. Furthermore, hepatic PPARγ, PPARα and e-NOS protein expressions were increased, whereas LXRα, SERBP-1c, P-JNK and NF-κB expression were decreased by sesamol treatment. These results suggest that sesamol attenuates oxidative stress, inflammation, IR, hepatic steatosis and hypertension in HFD-fed rats via modulating PPARγ, NF-κB, P-JNK, PPARα, LXRα, SREBP-1c and e-NOS protein expressions, thereby preventing CMetS. Thus, the present study demonstrates the therapeutic potential of sesamol in alleviating CMetS. Copyright © 2012 Elsevier Inc. All rights reserved.
Yuan, Xiao-Hua; Fan, Yang-Yang; Yang, Chun-Rong; Gao, Xiao-Rui; Zhang, Li-Li; Hu, Ying; Wang, Ya-Qin; Jun, Hu
2016-01-01
The role of progesterone on the cardiovascular system is controversial. Our present research is to specify the effect of progesterone on arterial endothelial cells in response to oxidative stress. Our result showed that H2O2 (150 μM and 300 μM) induced cellular antioxidant response. Glutathione (GSH) production and the activity of Glutathione peroxidase (GPx) were increased in H2O2-treated group. The expression of glutamate cysteine ligase catalytic subunit (GCLC) and modifier subunit (GCLM) was induced in response to H2O2. However, progesterone absolutely abolished the antioxidant response through increasing ROS level, inhibiting the activity of Glutathione peroxidase (GPx), decreasing GSH level and reducing expression of GClC and GCLM. In our study, H2O2 induced nitrogen monoxide (NO) production and endothelial nitric oxide synthase (eNOS) expression, and progesterone promoted H2O2-induced NO production. Progesterone increased H2O2-induced expression of hypoxia inducible factor-α (HIFα) which in turn regulated eNOS expression and NO synthesis. Further study demonstrated that progesterone increased H2O2 concentration of culture medium which may contribute to NO synthesis. Exogenous GSH decreased the content of H2O2 of culture medium pretreated by progesterone combined with H2O2 or progesterone alone. GSH also inhibited expression of HIFα and eNOS, and abolished NO synthesis. Collectively, our study demonstrated for the first time that progesterone inhibited cellular antioxidant effect and increased oxidative stress, promoted NO production of arterial endothelial cells, which may be due to the increasing H2O2 concentration and amplified oxidative stress signal. Copyright © 2015. Published by Elsevier Ltd.
Mohan, Srinidi; Harding, Lisa
2016-10-01
The therapeutic benefits associated with short-term l-arginine supplementation are lost during continuous dosing. AMP-activated protein kinase (AMPK) functional modulation has been correlated with l-arginine therapeutic effectiveness, and with tolerance development during continuous supplementation. However, the metabolic link that is responsible for AMPK functional modulation during continuous l-arginine exposure is currently not known. To explore this, we incubated HUVECs for 7 days with 100 μmol/L l-arginine, in the presence or absence of other agents; and monitored their effects for eNOS function, and on tolerance sparing effects (viz, cellular glucose accumulation, and oxidative stress). HUVEC co-incubation with 100 μmol/L l-arginine and ≤1200 mg/mL calcium (Ca 2+ ) for 7 days avoided tolerance development, with an at least 1-fold increase in the eNOS and AMPK functional activity; and an 1-fold increase in overall cellular glucose uptake. The overall cellular cytosolic Ca 2+ was below 200 nmol/L, with no change in cellular glucose and superoxide/peroxynitrite (O 2 •- /ONOO - ) level from control. However, tolerance sparing effects of at least 70% decrease in eNOS and AMPK functional response, with an 1-fold reduction in glucose uptake, and at least 2-fold increase in O 2 •- /ONOO - were observed in cells exposed for 7 days to 100 μmol/L l-arginine at Ca 2+ co-incubation concentration of >1200 mg/mL. The >1200 mg/mL Ca2+ co-incubation condition, also improved the overall cellular Ca 2+ to >200 nmol/L. Similar tolerance response was observed in cells co-treated with 100 μmol/L l-arginine and ≤1200 mg/mL Ca 2+ in the presence of Ca 2+ influx inhibitor (20 μmol/L 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetra acetic acid), or eNOS activity inhibitor (30 μmol/L l-N G -nitroarginine methyl ester). No tolerance response was seen in cells incubated for 7 days with 100 μmol/L l-arginine and ≤1200 mg/mL Ca 2+ ; even in the presence of the inhibitor for cellular glucose induction (30 μmol/L 5-chloro-2-(n-(2,5-dichlorobenzenesulfonamide))-benzoxazole). The present study thus provides the first definitive evidence that shows the need to maintain cytosolic Ca 2+ within a threshold limit of less than 200 nmol/L to extend l-arginine therapeutic efficacy during continuous dosing, without any potential tolerance development. Copyright © 2016 Elsevier Inc. All rights reserved.
Is There a Role for Bioactive Lipids in the Pathobiology of Diabetes Mellitus?
Das, Undurti N.
2017-01-01
Inflammation, decreased levels of circulating endothelial nitric oxide (eNO) and brain-derived neurotrophic factor (BDNF), altered activity of hypothalamic neurotransmitters (including serotonin and vagal tone) and gut hormones, increased concentrations of free radicals, and imbalance in the levels of bioactive lipids and their pro- and anti-inflammatory metabolites have been suggested to play a role in diabetes mellitus (DM). Type 1 diabetes mellitus (type 1 DM) is due to autoimmune destruction of pancreatic β cells because of enhanced production of IL-6 and tumor necrosis factor-α (TNF-α) and other pro-inflammatory cytokines released by immunocytes infiltrating the pancreas in response to unknown exogenous and endogenous toxin(s). On the other hand, type 2 DM is due to increased peripheral insulin resistance secondary to enhanced production of IL-6 and TNF-α in response to high-fat and/or calorie-rich diet (rich in saturated and trans fats). Type 2 DM is also associated with significant alterations in the production and action of hypothalamic neurotransmitters, eNO, BDNF, free radicals, gut hormones, and vagus nerve activity. Thus, type 1 DM is because of excess production of pro-inflammatory cytokines close to β cells, whereas type 2 DM is due to excess of pro-inflammatory cytokines in the systemic circulation. Hence, methods designed to suppress excess production of pro-inflammatory cytokines may form a new approach to prevent both type 1 and type 2 DM. Roux-en-Y gastric bypass and similar surgeries ameliorate type 2 DM, partly by restoring to normal: gut hormones, hypothalamic neurotransmitters, eNO, vagal activity, gut microbiota, bioactive lipids, BDNF production in the gut and hypothalamus, concentrations of cytokines and free radicals that results in resetting glucose-stimulated insulin production by pancreatic β cells. Our recent studies suggested that bioactive lipids, such as arachidonic acid, eicosapentaneoic acid, and docosahexaenoic acid (which are unsaturated fatty acids) and their anti-inflammatory metabolites: lipoxin A4, resolvins, protectins, and maresins, may have antidiabetic actions. These bioactive lipids have anti-inflammatory actions, enhance eNO, BDNF production, restore hypothalamic dysfunction, enhance vagal tone, modulate production and action of ghrelin, leptin and adiponectin, and influence gut microbiota that may explain their antidiabetic action. These pieces of evidence suggest that methods designed to selectively deliver bioactive lipids to pancreatic β cells, gut, liver, and muscle may prevent type 1 and type 2 DM. PMID:28824543
VANADYL SULFATE INHIBITS NO PRODUCTION BY DIFFERENTIALLY REGULATING SERINE/THREONINE PHOSPHORYLATION OF eNOS.
Zhuowei Li, Jacqueline D. Carter, Lisa A. Dailey, Joleen Soukup, Yuh-Chin T. Huang. CEMALB, University of North Carolina and NHEERL, US EPA, Chapel Hill, North Ca...
VANADYL SULFATE INHIBITS NO PRODUCTION BY DIFFERENTIALLY REGULATING SERINE/THREONINE PHOSPHORYLATION OF eNOS. Zhuowei Li, Jacqueline D. Carter, Lisa A. Dailey, Joleen Soukup, Yuh-Chin T. Huang. CEMALB, University of North Carolina and ORD, US EPA, Chapel Hill, North Carolina
V...
Short-term effects of electronic and tobacco cigarettes on exhaled nitric oxide.
Marini, Sara; Buonanno, Giorgio; Stabile, Luca; Ficco, Giorgio
2014-07-01
The objective of this study was to compare the short-term respiratory effects due to the inhalation of electronic and conventional tobacco cigarette-generated mainstream aerosols through the measurement of the exhaled nitric oxide (eNO). To this purpose, twenty-five smokers were asked to smoke a conventional cigarette and to vape an electronic cigarette (with and without nicotine), and an electronic cigarette without liquid (control session). Electronic and tobacco cigarette mainstream aerosols were characterized in terms of total particle number concentrations and size distributions. On the basis of the measured total particle number concentrations and size distributions, the average particle doses deposited in alveolar and tracheobronchial regions of the lungs for a single 2-s puff were also estimated considering a subject performing resting (sitting) activity. Total particle number concentrations in the mainstream resulted equal to 3.5±0.4×10(9), 5.1±0.1×10(9), and 3.1±0.6×10(9) part. cm(-3) for electronic cigarettes without nicotine, with nicotine, and for conventional cigarettes, respectively. The corresponding alveolar doses for a resting subject were estimated equal to 3.8×10(10), 5.2×10(10) and 2.3×10(10) particles. The mean eNO variations measured after each smoking/vaping session were equal to 3.2ppb, 2.7ppb and 2.8ppb for electronic cigarettes without nicotine, with nicotine, and for conventional cigarettes, respectively; whereas, negligible eNO changes were measured in the control session. Statistical tests performed on eNO data showed statistically significant differences between smoking/vaping sessions and the control session, thus confirming a similar effect on human airways whatever the cigarette smoked/vaped, the nicotine content, and the particle dose received. Copyright © 2014 Elsevier Inc. All rights reserved.
2014-01-01
Background Azilsartan, an angiotensin II type 1 (AT1) receptor blocker (ARB), has a higher affinity for and slower dissociation from AT1 receptors and shows stronger inverse agonism compared to other ARBs. Possible benefits of azilsartan in diabetic vascular dysfunction have not been established. Methods We measured vascular reactivity of aortic rings in male KKAy diabetic mice treated with vehicle, 0.005% azilsartan, or 0.005% candesartan cilexetil for 3 weeks. Expression of markers of inflammation and oxidative stress was measured using semiquantitative RT-PCR in the vascular wall, perivascular fat, and skeletal muscle. Phosphorylation of endothelial nitric oxide synthase (eNOS) at Ser1177 and Thr495 was measured using Western blotting, and the ratio of phosphorylation at Ser1177 to phosphorylation at Thr495 was used as a putative indicator of vascular eNOS activity. Results (1) Vascular endothelium–dependent relaxation with acetylcholine in KKAy mice was improved by azilsartan treatment compared to candesartan cilexetil; (2) the ratio of Ser1177/Thr495 phosphorylation of eNOS was impaired in KKAy and was effectively restored by azilsartan; (3) anomalies in the expression levels of monocyte chemotactic protein 1 (MCP1), F4/80, NAD(P)H oxidase (Nox) 2, and Nox4 of the aortic wall and in the expression of TNFα in the perivascular fat were strongly attenuated by azilsartan compared to candesartan cilexetil. Conclusions These results provide evidence that azilsartan prevents endothelial dysfunction in diabetic mice, more potently than does candesartan cilexetil. Azilsartan’s higher affinity for and slower dissociation from AT1 receptors may underlie its efficacy in diabetic vascular dysfunction via a dual effect on uncoupled eNOS and on Nox. PMID:24485356
Luo, Liyun; Chen, Bairong; Huang, Yin; Liang, Zibin; Li, Songbiao; Yin, Yuelan; Chen, Jian; Wu, Wei
2016-01-01
Exogenous administration of placental growth factor (PlGF) stimulates angiogenesis and improves ventricular remodeling after acute myocardial infarction (AMI), and supplementation with l-arginine ameliorates endothelial function. The objective of the present study was to compare the cardioprotective effects of combination therapy of PlGF and l-arginine with those of direct administration of PlGF alone in a rat model of AMI. Fifty male Sprague Dawley rats were randomly divided into five groups: sham group, normal saline group, l-arginine group, PlGF group, and combination group (PlGF + l-arginine). An AMI rat model was established by ligation of the left anterior descending of coronary arteries. After 4 weeks of postligation treatment, cardiac function, scar area, angiogenesis and arteriogenesis, myocardial endothelial nitric oxide synthase (eNOS) and collagen I protein content, and plasma concentration of brain natriuretic peptide (BNP) were studied. Echocardiography, Masson's staining, immunohistochemical analyses, Western blot, and enzyme-linked immunosorbent assay were performed. Left ventricular ejection fraction (LVEF), left ventricular fraction shortening (LVFS), and capillary and arteriole densities were higher in the PlGF group than in the normal saline group ( P <0.01). Scar area, collagen I protein content, and plasma concentration of BNP were decreased in the PlGF group ( P <0.01). Myocardial eNOS protein level was elevated in the l-arginine group and PlGF + l-arginine group ( P <0.01). Compared with the PlGF group, LVEF, LVFS, myocardial eNOS, and capillary and arteriole densities were higher in the combination group ( P <0.01). Scar area, content of collagen I protein, and plasma concentration of BNP were reduced in the combination group ( P <0.01). Exogenous administration of PlGF stimulates angiogenesis and improves cardiac function. l-arginine increases the expression of the eNOS protein. PlGF and l-arginine have a more pronounced, synergistic protective effect on myocardial protection compared with that of exogenous PlGF therapy alone.
The Role of Nitric Oxide during Sonoreperfusion of Microvascular Obstruction
Yu, Francois T.H.; Chen, Xucai; Straub, Adam C.; Pacella, John J.
2017-01-01
Rationale: Microembolization during PCI for acute myocardial infarction can cause microvascular obstruction (MVO). MVO severely limits the success of reperfusion therapies, is associated with additional myonecrosis, and is linked to worse prognosis, including death. We have shown, both in in vitro and in vivo models, that ultrasound (US) and microbubble (MB) therapy (termed “sonoreperfusion” or “SRP”) is a theranostic approach that relieves MVO and restores perfusion, but the underlying mechanisms remain to be established. Objective: In this study, we investigated the role of nitric oxide (NO) during SRP. Methods and results: We first demonstrated in plated cells that US-stimulated MB oscillations induced a 6-fold increase in endothelial nitric oxide synthase (eNOS) phosphorylation in vitro. We then monitored the kinetics of intramuscular NO and perfusion flow rate responses following 2-min of SRP therapy in the rat hindlimb muscle, with and without blockade of eNOS with LNAME. Following SRP, we found that starting at 6 minutes, intramuscular NO increased significantly over 30 min and was higher than baseline after 13 min. Concomitant contrast enhanced burst reperfusion imaging confirmed that there was a marked increase in perfusion flow rate at 6 and 10 min post SRP compared to baseline (>2.5 fold). The increases in intramuscular NO and perfusion rate were blunted with LNAME. Finally, we tested the hypothesis that NO plays a role in SRP by assessing reperfusion efficacy in a previously described rat hindlimb model of MVO during blockade of eNOS. After US treatment 1, microvascular blood volume was restored to baseline in the MB+US group, but remained low in the LNAME group. Perfusion rates increased in the MB+US group after US treatment 2 but not in the MB+US+LNAME group. Conclusions: These data strongly support that MB oscillations can activate the eNOS pathway leading to increased blood perfusion and that NO plays a significant role in SRP efficacy. PMID:28912893
Rahman, Md Saydur; Thomas, Peter
2018-04-01
Although marine and coastal environments which are contaminated with xenobiotic organic compounds often become hypoxic during the summer, the interactive effects of hypoxia and xenobiotic exposure on marine species such as teleost fishes remain poorly understood. The expression and activity of monooxygenase enzyme cytochrome P450-1A (CYP1A) in fishes are upregulated by exposure to polychlorinated biphenyls (PCBs), whereas they are down-regulated during hypoxia exposure. We investigated the interactive effects of hypoxia and PCB co-exposure on hepatic CYP1A expression in Atlantic croaker and on potential regulators of CYP1A. Croaker were exposed to hypoxia (1.7 mg/L dissolved oxygen), 3,3',4,4'-tetrachlorobiphenyl (PCB 77, dose: 2 and 8 µg/g body weight), and Aroclor 1254 (a common PCB mixture, dose: 0.5 and 1 µg/g body weight), alone and in combination for 4 weeks. PCB 77 exposure markedly increased hepatic CYP1A mRNA and protein expression, and ethoxyresorufin-O-deethylase (EROD, an indicator of CYP1A enzyme) activity and increased endothelial nitric oxide synthase (eNOS) protein expression. PCB 77 treatment also increased interleukin-1β (IL-1β, a cytokine) mRNA levels and protein carbonyl (PC, an indicator of reactive oxygen species, ROS) contents. These marked PCB 77- and Aroclor 1254-induced increases in CYP1A mRNA levels and EROD activity were significantly attenuated by co-exposure to hypoxia, whereas the increases in hepatic eNOS protein and IL-1β mRNA expression, and PC contents were augmented by hypoxia co-exposure. The results suggest that biotransformation of organic xenobiotics by CYP1A is reduced in fish during co-exposure to hypoxia and is accompanied by alterations in eNOS, ROS, and IL-1β levels. © 2018 Wiley Periodicals, Inc.
Activation of the NLRP3 inflammasome induces vascular dysfunction in obese OLETF rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Penghao; Xie, Qihai; Wei, Tong
Objective: Obesity-induced vascular dysfunction is related to chronic low-grade systemic inflammation. Recent studies indicate that NLRP3, a multiprotein complex formed by NOD-like receptor (NLR) family members, is a key component mediating internal sterile inflammation, but the role in obesity-related vascular dysfunction is largely unknown. In the present study, we investigate whether NLRP3 activation is involved in vascular inflammation in obese Otsuka Long-Evans Tokushima Fatty rats (OLETF). Methods and results: Male OLETF with their control Long-Evans Tokushima Otsuka rats (LETO) were studied at 3 and 12 months of age. Aortic relaxation in response to acetylcholine decreased gradually with age in bothmore » strains, with early and persistent endothelium dysfunction in obese OLETF compared with age-matched LETO controls. These changes are associated with parallel changes of aortic endothelial nitric oxide synthase (eNOS) content, macrophage accumulation and intimal thickening. NLRP3 increased in OLETF rats compared to LETO. Consistent with inflammasome activation, the conversion of procaspase-1 to cleaved and activated forms as well as IL-1β markedly increased in OLETF rats. Additionally, we observed increased expression of dynamin-related protein-1 (Drp1) and decreased fusion-relative protein optic atropy-1(OPA1). Altered mitochondrial dynamics was associated with elevated oxidative stress level in OLETF aortas. Conclusions: These results demonstrate that obesity seems to accelerate endothelial dysfunction in OLETFs via the activation of NLRP3 and mitochondrial dysfunction. - Highlights: • NLRP3 is involved in obesity-induced vascular dysfunction. • Impaired mitochondrial dynamics may have been linked to mitochondrial defect and inflammasome activation. • Obesity seems to accelerate vascular dysfunction via NLRP3 activation and mitochondrial dysfunction.« less
Designing and Validation of One-Step T-ARMS-PCR for Genotyping the eNOS rs1799983 SNP
Heidar, Mohammad Mehdi; Khatami, Mehri
2017-01-01
Background: The transversion of G to T (G894T) in human endothelial nitric oxide synthase (eNOS) gene has profound effects such as male infertility, recurrent miscarriage, multiple sclerosis and cardiovascular diseases. Objectives: Development of a new Multiplex Tetra-Primer Amplification Refractory Mutation System - Polymerase Chain Reaction (T-ARMS-PCR) for detection of rs1799983 (G894T) in the human eNOS was sought. Materials and Methods: A T-ARMS-PCR for rs1799983 polymorphism in a single-step PCR was carried out, and the results were confirmed by PCR-RFLP technique in 82 infertile men with varicocele. Results: The results showed that GG (varicocele infertile men), GT and TT genotypes appear to be 53.65%, 34.14%, and 12.19%, respectively. Full accordance between PCR-RFLP and T-ARMS-PCR methods for genotyping of rs1799983 polymorphism was found. Conclusions: This is the first work that describes a rapid, relatively cheap, high throughput detection of G894T polymorphism in eNOS that can be used in large scale clinical studies. PMID:29845071
Designing and Validation of One-Step T-ARMS-PCR for Genotyping the eNOS rs1799983 SNP.
Heidar, Mohammad Mehdi; Khatami, Mehri
2017-01-01
Background: The transversion of G to T (G894T) in human endothelial nitric oxide synthase ( eNOS ) gene has profound effects such as male infertility, recurrent miscarriage, multiple sclerosis and cardiovascular diseases. Objectives: Development of a new Multiplex Tetra-Primer Amplification Refractory Mutation System - Polymerase Chain Reaction (T-ARMS-PCR) for detection of rs1799983 (G894T) in the human eNOS was sought. Materials and Methods: A T-ARMS-PCR for rs1799983 polymorphism in a single-step PCR was carried out, and the results were confirmed by PCR-RFLP technique in 82 infertile men with varicocele. Results: The results showed that GG (varicocele infertile men), GT and TT genotypes appear to be 53.65%, 34.14%, and 12.19%, respectively. Full accordance between PCR-RFLP and T-ARMS-PCR methods for genotyping of rs1799983 polymorphism was found. Conclusions: This is the first work that describes a rapid, relatively cheap, high throughput detection of G894T polymorphism in eNOS that can be used in large scale clinical studies.
Baleva, M V; Meyer, M; Entelis, N; Tarassov, I; Kamenski, P; Masquida, B
2017-11-01
In yeast, the import of tRNA Lys with CUU anticodon (tRK1) relies on a complex mechanism where interaction with enolase 2 (Eno2p) dictates a deep conformational change of the tRNA. This event is believed to mask the tRNA from the cytosolic translational machinery to re-direct it towards the mitochondria. Once near the mitochondrial outer membrane, the precursor of the mitochondrial lysyl-tRNA synthetase (preMsk1p) takes over enolase to carry the tRNA within the mitochondrial matrix, where it is supposed to participate in translation following correct refolding. Biochemical data presented in this report focus on the role of enolase. They show that despite the inability of Eno2p alone to form a complex with tRK1, mitochondrial import can be recapitulated in vitro using fractions of yeast extracts sharing either recombinant or endogenous yeast Eno2p as one of the main components. Taken together, our data suggest the existence of a protein complex containing Eno2p that is involved in RNA mitochondrial import.
Iwakiri, Yasuko; Satoh, Ayano; Chatterjee, Suvro; Toomre, Derek K.; Chalouni, Cecile M.; Fulton, David; Groszmann, Roberto J.; Shah, Vijay H.; Sessa, William C.
2006-01-01
Nitric oxide (NO) is a highly diffusible and short-lived physiological messenger. Despite its diffusible nature, NO modifies thiol groups of specific cysteine residues in target proteins and alters protein function via S-nitrosylation. Although intracellular S-nitrosylation is a specific posttranslational modification, the defined localization of an NO source (nitric oxide synthase, NOS) with protein S-nitrosylation has never been directly demonstrated. Endothelial NOS (eNOS) is localized mainly on the Golgi apparatus and in plasma membrane caveolae. Here, we show by using eNOS targeted to either the Golgi or the nucleus that S-nitrosylation is concentrated at the primary site of eNOS localization. Furthermore, localization of eNOS on the Golgi enhances overall Golgi protein S-nitrosylation, the specific S-nitrosylation of N-ethylmaleimide-sensitive factor and reduces the speed of protein transport from the endoplasmic reticulum to the plasma membrane in a reversible manner. These data indicate that local NOS action generates organelle-specific protein S-nitrosylation reactions that can regulate intracellular transport processes. PMID:17170139
Drozdovs'ka, S B; Lysenko, O M; Dosenko, V Ie; Il'ïn, V M; Moĭbenko, O O
2013-01-01
Given the significant impact of the T(-786) --> C-polymorphism of the eNOS gene in the process of adaptation to physical stress, we aimed to investigate the effect of this polymorphism on physical performance in sportsmen and establish the possibility of its use as a marker of predisposition to the sport. DNA of 516 people, of which 195 qualified athletes and 321 people who had no experience of regular exercise was investigated. The frequency of genotypes and alleles of the T(-786) --> C-polymorphism of the eNOS gene in groups of athletes of different sports, the distribution of genotypes and alleles among athletes and those who are not involved in sports were studied. T allele frequency in a group of athletes on 6.4% (r(chi)2 = 0.03) than in control group. The association of the T allele of the T(-786) --> C-polymorphism of the eNOS gene with a predisposition for speed and power was established. In the group of athletes in speed and power sports, the T-allele frequency was higher than that in the control group by 12% (r(chi)2 = 0.002) and than in group endurance sports by 10% (r(chi)2 = 0.004). We found that the T(-786) --> C-polymorphism of the eNOS gene influence the power and efficiency ofthe functioning of the cardiorespiratory system of athletes during exercise.
Ravasi, Ali Asghar
2017-01-01
Introduction Menopause is an independent risk factor for cardiovascular disease (CVD). Physical exercise and soybean diets have been suggested to reduce the risk of CVD in postmenopausal women. The purpose of this study was to investigate the effects of combined resistance and endurance (RE) training and soy extract (SOY) supplementation, both known to improve endothelial function, on expression of the eNOS gene in the heart of ovariectomized (OVX) rats. Material and methods Fifty female Wistar rats were divided into five groups: 1) sham (SHAM); 2) ovariectomy (OVX); 3) ovariectomy with soy extract supplementation (OVX + SOY); 4) OVX with RE training (OVX + RE); 5) and ovariectomy plus RE training with soy extract supplementation (OVX + RE + SOY). RE training and soy extract supplementation were administered alone or in combination for 6 weeks. The effects of these treatments on cardiac eNOS expression were measured using real-time PCR. Results Ovariectomy down-regulated cardiac eNOS gene expression; however, 6 weeks of SOY treatment or RE training reversed this effect (p ≤ 0.05). The combination of SOY plus RE was greater than RE or SOY alone in reversing estrogen-deficiency-caused eNOS down-regulation (p ≤ 0.05). Conclusions Our data suggest that the combinatory regimen of soy extract supplementation and regular RE training may be more beneficial to cardiovascular disease risk in a menopause rat model than either exercise or soy supplementation alone. PMID:29242848
NASA Astrophysics Data System (ADS)
Rehman, Shagufta; Brown-Steinke, Kathleen; Palmer, Lisa; Periasamy, Ammasi
2015-03-01
Confocal FRET microscopy is a widely used technique for studying protein-protein interactions in live or fixed cells. Endothelial nitric oxide synthase (eNOS) and S-nitrosoglutathione reductase (GSNOR) are enzymes involved in regulating the bioavailability of S-nitrosothiols (SNOs) in the pulmonary endothelium and have roles in the development of pulmonary arterial hypertension. Labeling of endogenous proteins to better understand a disease process can be challenging. We have used immunofluorescence to detect endogenous eNOS and GSNOR in primary pulmonary endothelial cells to co-localize these proteins as well as to study their interaction by FRET. The challenge has been in selecting the right immunofluorescence labeling condition, right antibody, the right blocking reagent, the right FRET pair and eliminating cross-reactivity of secondary antibodies. We have used Alexa488 and Alexa568 as a FRET pair. After a series of optimizations, the data from Confocal Laser Scanning Microscopy (CLSM) demonstrate co-localization of eNOS and GSNOR in the perinuclear region of the pulmonary endothelial cell primarily within the cis-Golgi with lower levels of co-localization seen within the trans-Golgi. FRET studies demonstrate, for the first time, interaction between eNOS and GSNOR in both murine and bovine pulmonary endothelial cells. Further characterization of eNOSGSNOR interaction and the subcellular location of this interaction will provide mechanistic insight into the importance of S-nitrosothiol signaling in pulmonary biology, physiology and pathology.
Differential Proteomic Analysis of Noncardia Gastric Cancer from Individuals of Northern Brazil
Leal, Mariana Ferreira; Chung, Janete; Calcagno, Danielle Queiroz; Assumpção, Paulo Pimentel; Demachki, Samia; da Silva, Ismael Dale Cotrim Guerreiro; Chammas, Roger; Burbano, Rommel Rodríguez; de Arruda Cardoso Smith, Marília
2012-01-01
Gastric cancer is the second leading cause of cancer-related death worldwide. The identification of new cancer biomarkers is necessary to reduce the mortality rates through the development of new screening assays and early diagnosis, as well as new target therapies. In this study, we performed a proteomic analysis of noncardia gastric neoplasias of individuals from Northern Brazil. The proteins were analyzed by two-dimensional electrophoresis and mass spectrometry. For the identification of differentially expressed proteins, we used statistical tests with bootstrapping resampling to control the type I error in the multiple comparison analyses. We identified 111 proteins involved in gastric carcinogenesis. The computational analysis revealed several proteins involved in the energy production processes and reinforced the Warburg effect in gastric cancer. ENO1 and HSPB1 expression were further evaluated. ENO1 was selected due to its role in aerobic glycolysis that may contribute to the Warburg effect. Although we observed two up-regulated spots of ENO1 in the proteomic analysis, the mean expression of ENO1 was reduced in gastric tumors by western blot. However, mean ENO1 expression seems to increase in more invasive tumors. This lack of correlation between proteomic and western blot analyses may be due to the presence of other ENO1 spots that present a slightly reduced expression, but with a high impact in the mean protein expression. In neoplasias, HSPB1 is induced by cellular stress to protect cells against apoptosis. In the present study, HSPB1 presented an elevated protein and mRNA expression in a subset of gastric cancer samples. However, no association was observed between HSPB1 expression and clinicopathological characteristics. Here, we identified several possible biomarkers of gastric cancer in individuals from Northern Brazil. These biomarkers may be useful for the assessment of prognosis and stratification for therapy if validated in larger clinical study sets. PMID:22860099
Kaur, Savneet; Kumar, T R Santhosh; Uruno, Akira; Sugawara, Akira; Jayakumar, Karunakaran; Kartha, Chandrasekharan Cheranellore
2009-11-01
Recent studies have reported a marked impairment in the number and functions of endothelial progenitor cells (EPCs) in patients with coronary artery disease (CAD). In view of an important role of eNOS in angiogenesis, in the present study, we evaluated the effects of eNOS gene transfer in ex vivo expanded EPCs isolated from patients with CAD. The expanded EPCs were transfected with mammalian expression vector pcDNA3.1-eNOS containing the full-length human eNOS gene using lipofectamine. About 35-40% of the eNOS-EPCs had higher expression of eNOS as compared to untransfected EPCs. EPCs transfected with pcDNA3.0-EGFP, the plasmid vector expressing green fluorescent protein (GFP) were used as control. The untransfected, GFP-transfected and eNOS-transfected EPCs were compared in terms of important functional attributes of angiogenesis such as proliferation, migration, differentiation and adhesion/integration into tube-like structures in vitro. Functional studies revealed that in the presence of defined growth conditions, compared to the untransfected and GFP-transfected cells, eNOS-EPCs from patients with CAD have a significant increase in [3H] thymidine-labeled DNA (P < 0.01), migration (14.6 +/- 1.8 and 16.5 +/- 1.9 vs. 23.5 +/- 3.4 cells/field, P < 0.01), ability to differentiate into endothelial-like spindle-shaped cells (46 +/- 4.5 and 56.5 +/- 2.1 vs. 93.2 +/- 6.6 cells/field, P < 0.001) and also incorporation into tube-like structures on the matrigel (GFP-EPCs: 21.25 +/- 2.9 vs. GFP-eNOS-EPCs: 34.5 +/- 5.5 cells/field, P < 0.05). We conclude that eNOS gene transfection is a valuable approach to augment angiogenic properties of ex vivo expanded EPCs and eNOS-modified EPCs may offer significant advantages than EPCs alone in terms of their clinical use in patients with myocardial ischemia.
Rosón, María I; Della Penna, Silvana L; Cao, Gabriel; Gorzalczany, Susana; Pandolfo, Marcela; Toblli, Jorge E; Fernández, Belisario E
2010-07-01
The aim of this work was to study the role of local intrarenal angiotensin II (Ang II) and the oxidative stress in the up-regulation of pro-inflammatory cytokines expression observed in rats submitted to an acute sodium overload. Sprague-Dawley rats were infused for 2 h with isotonic saline solution (Control group) and with hypertonic saline solution alone (Na group), plus the AT1 receptor antagonist losartan (10 mg kg(-1) in bolus) (Na-Los group), or plus the superoxide dismutase mimetic tempol (0.5 mg min(-1) kg(-1)) (Na-Temp group). Mean arterial pressure, glomerular filtration rate, and fractional sodium excretion (FE(Na)) were measured. Ang II, NF-kappaB, hypoxia inducible factor-1 alpha (HIF-1 alpha), transforming growth factor beta1 (TGF-beta1), smooth muscle actin (alpha-SMA), endothelial nitric oxide synthase (eNOS), and RANTES renal expression was evaluated by immunohistochemistry. Ang II, NF-kappaB, and TGF-beta1 and RANTES early inflammatory markers were overexpressed in Na group, accompanied by enhanced HIF-1 alpha immunostaining, lower eNOS expression, and unmodified alpha-SMA. Losartan and tempol increased FE(Na) in sodium overload group. Although losartan reduced Ang II and NF-kappaB staining and increased eNOS expression, it did not restore HIF-1 alpha expression and did not prevent inflammation. Conversely, tempol increased eNOS and natriuresis, restored HIF-1 alpha expression, and prevented inflammation. Early inflammatory markers observed in rats with acute sodium overload is associated with the imbalance between HIF-1 alpha and eNOS expression. While both losartan and tempol increased natriuresis and eNOS expression, only tempol was effective in restoring HIF-1 alpha expression and down-regulating TGF-beta1 and RANTES expression. The protective role of tempol, but not of losartan, in the inflammatory response may be associated with its greater antioxidant effects. (c) 2010 Wiley-Liss, Inc.
Zhou, Minglong; Widmer, R. Jay; Xie, Wei; Jimmy Widmer, A.; Miller, Matthew W.; Schroeder, Friedhelm; Parker, Janet L.
2010-01-01
Exercise training enhances agonist-mediated relaxation in both control and collateral-dependent coronary arteries of hearts subjected to chronic occlusion, an enhancement that is mediated in part by nitric oxide. The purpose of the present study was to elucidate exercise training-induced adaptations in specific cellular mechanisms involved in the regulation of endothelial nitric oxide synthase (eNOS) in coronary arteries of ischemic hearts. Ameroid constrictors were surgically placed around the proximal left circumflex coronary artery (LCX) of adult female Yucatan miniature swine. Eight weeks postoperatively, animals were randomized into sedentary (pen-confined) or exercise training (treadmill run; 5 days/wk; 14 wk) protocols. Coronary artery segments (∼1.0 mm luminal diameter) were isolated from collateral-dependent (LCX) and control (nonoccluded left anterior descending) arteries 22 wk after ameroid placement. Endothelial cells were enzymatically dissociated, and intracellular Ca2+ responses (fura 2) to bradykinin stimulation were studied. Immunofluorescence and laser scanning confocal microscopy were used to quantify endothelial cell eNOS and caveolin-1 cellular distribution under basal and bradykinin-stimulated conditions. Immunoblot analysis was used to determine eNOS, phosphorylated (p)-eNOS, protein kinase B (Akt), pAkt, and caveolin-1 protein levels. Bradykinin-stimulated nitrite plus nitrate (NOx; nitric oxide metabolites) levels were assessed via HPLC. Exercise training resulted in significantly enhanced bradykinin-mediated increases in endothelial Ca2+ levels, NOx levels, and the distribution of eNOS-to-caveolin-1 ratio at the plasma membrane in endothelial cells of control and collateral-dependent arteries. Exercise training also significantly increased total eNOS and phosphorylated levels of eNOS (pSer1179) in collateral-dependent arteries. Total eNOS protein levels were also significantly increased in collateral-dependent arteries of sedentary animals. These data provide new insights into exercise training-induced adaptations in cellular mechanisms of nitric oxide regulation in collateral-dependent coronary arteries of chronically occluded hearts that contribute to enhanced nitric oxide production. PMID:20363881
Hedayati, Nasim; Annambhotla, Suman; Jiang, Jun; Wang, Xinwen; Chai, Hong; Lin, Peter H.; Yao, Qizhi; Chen, Changyi
2009-01-01
Objective Ghrelin, a novel growth-hormone releasing peptide, is implicated to play a protective role in cardiovascular tissues. However, it is not clear whether ghrelin protects vascular tissues from injury secondary to risk factors such as homocysteine (Hcy). The purpose of this study was to investigate the effect and potential mechanisms of ghrelin on Hcy-induced endothelial dysfunction. Methods Porcine coronary artery rings were incubated for 24 hours with ghrelin (100 ng/mL), Hcy (50 μM), or ghrelin plus Hcy. Endothelial vasomotor function was evaluated using the myograph tension model. The response to thromboxane A2 analog U466419, bradykinin, and sodium nitroprusside (SNP) was analyzed. Endothelial nitric oxide synthase (eNOS) expression was determined using real time PCR and immunohistochemistry staining, and superoxide anion production by lucigenin-enhanced chemiluminescence analysis. Human coronary artery endothelial cells (HCAECs) were treated with different concentrations of Hcy, ghrelin, and/or anti-ghrelin receptor (GHS-R1a) antibody for 24 hours, eNOS protein levels were determined by western blot analysis. Results Maximal contraction with U466419 and endothelium-independent vasorelaxation with SNP were not different among the four groups. However, endothelium-dependent vasorelaxation with bradykinin (10-6M) was significantly reduced by 34% with Hcy compared with controls (P<0.05). Addition of ghrelin to Hcy had a protective effect, with 61.6% relaxation, similar to controls (64.7%). Hcy significantly reduced eNOS expression, while ghrelin co-treatment effectively restored eNOS expression to the control levels. Superoxide anion levels, which were increased by 100% with Hcy, returned to control levels with ghrelin co-treatment. Ghrelin also effectively blocked Hcy-induced decrease of eNOS protein levels in HCAECs in a concentration dependent manner. Anti-ghrelin receptor antibody effectively inhibited ghrelin’s effect. Conclusions Ghrelin has a protective effect in the porcine coronary artery by blocking Hcy-induced endothelial dysfunction, improving eNOS expression, and reducing oxidative stress. Ghrelin also shows protective effect on HCACEs from Hcy-induced decrease in eNOS protein levels. Ghrelin’s effect is receptor-dependent. Thus, ghrelin administration may have beneficial effects in the treatment of vascular disease in hyperhomocysteinemic patients. PMID:19028051
Kheirandish-Gozal, Leila; Khalyfa, Abdelnaby; Gozal, David; Bhattacharjee, Rakesh; Wang, Yang
2013-04-01
Obstructive sleep apnea (OSA) is a highly prevalent disorder that has been associated with an increased risk for cardiovascular morbidity, even in children. However, not all children with OSA manifest alterations in endothelial postocclusive hyperemia, an endothelial nitric oxide synthase (eNOS)-dependent response. Since expression of the eNOS gene is regulated by epigenetic mechanisms and OSA may cause epigenetic modifications such as DNA hypermethylation, we hypothesized that epigenetic modifications in the eNOS gene may underlie the differential vascular phenotypes in pediatric OSA. Age-, sex-, ethnicity-, and BMI-matched prepubertal children with polysomnographically confirmed OSA and either normal (OSAn) or abnormal (OSAab) postocclusive hyperemic responses, assessed as the time to attain peak reperfusion flow (Tmax) by laser Doppler flowmetry, were recruited. Blood genomic DNA was assessed for epigenetic modifications in the eNOS gene using pyrosequencing. Children with no evidence of OSA or endothelial dysfunction served as a control group. The study comprised 36 children with OSA (11 with OSAab and 25 with OSAn) and 35 children in the control group. Overall, the mean age was 7.5 ± 2.4 years, 65% were boys, and 30% were obese; mean apnea-hypopnea index was 18 ± 8.6/h of sleep for the children with OSA. Tmax was 66.7 ± 8.8 s in the OSAab group and 30.1 ± 8.3 s in the OSAn group (P < .001). Pyrosequencing of the proximal promoter region of the eNOS gene revealed no significant differences in six of the seven CpG sites. However, a CpG site located at position -171 (relative to transcription start site), approximating important transcriptional elements, displayed significantly higher methylation levels in the OSAab group as compared with the OSAn or control groups (81.5% ± 3.5%, 74.8% ± 1.4%, and 74.5% ± 1.7%, respectively; P < .001). eNOS mRNA expression levels were assessed in a separate group of children and were significantly reduced in the OSAab group in comparison with the OSAn group. The presence of abnormal eNOS-dependent vascular responses in children with OSA is associated with epigenetic modifications in the eNOS gene.
Besedina, Anna
2016-01-01
Coronary heart disease is the leading cause of death and disability worldwide. Hypertension is a major independent risk factor for the development of CHD. Abnormalities in NO generation or activity have been proposed as a major mechanism of CHD. The purpose of this article is to determine the activity of eNOS and iNOS in patients with isolated CHD and CHD associated with HT of different age groups. Fifty patients with isolated CHD and 42 patients with CHD associated with HT were enrolled in this study. NOS activity was determined by nitrite anion formed in the reaction. A statistically significant increase in iNOS activity is observed in elderly donors. In patients with isolated coronary heart disease cNOS activity is statistically significantly reduced with respect to the control group. The reduction of enzymatic activity of cNOS is more expressed in elderly patients than in middle-aged patients with coronary heart disease. Alterations in eNOS activity are more expressed in patients with coronary heart disease associated with hypertension than in patients with isolated coronary heart disease. Against the background of cNOS inhibition in the patients, a sharp increase in iNOS activity is observed. It has been shown that disturbance of endothelial function in patients with coronary heart disease associated with hypertension is characterized by reduced endothelial NO synthesis by cNOS and increased systemic NO synthesis due to increased iNOS activity. It has been found that the lack of endothelial NO and hyperproduction of »harmful« NO by iNOS are more expressed in elderly patients.
Chengji, Wang; Xianjin, Fan
2018-04-01
To investigate the biological mechanism of the effect of different intensity exercises on diabetic cardiomyopathy. 87 raise specific pathogen SPF healthy 6-week-old male Sprague-Dawley rats, fed 6 weeks with high-fat diet for rats were used, and a diabetic model was established by intraperitoneal injection of streptozotocin - randomly selected 43 rats were divided into Diabetic control group (DCG, n = 10), Diabetic exercise group 1 (DEG1, n = 11), Diabetic exercise group 2 (DEG2, n = 11) and Diabetic exercise group 3 (DEG3, n = 11). The rats in DEG1 were forced to run on a motorized treadmill, the exercise load consisted of running at a speed of 10 m/min, the exercise load of the rats in DEG2 were running at a speed of 15 m/min, the exercise load of the rats in DEG3 were running at a speed of 20 m/min, for one hour once a day for 6 weeks. After 6 weeks of exercise intervention, glucose metabolism-related indexes in rats such as blood glucose (FBG), glycosylated serum protein (GSP) and insulin (FINS); cardiac fibrinolytic system parameters such as PAI-1 (plasminogen activator inhibitor 1), Von Willebrand factor (vWF), protein kinase C (PKC) and diacylglycerol (DAG); and serum level of NO, eNOS and T-NOS were measured. Compared with DCG, fasting blood glucose and GSP were decreased, while insulin sensitivity index and insulin level were increased in all rats of the three exercise groups. FBG decrease was statistically significant ( P < 0.01), only GSP decrease was statistically significant ( P < 0.05) in DEG1 and DEG2, PAI-1 in three exercise groups were significantly reduced ( P < 0.05), plasma vWF levels in the three exercise groups were significantly lower than those in the DCG group ( P < 0.01); PKC levels decreased dramatically in the three exercise groups and DAG levels decrease slightly ( P < 0.05), but with no significant difference. Compared with DCG, the serum level of NO was significantly higher ( P < 0.05), and eNOS level was significantly elevated ( P < 0.05). T-NOS elevation was statistically significant in DEG1 ( P < 0.05). Low- and moderate-intensity exercise can better control blood glucose level in diabetic rats; myocardial PAI-1 in DEG1, DEG2 and DEG3 rats decreased significantly ( P < 0.05), serum NO increased ( P < 0.05) and eNOS increased ( P < 0.05) significantly. Therefore, it is inferred that exercise improves the biological mechanism of diabetic cardiomyopathy by affecting the levels of PAI-1 and eNOS, and there is a dependence on intensity. © 2018 The authors.
Klimentova, Jana; Janega, Pavol
2017-01-01
Aronia melanocarpa has attracted scientific interest due to its dense contents of different polyphenols. We aimed to analyse effects of Aronia melanocarpa (AME) extract on blood pressure (BP), lipid peroxidation, cytokine level, total NOS activity in the left ventricle (LV), and aorta of L-NAME-induced hypertensive rats. 12-week-old male WKY rats were assigned to the control group and groups treated with AME extract (57.90 mg/kg/day), L-NAME (40 mg/kg/day), or combination of L-NAME (40 mg/kg/day) and AME (57.90 mg/kg/day) in tap water for 3 weeks. NOS activity, eNOS protein expression, and conjugated diene (CD) concentration were determined in the LV and aorta. After 3 weeks of L-NAME treatment, BP was increased by 28% and concomitant treatment with AME reduced it by 21%. NOS activity of the LV and aorta in the L-NAME group was decreased by about 40%, while AME increased it almost on the control level. AME-induced eNOS upregulation may contribute to increase NOS activity. Moreover, AME decreased CD concentration in the LV and aorta and TNF-α and IL-6 production in the plasma were increased by L-NAME treatment. In conclusion, our results showed that active substances of Aronia melanocarpa may have a positive effect on blood pressure, NOS activity, and proinflammatory processes in L-NAME-induced hypertension. PMID:29333212
Ahmad, Ashfaq; Sattar, Munavvar; Khan, Safia Akhtar; Abdullah, Nor A; Johns, Edward J; Afzal, Samina
2017-03-01
Present study explored endothelial nitric oxide synthase/nitric oxide (eNOS/NO) pathway in the kidney and role of αIB adrenergic receptor in the regulation of renal vasculature in the rats with left ventricular hypertrophy (LVH). LVH was induced by administering isoprenaline 5 mg/kg (s.c. 72 h. apart) and caffeine (62 mg/L in drinking water) for 14 days. Quantification of molecular expression of eNOS in kidney was performed by quantitative Real Time Polymerase Chain Reaction (qPCR). Renal vasoconstrictor responses were measured by administering noradrenaline (NA), phenylephrine (PE) and methoxamine (ME) in pre-drug phase, low dose and high dose phases of chloroethylelonidine (CEC), a selective of (αIB adrenergic receptor antagonist. In the kidney of LVH male Wistar Kyoto (WKY) rats eNOS was significantly down regulated (p < 0.05) by 74% relative to Control WKY (taken as 100%). The high dose 5 CEC attenuated the vasoconstrictor responses to NA by 41%, PE by 43% and ME by 33% in the LVH-WKY when compared to the same dose phase in Control WKY group. In LVH, increased oxidative stress in kidney and increased ACE activity in the plasma resulted in down regulation of eNOS/NO in the kidney. The renal vasoconstrictor responses to adrenergic agonist are blunted in LVH and (αIB adrenergic receptor is functional subtype in renal vasculature in LVH.
Kowalski, Thayne Woycinck; Fraga, Lucas Rosa; Tovo-Rodrigues, Luciana; Sanseverino, Maria Teresa Vieira; Hutz, Mara Helena; Schuler-Faccini, Lavínia; Vianna, Fernanda Sales Luiz
2016-01-01
Antiangiogenic properties of thalidomide have created an interest in the use of the drug in treatment of cancer. However, thalidomide is responsible for thalidomide embryopathy (TE). A lack of knowledge regarding the mechanisms of thalidomide teratogenesis acts as a barrier in the aim to synthesize a safer analogue of thalidomide. Recently, our group detected a higher frequency of alleles that impair the pro-angiogenic mechanisms of endothelial nitric oxide synthase (eNOS), coded by the NOS3 gene. In this study we evaluated variable number tandem repeats (VNTR) functional polymorphism in intron 4 of NOS3 in individuals with TE (38) and Brazilians without congenital anomalies (136). Haplotypes were estimated for this VNTR with previously analyzed polymorphisms, rs2070744 (−786C > T) and rs1799983 (894T > G), in promoter region and exon 7, respectively. Haplotypic distribution was different between the groups (p = 0.007). Alleles −786C (rs2070744) and 4b (VNTR), associated with decreased NOS3 expression, presented in higher frequency in TE individuals (p = 0.018; OR = 2.57; IC = 1.2–5.8). This association was not identified with polymorphism 894T > G (p = 0.079), which influences eNOS enzymatic activity. These results suggest variants in NOS3, with pre-transcriptional effects as susceptibility factors, influencing the risk TE development. This finding generates insight for a new approach to research that pursues a safer analogue. PMID:27004986
High-fructose corn syrup-induced hepatic dysfunction in rats: improving effect of resveratrol.
Sadi, Gokhan; Ergin, Volkan; Yilmaz, Guldal; Pektas, M Bilgehan; Yildirim, O Gokhan; Menevse, Adnan; Akar, Fatma
2015-09-01
The increased consumption of high-fructose corn syrup (HFCS) may contribute to the worldwide epidemic of fatty liver. In this study, we have investigated whether HFCS intake (20% beverages) influences lipid synthesis and accumulation in conjunction with insulin receptor substrate-1/2 (IRS-1; IRS-2), endothelial nitric oxide synthase (eNOS), sirtuin 1 (SIRT1) and inducible NOS (iNOS) expressions in liver of rats. Resveratrol was tested for its potential efficacy on changes induced by HFCS. Animals were randomly divided into four groups as control, resveratrol, HFCS and resveratrol plus HFCS (resveratrol + HFCS). HFCS was given as 20% solutions in drinking water. Feeding of all rats was maintained by a standard diet that enriched with or without resveratrol for 12 weeks. Dietary HFCS increased triglyceride content and caused mild microvesicular steatosis in association with up-regulation of fatty acid synthase and sterol regulatory element binding protein (SREBP)-1c in liver of rats. Moreover, HFCS feeding impaired hepatic expression levels of IRS-1, eNOS and SIRT1 mRNA/proteins, but did not change iNOS level. Resveratrol promoted IRS, eNOS and SIRT1, whereas suppressed SREBP-1c expression in rats fed with HFCS. Resveratrol supplementation considerably restored hepatic changes induced by HFCS. The improvement of hepatic insulin signaling and activation of SIRT1 by resveratrol may be associated with decreased triglyceride content and expression levels of the lipogenic genes of the liver.
New approaches to prevention and treatment of radial artery graft vasospasm.
Cable, D G; Caccitolo, J A; Pearson, P J; O'Brien, T; Mullany, C J; Daly, R C; Orszulak, T A; Schaff, H V
1998-11-10
There has been renewed interest in radial artery (RA) conduits for coronary artery bypass because of the relative resistance of arterial grafts to atherosclerosis compared with autogenous vein grafts. Although improved drug therapy for arterial spasm is now available, vasospasm still occurs in at least 5% to 10% of RA grafts. We systematically evaluated the effectiveness of calcium channel blockers and organic nitrates for inhibition or reversal of RA contraction in vitro. Additionally, we investigated the efficacy of novel gene therapy with endothelial nitric oxide synthase (eNOS) to inhibit RA contractions. Segments of RA from 28 patients undergoing coronary artery bypass grafting were mounted in organ chambers. In control experiments, KCl (5 to 50 mmol/L) produced dose-dependent increases in tension (maximum tension, 14.3 +/- 3.0 g, n = 7). Addition of diltiazem or verapamil had no significant effect on KCl contraction (128 +/- 36% and 88 +/- 24% control, respectively); however, nifedipine markedly inhibited KCl contraction (27 +/- 4% control, P = 0.005). Norepinephrine (NE, 10(-9) to 10(-4) M) produced dose-dependent increases in tension (maximum tension, 15.7 +/- 2.7 g in control rings, n = 8). Diltiazem and verapamil pretreatment had no significant effect on NE contraction (103 +/- 14% and 90 +/- 14% control, respectively); nifedipine significantly inhibited NE contraction (70 +/- 11% control, P = 0.02). Isosorbide dinitrate and nitroglycerin markedly inhibited KCl contractions (47 +/- 9% and 30 +/- 8% of controls, n = 6) and NE contractions (42 +/- 10% and 31 +/- 9% of controls, n = 6). Nifedipine, isosorbide, and nitroglycerin were further evaluated for the ability to reverse an established contraction (KCl 40 mmol/L); nitroglycerin was most effective in reversing RA contraction. In separate experiments, RA underwent adenoviral-mediated gene transfer with vehicle, Escherichia coli beta-galactosidase, or eNOS (eNOS, 10(10) PFU/mL x 1 hour). Transgene expression was confirmed by beta-galactosidase activity and eNOS immunohistochemistry after 40 hours of ex vivo incubation. Immunohistochemistry demonstrated recombinant NOS in adenovirus encoding bovine eNOS (Ad.CMVeNOS) RA only. Ad.CMVeNOS arteries contracted only 46.6 +/- 13.7% of controls to KCl (n = 5) and 48.2 +/- 11.4% of controls to prostaglandin F2 alpha a (10(-9) to 10(-6) M, n = 5). Diltiazem, which is used empirically to prevent RA vasospasm, had little effect on human RA contractions (receptor-independent and receptor-dependent). Organic nitrates inhibited and reversed RA contractions. Adenoviral transfer of NOS suggests that future clinical application of gene therapy may play an important role in prevention of RA vasospasm.
Croft, Kevin D; Yamashita, Yoko; O'Donoghue, Helen; Shirasaya, Daishi; Ward, Natalie C; Ashida, Hitoshi
2018-04-01
The potential health benefits of phenolic acids found in food and beverages has been suggested from a number of large population studies. However, the mechanism of how these compounds may exert biological effects is less well established. It is also now recognised that many complex polyphenols in the diet are metabolised to simple phenolic acids which can be taken up in the circulation. In this paper a number of selected phenolic compounds have been tested for their bioactivity in two cell culture models. The expression and activity of endothelial nitric oxide synthase (eNOS) in human aortic endothelial cells and the uptake of glucose in muscle cells. Our data indicate that while none of the compounds tested had a significant effect on eNOS expression or activation in endothelial cells, several of the compounds increased glucose uptake in muscle cells. These compounds also enhanced the translocation of the glucose transporter GLUT4 to the plasma membrane, which may explain the observed increase in cellular glucose uptake. These results indicate that simple cell culture models may be useful to help understand the bioactivity of phenolic compounds in relation to cardiovascular protection. Copyright © 2017 Elsevier B.V. All rights reserved.
Endothelial nitric oxide synthase polymorphism and prognosis in systolic heart failure patients.
Azzam, Naiel; Zafrir, Barak; Fares, Fuad; Smith, Yoav; Salman, Nabeeh; Nevzorov, Roman; Amir, Offer
2015-05-01
The endothelial nitric oxide synthase (eNOS) gene single nucleotide polymorphism G894T is associated with thrombotic vascular diseases. However, its functional significance is controversial and data are scarce concerning its influence in heart failure (HF). We studied 215 patients with chronic systolic HF. DNA was analyzed for eNOS gene G894T polymorphism using PCR and DNA sequencing. Evaluation of clinical characteristics and analysis of factors associated with 2-year mortality were performed for the homozygous G-allele G894T variant (GG), relative to the TT and GT variants. The genotype distributions of eNOS G894T alleles were: GG 135 patients (63%) and TT/GT 80 (37%). Two-year mortality was significantly higher in the GG variant (48%) than the combined TT/GT group (32%). The usage of nitrates was associated with increased 2-year mortality (HR 2.0, 95% CI 1.28-3.17; p = 0.003), which was most significant in the GG group treated with nitrates (73.5%) in comparison to the TT/GT group not treated with nitrates (34%); HR 2.75, 95% CI 1.57-4.79, P < 0.001. Homozygosity for the G allele of the eNOS G894T polymorphism was associated with worse survival in systolic HF patients, especially in those treated with nitrates. ENOS polymorphism may result in different mechanistic interactions in HF than in thrombotic vascular diseases, suggesting that overexpression of NO may be associated with deleterious effects in systolic HF. Copyright © 2015 Elsevier Inc. All rights reserved.
Sponton, Carlos H G; Rezende, Tiago M; Mallagrino, Pamella A; Franco-Penteado, Carla F; Bezerra, Marcos André C; Zanesco, Angelina
2010-12-01
The aim of this study was to investigate whether -786T>C endothelial nitric oxide synthase (eNOS) gene polymorphism might influence the effect of long-term exercise training (ET) on the blood pressure and its relationship with NO production in healthy postmenopausal women. Longitudinal study. Fifty-five postmenopausal women were studied in a double-blinded design. ET was performed for 3 days a week, each session consisting of 60 min during 6 months, in an intensity of 50-70% VO2max. After that, eNOS genotype analysis was performed and women were divided into two groups: TC+CC (n=41) and TT (n=14) genotype. No changes were found in the anthropometric parameters after ET in both the groups. Systolic and diastolic BP values were significantly reduced in both the groups, but women with TT genotype were more responsive in lowering BP as compared with those with TC+CC genotype. Plasma nitrite/nitrate concentrations were similar at baseline in both the groups, but the magnitude of increment in NO production in response to ET was higher in women with TT genotype as compared with those with TC+CC genotype. Our study shows clearly that women with or without eNOS gene polymorphism had no differences in NO production at basal conditions, but when physical exercise is applied an evident difference is detected showing that the presence of -786T>C eNOS gene polymorphism had a significant impact in the health-promoting effect of aerobic physical training on the blood pressure in postmenopausal women.
Cui, Jiasen; Zhuang, Shunjiu; Qi, Shaohong; Li, Li; Zhou, Junwen; Zhang, Wan; Zhao, Yun; Qi, Ning; Yin, Yangjun; Huang, Lu
2017-11-01
Angiotensin II (Ang II) has been reported as key in inducing endothelial cell injury, and endothelial cells may produce nitric oxide (NO) to protect themselves. However, the underlying mechanism remains elusive. Human umbilical vein endothelial cells (HUVECs) were divided into five treatment groups as follows: Normal control, Ang II, Ang II + sodium hydrosulfide [NaHS; hydrogen sulfide (H2S) donor], Ang II + Akt inhibitors + NaHS, and Ang II + endothelial nitric oxide synthases (eNOS) inhibitors + NaHS. Subsequently, cell viability, apoptosis, migration, proliferation and adhesion ability were determined. In addition, tubular structure formation was observed, and the NO and phosphorylation levels of Akt and eNOS were evaluated. Compared with the normal control group, Ang II treatment reduced the viability of HUVECs and increased the level of cell apoptosis (P<0.05). Furthermore, Ang II treatment inhibited the phosphorylation level of eNOS and Akt, as well as the generation of NO (P<0.05). H2S reversed the above‑mentioned effects significantly and increased cell proliferation, adhesion ability and promoted tubular structure formation (P<0.05); however, H2S did not reverse the impact of eNOS and Akt phosphorylation levels after being processed with Akt and eNOS inhibitors, which indicates that H2S is capable of protecting HUVECs via the eNOS/Akt signaling pathway (P<0.05). Thus, H2S stimulates the production of NO and protects HUVECs via inducing the Akt/eNOS signaling pathway.
The effect of high protein diet and exercise on irisin, eNOS, and iNOS expressions in kidney.
Tastekin, Ebru; Palabiyik, Orkide; Ulucam, Enis; Uzgur, Selda; Karaca, Aziz; Vardar, Selma Arzu; Yilmaz, Ali; Aydogdu, Nurettin
2016-08-01
Long-term effects of high protein diets (HPDs) on kidneys are still not sufficiently studied. Irisin which increases oxygen consumption and thermogenesis in white fat cells was shown in skeletal muscles and many tissues. Nitric oxide synthases (NOS) are a family of enzymes catalyzing the production of nitric oxide (NO) from L-arginine. We aimed to investigate the effects of HPD, irisin and NO expression in kidney and relation of them with exercise and among themselves. Animals were grouped as control, exercise, HPD and exercise combined with HPD (exercise-HPD). Rats were kept on a HPD for 5 weeks and an exercise program was given them as 5 exercise and 2 rest days per week exercising on a treadmill with increasing speed and angle. In our study, while HPD group had similar total antioxidant capacity (TAC) levels with control group, exercise and exercise-HPD groups had lower levels (p < 0.05). Kidneys of exercising rats had no change in irisin or eNOS expression but their iNOS expression had increased (p < 0.001). HPD-E group has not been observed to cause kidney damage and not have a significant effect on rat kidney irisin, eNOS, or iNOS expression. Localization of irisin, eNOS, and iNOS staining in kidney is highly selective and quite clear in this study. Effects of exercise and HPD on kidney should be evaluated with different exercise protocols and contents of the diet. İrisin, eNOS, and iNOS staining localizations should be supported with various research studies.
Glenting, Jacob; Beck, Hans Christian; Vrang, Astrid; Riemann, Holger; Ravn, Peter; Hansen, Anne Maria; Antonsson, Martin; Ahrné, Siv; Israelsen, Hans; Madsen, Søren
2013-06-12
An important criterion for the selection of a probiotic bacterial strain is its ability to adhere to the mucosal surface. Adhesion is usually mediated by proteins or other components located on the outer cell surface of the bacterium. In the present study we characterized the adhesive properties of two classical intracellular enzymes glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and enolase (ENO) isolated from the outer cell surface of the probiotic bacterium Lactobacillus plantarum 299v. None of the genes encoded signal peptides or cell surface anchoring motifs that could explain their extracellular location on the bacterial surface. The presence of the glycolytic enzymes on the outer surface was verified by western blotting using polyclonal antibodies raised against the specific enzymes. GAPDH and ENO showed a highly specific binding to plasminogen and fibronectin whereas GAPDH but not ENO showed weak binding to mucin. Furthermore, a pH dependent and specific binding of GAPDH and ENO to intestinal epithelial Caco-2 cells at pH 5 but not at pH 7 was demonstrated. The results showed that these glycolytic enzymes could play a role in the adhesion of the probiotic bacterium L. plantarum 299v to the gastrointestinal tract of the host. Finally, a number of probiotic as well non-probiotic Lactobacillus strains were analyzed for the presence of GAPDH and ENO on the outer surface, but no correlation between the extracellular location of these enzymes and the probiotic status of the applied strains was demonstrated. Copyright © 2013 Elsevier GmbH. All rights reserved.
Good, Misty; Sodhi, Chhinder P; Yamaguchi, Yukihiro; Jia, Hongpeng; Lu, Peng; Fulton, William B; Martin, Laura Y; Prindle, Thomas; Nino, Diego F; Zhou, Qinjie; Ma, Congrong; Ozolek, John A; Buck, Rachael H; Goehring, Karen C; Hackam, David J
2016-10-01
Necrotising enterocolitis (NEC) is a common disease in premature infants characterised by intestinal ischaemia and necrosis. The only effective preventative strategy against NEC is the administration of breast milk, although the protective mechanisms remain unknown. We hypothesise that an abundant human milk oligosaccharide (HMO) in breast milk, 2'-fucosyllactose (2'FL), protects against NEC by enhancing intestinal mucosal blood flow, and we sought to determine the mechanisms underlying this protection. Administration of HMO-2'FL protected against NEC in neonatal wild-type mice, resulted in a decrease in pro-inflammatory markers and preserved the small intestinal mucosal architecture. These protective effects occurred via restoration of intestinal perfusion through up-regulation of the vasodilatory molecule endothelial nitric oxide synthase (eNOS), as administration of HMO-2'FL to eNOS-deficient mice or to mice that received eNOS inhibitors did not protect against NEC, and by 16S analysis HMO-2'FL affected the microbiota of the neonatal mouse gut, although these changes do not seem to be the primary mechanism of protection. Induction of eNOS by HMO-2'FL was also observed in cultured endothelial cells, providing a link between eNOS and HMO in the endothelium. These data demonstrate that HMO-2'FL protects against NEC in part through maintaining mesenteric perfusion via increased eNOS expression, and suggest that the 2'FL found in human milk may be mediating some of the protective benefits of breast milk in the clinical setting against NEC.
Good, Misty; Sodhi, Chhinder P.; Yamaguchi, Yukihiro; Jia, Hongpeng; Lu, Peng; Fulton, William B.; Martin, Laura Y.; Prindle, Thomas; Nino, Diego F.; Zhou, Qinjie; Ma, Congrong; Ozolek, John A.; Buck, Rachael H.; Goehring, Karen C.; Hackam, David J.
2016-01-01
Necrotising enterocolitis (NEC) is a common disease in premature infants characterised by intestinal ischaemia and necrosis. The only effective preventative strategy against NEC is the administration of breast milk, although the protective mechanisms remain unknown. We hypothesise that an abundant human milk oligosaccharide (HMO) in breast milk, 2′-fucosyllactose (2′FL), protects against NEC by enhancing intestinal mucosal blood flow, and we sought to determine the mechanisms underlying this protection. Administration of HMO-2′FL protected against NEC in neonatal wild-type mice, resulted in a decrease in pro-inflammatory markers and preserved the small intestinal mucosal architecture. These protective effects occurred via restoration of intestinal perfusion through up-regulation of the vasodilatory molecule endothelial nitric oxide synthase (eNOS), as administration of HMO-2′FL to eNOS-deficient mice or to mice that received eNOS inhibitors did not protect against NEC, and by 16S analysis HMO-2′FL affected the microbiota of the neonatal mouse gut, although these changes do not seem to be the primary mechanism of protection. Induction of eNOS by HMO-2′FL was also observed in cultured endothelial cells, providing a link between eNOS and HMO in the endothelium. These data demonstrate that HMO-2′FL protects against NEC in part through maintaining mesenteric perfusion via increased eNOS expression, and suggest that the 2′FL found in human milk may be mediating some of the protective benefits of breast milk in the clinical setting against NEC. PMID:27609061
Pappa, Kalliopi I; Roubelakis, Maria; Vlachos, George; Marinopoulos, Spyros; Zissou, Antonia; Anagnou, Nicholas P; Antsaklis, Aris
2011-04-01
To evaluate the maternal, paternal, and fetal genotype contribution to preeclampsia. STUDY DESIGN, MATERIALS, AND METHODS: We combined the analysis of polymorphisms of the GSTP1, eNOS, and LPL genes - affecting biotransformation enzymes and endothelial function - in a cohort of 167 preeclamptic and normal control trios (mother, father, and child) comprising a total of 501 samples in the Greek population, never analyzed before by this approach. For the frequency of the GSTP1 Ile(105)/Val(105), the eNOS Glu298Asp and the LPL-93 polymorphisms, statistically significant differences were found between the two groups. However, the transmission rates of the parental alleles to neonates studied by the transmission disequilibrium test, disclosed no increased rate of transmission to preeclampsia children for the variant alleles of Val(105) GSTP1, 298Asp eNOS, and -93G LPL. These novel data, suggest that interaction of all three types of genotypes (mother, father and neonate), reveals no effects on the development of preeclampsia, but provide the impetus for further studies to decipher the individual contribution of each genetic parameter of preeclampsia.
Varela, Claudia Elena; Fromentin, Emilie; Roller, Marc; Villarreal, Francisco; Ramirez-Sanchez, Israel
2016-08-01
The effects of acute and chronic treatment with Aronia extracts on NO production and endothelial nitric oxide synthase (eNOS) phosphorylation in bovine coronary artery endothelial cells were investigated. Acute time-course and concentration-response experiments were performed to determine the time and concentration at which Aronia induced maximal NO synthesis and eNOS phosphorylation. The findings indicate that relatively low concentrations (0.1 μg/mL) of Aronia extract significantly induced NO synthesis and eNOS phosphorylation after 10 min of treatment. Increased sensitivity of eNOS and a significant increase in NO synthesis resulted from longer-term stimulation with Aronia (48 hr) and an acute re-treatment of the cells (10 min). These in vitro results may be translated into potential future clinical applications where Aronia extracts may be used for prevention and coadjuvant treatment of cardiovascular diseases via increases in endothelial NO synthesis and related improvements in vascular functions. Given the dose-response effect of Aronia extract in vitro and metabolism of polyphenols that occurs in humans, dose-response studies would be necessary to define the optimal daily amount to be consumed.
Effects of a natural extract of Aronia Melanocarpa berry on endothelial cell nitric oxide production
Varela, Claudia Elena; Fromentin, Emilie; Roller, Marc; Villarreal, Francisco; Ramirez-Sanchez, Israel
2015-01-01
The effects of acute and chronic treatment with Aronia extracts on NO production and endothelial nitric oxide synthase (eNOS) phosphorylation in bovine coronary artery endothelial cells were investigated. Acute time-course and concentration-response experiments were performed to determine the time and concentration at which Aronia induced maximal NO synthesis and eNOS phosphorylation. The findings indicate that relatively low concentrations (0.1 μg/mL) of Aronia extract significantly induced NO synthesis and eNOS phosphorylation after 10 min of treatment. Increased sensitivity of eNOS and a significant increase in NO synthesis resulted from longer-term stimulation with Aronia (48 hr) and an acute re-treatment of the cells (10 min). PRACTICAL APPLICATIONS These in vitro results may be translated into potential future clinical applications where Aronia extracts may be used for prevention and coadjuvant treatment of cardiovascular diseases via increases in endothelial NO synthesis and related improvements in vascular functions. Given the dose-response effect of Aronia extract in vitro and metabolism of polyphenols that occurs in humans, dose-response studies would be necessary to define the optimal daily amount to be consumed. PMID:27616799
Chang, Chih-Zen; Wu, Shu-Chuan; Chang, Chia-Mao; Kwan, Aij-Lie
2015-01-01
Upregulation of protein kinase B (PKB, also known as Akt) is observed within the cerebral arteries of subarachnoid hemorrhage (SAH) animals. This study is of interest to examine Arctigenin, a potent antioxidant, on endothelial nitric oxide synthase (eNOS) and Akt pathways in a SAH in vitro study. Basilar arteries (BAs) were obtained to examine phosphatidylinositol-3-kinase (PI3K), phospho-PI3K, Akt, phospho-Akt (Western blot) and morphological examination. Endothelins (ETs) and eNOS evaluation (Western blot and immunostaining) were also determined. Arctigenin treatment significantly alleviates disrupted endothelial cells and tortured internal elastic layer observed in the SAH groups (p < 0.01). The reduced eNOS protein and phospho-Akt expression in the SAH groups were relieved by the treatment of Arctigenin (p < 0.01). This result confirmed that Arctigenin might exert dural effects in preventing SAH-induced vasospasm through upregulating eNOS expression via the PI3K/Akt signaling pathway and attenuate endothelins after SAH. Arctigenin shows therapeutic promise in the treatment of cerebral vasospasm following SAH. PMID:26539501
Chang, Chih-Zen; Wu, Shu-Chuan; Chang, Chia-Mao; Lin, Chih-Lung; Kwan, Aij-Lie
2015-01-01
Upregulation of protein kinase B (PKB, also known as Akt) is observed within the cerebral arteries of subarachnoid hemorrhage (SAH) animals. This study is of interest to examine Arctigenin, a potent antioxidant, on endothelial nitric oxide synthase (eNOS) and Akt pathways in a SAH in vitro study. Basilar arteries (BAs) were obtained to examine phosphatidylinositol-3-kinase (PI3K), phospho-PI3K, Akt, phospho-Akt (Western blot) and morphological examination. Endothelins (ETs) and eNOS evaluation (Western blot and immunostaining) were also determined. Arctigenin treatment significantly alleviates disrupted endothelial cells and tortured internal elastic layer observed in the SAH groups (p < 0.01). The reduced eNOS protein and phospho-Akt expression in the SAH groups were relieved by the treatment of Arctigenin (p < 0.01). This result confirmed that Arctigenin might exert dural effects in preventing SAH-induced vasospasm through upregulating eNOS expression via the PI3K/Akt signaling pathway and attenuate endothelins after SAH. Arctigenin shows therapeutic promise in the treatment of cerebral vasospasm following SAH.
Carneiro, Ana Paula; Fonseca-Alaniz, Miriam Helena; Dallan, Luís Alberto Oliveira; Miyakawa, Ayumi Aurea; Krieger, Jose Eduardo
2017-01-29
Recent evidence suggests that β-arrestins, which are involved in G protein-coupled receptors desensitization, may influence mechanotransduction. Here, we observed that nitric oxide (NO) production was abrogated in human saphenous vein endothelial cells (SVECs) transfected with siRNA against β-arrestin 1 and 2 subjected to shear stress (SS, 15 dynes/cm 2 , 10 min). The downregulation of β-arrestins 1/2 in SVECs cells also prevented the SS-induced rise in levels of phosphorylation of Akt and endothelial nitric oxide synthase (eNOS, Serine 1177). Interestingly, immunoprecipitation revealed that β-arrestin interacts with Akt, eNOS and caveolin-1 and these interactions are not influenced by SS. Our data indicate that β-arrestins and Akt/eNOS downstream signaling are required for early SS-induced NO production in SVECs, which is consistent with the idea that β-arrestins and caveolin-1 are part of a pre-assembled complex associated with the cellular mechanotransduction machinery. Copyright © 2017 Elsevier Inc. All rights reserved.
High order filtering methods for approximating hyberbolic systems of conservation laws
NASA Technical Reports Server (NTRS)
Lafon, F.; Osher, S.
1990-01-01
In the computation of discontinuous solutions of hyperbolic systems of conservation laws, the recently developed essentially non-oscillatory (ENO) schemes appear to be very useful. However, they are computationally costly compared to simple central difference methods. A filtering method which is developed uses simple central differencing of arbitrarily high order accuracy, except when a novel local test indicates the development of spurious oscillations. At these points, the full ENO apparatus is used, maintaining the high order of accuracy, but removing spurious oscillations. Numerical results indicate the success of the method. High order of accuracy was obtained in regions of smooth flow without spurious oscillations for a wide range of problems and a significant speed up of generally a factor of almost three over the full ENO method.
Non-invasive measurements of exhaled NO and CO associated with methacholine responses in mice
Sethi, Jigme M; Choi, Augustine MK; Calhoun, William J; Ameredes, Bill T
2008-01-01
Background Nitric oxide (NO) and carbon monoxide (CO) in exhaled breath are considered obtainable biomarkers of physiologic mechanisms. Therefore, obtaining their measures simply, non-invasively, and repeatedly, is of interest, and was the purpose of the current study. Methods Expired NO (ENO) and CO (ECO) were measured non-invasively using a gas micro-analyzer on several strains of mice (C57Bl6, IL-10-/-, A/J, MKK3-/-, JNK1-/-, NOS-2-/- and NOS-3-/-) with and without allergic airway inflammation (AI) induced by ovalbumin systemic sensitization and aerosol challenge, compared using independent-sample t-tests between groups, and repeated measures analysis of variance (ANOVA) within groups over time of inflammation induction. ENO and ECO were also measured in C57Bl6 and IL-10-/- mice, ages 8–58 weeks old, the relationship of which was determined by regression analysis. S-methionyl-L-thiocitrulline (SMTC), and tin protoporphyrin (SnPP) were used to inhibit neuronal/constitutive NOS-1 and heme-oxygenase, respectively, and alter NO and CO production, respectively, as assessed by paired t-tests. Methacholine-associated airway responses (AR) were measured by the enhanced pause method, with comparisons by repeated measures ANOVA and post-hoc testing. Results ENO was significantly elevated in naïve IL-10-/- (9–14 ppb) and NOS-2-/- (16 ppb) mice as compared to others (average: 5–8 ppb), whereas ECO was significantly higher in naïve A/J, NOS-3-/- (3–4 ppm), and MKK3-/- (4–5 ppm) mice, as compared to others (average: 2.5 ppm). As compared to C57Bl6 mice, AR of IL-10-/-, JNK1-/-, NOS-2-/-, and NOS-3-/- mice were decreased, whereas they were greater for A/J and MKK3-/- mice. SMTC significantly decreased ENO by ~30%, but did not change AR in NOS-2-/- mice. SnPP reduced ECO in C57Bl6 and IL-10-/- mice, and increased AR in NOS-2-/- mice. ENO decreased as a function of age in IL-10-/- mice, remaining unchanged in C57Bl6 mice. Conclusion These results are consistent with the ideas that: 1) ENO is associated with mouse strain and knockout differences in NO production and AR, 2) alterations of ENO and ECO can be measured non-invasively with induction of allergic AI or inhibition of key gas-producing enzymes, and 3) alterations in AR may be dependent on the relative balance of NO and CO in the airway. PMID:18505586
Crewstation Assessment of Reach as Applied to the OH-58A Helicopter
1984-12-13
CLUSTER ENO ENO OFICE FIELD 0gMA BR? OMR BRI T CONSOLE LTS NST LTSI OFF OFF NO BRT MVO ANTI COLLISION FOS LTS Lii LTS OFF *OFF CFF OFF OFr AUTO Hyp...gINTER)-- 2 ANALISIS OPION(1-ALL OPERATORq,2-OPZRATORS ON LOS ONLY)--L 1 RFACH ALCORITHNl(lPASS THROUGH CONTROL,2-TERNINAIE &T CONTROL)-- 2 ***OPERATOR NO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramprasath, Tharmarajan; Hamenth Kumar, Palani; Syed Mohamed Puhari, Shanavas
2012-11-23
Highlights: Black-Right-Pointing-Pointer L-Arginine treatment reduced the metabolic disturbances in diabetic animals. Black-Right-Pointing-Pointer Antioxidant marker proteins were found high in myocardium by L-arginine treatment. Black-Right-Pointing-Pointer Elevated antioxidant status, mediates the reduced TBA-reactivity in left ventricle. Black-Right-Pointing-Pointer L-Arginine treatment enhanced the Nrf2 and eNOS signaling in left ventricle. Black-Right-Pointing-Pointer Improved cell survival signaling by arginine, offers a novel tactic for targeting. -- Abstract: Hyperglycemia is independently related with excessive morbidity and mortality in cardiovascular disorders. L-Arginine-nitric oxide (NO) pathway and the involvement of NO in modulating nuclear factor-E2-related factor-2 (Nrf2) signaling were well established. In the present study we investigated, whether L-argininemore » supplementation would improve the myocardial antioxidant defense under hyperglycemia through activation of Nrf2 signaling. Diabetes was induced by alloxan monohydrate (90 mg kg{sup -1} body weight) in rats. Both non-diabetic and diabetic group of rats were divided into three subgroups and they were administered either with L-arginine (2.25%) or L-NAME (0.01%) in drinking water for 12 days. Results showed that L-arginine treatment reduced the metabolic disturbances in diabetic rats. Antioxidant enzymes and glutathione levels were found to be increased in heart left ventricles, thereby reduction of lipid peroxidation by L-arginine treatment. Heart histopathological analysis further validates the reversal of typical diabetic characteristics consisting of alterations in myofibers and myofibrillary degeneration. qRT-PCR studies revealed that L-arginine treatment upregulated the transcription of Akt and downregulated NF-{kappa}B. Notably, transcription of eNOS and Nrf2 target genes was also upregulated, which were accompanied by enhanced expression of Nrf2 in left ventricular tissue from diabetic and control rats. Under these findings, we suggest that targeting of eNOS and Nrf2 signaling by L-arginine supplementation could be used as a potential treatment method to alleviate the late diabetic complications.« less
Short-term effects of electronic and tobacco cigarettes on exhaled nitric oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marini, Sara, E-mail: s.marini@unicas.it; Buonanno, Giorgio; Queensland University of Technology, Brisbane
The objective of this study was to compare the short-term respiratory effects due to the inhalation of electronic and conventional tobacco cigarette-generated mainstream aerosols through the measurement of the exhaled nitric oxide (eNO). To this purpose, twenty-five smokers were asked to smoke a conventional cigarette and to vape an electronic cigarette (with and without nicotine), and an electronic cigarette without liquid (control session). Electronic and tobacco cigarette mainstream aerosols were characterized in terms of total particle number concentrations and size distributions. On the basis of the measured total particle number concentrations and size distributions, the average particle doses deposited inmore » alveolar and tracheobronchial regions of the lungs for a single 2-s puff were also estimated considering a subject performing resting (sitting) activity. Total particle number concentrations in the mainstream resulted equal to 3.5 ± 0.4 × 10{sup 9}, 5.1 ± 0.1 × 10{sup 9}, and 3.1 ± 0.6 × 10{sup 9} part. cm{sup −3} for electronic cigarettes without nicotine, with nicotine, and for conventional cigarettes, respectively. The corresponding alveolar doses for a resting subject were estimated equal to 3.8 × 10{sup 10}, 5.2 × 10{sup 10} and 2.3 × 10{sup 10} particles. The mean eNO variations measured after each smoking/vaping session were equal to 3.2 ppb, 2.7 ppb and 2.8 ppb for electronic cigarettes without nicotine, with nicotine, and for conventional cigarettes, respectively; whereas, negligible eNO changes were measured in the control session. Statistical tests performed on eNO data showed statistically significant differences between smoking/vaping sessions and the control session, thus confirming a similar effect on human airways whatever the cigarette smoked/vaped, the nicotine content, and the particle dose received. - Highlights: • Electronic cigarettes (with and without nicotine) mainstream aerosols were analyzed; • Particle number concentrations and size distributions were measured; • Nitric oxide exhaled by smokers before and after smoking/vaping was evaluated; • Alveolar and tracheobronchial doses of particle for a single puff were estimated; • Comparisons with conventional cigarette were made.« less
Sharma, Shweta; Jadli, Mohit; Singh, Anu; Arora, Kavita; Malhotra, Pawan
2014-03-01
Plasmodium falciparum heat shock proteins and proteases are known for their indispensable roles in parasite virulence and survival in the host cell. They neutralize various host-derived stress responses that are deleterious for parasite growth and invasion. We report identification and functional characterization of the first DegP from an apicomplexan (P. falciparum). To determine the molecular identity and functions of the parasite-encoded DegP, we complemented the Escherichia coli degP null mutant with a putative PfdegP gene, and the results showed that PfDegP complements the growth defect of the temperature sensitive DegP-deficient mutant and imparts resistance to non-permissive temperatures and oxidative stress. Molecular interaction studies showed that PfDegP exists as a complex with parasite-encoded heat shock protein 70, iron superoxide dismutase and enolase. DegP expression is significantly induced in parasite culture upon heat shock/oxidative stress. Our data suggest that the PfDegP protein may play a role in the growth and development of P. falciparum through its ability to confer protection against thermal/oxidative stress. Antibody against DegP showed anti-plasmodial activity against blood-stage parasites in vitro, suggesting that PfDegP and its associated complex may be a potential focus for new anti-malarial therapies. ●PfDegP physically interacts with PfHsp70 and PfEno by anti-bait co-immunoprecipitation (View interaction) ●PfDegP physically interacts with PfEno, PfSod, PfOat, PfHsp70, PfLDH and PfGpi by anti-bait co-immunoprecipitation (View interaction) ●PfHsp-70 and PfDegP co-localize by fluorescence microscopy (View interaction) ●PfDegP physically interacts with PfOat, PfHsp70, PfEno, PfSod, PfGpi and PfLDH by surface plasmon resonance (View interaction) ●PfEno and PfDegP co-localize by fluorescence microscopy (View interaction) ●PfDegP and PfHsp70 co-localize by co-sedimentation through density gradient (View interaction). © 2014 FEBS.
Esener, Obb; Balkan, B M; Armutak, E I; Uvez, A; Yildiz, G; Hafizoglu, M; Yilmazer, N; Gurel-Gurevin, E
2018-04-12
Donkey milk and donkey milk kefir exhibit antiproliferative, antimutagenic and antibacterial effects. We investigated the effects of donkey milk and donkey milk kefir on oxidative stress, apoptosis and proliferation in Ehrlich ascites carcinoma (EAC) in mice. Thirty-four adult male Swiss albino mice were divided into four groups as follows: group 1, administered 0.5 ml water; group 2, administered 0.5 ml water + EAC cells; group 3, administered 0.5 ml donkey milk + EAC cells; group 4, administered 0.5 ml donkey milk kefir + EAC cells. We introduced 2.5 x 10 6 EAC cells into each animal by subcutaneous injection. Tap water, donkey milk and donkey milk kefir were administered by gavage for 10 days. Animals were sacrificed on day 11. After measuring the short and long diameters of the tumors, tissues were processed for histology. To determine oxidative stress, cell death and proliferation iNOS and eNOS, active caspase-3 and proliferating cell nuclear antigen were assessed using immunohistochemistry. A TUNEL assay also was used to detect apoptosis. Tumor volume decreased in the donkey milk kefir group compared to the control and donkey milk groups. Tumor volume increased in the donkey milk group compared to the control group. Proliferating cell nuclear antigen levels were higher in the donkey milk kefir group compared to the control and donkey milk groups. The number of apoptotic cells was less in the donkey milk group, compared to the control, whereas it was highest in the donkey milk kefir group. Donkey milk administration increased eNOS levels and decreased iNOS levels, compared to the control group. In the donkey milk kefir group, iNOS levels were significantly lower than those of the control and donkey milk groups, while eNOS levels were similar to the control group. Donkey milk kefir induced apoptosis, suppressed proliferation and decreased co-expression of iNOS and eNOS. Donkey milk promoted development of the tumors. Therefore, donkey milk kefir appears to be more beneficial for treating breast cancer than donkey milk.
Yin, Yonghui; Qi, Fanghua; Song, Zhenhua; Zhang, Bo; Teng, Jialin
2014-08-01
Dysfunction of the endothelium is regarded as an important factor in the pathogenesis of vascular disease in diabetes mellitus (DM). Unfortunately, prevention of the progression of vascular complications of DM remains pessimistic. Ferulic acid and astragaloside IV, isolated from traditional Chinese medicine Angelica sinensis and Radix astragali respectively, exhibit potential cardio-protective and anti-hyperglycemic properties. In the present study, we investigated the protective effects and underlying mechanism of ferulic acid and astragaloside IV against vascular endothelial dysfunction in diabetic rats. After the diabetic rat model was established using streptozotocin, sixty rats were divided into 6 groups (control, model, ferulic acid, astragaloside IV, ferulic acid + astragaloside IV, and metformin) and treated for 10 weeks. Blood samples were collected to measure levels of hemoglobin A1c (HbAlc), triglyceride (TG), total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), low density lipoproteins (Ox-LDL), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and creatinine (Cr), nitric oxide (NO) and endothelial nitric oxide synthase (eNOS), and abdominal aorta tissue samples were collected for observing histological morphology changes of endothelium and detecting gene and protein expression of nuclear factor-κB (NF-κB) P65, monocyte chemoattractant protein-1 (MCP-1), and tumor necrosis factor α (TNF-α). We found that ferulic acid combined with astragaloside IV was capable of improving the structure of the aortic endothelium wall, attenuating the increase of HbAlc, TG, TC, LDL-C and Ox-LDL, promoting the release of NO and eNOS, and inhibiting over-activation of MCP-1, TNF-α, and NF-κB P65, without damage to liver and kidney function. In conclusion, ferulic acid combined with astragaloside IV exhibited significant protective effects against vascular endothelial dysfunction in diabetic rats through the NF-κB pathway involving decrease of Ox-LDL, increase of NO and eNOS, and activation of NF-κB P65, MCP-1 and TNF-α.
Kreikemeyer, Bernd; Nakata, Masanobu; Köller, Thomas; Hildisch, Hendrikje; Kourakos, Vassilios; Standar, Kerstin; Kawabata, Shigetada; Glocker, Michael O; Podbielski, Andreas
2007-12-01
Many Streptococcus pyogenes (group A streptococcus [GAS]) virulence factor- and transcriptional regulator-encoding genes cluster together in discrete genomic regions. Nra is a central regulator of the FCT region. Previous studies exclusively described Nra as a transcriptional repressor of adhesin and toxin genes. Here transcriptome and proteome analysis of a serotype M49 GAS strain and an isogenic Nra mutant of this strain revealed the complete Nra regulon profile. Nra is active in all growth phases tested, with the largest regulon in the transition phase. Almost exclusively, virulence factor-encoding genes are repressed by Nra; these genes include the GAS pilus operon, the capsule synthesis operon, the cytolysin-mediated translocation system genes, all Mga region core virulence genes, and genes encoding other regulators, like the Ihk/Irr system, Rgg, and two additional RofA-like protein family regulators. Surprisingly, our experiments revealed that Nra additionally acts as a positive regulator, mostly for genes encoding proteins and enzymes with metabolic functions. Epidemiological investigations revealed strong genetic linkage of one particular Nra-repressed regulator, Ralp3 (SPy0735), with a gene encoding Epf (extracellular protein factor from Streptococcus suis). In a serotype-specific fashion, this ralp3 epf gene block is integrated, most likely via transposition, into the eno sagA virulence gene block, which is present in all GAS serotypes. In GAS serotypes M1, M4, M12, M28, and M49 this novel discrete genetic region is therefore designated the eno ralp3 epf sagA (ERES) pathogenicity region. Functional experiments showed that Epf is a novel GAS plasminogen-binding protein and revealed that Ralp3 activity counteracts Nra and MsmR regulatory activity. In addition to the Mga and FCT regions, the ERES region is the third discrete chromosomal pathogenicity region. All of these regions are transcriptionally linked, adding another level of complexity to the known GAS growth phase-dependent regulatory network.
Kreikemeyer, Bernd; Nakata, Masanobu; Köller, Thomas; Hildisch, Hendrikje; Kourakos, Vassilios; Standar, Kerstin; Kawabata, Shigetada; Glocker, Michael O.; Podbielski, Andreas
2007-01-01
Many Streptococcus pyogenes (group A streptococcus [GAS]) virulence factor- and transcriptional regulator-encoding genes cluster together in discrete genomic regions. Nra is a central regulator of the FCT region. Previous studies exclusively described Nra as a transcriptional repressor of adhesin and toxin genes. Here transcriptome and proteome analysis of a serotype M49 GAS strain and an isogenic Nra mutant of this strain revealed the complete Nra regulon profile. Nra is active in all growth phases tested, with the largest regulon in the transition phase. Almost exclusively, virulence factor-encoding genes are repressed by Nra; these genes include the GAS pilus operon, the capsule synthesis operon, the cytolysin-mediated translocation system genes, all Mga region core virulence genes, and genes encoding other regulators, like the Ihk/Irr system, Rgg, and two additional RofA-like protein family regulators. Surprisingly, our experiments revealed that Nra additionally acts as a positive regulator, mostly for genes encoding proteins and enzymes with metabolic functions. Epidemiological investigations revealed strong genetic linkage of one particular Nra-repressed regulator, Ralp3 (SPy0735), with a gene encoding Epf (extracellular protein factor from Streptococcus suis). In a serotype-specific fashion, this ralp3 epf gene block is integrated, most likely via transposition, into the eno sagA virulence gene block, which is present in all GAS serotypes. In GAS serotypes M1, M4, M12, M28, and M49 this novel discrete genetic region is therefore designated the eno ralp3 epf sagA (ERES) pathogenicity region. Functional experiments showed that Epf is a novel GAS plasminogen-binding protein and revealed that Ralp3 activity counteracts Nra and MsmR regulatory activity. In addition to the Mga and FCT regions, the ERES region is the third discrete chromosomal pathogenicity region. All of these regions are transcriptionally linked, adding another level of complexity to the known GAS growth phase-dependent regulatory network. PMID:17893125
Renoprotective mechanisms of soy protein intake in the obese Zucker rat
Trujillo, Joyce; Cruz, Cristino; Tovar, Armando; Vaidya, Vishal; Zambrano, Elena; Bonventre, Joseph V.; Gamba, Gerardo; Torres, Nimbe; Bobadilla, Norma A.
2008-01-01
We previously showed that long-term consumption of a soy protein diet (SoyP) reduces renal damage in obese Zucker (ObeseZ) rats by restoring urinary NO2 and NO3 excretion (UNO2/NO3V), suggesting that nitric oxide (NO) deficiency may contribute to the renal progression observed in this model. In addition, there is compelling evidence that hyperleptinemia produced deleterious effects on the kidney through its interaction with the short leptin receptor (ObRa). This study was designed to evaluate the contribution of the NO/endothelial NO synthase (eNOS) system, renal oxidative stress, and ObRa expression to the renoprotection conferred by the consumption of a SoyP in ObeseZ rats. Ten lean and ten male ObeseZ rats were included. One-half of each group was fed with a 20% SoyP and the other half with a 20% casein protein diet (CasP) over the course of 160 days. eNOS protein levels and phosphorylation, renal lipoperoxidation (rLPO), and antioxidant enzyme activity were assessed. In addition, renal ObRa, TGF-β, and kidney injury molecule (Kim-1) mRNA levels, as well as urinary Kim-1 levels, were measured. Renal injury observed in ObeseZ rats fed with CasP was not associated with changes in eNOS expression or phosphorylation. However, this group did present with increased rLPO, reduced catalase activity, and upregulation of ObRa, TGF-β1, and Kim-1. In contrast, ObeseZ rats fed with a SoyP exhibited a reduction in NOS-Thr495 phosphorylation and rLPO, as well as an enhanced catalase activity. These findings were associated with a significant reduction of ObRa, TGF-β1, and Kim-1 mRNA levels and urinary Kim-1 protein. Our results show that renoprotection by SoyP in ObeseZ rats is in part mediated by increased NO availability secondary to a reduction in eNOS-T495 phosphorylation and oxidative stress, together with a significant reduction in ObRa and TGF-β expression. PMID:18815216
da Costa, Rafael M; da Silva, Josiane F; Alves, Juliano V; Dias, Thiago B; Rassi, Diane M; Garcia, Luis V; Lobato, Núbia de Souza; Tostes, Rita C
2018-01-01
Under physiological conditions, the perivascular adipose tissue (PVAT) negatively modulates vascular contractility. This property is lost in experimental and human obesity and in the metabolic syndrome, indicating that changes in PVAT function may contribute to vascular dysfunction associated with increased body weight and hyperglycemia. The O -linked β-N-acetylglucosamine ( O -GlcNAc) modification of proteins ( O -GlcNAcylation) is a unique posttranslational process that integrates glucose metabolism with intracellular protein activity. Increased flux of glucose through the hexosamine biosynthetic pathway and the consequent increase in tissue-specific O -GlcNAc modification of proteins have been linked to multiple facets of vascular dysfunction in diabetes and other pathological conditions. We hypothesized that chronic consumption of glucose, a condition that progresses to metabolic syndrome, leads to increased O -GlcNAc modification of proteins in the PVAT, decreasing its anti-contractile effects. Therefore, the current study was devised to determine whether a high-sugar diet increases O -GlcNAcylation in the PVAT and how increased O -GlcNAc interferes with PVAT vasorelaxant function. To assess molecular mechanisms by which O -GlcNAc contributes to PVAT dysfunction, thoracic aortas surrounded by PVAT were isolated from Wistar rats fed either a control or high sugar diet, for 10 and 12 weeks. Rats chronically fed a high sugar diet exhibited metabolic syndrome features, increased O -GlcNAcylated-proteins in the PVAT and loss of PVAT anti-contractile effect. PVAT from high sugar diet-fed rats for 12 weeks exhibited decreased NO formation, reduced expression of endothelial nitric oxide synthase (eNOS) and increased O -GlcNAcylation of eNOS. High sugar diet also decreased OGA activity and increased superoxide anion generation in the PVAT. Visceral adipose tissue samples from hyperglycemic patients showed increased levels of O -GlcNAc-modified proteins, increased ROS generation and decreased OGA activity. These data indicate that O -GlcNAcylation contributes to metabolic syndrome-induced PVAT dysfunction and that O -GlcNAcylation of eNOS may be targeted in the development of novel therapies for vascular dysfunction in conditions associated with hyperglycemia.
Pournajafi-Nazarloo, Hossein; Perry, Adam; Partoo, Leila; Papademeteriou, Eros; Azizi, Feridoun; Carter, C. Sue; Cushing, Bruce S.
2007-01-01
Oxytocin (OT) has been implicated in reproductive functions, induction of maternal behavior as well as endocrine and neuroendocrine regulation of the cardiovascular system. Here we demonstrate that neonatal manipulation of OT can modulate the mRNAs expression for OT receptor (OTR), atrial natriuretic peptide (ANP), endothelial nitric oxide synthase (eNOS) and estrogen receptor alpha (ERα) in the heart. On the first day of postnatal life, female and male rats were randomly assigned to receive one of following treatments; (a) 50 µl i.p. injection of 7 µg OT, (b) 0.7 µg of OT antagonist (OTA), or (c) isotonic saline (SAL). Hearts were collected either on postnatal day 1 or day 21 (D1 or D21) and the mRNAs expression of OTR, ANP, inducible NOS (iNOS), eNOS, ERα and estrogen receptor beta (ERβ) were compared by age, treatment, and sex utilizing Real Time PCR. OT treatment significantly increased heart OTR, ANP and eNOS mRNAs expression on D1 in both males and females, ERα increased only in females. While there were significant changes in the relative expression of all types of mRNA between D1 and D21 there were no significant treatment effects observed in D21 animals. OTA treatment significantly decreased basal ANP and eNOS mRNAs expression on D1 in both sexes. The results indicate that during the early postnatal period OT can have an immediate effect on the expression OTR, ANP, eNOS, and ERα mRNAs and that these effects are mitigated by D21. Also with the exception of ERα mRNA, the effects are the same in both sexes. PMID:17537544
Yamaç, Aylin Hatice; Kılıç, Ülkan
2018-04-01
The present study was an investigation of the effect of statins on the expression of circulating sirtuin 1 (SIRT1) and endothelial nitric oxide synthase (eNOS) proteins, and on the distribution of single nucleotide polymorphisms (SNPs) of the SIRT1 gene in patients with a history of premature myocardial infarction (PMI). A total of 108 patients who had suffered from a premature ST-elevation myocardial infarction (STEMI) under the age of 45 years were enrolled in this study. While 79 patients had been taking statins since the index event, 29 patients had discontinued statin treatment after hospital discharge due to noncompliance or insufficient information about the importance of continuous statin therapy in post-MI patients. The control group consisted of 91 healthy patients without a previous cardiovascular event. The levels of SIRT1 and eNOS protein; oxidative stress markers, like total antioxidant status (TAS), total oxidant status (TOS), and the oxidative stress index (OSI); as well as the distribution of the SNPs rs7069102 and rs2273773 were measured and analyzed. A significant increase in the SIRT1 level (p<0.001) and a significant decrease in the eNOS level (p=0.001) was observed in all genotypes and alleles for both SNPs in patients who received statin therapy compared with the control group. Both SNPs were distributed in a similar frequency in the 2 MI groups, irrespective of statin treatment. Statins induce SIRT1 protein, which might have a cardioprotective role after PMI. In addition, the eNOS protein level was low in all of the MI patients, suggesting that impairment of eNOS expression is disease-specific without a causal link to SIRT1.
Tun, Temdara; Kang, Young-Sook
2017-05-01
Hyperglycemia causes the breakdown of the blood-retinal barrier by impairing endothelial nitric oxide synthase (eNOS) function. Statins have many pleiotropic effects such as improving endothelial barrier permeability and increasing eNOS mRNA stability. The objective of this study was to determine effect of simvastatin on l-arginine transport and NO production under high-glucose conditions in conditionally immortalized rat retinal capillary endothelial cell line (TR-iBRB). Changes in l-arginine transport uptake and, expression levels of cationic amino acid transporter 1 (CAT-1) and eNOS mRNA were investigated after pre-treatment with simvastatin and NOS inhibitors (l-NMMA and l-NAME) under high-glucose conditions using TR-iBRB, an in vitro model of iBRB. The NO level released from TR-iBRB cells was examined using Griess reagents. Under high glucose conditions, [ 3 H]l-arginine uptake was decreased in TR-iBRB cells. Simvastatin pretreatment elevated [ 3 H]l-arginine uptake, the expression levels of CAT-1 and eNOS mRNA, and NO production under high-glucose conditions. Moreover, the co-treatment with simvastatin and NOS inhibitors reduced [ 3 H]l-arginine uptake compared to pretreatment with simvastatin alone. Our results suggest that, in the presence of high-glucose levels, increased l-arginine uptake due to simvastatin treatment was associated with increased CAT-1 and eNOS mRNA levels, leading to higher NO production in TR-iBRB cells. Thus, simvastatin might be a good modulator for diabetic retinopathy therapy by increasing of the l-arginine uptake and improving endothelial function in retinal capillary endothelial cells. Copyright © 2017 Elsevier Inc. All rights reserved.
2013-01-01
Background The yeast Candida is one of the most frequent pathogens isolated from bloodstream infections and is associated with significant morbidity and mortality. Problems with clinical and microbiological diagnosis of invasive candidiasis (IC) have prompted the development of non-culture-based laboratory methods. Previous reports suggest that serological detection of antibodies might be useful for diagnosing systemic candidiasis. Methods Diagnosis of IC using antibodies against recombinant Candida albicans enolase (Eno) and fructose-bisphosphate aldolase (Fba1) was evaluated. Using recombinant Eno and Fba1 as coating antigens, enzyme-linked immunosorbent assays (ELISAs) were used to analyze sera from patients with candidemia (n = 101), Candida colonization (n = 50), bacteremia (n = 84), invasive aspergillosis (n = 40); and from healthy controls (n = 200). Results The results demonstrated that ELISA detection of anti-Eno and anti-Fba1 IgG distinguished IC from other pathogenic infections in patients and healthy individuals. The sensitivity, specificity, and positive and negative predictive values were 72.3%, 94.7%, 78.5% and 93% for anti-Eno, and 87.1%, 92.8%, 76.5% and 96.4% for anti-Fba1 antibodies, respectively. Combining these two tests improved sensitivity up to 90.1% and negative predictive value up to 97.1%, with specificity and positive predictive values of 90.6% and 72.2%. The tests were specific to the Candida genus and antibody titers were higher for candidemia patients than for controls. Positive antibody tests were obtained before blood culture results for 42.2% of patients for anti-Eno and 51.1% for anti-Fba1. Conclusion These data suggest that tests that detect IgG antibodies against Candida enolase and fructose-bisphosphate aldolase, especially when used in combination, could be a powerful tool for diagnosing IC. PMID:23725337
Li, Fang-Qiu; Ma, Chun-Fang; Shi, Li-Ning; Lu, Jing-Fen; Wang, Ying; Huang, Mei; Kong, Qian-Qian
2013-05-31
The yeast Candida is one of the most frequent pathogens isolated from bloodstream infections and is associated with significant morbidity and mortality. Problems with clinical and microbiological diagnosis of invasive candidiasis (IC) have prompted the development of non-culture-based laboratory methods. Previous reports suggest that serological detection of antibodies might be useful for diagnosing systemic candidiasis. Diagnosis of IC using antibodies against recombinant Candida albicans enolase (Eno) and fructose-bisphosphate aldolase (Fba1) was evaluated. Using recombinant Eno and Fba1 as coating antigens, enzyme-linked immunosorbent assays (ELISAs) were used to analyze sera from patients with candidemia (n = 101), Candida colonization (n = 50), bacteremia (n = 84), invasive aspergillosis (n = 40); and from healthy controls (n = 200). The results demonstrated that ELISA detection of anti-Eno and anti-Fba1 IgG distinguished IC from other pathogenic infections in patients and healthy individuals. The sensitivity, specificity, and positive and negative predictive values were 72.3%, 94.7%, 78.5% and 93% for anti-Eno, and 87.1%, 92.8%, 76.5% and 96.4% for anti-Fba1 antibodies, respectively. Combining these two tests improved sensitivity up to 90.1% and negative predictive value up to 97.1%, with specificity and positive predictive values of 90.6% and 72.2%. The tests were specific to the Candida genus and antibody titers were higher for candidemia patients than for controls. Positive antibody tests were obtained before blood culture results for 42.2% of patients for anti-Eno and 51.1% for anti-Fba1. These data suggest that tests that detect IgG antibodies against Candida enolase and fructose-bisphosphate aldolase, especially when used in combination, could be a powerful tool for diagnosing IC.
Ahmad, A; Sattar, M A; Rathore, H A; Abdulla, M H; Khan, S A; Abdullah, N A; Johns, E J
2016-02-01
The present study investigated the role of endothelial nitric oxide synthase (eNOS) enzyme in the development of left ventricular hypertrophy (LVH) in Wistar-Kyoto rats. The effect of L-arginine administration on cardiac structure, arterial stiffness, renal and systemic hemodynamic parameters was studied and the change in expression of eNOS and cystathione γ lyase (CSE) in the myocardium of LVH rats was evaluated. LVH was induced using isoprenaline (5 mg/kg, S.C.) and caffeine (62 mg/L in drinking water) for 14 days. Following to that, L-arginine (1.25 g/L in drinking water) was given for 5 weeks as a donor of NO. eNOS and CSE gene expressions were down regulated in the LVH group by about 35% and 67% respectively when compared to control. However, in the LVH group treated with L-arginine there was up regulation of eNOS by almost 27% and down regulation in CSE by 24% when compared to control (all P < 0.05). Heart index and H2S plasma levels were reduced by almost 53% in the L-arginine treated LVH group compared to the control (all P < 0.05). Mean arterial pressure, heart rate and pulse wave velocity were reduced while renal blood perfusion increased in L-arginine treated LVH rats compared to their untreated counterparts (all P < 0.05). The enhanced expression of eNOS in L-arginine treated LVH rats resulted in the amelioration of oxidative and haemodynamic parameters suggesting that NO system is an important therapeutic target in cardiac and LV hypertrophies.
Mattila, Joshua T.; Ojo, Olabisi O.; Kepka-Lenhart, Diane; Marino, Simeone; Kim, Jin Hee; Eum, Seok Yong; Via, Laura E.; Barry, Clifton E.; Klein, Edwin; Kirschner, Denise E.; Morris, Sidney M.; Lin, Philana Ling; Flynn, JoAnne L.
2013-01-01
Macrophages in granulomas are both anti-mycobacterial effector and host cell for Mycobacterium tuberculosis(M.tb), yet basic aspects of macrophage diversity and function within the complex structures of granulomas remain poorly understood. To address this, we examined myeloid cell phenotypes and expression of enzymes correlated with host defense in macaque and human granulomas. Macaque granulomas had upregulated inducible and endothelial nitric oxide synthase (iNOS and eNOS) and arginase (Arg1 and Arg2) expression and enzyme activity compared to non-granulomatous tissue. Immunohistochemical analysis indicated macrophages adjacent to uninvolved normal tissue were more likely to express CD163, while epithelioid macrophages in regions where bacteria reside strongly expressed CD11c, CD68 and HAM56. Calprotectin-positive neutrophils were abundant in regions adjacent to caseum. iNOS, eNOS, Arg1 and Arg2 proteins were identified in macrophages and localized similarly in granulomas across species, with greater eNOS expression and ratio of iNOS:Arg1 expression in epithelioid macrophages, as compared to cells in the lymphocyte cuff. iNOS, Arg1 and Arg2 expression in neutrophils was also identified. The combination of phenotypic and functional markers support that macrophages with anti-inflammatory phenotypes localized to outer regions of granulomas while the inner regions were more likely to contain macrophages with pro-inflammatory, presumably bactericidal, phenotypes. Together these data support the concept that granulomas have organized microenvironments that balance anti-microbial anti-inflammatory responses to limit pathology in the lungs. PMID:23749634
Tepavčević, S; Milutinović, D V; Macut, D; Stanišić, J; Nikolić, M; Božić-Antić, I; Rodaljević, S; Bjekić-Macut, J; Matić, G; Korićanac, G
2015-05-01
Nitric oxide synthases (NOSs) and Na(+)/K(+)-ATPase are enzymes essential for regular functioning of the heart. Since both enzymes are under insulin and androgen regulation and since insulin action and androgen level were disturbed in polycystic ovary syndrome (PCOS), we hypothesized that cardiac nitric oxide (NO) production and sodium/potassium transport would be deteriorated in PCOS. To test our hypothesis we introduced animal model of PCOS based on dihydrotestosterone (DHT) treatment of female Wistar rats and analyzed protein expression, phosphorylation or subcellular localization of endothelial NOS (eNOS), inducible NOS (iNOS) and alpha subunits of Na(+)/K(+)-ATPase in the heart. Obtained results indicate that DHT treatment significantly decreased cardiac eNOS protein level and activating phosphorylation at serine 1,177, while inhibitory phosphorylation at threonine 495 was increased. In contrast to expression of eNOS, iNOS protein level in the heart of DHT-treated rats was significantly elevated. Furthermore, cardiac protein level of alpha 1 subunit of the ATPase, as well as its plasma membrane content, were decreased in rats with PCOS. In line with this, alpha 2 subunit protein level in fraction of plasma membranes was also significantly below control level. In conclusion, DHT treatment impaired effectiveness of NOSs and Na(+)/K(+)-ATPase in the female rat heart. Regarding the importance of NO production and sodium/potassium transport in the cardiac contraction and blood flow regulation, it implicates strong consequences of PCOS for heart functioning. © Georg Thieme Verlag KG Stuttgart · New York.
Taguchi, Kumiko; Matsumoto, Takayuki; Kamata, Katsuo; Kobayashi, Tsuneo
2012-01-01
In type 2 diabetes, impaired insulin-induced Akt/endothelial nitric oxide synthase (eNOS) signaling may decrease the vascular relaxation response. Previously, we reported that this response was negatively regulated by G protein–coupled receptor kinase 2 (GRK2). In this study, we investigated whether/how in aortas from ob/ob mice (a model of type 2 diabetes) GRK2 and β-arrestin 2 might regulate insulin-induced signaling. Endothelium-dependent relaxation was measured in aortic strips. GRK2, β-arrestin 2, and Akt/eNOS signaling pathway proteins and activities were mainly assayed by Western blotting. In ob/ob (vs. control [Lean]) aortas: 1) insulin-induced relaxation was reduced, and this deficit was prevented by GRK2 inhibitor, anti-GRK2 antibody, and an siRNA specifically targeting GRK2. The Lean aorta relaxation response was reduced to the ob/ob level by pretreatment with an siRNA targeting β-arrestin 2. 2) Insulin-stimulated Akt and eNOS phosphorylations were decreased. 3) GRK2 expression in membranes was elevated, and, upon insulin stimulation, this expression was further increased, but β-arrestin 2 was decreased. In ob/ob aortic membranes under insulin stimulation, the phosphorylations of Akt and eNOS were augmented by GRK2 inhibitor. In mouse aorta, GRK2 may be, upon translocation, a key negative regulator of insulin responsiveness and an important regulator of the β-arrestin 2/Akt/eNOS signaling, which is implicated in diabetic endothelial dysfunction. PMID:22688330
Taguchi, Kumiko; Matsumoto, Takayuki; Kamata, Katsuo; Kobayashi, Tsuneo
2012-08-01
In type 2 diabetes, impaired insulin-induced Akt/endothelial nitric oxide synthase (eNOS) signaling may decrease the vascular relaxation response. Previously, we reported that this response was negatively regulated by G protein-coupled receptor kinase 2 (GRK2). In this study, we investigated whether/how in aortas from ob/ob mice (a model of type 2 diabetes) GRK2 and β-arrestin 2 might regulate insulin-induced signaling. Endothelium-dependent relaxation was measured in aortic strips. GRK2, β-arrestin 2, and Akt/eNOS signaling pathway proteins and activities were mainly assayed by Western blotting. In ob/ob (vs. control [Lean]) aortas: 1) insulin-induced relaxation was reduced, and this deficit was prevented by GRK2 inhibitor, anti-GRK2 antibody, and an siRNA specifically targeting GRK2. The Lean aorta relaxation response was reduced to the ob/ob level by pretreatment with an siRNA targeting β-arrestin 2. 2) Insulin-stimulated Akt and eNOS phosphorylations were decreased. 3) GRK2 expression in membranes was elevated, and, upon insulin stimulation, this expression was further increased, but β-arrestin 2 was decreased. In ob/ob aortic membranes under insulin stimulation, the phosphorylations of Akt and eNOS were augmented by GRK2 inhibitor. In mouse aorta, GRK2 may be, upon translocation, a key negative regulator of insulin responsiveness and an important regulator of the β-arrestin 2/Akt/eNOS signaling, which is implicated in diabetic endothelial dysfunction.
Su, Kuo-Hui; Tsai, Jin-Yi; Kou, Yu Ru; Chiang, An-Na; Hsiao, Sheng-Huang; Wu, Yuh-Lin; Hou, Hsin-Han; Pan, Ching-Chian; Shyue, Song-Kun; Lee, Tzong-Shyuan
2009-06-01
Valsartan, a selective angiotensin II type 1 receptor (AT1R) blocker, has beneficial effects in the cardiovascular system in part by its increase of nitric oxide (NO) bioavailability, yet the mechanisms are unclear. We investigated the molecular mechanisms underlying this effect in endothelial cells (ECs). NO production was examined by Griess reagent assay, DAF-2 DA fluorescence staining and cGMP ELISA kits. Protein interaction was determined by western blotting and immunoprecipitation. Treating bovine or human aortic ECs with valsartan increased NO production, as evidenced by elevated level of stable NO metabolites and intracellular cGMP. Valsartan increased the phosphorylation but not the protein level of endothelial NO synthase (eNOS). Inhibition of phosphoinositide-3 kinase (PI3K)/Akt and Src pathways by specific inhibitors suppressed valsartan-induced NO release. In addition, valsartan increased the tyrosine residue phosphorylation of AT1R, which was attenuated by inhibition of Src but not PI3K activities. Valsartan also suppressed the interaction of eNOS and AT1R, which was blocked by Src or PI3K inhibition. Valsartan-induced NO production in ECs is mediated through Src/PI3K/Akt-dependent phosphorylation of eNOS. Valsartan-induced AT1R phosphorylation depends on Src but not PI3K, whereas valsartan-induced suppression of AT1R-eNOS interaction depends on Src/PI3K/Akt signalling. These results indicate a novel vasoprotective mechanism of valsartan in upregulating NO production in ECs.
Ramprasath, Tharmarajan; Kumar, Palani Hamenth; Puhari, Shanavas Syed Mohamed; Murugan, Ponniah Senthil; Vasudevan, Varadaraj; Selvam, Govindan Sadasivam
2012-11-23
Hyperglycemia is independently related with excessive morbidity and mortality in cardiovascular disorders. L-Arginine-nitric oxide (NO) pathway and the involvement of NO in modulating nuclear factor-E2-related factor-2 (Nrf2) signaling were well established. In the present study we investigated, whether L-arginine supplementation would improve the myocardial antioxidant defense under hyperglycemia through activation of Nrf2 signaling. Diabetes was induced by alloxan monohydrate (90 mg kg(-1) body weight) in rats. Both non-diabetic and diabetic group of rats were divided into three subgroups and they were administered either with L-arginine (2.25%) or L-NAME (0.01%) in drinking water for 12 days. Results showed that L-arginine treatment reduced the metabolic disturbances in diabetic rats. Antioxidant enzymes and glutathione levels were found to be increased in heart left ventricles, thereby reduction of lipid peroxidation by L-arginine treatment. Heart histopathological analysis further validates the reversal of typical diabetic characteristics consisting of alterations in myofibers and myofibrillary degeneration. qRT-PCR studies revealed that L-arginine treatment upregulated the transcription of Akt and downregulated NF-κB. Notably, transcription of eNOS and Nrf2 target genes was also upregulated, which were accompanied by enhanced expression of Nrf2 in left ventricular tissue from diabetic and control rats. Under these findings, we suggest that targeting of eNOS and Nrf2 signaling by L-arginine supplementation could be used as a potential treatment method to alleviate the late diabetic complications. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Weinan, E.; Shu, Chi-Wang
1994-01-01
High order essentially non-oscillatory (ENO) schemes, originally designed for compressible flow and in general for hyperbolic conservation laws, are applied to incompressible Euler and Navier-Stokes equations with periodic boundary conditions. The projection to divergence-free velocity fields is achieved by fourth-order central differences through fast Fourier transforms (FFT) and a mild high-order filtering. The objective of this work is to assess the resolution of ENO schemes for large scale features of the flow when a coarse grid is used and small scale features of the flow, such as shears and roll-ups, are not fully resolved. It is found that high-order ENO schemes remain stable under such situations and quantities related to large scale features, such as the total circulation around the roll-up region, are adequately resolved.
NASA Technical Reports Server (NTRS)
Weinan, E.; Shu, Chi-Wang
1992-01-01
High order essentially non-oscillatory (ENO) schemes, originally designed for compressible flow and in general for hyperbolic conservation laws, are applied to incompressible Euler and Navier-Stokes equations with periodic boundary conditions. The projection to divergence-free velocity fields is achieved by fourth order central differences through Fast Fourier Transforms (FFT) and a mild high-order filtering. The objective of this work is to assess the resolution of ENO schemes for large scale features of the flow when a coarse grid is used and small scale features of the flow, such as shears and roll-ups, are not fully resolved. It is found that high-order ENO schemes remain stable under such situations and quantities related to large-scale features, such as the total circulation around the roll-up region, are adequately resolved.
ACE gene in pregnancy complications: Insights into future vascular risk.
Fatini, Cinzia; Romagnuolo, Ilaria; Sticchi, Elena; Rossi, Lorenza; Cellai, Anna Paola; Rogolino, Angela; Abbate, Rosanna
2016-01-01
A history of placenta-mediated pregnancy complications (PMPCs) increases the risk of cardiovascular disease later in life, possibly related to the persistence of endothelial dysfunction. We performed this study in order to search for a common genetic background shared by women with a history of PMPC and vascular disorders, due to their common pathophysiologic pathway of endothelial dysfunction. We analyzed the prevalence of seven polymorphisms in ACE, AGTR1, AGT, and eNOS genes, endothelial-function related, in 290 women with a history of premature cardiovascular events (CVDs), and in 367 women with a history of PMPC (preeclampsia (PE), stillbirth (SB), and small for gestational age (SGA)), compared with 300 healthy women (HW) who delivered after uneventful pregnancy (HW). ACE D allele frequency was similar between women with history of CVD and PMPC, and significantly higher than that observed in HW [OR (95% CI) 1.91, p = 0.002, and OR (95% CI) 2.18, p < 0.0001, respectively]. In women carrying ACE-240T or eNOS-786C allele, a two-fold increase in SB susceptibility was evidenced (p = 0.004 and p = 0.005, respectively). Women with a history of SB and premature CVD exhibited a significantly higher unfavorable allelic burden ≥ 3 in comparison to that observed in HW (p < 0.0001 and p = 0.002, respectively). Our findings demonstrate a common genetic background shared by women with a history of vascular disorders and PMPCs; pregnancy may be considered a window to future cardiovascular risk; therefore, "non-classic" genetic biomarkers of endothelial dysfunction might allow one to identify women who could have a greater benefit for an early cardiovascular screening and prevention.
Zhang, Xiao-Na; Ma, Ze-Jun; Wang, Ying; Sun, Bei; Guo, Xin; Pan, Cong-Qing; Chen, Li-Ming
2017-01-01
Abnormal angiogenesis plays an important role in impaired wound healing and development of chronic wounds in diabetes mellitus. Angelica dahurica radix is a common traditional Chinese medicine with wide spectrum medicinal effects. In this study, we analyzed the potential roles of Angelica dahurica ethanolic extract (ADEE) in correcting impaired angiogenesis and delayed wound healing in diabetes by using streptozotocin-induced diabetic rats. ADEE treatment accelerated diabetic wound healing through inducing angiogenesis and granulation tissue formation. The angiogenic property of ADEE was subsequently verified ex vivo using aortic ring assays. Furthermore, we investigated the in vitro angiogenic activity of ADEE and its underlying mechanisms using human umbilical vein endothelial cells. ADEE treatment induced HUVECs proliferation, migration, and tube formation, which are typical phenomena of angiogenesis, in dose-dependent manners. These effects were associated with activation of angiogenic signal modulators, including extracellular signal-regulated kinase 1/2 (ERK1/2), Akt, endothelial nitric oxide synthase (eNOS) as well as increased NO production, and independent of affecting VEGF expression. ADEE-induced angiogenic events were inhibited by the MEK inhibitor PD98059, the PI3K inhibitor Wortmannin, and the eNOS inhibitor L-NAME. Our findings highlight an angiogenic role of ADEE and its ability to protect against impaired wound healing, which may be developed as a promising therapy for impaired angiogenesis and delayed wound healing in diabetes.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-02
...). Pilgrim is a boiling water nuclear reactor that is owned by Entergy Nuclear and operated by ENO. The... Generating Unit No. 1 (IP1). IP1 is a pressurized water nuclear reactor that is owned by ENIP2 and maintained... nuclear reactors that are owned by ENIP2 and ENIP3, respectively, and operated by ENO. The facilities are...
Cunha, Joao Paulo da; Lizarte, Fermino Sanches; Novais, Paulo Cezar; Gattas, Daniela; Carvalho, Camila Albuquerque Mello de; Tirapelli, Daniela Pretti da Cunha; Molina, Carlos Augusto Fernandes; Tirapelli, Luis Fernando; Tucci, Silvio
2017-01-01
To evaluate the expression of endothelial and inducible NOS in addition to the miRNA-27b in the corpus cavernosum and peripheral blood of healthy rats, diabetic rats, alcoholic rats and rats with both pathologies. Forty eight Wistar rats were divided into four groups: control (C), alcoholic (A), diabetic (D) and alcoholic-diabetic (AD). Samples of the corpus cavernosum were prepared to study protein expressions of eNOS and iNOS by immunohistochemistry and expression of miRNA-27b in the corpus cavernosum and peripheral blood. Immunohistochemistry for eNOS and iNOS showed an increase in cavernosal smooth muscle cells in the alcoholic, diabetic and alcoholic-diabetic groups when compared with the control group. Similarly, the mRNA levels for eNOS were increased in cavernosal smooth muscle (CSM) in the alcoholic, diabetic and alcoholic-diabetic groups and miRNA-27b were decreased in CSM in the alcoholic, diabetic and alcoholic-diabetic groups. The major new finding of our study was an impairment of relaxation of cavernosal smooth muscle in alcoholic, diabetic, and alcoholic-diabetic rats that involved a decrease in the nitric oxide pathway by endothelium-dependent mechanisms accompanied by a change in the corpus cavernosum contractile sensitivity.
Aguiar, Laura; Matos, Andreia; Gil, Ângela; Afonso, Conceição; Almeida, Salomé; Braga, Lígia; Lavinha, João; Kjollerstrom, Paula; Faustino, Paula; Bicho, Manuel; Inácio, Ângela
2016-01-01
Sickle cell anemia (SCA) is an inherited blood disorder. SCA patients present clinical and hematologic variability that cannot be only explained by the single mutation in the beta-globin gene. Others genetic modifiers and environmental effects are important for the clinical phenotype. SCA patients present arginine deficiency that contributes to a lower nitric oxide (NO) bioactivity. The aim of this work is to determine the association between hematological and biochemical parameters and genetic variants from eNOS gene, in pediatric SCA patients. 26 pediatric SCA patients were genotyped using polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) techniques in three important eNOS gene polymorphisms - rs2070744, rs1799983 and intron 4 VNTR. Results from this study show a significant statistical association between some parameters and genetic variants: an increased reticulocyte count and high serum lactate dehydrogenase levels were associated with both the rs2070744_TT and the rs1799983_GG genotypes at eNOS gene and high levels of neutrophils were associated with the eNOS4a allele at intron 4 VNTR. Our results reinforce the importance of NO bioactivity in SCA. We presume that NO, and its precursors might be used as therapy to improve the quality of life of SCA patients.
Some Aspects of Essentially Nonoscillatory (ENO) Formulations for the Euler Equations, Part 3
NASA Technical Reports Server (NTRS)
Chakravarthy, Sukumar R.
1990-01-01
An essentially nonoscillatory (ENO) formulation is described for hyperbolic systems of conservation laws. ENO approaches are based on smart interpolation to avoid spurious numerical oscillations. ENO schemes are a superset of Total Variation Diminishing (TVD) schemes. In the recent past, TVD formulations were used to construct shock capturing finite difference methods. At extremum points of the solution, TVD schemes automatically reduce to being first-order accurate discretizations locally, while away from extrema they can be constructed to be of higher order accuracy. The new framework helps construct essentially non-oscillatory finite difference methods without recourse to local reductions of accuracy to first order. Thus arbitrarily high orders of accuracy can be obtained. The basic general ideas of the new approach can be specialized in several ways and one specific implementation is described based on: (1) the integral form of the conservation laws; (2) reconstruction based on the primitive functions; (3) extension to multiple dimensions in a tensor product fashion; and (4) Runge-Kutta time integration. The resulting method is fourth-order accurate in time and space and is applicable to uniform Cartesian grids. The construction of such schemes for scalar equations and systems in one and two space dimensions is described along with several examples which illustrate interesting aspects of the new approach.
De Couto Pita, A; Passafaro, D; Ganzinelli, S; Borda, E; Sterin-Borda, L
2009-06-01
The aim of the study was to investigate the role of muscarinic acetylcholine receptor (mAChR) activity in the regulation of endothelial (e), neuronal (n) and inducible (i) nitric oxide synthase (NOS) activity and expression in experimentally induced inflammation of rat dental pulp tissue. Inflammation was induced by application of bacterial lipopolysaccharide (LPS) to the pulp. Extirpated pulp-tissue samples were incubated in saline solution until the various experiments were performed. Saline-treated pulp and healthy pulp tissues were used as controls. NOS activity was measured by the production of [U-(14)C]-citrulline from [U-(14)C]-arginine. Nitrite/nitrate assay was evaluated by the conversion of nitrate to nitrite in the presence of nicotinamide adenine dinucleotide phosphate. i-nos, e-nos and n-nos mRNA levels were measured using reverse-transcriptase polymerase chain reaction by co-amplification of target cDNA with a single set of primers. Application of LPS to the pulp increased NOS activity and nitrate production (P < 0.001), generated by iNOS over-activity and expression. Pilocarpine acting on mAChRs triggered a biphasic action on NOS activity and NO accumulation. At low concentrations, pilocarpine induced a negative effect associated with a decrease in i-nos mRNA level, whilst at high concentration, it produced a positive effect associated with increased e-nos and n-nos mRNA levels. In control pulp tissue, only the positive effect of pilocarpine was observed. Irreversible pulpitis changes mAChR conformation increasing its efficiency of coupling to transducing molecules that in turn induce activate iNOS. The capacity of pilocarpine to prevent NO accumulation and iNOS activity, by acting on mAChR mutation induced by pulpitis, might be useful therapeutically as a local treatment.
p38 mitogen-activated protein kinase is involved in arginase-II-mediated eNOS-Uncoupling in Obesity
2014-01-01
Background Endothelial nitric oxide synthase (eNOS)-uncoupling links obesity-associated insulin resistance and type-II diabetes to the increased incidence of cardiovascular disease. Studies have indicated that increased arginase is involved in eNOS-uncoupling through competing with the substrate L-arginine. Given that arginase-II (Arg-II) exerts some of its biological functions through crosstalk with signal transduction pathways, and that p38 mitogen-activated protein kinase (p38mapk) is involved in eNOS-uncoupling, we investigated here whether p38mapk is involved in Arg-II-mediated eNOS-uncoupling in a high fat diet (HFD)-induced obesity mouse model. Methods Obesity was induced in wild type (WT) and Arg-II-deficient (Arg-II-/-) mice on C57BL/6 J background by high-fat diet (HFD, 55% fat) for 14 weeks starting from age of 7 weeks. The entire aortas were isolated and subjected to 1) immunoblotting analysis of the protein level of eNOS, Arg-II and p38mapk activation; 2) arginase activity assay; 3) endothelium-dependent and independent vasomotor responses; 4) en face staining of superoxide anion and NO production with Dihydroethidium and 4,5-Diaminofluorescein Diacetate, respectively, to assess eNOS-uncoupling. To evaluate the role of p38mapk, isolated aortas were treated with p38mapk inhibitor SB203580 (10 μmol/L, 1 h) prior to the analysis. In addition, the role of p38mapk in Arg-II-induced eNOS-uncoupling was investigated in cultured human endothelial cells overexpressing Arg-II in the absence or presence of shRNA against p38mapk. Results HFD enhanced Arg-II expression/activity and p38mapk activity, which was associated with eNOS-uncoupling as revealed by decreased NO and enhanced L-NAME-inhibitable superoxide in aortas of WT obese mice. In accordance, WT obese mice revealed decreased endothelium-dependent relaxations to acetylcholine despite of higher eNOS protein level, whereas Arg-II-/- obese mice were protected from HFD-induced eNOS-uncoupling and endothelial dysfunction, which was associated with reduced p38mapk activation in aortas of the Arg-II-/- obese mice. Moreover, overexpression of Arg-II in human endothelial cells caused eNOS-uncoupling and augmented p38mapk activation. The Arg-II-induced eNOS-uncoupling was prevented by silencing p38mapk. Furthermore, pharmacological inhibition of p38mapk recouples eNOS in isolated aortas from WT obese mice. Conclusions Taking together, we demonstrate here for the first time that Arg-II causes eNOS-uncoupling through activation of p38 mapk in HFD-induced obesity. PMID:25034973
Sun, Haijian; Zhu, Xuexue; Zhou, Yuetao; Cai, Weiwei; Qiu, Liying
2017-01-01
Oxidized low-density lipoprotein (ox-LDL) accumulation is one of the critical determinants in endothelial dysfunction in many cardiovascular diseases such as atherosclerosis. C1q/TNF-related protein 9 (CTRP9) is identified to be an adipocytokine with cardioprotective properties. However, the potential roles of CTRP9 in endothelial function remain largely elusive. In the present study, the effects of CTRP9 on the proliferation, apoptosis, migration, angiogenesis, nitric oxide (NO) production and oxidative stress in human umbilical vein endothelial cells (HUVECs) exposed to ox-LDL were investigated. We observed that treatment with ox-LDL inhibited the proliferation, migration, angiogenesis and the generation of NO, while stimulated the apoptosis and reactive oxygen species (ROS) production in HUVECs. Incubation of HUVECs with CTRP9 rescued ox-LDL-induced endothelial injury. CTRP9 treatment reversed ox-LDL-evoked decreases in antioxidant enzymes including heme oxygenase-1 (HO-1), nicotinamide adenine dinucleotide phosphate (NAD(P)H) dehydrogenase quinone 1, and glutamate-cysteine ligase (GCL), as well as endothelial nitric oxide synthase (eNOS). Furthermore, CTRP9 induced activation of peroxisome proliferator-activated receptor γ co-activator 1α (PGC1-α) and phosphorylation of adenosine monophosphate-activated protein kinase (AMPK). Of interest, AMPK inhibition or PGC1-α silencing abolished CTRP9-mediated antioxidant enzymes levels, eNOS expressions, and endothelial protective effects. Collectively, we provided the first evidence that CTRP9 attenuated ox-LDL-induced endothelial injury by antioxidant enzyme inductions dependent on PGC-1α/AMPK activation. PMID:28587104
Chen, Kang-Jie; Tong, Hong-Fei; Wang, Zhao-Hong; Ni, Zhong-Lin; Liu, Hai-Bin; Guo, Hong-Chun; Liu, Dian-Lei
2012-01-01
Background Emodin has been showed to induce apoptosis of pancreatic cancer cells and inhibit tumor growth in our previous studies. This study was designed to investigate whether emodin could inhibit the angiogenesis of pancreatic cancer tissues and its mechanism. Methodology/Principal Finding In accordance with our previous study, emodin inhibited pancreatic cancer cell growth, induced apoptosis, and enhanced the anti-tumor effect of gemcitabine on pancreatic caner cells in vitro and in vivo by inhibiting the activity of NF-κB. Here, for the first time, we demonstrated that emodin inhibited tumor angiogenesis in vitro and in implanted pancreatic cancer tissues, decreased the expression of angiogenesis-associated factors (NF-κB and its regulated factors VEGF, MMP-2, MMP-9, and eNOS), and reduced eNOS phosphorylation, as evidenced by both immunohistochemistry and western blot analysis of implanted tumors. In addition, we found that emodin had no effect on VEGFR expression in vivo. Conclusions/Significance Our results suggested that emodin has potential anti-tumor effect on pancreatic cancer via its dual role in the promotion of apoptosis and suppression of angiogenesis, probably through regulating the expression of NF-κB and NF-κB-regulated angiogenesis-associated factors. PMID:22876305
Resveratrol induces mitochondrial biogenesis in endothelial cells.
Csiszar, Anna; Labinskyy, Nazar; Pinto, John T; Ballabh, Praveen; Zhang, Hanrui; Losonczy, Gyorgy; Pearson, Kevin; de Cabo, Rafael; Pacher, Pal; Zhang, Cuihua; Ungvari, Zoltan
2009-07-01
Pathways that regulate mitochondrial biogenesis are potential therapeutic targets for the amelioration of endothelial dysfunction and vascular disease. Resveratrol was shown to impact mitochondrial function in skeletal muscle and the liver, but its role in mitochondrial biogenesis in endothelial cells remains poorly defined. The present study determined whether resveratrol induces mitochondrial biogenesis in cultured human coronary arterial endothelial cells (CAECs). In CAECs resveratrol increased mitochondrial mass and mitochondrial DNA content, upregulated protein expression of electron transport chain constituents, and induced mitochondrial biogenesis factors (proliferator-activated receptor-coactivator-1alpha, nuclear respiratory factor-1, mitochondrial transcription factor A). Sirtuin 1 (SIRT1) was induced, and endothelial nitric oxide (NO) synthase (eNOS) was upregulated in a SIRT1-dependent manner. Knockdown of SIRT1 (small interfering RNA) or inhibition of NO synthesis prevented resveratrol-induced mitochondrial biogenesis. In aortas of type 2 diabetic (db/db) mice impaired mitochondrial biogenesis was normalized by chronic resveratrol treatment, showing the in vivo relevance of our findings. Resveratrol increases mitochondrial content in endothelial cells via activating SIRT1. We propose that SIRT1, via a pathway that involves the upregulation of eNOS, induces mitochondrial biogenesis. Resveratrol induced mitochondrial biogenesis in the aortas of type 2 diabetic mice, suggesting the potential for new treatment approaches targeting endothelial mitochondria in metabolic diseases.
Resveratrol induces mitochondrial biogenesis in endothelial cells
Csiszar, Anna; Labinskyy, Nazar; Pinto, John T.; Ballabh, Praveen; Zhang, Hanrui; Losonczy, Gyorgy; Pearson, Kevin; de Cabo, Rafael; Pacher, Pal; Zhang, Cuihua; Ungvari, Zoltan
2009-01-01
Pathways that regulate mitochondrial biogenesis are potential therapeutic targets for the amelioration of endothelial dysfunction and vascular disease. Resveratrol was shown to impact mitochondrial function in skeletal muscle and the liver, but its role in mitochondrial biogenesis in endothelial cells remains poorly defined. The present study determined whether resveratrol induces mitochondrial biogenesis in cultured human coronary arterial endothelial cells (CAECs). In CAECs resveratrol increased mitochondrial mass and mitochondrial DNA content, upregulated protein expression of electron transport chain constituents, and induced mitochondrial biogenesis factors (proliferator-activated receptor-coactivator-1α, nuclear respiratory factor-1, mitochondrial transcription factor A). Sirtuin 1 (SIRT1) was induced, and endothelial nitric oxide (NO) synthase (eNOS) was upregulated in a SIRT1-dependent manner. Knockdown of SIRT1 (small interfering RNA) or inhibition of NO synthesis prevented resveratrol-induced mitochondrial biogenesis. In aortas of type 2 diabetic (db/db) mice impaired mitochondrial biogenesis was normalized by chronic resveratrol treatment, showing the in vivo relevance of our findings. Resveratrol increases mitochondrial content in endothelial cells via activating SIRT1. We propose that SIRT1, via a pathway that involves the upregulation of eNOS, induces mitochondrial biogenesis. Resveratrol induced mitochondrial biogenesis in the aortas of type 2 diabetic mice, suggesting the potential for new treatment approaches targeting endothelial mitochondria in metabolic diseases. PMID:19429820
Villalba, Nuria; Sackheim, Adrian M; Nunez, Ivette A; Hill-Eubanks, David C; Nelson, Mark T; Wellman, George C; Freeman, Kalev
2017-01-01
Endothelial dysfunction is a hallmark of many chronic diseases, including diabetes and long-term hypertension. We show that acute traumatic brain injury (TBI) leads to endothelial dysfunction in rat mesenteric arteries. Endothelial-dependent dilation was greatly diminished 24 h after TBI because of impaired nitric oxide (NO) production. The activity of arginase, which competes with endothelial NO synthase (eNOS) for the common substrate l-arginine, were also significantly increased in arteries, suggesting that arginase-mediated depletion of l-arginine underlies diminished NO production. Consistent with this, substrate restoration by exogenous application of l-arginine or inhibition of arginase recovered endothelial function. Moreover, evidence for increased reactive oxygen species production, a consequence of l-arginine starvation-dependent eNOS uncoupling, was detected in endothelium and plasma. Collectively, our findings demonstrate endothelial dysfunction in a remote vascular bed after TBI, manifesting as impaired endothelial-dependent vasodilation, with increased arginase activity, decreased generation of NO, and increased O 2 - production. We conclude that blood vessels have a "molecular memory" of neurotrauma, 24 h after injury, because of functional changes in vascular endothelial cells; these effects are pertinent to understanding the systemic inflammatory response that occurs after TBI even in the absence of polytrauma.
Ko, Ah-Reum; Kim, Ji Yang; Hyun, Hye-Won; Kim, Ji-Eun
2015-10-05
The blood-brain barrier (BBB) maintains the unique brain microenvironment, which is separated from the systemic circulating system. Since the endoplasmic reticulum (ER) is an important cell organelle that is responsible for protein synthesis, the correct folding and sorting of proteins contributing to cell survivals, ER stress is a potential cause of cell damage in various diseases. Therefore, it would be worthy to explore the the relationship between the ER stress and BBB disruption during vasogenic edema formation induced by epileptogenic insults. In the present study, we investigated the roles of ER stress in vasogenic edema and its related events in rat epilepsy models provoked by pilocarpine-induced status epilepticus (SE). SE-induced eNOS activation induces BBB breakdown via up-regulation of GRP78 expression and dysfunction of SMI-71 (an endothelial BBB marker) in the piriform cortex (PC). In addition, caveolin-1 peptide (an eNOS inhibitor) effectively attenuated GRP78 expression and down-regulation of SMI-71. Taken together, our findings suggest that eNOS-mediated ER stress may participate in SE-induced vasogenic edema formation. Therefore, the modulation of ER stress may be a considerable strategy for therapy in impairments of endothelial cell function. Copyright © 2015 Elsevier B.V. All rights reserved.
Ruseva, Boryana; Atanasova, Milena; Tsvetkova, Reni; Betova, Tatyana; Mollova, Margarita; Alexandrova, Margarita; Laleva, Pavlina; Dimitrova, Aneliya
2015-01-01
Selenium (Se) is an exogenous antioxidant that performs its function via the expression of selenoproteins. The aim of this study was to explore the effect of varying Se intake on the redox status of the aortic wall in young spontaneously hypertensive rats (SHR). Sixteen male Wistar Kyoto (WKY) rats and nineteen male SHR, 16-week-old, were tested after being given diets with different Se content for eight weeks. They were divided into 4 groups: control groups of WKY NSe and SHR NSe on an adequate Se diet and groups of WKY HSe and SHR HSe that received Se supplementation. The Se nutritional status was assessed by measuring whole blood glutathione peroxidase-1 (GPx-1) activity. Serum concentration of lipid hydroperoxides and serum level of antibodies against advanced glycation end products (anti-AGEs abs) were determined. Expression of GPx-1 and endothelial nitric oxide synthase (eNOS) were examined in aortic wall. Se supplementation significantly increased GPx-1 activity of whole blood and in the aortas of WKY and SHR. Decreased lipid peroxidation level, eNOS-3 expression in the aortic wall, and serum level of anti-AGEs abs were found in SHR HSe compared with SHR NSe. In conclusion, Se supplementation improved the redox status of the aortic wall in young SHR. PMID:26473024
Cencioni, Chiara; Spallotta, Francesco; Savoia, Matteo; Kuenne, Carsten; Guenther, Stefan; Re, Agnese; Wingert, Susanne; Rehage, Maike; Sürün, Duran; Siragusa, Mauro; Smith, Jacob G; Schnütgen, Frank; von Melchner, Harald; Rieger, Michael A; Martelli, Fabio; Riccio, Antonella; Fleming, Ingrid; Braun, Thomas; Zeiher, Andreas M; Farsetti, Antonella; Gaetano, Carlo
2018-03-29
Nitric oxide (NO) synthesis is a late event during differentiation of mouse embryonic stem cells (mESC) and occurs after release from serum and leukemia inhibitory factor (LIF). Here we show that after release from pluripotency, a subpopulation of mESC, kept in the naive state by 2i/LIF, expresses endothelial nitric oxide synthase (eNOS) and endogenously synthesizes NO. This eNOS/NO-positive subpopulation (ESNO+) expresses mesendodermal markers and is more efficient in the generation of cardiovascular precursors than eNOS/NO-negative cells. Mechanistically, production of endogenous NO triggers rapid Hdac2 S-nitrosylation, which reduces association of Hdac2 with the transcriptional repression factor Zeb1, allowing mesendodermal gene expression. In conclusion, our results suggest that the interaction between Zeb1, Hdac2, and eNOS is required for early mesendodermal differentiation of naive mESC.
NASA Technical Reports Server (NTRS)
Shu, Chi-Wang
1997-01-01
In these lecture notes we describe the construction, analysis, and application of ENO (Essentially Non-Oscillatory) and WENO (Weighted Essentially Non-Oscillatory) schemes for hyperbolic conservation laws and related Hamilton- Jacobi equations. ENO and WENO schemes are high order accurate finite difference schemes designed for problems with piecewise smooth solutions containing discontinuities. The key idea lies at the approximation level, where a nonlinear adaptive procedure is used to automatically choose the locally smoothest stencil, hence avoiding crossing discontinuities in the interpolation procedure as much as possible. ENO and WENO schemes have been quite successful in applications, especially for problems containing both shocks and complicated smooth solution structures, such as compressible turbulence simulations and aeroacoustics. These lecture notes are basically self-contained. It is our hope that with these notes and with the help of the quoted references, the reader can understand the algorithms and code them up for applications.
Wang, Zi-Rui; Liu, Hui-Bin; Sun, Ying-Ying; Hu, Qing-Qing; Li, Yu-Xia; Zheng, Wei-Wan; Yu, Chang-Jiang; Li, Xin-Yuan; Wu, Ming-Ming; Song, Bin-Lin; Mu, Jian-Jun; Yuan, Zu-Yi; Zhang, Zhi-Ren; Ma, He-Ping
2018-04-01
Our recent studies show that the reduced activity of epithelial sodium channels (ENaC) in endothelial cells accounts for the adaptation of vasculature to salt in Sprague-Dawley rats. The present study examines a hypothesis that enhanced ENaC activity mediates the loss of vasorelaxation in Dahl salt-sensitive (SS) rats. We used the cell-attached patch-clamp technique to record ENaC activity in split-open mesenteric arteries. Western blot and immunofluorescence staining were used to evaluate the levels of aldosterone, ENaC, eNOS and NO. Blood pressure was measured with the tail-cuff method and the artery relaxation was measured with the wire myograph assay. High-salt (HS) diet significantly increased plasma aldosterone and ENaC activity in the endothelial cells of Dahl SS rats. The endothelium-dependent artery relaxation was blunted by HS challenge in these rats. Amiloride, a potent blocker of ENaC, increased both phosphorylated eNOS and NO and therefore prevented the HS-induced loss of vasorelaxation. As, in SS rats, endogenous aldosterone was already elevated by HS challenge, exogenous aldosterone did not further elevate ENaC activity in the rats fed with HS. Eplerenone, a mineralocorticoid receptor antagonist, attenuated the effects of HS on both ENaC activity and artery relaxation. These data suggest that HS diet blunts artery relaxation and causes hypertension via a pathway associated with aldosterone-dependent activation of ENaC in endothelial cells. This pathway provides one of the mechanisms by which HS causes hypertension in Dahl SS rats. This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc. © 2017 The British Pharmacological Society.
Loke, K E; Messina, E J; Shesely, E G; Kaley, G; Hintze, T H
2001-01-01
Our aim was to investigate the potential therapeutic role of endothelial nitric oxide synthase (eNOS) in the modulation of cardiac O(2) consumption induced by the angiotensin converting enzyme (ACE) inhibitor ramiprilat and amlodipine. Three different groups of mice were used; wild type, wild type in the presence of N-nitro-L-arginine methyl ester (L-NAME, 10(-4) mol/l) or genetically altered mice lacking the eNOS gene (eNOS -/-). Myocardial O(2) consumption was measured using a Clark-type O(2) electrode in an air-tight stirred bath. Concentration-response curves to ramiprilat (RAM), amlodipine (AMLO), diltiazem (DIL), carbachol (CCL), substance P (SP) and S-nitroso-N-acetyl-penicillamine (SNAP) were performed. The rate of decrease in O(2) concentration was expressed as a percentage of the baseline. Baseline O(2) consumption was not different between the three groups of mice. In tissues from wild type mice, RAM (10(-5) mol/l), AMLO (10(-5) mol/l), DIL (10(-4) mol/l), CCL (10(-4) mol/l), SP (10(-7) mol/l) and SNAP (10(-4) mol/l) reduced myocardial O(2) consumption by -32+/-4, -27+/-10, -20+/-6, -25+/-2, -22+/-4 and -42+/-4%, respectively. The responses to RAM, AMLO, CCL and SP were absent in tissues taken from eNOS -/- mice (-7.1+/-4.3, -5.0+/-6.0, -5.2+/-5.1 and -0.4+/-0.2%, respectively). In addition, L-NAME significantly (P<0.05) inhibited the reduction in O(2) consumption induced by RAM (-9.8+/-4.4%), AMLO (-1.0+/-6.0%), CCL (-8.8+/-3.7%) and SP (-6.6+/-4.9%) in cardiac tissues from wild type mice. In contrast, NO-independent responses to the calcium channel antagonist, DIL, and responses to the NO donor, SNAP, were not affected in cardiac tissues taken from eNOS -/- (DIL: -20+/-4%; SNAP: -46+/-6%) or L-NAME-treated (DIL: -17+/-2%; SNAP: -33+/-5%) mice. These results suggest that endogenous endothelial NO synthase derived NO serves an important role in the regulation of myocardial O(2) consumption. This action may contribute to the therapeutic action of ACE inhibitors and amlodipine.
Nunes, Ana Karolina Santana; Rapôso, Catarina; Rocha, Sura Wanessa Santos; Barbosa, Karla Patrícia de Sousa; Luna, Rayana Leal de Almeida; da Cruz-Höfling, Maria Alice; Peixoto, Christina Alves
2015-11-19
Sildenafil (Viagra®) has recently been found to have a neuroprotective effect, which occurs through the inhibition of inflammation and demyelination in the cerebellum. However, the mechanism of action of sildenafil remains unknown. AMPK, the regulatory protein of the lipid and glucose metabolism, plays a protective role by activating the eNOS enzyme. The production of a nanomolar concentration of NO by eNOS has an anti-inflammatory effect through the cGMP signaling pathway and plays an important role in the regulation of the nuclear transcription factor (NFkB), preventing the expression of inflammatory genes. The present study investigated whether AMPK-eNOS-NO-cGMP-IКβα-NFkB is involved in the mechanism of action of sildenafil in a cuprizone-demyelination model. Neuroinflammation and demyelination induced by cuprizone in rodents have been widely used as a model of MS. In the present study, five male C57BL/6 mice (7-10 weeks old) were used. Over a four week period, the groups received: cuprizone (CPZ) 0.2% mixed in feed; CPZ in the diet, combined with the administration of sildenafil (Viagra®, Pfizer, 25mg/kg) orally in drinking water, starting concurrently (sild-T0) or 15 days (sild-T15) after the start of CPZ. Control animals received pure food and water. The cerebella of the mice were dissected and processed for immunohistochemistry, immunofluorescence (frozen), western blotting and dosage of cytokines (Elisa). CPZ induced an increase in the expression of GFAP, IL-1β TNF-α, total NFkB and inactive AMPK, and prompt microglia activation. CPZ also induced a reduction of IKβα. The administration of sildenafil reduced the expression of the pro-inflammatory cytokines IL-1β and TNF-α and increased the expression of the anti-inflammatory cytokine IL-10. In addition, the administration of sildenafil reduced expression of GFAP, NFkB, inactive AMPK and iNOS, and increased IKβα. Interestingly, sildenafil also reduced levels of NGF. In general, the sild-T0 group was more effective than sild-T15 in improving clinical status and promoting the control of neuroinflammation. The present study offers evidence that sildenafil has anti-inflammatory and neuroprotective effects, which are probably achieved through modulation of AMPK-IKβα-NFκB signaling. In addition, eNOS may play a role in the sildenafil neuroprotective mechanism, contributing to the activation of AMPK. However, other pathways such as MAPK-NFkB and the downstream proteins AMPK (AMPK-SIRT1-NFκB) should also be further investigated. An understanding of these mechanisms of action is critical for the clinical use of sildenafil to control neuroinflammation in neurodegenerative diseases such as MS. Copyright © 2015 Elsevier B.V. All rights reserved.
Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease.
Argaw, Azeb Tadesse; Asp, Linnea; Zhang, Jingya; Navrazhina, Kristina; Pham, Trinh; Mariani, John N; Mahase, Sean; Dutta, Dipankar J; Seto, Jeremy; Kramer, Elisabeth G; Ferrara, Napoleone; Sofroniew, Michael V; John, Gareth R
2012-07-01
In inflammatory CNS conditions such as multiple sclerosis (MS), current options to treat clinical relapse are limited, and more selective agents are needed. Disruption of the blood-brain barrier (BBB) is an early feature of lesion formation that correlates with clinical exacerbation, leading to edema, excitotoxicity, and entry of serum proteins and inflammatory cells. Here, we identify astrocytic expression of VEGF-A as a key driver of BBB permeability in mice. Inactivation of astrocytic Vegfa expression reduced BBB breakdown, decreased lymphocyte infiltration and neuropathology in inflammatory and demyelinating lesions, and reduced paralysis in a mouse model of MS. Knockdown studies in CNS endothelium indicated activation of the downstream effector eNOS as the principal mechanism underlying the effects of VEGF-A on the BBB. Systemic administration of the selective eNOS inhibitor cavtratin in mice abrogated VEGF-A-induced BBB disruption and pathology and protected against neurologic deficit in the MS model system. Collectively, these data identify blockade of VEGF-A signaling as a protective strategy to treat inflammatory CNS disease.
Toda, Noboru; Tanabe, Shinichi; Nakanishi, Sadanobu
2011-01-01
Nitric oxide (NO) formed via endothelial NO synthase (eNOS) plays crucial roles in the regulation of coronary blood flow through vasodilatation and decreased vascular resistance, and in inhibition of platelet aggregation and adhesion, leading to the prevention of coronary circulatory failure, thrombosis, and atherosclerosis. Endothelial function is impaired by several pathogenic factors including smoking, chronic alcohol intake, hypercholesterolemia, obesity, hyperglycemia, and hypertension. The mechanisms underlying endothelial dysfunction include reduced NO synthase (NOS) expression and activity, decreased NO bioavailability, and increased production of oxygen radicals and endogenous NOS inhibitors. Atrial fibrillation appears to be a risk factor for endothelial dysfunction. Endothelial dysfunction is an important predictor of coronary artery disease (CAD) in humans. Penile erectile dysfunction, associated with impaired bioavailability of NO produced by eNOS and neuronal NOS, is also considered to be highly predictive of ischemic heart disease. There is evidence suggesting an important role of nitrergic innervation in coronary blood flow regulation. Prophylactic and therapeutic measures to eliminate pathogenic factors inducing endothelial and nitrergic nerve dysfunction would be quite important in preventing the genesis and development of CAD. PMID:22942627
[Nitric oxide pathway and female lower urinary tract. Physiological and pathophysiological role].
Gamé, X; Rischmann, P; Arnal, J-F; Malavaud, B
2013-09-01
The aim was to review the literature on nitric oxide and female lower urinary tract. A literature review through the PubMed library until December, 31 2012 was carried out using the following keywords: lower urinary tract, bladder, urethra, nervous central system, innervation, female, women, nitric oxide, phosphodiesterase, bladder outlet obstruction, urinary incontinence, overactive bladder, urinary tract infection. Two nitric oxide synthase isoforms, the neuronal (nNOS) and the endothelial (eNOS), are constitutively expressed in the lower urinary tract. Nevertheless, nNOS is mainly expressed in the bladder neck and the urethra. In the bladder, NO modulates the afferent neurons activity. In pathological condition, inducible NOS expression induces an increase in detrusor contractility and bladder wall thickness and eNOS facilitates Escherichia coli bladder wall invasion inducing recurrent urinary tract infections. In the urethra, NO play a major role in smooth muscle cells relaxation. The NO pathway plays a major role in the female lower urinary tract physiology and physiopathology. While it acts mainly on bladder outlet, in pathological condition, it is involved in bladder dysfunction occurrence. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Role of eNOS in water exchange index maintenance-MRI studies
NASA Astrophysics Data System (ADS)
Atochin, D.; Litvak, M.; Huang, S.; Kim, Y. R.; Huang, P.
2017-08-01
Stroke studies employ experimental models of cerebral ischemic and reperfusion injury in rodents. MRI provides valuable supravital data of cerebral blood flow and brain tissue damage. This paper presents MRI applications for cerebral blood flow research in mice lines with impaired nitric oxide production by endothelial nitric oxide synthase. Our data demonstrates that specific modifications of MRI methodology in transgenic mouse models help to evaluate the role of eNOS in the brain-blood barrier function.
Saxagliptin Restores Vascular Mitochondrial Exercise Response in the Goto-Kakizaki Rat
Keller, Amy C.; Knaub, Leslie A.; Miller, Matthew W.; Birdsey, Nicholas; Klemm, Dwight J.
2015-01-01
Abstract: Cardiovascular disease risk and all-cause mortality are largely predicted by physical fitness. Exercise stimulates vascular mitochondrial biogenesis through endothelial nitric oxide synthase (eNOS), sirtuins, and PPARγ coactivator 1α (PGC-1α), a response absent in diabetes and hypertension. We hypothesized that an agent regulating eNOS in the context of diabetes could reconstitute exercise-mediated signaling to mitochondrial biogenesis. Glucagon-like peptide 1 (GLP-1) stimulates eNOS and blood flow; we used saxagliptin, an inhibitor of GLP-1 degradation, to test whether vascular mitochondrial adaptation to exercise in diabetes could be restored. Goto-Kakizaki (GK) rats, a nonobese, type 2 diabetes model, and Wistar controls were exposed to an 8-day exercise intervention with or without saxagliptin (10 mg·kg−1·d−1). We evaluated the impact of exercise and saxagliptin on mitochondrial proteins and signaling pathways in aorta. Mitochondrial protein expression increased with exercise in the Wistar aorta and decreased or remained unchanged in the GK animals. GK rats treated with saxagliptin plus exercise showed increased expression of mitochondrial complexes, cytochrome c, eNOS, nNOS, PGC-1α, and UCP3 proteins. Notably, a 3-week saxagliptin plus exercise intervention significantly increased running time in the GK rats. These data suggest that saxagliptin restores vascular mitochondrial adaptation to exercise in a diabetic rodent model and may augment the impact of exercise on the vasculature. PMID:25264749
Saxagliptin restores vascular mitochondrial exercise response in the Goto-Kakizaki rat.
Keller, Amy C; Knaub, Leslie A; Miller, Matthew W; Birdsey, Nicholas; Klemm, Dwight J; Reusch, Jane E B
2015-02-01
Cardiovascular disease risk and all-cause mortality are largely predicted by physical fitness. Exercise stimulates vascular mitochondrial biogenesis through endothelial nitric oxide synthase (eNOS), sirtuins, and PPARγ coactivator 1α (PGC-1α), a response absent in diabetes and hypertension. We hypothesized that an agent regulating eNOS in the context of diabetes could reconstitute exercise-mediated signaling to mitochondrial biogenesis. Glucagon-like peptide 1 (GLP-1) stimulates eNOS and blood flow; we used saxagliptin, an inhibitor of GLP-1 degradation, to test whether vascular mitochondrial adaptation to exercise in diabetes could be restored. Goto-Kakizaki (GK) rats, a nonobese, type 2 diabetes model, and Wistar controls were exposed to an 8-day exercise intervention with or without saxagliptin (10 mg·kg·d). We evaluated the impact of exercise and saxagliptin on mitochondrial proteins and signaling pathways in aorta. Mitochondrial protein expression increased with exercise in the Wistar aorta and decreased or remained unchanged in the GK animals. GK rats treated with saxagliptin plus exercise showed increased expression of mitochondrial complexes, cytochrome c, eNOS, nNOS, PGC-1α, and UCP3 proteins. Notably, a 3-week saxagliptin plus exercise intervention significantly increased running time in the GK rats. These data suggest that saxagliptin restores vascular mitochondrial adaptation to exercise in a diabetic rodent model and may augment the impact of exercise on the vasculature.
Feng, Changjian; Taiakina, Valentina; Ghosh, Dipak K.; Guillemette, J. Guy; Tollin, Gordon
2011-01-01
Intraprotein electron transfer (IET) from flavin mononucleotide (FMN) to heme is an essential step in nitric oxide (NO) synthesis by NO synthase (NOS). The IET kinetics in neuronal and inducible NOS (nNOS and iNOS) holoenzymes have been previously determined in our laboratories by laser flash photolysis [reviewed in: C.J. Feng, G. Tollin, Dalton Trans., (2009) 6692-6700]. Here we report the kinetics of the IET in a bovine endothelial NOS (eNOS) holoenzyme in the presence and absence of added calmodulin (CaM). The IET rate constant in the presence of CaM is estimated to be ~ 4.3 s-1. No IET was observed in the absence of CaM, indicating that CaM is the primary factor in controlling the FMN–heme IET in the eNOS enzyme. The IET rate constant value for the eNOS holoenzyme is approximately 10 times smaller than those obtained for the iNOS and CaM-bound nNOS holoenzymes. Possible mechanisms underlying the difference in IET kinetics among the NOS isoforms are discussed. Because the rate-limiting step in the IET process in these enzymes is the conformational change from input state to output state, a slower conformational change (than in the other isoforms) is most likely to cause the slower IET in eNOS. PMID:21864726
Mostafa, T; Sabry, D; Abdelaal, A M; Mostafa, I; Taymour, M
2013-08-01
This study aimed to assess the cavernous antioxidant effect of green tea (GT), epigallocatechin-3-gallate (EGCG) with/without sildenafil citrate intake in aged diabetic rats. One hundred and four aged male white albino rat were divided into controls that received ordinary chow, streptozotocin (STZ)-induced aged diabetic rats, STZ-induced diabetic rats on infused green tea, induced diabetic rats on epigallocatechin-3-gallate and STZ-induced diabetic rats on sildenafil citrate added to EGCG. After 8 weeks, dissected cavernous tissues were assessed for gene expression of eNOS, cavernous malondialdehyde (MDA), glutathione peroxidase (GPx), cyclic guanosine monophosphate (cGMP), and serum testosterone (T). STZ-induced diabetic rats on GT demonstrated significant increase in cavernous eNOS, cGMP, GPx and significant decrease in cavernous MDA compared with diabetic rats. Diabetic rats on EGCG demonstrated significant increase in cavernous eNOS, cGMP, GPx and significant decrease in cavernous MDA compared with diabetic rats or diabetic rats on GT. Diabetic rats on EGCG added to sildenafil showed significant increase in cavernous eNOS, cGMP and significant decrease in cavernous MDA compared with other groups. Serum T demonstrated nonsignificant difference between the investigated groups. It is concluded that GT and EGCG have significant cavernous antioxidant effects that are increased if sildenafil is added. © 2012 Blackwell Verlag GmbH.
Rossi, Joanna; Jonak, Paul; Rouleau, Leonie; Danielczak, Lisa; Tardif, Jean-Claude; Leask, Richard L
2011-01-01
Few studies have investigated whether fluid mechanics can impair or enhance endothelial cell response to pharmacological agents such as statin drugs. We evaluated and compared Kruppel-like factor 2 (KLF2), endothelial nitric oxide synthase (eNOS), and thrombomodulin (TM) expression in human abdominal aortic endothelial cells (HAAEC) treated with increasing simvastatin concentrations (0.1, 1 or 10 μM) under static culture and shear stress (steady, non-reversing pulsatile, and oscillating). Simvastatin, steady flow, and non-reversing pulsatile flow each separately upregulated KLF2, eNOS, and TM mRNA. At lower simvastatin concentrations (0.1 and 1 μM), the combination of statin and unidirectional steady or pulsatile flow produced an overall additive increase in mRNA levels. At higher simvastatin concentration (10 μM), a synergistic increase in eNOS and TM mRNA expression was observed. In contrast, oscillating flow impaired KLF2 and TM, but not eNOS expression by simvastatin at 1 μM. A higher simvastatin concentration of 10 μM overcame the inhibitory effect of oscillating flow. Our findings suggest that oscillating shear stress renders the endothelial cells less responsive to simvastatin than cells exposed to unidirectional steady or pulsatile flow. Consequently, the pleiotropic effects of statins in vivo may be less effective in endothelial cells exposed to atheroprone hemodynamics.
Expression analysis of NOS family and HSP genes during thermal stress in goat ( Capra hircus)
NASA Astrophysics Data System (ADS)
Yadav, Vijay Pratap; Dangi, Satyaveer Singh; Chouhan, Vikrant Singh; Gupta, Mahesh; Dangi, Saroj K.; Singh, Gyanendra; Maurya, Vijay Prakash; Kumar, Puneet; Sarkar, Mihir
2016-03-01
Approximately 50 genes other than heat shock protein (HSP) expression changes during thermal stress. These genes like nitric oxide synthase (NOS) need proper attention and investigation to find out their possible role in the adaptation to thermal stress in animals. So, the present study was undertaken to demonstrate the expressions of inducible form type II NOS (iNOS), endothelial type III NOS (eNOS), constitutively expressed enzyme NOS (cNOS), HSP70, and HSP90 in peripheral blood mononuclear cells (PBMCs) during different seasons in Barbari goats. Real-time polymerase chain reaction, western blot, and immunocytochemistry were applied to investigate messenger RNA (mRNA) expression, protein expression, and immunolocalization of examined factors. The mRNA and protein expressions of iNOS, eNOS, cNOS, HSP70, and HSP90 were significantly higher ( P < 0.05) during peak summer, and iNOS and eNOS expressions were also observed to be significantly higher ( P < 0.05) during peak winter season as compared with moderate season. The iNOS, eNOS, cNOS, HSP70, and HSP90 were mainly localized in plasma membrane and cytoplasm of PBMCs. To conclude, data generated in the present study indicate the possible involvement of the NOS family genes in amelioration of thermal stress so as to maintain cellular integrity and homeostasis in goats.
2010-01-01
Background 3-Hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) have been widely used to reduce cardiovascular risk. These statins (i.e., simvastatin) may exert other effects besides from their cholesterol-lowering actions, including inhibition of platelet activation. Platelet activation is relevant to a variety of coronary heart diseases. Although the inhibitory effect of simvastatin in platelet activation has been studied; the detailed signal transductions by which simvastatin inhibit platelet activation has not yet been completely resolved. Methods The aim of this study was to systematically examine the detailed mechanisms of simvastatin in preventing platelet activation. Platelet aggregation, flow cytometric analysis, immunoblotting, and electron spin resonance studies were used to assess the antiplatelet activity of simvastatin. Results Simvastatin (20-50 μM) exhibited more-potent activity of inhibiting platelet aggregation stimulated by collagen than other agonists (i.e., thrombin). Simvastatin inhibited collagen-stimulated platelet activation accompanied by [Ca2+]i mobilization, thromboxane A2 (TxA2) formation, and phospholipase C (PLC)γ2, protein kinase C (PKC), and mitogen-activated protein kinases (i.e., p38 MAPK, JNKs) phosphorylation in washed platelets. Simvastatin obviously increased both cyclic AMP and cyclic GMP levels. Simvastatin markedly increased NO release, vasodilator-stimulated phosphoprotein (VASP) phosphorylation, and endothelial nitric oxide synthase (eNOS) expression. SQ22536, an inhibitor of adenylate cyclase, markedly reversed the simvastatin-mediated inhibitory effects on platelet aggregation, PLCγ2 and p38 MAPK phosphorylation, and simvastatin-mediated stimulatory effects on VASP and eNOS phosphorylation. Conclusion The most important findings of this study demonstrate for the first time that inhibitory effect of simvastatin in platelet activation may involve activation of the cyclic AMP-eNOS/NO-cyclic GMP pathway, resulting in inhibition of the PLCγ2-PKC-p38 MAPK-TxA2 cascade, and finally inhibition of platelet aggregation. PMID:20525309
Lin, Yi; Chen, Jianglei; Sun, Zhongjie
2016-03-01
Klotho was originally discovered as an aging-suppressor gene. The objective of this study is to investigate whether klotho gene deficiency affects high-fat diet (HFD)-induced arterial stiffening. Heterozygous Klotho-deficient (KL(+/-)) mice and WT littermates were fed on HFD or normal diet. HFD increased pulse wave velocity within 5 weeks in KL(+/-) mice but not in wild-type mice, indicating that klotho deficiency accelerates and exacerbates HFD-induced arterial stiffening. A greater increase in blood pressure was found in KL(+/-) mice fed on HFD. Protein expressions of phosphorylated AMP-activated protein kinase-α (AMPKα), phosphorylated endothelial nitric oxide synthase (eNOS), and manganese-dependent superoxide dismutase (Mn-SOD) were decreased, whereas protein expressions of collagen I, transforming growth factor-β1, and Runx2 were increased in aortas of KL(+/-) mice fed on HFD. Interestingly, daily injections of an AMPKα activator, 5-aminoimidazole-4-carboxamide-3-ribonucleoside, abolished the increases in pulse wave velocity, blood pressure, and blood glucose in KL(+/-) mice fed on HFD. Treatment with 5-aminoimidazole-4-carboxamide-3-ribonucleoside for 2 weeks not only abolished the downregulation of phosphorylated AMPKα, phosphorylated eNOS, and Mn-SOD levels but also attenuated the increased levels of collagen I, transforming growth factor-β1, Runx2, superoxide, elastic lamellae breaks, and calcification in aortas of KL(+/-) mice fed on HFD. In cultured mouse aortic smooth muscle cells, cholesterol plus KL-deficient serum decreased phosphorylation levels of AMPKα and LKB1 (an important upstream regulator of AMPKα activity) but increased collagen I synthesis, which can be eliminated by activation of AMPKα by 5-aminoimidazole-4-carboxamide-3-ribonucleoside. In conclusions, Klotho deficiency promoted HFD-induced arterial stiffening and hypertension via downregulation of AMPKα activity. © 2016 American Heart Association, Inc.
Long-term aerobic exercise increases redox-active iron through nitric oxide in rat hippocampus.
Chen, Qian; Xiao, De-Sheng
2014-01-30
Adult hippocampus is highly vulnerable to iron-induced oxidative stress. Aerobic exercise has been proposed to reduce oxidative stress but the findings in the hippocampus are conflicting. This study aimed to observe the changes of redox-active iron and concomitant regulation of cellular iron homeostasis in the hippocampus by aerobic exercise, and possible regulatory effect of nitric oxide (NO). A randomized controlled study was designed in the rats with swimming exercise treatment (for 3 months) and/or an unselective inhibitor of NO synthase (NOS) (L-NAME) treatment. The results from the bleomycin-detectable iron assay showed additional redox-active iron in the hippocampus by exercise treatment. The results from nonheme iron content assay, combined with the redox-active iron content, showed increased storage iron content by exercise treatment. NOx (nitrate plus nitrite) assay showed increased NOx content by exercise treatment. The results from the Western blot assay showed decreased ferroportin expression, no changes of TfR1 and DMT1 expressions, increased IRP1 and IRP2 expression, increased expressions of eNOS and nNOS rather than iNOS. In these effects of exercise treatment, the increased redox-active iron content, storage iron content, IRP1 and IRP2 expressions were completely reversed by L-NAME treatment, and decreased ferroportin expression was in part reversed by L-NAME. L-NAME treatment completely inhibited increased NOx and both eNOS and nNOS expression in the hippocampus. Our findings suggest that aerobic exercise could increase the redox-active iron in the hippocampus, indicating an increase in the capacity to generate hydroxyl radicals through the Fenton reactions, and aerobic exercise-induced iron accumulation in the hippocampus might mainly result from the role of the endogenous NO. Copyright © 2013 Elsevier Inc. All rights reserved.
Pereira, Camila A; Ferreira, Nathanne S; Mestriner, Fabiola L; Antunes-Rodrigues, José; Evora, Paulo R B; Resstel, Leonardo B M; Carneiro, Fernando S; Tostes, Rita C
2015-10-15
Fluoxetine, a selective serotonin reuptake inhibitor (SSRI), has effects beyond its antidepressant properties, altering, e.g., mechanisms involved in blood pressure and vasomotor tone control. Although many studies have addressed the acute impact of fluoxetine on the cardiovascular system, there is a paucity of information on the chronic vascular effects of this SSRI. We tested the hypothesis that chronic fluoxetine treatment enhances the vascular reactivity to vasodilator stimuli by increasing nitric oxide (NO) signaling and activation of potassium (K+) channels. Wistar rats were divided into two groups: (I) vehicle (water for 21 days) or (II) chronic fluoxetine (10 mg/kg/day in the drinking water for 21 days). Fluoxetine treatment increased endothelium-dependent and independent vasorelaxation (analyzed by mesenteric resistance arteries reactivity) as well as constitutive NO synthase (NOS) activity, phosphorylation of eNOS at Serine1177 and NO production, determined by western blot and fluorescence. On the other hand, fluoxetine treatment did not alter vascular expression of neuronal and inducible NOS or guanylyl cyclase (GC). Arteries from fluoxetine-treated rats exhibited increased relaxation to pinacidil. Increased acetylcholine vasorelaxation was abolished by a calcium-activated K+ channel (KCa) blocker, but not by an inhibitor of KATP channels. On the other hand, vascular responses to Bay 41-2272 and 8-bromo-cGMP were similar between the groups. In conclusion, chronic fluoxetine treatment increases endothelium-dependent and independent relaxation of mesenteric resistance arteries by mechanisms that involve increased eNOS activity, NO generation, and KCa channels activation. These effects may contribute to the cardiovascular effects associated with chronic fluoxetine treatment. Copyright © 2015 Elsevier B.V. All rights reserved.
Wang, Yan; An, Wenjing; Zhang, Fei; Niu, Mengzhen; Liu, Yu; Shi, Ruizan
2018-06-23
The aim was to evaluate the effects and mechanisms of nebivolol on renal damage in Zucker diabetic fatty (ZDF) rats, in comparison with those of atenolol and captopril. Animals were divided into: control lean Zucker rats, ZDF rats, ZDF rats orally treated with nebivolol (10 mg/kg), atenolol (100 mg/kg) or captopril (40 mg/kg) for 6 months. Systolic blood pressure (SBP), blood glucose, kidney structure and function, plasma and kidney levels of nitric oxide (NO) and asymmetric dimethylarginine (ADMA), and oxidant status were evaluated. Kidney expressions of AMP-activated protein kinase (AMPK), NADPH oxidase (NOX) isoforms 2 and 4 and subunit p22 phox , nitric oxide synthase (NOS) isoforms, eNOS uncoupling, protein arginine N-methyltransferase (PRMT) 1, and dimethylarginine dimethylaminohydrolase (DDAH) 1 and 2 were tested. All drugs induced a similar control of SBP. Nebivolol did not affect the increased plasma glucose. Unlike atenolol, nebivolol prevented the decrease in plasma insulin, and, like captopril, it reduced plasma lipid contents. Nebivolol ameliorated, to a greater extent than captopril, damages to renal structure and function, which were associated with an improvement in interlobular artery dysfunction. Nebivolol elevated kidney phosphorylation of AMPK, attenuated NOX4 and p22 phox expression and oxidative stress marker levels. Nebivolol increased plasma and renal NO, enhanced expressions of eNOS, p-eNOS and nNOS, and suppressed eNOS uncoupling and iNOS expression. High ADMA in plasma and kidney were decreased by nebivolol through increasing DDAH2 and decreasing PRMT1. Long-term treatment of nebivolol ameliorated diabetic nephropathy, at least in part, via regulation of renal oxidative stress/NO pathway. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Protective effects of aerobic exercise on acute lung injury induced by LPS in mice
2012-01-01
Introduction The regular practice of physical exercise has been associated with beneficial effects on various pulmonary conditions. We investigated the mechanisms involved in the protective effect of exercise in a model of lipopolysaccharide (LPS)-induced acute lung injury (ALI). Methods Mice were divided into four groups: Control (CTR), Exercise (Exe), LPS, and Exercise + LPS (Exe + LPS). Exercised mice were trained using low intensity daily exercise for five weeks. LPS and Exe + LPS mice received 200 µg of LPS intratracheally 48 hours after the last physical test. We measured exhaled nitric oxide (eNO); respiratory mechanics; neutrophil density in lung tissue; protein leakage; bronchoalveolar lavage fluid (BALF) cell counts; cytokine levels in BALF, plasma and lung tissue; antioxidant activity in lung tissue; and tissue expression of glucocorticoid receptors (Gre). Results LPS instillation resulted in increased eNO, neutrophils in BALF and tissue, pulmonary resistance and elastance, protein leakage, TNF-alpha in lung tissue, plasma levels of IL-6 and IL-10, and IL-1beta, IL-6 and KC levels in BALF compared to CTR (P ≤0.02). Aerobic exercise resulted in decreases in eNO levels, neutrophil density and TNF-alpha expression in lung tissue, pulmonary resistance and elastance, and increased the levels of IL-6, IL-10, superoxide dismutase (SOD-2) and Gre in lung tissue and IL-1beta in BALF compared to the LPS group (P ≤0.04). Conclusions Aerobic exercise plays important roles in protecting the lungs from the inflammatory effects of LPS-induced ALI. The effects of exercise are mainly mediated by the expression of anti-inflammatory cytokines and antioxidants, suggesting that exercise can modulate the inflammatory-anti-inflammatory and the oxidative-antioxidative balance in the early phase of ALI. PMID:23078757
Peripheral muscle alterations in non-COPD smokers.
Montes de Oca, Maria; Loeb, Eduardo; Torres, Sonia H; De Sanctis, Juan; Hernández, Noelina; Tálamo, Carlos
2008-01-01
Although tobacco smoke is the main cause of COPD, relatively little attention has been paid to its potential damage to skeletal muscle. This article addresses the effect of smoking on skeletal muscle. The vastus lateralis muscle was studied in 14 non-COPD smokers (FEV(1)/FVC, 78 +/- 5%) and 20 healthy control subjects (FEV(1)/FVC, 80 +/- 3%). Muscular structure, enzyme activity, constitutive and inducible nitric oxide (NO) synthases (endothelial NO oxide synthase [eNOS], neuronal NO synthase [nNOS] and inducible NO synthase [iNOS]), nitrites, nitrates, nitrotyrosine, and the presence of macrophages were analyzed. In smokers, type I muscle fibers cross-sectional area was decreased, and a similar trend was found in type IIa fibers. Lactate dehydrogenase levels and the percentage of fibers with low oxidative and high glycolytic capacity were increased in smokers. nNOS (96.9 +/- 11.7 vs 125.4 +/- 31.9 ng/mg protein; p < 0.01) and eNOS (38.9 +/- 11.0 vs 45.2 +/- 7.7 ng/mg protein [+/- SD]; p < 0.05) were lower in smokers, while fiber type distribution, capillarity measures, beta-hydroxy-acyl-CoA-dehydrogenase levels, iNOS, nitrite, nitrate, and nitrotyrosine levels, and macrophage number in the muscle tissue were similar to the nonsmoker subjects. Smokers presented some alterations of skeletal muscle such as oxidative fiber atrophy, increased glycolytic capacity, and reduced expression of the constitutive NO synthases (eNOS and nNOS). The findings support some muscular structural and metabolic damage but not the presence of local inflammation in the smokers. In addition, they suggest a possible effect of tobacco smoke impairing the normal process of NO generation.
Ishii, Masakazu; Shibata, Rei; Kondo, Kazuhisa; Kambara, Takahiro; Shimizu, Yuuki; Tanigawa, Tohru; Bando, Yasuko K.; Nishimura, Masahiro; Ouchi, Noriyuki; Murohara, Toyoaki
2014-01-01
Dipeptidyl peptidase-4 inhibitors are known to lower glucose levels and are also beneficial in the management of cardiovascular disease. Here, we investigated whether a dipeptidyl peptidase-4 inhibitor, vildagliptin, modulates endothelial cell network formation and revascularization processes in vitro and in vivo. Treatment with vildagliptin enhanced blood flow recovery and capillary density in the ischemic limbs of wild-type mice, with accompanying increases in phosphorylation of Akt and endothelial nitric-oxide synthase (eNOS). In contrast to wild-type mice, treatment with vildagliptin did not improve blood flow in ischemic muscles of eNOS-deficient mice. Treatment with vildagliptin increased the levels of glucagon-like peptide-1 (GLP-1) and adiponectin, which have protective effects on the vasculature. Both vildagliptin and GLP-1 increased the differentiation of cultured human umbilical vein endothelial cells (HUVECs) into vascular-like structures, although vildagliptin was less effective than GLP-1. GLP-1 and vildagliptin also stimulated the phosphorylation of Akt and eNOS in HUVECs. Pretreatment with a PI3 kinase or NOS inhibitor blocked the stimulatory effects of both vildagliptin and GLP-1 on HUVEC differentiation. Furthermore, treatment with vildagliptin only partially increased the limb flow of ischemic muscle in adiponectin-deficient mice in vivo. GLP-1, but not vildagliptin, significantly increased adiponectin expression in differentiated 3T3-L1 adipocytes in vitro. These data indicate that vildagliptin promotes endothelial cell function via eNOS signaling, an effect that may be mediated by both GLP-1-dependent and GLP-1-independent mechanisms. The beneficial activity of GLP-1 for revascularization may also be partially mediated by its ability to increase adiponectin production. PMID:25100725
Ishii, Masakazu; Shibata, Rei; Kondo, Kazuhisa; Kambara, Takahiro; Shimizu, Yuuki; Tanigawa, Tohru; Bando, Yasuko K; Nishimura, Masahiro; Ouchi, Noriyuki; Murohara, Toyoaki
2014-09-26
Dipeptidyl peptidase-4 inhibitors are known to lower glucose levels and are also beneficial in the management of cardiovascular disease. Here, we investigated whether a dipeptidyl peptidase-4 inhibitor, vildagliptin, modulates endothelial cell network formation and revascularization processes in vitro and in vivo. Treatment with vildagliptin enhanced blood flow recovery and capillary density in the ischemic limbs of wild-type mice, with accompanying increases in phosphorylation of Akt and endothelial nitric-oxide synthase (eNOS). In contrast to wild-type mice, treatment with vildagliptin did not improve blood flow in ischemic muscles of eNOS-deficient mice. Treatment with vildagliptin increased the levels of glucagon-like peptide-1 (GLP-1) and adiponectin, which have protective effects on the vasculature. Both vildagliptin and GLP-1 increased the differentiation of cultured human umbilical vein endothelial cells (HUVECs) into vascular-like structures, although vildagliptin was less effective than GLP-1. GLP-1 and vildagliptin also stimulated the phosphorylation of Akt and eNOS in HUVECs. Pretreatment with a PI3 kinase or NOS inhibitor blocked the stimulatory effects of both vildagliptin and GLP-1 on HUVEC differentiation. Furthermore, treatment with vildagliptin only partially increased the limb flow of ischemic muscle in adiponectin-deficient mice in vivo. GLP-1, but not vildagliptin, significantly increased adiponectin expression in differentiated 3T3-L1 adipocytes in vitro. These data indicate that vildagliptin promotes endothelial cell function via eNOS signaling, an effect that may be mediated by both GLP-1-dependent and GLP-1-independent mechanisms. The beneficial activity of GLP-1 for revascularization may also be partially mediated by its ability to increase adiponectin production. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
microRNAs regulate nitric oxide release from endothelial cells by targeting NOS3.
Qin, Ji-Zheng; Wang, Shao-Jie; Xia, Chun
2018-06-13
Endothelial nitric oxide synthase (eNOS) encoded by nitric oxide synthase 3 (NOS3), can generate nitric oxide (NO) which serves as an important deterrent to the pathogenesis of thrombosis by modulating the activation, adhesion and aggregate formation of platelets. Three serum miRNAs (miR-195, miR-532 and miR-582) have been suggested as biomarkers for the diagnosis of deep vein thrombosis (DVT), however their potential roles in DVT is not clear. The effect of miRNAs inhibiting the expression of NOS3 was evaluated in vitro. miR-195, miR-532 and miR-582 mimic, inhibitor, and control miRNAs were transfected into endothelial cells. The roles of miR-195, miR-532 and miR-582 regulating the expression of eNOS were evaluated by real-time quantitative PCR, Western Blotting and luciferase reporter assays. NO release was measured by Griess method. We confirmed NOS3 as a direct target of miR-195 and miR-582, which binds to the 3'-UTR of NOS3 mRNA in endothelial cells. A significantly inverse correlation between these two miRNAs and eNOS expression was detected. NO release from endothelial cells was decreased when the expression level of miR-195 and miR-582 was up-regulated. These findings indicated that miR-195 and miR-582 regulated NO release by targeting 3'-UTR of NOS3 post-transcriptionally in endothelial cells. Therefore, miR-195 and miR-582 might play an important role in maintaining endothelial NO bioavailability and could be a novel target for treatment of thrombotic diseases.
La Mura, Vincenzo; Pasarín, Marcos; Meireles, Cintia Z; Miquel, Rosa; Rodríguez-Vilarrupla, Aina; Hide, Diana; Gracia-Sancho, Jorge; García-Pagán, Juan Carlos; Bosch, Jaime; Abraldes, Juan G
2013-03-01
Endothelial dysfunction drives vascular derangement and organ failure associated with sepsis. However, the consequences of sepsis on liver sinusoidal endothelial function are largely unknown. Statins might improve microvascular dysfunction in sepsis. The present study explores liver vascular abnormalities and the effects of statins in a rat model of endotoxemia. For this purpose, lipopolysaccharide (LPS) or saline was given to: (1) rats treated with placebo; (2) rats treated with simvastatin (25 mg/kg, orally), given at 3 and 23 hours after LPS/saline challenge; (3) rats treated with simvastatin (25 mg/kg/24 h, orally) from 3 days before LPS/saline injection. Livers were isolated and perfused and sinusoidal endothelial function was explored by testing the vasodilation of the liver circulation to increasing concentrations of acetylcholine. The phosphorylated endothelial nitric oxide synthase (PeNOS)/endothelial nitric oxide synthase (eNOS) ratio was measured as a marker of eNOS activation. LPS administration induced an increase in baseline portal perfusion pressure and a decrease in vasodilation to acetylcholine (sinusoidal endothelial dysfunction). This was associated with reduced eNOS phosphorylation and liver inflammation. Simvastatin after LPS challenge did not prevent the increase in baseline portal perfusion pressure, but attenuated the development of sinusoidal endothelial dysfunction. Treatment with simvastatin from 3 days before LPS prevented the increase in baseline perfusion pressure and totally normalized the vasodilating response of the liver vasculature to acetylcholine and reduced liver inflammation. Both protocols of treatment restored a physiologic PeNOS/eNOS ratio. LPS administration induces intrahepatic endothelial dysfunction that might be prevented by simvastatin, suggesting that statins might have potential for liver protection during endotoxemia. Copyright © 2012 American Association for the Study of Liver Diseases.
Sampaio, André L. F.; Dalli, Jesmond; Brancaleone, Vincenzo; D'Acquisto, Fulvio; Perretti, Mauro; Wheatley, Carmen
2013-01-01
Background. NOS/•NO inhibitors are potential therapeutics for sepsis, yet they increase clinical mortality. However, there has been no in vivo investigation of the (in vitro) •NO scavenger, cobalamin's (Cbl) endogenous effects on NOS/•NO/inflammatory mediators during the immune response to sepsis. Methods. We used quantitative polymerase chain reaction (qPCR), ELISA, Western blot, and NOS Griess assays, in a C57BL/6 mouse, acute endotoxaemia model. Results. During the immune response, pro-inflammatory phase, parenteral hydroxocobalamin (HOCbl) treatment partially inhibits hepatic, but not lung, iNOS mRNA and promotes lung eNOS mRNA, but attenuates the LPS hepatic rise in eNOS mRNA, whilst paradoxically promoting high iNOS/eNOS protein translation, but relatively moderate •NO production. HOCbl/NOS/•NO regulation is reciprocally associated with lower 4 h expression of TNF-α, IL-1β, COX-2, and lower circulating TNF-α, but not IL-6. In resolution, 24 h after LPS, HOCbl completely abrogates a major late mediator of sepsis mortality, high mobility group box 1 (HMGB1) mRNA, inhibits iNOS mRNA, and attenuates LPS-induced hepatic inhibition of eNOS mRNA, whilst showing increased, but still moderate, NOS activity, relative to LPS only. experiments (LPS+D-Galactosamine) HOCbl afforded significant, dose-dependent protection in mice Conclusions. HOCbl produces a complex, time- and organ-dependent, selective regulation of NOS/•NO during endotoxaemia, corollary regulation of downstream inflammatory mediators, and increased survival. This merits clinical evaluation. PMID:23781123
Agbor, Larry N; Wiest, Elani F; Rothe, Michael; Schunck, Wolf-Hagen; Walker, Mary K
2014-12-01
The mechanisms that mediate the cardiovascular protective effects of omega 3 (n-3) polyunsaturated fatty acids (PUFAs) have not been fully elucidated. Cytochrome P450 1A1 efficiently metabolizes n-3 PUFAs to potent vasodilators. Thus, we hypothesized that dietary n-3 PUFAs increase nitric oxide (NO)-dependent blood pressure regulation and vasodilation in a CYP1A1-dependent manner. CYP1A1 wild-type (WT) and knockout (KO) mice were fed an n-3 or n-6 PUFA-enriched diet for 8 weeks and were analyzed for tissue fatty acids and metabolites, NO-dependent blood pressure regulation, NO-dependent vasodilation of acetylcholine (ACh) in mesenteric resistance arterioles, and endothelial NO synthase (eNOS) and phospho-Ser1177-eNOS expression in the aorta. All mice fed the n-3 PUFA diet showed significantly higher levels of n-3 PUFAs and their metabolites, and significantly lower levels of n-6 PUFAs and their metabolites. In addition, KO mice on the n-3 PUFA diet accumulated significantly higher levels of n-3 PUFAs in the aorta and kidney without a parallel increase in the levels of their metabolites. Moreover, KO mice exhibited significantly less NO-dependent regulation of blood pressure on the n-3 PUFA diet and significantly less NO-dependent, ACh-mediated vasodilation in mesenteric arterioles on both diets. Finally, the n-3 PUFA diet significantly increased aortic phospho-Ser1177-eNOS/eNOS ratio in the WT compared with KO mice. These data demonstrate that CYP1A1 contributes to eNOS activation, NO bioavailability, and NO-dependent blood pressure regulation mediated by dietary n-3 PUFAs. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.
Zhang, Hong-Hai; Chen, Jennifer C; Sheibani, Lili; Lechuga, Thomas J; Chen, Dong-Bao
2017-07-01
Augmented uterine artery (UA) production of vasodilators, including nitric oxide (NO) and hydrogen sulfide (H2S), has been implicated in pregnancy-associated and agonist-stimulated rise in uterine blood flow that is rate-limiting to pregnancy health. Developing a human UA endothelial cell (hUAEC) culture model from main UAs of nonpregnant (NP) and pregnant (P) women for testing a hypothesis that pregnancy augments endothelial NO and H2S production and endothelial reactivity to vascular endothelial growth factor (VEGF). Main UAs from NP and P women were used for developing hUAEC culture models. Comparisons were made between NP- and P-hUAECs in in vitro angiogenesis, activation of cell signaling, expression of endothelial NO synthase (eNOS) and H2S-producing enzymes cystathionine β-synthase (CBS) and cystathionine γ-lyase, and NO/H2S production upon VEGF stimulation. NP- and P-hUAECs displayed a typical cobblestone-like shape in culture and acetylated low-density lipoprotein uptake, stained positively for endothelial and negatively for smooth muscle markers, maintained key signaling proteins during passage, and had statistically significant greater eNOS and CBS proteins in P- vs NP-hUAECs. Treatment with VEGF stimulated in vitro angiogenesis and eNOS protein and NO production only in P-hUEACs and more robust cell signaling in P- vs NP-hUAECs. VEGF stimulated CBS protein expression, accounting for VEGF-stimulated H2S production in hUAECs. Comparisons between NP- and P-hUAECs reveal that pregnancy augments VEGF-stimulated in vitro angiogenesis and NO/H2S production in hUAECs, showing that the newly established hUAEC model provides a critical in vitro tool for understanding human uterine hemodynamics. Copyright © 2017 Endocrine Society
Śladowska-Kozłowska, Joanna; Litwin, Mieczysław; Niemirska, Anna; Wierzbicka, Aldona; Roszczynko, Marta; Szperl, Małgorzata
2015-12-01
The endothelial nitric oxide synthase (eNOS) G894T gene polymorphism is associated with the risk of primary hypertension (PH) and vascular complications in adults with PH. We explored the associations of the G894T polymorphism with 24-h ambulatory blood pressure, left ventricular mass (LVM), carotid intima media thickness (cIMT), urinary albumin excretion, oxidative stress and inflammatory parameters in 126 children with newly diagnosed PH and in 83 healthy children. Among the 126 children with PH 92 (73%) had ambulatory hypertension and 34 (27%) had severe ambulatory hypertension. Left ventricular hypertrophy (LVH) was detected in 39 (31%) patients, cIMT of >2 standard deviation scores in 21 (16.6%) patients, albuminuria of >30 mg/24 h in 18 (14.3%) patients and metabolic syndrome (MS) in 22 (17.5%) patients. The frequency of the T allele was 52.4% in the PH group and 54.2% in the control group (not significant), and in both groups the frequency of the T allele was consistent with the Hardy-Weinberg equilibrium. Compared with G allele carriers, hypertensive T allele carriers had increased cIMT (p < 0.05) and more severe albuminuria (not significant, p = 0.1); there was no difference between the groups in hypertension severity and LVM. T and G allele distribution did not differ between patients with and without metabolic syndrome. No significant correlations between the assessed parameters and the eNOS G894T gene polymorphism were found in the controls, although T allele carriers tended to have an increased cIMT (p = 0.09). The eNOS T allele is not more prevalent among hypertensive children than among healthy ones, but it is associated with early vascular damage in children with PH, independent of metabolic abnormalities. No associations between the eNOS G894T polymorphism and metabolic abnormalities were found.
Rexhaj, Emrush; Pireva, Agim; Paoloni-Giacobino, Ariane; Allemann, Yves; Cerny, David; Dessen, Pierre; Sartori, Claudio; Scherrer, Urs; Rimoldi, Stefano F
2015-10-01
Assisted reproductive technologies (ART) induce vascular dysfunction in humans and mice. In mice, ART-induced vascular dysfunction is related to epigenetic alteration of the endothelial nitric oxide synthase (eNOS) gene, resulting in decreased vascular eNOS expression and nitrite/nitrate synthesis. Melatonin is involved in epigenetic regulation, and its administration to sterile women improves the success rate of ART. We hypothesized that addition of melatonin to culture media may prevent ART-induced epigenetic and cardiovascular alterations in mice. We, therefore, assessed mesenteric-artery responses to acetylcholine and arterial blood pressure, together with DNA methylation of the eNOS gene promoter in vascular tissue and nitric oxide plasma concentration in 12-wk-old ART mice generated with and without addition of melatonin to culture media and in control mice. As expected, acetylcholine-induced mesenteric-artery dilation was impaired (P = 0.008 vs. control) and mean arterial blood pressure increased (109.5 ± 3.8 vs. 104.0 ± 4.7 mmHg, P = 0.002, ART vs. control) in ART compared with control mice. These alterations were associated with altered DNA methylation of the eNOS gene promoter (P < 0.001 vs. control) and decreased plasma nitric oxide concentration (10.1 ± 11.1 vs. 29.5 ± 8.0 μM) (P < 0.001 ART vs. control). Addition of melatonin (10(-6) M) to culture media prevented eNOS dysmethylation (P = 0.005, vs. ART + vehicle), normalized nitric oxide plasma concentration (23.1 ± 14.6 μM, P = 0.002 vs. ART + vehicle) and mesentery-artery responsiveness to acetylcholine (P < 0.008 vs. ART + vehicle), and prevented arterial hypertension (104.6 ± 3.4 mmHg, P < 0.003 vs. ART + vehicle). These findings provide proof of principle that modification of culture media prevents ART-induced vascular dysfunction. We speculate that this approach will also allow preventing ART-induced premature atherosclerosis in humans. Copyright © 2015 the American Physiological Society.
Hodges, Gary J; Sparks, Paul A
2013-11-01
We performed a two-part study to determine the roles of endothelial nitric oxide synthase (eNOS) and the vasoconstrictor nerves neurotransmitters noradrenaline (NA) and neuropeptide Y (NPY) in the cutaneous vasodilator response to local skin warming. Forearm skin sites were instrumented with intradermal microdialysis fibres, local heaters, and laser-Doppler flow (LDF) probes. Sites were locally heated from 34 to 42°C. LDF was expressed as cutaneous vascular conductance (CVC; LDF/mean arterial pressure). In Part I, we tested whether sympathetic noradrenergic nerves acted via eNOS. In 8 male participants, treatments were as follows: 1) untreated; 2) bretylium tosylate (BT), preventing sympathetic neurotransmitter release; 3) l-NAA to inhibit eNOS; and 4) combined BT+l-NAA. At treated sites, the initial peak response was markedly reduced, and the plateau phase response to 35min of local warming was also reduced (P<0.05), which was not different among those sites (P>0.05). In Part II, we tested whether NA and NPY were involved in the vasodilator response to local warming. In Part IIa, treatments were: 1) untreated; 2) propranolol and yohimbine to antagonize α- and β-receptors; 3) l-NAA; and 4) combined propranolol, yohimbine, and l-NAA. In Part IIb, conditions were: 1) untreated; 2) BIBP to antagonize Y1-receptors; 3) l-NAA; and 4) combined BIBP and l-NAA. All treatments caused a reduction in the initial peak and plateau responses to local skin warming (P<0.05). The results of Part II indicate that both NA and NPY play roles in the cutaneous vasodilator response and their actions are achieved via eNOS. These data indicate that NA and NPY are involved in the initial, rapid rise in skin blood flow at the onset of local skin warming. However, their vasodilator actions in response to local skin warming appears to be manifested through eNOS. © 2013.
Papatheodorou, Stefania I; Buettner, Hannah; Rice, Mary B; Mittleman, Murray A
2016-06-01
The medical and recreational use of marijuana is now legal in some parts of the United States; the health effects are unknown. We aimed to evaluate associations between recent marijuana use and exhaled nitric oxide (eNO) and pulmonary function. We performed a cross-sectional study of 10,327 US adults participating in the National Health and Nutrition Examination Survey in the years 2007 to 2012. We examined associations between marijuana use and eNO, FEV1, FVC, the FEV1/FVC ratio, and forced expiratory flow (midexpiratory phase) (FEF25%-75%) by weighted linear regression. In the study population, there were 4,797 never users, 4,084 past marijuana users, 555 participants who used marijuana 5 to 30 days before the examination, and 891 participants who used marijuana 0 to 4 days before the examination. Current marijuana use in the past 4 days was associated with 13% lower eNO (95% CI, -18% to 8%). FVC was higher in past users (75 mL; 95% CI, 38-112) and current users in the past 5 to 30 days (159 mL; 95% CI, 80-237) and in users within 0 to 4 days of the examination (204 mL; 95% CI, 139-270) compared with never users. All associations remained unchanged and statistically significant in sensitivity analyses excluding current and past tobacco users. Current marijuana use was associated with lower levels of eNO and higher FVC. The lower eNO in marijuana smokers suggests that short-term exposure to marijuana may, like tobacco, acutely affect the pulmonary vascular endothelium and impair airflow through the small airways. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Ishii, Masakazu; Nakahara, Tatsuo; Araho, Daisuke; Murakami, Juri; Nishimura, Masahiro
2017-07-01
Glycolipids are the major constituent of the thylakoid membrane of higher plants and have a variety of biological and pharmacological activities. However, anti-inflammatory effects of glycolipids on vascular endothelial cells have not been elucidated. Here, we investigated the effect of glycolipids extracted from spinach on lipopolysaccharides (LPS)-induced endothelial inflammation and evaluated the underlying molecular mechanisms. Treatment with glycolipids from spinach had no cytotoxic effects on cultured human umbilical vein endothelial cells (HUVECs) and significantly blocked the expression of LPS-induced interleukin (IL)-6, monocyte chemoattractant protein-1 (MCP-1), vascular cell adhesion molecule-1 (VCAM-1), and intracellular adhesion molecule-1 (ICAM-1) in them. Glycolipids treatment also effectively suppressed monocyte adhesion to HUVECs. Treatment with glycolipids inhibited LPS-induced NF-κB phosphorylation and nuclear translocation. In addition, glycolipids treatment significantly promoted endothelial nitric oxide synthase (eNOS) activation and nitric oxide (NO) production in HUVECs. Furthermore, glycolipids treatment blocked LPS-induced inducible NOS (iNOS) expression in HUVECs. Pretreatment with a NOS inhibitor attenuated glycolipids-induced suppression of NF-κB activation and adhesion molecule expression, and abolished the glycolipids-mediated suppression of monocyte adhesion to HUVECs. These results indicate that glycolipids suppress LPS-induced vascular inflammation through attenuation of the NF-κB pathway by increasing NO production in endothelial cells. These findings suggest that glycolipids from spinach may have a potential therapeutic use for inflammatory vascular diseases. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Yeh, Wan-Ju; Yang, Hsin-Yi; Pai, Man-Hui; Wu, Chi-Hao; Chen, Jiun-Rong
2017-01-01
The accumulation of advanced glycation end-products (AGEs) and the enhanced interaction of AGE with their cellular receptor (RAGE) have been implicated in the progression of chronic kidney disease. The purpose of this study was to examine whether the AGE/RAGE-induced nephrotoxic effects are associated with inflammasome activation and endothelial dysfunction. Chronic renal injury was examined in BALB/c mice by the long-term administration of carbonyl-AGE for 16 weeks. Endothelial dysfunction was detected by measuring the number of circulating endothelial progenitor cells (EPCs) and the levels of nitric oxide synthase (eNOS) and nitric oxide (NO) in kidneys. Results showed that administration of methylglyoxal-bovine serum albumin (MG-BSA) AGE accelerated renal MG, carboxyethyl lysine, carboxymethyl lysine and malondialdehyde formation and, in parallel, the levels of serum creatinine and blood urea nitrogen (BUN) were significantly increased. Expression of RAGE and NLRP3 inflammasome-related proteins (TXNIP, NLRP3, procaspase-1 and caspase-1) and IL (interleukin)-1β secretion were upregulated, whereas the levels of EPCs, eNOS and NO were lower in MG-BSA-treated mice. This induction by MG-BSA was significantly inhibited by RAGE antagonist. Our results firstly reveal a possible mechanism of AGE-mediated renal dysfunction upon NLRP3 inflammasome activation. Therapeutic blockade of RAGE may ameliorate renal and endothelial functions in subjects under high AGE burden. Copyright © 2016 Elsevier Inc. All rights reserved.
Kim, Ji-Eun; Kang, Tae-Cheon
2017-10-01
Status epilepticus (SE, a prolonged seizure activity) is a high risk factor of developing vasogenic edema, which leads to secondary complications following SE. In the present study, we investigated whether transient receptor potential canonical channel-3 (TRPC3) may link vascular endothelial growth factor (VEGF) pathway to NFκB/ET B receptor axis in the rat piriform cortex during vasogenic edema formation. Following SE, TRPC3 and ET B receptor independently activated phosphatidylinositol 3 kinase (PI3K)/AKT/eNOS signaling pathway. SN50 (a NFκB inhibitor) attenuated the up-regulations of eNOS, TRPC3 and ET B receptor expressions following SE, accompanied by reductions in PI3K/AKT phosphorylations. Inhibition of SE-induced VEGF over-expression by leptomycin B also abrogated PI3K and AKT phosphorylations, but not TRPC3 expression. Wortmannin (a PI3K inhibitor) and 3CAI (an AKT inhibitor) effectively inhibited up-regulation of eNOS expressions and vasogenic edema lesion following SE. These findings indicate that PI3K/AKT may be common down-stream molecules for TRPC3- and ET B receptor signaling pathways during vasogenic edema formation. In addition, the present data demonstrate for the first time that TRPC3 may integrate VEGF- and NFκB-mediated vasogenic edema formation following SE. Thus, we suggest that PI3K/AKT signaling pathway may be one of considerable therapeutic targets for vasogenic edema. Copyright © 2017 Elsevier B.V. All rights reserved.
Wu, Jian-Hong; Li, Qing; Wu, Min-Yi; Guo, De-Jian; Chen, Huan-Le; Chen, Shi-Lin; Seto, Sai-Wang; Au, Alice L S; Poon, Christina C W; Leung, George P H; Lee, Simon M Y; Kwan, Yiu-Wa; Chan, Shun-Wan
2010-07-01
We evaluated the vasorelaxation effects of formononetin, an isoflavone/phytoestrogen found abundantly in Astragalus mongholicus Bunge, on rat isolated aorta and the underlying mechanisms involved. Cumulative administration of formononetin, genistein, daidzein and biochanin A relaxed phenylephrine-preconstricted aorta. Formononetin and biochanin A caused a similar magnitude of relaxation whereas daidzein was least potent. Mechanical removal of endothelium, L-NAME (100 microM) and methylene blue (10 microM) suppressed formononetin-induced relaxation. Formononetin increased endothelial nitric oxide (NO) synthase (eNOS), but not inducible NO synthase, activity with an up-regulation of eNOS mRNA and p-eNOS(Ser1177) protein expression. In endothelium-denuded preparations, formononetin-induced vasorelaxation was significantly reduced by glibenclamide (3 microM) and iberiotoxin (100 nM), and a combination of glibenclamide (3 microM) plus iberiotoxin (100 nM) abolished the relaxation. In contrast, formononetin-elicited endothelium-independent relaxation was not altered by ICI 182,780 (10 microM, an estrogen receptor (ER alpha/ER beta) antagonist) or mifepristone (10 microM, a progesterone receptor antagonist). In single aortic smooth muscle cells, formononetin caused opening of iberiotoxin-sensitive Ca(2+)-activated K(+) (BK(Ca)) channels and glibenclamide-sensitive adenosine triphosphate (ATP)-dependent K(+) (K(ATP)) channels. Thus, our results suggest that formononetin caused vascular relaxation via endothelium/NO-dependent mechanism and endothelium-independent mechanism which involves the activation of BK(Ca) and K(ATP) channels. (c) 2010 Elsevier Inc. All rights reserved.
Xiao, Mingyue; Lu, Xiao; Li, Jianan; Li, Ling; Li, Yongxue
2014-04-01
Ischaemia-induced angiogenesis promises to improve neovascularization by delivery of angiogenic factors or endothelial progenitor cells (EPCs) to cardiac ischaemic areas. In order to avoid the risk of excessive myocardial ischaemia, therefore, we hypothesized that physiological ischaemic training (PIT) of normal skeletal muscle might contribute to myocardial angiogenesis via nitric oxide mediated mobilization of EPCs from the bone marrow in the established rabbit model of controllable myocardial ischaemia. The rabbits were grouped by sham-operation, myocardial ischaemia without PIT, PIT and PIT with pretreatment with the endothelial nitric oxide synthase (eNOS) inhibitor L-nitroarginine methyl ester (L-NAME). Controlled myocardial ischaemia was modelled by a water balloon constrictor implanted on the left ventricular branch in a rabbit. The PIT procedure included three cycles of 3 min of cuff inflation followed by 5 min of deflation on hind limbs of the rabbits for 4 weeks. At the endpoints, circulating EPCs (CD34/Flk-1) were measured by fluorescence-activated cell sorter; capillary density, by immunohistochemistry; blood flow, by a microsphere technique; endothelial nitric oxide synthase (eNOS) mRNA and protein, by real-time reverse transcriptase (RT)-PCR and Western blotting. The mRNA levels of eNOS were significantly higher in the PIT and L-NAME groups than in the sham-operation group (P < 0.05). Phospho-eNOS protein expression was higher in the PIT group than in the sham-operation and myocardial ischaemia without PIT groups (P < 0.05), and the effect was inhibited by L-NAME pretreatment (P < 0.05). Compared with sham-operation and myocardial ischaemia without PIT groups, the PIT group had the highest EPC count (P < 0.001), and the increase of capillary density (P < 0.01) and collateral blood flow (P < 0.05) in the ischaemic myocardium was consistent with the finding of EPC count. These effects were also inhibited by pretreatment with the eNOS inhibitor L-NAME. Capillary density and collateral blood flow were highly correlated with the increase of EPC count (r = 0.913 and r = 0.929, respectively, P = 0.000). PIT improved EPC mobilization and contributed to compensatory neovascularization via eNOS-related pathway. These results might support the future development of strategies for therapeutic neovascularization.
Hypothyroidism and oxidative stress: differential effect on the heart of virgin and pregnant rats.
Carmona, Y V; Coria, M J; Oliveros, L B; Gimenez, M S
2014-01-01
The present study investigates the effects of hypothyroidism on both the redox state and the thyroid hormone receptors expression in the heart ventricle of virgin and pregnant rats.Hypothyroid state was induced by 6-n-propyl-2-thiouracil in drinking water given to Wistar rats starting 8 days before mating until day 21 of pregnancy or for 30 days in virgin rats. Serum paraoxonase-1 (PON-1) activity, serum and heart nitrites, and thiobarbituric acid-reactive substances (TBARS) were analyzed. Heart protein oxidation, as carbonyls, and copper-zinc superoxide dismutase (CuZnSOD), glutathione peroxidase (GPx), and catalase (CAT) activities, were determined. In addition, heart expressions of NADPH oxidase (NOX-2), CAT, SOD, GPx, and thyroid receptors (TRα and TRβ) mRNA were assessed by RT-PCR. Inducible and endothelial Nitric Oxide Synthase (iNOS and eNOS) were determined by Western blot. Hypothyroidism in the heart of virgin rats decreased TRα and TRβ expressions, and induced oxidative stress, leading to a decrease of nitrites and an increase of carbonyls, NOX-2 mRNA, and GPx activity. A decreased PON-1 activity suggested low protection against oxidative stress in blood circulation. Pregnancy reduced TRα and TRβ mRNA expressions and induced oxidative stress by increasing nitrite and TBARS levels, SOD and CAT activities and NOX-2, eNOS and iNOS expressions, while hypothyroidism, emphasized the decreases of TRα mRNA levels and did not alter the redox state in the heart. TR expressions and redox balance of rat hearts depend on the physiological state. Pregnancy per se seems to protect the heart against oxidative stress induced by hypothyroidism. Supporting Information for this article is available online at http://www.thieme-connect.de/ejournals/toc/hmr. © Georg Thieme Verlag KG Stuttgart · New York.
Namkoong, Seung; Kim, Chun-Ki; Cho, Young-Lai; Kim, Ji-Hee; Lee, Hansoo; Ha, Kwon-Soo; Choe, Jongseon; Kim, Pyeung-Hyeun; Won, Moo-Ho; Kwon, Young-Geun; Shim, Eun Bo; Kim, Young-Myeong
2009-06-01
Forskolin, a potent activator of adenylyl cyclases, has been implicated in modulating angiogenesis, but the underlying mechanism has not been clearly elucidated. We investigated the signal mechanism by which forskolin regulates angiogenesis. Forskolin stimulated angiogenesis of human endothelial cells and in vivo neovascularization, which was accompanied by phosphorylation of CREB, ERK, Akt, and endothelial nitric oxide synthase (eNOS) as well as NO production and VEGF expression. Forskolin-induced CREB phosphorylation, VEGF promoter activity, and VEGF expression were blocked by the PKA inhibitor PKI.Moreover, phosphorylation of ERK by forskolin was inhibited by the MEK inhibitor PD98059, but not PKI. The forskolin-induced Akt/eNOS/NO pathway was completely inhibited by the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, but not significantly suppressed by PKI. These inhibitors and a NOS inhibitor partially inhibited forskolin-induced angiogenesis. The exchange protein directly activated by cAMP (Epac) activator, 8CPT-2Me-cAMP, promoted the Akt/eNOS/NO pathway and ERK phosphorylation,but did not induce CREB phosphorylation and VEGF expression. The angiogenic effect of the Epac activator was diminished by the inhibition of PI3K and MEK, but not by the PKA inhibitor. Small interfering RNA-mediated knockdown of Epac1 suppressed forskolin-induced angiogenesis and phosphorylation of ERK, Akt, and eNOS, but not CREB phosphorylation and VEGF expression. These results suggest that forskolin stimulates angiogenesis through coordinated cross-talk between two distinct pathways, PKA-dependent VEGF expression and Epac-dependent ERKactivation and PI3K/Akt/eNOS/NO signaling.
Melatonin mediates vasodilation through both direct and indirect activation of BKCa channels.
Zhao, T; Zhang, H; Jin, C; Qiu, F; Wu, Y; Shi, L
2017-10-01
Melatonin, synthesized primarily by the pineal gland, is a neuroendocrine hormone with high membrane permeability. The vascular effects of melatonin, including vasoconstriction and vasodilation, have been demonstrated in numerous studies. However, the mechanisms underlying these effects are not fully understood. Large-conductance Ca 2+ -activated K + (BK Ca ) channels are expressed broadly on smooth muscle cells and play an important role in vascular tone regulation. This study explored the mechanisms of myocyte BK Ca channels and endothelial factors underlying the action of melatonin on the mesenteric arteries (MAs). Vascular contractility and patch-clamp studies were performed on myocytes of MAs from Wistar rats. Melatonin induced significant vasodilation on MAs. In the presence of N ω -nitro-l-arginine methyl ester (l-NAME), a potent endothelial oxide synthase (eNOS) inhibitor, melatonin elicited concentration-dependent relaxation, with lowered pIC 50 The effect of melatonin was significantly attenuated in the presence of BK Ca channel blocker iberiotoxin or MT1/MT2 receptor antagonist luzindole in both (+) l-NAME and (-) l-NAME groups. In the (+) l-NAME group, iberiotoxin caused a parallel rightward shift of the melatonin concentration-relaxation curve, with pIC 50 lower than that of luzindole. Both inside-out and cell-attached patch-clamp recordings showed that melatonin significantly increased the open probability, mean open time and voltage sensitivity of BK Ca channels. In a cell-attached patch-clamp configuration, the melatonin-induced enhancement of BK Ca channel activity was significantly suppressed by luzindole. These findings indicate that in addition to the activation of eNOS, melatonin-induced vasorelaxation of MAs is partially attributable to its direct (passing through the cell membrane) and indirect (via MT1/MT2 receptors) activation of the BK Ca channels on mesenteric arterial myocytes. © 2017 Society for Endocrinology.
Choi, Kyung-Sik; Kim, Min-Su; Jang, Sung-Ho
2014-01-01
Recently, the increasing rates of facial nerve preservation after vestibular schwannoma (VS) surgery have been achieved. However, the management of a partially or completely damaged facial nerve remains an important issue. The authors report a patient who was had a good recovery after a facial nerve reconstruction using fibrin glue-coated collagen fleece for a totally transected facial nerve during VS surgery. And, we verifed the anatomical preservation and functional outcome of the facial nerve with postoperative diffusion tensor (DT) imaging facial nerve tractography, electroneurography (ENoG) and House-Brackmann (HB) grade. DT imaging tractography at the 3rd postoperative day revealed preservation of facial nerve. And facial nerve degeneration ratio was 94.1% at 7th postoperative day ENoG. At postoperative 3 months and 1 year follow-up examination with DT imaging facial nerve tractography and ENoG, good results for facial nerve function were observed. PMID:25024825
Glutamine prevents oxidative stress in a model of portal hypertension.
Zabot, Gilmara Pandolfo; Carvalhal, Gustavo Franco; Marroni, Norma Possa; Licks, Francielli; Hartmann, Renata Minuzzo; da Silva, Vinícius Duval; Fillmann, Henrique Sarubbi
2017-07-07
To evaluate the protective effects of glutamine in a model of portal hypertension (PH) induced by partial portal vein ligation (PPVL). Male Wistar rats were housed in a controlled environment and were allowed access to food and water ad libitum . Twenty-four male Wistar rats were divided into four experimental groups: (1) control group (SO) - rats underwent exploratory laparotomy; (2) control + glutamine group (SO + G) - rats were subjected to laparotomy and were treated intraperitoneally with glutamine; (3) portal hypertension group (PPVL) - rats were subjected to PPVL; and (4) PPVL + glutamine group (PPVL + G) - rats were treated intraperitoneally with glutamine for seven days. Local injuries were determined by evaluating intestinal segments for oxidative stress using lipid peroxidation and the activities of glutathione peroxidase (GPx), endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) after PPVL. Lipid peroxidation of the membrane was increased in the animals subjected to PH ( P < 0.01). However, the group that received glutamine for seven days after the PPVL procedure showed levels of lipid peroxidation similar to those of the control groups ( P > 0.05). The activity of the antioxidant enzyme GTx was decreased in the gut of animals subjected to PH compared with that in the control group of animals not subjected to PH ( P < 0.01). However, the group that received glutamine for seven days after the PPVL showed similar GTx activity to both the control groups not subjected to PH ( P > 0.05). At least 10 random, non-overlapping images of each histological slide with 200 × magnification (44 pixel = 1 μm) were captured. The sum means of all areas, of each group were calculated. The mean areas of eNOS staining for both of the control groups were similar. The PPVL group showed the largest area of staining for eNOS. The PPVL + G group had the second highest amount of staining, but the mean value was much lower than that of the PPVL group ( P < 0.01). For iNOS, the control (SO) and control + G (SO + G) groups showed similar areas of staining. The PPVL group contained the largest area of iNOS staining, followed by the PPVL + G group; however, this area was significantly smaller than that of the group that underwent PH without glutamine ( P < 0.01). Treatment with glutamine prevents gut mucosal injury after PH in rats.
Uryash, Arkady; Wu, Heng; Bassuk, Jorge; Kurlansky, Paul; Sackner, Marvin A; Adams, Jose A
2009-06-01
Low-amplitude pulses to the vasculature increase pulsatile shear stress to the endothelium. This activates endothelial nitric oxide (NO) synthase (eNOS) to promote NO release and endothelial-dependent vasodilatation. Descent of the dicrotic notch on the arterial pulse waveform and a-to-b ratio (a/b; where a is the height of the pulse amplitude and b is the height of the dicrotic notch above the end-diastolic level) reflects vasodilator (increased a/b) and vasoconstrictor effects (decreased a/b) due to NO level change. Periodic acceleration (pG(z)) (motion of the supine body head to foot on a platform) provides systemic additional pulsatile shear stress. The purpose of this study was to determine whether or not pG(z) applied to rats produced endothelial-dependent vasodilatation and increased NO production, and whether the latter was regulated by the Akt/phosphatidylinositol 3-kinase (PI3K) pathway. Male rats were anesthetized and instrumented, and pG(z) was applied. Sodium nitroprusside, N(G)-nitro-l-arginine methyl ester (l-NAME), and wortmannin (WM; to block Akt/PI3K pathway) were administered to compare changes in a/b and mean aortic pressure. Descent of the dicrotic notch occurred within 2 s of initiating pG(z). Dose-dependent increase of a/b and decrease of mean aortic pressure took place with SNP. l-NAME produced a dose-dependent rise in mean aortic pressure and decrease of a/b, which was blunted with pG(z). In the presence of WM, pG(z) did not decrease aortic pressure or increase a/b. WM also abolished the pG(z) blunting effect on blood pressure and a/b of l-NAME-treated animals. eNOS expression was increased in aortic tissue after pG(z). This study indicates that addition of low-amplitude pulses to circulation through pG(z) produces endothelial-dependent vasodilatation due to increased NO in rats, which is mediated via activation of eNOS, in part, by the Akt/PI3K pathway.
Tran, Quang-Kim; Firkins, Rachel; Giles, Jennifer; Francis, Sarah; Matnishian, Vahe; Tran, Phuong; VerMeer, Mark; Jasurda, Jake; Burgard, Michelle Ann; Gebert-Oberle, Briana
2016-01-01
Estrogen exerts many effects on the vascular endothelium. Calmodulin (CaM) is the transducer of Ca2+ signals and is a limiting factor in cardiovascular tissues. It is unknown whether and how estrogen modifies endothelial functions via the network of CaM-dependent proteins. Here we show that 17β-estradiol (E2) up-regulates total CaM level in endothelial cells. Concurrent measurement of Ca2+ and Ca2+-CaM indicated that E2 also increases free Ca2+-CaM. Pharmacological studies, gene silencing, and receptor expression-specific cell studies indicated that the G protein-coupled estrogen receptor 1 (GPER/GPR30) mediates these effects via transactivation of EGFR and subsequent MAPK activation. The outcomes were then examined on four distinct members of the intracellular CaM target network, including GPER/GPR30 itself and estrogen receptor α, the plasma membrane Ca2+-ATPase (PMCA), and endothelial nitric-oxide synthase (eNOS). E2 substantially increases CaM binding to estrogen receptor α and GPER/GPR30. Mutations that reduced CaM binding to GPER/GPR30 in separate binding domains do not affect GPER/GPR30-Gβγ preassociation but decrease GPER/GPR30-mediated ERK1/2 phosphorylation. E2 increases CaM-PMCA association, but the expected stimulation of Ca2+ efflux is reversed by E2-stimulated tyrosine phosphorylation of PMCA. These effects sustain Ca2+ signals and promote Ca2+-dependent CaM interactions with other CaM targets. Consequently, E2 doubles CaM-eNOS interaction and also promotes dual phosphorylation of eNOS at Ser-617 and Ser-1179. Calculations using in-cell and in vitro data revealed substantial individual and combined contribution of these effects to total eNOS activity. Taken together, E2 generates a feedforward loop via GPER/GPR30, which enhances Ca2+/CaM signals and functional linkage in the endothelial CaM target network. PMID:26987903
Zhou, Liyuan; Chen, Hong; Mao, Xun; Qi, Hongbo; Baker, Philip N; Zhang, Hua
2017-06-01
The placenta is the exchange organ between the mother and the fetus. The inadequate function of this organ is associated with a number of pregnancy disorders. Hypoxia and oxidative stress during placental development may induce endothelial dysfunction, resulting in the reduction in the perfusion of the placenta. During pregnancy, the levels of estrogen are increased. Decreased estrogen levels have been reported in women with preeclampsia. However, whether estrogen is involved in placental angiogenesis remains unclear. In this study, we aimed to investigate the effects of estrogen on endothelial cell tube formation and to elucidate the underlying mechanisms. For this purpose, human umbilical vein endothelial cells (HUVECs) were cultured with 17‑β‑estradiol under conditions of hypoxia/reoxygenation (H/R). The total pipe length of the tube‑like structure on endothelial cells was measured. The expression levels of G‑protein‑coupled receptor 30 (GPR30) and endothelial nitric oxide synthase (eNOS) and Akt were also measured in the endothelial cells following treatment with 17‑β‑estradiol under H/R conditions by western blot analysis and immunostaining. We found that the total pipe length of the tube‑like structure on endothelial cells was significantly reduced. This reduction was reversed by treatment with 17‑β‑estradiol. The expression of GPR30 in endothelial cells was significantly increased following treatment with 17‑β‑estradiol under H/R conditions. Furthermore, the levels of eNOS and Akt in endothelial cells were also significantly increased following treatment with 17-β-estradiol under H/R conditions. The activation of eNOS was inhibited by wortmannin, an inhibitor of PI3K/Akt. Our data thus demonstrate that estrogen prevents the failure of endothelial cell tube formation induced by H/R. GPR30 plays an important role in these protective effects through the activation of eNOS and Akt in endothelial cells. Our data suggest that increased levels of estrogen are important for placental angiogenesis.
Hu, Y; Niu, X; Wang, G; Huang, J; Liu, M; Peng, B
2016-11-01
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is an independent risk factor for the development of erectile dysfunction (ED). But the molecular mechanisms underlying the relationship between CP/CPPS and ED are still unclear. The aim of this study was to investigate the effect of CP/CPPS on erectile function in a rat model and the possible mechanisms. A rat model of experimental autoimmune prostatitis (EAP) was established to mimic human CP⁄CPPS. Then twenty 2-month-old male Sprague-Dawley rats were divided into EAP group and control group. Intracavernosal pressure (ICP) and mean arterial pressure (MAP) were measured during cavernous nerve electrostimulation, the ratio of max ICP/MAP was calculated. Blood was collected to measure the levels of serum C-reactive protein (CRP), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and testosterone, respectively. The expression of endothelial nitric oxide synthase (eNOS), cyclic guanosine monophosphate (cGMP) levels, superoxide dismutase (SOD) activity and malondialdehyde (MDA) levels in corpus cavernosum were detected. We also evaluated the smooth muscle/collagen ratio and apoptotic index (AI). The ratio of max ICP/MAP in EAP group were significantly lower than that in control group. The levels of serum CRP, TNF-α, IL-1β, and IL-6 in EAP group were all significantly higher than these in control group. The expression of eNOS and cGMP levels in corpus cavernosum of EAP rats were significantly downregulated. Furthermore, decreased SOD activity and smooth muscle/collagen ratio, increased MDA levels and AI were found in corpus cavernosum of EAP rats. In conclusion, CP/CPPS impaired penile erectile function in a rat model. The declines of eNOS expression and cGMP levels in corpus cavernosum may be an important mechanism of CP/CPPS-induced ED. CP/CPPS also increased oxidative stress, cell apoptosis and decreased smooth muscle/collagen ratio in corpus cavernosum of rats, which were all important for erectile function. © 2016 American Society of Andrology and European Academy of Andrology.
Wang, Tingting; Qiao, Shigang; Lei, Shaoqing; Liu, Yanan; Ng, Kwok F. J.; Xu, Aimin; Lam, Karen S. L.; Irwin, Michael G.; Xia, Zhengyuan
2011-01-01
Background Hyperglycemia-induced oxidative stress plays a central role in the development of diabetic myocardial complications. Adiponectin (APN), an adipokine with anti-diabetic and anti-ischemic effects, is decreased in diabetes. It is unknown whether or not antioxidant treatment with N-acetylcysteine (NAC) and/or allopurinol (ALP) can attenuate APN deficiency and myocardial ischemia reperfusion (MI/R) injury in the early stage of diabetes. Methodology/Principal Findings Control or streptozotocin (STZ)-induced diabetic rats were either untreated (C, D) or treated with NAC (1.5 g/kg/day) or ALP (100 mg/kg/day) or their combination for four weeks starting one week after STZ injection. Plasma and cardiac biochemical parameters were measured after the completion of treatment, and the rats were subjected to MI/R by occluding the left anterior descending artery for 30 min followed by 2 h reperfusion. Plasma and cardiac APN levels were decreased in diabetic rats accompanied by decreased cardiac APN receptor 2 (AdipoR2), reduced phosphorylation of Akt, signal transducer and activator of transcription 3 (STAT3) and endothelial nitric oxide synthase (eNOS) but increased IL-6 and TNF-α (all P<0.05 vs. C). NAC but not ALP increased cardiac APN concentrations and AdipoR2 expression in diabetic rats. ALP enhanced the effects of NAC in restoring cardiac AdipoR2 and phosphorylation of Akt, STAT3 and eNOS in diabetic rats. Further, NAC and ALP, respectively, decreased postischemic myocardial infarct size and creatinine kinase-MB (CK-MB) release in diabetic rats, while their combination conferred synergistic protective effects. In addition, exposure of cultured rat cardiomyocytes to high glucose resulted in significant reduction of cardiomyocyte APN concentration and AdipoR2 protein expression. APN supplementation restored high glucose induced AdipoR2 reduction in cardiomyocytes. Conclusions/Significance NAC and ALP synergistically restore myocardial APN and AdipoR2 mediated eNOS activation. This may represent the mechanism through which NAC and ALP combination greatly reduces MI/R injury in early diabetic rats. PMID:21912612
Tran, Quang-Kim; Firkins, Rachel; Giles, Jennifer; Francis, Sarah; Matnishian, Vahe; Tran, Phuong; VerMeer, Mark; Jasurda, Jake; Burgard, Michelle Ann; Gebert-Oberle, Briana
2016-05-13
Estrogen exerts many effects on the vascular endothelium. Calmodulin (CaM) is the transducer of Ca(2+) signals and is a limiting factor in cardiovascular tissues. It is unknown whether and how estrogen modifies endothelial functions via the network of CaM-dependent proteins. Here we show that 17β-estradiol (E2) up-regulates total CaM level in endothelial cells. Concurrent measurement of Ca(2+) and Ca(2+)-CaM indicated that E2 also increases free Ca(2+)-CaM. Pharmacological studies, gene silencing, and receptor expression-specific cell studies indicated that the G protein-coupled estrogen receptor 1 (GPER/GPR30) mediates these effects via transactivation of EGFR and subsequent MAPK activation. The outcomes were then examined on four distinct members of the intracellular CaM target network, including GPER/GPR30 itself and estrogen receptor α, the plasma membrane Ca(2+)-ATPase (PMCA), and endothelial nitric-oxide synthase (eNOS). E2 substantially increases CaM binding to estrogen receptor α and GPER/GPR30. Mutations that reduced CaM binding to GPER/GPR30 in separate binding domains do not affect GPER/GPR30-Gβγ preassociation but decrease GPER/GPR30-mediated ERK1/2 phosphorylation. E2 increases CaM-PMCA association, but the expected stimulation of Ca(2+) efflux is reversed by E2-stimulated tyrosine phosphorylation of PMCA. These effects sustain Ca(2+) signals and promote Ca(2+)-dependent CaM interactions with other CaM targets. Consequently, E2 doubles CaM-eNOS interaction and also promotes dual phosphorylation of eNOS at Ser-617 and Ser-1179. Calculations using in-cell and in vitro data revealed substantial individual and combined contribution of these effects to total eNOS activity. Taken together, E2 generates a feedforward loop via GPER/GPR30, which enhances Ca(2+)/CaM signals and functional linkage in the endothelial CaM target network. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Lu, Hong-xiang; Wang, Yu-xiao; Chen, Yu; Luo, Yong-jun
2015-11-01
Highland natives adapt well to the hypoxic environment at high altitude (HA). Several genes have been reported to be linked to HA adaptation. Previous studies showed that the endothelial ni- tric oxide synthase (ENOS) G894T polymorphism contributed to the physiology and pathophysiology of hu- mans at HA by regulating the production of NO. In this meta-analysis, we evaluate the association between the ENOS G894T polymorphism and HA adaptation through analyzing the published data. We searched all relevant literature about the ENOS G894T polymorphism and HA adaptation in PubMed, Med- line, and Embase before Step 2015. A random-effects model was applied (Revman 5.0), and study quality was assessed in duplicate. Six studies with 634 HA native cases and 621 low-altitude controls were included in this meta-analysis. From the results, we observed that the wild-type allele G was significantly overrepresented in the HA groups (OR = 1.85; 95% Cl, 1.47-2.33; P < 0.0001). In addition, the GG genotype was significantly associated with HA adaptation (OR = 1.99; 95% Cl, 1.54-2.57; P < 0.0001). Our results showed that in 894 G allele carriers, the GG genotype might be a beneficial factor for HA adaptation through enhancing the level of NO. However, more studies were needed to confirm our findings due to the limited sample size.
Effects of simulated microgravity on arterial nitric oxide synthase and nitrate and nitrite content
NASA Technical Reports Server (NTRS)
Ma, Jin; Kahwaji, Chadi I.; Ni, Zhenmin; Vaziri, Nosratola D.; Purdy, Ralph E.
2003-01-01
The aim of the present work was to investigate the alterations in nitric oxide synthase (NOS) expression and nitrate and nitrite (NOx) content of different arteries from simulated microgravity rats. Male Wistar rats were randomly assigned to either a control group or simulated microgravity group. For simulating microgravity, animals were subjected to hindlimb unweighting (HU) for 20 days. Different arterial tissues were removed for determination of NOS expression and NOx. Western blotting was used to measure endothelial NOS (eNOS) and inducible NOS (iNOS) protein content. Total concentrations of NOx, stable metabolites of nitric oxide, were determined by the chemiluminescence method. Compared with controls, isolated vessels from simulated microgravity rats showed a significant increase in both eNOS and iNOS expression in carotid arteries and thoracic aorta and a significant decrease in eNOS and iNOS expression of mesenteric arteries. The eNOS and iNOS content of cerebral arteries, as well as that of femoral arteries, showed no differences between the two groups. Concerning NOx, vessels from HU rats showed an increase in cerebral arteries, a decrease in mesenteric arteries, and no change in carotid artery, femoral artery and thoracic aorta. These data indicated that there were differential alterations in NOS expression and NOx of different arteries after hindlimb unweighting. We suggest that these changes might represent both localized adaptations to differential body fluid redistribution and other factors independent of hemodynamic shifts during simulated microgravity.
Babacanoglu, C; Yildirim, N; Sadi, G; Pektas, M B; Akar, F
2013-10-01
Dietary intake of fructose and sucrose can cause development of metabolic and cardiovascular disorders. The consequences of high-fructose corn syrup (HFCS), a commonly consumed form of fructose and glucose, have poorly been examined. Therefore, in this study, we investigated whether HFCS intake (10% and 20% beverages for 12 weeks) impacts vascular reactivity to insulin and endothelin-1 in conjunction with insulin receptor substrate-1(IRS-1), endothelial nitric oxide synthase (eNOS) and inducible NOS (iNOS) mRNA/proteins levels in aorta of rats. At challenge, we tested the effectiveness of resveratrol (28-30 mg/kg body weight/day) on outcomes of HFCS feeding. HFCS (20%) diet feeding increased plasma triglyceride, VLDL, cholesterol, insulin and glucose levels, but not body weights of rats. Impaired nitric oxide-mediated relaxation to insulin (10⁻⁹ to 3×10⁻⁶ M), and enhanced contraction to endothelin-1 (10⁻¹¹ to 10⁻⁸ M) were associated with decreased expression of IRS-1 and eNOS mRNA and protein, but increased expression of iNOS, in aortas of rats fed with HFCS. Resveratrol supplementation restored many features of HFCS-induced disturbances, probably by regulating eNOS and iNOS production. In conclusion, dietary HFCS causes vascular insulin resistance and endothelial dysfunction through attenuating IRS-1 and eNOS expressions as well as increasing iNOS in rats. Resveratrol has capability to recover HFCS-induced disturbances. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Shim, Eunhee; Lee, Eun; Yang, Song-I; Jung, Young-Ho; Park, Geun Mi; Kim, Hyung Young; Seo, Ju-Hee
2015-01-01
Purpose Although many previous studies have attempted to identify differences between atopic asthma (AA) and non-atopic asthma (NAA), they have mainly focused on the difference of each variable of lung function and airway inflammation. The aim of this study was to evaluate relationships between lung function, bronchial hyperresponsiveness (BHR), and the exhaled nitric oxide (eNO) levels in children with AA and NAA. Methods One hundred and thirty six asthmatic children aged 5-15 years and 40 normal controls were recruited. Asthma cases were classified as AA (n=100) or NAA (n=36) from skin prick test results. Lung function, BHR to methacholine and adenosine-5'-monophosphate (AMP), eNO, blood eosinophils, and serum total IgE were measured. Results The AA and NAA cases shared common features including a reduced small airway function and increased BHR to methacholine. However, children with AA showed higher BHR to AMP and eNO levels than those with NAA. When the relationships among these variables in the AA and NAA cases were evaluated, the AA group showed significant relationships between lung function, BHR to AMP or methacholine and eNO levels. However, the children in the NAA group showed an association between small airway function and BHR to methacholine only. Conclusions These findings suggest that the pathogenesis of NAA may differ from that of AA during childhood in terms of the relationship between lung function, airway inflammation and BHR. PMID:25749776
Stanislavov, R; Rohdewald, P
2014-12-01
The aim of this study was to investigate the influence of Prelox®R, a combination of French maritime pine bark extract (Pycnogenol®), L-arginine, L-citrulline and roburins, on male fertility. Sperm quality of 50 subfertile men was tested in monthly intervals in a double-blind, randomized, placebo controlled, crossover study. Patients received 2 tablets Prelox®R or placebo twice daily during test periods. Following a run-in period of 1 month, patients received either Prelox®R or a placebo for 1 month. After a wash-out period of 1 month, patients received Prelox®R or a placebo in a crossover manner for 1 month. Sperm volume, concentration of spermatozoa, total count, motility, vitality and morphology were measured by standard methods of calculation of the Fertility Index (FI) in monthly intervals. Activity of e-NOS in sperm was evaluated in parallel by measuring the quantity of L-citulline produced from L-arginine. Supplementation with Prelox®R enhanced sperm volume and concentration, motility, vitality and morphology significantly versus placebo. The Fertility Index rose to normal values during treatment with Prelox®R. e-NOS activity in sperm was elevated by Prelox®R. No adverse effects were reported. Prelox®R offers a safe method to improve quality of human spermatozoa in subfertile men.
Keilhoff, Gerburg; Esser, Torben; Titze, Maximilian; Ebmeyer, Uwe; Schild, Lorenz
2017-11-01
Cardiac arrest (CA) is a common cause of disability and mortality and thus an important risk for human health. Circulatory failure has dramatic consequences for the brain as one of the most oxygen-consuming organs. Hippocampus, striatum and neocortex rate among the most vulnerable brain regions. The neocortex is less sensitive to hypoxia/reperfusion in comparison with the hippocampal CA1 region. That implicates the existence of efficient defense mechanisms in the neocortex against hypoxia/reperfusion injury, which we analyzed in a well-established CA rat model. We explored different immunohistochemical markers (NeuN, MAP2, GFAP, IBA1, NOX4, MnSOD, Bax, caspase 3, cfos, nNOS, eNOS, iNOS, TUNEL), amount of mitochondria, activities of respiratory chain complexes and amount/composition of cardiolipin. CA induced a moderate degeneration of cortical neurons. As possible defense mechanisms the study revealed: (i) increased activities of respiratory chain complexes of cortical mitochondria as response to increased energy demand after ACA-induced cell stress; (ii) increase of cardiolipin content as cellular stress response, which might contribute to the promotion of mitochondrial ATP synthesis; (iii) strengthening of the fast, effective and long-lasting mitochondrial MnSOD defense system; (iv) ACA-induced increase in expression of eNOS and nNOS in vasculature being able to reduce ischemic injury by vasodilation. Copyright © 2017 Elsevier B.V. All rights reserved.
The Effect of Chlorpyrifos on Isolated Thoracic Aorta in Rats
Yıldırım, Ebru; Baydan, Emine; Kanbur, Murat; Kul, Oğuz; Çınar, Miyase; Ekici, Hüsamettin; Atmaca, Nurgül
2013-01-01
This study investigated the effect of chlorpyrifos on thoracic aorta and on the level of NO in plasma and aorta. The effect of chlorpyrifos on thoracic aorta in organ bath was determined in 10 rats. Another 45 rats were assigned to 3 groups with 15 rats each: control group 1 received distilled water, control group 2 was given corn oil, and the last group was given 13.5 mg/kg chlorpyrifos dissolved in corn oil every other day for 8 weeks orally. Chlorpyrifos (10−10 M–10−5 M) showed no effect on isolated thoracic aorta. Plasma AChE activity was decreased, while LDH, ALT, GGT, and AST activities were increased in chlorpyrifos group compared to control groups. Plasma NO level was increased in chlorpyrifos group compared to control groups. iNOS expression was present in all groups in the cytoplasm of the endothelia and in the smooth muscle cells of aorta. According to semiquantitative histomorphological analysis, iNOS immunopositive reactions were seen in the decreasing order in chlorpyrifos, control 2, and control 1 groups. eNOS immunopositive reactions were observed in the endothelial cell cytoplasm, rarely in the subintimal layer, and the smooth muscle cells of aorta. There were no differences among the groups in terms of eNOS immunostaining. In conclusion, chlorpyrifos induced NO production in aorta following an increase in NOS expression. PMID:23878805
Chang, Chao C; Lu, Wan J; Chiang, Cheng W; Jayakumar, Thanasekaran; Ong, Eng T; Hsiao, George; Fong, Tsorng H; Chou, Duen S; Sheu, Joen R
2010-12-01
Sesamol is a potent phenolic antioxidant which possesses antimutagenic, antihepatotoxic and antiaging properties. Platelet activation is relevant to a variety of acute thrombotic events and coronary heart diseases. There have been few studies on the effect of sesamol on platelets. Therefore, the aim of this study was to systematically examine the detailed mechanisms of sesamol in preventing platelet activation in vitro and in vivo. Sesamol (2.5-5 μM) exhibited more potent activity of inhibiting platelet aggregation stimulated by collagen than other agonists. Sesamol inhibited collagen-stimulated platelet activation accompanied by [Ca(2+)](i) mobilization, thromboxane A(2) (TxA(2)) formation, and phospholipase C (PLC)γ2, protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) phosphorylation in washed platelets. Sesamol markedly increased cAMP and cGMP levels, endothelial nitric oxide synthase (eNOS) expression and NO release, as well as vasodilator-stimulated phosphoprotein (VASP) phosphorylation. SQ22536, an inhibitor of adenylate cyclase, markedly reversed the sesamol-mediated inhibitory effects on platelet aggregation and p38 MAPK phosphorylation, and sesamol-mediated stimulatory effects on VASP and eNOS phosphorylation, and NO release. Sesamol also reduced hydroxyl radical (OH(●)) formation in platelets. In an in vivo study, sesamol (5 mg/kg) significantly prolonged platelet plug formation in mice. The most important findings of this study demonstrate for the first time that sesamol possesses potent antiplatelet activity, which may involve activation of the cAMP-eNOS/NO-cGMP pathway, resulting in inhibition of the PLCγ2-PKC-p38 MAPK-TxA(2) cascade, and, finally, inhibition of platelet aggregation. Sesamol treatment may represent a novel approach to lowering the risk of or improving function in thromboembolism-related disorders. Copyright © 2010 Elsevier Inc. All rights reserved.
Herrera, Emilio A.; Cifuentes‐Zúñiga, Francisca; Figueroa, Esteban; Villanueva, Cristian; Hernández, Cherie; Alegría, René; Arroyo‐Jousse, Viviana; Peñaloza, Estefania; Farías, Marcelo; Uauy, Ricardo; Casanello, Paola
2016-01-01
Key points Intrauterine growth restriction (IUGR) is associated with vascular dysfunction, oxidative stress and signs of endothelial epigenetic programming of the umbilical vessels.There is no evidence that this epigenetic programming is occurring on systemic fetal arteries.In IUGR guinea pigs we studied the functional and epigenetic programming of endothelial nitric oxide synthase (eNOS) (Nos3 gene) in umbilical and systemic fetal arteries, addressing the role of oxidative stress in this process by maternal treatment with N‐acetylcysteine (NAC) during the second half of gestation.The present study suggests that IUGR endothelial cells have common molecular markers of programming in umbilical and systemic arteries. Notably, maternal treatment with NAC restores fetal growth by increasing placental efficiency and reverting the functional and epigenetic programming of eNOS in arterial endothelium in IUGR guinea pigs. Abstract In humans, intrauterine growth restriction (IUGR) is associated with vascular dysfunction, oxidative stress and signs of endothelial programming in umbilical vessels. We aimed to determine the effects of maternal antioxidant treatment with N‐acetylcysteine (NAC) on fetal endothelial function and endothelial nitric oxide synthase (eNOS) programming in IUGR guinea pigs. IUGR was induced by implanting ameroid constrictors on uterine arteries of pregnant guinea pigs at mid gestation, half of the sows receiving NAC in the drinking water (from day 34 until term). Fetal biometry and placental vascular resistance were followed by ultrasound throughout gestation. At term, umbilical arteries and fetal aortae were isolated to assess endothelial function by wire‐myography. Primary cultures of endothelial cells (ECs) from fetal aorta, femoral and umbilical arteries were used to determine eNOS mRNA levels by quantitative PCR and analyse DNA methylation in the Nos3 promoter by pyrosequencing. Doppler ultrasound measurements showed that NAC reduced placental vascular resistance in IUGR (P < 0.05) and recovered fetal weight (P < 0.05), increasing fetal‐to‐placental ratio at term (∼40%) (P < 0.001). In IUGR, NAC treatment restored eNOS‐dependent relaxation in aorta and umbilical arteries (P < 0.05), normalizing eNOS mRNA levels in EC fetal and umbilical arteries (P < 0.05). IUGR‐derived ECs had a decreased DNA methylation (∼30%) at CpG −170 (from the transcription start site) and this epigenetic signature was absent in NAC‐treated fetuses (P < 0.001). These data show that IUGR‐ECs have common molecular markers of eNOS programming in umbilical and systemic arteries and this effect is prevented by maternal treatment with antioxidants. PMID:27739590
OPC-28326, a selective femoral arterial vasodilator, augments ischemia induced angiogenesis.
Sumi, Makoto; Sata, Masataka; Hashimoto, Ayako; Imaizumi, Takashi; Yanaga, Katsuhiko; Ohki, Takao; Mori, Toyoki; Nagai, Ryozo
2007-05-01
OPC-28326, 4-(N-methyl-2-phenylethylamino)-1-(3,5-dimethyl-4-propionyl-aminobenzoyl) piperidine hydrochloride monohydrate, is a newly developed selective peripheral vasodilator and increases blood flow to lower extremities with alpha2-adrenergic antagonist property. Here, we investigated the effect of OPC-28326 on ischemia-induced angiogenesis. OPC-28326 enhanced tube formation by human aortic endothelial cells (HAECs). Moreover, OPC-28326 enhanced the number of microvessels sprouting from aortic rings embedded in collagen gel. OPC-28326 markedly induced phosphorylation of endothelial nitric oxide synthase (eNOS) in HAECs via phosphatidylinositol-3 kinase PI3K/Akt (PI3K/Akt) pathway. Next, the angiogenic effect of OPC-28326 was evaluated in a mouse hindlimb ischemia model. Blood flow recovery to the ischemic leg was significantly enhanced by OPC-28326. Furthermore, anti-CD31 immunostaining revealed that OPC-28326 increased capillary density in the ischemic muscle. However, OPC-28326 failed to promote blood flow recovery in ischemic hindlimb in eNOS-deficient mice. These results suggest that OPC-28326 promotes angiogenesis, which was associated with activation of eNOS via PI3K/Akt pathway. OPC-28326 might be promising to treat patients with ischemic vascular diseases.
Activation of MDL-1 (CLEC5A) on immature myeloid cells triggers lethal shock in mice
Cheung, Ricky; Shen, Fran; Phillips, Joseph H.; McGeachy, Mandy J.; Cua, Daniel J.; Heyworth, Paul G.; Pierce, Robert H.
2011-01-01
Systemic inflammatory response syndrome (SIRS) is a potentially lethal condition, as it can progress to shock, multi-organ failure, and death. It can be triggered by infection, tissue damage, or hemorrhage. The role of tissue injury in the progression from SIRS to shock is incompletely understood. Here, we show that treatment of mice with concanavalin A (ConA) to induce liver injury triggered a G-CSF–dependent hepatic infiltration of CD11b+Gr-1+Ly6G+Ly6C+ immature myeloid cells that expressed the orphan receptor myeloid DAP12–associated lectin–1 (MDL-1; also known as CLEC5A). Activation of MDL-1 using dengue virus or an agonist MDL-1–specific antibody in the ConA-treated mice resulted in shock. The MDL-1+ cells were pathogenic, and in vivo depletion of MDL-1+ cells provided protection. Triggering MDL-1 on these cells induced production of NO and TNF-α, which were found to be elevated in the serum of treated mice and required for MDL-1–induced shock. Surprisingly, MDL-1–induced NO and TNF-α production required eNOS but not iNOS. Activation of DAP12, DAP10, Syk, PI3K, and Akt was critical for MDL-1–induced shock. In addition, Akt physically interacted with and activated eNOS. Therefore, triggering of MDL-1 on immature myeloid cells and production of NO and TNF-α may play a critical role in the pathogenesis of shock. Targeting the MDL-1/Syk/PI3K/Akt/eNOS pathway represents a potential new therapeutic strategy to prevent the progression of SIRS to shock. PMID:22005300
Exercise training increases basal tone in arterioles distal to chronic coronary occlusion
Heaps, Cristine L.; Mattox, Mildred L.; Kelly, Katherine A.; Meininger, Cynthia J.; Parker, Janet L.
2014-01-01
Endurance exercise training increases basal active tone in coronary arteries and enhances myogenic tone in coronary arterioles of control animals. Paradoxically, exercise training has also been shown to augment nitric oxide production and nitric oxide-mediated relaxation in coronary arterioles. The purpose of the present study was to examine the effect of exercise training on basal active tone of arterioles (~150 µm ID) isolated from the collateral-dependent region of hearts exposed to chronic coronary occlusion. Ameroid occluders were surgically placed around the proximal left circumflex coronary artery of miniature swine. Arterioles were isolated from both the collateral-dependent and nonoccluded myocardial regions of sedentary (pen confined) and exercise-trained (treadmill run; 14 wk) pigs. Coronary tone was studied in isolated arterioles using microvessel myographs and standard isometric techniques. Exposure to nominally Ca2+-free external solution reduced resting tension in all arterioles; decreases were most profound (P < 0.05) in arterioles from the collateral-dependent region of exercise-trained animals. Furthermore, nitric oxide synthase (NOS) inhibition (Nω-nitro-l-arginine methylester; 100 µM) unmasked markedly increased nitric oxide-sensitive tone in arterioles from the collateral-dependent region of exercise-trained swine. Blockade of K+ channels revealed significantly enhanced K+ channel contribution to basal tone in collateral-dependent arterioles of exercise-trained pigs. Protein content of endothelial NOS (eNOS) and phosphorylated eNOS (pS1179), determined by immunoblot, was elevated in arterioles from exercise-trained animals with the greatest effect in collateral-dependent vasculature. Taken together, we demonstrate the interaction of opposing exercise training-enhanced arteriolar basal active tone, nitric oxide production, and K+ channel activity in chronic coronary occlusion, potentially enhancing the capacity to regulate blood flow to collateral-dependent myocardium. PMID:16243909
Barajas-Espinosa, Alma; Basye, Ariel; Jesse, Erin; Yan, Haixu; Quan, David; Chen, Chun-An
2014-09-01
Redox imbalance is a primary cause of endothelial dysfunction (ED). Under oxidant stress, many critical proteins regulating endothelial function undergo oxidative modifications that lead to ED. Cellular levels of glutathione (GSH), the primary reducing source in cells, can significantly regulate cell function via reversible protein thiol modification. N-acetylcysteine (NAC), a precursor for GSH biosynthesis, is beneficial for many vascular diseases; however, the detailed mechanism of these benefits is still not clear. From HPLC analysis, NAC significantly increases both cellular GSH and tetrahydrobiopterin levels. Immunoblotting of endothelial NO synthase (eNOS) and DUSP4, a dual-specificity phosphatase with a cysteine as its active residue, revealed that both enzymes are upregulated by NAC. EPR spin trapping further demonstrated that NAC enhances NO generation from cells. Long-term exposure to Cd(2+) contributes to DUSP4 degradation and the uncontrolled activation of p38 and ERK1/2, leading to apoptosis. Treatment with NAC prevents DUSP4 degradation and protects cells against Cd(2+)-induced apoptosis. Moreover, the increased DUSP4 expression can redox-regulate the p38 and ERK1/2 pathways from hyperactivation, providing a survival mechanism against the toxicity of Cd(2+). DUSP4 gene knockdown further supports the hypothesis that DUSP4 is an antioxidant gene, critical in the modulation of eNOS expression, and thus protects against Cd(2+)-induced stress. Depletion of intracellular GSH by buthionine sulfoximine makes cells more susceptible to Cd(2+)-induced apoptosis. Pretreatment with NAC prevents p38 overactivation and thus protects the endothelium from this oxidative stress. Therefore, the identification of DUSP4 activation by NAC provides a novel target for future drug design. Copyright © 2014 Elsevier Inc. All rights reserved.
da Motta, Nadia Alice Vieira; de Brito, Fernanda Carla Ferreira
2016-08-01
This work presents a model of rats fed a high-cholesterol diet, receiving a long-term oral administration of cilostazol, a PDE3-inhibitor. The aim of this study was to evaluate the molecular mechanisms by which cilostazol interferes with platelets signaling pathways to avoid atherosclerosis early development. Male Wistar rats were divided into 3 groups: Control group received standard rat chow (C), hypercholesterolemic group (HCD), and HCD+CIL (cilostazol group) received hypercholesterolemic diet for 45 days. HCD+CIL group received cilostazol (30 mg/kg/p.o.) once daily in the last 15 days. Platelet aggregation, lipid profile, lipid peroxidation, and cytokine serum levels were assessed. Expression of P-selectin, CD40L, PKC-α, IkB-α, and iNOS and activation of AMPK, NF-κB, and eNOS in the platelets were assessed using Western blot analysis. Cilostazol reduced the levels of total cholesterol (361.0 ± 12.8 vs. 111.5 ± 1.6 mg/dL), triglycerides (186.9 ± 17.7 vs. 55.4 ±3.1 mg/dL), cLDL (330.9 ± 9.7 vs. 61.5 ± 3.5 mg/dL), cVLDL (45.0 ± 4.6 vs. 11.1 ± 0.6 mg/dL), and malondialdehyde (9.4 ± 0.5 vs. 3.2 ± 0.3 nmol/mL) compared to the HCD group. Cilostazol presented antiplatelet properties and decreased inflammatory markers levels. These effects seem to be related to AMPK activation, NF-kB inhibition, and eNOS activation. © 2016 Société Française de Pharmacologie et de Thérapeutique.
Dal Negro, R W; Guerriero, M; Micheletto, C
2012-12-01
The increase of basement membrane thickness (BMAT) represents a structural feature described as commonly characterizing airway remodelling in asthma, even if the non-atopic condition had been investigated only episodically from this point of view. Gastrooesophageal-reflux is a pathological condition which can frequently cause and/or sustain asthma in non-atopic individuals. The aim of the study was to measure BMT; some inflammatory mediators in BAL; cys-leucotrienes (LTE4) in urine; e-NO, and BHR to Methacholine (MCh) in mild atopic and in mild non-atopic, GER-related asthma. After their informed consent, 25 mild atopic (40.9 years +/- 13.1 sd, FEV1 = 95.9% pred. +/- 12.9 sd) and 39 non-atopic, GER-related asthmatics (57.3 years +/- 14.2 ds, FEVY1 = 101.3% pred. +/- 12.2 sd), nonsmoker and of a comparable asthma duration, underwent measurements of basal lung function and bronchial response to MCh (PD20 FEV1); endobronchial biopsies and BAL (in the right middle lobe), and a 24-h gastroesophageal pHmetry. Atopic GER-related asthma showed two distinct patterns of airway inflammation. The eosinophilic contribution to airway inflammation was systematically prevailing in the former group, such as: EOS = 10.7% +/- 13.4 sd vs 2.0% +/- 2.8 sd, p = 0.001; ECP = 344.9 mcg/l +/- 635.9 sd vs 59.2 mcg/l +/- 75.1 sd, p = 0.001. Data from the present study are suggesting that persistent mild atopic and mild GER-related asthma seem to represent two distinct phenotypes of asthma in terms of airway remodelling, and in particular of BMT involvement.
Nunes, Rafael Amorim Belo; Barroso, Lúcia Pereira; Pereira, Alexandre da Costa; Krieger, José Eduardo; Mansur, Alfredo José
2014-01-01
Treadmill exercise test responses have been associated with cardiovascular prognosis in individuals without overt heart disease. Neurohumoral and nitric oxide responses may influence cardiovascular performance during exercise testing. Therefore, we evaluated associations between functional genetic polymorphisms of α-adrenergic receptors, endothelial nitric oxide synthase, bradykinin receptor B2 and treadmill exercise test responses in men and women without overt heart disease. We enrolled 766 (417 women; 349 men) individuals without established heart disease from a check-up programme at the Heart Institute, University of São Paulo Medical School. Exercise capacity, chronotropic reserve, maximum heart-rate achieved, heart-rate recovery, exercise systolic blood pressure (SBP), exercise diastolic blood pressure (DBP) and SBP recovery were assessed during exercise testing. Genotypes for the α-adrenergic receptors ADRA1A Arg347Cys (rs1048101), ADRA2A 1780 C>T (rs553668), ADRA2B Del 301-303 (rs28365031), endothelial nitric synthase (eNOS) 786 T>C (rs2070744), eNOS Glu298Asp (rs1799983) and BK2R (rs5810761) polymorphisms were assessed by PCR and high-resolution melting analysis. Maximum SBP was associated with ADRA1A rs1048101 (p=0.008) and BK2R rs5810761 (p=0.008) polymorphisms in men and ADRA2A rs553668 (p=0.008) and ADRA2B rs28365031 (p=0.022) in women. Maximum DBP pressure was associated with ADRA2A rs553668 (p=0.002) and eNOS rs1799983 (p=0.015) polymorphisms in women. Exercise capacity was associated with eNOS rs2070744 polymorphisms in women (p=0.01) and with eNOS rs1799983 in men and women (p=0.038 and p=0.024). The findings suggest that genetic variants of α-adrenergic receptors and bradykinin B2 receptor may be involved with blood pressure responses during exercise tests. Genetic variants of endothelial nitric oxide synthase may be involved with exercise capacity and blood pressure responses during exercise tests. These responses may be gender-related.
Theodorakis, Nicholas G; Wang, Yining N; Korshunov, Vyacheslav A; Maluccio, Mary A; Skill, Nicholas J
2015-01-01
AIM: Portal hypertension is a common complication of liver cirrhosis and significantly increases mortality and morbidity. Previous reports have suggested that the compound thalidomide attenuates portal hypertension (PHT). However, the mechanism for this action is not fully elucidated. One hypothesis is that thalidomide destabilizes tumor necrosis factor α (TNFα) mRNA and therefore diminishes TNFα induction of nitric oxide synthase (NOS) and the production of nitric oxide (NO). To examine this hypothesis, we utilized the murine partial portal vein ligation (PVL) PHT model in combination with endothelial or inducible NOS isoform gene knockout mice. METHODS: Wild type, inducible nitric oxide synthase (iNOS)-/- and endothelial nitric oxide synthase (eNOS)-/- mice received either PVL or sham surgery and were given either thalidomide or vehicle. Serum nitrate (total nitrate, NOx) was measured daily for 7 d as a surrogate of NO synthesis. Serum TNFα level was quantified by enzyme-linked immunosorbent assay. TNFα mRNA was quantified in liver and aorta tissue by reverse transcription-polymerase chain reaction. PHT was determined by recording splenic pulp pressure (SPP) and abdominal aortic flow after 0-7 d. Response to thalidomide was determined by measurement of SPP and mean arterial pressure (MAP). RESULTS: SPP, abdominal aortic flow (Qao) and plasma NOx were increased in wild type and iNOS-/- PVL mice when compared to sham operated control mice. In contrast, SPP, Qao and plasma NOx were not increased in eNOS-/- PVL mice when compared to sham controls. Serum TNFα level in both sham and PVL mice was below the detection limit of the commercial ELISA used. Therefore, the effect of thalidomide on serum TNFα levels was undetermined in wild type, eNOS-/- or iNOS-/- mice. Thalidomide acutely increased plasma NOx in wild type and eNOS-/- mice but not iNOS-/- mice. Moreover, thalidomide temporarily (0-90 min) decreased mean arterial pressure, SPP and Qao in wild type, eNOS-/- and iNOS-/- PVL mice, after which time levels returned to the respective baseline. CONCLUSION: Thalidomide does not reduce portal pressure in the murine PVL model by modulation of NO biosynthesis. Rather, thalidomide reduces PHT by decreasing MAP by an undetermined mechanism. PMID:25892862
Differentially expressed and survival-related proteins of lung adenocarcinoma with bone metastasis.
Yang, Mengdi; Sun, Yi; Sun, Jing; Wang, Zhiyu; Zhou, Yiyi; Yao, Guangyu; Gu, Yifeng; Zhang, Huizhen; Zhao, Hui
2018-04-01
Despite recent advances in targeted and immune-based therapies, the poor prognosis of lung adenocarcinoma (LUAD) with bone metastasis (BM) remains a challenge. First, two-dimensional gel electrophoresis (2-DE) was used to identify proteins that were differentially expressed in LUAD with BM, and then matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) was used to identify these proteins. Second, the Cancer Genome Atlas (TCGA) was used to identify mutations in these differentially expressed proteins and Kaplan-Meier plotter (KM Plotter) was used to generate survival curves for the analyzed cases. Immunohistochemistry (IHC) was used to check the expression of proteins in 28 patients with BM and nine patients with LUAD. Lastly, the results were analyzed with respect to clinical features and patient's follow-up. We identified a number of matched proteins from 2-DE. High expression of enolase 1 (ENO1) (HR = 1.67, logrank P = 1.9E-05), ribosomal protein lateral stalk subunit P2 (RPLP2) (HR = 1.77, logrank P = 2.9e-06), and NME/NM23 nucleoside diphosphate kinase 2 (NME1-NME2) (HR = 2.65, logrank P = 3.9E-15) was all significantly associated with poor survival (P < 0.05). Further, ENO1 was upregulated (P = 0.0004) and calcyphosine (CAPS1) was downregulated (P = 5.34E-07) in TCGA LUAD RNA-seq expression data. IHC revealed that prominent ENO1 staining (OR = 7.5, P = 0.034) and low levels of CAPS1 (OR = 0.01, P < 0.0001) staining were associated with BM incidence. Finally, we found that LUAD patients with high expression of ENO1 and RPLP2 had worse overall survival. This is the first instance where the genes ENO1, RPLP2, NME1-NME2 and CAPS1 were associated with disease severity and progression in LUAD patients with BM. Thus, with this study, we have identified potential biomarkers and therapeutic targets for this disease. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Yunxia, E-mail: wwwdluyx@sina.com; The Comprehensive Laboratory, Anhui Medical University, Hefei, Anhui 230032; Cheng, Jingjing
Fenofibrate (FF) is widely used to lower blood lipids in clinical practice, but whether its protective effect on endothelium-dependent vasodilatation (EDV) in thoracic aorta is related with endoplasmic reticulum (ER) stress remains unknown. In this study, female Sprauge Dawley rats were divided into standard chow diets (SCD), high-fat diets (HFD) and HFD plus FF treatment group (HFD + FF) randomly. The rats of latter two groups were given HFD feeding for 5 months, then HFD + FF rats were treated with FF (30 mg/kg, once daily) via gavage for another 2 months. The pathological and tensional changes, protein expression of eNOS, and ER stress relatedmore » genes in thoracic aorta were measured. Then impacts of palmitic acid (PA) and FF on EDV of thoracic aorta from normal female SD rats were observed. Ultimately the expression of ER stress related genes were assessed in primary mouse aortic endothelial cells (MAEC) treated by fenofibric acid (FA) and PA. We found that FF treatment improved serum lipid levels and pathological changes in thoracic aorta, accompanied with decreased ER stress and increased phosphorylation of eNOS. FF pretreatment also improved EDV impaired by different concentrations of PA treatment. The dose- and time-dependent inhibition of cell proliferation by PA were inverted by FA pretreatment. Phosphorylation of eNOS and expression of ER stress related genes were all inverted by FA pretreatment in PA-treated MAEC. Our findings show that fenofibrate recovers damaged EDV by chronic HFD feeding and acute stimulation of PA, this effect is related with decreased ER stress and increased phosphorylation of eNOS. - Highlights: • Fenofibrate treatment improved pathological changes in thoracic aorta by chronic high-fat-diet feeding. • Fenofibrate pretreatment improved endothelium-dependent vasodilation impaired by different concentrations of palmitic acid. • The inhibition of proliferation in endothelial cells by palmitic acid were inverted by fenofibric acid. • Phosphorylation of eNOS and expression of ER stress related genes were inverted by fenofibrate or fenofibric acid.« less
Theodorakis, Nicholas G; Wang, Yining N; Korshunov, Vyacheslav A; Maluccio, Mary A; Skill, Nicholas J
2015-04-14
Portal hypertension is a common complication of liver cirrhosis and significantly increases mortality and morbidity. Previous reports have suggested that the compound thalidomide attenuates portal hypertension (PHT). However, the mechanism for this action is not fully elucidated. One hypothesis is that thalidomide destabilizes tumor necrosis factor α (TNFα) mRNA and therefore diminishes TNFα induction of nitric oxide synthase (NOS) and the production of nitric oxide (NO). To examine this hypothesis, we utilized the murine partial portal vein ligation (PVL) PHT model in combination with endothelial or inducible NOS isoform gene knockout mice. Wild type, inducible nitric oxide synthase (iNOS)(-/-) and endothelial nitric oxide synthase (eNOS)(-/-) mice received either PVL or sham surgery and were given either thalidomide or vehicle. Serum nitrate (total nitrate, NOx) was measured daily for 7 d as a surrogate of NO synthesis. Serum TNFα level was quantified by enzyme-linked immunosorbent assay. TNFα mRNA was quantified in liver and aorta tissue by reverse transcription-polymerase chain reaction. PHT was determined by recording splenic pulp pressure (SPP) and abdominal aortic flow after 0-7 d. Response to thalidomide was determined by measurement of SPP and mean arterial pressure (MAP). SPP, abdominal aortic flow (Qao) and plasma NOx were increased in wild type and iNOS(-/-) PVL mice when compared to sham operated control mice. In contrast, SPP, Qao and plasma NOx were not increased in eNOS(-/-) PVL mice when compared to sham controls. Serum TNFα level in both sham and PVL mice was below the detection limit of the commercial ELISA used. Therefore, the effect of thalidomide on serum TNFα levels was undetermined in wild type, eNOS(-/-) or iNOS(-/-) mice. Thalidomide acutely increased plasma NOx in wild type and eNOS(-/-) mice but not iNOS(-/-) mice. Moreover, thalidomide temporarily (0-90 min) decreased mean arterial pressure, SPP and Qao in wild type, eNOS(-/-) and iNOS(-/-) PVL mice, after which time levels returned to the respective baseline. Thalidomide does not reduce portal pressure in the murine PVL model by modulation of NO biosynthesis. Rather, thalidomide reduces PHT by decreasing MAP by an undetermined mechanism.
Nunes, Rafael Amorim Belo; Barroso, Lúcia Pereira; Pereira, Alexandre da Costa; Krieger, José Eduardo; Mansur, Alfredo José
2014-01-01
Background Treadmill exercise test responses have been associated with cardiovascular prognosis in individuals without overt heart disease. Neurohumoral and nitric oxide responses may influence cardiovascular performance during exercise testing. Therefore, we evaluated associations between functional genetic polymorphisms of α-adrenergic receptors, endothelial nitric oxide synthase, bradykinin receptor B2 and treadmill exercise test responses in men and women without overt heart disease. Methods We enrolled 766 (417 women; 349 men) individuals without established heart disease from a check-up programme at the Heart Institute, University of São Paulo Medical School. Exercise capacity, chronotropic reserve, maximum heart-rate achieved, heart-rate recovery, exercise systolic blood pressure (SBP), exercise diastolic blood pressure (DBP) and SBP recovery were assessed during exercise testing. Genotypes for the α-adrenergic receptors ADRA1A Arg347Cys (rs1048101), ADRA2A 1780 C>T (rs553668), ADRA2B Del 301–303 (rs28365031), endothelial nitric synthase (eNOS) 786 T>C (rs2070744), eNOS Glu298Asp (rs1799983) and BK2R (rs5810761) polymorphisms were assessed by PCR and high-resolution melting analysis. Results Maximum SBP was associated with ADRA1A rs1048101 (p=0.008) and BK2R rs5810761 (p=0.008) polymorphisms in men and ADRA2A rs553668 (p=0.008) and ADRA2B rs28365031 (p=0.022) in women. Maximum DBP pressure was associated with ADRA2A rs553668 (p=0.002) and eNOS rs1799983 (p=0.015) polymorphisms in women. Exercise capacity was associated with eNOS rs2070744 polymorphisms in women (p=0.01) and with eNOS rs1799983 in men and women (p=0.038 and p=0.024). Conclusions The findings suggest that genetic variants of α-adrenergic receptors and bradykinin B2 receptor may be involved with blood pressure responses during exercise tests. Genetic variants of endothelial nitric oxide synthase may be involved with exercise capacity and blood pressure responses during exercise tests. These responses may be gender-related. PMID:25544888
Panda, Vandana; Shinde, Priyanka; Deora, Jyoti; Gupta, Pankaj
2017-10-01
The incorporation of certain alkalinizing vegetables, fruits, milk and its products in the diet has been known to alleviate hyperacidity. These foods help to restore the natural gastric balance and function, curb acid reflux, aid digestion, reduce the burning sensation due to hyperacidity and soothe the inflamed mucosa of the stomach. The present study evaluates and compares the antacid effect of broccoli, kale, radish, cucumber, lemon juice, cold milk and curd in an artificial stomach model. The pH of the test samples and their neutralizing effect on artificial gastric acid was determined and compared with that of water, the active control sodium bicarbonate and a marketed antacid preparation ENO. A modified model of Vatier's artificial stomach was used to determine the duration of consistent neutralization of artificial gastric acid by the test samples. The neutralizing capacity of the test samples was determined in vitro using the classical titration method of Fordtran. All test samples except lemon showed significantly higher (p<0.05 for cucumber and p<0.001 for the rest) acid neutralizing effect than water. All test samples also exhibited a significantly (p<0.001) higher duration of consistent neutralization and higher antacid capacity than water. Highest antacid activity was demonstrated by cold milk and broccoli which was comparable with ENO and sodium bicarbonate. It may be concluded that the natural food ingredients used in this study exhibited significant antacid activity, justifying their use as essential dietary components to counter hyperacidity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Stanley, Christopher P.; Hind, William H.; Tufarelli, Cristina; O'Sullivan, Saoirse E.
2015-01-01
Aims The protective effects of cannabidiol (CBD) have been widely shown in preclinical models and have translated into medicines for the treatment of multiple sclerosis and epilepsy. However, the direct vascular effects of CBD in humans are unknown. Methods and results Using wire myography, the vascular effects of CBD were assessed in human mesenteric arteries, and the mechanisms of action probed pharmacologically. CBD-induced intracellular signalling was characterized using human aortic endothelial cells (HAECs). CBD caused acute, non-recoverable vasorelaxation of human mesenteric arteries with an Rmax of ∼40%. This was inhibited by cannabinoid receptor 1 (CB1) receptor antagonists, desensitization of transient receptor potential channels using capsaicin, removal of the endothelium, and inhibition of potassium efflux. There was no role for cannabinoid receptor-2 (CB2) receptor, peroxisome proliferator activated receptor (PPAR)γ, the novel endothelial cannabinoid receptor (CBe), or cyclooxygenase. CBD-induced vasorelaxation was blunted in males, and in patients with type 2 diabetes or hypercholesterolemia. In HAECs, CBD significantly reduced phosphorylated JNK, NFκB, p70s6 K and STAT5, and significantly increased phosphorylated CREB, ERK1/2, and Akt levels. CBD also increased phosphorylated eNOS (ser1177), which was correlated with increased levels of ERK1/2 and Akt levels. CB1 receptor antagonism prevented the increase in eNOS phosphorylation. Conclusion This study shows, for the first time, that CBD causes vasorelaxation of human mesenteric arteries via activation of CB1 and TRP channels, and is endothelium- and nitric oxide-dependent. PMID:26092099
Liu, Hao; Mao, Ping; Wang, Jia; Wang, Tuo; Xie, Chang-Hou
2016-03-01
Angiotensin II type 1 receptor (AT1-R) blockers protect against brain ischemia by mechanisms dependent on and independent of arterial blood pressure. However, the effects of AT1-R blockers on brain endothelial cell injury and detailed mechanisms remain unclear. The goal of this study is to investigate whether azilsartan, an AT1-R blocker, could attenuate oxidative injury in endothelial cells via regulating mitochondrial function and inflammatory responses. We found that treatment with azilsartan suppressed tert-butyl hydroperoxide (t-BHP)-induced oxidative damage in murine brain endothelial cells (mBECs) by increasing cell viability, decreasing lactate dehydrogenase (LDH) release and inhibiting cell apoptosis. Azilsartan significantly inhibited reactive oxygen species (ROS) generation and lipid peroxidation, but had no effect on antioxidant system. We also detected preserved mitochondrial function after azilsartan treatment, as evidenced by increased mitochondrial membrane potential (MMP), reduced cytochrome c release, preserved ATP synthesis and inhibited mitochondrial swelling. In addition, azilsartan differently regulated expression of inflammatory cytokines and increased the activation of endothelial nitric oxide synthase (eNOS). Pretreatment with eNOS inhibitor L-NIO partially prevented the azilsartan-induced regulation of cytokines and protection. Furthermore, azilsartan-induced protection in our in vitro model was shown to be associated with protein stability of peroxisome proliferator-activated receptor-γ (PPAR-γ). Overall, our data suggest that the AT1-R blocker azilsartan may have therapeutic values in treating endothelial dysfunction associated neurological disorders through anti-oxidative and anti-inflammatory properties. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dolgikh, O V; Zaitseva, N V; Nosov, A E; Krivtsov, A V; Dianova, D G; Kazakova, O A; Otavina, E A; Alikina, I N
2018-04-01
We studied the role of the carrier status for polymorphic loci of genes encoding estrogen receptors (ESR1), endothelial NO synthase (eNOS), and apolipoprotein E (APOE4) and products of their expression nitrogen oxide (NO) and apolipoprotein (ApoE) in the development of arterial hypertension in men. Conventionally healthy volunteers and 149 men with clinical manifestations of stage I-II arterial hypertension were examined. In men with arterial hypertension, the frequency of minor allele A of ESR1 gene was higher (27.5 vs. 9.5% in the reference group; χ 2 =4.43, p=0.04). The level of NO in the peripheral blood was also higher in the main group (χ 2 =3.93, p=0.047). The increase in NO concentration did not depend on the presence of polymorphic genotypes (GG and GT) of eNOS gene, but the decrease in ApoE level in blood serum was associated with TC genotype of APOE4 gene (p=0.04). Our results suggest that minor allele A of ESR1 gene is associated with the development of arterial hypertension in men. Reduced content of ApoE in blood serum of men with arterial hypertension was associated with APOE4 gene polymorphism. However, increased level of NO did not depend on polymorphic genotypes GG and GT of eNOS gene. These polymorphisms are of specific interest as additional markers of genetic predisposition to the development of arterial hypertension in middle-age men.
eNOS gene T786C, G894T and 4a4b polymorphisms and male infertility susceptibility: a meta-analysis.
Chang, J; Pan, F; Tang, Q; Wu, W; Chen, M; Lu, C; Ding, H; Hu, L; Chen, D; Xia, Y; Wang, X
2017-05-01
The association between polymorphism of eNOS and male infertility in several studies was controversial. To explore a more precise estimation of the association, a meta-analysis of eight case-control studies, including 1,968 cases and 1,539 controls, were selected. The meta-analysis was conducted by calculating the pooled odds ratio (OR) with a 95% confidence interval (95% CI). Overall, the association between T786C and risk of male infertility was obvious (TC vs. TT: OR, 1.20; 95% CI, 1.01-1.42; CC vs. TT: OR, 3.37; 95% CI, 1.65-6.87; TC/CC vs. TT: OR, 1.47; 95% CI, 1.25-1.73; CC vs. OR, 3.18; 95% CI, 1.54-6.56; TC vs. TT: OR, 1.65; 95% CI, 1.27-2.03). However, no overall association was observed between the other two polymorphisms of eNOS (G894T and 4a4b) and male infertility. Stratified analysis showed that significantly strong association between T786C polymorphism and semen quality was present in all three types of male infertility (azoospermia, oligozoospermia and asthenozoospermia). In the subgroup analysis based on ethnicity, both T786C and 4a4b could influence the risk of male infertility in Asian and Caucasian. Further studies of polymorphisms of eNOS with their biological functions are needed to understand the role in the development of male infertility. © 2016 Blackwell Verlag GmbH.
Effect of puberty on coronary arteries from female pigs.
Chatrath, Ritu; Ronningen, Karen L; LaBreche, Peter; Severson, Sandra R; Jayachandran, Muthuvel; Bracamonte, Margarita P; Miller, Virginia M
2003-10-01
Vascular function changes following loss of ovarian hormones in women at menopause and in experimental animals following surgical ovariectomy. Little is known about changes in vascular function during hormonal transition from sexual immaturity (juvenile) to sexual maturity. Therefore, experiments were designed to determine effects of natural puberty on vascular function in female pigs. Tissue was studied from eight juvenile (2-3 mo) and eight adult (5-6 mo) female pigs. Plasma nitric oxide (NO) was measured, and mRNA for endothelium-derived NO synthase (eNOS) and eNOS protein were determined in aortic endothelial cells. Rings of coronary arteries were suspended for measurement of isometric force in organ chambers. Serum 17beta-estradiol levels were comparable in the two groups, whereas the arithmetic mean of progesterone levels was about two-thirds lower in adults compared with juvenile pigs. Plasma NO was significantly higher in juveniles compared with adults, but mRNA and protein for eNOS were comparable. In coronary arteries, an alpha2-adrenergic agonist caused greater endothelium-dependent relaxations in rings from juvenile compared with adult pigs. Relaxations to bradykinin were similar in arteries from both groups, but inhibition of NO reduced relaxations only in arteries from juvenile pigs. Relaxations from NO were greater in arteries from adult compared with juvenile female pigs. In conclusion, coronary arterial endothelial and smooth muscle responses are selectively modulated at puberty in female pigs. At maturity, plasma NO is reduced and sensitivity of the smooth muscle to exogenous NO is increased. Posttranscriptional regulation of eNOS protein may explain differences in NO bioavailability in juvenile pigs.
Trujillo, Joyce; Ramírez, Victoria; Pérez, Jazmín; Torre-Villalvazo, Ivan; Torres, Nimbe; Tovar, Armando R; Muñoz, Rosa M; Uribe, Norma; Gamba, Gerardo; Bobadilla, Norma A
2005-01-01
The obese Zucker rat is a valuable model for studying kidney disease associated with obesity and diabetes. Previous studies have shown that substitution of animal protein with soy ameliorates the progression of renal disease. To explore the participation of nitric oxide (NO) and caveolin-1 in this protective effect, we evaluated proteinuria, creatinine clearance, renal structural lesions, nitrites and nitrates urinary excretion (UNO(2)(-)/NO(3)V), and mRNA and protein levels of neuronal NO synthase (nNOS), endothelial NOS (eNOS), and caveolin-1 in lean and fatty Zucker rats fed with 20% casein or soy protein diet. After 160 days of feeding with casein, fatty Zucker rats developed renal insufficiency, progressive proteinuria, and renal structural lesions; these alterations were associated with an important fall of UNO(2)(-)/NO(3)V, changes in nNOS and eNOS mRNA levels, together with increased amount of eNOS and caveolin-1 present in plasma membrane proteins of the kidney. In fatty Zucker rats fed with soy, we observed that soy diet improved renal function, UNO(2)(-)/NO(3)V, and proteinuria and reduced glomerulosclerosis, tubular dilation, intersticial fibrosis, and extracapilar proliferation. Renal protection was associated with reduction of caveolin-1 and eNOS in renal plasma membrane proteins. In conclusion, our results suggest that renal protective effect of soy protein appears to be mediated by improvement of NO generation and pointed out to caveolin-1 overexpression as a potential pathophysiological mechanism in renal disease.
Numerical Study of Boundary Layer Interaction with Shocks: Method Improvement and Test Computation
NASA Technical Reports Server (NTRS)
Adams, N. A.
1995-01-01
The objective is the development of a high-order and high-resolution method for the direct numerical simulation of shock turbulent-boundary-layer interaction. Details concerning the spatial discretization of the convective terms can be found in Adams and Shariff (1995). The computer code based on this method as introduced in Adams (1994) was formulated in Cartesian coordinates and thus has been limited to simple rectangular domains. For more general two-dimensional geometries, as a compression corner, an extension to generalized coordinates is necessary. To keep the requirements or limitations for grid generation low, the extended formulation should allow for non-orthogonal grids. Still, for simplicity and cost efficiency, periodicity can be assumed in one cross-flow direction. For easy vectorization, the compact-ENO coupling algorithm as used in Adams (1994) treated whole planes normal to the derivative direction with the ENO scheme whenever at least one point of this plane satisfied the detection criterion. This is apparently too restrictive for more general geometries and more complex shock patterns. Here we introduce a localized compact-ENO coupling algorithm, which is efficient as long as the overall number of grid points treated by the ENO scheme is small compared to the total number of grid points. Validation and test computations with the final code are performed to assess the efficiency and suitability of the computer code for the problems of interest. We define a set of parameters where a direct numerical simulation of a turbulent boundary layer along a compression corner with reasonably fine resolution is affordable.
Zaman, Jalal; Jeddi, Sajad; Daneshpour, Maryam Sadat; Zarkesh, Maryam; Daneshian, Zahra; Ghasemi, Asghar
2015-10-10
Ischemic postconditioning (IPost) is a strategy to provide protection against ischemia-reperfusion (IR) injury. The cardioprotective effects of IPost in cases of ischemic heart disease along with co-morbidities like hyperthyroidism remain unknown. The aim of this study was to investigate the effects of IPost on expression of eNOS, iNOS, Bax, and Bcl-2 genes in hyperthyroid male rats, subjected to myocardial IR. Hyperthyroidism was induced by adding thyroxine to drinking water for a period of 21 days. Using the Langendorff device hearts were perfused, then subjected to a 30-minute global ischemia which was followed by 120 min of reperfusion; subsequently IPost was induced immediately after ischemia. Results indicated that following IR, expression of eNOS and Bcl-2 decreased, whereas expression of iNOS and Bax increased in both the control and hyperthyroid groups. In hyperthyroid animals, IPost significantly increased expression of eNOS by 3.19 fold and Bcl-2 by 3.66 fold; it also decreased expression of Bax by 51%, and reduced IR-induced DNA laddering pattern and infarct size (45.7 ± 1.82% vs. 59.3 ± 1.83%, p<0.05) in the presence of aminoguanidine (AG), a selective iNOS inhibitor. In conclusion, IPost per se could not provide cardioprotection against myocardial ischemia in hyperthyroid rats, a loss of which however was restored by the combination of IPost and iNOS inhibition that acts by a decrease in Bax and an increase in both eNOS and Bcl-2 expression. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bharati, Jaya; Dangi, S. S.; Bag, S.; Maurya, V. P.; Singh, G.; Kumar, P.; Sarkar, M.
2017-08-01
Six male Tharparkar cattle of 2-3 years old were selected for the study. After 15-day acclimation at thermoneutral zone (TNZ) in psychrometric chamber, animals were exposed at 42 °C for 6 h up to 23 days followed by 12 days of recovery period. Blood samples were collected during control period at TNZ (days 1, 5, and 12), after heat stress exposure (day 1, immediate heat stress acclimation (IHSA); days 2 to 10, short-term heat stress acclimation (STHSA); days 15 to 23, long-term heat stress acclimation (LTHSA); days 7 and 12, recovery period), and peripheral blood mononuclear cells (PBMCs) were isolated for RNA and protein extraction. The messenger RNA (mRNA) and protein expression in PBMCs were determined by qPCR and western blot, respectively. Samples at TNZ were taken as control. The mRNA expression of HSP90, iNOS, and eNOS was significantly upregulated ( P < 0.05) on day 1 (ISHA) as compared to control, remained consistent during STHSA, again increased during LTHSA, and finally reduced to basal level during recovery period. The protein expression of HSP90, iNOS, and eNOS were akin to their transcript pattern. PBMC culture study was conducted to study transcriptional abundance of HSP90, iNOS, and eNOS at different temperature-time combinations. The present findings indicate that HSP90, iNOS, and eNOS could possibly play an important role in mitigating thermal insults and confer thermotolerance during long-term heat stress exposure in Tharparkar cattle.
Nitric oxide system and diabetic nephropathy
2014-01-01
About 30% of patients with type 2 diabetes mellitus develop clinically overt nephropathy. Hyperglycemia is necessary, but not sufficient, to cause the renal damage that leads to kidney failure. Diabetic nephropathy (DN) is a multifactorial disorder that results from interaction between environmental and genetic factors. In the present article we will review the role of the nitric oxide synthase (NOS) in the pathogenesis of DN. Nitric oxide (NO) is a short-lived gaseous lipophilic molecule produced in almost all tissues, and it has three distinct genes that encode three NOS isoforms: neuronal (nNOS), inducible (iNOS) and endothelial (eNOS). The correct function of the endothelium depends on NO, participating in hemostasis control, vascular tone regulation, proliferation of vascular smooth muscle cells and blood pressure homeostasis, among other features. In the kidney, NO plays many different roles, including control of renal and glomerular hemodynamics. The net effect of NO in the kidney is to promote natriuresis and diuresis, along with renal adaptation to dietary salt intake. The eNOS gene has been considered a potential candidate gene for DN susceptibility. Three polymorphisms have been extensively researched: G894T missense mutation (rs1799983), a 27-bp repeat in intron 4, and the T786C single nucleotide polymorphism (SNP) in the promoter (rs2070744). However, the potential link between eNOS gene variants and the induction and progression of DN yielded contradictory results in the literature. In conclusion, NOS seems to be involve in the development and progression of DN. Despite the discrepant results of many studies, the eNOS gene is also a good candidate gene for DN. PMID:24520999
Sönmez, Mehmet Fatih; Tascioglu, Simge
2016-08-01
This study aims to evaluate the protective effect of grape seed proanthocyanidin extract (GSPE) on cadmium (Cd)-induced testicular apoptosis, endothelial nitric oxide synthases (eNOS) expression, and toxicity in rats. A total of 24 male Wistar rats were divided into four groups, namely, control, Cd (2.5 mg/kg), Cd + GSPE (100 mg/kg/day), and GSPE. Spermatogenesis and mean seminiferous tubule diameter were significantly decreased in the Cd groups. Furthermore, the GSPE-treated animals showed an improved histological appearance in the Cd group. The immunoreactivity of eNOS and the number of apoptotic cells were increased in Cd group. Our data indicate a significant reduction of terminal deoxynucleotide transferase-mediated 2'-deoxyuridine 5'-triphosphate nick end-labeling staining and a decrease in the expression of eNOS in the testes tissue of the Cd group treated with GSPE therapy. Therefore, our results suggest that GSPE acts as a potent protective agent against Cd-induced testicular toxicity in rats. © The Author(s) 2015.
A novel role of thrombopoietin as a physiological modulator of coronary flow.
Ramella, Roberta; Gallo, Maria Pia; Spatola, Tiziana; Lupia, Enrico; Alloatti, Giuseppe
2011-02-25
Thrombopoietin (TPO) is known for its ability to stimulate platelet production. However, little is currently known whether TPO plays a physiological function in the heart. The potential vasodilatory role of TPO was tested on the isolated rat heart. The expression of TPO receptor (c-mpl) and the TPO-dependent eNOS phosphorylation (P(Ser1179)) were studied on Cardiac-derived normal Human Micro Vascular Endothelial Cells (HMVEC-C) by Western blot analysis. While TPO (10-200 pg/mL) did not modify coronary flow (CF) under basal conditions, it reduced the coronary constriction caused by endothelin-1 (ET-1; 10nM) in a dose-dependent manner. This effect was blocked by both Wortmannin (100 nM) and L-NAME (100 nM); on HMVEC-C, TPO induced eNOS phosphorylation through a Wortmannin sensitive mechanism. Taken together, our data suggest a potential role of TPO as a physiological regulator of CF. By acting on specific receptors present on endothelial cells, TPO may induce PI3K/Akt-dependent eNOS phosphorylation and NO release. Copyright © 2011 Elsevier B.V. All rights reserved.
Chu, Wern Cui; Aziz, Ahmad Fazli Abdul; Nordin, Abdul Jalil; Cheah, Yoke Kqueen
2016-09-01
Genetic variants of cholesteryl ester transfer protein (CETP) and endothelial nitric oxide synthase (eNOS) influence high-density lipoprotein cholesterol (HDL-C) metabolism and nitric oxide (NO) synthesis, respectively, and might increase the risk of coronary artery disease (CAD). This study is to investigate the relationship between genetic polymorphisms and the risk of CAD and to evaluate their potential interactions. A total of 237 patients with CAD and 101 controls were genotyped. The association of the polymorphism with the risk of CAD varied among the ethnic groups. Moreover, the concomitant presence of both CETP B1 and eNOS 4a alleles significantly increased the risk of CAD in the Malay group (OR = 33.8, P < .001) and the Indian group (OR = 10.9, P = .031) but not in the Chinese group. This study has identified a novel ethnic-specific gene-gene interaction and suggested that the combination of CETP B1 allele and eNOS 4a allele significantly increases the risk of CAD in Malays and Indians. © The Author(s) 2015.
Herrera, Emilio A; Cifuentes-Zúñiga, Francisca; Figueroa, Esteban; Villanueva, Cristian; Hernández, Cherie; Alegría, René; Arroyo-Jousse, Viviana; Peñaloza, Estefania; Farías, Marcelo; Uauy, Ricardo; Casanello, Paola; Krause, Bernardo J
2017-02-15
Intrauterine growth restriction (IUGR) is associated with vascular dysfunction, oxidative stress and signs of endothelial epigenetic programming of the umbilical vessels. There is no evidence that this epigenetic programming is occurring on systemic fetal arteries. In IUGR guinea pigs we studied the functional and epigenetic programming of endothelial nitric oxide synthase (eNOS) (Nos3 gene) in umbilical and systemic fetal arteries, addressing the role of oxidative stress in this process by maternal treatment with N-acetylcysteine (NAC) during the second half of gestation. The present study suggests that IUGR endothelial cells have common molecular markers of programming in umbilical and systemic arteries. Notably, maternal treatment with NAC restores fetal growth by increasing placental efficiency and reverting the functional and epigenetic programming of eNOS in arterial endothelium in IUGR guinea pigs. In humans, intrauterine growth restriction (IUGR) is associated with vascular dysfunction, oxidative stress and signs of endothelial programming in umbilical vessels. We aimed to determine the effects of maternal antioxidant treatment with N-acetylcysteine (NAC) on fetal endothelial function and endothelial nitric oxide synthase (eNOS) programming in IUGR guinea pigs. IUGR was induced by implanting ameroid constrictors on uterine arteries of pregnant guinea pigs at mid gestation, half of the sows receiving NAC in the drinking water (from day 34 until term). Fetal biometry and placental vascular resistance were followed by ultrasound throughout gestation. At term, umbilical arteries and fetal aortae were isolated to assess endothelial function by wire-myography. Primary cultures of endothelial cells (ECs) from fetal aorta, femoral and umbilical arteries were used to determine eNOS mRNA levels by quantitative PCR and analyse DNA methylation in the Nos3 promoter by pyrosequencing. Doppler ultrasound measurements showed that NAC reduced placental vascular resistance in IUGR (P < 0.05) and recovered fetal weight (P < 0.05), increasing fetal-to-placental ratio at term (∼40%) (P < 0.001). In IUGR, NAC treatment restored eNOS-dependent relaxation in aorta and umbilical arteries (P < 0.05), normalizing eNOS mRNA levels in EC fetal and umbilical arteries (P < 0.05). IUGR-derived ECs had a decreased DNA methylation (∼30%) at CpG -170 (from the transcription start site) and this epigenetic signature was absent in NAC-treated fetuses (P < 0.001). These data show that IUGR-ECs have common molecular markers of eNOS programming in umbilical and systemic arteries and this effect is prevented by maternal treatment with antioxidants. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Charoensin, Suphachai; Eroglu, Emrah; Opelt, Marissa; Bischof, Helmut; Madreiter-Sokolowski, Corina T; Kirsch, Andrijana; Depaoli, Maria R; Frank, Saša; Schrammel, Astrid; Mayer, Bernd; Waldeck-Weiermair, Markus; Graier, Wolfgang F; Malli, Roland
2017-01-01
Mitochondrial Ca 2+ uptake regulates diverse endothelial cell functions and has also been related to nitric oxide (NO • ) production. However, it is not entirely clear if the organelles support or counteract NO • biosynthesis by taking up Ca 2+ . The objective of this study was to verify whether or not mitochondrial Ca 2+ uptake influences Ca 2+ -triggered NO • generation by endothelial NO • synthase (eNOS) in an immortalized endothelial cell line (EA.hy926), respective primary human umbilical vein endothelial cells (HUVECs) and eNOS-RFP (red fluorescent protein) expressing human embryonic kidney (HEK293) cells. We used novel genetically encoded fluorescent NO • probes, the geNOps, and Ca 2+ sensors to monitor single cell NO • and Ca 2+ dynamics upon cell treatment with ATP, an inositol 1,4,5-trisphosphate (IP 3 )-generating agonist. Mitochondrial Ca 2+ uptake was specifically manipulated by siRNA-mediated knock-down of recently identified key components of the mitochondrial Ca 2+ uniporter machinery. In endothelial cells and the eNOS-RFP expressing HEK293 cells we show that reduced mitochondrial Ca 2+ uptake upon the knock-down of the mitochondrial calcium uniporter (MCU) protein and the essential MCU regulator (EMRE) yield considerable attenuation of the Ca 2+ -triggered NO • increase independently of global cytosolic Ca 2+ signals. The knock-down of mitochondrial calcium uptake 1 (MICU1), a gatekeeper of the MCU, increased both mitochondrial Ca 2+ sequestration and Ca 2+ -induced NO • signals. The positive correlation between mitochondrial Ca 2+ elevation and NO • production was independent of eNOS phosphorylation at serine 1177 . Our findings emphasize that manipulating mitochondrial Ca 2+ uptake may represent a novel strategy to control eNOS-mediated NO • production. Copyright © 2016. Published by Elsevier Inc.
GPER mediates cardiotropic effects in spontaneously hypertensive rat hearts.
De Francesco, Ernestina Marianna; Angelone, Tommaso; Pasqua, Teresa; Pupo, Marco; Cerra, Maria Carmela; Maggiolini, Marcello
2013-01-01
Estrogens promote beneficial effects in the cardiovascular system mainly through the estrogen receptor (ER)α and ERβ, which act as ligand-gated transcription factors. Recently, the G protein-coupled estrogen receptor (GPER) has been implicated in the estrogenic signaling in diverse tissues, including the cardiovascular system. In this study, we demonstrate that left ventricles of male Spontaneously Hypertensive Rats (SHR) express higher levels of GPER compared to normotensive Wistar Kyoto (WKY) rats. In addition, we show that the selective GPER agonist G-1 induces negative inotropic and lusitropic effects to a higher extent in isolated and Langendorff perfused hearts of male SHR compared to WKY rats. These cardiotropic effects elicited by G-1 involved the GPER/eNOS transduction signaling, as determined by using the GPER antagonist G15 and the eNOS inhibitor L-NIO. Similarly, the G-1 induced activation of ERK1/2, AKT, GSK3β, c-Jun and eNOS was abrogated by G15, while L-NIO prevented only the eNOS phosphorylation. In hypoxic Langendorff perfused WKY rat heart preparations, we also found an increased expression of GPER along with that of the hypoxic mediator HIF-1α and the fibrotic marker CTGF. Interestingly, G15 and L-NIO prevented the ability of G-1 to down-regulate the expression of both HIF-1α and CTGF, which were found expressed to a higher extent in SHR compared to WKY rat hearts. Collectively, the present study provides novel data into the potential role played by GPER in hypertensive disease on the basis of its involvement in myocardial inotropism and lusitropism as well as the expression of the apoptotic HIF-1α and fibrotic CTGF factors. Hence, GPER may be considered as a useful target in the treatment of some cardiac dysfunctions associated with stressful conditions like the essential hypertension.
Sex differences in nitrosative stress during renal ischemia.
Rodríguez, Francisca; Nieto-Cerón, Susana; Fenoy, Francisco J; López, Bernardo; Hernández, Isabel; Martinez, Raquel Rodado; Soriano, Ma José González; Salom, Miguel G
2010-11-01
Females suffer a less severe ischemic acute renal failure than males, apparently because of higher nitric oxide (NO) bioavailability and/or lower levels of oxidative stress. Because the renal ischemic injury is associated with outer medullary (OM) endothelial dysfunction, the present study evaluated sex differences in OM changes of NO and peroxynitrite levels (by differential pulse voltammetry and amperometry, respectively) during 45 min of ischemia and 60 min of reperfusion in anesthetized Sprague-Dawley rats. Endothelial nitric oxide synthase (eNOS) and neuronal nitric oxide synthase (nNOS) protein expression and their phosphorylated forms [peNOS(Ser1177) and pnNOS(Ser1417)], 3-nitrotyrosine, reduced sulfhydryl groups (-SH), and glomerular filtration rate (GFR) were also determined. No sex differences were observed in monomeric eNOS and nNOS expression, NO, or 3-nitrotyrosine levels in nonischemic kidneys, but renal -SH content was higher in females. Ischemia increased dimeric/monomeric eNOS and nNOS ratio more in females, but the dimeric phosphorylated peNOS(Ser1177) and pnNOS(Ser1417) forms rose similarly in both sexes, indicating no sex differences in nitric oxide synthase activation. However, NO levels increased more in females than in males (6,406.0 ± 742.5 and 4,058.2 ± 272.35 nmol/l respectively, P < 0.05), together with a lower increase in peroxynitrite current (5.5 ± 0.7 vs. 12.7 ± 1.5 nA, P < 0.05) and 3-nitrotyrosine concentration, (28.7 ± 3.7 vs. 48.7 ± 3.7 nmol/mg protein, P < 0.05) in females than in males and a better preserved GFR after ischemia in females than in males (689.7 ± 135.0 and 221.4 ± 52.5 μl·min(-1)·g kidney wt(-1), P < 0.01). Pretreatment with the antioxidants N-acetyl-L-cysteine or ebselen abolished sex differences in peroxynitrite, nitrotyrosine, and GFR, suggesting that a greater oxidative and nitrosative stress worsens renal damage in males.