Sample records for persistent monitoring platforms

  1. Beta Testing of Persistent Passive Acoustic Monitors

    DTIC Science & Technology

    2012-10-01

    three platforms provide the capability to work over a wide range of spatial and temporal scales. Hardware and software integration of the DMONs in...closely with Richard M. Ead (Sensors and Sonar Systems Department, Naval Undersea Warfare Center, NUWC Code 1535), Ted Ioannides (PS 4013) and Dave

  2. Machine Learning Technologies Translates Vigilant Surveillance Satellite Big Data into Predictive Alerts for Environmental Stressors

    NASA Astrophysics Data System (ADS)

    Johnson, S. P.; Rohrer, M. E.

    2017-12-01

    The application of scientific research pertaining to satellite imaging and data processing has facilitated the development of dynamic methodologies and tools that utilize nanosatellites and analytical platforms to address the increasing scope, scale, and intensity of emerging environmental threats to national security. While the use of remotely sensed data to monitor the environment at local and global scales is not a novel proposition, the application of advances in nanosatellites and analytical platforms are capable of overcoming the data availability and accessibility barriers that have historically impeded the timely detection, identification, and monitoring of these stressors. Commercial and university-based applications of these technologies were used to identify and evaluate their capacity as security-motivated environmental monitoring tools. Presently, nanosatellites can provide consumers with 1-meter resolution imaging, frequent revisits, and customizable tasking, allowing users to define an appropriate temporal scale for high resolution data collection that meets their operational needs. Analytical platforms are capable of ingesting increasingly large and diverse volumes of data, delivering complex analyses in the form of interpretation-ready data products and solutions. The synchronous advancement of these technologies creates the capability of analytical platforms to deliver interpretable products from persistently collected high-resolution data that meet varying temporal and geographic scale requirements. In terms of emerging environmental threats, these advances translate into customizable and flexible tools that can respond to and accommodate the evolving nature of environmental stressors. This presentation will demonstrate the capability of nanosatellites and analytical platforms to provide timely, relevant, and actionable information that enables environmental analysts and stakeholders to make informed decisions regarding the prevention, intervention, and prediction of emerging environmental threats.

  3. [Monitoring of environmental pollution in Armenia and certain issues on reproductive health and cytogenetic status of organism].

    PubMed

    Tadevosian, N S; Muradian, S A; Tadevosian, A E; Khachatrian, B G; Dzhandzhapanian, A N; Parsadanian, G G; Pogosian, S B; Gevorkian, N B; Guloian, A A

    2012-01-01

    Investigations aimed at the study on the state of environment from the point of pollution by organochlorine pesticides and their metabolites (HCH, DDT, DDE and DDD), as well as on possible unfavorable impact due to carriage of mentioned persistent organic pollutants (POPs) towards reproductive health and cytogenetic status of organism were done. In parallel, monitoring of possible mutagenic components of the environment was also conducted. As to obtained data, residues of organochlorine pesticides are continually determined with high frequency both in environmental media, agricultural foodstuffs and biomedia of rural population of observed region (Aragatsotn marz, Armenia). No changes in mutagenic background were registered. The represented results of the study make fragment of complex social-hygienic, monitoring investigations on environmental quality that would further serve as a platform for working out the recommendations on reduction of environmental pollution and improvement of health protection issues in Armenia.

  4. Self-Monitoring Artificial Red Cells with Sufficient Oxygen Supply for Enhanced Photodynamic Therapy

    NASA Astrophysics Data System (ADS)

    Luo, Zhenyu; Zheng, Mingbin; Zhao, Pengfei; Chen, Ze; Siu, Fungming; Gong, Ping; Gao, Guanhui; Sheng, Zonghai; Zheng, Cuifang; Ma, Yifan; Cai, Lintao

    2016-03-01

    Photodynamic therapy has been increasingly applied in clinical cancer treatments. However, native hypoxic tumoural microenvironment and lacking oxygen supply are the major barriers hindering photodynamic reactions. To solve this problem, we have developed biomimetic artificial red cells by loading complexes of oxygen-carrier (hemoglobin) and photosensitizer (indocyanine green) for boosted photodynamic strategy. Such nanosystem provides a coupling structure with stable self-oxygen supply and acting as an ideal fluorescent/photoacoustic imaging probe, dynamically monitoring the nanoparticle biodistribution and the treatment of PDT. Upon exposure to near-infrared laser, the remote-triggered photosensitizer generates massive cytotoxic reactive oxygen species (ROS) with sufficient oxygen supply. Importantly, hemoglobin is simultaneously oxidized into the more active and resident ferryl-hemoglobin leading to persistent cytotoxicity. ROS and ferryl-hemoglobin synergistically trigger the oxidative damage of xenograft tumour resulting in complete suppression. The artificial red cells with self-monitoring and boosted photodynamic efficacy could serve as a versatile theranostic platform.

  5. Supervising simulations with the Prodiguer Messaging Platform

    NASA Astrophysics Data System (ADS)

    Greenslade, Mark; Carenton, Nicolas; Denvil, Sebastien

    2015-04-01

    At any one moment in time, researchers affiliated with the Institut Pierre Simon Laplace (IPSL) climate modeling group, are running hundreds of global climate simulations. These simulations execute upon a heterogeneous set of High Performance Computing (HPC) environments spread throughout France. The IPSL's simulation execution runtime is called libIGCM (library for IPSL Global Climate Modeling group). libIGCM has recently been enhanced so as to support realtime operational use cases. Such use cases include simulation monitoring, data publication, environment metrics collection, automated simulation control … etc. At the core of this enhancement is the Prodiguer messaging platform. libIGCM now emits information, in the form of messages, for remote processing at IPSL servers in Paris. The remote message processing takes several forms, for example: 1. Persisting message content to database(s); 2. Notifying an operator of changes in a simulation's execution status; 3. Launching rollback jobs upon simulation failure; 4. Dynamically updating controlled vocabularies; 5. Notifying downstream applications such as the Prodiguer web portal; We will describe how the messaging platform has been implemented from a technical perspective and demonstrate the Prodiguer web portal receiving realtime notifications.

  6. Technology review: prototyping platforms for monitoring ambient conditions.

    PubMed

    Afolaranmi, Samuel Olaiya; Ramis Ferrer, Borja; Martinez Lastra, Jose Luis

    2018-05-08

    The monitoring of ambient conditions in indoor spaces is very essential owing to the amount of time spent indoors. Specifically, the monitoring of air quality is significant because contaminated air affects the health, comfort and productivity of occupants. This research work presents a technology review of prototyping platforms for monitoring ambient conditions in indoor spaces. It involves the research on sensors (for CO 2 , air quality and ambient conditions), IoT platforms, and novel and commercial prototyping platforms. The ultimate objective of this review is to enable the easy identification, selection and utilisation of the technologies best suited for monitoring ambient conditions in indoor spaces. Following the review, it is recommended to use metal oxide sensors, optical sensors and electrochemical sensors for IAQ monitoring (including NDIR sensors for CO 2 monitoring), Raspberry Pi for data processing, ZigBee and Wi-Fi for data communication, and ThingSpeak IoT platform for data storage, analysis and visualisation.

  7. Digital PCR as a tool to measure HIV persistence.

    PubMed

    Rutsaert, Sofie; Bosman, Kobus; Trypsteen, Wim; Nijhuis, Monique; Vandekerckhove, Linos

    2018-01-30

    Although antiretroviral therapy is able to suppress HIV replication in infected patients, the virus persists and rebounds when treatment is stopped. In order to find a cure that can eradicate the latent reservoir, one must be able to quantify the persisting virus. Traditionally, HIV persistence studies have used real-time PCR (qPCR) to measure the viral reservoir represented by HIV DNA and RNA. Most recently, digital PCR is gaining popularity as a novel approach to nucleic acid quantification as it allows for absolute target quantification. Various commercial digital PCR platforms are nowadays available that implement the principle of digital PCR, of which Bio-Rad's QX200 ddPCR is currently the most used platform in HIV research. Quantification of HIV by digital PCR is proving to be a valuable improvement over qPCR as it is argued to have a higher robustness to mismatches between the primers-probe set and heterogeneous HIV, and forfeits the need for a standard curve, both of which are known to complicate reliable quantification. However, currently available digital PCR platforms occasionally struggle with unexplained false-positive partitions, and reliable segregation between positive and negative droplets remains disputed. Future developments and advancements of the digital PCR technology are promising to aid in the accurate quantification and characterization of the persistent HIV reservoir.

  8. Platforms for Persistent communications Surveillance and Reconnaissance - II

    DTIC Science & Technology

    2009-11-01

    Lifter Airship with a comprehensive suite of sensors as indicated by the green line at the top of the chart with the red arrow. It had a value more than...package, but it was not as capable as the robust sensor suite on the red arrow option. Platforms for Persistent CSR II - 30...sensors remained the top-ranked option as indicated by the green line at the top of the chart with the red arrow. However, its value dropped from 0.253 on

  9. The Prodiguer Messaging Platform

    NASA Astrophysics Data System (ADS)

    Denvil, S.; Greenslade, M. A.; Carenton, N.; Levavasseur, G.; Raciazek, J.

    2015-12-01

    CONVERGENCE is a French multi-partner national project designed to gather HPC and informatics expertise to innovate in the context of running French global climate models with differing grids and at differing resolutions. Efficient and reliable execution of these models and the management and dissemination of model output are some of the complexities that CONVERGENCE aims to resolve.At any one moment in time, researchers affiliated with the Institut Pierre Simon Laplace (IPSL) climate modeling group, are running hundreds of global climate simulations. These simulations execute upon a heterogeneous set of French High Performance Computing (HPC) environments. The IPSL's simulation execution runtime libIGCM (library for IPSL Global Climate Modeling group) has recently been enhanced so as to support hitherto impossible realtime use cases such as simulation monitoring, data publication, metrics collection, simulation control, visualizations … etc. At the core of this enhancement is Prodiguer: an AMQP (Advanced Message Queue Protocol) based event driven asynchronous distributed messaging platform. libIGCM now dispatches copious amounts of information, in the form of messages, to the platform for remote processing by Prodiguer software agents at IPSL servers in Paris. Such processing takes several forms: Persisting message content to database(s); Launching rollback jobs upon simulation failure; Notifying downstream applications; Automation of visualization pipelines; We will describe and/or demonstrate the platform's: Technical implementation; Inherent ease of scalability; Inherent adaptiveness in respect to supervising simulations; Web portal receiving simulation notifications in realtime.

  10. The HST/WFC3 Quicklook Project: A User Interface to Hubble Space Telescope Wide Field Camera 3 Data

    NASA Astrophysics Data System (ADS)

    Bourque, Matthew; Bajaj, Varun; Bowers, Ariel; Dulude, Michael; Durbin, Meredith; Gosmeyer, Catherine; Gunning, Heather; Khandrika, Harish; Martlin, Catherine; Sunnquist, Ben; Viana, Alex

    2017-06-01

    The Hubble Space Telescope's Wide Field Camera 3 (WFC3) instrument, comprised of two detectors, UVIS (Ultraviolet-Visible) and IR (Infrared), has been acquiring ~ 50-100 images daily since its installation in 2009. The WFC3 Quicklook project provides a means for instrument analysts to store, calibrate, monitor, and interact with these data through the various Quicklook systems: (1) a ~ 175 TB filesystem, which stores the entire WFC3 archive on disk, (2) a MySQL database, which stores image header data, (3) a Python-based automation platform, which currently executes 22 unique calibration/monitoring scripts, (4) a Python-based code library, which provides system functionality such as logging, downloading tools, database connection objects, and filesystem management, and (5) a Python/Flask-based web interface to the Quicklook system. The Quicklook project has enabled large-scale WFC3 analyses and calibrations, such as the monitoring of the health and stability of the WFC3 instrument, the measurement of ~ 20 million WFC3/UVIS Point Spread Functions (PSFs), the creation of WFC3/IR persistence calibration products, and many others.

  11. Using High-Altitude Pseudo Satellites as an innovative technology platform for climate measurements

    NASA Astrophysics Data System (ADS)

    Coulon, A.; Johnson, S.

    2017-12-01

    Climate scientists have been using for decades either remotely observed data, mainly from (un)manned aircraft and satellites, or ground-based measurements. High-Altitude Pseudo Satellites (HAPS) are emerging as a disruptive technology that will be used for various "Near Space" applications at altitudes between 15 and 23 km (i.e. above commercial airlines). This new generation of electric solar-powered unmanned aerial vehicles flying in the stratosphere aim to persistently monitor regional areas (with high temporal, spatial and spectral resolution) as well as perform in-situ Near Space observations. The two case studies presented will highlight the advantages of using such an innovative platform. First, calculations were performed to compare the use of a constellation of Low Earth Orbit satellites and a fleet of HAPS for surface monitoring. Using stratospheric drones has a clear advantage for revisiting a large zone (10'000km2 per day) with higher predictability and accuracy. User is free to set time over a location, avoid cloud coverage and obtain Ground Sampling Distance of 30cm using commercially of the shelf sensors. The other impact study focuses on in-situ measurements. Using HAPS will indeed help to closely observe stratospheric compounds, such as aerosols or volcano plumes. Simulations were performed to show how such a drone could collect samples and provide high-accuracy evaluations of compounds that, so far, are only remotely observed. The performed impact studies emphasize the substantial advantages of using HAPS for future stratospheric campaigns. Deploying month-long unmanned missions for monitoring stratospheric aerosols will be beneficial for future research projects such as climate engineering.

  12. Bacterial diversity in water injection systems of Brazilian offshore oil platforms.

    PubMed

    Korenblum, Elisa; Valoni, Erika; Penna, Mônica; Seldin, Lucy

    2010-01-01

    Biogenic souring and microbial-influenced corrosion is a common scenario in water-flooded petroleum reservoirs. Water injection systems are continuously treated to control bacterial contamination, but some bacteria that cause souring and corrosion can persist even after different treatments have been applied. Our aim was to increase our knowledge of the bacterial communities that persist in the water injection systems of three offshore oil platforms in Brazil. To achieve this goal, we used a culture-independent molecular approach (16S ribosomal RNA gene clone libraries) to analyze seawater samples that had been subjected to different treatments. Phylogenetic analyses revealed that the bacterial communities from the different platforms were taxonomically different. A predominance of bacterial clones affiliated with Gammaproteobacteria, mostly belonging to the genus Marinobacter (60.7%), were observed in the platform A samples. Clones from platform B were mainly related to the genera Colwellia (37.9%) and Achromobacter (24.6%), whereas clones obtained from platform C were all related to unclassified bacteria. Canonical correspondence analyses showed that different treatments such as chlorination, deoxygenation, and biocide addition did not significantly influence the bacterial diversity in the platforms studied. Our results demonstrated that the injection water used in secondary oil recovery procedures contained potentially hazardous bacteria, which may ultimately cause souring and corrosion.

  13. Application of GNSS Methods for Monitoring Offshore Platform Deformation

    NASA Astrophysics Data System (ADS)

    Myint, Khin Cho; Nasir Matori, Abd; Gohari, Adel

    2018-03-01

    Global Navigation Satellite System (GNSS) has become a powerful tool for high-precision deformation monitoring application. Monitoring of deformation and subsidence of offshore platform due to factors such as shallow gas phenomena. GNSS is the technical interoperability and compatibility between various satellite navigation systems such as modernized GPS, Galileo, reconstructed GLONASS to be used by civilian users. It has been known that excessive deformation affects platform structurally, causing loss of production and affects the efficiency of the machinery on board the platform. GNSS have been proven to be one of the most precise positioning methods where by users can get accuracy to the nearest centimeter of a given position from carrier phase measurement processing of GPS signals. This research is aimed at using GNSS technique, which is one of the most standard methods to monitor the deformation of offshore platforms. Therefore, station modeling, which accounts for the spatial correlated errors, and hence speeds up the ambiguity resolution process is employed. It was found that GNSS combines the high accuracy of the results monitoring the offshore platforms deformation with the possibility of survey.

  14. Single-Cell Detection and Collection of Persister Bacteria in a Directly Accessible Femtoliter Droplet Array.

    PubMed

    Iino, Ryota; Sakakihara, Shouichi; Matsumoto, Yoshimi; Nishino, Kunihiko

    2016-01-01

    A directly accessible femtoliter droplet array as a platform for single-cell detection and collection of persister bacteria is described. Device microfabrication, femtoliter droplet array formation and concomitant enclosure of single cells, long-term culture and observation of single cells in droplets, and collection of identified persisters from single droplets are described in detail.

  15. Using "big data" to guide implementation of a web and mobile adaptive learning platform for medical students.

    PubMed

    Menon, Ashwin; Gaglani, Shiv; Haynes, M Ryan; Tackett, Sean

    2017-09-01

    Adaptive learning platforms (ALPs) can revolutionize medical education by making learning more efficient, but their potential has not been realized because students do not use them persistently. We applied educational data mining methods to study United States medical students who used an ALP called Osmosis ( www.osmosis.org ) from 1 August 2014 to 31 July 2015. Multivariate logistic regressions modeled persistence on Osmosis as the dependent variable and Osmosis-collected variables as predictors. The 6787 students included in our analysis responded to a total of 887,193 items, with 2138 (31.5%) using Osmosis persistently. Number of items per student, mobile device use, subscription payment, and group membership were independently associated with persisting (p < 0.001 in all models). Persistent users rated quality more favorably (p < 0.01) but were not more confident in answer selections (p = 0.80). While persisters were more accurate than non-persisters (55% (SD 18%) vs 52% (SD 22%), p < 0.001), after adjusting for number of items, lower accuracy was associated with persistent use (OR 0.93 [95% CI 0.90-0.97], p < 0.01). Our study of a large sample of U.S. medical students illustrates big data medical education research and provides guidance for improving implementation of ALPs and further investigation.

  16. Automated live cell screening system based on a 24-well-microplate with integrated micro fluidics.

    PubMed

    Lob, V; Geisler, T; Brischwein, M; Uhl, R; Wolf, B

    2007-11-01

    In research, pharmacologic drug-screening and medical diagnostics, the trend towards the utilization of functional assays using living cells is persisting. Research groups working with living cells are confronted with the problem, that common endpoint measurement methods are not able to map dynamic changes. With consideration of time as a further dimension, the dynamic and networked molecular processes of cells in culture can be monitored. These processes can be investigated by measuring several extracellular parameters. This paper describes a high-content system that provides real-time monitoring data of cell parameters (metabolic and morphological alterations), e.g., upon treatment with drug compounds. Accessible are acidification rates, the oxygen consumption and changes in adhesion forces within 24 cell cultures in parallel. Addressing the rising interest in biomedical and pharmacological high-content screening assays, a concept has been developed, which integrates multi-parametric sensor readout, automated imaging and probe handling into a single embedded platform. A life-maintenance system keeps important environmental parameters (gas, humidity, sterility, temperature) constant.

  17. The contribution of the Geohazards Exploitation Platform for the GEO Supersites community

    NASA Astrophysics Data System (ADS)

    Manunta, Michele; Caumont, Hervé; Mora, Oscar; Casu, Francesco; Zinno, Ivana; De Luca, Claudio; Pepe, Susi; Pepe, Antonio; Brito, Fabrice; Romero, Laia; Stumpf, Andre; Malet, Jean-Philippe; Brcic, Ramon; Rodriguez Gonzalez, Fernando; Musacchio, Massimo; Buongiorno, Fabrizia; Briole, Pierre

    2016-04-01

    The European Space Agency (ESA) initiative for the creation of an ecosystem of Thematic Exploitation Platforms (TEP) focuses on the capitalization of Ground Segment capabilities and ICT technologies to maximize the exploitation of EO data from past and future missions. A TEP refers to a computing platform that complies to a set of exploitation scenarios involving scientific users, data providers and ICT providers, aggregated around an Earth Science thematic area. The Exploitation Platforms are targeted to cover different capacities and they define, implement and validate a platform for effective data exploitation of EO data sources in a given thematic area. In this framework, the Geohazards Thematic Exploitation Platform or Geohazards TEP (GEP) aims at providing on-demand processing services for specific user needs as well as systematic processing services to address the need of the geohazards community for common information layers and, finally, to integrate newly developed processors for scientists and other expert users. The GEP has now on-boarded over 40 European early adopters and will transition during 2016 to pre-operations by developing six new Pilot applications that will significantly augment the Platform's capabilities for systematic production and community building. Each project on the Platform is concerned with either integrating an application, running on demand processing using an application available in the platform or systematically generating a new product collection. The platform will also expand its user base in 2016, to gradually reach a total of about 65 individual users. Under a Consortium lead by Terradue Srl, six new pilot projects have been taken on board: photogrammetric processing using optical EO data with University of Strasbourg (FR), optical based processing method for volcanic hazard monitoring with INGV (IT), systematic generation of deformation time-series with Sentinel-1 data with CNR IREA (IT), systematic processing of Sentinel-1 interferometric imagery with DLR (DE), precise terrain motion mapping with SPN Persistent Scatterers Interferometric chain of Altamira Information (ES) and a campaign to test and exploit GEP applications with the Corinth Rift Laboratory in which Greek and French experts of seismic hazards are engaged. The consortium is in charge of the resources and services management under a sustainable and fair governance model to ensure alignment of the Platform with user community needs, broad collaboration with main data and service providers in the domain, and excellence among user initiatives willing to contribute. In this work we show how the GEO Geohazards Supersites community can fully benefit from availability of an advanced IT infrastructure, where satellite and in-situ data, processing tools and web-based visualization instruments are at the disposal of users to address scientific questions. In particular, we focus on the contributions provided by GEP for the management of EO data, for the implementation of a European e-infrastructure, and for the monitoring and modelling of ground deformations and seismic activity.

  18. Multiplex immunoassay for persistent organic pollutants in tilapia: Comparison of imaging- and flow cytometry-based platforms using spectrally encoded paramagnetic microspheres

    USDA-ARS?s Scientific Manuscript database

    Recent developments in spectrally encoded microspheres (SEMs)-based technologies provide high multiplexing possibilities. Most SEMs-based assays required a flow cytometer with sophisticated fluidics and optics. The new imaging superparamagnetic SEMs-based platform transports SEMs with considerably ...

  19. [The Key Technology Study on Cloud Computing Platform for ECG Monitoring Based on Regional Internet of Things].

    PubMed

    Yang, Shu; Qiu, Yuyan; Shi, Bo

    2016-09-01

    This paper explores the methods of building the internet of things of a regional ECG monitoring, focused on the implementation of ECG monitoring center based on cloud computing platform. It analyzes implementation principles of automatic identifi cation in the types of arrhythmia. It also studies the system architecture and key techniques of cloud computing platform, including server load balancing technology, reliable storage of massive smalfi les and the implications of quick search function.

  20. Universal SaaS platform of internet of things for real-time monitoring

    NASA Astrophysics Data System (ADS)

    Liu, Tongke; Wu, Gang

    2018-04-01

    Real-time monitoring service, as a member of the IoT (Internet of Things) service, has a wide range application scenario. To support rapid construction and deployment of applications and avoid repetitive development works in these processes, this paper designs and develops a universal SaaS platform of IoT for real-time monitoring. Evaluation shows that this platform can provide SaaS service to multiple tenants and achieve high real-time performance under the situation of large amount of device access.

  1. A platform for real-time online health analytics during spaceflight

    NASA Astrophysics Data System (ADS)

    McGregor, Carolyn

    Monitoring the health and wellbeing of astronauts during spaceflight is an important aspect of any manned mission. To date the monitoring has been based on a sequential set of discontinuous samplings of physiological data to support initial studies on aspects such as weightlessness, and its impact on the cardiovascular system and to perform proactive monitoring for health status. The research performed and the real-time monitoring has been hampered by the lack of a platform to enable a more continuous approach to real-time monitoring. While any spaceflight is monitored heavily by Mission Control, an important requirement within the context of any spaceflight setting and in particular where there are extended periods with a lack of communication with Mission Control, is the ability for the mission to operate in an autonomous manner. This paper presents a platform to enable real-time astronaut monitoring for prognostics and health management within space medicine using online health analytics. The platform is based on extending previous online health analytics research known as the Artemis and Artemis Cloud platforms which have demonstrated their relevance for multi-patient, multi-diagnosis and multi-stream temporal analysis in real-time for clinical management and research within Neonatal Intensive Care. Artemis and Artemis Cloud source data from a range of medical devices capable of transmission of the signal via wired or wireless connectivity and hence are well suited to process real-time data acquired from astronauts. A key benefit of this platform is its ability to monitor their health and wellbeing onboard the mission as well as enabling the astronaut's physiological data, and other clinical data, to be sent to the platform components at Mission Control at each stage when that communication is available. As a result, researchers at Mission Control would be able to simulate, deploy and tailor predictive analytics and diagnostics during the same spaceflight for - reater medical support.

  2. Stent Polymers: Do They Make a Difference?

    PubMed

    Rizas, Konstantinos D; Mehilli, Julinda

    2016-06-01

    The necessity of polymers on drug-eluting stent (DES) platforms is dictated by the need of an adequate amount and optimal release kinetic of the antiproliferative drugs for achieving ideal DES performance. However, the chronic vessel wall inflammation related to permanent polymer persistence after the drug has been eluted might trigger late restenosis and stent thrombosis. Biodegradable polymers have the potential to avoid these adverse events. A variety of biodegradable polymer DES platforms have been clinically tested, showing equal outcomes with the standard-bearer permanent polymer DES within the first year of implantation. At longer-term follow-up, promising lower rates of stent thrombosis have been observed with the early generation biodegradable polymer DES platforms compared to first-generation DES. Whether this safety benefit still persists with newer biodegradable polymer DES generations against second-generation permanent polymer DES needs to be explored. © 2016 American Heart Association, Inc.

  3. Hydrologic response across a snow persistence gradient on the west and east slopes of the Rocky Mountains in Colorado

    NASA Astrophysics Data System (ADS)

    Richard, G. A.; Hammond, J. C.; Kampf, S. K.; Moore, C. D.; Eurich, A.

    2017-12-01

    Snowpack trend analyses and modeling studies suggest that lower elevation snowpacks in mountain regions are most sensitive to drought and warming temperatures, however, in Colorado, most snow monitoring occurs in the high elevations where snow lasts throughout the winter and most streamflow monitoring occurs at lower elevations. The lack of combined snow and streamflow monitoring in watersheds along the transition from intermittent to persistent snow creates a gap in our understanding of snowmelt and runoff within the intermittent-persistent snow transition. Expanded hydrologic monitoring that spans the gradient of snow conditions in Colorado can help improve streamflow prediction and inform land and water managers. This study established hydrologic monitoring watersheds in intermittent, transitional, and persistent snow zones on the east slope and west slope of the Rocky Mountains in Colorado, and uses this monitoring network to improve understanding of how snow accumulation and melt affect soil moisture and streamflow generation under different snow conditions. We monitored six small watersheds (three west slope, three east slope) (0.8 to 3.9 km2) that drain intermittent, transitional, and persistent snow zones. At each site, we measured: streamflow, snow depth, soil moisture, precipitation, air temperature, and snow water equivalent (SWE). In our first season of monitoring, the west slope persistent and transitional sites had more mid-winter melt and infiltration, shorter snowpack duration, and lower peak SWE than the east slope sites. Snow cover remained at the east slope persistent site into June, whereas much of the snow at the persistent site on the west slope had already melted by early June. The difference in soil water input likely has consequences for streamflow response that we will continue to examine in future years. At the west slope intermittent site, the stream did not flow during the entire first year of monitoring, while at the east slope intermittent site, the streams flowed intermittently during winter and spring, likely a result of different subsurface geology. With our ongoing watershed monitoring across a broad range of snow conditions in Colorado, we continue to learn about the factors that increase or decrease streamflow in the headwater streams that supply the state's major rivers.

  4. Load monitoring of aerospace structures utilizing micro-electro-mechanical systems for static and quasi-static loading conditions

    NASA Astrophysics Data System (ADS)

    Martinez, M.; Rocha, B.; Li, M.; Shi, G.; Beltempo, A.; Rutledge, R.; Yanishevsky, M.

    2012-11-01

    The National Research Council Canada (NRC) has worked on the development of structural health monitoring (SHM) test platforms for assessing the performance of sensor systems for load monitoring applications. The first SHM platform consists of a 5.5 m cantilever aluminum beam that provides an optimal scenario for evaluating the ability of a load monitoring system to measure bending, torsion and shear loads. The second SHM platform contains an added level of structural complexity, by consisting of aluminum skins with bonded/riveted stringers, typical of an aircraft lower wing structure. These two load monitoring platforms are well characterized and documented, providing loading conditions similar to those encountered during service. In this study, a micro-electro-mechanical system (MEMS) for acquiring data from triads of gyroscopes, accelerometers and magnetometers is described. The system was used to compute changes in angles at discrete stations along the platforms. The angles obtained from the MEMS were used to compute a second, third or fourth order degree polynomial surface from which displacements at every point could be computed. The use of a new Kalman filter was evaluated for angle estimation, from which displacements in the structure were computed. The outputs of the newly developed algorithms were then compared to the displacements obtained from the linear variable displacement transducers connected to the platforms. The displacement curves were subsequently post-processed either analytically, or with the help of a finite element model of the structure, to estimate strains and loads. The estimated strains were compared with baseline strain gauge instrumentation installed on the platforms. This new approach for load monitoring was able to provide accurate estimates of applied strains and shear loads.

  5. Lifespan Analyses of Forest Raptor Nests: Patterns of Creation, Persistence and Reuse

    PubMed Central

    Jiménez-Franco, María V.; Martínez, José E.; Calvo, José F.

    2014-01-01

    Structural elements for breeding such as nests are key resources for the conservation of bird populations. This is especially true when structural elements require a specific and restricted habitat, or if the construction of nests is costly in time and energy. The availability of nesting-platforms is influenced by nest creation and persistence. In a Mediterranean forest in southeastern Spain, nesting-platforms are the only structural element for three forest-dwelling raptor species: booted eagle Aquila pennata, common buzzard Buteo buteo and northern goshawk Accipiter gentilis. From 1998 to 2013, we tracked the fate of 157 nesting-platforms built and reused by these species with the aim of determining the rates of creation and destruction of nesting-platforms, estimating nest persistence by applying two survival analyses, describing the pattern of nest reuse and testing the effects of nest use on breeding success. Nest creation and destruction rates were low (0.14 and 0.05, respectively). Using Kaplan Meier survival estimates and Cox proportional-hazards regression models we found that median nest longevity was 12 years and that this was not significantly affected by nest characteristics, nest-tree dimensions, nest-builder species, or frequency of use of the platform. We also estimated a transition matrix, considering the different stages of nest occupation (vacant or occupied by one of the focal species), to obtain the fundamental matrix and the average life expectancies of nests, which varied from 17.9 to 19.7 years. Eighty six percent of nests were used in at least one breeding attempt, 67.5% were reused and 17.8% were successively occupied by at least two of the study species. The frequency of nest use had no significant effects on the breeding success of any species. We conclude that nesting-platforms constitute an important resource for forest raptors and that their longevity is sufficiently high to allow their reuse in multiple breeding attempts. PMID:24717935

  6. Lifespan analyses of forest raptor nests: patterns of creation, persistence and reuse.

    PubMed

    Jiménez-Franco, María V; Martínez, José E; Calvo, José F

    2014-01-01

    Structural elements for breeding such as nests are key resources for the conservation of bird populations. This is especially true when structural elements require a specific and restricted habitat, or if the construction of nests is costly in time and energy. The availability of nesting-platforms is influenced by nest creation and persistence. In a Mediterranean forest in southeastern Spain, nesting-platforms are the only structural element for three forest-dwelling raptor species: booted eagle Aquila pennata, common buzzard Buteo buteo and northern goshawk Accipiter gentilis. From 1998 to 2013, we tracked the fate of 157 nesting-platforms built and reused by these species with the aim of determining the rates of creation and destruction of nesting-platforms, estimating nest persistence by applying two survival analyses, describing the pattern of nest reuse and testing the effects of nest use on breeding success. Nest creation and destruction rates were low (0.14 and 0.05, respectively). Using Kaplan Meier survival estimates and Cox proportional-hazards regression models we found that median nest longevity was 12 years and that this was not significantly affected by nest characteristics, nest-tree dimensions, nest-builder species, or frequency of use of the platform. We also estimated a transition matrix, considering the different stages of nest occupation (vacant or occupied by one of the focal species), to obtain the fundamental matrix and the average life expectancies of nests, which varied from 17.9 to 19.7 years. Eighty six percent of nests were used in at least one breeding attempt, 67.5% were reused and 17.8% were successively occupied by at least two of the study species. The frequency of nest use had no significant effects on the breeding success of any species. We conclude that nesting-platforms constitute an important resource for forest raptors and that their longevity is sufficiently high to allow their reuse in multiple breeding attempts.

  7. Nanoparticulate drug delivery platforms for advancing bone infection therapies

    PubMed Central

    Uskoković, Vuk; Desai, Tejal A

    2015-01-01

    Introduction The ongoing surge of resistance of bacterial pathogens to antibiotic therapies and the consistently aging median member of the human race signal an impending increase in the incidence of chronic bone infection. Nanotechnological platforms for local and sustained delivery of therapeutics hold the greatest potential for providing minimally invasive and maximally regenerative therapies for this rare but persistent condition. Areas covered Shortcomings of the clinically available treatment options, including poly(methyl methacrylate) beads and calcium sulfate cements, are discussed and their transcending using calcium-phosphate/polymeric nanoparticulate composites is foreseen. Bone is a composite wherein the weakness of each component alone is compensated for by the strength of its complement and an ideal bone substitute should be fundamentally the same. Expert opinion Discrepancy between in vitro and in vivo bioactivity assessments is highlighted, alongside the inherent imperfectness of the former. Challenges entailing the cross-disciplinary nature of engineering a new generation of drug delivery vehicles are delineated and it is concluded that the future for the nanoparticulate therapeutic carriers belongs to multifunctional, synergistic and theranostic composites capable of simultaneously targeting, monitoring and treating internal organismic disturbances in a smart, feedback fashion and in direct response to the demands of the local environment. PMID:25109804

  8. Current Technologies and Recent Developments for Screening of HPV-Associated Cervical and Oropharyngeal Cancers

    PubMed Central

    Shah, Sunny S.; Senapati, Satyajyoti; Klacsmann, Flora; Miller, Daniel L.; Johnson, Jeff J.; Chang, Hsueh-Chia; Stack, M. Sharon

    2016-01-01

    Mucosal infection by the human papillomavirus (HPV) is responsible for a growing number of malignancies, predominantly represented by cervical cancer and oropharyngeal squamous cell carcinoma. Because of the prevalence of the virus, persistence of infection, and long latency period, novel and low-cost methods are needed for effective population level screening and monitoring. We review established methods for screening of cervical and oral cancer as well as commercially-available techniques for detection of HPV DNA. We then describe the ongoing development of microfluidic nucleic acid-based biosensors to evaluate circulating host microRNAs that are produced in response to an oncogenic HPV infection. The goal is to develop an ideal screening platform that is low-cost, portable, and easy to use, with appropriate signal stability, sensitivity and specificity. Advances in technologies for sample lysis, pre-treatment and concentration, and multiplexed nucleic acid detection are provided. Continued development of these devices provides opportunities for cancer screening in low resource settings, for point-of-care diagnostics and self-screening, and for monitoring response to vaccination or surgical treatment. PMID:27618102

  9. A Wireless Monitoring Sub-nA Resolution Test Platform for Nanostructure Sensors

    PubMed Central

    Jang, Chi Woong; Byun, Young Tae; Lee, Taikjin; Woo, Deok Ha; Lee, Seok; Jhon, Young Min

    2013-01-01

    We have constructed a wireless monitoring test platform with a sub-nA resolution signal amplification/processing circuit (SAPC) and a wireless communication network to test the real-time remote monitoring of the signals from carbon nanotube (CNT) sensors. The operation characteristics of the CNT sensors can also be measured by the ISD-VSD curve with the SAPC. The SAPC signals are transmitted to a personal computer by Bluetooth communication and the signals from the computer are transmitted to smart phones by Wi-Fi communication, in such a way that the signals from the sensors can be remotely monitored through a web browser. Successful remote monitoring of signals from a CNT sensor was achieved with the wireless monitoring test platform for detection of 0.15% methanol vapor with 0.5 nA resolution and 7 Hz sampling rate. PMID:23783735

  10. How long do the dead survive on the road? Carcass persistence probability and implications for road-kill monitoring surveys.

    PubMed

    Santos, Sara M; Carvalho, Filipe; Mira, António

    2011-01-01

    Road mortality is probably the best-known and visible impact of roads upon wildlife. Although several factors influence road-kill counts, carcass persistence time is considered the most important determinant underlying underestimates of road mortality. The present study aims to describe and model carcass persistence variability on the road for different taxonomic groups under different environmental conditions throughout the year; and also to assess the effect of sampling frequency on the relative variation in road-kill estimates registered within a survey. Daily surveys of road-killed vertebrates were conducted over one year along four road sections with different traffic volumes. Survival analysis was then used to i) describe carcass persistence timings for overall and for specific animal groups; ii) assess optimal sampling designs according to research objectives; and iii) model the influence of road, animal and weather factors on carcass persistence probabilities. Most animal carcasses persisted on the road for the first day only, with some groups disappearing at very high rates. The advisable periodicity of road monitoring that minimizes bias in road mortality estimates is daily monitoring for bats (in the morning) and lizards (in the afternoon), daily monitoring for toads, small birds, small mammals, snakes, salamanders, and lagomorphs; 1 day-interval (alternate days) for large birds, birds of prey, hedgehogs, and freshwater turtles; and 2 day-interval for carnivores. Multiple factors influenced the persistence probabilities of vertebrate carcasses on the road. Overall, the persistence was much lower for small animals, on roads with lower traffic volumes, for carcasses located on road lanes, and during humid conditions and high temperatures during the wet season and dry seasons, respectively. The guidance given here on monitoring frequencies is particularly relevant to provide conservation and transportation agencies with accurate numbers of road-kills, realistic mitigation measures, and detailed designs for road monitoring programs.

  11. How Long Do the Dead Survive on the Road? Carcass Persistence Probability and Implications for Road-Kill Monitoring Surveys

    PubMed Central

    Santos, Sara M.; Carvalho, Filipe; Mira, António

    2011-01-01

    Background Road mortality is probably the best-known and visible impact of roads upon wildlife. Although several factors influence road-kill counts, carcass persistence time is considered the most important determinant underlying underestimates of road mortality. The present study aims to describe and model carcass persistence variability on the road for different taxonomic groups under different environmental conditions throughout the year; and also to assess the effect of sampling frequency on the relative variation in road-kill estimates registered within a survey. Methodology/Principal Findings Daily surveys of road-killed vertebrates were conducted over one year along four road sections with different traffic volumes. Survival analysis was then used to i) describe carcass persistence timings for overall and for specific animal groups; ii) assess optimal sampling designs according to research objectives; and iii) model the influence of road, animal and weather factors on carcass persistence probabilities. Most animal carcasses persisted on the road for the first day only, with some groups disappearing at very high rates. The advisable periodicity of road monitoring that minimizes bias in road mortality estimates is daily monitoring for bats (in the morning) and lizards (in the afternoon), daily monitoring for toads, small birds, small mammals, snakes, salamanders, and lagomorphs; 1 day-interval (alternate days) for large birds, birds of prey, hedgehogs, and freshwater turtles; and 2 day-interval for carnivores. Multiple factors influenced the persistence probabilities of vertebrate carcasses on the road. Overall, the persistence was much lower for small animals, on roads with lower traffic volumes, for carcasses located on road lanes, and during humid conditions and high temperatures during the wet season and dry seasons, respectively. Conclusion/Significance The guidance given here on monitoring frequencies is particularly relevant to provide conservation and transportation agencies with accurate numbers of road-kills, realistic mitigation measures, and detailed designs for road monitoring programs. PMID:21980437

  12. An Avoidance-Based Rodent Model of Exposure With Response Prevention Therapy for Obsessive-Compulsive Disorder.

    PubMed

    Rodriguez-Romaguera, Jose; Greenberg, Benjamin D; Rasmussen, Steven A; Quirk, Gregory J

    2016-10-01

    Obsessive-compulsive disorder is treated with exposure with response prevention (ERP) therapy, in which patients are repeatedly exposed to compulsive triggers but prevented from expressing their compulsions. Many compulsions are an attempt to avoid perceived dangers, and the intent of ERP is to extinguish compulsions. Patients failing ERP therapy are candidates for deep brain stimulation (DBS) of the ventral capsule/ventral striatum, which facilitates patients' response to ERP therapy. An animal model of ERP would be useful for understanding the neural mechanisms of extinction in obsessive-compulsive disorder. Using a platform-mediated signaled avoidance task, we developed a rodent model of ERP called extinction with response prevention (Ext-RP), in which avoidance-conditioned rats are given extinction trials while blocking access to the avoidance platform. Following 3 days of Ext-RP, rats were tested with the platform unblocked to evaluate persistent avoidance. We then assessed if pharmacologic inactivation of lateral orbitofrontal cortex (lOFC) or DBS of the ventral striatum reduced persistent avoidance. Following Ext-RP training, most rats showed reduced avoidance at test (Ext-RP success), but a subset persisted in their avoidance (Ext-RP failure). Pharmacologic inactivation of lOFC eliminated persistent avoidance, as did DBS applied to the ventral striatum during Ext-RP. DBS of ventral striatum has been previously shown to inhibit lOFC activity. Thus, activity in lOFC, which is known to be hyperactive in obsessive-compulsive disorder, may be responsible for impairing patients' response to ERP therapy. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  13. Unmanned Aerial Vehicles for Environmental Monitoring with Special Reference to Heat Loss

    NASA Astrophysics Data System (ADS)

    Anweiler, Stanisław; Piwowarski, Dawid; Ulbrich, Roman

    2017-10-01

    This paper presents the design and implementation of device for remote and automatic monitoring of temperature field of large objects. The project aimed to create a quadcopter flying platform equipped with a thermal imaging camera. The object of the research was district heating installations above ground and underground. The results of the work on the implementation of low-cost (below 750 EUR) and efficient heat loss monitoring system. The system consists of a small (<2kg) multirotor platform. To perform thermal images micro camera FlirOne with microcomputer Raspberry Pi3 was used. Exploitation of UAVs in temperature field monitoring reveals only a fraction of their capabilities. The fast-growing multirotor platform market continues to deliver new solutions and improvements. Their use in monitoring the environment is limited only by the imagination of the user.

  14. Publicly Available Online Tool Facilitates Real-Time Monitoring Of Vaccine Conversations And Sentiments.

    PubMed

    Bahk, Chi Y; Cumming, Melissa; Paushter, Louisa; Madoff, Lawrence C; Thomson, Angus; Brownstein, John S

    2016-02-01

    Real-time monitoring of mainstream and social media can inform public health practitioners and policy makers about vaccine sentiment and hesitancy. We describe a publicly available platform for monitoring vaccination-related content, called the Vaccine Sentimeter. With automated data collection from 100,000 mainstream media sources and Twitter, natural-language processing for automated filtering, and manual curation to ensure accuracy, the Vaccine Sentimeter offers a global real-time view of vaccination conversations online. To assess the system's utility, we followed two events: polio vaccination in Pakistan after a news story about a Central Intelligence Agency vaccination ruse and subsequent attacks on health care workers, and a controversial episode in a television program about adverse events following human papillomavirus vaccination. For both events, increased online activity was detected and characterized. For the first event, Twitter response to the attacks on health care workers decreased drastically after the first attack, in contrast to mainstream media coverage. For the second event, the mainstream and social media response was largely positive about the HPV vaccine, but antivaccine conversations persisted longer than the provaccine reaction. Using the Vaccine Sentimeter could enable public health professionals to detect increased online activity or sudden shifts in sentiment that could affect vaccination uptake. Project HOPE—The People-to-People Health Foundation, Inc.

  15. Multifunctional cell-culture platform for aligned cell sheet monitoring, transfer printing, and therapy.

    PubMed

    Kim, Seok Joo; Cho, Hye Rim; Cho, Kyoung Won; Qiao, Shutao; Rhim, Jung Soo; Soh, Min; Kim, Taeho; Choi, Moon Kee; Choi, Changsoon; Park, Inhyuk; Hwang, Nathaniel S; Hyeon, Taeghwan; Choi, Seung Hong; Lu, Nanshu; Kim, Dae-Hyeong

    2015-03-24

    While several functional platforms for cell culturing have been proposed for cell sheet engineering, a soft integrated system enabling in vitro physiological monitoring of aligned cells prior to their in vivo applications in tissue regeneration has not been reported. Here, we present a multifunctional, soft cell-culture platform equipped with ultrathin stretchable nanomembrane sensors and graphene-nanoribbon cell aligners, whose system modulus is matched with target tissues. This multifunctional platform is capable of aligning plated cells and in situ monitoring of cellular physiological characteristics during proliferation and differentiation. In addition, it is successfully applied as an in vitro muscle-on-a-chip testing platform. Finally, a simple but high-yield transfer printing mechanism is proposed to deliver cell sheets for scaffold-free, localized cell therapy in vivo. The muscle-mimicking stiffness of the platform allows the high-yield transfer printing of multiple cell sheets and results in successful therapies in diseased animal models. Expansion of current results to stem cells will provide unique opportunities for emerging classes of tissue engineering and cell therapy technologies.

  16. Establishment and evaluation of a theater influenza monitoring platform.

    PubMed

    Wang, Jian; Yang, Hui-Suo; Deng, Bing; Shi, Meng-Jing; Li, Xiang-Da; Nian, Qing-Gong; Song, Wen-Jing; Bing, Feng; Li, Qing-Feng

    2017-11-20

    Influenza is an acute respiratory infectious disease with a high incidence rate in the Chinese army, which directly disturbs military training and affects soldiers' health. Influenza surveillance systems are widely used around the world and play an important role in influenza epidemic prevention and control. As a theater centers for disease prevention and control, we established an influenza monitoring platform (IMP) in 2014 to strengthen the monitoring of influenza-like illness and influenza virus infection. In this study, we introduced the constitution, influenza virus detection, and quality control for an IMP. The monitoring effect was also evaluated by comparing the monitoring data with data from national influenza surveillance systems. The experiences and problems associated with the platform also were summarized. A theater IMP was established based on 3 levels of medical units, including monitoring sites, testing laboratories and a checking laboratory. A series of measures were taken to guarantee the quality of monitoring, such as technical training, a unified process, sufficient supervision and timely communication. The platform has run smoothly for 3 monitoring years to date. In the 2014-2015 and 2016-2017 monitoring years, sample amount coincided with that obtained from the National Influenza Surveillance program. In the 2015-2016 monitoring year, due to the strict prevention and control measures, an influenza epidemic peak was avoided in monitoring units, and the monitoring data did not coincide with that of the National Influenza Surveillance program. Several problems, including insufficient attention, unreasonable administrative intervention or subordination relationships, and the necessity of detection in monitoring sites were still observed. A theater IMP was established rationally and played a deserved role in the prevention and control of influenza. However, several problems remain to be solved.

  17. Technology platforms for remote monitoring of vital signs in the new era of telemedicine.

    PubMed

    Zhao, Fang; Li, Meng; Tsien, Joe Z

    2015-07-01

    Driven by healthcare cost and home healthcare need, the development of remote monitoring technologies is poised to improve and revolutionize healthcare delivery and accessibility. This paper reviews the recent progress in the field of remote monitoring technologies that may have the potential to become the basic platforms for telemedicine. In particular, key techniques and devices for monitoring cardiorespiratory activity, blood pressure and blood glucose concentration are summarized and discussed. In addition, the US FDA approved remote vital signs monitoring devices currently available on the market are presented.

  18. Mass spectrometry-based monitoring of millisecond protein–ligand binding dynamics using an automated microfluidic platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cong, Yongzheng; Katipamula, Shanta; Trader, Cameron D.

    2016-01-01

    Characterizing protein-ligand binding dynamics is crucial for understanding protein function and developing new therapeutic agents. We have developed a novel microfluidic platform that features rapid mixing of protein and ligand solutions, variable incubation times, and on-chip electrospray ionization to perform label-free, solution-based monitoring of protein-ligand binding dynamics. This platform offers many advantages including automated processing, rapid mixing, and low sample consumption.

  19. Methylxanthine Drug Monitoring with Wearable Sweat Sensors.

    PubMed

    Tai, Li-Chia; Gao, Wei; Chao, Minghan; Bariya, Mallika; Ngo, Quynh P; Shahpar, Ziba; Nyein, Hnin Y Y; Park, Hyejin; Sun, Junfeng; Jung, Younsu; Wu, Eric; Fahad, Hossain M; Lien, Der-Hsien; Ota, Hiroki; Cho, Gyoujin; Javey, Ali

    2018-06-01

    Drug monitoring plays crucial roles in doping control and precision medicine. It helps physicians tailor drug dosage for optimal benefits, track patients' compliance to prescriptions, and understand the complex pharmacokinetics of drugs. Conventional drug tests rely on invasive blood draws. While urine and sweat are attractive alternative biofluids, the state-of-the-art methods require separate sample collection and processing steps and fail to provide real-time information. Here, a wearable platform equipped with an electrochemical differential pulse voltammetry sensing module for drug monitoring is presented. A methylxanthine drug, caffeine, is selected to demonstrate the platform's functionalities. Sweat caffeine levels are monitored under various conditions, such as drug doses and measurement time after drug intake. Elevated sweat caffeine levels upon increasing dosage and confirmable caffeine physiological trends are observed. This work leverages a wearable sweat sensing platform toward noninvasive and continuous point-of-care drug monitoring and management. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Wireless Sensor Platform for Cultural Heritage Monitoring and Modeling System

    PubMed Central

    Bermudez, Sergio A.; Schrott, Alejandro G.; Tsukada, Masahiko; Kargere, Lucretia; Marianno, Fernando; Hamann, Hendrik F.; López, Vanessa; Leona, Marco

    2017-01-01

    Results from three years of continuous monitoring of environmental conditions using a wireless sensor platform installed at The Cloisters, the medieval branch of the New York Metropolitan Museum of Art, are presented. The platform comprises more than 200 sensors that were distributed in five galleries to assess temperature and air flow and to quantify microclimate changes using physics-based and statistical models. The wireless sensor network data shows a very stable environment within the galleries, while the dense monitoring enables localized monitoring of subtle changes in air quality trends and impact of visitors on the microclimate conditions. The high spatial and temporal resolution data serves as a baseline study to understand the impact of visitors and building operations on the long-term preservation of art objects. PMID:28858223

  1. Wireless Sensor Platform for Cultural Heritage Monitoring and Modeling System.

    PubMed

    Klein, Levente J; Bermudez, Sergio A; Schrott, Alejandro G; Tsukada, Masahiko; Dionisi-Vici, Paolo; Kargere, Lucretia; Marianno, Fernando; Hamann, Hendrik F; López, Vanessa; Leona, Marco

    2017-08-31

    Results from three years of continuous monitoring of environmental conditions using a wireless sensor platform installed at The Cloisters, the medieval branch of the New York Metropolitan Museum of Art, are presented. The platform comprises more than 200 sensors that were distributed in five galleries to assess temperature and air flow and to quantify microclimate changes using physics-based and statistical models. The wireless sensor network data shows a very stable environment within the galleries, while the dense monitoring enables localized monitoring of subtle changes in air quality trends and impact of visitors on the microclimate conditions. The high spatial and temporal resolution data serves as a baseline study to understand the impact of visitors and building operations on the long-term preservation of art objects.

  2. PREDIRCAM eHealth platform for individualized telemedical assistance for lifestyle modification in the treatment of obesity, diabetes, and cardiometabolic risk prevention: a pilot study (PREDIRCAM 1).

    PubMed

    González, Cintia; Herrero, Pau; Cubero, José M; Iniesta, José M; Hernando, M Elena; García-Sáez, Gema; Serrano, Alvaro J; Martinez-Sarriegui, Iñaki; Perez-Gandia, Carmen; Gómez, Enrique J; Rubinat, Esther; Alcantara, Valeria; Brugués, Eulalia; Chico, Ana; Mato, Eugenia; Bell, Olga; Corcoy, Rosa; de Leiva, Alberto

    2013-07-01

    Healthy diet and regular physical activity are powerful tools in reducing diabetes and cardiometabolic risk. Various international scientific and health organizations have advocated the use of new technologies to solve these problems. The PREDIRCAM project explores the contribution that a technological system could offer for the continuous monitoring of lifestyle habits and individualized treatment of obesity as well as cardiometabolic risk prevention. PREDIRCAM is a technological platform for patients and professionals designed to improve the effectiveness of lifestyle behavior modifications through the intensive use of the latest information and communication technologies. The platform consists of a web-based application providing communication interface with monitoring devices of physiological variables, application for monitoring dietary intake, ad hoc electronic medical records, different communication channels, and an intelligent notification system. A 2-week feasibility study was conducted in 15 volunteers to assess the viability of the platform. The website received 244 visits (average time/session: 17 min 45 s). A total of 435 dietary intakes were recorded (average time for each intake registration, 4 min 42 s ± 2 min 30 s), 59 exercises were recorded in 20 heart rate monitor downloads, 43 topics were discussed through a forum, and 11 of the 15 volunteers expressed a favorable opinion toward the platform. Food intake recording was reported as the most laborious task. Ten of the volunteers considered long-term use of the platform to be feasible. The PREDIRCAM platform is technically ready for clinical evaluation. Training is required to use the platform and, in particular, for registration of dietary food intake. © 2013 Diabetes Technology Society.

  3. Design of self-contained sensor for monitoring of deep-sea offshore platform

    NASA Astrophysics Data System (ADS)

    Song, Yang; Yu, Yan; Zhang, Chunwei; Dong, Weijie; Ou, Jinping

    2013-04-01

    Offshore platform, which is the base of the production and living in the sea, is the most important infrastructure for developing oil and gas resources. At present, there are almost 6500 offshore platforms servicing in the 53 countries' sea areas around the world, creating great wealth for the world. In general, offshore platforms may work for 20 years, however, offshore platforms are expensive, complex, bulky, and so many of them are on extended active duty. Because of offshore platforms servicing in the harsh marine environment for a long time, the marine environment have a great impact on the offshore platforms. Besides, with the impact and erosion of seawater, and material aging, the offshore platform is possible to be in unexpected situations when a badly sudden situation happens. Therefore, it is of great significance to monitor the marine environment and offshore platforms. The self-contained sensor for deep-sea offshore platform with its unique design, can not only effectively extend the working time of the sensor with the capability of converting vibration energy to electrical energy, but also simultaneously collect the data of acceleration, inclination, temperature and humidity of the deep sea, so that we can achieve the purpose of monitoring offshore platforms through analyzing the collected data. The self-contained sensor for monitoring of deep-sea offshore platform includes sensing unit, data collecting and storage unit, the energy supply unit. The sensing unit with multi-variables, consists of an accelerometer LIS344ALH, an inclinometer SCA103T and a temperature and humidity sensor SHT11; the data collecting and storage unit includes the MSP430 low-power MCU, large capacity memory, clock circuit and the communication interface, the communication interface includes USB interface, serial ports and wireless interface; in addition, the energy supply unit, converting vibration to electrical energy to power the overall system, includes the electromagnetic generator, voltage multiplier circuit and a super capacitor which can withstand virtually unlimited number of charge-discharge cycles. When the seawater impacts on offshore platforms to produce vibration, electromagnetic generator converts vibration to electrical energy, its output(~ 1 V 50 Hz AC) is stepped up and rectified by a voltage multiplier circuit, and the energy is stored in a super capacitor. It is controlled by the MSP430 that monitors the voltage level on the super capacitor. The super capacitor charges the Li-ion battery when the voltage on the super capacitor reaches a threshold, then the whole process of energy supply is completed. The self-contained sensor for deep-sea offshore platform has good application prospects and practical value with small size, low power, being easy to install, converting vibration energy to supply power and high detection accuracy.

  4. A WBAN System for Ambulatory Monitoring of Physical Activity and Health Status: Applications and Challenges.

    PubMed

    Jovanov, E; Milenkovic, A; Otto, C; De Groen, P; Johnson, B; Warren, S; Taibi, G

    2005-01-01

    Recent technological advances in sensors, low-power integrated circuits, and wireless communications have enabled the design of low-cost, miniature, lightweight, intelligent physiological sensor platforms that can be seamlessly integrated into a body area network for health monitoring. Wireless body area networks (WBANs) promise unobtrusive ambulatory health monitoring for extended periods of time and near real-time updates of patients' medical records through the Internet. A number of innovative systems for health monitoring have recently been proposed. However, they typically rely on custom communication protocols and hardware designs, lacking generality and flexibility. The lack of standard platforms, system software support, and standards makes these systems expensive. Bulky sensors, high price, and frequent battery changes are all likely to limit user compliance. To address some of these challenges, we prototyped a WBAN utilizing a common off-the-shelf wireless sensor platform with a ZigBee-compliant radio interface and an ultra low-power microcontroller. The standard platform interfaces to custom sensor boards that are equipped with accelerometers for motion monitoring and a bioamplifier for electrocardiogram or electromyogram monitoring. Software modules for on-board processing, communication, and network synchronization have been developed using the TinyOS operating system. Although the initial WBAN prototype targets ambulatory monitoring of user activity, the developed sensors can easily be adapted to monitor other physiological parameters. In this paper, we discuss initial results, implementation challenges, and the need for standardization in this dynamic and promising research field.

  5. A Low-cost data-logging platform for long-term field sensor deployment in caves

    NASA Astrophysics Data System (ADS)

    Cruz, M. A.; Myre, J. M.; Covington, M. D.

    2014-12-01

    Active karst systems are notoriously inhospitable environments for humans and equipment. Caves require equipment to cope with high humidity, high velocity flows, submersion, sediment loads, and harassment from local fauna. Equipment taken into caves is often considered "consumable" due to the extreme nature of cave environments and the difficulty of transport. Further, because many interesting monitoring locations within caves can be considered remote, it is ideal for electronic monitoring platforms to require minimal maintenance of parts and power supplies. To partially address the challenge of scientifically monitoring such environments, we have developed an arduino based platform for environmental monitoring of cave systems. The arduino is a general purpose open source microcontroller that is easily programmed with only a basic knowledge of the C programming language. The arduino is capable of controlling digital and analog electronics in a modular fashion. Using this capability, we have created a platform for monitoring CO2 levels in cave systems that costs one-tenth of a comparable commercial system while using a fraction of the power. The modular nature of the arduino system allows the incorporation of additional environmental sensors in the future.

  6. Long-term real-time structural health monitoring using wireless smart sensor

    NASA Astrophysics Data System (ADS)

    Jang, Shinae; Mensah-Bonsu, Priscilla O.; Li, Jingcheng; Dahal, Sushil

    2013-04-01

    Improving the safety and security of civil infrastructure has become a critical issue for decades since it plays a central role in the economics and politics of a modern society. Structural health monitoring of civil infrastructure using wireless smart sensor network has emerged as a promising solution recently to increase structural reliability, enhance inspection quality, and reduce maintenance costs. Though hardware and software framework are well prepared for wireless smart sensors, the long-term real-time health monitoring strategy are still not available due to the lack of systematic interface. In this paper, the Imote2 smart sensor platform is employed, and a graphical user interface for the long-term real-time structural health monitoring has been developed based on Matlab for the Imote2 platform. This computer-aided engineering platform enables the control, visualization of measured data as well as safety alarm feature based on modal property fluctuation. A new decision making strategy to check the safety is also developed and integrated in this software. Laboratory validation of the computer aided engineering platform for the Imote2 on a truss bridge and a building structure has shown the potential of the interface for long-term real-time structural health monitoring.

  7. Remotely Delivered Exercise-Based Cardiac Rehabilitation: Design and Content Development of a Novel mHealth Platform.

    PubMed

    Rawstorn, Jonathan C; Gant, Nicholas; Meads, Andrew; Warren, Ian; Maddison, Ralph

    2016-06-24

    Participation in traditional center-based cardiac rehabilitation exercise programs (exCR) is limited by accessibility barriers. Mobile health (mHealth) technologies can overcome these barriers while preserving critical attributes of center-based exCR monitoring and coaching, but these opportunities have not yet been capitalized on. We aimed to design and develop an evidence- and theory-based mHealth platform for remote delivery of exCR to any geographical location. An iterative process was used to design and develop an evidence- and theory-based mHealth platform (REMOTE-CR) that provides real-time remote exercise monitoring and coaching, behavior change education, and social support. The REMOTE-CR platform comprises a commercially available smartphone and wearable sensor, custom smartphone and Web-based applications (apps), and a custom middleware. The platform allows exCR specialists to monitor patients' exercise and provide individualized coaching in real-time, from almost any location, and provide behavior change education and social support. Intervention content incorporates Social Cognitive Theory, Self-determination Theory, and a taxonomy of behavior change techniques. Exercise components are based on guidelines for clinical exercise prescription. The REMOTE-CR platform extends the capabilities of previous telehealth exCR platforms and narrows the gap between existing center- and home-based exCR services. REMOTE-CR can complement center-based exCR by providing an alternative option for patients whose needs are not being met. Remotely monitored exCR may be more cost-effective than establishing additional center-based programs. The effectiveness and acceptability of REMOTE-CR are now being evaluated in a noninferiority randomized controlled trial.

  8. Open discovery: An integrated live Linux platform of Bioinformatics tools.

    PubMed

    Vetrivel, Umashankar; Pilla, Kalabharath

    2008-01-01

    Historically, live linux distributions for Bioinformatics have paved way for portability of Bioinformatics workbench in a platform independent manner. Moreover, most of the existing live Linux distributions limit their usage to sequence analysis and basic molecular visualization programs and are devoid of data persistence. Hence, open discovery - a live linux distribution has been developed with the capability to perform complex tasks like molecular modeling, docking and molecular dynamics in a swift manner. Furthermore, it is also equipped with complete sequence analysis environment and is capable of running windows executable programs in Linux environment. Open discovery portrays the advanced customizable configuration of fedora, with data persistency accessible via USB drive or DVD. The Open Discovery is distributed free under Academic Free License (AFL) and can be downloaded from http://www.OpenDiscovery.org.in.

  9. Digital Platforms in the Assessment and Monitoring of Patients with Bipolar Disorder

    PubMed Central

    Rajagopalan, Arvind; Shah, Pooja; Zhang, Melvyn W.; Ho, Roger C.

    2017-01-01

    This paper aims to review the application of digital platforms in the assessment and monitoring of patients with Bipolar Disorder (BPD). We will detail the current clinical criteria for the diagnosis of BPD and the tools available for patient assessment in the clinic setting. We will go on to highlight the difficulties in the assessment and monitoring of BPD patients in the clinical context. Finally, we will elaborate upon the impact that diital platforms have made, and have the potential to make, on healthcare, mental health, and specifically the management of BPD, before going on to evaluate the benefits and drawbacks of the use of such technology. PMID:29137156

  10. Ubiquitous Computing for Remote Cardiac Patient Monitoring: A Survey

    PubMed Central

    Kumar, Sunil; Kambhatla, Kashyap; Hu, Fei; Lifson, Mark; Xiao, Yang

    2008-01-01

    New wireless technologies, such as wireless LAN and sensor networks, for telecardiology purposes give new possibilities for monitoring vital parameters with wearable biomedical sensors, and give patients the freedom to be mobile and still be under continuous monitoring and thereby better quality of patient care. This paper will detail the architecture and quality-of-service (QoS) characteristics in integrated wireless telecardiology platforms. It will also discuss the current promising hardware/software platforms for wireless cardiac monitoring. The design methodology and challenges are provided for realistic implementation. PMID:18604301

  11. Ubiquitous computing for remote cardiac patient monitoring: a survey.

    PubMed

    Kumar, Sunil; Kambhatla, Kashyap; Hu, Fei; Lifson, Mark; Xiao, Yang

    2008-01-01

    New wireless technologies, such as wireless LAN and sensor networks, for telecardiology purposes give new possibilities for monitoring vital parameters with wearable biomedical sensors, and give patients the freedom to be mobile and still be under continuous monitoring and thereby better quality of patient care. This paper will detail the architecture and quality-of-service (QoS) characteristics in integrated wireless telecardiology platforms. It will also discuss the current promising hardware/software platforms for wireless cardiac monitoring. The design methodology and challenges are provided for realistic implementation.

  12. Utilizing Structure-from-Motion Photogrammetry with Airborne Visual and Thermal Images to Monitor Thermal Areas in Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Carr, B. B.; Vaughan, R. G.

    2017-12-01

    The thermal areas in Yellowstone National Park (Wyoming, USA) are constantly changing. Persistent monitoring of these areas is necessary to better understand the behavior and potential hazards of both the thermal features and the deeper hydrothermal system driving the observed surface activity. As part of the Park's monitoring program, thousands of visual and thermal infrared (TIR) images have been acquired from a variety of airborne platforms over the past decade. We have used structure-from-motion (SfM) photogrammetry techniques to generate a variety of data products from these images, including orthomosaics, temperature maps, and digital elevation models (DEMs). Temperature maps were generated for Upper Geyser Basin and Norris Geyser Basin for the years 2009-2015, by applying SfM to nighttime TIR images collected from an aircraft-mounted forward-looking infrared (FLIR) camera. Temperature data were preserved through the SfM processing by applying a uniform linear stretch over the entire image set to convert between temperature and a 16-bit digital number. Mosaicked temperature maps were compared to the original FLIR image frames and to ground-based temperature data to constrain the accuracy of the method. Due to pixel averaging and resampling, among other issues, the derived temperature values are typically within 5-10 ° of the values of the un-resampled image frame. We also created sub-meter resolution DEMs from airborne daytime visual images of individual thermal areas. These DEMs can be used for resource and hazard management, and in cases where multiple DEMs exist from different times, for measuring topographic change, including change due to thermal activity. For example, we examined the sensitivity of the DEMs to topographic change by comparing DEMs of the travertine terraces at Mammoth Hot Springs, which can grow at > 1 m per year. These methods are generally applicable to images from airborne platforms, including planes, helicopters, and unmanned aerial systems, and can be used to monitor thermal areas on a variety of spatial and temporal scales.

  13. CHRONIOUS: a wearable platform for monitoring and management of patients with chronic disease.

    PubMed

    Bellos, Christos; Papadopoulos, Athanassios; Rosso, Roberto; Fotiadis, Dimitrios I

    2011-01-01

    The CHRONIOUS system has been developed based on an open architecture design that consists of a set of subsystems which interact in order to provide all the needed services to the chronic disease patients. An advanced multi-parametric expert system is being implemented that fuses information effectively from various sources using intelligent techniques. Data are collected by sensors of a body network controlling vital signals while additional tools record dietary habits and plans, drug intake, environmental and biochemical parameters and activity data. The CHRONIOUS platform provides guidelines and standards for the future generations of "chronic disease management systems" and facilitates sophisticated monitoring tools. In addition, an ontological information retrieval system is being delivered satisfying the necessities for up-to-date clinical information of Chronic Obstructive pulmonary disease (COPD) and Chronic Kidney Disease (CKD). Moreover, support tools are being embedded in the system, such as the Mental Tools for the monitoring of patient mental health status. The integrated platform provides real-time patient monitoring and supervision, both indoors and outdoors and represents a generic platform for the management of various chronic diseases.

  14. Measurements of soil, surface water, and groundwater CO2 concentration variability within Earth's critical zone: low-cost, long-term, high-temporal resolution monitoring

    NASA Astrophysics Data System (ADS)

    Blackstock, J. M.; Covington, M. D.; Williams, S. G. W.; Myre, J. M.; Rodriguez, J.

    2017-12-01

    Variability in CO2 fluxes within Earth's Critical zone occurs over a wide range of timescales. Resolving this and its drivers requires high-temporal resolution monitoring of CO2 both in the soil and aquatic environments. High-cost (> 1,000 USD) gas analyzers and data loggers present cost-barriers for investigations with limited budgets, particularly if high spatial resolution is desired. To overcome high-costs, we developed an Arduino based CO2 measuring platform (i.e. gas analyzer and data logger). The platform was deployed at multiple sites within the Critical Zone overlying the Springfield Plateau aquifer in Northwest Arkansas, USA. The CO2 gas analyzer used in this study was a relatively low-cost SenseAir K30. The analyzer's optical housing was covered by a PTFE semi-permeable membrane allowing for gas exchange between the analyzer and environment. Total approximate cost of the monitoring platform was 200 USD (2% detection limit) to 300 USD (10% detection limit) depending on the K30 model used. For testing purposes, we deployed the Arduino based platform alongside a commercial monitoring platform. CO2 concentration time series were nearly identical. Notably, CO2 cycles at the surface water site, which operated from January to April 2017, displayed a systematic increase in daily CO2 amplitude. Preliminary interpretation suggests key observation of seasonally increasing stream metabolic function. Other interpretations of observed cyclical and event-based behavior are out of the scope of the study; however, the presented method describes an accurate near-hourly characterization of CO2 variability. The new platform has been shown to be operational for several months, and we infer reliable operation for much longer deployments (> 1 year) given adequate environmental protection and power supply. Considering cost-savings, this platform is an attractive option for continuous, accurate, low-power, and low-cost CO2 monitoring for remote locations, globally.

  15. Real-time Monitoring of Subsea Gas Pipelines, Offshore Platforms, and Ship Inspection Scores Using an Automatic Identification System

    NASA Astrophysics Data System (ADS)

    Artana, K. B.; Pitana, T.; Dinariyana, D. P.; Ariana, M.; Kristianto, D.; Pratiwi, E.

    2018-06-01

    The aim of this research is to develop an algorithm and application that can perform real-time monitoring of the safety operation of offshore platforms and subsea gas pipelines as well as determine the need for ship inspection using data obtained from automatic identification system (AIS). The research also focuses on the integration of shipping database, AIS data, and others to develop a prototype for designing a real-time monitoring system of offshore platforms and pipelines. A simple concept is used in the development of this prototype, which is achieved by using an overlaying map that outlines the coordinates of the offshore platform and subsea gas pipeline with the ship's coordinates (longitude/latitude) as detected by AIS. Using such information, we can then build an early warning system (EWS) relayed through short message service (SMS), email, or other means when the ship enters the restricted and exclusion zone of platforms and pipelines. The ship inspection system is developed by combining several attributes. Then, decision analysis software is employed to prioritize the vessel's four attributes, including ship age, ship type, classification, and flag state. Results show that the EWS can increase the safety level of offshore platforms and pipelines, as well as the efficient use of patrol boats in monitoring the safety of the facilities. Meanwhile, ship inspection enables the port to prioritize the ship to be inspected in accordance with the priority ranking inspection score.

  16. Bird interactions with offshore oil and gas platforms: review of impacts and monitoring techniques.

    PubMed

    Ronconi, Robert A; Allard, Karel A; Taylor, Philip D

    2015-01-01

    Thousands of oil and gas platforms are currently operating in offshore waters globally, and this industry is expected to expand in coming decades. Although the potential environmental impacts of offshore oil and gas activities are widely recognized, there is limited understanding of their impacts on migratory and resident birds. A literature review identified 24 studies and reports of bird-platform interactions, most being qualitative and half having been peer-reviewed. The most frequently observed effect, for seabirds and landbirds, is attraction and sometimes collisions associated with lights and flares; episodic events have caused the deaths of hundreds or even thousands of birds. Though typically unpredictable, anecdotally, it is known that poor weather, such as fog, precipitation and low cloud cover, can exacerbate the effect of nocturnal attraction to lights, especially when coincidental with bird migrations. Other effects include provision of foraging and roosting opportunities, increased exposure to oil and hazardous environments, increased exposure to predators, or repulsion from feeding sites. Current approaches to monitoring birds at offshore platforms have focused on observer-based methods which can offer species-level bird identification, quantify seasonal patterns of relative abundance and distribution, and document avian mortality events and underlying factors. Observer-based monitoring is time-intensive, limited in spatial and temporal coverage, and suffers without clear protocols and when not conducted by trained, independent observers. These difficulties are exacerbated because deleterious bird-platform interaction is episodic and likely requires the coincidence of multiple factors (e.g., darkness, cloud, fog, rain conditions, occurrence of birds in vicinity). Collectively, these considerations suggest a need to implement supplemental systems for monitoring bird activities around offshore platforms. Instrument-based approaches, such as radar, cameras, acoustic recordings, and telemetry, hold promise for continuous monitoring. Recommendations are provided for a rigorous and comprehensive monitoring approach within an adaptive management framework. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. An intelligent monitoring and management system for cross-enterprise biomedical data sharing platform

    NASA Astrophysics Data System (ADS)

    Wang, Tusheng; Yang, Yuanyuan; Zhang, Jianguo

    2013-03-01

    In order to enable multiple disciplines of medical researchers, clinical physicians and biomedical engineers working together in a secured, efficient, and transparent cooperative environment, we had designed an e-Science platform for biomedical imaging research and application cross multiple academic institutions and hospitals in Shanghai by using grid-based or cloud-based distributed architecture and presented this work in SPIE Medical Imaging conference held in San Diego in 2012. However, when the platform integrates more and more nodes over different networks, the first challenge is that how to monitor and maintain all the hosts and services operating cross multiple academic institutions and hospitals in the e-Science platform, such as DICOM and Web based image communication services, messaging services and XDS ITI transaction services. In this presentation, we presented a system design and implementation of intelligent monitoring and management which can collect system resource status of every node in real time, alert when node or service failure occurs, and can finally improve the robustness, reliability and service continuity of this e-Science platform.

  18. Inadequate environmental monitoring around offshore oil and gas platforms on the Grand Bank of Eastern Canada: are risks to marine birds known?

    PubMed

    Burke, C M; Montevecchi, W A; Wiese, F K

    2012-08-15

    Petroleum exploration and production on the Grand Bank of eastern Canada overlaps with productive marine habitat that supports over 40 million marine birds annually. Environmental assessments for oil and gas projects in the region predict insignificant adverse effects on marine birds from oil spills, incineration in platform flares and collisions. Limited baseline data on seasonal occupancies and a failure to quantify the nature and extent of marine bird attraction to platforms and related mortality undermines these assessments. We conducted 22 surveys to offshore platforms on the Grand Bank during 1999-2003 to measure avian associations with platforms and to determine the level of monitoring needed to assess the risks to marine birds. We document seasonal shifts in marine bird occurrences and higher densities of auks (fall) and shearwaters (summer) around platforms relative to surrounding areas. The limited temporal and spatial coverage of our surveys is more robust than existing industry monitoring efforts, yet it is still inadequate to quantify the scale of marine bird associations with platforms or their associated mortality risks. Systematic observations by independent biologists on vessels and platforms are needed to generate reliable assessments of risks to marine birds. Instead, the regulatory body for offshore oil and gas in eastern Canada (Canada - Newfoundland and Labrador Offshore Petroleum Board; C-NLOPB) supports industry self-reporting as the accepted form of environmental monitoring. Conflicting responsibilities of oil and gas regulatory agencies for both energy development and environmental monitoring are major barriers to transparency, unbiased scientific inquiry and adequate environmental protection. Similar conflicts with the oil and gas regulatory body in the United States, the former Minerals and Management Service (MMS) were identified by the U.S. President as a major contributor to the Deepwater Horizon disaster in the Gulf of Mexico. The MMS has since been restructured into the Bureau of Ocean Energy Management, (BOEM) with separate departments responsible for drilling leases and the regulation of drilling activities. Similar restructuring of the oil and gas regulatory bodies in Canada is needed for better public information, scientific investigation and environmental protection in the offshore. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Use of micro-optical coherence tomography to analyze barrier integrity of intestinal epithelial cells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Som, Avira; Leung, Hui Min; Chu, Kengyeh; Eaton, Alex D.; Hurley, Bryan P.; Tearney, Guillermo J.

    2017-02-01

    The intestinal epithelial barrier provides protection from external threats that enter the digestive system and persist beyond passage through the stomach. The effects of toxic agents on the intestinal epithelial cell monolayer have not been fully characterized at a cellular level as live imaging of this dynamic interplay at sufficient resolution to interpret cellular responses presents technological challenges. Using a high-resolution native contrast modality called Micro-Optical Coherence Tomography (μOCT), we generated real-time 3D images depicting the impact of the chemical agent EDTA on polarized intestinal epithelial monolayers. Within minutes following application of EDTA, we observed a change in the uniformity of epithelial surface thickness and loss of the edge brightness associated with the apical surface. These observations were measured by generating computer algorithms which quantify imaged-based events changing over time, thus providing parallel graphed data to pair with video. The imaging platform was designed to monitor epithelial monolayers prior to and following application of chemical agents in order to provide a comprehensive account of monolayer behavior at baseline conditions and immediately following exposure. Furthermore, the platform was designed to simultaneously measure continuous trans-epithelial electric resistance (TEER) in order to define the progressive loss of barrier integrity of the cell monolayer following exposure to toxic agents and correlate these findings to image-based metrics. This technological image-based experimental platform provides a novel means to characterize mechanisms that impact the intestinal barrier and, in future efforts, can be applied to study the impact of disease relevant agents such as enteric pathogens and enterotoxins.

  20. Remotely Delivered Exercise-Based Cardiac Rehabilitation: Design and Content Development of a Novel mHealth Platform

    PubMed Central

    Gant, Nicholas; Meads, Andrew; Warren, Ian; Maddison, Ralph

    2016-01-01

    Background Participation in traditional center-based cardiac rehabilitation exercise programs (exCR) is limited by accessibility barriers. Mobile health (mHealth) technologies can overcome these barriers while preserving critical attributes of center-based exCR monitoring and coaching, but these opportunities have not yet been capitalized on. Objective We aimed to design and develop an evidence- and theory-based mHealth platform for remote delivery of exCR to any geographical location. Methods An iterative process was used to design and develop an evidence- and theory-based mHealth platform (REMOTE-CR) that provides real-time remote exercise monitoring and coaching, behavior change education, and social support. Results The REMOTE-CR platform comprises a commercially available smartphone and wearable sensor, custom smartphone and Web-based applications (apps), and a custom middleware. The platform allows exCR specialists to monitor patients’ exercise and provide individualized coaching in real-time, from almost any location, and provide behavior change education and social support. Intervention content incorporates Social Cognitive Theory, Self-determination Theory, and a taxonomy of behavior change techniques. Exercise components are based on guidelines for clinical exercise prescription. Conclusions The REMOTE-CR platform extends the capabilities of previous telehealth exCR platforms and narrows the gap between existing center- and home-based exCR services. REMOTE-CR can complement center-based exCR by providing an alternative option for patients whose needs are not being met. Remotely monitored exCR may be more cost-effective than establishing additional center-based programs. The effectiveness and acceptability of REMOTE-CR are now being evaluated in a noninferiority randomized controlled trial. PMID:27342791

  1. Remote Video Monitor of Vehicles in Cooperative Information Platform

    NASA Astrophysics Data System (ADS)

    Qin, Guofeng; Wang, Xiaoguo; Wang, Li; Li, Yang; Li, Qiyan

    Detection of vehicles plays an important role in the area of the modern intelligent traffic management. And the pattern recognition is a hot issue in the area of computer vision. An auto- recognition system in cooperative information platform is studied. In the cooperative platform, 3G wireless network, including GPS, GPRS (CDMA), Internet (Intranet), remote video monitor and M-DMB networks are integrated. The remote video information can be taken from the terminals and sent to the cooperative platform, then detected by the auto-recognition system. The images are pretreated and segmented, including feature extraction, template matching and pattern recognition. The system identifies different models and gets vehicular traffic statistics. Finally, the implementation of the system is introduced.

  2. A wireless modular multi-modal multi-node patch platform for robust biosignal monitoring.

    PubMed

    Pantelopoulos, Alexandros; Saldivar, Enrique; Roham, Masoud

    2011-01-01

    In this paper a wireless modular, multi-modal, multi-node patch platform is described. The platform comprises low-cost semi-disposable patch design aiming at unobtrusive ambulatory monitoring of multiple physiological parameters. Owing to its modular design it can be interfaced with various low-power RF communication and data storage technologies, while the data fusion of multi-modal and multi-node features facilitates measurement of several biosignals from multiple on-body locations for robust feature extraction. Preliminary results of the patch platform are presented which illustrate the capability to extract respiration rate from three different independent metrics, which combined together can give a more robust estimate of the actual respiratory rate.

  3. Interplanetary monitoring platform engineering history and achievements

    NASA Technical Reports Server (NTRS)

    Butler, P. M.

    1980-01-01

    In the fall of 1979, last of ten Interplanetary Monitoring Platform Satellite (IMP) missions ended a ten year series of flights dedicated to obtaining new knowledge of the radiation effects in outer space and of solar phenomena during a period of maximum solar flare activity. The technological achievements and scientific accomplishments from the IMP program are described.

  4. [Research and Implementation of Vital Signs Monitoring System Based on Cloud Platform].

    PubMed

    Yu, Man; Tan, Anzu; Huang, Jianqi

    2018-05-30

    Through analyzing the existing problems in the current mode, the vital signs monitoring information system based on cloud platform is designed and developed. The system's aim is to assist nurse carry out vital signs nursing work effectively and accurately. The system collects, uploads and analyzes patient's vital signs data by PDA which connecting medical inspection equipments. Clinical application proved that the system can effectively improve the quality and efficiency of medical care and may reduce medical expenses. It is alse an important practice result to build a medical cloud platform.

  5. Intracerebral transplants of primary muscle cells: a potential 'platform' for transgene expression in the brain

    NASA Technical Reports Server (NTRS)

    Jiao, S.; Schultz, E.; Wolff, J. A.

    1992-01-01

    After the transplantation of rat primary muscle cells into the caudate or cortex of recipient rats, the muscle cells were able to persist for at least 6 months. Muscle cells transfected with expression plasmids prior to transplantation were able to express reporter genes in the brains for at least 2 months. These results suggest that muscle cells might be a useful 'platform' for transgene expression in the brain.

  6. Thinking about Air and Space Power in 2025: Five Guiding Principles

    DTIC Science & Technology

    2012-06-01

    conflicts show the need for thinking about this principle in the design as well as the use of platforms. Any such analysis neces- sitates drawing on all...space and the commonplace employment of medium- and high - altitude drones. The self-deployment of drones and their integra- tion into air traffic will...technical advances will lead to the de- velopment of stratospheric drones ( high - altitude platforms), adding the benefits of increased persistence

  7. Global, Frequent Landsat-class Mosaics for Real Time Crop Monitoring and Analysis

    NASA Astrophysics Data System (ADS)

    Varlyguin, D.; Crutchfield, J.; Hulina, S.; Reynolds, C. A.; Frantz, R.; Tetrault, R. L.

    2016-12-01

    The presentation will discuss the current status of GDA technology for operational, automated generation of near global mosaics of Landsat-class data for visualization, monitoring, and analysis. Current version of the mosaic combines Landsat 8 and Landsat 7. Sentinel-2A and ASTER imagery are to be added shortly. The mosaics are surface reflectance calibrated and are analysis ready. They offer full spatial resolution and all multi-spectral bands of the source imagery. Each mosaic covers all major agricultural regions of the world for the last 18 months with a 16 day frequency. The mosaics are updated in real-time, as soon as GDA downloads the imagery, calibrates it to the surface reflectances, and generates data gap masks (all typically under 10 minutes for a Landsat scene). Best pixel value from available opportunities is selected during the mosaic update. The technology eliminates the complex, multi-step, hands-on process of data preparation and provides imagery ready for repetitive, field-to-country analysis of crop conditions, progress, acreages, yield, and production. The mosaics are used for real-time, on-line interactive mapping and time series drilling via GeoSynergy webGIS platform and for off line in-season crop mapping. USDA FAS uses this product for persistent monitoring of selected countries and their croplands and for in-season crop analysis. The presentation will overview Landsat-class mosaics and their use in support of USDA FAS efforts.

  8. Weight reduction among people with severe and persistent mental illness after health behavior counseling and monitoring.

    PubMed

    Katekaru, Matthew; Minn, Carol E; Pobutsky, Ann M

    2015-04-01

    The high prevalence of obesity and associated chronic conditions in persons with severe and persistent mental illness has contributed to a mortality rate that is nearly two times higher than the overall population. In 2008, the Central O'ahu Community Mental Health Center of the Hawai'i State Department of Health, Adult Mental Health Division began an unfunded, health counseling intervention pilot project to address such concerns for the health of persons with severe and persistent mental illness. This article reviews the results of this intervention. Forty-seven persons with schizophrenia or related disorders were included in the intervention which involved health counseling and monitoring of weight as a risk factor for chronic disease. After five years of counseling and monitoring, medical chart reviews were conducted for each person for data on weight change. Analysis showed weight loss and improvements in body mass index. The results of this project show potential for long-term counseling and monitoring as an intervention for obesity in persons with severe and persistent mental illness.

  9. Open discovery: An integrated live Linux platform of Bioinformatics tools

    PubMed Central

    Vetrivel, Umashankar; Pilla, Kalabharath

    2008-01-01

    Historically, live linux distributions for Bioinformatics have paved way for portability of Bioinformatics workbench in a platform independent manner. Moreover, most of the existing live Linux distributions limit their usage to sequence analysis and basic molecular visualization programs and are devoid of data persistence. Hence, open discovery ‐ a live linux distribution has been developed with the capability to perform complex tasks like molecular modeling, docking and molecular dynamics in a swift manner. Furthermore, it is also equipped with complete sequence analysis environment and is capable of running windows executable programs in Linux environment. Open discovery portrays the advanced customizable configuration of fedora, with data persistency accessible via USB drive or DVD. Availability The Open Discovery is distributed free under Academic Free License (AFL) and can be downloaded from http://www.OpenDiscovery.org.in PMID:19238235

  10. Monitoring radiation use in cardiac fluoroscopy imaging procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, Nathaniel T.; Steiner, Stefan H.; Smith, Ian R.

    2011-01-15

    Purpose: Timely identification of systematic changes in radiation delivery of an imaging system can lead to a reduction in risk for the patients involved. However, existing quality assurance programs involving the routine testing of equipment performance using phantoms are limited in their ability to effectively carry out this task. To address this issue, the authors propose the implementation of an ongoing monitoring process that utilizes procedural data to identify unexpected large or small radiation exposures for individual patients, as well as to detect persistent changes in the radiation output of imaging platforms. Methods: Data used in this study were obtainedmore » from records routinely collected during procedures performed in the cardiac catheterization imaging facility at St. Andrew's War Memorial Hospital, Brisbane, Australia, over the period January 2008-March 2010. A two stage monitoring process employing individual and exponentially weighted moving average (EWMA) control charts was developed and used to identify unexpectedly high or low radiation exposure levels for individual patients, as well as detect persistent changes in the radiation output delivered by the imaging systems. To increase sensitivity of the charts, we account for variation in dose area product (DAP) values due to other measured factors (patient weight, fluoroscopy time, and digital acquisition frame count) using multiple linear regression. Control charts are then constructed using the residual values from this linear regression. The proposed monitoring process was evaluated using simulation to model the performance of the process under known conditions. Results: Retrospective application of this technique to actual clinical data identified a number of cases in which the DAP result could be considered unexpected. Most of these, upon review, were attributed to data entry errors. The charts monitoring the overall system radiation output trends demonstrated changes in equipment performance associated with relocation of the equipment to a new department. When tested under simulated conditions, the EWMA chart was capable of detecting a sustained 15% increase in average radiation output within 60 cases (<1 month of operation), while a 33% increase would be signaled within 20 cases. Conclusions: This technique offers a valuable enhancement to existing quality assurance programs in radiology that rely upon the testing of equipment radiation output at discrete time frames to ensure performance security.« less

  11. Rotating Desk for Collaboration by Two Computer Programmers

    NASA Technical Reports Server (NTRS)

    Riley, John Thomas

    2005-01-01

    A special-purpose desk has been designed to facilitate collaboration by two computer programmers sharing one desktop computer or computer terminal. The impetus for the design is a trend toward what is known in the software industry as extreme programming an approach intended to ensure high quality without sacrificing the quantity of computer code produced. Programmers working in pairs is a major feature of extreme programming. The present desk design minimizes the stress of the collaborative work environment. It supports both quality and work flow by making it unnecessary for programmers to get in each other s way. The desk (see figure) includes a rotating platform that supports a computer video monitor, keyboard, and mouse. The desk enables one programmer to work on the keyboard for any amount of time and then the other programmer to take over without breaking the train of thought. The rotating platform is supported by a turntable bearing that, in turn, is supported by a weighted base. The platform contains weights to improve its balance. The base includes a stand for a computer, and is shaped and dimensioned to provide adequate foot clearance for both users. The platform includes an adjustable stand for the monitor, a surface for the keyboard and mouse, and spaces for work papers, drinks, and snacks. The heights of the monitor, keyboard, and mouse are set to minimize stress. The platform can be rotated through an angle of 40 to give either user a straight-on view of the monitor and full access to the keyboard and mouse. Magnetic latches keep the platform preferentially at either of the two extremes of rotation. To switch between users, one simply grabs the edge of the platform and pulls it around. The magnetic latch is easily released, allowing the platform to rotate freely to the position of the other user

  12. Monitoring and detection platform to prevent anomalous situations in home care.

    PubMed

    Villarrubia, Gabriel; Bajo, Javier; De Paz, Juan F; Corchado, Juan M

    2014-06-05

    Monitoring and tracking people at home usually requires high cost hardware installations, which implies they are not affordable in many situations. This study/paper proposes a monitoring and tracking system for people with medical problems. A virtual organization of agents based on the PANGEA platform, which allows the easy integration of different devices, was created for this study. In this case, a virtual organization was implemented to track and monitor patients carrying a Holter monitor. The system includes the hardware and software required to perform: ECG measurements, monitoring through accelerometers and WiFi networks. Furthermore, the use of interactive television can moderate interactivity with the user. The system makes it possible to merge the information and facilitates patient tracking efficiently with low cost.

  13. Cloud-Based Smart Health Monitoring System for Automatic Cardiovascular and Fall Risk Assessment in Hypertensive Patients.

    PubMed

    Melillo, P; Orrico, A; Scala, P; Crispino, F; Pecchia, L

    2015-10-01

    The aim of this paper is to describe the design and the preliminary validation of a platform developed to collect and automatically analyze biomedical signals for risk assessment of vascular events and falls in hypertensive patients. This m-health platform, based on cloud computing, was designed to be flexible, extensible, and transparent, and to provide proactive remote monitoring via data-mining functionalities. A retrospective study was conducted to train and test the platform. The developed system was able to predict a future vascular event within the next 12 months with an accuracy rate of 84 % and to identify fallers with an accuracy rate of 72 %. In an ongoing prospective trial, almost all the recruited patients accepted favorably the system with a limited rate of inadherences causing data losses (<20 %). The developed platform supported clinical decision by processing tele-monitored data and providing quick and accurate risk assessment of vascular events and falls.

  14. GIS Application System Design Applied to Information Monitoring

    NASA Astrophysics Data System (ADS)

    Qun, Zhou; Yujin, Yuan; Yuena, Kang

    Natural environment information management system involves on-line instrument monitoring, data communications, database establishment, information management software development and so on. Its core lies in collecting effective and reliable environmental information, increasing utilization rate and sharing degree of environment information by advanced information technology, and maximizingly providing timely and scientific foundation for environmental monitoring and management. This thesis adopts C# plug-in application development and uses a set of complete embedded GIS component libraries and tools libraries provided by GIS Engine to finish the core of plug-in GIS application framework, namely, the design and implementation of framework host program and each functional plug-in, as well as the design and implementation of plug-in GIS application framework platform. This thesis adopts the advantages of development technique of dynamic plug-in loading configuration, quickly establishes GIS application by visualized component collaborative modeling and realizes GIS application integration. The developed platform is applicable to any application integration related to GIS application (ESRI platform) and can be as basis development platform of GIS application development.

  15. Design and Field Test of a WSN Platform Prototype for Long-Term Environmental Monitoring

    PubMed Central

    Lazarescu, Mihai T.

    2015-01-01

    Long-term wildfire monitoring using distributed in situ temperature sensors is an accurate, yet demanding environmental monitoring application, which requires long-life, low-maintenance, low-cost sensors and a simple, fast, error-proof deployment procedure. We present in this paper the most important design considerations and optimizations of all elements of a low-cost WSN platform prototype for long-term, low-maintenance pervasive wildfire monitoring, its preparation for a nearly three-month field test, the analysis of the causes of failure during the test and the lessons learned for platform improvement. The main components of the total cost of the platform (nodes, deployment and maintenance) are carefully analyzed and optimized for this application. The gateways are designed to operate with resources that are generally used for sensor nodes, while the requirements and cost of the sensor nodes are significantly lower. We define and test in simulation and in the field experiment a simple, but effective communication protocol for this application. It helps to lower the cost of the nodes and field deployment procedure, while extending the theoretical lifetime of the sensor nodes to over 16 years on a single 1 Ah lithium battery. PMID:25912349

  16. Smart home-based health platform for behavioral monitoring and alteration of diabetes patients.

    PubMed

    Helal, Abdelsalam; Cook, Diane J; Schmalz, Mark

    2009-01-01

    Researchers and medical practitioners have long sought the ability to continuously and automatically monitor patients beyond the confines of a doctor's office. We describe a smart home monitoring and analysis platform that facilitates the automatic gathering of rich databases of behavioral information in a manner that is transparent to the patient. Collected information will be automatically or manually analyzed and reported to the caregivers and may be interpreted for behavioral modification in the patient. Our health platform consists of five technology layers. The architecture is designed to be flexible, extensible, and transparent, to support plug-and-play operation of new devices and components, and to provide remote monitoring and programming opportunities. The smart home-based health platform technologies have been tested in two physical smart environments. Data that are collected in these implemented physical layers are processed and analyzed by our activity recognition and chewing classification algorithms. All of these components have yielded accurate analyses for subjects in the smart environment test beds. This work represents an important first step in the field of smart environment-based health monitoring and assistance. The architecture can be used to monitor the activity, diet, and exercise compliance of diabetes patients and evaluate the effects of alternative medicine and behavior regimens. We believe these technologies are essential for providing accessible, low-cost health assistance in an individual's own home and for providing the best possible quality of life for individuals with diabetes. © Diabetes Technology Society

  17. Apparatus, method and system to control accessibility of platform resources based on an integrity level

    DOEpatents

    Jenkins, Chris; Pierson, Lyndon G.

    2016-10-25

    Techniques and mechanism to selectively provide resource access to a functional domain of a platform. In an embodiment, the platform includes both a report domain to monitor the functional domain and a policy domain to identify, based on such monitoring, a transition of the functional domain from a first integrity level to a second integrity level. In response to a change in integrity level, the policy domain may configure the enforcement domain to enforce against the functional domain one or more resource accessibility rules corresponding to the second integrity level. In another embodiment, the policy domain automatically initiates operations in aid of transitioning the platform from the second integrity level to a higher integrity level.

  18. Ubiquitous Stereo Vision for Controlling Safety on Platforms in Railroad Station

    NASA Astrophysics Data System (ADS)

    Yoda, Ikushi; Hosotani, Daisuke; Sakaue, Katushiko

    Dozens of people are killed every year when they fall off of train platforms, making this an urgent issue to be addressed by the railroads, especially in the major cities. This concern prompted the present work that is now in progress to develop a Ubiquitous Stereo Vision based system for safety management at the edge of rail station platforms. In this approach, a series of stereo cameras are installed in a row on the ceiling that are pointed downward at the edge of the platform to monitor the disposition of people waiting for the train. The purpose of the system is to determine automatically and in real-time whether anyone or anything is in the danger zone at the very edge of the platform, whether anyone has actually fallen off the platform, or whether there is any sign of these things happening. The system could be configured to automatically switch over to a surveillance monitor or automatically connect to an emergency brake system in the event of trouble.

  19. Monitor weather conditions for cloud seeding control. [Colorado River Basin

    NASA Technical Reports Server (NTRS)

    Kahan, A. M. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The near real-time DCS platform data transfer to the time-share compare is a working reality. Six stations are now being automatically monitored and displayed with a system delay of 3 to 8 hours from time of data transmission to time of data accessibility on the computer. The DCS platform system has proven itself a valuable tool for near real-time monitoring of mountain precipitation. Data from Wolf Creek Pass were an important input in making the decision when to suspend seeding operations to avoid exceeding suspension criteria in that area. The DCS platforms, as deployed in this investigation, have proven themselves to be reliable weather resistant systems for winter mountain environments in the southern Colorado mountains.

  20. Breakaway: A Look at the Integration of Aerial Refueling and Unmanned Aircraft Systems in Future Operations

    DTIC Science & Technology

    2007-06-15

    possibility of air refueling unmanned platforms that will prolong their loiter time. Because of the senior leader pressure to get a persistent presence...future force of 2025 will undoubtedly include many unmanned aircraft and manned aircraft. This thesis investigates how aerial refueling and unmanned...leader pressure to get a persistent presence of unmanned aircraft through air refueling, they might have waived the “sanity check” for this, or

  1. Adherence Monitoring with Chronic Opioid Therapy for Persistent Pain: A Biopsychosocial-spiritual Approach to Mitigate Risk

    PubMed Central

    Matteliano, Deborah; St. Marie, Barbara J.; Oliver, June

    2013-01-01

    Opioids represent a mainstay in the pharmacological management of persistent pain. While these drugs are intended to support improved comfort and function, the inherent risk of abuse or addiction must be considered in the delivery of care. The experience of living with persistent pain often includes depression, fear, loss, and anxiety, leading to feelings of hopelessness, helplessness, and spiritual crisis. Collectively, these factors represent an increased risk for all patients, particularly those with a past history of substance abuse or addiction. This companion article to the American Society for Pain Management Nursing (ASPMN) Position Statement on Pain Management in Patients with Substance Use Disorders (2012) focuses on the intersection of persistent pain, SUD, and chronic opioid therapy and the clinical implications of monitoring adherence with safe use of opioids for those with persistent pain. This paper presents an approach to the comprehensive assessment of persons with persistent pain when receiving opioid therapy by presenting an expansion of the biopsychosocial model to now include spiritual factors associated with pain and SUD, thus formulating a biopsychosocial-spiritual approach to mitigate risk. Key principles are provided for adherence monitoring using the biopsychosocial-spiritual assessment model developed by the authors as a means of promoting sensitive and respectful care. PMID:24602442

  2. Non-invasive diagnostic platforms in management of non-small cell lung cancer: opportunities and challenges

    PubMed Central

    Pennell, Nathan A.

    2017-01-01

    Several non-invasive diagnostic platforms are already being incorporated in routine clinical practice in the work up and monitoring of patients with lung cancer. These approaches have great potential to improve patient selection and monitor patients while on therapy, however several challenges exist in clinical validation and standardization of such platforms. In this review, we summarize the current technologies available for non-invasive diagnostic evaluation from the blood of patients with non-small cell lung cancer (NSCLC), and discuss the technical and logistical challenges associated incorporating such testing in clinical practice. PMID:29057238

  3. Chemical Sensor Platform for Non-Invasive Monitoring of Activity and Dehydration

    PubMed Central

    Solovei, Dmitry; Žák, Jaromír; Majzlíková, Petra; Sedláček, Jiří; Hubálek, Jaromír

    2015-01-01

    A non-invasive solution for monitoring of the activity and dehydration of organisms is proposed in the work. For this purpose, a wireless standalone chemical sensor platform using two separate measurement techniques has been developed. The first approach for activity monitoring is based on humidity measurement. Our solution uses new humidity sensor based on a nanostructured TiO2 surface for sweat rate monitoring. The second technique is based on monitoring of potassium concentration in urine. High level of potassium concentration denotes clear occurrence of dehydration. Furthermore, a Wireless Body Area Network (WBAN) was developed for this sensor platform to manage data transfer among devices and the internet. The WBAN coordinator controls the sensor devices and collects and stores the measured data. The collected data is particular to individuals and can be shared with physicians, emergency systems or athletes' coaches. Long-time monitoring of activity and potassium concentration in urine can help maintain the appropriate water intake of elderly people or athletes and to send warning signals in the case of near dehydration. The created sensor system was calibrated and tested in laboratory and real conditions as well. The measurement results are discussed. PMID:25594591

  4. Lens-free shadow image based high-throughput continuous cell monitoring technique.

    PubMed

    Jin, Geonsoo; Yoo, In-Hwa; Pack, Seung Pil; Yang, Ji-Woon; Ha, Un-Hwan; Paek, Se-Hwan; Seo, Sungkyu

    2012-01-01

    A high-throughput continuous cell monitoring technique which does not require any labeling reagents or destruction of the specimen is demonstrated. More than 6000 human alveolar epithelial A549 cells are monitored for up to 72 h simultaneously and continuously with a single digital image within a cost and space effective lens-free shadow imaging platform. In an experiment performed within a custom built incubator integrated with the lens-free shadow imaging platform, the cell nucleus division process could be successfully characterized by calculating the signal-to-noise ratios (SNRs) and the shadow diameters (SDs) of the cell shadow patterns. The versatile nature of this platform also enabled a single cell viability test followed by live cell counting. This study firstly shows that the lens-free shadow imaging technique can provide a continuous cell monitoring without any staining/labeling reagent and destruction of the specimen. This high-throughput continuous cell monitoring technique based on lens-free shadow imaging may be widely utilized as a compact, low-cost, and high-throughput cell monitoring tool in the fields of drug and food screening or cell proliferation and viability testing. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Study on application of dynamic monitoring of land use based on mobile GIS technology

    NASA Astrophysics Data System (ADS)

    Tian, Jingyi; Chu, Jian; Guo, Jianxing; Wang, Lixin

    2006-10-01

    The land use dynamic monitoring is an important mean to maintain the real-time update of the land use data. Mobile GIS technology integrates GIS, GPS and Internet. It can update the historic al data in real time with site-collected data and realize the data update in large scale with high precision. The Monitoring methods on the land use change data with the mobile GIS technology were discussed. Mobile terminal of mobile GIS has self-developed for this study with GPS-25 OEM and notebook computer. The RTD (real-time difference) operation mode is selected. Mobile GIS system of dynamic monitoring of land use have developed with Visual C++ as operation platform, MapObjects control as graphic platform and MSCmm control as communication platform, which realizes organic integration of GPS, GPRS and GIS. This system has such following basic functions as data processing, graphic display, graphic editing, attribute query and navigation. Qinhuangdao city was selected as the experiential area. Shown by the study result, the mobile GIS integration system of dynamic monitoring of land use developed by this study has practical application value.

  6. Monitoring and Detection Platform to Prevent Anomalous Situations in Home Care

    PubMed Central

    Villarrubia, Gabriel; Bajo, Javier; De Paz, Juan F.; Corchado, Juan M.

    2014-01-01

    Monitoring and tracking people at home usually requires high cost hardware installations, which implies they are not affordable in many situations. This study/paper proposes a monitoring and tracking system for people with medical problems. A virtual organization of agents based on the PANGEA platform, which allows the easy integration of different devices, was created for this study. In this case, a virtual organization was implemented to track and monitor patients carrying a Holter monitor. The system includes the hardware and software required to perform: ECG measurements, monitoring through accelerometers and WiFi networks. Furthermore, the use of interactive television can moderate interactivity with the user. The system makes it possible to merge the information and facilitates patient tracking efficiently with low cost. PMID:24905853

  7. The Real-Time Monitoring Service Platform for Land Supervision Based on Cloud Integration

    NASA Astrophysics Data System (ADS)

    Sun, J.; Mao, M.; Xiang, H.; Wang, G.; Liang, Y.

    2018-04-01

    Remote sensing monitoring has become the important means for land and resources departments to strengthen supervision. Aiming at the problems of low monitoring frequency and poor data currency in current remote sensing monitoring, this paper researched and developed the cloud-integrated real-time monitoring service platform for land supervision which enhanced the monitoring frequency by acquiring the domestic satellite image data overall and accelerated the remote sensing image data processing efficiency by exploiting the intelligent dynamic processing technology of multi-source images. Through the pilot application in Jinan Bureau of State Land Supervision, it has been proved that the real-time monitoring technical method for land supervision is feasible. In addition, the functions of real-time monitoring and early warning are carried out on illegal land use, permanent basic farmland protection and boundary breakthrough in urban development. The application has achieved remarkable results.

  8. Combinatorial evaluation of in vivo distribution of polyanhydride particle-based platforms for vaccine delivery

    PubMed Central

    Petersen, Latrisha K; Huntimer, Lucas; Walz, Katharine; Ramer-Tait, Amanda; Wannemuehler, Michael J; Narasimhan, Balaji

    2013-01-01

    Several challenges are associated with current vaccine strategies, including repeated immunizations, poor patient compliance, and limited approved routes for delivery, which may hinder induction of protective immunity. Thus, there is a need for new vaccine adjuvants capable of multi-route administration and prolonged antigen release at the site of administration by providing a depot within tissue. In this work, we designed a combinatorial platform to investigate the in vivo distribution, depot effect, and localized persistence of polyanhydride nanoparticles as a function of nanoparticle chemistry and administration route. Our observations indicated that the route of administration differentially affected tissue residence times. All nanoparticles rapidly dispersed when delivered intranasally but provided a depot when administered parenterally. When amphiphilic and hydrophobic nanoparticles were administered intranasally, they persisted within lung tissue. These results provide insights into the chemistry- and route-dependent distribution and tissue-specific association of polyanhydride nanoparticle-based vaccine adjuvants. PMID:23818778

  9. Combinatorial evaluation of in vivo distribution of polyanhydride particle-based platforms for vaccine delivery.

    PubMed

    Petersen, Latrisha K; Huntimer, Lucas; Walz, Katharine; Ramer-Tait, Amanda; Wannemuehler, Michael J; Narasimhan, Balaji

    2013-01-01

    Several challenges are associated with current vaccine strategies, including repeated immunizations, poor patient compliance, and limited approved routes for delivery, which may hinder induction of protective immunity. Thus, there is a need for new vaccine adjuvants capable of multi-route administration and prolonged antigen release at the site of administration by providing a depot within tissue. In this work, we designed a combinatorial platform to investigate the in vivo distribution, depot effect, and localized persistence of polyanhydride nanoparticles as a function of nanoparticle chemistry and administration route. Our observations indicated that the route of administration differentially affected tissue residence times. All nanoparticles rapidly dispersed when delivered intranasally but provided a depot when administered parenterally. When amphiphilic and hydrophobic nanoparticles were administered intranasally, they persisted within lung tissue. These results provide insights into the chemistry- and route-dependent distribution and tissue-specific association of polyanhydride nanoparticle-based vaccine adjuvants.

  10. Trading strategies in the overnight money market: Correlations and clustering on the e-MID trading platform

    NASA Astrophysics Data System (ADS)

    Fricke, Daniel

    2012-12-01

    We analyze the correlations in patterns of trading for members of the Italian interbank trading platform e-MID. The trading strategy of a particular member institution is defined as the sequence of (intra-) daily net trading volumes within a certain semester. Based on this definition, we show that there are significant and persistent bilateral correlations between institutions’ trading strategies. In most semesters we find two clusters, with positively (negatively) correlated trading strategies within (between) clusters. We show that the two clusters mostly contain continuous net buyers and net sellers of money, respectively, and that cluster memberships of individual banks are highly persistent. Additionally, we highlight some problems related to our definition of trading strategies. Our findings add further evidence on the fact that preferential lending relationships on the micro-level lead to community structure on the macro-level.

  11. Agents for Plan Monitoring and Repair

    DTIC Science & Technology

    2003-04-01

    events requires time and effort. In this paper, we describe how Heracles and Theseus , two information gathering and monitoring tools that we built...on an information agent platform, called Theseus , that provides the technology for efficiently executing agents for information gather- ing and...we can easily define a system for interactively planning a trip. The second is the Theseus information agent platform [Barish et al., 2000], which

  12. [Design and Application of High-risk Pregnancy Monitoring & Warning Internet Platform Based on Internet of Things].

    PubMed

    Lu, Heqing; Zhang, Xiaofeng; Li, Bin

    2017-09-30

    Through illustrating the designing of high-risk pregnancy maternal-fetal monitoring system based on the internet of things, this paper introduced the specific application of using wearable medical devices to provide maternal-fetal mobile medical services. With the help of big data and cloud obstetrics platform, the monitoring and warning network was further improved, the level-to-level administration of high-risk pregnancy was realized, the level of perinatal health care was enhanced and the risk of critical emergency of pregnancy decreased.

  13. Developing hydrological monitoring system based on HF radar for islands and reefs in the South China Sea

    NASA Astrophysics Data System (ADS)

    Li, J.; Shi, P.; Chen, J.; Zhu, Y.; Li, B.

    2016-12-01

    There are many islands (or reefs) in the South China Sea. The hydrological properties (currents and waves) around the islands are highly spatially variable compared to those of coastal region of mainland, because the shorelines are more complex with much smaller scale, and the topographies are step-shape with a much sharper slope. The currents and waves with high spatial variations may destroy the buildings or engineering on shorelines, or even influence the structural stability of reefs. Therefore, it is necessary to establish monitoring systems to obtain the high-resolution hydrological information. This study propose a plan for developing a hydrological monitoring system based on HF radar on the shoreline of a typical island in the southern South China Sea: firstly, the HF radar are integrated with auxiliary equipment (such as dynamo, fuel tank, air conditioner, communication facilities) in a container to build a whole monitoring platform; synchronously, several buoys are set within the radar visibility for data calibration and validation; and finally, the current and wave observations collected by the HF radar are assimilated with numerical models to obtain long-term and high-precision reanalysis products. To test the feasibility of this plan, our research group has built two HF radar sites at the western coastal region of Guangdong Province. The collected data were used to extract surface current information and assimilated with an ocean model. The results show that the data assimilation can highly improve the surface current simulation, especially for typhoon periods. Continuous data with intervals between 6 and 12 hour are the most suitable for ideal assimilations. On the other hand, the test also reveal that developing similar monitoring system on island environments need advanced radars that have higher resolutions and a better performance for persistent work.

  14. Photoelectrochemical Bioanalysis Platform for Cells Monitoring Based on Dual Signal Amplification Using in Situ Generation of Electron Acceptor Coupled with Heterojunction.

    PubMed

    Li, Ruyan; Zhang, Yue; Tu, Wenwen; Dai, Zhihui

    2017-07-12

    By using in situ generation of electron acceptor coupled with heterojunction as dual signal amplification, a simple photoelectrochemical (PEC) bioanalysis platform was designed. The synergic effect between the photoelectrochemical (PEC) activities of carbon nitride (C 3 N 4 ) nanosheets and PbS quantum dots (QDs) achieved almost nine-fold photocurrent intensity increment compared with the C 3 N 4 alone. After the G-quadruplex/hemin/Pt nanoparticles (NPs) with catalase-like activity toward H 2 O 2 were introduced, oxygen was in situ generated and acted as electron donor by improving charge separation efficiency and further enhancing photocurrent response. The dually amplified signal made enough sensitivity for monitoring H 2 O 2 released from live cells. The photocathode was prepared by the stepwise assembly of C 3 N 4 nanosheets and PbS QDs on indium tin oxide (ITO) electrode, which was characterized by scanning electron microscope. A signal-on protocol was achieved for H 2 O 2 detection in vitro due to the relevance of photocurrent on the concentration of H 2 O 2 . Under the optimized condition, the fabricated PEC bioanalysis platform exhibited a linear range of 10-7000 μM with a detection limit of 1.05 μM at S/N of 3. Besides, the bioanalysis platform displayed good selectivity against other reductive biological species. By using HepG2 cells as a model, a dual signal amplifying PEC bioanalysis platform for monitoring cells was developed. The bioanalysis platform was successfully applied to the detection of H 2 O 2 release from live cells, which provided a novel method for cells monitoring and would have prospect in clinical assay.

  15. Combined Optical Coherence and Fluorescence Microscopy to assess dynamics and specificity of pancreatic beta-cell tracers

    PubMed Central

    Berclaz, Corinne; Pache, Christophe; Bouwens, Arno; Szlag, Daniel; Lopez, Antonio; Joosten, Lieke; Ekim, Selen; Brom, Maarten; Gotthardt, Martin; Grapin-Botton, Anne; Lasser, Theo

    2015-01-01

    The identification of a beta-cell tracer is a major quest in diabetes research. However, since MRI, PET and SPECT cannot resolve individual islets, optical techniques are required to assess the specificity of these tracers. We propose to combine Optical Coherence Microscopy (OCM) with fluorescence detection in a single optical platform to facilitate these initial screening steps from cell culture up to living rodents. OCM can image islets and vascularization without any labeling. Thereby, it alleviates the need of both genetically modified mice to detect islets and injection of external dye to reveal vascularization. We characterized Cy5.5-exendin-3, an agonist of glucagon-like peptide 1 receptor (GLP1R), for which other imaging modalities have been used and can serve as a reference. Cultured cells transfected with GLP1R and incubated with Cy5.5-exendin-3 show full tracer internalization. We determined that a dose of 1 μg of Cy5.5-exendin-3 is sufficient to optically detect in vivo the tracer in islets with a high specificity. In a next step, time-lapse OCM imaging was used to monitor the rapid and specific tracer accumulation in murine islets and its persistence over hours. This optical platform represents a versatile toolbox for selecting beta-cell specific markers for diabetes research and future clinical diagnosis. PMID:25988507

  16. Multi-Platform Metabolomic Analyses of Rat Urine Following Exposure to Perfluorinated Chemicals (PFCs)

    EPA Science Inventory

    Perfluorinated chemicals (PFCs), namely perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), represent an emerging class of persistent and bioaccumulative compounds. Global occurrence of these fluorochemicals, coupled with probable human exposure, has prompted inv...

  17. Persistent PlatformsThe DDG 51 Case

    DTIC Science & Technology

    2015-09-30

    Retrieved from http://insidedefense.com Biernacki, P., & Waldorf, D. (1981). Snowball sampling : Problems and techniques of chain referral sampling ...indicators of successful shipbuilding practices (Government Accountability Office [GAO], 2009). This paper uses the “ snowball ” technique of data gathering

  18. Transport of pollutants in plumes and PEPES: a study of transport of pollutants in power plant plumes, urban and industrial plumes, and persistent elevated pollution episodes. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaughan, W.M.

    Because of the increased concern for the regional nature of secondary air pollutants (e.g., sulfates and oxidants) the U.S. Environmental Protection Agency (EPA) sponsored a major field program in the northeastern United States during the summer of 1980. Two EPA field programs were actually carried out simultaneously. One addressed persistent elevated pollution episodes, and the other continued the 1979 northeast regional oxidant study in developing part of the data base for the regional oxidant model. Field activities were based in Columbus, OH. Ten research aircraft and several mobile and stationary surface-monitoring platforms from three EPA contractors, seven Federal Agencies, andmore » four Universities participated in the intensive measurement program between 16 July and 15 August 1980. Pollutants measured included SO/sub 2/, NO, NOx, O/sub 3/, sulfate, nitrate, and aerosols. This report describes the contractors activities. Their aircraft logged over 350 flight hours in 100 missions ranging as far east as Laconia, NH, as far south as Montgomery, AL, as far west as Texarkana, AR, and as far north as Saginaw, MI. Descriptive analyses are summarized for urban plume missions and regional missions. The quality assurance program is described, showing the efforts made to develop a well coordinated data base. Sources for reports and data are provided.« less

  19. Airborne SAR systems for infrastructures monitoring

    NASA Astrophysics Data System (ADS)

    Perna, Stefano; Berardino, Paolo; Esposito, Carmen; Natale, Antonio

    2017-04-01

    The present contribution is aimed at showing the capabilities of Synthetic Aperture Radar (SAR) systems mounted onboard airborne platforms for the monitoring of infrastructures. As well known, airborne SAR systems guarantee narrower spatial coverage than satellite sensors [1]. On the other side, airborne SAR products are characterized by geometric resolution typically higher than that achievable in the satellite case, where larger antennas must be necessarily exploited. More important, airborne SAR platforms guarantee operational flexibility significantly higher than that achievable with satellite systems. Indeed, the revisit time between repeated SAR acquisitions in the satellite case cannot be freely decided, whereas in the airborne case it can be kept very short. This renders the airborne platforms of key interest for the monitoring of infrastructures, especially in case of emergencies. However, due to the platform deviations from a rectilinear, reference flight track, the generation of airborne SAR products is not a turn of the crank procedure as in the satellite case. Notwithstanding proper algorithms exist in order to circumvent this kind of limitations. In this work, we show how the exploitation of airborne SAR sensors, coupled to the use of such algorithms, allows obtaining high resolution monitoring of infrastructures in urban areas. [1] G. Franceschetti, and R.Lanari, Synthetic Aperture Radar Processing, CRC PRESS, New York, 1999.

  20. Label‐Free and Regenerative Electrochemical Microfluidic Biosensors for Continual Monitoring of Cell Secretomes

    PubMed Central

    Kilic, Tugba; Zhang, Yu Shrike; Avci, Huseyin; Hu, Ning; Kim, Duckjin; Branco, Cristina; Aleman, Julio; Massa, Solange; Silvestri, Antonia; Kang, Jian; Desalvo, Anna; Hussaini, Mohammed Abdullah; Chae, Su‐Kyoung; Polini, Alessandro; Bhise, Nupura; Hussain, Mohammad Asif; Lee, HeaYeon

    2017-01-01

    Development of an efficient sensing platform capable of continual monitoring of biomarkers is needed to assess the functionality of the in vitro organoids and to evaluate their biological responses toward pharmaceutical compounds or chemical species over extended periods of time. Here, a novel label‐free microfluidic electrochemical (EC) biosensor with a unique built‐in on‐chip regeneration capability for continual measurement of cell‐secreted soluble biomarkers from an organoid culture in a fully automated manner without attenuating the sensor sensitivity is reported. The microfluidic EC biosensors are integrated with a human liver‐on‐a‐chip platform for continual monitoring of the metabolic activity of the organoids by measuring the levels of secreted biomarkers for up to 7 d, where the metabolic activity of the organoids is altered by a systemically applied drug. The variations in the biomarker levels are successfully measured by the microfluidic regenerative EC biosensors and agree well with cellular viability and enzyme‐linked immunosorbent assay analyses, validating the accuracy of the unique sensing platform. It is believed that this versatile and robust microfluidic EC biosensor that is capable of automated and continual detection of soluble biomarkers will find widespread use for long‐term monitoring of human organoids during drug toxicity studies or efficacy assessments of in vitro platforms. PMID:28546915

  1. Automated microfluidic platform of bead-based electrochemical immunosensor integrated with bioreactor for continual monitoring of cell secreted biomarkers

    NASA Astrophysics Data System (ADS)

    Riahi, Reza; Shaegh, Seyed Ali Mousavi; Ghaderi, Masoumeh; Zhang, Yu Shrike; Shin, Su Ryon; Aleman, Julio; Massa, Solange; Kim, Duckjin; Dokmeci, Mehmet Remzi; Khademhosseini, Ali

    2016-04-01

    There is an increasing interest in developing microfluidic bioreactors and organs-on-a-chip platforms combined with sensing capabilities for continual monitoring of cell-secreted biomarkers. Conventional approaches such as ELISA and mass spectroscopy cannot satisfy the needs of continual monitoring as they are labor-intensive and not easily integrable with low-volume bioreactors. This paper reports on the development of an automated microfluidic bead-based electrochemical immunosensor for in-line measurement of cell-secreted biomarkers. For the operation of the multi-use immunosensor, disposable magnetic microbeads were used to immobilize biomarker-recognition molecules. Microvalves were further integrated in the microfluidic immunosensor chip to achieve programmable operations of the immunoassay including bead loading and unloading, binding, washing, and electrochemical sensing. The platform allowed convenient integration of the immunosensor with liver-on-chips to carry out continual quantification of biomarkers secreted from hepatocytes. Transferrin and albumin productions were monitored during a 5-day hepatotoxicity assessment in which human primary hepatocytes cultured in the bioreactor were treated with acetaminophen. Taken together, our unique microfluidic immunosensor provides a new platform for in-line detection of biomarkers in low volumes and long-term in vitro assessments of cellular functions in microfluidic bioreactors and organs-on-chips.

  2. Automated microfluidic platform of bead-based electrochemical immunosensor integrated with bioreactor for continual monitoring of cell secreted biomarkers

    PubMed Central

    Riahi, Reza; Shaegh, Seyed Ali Mousavi; Ghaderi, Masoumeh; Zhang, Yu Shrike; Shin, Su Ryon; Aleman, Julio; Massa, Solange; Kim, Duckjin; Dokmeci, Mehmet Remzi; Khademhosseini, Ali

    2016-01-01

    There is an increasing interest in developing microfluidic bioreactors and organs-on-a-chip platforms combined with sensing capabilities for continual monitoring of cell-secreted biomarkers. Conventional approaches such as ELISA and mass spectroscopy cannot satisfy the needs of continual monitoring as they are labor-intensive and not easily integrable with low-volume bioreactors. This paper reports on the development of an automated microfluidic bead-based electrochemical immunosensor for in-line measurement of cell-secreted biomarkers. For the operation of the multi-use immunosensor, disposable magnetic microbeads were used to immobilize biomarker-recognition molecules. Microvalves were further integrated in the microfluidic immunosensor chip to achieve programmable operations of the immunoassay including bead loading and unloading, binding, washing, and electrochemical sensing. The platform allowed convenient integration of the immunosensor with liver-on-chips to carry out continual quantification of biomarkers secreted from hepatocytes. Transferrin and albumin productions were monitored during a 5-day hepatotoxicity assessment in which human primary hepatocytes cultured in the bioreactor were treated with acetaminophen. Taken together, our unique microfluidic immunosensor provides a new platform for in-line detection of biomarkers in low volumes and long-term in vitro assessments of cellular functions in microfluidic bioreactors and organs-on-chips. PMID:27098564

  3. An Efficient Neural-Network-Based Microseismic Monitoring Platform for Hydraulic Fracture on an Edge Computing Architecture.

    PubMed

    Zhang, Xiaopu; Lin, Jun; Chen, Zubin; Sun, Feng; Zhu, Xi; Fang, Gengfa

    2018-06-05

    Microseismic monitoring is one of the most critical technologies for hydraulic fracturing in oil and gas production. To detect events in an accurate and efficient way, there are two major challenges. One challenge is how to achieve high accuracy due to a poor signal-to-noise ratio (SNR). The other one is concerned with real-time data transmission. Taking these challenges into consideration, an edge-computing-based platform, namely Edge-to-Center LearnReduce, is presented in this work. The platform consists of a data center with many edge components. At the data center, a neural network model combined with convolutional neural network (CNN) and long short-term memory (LSTM) is designed and this model is trained by using previously obtained data. Once the model is fully trained, it is sent to edge components for events detection and data reduction. At each edge component, a probabilistic inference is added to the neural network model to improve its accuracy. Finally, the reduced data is delivered to the data center. Based on experiment results, a high detection accuracy (over 96%) with less transmitted data (about 90%) was achieved by using the proposed approach on a microseismic monitoring system. These results show that the platform can simultaneously improve the accuracy and efficiency of microseismic monitoring.

  4. Comparisons of traffic-related ultrafine particle number concentrations measured in two urban areas by central, residential, and mobile monitoring

    NASA Astrophysics Data System (ADS)

    Simon, Matthew C.; Hudda, Neelakshi; Naumova, Elena N.; Levy, Jonathan I.; Brugge, Doug; Durant, John L.

    2017-11-01

    Traffic-related ultrafine particles (UFP; <100 nm diameter) are ubiquitous in urban air. While studies have shown that UFP are toxic, epidemiological evidence of health effects, which is needed to inform risk assessment at the population scale, is limited due to challenges of accurately estimating UFP exposures. Epidemiologic studies often use empirical models to estimate UFP exposures; however, the monitoring strategies upon which the models are based have varied between studies. Our study compares particle number concentrations (PNC; a proxy for UFP) measured by three different monitoring approaches (central-site, short-term residential-site, and mobile on-road monitoring) in two study areas in metropolitan Boston (MA, USA). Our objectives were to quantify ambient PNC differences between the three monitoring platforms, compare the temporal patterns and the spatial heterogeneity of PNC between the monitoring platforms, and identify factors that affect correlations across the platforms. We collected >12,000 h of measurements at the central sites, 1000 h of measurements at each of 20 residential sites in the two study areas, and >120 h of mobile measurements over the course of ∼1 year in each study area. Our results show differences between the monitoring strategies: mean 1 min PNC on-roads were higher (64,000 and 32,000 particles/cm3 in Boston and Chelsea, respectively) compared to central-site measurements (23,000 and 19,000 particles/cm3) and both were higher than at residences (14,000 and 15,000 particles/cm3). Temporal correlations and spatial heterogeneity also differed between the platforms. Temporal correlations were generally highest between central and residential sites, and lowest between central-site and on-road measurements. We observed the greatest spatial heterogeneity across monitoring platforms during the morning rush hours (06:00-09:00) and the lowest during the overnight hours (18:00-06:00). Longer averaging times (days and hours vs. minutes) increased temporal correlations (Pearson correlations were 0.69 and 0.60 vs. 0.39 in Boston; 0.71 and 0.61 vs. 0.45 in Chelsea) and reduced spatial heterogeneity (coefficients of divergence were 0.24 and 0.29 vs. 0.33 in Boston; 0.20 and 0.27 vs. 0.31 in Chelsea). Our results suggest that combining stationary and mobile monitoring may lead to improved characterization of UFP in urban areas.

  5. Near real time water resources data for river basin management

    NASA Technical Reports Server (NTRS)

    Paulson, R. W. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Twenty Data Collection Platforms (DCP) are being field installed on USGS water resources stations in the Delaware River Basin. DCP's have been successfully installed and are operating well on five stream gaging stations, three observation wells, and one water quality monitor in the basin. DCP's have been installed at nine additional water quality monitors, and work is progressing on interfacing the platforms to the monitors. ERTS-related water resources data from the platforms are being provided in near real time, by the Goddard Space Flight Center to the Pennsylvania district, Water Resources Division, U.S. Geological Survey. On a daily basis, the data are computer processed by the Survey and provided to the Delaware River Basin Commission. Each daily summary contains data that were relayed during 4 or 5 of the 15 orbits made by ERTS-1 during the previous day. Water resources parameters relays by the platforms include dissolved oxygen concentrations, temperature, pH, specific conductance, well level, and stream gage height, which is used to compute stream flow for the daily summary.

  6. A Mobile Multi-Agent Information System for Ubiquitous Fetal Monitoring

    PubMed Central

    Su, Chuan-Jun; Chu, Ta-Wei

    2014-01-01

    Electronic fetal monitoring (EFM) systems integrate many previously separate clinical activities related to fetal monitoring. Promoting the use of ubiquitous fetal monitoring services with real time status assessments requires a robust information platform equipped with an automatic diagnosis engine. This paper presents the design and development of a mobile multi-agent platform-based open information systems (IMAIS) with an automated diagnosis engine to support intensive and distributed ubiquitous fetal monitoring. The automatic diagnosis engine that we developed is capable of analyzing data in both traditional paper-based and digital formats. Issues related to interoperability, scalability, and openness in heterogeneous e-health environments are addressed through the adoption of a FIPA2000 standard compliant agent development platform—the Java Agent Development Environment (JADE). Integrating the IMAIS with light-weight, portable fetal monitor devices allows for continuous long-term monitoring without interfering with a patient’s everyday activities and without restricting her mobility. The system architecture can be also applied to vast monitoring scenarios such as elder care and vital sign monitoring. PMID:24452256

  7. [Implementation of Oncomelania hupensis monitoring system based on Baidu Map].

    PubMed

    Zhi-Hua, Chen; Yi-Sheng, Zhu; Zhi-Qiang, Xue; Xue-Bing, Li; Yi-Min, Ding; Li-Jun, Bi; Kai-Min, Gao; You, Zhang

    2017-10-25

    To construct the Oncomelania hupensis snail monitoring system based on the Baidu Map. The environmental basic information about historical snail environment and existing snail environment, etc. was collected with the monitoring data about different kinds of O. hupensis snails, and then the O. hupensis snail monitoring system was built. Geographic Information System (GIS) and the electronic fence technology and Application Program Interface (API) were applied to set up the electronic fence of the snail surveillance environments, and the electronic fence was connected to the database of the snail surveillance. The O. hupensis snail monitoring system based on the Baidu Map were built up, including three modules of O. hupensis Snail Monitoring Environmental Database, Dynamic Monitoring Platform and Electronic Map. The information about monitoring O. hupensis snails could be obtained through the computer and smartphone simultaneously. The O. hupensis snail monitoring system, which is based on Baidu Map, is a visible platform to follow the process of snailsearching and molluscaciding.

  8. Development and Application of integrated monitoring platform for the Doppler Weather SA-BAND Radar

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Sun, J.; Zhao, C. C.; Chen, H. Y.

    2017-10-01

    The doppler weather SA-band radar is an important part of modern meteorological observation methods, monitoring the running status of radar and the data transmission is important.This paper introduced the composition of radar system and classification of radar data,analysed the characteristics and laws of the radar when is normal or abnormal. Using Macromedia Dreamweaver and PHP, developed the integrated monitoring platform for the doppler weather SA-band radar which could monitor the real-time radar system running status and important performance indicators such as radar power,status parameters and others on Web page,and when the status is abnormal it will trigger the audio alarm.

  9. Research on Hydrodynamic Interference Suppression of Bottom-Mounted Monitoring Platform with Fairing Structure

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Zheng, Yi; Mao, Yu-feng; Wang, Ya-zhou; Yu, Yan-ting; Liu, Hong-ning

    2018-03-01

    In the disturbance of unsteady flow field under the sea, the monitoring accuracy and precision of the bottom-mounted acoustic monitoring platform will decrease. In order to reduce the hydrodynamic interference, the platform wrapped with fairing structure and separated from the retrieval unit is described. The suppression effect evaluation based on the correlation theory of sound pressure and particle velocity for spherical wave in infinite homogeneous medium is proposed and the difference value between them is used to evaluate the hydrodynamic restraining performance of the bottom-mounted platform under far field condition. Through the sea test, it is indicated that the platform with sparse layers fairing structure (there are two layers for the fairing, in which the inside layer is 6-layers sparse metal net, and the outside layer is 1-layer polyester cloth, and then it takes sparse layers for short) has no attenuation in the sound pressure response to the sound source signal, but obvious suppression in the velocity response to the hydrodynamic noise. The effective frequency of the fairing structure is decreased below 10 Hz, and the noise magnitude is reduced by 10 dB. With the comparison of different fairing structures, it is concluded that the tighter fairing structure can enhance the performance of sound transmission and flow restraining.

  10. Adherence monitoring with chronic opioid therapy for persistent pain: a biopsychosocial-spiritual approach to mitigate risk.

    PubMed

    Matteliano, Deborah; St Marie, Barbara J; Oliver, June; Coggins, Candace

    2014-03-01

    Opioids represent a mainstay in the pharmacologic management of persistent pain. Although these drugs are intended to support improved comfort and function, the inherent risk of abuse or addiction must be considered in the delivery of care. The experience of living with persistent pain often includes depression, fear, loss, and anxiety, leading to feelings of hopelessness, helplessness, and spiritual crisis. Collectively, these factors represent an increased risk for all patients, particularly those with a history of substance abuse or addiction. This companion article to the American Society for Pain Management Nursing "Position Statement on Pain Management in Patients with Substance Use Disorders" (2012) focuses on the intersection of persistent pain, substance use disorder (SUD), and chronic opioid therapy and the clinical implications of monitoring adherence with safe use of opioids for those with persistent pain. This paper presents an approach to the comprehensive assessment of persons with persistent pain when receiving opioid therapy by presenting an expansion of the biopsychosocial model to include spiritual factors associated with pain and SUD, thus formulating a biopsychosocial-spiritual approach to mitigate risk. Key principles are provided for adherence monitoring using the biopsychosocial-spiritual assessment model developed by the authors as a means of promoting sensitive and respectful care. Copyright © 2014 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.

  11. Unmanned aerial vehicle: A unique platform for low-altitude remote sensing for crop management

    USDA-ARS?s Scientific Manuscript database

    Unmanned aerial vehicles (UAV) provide a unique platform for remote sensing to monitor crop fields that complements remote sensing from satellite, aircraft and ground-based platforms. The UAV-based remote sensing is versatile at ultra-low altitude to be able to provide an ultra-high-resolution imag...

  12. Comparison of aerial imagery from manned and unmanned aircraft platforms for monitoring cotton growth

    USDA-ARS?s Scientific Manuscript database

    Unmanned aircraft systems (UAS) have emerged as a low-cost and versatile remote sensing platform in recent years, but little work has been done on comparing imagery from manned and unmanned platforms for crop assessment. The objective of this study was to compare imagery taken from multiple cameras ...

  13. Design and Development of a Telerehabilitation Platform for Patients With Phantom Limb Pain: A User-Centered Approach

    PubMed Central

    2017-01-01

    Background Phantom limb pain is a frequent and persistent problem following amputation. Achieving sustainable favorable effects on phantom limb pain requires therapeutic interventions such as mirror therapy that target maladaptive neuroplastic changes in the central nervous system. Unfortunately, patients’ adherence to unsupervised exercises is generally poor and there is a need for effective strategies such as telerehabilitation to support long-term self-management of patients with phantom limb pain. Objective The main aim of this study was to describe the user-centered approach that guided the design and development of a telerehabilitation platform for patients with phantom limb pain. We addressed 3 research questions: (1) Which requirements are defined by patients and therapists for the content and functions of a telerehabilitation platform and how can these requirements be prioritized to develop a first prototype of the platform? (2) How can the user interface of the telerehabilitation platform be designed so as to match the predefined critical user requirements and how can this interface be translated into a medium-fidelity prototype of the platform? (3) How do patients with phantom limb pain and their treating therapists judge the usability of the medium-fidelity prototype of the telerehabilitation platform in routine care and how can the platform be redesigned based on their feedback to achieve a high-fidelity prototype? Methods The telerehabilitation platform was developed using an iterative user-centered design process. In the first phase, a questionnaire followed by a semistructured interview was used to identify the user requirements of both the patients and their physical and occupational therapists, which were then prioritized using a decision matrix. The second phase involved designing the interface of the telerehabilitation platform using design sketches, wireframes, and interface mock-ups to develop a low-fidelity prototype. Heuristic evaluation resulted in a medium-fidelity prototype whose usability was tested in routine care in the final phase, leading to the development of a high-fidelity prototype. Results A total of 7 categories of patient requirements were identified: monitoring, exercise programs, communication, settings, background information, log-in, and general requirements. One additional category emerged for therapists: patient management. Based on these requirements, patient and therapist interfaces for the telerehabilitation platform were developed and redesigned by the software development team in an iterative process, addressing the usability problems that were reported by the users during 4 weeks of field testing in routine care. Conclusions Our findings underline the importance of involving the users and other stakeholders early and continuously in an iterative design process, as well as the need for clear criteria to identify critical user requirements. A decision matrix is presented that incorporates the views of various stakeholders in systematically rating and prioritizing user requirements. The findings and lessons learned might help health care providers, researchers, software designers, and other stakeholders in designing and evaluating new teletreatments, and hopefully increase the likelihood of user acceptance. PMID:28582249

  14. Nanophotonic Trapping for Precise Manipulation of Biomolecular Arrays

    PubMed Central

    Soltani, Mohammad; Lin, Jun; Forties, Robert A.; Inman, James T.; Saraf, Summer N.; Fulbright, Robert M.; Lipson, Michal; Wang, Michelle D.

    2014-01-01

    Optical trapping is a powerful manipulation and measurement technique widely employed in the biological and materials sciences1–8. Miniaturizing optical trap instruments onto optofluidic platforms holds promise for high throughput lab-on-chip applications9–16. However, a persistent challenge with existing optofluidic devices has been controlled and precise manipulation of trapped particles. Here we report a new class of on-chip optical trapping devices. Using photonic interference functionalities, an array of stable, three-dimensional on-chip optical traps is formed at the antinodes of a standing-wave evanescent field on a nanophotonic waveguide. By employing the thermo-optic effect via integrated electric microheaters, the traps can be repositioned at high speed (~ 30 kHz) with nanometer precision. We demonstrate sorting and manipulation of individual DNA molecules. In conjunction with laminar flows and fluorescence, we also show precise control of the chemical environment of a sample with simultaneous monitoring. Such a controllable trapping device has the potential for high-throughput precision measurements on chip. PMID:24776649

  15. Nanophotonic trapping for precise manipulation of biomolecular arrays.

    PubMed

    Soltani, Mohammad; Lin, Jun; Forties, Robert A; Inman, James T; Saraf, Summer N; Fulbright, Robert M; Lipson, Michal; Wang, Michelle D

    2014-06-01

    Optical trapping is a powerful manipulation and measurement technique widely used in the biological and materials sciences. Miniaturizing optical trap instruments onto optofluidic platforms holds promise for high-throughput lab-on-a-chip applications. However, a persistent challenge with existing optofluidic devices has been achieving controlled and precise manipulation of trapped particles. Here, we report a new class of on-chip optical trapping devices. Using photonic interference functionalities, an array of stable, three-dimensional on-chip optical traps is formed at the antinodes of a standing-wave evanescent field on a nanophotonic waveguide. By employing the thermo-optic effect via integrated electric microheaters, the traps can be repositioned at high speed (∼30 kHz) with nanometre precision. We demonstrate sorting and manipulation of individual DNA molecules. In conjunction with laminar flows and fluorescence, we also show precise control of the chemical environment of a sample with simultaneous monitoring. Such a controllable trapping device has the potential to achieve high-throughput precision measurements on chip.

  16. High-Resolution Air Pollution Mapping with Google Street View Cars: Exploiting Big Data.

    PubMed

    Apte, Joshua S; Messier, Kyle P; Gani, Shahzad; Brauer, Michael; Kirchstetter, Thomas W; Lunden, Melissa M; Marshall, Julian D; Portier, Christopher J; Vermeulen, Roel C H; Hamburg, Steven P

    2017-06-20

    Air pollution affects billions of people worldwide, yet ambient pollution measurements are limited for much of the world. Urban air pollution concentrations vary sharply over short distances (≪1 km) owing to unevenly distributed emission sources, dilution, and physicochemical transformations. Accordingly, even where present, conventional fixed-site pollution monitoring methods lack the spatial resolution needed to characterize heterogeneous human exposures and localized pollution hotspots. Here, we demonstrate a measurement approach to reveal urban air pollution patterns at 4-5 orders of magnitude greater spatial precision than possible with current central-site ambient monitoring. We equipped Google Street View vehicles with a fast-response pollution measurement platform and repeatedly sampled every street in a 30-km 2 area of Oakland, CA, developing the largest urban air quality data set of its type. Resulting maps of annual daytime NO, NO 2 , and black carbon at 30 m-scale reveal stable, persistent pollution patterns with surprisingly sharp small-scale variability attributable to local sources, up to 5-8× within individual city blocks. Since local variation in air quality profoundly impacts public health and environmental equity, our results have important implications for how air pollution is measured and managed. If validated elsewhere, this readily scalable measurement approach could address major air quality data gaps worldwide.

  17. Sensor and Processing COI (Briefing Charts)

    DTIC Science & Technology

    2014-05-27

    Persistent Surveillance • Target Detection, Recognition & ID at Standoff Ranges • Force/Platform/Sensor Protection • Target Tracking • Early Warning • BDA ...inhomogeneous and complex media is also a foundational challenge for President’s BRAIN initiative. 38 Explore Advanced Sensors And Processing

  18. Real Time, On Line Crop Monitoring and Analysis with Near Global Landsat-class Mosaics

    NASA Astrophysics Data System (ADS)

    Varlyguin, D.; Hulina, S.; Crutchfield, J.; Reynolds, C. A.; Frantz, R.

    2015-12-01

    The presentation will discuss the current status of GDA technology for operational, automated generation of 10-30 meter near global mosaics of Landsat-class data for visualization, monitoring, and analysis. Current version of the mosaic combines Landsat 8 and Landsat 7. Sentinel-2A imagery will be added once it is operationally available. The mosaics are surface reflectance calibrated and are analysis ready. They offer full spatial resolution and all multi-spectral bands of the source imagery. Each mosaic covers all major agricultural regions of the world and 16 day time window. 2014-most current dates are supported. The mosaics are updated in real-time, as soon as GDA downloads Landsat imagery, calibrates it to the surface reflectances, and generates data gap masks (all typically under 10 minutes for a Landsat scene). The technology eliminates the complex, multi-step, hands-on process of data preparation and provides imagery ready for repetitive, field-to-country analysis of crop conditions, progress, acreages, yield, and production. The mosaics can be used for real-time, on-line interactive mapping and time series drilling via GeoSynergy webGIS platform. The imagery is of great value for improved, persistent monitoring of global croplands and for the operational in-season analysis and mapping of crops across the globe in USDA FAS purview as mandated by the US government. The presentation will overview operational processing of Landsat-class mosaics in support of USDA FAS efforts and will look into 2015 and beyond.

  19. Low-cost mobile air pollution monitoring in urban environments: a pilot study in Lubbock, Texas.

    PubMed

    McKercher, Grant R; Vanos, Jennifer K

    2018-06-01

    The complex nature of air pollution in urban areas prevents traditional monitoring techniques from obtaining measurements representative of true human exposure. The current study assessed the capability of low-cost mobile monitors to acquire useful data in a city without a monitoring network in place (Lubbock, Texas) using a bicycle platform. The monitoring campaign resulted in 30 days of data along a 13.4 km fixed concentric route. Due to high sensitivities to airflow, the apparent wind velocity was accounted for throughout the route. The data were also normalized into percentiles in order to visualize spatial patterns. The highest estimated pollution levels were located near frequently busy intersections and roads; however, sensor issues resulted in lower confidence. Additional research is needed concerning the appropriate use of low-cost metal oxide sensors for citizen science applications, as measurements can be misleading if the user is unaware of sensors specifications. The simultaneous use of several low-cost mobile platforms, rather than a single platform, as well as the use of high-end cases, are recommended to create a more robust spatial analysis. The issues addressed from this research are important to understand for accurate and beneficial application of low-cost gaseous monitors for citizen science.

  20. Airborne Optical and Thermal Remote Sensing for Wildfire Detection and Monitoring.

    PubMed

    Allison, Robert S; Johnston, Joshua M; Craig, Gregory; Jennings, Sion

    2016-08-18

    For decades detection and monitoring of forest and other wildland fires has relied heavily on aircraft (and satellites). Technical advances and improved affordability of both sensors and sensor platforms promise to revolutionize the way aircraft detect, monitor and help suppress wildfires. Sensor systems like hyperspectral cameras, image intensifiers and thermal cameras that have previously been limited in use due to cost or technology considerations are now becoming widely available and affordable. Similarly, new airborne sensor platforms, particularly small, unmanned aircraft or drones, are enabling new applications for airborne fire sensing. In this review we outline the state of the art in direct, semi-automated and automated fire detection from both manned and unmanned aerial platforms. We discuss the operational constraints and opportunities provided by these sensor systems including a discussion of the objective evaluation of these systems in a realistic context.

  1. Fiber Optic Sensors for Structural Health Monitoring of Air Platforms

    PubMed Central

    Guo, Honglei; Xiao, Gaozhi; Mrad, Nezih; Yao, Jianping

    2011-01-01

    Aircraft operators are faced with increasing requirements to extend the service life of air platforms beyond their designed life cycles, resulting in heavy maintenance and inspection burdens as well as economic pressure. Structural health monitoring (SHM) based on advanced sensor technology is potentially a cost-effective approach to meet operational requirements, and to reduce maintenance costs. Fiber optic sensor technology is being developed to provide existing and future aircrafts with SHM capability due to its unique superior characteristics. This review paper covers the aerospace SHM requirements and an overview of the fiber optic sensor technologies. In particular, fiber Bragg grating (FBG) sensor technology is evaluated as the most promising tool for load monitoring and damage detection, the two critical SHM aspects of air platforms. At last, recommendations on the implementation and integration of FBG sensors into an SHM system are provided. PMID:22163816

  2. Airborne Optical and Thermal Remote Sensing for Wildfire Detection and Monitoring

    PubMed Central

    Allison, Robert S.; Johnston, Joshua M.; Craig, Gregory; Jennings, Sion

    2016-01-01

    For decades detection and monitoring of forest and other wildland fires has relied heavily on aircraft (and satellites). Technical advances and improved affordability of both sensors and sensor platforms promise to revolutionize the way aircraft detect, monitor and help suppress wildfires. Sensor systems like hyperspectral cameras, image intensifiers and thermal cameras that have previously been limited in use due to cost or technology considerations are now becoming widely available and affordable. Similarly, new airborne sensor platforms, particularly small, unmanned aircraft or drones, are enabling new applications for airborne fire sensing. In this review we outline the state of the art in direct, semi-automated and automated fire detection from both manned and unmanned aerial platforms. We discuss the operational constraints and opportunities provided by these sensor systems including a discussion of the objective evaluation of these systems in a realistic context. PMID:27548174

  3. Persistent Surveillance of Transient Events with Unknown Statistics

    DTIC Science & Technology

    2016-12-18

    different bird species by a documentary maker is shown in Fig. 1. Additional examples of scenarios following this setting include robots patrolling the...persistent monitoring application in which a documentary maker would like to monitor three different species of birds appearing in three discrete, species...specific locations. Bird sightings at each location follow a stochastic process with a rate that is initially unknown to the documentary maker and must

  4. Monitoring service for the Gran Telescopio Canarias control system

    NASA Astrophysics Data System (ADS)

    Huertas, Manuel; Molgo, Jordi; Macías, Rosa; Ramos, Francisco

    2016-07-01

    The Monitoring Service collects, persists and propagates the Telescope and Instrument telemetry, for the Gran Telescopio CANARIAS (GTC), an optical-infrared 10-meter segmented mirror telescope at the ORM observatory in Canary Islands (Spain). A new version of the Monitoring Service has been developed in order to improve performance, provide high availability, guarantee fault tolerance and scalability to cope with high volume of data. The architecture is based on a distributed in-memory data store with a Product/Consumer pattern design. The producer generates the data samples. The consumers either persists the samples to a database for further analysis or propagates them to the consoles in the control room to monitorize the state of the whole system.

  5. InteractInteraction mechanism of emergency response in geological hazard perception and risk management: a case study in Zhouqu county

    NASA Astrophysics Data System (ADS)

    Qi, Yuan; Zhao, Hongtao

    2017-04-01

    China is one of few several natural disaster prone countries, which has complex geological and geographical environment and abnormal climate. On August 8, 2010, a large debris flow disaster happened in Zhouqu Country, Gansu province, resulting in more than 1700 casualties and more than 200 buildings damaged. In order to percept landslide and debris flow, an early warning system was established in the county. Spatial information technologies, such as remote sensing, GIS, and GPS, play core role in the early warning system, due to their functions in observing, analyzing, and locating geological disasters. However, all of these spatial information technologies could play an important role only guided by the emergency response mechanism. This article takes the establishment of Zhouqu Country's Disaster Emergency Response Interaction Mechanism (DERIM) as an example to discuss the risk management of country-level administrative units. The country-level risk management aims to information sharing, resources integration, integrated prevention and unified command. Then, nine subsystems support DERIM, which included disaster prevention and emergency data collection and sharing system, joint duty system, disaster verification and evaluation system, disaster consultation system, emergency warning and information release system, emergency response system, disaster reporting system, plan management system, mass prediction and prevention management system. At last, an emergency command platform in Zhouqu Country built up to realize DERIM. The core mission of the platform consists of daily management of disaster, monitoring and warning, comprehensive analysis, information release, consultation and decision-making, emergency response, etc. Five functional modules, including module of disaster information management, comprehensive monitoring module (geological monitoring, meteorological monitoring, water conservancy and hydrological monitoring), alarm management module, emergency command and disaster dispatching management module are developed on the basis of this platform. Based on the internet technology, an web-based office platform is exploited for the nodes scattered in departments and towns, which includes daily business, monitoring and warning, alarm notification, alarm recording, personnel management and update in disaster region, query and analysis of real-time observation data, etc. The platform experienced 3 years' test of the duty in flood period since 2013, and two typical disaster cases during this period fully illustrates the effectiveness of the DERIM and the emergency command platform.

  6. Persistence of Antibodies to West Nile Virus in Naturally Infected Rock Pigeons (Columba livia)

    PubMed Central

    Gibbs, Samantha E. J.; Hoffman, Douglas M.; Stark, Lillian M.; Marlenee, Nicole L.; Blitvich, Bradley J.; Beaty, Barry J.; Stallknecht, David E.

    2005-01-01

    Wild caught rock pigeons (Columba livia) with antibodies to West Nile virus were monitored for 15 months to determine antibody persistence and compare results of three serologic techniques. Antibodies persisted for the entire study as detected by epitope-blocking enzyme-linked immunosorbent assay and plaque reduction neutralization test. Maternal antibodies in squabs derived from seropositive birds persisted for an average of 27 days. PMID:15879030

  7. Home-made temperature monitoring system from four-channel K-type thermocouples via internet of thing technology platform

    NASA Astrophysics Data System (ADS)

    Detmod, Thitaporn; Özmen, Yiǧiter; Songkaitiwong, Kittiphot; Saenyot, Khanuengchat; Locharoenrat, Kitsakorn; Lekchaum, Sarai

    2018-06-01

    This paper is aimed to design and construct the home-made temperature monitoring system from four-channel K-type thermocouples in order to improve the temperature measurement based on standard evaluation measurements guidance. The temperature monitoring system was capable to record the temperature on SD card and to display the realtime temperature on Internet of Thing Technology platform. The temperature monitoring system was tested in terms of the temperature measurement accuracy and delay response time. It was found that a standard deviation was acceptable as compared to the Instrument Society of America. The response time of the microcontroller to SD card was 2 sec faster than that of the microcontroller to Thingspeak.

  8. Balance Regularity Among Former High School Football Players With or Without a History of Concussion.

    PubMed

    Schmidt, Julianne D; Terry, Douglas P; Ko, Jihyun; Newell, Karl M; Miller, L Stephen

    2018-02-01

      Subclinical postural-control changes may persist beyond the point when athletes are considered clinically recovered postconcussion.   To compare postural-control performance between former high school football players with or without a history of concussion using linear and nonlinear metrics.   Case-control study.   Clinical research laboratory.   A total of 11 former high school football players (age range, 45-60 years) with 2 or more concussions and 11 age- and height-matched former high school football players without a history of concussion. No participant had college or professional football experience.   Participants completed the Sensory Organization Test. We compared postural control (linear: equilibrium scores; nonlinear: sample and multiscale entropy) between groups using a 2 × 3 analysis of variance across conditions 4 to 6 (4: eyes open, sway-referenced platform; 5: eyes closed, sway-referenced platform; 6: eyes open, sway-referenced surround and platform).   We observed a group-by-condition interaction effect for medial-lateral sample entropy ( F 2,40 = 3.26, P = .049, η p 2 = 0.140). Participants with a history of concussion presented with more regular medial-lateral sample entropy values (0.90 ± 0.41) for condition 5 than participants without a history of concussion (1.30 ± 0.35; mean difference = -0.40; 95% confidence interval [CI] = -0.74, -0.06; t 20 = -2.48, P = .02), but conditions 4 (mean difference = -0.11; 95% CI: -0.37, 0.15; t 20 = -0.86, P = .40) and 6 (mean difference = -0.25; 95% CI: -0.55, 0.06; t 20 = -1.66, P = .11) did not differ between groups.   Postconcussion deficits, detected using nonlinear metrics, may persist long after injury resolution. Subclinical concussion deficits may persist for years beyond clinical concussion recovery.

  9. Mission and sensor concepts for coastal and ocean monitoring using spacecraft and aircraft

    NASA Technical Reports Server (NTRS)

    Darnell, W. L.

    1980-01-01

    A concept developed for a 1990 oceanic mission which places strong emphasis on coastal monitoring needs is described and analysed. The concept assumes that use of one active spacecraft in orbit and one on standby plus airplanes and data collection platforms which provide continuing complementary coverage and surface truth. The coastal measurement requirements and goals, the prospective oceanic and coastal sensors, the spacecraft and aircraft data platforms, and the prospective orbit designs are discussed.

  10. Publishing Platform for Scientific Software - Lessons Learned

    NASA Astrophysics Data System (ADS)

    Hammitzsch, Martin; Fritzsch, Bernadette; Reusser, Dominik; Brembs, Björn; Deinzer, Gernot; Loewe, Peter; Fenner, Martin; van Edig, Xenia; Bertelmann, Roland; Pampel, Heinz; Klump, Jens; Wächter, Joachim

    2015-04-01

    Scientific software has become an indispensable commodity for the production, processing and analysis of empirical data but also for modelling and simulation of complex processes. Software has a significant influence on the quality of research results. For strengthening the recognition of the academic performance of scientific software development, for increasing its visibility and for promoting the reproducibility of research results, concepts for the publication of scientific software have to be developed, tested, evaluated, and then transferred into operations. For this, the publication and citability of scientific software have to fulfil scientific criteria by means of defined processes and the use of persistent identifiers, similar to data publications. The SciForge project is addressing these challenges. Based on interviews a blueprint for a scientific software publishing platform and a systematic implementation plan has been designed. In addition, the potential of journals, software repositories and persistent identifiers have been evaluated to improve the publication and dissemination of reusable software solutions. It is important that procedures for publishing software as well as methods and tools for software engineering are reflected in the architecture of the platform, in order to improve the quality of the software and the results of research. In addition, it is necessary to work continuously on improving specific conditions that promote the adoption and sustainable utilization of scientific software publications. Among others, this would include policies for the development and publication of scientific software in the institutions but also policies for establishing the necessary competencies and skills of scientists and IT personnel. To implement the concepts developed in SciForge a combined bottom-up / top-down approach is considered that will be implemented in parallel in different scientific domains, e.g. in earth sciences, climate research and the life sciences. Based on the developed blueprints a scientific software publishing platform will be iteratively implemented, tested, and evaluated. Thus the platform should be developed continuously on the basis of gained experiences and results. The platform services will be extended one by one corresponding to the requirements of the communities. Thus the implemented platform for the publication of scientific software can be improved and stabilized incrementally as a tool with software, science, publishing, and user oriented features.

  11. Cricket: A Mapped, Persistent Object Store

    NASA Technical Reports Server (NTRS)

    Shekita, Eugene; Zwilling, Michael

    1996-01-01

    This paper describes Cricket, a new database storage system that is intended to be used as a platform for design environments and persistent programming languages. Cricket uses the memory management primitives of the Mach operating system to provide the abstraction of a shared, transactional single-level store that can be directly accessed by user applications. In this paper, we present the design and motivation for Cricket. We also present some initial performance results which show that, for its intended applications, Cricket can provide better performance than a general-purpose database storage system.

  12. Participatory Planning, Monitoring and Evaluation of Multi-Stakeholder Platforms in Integrated Landscape Initiatives.

    PubMed

    Kusters, Koen; Buck, Louise; de Graaf, Maartje; Minang, Peter; van Oosten, Cora; Zagt, Roderick

    2018-07-01

    Integrated landscape initiatives typically aim to strengthen landscape governance by developing and facilitating multi-stakeholder platforms. These are institutional coordination mechanisms that enable discussions, negotiations, and joint planning between stakeholders from various sectors in a given landscape. Multi-stakeholder platforms tend to involve complex processes with diverse actors, whose objectives and focus may be subjected to periodic re-evaluation, revision or reform. In this article we propose a participatory method to aid planning, monitoring, and evaluation of such platforms, and we report on experiences from piloting the method in Ghana and Indonesia. The method is comprised of three components. The first can be used to look ahead, identifying priorities for future multi-stakeholder collaboration in the landscape. It is based on the identification of four aspirations that are common across multi-stakeholder platforms in integrated landscape initiatives. The second can be used to look inward. It focuses on the processes within an existing multi-stakeholder platform in order to identify areas for possible improvement. The third can be used to look back, identifying the main outcomes of an existing platform and comparing them to the original objectives. The three components can be implemented together or separately. They can be used to inform planning and adaptive management of the platform, as well as to demonstrate performance and inform the design of new interventions.

  13. SERVIR-Africa: Developing an Integrated Platform for Floods Disaster Management in Africa

    NASA Technical Reports Server (NTRS)

    Macharia, Daniel; Korme, Tesfaye; Policelli, Fritz; Irwin, Dan; Adler, Bob; Hong, Yang

    2010-01-01

    SERVIR-Africa is an ambitious regional visualization and monitoring system that integrates remotely sensed data with predictive models and field-based data to monitor ecological processes and respond to natural disasters. It aims addressing societal benefits including floods and turning data into actionable information for decision-makers. Floods are exogenous disasters that affect many parts of Africa, probably second only to drought in terms of social-economic losses. This paper looks at SERVIR-Africa's approach to floods disaster management through establishment of an integrated platform, floods prediction models, post-event flood mapping and monitoring as well as flood maps dissemination in support of flood disaster management.

  14. Comparisons of Traffic-Related Ultrafine Particle Number Concentrations Measured in Two Urban Areas by Central, Residential, and Mobile Monitoring.

    PubMed

    Simon, Matthew C; Hudda, Neelakshi; Naumova, Elena N; Levy, Jonathan I; Brugge, Doug; Durant, John L

    2017-11-01

    Traffic-related ultrafine particles (UFP; <100 nanometers diameter) are ubiquitous in urban air. While studies have shown that UFP are toxic, epidemiological evidence of health effects, which is needed to inform risk assessment at the population scale, is limited due to challenges of accurately estimating UFP exposures. Epidemiologic studies often use empirical models to estimate UFP exposures; however, the monitoring strategies upon which the models are based have varied between studies. Our study compares particle number concentrations (PNC; a proxy for UFP) measured by three different monitoring approaches (central-site, short-term residential-site, and mobile on-road monitoring) in two study areas in metropolitan Boston (MA, USA). Our objectives were to quantify ambient PNC differences between the three monitoring platforms, compare the temporal patterns and the spatial heterogeneity of PNC between the monitoring platforms, and identify factors that affect correlations across the platforms. We collected >12,000 hours of measurements at the central sites, 1,000 hours of measurements at each of 20 residential sites in the two study areas, and >120 hours of mobile measurements over the course of ~1 year in each study area. Our results show differences between the monitoring strategies: mean one-minute PNC on-roads were higher (64,000 and 32,000 particles/cm 3 in Boston and Chelsea, respectively) compared to central-site measurements (23,000 and 19,000 particles/cm 3 ) and both were higher than at residences (14,000 and 15,000 particles/cm 3 ). Temporal correlations and spatial heterogeneity also differed between the platforms. Temporal correlations were generally highest between central and residential sites, and lowest between central-site and on-road measurements. We observed the greatest spatial heterogeneity across monitoring platforms during the morning rush hours (06:00-09:00) and the lowest during the overnight hours (18:00-06:00). Longer averaging times (days and hours vs. minutes) increased temporal correlations (Pearson correlations were 0.69 and 0.60 vs. 0.39 in Boston; 0.71 and 0.61 vs. 0.45 in Chelsea) and reduced spatial heterogeneity (coefficients of divergence were 0.24 and 0.29 vs. 0.33 in Boston; 0.20 and 0.27 vs. 0.31 in Chelsea). Our results suggest that combining stationary and mobile monitoring may lead to improved characterization of UFP in urban areas and thereby lead to improved exposure assignment for epidemiology studies.

  15. Use of a Novel Artificial Intelligence Platform on Mobile Devices to Assess Dosing Compliance in a Phase 2 Clinical Trial in Subjects With Schizophrenia

    PubMed Central

    2017-01-01

    Background Accurately monitoring and collecting drug adherence data can allow for better understanding and interpretation of the outcomes of clinical trials. Most clinical trials use a combination of pill counts and self-reported data to measure drug adherence, despite the drawbacks of relying on these types of indirect measures. It is assumed that doses are taken, but the exact timing of these events is often incomplete and imprecise. Objective The objective of this pilot study was to evaluate the use of a novel artificial intelligence (AI) platform (AiCure) on mobile devices for measuring medication adherence, compared with modified directly observed therapy (mDOT) in a substudy of a Phase 2 trial of the α7 nicotinic receptor agonist (ABT-126) in subjects with schizophrenia. Methods AI platform generated adherence measures were compared with adherence inferred from drug concentration measurements. Results The mean cumulative pharmacokinetic adherence over 24 weeks was 89.7% (standard deviation [SD] 24.92) for subjects receiving ABT-126 who were monitored using the AI platform, compared with 71.9% (SD 39.81) for subjects receiving ABT-126 who were monitored by mDOT. The difference was 17.9% (95% CI -2 to 37.7; P=.08). Conclusions Using drug levels, this substudy demonstrates the potential of AI platforms to increase adherence, rapidly detect nonadherence, and predict future nonadherence. Subjects monitored using the AI platform demonstrated a percentage change in adherence of 25% over the mDOT group. Subjects were able to use the technology successfully for up to 6 months in an ambulatory setting with early termination rates that are comparable to subjects outside of the substudy. Trial Registration ClinicalTrials.gov NCT01655680 https://clinicaltrials.gov/ct2/show/NCT01655680?term=NCT01655680 PMID:28223265

  16. Use of a Novel Artificial Intelligence Platform on Mobile Devices to Assess Dosing Compliance in a Phase 2 Clinical Trial in Subjects With Schizophrenia.

    PubMed

    Bain, Earle E; Shafner, Laura; Walling, David P; Othman, Ahmed A; Chuang-Stein, Christy; Hinkle, John; Hanina, Adam

    2017-02-21

    Accurately monitoring and collecting drug adherence data can allow for better understanding and interpretation of the outcomes of clinical trials. Most clinical trials use a combination of pill counts and self-reported data to measure drug adherence, despite the drawbacks of relying on these types of indirect measures. It is assumed that doses are taken, but the exact timing of these events is often incomplete and imprecise. The objective of this pilot study was to evaluate the use of a novel artificial intelligence (AI) platform (AiCure) on mobile devices for measuring medication adherence, compared with modified directly observed therapy (mDOT) in a substudy of a Phase 2 trial of the α7 nicotinic receptor agonist (ABT-126) in subjects with schizophrenia. AI platform generated adherence measures were compared with adherence inferred from drug concentration measurements. The mean cumulative pharmacokinetic adherence over 24 weeks was 89.7% (standard deviation [SD] 24.92) for subjects receiving ABT-126 who were monitored using the AI platform, compared with 71.9% (SD 39.81) for subjects receiving ABT-126 who were monitored by mDOT. The difference was 17.9% (95% CI -2 to 37.7; P=.08). Using drug levels, this substudy demonstrates the potential of AI platforms to increase adherence, rapidly detect nonadherence, and predict future nonadherence. Subjects monitored using the AI platform demonstrated a percentage change in adherence of 25% over the mDOT group. Subjects were able to use the technology successfully for up to 6 months in an ambulatory setting with early termination rates that are comparable to subjects outside of the substudy. ClinicalTrials.gov NCT01655680 https://clinicaltrials.gov/ct2/show/NCT01655680?term=NCT01655680. ©Earle E Bain, Laura Shafner, David P Walling, Ahmed A Othman, Christy Chuang-Stein, John Hinkle, Adam Hanina. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 21.02.2017.

  17. A Novel Software Platform Extending Advances in Monitoring Technologies to On-demand Decision Support

    NASA Astrophysics Data System (ADS)

    Ormerod, R.; Scholl, M.

    2017-12-01

    Rapid evolution is occurring in the monitoring and assessment of air emissions and their impacts. The development of next generation lower cost sensor technologies creates the potential for much more intensive and far-reaching monitoring networks that provide spatially rich data. While much attention at present is being directed at the types and performance characteristics of sensor technologies, it is important also that the full potential of rich data sources be realized. Parallel to sensor developments, software platforms to display and manage data in real time are increasingly common adjuncts to sensor networks. However, the full value of data can be realized by extending platform capabilities to include complex scientific functions that are integrated into an action-oriented management framework. Depending on the purpose and nature of a monitoring network, there will be a variety of potential uses of the data or its derivatives, for example: statistical analysis for policy development, event analysis, real-time issue management including emergency response and complaints, and predictive management. Moving these functions into an on-demand, optionally mobile, environment greatly increases the value and accessibility of the data. Increased interplay between monitoring data and decision-making in an operational environment is optimised by a system that is designed with equal weight on technical robustness and user experience. A system now being used by several regulatory agencies and a larger number of industries in the US, Latin America, Europe, Australia and Asia has been developed to provide a wide range of on-demand decision-support in addition to the basic data collection, display and management that most platforms offer. With stable multi-year operation, the platform, known as Envirosuite, is assisting organisations to both reduce operating costs and improve environmental performance. Some current examples of its application across a range of applications for regulatory and industry organisations is described and demonstrated.

  18. HuMOVE: a low-invasive wearable monitoring platform in sexual medicine.

    PubMed

    Ciuti, Gastone; Nardi, Matteo; Valdastri, Pietro; Menciassi, Arianna; Basile Fasolo, Ciro; Dario, Paolo

    2014-10-01

    To investigate an accelerometer-based wearable system, named Human Movement (HuMOVE) platform, designed to enable quantitative and continuous measurement of sexual performance with minimal invasiveness and inconvenience for users. Design, implementation, and development of HuMOVE, a wearable platform equipped with an accelerometer sensor for monitoring inertial parameters for sexual performance assessment and diagnosis, were performed. The system enables quantitative measurement of movement parameters during sexual intercourse, meeting the requirements of wearability, data storage, sampling rate, and interfacing methods, which are fundamental for human sexual intercourse performance analysis. HuMOVE was validated through characterization using a controlled experimental test bench and evaluated in a human model during simulated sexual intercourse conditions. HuMOVE demonstrated to be a robust and quantitative monitoring platform and a reliable candidate for sexual performance evaluation and diagnosis. Characterization analysis on the controlled experimental test bench demonstrated an accurate correlation between the HuMOVE system and data from a reference displacement sensor. Experimental tests in the human model during simulated intercourse conditions confirmed the accuracy of the sexual performance evaluation platform and the effectiveness of the selected and derived parameters. The obtained outcomes also established the project expectations in terms of usability and comfort, evidenced by the questionnaires that highlighted the low invasiveness and acceptance of the device. To the best of our knowledge, HuMOVE platform is the first device for human sexual performance analysis compatible with sexual intercourse; the system has the potential to be a helpful tool for physicians to accurately classify sexual disorders, such as premature or delayed ejaculation. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. REmote SUpervision to Decrease HospitaLization RaTe. Unified and integrated platform for data collected from devices manufactured by different companies: Design and rationale of the RESULT study.

    PubMed

    Tajstra, Mateusz; Sokal, Adam; Gwóźdź, Arkadiusz; Wilczek, Marcin; Gacek, Adam; Wojciechowski, Konrad; Gadula-Gacek, Elżbieta; Adamowicz-Czoch, Elżbieta; Chłosta-Niepiekło, Katarzyna; Milewski, Krzysztof; Rozentryt, Piotr; Kalarus, Zbigniew; Gąsior, Mariusz; Poloński, Lech

    2017-07-01

    The number of patients with heart failure implantable cardiac electronic devices (CIEDs) is growing. Hospitalization rate in this group is very high and generates enormous costs. To avoid the need for hospital treatment, optimized monitoring and follow-up is crucial. Remote monitoring (RM) has been widely put into practice in the management of CIEDs but it may be difficult due to the presence of differences in systems provided by device manufacturers and loss of gathered data in case of device reimplantation. Additionally, conclusions derived from studies about usefulness of RM in clinical practice apply to devices coming only from a single company. An integrated monitoring platform allows for more comprehensive data analysis and interpretation. Therefore, the primary objective of Remote Supervision to Decrease Hospitalization Rate (RESULT) study is to evaluate the impact of RM on the clinical status of patients with ICDs or CRT-Ds using an integrated platform. Six hundred consecutive patients with ICDs or CRT-Ds implanted will be prospectively randomized to either a traditional or RM-based follow-up model. The primary clinical endpoint will be a composite of all-cause mortality or hospitalization for cardiovascular reasons within 12 months after randomization. The primary technical endpoint will be to construct and evaluate a unified and integrated platform for the data collected from RM devices manufactured by different companies. This manuscript describes the design and methodology of the prospective, randomized trial designed to determine whether remote monitoring using an integrated platform for different companies is safe, feasible, and efficacious (ClinicalTrials.gov Identifier: NCT02409225). © 2016 Wiley Periodicals, Inc.

  20. Monitoring surface water quality using social media in the context of citizen science

    NASA Astrophysics Data System (ADS)

    Zheng, Hang; Hong, Yang; Long, Di; Jing, Hua

    2017-02-01

    Surface water quality monitoring (SWQM) provides essential information for water environmental protection. However, SWQM is costly and limited in terms of equipment and sites. The global popularity of social media and intelligent mobile devices with GPS and photography functions allows citizens to monitor surface water quality. This study aims to propose a method for SWQM using social media platforms. Specifically, a WeChat-based application platform is built to collect water quality reports from volunteers, which have been proven valuable for water quality monitoring. The methods for data screening and volunteer recruitment are discussed based on the collected reports. The proposed methods provide a framework for collecting water quality data from citizens and offer a primary foundation for big data analysis in future research.

  1. Wearable Platform for Real-time Monitoring of Sodium in Sweat.

    PubMed

    McCaul, Margaret; Porter, Adam; Barrett, Ruairi; White, Paddy; Stroiescu, Florien; Wallace, Gordon; Diamond, Dermot

    2018-06-19

    A fully integrated and wearable platform for harvesting and analysing sweat sodium concentration in real time during exercise has been developed and tested. The platform was largely produced using 3D printing, which greatly simplifies fabrication and operation compared to previous versions generated with traditional production techniques. The 3D printed platform doubles the capacity of the sample storage reservoir to about 1.3 ml, reduces the assembly time and provides simple and precise component alignment and contact of the integrated solid-state ion-selective and reference electrodes with the sorbent material. The sampling flowrate in the device can be controlled by introducing threads to enhance wicking of sweat from the skin, across the electrodes to the storage area. The platform was characterised in the lab and in exercise trials over a period of about 60 minutes continuous monitoring. Sweat sodium concentration was found to rise initially to approximately 17 mM and decline gradually over the period of the trial to about 11-12 mM. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Six years of monitoring annual changes in a freshwater marsh with SPOT HRV data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, H.E. Jr.

    1992-01-01

    Fifteen dates of spring-time SPOT HRV data along with near-concurrent vertical aerial photographic and phenological data from spring 1987 through spring 1992 were analyzed to monitor annual changes in a 150-hectare, southeastern floodplain marsh. The marsh underwent rapid changes during the six years from a swamp dominated by non-persistent, thermally tolerant macrophytes to persistent macrophyte and shrub-scrub communities as reactor discharges declined to Pen Branch. Savannah River flooding was also important in the timing of the shift of these wetland communities. SPOT HRV data proved to be an efficient and effective method to monitor trends in these wetland community changes.

  3. Six years of monitoring annual changes in a freshwater marsh with SPOT HRV data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, H.E. Jr.

    1992-12-01

    Fifteen dates of spring-time SPOT HRV data along with near-concurrent vertical aerial photographic and phenological data from spring 1987 through spring 1992 were analyzed to monitor annual changes in a 150-hectare, southeastern floodplain marsh. The marsh underwent rapid changes during the six years from a swamp dominated by non-persistent, thermally tolerant macrophytes to persistent macrophyte and shrub-scrub communities as reactor discharges declined to Pen Branch. Savannah River flooding was also important in the timing of the shift of these wetland communities. SPOT HRV data proved to be an efficient and effective method to monitor trends in these wetland community changes.

  4. A Platform to Monitor Tumor Cellular and Vascular Response to Radiation Therapy by Optical Coherence Tomography and Fluorescence Microscopy in vivo

    NASA Astrophysics Data System (ADS)

    Leung, Michael Ka Kit

    Radiotherapy plays a significant role in cancer treatment, and is thought to be curative by mainly killing tumor cells through damage to their genetic material. However, recent findings indicate that the tumor's vascular blood supply is also a major determinant of radiation response. The goals of this thesis are to: (1) develop an experimental platform for small animals to deliver ionizing radiation and perform high-resolution optical imaging to treatment targets, and (2) use this toolkit to longitudinally monitor the response of tumors and the associated vasculature. The thesis has achieved: (1) customization of a novel micro-irradiator for mice, (2) technical development of an improved optical coherence tomography imaging system, (3) comprehensive experimental protocol and imaging optimization for optical microscopy in a specialized animal model, and (4) completion of a feasibility study to demonstrate the capabilities of the experimental platform in monitoring the response of tumor and vasculature to radiotherapy.

  5. Thermal Analysis for Monitoring Effects of Shock-Induced Physical, Mechanical, and Chemical Changes in Materials

    DTIC Science & Technology

    2015-01-19

    MS WINDOWS platform, which enables multitasking with simultaneous evaluation and operation 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13...measurement and analysis software for data acquisition, storage and evaluation with MS WINDOWS platform, which enables multitasking with simultaneous...Proteus measurement and analysis software for data acquisition, storage and evaluation with MS WINDOWS platform, which enables multitasking with

  6. Design and Development of a Telerehabilitation Platform for Patients With Phantom Limb Pain: A User-Centered Approach.

    PubMed

    Rothgangel, Andreas; Braun, Susy; Smeets, Rob; Beurskens, Anna

    2017-02-15

    Phantom limb pain is a frequent and persistent problem following amputation. Achieving sustainable favorable effects on phantom limb pain requires therapeutic interventions such as mirror therapy that target maladaptive neuroplastic changes in the central nervous system. Unfortunately, patients' adherence to unsupervised exercises is generally poor and there is a need for effective strategies such as telerehabilitation to support long-term self-management of patients with phantom limb pain. The main aim of this study was to describe the user-centered approach that guided the design and development of a telerehabilitation platform for patients with phantom limb pain. We addressed 3 research questions: (1) Which requirements are defined by patients and therapists for the content and functions of a telerehabilitation platform and how can these requirements be prioritized to develop a first prototype of the platform? (2) How can the user interface of the telerehabilitation platform be designed so as to match the predefined critical user requirements and how can this interface be translated into a medium-fidelity prototype of the platform? (3) How do patients with phantom limb pain and their treating therapists judge the usability of the medium-fidelity prototype of the telerehabilitation platform in routine care and how can the platform be redesigned based on their feedback to achieve a high-fidelity prototype? The telerehabilitation platform was developed using an iterative user-centered design process. In the first phase, a questionnaire followed by a semistructured interview was used to identify the user requirements of both the patients and their physical and occupational therapists, which were then prioritized using a decision matrix. The second phase involved designing the interface of the telerehabilitation platform using design sketches, wireframes, and interface mock-ups to develop a low-fidelity prototype. Heuristic evaluation resulted in a medium-fidelity prototype whose usability was tested in routine care in the final phase, leading to the development of a high-fidelity prototype. A total of 7 categories of patient requirements were identified: monitoring, exercise programs, communication, settings, background information, log-in, and general requirements. One additional category emerged for therapists: patient management. Based on these requirements, patient and therapist interfaces for the telerehabilitation platform were developed and redesigned by the software development team in an iterative process, addressing the usability problems that were reported by the users during 4 weeks of field testing in routine care. Our findings underline the importance of involving the users and other stakeholders early and continuously in an iterative design process, as well as the need for clear criteria to identify critical user requirements. A decision matrix is presented that incorporates the views of various stakeholders in systematically rating and prioritizing user requirements. The findings and lessons learned might help health care providers, researchers, software designers, and other stakeholders in designing and evaluating new teletreatments, and hopefully increase the likelihood of user acceptance. ©Andreas Rothgangel, Susy Braun, Rob Smeets, Anna Beurskens. Originally published in JMIR Rehabilitation and Assistive Technology (http://rehab.jmir.org), 15.02.2017.

  7. Temporal trends of Persistent Organic Pollutants (POPs) in arctic air: 20 years of monitoring under the Arctic Monitoring and Assessment Programme (AMAP).

    PubMed

    Hung, Hayley; Katsoyiannis, Athanasios A; Brorström-Lundén, Eva; Olafsdottir, Kristin; Aas, Wenche; Breivik, Knut; Bohlin-Nizzetto, Pernilla; Sigurdsson, Arni; Hakola, Hannele; Bossi, Rossana; Skov, Henrik; Sverko, Ed; Barresi, Enzo; Fellin, Phil; Wilson, Simon

    2016-10-01

    Temporal trends of Persistent Organic Pollutants (POPs) measured in Arctic air are essential in understanding long-range transport to remote regions and to evaluate the effectiveness of national and international chemical control initiatives, such as the Stockholm Convention (SC) on POPs. Long-term air monitoring of POPs is conducted under the Arctic Monitoring and Assessment Programme (AMAP) at four Arctic stations: Alert, Canada; Stórhöfði, Iceland; Zeppelin, Svalbard; and Pallas, Finland, since the 1990s using high volume air samplers. Temporal trends observed for POPs in Arctic air are summarized in this study. Most POPs listed for control under the SC, e.g. polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethanes (DDTs) and chlordanes, are declining slowly in Arctic air, reflecting the reduction of primary emissions during the last two decades and increasing importance of secondary emissions. Slow declining trends also signifies their persistence and slow degradation under the Arctic environment, such that they are still detectable after being banned for decades in many countries. Some POPs, e.g. hexachlorobenzene (HCB) and lighter PCBs, showed increasing trends at specific locations, which may be attributable to warming in the region and continued primary emissions at source. Polybrominated diphenyl ethers (PBDEs) do not decline in air at Canada's Alert station but are declining in European Arctic air, which may be due to influence of local sources at Alert and the much higher historical usage of PBDEs in North America. Arctic air samples are screened for chemicals of emerging concern to provide information regarding their environmental persistence (P) and long-range transport potential (LRTP), which are important criteria for classification as a POP under SC. The AMAP network provides consistent and comparable air monitoring data of POPs for trend development and acts as a bridge between national monitoring programs and SC's Global Monitoring Plan (GMP). Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  8. A Wireless, Passive, Magnetically-soft Harmonic Sensor for Monitoring Sodium Hypochlorite Concentrations in Water

    PubMed Central

    Ong, Keat G.; Paulose, Maggie; Grimes, Craig A.

    2003-01-01

    A wireless, passive, remote-query sensor for monitoring sodium hypochlorite (bleach) solutions is reported. The sensor is comprised of a magnetically-soft ferromagnetic ribbon, coated with a layer of polyurethane and alumina, having a large and nonlinear permeability that supports higher-order harmonics in response to a time varying magnetic field. The hypochlorite ions induce swelling in the coating, with the resultant stress altering the harmonic signature of the sensor from which the sodium hypochlorite concentration can be determined. The wireless, passive nature of the sensor platform enables long-term monitoring of bleach concentrations in the environment. The sensor platform can be extended to other chemical analytes of interest as desired.

  9. Google Glass-Directed Monitoring and Control of Microfluidic Biosensors and Actuators

    PubMed Central

    Zhang, Yu Shrike; Busignani, Fabio; Ribas, João; Aleman, Julio; Rodrigues, Talles Nascimento; Shaegh, Seyed Ali Mousavi; Massa, Solange; Rossi, Camilla Baj; Taurino, Irene; Shin, Su-Ryon; Calzone, Giovanni; Amaratunga, Givan Mark; Chambers, Douglas Leon; Jabari, Saman; Niu, Yuxi; Manoharan, Vijayan; Dokmeci, Mehmet Remzi; Carrara, Sandro; Demarchi, Danilo; Khademhosseini, Ali

    2016-01-01

    Google Glass is a recently designed wearable device capable of displaying information in a smartphone-like hands-free format by wireless communication. The Glass also provides convenient control over remote devices, primarily enabled by voice recognition commands. These unique features of the Google Glass make it useful for medical and biomedical applications where hands-free experiences are strongly preferred. Here, we report for the first time, an integral set of hardware, firmware, software, and Glassware that enabled wireless transmission of sensor data onto the Google Glass for on-demand data visualization and real-time analysis. Additionally, the platform allowed the user to control outputs entered through the Glass, therefore achieving bi-directional Glass-device interfacing. Using this versatile platform, we demonstrated its capability in monitoring physical and physiological parameters such as temperature, pH, and morphology of liver- and heart-on-chips. Furthermore, we showed the capability to remotely introduce pharmaceutical compounds into a microfluidic human primary liver bioreactor at desired time points while monitoring their effects through the Glass. We believe that such an innovative platform, along with its concept, has set up a premise in wearable monitoring and controlling technology for a wide variety of applications in biomedicine. PMID:26928456

  10. Google Glass-Directed Monitoring and Control of Microfluidic Biosensors and Actuators

    NASA Astrophysics Data System (ADS)

    Zhang, Yu Shrike; Busignani, Fabio; Ribas, João; Aleman, Julio; Rodrigues, Talles Nascimento; Shaegh, Seyed Ali Mousavi; Massa, Solange; Rossi, Camilla Baj; Taurino, Irene; Shin, Su-Ryon; Calzone, Giovanni; Amaratunga, Givan Mark; Chambers, Douglas Leon; Jabari, Saman; Niu, Yuxi; Manoharan, Vijayan; Dokmeci, Mehmet Remzi; Carrara, Sandro; Demarchi, Danilo; Khademhosseini, Ali

    2016-03-01

    Google Glass is a recently designed wearable device capable of displaying information in a smartphone-like hands-free format by wireless communication. The Glass also provides convenient control over remote devices, primarily enabled by voice recognition commands. These unique features of the Google Glass make it useful for medical and biomedical applications where hands-free experiences are strongly preferred. Here, we report for the first time, an integral set of hardware, firmware, software, and Glassware that enabled wireless transmission of sensor data onto the Google Glass for on-demand data visualization and real-time analysis. Additionally, the platform allowed the user to control outputs entered through the Glass, therefore achieving bi-directional Glass-device interfacing. Using this versatile platform, we demonstrated its capability in monitoring physical and physiological parameters such as temperature, pH, and morphology of liver- and heart-on-chips. Furthermore, we showed the capability to remotely introduce pharmaceutical compounds into a microfluidic human primary liver bioreactor at desired time points while monitoring their effects through the Glass. We believe that such an innovative platform, along with its concept, has set up a premise in wearable monitoring and controlling technology for a wide variety of applications in biomedicine.

  11. Google Glass-Directed Monitoring and Control of Microfluidic Biosensors and Actuators.

    PubMed

    Zhang, Yu Shrike; Busignani, Fabio; Ribas, João; Aleman, Julio; Rodrigues, Talles Nascimento; Shaegh, Seyed Ali Mousavi; Massa, Solange; Baj Rossi, Camilla; Taurino, Irene; Shin, Su-Ryon; Calzone, Giovanni; Amaratunga, Givan Mark; Chambers, Douglas Leon; Jabari, Saman; Niu, Yuxi; Manoharan, Vijayan; Dokmeci, Mehmet Remzi; Carrara, Sandro; Demarchi, Danilo; Khademhosseini, Ali

    2016-03-01

    Google Glass is a recently designed wearable device capable of displaying information in a smartphone-like hands-free format by wireless communication. The Glass also provides convenient control over remote devices, primarily enabled by voice recognition commands. These unique features of the Google Glass make it useful for medical and biomedical applications where hands-free experiences are strongly preferred. Here, we report for the first time, an integral set of hardware, firmware, software, and Glassware that enabled wireless transmission of sensor data onto the Google Glass for on-demand data visualization and real-time analysis. Additionally, the platform allowed the user to control outputs entered through the Glass, therefore achieving bi-directional Glass-device interfacing. Using this versatile platform, we demonstrated its capability in monitoring physical and physiological parameters such as temperature, pH, and morphology of liver- and heart-on-chips. Furthermore, we showed the capability to remotely introduce pharmaceutical compounds into a microfluidic human primary liver bioreactor at desired time points while monitoring their effects through the Glass. We believe that such an innovative platform, along with its concept, has set up a premise in wearable monitoring and controlling technology for a wide variety of applications in biomedicine.

  12. Diabetes management using modern information and communication technologies and new care models.

    PubMed

    Spanakis, Emmanouil G; Chiarugi, Franco; Kouroubali, Angelina; Spat, Stephan; Beck, Peter; Asanin, Stefan; Rosengren, Peter; Gergely, Tamas; Thestrup, Jesper

    2012-10-04

    Diabetes, a metabolic disorder, has reached epidemic proportions in developed countries. The disease has two main forms: type 1 and type 2. Disease management entails administration of insulin in combination with careful blood glucose monitoring (type 1) or involves the adjustment of diet and exercise level, the use of oral anti-diabetic drugs, and insulin administration to control blood sugar (type 2). State-of-the-art technologies have the potential to assist healthcare professionals, patients, and informal carers to better manage diabetes insulin therapy, help patients understand their disease, support self-management, and provide a safe environment by monitoring adverse and potentially life-threatening situations with appropriate crisis management. New care models incorporating advanced information and communication technologies have the potential to provide service platforms able to improve health care, personalization, inclusion, and empowerment of the patient, and to support diverse user preferences and needs in different countries. The REACTION project proposes to create a service-oriented architectural platform based on numerous individual services and implementing novel care models that can be deployed in different settings to perform patient monitoring, distributed decision support, health care workflow management, and clinical feedback provision. This paper presents the work performed in the context of the REACTION project focusing on the development of a health care service platform able to support diabetes management in different healthcare regimes, through clinical applications, such as monitoring of vital signs, feedback provision to the point of care, integrative risk assessment, and event and alarm handling. While moving towards the full implementation of the platform, three major areas of research and development have been identified and consequently approached: the first one is related to the glucose sensor technology and wearability, the second is related to the platform architecture, and the third to the implementation of the end-user services. The Glucose Management System, already developed within the REACTION project, is able to monitor a range of parameters from various sources including glucose levels, nutritional intakes, administered drugs, and patient's insulin sensitivity, offering decision support for insulin dosing to professional caregivers on a mobile tablet platform that fulfills the need of the users and supports medical workflow procedures in compliance with the Medical Device Directive requirements. Good control of diabetes, as well as increased emphasis on control of lifestyle factors, may reduce the risk profile of most complications and contribute to health improvement. The REACTION project aims to respond to these challenges by providing integrated, professional, management, and therapy services to diabetic patients in different health care regimes across Europe in an interoperable communication platform.

  13. Outside the Margins: Promotion and Tenure with a Public Scholarship Platform

    ERIC Educational Resources Information Center

    Hutchinson, Mary

    2011-01-01

    Engagement and outreach scholarship has been encouraged among faculty to address the challenge of bringing university resources to meet the needs of society. However, a divide persists, especially apparent at research-focused universities, between the encouraging rhetoric about engagement and the actual reward structure through the promotion and…

  14. Use of UV-vis-NIR spectroscopy to monitor label-free interaction between molecular recognition elements and erythropoietin on a gold-coated polycarbonate platform.

    PubMed

    Citartan, Marimuthu; Gopinath, Subash C B; Tominaga, Junji; Chen, Yeng; Tang, Thean-Hock

    2014-08-01

    Label-free-based detection is pivotal for real-time monitoring of biomolecular interactions and to eliminate the need for labeling with tags that can occupy important binding sites of biomolecules. One simplest form of label-free-based detection is ultraviolet-visible-near-infrared (UV-vis-NIR) spectroscopy, which measure changes in reflectivity as a means to monitor immobilization and interaction of biomolecules with their corresponding partners. In biosensor development, the platform used for the biomolecular interaction should be suitable for different molecular recognition elements. In this study, gold (Au)-coated polycarbonate was used as a platform and as a proof-of-concept, erythropoietin (EPO), a doping substance widely abused by the athletes was used as the target. The interaction of EPO with its corresponding molecular recognition elements (anti-EPO monoclonal antibody and anti-EPO DNA aptamer) is monitored by UV-vis-NIR spectroscopy. Prior to this, to show that UV-vis-NIR spectroscopy is a suitable method for measuring biomolecular interaction, the interaction between biotin and streptavidin was demonstrated via this strategy and reflectivity of this interaction decreased by 25%. Subsequent to this, interaction of the EPO with anti-EPO monoclonal antibody and anti-EPO DNA aptamer resulted in the decrease of reflectivity by 5% and 10%, respectively. The results indicated that Au-coated polycarbonate could be an ideal biosensor platform for monitoring biomolecular interactions using UV-vis-NIR spectroscopy. A smaller version of the Au-coated polycarbonate substrates can be derived from the recent set-up, to be applied towards detecting EPO abuse among atheletes. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. myBrain: a novel EEG embedded system for epilepsy monitoring.

    PubMed

    Pinho, Francisco; Cerqueira, João; Correia, José; Sousa, Nuno; Dias, Nuno

    2017-10-01

    The World Health Organisation has pointed that a successful health care delivery, requires effective medical devices as tools for prevention, diagnosis, treatment and rehabilitation. Several studies have concluded that longer monitoring periods and outpatient settings might increase diagnosis accuracy and success rate of treatment selection. The long-term monitoring of epileptic patients through electroencephalography (EEG) has been considered a powerful tool to improve the diagnosis, disease classification, and treatment of patients with such condition. This work presents the development of a wireless and wearable EEG acquisition platform suitable for both long-term and short-term monitoring in inpatient and outpatient settings. The developed platform features 32 passive dry electrodes, analogue-to-digital signal conversion with 24-bit resolution and a variable sampling frequency from 250 Hz to 1000 Hz per channel, embedded in a stand-alone module. A computer-on-module embedded system runs a Linux ® operating system that rules the interface between two software frameworks, which interact to satisfy the real-time constraints of signal acquisition as well as parallel recording, processing and wireless data transmission. A textile structure was developed to accommodate all components. Platform performance was evaluated in terms of hardware, software and signal quality. The electrodes were characterised through electrochemical impedance spectroscopy and the operating system performance running an epileptic discrimination algorithm was evaluated. Signal quality was thoroughly assessed in two different approaches: playback of EEG reference signals and benchmarking with a clinical-grade EEG system in alpha-wave replacement and steady-state visual evoked potential paradigms. The proposed platform seems to efficiently monitor epileptic patients in both inpatient and outpatient settings and paves the way to new ambulatory clinical regimens as well as non-clinical EEG applications.

  16. Smart Cruise Control: UAV sensor operator intent estimation and its application

    NASA Astrophysics Data System (ADS)

    Cheng, Hui; Butler, Darren; Kumar, Rakesh

    2006-05-01

    Due to their long endurance, superior mobility and the low risk posed to the pilot and sensor operator, UAVs have become the preferred platform for persistent ISR missions. However, currently most UAV based ISR missions are conducted through manual operation. Event the simplest tasks, such as vehicle tracking, route reconnaissance and site monitoring, need the sensor operator's undivided attention and constant adjustment of the sensor control. The lack of autonomous behaviour greatly limits of the effectiveness and the capability of UAV-based ISR, especially the use of a large number of UAVs simultaneously. Although fully autonomous UAV based ISR system is desirable, it is still a distant dream due to the complexity and diversity of combat and ISR missions. In this paper, we propose a Smart Cruise Control system that can learn UAV sensor operator's intent and use it to complete tasks automatically, such as route reconnaissance and site monitoring. Using an operator attention model, the proposed system can estimate the operator's intent from how they control the sensor (e.g. camera) and the content of the imagery that is acquired. Therefore, for example, from initially manually controlling the UAV sensor to follow a road, the system can learn not only the preferred operation, "tracking", but also the road appearance, "what to track" in real-time. Then, the learnt models of both road and the desired operation can be used to complete the task automatically. We have demonstrated the Smart Cruise Control system using real UAV videos where roads need to be tracked and buildings need to be monitored.

  17. Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates?

    PubMed

    Castell, Nuria; Dauge, Franck R; Schneider, Philipp; Vogt, Matthias; Lerner, Uri; Fishbain, Barak; Broday, David; Bartonova, Alena

    2017-02-01

    The emergence of low-cost, user-friendly and very compact air pollution platforms enable observations at high spatial resolution in near-real-time and provide new opportunities to simultaneously enhance existing monitoring systems, as well as engage citizens in active environmental monitoring. This provides a whole new set of capabilities in the assessment of human exposure to air pollution. However, the data generated by these platforms are often of questionable quality. We have conducted an exhaustive evaluation of 24 identical units of a commercial low-cost sensor platform against CEN (European Standardization Organization) reference analyzers, evaluating their measurement capability over time and a range of environmental conditions. Our results show that their performance varies spatially and temporally, as it depends on the atmospheric composition and the meteorological conditions. Our results show that the performance varies from unit to unit, which makes it necessary to examine the data quality of each node before its use. In general, guidance is lacking on how to test such sensor nodes and ensure adequate performance prior to marketing these platforms. We have implemented and tested diverse metrics in order to assess if the sensor can be employed for applications that require high accuracy (i.e., to meet the Data Quality Objectives defined in air quality legislation, epidemiological studies) or lower accuracy (i.e., to represent the pollution level on a coarse scale, for purposes such as awareness raising). Data quality is a pertinent concern, especially in citizen science applications, where citizens are collecting and interpreting the data. In general, while low-cost platforms present low accuracy for regulatory or health purposes they can provide relative and aggregated information about the observed air quality. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. An integrative solution for managing, tracing and citing sensor-related information

    NASA Astrophysics Data System (ADS)

    Koppe, Roland; Gerchow, Peter; Macario, Ana; Schewe, Ingo; Rehmcke, Steven; Düde, Tobias

    2017-04-01

    In a data-driven scientific world, the need to capture information on sensors used in the data acquisition process has become increasingly important. Following the recommendations of the Open Geospatial Consortium (OGC), we started by adopting the SensorML standard for describing platforms, devices and sensors. However, it soon became obvious to us that understanding, implementing and filling such standards costs significant effort and cannot be expected from every scientist individually. So we developed a web-based sensor management solution (https://sensor.awi.de) for describing platforms, devices and sensors as hierarchy of systems which supports tracing changes to a system whereas hiding complexity. Each platform contains devices where each device can have sensors associated with specific identifiers, contacts, events, related online resources (e.g. manufacturer factsheets, calibration documentation, data processing documentation), sensor output parameters and geo-location. In order to better understand and address real world requirements, we have closely interacted with field-going scientists in the context of the key national infrastructure project "FRontiers in Arctic marine Monitoring ocean observatory" (FRAM) during the software development. We learned that not only the lineage of observations is crucial for scientists but also alert services using value ranges, flexible output formats and information on data providers (e.g. FTP sources) for example. Mostly important, persistent and citable versions of sensor descriptions are required for traceability and reproducibility allowing seamless integration with existing information systems, e.g. PANGAEA. Within the context of the EU-funded Ocean Data Interoperability Platform project (ODIP II) and in cooperation with 52north we are proving near real-time data via Sensor Observation Services (SOS) along with sensor descriptions based on our sensor management solution. ODIP II also aims to develop a harmonized SensorML profile for the marine community which we will be adopting in our solution as soon as available. In this presentation we will show our sensor management solution which is embedded in our data flow framework to offer out-of-the-box interoperability with existing information systems and standards. In addition, we will present real world examples and challenges related to the description and traceability of sensor metadata.

  19. Workshop on Transitioning Structural Health Monitoring Technology to Military Platforms

    DTIC Science & Technology

    2012-08-28

    sensors that can be multiplexed such as extrinsic Fabry -Perot interferometers (EFPI), but they are rarely used for structural monitoring. We have not...bureau, and outbreak monitoring by the US Centers for Disease Control (CDC).  One approach to data management is replacing conventional processing

  20. Interactive target tracking for persistent wide-area surveillance

    NASA Astrophysics Data System (ADS)

    Ersoy, Ilker; Palaniappan, Kannappan; Seetharaman, Guna S.; Rao, Raghuveer M.

    2012-06-01

    Persistent aerial surveillance is an emerging technology that can provide continuous, wide-area coverage from an aircraft-based multiple-camera system. Tracking targets in these data sets is challenging for vision algorithms due to large data (several terabytes), very low frame rate, changing viewpoint, strong parallax and other imperfections due to registration and projection. Providing an interactive system for automated target tracking also has additional challenges that require online algorithms that are seamlessly integrated with interactive visualization tools to assist the user. We developed an algorithm that overcomes these challenges and demonstrated it on data obtained from a wide-area imaging platform.

  1. River Platform for Monitoring Erosion (RIPLE) in mountainous rivers

    NASA Astrophysics Data System (ADS)

    Michielin, Yoann; Nord, Guillaume; Esteves, Michel; Geay, Thomas; Hauet, Alexandre

    2017-04-01

    The RIPLE platform has been developed to allow a continuous monitoring at high temporal frequency ( 10 min) of water and solid fluxes in mountainous rivers. The scientific context of this development is defined as follows: (i) the simultaneous measurements of water discharge, bedload, suspension load and river bed topography contribute to the establishment of comprehensive mass balance at the catchment scale; (ii) measurements of the physical properties of fine sediments (size, shape, composition) provide information on the spatial origin of sediments within the catchment, the conditions for erosion and sedimentation processes within the river and the potential to transport other substances such as nutrients, metals, microorganisms. For the design of the platform, priority has been given to non-intrusive instruments due to their robustness. The basic prototype of the platform integrates the following instruments: water level and surface velocity radars, turbidimeters, conductivity probe, hydrophone, cameras, automatic water sampler and depth sounder. Other instruments are progressively integrated, such as the SCAF (system characterizing the sediment's settling velocity), an acoustic Doppler profiler and a spectrophotometer. A wireless telecommunication has been set up to allow remote interactions with the platform and data transmission. The RIPLE platform has been designed to facilitate its use and maintenance: user interface allowing data monitoring and remote configuration, sending alerts (SMS, mail) according to programmed conditions, flexibility of on-site installation and energy autonomy allowing to easily move the platform from one site to another site. In September 2016, the RIPLE platform was installed on a bridge across the Romanche river at Bourg d'Oisans (45.1159 °N, 6.0135 °E) for a testing period. After a presentation of the architecture of the platform, the first results derived from in situ measurements are discussed: the intercomparison of surface velocity measurements (velocity radar versus Large Scale Particle Image Velocimetry), the direct estimation of water discharge using the surface velocity and water level measurements and the comparison with the historical stage-discharge rating curve, the intercomparison of turbidity measurements and the calibration of the turbidity-SSC (suspended sediment concentration) relationships, the investigation of periods with bedload transport and the characterization of the corresponding hydraulic conditions. The next steps in the exploitation of the results of the RIPLE platform are finally addressed.

  2. Environmental urban runoff monitoring

    NASA Astrophysics Data System (ADS)

    Yu, Byunggu; Behera, Pradeep K.; Kim, Seon Ho; Ramirez Rochac, Juan F.; Branham, Travis

    2010-04-01

    Urban stormwater runoff has been a critical and chronic problem in the quantity and quality of receiving waters, resulting in a major environmental concern. To address this problem engineers and professionals have developed a number of solutions which include various monitoring and modeling techniques. The most fundamental issue in these solutions is accurate monitoring of the quantity and quality of the runoff from both combined and separated sewer systems. This study proposes a new water quantity monitoring system, based on recent developments in sensor technology. Rather than using a single independent sensor, we harness an intelligent sensor platform that integrates various sensors, a wireless communication module, data storage, a battery, and processing power such that more comprehensive, efficient, and scalable data acquisition becomes possible. Our experimental results show the feasibility and applicability of such a sensor platform in the laboratory test setting.

  3. Microbial Monitoring of Pathogens by Comparing Multiple Real-Time PCR Platforms for Potential Space Applications

    NASA Technical Reports Server (NTRS)

    Birmele, Michele

    2012-01-01

    The International Space Station (ISS) is a closed environment wih rotations of crew and equipment each introducing their own microbial flora making it necessary to monitor the air, surfaces, and water for microbial contamination. Current microbial monitoring includes labor and time intensive methods to enumerate total bacterial and fungal cells with limited characterization during in-flight testing. Although this culture-based method has been sufficient for monitoring the ISS, future long duration missions will need to perform more comprehensive characterization in-flight, since sample return and ground characterization may not be available. A workshop was held in 2011 at the Johnson Space Center to discuss alternative methodologies and technologies suitable for microbial monitoring for these longterm exploration missions where molecular-based methodologies, such as polymerase chain reaction (PCR), were recommended. In response, a multi-center (Marshall Space Flight Center, Johnson Space Center, Jet Propulsion Laboratory, and Kennedy Space Center) collaborative research effort was initiated to explore novel commercial-off-the-shelf hardware options for spaceflight environmental monitoring. The goal was to evaluate quantitative/semi-quantitative PCR approaches to space applications for low cost in-flight rapid identification of microorganisms affecting crew safety. The initial phase of this project identified commercially available platforms that could be minimally modified to perform nominally in microgravity followed by proof-of-concept testing on the highest qualifying candidates with a universally available test organism, Salmonella enterica. The platforms evaluated during proof-of-concept testing included the iCubate 2.0(TradeMark) (iCubate, Huntsville, AL), RAZOR EX (BioFire Diagnostics; Salt Lake City, Utah) and SmartCycler(TradeMark) (Cepheid; Sunnyvale, CA). The analysis identified two potential technologies (iCubate 2.0 and RAZOR EX) that were able to perform sample-to-answer testing with cell sample concentrations between SO to 400 cells. In addition, the commercial systems were evaluated for initial flight safety and readiness, sample concentration needs were reviewed, and a competitive procurement of commercially available platforms was initiated.

  4. Monitoring Progress and Adherence with Positive Airway Pressure Therapy for Obstructive Sleep Apnea: The Roles of Telemedicine and Mobile Health Applications.

    PubMed

    Hwang, Dennis

    2016-06-01

    Technology is changing the way health care is delivered and how patients are approaching their own health. Given the challenge within sleep medicine of optimizing adherence to continuous positive airway pressure (CPAP) therapy in patients with obstructive sleep apnea (OSA), implementation of telemedicine-based mechanisms is a critical component toward developing a comprehensive and cost-effective solution for OSA management. Key elements include the use of electronic messaging, remote monitoring, automated care mechanisms, and patient self-management platforms. Current practical sleep-related telemedicine platforms include Web-based educational programs, automated CPAP follow-up platforms that promote self-management, and peer-based patient-driven Internet support forums. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Technology Enhanced Learning for People with Intellectual Disabilities and Cerebral Paralysis: The MAS Platform

    NASA Astrophysics Data System (ADS)

    Colomo-Palacios, Ricardo; Paniagua-Martín, Fernando; García-Crespo, Ángel; Ruiz-Mezcua, Belén

    Education for students with disabilities now takes place in a wide range of settings, thus, including a wider range of assistive tools. As a result of this, one of the most interesting application domains of technology enhanced learning is related to the adoption of learning technologies and designs for people with disabilities. Following this unstoppable trend, this paper presents MAS, a software platform aimed to help people with severe intellectual disabilities and cerebral paralysis in their learning processes. MAS, as a technology enhanced learning platform, provides several tools that supports learning and monitoring for people with special needs, including adaptative games, data processing and monitoring tools. Installed in a special needs education institution in Madrid, Spain, MAS provides special educators with a tool that improved students education processes.

  6. AI based HealthCare Platform for Real Time, Predictive and Prescriptive Analytics using Reactive Programming

    NASA Astrophysics Data System (ADS)

    Kaur, Jagreet; Singh Mann, Kulwinder, Dr.

    2018-01-01

    AI in Healthcare needed to bring real, actionable insights and Individualized insights in real time for patients and Doctors to support treatment decisions., We need a Patient Centred Platform for integrating EHR Data, Patient Data, Prescriptions, Monitoring, Clinical research and Data. This paper proposes a generic architecture for enabling AI based healthcare analytics Platform by using open sources Technologies Apache beam, Apache Flink Apache Spark, Apache NiFi, Kafka, Tachyon, Gluster FS, NoSQL- Elasticsearch, Cassandra. This paper will show the importance of applying AI based predictive and prescriptive analytics techniques in Health sector. The system will be able to extract useful knowledge that helps in decision making and medical monitoring in real-time through an intelligent process analysis and big data processing.

  7. Audio-based detection and evaluation of eating behavior using the smartwatch platform.

    PubMed

    Kalantarian, Haik; Sarrafzadeh, Majid

    2015-10-01

    In recent years, smartwatches have emerged as a viable platform for a variety of medical and health-related applications. In addition to the benefits of a stable hardware platform, these devices have a significant advantage over other wrist-worn devices, in that user acceptance of watches is higher than other custom hardware solutions. In this paper, we describe signal-processing techniques for identification of chews and swallows using a smartwatch device׳s built-in microphone. Moreover, we conduct a survey to evaluate the potential of the smartwatch as a platform for monitoring nutrition. The focus of this paper is to analyze the overall applicability of a smartwatch-based system for food-intake monitoring. Evaluation results confirm the efficacy of our technique; classification was performed between apple and potato chip bites, water swallows, talking, and ambient noise, with an F-measure of 94.5% based on 250 collected samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. One- and Two-Photon Uncaging: Carbazole Fused o-Hydroxycinnamate Platform for Dual Release of Alcohols (Same or Different) with Real-Time Monitoring.

    PubMed

    Venkatesh, Yarra; Srivastava, Hemant Kumar; Bhattacharya, S; Mehra, Muneshwar; Datta, P K; Bandyopadhyay, S; Singh, N D Pradeep

    2018-04-20

    A one- and two-photon activated photoremovable protecting group (PRPG) was designed based on a carbazole fused o-hydroxycinnamate platform for the dual (same or different) release of alcohols. The mechanism for the dual release proceeds through a stepwise pathway and also monitors the first and second photorelease in real time by an increase in fluorescence intensity and color change, respectively. Further, its application in staining live neurons and ex vivo imaging with two-photon excitation is shown.

  9. 40 CFR 257.24 - Detection monitoring program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Disposal Units Ground-Water Monitoring and Corrective Action § 257.24 Detection monitoring program. (a... unit; (ii) The mobility, stability, and persistence of waste constituents or their reaction products in... constituents, and reaction products in the ground water; and (iv) The concentration or values and coefficients...

  10. Establish a Data Transmission Platform of the Rig Based on the Distributed Network

    NASA Astrophysics Data System (ADS)

    Bao, Zefu; Li, Tao

    In order to control in real-time ,closed-loop feedback the information, saving the money and labor,we distribute a platform of network data. It through the establishment of the platform in the oil drilling to achieve the easiest route of each device of the rig that conveying timely. The design proposed the platform to transfer networking data by PA which allows the rig control for optimal use. Against the idea,achieving first through on-site cabling and the establishment of data transmission module in the rig monitoring system. The results of standard field application show that the platform solve the problem of rig control.

  11. Increased mitochondrial functions in human glioblastoma cells persistently infected with measles virus.

    PubMed

    Takahashi, Megumi; Wolf, Alexander M; Watari, Eiji; Norose, Yoshihiko; Ohta, Shigeo; Takahashi, Hidemi

    2013-09-01

    Measles virus (MV) is known for its ability to cause an acute infection with a potential of development of persistent infection. However, knowledge of how viral genes and cellular factors interact to cause or maintain the persistent infection has remained unclear. We have previously reported the possible involvement of mitochondrial short chain enoyl-CoA hydratase (ECHS), which is localized at mitochondria, in the regulation of MV replication. In this study we found increased functions of mitochondria in MV-persistently infected cells compared with uninfected or acutely infected cells. Furthermore, impairment of mitochondrial functions by treatment with mitochondrial inhibitors such as ethidium bromide (EtBr) or carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) induced the cytopathic effects of extensive syncytial formation in persistently infected cells. These findings suggest that mitochondria are one of the subcellular organelles contributing to regulate persistent infection of MV. Recent studies showed mitochondria provide an integral platform for retinoic acid-inducible protein (RIG-I)-like cytosolic receptors (RLRs) signaling and participate in cellular innate antiviral immunity. Our findings not only reveal a role of mitochondria in RLR mediated antiviral signaling but also suggest that mitochondria contribute to the regulation of persistent viral infection. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Eyeglasses based wireless electrolyte and metabolite sensor platform.

    PubMed

    Sempionatto, Juliane R; Nakagawa, Tatsuo; Pavinatto, Adriana; Mensah, Samantha T; Imani, Somayeh; Mercier, Patrick; Wang, Joseph

    2017-05-16

    The demand for wearable sensors has grown rapidly in recent years, with increasing attention being given to epidermal chemical sensing. Here, we present the first example of a fully integrated eyeglasses wireless multiplexed chemical sensing platform capable of real-time monitoring of sweat electrolytes and metabolites. The new concept has been realized by integrating an amperometric lactate biosensor and a potentiometric potassium ion-selective electrode into the two nose-bridge pads of the glasses and interfacing them with a wireless electronic backbone placed on the glasses' arms. Simultaneous real-time monitoring of sweat lactate and potassium levels with no apparent cross-talk is demonstrated along with wireless signal transduction. The electrochemical sensors were screen-printed on polyethylene terephthalate (PET) stickers and placed on each side of the glasses' nose pads in order to monitor sweat metabolites and electrolytes. The electronic backbone on the arms of the glasses' frame offers control of the amperometric and potentiometric transducers and enables Bluetooth wireless data transmission to the host device. The new eyeglasses system offers an interchangeable-sensor feature in connection with a variety of different nose-bridge amperometric and potentiometric sensor stickers. For example, the lactate bridge-pad sensor was replaced with a glucose one to offer convenient monitoring of sweat glucose. Such a fully integrated wireless "Lab-on-a-Glass" multiplexed biosensor platform can be readily expanded for the simultaneous monitoring of additional sweat electrolytes and metabolites.

  13. 50 CFR 218.24 - Requirements for monitoring and reporting.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... experience collecting behavioral data. (iii) MMOs shall not be placed aboard Navy platforms for every Navy..., Navy R&D, and current science to use for potential modification of mitigation or monitoring methods. (3...

  14. 50 CFR 218.24 - Requirements for monitoring and reporting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... experience collecting behavioral data. (iii) MMOs shall not be placed aboard Navy platforms for every Navy..., Navy R&D, and current science to use for potential modification of mitigation or monitoring methods. (3...

  15. An automated data exploitation system for airborne sensors

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Wen; McGurr, Mike

    2014-06-01

    Advanced wide area persistent surveillance (WAPS) sensor systems on manned or unmanned airborne vehicles are essential for wide-area urban security monitoring in order to protect our people and our warfighter from terrorist attacks. Currently, human (imagery) analysts process huge data collections from full motion video (FMV) for data exploitation and analysis (real-time and forensic), providing slow and inaccurate results. An Automated Data Exploitation System (ADES) is urgently needed. In this paper, we present a recently developed ADES for airborne vehicles under heavy urban background clutter conditions. This system includes four processes: (1) fast image registration, stabilization, and mosaicking; (2) advanced non-linear morphological moving target detection; (3) robust multiple target (vehicles, dismounts, and human) tracking (up to 100 target tracks); and (4) moving or static target/object recognition (super-resolution). Test results with real FMV data indicate that our ADES can reliably detect, track, and recognize multiple vehicles under heavy urban background clutters. Furthermore, our example shows that ADES as a baseline platform can provide capability for vehicle abnormal behavior detection to help imagery analysts quickly trace down potential threats and crimes.

  16. First simultaneous space measurements of atmospheric pollutants in the boundary layer from IASI: a case study in the North China Plain

    NASA Astrophysics Data System (ADS)

    Boynard, Anne; Clerbaux, Cathy; Clarisse, Lieven; Safieddine, Sarah; Pommier, Matthieu; Van Damme, Martin; Bauduin, Sophie; Oudot, Charlotte; Hadji-Lazaro, Juliette; Hurtmans, Daniel; Coheur, Pierre-François

    2014-05-01

    An extremely severe and persistent smog episode occurred in January 2013 over China. The levels of air pollution have been dangerously high, reaching 40 times recommended safety levels and have affected health of millions of people. China faced one of the worst periods of air quality in recent history and drew worldwide attention. This pollution episode was caused by the combination of anthropogenic emissions and stable meteorological conditions (absence of wind and temperature inversion) that trapped pollutants in the boundary layer. To characterize this episode, we used the IASI (Infrared Atmospheric Sounding Interferometer) instrument onboard the MetOp-A platform. IASI observations show high concentrations of key trace gases such as carbon monoxide (CO), sulfur dioxide (SO2) and ammonia (NH3) along with ammonium sulfate aerosol. We show that IASI is able to detect boundary layer pollution in case of large negative thermal contrast combined with high levels of pollution. Our findings demonstrate the ability of thermal infrared instrument such as IASI to monitor boundary layer pollutants, which can support air quality evaluation and management.

  17. A Study of Persistent Elevated Pollution Episodes in the Northeastern United States.

    NASA Astrophysics Data System (ADS)

    Vaughan, William M.; Chan, Michael; Cantrell, Bruce; Pooler, Francis

    1982-03-01

    To examine chemical transformation within stagnant air masses and the atmospheric processes acting upon such air masses, the United States EPA sponsored a study in the summer of 1980 in the northeastern region of the country. Ten research aircraft and several mobile and stationary surface monitoring platforms from three EPA contractors, seven federal agencies, and four universities participated in an intensive measurement program between 16 July and 15 August 1980. Pollutants of interest included SO2, NO, NOx, HC, O3, sulfate, nitrate, and aerosols in general.This paper summarizes the activities of those research aircraft. The three aircraft and one helicopter operated by the contractor team logged a total of 353 flight hours during 100 missions in the program. Flights were made from Columbus. Ohio, to as far cast as Laconia, N.H., as Car south as Montgomery, Ala., as far west as Texarkana, Ark., and as far north as Saginaw, Mich. The flight patterns and data collected for each mission are documented. This summary will allow scientists who are interested in this data base to identify subsets of the data for model development.

  18. Toward ubiquitous healthcare services with a novel efficient cloud platform.

    PubMed

    He, Chenguang; Fan, Xiaomao; Li, Ye

    2013-01-01

    Ubiquitous healthcare services are becoming more and more popular, especially under the urgent demand of the global aging issue. Cloud computing owns the pervasive and on-demand service-oriented natures, which can fit the characteristics of healthcare services very well. However, the abilities in dealing with multimodal, heterogeneous, and nonstationary physiological signals to provide persistent personalized services, meanwhile keeping high concurrent online analysis for public, are challenges to the general cloud. In this paper, we proposed a private cloud platform architecture which includes six layers according to the specific requirements. This platform utilizes message queue as a cloud engine, and each layer thereby achieves relative independence by this loosely coupled means of communications with publish/subscribe mechanism. Furthermore, a plug-in algorithm framework is also presented, and massive semistructure or unstructured medical data are accessed adaptively by this cloud architecture. As the testing results showing, this proposed cloud platform, with robust, stable, and efficient features, can satisfy high concurrent requests from ubiquitous healthcare services.

  19. Implementing Electronic Portfolios through Social Media Platforms: Steps and Student Perceptions

    ERIC Educational Resources Information Center

    Denton, David W.; Wicks, David

    2013-01-01

    Over the last two decades, students and teachers, across educational levels and disciplines, have been subject to a variety of school reform efforts. Nevertheless, some instructional practices, such as portfolio assessment, persist and grow in popularity even in the midst of changing educational reform goals and shifting priorities. Teacher…

  20. Low Cost Real Time Autonomous Remote Monitoring Platform

    NASA Astrophysics Data System (ADS)

    Rodríguez, J. R.; Maldonado, P. M.; Pierson, J. J.; Harris, L.

    2016-02-01

    Environmental scientists have a need for gathering multiple parameters during specific time periods to answer their research questions. Most available monitoring systems are very expensive and closed systems, which limits the potential to scale up research projects. We developed a low cost, autonomous, real-time monitoring platform that is both open hardware/software and easy to build, deploy, manage and maintain. The hardware is built with off-the-shelf components and a credit card sized computer called Raspberry Pi, running an open source operating (Raspbian). The system runs off a set of batteries and a solar panel, which makes it ideal for remote locations. The software is divided into three parts: 1) a framework for abstracting the sensors (initializing, pooling and communications) designed in python and using a fully object-oriented design, making it easy for new sensor to be added with minimal code changes, 2) a web front end for managing the entire system, 3) a data store (database) framework for local and remote data retrieval and reporting services. Connectivity to the system can be accomplished through a Wi-Fi or cellular Internet connection. Scientists are being forced to do more with less, in response our platform will provide them with a flexible system that can improve the process of data gathering with an accessible, modular, low-cost, and efficient monitoring system. Currently, we have the required permits from the Department of Natural Resources in Puerto Rico to deploy the platform at the Laguna Grande Bioluminescence Lagoon in Fajardo, PR. This station will include probes for pH, DO, Conductivity and water temperature.

  1. Platform-dependent optimization considerations for mHealth applications

    NASA Astrophysics Data System (ADS)

    Kaghyan, Sahak; Akopian, David; Sarukhanyan, Hakob

    2015-03-01

    Modern mobile devices contain integrated sensors that enable multitude of applications in such fields as mobile health (mHealth), entertainment, sports, etc. Human physical activity monitoring is one of such the emerging applications. There exists a range of challenges that relate to activity monitoring tasks, and, particularly, exploiting optimal solutions and architectures for respective mobile software application development. This work addresses mobile computations related to integrated inertial sensors for activity monitoring, such as accelerometers, gyroscopes, integrated global positioning system (GPS) and WLAN-based positioning, that can be used for activity monitoring. Some of the aspects will be discussed in this paper. Each of the sensing data sources has its own characteristics such as specific data formats, data rates, signal acquisition durations etc., and these specifications affect energy consumption. Energy consumption significantly varies as sensor data acquisition is followed by data analysis including various transformations and signal processing algorithms. This paper will address several aspects of more optimal activity monitoring implementations exploiting state-of-the-art capabilities of modern platforms.

  2. Autonomous mobile platform for monitoring air emissions from industrial and municipal wastewater ponds.

    PubMed

    Fu, Long; Huda, Quamrul; Yang, Zheng; Zhang, Lucas; Hashisho, Zaher

    2017-11-01

    Significant amounts of volatile organic compounds and greenhouse gases are generated from wastewater lagoons and tailings ponds in Alberta, Canada. Accurate measurements of these air pollutants and greenhouse gases are needed to support management and regulatory decisions. A mobile platform was developed to measure air emissions from tailings pond in the oil sands region of Alberta. The mobile platform was tested in 2015 in a municipal wastewater treatment lagoon. With a flux chamber and a CO 2 /CH 4 sensor on board, the mobile platform was able to measure CO 2 and CH 4 emissions over two days at two different locations in the pond. Flux emission rates of CO 2 and CH 4 that were measured over the study period suggest the presence of aerobic and anaerobic zones in the wastewater treatment lagoon. The study demonstrated the capabilities of the mobile platform in measuring fugitive air emissions and identified the potential for the applications in air and water quality monitoring programs. The Mobile Platform demonstrated in this study has the ability to measure greenhouse gas (GHG) emissions from fugitive sources such as municipal wastewater lagoons. This technology can be used to measure emission fluxes from tailings ponds with better detection of spatial and temporal variations of fugitive emissions. Additional air and water sampling equipment could be added to the mobile platform for a broad range of air and water quality studies in the oil sands region of Alberta.

  3. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications.

    PubMed

    Maduraiveeran, Govindhan; Sasidharan, Manickam; Ganesan, Vellaichamy

    2018-04-30

    Introduction of novel functional nanomaterials and analytical technologies signify a foremost possibility for the advance of electrochemical sensor and biosensor platforms/devices for a broad series of applications including biological, biomedical, biotechnological, clinical and medical diagnostics, environmental and health monitoring, and food industries. The design of sensitive and selective electrochemical biological sensor platforms are accomplished conceivably by offering new surface modifications, microfabrication techniques, and diverse nanomaterials with unique properties for in vivo and in vitro medical analysis via relating a sensibly planned electrode/solution interface. The advantageous attributes such as low-cost, miniaturization, energy efficient, easy fabrication, online monitoring, and the simultaneous sensing capability are the driving force towards continued growth of electrochemical biosensing platforms, which have fascinated the interdisciplinary research arenas spanning chemistry, material science, biological science, and medical industries. The electrochemical biosensor platforms have potential applications in the early-stage detection and diagnosis of disease as stout and tunable diagnostic and therapeutic systems. The key aim of this review is to emphasize the newest development in the design of sensing and biosensing platforms based on functional nanomaterials for biological and biomedical applications. High sensitivity and selectivity, fast response, and excellent durability in biological media are all critical aspects which will also be wisely addressed. Potential applications of electrochemical sensor and biosensor platforms based on advanced functional nanomaterials for neuroscience diagnostics, clinical, point-of-care diagnostics and medical industries are also concisely presented. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. QUANTIFICATION OF TRANSGENIC PLANT MARKER GENE PERSISTENCE IN THE FIELD

    EPA Science Inventory

    Methods were developed to monitor persistence of genomic DNA in decaying plants in the field. As a model, we used recombinant neomycin phosphotransferase II (rNPT-II) marker genes present in genetically engineered plants. Polymerase chain reaction (PCR) primers were designed, com...

  5. TOOL FOR MONITORING HYDROPHILIC CONTAMINANTS IN WATER: POLAR ORGANIC CHEMICAL INTEGRATIVE SAMPLER (POCIS)

    EPA Science Inventory

    Global emissions of persistent bioconcentratable organic chemicals have resulted in a wide range of adverse ecological effects. Consequently, industry was led to develop less persistent, more water soluble, polar or hydrophilic organic compounds (HpOCs), which generally have low ...

  6. A Digital Teaching Platform to Further and Assess Use of Evidence-Based Practices

    ERIC Educational Resources Information Center

    Bondie, Rhonda

    2015-01-01

    Advances in online learning have benefited rural special education teacher preparation programs through increased recruitment, access, and collaboration. This paper describes how additional challenges, such as monitoring teacher candidate use of evidence-based practices, can be addressed through a digital teaching platform. Project REACH online is…

  7. The 1979 Southeastern Virginia Urban Plume Study. Volume 1: Description of experiments and selected aircraft data

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.; Lee, R. B., III; Mathis, J. J., Jr.

    1981-01-01

    The Southeastern Virginia Urban Plume Study (SEV-UPS) utilizes remote sensors and satellite platforms to monitor the Earth's environment and resources. SEV-UPS focuses on the application of specific remote sensors to the monitoring and study of specific air quality problems. The 1979 SEV-UPS field program was conducted with specific objectives: (1) to provide correlative data to evaluate the Laser Absorption spectrometer ozone remote sensors; (2) to demonstrate the utility of the sensor for the study of urban ozone problems; (3) to provide additional insights into air quality phenomena occuring in Southeastern Virginia; and (4) to compare measurement results of various in situ measurement platforms. The field program included monitoring from 12 surface stations, 4 aircraft, 2 tethered balloons, 2 radiosonde release sites, and numerous surface meteorological observation sites. The aircraft monitored 03, NO, NOX, Bscat, temperature, and dewpoint temperature.

  8. A web-based system for home monitoring of patients with Parkinson's disease using wearable sensors.

    PubMed

    Chen, Bor-Rong; Patel, Shyamal; Buckley, Thomas; Rednic, Ramona; McClure, Douglas J; Shih, Ludy; Tarsy, Daniel; Welsh, Matt; Bonato, Paolo

    2011-03-01

    This letter introduces MercuryLive, a platform to enable home monitoring of patients with Parkinson's disease (PD) using wearable sensors. MercuryLive contains three tiers: a resource-aware data collection engine that relies upon wearable sensors, web services for live streaming and storage of sensor data, and a web-based graphical user interface client with video conferencing capability. Besides, the platform has the capability of analyzing sensor (i.e., accelerometer) data to reliably estimate clinical scores capturing the severity of tremor, bradykinesia, and dyskinesia. Testing results showed an average data latency of less than 400 ms and video latency of about 200 ms with video frame rate of about 13 frames/s when 800 kb/s of bandwidth were available and we used a 40% video compression, and data feature upload requiring 1 min of extra time following a 10 min interactive session. These results indicate that the proposed platform is suitable to monitor patients with PD to facilitate the titration of medications in the late stages of the disease.

  9. Offshore platform sourced pollution monitoring using space-borne fully polarimetric C and X band synthetic aperture radar.

    PubMed

    Singha, Suman; Ressel, Rudolf

    2016-11-15

    Use of polarimetric SAR data for offshore pollution monitoring is relatively new and shows great potential for operational offshore platform monitoring. This paper describes the development of an automated oil spill detection chain for operational purposes based on C-band (RADARSAT-2) and X-band (TerraSAR-X) fully polarimetric images, wherein we use polarimetric features to characterize oil spills and look-alikes. Numbers of near coincident TerraSAR-X and RADARSAT-2 images have been acquired over offshore platforms. Ten polarimetric feature parameters were extracted from different types of oil and 'look-alike' spots and divided into training and validation dataset. Extracted features were then used to develop a pixel based Artificial Neural Network classifier. Mutual information contents among extracted features were assessed and feature parameters were ranked according to their ability to discriminate between oil spill and look-alike spots. Polarimetric features such as Scattering Diversity, Surface Scattering Fraction and Span proved to be most suitable for operational services. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Presence/absence as a metric for monitoring vertebrate populations

    Treesearch

    Len Ruggiero; Dean Pearson

    2000-01-01

    Developing cost effective methods for monitoring vertebrate populations is a persistent problem in wildlife biology. Population demographic data is too costly and time intensive to acquire, so researchers have begun investigating presence/absence sampling as a means for monitoring wildlife populations. We examined three important assumptions regarding the probability...

  11. [Persistence of the 5th aortic arch associated with interruption of the aortic arch].

    PubMed

    Houssa, Mahdi Ait; Atmani, Noureddine; Bamous, Mehdi; Abdou, Abdessamad; Nya, Fouad; Seghrouchni, Anis; Amahzoune, Brahim; El Bekkali, Youssef; Drissi, Mohamed; Boulahya, Abdelatif

    2017-01-01

    We report a case of persistence of the 5th aortic arch associated with total interruption of the aortic arch. This clinical case shows the diagnostic pitfall of the persistence of the 5th aortic arch and its beneficial hemodynamic effect. Preoperative clinical picture was misleading, due to the persistence of femoral pulses and clinical signs of left-to-right shunt via a wide ductus arteriosus. The diagnosis was intraoperatively adjusted on the basis of blood pressure monitoring using catheter placed into the femoral artery.

  12. Estimating population extinction thresholds with categorical classification trees for Louisiana black bears

    USGS Publications Warehouse

    Laufenberg, Jared S.; Clark, Joseph D.; Chandler, Richard B.

    2018-01-01

    Monitoring vulnerable species is critical for their conservation. Thresholds or tipping points are commonly used to indicate when populations become vulnerable to extinction and to trigger changes in conservation actions. However, quantitative methods to determine such thresholds have not been well explored. The Louisiana black bear (Ursus americanus luteolus) was removed from the list of threatened and endangered species under the U.S. Endangered Species Act in 2016 and our objectives were to determine the most appropriate parameters and thresholds for monitoring and management action. Capture mark recapture (CMR) data from 2006 to 2012 were used to estimate population parameters and variances. We used stochastic population simulations and conditional classification trees to identify demographic rates for monitoring that would be most indicative of heighted extinction risk. We then identified thresholds that would be reliable predictors of population viability. Conditional classification trees indicated that annual apparent survival rates for adult females averaged over 5 years () was the best predictor of population persistence. Specifically, population persistence was estimated to be ≥95% over 100 years when , suggesting that this statistic can be used as threshold to trigger management intervention. Our evaluation produced monitoring protocols that reliably predicted population persistence and was cost-effective. We conclude that population projections and conditional classification trees can be valuable tools for identifying extinction thresholds used in monitoring programs.

  13. Estimating population extinction thresholds with categorical classification trees for Louisiana black bears.

    PubMed

    Laufenberg, Jared S; Clark, Joseph D; Chandler, Richard B

    2018-01-01

    Monitoring vulnerable species is critical for their conservation. Thresholds or tipping points are commonly used to indicate when populations become vulnerable to extinction and to trigger changes in conservation actions. However, quantitative methods to determine such thresholds have not been well explored. The Louisiana black bear (Ursus americanus luteolus) was removed from the list of threatened and endangered species under the U.S. Endangered Species Act in 2016 and our objectives were to determine the most appropriate parameters and thresholds for monitoring and management action. Capture mark recapture (CMR) data from 2006 to 2012 were used to estimate population parameters and variances. We used stochastic population simulations and conditional classification trees to identify demographic rates for monitoring that would be most indicative of heighted extinction risk. We then identified thresholds that would be reliable predictors of population viability. Conditional classification trees indicated that annual apparent survival rates for adult females averaged over 5 years ([Formula: see text]) was the best predictor of population persistence. Specifically, population persistence was estimated to be ≥95% over 100 years when [Formula: see text], suggesting that this statistic can be used as threshold to trigger management intervention. Our evaluation produced monitoring protocols that reliably predicted population persistence and was cost-effective. We conclude that population projections and conditional classification trees can be valuable tools for identifying extinction thresholds used in monitoring programs.

  14. PRISM: A DATA-DRIVEN PLATFORM FOR MONITORING MENTAL HEALTH

    PubMed Central

    KAMDAR, MAULIK R.; WU, MICHELLE J.

    2018-01-01

    Neuropsychiatric disorders are the leading cause of disability worldwide and there is no gold standard currently available for the measurement of mental health. This issue is exacerbated by the fact that the information physicians use to diagnose these disorders is episodic and often subjective. Current methods to monitor mental health involve the use of subjective DSM-5 guidelines, and advances in EEG and video monitoring technologies have not been widely adopted due to invasiveness and inconvenience. Wearable technologies have surfaced as a ubiquitous and unobtrusive method for providing continuous, quantitative data about a patient. Here, we introduce PRISM — Passive, Real-time Information for Sensing Mental Health. This platform integrates motion, light and heart rate data from a smart watch application with user interactions and text insights from a web application. We have demonstrated a proof of concept by collecting preliminary data through a pilot study of 13 subjects. We have engineered appropriate features and applied both unsupervised and supervised learning to develop models that can recapitulate user-reported ratings of their emotional state. This demonstrates that the data has the potential to be useful for evaluating mental health. This platform will allow us to leverage continuous streams of passive data for early and accurate diagnosis as well as constant monitoring of patients suffering from mental disorders. PMID:26776198

  15. System study of the carbon dioxide observational platform system (CO-OPS): Project overview

    NASA Technical Reports Server (NTRS)

    Stephens, J. Briscoe; Thompson, Wilbur E.

    1987-01-01

    The resulting options from a system study for a near-space, geo-stationary, observational monitoring platform system for use in the Department of Energy's (DOE) National Carbon Dioxide Observational Platform System (CO-OPS) on the greenhouse effect are discussed. CO-OPS is being designed to operate continuously for periods of up to 3 months in quasi-fixed position over most global regional targets of interest and could make horizon observations over a land-sea area of circular diameter up to about 600 to 800 statute miles. This affords the scientific and engineering community a low-cost means of operating their payloads for monitoring the regional parameters they deem relevant to their investigations of the carbon dioxide greenhouse effect at one-tenth the cost of most currently utilized comparable remote sensing techniques.

  16. Development of a computer model to predict platform station keeping requirements in the Gulf of Mexico using remote sensing data

    NASA Technical Reports Server (NTRS)

    Barber, Bryan; Kahn, Laura; Wong, David

    1990-01-01

    Offshore operations such as oil drilling and radar monitoring require semisubmersible platforms to remain stationary at specific locations in the Gulf of Mexico. Ocean currents, wind, and waves in the Gulf of Mexico tend to move platforms away from their desired locations. A computer model was created to predict the station keeping requirements of a platform. The computer simulation uses remote sensing data from satellites and buoys as input. A background of the project, alternate approaches to the project, and the details of the simulation are presented.

  17. Cloud Based Web 3d GIS Taiwan Platform

    NASA Astrophysics Data System (ADS)

    Tsai, W.-F.; Chang, J.-Y.; Yan, S. Y.; Chen, B.

    2011-09-01

    This article presents the status of the web 3D GIS platform, which has been developed in the National Applied Research Laboratories. The purpose is to develop a global earth observation 3D GIS platform for applications to disaster monitoring and assessment in Taiwan. For quick response to preliminary and detailed assessment after a natural disaster occurs, the web 3D GIS platform is useful to access, transfer, integrate, display and analyze the multi-scale huge data following the international OGC standard. The framework of cloud service for data warehousing management and efficiency enhancement using VMWare is illustrated in this article.

  18. SoundProof: A Smartphone Platform for Wireless Monitoring of Wildlife and Environment

    NASA Astrophysics Data System (ADS)

    Lukac, M.; Monibi, M.; Lane, M. L.; Howell, L.; Ramanathan, N.; Borker, A.; McKown, M.; Croll, D.; Terschy, B.

    2011-12-01

    We are developing an open-source, low-cost wildlife and environmental monitoring solution based on Android smartphones. Using a smartphone instead of a traditional microcontroller or single board computer has several advantages: smartphones are single integrated devices with multiple radios and a battery; they have a robust software interface which enables customization; and are field-tested by millions of users daily. Consequently, smartphones can improve the cost, configurability, and real-time access to data for environmental monitoring, ultimately replacing existing monitoring solutions which are proprietary, difficult to customize, expensive, and require labor-intensive maintenance. While smartphones can radically change environmental and wildlife monitoring, there are a number of technical challenges to address. We present our smartphone-based platform, SoundProof, discuss the challenges of building an autonomous system based on Android phones, and our ongoing efforts to enable environmental monitoring. Our system is built using robust off-the-shelf hardware and mature open-source software where available, to increase scalability and ease of installation. Key features include: * High-quality acoustic signal collection from external microphones to monitor wildlife populations. * Real-time data access, remote programming, and configuration of the field sensor via wireless cellular or WiFi channels, accessible from a website. * Waterproof packaging and solar charger setup for long-term field deployments. * Rich instrumentation of the end-to-end system to quickly identify and debug problems. * Supplementary mesh networking system with long-range wireless antennae to provide coverage when no cell network is available. We have deployed this system to monitor Rufous Crowned Sparrows on Anacapa Island, Chinese Crested Turns on the Matsu Islands in Taiwan, and Ashy Storm Petrels on South East Farallon Island. We have testbeds at two UC Natural Reserves to field-test new or exploratory features before deployment. Side-by-side validation data collected in the field using SoundProof and state-of-the-art wildlife monitoring solutions, including the Cornell ARU and Wildlife Acoustic's Songmeter, demonstrate that acoustic signals collected with cellphones provide sufficient data integrity for measuring the success of bird conservation efforts, measuring bird relative abundance and detecting elusive species. We are extending this platform to numerous other areas of environmental monitoring. Recent developments such as the Android Open Accessory, the IOIO Board, MicroBridge, Amarino, and Cellbots enable microcontrollers to talk with Android applications, making it affordable and feasible to extend our platform to operate with the most common sensors.

  19. Lack of correlation between extended pH monitoring and scintigraphy in the evaluation of infants with gastroesophageal reflux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolia, V.; Calhoun, J.A.; Kuhns, L.R.

    1990-05-01

    Sixty-nine infants younger than 1 year of age, with symptoms of persistent vomiting, recurrent choking, apnea, persistent cough, or stridor, were evaluated for gastroesophageal reflux. All infants underwent extended intraesophageal pH monitoring for 16 to 24 hours as well as gastroesophageal scintigraphy with technetium 99m sulfur colloid to study the correlation between the two tests. Forty-eight infants exhibited reflux with extended pH monitoring whereas 46 infants showed reflux with scintigraphy. However, the diagnosis of reflux in individual patients by extended pH monitoring corresponded poorly with the diagnosis of reflux in the same patients by scintigraphy. Similarly, no correlation was observedmore » between extended pH monitoring and scintigraphy results, whether expressed as percent gastric emptying or as gastroesophageal reflux ratio. We conclude that extended pH monitoring and scintigraphy measure different pathophysiologic phenomena and detect reflux under different conditions. The ability of these tests to detect reflux may be complementary and they may be of greatest value when used together to enhance the sensitivity and specificity of the diagnostic evaluation. Extended pH monitoring and scintigraphy should not be used interchangeably to monitor gastroesophageal reflux.« less

  20. Smart phones: platform enabling modular, chemical, biological, and explosives sensing

    NASA Astrophysics Data System (ADS)

    Finch, Amethist S.; Coppock, Matthew; Bickford, Justin R.; Conn, Marvin A.; Proctor, Thomas J.; Stratis-Cullum, Dimitra N.

    2013-05-01

    Reliable, robust, and portable technologies are needed for the rapid identification and detection of chemical, biological, and explosive (CBE) materials. A key to addressing the persistent threat to U.S. troops in the current war on terror is the rapid detection and identification of the precursor materials used in development of improvised explosive devices, homemade explosives, and bio-warfare agents. However, a universal methodology for detection and prevention of CBE materials in the use of these devices has proven difficult. Herein, we discuss our efforts towards the development of a modular, robust, inexpensive, pervasive, archival, and compact platform (android based smart phone) enabling the rapid detection of these materials.

  1. Dielectric spectroscopy platform to measure MCF10A epithelial cell aggregation as a model for spheroidal cell cluster analysis.

    PubMed

    Heileman, K L; Tabrizian, M

    2017-05-02

    3-Dimensional cell cultures are more representative of the native environment than traditional cell cultures on flat substrates. As a result, 3-dimensional cell cultures have emerged as a very valuable model environment to study tumorigenesis, organogenesis and tissue regeneration. Many of these models encompass the formation of cell aggregates, which mimic the architecture of tumor and organ tissue. Dielectric impedance spectroscopy is a non-invasive, label free and real time technique, overcoming the drawbacks of established techniques to monitor cell aggregates. Here we introduce a platform to monitor cell aggregation in a 3-dimensional extracellular matrix using dielectric spectroscopy. The MCF10A breast epithelial cell line serves as a model for cell aggregation. The platform maintains sterile conditions during the multi-day assay while allowing continuous dielectric spectroscopy measurements. The platform geometry optimizes dielectric measurements by concentrating cells within the electrode sensing region. The cells show a characteristic dielectric response to aggregation which corroborates with finite element analysis computer simulations. By fitting the experimental dielectric spectra to the Cole-Cole equation, we demonstrated that the dispersion intensity Δε and the characteristic frequency f c are related to cell aggregate growth. In addition, microscopy can be performed directly on the platform providing information about cell position, density and morphology. This platform could yield many applications for studying the electrophysiological activity of cell aggregates.

  2. High-throughput screening based on label-free detection of small molecule microarrays

    NASA Astrophysics Data System (ADS)

    Zhu, Chenggang; Fei, Yiyan; Zhu, Xiangdong

    2017-02-01

    Based on small-molecule microarrays (SMMs) and oblique-incidence reflectivity difference (OI-RD) scanner, we have developed a novel high-throughput drug preliminary screening platform based on label-free monitoring of direct interactions between target proteins and immobilized small molecules. The screening platform is especially attractive for screening compounds against targets of unknown function and/or structure that are not compatible with functional assay development. In this screening platform, OI-RD scanner serves as a label-free detection instrument which is able to monitor about 15,000 biomolecular interactions in a single experiment without the need to label any biomolecule. Besides, SMMs serves as a novel format for high-throughput screening by immobilization of tens of thousands of different compounds on a single phenyl-isocyanate functionalized glass slide. Based on the high-throughput screening platform, we sequentially screened five target proteins (purified target proteins or cell lysate containing target protein) in high-throughput and label-free mode. We found hits for respective target protein and the inhibition effects for some hits were confirmed by following functional assays. Compared to traditional high-throughput screening assay, the novel high-throughput screening platform has many advantages, including minimal sample consumption, minimal distortion of interactions through label-free detection, multi-target screening analysis, which has a great potential to be a complementary screening platform in the field of drug discovery.

  3. Observation of sediment resuspension in Old Tampa Bay, Florida

    USGS Publications Warehouse

    Schoellhamer, David H.; ,

    1990-01-01

    Equipment and methodology have been developed to monitor sediment resuspension at two sites in Old Tampa Bay. Velocities are measured with electromagnetic current meters and suspended solids and turbidity are monitored with optical backscatterance sensors. In late November 1989, a vertical array of instrument pairs was deployed from a permanent platform at a deep-water site, and a submersible instrument package with a single pair of instruments was deployed at a shallow-water site. Wind waves caused resuspension at the shallow-water site, but not at the deeper platform site, and spring tidal currents did not cause resuspension at either site.

  4. Pharmacokinetics-on-a-Chip Using Label-Free SERS Technique for Programmable Dual-Drug Analysis.

    PubMed

    Fei, Jiayuan; Wu, Lei; Zhang, Yizhi; Zong, Shenfei; Wang, Zhuyuan; Cui, Yiping

    2017-06-23

    Synergistic effects of dual or multiple drugs have attracted great attention in medical fields, especially in cancer therapies. We provide a programmable microfluidic platform for pharmacokinetic detection of multiple drugs in multiple cells. The well-designed microfluidic platform includes two 2 × 3 microarrays of cell chambers, two gradient generators, and several pneumatic valves. Through the combined use of valves and gradient generators, each chamber can be controlled to infuse different kinds of living cells and drugs with specific concentrations as needed. In our experiments, 6-mercaptopurine (6MP) and methimazole (MMI) were chosen as two drug models and their pharmacokinetic parameters in different living cells were monitored through intracellular SERS spectra, which reflected the molecular structure of these drugs. The dynamic change of SERS fingerprints from 6MP and MMI molecules were recorded during drug metabolism in living cells. The results indicated that both 6MP and MMI molecules were diffused into the cells within 4 min and excreted out after 36 h. Moreover, the intracellular distribution of these drugs was monitored through SERS mapping. Thus, our microfluidic platform simultaneously accomplishes the functions to monitor pharmacokinetic action, distribution, and fingerprint of multiple drugs in multiple cells. Owing to its real-time, rapid-speed, high-precision, and programmable capability of multiple-drug and multicell analysis, such a microfluidic platform has great potential in drug design and development.

  5. A new strategy toward Internet of Things: structural health monitoring using a combined fiber optic and acoustic emission wireless sensor platform

    NASA Astrophysics Data System (ADS)

    Nguyen, A. D.; Page, C.; Wilson, C. L.

    2016-04-01

    This paper investigates a new low-power structural health monitoring (SHM) strategy where fiber Bragg grating (FBG) rosettes can be used to continuously monitor for changes in a host structure's principal strain direction, suggesting damage and thus enabling the immediate triggering of a higher power acoustic emissions (AE) sensor to provide for better characterization of the damage. Unlike traditional "always on" AE platforms, this strategy has the potential for low power, while the wireless communication between different sensor types supports the Internet of Things (IoT) approach. A combination of fiber-optic sensor rosettes for strain monitoring and a fiber-optic sensor for acoustic emissions monitoring was attached to a sample and used to monitor crack initiation. The results suggest that passive principal strain direction monitoring could be used as a damage initiation trigger for other active sensing elements such as acoustic emissions. In future work, additional AE sensors can be added to provide for damage location; and a strategy where these sensors can be powered on periodically to further establish reliability while preserving an energy efficient scheme can be incorporated.

  6. The design of an m-Health monitoring system based on a cloud computing platform

    NASA Astrophysics Data System (ADS)

    Xu, Boyi; Xu, Lida; Cai, Hongming; Jiang, Lihong; Luo, Yang; Gu, Yizhi

    2017-01-01

    Compared to traditional medical services provided within hospitals, m-Health monitoring systems (MHMSs) face more challenges in personalised health data processing. To achieve personalised and high-quality health monitoring by means of new technologies, such as mobile network and cloud computing, in this paper, a framework of an m-Health monitoring system based on a cloud computing platform (Cloud-MHMS) is designed to implement pervasive health monitoring. Furthermore, the modules of the framework, which are Cloud Storage and Multiple Tenants Access Control Layer, Healthcare Data Annotation Layer, and Healthcare Data Analysis Layer, are discussed. In the data storage layer, a multiple tenant access method is designed to protect patient privacy. In the data annotation layer, linked open data are adopted to augment health data interoperability semantically. In the data analysis layer, the process mining algorithm and similarity calculating method are implemented to support personalised treatment plan selection. These three modules cooperate to implement the core functions in the process of health monitoring, which are data storage, data processing, and data analysis. Finally, we study the application of our architecture in the monitoring of antimicrobial drug usage to demonstrate the usability of our method in personal healthcare analysis.

  7. Design and Parameter Study of Integrated Microfluidic Platform for CTC Isolation and Enquiry; A Numerical Approach.

    PubMed

    Shamloo, Amir; Ahmad, Saba; Momeni, Maede

    2018-06-18

    Being the second cause of mortality across the globe, there is now a persistent effort to establish new cancer medication and therapies. Any accomplishment in treating cancers entails the existence of accurate identification systems empowering the early diagnosis. Recent studies indicate CTCs’ potential in cancer prognosis as well as therapy monitoring. The chief shortcoming with CTCs is that they are exceedingly rare cells in their clinically relevant concentration. Here, we simulated a microfluidic construct devised for immunomagnetic separation of the particles of interest from the background cells. This separation unit is integrated with a mixer subunit. The mixer is envisioned for mixing the CTC enriched stream with lysis buffer to extract the biological material of the cell. Some modification was proposed on mixing geometry improving the efficacy of the functional unit. A valuation of engaged forces was made and some forces were neglected due to their order of magnitude. The position of the magnet was also optimized by doing parametric study. For the mixer unit, the effect of applied voltage and frequency on mixing index was studied to find the optimal voltage and frequency which provides better mixing. Above-mentioned studies were done on isolated units and the effect of each functional unit on the other is not studied. As the final step, an integrated microfluidic platform composed of both functional subunits was simulated simultaneously. To ensure the independence of results from the grid, grid studies were also performed. The studies carried out on the construct reveal its potential for diagnostic application.

  8. Evaluation of the biological role in the shore platform evolution. Development of specific methodology and first results.

    NASA Astrophysics Data System (ADS)

    Neves, Mario; Ramos-Pereira, Ana; Moura, Delminda; Trindade, Jorge; Gusmão, Francisca; Viegas, José; Santana, Paulo

    2010-05-01

    The formation and the evolution of shore platforms are dependent on several physical, chemical and biological processes. The weight of each of these processes is changeable not only from coast to coast but also within each shore platform. It depends on geographical, geomorphological, climatic and wave climate factors. In the lower intertidal zone of many rock coasts of the world, the biological cover of the surface is extremely high. This almost permanent wrap points out to a very strong biological influence on the downwearing rates and the erosive rhythm of these strips of the shore platforms. Yet, although there are several studies on the erosive ability of the individuals of each species that are found here, analyzed separately, research on the interactions among species with erosive and protective role in the present evolution of shore platforms are rare. The goal of the BISHOP Project - Bioprotection and bioerosion on shore platforms in the Algarve and Estremadura (Portugal South and West Coast) - is precisely to evaluate the bioprotective and bioerosive role of the communities of macro-organisms in the evolution of shore platforms cut in different type of rocks and in assorted environments. With that purpose, it was necessary to develop specific methodology. To quantify the downwearing of the shore platform, we used a TMEM (Traversing Micro-Erosion Meter) with an accuracy of 0,005mm, and capable of measuring 255 points in a 117 cm2 area. Four experimental places were chosen: two at calcarenite shore platforms of the Portuguese south coast, in a coastal zone exposed to the south and sheltered from the waves; and two in the Portuguese Estremadura, facing west on a well exposed coast to the North Atlantic energetic waves, on shore platforms cut in marly limestone. At each place, two pairs of monitoring areas were installed. For each pair, the same methodology was used. At the beginning, it was necessary to completely clean the biological cover of the two areas in order to perform the first measurement. Then, one of the areas is maintained without any biological cover, and is regularly monitored while the other is leaved without any interference. At the end of the project period of three years, both areas will be monitored and the results compared. At the same time, a very detailed survey of the biological cover of the studied places is carried on. The methodology and the first year results will be presented and discussed.

  9. Operational Monitoring of Mines by COSMO-SkyMed PSP SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Costantini, Mario; Malvarosa, Fabio; Miniati, Federico; de Assis, Luciano Mozer

    2016-08-01

    Synthetic aperture radar (SAR) interferometry is a powerful technology for detection and monitoring of slow ground surface movements. Monitoring of ground deformations in mining structures is an important application, particularly difficult because the scene changes with time. The persistent scatterer pair (PSP) approach, recently proposed to overcome some limitations of standard persistent scatter interferometry, proved to be effective also for mine monitoring. In this work, after resuming the main ideas of the PSP method, we describe the PSP measurements obtained from high- resolution X-band COSMO-SkyMed data over a large mining area in Minas Gerais state, Brazil. The outcomes demonstrate that dense and accurate ground deformation measurements can be obtained on the mining area and its structures (such as open pits, waste dumps, conveyor belts, water and tailings dams, etc.), achieving a consistent global view including also areas where field instruments are not installed.

  10. Microfluidic chip integrated with flexible PDMS-based electrochemical cytosensor for dynamic analysis of drug-induced apoptosis on HeLa cells.

    PubMed

    Cao, Jun-Tao; Zhu, Ying-Di; Rana, Rohit Kumar; Zhu, Jun-Jie

    2014-01-15

    A novel microfluidic platform integrated with a flexible PDMS-based electrochemical cytosensor was developed for real-time monitoring of the proliferation and apoptosis of HeLa cells. The PDMS-gold film, which had a conductive smooth surface and was semi-transparent, facilitated electrochemical measurements and optical microscope observations. We observed distinct increases and decreases in peak current intensity, corresponding to cell proliferation in culture medium and apoptosis in the presence of an anticancer drug, respectively. This electrochemical analysis method permitted real-time, label-free monitoring of cell behavior, and the electrochemical results were confirmed with optical microscopy. The flexible microfluidic electrochemical platform presented here is suitable for on-site monitoring of cell behavior in microenvironments. © 2013 Elsevier B.V. All rights reserved.

  11. Automated Detection of Salt Marsh Platforms : a Topographic Method

    NASA Astrophysics Data System (ADS)

    Goodwin, G.; Mudd, S. M.; Clubb, F. J.

    2017-12-01

    Monitoring the topographic evolution of coastal marshes is a crucial step toward improving the management of these valuable landscapes under the pressure of relative sea level rise and anthropogenic modification. However, determining their geometrically complex boundaries currently relies on spectral vegetation detection methods or requires labour-intensive field surveys and digitisation.We propose a novel method to reproducibly isolate saltmarsh scarps and platforms from a DEM. Field observations and numerical models show that saltmarshes mature into sub-horizontal platforms delineated by sub-vertical scarps: based on this premise, we identify scarps as lines of local maxima on a slope*relief raster, then fill landmasses from the scarps upward, thus isolating mature marsh platforms. Non-dimensional search parameters allow batch-processing of data without recalibration. We test our method using lidar-derived DEMs of six saltmarshes in England with varying tidal ranges and geometries, for which topographic platforms were manually isolated from tidal flats. Agreement between manual and automatic segregation exceeds 90% for resolutions of 1m, with all but one sites maintaining this performance for resolutions up to 3.5m. For resolutions of 1m, automatically detected platforms are comparable in surface area and elevation distribution to digitised platforms. We also find that our method allows the accurate detection of local bloc failures 3 times larger than the DEM resolution.Detailed inspection reveals that although tidal creeks were digitised as part of the marsh platform, automatic detection classifies them as part of the tidal flat, causing an increase in false negatives and overall platform perimeter. This suggests our method would benefit from a combination with existing creek detection algorithms. Fallen blocs and pioneer zones are inconsistently identified, particularly in macro-tidal marshes, leading to differences between digitisation and the automated method: this also suggests that these areas must be carefully considered when analysing erosion and accretion processes. Ultimately, we have shown that automatic detection of marsh platforms from high-resolution topography is possible and sufficient to monitor and analyse topographic evolution.

  12. Biomonitoring persistent organic pollutants in the atmosphere with mosses: performance and application.

    PubMed

    Wu, Qimei; Wang, Xin; Zhou, Qixing

    2014-05-01

    Persistent organic pollutants (POPs) have aroused environmentalists and public concerns due to their toxicity, bioaccumulation and persistency in the environment. However, monitoring atmospheric POPs using conventional instrumental methods is difficult and expensive, and POP levels in air samples represent an instantaneous value at a sampling time. Biomonitoring methods can overcome this limitation, because biomonitors can accumulate POPs, serve as long-term integrators of POPs and provide reliable information to assess the impact of pollutants on the biota and various ecosystems. Recently, mosses are increasingly employed to monitor atmospheric POPs. Mosses have been applied to indicate POP pollution levels in the remote continent of Antarctica, trace distribution of POPs in the vicinity of pollution sources, describe the spatial patterns at the regional scale, and monitor the changes in the pollution intensity along time. In the future, many aspects need to be improved and strengthened: (i) the relationship between the concentrations of POPs in mosses and in the atmosphere (different size particulates and vapor phases); and (ii) the application of biomonitoring with mosses in human health studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Monitoring Ground Deformation Using Persistent Scatters Interferometry (PSI) and Small Baselines (SBAS) Techniques Integrated in the ESA RSS Service: The Case Study of Valencia, Rome and South Sardinia

    NASA Astrophysics Data System (ADS)

    Delgado, Manuel J.; Cuccu, Roberto; Rivolta, Giancarlo

    2015-05-01

    This work is focused on the infrastructure monitoring of areas which had experienced significant urbanization and therefore, also an increase of the exploitation of natural resources. Persistent Scatters Interferometry (PS-InSAR) and Small Baselines (SBAS) approaches are applied to three study areas for which large datasets of SAR images are available in ascending and descending modes to finally deploy deformation maps of different buildings and infrastructures. Valencia, Rome and South Sardinia areas have been selected for this study, having experienced an increase of the exploitation of natural resources in parallel with their urban expansion. Moreover, Rome is a very special case, where Cultural Heritage permeating the city and its surroundings would suggest the necessity of a tool for monitoring the stability of the different sites. This work wants to analyse the potential deformation that had occurred in these areas during the period 1992 to 2010, by applying Persistent Scatters Interferometry to ESA ERS SAR and Envisat ASAR data.

  14. Microfluidics for Antibiotic Susceptibility and Toxicity Testing

    PubMed Central

    Dai, Jing; Hamon, Morgan; Jambovane, Sachin

    2016-01-01

    The recent emergence of antimicrobial resistance has become a major concern for worldwide policy makers as very few new antibiotics have been developed in the last twenty-five years. To prevent the death of millions of people worldwide, there is an urgent need for a cheap, fast and accurate set of tools and techniques that can help to discover and develop new antimicrobial drugs. In the past decade, microfluidic platforms have emerged as potential systems for conducting pharmacological studies. Recent studies have demonstrated that microfluidic platforms can perform rapid antibiotic susceptibility tests to evaluate antimicrobial drugs’ efficacy. In addition, the development of cell-on-a-chip and organ-on-a-chip platforms have enabled the early drug testing, providing more accurate insights into conventional cell cultures on the drug pharmacokinetics and toxicity, at the early and cheaper stage of drug development, i.e., prior to animal and human testing. In this review, we focus on the recent developments of microfluidic platforms for rapid antibiotics susceptibility testing, investigating bacterial persistence and non-growing but metabolically active (NGMA) bacteria, evaluating antibiotic effectiveness on biofilms and combinatorial effect of antibiotics, as well as microfluidic platforms that can be used for in vitro antibiotic toxicity testing. PMID:28952587

  15. Latino Parent Home-Based Practices that Bolster Student Academic Persistence

    ERIC Educational Resources Information Center

    Mena, Jasmine A.

    2011-01-01

    Home-based parental involvement practices (i.e., educational encouragement, monitoring, and support) and their impact on students' academic persistence were investigated with a sample of 137, ninth-grade Latino students in a northeast high school. Structural Equation Modeling results indicate that the relationship between home-based parental…

  16. NATIONAL COW MILK SURVEY FOR PERSISTENT, BIOACCUMULATIVE AND TOXIC (PBT) POLLUTANTS

    EPA Science Inventory

    This is a survey for persistent, bioaccumulative, and toxic (PBT) pollutants in the U.S. milk supply. The EPA Environmental Radiation Ambient Monitoring System (ERAMS) was used to collect two sets of milk samples, one set in July 2000 and the second in January 2001. ERAMS has abo...

  17. Multiplex screening of persistent organic pollutants in fish using spectrally encoded microspheres

    USDA-ARS?s Scientific Manuscript database

    Persistent organic pollutants (POPs) are food contaminants of global public health concern and known to be carcinogenic and endocrine disruptors. Their monitoring is essential and an easy-to-use, rapid and affordable multi-analyte screening method with simplified sample preparation can be a valuable...

  18. A Mobile Platform for Administering Questionnaires and Synchronizing Their Answers

    ERIC Educational Resources Information Center

    Ginardi, Maria Germana; Lanzola, Giordano

    2013-01-01

    This paper describes a platform for administering questionnaires on smart-phones and tablets. The project arises from the need of acquiring data for monitoring the outcomes of different homecare interventions. First a model has been defined for representing questionnaires, able to support adaptivity in the dialog with the user and enforce some…

  19. A fast, robust and tunable synthetic gene oscillator.

    PubMed

    Stricker, Jesse; Cookson, Scott; Bennett, Matthew R; Mather, William H; Tsimring, Lev S; Hasty, Jeff

    2008-11-27

    One defining goal of synthetic biology is the development of engineering-based approaches that enable the construction of gene-regulatory networks according to 'design specifications' generated from computational modelling. This approach provides a systematic framework for exploring how a given regulatory network generates a particular phenotypic behaviour. Several fundamental gene circuits have been developed using this approach, including toggle switches and oscillators, and these have been applied in new contexts such as triggered biofilm development and cellular population control. Here we describe an engineered genetic oscillator in Escherichia coli that is fast, robust and persistent, with tunable oscillatory periods as fast as 13 min. The oscillator was designed using a previously modelled network architecture comprising linked positive and negative feedback loops. Using a microfluidic platform tailored for single-cell microscopy, we precisely control environmental conditions and monitor oscillations in individual cells through multiple cycles. Experiments reveal remarkable robustness and persistence of oscillations in the designed circuit; almost every cell exhibited large-amplitude fluorescence oscillations throughout observation runs. The oscillatory period can be tuned by altering inducer levels, temperature and the media source. Computational modelling demonstrates that the key design principle for constructing a robust oscillator is a time delay in the negative feedback loop, which can mechanistically arise from the cascade of cellular processes involved in forming a functional transcription factor. The positive feedback loop increases the robustness of the oscillations and allows for greater tunability. Examination of our refined model suggested the existence of a simplified oscillator design without positive feedback, and we construct an oscillator strain confirming this computational prediction.

  20. Wireless Sensor-Based Smart-Clothing Platform for ECG Monitoring

    PubMed Central

    Lin, Chung-Chih; Yu, Yan-Shuo

    2015-01-01

    The goal of this study is to use wireless sensor technologies to develop a smart clothes service platform for health monitoring. Our platform consists of smart clothes, a sensor node, a gateway server, and a health cloud. The smart clothes have fabric electrodes to detect electrocardiography (ECG) signals. The sensor node improves the accuracy of QRS complexes detection by morphology analysis and reduces power consumption by the power-saving transmission functionality. The gateway server provides a reconfigurable finite state machine (RFSM) software architecture for abnormal ECG detection to support online updating. Most normal ECG can be filtered out, and the abnormal ECG is further analyzed in the health cloud. Three experiments are conducted to evaluate the platform's performance. The results demonstrate that the signal-to-noise ratio (SNR) of the smart clothes exceeds 37 dB, which is within the “very good signal” interval. The average of the QRS sensitivity and positive prediction is above 99.5%. Power-saving transmission is reduced by nearly 1980 times the power consumption in the best-case analysis. PMID:26640512

  1. Wireless Sensor-Based Smart-Clothing Platform for ECG Monitoring.

    PubMed

    Wang, Jie; Lin, Chung-Chih; Yu, Yan-Shuo; Yu, Tsang-Chu

    2015-01-01

    The goal of this study is to use wireless sensor technologies to develop a smart clothes service platform for health monitoring. Our platform consists of smart clothes, a sensor node, a gateway server, and a health cloud. The smart clothes have fabric electrodes to detect electrocardiography (ECG) signals. The sensor node improves the accuracy of QRS complexes detection by morphology analysis and reduces power consumption by the power-saving transmission functionality. The gateway server provides a reconfigurable finite state machine (RFSM) software architecture for abnormal ECG detection to support online updating. Most normal ECG can be filtered out, and the abnormal ECG is further analyzed in the health cloud. Three experiments are conducted to evaluate the platform's performance. The results demonstrate that the signal-to-noise ratio (SNR) of the smart clothes exceeds 37 dB, which is within the "very good signal" interval. The average of the QRS sensitivity and positive prediction is above 99.5%. Power-saving transmission is reduced by nearly 1980 times the power consumption in the best-case analysis.

  2. Using Voicethread to Create Community in Online Learning

    ERIC Educational Resources Information Center

    Delmas, Peggy M.

    2017-01-01

    A sense of belonging to a learning community has been identified as one of the factors contributing to greater student satisfaction and persistence in online education programs. Using the community of inquiry framework as a theoretical guide, the purpose of this study was to explore the role of VoiceThread, a web-based platform that facilitates…

  3. A simple and reliable health monitoring system for shoulder health: proposal.

    PubMed

    Liu, Shuo-Fang; Lee, Yann-Long

    2014-02-26

    The current health care system is complex and inefficient. A simple and reliable health monitoring system that can help patients perform medical self-diagnosis is seldom readily available. Because the medical system is vast and complex, it has hampered or delayed patients in seeking medical advice or treatment in a timely manner, which may potentially affect the patient's chances of recovery, especially those with severe sicknesses such as cancer, and heart disease. The purpose of this paper is to propose a methodology in designing a simple, low cost, Internet-based health-screening platform. This health-screening platform will enable patients to perform medical self-diagnosis over the Internet. Historical data has shown the importance of early detection to ensure patients receive proper treatment and speedy recovery. The platform is designed with special emphasis on the user interface. Standard Web-based user-interface design is adopted so the user feels ease to operate in a familiar Web environment. In addition, graphics such as charts and graphs are used generously to help users visualize and understand the result of the diagnostic. The system is developed using hypertext preprocessor (PHP) programming language. One important feature of this system platform is that it is built to be a stand-alone platform, which tends to have better user privacy security. The prototype system platform was developed by the National Cheng Kung University Ergonomic and Design Laboratory. The completed prototype of this system platform was submitted to the Taiwan Medical Institute for evaluation. The evaluation of 120 participants showed that this platform system is a highly effective tool in health-screening applications, and has great potential for improving the medical care quality for the general public.

  4. Sea truth and environmental characterization studies of Mobile Bay, Alabama, utilizing ERTS-1, data collection platforms

    NASA Technical Reports Server (NTRS)

    Schroeder, W. W.

    1977-01-01

    The paper reports on the scientific results obtained during a feasibility study that evaluated the potential of using ERTS data collection platforms (DCPs) in the coastal environment of Mobile Bay, Alabama. The utility of instrumented buoys operated in a coastal marine environment as ERTS DCPs is demonstrated. It is shown that these platforms are capable of providing both sea-truth data for ERTS imagery studies and time-series data for event monitoring and/or environmental characterization studies.

  5. Ambulatory EEG NeuroMonitor platform for engagement studies of children with development delays

    NASA Astrophysics Data System (ADS)

    Mahajan, Ruhi; Consul-Pacareu, Sergi; Abusaud, Mohammed; Sahadat, Md N.; Morshed, Bashir I.

    2013-05-01

    Engagement monitoring is crucial in many clinical and therapy applications such as early learning preschool classes for children with developmental delays including autism spectrum disorder (ASD), attention-deficit hyperactivity disorder (ADHD), or cerebral palsy; as it is challenging for the instructors to evaluate the individual responses of these children to determine the effectiveness of the teaching strategies due to the diverse and unique need of each child who might have difficulty in verbal or behavioral communication. This paper presents an ambulatory scalp electroencephalogram (EEG) NeuroMonitor platform to study brain engagement activities in natural settings. The developed platform is miniature (size: 2.2" x 0.8" x 0.36", weight: 41.8 gm with 800 mAh Li-ion battery and 3 snap leads) and low-power (active mode: 32 mA low power mode: under 5mA) with 2 channels (Fp1, Fp2) to record prefrontal cortex activities of the subject in natural settings while concealed within a headband. The signals from the electrodes are amplified with a low-power instrumentation amplifier; notch filtered (fc = 60Hz), then band-passed by a 2nd-order Chebyshev-I low-pass filter cascaded with a 2nd-order low-pass (fc = 125Hz). A PSoC ADC (16-bit, 256 sps) samples this filtered signal, and can either transmit it through a Class-2 Bluetooth transceiver to a remote station for real-time analysis or store it in a microSD card for offline processing. This platform is currently being evaluated to capture data in the classroom settings for engagement monitoring of children, aimed to study the effectiveness of various teaching strategies that will allow the development of personalized classroom curriculum for children with developmental delays.

  6. Design and Evaluation of a Pervasive Coaching and Gamification Platform for Young Diabetes Patients.

    PubMed

    Klaassen, Randy; Bul, Kim C M; Op den Akker, Rieks; van der Burg, Gert Jan; Kato, Pamela M; Di Bitonto, Pierpaolo

    2018-01-30

    Self monitoring, personal goal-setting and coaching, education and social support are strategies to help patients with chronic conditions in their daily care. Various tools have been developed, e.g., mobile digital coaching systems connected with wearable sensors, serious games and patient web portals to personal health records, that aim to support patients with chronic conditions and their caregivers in realizing the ideal of self-management. We describe a platform that integrates these tools to support young patients in diabetes self-management through educational game playing, monitoring and motivational feedback. We describe the design of the platform referring to principles from healthcare, persuasive system design and serious game design. The virtual coach is a game guide that can also provide personalized feedback about the user's daily care related activities which have value for making progress in the game world. User evaluations with patients under pediatric supervision revealed that the use of mobile technology in combination with web-based elements is feasible but some assumptions made about how users would connect to the platform were not satisfied in reality, resulting in less than optimal user experiences. We discuss challenges with suggestions for further development of integrated pervasive coaching and gamification platforms in medical practice.

  7. Design and Evaluation of a Pervasive Coaching and Gamification Platform for Young Diabetes Patients †

    PubMed Central

    Klaassen, Randy; Bul, Kim C. M.; op den Akker, Rieks; van der Burg, Gert Jan; Di Bitonto, Pierpaolo

    2018-01-01

    Self monitoring, personal goal-setting and coaching, education and social support are strategies to help patients with chronic conditions in their daily care. Various tools have been developed, e.g., mobile digital coaching systems connected with wearable sensors, serious games and patient web portals to personal health records, that aim to support patients with chronic conditions and their caregivers in realizing the ideal of self-management. We describe a platform that integrates these tools to support young patients in diabetes self-management through educational game playing, monitoring and motivational feedback. We describe the design of the platform referring to principles from healthcare, persuasive system design and serious game design. The virtual coach is a game guide that can also provide personalized feedback about the user’s daily care related activities which have value for making progress in the game world. User evaluations with patients under pediatric supervision revealed that the use of mobile technology in combination with web-based elements is feasible but some assumptions made about how users would connect to the platform were not satisfied in reality, resulting in less than optimal user experiences. We discuss challenges with suggestions for further development of integrated pervasive coaching and gamification platforms in medical practice. PMID:29385750

  8. A solar activity monitoring platform for SCADM

    NASA Technical Reports Server (NTRS)

    Kissell, K. E.; Ratcliff, D. D.

    1980-01-01

    The adaptation of proven space probe technology is proposed as a means of providing a solar activity monitoring platform which could be injected behind the Earth's orbital position to give 3 to 6 days advanced coverage of the solar phenomenon on the backside hemisphere before it rotates into view and affects terrestrial activities. The probe would provide some three dimensional discrimination within the ecliptic latitude. This relatively simple off-Earth probe could provide very high quality data to support the SCADM program, by transmitting both high resolution video data of the solar surface and such measurements of solar activity as particle, X-ray, ultraviolet, and radio emission fluxes. Topics covered include the orbit; constraints on the spacecraft; subsystems and their embodiments; optical imaging sensors and their operation; and the radiation-pressure attitude control system are described. The platform would be capable of mapping active regions on an hourly basis with one arc-second resolution.

  9. MRMer, an interactive open source and cross-platform system for data extraction and visualization of multiple reaction monitoring experiments.

    PubMed

    Martin, Daniel B; Holzman, Ted; May, Damon; Peterson, Amelia; Eastham, Ashley; Eng, Jimmy; McIntosh, Martin

    2008-11-01

    Multiple reaction monitoring (MRM) mass spectrometry identifies and quantifies specific peptides in a complex mixture with very high sensitivity and speed and thus has promise for the high throughput screening of clinical samples for candidate biomarkers. We have developed an interactive software platform, called MRMer, for managing highly complex MRM-MS experiments, including quantitative analyses using heavy/light isotopic peptide pairs. MRMer parses and extracts information from MS files encoded in the platform-independent mzXML data format. It extracts and infers precursor-product ion transition pairings, computes integrated ion intensities, and permits rapid visual curation for analyses exceeding 1000 precursor-product pairs. Results can be easily output for quantitative comparison of consecutive runs. Additionally MRMer incorporates features that permit the quantitative analysis experiments including heavy and light isotopic peptide pairs. MRMer is open source and provided under the Apache 2.0 license.

  10. Dance-the-Music: an educational platform for the modeling, recognition and audiovisual monitoring of dance steps using spatiotemporal motion templates

    NASA Astrophysics Data System (ADS)

    Maes, Pieter-Jan; Amelynck, Denis; Leman, Marc

    2012-12-01

    In this article, a computational platform is presented, entitled "Dance-the-Music", that can be used in a dance educational context to explore and learn the basics of dance steps. By introducing a method based on spatiotemporal motion templates, the platform facilitates to train basic step models from sequentially repeated dance figures performed by a dance teacher. Movements are captured with an optical motion capture system. The teachers' models can be visualized from a first-person perspective to instruct students how to perform the specific dance steps in the correct manner. Moreover, recognition algorithms-based on a template matching method-can determine the quality of a student's performance in real time by means of multimodal monitoring techniques. The results of an evaluation study suggest that the Dance-the-Music is effective in helping dance students to master the basics of dance figures.

  11. Compact handheld low-cost biosensor platform for remote health monitoring

    NASA Astrophysics Data System (ADS)

    Hastanin, J.; Lenaerts, C.; Gailly, P.; Jans, H.; Huang, C.; Lagae, L.; Kokkinos, D.; Fleury-Frenette, K.

    2016-04-01

    In this paper, we present an original concept of plasmonic-related instrumentation platform dedicated to diagnostic biosensing tests out of the laboratory. The developed instrumental platform includes both disposable one-use microfluidic affinity biochip and compact optical readout device for biochip monitoring involving mobile Internet devices for data processing and communication. The biochip includes both microfluidic and optical coupling structures formed into a single plastic slab. The microfluidic path of the biochip operates in passive capillary pumping mode. In the proof-of-concept prototype, we address specifically the sensing format involving Surface Plasmon Resonance phenomenon. The biochip is plugged in the readout device without the use of an index matching fluid. An essential advantage of the developed biochip is that its implementation involves conventional hot embossing and thin film deposition process, perfectly suited for mass production of low-cost microfluidic biochip for biochemical applications.

  12. Reconfigurable intelligent sensors for health monitoring: a case study of pulse oximeter sensor.

    PubMed

    Jovanov, E; Milenkovic, A; Basham, S; Clark, D; Kelley, D

    2004-01-01

    Design of low-cost, miniature, lightweight, ultra low-power, intelligent sensors capable of customization and seamless integration into a body area network for health monitoring applications presents one of the most challenging tasks for system designers. To answer this challenge we propose a reconfigurable intelligent sensor platform featuring a low-power microcontroller, a low-power programmable logic device, a communication interface, and a signal conditioning circuit. The proposed solution promises a cost-effective, flexible platform that allows easy customization, run-time reconfiguration, and energy-efficient computation and communication. The development of a common platform for multiple physical sensors and a repository of both software procedures and soft intellectual property cores for hardware acceleration will increase reuse and alleviate costs of transition to a new generation of sensors. As a case study, we present an implementation of a reconfigurable pulse oximeter sensor.

  13. [Learning to solve a spatial task in a water maze in aggressive and submissive mice].

    PubMed

    Dubrovina, N I; Tomilenko, R A

    2007-01-01

    Learning and retention of the spatial memory were studied in mice with alternative under conditions of various experimental protocols. Visible and hidden platform acquisition in a simple model of the water maze was similarly fast both in aggressive and submissive mice, but extinction differed. Retention of the platform location preference persisted in aggressive mice in four testing trials. In submissive mice, extiction of the spatial memory was accompanied with a prolongation of search with parallel production of episodes of "passive drift". Differences in spatial learning between aggressive and submissive mice were revealed in a water maze complicated with partitions. In this case, aggressors were able to learn the position of a hidden platform (in contrast to submissive mice with the dominant response of "passive drift"). During testing the response, aggressive mice longer retained the spatial preference without extinction.

  14. Direct Adaptive Rejection of Vortex-Induced Disturbances for a Powered SPAR Platform

    NASA Technical Reports Server (NTRS)

    VanZwieten, Tannen S.; Balas, Mark J.; VanZwieten, James H.; Driscoll, Frederick R.

    2009-01-01

    The Rapidly Deployable Stable Platform (RDSP) is a novel vessel designed to be a reconfigurable, stable at-sea platform. It consists of a detachable catamaran and spar, performing missions with the spar extending vertically below the catamaran and hoisting it completely out of the water. Multiple thrusters located along the spar allow it to be actively controlled in this configuration. A controller is presented in this work that uses an adaptive feedback algorithm in conjunction with Direct Adaptive Disturbance Rejection (DADR) to mitigate persistent, vortex-induced disturbances. Given the frequency of a disturbance, the nominal DADR scheme adaptively compensates for its unknown amplitude and phase. This algorithm is extended to adapt to a disturbance frequency that is only coarsely known by including a Phase Locked Loop (PLL). The PLL improves the frequency estimate on-line, allowing the modified controller to reduce vortex-induced motions by more than 95% using achievable thrust inputs.

  15. Citizen Sensors for SHM: Towards a Crowdsourcing Platform

    PubMed Central

    Ozer, Ekin; Feng, Maria Q.; Feng, Dongming

    2015-01-01

    This paper presents an innovative structural health monitoring (SHM) platform in terms of how it integrates smartphone sensors, the web, and crowdsourcing. The ubiquity of smartphones has provided an opportunity to create low-cost sensor networks for SHM. Crowdsourcing has given rise to citizen initiatives becoming a vast source of inexpensive, valuable but heterogeneous data. Previously, the authors have investigated the reliability of smartphone accelerometers for vibration-based SHM. This paper takes a step further to integrate mobile sensing and web-based computing for a prospective crowdsourcing-based SHM platform. An iOS application was developed to enable citizens to measure structural vibration and upload the data to a server with smartphones. A web-based platform was developed to collect and process the data automatically and store the processed data, such as modal properties of the structure, for long-term SHM purposes. Finally, the integrated mobile and web-based platforms were tested to collect the low-amplitude ambient vibration data of a bridge structure. Possible sources of uncertainties related to citizens were investigated, including the phone location, coupling conditions, and sampling duration. The field test results showed that the vibration data acquired by smartphones operated by citizens without expertise are useful for identifying structural modal properties with high accuracy. This platform can be further developed into an automated, smart, sustainable, cost-free system for long-term monitoring of structural integrity of spatially distributed urban infrastructure. Citizen Sensors for SHM will be a novel participatory sensing platform in the way that it offers hybrid solutions to transitional crowdsourcing parameters. PMID:26102490

  16. Multi-function microfluidic platform for sensor integration.

    PubMed

    Fernandes, Ana C; Semenova, Daria; Panjan, Peter; Sesay, Adama M; Gernaey, Krist V; Krühne, Ulrich

    2018-03-06

    The limited availability of metabolite-specific sensors for continuous sampling and monitoring is one of the main bottlenecks contributing to failures in bioprocess development. Furthermore, only a limited number of approaches exist to connect currently available measurement systems with high throughput reactor units. This is especially relevant in the biocatalyst screening and characterization stage of process development. In this work, a strategy for sensor integration in microfluidic platforms is demonstrated, to address the need for rapid, cost-effective and high-throughput screening in bioprocesses. This platform is compatible with different sensor formats by enabling their replacement and was built in order to be highly flexible and thus suitable for a wide range of applications. Moreover, this re-usable platform can easily be connected to analytical equipment, such as HPLC, laboratory scale reactors or other microfluidic chips through the use of standardized fittings. In addition, the developed platform includes a two-sensor system interspersed with a mixing channel, which allows the detection of samples that might be outside the first sensor's range of detection, through dilution of the sample solution up to 10 times. In order to highlight the features of the proposed platform, inline monitoring of glucose levels is presented and discussed. Glucose was chosen due to its importance in biotechnology as a relevant substrate. The platform demonstrated continuous measurement of substrate solutions for up to 12 h. Furthermore, the influence of the fluid velocity on substrate diffusion was observed, indicating the need for in-flow calibration to achieve a good quantitative output. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Neuropathogenesis of HIV-associated neurocognitive disorders: roles for immune activation, HIV blipping and viral tropism.

    PubMed

    Chen, Maria F; Gill, Alexander J; Kolson, Dennis L

    2014-11-01

    The purpose of this study is to discuss why HIV-associated neurocognitive disorders (HAND) persist despite apparently effective HIV suppression by highly active antiretroviral therapy (ART). As many as 50% of HIV-infected individuals suffer from HAND despite ART suppression of HIV replication to apparently undetectable levels in most treated individuals. Prior to ART, HIV-associated dementia (HAD), the severest form of HAND, affected nearly 20% of infected individuals; HAD now affects only nearly 2% of ART-treated persons, although less severe HAND forms persist. Recent studies link persistent immune activation, inflammation and viral escape/blipping in ART-treated individuals, as well as comorbid conditions, to HIV disease progression and increased HAND risk. Despite sustained HIV suppression in most ART-treated individuals, indicated by routine plasma monitoring and occasional cerebrospinal fluid (CSF) monitoring, 'blips' of HIV replication are often detected with more frequent monitoring, thus challenging the concept of viral suppression. Although the causes of HIV blipping are unclear, CSF HIV blipping associates with neuroinflammation and, possibly, central nervous system (CNS) injury. The current theory that macrophage-tropic HIV strains within the CNS predominate in driving HAND and these associated factors is now also challenged. Protection of the CNS by ART is incomplete, probably due to combined effects of incomplete HIV suppression, persistent immune activation and host comorbidity factors. Adjunctive therapies to ART are necessary for more effective protection.

  18. Evaluation of nutria (Myocastor coypus) detection methods in Maryland, USA

    USGS Publications Warehouse

    Pepper, Margaret A.; Herrmann, Valentine; Hines, James; Nichols, James D.; Kendrot, Stephen R

    2017-01-01

    Nutria (Myocaster coypus), invasive, semi-aquatic rodents native to South America, were introduced into Maryland near Blackwater National Wildlife Refuge (BNWR) in 1943. Irruptive population growth, expansion, and destructive feeding habits resulted in the destruction of thousands of acres of emergent marshes at and surrounding BNWR. In 2002, a partnership of federal, state and private entities initiated an eradication campaign to protect remaining wetlands from further damage and facilitate the restoration of coastal wetlands throughout the Chesapeake Bay region. Program staff removed nearly 14,000 nutria from five infested watersheds in a systematic trapping and hunting program between 2002 and 2014. As part of ongoing surveillance activities, the Chesapeake Bay Nutria Eradication Project uses a variety of tools to detect and remove nutria. Project staff developed a floating raft, or monitoring platform, to determine site occupancy. These platforms are placed along waterways and checked periodically for evidence of nutria visitation. We evaluated the effectiveness of monitoring platforms and three associated detection methods: hair snares, presence of scat, and trail cameras. Our objectives were to (1) determine if platform placement on land or water influenced nutria visitation rates, (2) determine if the presence of hair snares influenced visitation rates, and (3) determine method-specific detection probabilities. Our analyses indicated that platforms placed on land were 1.5–3.0 times more likely to be visited than those placed in water and that platforms without snares were an estimated 1.7–3.7 times more likely to be visited than those with snares. Although the presence of snares appears to have discouraged visitation, seasonal variation may confound interpretation of these results. Scat was the least effective method of determining nutria visitation, while hair snares were as effective as cameras. Estimated detection probabilities provided by occupancy modeling were 0.73 for hair snares, 0.71 for cameras and 0.40 for scat. We recommend the use of hair snares on monitoring platforms as they are the most cost-effective and reliable detection method available at this time. Future research should focus on determining the cause for the observed decrease in nutria visits after snares were applied.

  19. Design of sensor node platform for wireless biomedical sensor networks.

    PubMed

    Xijun, Chen; -H Meng, Max; Hongliang, Ren

    2005-01-01

    Design of low-cost, miniature, lightweight, ultra low-power, flexible sensor platform capable of customization and seamless integration into a wireless biomedical sensor network(WBSN) for health monitoring applications presents one of the most challenging tasks. In this paper, we propose a WBSN node platform featuring an ultra low-power microcontroller, an IEEE 802.15.4 compatible transceiver, and a flexible expansion connector. The proposed solution promises a cost-effective, flexible platform that allows easy customization, energy-efficient computation and communication. The development of a common platform for multiple physical sensors will increase reuse and alleviate costs of transition to a new generation of sensors. As a case study, we present an implementation of an ECG (Electrocardiogram) sensor.

  20. System and Method for Providing a Climate Data Persistence Service

    NASA Technical Reports Server (NTRS)

    Schnase, John L. (Inventor); Ripley, III, William David (Inventor); Duffy, Daniel Q. (Inventor); Thompson, John H. (Inventor); Strong, Savannah L. (Inventor); McInerney, Mark (Inventor); Sinno, Scott (Inventor); Tamkin, Glenn S. (Inventor); Nadeau, Denis (Inventor)

    2018-01-01

    A system, method and computer-readable storage devices for providing a climate data persistence service. A system configured to provide the service can include a climate data server that performs data and metadata storage and management functions for climate data objects, a compute-storage platform that provides the resources needed to support a climate data server, provisioning software that allows climate data server instances to be deployed as virtual climate data servers in a cloud computing environment, and a service interface, wherein persistence service capabilities are invoked by software applications running on a client device. The climate data objects can be in various formats, such as International Organization for Standards (ISO) Open Archival Information System (OAIS) Reference Model Submission Information Packages, Archive Information Packages, and Dissemination Information Packages. The climate data server can enable scalable, federated storage, management, discovery, and access, and can be tailored for particular use cases.

  1. Data Service: Distributed Data Capture and Replication

    NASA Astrophysics Data System (ADS)

    Warner, P. B.; Pietrowicz, S. R.

    2007-10-01

    Data Service is a critical component of the NOAO Data Management and Science Support (DMaSS) Solutions Platform, which is based on a service-oriented architecture, and is to replace the current NOAO Data Transport System. Its responsibilities include capturing data from NOAO and partner telescopes and instruments and replicating the data across multiple (currently six) storage sites. Java 5 was chosen as the implementation language, and Java EE as the underlying enterprise framework. Application metadata persistence is performed using EJB and Hibernate on the JBoss Application Server, with PostgreSQL as the persistence back-end. Although potentially any underlying mass storage system may be used as the Data Service file persistence technology, DTS deployments and Data Service test deployments currently use the Storage Resource Broker from SDSC. This paper presents an overview and high-level design of the Data Service, including aspects of deployment, e.g., for the LSST Data Challenge at the NCSA computing facilities.

  2. Metabarcoding monitoring analysis: the pros and cons of using co-extracted environmental DNA and RNA data to assess offshore oil production impacts on benthic communities.

    PubMed

    Laroche, Olivier; Wood, Susanna A; Tremblay, Louis A; Lear, Gavin; Ellis, Joanne I; Pochon, Xavier

    2017-01-01

    Sequencing environmental DNA (eDNA) is increasingly being used as an alternative to traditional morphological-based identification to characterize biological assemblages and monitor anthropogenic impacts in marine environments. Most studies only assess eDNA which, compared to eRNA, can persist longer in the environment after cell death. Therefore, eRNA may provide a more immediate census of the environment due to its relatively weaker stability, leading some researchers to advocate for the use of eRNA as an additional, or perhaps superior proxy for portraying ecological changes. A variety of pre-treatment techniques for screening eDNA and eRNA derived operational taxonomic units (OTUs) have been employed prior to statistical analyses, including removing singleton taxa (i.e., OTUs found only once) and discarding those not present in both eDNA and eRNA datasets. In this study, we used bacterial (16S ribosomal RNA gene) and eukaryotic (18S ribosomal RNA gene) eDNA- and eRNA-derived data from benthic communities collected at increasing distances along a transect from an oil production platform (Taranaki, New Zealand). Macro-infauna (visual classification of benthic invertebrates) and physico-chemical data were analyzed in parallel. We tested the effect of removing singleton taxa, and removing taxa not present in the eDNA and eRNA libraries from the same environmental sample (trimmed by shared OTUs), by comparing the impact of the oil production platform on alpha- and beta-diversity of the eDNA/eRNA-based biological assemblages, and by correlating these to the morphologically identified macro-faunal communities and the physico-chemical data. When trimmed by singletons, presence/absence information from eRNA data represented the best proxy to detect changes on species diversity for both bacteria and eukaryotes. However, assessment of quantitative beta-diversity from read abundance information of bacteria eRNA did not, contrary to eDNA, reveal any impact from the oil production activity. Overall, the data appeared more robust when trimmed by shared OTUs, showing a greater effect of the platform on alpha- and beta-diversity. Trimming by shared OTUs likely removes taxa derived from legacy DNA and technical artefacts introduced through reverse transcriptase, polymerase-chain-reaction and sequencing. Findings from our scoping study suggest that metabarcoding-based biomonitoring surveys should, if funds, time and expertise allow, be assessed using both eDNA and eRNA products.

  3. Metabarcoding monitoring analysis: the pros and cons of using co-extracted environmental DNA and RNA data to assess offshore oil production impacts on benthic communities

    PubMed Central

    Wood, Susanna A.; Tremblay, Louis A.; Lear, Gavin; Ellis, Joanne I.; Pochon, Xavier

    2017-01-01

    Sequencing environmental DNA (eDNA) is increasingly being used as an alternative to traditional morphological-based identification to characterize biological assemblages and monitor anthropogenic impacts in marine environments. Most studies only assess eDNA which, compared to eRNA, can persist longer in the environment after cell death. Therefore, eRNA may provide a more immediate census of the environment due to its relatively weaker stability, leading some researchers to advocate for the use of eRNA as an additional, or perhaps superior proxy for portraying ecological changes. A variety of pre-treatment techniques for screening eDNA and eRNA derived operational taxonomic units (OTUs) have been employed prior to statistical analyses, including removing singleton taxa (i.e., OTUs found only once) and discarding those not present in both eDNA and eRNA datasets. In this study, we used bacterial (16S ribosomal RNA gene) and eukaryotic (18S ribosomal RNA gene) eDNA- and eRNA-derived data from benthic communities collected at increasing distances along a transect from an oil production platform (Taranaki, New Zealand). Macro-infauna (visual classification of benthic invertebrates) and physico-chemical data were analyzed in parallel. We tested the effect of removing singleton taxa, and removing taxa not present in the eDNA and eRNA libraries from the same environmental sample (trimmed by shared OTUs), by comparing the impact of the oil production platform on alpha- and beta-diversity of the eDNA/eRNA-based biological assemblages, and by correlating these to the morphologically identified macro-faunal communities and the physico-chemical data. When trimmed by singletons, presence/absence information from eRNA data represented the best proxy to detect changes on species diversity for both bacteria and eukaryotes. However, assessment of quantitative beta-diversity from read abundance information of bacteria eRNA did not, contrary to eDNA, reveal any impact from the oil production activity. Overall, the data appeared more robust when trimmed by shared OTUs, showing a greater effect of the platform on alpha- and beta-diversity. Trimming by shared OTUs likely removes taxa derived from legacy DNA and technical artefacts introduced through reverse transcriptase, polymerase-chain-reaction and sequencing. Findings from our scoping study suggest that metabarcoding-based biomonitoring surveys should, if funds, time and expertise allow, be assessed using both eDNA and eRNA products. PMID:28533985

  4. Generic HPLC platform for automated enzyme reaction monitoring: Advancing the assay toolbox for transaminases and other PLP-dependent enzymes.

    PubMed

    Börner, Tim; Grey, Carl; Adlercreutz, Patrick

    2016-08-01

    Methods for rapid and direct quantification of enzyme kinetics independent of the substrate stand in high demand for both fundamental research and bioprocess development. This study addresses the need for a generic method by developing an automated, standardizable HPLC platform monitoring reaction progress in near real-time. The method was applied to amine transaminase (ATA) catalyzed reactions intensifying process development for chiral amine synthesis. Autosampler-assisted pipetting facilitates integrated mixing and sampling under controlled temperature. Crude enzyme formulations in high and low substrate concentrations can be employed. Sequential, small (1 µL) sample injections and immediate detection after separation permits fast reaction monitoring with excellent sensitivity, accuracy and reproducibility. Due to its modular design, different chromatographic techniques, e.g. reverse phase and size exclusion chromatography (SEC) can be employed. A novel assay for pyridoxal 5'-phosphate-dependent enzymes is presented using SEC for direct monitoring of enzyme-bound and free reaction intermediates. Time-resolved changes of the different cofactor states, e.g. pyridoxal 5'-phosphate, pyridoxamine 5'-phosphate and the internal aldimine were traced in both half reactions. The combination of the automated HPLC platform with SEC offers a method for substrate-independent screening, which renders a missing piece in the assay and screening toolbox for ATAs and other PLP-dependent enzymes. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Lightweight monitoring and control system for coal mine safety using REST style.

    PubMed

    Cheng, Bo; Cheng, Xin; Chen, Junliang

    2015-01-01

    The complex environment of a coal mine requires the underground environment, devices and miners to be constantly monitored to ensure safe coal production. However, existing coal mines do not meet these coverage requirements because blind spots occur when using a wired network. In this paper, we develop a Web-based, lightweight remote monitoring and control platform using a wireless sensor network (WSN) with the REST style to collect temperature, humidity and methane concentration data in a coal mine using sensor nodes. This platform also collects information on personnel positions inside the mine. We implement a RESTful application programming interface (API) that provides access to underground sensors and instruments through the Web such that underground coal mine physical devices can be easily interfaced to remote monitoring and control applications. We also implement three different scenarios for Web-based, lightweight remote monitoring and control of coal mine safety and measure and analyze the system performance. Finally, we present the conclusions from this study and discuss future work. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Monitoring compaction and compressibility changes in offshore chalk reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dean, G.; Hardy, R.; Eltvik, P.

    1994-03-01

    Some of the North Sea's largest and most important oil fields are in chalk reservoirs. In these fields, it is important to measure reservoir compaction and compressibility because compaction can result in platform subsidence. Also, compaction drive is a main drive mechanism in these fields, so an accurate reserves estimate cannot be made without first measuring compressibility. Estimating compaction and reserves is difficult because compressibility changes throughout field life. Installing of accurate, permanent downhole pressure gauges on offshore chalk fields makes it possible to use a new method to monitor compressibility -- measurement of reservoir pressure changes caused by themore » tide. This tidal-monitoring technique is an in-situ method that can greatly increase compressibility information. It can be used to estimate compressibility and to measure compressibility variation over time. This paper concentrates on application of the tidal-monitoring technique to North Sea chalk reservoirs. However, the method is applicable for any tidal offshore area and can be applied whenever necessary to monitor in-situ rock compressibility. One such application would be if platform subsidence was expected.« less

  7. The backend design of an environmental monitoring system upon real-time prediction of groundwater level fluctuation under the hillslope.

    PubMed

    Lin, Hsueh-Chun; Hong, Yao-Ming; Kan, Yao-Chiang

    2012-01-01

    The groundwater level represents a critical factor to evaluate hillside landslides. A monitoring system upon the real-time prediction platform with online analytical functions is important to forecast the groundwater level due to instantaneously monitored data when the heavy precipitation raises the groundwater level under the hillslope and causes instability. This study is to design the backend of an environmental monitoring system with efficient algorithms for machine learning and knowledge bank for the groundwater level fluctuation prediction. A Web-based platform upon the model-view controller-based architecture is established with technology of Web services and engineering data warehouse to support online analytical process and feedback risk assessment parameters for real-time prediction. The proposed system incorporates models of hydrological computation, machine learning, Web services, and online prediction to satisfy varieties of risk assessment requirements and approaches of hazard prevention. The rainfall data monitored from the potential landslide area at Lu-Shan, Nantou and Li-Shan, Taichung, in Taiwan, are applied to examine the system design.

  8. Examining a Grade-Level Math CBM Designed for Persistently Low-Performing Students

    ERIC Educational Resources Information Center

    Anderson, Daniel; Lai, Cheng-Fei; Alonzo, Julie; Tindal, Gerald

    2011-01-01

    Students with disabilities participate in two major measurement systems. The Individuals with Disabilities Education Act emphasizes working within a Response to Intervention (RTI) framework to identify and monitor the progress of low-performing students. Persistent low-performing students also may be eligible for some form of an alternate…

  9. Affective Load and Engagement in Second Life: Experiencing Urgent, Persistent, and Long-Term Information Needs

    ERIC Educational Resources Information Center

    Nahl, Diane

    2010-01-01

    New users of virtual environments face a steep learning curve, requiring persistence and determination to overcome challenges experienced while acclimatizing to the demands of avatar-mediated behavior. Concurrent structured self-reports can be used to monitor the personal affective and cognitive struggles involved in virtual world adaptation to…

  10. Software Defined Doppler Radar as a Contactless Multipurpose Microwave Sensor for Vibrations Monitoring.

    PubMed

    Raffo, Antonio; Costanzo, Sandra; Di Massa, Giuseppe

    2017-01-08

    A vibration sensor based on the use of a Software-Defined Radio (SDR) platform is adopted in this work to provide a contactless and multipurpose solution for low-cost real-time vibrations monitoring. In order to test the vibration detection ability of the proposed non-contact method, a 1 GHz Doppler radar sensor is simulated and successfully assessed on targets at various distances, with various oscillation frequencies and amplitudes. Furthermore, an SDR Doppler platform is practically realized, and preliminary experimental validations on a device able to produce a harmonic motion are illustrated to prove the effectiveness of the proposed approach.

  11. Research on intelligent scenic security early warning platform based on high resolution image: real scene linkage and real-time LBS

    NASA Astrophysics Data System (ADS)

    Li, Baishou; Huang, Yu; Lan, Guangquan; Li, Tingting; Lu, Ting; Yao, Mingxing; Luo, Yuandan; Li, Boxiang; Qian, Yongyou; Gao, Yujiu

    2015-12-01

    This paper design and implement security monitor system within a scenic spot for tourists, the scenic spot staff can be automatic real time for visitors to perception and monitoring, and visitors can also know about themselves location in the scenic, real-time and obtain the 3D imaging conditions of scenic area. Through early warning can realize "parent-child relation", preventing the old man and child lost and wandering. Research results to the further development of virtual reality to provide effective security early warning platform of the theoretical basis and practical reference.

  12. OLED-based biosensing platform with ZnO nanoparticles for enzyme immobilization

    NASA Astrophysics Data System (ADS)

    Cai, Yuankun; Shinar, Ruth; Shinar, Joseph

    2009-08-01

    Organic light-emitting diode (OLED)-based sensing platforms are attractive for photoluminescence (PL)-based monitoring of a variety of analytes. Among the promising OLED attributes for sensing applications is the thin and flexible size and design of the OLED pixel array that is used for PL excitation. To generate a compact, fielddeployable sensor, other major sensor components, such as the sensing probe and the photodetector, in addition to the thin excitation source, should be compact. To this end, the OLED-based sensing platform was tested with composite thin biosensing films, where oxidase enzymes were immobilized on ZnO nanoparticles, rather than dissolved in solution, to generate a more compact device. The analytes tested, glucose, cholesterol, and lactate, were monitored by following their oxidation reactions in the presence of oxygen and their respective oxidase enzymes. During such reactions, oxygen is consumed and its residual concentration, which is determined by the initial concentration of the above-mentioned analytes, is monitored. The sensors utilized the oxygen-sensitive dye Pt octaethylporphyrin, embedded in polystyrene. The enzymes were sandwiched between two thin ZnO layers, an approach that was found to improve the stability of the sensing probes.

  13. Mobile voice health monitoring using a wearable accelerometer sensor and a smartphone platform.

    PubMed

    Mehta, Daryush D; Zañartu, Matías; Feng, Shengran W; Cheyne, Harold A; Hillman, Robert E

    2012-11-01

    Many common voice disorders are chronic or recurring conditions that are likely to result from faulty and/or abusive patterns of vocal behavior, referred to generically as vocal hyperfunction. An ongoing goal in clinical voice assessment is the development and use of noninvasively derived measures to quantify and track the daily status of vocal hyperfunction so that the diagnosis and treatment of such behaviorally based voice disorders can be improved. This paper reports on the development of a new, versatile, and cost-effective clinical tool for mobile voice monitoring that acquires the high-bandwidth signal from an accelerometer sensor placed on the neck skin above the collarbone. Using a smartphone as the data acquisition platform, the prototype device provides a user-friendly interface for voice use monitoring, daily sensor calibration, and periodic alert capabilities. Pilot data are reported from three vocally normal speakers and three subjects with voice disorders to demonstrate the potential of the device to yield standard measures of fundamental frequency and sound pressure level and model-based glottal airflow properties. The smartphone-based platform enables future clinical studies for the identification of the best set of measures for differentiating between normal and hyperfunctional patterns of voice use.

  14. Mobile voice health monitoring using a wearable accelerometer sensor and a smartphone platform

    PubMed Central

    Mehta, Daryush D.; Zañartu, Matías; Feng, Shengran W.; Cheyne, Harold A.; Hillman, Robert E.

    2012-01-01

    Many common voice disorders are chronic or recurring conditions that are likely to result from faulty and/or abusive patterns of vocal behavior, referred to generically as vocal hyperfunction. An ongoing goal in clinical voice assessment is the development and use of noninvasively derived measures to quantify and track the daily status of vocal hyperfunction so that the diagnosis and treatment of such behaviorally based voice disorders can be improved. This paper reports on the development of a new, versatile, and cost-effective clinical tool for mobile voice monitoring that acquires the high-bandwidth signal from an accelerometer sensor placed on the neck skin above the collarbone. Using a smartphone as the data acquisition platform, the prototype device provides a user-friendly interface for voice use monitoring, daily sensor calibration, and periodic alert capabilities. Pilot data are reported from three vocally normal speakers and three subjects with voice disorders to demonstrate the potential of the device to yield standard measures of fundamental frequency and sound pressure level and model-based glottal airflow properties. The smartphone-based platform enables future clinical studies for the identification of the best set of measures for differentiating between normal and hyperfunctional patterns of voice use. PMID:22875236

  15. Flow cytometry and real-time quantitative PCR as tools for assessing plasmid persistence.

    PubMed

    Loftie-Eaton, Wesley; Tucker, Allison; Norton, Ann; Top, Eva M

    2014-09-01

    The maintenance of a plasmid in the absence of selection for plasmid-borne genes is not guaranteed. However, plasmid persistence can evolve under selective conditions. Studying the molecular mechanisms behind the evolution of plasmid persistence is key to understanding how plasmids are maintained under nonselective conditions. Given the current crisis of rapid antibiotic resistance spread by multidrug resistance plasmids, this insight is of high medical relevance. The conventional method for monitoring plasmid persistence (i.e., the fraction of plasmid-containing cells in a population over time) is based on cultivation and involves differentiating colonies of plasmid-containing and plasmid-free cells on agar plates. However, this technique is time-consuming and does not easily lend itself to high-throughput applications. Here, we present flow cytometry (FCM) and real-time quantitative PCR (qPCR) as alternative tools for monitoring plasmid persistence. For this, we measured the persistence of a model plasmid, pB10::gfp, in three Pseudomonas hosts and in known mixtures of plasmid-containing and -free cells. We also compared three performance criteria: dynamic range, resolution, and variance. Although not without exceptions, both techniques generated estimates of overall plasmid loss rates that were rather similar to those generated by the conventional plate count (PC) method. They also were able to resolve differences in loss rates between artificial plasmid persistence assays. Finally, we briefly discuss the advantages and disadvantages for each technique and conclude that, overall, both FCM and real-time qPCR are suitable alternatives to cultivation-based methods for routine measurement of plasmid persistence, thereby opening avenues for high-throughput analyses. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  16. Plug-and-play web-based visualization of mobile air monitoring data

    EPA Science Inventory

    The collection of air measurements in real-time on moving platforms, such as wearable, bicycle-mounted, or vehicle-mounted air sensors, is becoming an increasingly common method to investigate local air quality. However, visualizing and analyzing geospatial air monitoring data r...

  17. Non-invasive, transdermal, path-selective and specific glucose monitoring via a graphene-based platform

    NASA Astrophysics Data System (ADS)

    Lipani, Luca; Dupont, Bertrand G. R.; Doungmene, Floriant; Marken, Frank; Tyrrell, Rex M.; Guy, Richard H.; Ilie, Adelina

    2018-06-01

    Currently, there is no available needle-free approach for diabetics to monitor glucose levels in the interstitial fluid. Here, we report a path-selective, non-invasive, transdermal glucose monitoring system based on a miniaturized pixel array platform (realized either by graphene-based thin-film technology, or screen-printing). The system samples glucose from the interstitial fluid via electroosmotic extraction through individual, privileged, follicular pathways in the skin, accessible via the pixels of the array. A proof of principle using mammalian skin ex vivo is demonstrated for specific and `quantized' glucose extraction/detection via follicular pathways, and across the hypo- to hyper-glycaemic range in humans. Furthermore, the quantification of follicular and non-follicular glucose extraction fluxes is clearly shown. In vivo continuous monitoring of interstitial fluid-borne glucose with the pixel array was able to track blood sugar in healthy human subjects. This approach paves the way to clinically relevant glucose detection in diabetics without the need for invasive, finger-stick blood sampling.

  18. Quantitative electrophysiological monitoring of anti-histamine drug effects on live cells via reusable sensor platforms.

    PubMed

    Pham Ba, Viet Anh; Cho, Dong-Guk; Kim, Daesan; Yoo, Haneul; Ta, Van-Thao; Hong, Seunghun

    2017-08-15

    We demonstrated the quantitative electrophysiological monitoring of histamine and anti-histamine drug effects on live cells via reusable sensor platforms based on carbon nanotube transistors. This method enabled us to monitor the real-time electrophysiological responses of a single HeLa cell to histamine with different concentrations. The measured electrophysiological responses were attributed to the activity of histamine type 1 receptors on a HeLa cell membrane by histamine. Furthermore, the effects of anti-histamine drugs such as cetirizine or chlorphenamine on the electrophysiological activities of HeLa cells were also evaluated quantitatively. Significantly, we utilized only a single device to monitor the responses of multiple HeLa cells to each drug, which allowed us to quantitatively analyze the antihistamine drug effects on live cells without errors from the device-to-device variation in device characteristics. Such quantitative evaluation capability of our method would promise versatile applications such as drug screening and nanoscale bio sensor researches. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. An MRI guided system for prostate laser ablation with treatment planning and multi-planar temperature monitoring

    NASA Astrophysics Data System (ADS)

    Xu, Sheng; Agarwal, Harsh; Bernardo, Marcelino; Seifabadi, Reza; Turkbey, Baris; Partanen, Ari; Negussie, Ayele; Glossop, Neil; Choyke, Peter; Pinto, Peter; Wood, Bradford J.

    2016-03-01

    Prostate cancer is often over treated with standard treatment options which impact the patients' quality of life. Laser ablation has emerged as a new approach to treat prostate cancer while sparing the healthy tissue around the tumor. Since laser ablation has a small treatment zone with high temperature, it is necessary to use accurate image guidance and treatment planning to enable full ablation of the tumor. Intraoperative temperature monitoring is also desirable to protect critical structures from being damaged in laser ablation. In response to these problems, we developed a navigation platform and integrated it with a clinical MRI scanner and a side firing laser ablation device. The system allows imaging, image guidance, treatment planning and temperature monitoring to be carried out on the same platform. Temperature sensing phantoms were developed to demonstrate the concept of iterative treatment planning and intraoperative temperature monitoring. Retrospective patient studies were also conducted to show the clinical feasibility of the system.

  20. ITS, The End of the World as We Know It: Transitioning AIED into a Service-Oriented Ecosystem

    ERIC Educational Resources Information Center

    Nye, Benjamin D.

    2016-01-01

    Advanced learning technologies are reaching a new phase of their evolution where they are finally entering mainstream educational contexts, with persistent user bases. However, as AIED scales, it will need to follow recent trends in service-oriented and ubiquitous computing: breaking AIED platforms into distinct services that can be composed for…

  1. Strategies for addressing adherence problems in patients with serious and persistent mental illness: recommendations from the expert consensus guidelines.

    PubMed

    Velligan, Dawn I; Weiden, Peter J; Sajatovic, Martha; Scott, Jan; Carpenter, Daniel; Ross, Ruth; Docherty, John P

    2010-09-01

    Poor adherence to medication can have devastating consequences for patients with serious mental illness. The literature review and recommendations in this article are reprinted from The Expert Consensus Guideline Series: Adherence Problems in Patients with Serious and Persistent Mental Illness, published in 2009. The expert consensus survey (39 questions, 521 options) on adherence problems in schizophrenia and bipolar disorder was completed by 41 experts in 2008. This article first reviews the literature on interventions aimed at improving adherence. It then presents the experts' recommendations for targeting factors that can contribute to nonadherence and relates them to the literature. The following psychosocial/programmatic and pharmacologic interventions were rated first line for specific problems that can lead to nonadherence: ongoing symptom/ side-effect monitoring for persistent symptoms or side effects; services targeting logistic problems; medication monitoring/environmental supports (e.g., Cognitive Adaptation Training, assertive community treatment) for lack of routines or cognitive deficits; and adjusting the dose or switching to a different oral antipsychotic for persistent side effects (also high second-line for persistent symptoms). Among pharmacologic interventions, the experts gave high second-line ratings to switching to a long-acting antipsychotic when lack of insight, substance use, persistent symptoms, logistic problems, lack of routines, or lack of family/ social support interfere with adherence and to simplifying the treatment regimen when logistic problems, lack of routines, cognitive deficits, or lack of family/social support interfere with adherence. Psychosocial/programmatic interventions that received high second-line ratings in a number of situations included medication monitoring/environmental supports, patient psychoeducation, more frequent and/or longer visits if possible, cognitive behavioral therapy (CBT), family-focused therapy, and services targeting logistic problems. It is important to identify specific factors that may be contributing to a patient's adherence problems in order to customize interventions and to consider using a multifaceted approach since multiple problems may be involved.

  2. Enhanced Sanitation Standard Operating Procedures Have Limited Impact on Listeria monocytogenes Prevalence in Retail Delis.

    PubMed

    Etter, Andrea J; Hammons, Susan R; Roof, Sherry; Simmons, Courtenay; Wu, Tongyu; Cook, Peter W; Katubig, Alex; Stasiewicz, Matthew J; Wright, Emily; Warchocki, Steven; Hollingworth, Jill; Thesmar, Hilary S; Ibrahim, Salam A; Wiedmann, Martin; Oliver, Haley F

    2017-10-20

    In a recent longitudinal surveillance study in 30 U.S. retail delicatessens, 9.7% of environmental surfaces were positive for Listeria monocytogenes, and we found substantial evidence of persistence. In this study, we aimed to reduce the prevalence and persistence of L. monocytogenes in the retail deli environment by developing and implementing practical and feasible intervention strategies (i.e., sanitation standard operating procedures; SSOPs). These SSOPs were standardized across the 30 delis enrolled in this study. SSOP implementation was verified by systems inherent to each retailer. Each deli also was equipped with ATP monitoring systems to verify effective sanitation. We evaluated intervention strategy efficacy by testing 28 food and nonfood contact surfaces for L. monocytogenes for 6 months in all 30 retail delis. The efficacy of the intervention on the delis compared with preintervention prevalence level was not statistically significant; we found that L. monocytogenes could persist despite implementation of enhanced SSOPs. Systematic and accurate use of ATP monitoring systems varied widely among delis. The findings indicate that intervention strategies in the form of enhanced daily SSOPs were not sufficient to eliminate L. monocytogenes from highly prevalent and persistently contaminated delis and that more aggressive strategies (e.g., deep cleaning or capital investment in redesign or equipment) may be necessary to fully mitigate persistent contamination.

  3. The ESA Geohazard Exploitation Platform

    NASA Astrophysics Data System (ADS)

    Bally, Philippe; Laur, Henri; Mathieu, Pierre-Philippe; Pinto, Salvatore

    2015-04-01

    Earthquakes represent one of the world's most significant hazards in terms both of loss of life and damages. In the first decade of the 21st century, earthquakes accounted for 60 percent of fatalities from natural disasters, according to the United Nations International Strategy for Disaster Reduction (UNISDR). To support mitigation activities designed to assess and reduce risks and improve response in emergency situations, satellite EO can be used to provide a broad range of geo-information services. This includes for instance crustal block boundary mapping to better characterize active faults, strain rate mapping to assess how rapidly faults are deforming, soil vulnerability mapping to help estimate how the soil is behaving in reaction to seismic phenomena, geo-information to assess the extent and intensity of the earthquake impact on man-made structures and formulate assumptions on the evolution of the seismic sequence, i.e. where local aftershocks or future main shocks (on nearby faults) are most likely to occur. In May 2012, the European Space Agency and the GEO Secretariat convened the International Forum on Satellite EO for Geohazards now known as the Santorini Conference. The event was the continuation of a series of international workshops such as those organized by the Geohazards Theme of the Integrated Global Observing Strategy Partnership. In Santorini the seismic community has set out a vision of the EO contribution to an operational global seismic risk program, which lead to the Geohazard Supersites and Natural Laboratories (GSNL) initiative. The initial contribution of ESA to suuport the GSNL was the first Supersites Exploitation Platform (SSEP) system in the framework of Grid Processing On Demand (GPOD), now followed by the Geohazard Exploitation Platform (GEP). In this presentation, we will describe the contribution of the GEP for exploiting satellite EO for geohazard risk assessment. It is supporting the GEO Supersites and has been further expanded to address broader objectives of the geohazards community. In particular it is a contribution to the CEOS WG Disasters and its Seismic Hazards Pilot and terrain deformation applications of its Volcano Pilot. The geohazards platform is sourced with elements - data, tools, and processing- relevant to the geohazards theme and related exploitation scenarios. For example, platform provides access to large SAR data collections and services to support SAR Interferometry (InSAR), in particular the Persistent Scatterer Interferometry (PSI) and Small Baseline Subset (SBAS) techniques, to provide precise terrain deformation. The GEP includes data coming from the ENVISAT ASAR and ERS archives, already hosted in the ESA clusters and in ESA's Virtual Archive and further extended to cover the requirements of the CEOS Pilot on Seismic Hazards. The GEP is gradually accessing Sentinel-1A data alongside with EO data from other space agencies with an interest in the geohazard exploitation platform. Further to this, the platform is intended to be available in the framework of the European Plate Observing System (EPOS) initiative, in order to help its users exploit EO data to support solid Earth monitoring and geophysical and geological analysis.

  4. [Construction and analysis of a monitoring system with remote real-time multiple physiological parameters based on cloud computing].

    PubMed

    Zhu, Lingyun; Li, Lianjie; Meng, Chunyan

    2014-12-01

    There have been problems in the existing multiple physiological parameter real-time monitoring system, such as insufficient server capacity for physiological data storage and analysis so that data consistency can not be guaranteed, poor performance in real-time, and other issues caused by the growing scale of data. We therefore pro posed a new solution which was with multiple physiological parameters and could calculate clustered background data storage and processing based on cloud computing. Through our studies, a batch processing for longitudinal analysis of patients' historical data was introduced. The process included the resource virtualization of IaaS layer for cloud platform, the construction of real-time computing platform of PaaS layer, the reception and analysis of data stream of SaaS layer, and the bottleneck problem of multi-parameter data transmission, etc. The results were to achieve in real-time physiological information transmission, storage and analysis of a large amount of data. The simulation test results showed that the remote multiple physiological parameter monitoring system based on cloud platform had obvious advantages in processing time and load balancing over the traditional server model. This architecture solved the problems including long turnaround time, poor performance of real-time analysis, lack of extensibility and other issues, which exist in the traditional remote medical services. Technical support was provided in order to facilitate a "wearable wireless sensor plus mobile wireless transmission plus cloud computing service" mode moving towards home health monitoring for multiple physiological parameter wireless monitoring.

  5. Big data processing in the cloud - Challenges and platforms

    NASA Astrophysics Data System (ADS)

    Zhelev, Svetoslav; Rozeva, Anna

    2017-12-01

    Choosing the appropriate architecture and technologies for a big data project is a difficult task, which requires extensive knowledge in both the problem domain and in the big data landscape. The paper analyzes the main big data architectures and the most widely implemented technologies used for processing and persisting big data. Clouds provide for dynamic resource scaling, which makes them a natural fit for big data applications. Basic cloud computing service models are presented. Two architectures for processing big data are discussed, Lambda and Kappa architectures. Technologies for big data persistence are presented and analyzed. Stream processing as the most important and difficult to manage is outlined. The paper highlights main advantages of cloud and potential problems.

  6. GTSO: Global Trace Synchronization and Ordering Mechanism for Wireless Sensor Network Monitoring Platforms

    PubMed Central

    Bonastre, Alberto; Ors, Rafael

    2017-01-01

    Monitoring is one of the best ways to evaluate the behavior of computer systems. When the monitored system is a distributed system—such as a wireless sensor network (WSN)—the monitoring operation must also be distributed, providing a distributed trace for further analysis. The temporal sequence of occurrence of the events registered by the distributed monitoring platform (DMP) must be correctly established to provide cause-effect relationships between them, so the logs obtained in different monitor nodes must be synchronized. Many of synchronization mechanisms applied to DMPs consist in adjusting the internal clocks of the nodes to the same value as a reference time. However, these mechanisms can create an incoherent event sequence. This article presents a new method to achieve global synchronization of the traces obtained in a DMP. It is based on periodic synchronization signals that are received by the monitor nodes and logged along with the recorded events. This mechanism processes all traces and generates a global post-synchronized trace by scaling all times registered proportionally according with the synchronization signals. It is intended to be a simple but efficient offline mechanism. Its application in a WSN-DMP demonstrates that it guarantees a correct ordering of the events, avoiding the aforementioned issues. PMID:29295494

  7. Informing Drought Preparedness and Response with the South Asia Land Data Assimilation System

    NASA Astrophysics Data System (ADS)

    Zaitchik, B. F.; Ghatak, D.; Matin, M. A.; Qamer, F. M.; Adhikary, B.; Bajracharya, B.; Nelson, J.; Pulla, S. T.; Ellenburg, W. L.

    2017-12-01

    Decision-relevant drought monitoring in South Asia is a challenge from both a scientific and an institutional perspective. Scientifically, climatic diversity, inconsistent in situ monitoring, complex hydrology, and incomplete knowledge of atmospheric processes mean that monitoring and prediction are fraught with uncertainty. Institutionally, drought monitoring efforts need to align with the information needs and decision-making processes of relevant agencies at national and subnational levels. Here we present first results from an emerging operational drought monitoring and forecast system developed and supported by the NASA SERVIR Hindu-Kush Himalaya hub. The system has been designed in consultation with end users from multiple sectors in South Asian countries to maximize decision-relevant information content in the monitoring and forecast products. Monitoring of meteorological, agricultural, and hydrological drought is accomplished using the South Asia Land Data Assimilation System, a platform that supports multiple land surface models and meteorological forcing datasets to characterize uncertainty, and subseasonal to seasonal hydrological forecasts are produced by driving South Asia LDAS with downscaled meteorological fields drawn from an ensemble of global dynamically-based forecast systems. Results are disseminated to end users through a Tethys online visualization platform and custom communications that provide user oriented, easily accessible, timely, and decision-relevant scientific information.

  8. GTSO: Global Trace Synchronization and Ordering Mechanism for Wireless Sensor Network Monitoring Platforms.

    PubMed

    Navia, Marlon; Campelo, José Carlos; Bonastre, Alberto; Ors, Rafael

    2017-12-23

    Monitoring is one of the best ways to evaluate the behavior of computer systems. When the monitored system is a distributed system-such as a wireless sensor network (WSN)-the monitoring operation must also be distributed, providing a distributed trace for further analysis. The temporal sequence of occurrence of the events registered by the distributed monitoring platform (DMP) must be correctly established to provide cause-effect relationships between them, so the logs obtained in different monitor nodes must be synchronized. Many of synchronization mechanisms applied to DMPs consist in adjusting the internal clocks of the nodes to the same value as a reference time. However, these mechanisms can create an incoherent event sequence. This article presents a new method to achieve global synchronization of the traces obtained in a DMP. It is based on periodic synchronization signals that are received by the monitor nodes and logged along with the recorded events. This mechanism processes all traces and generates a global post-synchronized trace by scaling all times registered proportionally according with the synchronization signals. It is intended to be a simple but efficient offline mechanism. Its application in a WSN-DMP demonstrates that it guarantees a correct ordering of the events, avoiding the aforementioned issues.

  9. Capturing Micro-topography of an Arctic Tundra Landscape through Digital Elevation Models (DEMs) Acquired from Various Remote Sensing Platforms

    NASA Astrophysics Data System (ADS)

    Vargas, S. A., Jr.; Tweedie, C. E.; Oberbauer, S. F.

    2013-12-01

    The need to improve the spatial and temporal scaling and extrapolation of plot level measurements of ecosystem structure and function to the landscape level has been identified as a persistent research challenge in the arctic terrestrial sciences. Although there has been a range of advances in remote sensing capabilities on satellite, fixed wing, helicopter and unmanned aerial vehicle platforms over the past decade, these present costly, logistically challenging (especially in the Arctic), technically demanding solutions for applications in an arctic environment. Here, we present a relatively low cost alternative to these platforms that uses kite aerial photography (KAP). Specifically, we demonstrate how digital elevation models (DEMs) were derived from this system for a coastal arctic landscape near Barrow, Alaska. DEMs of this area acquired from other remote sensing platforms such as Terrestrial Laser Scanning (TLS), Airborne Laser Scanning, and satellite imagery were also used in this study to determine accuracy and validity of results. DEMs interpolated using the KAP system were comparable to DEMs derived from the other platforms. For remotely sensing acre to kilometer square areas of interest, KAP has proven to be a low cost solution from which derived products that interface ground and satellite platforms can be developed by users with access to low-tech solutions and a limited knowledge of remote sensing.

  10. Data-acquisition system for environmental monitoring aboard a twin-engined aircraft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Bernstein, H.; Brown, R.M.

    A number of experimental platforms have been used in support of the Multistate Atmospheric Power Production Study (MAP3S) and the Coastal Meteorology programs at Brookhaven National Laboratory. These platforms include a twin-engine Britten Norman Islander aircraft, a motorized van, a variety of boats and temporary enclosures set up in the field. Each platform carried a data logger consisting of a multiplexer, an analog to digital (A/D) converter and a four track endless loop magnetic tape for data storage. In recent years it has become increasingly evident that the data loggers in use were no longer adequate. Since the aircraft providedmore » the most constraints on the data acquisition system as well as being the most important research platform, a data system was designed for that platform with the secondary goal that the system would serve as a prototype for systems to be used on other platforms.« less

  11. Wireless sensor platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Pooran C.; Killough, Stephen M.; Kuruganti, Phani Teja

    A wireless sensor platform and methods of manufacture are provided. The platform involves providing a plurality of wireless sensors, where each of the sensors is fabricated on flexible substrates using printing techniques and low temperature curing. Each of the sensors can include planar sensor elements and planar antennas defined using the printing and curing. Further, each of the sensors can include a communications system configured to encode the data from the sensors into a spread spectrum code sequence that is transmitted to a central computer(s) for use in monitoring an area associated with the sensors.

  12. Real-time GIS data model and sensor web service platform for environmental data management.

    PubMed

    Gong, Jianya; Geng, Jing; Chen, Zeqiang

    2015-01-09

    Effective environmental data management is meaningful for human health. In the past, environmental data management involved developing a specific environmental data management system, but this method often lacks real-time data retrieving and sharing/interoperating capability. With the development of information technology, a Geospatial Service Web method is proposed that can be employed for environmental data management. The purpose of this study is to determine a method to realize environmental data management under the Geospatial Service Web framework. A real-time GIS (Geographic Information System) data model and a Sensor Web service platform to realize environmental data management under the Geospatial Service Web framework are proposed in this study. The real-time GIS data model manages real-time data. The Sensor Web service platform is applied to support the realization of the real-time GIS data model based on the Sensor Web technologies. To support the realization of the proposed real-time GIS data model, a Sensor Web service platform is implemented. Real-time environmental data, such as meteorological data, air quality data, soil moisture data, soil temperature data, and landslide data, are managed in the Sensor Web service platform. In addition, two use cases of real-time air quality monitoring and real-time soil moisture monitoring based on the real-time GIS data model in the Sensor Web service platform are realized and demonstrated. The total time efficiency of the two experiments is 3.7 s and 9.2 s. The experimental results show that the method integrating real-time GIS data model and Sensor Web Service Platform is an effective way to manage environmental data under the Geospatial Service Web framework.

  13. The Use of Drones in Spain: Towards a Platform for Controlling UAVs in Urban Environments.

    PubMed

    Chamoso, Pablo; González-Briones, Alfonso; Rivas, Alberto; Bueno De Mata, Federico; Corchado, Juan Manuel

    2018-05-03

    Rapid advances in technology make it necessary to prepare our society in every aspect. Some of the most significant technological developments of the last decade are the UAVs (Unnamed Aerial Vehicles) or drones. UAVs provide a wide range of new possibilities and have become a tool that we now use on a daily basis. However, if their use is not controlled, it could entail several risks, which make it necessary to legislate and monitor UAV flights to ensure, inter alia, the security and privacy of all citizens. As a result of this problem, several laws have been passed which seek to regulate their use; however, no proposals have been made with regards to the control of airspace from a technological point of view. This is exactly what we propose in this article: a platform with different modes designed to control UAVs and monitor their status. The features of the proposed platform provide multiple advantages that make the use of UAVs more secure, such as prohibiting UAVs’ access to restricted areas or avoiding collisions between vehicles. The platform has been successfully tested in Salamanca, Spain.

  14. Development of a Cloud Computing-Based Pier Type Port Structure Stability Evaluation Platform Using Fiber Bragg Grating Sensors.

    PubMed

    Jo, Byung Wan; Jo, Jun Ho; Khan, Rana Muhammad Asad; Kim, Jung Hoon; Lee, Yun Sung

    2018-05-23

    Structure Health Monitoring is a topic of great interest in port structures due to the ageing of structures and the limitations of evaluating structures. This paper presents a cloud computing-based stability evaluation platform for a pier type port structure using Fiber Bragg Grating (FBG) sensors in a system consisting of a FBG strain sensor, FBG displacement gauge, FBG angle meter, gateway, and cloud computing-based web server. The sensors were installed on core components of the structure and measurements were taken to evaluate the structures. The measurement values were transmitted to the web server via the gateway to analyze and visualize them. All data were analyzed and visualized in the web server to evaluate the structure based on the safety evaluation index (SEI). The stability evaluation platform for pier type port structures involves the efficient monitoring of the structures which can be carried out easily anytime and anywhere by converging new technologies such as cloud computing and FBG sensors. In addition, the platform has been successfully implemented at “Maryang Harbor” situated in Maryang-Meyon of Korea to test its durability.

  15. The Use of Drones in Spain: Towards a Platform for Controlling UAVs in Urban Environments

    PubMed Central

    Bueno De Mata, Federico

    2018-01-01

    Rapid advances in technology make it necessary to prepare our society in every aspect. Some of the most significant technological developments of the last decade are the UAVs (Unnamed Aerial Vehicles) or drones. UAVs provide a wide range of new possibilities and have become a tool that we now use on a daily basis. However, if their use is not controlled, it could entail several risks, which make it necessary to legislate and monitor UAV flights to ensure, inter alia, the security and privacy of all citizens. As a result of this problem, several laws have been passed which seek to regulate their use; however, no proposals have been made with regards to the control of airspace from a technological point of view. This is exactly what we propose in this article: a platform with different modes designed to control UAVs and monitor their status. The features of the proposed platform provide multiple advantages that make the use of UAVs more secure, such as prohibiting UAVs’ access to restricted areas or avoiding collisions between vehicles. The platform has been successfully tested in Salamanca, Spain. PMID:29751554

  16. Interoperable End-to-End Remote Patient Monitoring Platform Based on IEEE 11073 PHD and ZigBee Health Care Profile.

    PubMed

    Clarke, Malcolm; de Folter, Joost; Verma, Vivek; Gokalp, Hulya

    2018-05-01

    This paper describes the implementation of an end-to-end remote monitoring platform based on the IEEE 11073 standards for personal health devices (PHD). It provides an overview of the concepts and approaches and describes how the standard has been optimized for small devices with limited resources of processor, memory, and power that use short-range wireless technology. It explains aspects of IEEE 11073, including the domain information model, state model, and nomenclature, and how these support its plug-and-play architecture. It shows how these aspects underpin a much larger ecosystem of interoperable devices and systems that include IHE PCD-01, HL7, and BlueTooth LE medical devices, and the relationship to the Continua Guidelines, advocating the adoption of data standards and nomenclature to support semantic interoperability between health and ambient assisted living in future platforms. The paper further describes the adaptions that have been made in order to implement the standard on the ZigBee Health Care Profile and the experiences of implementing an end-to-end platform that has been deployed to frail elderly patients with chronic disease(s) and patients with diabetes.

  17. Sensor4PRI: A Sensor Platform for the Protection of Railway Infrastructures

    PubMed Central

    Cañete, Eduardo; Chen, Jaime; Díaz, Manuel; Llopis, Luis; Rubio, Bartolomé

    2015-01-01

    Wireless Sensor Networks constitute pervasive and distributed computing systems and are potentially one of the most important technologies of this century. They have been specifically identified as a good candidate to become an integral part of the protection of critical infrastructures. In this paper we focus on railway infrastructure protection and we present the details of a sensor platform designed to be integrated into a slab track system in order to carry out both installation and maintenance monitoring activities. In the installation phase, the platform helps operators to install the slab tracks in the right position. In the maintenance phase, the platform collects information about the structural health and behavior of the infrastructure when a train travels along it and relays the readings to a base station. The base station uses trains as data mules to upload the information to the internet. The use of a train as a data mule is especially suitable for collecting information from remote or inaccessible places which do not have a direct connection to the internet and require less network infrastructure. The overall aim of the system is to deploy a permanent economically viable monitoring system to improve the safety of railway infrastructures. PMID:25734648

  18. Hydrological Monitoring System Design and Implementation Based on IOT

    NASA Astrophysics Data System (ADS)

    Han, Kun; Zhang, Dacheng; Bo, Jingyi; Zhang, Zhiguang

    In this article, an embedded system development platform based on GSM communication is proposed. Through its application in hydrology monitoring management, the author makes discussion about communication reliability and lightning protection, suggests detail solutions, and also analyzes design and realization of upper computer software. Finally, communication program is given. Hydrology monitoring system from wireless communication network is a typical practical application of embedded system, which has realized intelligence, modernization, high-efficiency and networking of hydrology monitoring management.

  19. Photochemical Assessment Monitoring Stations (PAMS)

    EPA Pesticide Factsheets

    Photochemical Assessment Monitoring Stations (PAMS). This file provides information on the numbers and distribution (latitude/longitude) of air monitoring sites which measure ozone precursors (approximately 60 volatile hydrocarbons and carbonyl), as required by the 1990 Clean Air Act Amendments, in areas with persistently high ozone levels (mostly large metropolitan areas). In these areas, the States have established ambient air monitoring sites which collect and report detailed data for volatile organic compounds, nitrogen oxides, ozone and meteorological parameters. This file displays 199 monitoring sites reporting measurements for 2010. A wide range of related monitoring site attributes is also provided.

  20. Applications of a high-altitude powered platform /HAPP/

    NASA Technical Reports Server (NTRS)

    Kuhner, M. B.

    1979-01-01

    The high-altitude powered platform (HAPP) is a conceptual unmanned vehicle which could be either an airship or airplane. It would keep station at an altitude of 70,000 ft above a fixed point on the ground. A microwave power transmission system would beam energy from the ground up to the HAPP to power an electric motor-driven propeller and the payload. A study of the HAPP has shown that it could potentially be a cost-competitive platform for such remote sensing applications as forest fire detection, Great Lakes ice monitoring and Coast Guard law enforcement. It also has significant potential as a communications relay platform for (among other things) direct broadcast to home TVs over a large region.

  1. Report of the Interagency Task Force on Persistent Marine Debris, May 1988.

    ERIC Educational Resources Information Center

    Keeny, Timothy R. E.; Cottingham, David

    1989-01-01

    Provides a definition of the marine debris problem and a charge to the task force. Presents five general recommendations concerning: federal leadership, public awareness and education program, implementation of laws, research and monitoring, and beach clean-up and monitoring. (RT)

  2. Numerical analysis of seawater circulation in carbonate platforms: II. The dynamic interaction between geothermal and brine reflux circulation

    USGS Publications Warehouse

    Jones, G.D.; Whitaker, F.F.; Smart, P.L.; Sanford, W.E.

    2004-01-01

    Density-driven seawater circulation may occur in carbonate platforms due to geothermal heating and / or reflux of water of elevated salinity. In geothermal circulation lateral contrasts in temperature between seawater and platform groundwaters warmed by the geothermal heat flux result in upward convective flow, with colder seawater drawn into the platform at depth. With reflux circulation, platform-top waters concentrated by evaporation flow downward, displacing less dense underlying groundwaters. We have used a variable density groundwater flow model to examine the pattern, magnitude and interaction of these two different circulation mechanisms, for mesosaline platform-top waters (50???) and brines concentrated up to saturation with respect to gypsum (150???) and halite (246???). Geothermal circulation, most active around the platform margin, becomes restricted and eventually shut-off by reflux of brines from the platform interior towards the margin. The persistence of geothermal circulation is dependent on the rate of brine reflux, which is proportional to the concentration of platform-top brines and also critically dependent on the magnitude and distribution of permeability. Low permeability evaporites can severely restrict reflux whereas high permeability units in hydraulic continuity enhance brine transport. Reduction in permeability with depth and anisotropy of permeability (kv < < kh) focuses flow laterally in the shallow subsurface (<1 km), resulting in a horizontally elongated brine plume. Aquifer porosity and dispersivity are relatively minor controls on reflux. Platform brines can entrain surficial seawater when brine generating conditions cease but the platform-top remains submerged, a variant of reflux we term "latent reflux". Brines concentrated up to gypsum saturation have relatively long residence times of at least 100 times the duration of the reflux event. They thus represent a long-term control on post-reflux groundwater circulation, and consequently on the rates and spatial patterns of shallow burial diagenesis, such as dolomitization.

  3. Flexible and Stretchable Physical Sensor Integrated Platforms for Wearable Human-Activity Monitoringand Personal Healthcare.

    PubMed

    Trung, Tran Quang; Lee, Nae-Eung

    2016-06-01

    Flexible and stretchable physical sensors that can measure and quantify electrical signals generated by human activities are attracting a great deal of attention as they have unique characteristics, such as ultrathinness, low modulus, light weight, high flexibility, and stretchability. These flexible and stretchable physical sensors conformally attached on the surface of organs or skin can provide a new opportunity for human-activity monitoring and personal healthcare. Consequently, in recent years there has been considerable research effort devoted to the development of flexible and stretchable physical sensors to fulfill the requirements of future technology, and much progress has been achieved. Here, the most recent developments of flexible and stretchable physical sensors are described, including temperature, pressure, and strain sensors, and flexible and stretchable sensor-integrated platforms. The latest successful examples of flexible and stretchable physical sensors for the detection of temperature, pressure, and strain, as well as their novel structures, technological innovations, and challenges, are reviewed first. In the next section, recent progress regarding sensor-integrated wearable platforms is overviewed in detail. Some of the latest achievements regarding self-powered sensor-integrated wearable platform technologies are also reviewed. Further research direction and challenges are also proposed to develop a fully sensor-integrated wearable platform for monitoring human activity and personal healthcare in the near future. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Engineering of Surface Chemistry for Enhanced Sensitivity in Nanoporous Interferometric Sensing Platforms.

    PubMed

    Law, Cheryl Suwen; Sylvia, Georgina M; Nemati, Madieh; Yu, Jingxian; Losic, Dusan; Abell, Andrew D; Santos, Abel

    2017-03-15

    We explore new approaches to engineering the surface chemistry of interferometric sensing platforms based on nanoporous anodic alumina (NAA) and reflectometric interference spectroscopy (RIfS). Two surface engineering strategies are presented, namely (i) selective chemical functionalization of the inner surface of NAA pores with amine-terminated thiol molecules and (ii) selective chemical functionalization of the top surface of NAA with dithiol molecules. The strong molecular interaction of Au 3+ ions with thiol-containing functional molecules of alkane chain or peptide character provides a model sensing system with which to assess the sensitivity of these NAA platforms by both molecular feature and surface engineering. Changes in the effective optical thickness of the functionalized NAA photonic films (i.e., sensing principle), in response to gold ions, are monitored in real-time by RIfS. 6-Amino-1-hexanethiol (inner surface) and 1,6-hexanedithiol (top surface), the most sensitive functional molecules from approaches i and ii, respectively, were combined into a third sensing strategy whereby the NAA platforms are functionalized on both the top and inner surfaces concurrently. Engineering of the surface according to this approach resulted in an additive enhancement in sensitivity of up to 5-fold compared to previously reported systems. This study advances the rational engineering of surface chemistry for interferometric sensing on nanoporous platforms with potential applications for real-time monitoring of multiple analytes in dynamic environments.

  5. Conquering the Dark Side: Colloidal Iron Oxide Nanoparticles

    PubMed Central

    Senpan, Angana; Caruthers, Shelton D.; Rhee, Ilsu; Mauro, Nicholas A.; Pan, Dipanjan; Hu, Grace; Scott, Michael J.; Fuhrhop, Ralph W.; Gaffney, Patrick J.; Wickline, Samuel A.; Lanza, Gregory M.

    2009-01-01

    Nanomedicine approaches to atherosclerotic disease will have significant impact on the practice and outcomes of cardiovascular medicine. Iron oxide nanoparticles have been extensively used for nontargeted and targeted imaging applications based upon highly sensitive T2* imaging properties, which typically result in negative contrast effects that can only be imaged 24 or more hours after systemic administration due to persistent blood pool interference. Although recent advances involving MR pulse sequences have converted these dark contrast voxels into bright ones, the marked delays in imaging from persistent magnetic background interference and prominent dipole blooming effects of the magnetic susceptibility remain barriers to overcome. We report a T1-weighted (T1w) theranostic colloidal iron oxide nanoparticle platform, CION, which is achieved by entrapping oleate-coated magnetite particles within a cross-linked phospholipid nanoemulsion. Contrary to expectations, this formulation decreased T2 effects thus allowing positive T1w contrast detection down to low nanomolar concentrations. CION, a vascular constrained nanoplatform administered in vivo permitted T1w molecular imaging 1 hour after treatment without blood pool interference, although some T2 shortening effects on blood, induced by the superparamagnetic particles persisted. Moreover, CION was shown to encapsulate antiangiogenic drugs, like fumagillin, and retained them under prolonged dissolution, suggesting significant theranostic functionality. Overall, CION is a platform technology, developed with generally recognized as safe components, that overcomes the temporal and spatial imaging challenges associated with current iron oxide nanoparticle T2 imaging agents, and which has theranostic potential in vascular diseases for detecting unstable ruptured plaque or treating atherosclerotic angiogenesis. PMID:19908850

  6. Assessment and Optimization of the GeneXpert Diagnostic Platform for Detection of Ebola Virus RNA in Seminal Fluid.

    PubMed

    Pettitt, James; Higgs, Elizabeth; Fallah, Mosoka; Nason, Martha; Stavale, Eric; Marchand, Jonathan; Reilly, Cavan; Jensen, Kenneth; Dighero-Kemp, Bonnie; Tuznik, Kaylie; Logue, James; Bolay, Fatorma; Hensley, Lisa

    2017-02-15

    Recent studies have suggested that Ebola virus (EBOV) ribonucleic acid (RNA) potentially present in the semen of a large number of survivors of Ebola virus disease (EVD) in Western Africa may contribute to sexual transmission of EVD and generate new clusters of cases in regions previously declared EVD-free. These findings drive the immediate need for a reliable, rapid, user-friendly assay for detection of EBOV RNA in semen that is deployable to multiple sites across Western Africa. In this study, we optimized the Xpert EBOV assay for semen samples by adding dithiothreitol. Compared to the assays currently in use in Liberia (including Ebola Zaire Target 1, major groove binder real-time-polymerase chain reaction assays, and original Xpert EBOV assay), the modified Xpert EBOV assay demonstrated greater sensitivity than the comparator assays. Thus, the modified Xpert EBOV assay is optimal for large-scale monitoring of EBOV RNA persistence in male survivors. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  7. A New Approach to Monitoring Coastal Marshes for Persistent Flooding

    NASA Astrophysics Data System (ADS)

    Kalcic, M. T.; Underwood, L. W.; Fletcher, R. M.

    2012-12-01

    Many areas in coastal Louisiana are below sea level and protected from flooding by a system of natural and man-made levees. Flooding is common when the levees are overtopped by storm surge or rising rivers. Many levees in this region are further stressed by erosion and subsidence. The floodwaters can become constricted by levees and trapped, causing prolonged inundation. Vegetative communities in coastal regions, from fresh swamp forest to saline marsh, can be negatively affected by inundation and changes in salinity. As saltwater persists, it can have a toxic effect upon marsh vegetation causing die off and conversion to open water types, destroying valuable species habitats. The length of time the water persists and the average annual salinity are important variables in modeling habitat switching (cover type change). Marsh type habitat switching affects fish, shellfish, and wildlife inhabitants, and can affect the regional ecosystem and economy. There are numerous restoration and revitalization projects underway in the coastal region, and their effects on the entire ecosystem need to be understood. For these reasons, monitoring persistent saltwater intrusion and inundation is important. For this study, persistent flooding in Louisiana coastal marshes was mapped using MODIS (Moderate Resolution Imaging Spectroradiometer) time series of a Normalized Difference Water Index (NDWI). The time series data were derived for 2000 through 2009, including flooding due to Hurricane Rita in 2005 and Hurricane Ike in 2008. Using the NDWI, duration and extent of flooding can be inferred. The Time Series Product Tool (TSPT), developed at NASA SSC, is a suite of software developed in MATLAB® that enables improved-quality time series images to be computed using advanced temporal processing techniques. This software has been used to compute time series for monitoring temporal changes in environmental phenomena, (e.g. NDVI times series from MODIS), and was modified and used to compute the NDWI indices and also the Normalized Difference Soil Index (NDSI). Coastwide Reference Monitoring System (CRMS) water levels from various hydrologic monitoring stations and aerial photography were used to optimize thresholds for MODIS-derived time series of NDWI and to validate resulting flood maps. In most of the profiles produced for post-hurricane assessment, the increase in the NDWI index (from storm surge) is accompanied by a decrease in the vegetation index (NDVI) and then a period of declining water. The NDSI index represents non-green or dead vegetation and increases after the hurricane's destruction of the marsh vegetation. Behavior of these indices over time is indicative of which areas remain flooded, which areas recover to their former levels of vegetative vigor, and which areas are stressed or in transition. Tracking these indices over time shows the recovery rate of vegetation and the relative behavior to inundation persistence. The results from this study demonstrated that identification of persistent marsh flooding, utilizing the tools developed in this study, provided an approximate 70-80 percent accuracy rate when compared to the actual days flooded at the CRMS stations.

  8. A New Approach to Monitoring Coastal Marshes for Persistent Flooding

    NASA Technical Reports Server (NTRS)

    Kalcic, M. T.; Undersood, Lauren W.; Fletcher, Rose

    2012-01-01

    Many areas in coastal Louisiana are below sea level and protected from flooding by a system of natural and man-made levees. Flooding is common when the levees are overtopped by storm surge or rising rivers. Many levees in this region are further stressed by erosion and subsidence. The floodwaters can become constricted by levees and trapped, causing prolonged inundation. Vegetative communities in coastal regions, from fresh swamp forest to saline marsh, can be negatively affected by inundation and changes in salinity. As saltwater persists, it can have a toxic effect upon marsh vegetation causing die off and conversion to open water types, destroying valuable species habitats. The length of time the water persists and the average annual salinity are important variables in modeling habitat switching (cover type change). Marsh type habitat switching affects fish, shellfish, and wildlife inhabitants, and can affect the regional ecosystem and economy. There are numerous restoration and revitalization projects underway in the coastal region, and their effects on the entire ecosystem need to be understood. For these reasons, monitoring persistent saltwater intrusion and inundation is important. For this study, persistent flooding in Louisiana coastal marshes was mapped using MODIS (Moderate Resolution Imaging Spectroradiometer) time series of a Normalized Difference Water Index (NDWI). The time series data were derived for 2000 through 2009, including flooding due to Hurricane Rita in 2005 and Hurricane Ike in 2008. Using the NDWI, duration and extent of flooding can be inferred. The Time Series Product Tool (TSPT), developed at NASA SSC, is a suite of software developed in MATLAB(R) that enables improved-quality time series images to be computed using advanced temporal processing techniques. This software has been used to compute time series for monitoring temporal changes in environmental phenomena, (e.g. NDVI times series from MODIS), and was modified and used to compute the NDWI indices and also the Normalized Difference Soil Index (NDSI). Coastwide Reference Monitoring System (CRMS) water levels from various hydrologic monitoring stations and aerial photography were used to optimize thresholds for MODIS-derived time series of NDWI and to validate resulting flood maps. In most of the profiles produced for post-hurricane assessment, the increase in the NDWI index (from storm surge) is accompanied by a decrease in the vegetation index (NDVI) and then a period of declining water. The NDSI index represents non-green or dead vegetation and increases after the hurricane s destruction of the marsh vegetation. Behavior of these indices over time is indicative of which areas remain flooded, which areas recover to their former levels of vegetative vigor, and which areas are stressed or in transition. Tracking these indices over time shows the recovery rate of vegetation and the relative behavior to inundation persistence. The results from this study demonstrated that identification of persistent marsh flooding, utilizing the tools developed in this study, provided an approximate 70-80 percent accuracy rate when compared to the actual days flooded at the CRMS stations.

  9. Orthorectification, mosaicking, and analysis of sub-decimeter resolution UAV imagery for rangeland monitoring

    USDA-ARS?s Scientific Manuscript database

    Unmanned aerial vehicles (UAVs) offer an attractive platform for acquiring imagery for rangeland monitoring. UAVs can be deployed quickly and repeatedly, and they can obtain sub-decimeter resolution imagery at lower image acquisition costs than with piloted aircraft. Low flying heights result in ima...

  10. Assessment of near-source air pollution at a fine spatial scale utilizing a mobile measurement platform approach

    EPA Science Inventory

    Mobile monitoring is an emerging strategy to characterize spatially and temporally variable air pollution in areas near sources. EPA’s Geospatial Monitoring of Air Pollution (GMAP) vehicle, an all-electric vehicle measuring real-time concentrations of particulate and gaseous poll...

  11. Remote health monitoring of heart failure with data mining via CART method on HRV features.

    PubMed

    Pecchia, Leandro; Melillo, Paolo; Bracale, Marcello

    2011-03-01

    Disease management programs, which use no advanced information and computer technology, are as effective as telemedicine but more efficient because less costly. We proposed a platform to enhance effectiveness and efficiency of home monitoring using data mining for early detection of any worsening in patient's condition. These worsenings could require more complex and expensive care if not recognized. In this letter, we briefly describe the remote health monitoring platform we designed and realized, which supports heart failure (HF) severity assessment offering functions of data mining based on the classification and regression tree method. The system developed achieved accuracy and a precision of 96.39% and 100.00% in detecting HF and of 79.31% and 82.35% in distinguishing severe versus mild HF, respectively. These preliminary results were achieved on public databases of signals to improve their reproducibility. Clinical trials involving local patients are still running and will require longer experimentation.

  12. Development of a cloud-based system for remote monitoring of a PVT panel

    NASA Astrophysics Data System (ADS)

    Saraiva, Luis; Alcaso, Adérito; Vieira, Paulo; Ramos, Carlos Figueiredo; Cardoso, Antonio Marques

    2016-10-01

    The paper presents a monitoring system developed for an energy conversion system based on the sun and known as thermophotovoltaic panel (PVT). The project was implemented using two embedded microcontrollers platforms (arduino Leonardo and arduino yún), wireless transmission systems (WI-FI and XBEE) and net computing ,commonly known as cloud (Google cloud). The main objective of the project is to provide remote access and real-time data monitoring (like: electrical current, electrical voltage, input fluid temperature, output fluid temperature, backward fluid temperature, up PV glass temperature, down PV glass temperature, ambient temperature, solar radiation, wind speed, wind direction and fluid mass flow). This project demonstrates the feasibility of using inexpensive microcontroller's platforms and free internet service in theWeb, to support the remote study of renewable energy systems, eliminating the acquisition of dedicated systems typically more expensive and limited in the kind of processing proposed.

  13. Biochip for Real-Time Monitoring of Hepatitis B Virus (HBV) by Combined Loop-Mediated Isothermal Amplification and Solution-Phase Electrochemical Detection

    NASA Astrophysics Data System (ADS)

    Tien, Bui Quang; Ngoc, Nguyen Thy; Loc, Nguyen Thai; Thu, Vu Thi; Lam, Tran Dai

    2017-06-01

    Accurate in situ diagnostic tests play a key role in patient management and control of most infectious diseases. To achieve this, use of handheld biochips that implement sample handling, sample analysis, and result readout together is an ideal approach. We present herein a fluid-handling biochip for real-time electrochemical monitoring of nucleic acid amplification based on loop-mediated isothermal amplification and real-time electrochemical detection on a microfluidic platform. Intercalation between amplifying DNA and free redox probe in solution phase was used to monitor the number of DNA copies. The whole diagnostic process is completed within 70 min. Our platform offers a fast and easy tool for quantification of viral pathogens in shorter time and with limited risk of all potential forms of cross-contamination. Such diagnostic tools have potential to make a huge difference to the lives of millions of people worldwide.

  14. Mobile health platform for pressure ulcer monitoring with electronic health record integration.

    PubMed

    Rodrigues, Joel J P C; Pedro, Luís M C C; Vardasca, Tomé; de la Torre-Díez, Isabel; Martins, Henrique M G

    2013-12-01

    Pressure ulcers frequently occur in patients with limited mobility, for example, people with advanced age and patients wearing casts or prostheses. Mobile information communication technologies can help implement ulcer care protocols and the monitoring of patients with high risk, thus preventing or improving these conditions. This article presents a mobile pressure ulcer monitoring platform (mULCER), which helps control a patient's ulcer status during all stages of treatment. Beside its stand-alone version, it can be integrated with electronic health record systems as mULCER synchronizes ulcer data with any electronic health record system using HL7 standards. It serves as a tool to integrate nursing care among hospital departments and institutions. mULCER was experimented with in different mobile devices such as LG Optimus One P500, Samsung Galaxy Tab, HTC Magic, Samsung Galaxy S, and Samsung Galaxy i5700, taking into account the user's experience of different screen sizes and processing characteristics.

  15. A fully-integrated aptamer-based affinity assay platform for monitoring astronaut health in space.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xianbin; Durland, Ross H.; Hecht, Ariel H.

    2010-07-01

    Here we demonstrate the suitability of robust nucleic acid affinity reagents in an integrated point-of-care diagnostic platform for monitoring proteomic biomarkers indicative of astronaut health in spaceflight applications. A model thioaptamer targeting nuclear factor-kappa B (NF-{kappa}B) is evaluated in an on-chip electrophoretic gel-shift assay for human serum. Key steps of (i) mixing sample with the aptamer, (ii) buffer exchange, and (iii) preconcentration of sample were successfully integrated upstream of fluorescence-based detection. Challenges due to (i) nonspecific interactions with serum, and (ii) preconcentration at a nanoporous membrane are discussed and successfully resolved to yield a robust, rapid, and fully-integrated diagnostic system.

  16. Analysis and design of energy monitoring platform for smart city

    NASA Astrophysics Data System (ADS)

    Wang, Hong-xia

    2016-09-01

    The development and utilization of energy has greatly promoted the development and progress of human society. It is the basic material foundation for human survival. City running is bound to consume energy inevitably, but it also brings a lot of waste discharge. In order to speed up the process of smart city, improve the efficiency of energy saving and emission reduction work, maintain the green and livable environment, a comprehensive management platform of energy monitoring for government departments is constructed based on cloud computing technology and 3-tier architecture in this paper. It is assumed that the system will provide scientific guidance for the environment management and decision making in smart city.

  17. A low-power multi-modal body sensor network with application to epileptic seizure monitoring.

    PubMed

    Altini, Marco; Del Din, Silvia; Patel, Shyamal; Schachter, Steven; Penders, Julien; Bonato, Paolo

    2011-01-01

    Monitoring patients' physiological signals during their daily activities in the home environment is one of the challenge of the health care. New ultra-low-power wireless technologies could help to achieve this goal. In this paper we present a low-power, multi-modal, wearable sensor platform for the simultaneous recording of activity and physiological data. First we provide a description of the wearable sensor platform, and its characteristics with respect to power consumption. Second we present the preliminary results of the comparison between our sensors and a reference system, on healthy subjects, to test the reliability of the detected physiological (electrocardiogram and respiration) and electromyography signals.

  18. Privacy and Security Issues Surrounding the Protection of Data Generated by Continuous Glucose Monitors.

    PubMed

    Britton, Katherine E; Britton-Colonnese, Jennifer D

    2017-03-01

    Being able to track, analyze, and use data from continuous glucose monitors (CGMs) and through platforms and apps that communicate with CGMs helps achieve better outcomes and can advance the understanding of diabetes. The risks to patients' expectation of privacy are great, and their ability to control how their information is collected, stored, and used is virtually nonexistent. Patients' physical security is also at risk if adequate cybersecurity measures are not taken. Currently, data privacy and security protections are not robust enough to address the privacy and security risks and stymies the current and future benefits of CGM and the platforms and apps that communicate with them.

  19. Privacy and Security Issues Surrounding the Protection of Data Generated by Continuous Glucose Monitors

    PubMed Central

    Britton, Katherine E.; Britton-Colonnese, Jennifer D.

    2017-01-01

    Being able to track, analyze, and use data from continuous glucose monitors (CGMs) and through platforms and apps that communicate with CGMs helps achieve better outcomes and can advance the understanding of diabetes. The risks to patients’ expectation of privacy are great, and their ability to control how their information is collected, stored, and used is virtually nonexistent. Patients’ physical security is also at risk if adequate cybersecurity measures are not taken. Currently, data privacy and security protections are not robust enough to address the privacy and security risks and stymies the current and future benefits of CGM and the platforms and apps that communicate with them. PMID:28264188

  20. Remocean : a marine radar as a safety tool for offshore platforms

    NASA Astrophysics Data System (ADS)

    Serafino, Francesco; Ludeno, Giovanni; Arturi, Daniele; Lugni, Claudio; Natale, Antonio; Soldovieri, Francesco

    2013-04-01

    In the recent years, there is a growing interest towards offshore platforms for electric power energy with a focus to the ones exploiting wind or sea surface currents force. In this frame, an important role can be played the marine X-band radar systems, which are able to acquire high resolution information (of the order of the meters) on the sea state (direction and height of the waves) and sea surface current in a range of several kilometers from the radar platform. The information gained from the radar is therefore very useful for many issues related to the offshore platforms installation and safety. In fact, the X-band radar system can be deployed to gain a long-term information about the direction and the velocity of sea surface current so to drive in a proper way the installation of the turbines by choosing the right areas; to use the information about the long-term sea state monitoring to evaluate the vulnerability of the platforms not only against the extreme climate events but also against the structural solicitation due to ordinary conditions; to gain indirect information about the wind intensity and direction for the right management of the wind farms. In this work, we will present the marine radar system designed and developed by REMOCEAN (www.remocean.com), a Spin-off of the National Research Council (CNR, Italy). In particular, we will present the application of the REMOCEAN system to the case of the monitoring of the sea state for the offshore platform safety in real conditions.

  1. Health disparities monitoring in the U.S.: lessons for monitoring efforts in Israel and other countries.

    PubMed

    Abu-Saad, Kathleen; Avni, Shlomit; Kalter-Leibovici, Ofra

    2018-02-28

    Health disparities are a persistent problem in many high-income countries. Health policymakers recognize the need to develop systematic methods for documenting and tracking these disparities in order to reduce them. The experience of the U.S., which has a well-established health disparities monitoring infrastructure, provides useful insights for other countries. This article provides an in-depth review of health disparities monitoring in the U.S. Lessons of potential relevance for other countries include: 1) the integration of health disparities monitoring in population health surveillance, 2) the role of political commitment, 3) use of monitoring as a feedback loop to inform future directions, 4) use of monitoring to identify data gaps, 5) development of extensive cross-departmental cooperation, and 6) exploitation of digital tools for monitoring and reporting. Using Israel as a case in point, we provide a brief overview of the healthcare and health disparities landscape in Israel, and examine how the lessons from the U.S. experience might be applied in the Israeli context. The U.S. model of health disparities monitoring provides useful lessons for other countries with respect to documentation of health disparities and tracking of progress made towards their elimination. Given the persistence of health disparities both in the U.S. and Israel, there is a need for monitoring systems to expand beyond individual- and healthcare system-level factors, to incorporate social and environmental determinants of health as health indicators/outcomes.

  2. Environmental monitoring in the 21st century: a story of WWTPs, CECs, and Great Lakes AOCs

    EPA Science Inventory

    Throughout much of the 20th century, environmental monitoring of contaminants in fresh water ecosystems, like the Great Lakes, focused on measuring concentrations of persistent, bioaccumulative, and toxic chemicals whose biological hazards were well established. However, in recen...

  3. Advances in industrial biopharmaceutical batch process monitoring: Machine-learning methods for small data problems.

    PubMed

    Tulsyan, Aditya; Garvin, Christopher; Ündey, Cenk

    2018-04-06

    Biopharmaceutical manufacturing comprises of multiple distinct processing steps that require effective and efficient monitoring of many variables simultaneously in real-time. The state-of-the-art real-time multivariate statistical batch process monitoring (BPM) platforms have been in use in recent years to ensure comprehensive monitoring is in place as a complementary tool for continued process verification to detect weak signals. This article addresses a longstanding, industry-wide problem in BPM, referred to as the "Low-N" problem, wherein a product has a limited production history. The current best industrial practice to address the Low-N problem is to switch from a multivariate to a univariate BPM, until sufficient product history is available to build and deploy a multivariate BPM platform. Every batch run without a robust multivariate BPM platform poses risk of not detecting potential weak signals developing in the process that might have an impact on process and product performance. In this article, we propose an approach to solve the Low-N problem by generating an arbitrarily large number of in silico batches through a combination of hardware exploitation and machine-learning methods. To the best of authors' knowledge, this is the first article to provide a solution to the Low-N problem in biopharmaceutical manufacturing using machine-learning methods. Several industrial case studies from bulk drug substance manufacturing are presented to demonstrate the efficacy of the proposed approach for BPM under various Low-N scenarios. © 2018 Wiley Periodicals, Inc.

  4. Design and implementation of a remote UAV-based mobile health monitoring system

    NASA Astrophysics Data System (ADS)

    Li, Songwei; Wan, Yan; Fu, Shengli; Liu, Mushuang; Wu, H. Felix

    2017-04-01

    Unmanned aerial vehicles (UAVs) play increasing roles in structure health monitoring. With growing mobility in modern Internet-of-Things (IoT) applications, the health monitoring of mobile structures becomes an emerging application. In this paper, we develop a UAV-carried vision-based monitoring system that allows a UAV to continuously track and monitor a mobile infrastructure and transmit back the monitoring information in real- time from a remote location. The monitoring system uses a simple UAV-mounted camera and requires only a single feature located on the mobile infrastructure for target detection and tracking. The computation-effective vision-based tracking solution based on a single feature is an improvement over existing vision-based lead-follower tracking systems that either have poor tracking performance due to the use of a single feature, or have improved tracking performance at a cost of the usage of multiple features. In addition, a UAV-carried aerial networking infrastructure using directional antennas is used to enable robust real-time transmission of monitoring video streams over a long distance. Automatic heading control is used to self-align headings of directional antennas to enable robust communication in mobility. Compared to existing omni-communication systems, the directional communication solution significantly increases the operation range of remote monitoring systems. In this paper, we develop the integrated modeling framework of camera and mobile platforms, design the tracking algorithm, develop a testbed of UAVs and mobile platforms, and evaluate system performance through both simulation studies and field tests.

  5. A High-Speed, Real-Time Visualization and State Estimation Platform for Monitoring and Control of Electric Distribution Systems: Implementation and Field Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundstrom, Blake; Gotseff, Peter; Giraldez, Julieta

    Continued deployment of renewable and distributed energy resources is fundamentally changing the way that electric distribution systems are controlled and operated; more sophisticated active system control and greater situational awareness are needed. Real-time measurements and distribution system state estimation (DSSE) techniques enable more sophisticated system control and, when combined with visualization applications, greater situational awareness. This paper presents a novel demonstration of a high-speed, real-time DSSE platform and related control and visualization functionalities, implemented using existing open-source software and distribution system monitoring hardware. Live scrolling strip charts of meter data and intuitive annotated map visualizations of the entire state (obtainedmore » via DSSE) of a real-world distribution circuit are shown. The DSSE implementation is validated to demonstrate provision of accurate voltage data. This platform allows for enhanced control and situational awareness using only a minimum quantity of distribution system measurement units and modest data and software infrastructure.« less

  6. Realtime Gas Emission Monitoring at Hazardous Sites Using a Distributed Point-Source Sensing Infrastructure.

    PubMed

    Manes, Gianfranco; Collodi, Giovanni; Gelpi, Leonardo; Fusco, Rosanna; Ricci, Giuseppe; Manes, Antonio; Passafiume, Marco

    2016-01-20

    This paper describes a distributed point-source monitoring platform for gas level and leakage detection in hazardous environments. The platform, based on a wireless sensor network (WSN) architecture, is organised into sub-networks to be positioned in the plant's critical areas; each sub-net includes a gateway unit wirelessly connected to the WSN nodes, hence providing an easily deployable, stand-alone infrastructure featuring a high degree of scalability and reconfigurability. Furthermore, the system provides automated calibration routines which can be accomplished by non-specialized maintenance operators without system reliability reduction issues. Internet connectivity is provided via TCP/IP over GPRS (Internet standard protocols over mobile networks) gateways at a one-minute sampling rate. Environmental and process data are forwarded to a remote server and made available to authenticated users through a user interface that provides data rendering in various formats and multi-sensor data fusion. The platform is able to provide real-time plant management with an effective; accurate tool for immediate warning in case of critical events.

  7. A Survey of Geosensor Networks: Advances in Dynamic Environmental Monitoring

    PubMed Central

    Nittel, Silvia

    2009-01-01

    In the recent decade, several technology trends have influenced the field of geosciences in significant ways. The first trend is the more readily available technology of ubiquitous wireless communication networks and progress in the development of low-power, short-range radio-based communication networks, the miniaturization of computing and storage platforms as well as the development of novel microsensors and sensor materials. All three trends have changed the type of dynamic environmental phenomena that can be detected, monitored and reacted to. Another important aspect is the real-time data delivery of novel platforms today. In this paper, I will survey the field of geosensor networks, and mainly focus on the technology of small-scale geosensor networks, example applications and their feasibility and lessons learnt as well as the current research questions posed by using this technology today. Furthermore, my objective is to investigate how this technology can be embedded in the current landscape of intelligent sensor platforms in the geosciences and identify its place and purpose. PMID:22346721

  8. Avionics and Power Management for Low-Cost High-Altitude Balloon Science Platforms

    NASA Technical Reports Server (NTRS)

    Chin, Jeffrey; Roberts, Anthony; McNatt, Jeremiah

    2016-01-01

    High-altitude balloons (HABs) have become popular as educational and scientific platforms for planetary research. This document outlines key components for missions where low cost and rapid development are desired. As an alternative to ground-based vacuum and thermal testing, these systems can be flight tested at comparable costs. Communication, solar, space, and atmospheric sensing experiments often require environments where ground level testing can be challenging or impossible in certain cases. When performing HAB research the ability to monitor the status of the platform and gather data is key for both scientific and recoverability aspects of the mission. A few turnkey platform solutions are outlined that leverage rapidly evolving open-source engineering ecosystems. Rather than building custom components from scratch, these recommendations attempt to maximize simplicity and cost of HAB platforms to make launches more accessible to everyone.

  9. Smart CEI Moncloa: An IoT-based Platform for People Flow and Environmental Monitoring on a Smart University Campus

    PubMed Central

    Vázquez, Enrique

    2017-01-01

    Internet of Things platforms for Smart Cities are technologically complex and deploying them at large scale involves high costs and risks. Therefore, pilot schemes that allow validating proof of concepts, experimenting with different technologies and services, and fine-tuning them before migrating them to actual scenarios, are especially important in this context. The IoT platform deployed across the engineering schools of the Universidad Politécnica de Madrid in the Moncloa Campus of International Excellence represents a good example of a test bench for experimentation with Smart City services. This paper presents the main features of this platform, putting special emphasis on the technological challenges faced and on the solutions adopted, as well as on the functionality, services and potential that the platform offers. PMID:29292790

  10. Smart CEI Moncloa: An IoT-based Platform for People Flow and Environmental Monitoring on a Smart University Campus.

    PubMed

    Alvarez-Campana, Manuel; López, Gregorio; Vázquez, Enrique; Villagrá, Víctor A; Berrocal, Julio

    2017-12-08

    Internet of Things platforms for Smart Cities are technologically complex and deploying them at large scale involves high costs and risks. Therefore, pilot schemes that allow validating proof of concepts, experimenting with different technologies and services, and fine-tuning them before migrating them to actual scenarios, are especially important in this context. The IoT platform deployed across the engineering schools of the Universidad Politécnica de Madrid in the Moncloa Campus of International Excellence represents a good example of a test bench for experimentation with Smart City services. This paper presents the main features of this platform, putting special emphasis on the technological challenges faced and on the solutions adopted, as well as on the functionality, services and potential that the platform offers.

  11. The CUORE slow monitoring systems

    NASA Astrophysics Data System (ADS)

    Gladstone, L.; Biare, D.; Cappelli, L.; Cushman, J. S.; Del Corso, F.; Fujikawa, B. K.; Hickerson, K. P.; Moggi, N.; Pagliarone, C. E.; Schmidt, B.; Wagaarachchi, S. L.; Welliver, B.; Winslow, L. A.

    2017-09-01

    CUORE is a cryogenic experiment searching primarily for neutrinoless double decay in 130Te. It will begin data-taking operations in 2016. To monitor the cryostat and detector during commissioning and data taking, we have designed and developed Slow Monitoring systems. In addition to real-time systems using LabVIEW, we have an alarm, analysis, and archiving website that uses MongoDB, AngularJS, and Bootstrap software. These modern, state of the art software packages make the monitoring system transparent, easily maintainable, and accessible on many platforms including mobile devices.

  12. Recent enhancements to and applications of the SmartBrick structural health monitoring platform

    NASA Astrophysics Data System (ADS)

    Gunasekaran, A.; Cross, S.; Patel, N.; Sedigh, S.

    2012-04-01

    The SmartBrick network is an autonomous and wireless solution for structural health monitoring of civil infrastructures. The base station is currently in its third generation and has been laboratory- and field-tested in the United States and Italy. The second generation of the sensor nodes has been laboratory-tested as of publication. In this paper, we present recent enhancements made to hardware and software of the SmartBrick platform. Salient improvements described include the development of a new base station with fully-integrated long-range GSM (cellular) and short-range ZigBee communication. The major software improvement described in this paper is migration to the ZigBee PRO stack, which was carried out in the interest of interoperability. To broaden the application of the platform to critical environments that require survivability and fault tolerance, we have striven to achieve compliance with military standards in the areas of hardware, software, and communication. We describe these efforts and present a survey of the military standards investigated. Also described is instrumentation of a three-span experimental bridge in Washington County, Missouri; with the SmartBrick platform. The sensors, whose output is conditioned and multiplexed; include strain gauges, thermocouples, push potentiometers, and three-axis inclinometers. Data collected is stored on site and reported over the cellular network. Real-time alerts are generated if any monitored parameter falls outside its acceptable range. Redundant sensing and communication provide reliability and facilitate corroboration of the data collected. A web interface is used to issue remote configuration commands and to facilitate access to and visualization of the data collected.

  13. Real-time passive acoustic detection of marine mammals from a variety of autonomous platforms

    NASA Astrophysics Data System (ADS)

    Baumgartner, M.; Van Parijs, S. M.; Hotchkin, C. F.; Gurnee, J.; Stafford, K.; Winsor, P.; Davies, K. T. A.; Taggart, C. T.

    2016-02-01

    Over the past two decades, passive acoustic monitoring has proven to be an effective means of estimating the occurrence of marine mammals. The vast majority of applications involve archival recordings from bottom-mounted instruments or towed hydrophones from moving ships; however, there is growing interest in assessing marine mammal occurrence from autonomous platforms, particularly in real time. The Woods Hole Oceanographic Institution has developed the capability to detect, classify, and remotely report in near real time the calls of marine mammals via passive acoustics from a variety of autonomous platforms, including Slocum gliders, wave gliders, and moored buoys. The mobile Slocum glider can simultaneously measure marine mammal occurrence and oceanographic conditions throughout the water column, making it well suited for studying both marine mammal distribution and habitat. Wave gliders and moored buoys provide complementary observations over much larger spatial scales and longer temporal scales, respectively. The near real-time reporting capability of these platforms enables follow-up visual observations, on-water research, or responsive management action. We have recently begun to use this technology to regularly monitor baleen whales off the coast of New England, USA and Nova Scotia, Canada, as well as baleen whales, beluga whales, and bearded seals in the Chukchi Sea off the northwest coast of Alaska, USA. Our long-range goal is to monitor occurrence over wide spatial and temporal extents as part of the regional and global ocean observatory initiatives to improve marine mammal conservation and management and to study changes in marine mammal distribution over multi-annual time scales in response to climate change.

  14. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform.

    PubMed

    Emaminejad, Sam; Gao, Wei; Wu, Eric; Davies, Zoe A; Yin Yin Nyein, Hnin; Challa, Samyuktha; Ryan, Sean P; Fahad, Hossain M; Chen, Kevin; Shahpar, Ziba; Talebi, Salmonn; Milla, Carlos; Javey, Ali; Davis, Ronald W

    2017-05-02

    Perspiration-based wearable biosensors facilitate continuous monitoring of individuals' health states with real-time and molecular-level insight. The inherent inaccessibility of sweat in sedentary individuals in large volume (≥10 µL) for on-demand and in situ analysis has limited our ability to capitalize on this noninvasive and rich source of information. A wearable and miniaturized iontophoresis interface is an excellent solution to overcome this barrier. The iontophoresis process involves delivery of stimulating agonists to the sweat glands with the aid of an electrical current. The challenge remains in devising an iontophoresis interface that can extract sufficient amount of sweat for robust sensing, without electrode corrosion and burning/causing discomfort in subjects. Here, we overcame this challenge through realizing an electrochemically enhanced iontophoresis interface, integrated in a wearable sweat analysis platform. This interface can be programmed to induce sweat with various secretion profiles for real-time analysis, a capability which can be exploited to advance our knowledge of the sweat gland physiology and the secretion process. To demonstrate the clinical value of our platform, human subject studies were performed in the context of the cystic fibrosis diagnosis and preliminary investigation of the blood/sweat glucose correlation. With our platform, we detected the elevated sweat electrolyte content of cystic fibrosis patients compared with that of healthy control subjects. Furthermore, our results indicate that oral glucose consumption in the fasting state is followed by increased glucose levels in both sweat and blood. Our solution opens the possibility for a broad range of noninvasive diagnostic and general population health monitoring applications.

  15. Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors

    PubMed Central

    Zhang, Yu Shrike; Aleman, Julio; Shin, Su Ryon; Kim, Duckjin; Mousavi Shaegh, Seyed Ali; Massa, Solange; Riahi, Reza; Chae, Sukyoung; Hu, Ning; Avci, Huseyin; Zhang, Weijia; Silvestri, Antonia; Sanati Nezhad, Amir; Manbohi, Ahmad; De Ferrari, Fabio; Polini, Alessandro; Calzone, Giovanni; Shaikh, Noor; Alerasool, Parissa; Budina, Erica; Kang, Jian; Bhise, Nupura; Pourmand, Adel; Skardal, Aleksander; Shupe, Thomas; Bishop, Colin E.; Dokmeci, Mehmet Remzi; Atala, Anthony; Khademhosseini, Ali

    2017-01-01

    Organ-on-a-chip systems are miniaturized microfluidic 3D human tissue and organ models designed to recapitulate the important biological and physiological parameters of their in vivo counterparts. They have recently emerged as a viable platform for personalized medicine and drug screening. These in vitro models, featuring biomimetic compositions, architectures, and functions, are expected to replace the conventional planar, static cell cultures and bridge the gap between the currently used preclinical animal models and the human body. Multiple organoid models may be further connected together through the microfluidics in a similar manner in which they are arranged in vivo, providing the capability to analyze multiorgan interactions. Although a wide variety of human organ-on-a-chip models have been created, there are limited efforts on the integration of multisensor systems. However, in situ continual measuring is critical in precise assessment of the microenvironment parameters and the dynamic responses of the organs to pharmaceutical compounds over extended periods of time. In addition, automated and noninvasive capability is strongly desired for long-term monitoring. Here, we report a fully integrated modular physical, biochemical, and optical sensing platform through a fluidics-routing breadboard, which operates organ-on-a-chip units in a continual, dynamic, and automated manner. We believe that this platform technology has paved a potential avenue to promote the performance of current organ-on-a-chip models in drug screening by integrating a multitude of real-time sensors to achieve automated in situ monitoring of biophysical and biochemical parameters. PMID:28265064

  16. Real-time monitoring, prognosis, and resilient control for wind turbine systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zhiwei; Sheng, Shuangwen

    This special issue aims to provide a platform for academic and industrial communities to report recent results and emerging research in real-time monitoring, fault diagnosis, prognosis, and resilient control and design of wind turbine systems. After a strict peer-review process, 20 papers were selected, which represent the most recent progress of the real-time monitoring, diagnosis, prognosis, and resilient control methods/techniques in wind turbine systems.

  17. Ocean products delivered by the Mercator Ocean Service Department

    NASA Astrophysics Data System (ADS)

    Crosnier, L.; Durand, E.; Soulat, F.; Messal, F.; Buarque, S.; Toumazou, V.; Landes, V.; Drevillon, M.; Lellouche, J.

    2008-12-01

    The newly created Service Department at Mercator Ocean is now offering various services for academic and private ocean applications. Mercator Ocean runs operationally ocean forecast systems for the Global and North Atlantic Ocean. These systems are based on an ocean general circulation model NEMO as well as on data assimilation of sea level anomalies, sea surface temperature and temperature and salinity vertical profiles. Three dimensional ocean fields of temperature, salinity and currents are updated and available weekly, including analysis and 2 weeks forecast fields. The Mercator Ocean service department is now offering a wide range of ocean derived products. This presentation will display some of the various products delivered in the framework of academic and private ocean applications: " Monitoring of the ocean current at the surface and at depth in several geographical areas for offshore oil platform, for offshore satellite launch platform, for transatlantic sailing or rowing boat races. " Monitoring of ocean climate indicators (Coral bleaching...) for marine reserve survey; " Monitoring of upwelling systems for fisheries; " Monitoring of the ocean heat content for tropical cyclone monitoring. " Monitoring of the ocean temperature/salinity and currents to guide research vessels during scientific cruises. The Mercator Ocean products catalogue will grow wider in the coming years, especially in the framework of the European GMES MyOcean project (FP7).

  18. Hardware-Assisted Large-Scale Neuroevolution for Multiagent Learning

    DTIC Science & Technology

    2014-12-30

    SECURITY CLASSIFICATION OF: This DURIP equipment award was used to purchase, install, and bring on-line two Berkeley Emulation Engines ( BEEs ) and two...mini- BEE machines to establish an FPGA-based high-performance multiagent training platform and its associated software. This acquisition of BEE4-W...Platform; Probabilistic Domain Transformation; Hardware-Assisted; FPGA; BEE ; Hive Brain; Multiagent. REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S

  19. Transparent Stretchable Self-Powered Patchable Sensor Platform with Ultrasensitive Recognition of Human Activities.

    PubMed

    Hwang, Byeong-Ung; Lee, Ju-Hyuck; Trung, Tran Quang; Roh, Eun; Kim, Do-Il; Kim, Sang-Woo; Lee, Nae-Eung

    2015-09-22

    Monitoring of human activities can provide clinically relevant information pertaining to disease diagnostics, preventive medicine, care for patients with chronic diseases, rehabilitation, and prosthetics. The recognition of strains on human skin, induced by subtle movements of muscles in the internal organs, such as the esophagus and trachea, and the motion of joints, was demonstrated using a self-powered patchable strain sensor platform, composed on multifunctional nanocomposites of low-density silver nanowires with a conductive elastomer of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate/polyurethane, with high sensitivity, stretchability, and optical transparency. The ultra-low-power consumption of the sensor, integrated with both a supercapacitor and a triboelectric nanogenerator into a single transparent stretchable platform based on the same nanocomposites, results in a self-powered monitoring system for skin strain. The capability of the sensor to recognize a wide range of strain on skin has the potential for use in new areas of invisible stretchable electronics for human monitoring. A new type of transparent, stretchable, and ultrasensitive strain sensor based on a AgNW/PEDOT:PSS/PU nanocomposite was developed. The concept of a self-powered patchable sensor system integrated with a supercapacitor and a triboelectric nanogenerator that can be used universally as an autonomous invisible sensor system was used to detect the wide range of strain on human skin.

  20. Persistent babesiosis in a Rhesus macaque (Macaca mulatta) infected with a simian-human immunodeficiency virus

    PubMed Central

    Liu, David X.; Gill, Amy; Holman, Patricia J.; Didier, Peter J.; Blanchard, James L.; Veazey, Ronald S.; Lackner, Andrew A.

    2014-01-01

    A rhesus macaque developed persistent babesiosis following inoculation with a simian-human immunodeficiency virus. Blood smears demonstrated intraerythrocytic piroplasms and rare Maltese cross forms. Babesia microti-like protozoa were confirmed by PCR and gene sequence. With using nonhuman primates as models for human diseases, infection and complications from Babesia should be monitored. PMID:24517274

  1. Pilot study of the Sub-Symptom Threshold Exercise Program (SSTEP) for persistent concussion symptoms in youth.

    PubMed

    Chrisman, Sara P D; Whitlock, Kathryn B; Somers, Elissa; Burton, Monique S; Herring, Stanley A; Rowhani-Rahbar, Ali; Rivara, Frederick P

    2017-01-01

    Prior studies suggest potential benefit using monitored aerobic exercise to treat youth with persistent concussion symptoms, but these studies have been small. To explore the safety and potential benefits of a rehabilitative exercise intervention, the Sub-symptom Threshold Exercise Program (SSTEP), for treating youth with persistent concussion symptoms >1 month. We conducted a retrospective cohort study of 83 youth who participated in SSTEP, completing trajectory analysis of concussion symptoms using the symptom subscale of the Sport Concussion Assessment Tool, version 2 (SCAT-2). The average age of patients was 14.9+/-2.3 years and 54% were female. Most concussions (76%) were due to sports, the majority from football and girls' soccer, and 55% had a previous concussion. Comorbidity was not uncommon: 14% had history of ADHD and 16% history of depression and/or anxiety. Most patients improved following the intervention, and none reported worsening. Symptoms decreased exponentially following initiation of SSTEP, and trajectory did not differ by duration of symptoms at presentation (<6 weeks, 6-12 weeks, >12 weeks). Monitored exercise programs appear to be safe and potentially beneficial for youth with persistent concussive symptoms. Large-scale controlled studies are needed to examine efficacy, ideal timing and duration.

  2. Robo-Lector - a novel platform for automated high-throughput cultivations in microtiter plates with high information content.

    PubMed

    Huber, Robert; Ritter, Daniel; Hering, Till; Hillmer, Anne-Kathrin; Kensy, Frank; Müller, Carsten; Wang, Le; Büchs, Jochen

    2009-08-01

    In industry and academic research, there is an increasing demand for flexible automated microfermentation platforms with advanced sensing technology. However, up to now, conventional platforms cannot generate continuous data in high-throughput cultivations, in particular for monitoring biomass and fluorescent proteins. Furthermore, microfermentation platforms are needed that can easily combine cost-effective, disposable microbioreactors with downstream processing and analytical assays. To meet this demand, a novel automated microfermentation platform consisting of a BioLector and a liquid-handling robot (Robo-Lector) was sucessfully built and tested. The BioLector provides a cultivation system that is able to permanently monitor microbial growth and the fluorescence of reporter proteins under defined conditions in microtiter plates. Three examplary methods were programed on the Robo-Lector platform to study in detail high-throughput cultivation processes and especially recombinant protein expression. The host/vector system E. coli BL21(DE3) pRhotHi-2-EcFbFP, expressing the fluorescence protein EcFbFP, was hereby investigated. With the method 'induction profiling' it was possible to conduct 96 different induction experiments (varying inducer concentrations from 0 to 1.5 mM IPTG at 8 different induction times) simultaneously in an automated way. The method 'biomass-specific induction' allowed to automatically induce cultures with different growth kinetics in a microtiter plate at the same biomass concentration, which resulted in a relative standard deviation of the EcFbFP production of only +/- 7%. The third method 'biomass-specific replication' enabled to generate equal initial biomass concentrations in main cultures from precultures with different growth kinetics. This was realized by automatically transferring an appropiate inoculum volume from the different preculture microtiter wells to respective wells of the main culture plate, where subsequently similar growth kinetics could be obtained. The Robo-Lector generates extensive kinetic data in high-throughput cultivations, particularly for biomass and fluorescence protein formation. Based on the non-invasive on-line-monitoring signals, actions of the liquid-handling robot can easily be triggered. This interaction between the robot and the BioLector (Robo-Lector) combines high-content data generation with systematic high-throughput experimentation in an automated fashion, offering new possibilities to study biological production systems. The presented platform uses a standard liquid-handling workstation with widespread automation possibilities. Thus, high-throughput cultivations can now be combined with small-scale downstream processing techniques and analytical assays. Ultimately, this novel versatile platform can accelerate and intensify research and development in the field of systems biology as well as modelling and bioprocess optimization.

  3. Bronchial thermoplasty: a novel treatment for severe asthma requiring monitored anesthesia care.

    PubMed

    Lee, Jamille A; Rowen, David W; Rose, David D

    2011-12-01

    Dexmedetomidine used in monitored anesthesia care produces a safe and effective technique well documented in research. We report the successful use of dexmedetomidine for sedation during bronchial thermoplasty, a new treatment for patients with severe persistent asthma refractory to inhaled corticosteroids and long-term beta-2 agonists.

  4. Physiological measures and mental-state assessment

    NASA Technical Reports Server (NTRS)

    Stern, John A.

    1988-01-01

    General considerations regarding monitoring of operators for alertness are discussed, including who should be monitored and what information should be collected. Measures that have been used to ascertain more general and persistent states of alertness are outlined, including cardiac activity, peripheral vascular activity, skin conductance, electroencephalography, pupillography, oculomotor activity, and body movements.

  5. MONITORING ASPERGILLUS SPECIES BY QUANTITATIVE PCR DURING CONSTRUCTION OF A MULTI-STORY HOSPITAL BUILDING

    EPA Science Inventory

    Noscomial fungal infections represent a persistent threat in hospitals. One of the major issues in fungal control has been monitoring these fungi in a timely manner. Quantitative polymerase chain reaction (QPCR) allows for the rapid (2 to 4 h), sensitive (often down to a single...

  6. The Regulation of Light Sensing and Light-Harvesting Impacts the Use of Cyanobacteria as Biotechnology Platforms

    PubMed Central

    Montgomery, Beronda L.

    2014-01-01

    Light is harvested in cyanobacteria by chlorophyll-containing photosystems embedded in the thylakoid membranes and phycobilisomes (PBSs), photosystem-associated light-harvesting antennae. Light absorbed by the PBSs and photosystems can be converted to chemical energy through photosynthesis. Photosynthetically fixed carbon pools, which are constrained by photosynthetic light capture versus the dissipation of excess light absorbed, determine the available organismal energy budget. The molecular bases of the environmental regulation of photosynthesis, photoprotection, and photomorphogenesis are still being elucidated in cyanobacteria. Thus, the potential impacts of these phenomena on the efficacy of developing cyanobacteria as robust biotechnological platforms require additional attention. Current advances and persisting needs for developing cyanobacterial production platforms that are related to light sensing and harvesting include the development of tools to balance the utilization of absorbed photons for conversion to chemical energy and biomass versus light dissipation in photoprotective mechanisms. Such tools can be used to direct energy to more effectively support the production of desired bioproducts from sunlight. PMID:25023122

  7. Google Earth Engine: a new cloud-computing platform for global-scale earth observation data and analysis

    NASA Astrophysics Data System (ADS)

    Moore, R. T.; Hansen, M. C.

    2011-12-01

    Google Earth Engine is a new technology platform that enables monitoring and measurement of changes in the earth's environment, at planetary scale, on a large catalog of earth observation data. The platform offers intrinsically-parallel computational access to thousands of computers in Google's data centers. Initial efforts have focused primarily on global forest monitoring and measurement, in support of REDD+ activities in the developing world. The intent is to put this platform into the hands of scientists and developing world nations, in order to advance the broader operational deployment of existing scientific methods, and strengthen the ability for public institutions and civil society to better understand, manage and report on the state of their natural resources. Earth Engine currently hosts online nearly the complete historical Landsat archive of L5 and L7 data collected over more than twenty-five years. Newly-collected Landsat imagery is downloaded from USGS EROS Center into Earth Engine on a daily basis. Earth Engine also includes a set of historical and current MODIS data products. The platform supports generation, on-demand, of spatial and temporal mosaics, "best-pixel" composites (for example to remove clouds and gaps in satellite imagery), as well as a variety of spectral indices. Supervised learning methods are available over the Landsat data catalog. The platform also includes a new application programming framework, or "API", that allows scientists access to these computational and data resources, to scale their current algorithms or develop new ones. Under the covers of the Google Earth Engine API is an intrinsically-parallel image-processing system. Several forest monitoring applications powered by this API are currently in development and expected to be operational in 2011. Combining science with massive data and technology resources in a cloud-computing framework can offer advantages of computational speed, ease-of-use and collaboration, as well as transparency in data and methods. Methods developed for global processing of MODIS data to map land cover are being adopted for use with Landsat data. Specifically, the MODIS Vegetation Continuous Field product methodology has been applied for mapping forest extent and change at national scales using Landsat time-series data sets. Scaling this method to continental and global scales is enabled by Google Earth Engine computing capabilities. By combining the supervised learning VCF approach with the Landsat archive and cloud computing, unprecedented monitoring of land cover dynamics is enabled.

  8. Geostationary multipurpose platforms

    NASA Technical Reports Server (NTRS)

    Bekey, I.; Bowman, R. M.

    1981-01-01

    In addition to the advantages generally associated with orbital platforms, such as improved reliability, economies of scale, simple connectivity of elements, reduced tracking demands and the restraint of orbital object population growth, geostationary platforms yield: (1) continuous access by fixed ground antennas for communications services; (2) continuous monitoring of phenomena over chosen regions of the earth's surface; (3) a preferred location for many solar-terrestrial physics experiments. The geostationary platform also offers a low-risk and economical solution to the impending saturation of the orbital arc/frequency spectrum, maximizing the capacity of individual slots and increasing the utility of the entire arc. It also allows the use of many small, simple and inexpensive earth stations through complexity inversion and high power per beam. Block diagram and operational flowcharts are provided.

  9. Development of a Zigbee platform for bioinstrumentation.

    PubMed

    Cifuentes, Carlos A; Gentiletti, Gabriel G; Suarez, Marco J; Rodriguez, Luis E

    2010-01-01

    This paper presents the development of a network platform which allows connecting multiple individual wireless devices for transmitting bioelectrics and biomechanics signals for application in a hospital network, or continuous monitoring in a patient's diary life. The Zigbee platform development proposal was made in three stages: 1) Hardware development, including the construction of a prototype network node and the integration of sensors, (2) Evaluation, in order to define the specifications of each node and scope of communication and (3) The Zigbee Network Implementation for bioinstrumentation based on ZigBee Health Care public application profile (ZHC). Finally, this work presents the experimental results based on measurements of Lost Packets and LQI (Link Quality Indicator), and the Zigbee Platform configuration for Bioinstrumentation in operation.

  10. Portable SERS Instrument for Explosives Monitoring

    DTIC Science & Technology

    2008-01-01

    groundwater monitoring from a cone penetrometer (CPT) platform (5) Demonstrate improved capability for discriminating explosives versus colorimetry ...interference, and better discrimination of individual explosives compared to colorimetry • Applicability to virtually any environmental water...chemicals such as nitroaromatics or nitramines. While this makes colorimetry more generally applicable at explosive sites, it also limits the ability to

  11. Linking high resolution mass spectrometry data with exposure and toxicity forecasts to advance high-throughput environmental monitoring

    EPA Science Inventory

    There is a growing need in the field of exposure science for monitoring methods that rapidly screen environmental media for suspect contaminants. Measurement and analysis platforms, based on high resolution mass spectrometry (HRMS), now exist to meet this need. Here we describe r...

  12. Monitoring system including an electronic sensor platform and an interrogation transceiver

    DOEpatents

    Kinzel, Robert L.; Sheets, Larry R.

    2003-09-23

    A wireless monitoring system suitable for a wide range of remote data collection applications. The system includes at least one Electronic Sensor Platform (ESP), an Interrogator Transceiver (IT) and a general purpose host computer. The ESP functions as a remote data collector from a number of digital and analog sensors located therein. The host computer provides for data logging, testing, demonstration, installation checkout, and troubleshooting of the system. The IT transmits signals from one or more ESP's to the host computer to the ESP's. The IT host computer may be powered by a common power supply, and each ESP is individually powered by a battery. This monitoring system has an extremely low power consumption which allows remote operation of the ESP for long periods; provides authenticated message traffic over a wireless network; utilizes state-of-health and tamper sensors to ensure that the ESP is secure and undamaged; has robust housing of the ESP suitable for use in radiation environments; and is low in cost. With one base station (host computer and interrogator transceiver), multiple ESP's may be controlled at a single monitoring site.

  13. Fully integrated biochip platforms for advanced healthcare.

    PubMed

    Carrara, Sandro; Ghoreishizadeh, Sara; Olivo, Jacopo; Taurino, Irene; Baj-Rossi, Camilla; Cavallini, Andrea; de Beeck, Maaike Op; Dehollain, Catherine; Burleson, Wayne; Moussy, Francis Gabriel; Guiseppi-Elie, Anthony; De Micheli, Giovanni

    2012-01-01

    Recent advances in microelectronics and biosensors are enabling developments of innovative biochips for advanced healthcare by providing fully integrated platforms for continuous monitoring of a large set of human disease biomarkers. Continuous monitoring of several human metabolites can be addressed by using fully integrated and minimally invasive devices located in the sub-cutis, typically in the peritoneal region. This extends the techniques of continuous monitoring of glucose currently being pursued with diabetic patients. However, several issues have to be considered in order to succeed in developing fully integrated and minimally invasive implantable devices. These innovative devices require a high-degree of integration, minimal invasive surgery, long-term biocompatibility, security and privacy in data transmission, high reliability, high reproducibility, high specificity, low detection limit and high sensitivity. Recent advances in the field have already proposed possible solutions for several of these issues. The aim of the present paper is to present a broad spectrum of recent results and to propose future directions of development in order to obtain fully implantable systems for the continuous monitoring of the human metabolism in advanced healthcare applications.

  14. Fully Integrated Biochip Platforms for Advanced Healthcare

    PubMed Central

    Carrara, Sandro; Ghoreishizadeh, Sara; Olivo, Jacopo; Taurino, Irene; Baj-Rossi, Camilla; Cavallini, Andrea; de Beeck, Maaike Op; Dehollain, Catherine; Burleson, Wayne; Moussy, Francis Gabriel; Guiseppi-Elie, Anthony; De Micheli, Giovanni

    2012-01-01

    Recent advances in microelectronics and biosensors are enabling developments of innovative biochips for advanced healthcare by providing fully integrated platforms for continuous monitoring of a large set of human disease biomarkers. Continuous monitoring of several human metabolites can be addressed by using fully integrated and minimally invasive devices located in the sub-cutis, typically in the peritoneal region. This extends the techniques of continuous monitoring of glucose currently being pursued with diabetic patients. However, several issues have to be considered in order to succeed in developing fully integrated and minimally invasive implantable devices. These innovative devices require a high-degree of integration, minimal invasive surgery, long-term biocompatibility, security and privacy in data transmission, high reliability, high reproducibility, high specificity, low detection limit and high sensitivity. Recent advances in the field have already proposed possible solutions for several of these issues. The aim of the present paper is to present a broad spectrum of recent results and to propose future directions of development in order to obtain fully implantable systems for the continuous monitoring of the human metabolism in advanced healthcare applications. PMID:23112644

  15. A Remote Health Monitoring System for the Elderly Based on Smart Home Gateway

    PubMed Central

    Shao, Minggang

    2017-01-01

    This paper proposed a remote health monitoring system for the elderly based on smart home gateway. The proposed system consists of three parts: the smart clothing, the smart home gateway, and the health care server. The smart clothing collects the elderly's electrocardiogram (ECG) and motion signals. The home gateway is used for data transmission. The health care server provides services of data storage and user information management; it is constructed on the Windows-Apache-MySQL-PHP (WAMP) platform and is tested on the Ali Cloud platform. To resolve the issues of data overload and network congestion of the home gateway, an ECG compression algorithm is applied. System demonstration shows that the ECG signals and motion signals of the elderly can be monitored. Evaluation of the compression algorithm shows that it has a high compression ratio and low distortion and consumes little time, which is suitable for home gateways. The proposed system has good scalability, and it is simple to operate. It has the potential to provide long-term and continuous home health monitoring services for the elderly. PMID:29204258

  16. A Remote Health Monitoring System for the Elderly Based on Smart Home Gateway.

    PubMed

    Guan, Kai; Shao, Minggang; Wu, Shuicai

    2017-01-01

    This paper proposed a remote health monitoring system for the elderly based on smart home gateway. The proposed system consists of three parts: the smart clothing, the smart home gateway, and the health care server. The smart clothing collects the elderly's electrocardiogram (ECG) and motion signals. The home gateway is used for data transmission. The health care server provides services of data storage and user information management; it is constructed on the Windows-Apache-MySQL-PHP (WAMP) platform and is tested on the Ali Cloud platform. To resolve the issues of data overload and network congestion of the home gateway, an ECG compression algorithm is applied. System demonstration shows that the ECG signals and motion signals of the elderly can be monitored. Evaluation of the compression algorithm shows that it has a high compression ratio and low distortion and consumes little time, which is suitable for home gateways. The proposed system has good scalability, and it is simple to operate. It has the potential to provide long-term and continuous home health monitoring services for the elderly.

  17. High Resolution Displacement Monitoring for Urban Environments in Seattle, Washington using Terrestrial Radar Interferometry

    NASA Astrophysics Data System (ADS)

    Lowry, B. W.; Schrock, G.; Werner, C. L.; Zhou, W.; Pugh, N.

    2015-12-01

    Displacement monitoring using Terrestrial Radar Interferometry (TRI) over an urban environment was conducted to monitor for potential movement of buildings, roadways, and urban infrastructure in Seattle, Washington for a 6 week deployment in March and April of 2015. A Gamma Portable Radar Interferometer was deployed on a the lower roof of the Smith Tower at an elevation of about 100 m, overlooking the historical district of Pioneer Square. Radar monitoring in this context provides wide area coverage, sub millimeter precision, near real time alarming, and reflectorless measurement. Image georectification was established using a previously collected airborne lidar scan which was used to map the radar image onto a 3D 1st return elevation model of downtown Seattle. Platform stability concerns were monitored using high rate GPS and a 3-axis accelerometer to monitor for building movement or platform instability. Displacements were imaged at 2 minute intervals and stacked into 2 hour averages to aid in noise characterization. Changes in coherence are characterized based on diurnal fluctuations of temperature, cultural noise, and target continuity. These informed atmospheric and image selection filters for optimizing interferogram generation and displacement measurement quality control. An urban monitoring workflow was established using point target interferometric analysis to create a monitoring set of approximately 100,000 stable monitoring points measured at 2 minute to 3 hour intervals over the 6 week deployment. Radar displacement measurements were verified using ongoing survey and GPS monitoring program and with corner reflector tests to verify look angle corrections to settlement motion. Insights from this monitoring program can be used to design TRI monitoring programs for underground tunneling, urban subsidence, and earthquake damage assessment applications.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devkota, Jagannath; Kim, Ki-Joong; Ohodnicki, Paul R.

    The integration of nanoporous materials such as metal organic frameworks (MOFs) with sensitive transducers can result in robust sensing platforms for monitoring gases and chemical vapors for a range of applications.

  19. Edge systems in the deep ocean

    NASA Astrophysics Data System (ADS)

    Coon, Andrew; Earp, Samuel L.

    2010-04-01

    DARPA has initiated a program to explore persistent presence in the deep ocean. The deep ocean is difficult to access and presents a hostile environment. Persistent operations in the deep ocean will require new technology for energy, communications and autonomous operations. Several fundamental characteristics of the deep ocean shape any potential system architecture. The deep sea presents acoustic sensing opportunities that may provide significantly enhanced sensing footprints relative to sensors deployed at traditional depths. Communication limitations drive solutions towards autonomous operation of the platforms and automation of data collection and processing. Access to the seabed presents an opportunity for fixed infrastructure with no important limitations on size and weight. Difficult access and persistence impose requirements for long-life energy sources and potentially energy harvesting. The ocean is immense, so there is a need to scale the system footprint for presence over tens of thousands and perhaps hundreds of thousands of square nautical miles. This paper focuses on the aspect of distributed sensing, and the engineering of networks of sensors to cover the required footprint.

  20. Open Source Platform Application to Groundwater Characterization and Monitoring

    NASA Astrophysics Data System (ADS)

    Ntarlagiannis, D.; Day-Lewis, F. D.; Falzone, S.; Lane, J. W., Jr.; Slater, L. D.; Robinson, J.; Hammett, S.

    2017-12-01

    Groundwater characterization and monitoring commonly rely on the use of multiple point sensors and human labor. Due to the number of sensors, labor, and other resources needed, establishing and maintaining an adequate groundwater monitoring network can be both labor intensive and expensive. To improve and optimize the monitoring network design, open source software and hardware components could potentially provide the platform to control robust and efficient sensors thereby reducing costs and labor. This work presents early attempts to create a groundwater monitoring system incorporating open-source software and hardware that will control the remote operation of multiple sensors along with data management and file transfer functions. The system is built around a Raspberry PI 3, that controls multiple sensors in order to perform on-demand, continuous or `smart decision' measurements while providing flexibility to incorporate additional sensors to meet the demands of different projects. The current objective of our technology is to monitor exchange of ionic tracers between mobile and immobile porosity using a combination of fluid and bulk electrical-conductivity measurements. To meet this objective, our configuration uses four sensors (pH, specific conductance, pressure, temperature) that can monitor the fluid electrical properties of interest and guide the bulk electrical measurement. This system highlights the potential of using open source software and hardware components for earth sciences applications. The versatility of the system makes it ideal for use in a large number of applications, and the low cost allows for high resolution (spatially and temporally) monitoring.

  1. Long-Term Monitoring of Field Trial Sites with Genetically Modified Oilseed Rape (Brassica napus L.) in Saxony-Anhalt, Germany. Fifteen Years Persistence to Date but No Spatial Dispersion

    PubMed Central

    Belter, Anke

    2016-01-01

    Oilseed rape is known to persist in arable fields because of its ability to develop secondary seed dormancy in certain agronomic and environmental conditions. If conditions change, rapeseeds are able to germinate up to 10 years later to build volunteers in ensuing crops. Extrapolations of experimental data acted on the assumption of persistence periods for more than 20 years after last harvest of rapeseed. Genetically-modified oilseed rape—cultivated widely in Northern America since 1996—is assumed not to differ from its conventional form in this property. Here, experimental data are reported from official monitoring activities that verify these assumptions. At two former field trial sites in Saxony-Anhalt genetically-modified herbicide-resistant oilseed rape volunteers are found up to fifteen years after harvest. Nevertheless, spatial dispersion or establishment of GM plants outside of the field sites was not observed within this period. PMID:26784233

  2. Strengthen the collaboration between the River Basin Management Organization of China and International Environmental Specimen Bank Group.

    PubMed

    Tan, Lingzhi; Liu, Hui; Shu, Jinxiang; Xia, Fan

    2015-02-01

    Several types of emerging organic contaminants were investigated in many recent researches, such as persistent toxic substance (PTS), persistent organic pollutants (POPs), endocrine disrupters (EDs), and volatile organic compounds (VOCs). But the Chinese country standard detection methods of emerging organic pollutants were not developed with the dramatic increasing of the organic substances production. Hence, it is necessary to obtain the latest informations about the long-term storage of representative environmental specimens, which could provide scientific basis for environmental management and environmental decision-making of the water resources protection and management organization. As the significant water resource conservation organization, the Water Environment Monitoring Center of Yangtze River Basin is experienced in water environmental monitoring and records many useful water resources and environment informations. It is also our responsibility to monitor all the pollutants in water environment of the Yangtze River valley, especially the emerging organic contaminants. Meanwhile, the International Environmental Specimen Bank (IESB) accumulates lots environmental organic pollution specimens and plays a significant role in environmental monitoring. Thus, the collaboration between the two parties will be greatly helpful for each further researches and monitoring work of organic contaminants in Yangtze River Basin.

  3. Sharing Health Big Data for Research - A Design by Use Cases: The INSHARE Platform Approach.

    PubMed

    Bouzillé, Guillaume; Westerlynck, Richard; Defossez, Gautier; Bouslimi, Dalel; Bayat, Sahar; Riou, Christine; Busnel, Yann; Le Guillou, Clara; Cauvin, Jean-Michel; Jacquelinet, Christian; Pladys, Patrick; Oger, Emmanuel; Stindel, Eric; Ingrand, Pierre; Coatrieux, Gouenou; Cuggia, Marc

    2017-01-01

    Sharing and exploiting Health Big Data (HBD) allow tackling challenges: data protection/governance taking into account legal, ethical, and deontological aspects enables trust, transparent and win-win relationship between researchers, citizens, and data providers. Lack of interoperability: compartmentalized and syntactically/semantica heterogeneous data. INSHARE project using experimental proof of concept explores how recent technologies overcome such issues. Using 6 data providers, platform is designed via 3 steps to: (1) analyze use cases, needs, and requirements; (2) define data sharing governance, secure access to platform; and (3) define platform specifications. Three use cases - from 5 studies and 11 data sources - were analyzed for platform design. Governance derived from SCANNER model was adapted to data sharing. Platform architecture integrates: data repository and hosting, semantic integration services, data processing, aggregate computing, data quality and integrity monitoring, Id linking, multisource query builder, visualization and data export services, data governance, study management service and security including data watermarking.

  4. A Self-Sustained Wireless Multi-Sensor Platform Integrated with Printable Organic Sensors for Indoor Environmental Monitoring

    PubMed Central

    Wu, Chun-Chang; Chuang, Wen-Yu; Wu, Ching-Da; Su, Yu-Cheng; Huang, Yung-Yang; Huang, Yang-Jing; Peng, Sheng-Yu; Yu, Shih-An; Lin, Chih-Ting; Lu, Shey-Shi

    2017-01-01

    A self-sustained multi-sensor platform for indoor environmental monitoring is proposed in this paper. To reduce the cost and power consumption of the sensing platform, in the developed platform, organic materials of PEDOT:PSS and PEDOT:PSS/EB-PANI are used as the sensing films for humidity and CO2 detection, respectively. Different from traditional gas sensors, these organic sensing films can operate at room temperature without heating processes or infrared transceivers so that the power consumption of the developed humidity and the CO2 sensors can be as low as 10 μW and 5 μW, respectively. To cooperate with these low-power sensors, a Complementary Metal-Oxide-Semiconductor (CMOS) system-on-chip (SoC) is designed to amplify and to read out multiple sensor signals with low power consumption. The developed SoC includes an analog-front-end interface circuit (AFE), an analog-to-digital convertor (ADC), a digital controller and a power management unit (PMU). Scheduled by the digital controller, the sensing circuits are power gated with a small duty-cycle to reduce the average power consumption to 3.2 μW. The designed PMU converts the power scavenged from a dye sensitized solar cell (DSSC) module into required supply voltages for SoC circuits operation under typical indoor illuminance conditions. To our knowledge, this is the first multiple environmental parameters (Temperature/CO2/Humidity) sensing platform that demonstrates a true self-powering functionality for long-term operations. PMID:28353680

  5. A Self-Sustained Wireless Multi-Sensor Platform Integrated with Printable Organic Sensors for Indoor Environmental Monitoring.

    PubMed

    Wu, Chun-Chang; Chuang, Wen-Yu; Wu, Ching-Da; Su, Yu-Cheng; Huang, Yung-Yang; Huang, Yang-Jing; Peng, Sheng-Yu; Yu, Shih-An; Lin, Chih-Ting; Lu, Shey-Shi

    2017-03-29

    A self-sustained multi-sensor platform for indoor environmental monitoring is proposed in this paper. To reduce the cost and power consumption of the sensing platform, in the developed platform, organic materials of PEDOT:PSS and PEDOT:PSS/EB-PANI are used as the sensing films for humidity and CO₂ detection, respectively. Different from traditional gas sensors, these organic sensing films can operate at room temperature without heating processes or infrared transceivers so that the power consumption of the developed humidity and the CO₂ sensors can be as low as 10 μW and 5 μW, respectively. To cooperate with these low-power sensors, a Complementary Metal-Oxide-Semiconductor (CMOS) system-on-chip (SoC) is designed to amplify and to read out multiple sensor signals with low power consumption. The developed SoC includes an analog-front-end interface circuit (AFE), an analog-to-digital convertor (ADC), a digital controller and a power management unit (PMU). Scheduled by the digital controller, the sensing circuits are power gated with a small duty-cycle to reduce the average power consumption to 3.2 μW. The designed PMU converts the power scavenged from a dye sensitized solar cell (DSSC) module into required supply voltages for SoC circuits operation under typical indoor illuminance conditions. To our knowledge, this is the first multiple environmental parameters (Temperature/CO₂/Humidity) sensing platform that demonstrates a true self-powering functionality for long-term operations.

  6. From Synergy to Complexity: The Trend Toward Integrated Value Chain and Landscape Governance.

    PubMed

    Ros-Tonen, Mirjam A F; Reed, James; Sunderland, Terry

    2018-07-01

    This Editorial introduces a special issue that illustrates a trend toward integrated landscape approaches. Whereas two papers echo older "win-win" strategies based on the trade of non-timber forest products, ten papers reflect a shift from a product to landscape perspective. However, they differ from integrated landscape approaches in that they emanate from sectorial approaches driven primarily by aims such as forest restoration, sustainable commodity sourcing, natural resource management, or carbon emission reduction. The potential of such initiatives for integrated landscape governance and achieving landscape-level outcomes has hitherto been largely unaddressed in the literature on integrated landscape approaches. This special issue addresses this gap, with a focus on actor constellations and institutional arrangements emerging in the transition from sectorial to integrated approaches. This editorial discusses the trends arising from the papers, including the need for a commonly shared concern and sense of urgency; inclusive stakeholder engagement; accommodating and coordinating polycentric governance in landscapes beset with institutional fragmentation and jurisdictional mismatches; alignment with locally embedded initiatives and governance structures; and a framework to assess and monitor the performance of integrated multi-stakeholder approaches. We conclude that, despite a growing tendency toward integrated approaches at the landscape level, inherent landscape complexity renders persistent and significant challenges such as balancing multiple objectives, equitable inclusion of all relevant stakeholders, dealing with power and gender asymmetries, adaptive management based on participatory outcome monitoring, and moving beyond existing administrative, jurisdictional, and sectorial silos. Multi-stakeholder platforms and bridging organizations and individuals are seen as key in overcoming such challenges.

  7. (abstract) Altimeter Calibration and Geophysical Monitoring from Collocated Measurements at the Harvest Oil Platform

    NASA Technical Reports Server (NTRS)

    Haines, B. J.; Christensen, E. J.; Norman, R. A.; Parke, M. E.; Born, G. H.; Gill, S. K.

    1996-01-01

    Prior to the launch of TOPEX/ Poseidon in August 1992, NASA established its primary in situ verification site on the Harvest oil platform located in the Pacific Ocean off the coast of central California. Data from a suite of geodetic and oceanographic instruments attached to the platform have been combined to yield a precise record of absolute sea level simce the beginning of the mission. Critical to the computation of this geocentric sea level record is the precise determination of the platform geodetic height and the vertical velocity in the global terrestrial reference frame.We compare estimates of the platform height and vertical velocity from global positioning system (GPS) data alone and from a combination of GPS and satellite laser ranging (SLR) information. Current estimates suggest the platform is subsiding at a rate of about 8 mm per year. This height information is combined with in situ tide gauge measurements of sea level relative to a platform reference mark in order to produce a continuous record of the local geocentric sea height.

  8. Future Deployable Medical Capabilities and Platforms for Navy Medicine

    DTIC Science & Technology

    2002-02-01

    allow isolation of infectious patients from those patients and medical providers who are not infected (e.g., smallpox and pneumonic plague). 20...large need for respiratory support for victims that survive will be great, and they will need this sup- port for months. Surviving patients will not...Transmit Incubation Duration of Vaccine Disease to man Infective dose period illness Lethality Persistence available? Inhala- No 8,000-50,000 1-6

  9. 6 DOF Nonlinear AUV Simulation Toolbox

    DTIC Science & Technology

    1997-01-01

    is to supply a flexible 3D -simulation platform for motion visualization, in-lab debugging and testing of mission-specific strategies as well as those...Explorer are modular designed [Smith] in order to cut time and cost for vehicle recontlguration. A flexible 3D -simulation platform is desired to... 3D models. Current implemented modules include a nonlinear dynamic model for the OEX, shared memory and semaphore manager tools, shared memory monitor

  10. On-Board Software Payload Platform over RTEMS and LEON3FT Processing Units

    NASA Astrophysics Data System (ADS)

    Martins, Rodolfo; Ribeiro, Pedro; Furano, Gianluca; Costa Pinto, Joao; Habinc, Sandi

    2013-08-01

    Under ESA and Inmarsat ARTES 8 Alphabus/Alphasat specific programme a technology demonstration payload (TDP) was developed. The payload called TDP8 is an Environment Effects Facility to monitor the GEO radiation environment and its effects on electronic components and sensors. This paper will discuss the on-board software payload platform approach developed since then and based on the TDP8 validation activities.

  11. The influence on the interferometry due to the instability of ground-based synthetic aperture radar work platform

    NASA Astrophysics Data System (ADS)

    Tao, Gang; Wei, Guohua; Wang, Xu; Kong, Ming

    2018-03-01

    There has been increased interest over several decades for applying ground-based synthetic aperture radar (GB-SAR) for monitoring terrain displacement. GB-SAR can achieve multitemporal surface deformation maps of the entire terrain with high spatial resolution and submilimetric accuracy due to the ability of continuous monitoring a certain area day and night regardless of the weather condition. The accuracy of the interferometric measurement result is very important. In this paper, the basic principle of InSAR is expounded, the influence of the platform's instability on the interferometric measurement results are analyzed. The error sources of deformation detection estimation are analyzed using precise geometry of imaging model. Finally, simulation results demonstrates the validity of our analysis.

  12. Monitoring bound HA1(H1N1) and HA1(H5N1) on freely suspended graphene over plasmonic platforms with infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Banerjee, Amrita; Chakraborty, Sumit; Altan-Bonnet, Nihal; Grebel, Haim

    2013-09-01

    Infrared (IR) spectroscopy provides fingerprinting of the energy and orientation of molecular bonds. The IR signals are generally weak and require amplification. Here we present a new plasmonic platform, made of freely suspended graphene, which was coating periodic metal structures. Only monolayer thick films were needed for a fast signal recording. We demonstrated unique IR absorption signals of bound proteins: these were the hemagglutinin area (HA1) of swine influenza (H1N1) and the avian influenza (H5N1) viruses bound to their respective tri-saccharides ligand receptors. The simplicity and sensitivity of such approach may find applications in fast monitoring of binding events.

  13. Superconducting gravity gradiometer and a test of inverse square law

    NASA Technical Reports Server (NTRS)

    Moody, M. V.; Paik, Ho Jung

    1989-01-01

    The equivalence principle prohibits the distinction of gravity from acceleration by a local measurement. However, by making a differential measurement of acceleration over a baseline, platform accelerations can be cancelled and gravity gradients detected. In an in-line superconducting gravity gradiometer, this differencing is accomplished with two spring-mass accelerometers in which the proof masses are confined to motion in a single degree of freedom and are coupled together by superconducting circuits. Platform motions appear as common mode accelerations and are cancelled by adjusting the ratio of two persistent currents in the sensing circuit. The sensing circuit is connected to a commercial SQUID amplifier to sense changes in the persistent currents generated by differential accelerations, i.e., gravity gradients. A three-axis gravity gradiometer is formed by mounting six accelerometers on the faces of a precision cube, with the accelerometers on opposite faces of the cube forming one of three in-line gradiometers. A dedicated satellite mission for mapping the earth's gravity field is an important one. Additional scientific goals are a test of the inverse square law to a part in 10(exp 10) at 100 km, and a test of the Lense-Thirring effect by detecting the relativistic gravity magnetic terms in the gravity gradient tensor for the earth.

  14. Microfluidic platform for assessing pancreatic islet functionality through dielectric spectroscopy

    PubMed Central

    Heileman, K.; Daoud, J.; Hasilo, C.; Gasparrini, M.; Paraskevas, S.; Tabrizian, M.

    2015-01-01

    Human pancreatic islets are seldom assessed for dynamic responses to external stimuli. Thus, the elucidation of human islet functionality would provide insights into the progression of diabetes mellitus, evaluation of preparations for clinical transplantation, as well as for the development of novel therapeutics. The objective of this study was to develop a microfluidic platform for in vitro islet culture, allowing the multi-parametric investigation of islet response to chemical and biochemical stimuli. This was accomplished through the fabrication and implementation of a microfluidic platform that allowed the perifusion of islet culture while integrating real-time monitoring using impedance spectroscopy, through microfabricated, interdigitated electrodes located along the microchamber arrays. Real-time impedance measurements provide important dielectric parameters, such as cell membrane capacitance and cytoplasmic conductivity, representing proliferation, differentiation, viability, and functionality. The perifusion of varying glucose concentrations and monitoring of the resulting impedance of pancreatic islets were performed as proof-of-concept validation of the lab-on-chip platform. This novel technique to elucidate the underlying mechanisms that dictate islet functionality is presented, providing new information regarding islet function that could improve the evaluation of islet preparations for transplantation. In addition, it will lead to a better understanding of fundamental diabetes-related islet dysfunction and the development of therapeutics through evaluation of potential drug effects. PMID:26339324

  15. Development of an Online Platform to Support the Network of Caregivers of People with Dementia.

    PubMed

    Verwey, Renée; van Berlo, Miranda; Duymelinck, Saskia; Willard, Sarah; van Rossum, Erik

    2016-01-01

    In the Netherlands, care technology is used insufficiently to support people with dementia, their family and professional caregivers. In this project we integrate a range of services and applications into an online platform, with the aim to strengthen these networks and to support communication between their members. The prototype of the platform was made in an iterative user centered way. Semi structured (group) interviews were conducted to specify the requirements. The platform consists of 'cubes' with information about dementia (care), video communication options, a calendar and a care plan. The first prototype of the platform was valued by the participants, but privacy matters and registration issues were pointed out when using a shared care plan. Additional applications to monitor health and safety will be integrated in the second prototype. This prototype will be tested on its usability, feasibility and desirability during a pilot study in spring 2016.

  16. The Rising Price of Inequality: How Inadequate Grant Aid Limits College Access and Persistence. Report to Congress and the Secretary of Education

    ERIC Educational Resources Information Center

    Advisory Committee on Student Financial Assistance, 2010

    2010-01-01

    Congress charged the Advisory Committee in the "Higher Education Opportunity Act of 2008" with monitoring and reporting on the condition of college access and persistence for low- and moderate-income students. The law requires provision of analyses and policy recommendations regarding the adequacy of grant aid from all sources--federal, state, and…

  17. Improving metabolic monitoring in patients maintained on antipsychotics in Penang, Malaysia.

    PubMed

    Hor, Esther Sl; Subramaniam, Sivasangari; Koay, Jun Min; Bharathy, Arokiamary; Vasudevan, Umadevi; Panickulam, Joseph J; Ng, InnTiong; Arif, Nor Hayati; Russell, Vincent

    2016-02-01

    To evaluate the monitoring of metabolic parameters among outpatients maintained on antipsychotic medications in a general hospital setting in Malaysia and to assess the impact of a local monitoring protocol. By performing a baseline audit of files from a random sample of 300 patients prescribed antipsychotic medications for at least 1 year; we determined the frequency of metabolic monitoring. The findings informed the design of a new local protocol, on which clinical staff was briefed. We re-evaluated metabolic monitoring immediately after implementation, in a small sample of new referrals and current patients. We explored staff perceptions of the initiative with a follow-up focus group, 6 months post-implementation. The baseline audit revealed a sub-optimal frequency of metabolic parameter recording. Re-audit, following implementation of the new protocol, revealed improved monitoring but persisting deficits. Dialogue with the clinical staff led to further protocol modification, clearer definition of staff roles and use of a standard recording template. Focus group findings revealed positive perceptions of the initiative, but persisting implementation barriers, including cultural issues surrounding waist circumference measurement. Responding to challenges in achieving improved routine metabolic monitoring of patients maintained on antipsychotics required on-going dialogue with the clinical staff, in order to address both service pressures and cultural concerns. © The Royal Australian and New Zealand College of Psychiatrists 2015.

  18. Application research of Ganglia in Hadoop monitoring and management

    NASA Astrophysics Data System (ADS)

    Li, Gang; Ding, Jing; Zhou, Lixia; Yang, Yi; Liu, Lei; Wang, Xiaolei

    2017-03-01

    There are many applications of Hadoop System in the field of large data, cloud computing. The test bench of storage and application in seismic network at Earthquake Administration of Tianjin use with Hadoop system, which is used the open source software of Ganglia to operate and monitor. This paper reviews the function, installation and configuration process, application effect of operating and monitoring in Hadoop system of the Ganglia system. It briefly introduces the idea and effect of Nagios software monitoring Hadoop system. It is valuable for the industry in the monitoring system of cloud computing platform.

  19. Exploring Google Earth Engine platform for big data processing: classification of multi-temporal satellite imagery for crop mapping

    NASA Astrophysics Data System (ADS)

    Shelestov, Andrii; Lavreniuk, Mykola; Kussul, Nataliia; Novikov, Alexei; Skakun, Sergii

    2017-02-01

    Many applied problems arising in agricultural monitoring and food security require reliable crop maps at national or global scale. Large scale crop mapping requires processing and management of large amount of heterogeneous satellite imagery acquired by various sensors that consequently leads to a “Big Data” problem. The main objective of this study is to explore efficiency of using the Google Earth Engine (GEE) platform when classifying multi-temporal satellite imagery with potential to apply the platform for a larger scale (e.g. country level) and multiple sensors (e.g. Landsat-8 and Sentinel-2). In particular, multiple state-of-the-art classifiers available in the GEE platform are compared to produce a high resolution (30 m) crop classification map for a large territory ( 28,100 km2 and 1.0 M ha of cropland). Though this study does not involve large volumes of data, it does address efficiency of the GEE platform to effectively execute complex workflows of satellite data processing required with large scale applications such as crop mapping. The study discusses strengths and weaknesses of classifiers, assesses accuracies that can be achieved with different classifiers for the Ukrainian landscape, and compares them to the benchmark classifier using a neural network approach that was developed in our previous studies. The study is carried out for the Joint Experiment of Crop Assessment and Monitoring (JECAM) test site in Ukraine covering the Kyiv region (North of Ukraine) in 2013. We found that Google Earth Engine (GEE) provides very good performance in terms of enabling access to the remote sensing products through the cloud platform and providing pre-processing; however, in terms of classification accuracy, the neural network based approach outperformed support vector machine (SVM), decision tree and random forest classifiers available in GEE.

  20. Monitoring Procalcitonin in Febrile Neutropenia: What Is Its Utility for Initial Diagnosis of Infection and Reassessment in Persistent Fever?

    PubMed Central

    Bally, Frank; Knaup, Marlies; Calandra, Thierry; Marchetti, Oscar

    2011-01-01

    Background Management of febrile neutropenic episodes (FE) is challenged by lacking microbiological and clinical documentation of infection. We aimed at evaluating the utility of monitoring blood procalcitonin (PCT) in FE for initial diagnosis of infection and reassessment in persistent fever. Methods PCT kinetics was prospectively monitored in 194 consecutive FE (1771 blood samples): 65 microbiologically documented infections (MDI, 33.5%; 49 due to non-coagulase-negative staphylococci, non-CNS), 68 clinically documented infections (CDI, 35%; 39 deep-seated), and 61 fever of unexplained origin (FUO, 31.5%). Results At fever onset median PCT was 190 pg/mL (range 30–26'800), without significant difference among MDI, CDI and FUO. PCT peak occurred on day 2 after onset of fever: non-CNS-MDI/deep-seated-CDI (656, 80–86350) vs. FUO (205, 33–771; p<0.001). PCT >500 pg/mL distinguished non-CNS-MDI/deep-seated-CDI from FUO with 56% sensitivity and 90% specificity. PCT was >500 pg/ml in only 10% of FUO (688, 570–771). A PCT peak >500 pg/mL (1196, 524–11950) occurred beyond 3 days of persistent fever in 17/21 (81%) invasive fungal diseases (IFD). This late PCT peak identified IFD with 81% sensitivity and 57% specificity and preceded diagnosis according to EORTC-MSG criteria in 41% of cases. In IFD responding to therapy, median days to PCT <500 pg/mL and defervescence were 5 (1–23) vs. 10 (3–22; p = 0.026), respectively. Conclusion While procalcitonin is not useful for diagnosis of infection at onset of neutropenic fever, it may help to distinguish a minority of potentially severe infections among FUOs on day 2 after onset of fever. In persistent fever monitoring procalcitonin contributes to early diagnosis and follow-up of invasive mycoses. PMID:21541027

  1. Monitoring procalcitonin in febrile neutropenia: what is its utility for initial diagnosis of infection and reassessment in persistent fever?

    PubMed

    Robinson, James Owen; Lamoth, Frédéric; Bally, Frank; Knaup, Marlies; Calandra, Thierry; Marchetti, Oscar

    2011-04-25

    Management of febrile neutropenic episodes (FE) is challenged by lacking microbiological and clinical documentation of infection. We aimed at evaluating the utility of monitoring blood procalcitonin (PCT) in FE for initial diagnosis of infection and reassessment in persistent fever. PCT kinetics was prospectively monitored in 194 consecutive FE (1771 blood samples): 65 microbiologically documented infections (MDI, 33.5%; 49 due to non-coagulase-negative staphylococci, non-CNS), 68 clinically documented infections (CDI, 35%; 39 deep-seated), and 61 fever of unexplained origin (FUO, 31.5%). At fever onset median PCT was 190 pg/mL (range 30-26'800), without significant difference among MDI, CDI and FUO. PCT peak occurred on day 2 after onset of fever: non-CNS-MDI/deep-seated-CDI (656, 80-86350) vs. FUO (205, 33-771; p<0.001). PCT >500 pg/mL distinguished non-CNS-MDI/deep-seated-CDI from FUO with 56% sensitivity and 90% specificity. PCT was >500 pg/ml in only 10% of FUO (688, 570-771). A PCT peak >500 pg/mL (1196, 524-11950) occurred beyond 3 days of persistent fever in 17/21 (81%) invasive fungal diseases (IFD). This late PCT peak identified IFD with 81% sensitivity and 57% specificity and preceded diagnosis according to EORTC-MSG criteria in 41% of cases. In IFD responding to therapy, median days to PCT <500 pg/mL and defervescence were 5 (1-23) vs. 10 (3-22; p = 0.026), respectively. While procalcitonin is not useful for diagnosis of infection at onset of neutropenic fever, it may help to distinguish a minority of potentially severe infections among FUOs on day 2 after onset of fever. In persistent fever monitoring procalcitonin contributes to early diagnosis and follow-up of invasive mycoses.

  2. The AirQuality SenseBox

    NASA Astrophysics Data System (ADS)

    Demuth, Dustin; Nuest, Daniel; Bröring, Arne; Pebesma, Edzer

    2013-04-01

    In the past year, a group of open hardware enthusiasts and citizen scientists had large success in the crowd-funding of an open hardware-based sensor platform for air quality monitoring, called the Air Quality Egg. Via the kickstarter platform, the group was able to collect triple the amount of money than needed to fulfill their goals. Data generated by the Air Quality Egg is pushed to the data logging platform cosm.com, which makes the devices a part of the Internet of Things. The project aims at increasing the participation of citizens in the collection of data, the development of sensors, the operation of sensor stations, and, as data on cosm is publicly available, the sharing, visualization and analysis of data. Air Quality Eggs can measure NO2 and CO concentrations, as well as relative humidity and temperature. The chosen sensors are low-cost and have limited precision and accurracy. The Air Quality Egg consists of a stationary outdoor and a stationary indoor unit. Each outdoor unit will wirelessly transmit air quality measurements to the indoor unit, which forwards the data to cosm. Most recent versions of the Air Quality Egg allow a rough calibration of the gas sensors and on-the-fly conversion from raw sensor readings (impedance) to meaningful air quality data expressed in units of parts per billion. Data generated by these low-cost platforms are not intended to replace well-calibrated official monitoring stations, but rather augment the density of the total monitoring network with citizen sensors. To improve the usability of the Air Quality Egg, we present a new and more advanced concept, called the AirQuality SenseBox. We made the outdoor platform more autonomous and location-aware by adding solarpanels and rechargeable batteries as a power source. The AirQuality SenseBox knows its own position from a GPS device attached to the platform. As a mobile sensor platform, it can for instance be attached to vehicles. A low-cost and low-power wireless chipset reads the sensors and broadcasts the data. The data is received by gateways that convert the data and forward it to services. Although cosm is still supported, we also use services that are more common in the scientific domain, in particular the OGC Sensor Observation Service. In contrast to the ``One Sender - One Receiver'' (pair) setup proposed by the platform developers, we follow a ``Many Senders - Many Receivers'' (mesh) solution. As data is broadcasted by the platforms, it can be received and processed by any gateway, and, as the sender is not bound to the receiver, applications different from the gateways can receive and evaluate the data measured by the platform. Advantages of our solution are: (i) prepared gateways, which have more precise data at hand, can send calibration instructions to the mobile sensor platforms when those are in proximity; (ii) redundancy is obtained by adding additional gateways, to avoid the loss of data if a gateway fails; (iii) autonomous stations can be ubiquitous, are robust, do not require frequent maintenance, and can be placed at arbitrary locations; (iv) the standardized interface is vendor-independent and allows direct integration into existing analysis software.

  3. The Case for GEO Hosted SSA Payloads

    NASA Astrophysics Data System (ADS)

    Welsch, C.; Armand, B.; Repp, M.; Robinson, A.

    2014-09-01

    Space situational awareness (SSA) in the geosynchronous earth orbit (GEO) belt presents unique challenges, and given the national importance and high value of GEO satellites, is increasingly critical as space becomes more congested and contested. Space situational awareness capabilities can serve as an effective deterrent against potential adversaries if they provide accurate, timely, and persistent information and are resilient to the threat environment. This paper will demonstrate how simple optical SSA payloads hosted on GEO commercial and government satellites can complement the SSA mission and data provided by Space-Based Space Surveillance (SBSS) and the Geosynchronous Space Situational Awareness Program (GSSAP). GSSAP is built by Orbital Sciences Corporation and launched on July 28, 2014. Analysis performed for this paper will show how GEO hosted SSA payloads, working in combination with SBSS and GSSAP, can increase persistence and timely coverage of high value assets in the GEO belt. The potential to further increase GEO object identification and tracking accuracy by integrating SSA data from multiple sources across different viewing angles including GEO hosted SSA sources will be addressed. Hosting SSA payloads on GEO platforms also increases SSA mission architecture resiliency as the sensors are by distributed across multiple platforms including commercial platforms. This distributed architecture presents a challenging target for an adversary to attempt to degrade or disable. We will present a viable concept of operations to show how data from hosted SSA sensors could be integrated with SBSS and GSSAP data to present a comprehensive and more accurate data set to users. Lastly, we will present an acquisition approach using commercial practices and building on lessons learned from the Commercially Hosted Infra Red Payload CHIRP to demonstrate the affordability of GEO hosted SSA payloads.

  4. Age-dependent effects of neonatal methamphetamine exposure on spatial learning

    PubMed Central

    Vorhees, Charles V.; Skelton, Matthew R.; Williams, Michael T.

    2009-01-01

    Neonatal rats exposed to (+)-methamphetamine (MA) display spatial learning and reference memory deficits in the Morris water maze. In separate experiments the emergence and permanence of these effects were determined. Twenty litters were used in each experiment, and two male/female pairs/litter received saline or MA (5 mg/kg four times a day) on postnatal days (P) 11–20. In experiment 1, one MA and one saline pair from each litter began testing on either P30 or P40, whereas in experiment 2, testing began on P180 or P360. Animals received trials in a straight swimming channel and then in the Morris maze (acquisition, reversal, and reduced platform phases). In both experiments, MA-treated groups showed impaired learning in the platform trials and impaired reference memory in the probe trials, which were largely independent of age. The P30 and P40 MA impairments were seen on acquisition and reduced platform trials but not on reversal. In the probe trials, MA effects were seen during all phases. The P180 and P360 MA-induced deficits were seen in all phases of the platform trials. In probe trials, deficits were only seen during the reversal and reduced platform phases. The results demonstrate that neonatal MA treatment induces spatial learning and reference memory deficits that emerge early and persist until at least 1 year of age, suggesting permanence. PMID:17762523

  5. Remote Sounding of the Earth's Atmospheric Limb From a Micro-Satellite Platform: a Feasibility Study of the ALTIUS Mission

    NASA Astrophysics Data System (ADS)

    Vrancken, D.; Paijmans, B.; Fussen, D.; Neefs, E.; Loodts, N.; Dekemper, E.; Vahellemont, F.; Devos, L.; Moelans, W.; Nevejans, D.; Schroeven-Deceuninck, H.; Bernaerts, D.; Zender, J.

    2008-08-01

    There is more and more interest in the understanding and the monitoring of the physics and chemistry of the Earth's atmosphere and its impact on the climate change. Currently a significantly high number of sounders provide the required data to monitor the changes in atmosphere composition, but a dramatic drop in operational atmosphere monitoring missions is expected around 2010. This drop is mainly visible in sounders capable of a high vertical resolution. Currently, instruments on ENVISAT and METOP provide relevant data but this is envisaged to be insufficient to ensure full spatial and temporal coverage and redundancy in the measurement data set. ALTIUS (Atmospheric Limb Tracker for the Investigation of the Upcoming Stratosphere) is a remote sounding experiment proposed by the Belgian Institute for Space Aeronomy (BIRA/IASB) for which a feasibility study was initiated with BELSPO (Belgian Science Policy) and ESA support. The main objective of this study phase was to establish a mission concept, to define the required payload and to establish a satellite platform design. The study was led by the BIRA/IASB team and performed in close collaboration with OIP (payload developer) and Verhaert Space (spacecraft developer). The mission scenario includes bright limb observations in basically all directions, solar occultations around the terminator passages and star occultations during eclipse. These observation modes allow imaging the atmosphere with a high vertical resolution. The spacecraft will be operated in a 10:00 sun-synchronous orbit at an altitude of 695 km, allowing a 3-day revisit time. The envisaged payload for the ALTIUS mission is an imaging spectrometer, observing in the UV, the VIS and the NIR spectral ranges. For each spectral range, an AOTF (Acousto-Optical Tunable Filter) will permit to perform observations of selectable small wavelength domains. A typical set of 10 wavelengths will be recorded within 1 second. The different operational modes impose a high agility capability on the platform. Furthermore, the quasi- continuous monitoring by the payload will drive the design of the platform in terms of power and downlink capabilities. The mission will be performed using a derivative of the PROBA platform, developed by Verhaert Space. This paper will present the mission requirements for the ALTIUS mission, the envisaged instrument, the spacecraft concept design and the related mission analysis.

  6. The Geohazards Exploitation Platform

    NASA Astrophysics Data System (ADS)

    Laur, Henri; Casu, Francesco; Bally, Philippe; Caumont, Hervé; Pinto, Salvatore

    2016-04-01

    The Geohazards Exploitation Platform, or Geohazards TEP (GEP), is an ESA originated R&D activity of the EO ground segment to demonstrate the benefit of new technologies for large scale processing of EO data. This encompasses on-demand processing for specific user needs, systematic processing to address common information needs of the geohazards community, and integration of newly developed processors for scientists and other expert users. The platform supports the geohazards community's objectives as defined in the context of the International Forum on Satellite EO and Geohazards organised by ESA and GEO in Santorini in 2012. The GEP is a follow on to the Supersites Exploitation Platform (SSEP) an ESA initiative to support the Geohazards Supersites & Natural Laboratories initiative (GSNL). Today the GEP allows to exploit 70+ Terabyte of ERS and ENVISAT archive and the Copernicus Sentinel-1 data available on line. The platform has already engaged 22 European early adopters in a validation activity initiated in March 2015. Since September, this validation has reached 29 single user projects. Each project is concerned with either integrating an application, running on demand processing or systematically generating a product collection using an application available in the platform. The users primarily include 15 geoscience centres and universities based in Europe: British Geological Survey (UK), University of Leeds (UK), University College London (UK), ETH University of Zurich (CH), INGV (IT), CNR-IREA and CNR-IRPI (IT), University of L'Aquila (IT), NOA (GR), Univ. Blaise Pascal & CNRS (FR), Ecole Normale Supérieure (FR), ISTERRE / University of Grenoble-Alpes (FR). In addition, there are users from Africa and North America with the University of Rabat (MA) and the University of Miami (US). Furthermore two space agencies and four private companies are involved: the German Space Research Centre DLR (DE), the European Space Agency (ESA), Altamira Information (ES), DEIMOS Space (ES), eGEOS (IT) and SATIM (PL). The GEP is now pursuing these projects with early adopters integrating additional conventional and advanced EO processors. It will also expand its user base to gradually reach a total of 60 separate users in pre-operations in 2017 with 6 new pilot projects being taken on board: photogrammetric processing using Optical EO data with University of Strasbourg (FR); optical based processing method for volcanic hazard monitoring with INGV (IT); systematic generation of Interferometric displacement time series based on the Sentinel-1 data with CNR IREA (IT); systematic processing of Sentinel-1 Interferometric Browse imagery with DLR (DE); precise terrain motion mapping with SPN Persistent Scatterers Interferometric chain of Altamira Information (ES); and a campaign to test and exploit GEP applications with the Corinth Rift Laboratory in which Greek and French experts of seismic hazards are engaged. Following the pre-operations phase starting in 2017 the Geohazards platform is intended to support a broad user community and has already established partnerships with large user networks, a particular example of which being the EPOS research infrastructure. Within EPOS, the GEP is intended to act as the main interface for accessing, processing, analysing and sharing products related to the Satellite Data Thematic Service.

  7. Using Artificial Intelligence to Reduce the Risk of Nonadherence in Patients on Anticoagulation Therapy

    PubMed Central

    Labovitz, Daniel L.; Shafner, Laura; Gil, Morayma Reyes; Virmani, Deepti; Hanina, Adam

    2017-01-01

    Background and Purpose This study evaluated the use of an artificial intelligence (AI) platform on mobile devices in measuring and increasing medication adherence in stroke patients on anticoagulation therapy. The introduction of direct oral anticoagulants (DOACs), while reducing the need for monitoring, have also placed pressure on patients to self-manage. Suboptimal adherence goes undetected as routine laboratory tests are not reliable indicators of adherence, placing patients at increased risk of stroke and bleeding. Methods A randomized, parallel-group, 12-week study was conducted in adults (n = 28) with recently diagnosed ischemic stroke receiving any anticoagulation. Patients were randomized to daily monitoring by the AI Platform (intervention) or to no daily monitoring (control). The AI application visually identified the patient, the medication and confirmed ingestion. Adherence was measured by pill counts and plasma sampling in both groups. Results For all patients (n = 28), mean (standard deviation [SD]) age was 57 (13.2) years and 53.6% were female. Mean (SD) cumulative adherence based on the AI Platform was 90.5% (7.5%). Plasma drug concentration levels indicated that adherence was 100% (15 of 15) and 50% (6 of 12) in the intervention and control groups, respectively. Conclusions Patients, some with little experience using a smartphone, successfully used the technology and demonstrated a 50% improvement in adherence based on plasma drug concentration levels. For patients receiving DOACs, absolute improvement increased to 67%. Real-time monitoring has the potential to increase adherence and change behavior, particularly in patients on DOAC therapy. Clinical Trial Registration-URL: http://www.clinicaltrials.gov. Unique identifier: NCT02599259. PMID:28386037

  8. Multichannel lens-free CMOS sensors for real-time monitoring of cell growth.

    PubMed

    Chang, Ko-Tung; Chang, Yu-Jen; Chen, Chia-Ling; Wang, Yao-Nan

    2015-02-01

    A low-cost platform is proposed for the growth and real-time monitoring of biological cells. The main components of the platform include a PMMA cell culture microchip and a multichannel lens-free CMOS (complementary metal-oxide-semiconductor) / LED imaging system. The PMMA microchip comprises a three-layer structure and is fabricated using a low-cost CO2 laser ablation technique. The CMOS / LED monitoring system is controlled using a self-written LabVIEW program. The platform has overall dimensions of just 130 × 104 × 115 mm(3) and can therefore be placed within a commercial incubator. The feasibility of the proposed system is demonstrated using HepG2 cancer cell samples with concentrations of 5000, 10 000, 20 000, and 40 000 cells/mL. In addition, cell cytotoxicity tests are performed using 8, 16, and 32 mM cyclophosphamide. For all of the experiments, the cell growth is observed over a period of 48 h. The cell growth rate is found to vary in the range of 44∼52% under normal conditions and from 17.4∼34.5% under cyclophosphamide-treated conditions. In general, the results confirm the long-term cell growth and real-time monitoring ability of the proposed system. Moreover, the magnification provided by the lens-free CMOS / LED observation system is around 40× that provided by a traditional microscope. Consequently, the proposed system has significant potential for long-term cell proliferation and cytotoxicity evaluation investigations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Using Artificial Intelligence to Reduce the Risk of Nonadherence in Patients on Anticoagulation Therapy.

    PubMed

    Labovitz, Daniel L; Shafner, Laura; Reyes Gil, Morayma; Virmani, Deepti; Hanina, Adam

    2017-05-01

    This study evaluated the use of an artificial intelligence platform on mobile devices in measuring and increasing medication adherence in stroke patients on anticoagulation therapy. The introduction of direct oral anticoagulants, while reducing the need for monitoring, have also placed pressure on patients to self-manage. Suboptimal adherence goes undetected as routine laboratory tests are not reliable indicators of adherence, placing patients at increased risk of stroke and bleeding. A randomized, parallel-group, 12-week study was conducted in adults (n=28) with recently diagnosed ischemic stroke receiving any anticoagulation. Patients were randomized to daily monitoring by the artificial intelligence platform (intervention) or to no daily monitoring (control). The artificial intelligence application visually identified the patient, the medication, and the confirmed ingestion. Adherence was measured by pill counts and plasma sampling in both groups. For all patients (n=28), mean (SD) age was 57 years (13.2 years) and 53.6% were women. Mean (SD) cumulative adherence based on the artificial intelligence platform was 90.5% (7.5%). Plasma drug concentration levels indicated that adherence was 100% (15 of 15) and 50% (6 of 12) in the intervention and control groups, respectively. Patients, some with little experience using a smartphone, successfully used the technology and demonstrated a 50% improvement in adherence based on plasma drug concentration levels. For patients receiving direct oral anticoagulants, absolute improvement increased to 67%. Real-time monitoring has the potential to increase adherence and change behavior, particularly in patients on direct oral anticoagulant therapy. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02599259. © 2017 American Heart Association, Inc.

  10. Objective assessment of compliance and persistence among patients treated for glaucoma and ocular hypertension: a systematic review

    PubMed Central

    Reardon, Gregory; Kotak, Sameer; Schwartz, Gail F

    2011-01-01

    Purpose This study summarizes findings from objective assessments of compliance (or adherence) and persistence with ocular hypotensive agents in patients with glaucoma and ocular hypertension. Design Systematic literature review. Methods A PubMed and reference list search was conducted across publication years 1970–2010, using these terms and variants: “compliance,” the equivalent term “adherence,” and “persistence” in patients with these conditions and therapies. Summaries of selected studies were stratified by measurement method (electronic monitor, prescription fills review, medical chart review). Measures of central tendency across studies were calculated for commonly-reported compliance or persistence measures. Results Fifty-eight articles met all inclusion/exclusion criteria: measurement of compliance–electronic monitoring (seven studies reported in 14 articles), measurement of compliance/ persistence–prescription records (36 studies in 38 articles), and measurement of persistence– medical chart review (six studies in six articles). From electronic monitoring, most therapy-experienced patients took medication consistently, but ≥20% met criteria for poor compliance. From prescription records, only 56% (range 37%–92%) of the days in the first therapy year could be dosed with the medication supply dispensed over this period. At 12 months from therapy start, only 31% (range 10%–68%) of new therapy users had not discontinued, and 40% (range 14%–67%) had not discontinued or changed the initial therapy. From medical chart review, only 67% (range 62%–78%) of patients remained persistent 12 months after starting therapy. Conclusions Evidence provided by this review suggests that poor compliance and persistence has been and remains a common problem for many glaucoma patients, and is especially problematic for patients new to therapy. The direction of empirical research should shift toward a greater emphasis on understanding of root causes and identification and testing of solutions for this problem. PMID:22003282

  11. The CUORE slow monitoring systems

    DOE PAGES

    Gladstone, L.; Biare, D.; Cappelli, L.; ...

    2017-09-20

    CUORE is a cryogenic experiment searching primarily for neutrinoless double decay inmore » $$^{130}$$Te. It will begin data-taking operations in 2016. To monitor the cryostat and detector during commissioning and data taking, we have designed and developed Slow Monitoring systems. In addition to real-time systems using LabVIEW, we have an alarm, analysis, and archiving website that uses MongoDB, AngularJS, and Bootstrap software. These modern, state of the art software packages make the monitoring system transparent, easily maintainable, and accessible on many platforms including mobile devices.« less

  12. The CUORE slow monitoring systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gladstone, L.; Biare, D.; Cappelli, L.

    CUORE is a cryogenic experiment searching primarily for neutrinoless double decay inmore » $$^{130}$$Te. It will begin data-taking operations in 2016. To monitor the cryostat and detector during commissioning and data taking, we have designed and developed Slow Monitoring systems. In addition to real-time systems using LabVIEW, we have an alarm, analysis, and archiving website that uses MongoDB, AngularJS, and Bootstrap software. These modern, state of the art software packages make the monitoring system transparent, easily maintainable, and accessible on many platforms including mobile devices.« less

  13. Integrating Social Networks and Remote Patient Monitoring Systems to Disseminate Notifications.

    PubMed

    Ribeiro, Hugo A; Germano, Eliseu; Carvalho, Sergio T; Albuquerque, Eduardo S

    2017-01-01

    Healthcare workforce shortage can be compensated by using information and communication technologies. Remote patient monitoring systems allow us to identify and communicate complications and anomalies. Integrating social networking services into remote patient monitoring systems enables users to manage their relationships. User defined relationships may be used to disseminate healthcare related notifications. Hence this integration leads to quicker interventions and may reduce hospital readmission rate. As a proof of concept, a module was integrated to a remote patient monitoring platform. A mobile application to manage relationships and receive notifications was also developed.

  14. Shared Platform for South African Earth and Environmental Observation Systems: Recent Developments and Improvements

    NASA Astrophysics Data System (ADS)

    Hugo, Wim

    2013-04-01

    Over the past 3 years, SAEON has worked with a number of stakeholders and funders to establish a shared platform for the management of dissemination of E&EO research outputs, data sets, and services. This platform is strongly aligned with GEO principles and architecture, allowing direct integration with the GEOSS Broker. The platform has two important characteristics: 1. It reduces the cost and lead time of provision of similar infrastructure for future initiatives. 2. The platform is domain-agnostic to some degree, and can be used for non E&EO applications. Projects to achive this is under way at present. The paper describes the application of the platform for a variety of user communities and initiatives (SAEON Data Portal, South African Earth Observation System, Risk and Vulnerability Atlas, BioEnergy Atlas, National Spatial Information Framework, ICSU World Data System Components, and many more), and demonstrates use cases utilising a distributed, service oriented architecture. Significant improvements have been made to the interoperability functions available to end users and content providers, and these are demonstrated and discussed in detail. Functions include • Creation and persistence of composite maps, as well as time series or scatter charts, supporting a variety of standardized data sources. • Search facilities have been extended to allow analysis and filtering of primary search results, and to deal with large meta-data collections. • In addition, data sources, data listings, news items, images, search results, and other platform content can, with increasing flexibility, be accessed as standardized services that are processed in standardized clients, allowing creation of a rich user interface, and permitting the inclusion of platform functionality into external websites and resources. This shift to explicit service-oriented, peer-to-peer architecture is a preparation for increased distributed processing and content composition, and will support the concept of virtualization of 'science gateways' based on the platform, in support of a growing number of domains and initiatives.

  15. Open source data logger for low-cost environmental monitoring

    PubMed Central

    2014-01-01

    Abstract The increasing transformation of biodiversity into a data-intensive science has seen numerous independent systems linked and aggregated into the current landscape of biodiversity informatics. This paper outlines how we can move forward with this programme, incorporating real time environmental monitoring into our methodology using low-power and low-cost computing platforms. PMID:24855446

  16. Diagnosing soil moisture anomalies and neglected soil moisture source/sink processes via a thermal infrared-based two-source energy balance model

    USDA-ARS?s Scientific Manuscript database

    Atmospheric processes, especially those that occur in the surface and boundary layer, are significantly impacted by soil moisture (SM). Due to the observational gaps in the ground-based monitoring of SM, methodologies have been developed to monitor SM from satellite platforms. While many have focuse...

  17. GSFC contamination monitors for Space Station

    NASA Technical Reports Server (NTRS)

    Carosso, P. A.; Tveekrem, J. L.; Coopersmith, J. D.

    1988-01-01

    This paper describes the Work Package 3 activities in the area of neutral contamination monitoring for the Space Station. Goddard Space Flight Center's responsibilities include the development of the Attached Payload Accommodations Equipment (APAE), the Polar Orbiting Platform (POP), and the Flight Telerobotic Servicer (FTS). GSFC will also develop the Customer Servicing Facility (CSF) in Phase 2 of the Space Station.

  18. Polarimeter based on video matrix

    NASA Astrophysics Data System (ADS)

    Pavlov, Andrey; Kontantinov, Oleg; Shmirko, Konstantin; Zubko, Evgenij

    2017-11-01

    In this paper we present a new measurement tool - polarimeter, based on video matrix. Polarimetric measure- ments are usefull, for example, when monitoring water areas pollutions and atmosphere constituents. New device is small enough to mount on unmanned aircraft vehicles (quadrocopters) and stationary platforms. Device and corresponding software turns it into real-time monitoring system, that helps to solve some research problems.

  19. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform

    DOE PAGES

    Emaminejad, Sam; Gao, Wei; Wu, Eric; ...

    2017-04-17

    Perspiration-based wearable biosensors facilitate continuous monitoring of individuals' health states with real-time and molecular-level insight. The inherent inaccessibility of sweat in sedentary individuals in large volume (≥10 μL) for on-demand and in situ analysis has limited our ability to capitalize on this noninvasive and rich source of information. A wearable and miniaturized iontophoresis interface is an excellent solution to overcome this barrier. The iontophoresis process involves delivery of stimulating agonists to the sweat glands with the aid of an electrical current. The challenge remains in devising an iontophoresis interface that can extract sufficient amount of sweat for robust sensing, withoutmore » electrode corrosion and burning/causing discomfort in subjects. Here, we overcame this challenge through realizing an electrochemically enhanced iontophoresis interface, integrated in a wearable sweat analysis platform. This interface can be programmed to induce sweat with various secretion profiles for real-time analysis, a capability which can be exploited to advance our knowledge of the sweat gland physiology and the secretion process. To demonstrate the clinical value of our platform, human subject studies were performed in the context of the cystic fibrosis diagnosis and preliminary investigation of the blood/sweat glucose correlation. With our platform, we detected the elevated sweat electrolyte content of cystic fibrosis patients compared with that of healthy control subjects. Furthermore, our results indicate that oral glucose consumption in the fasting state is followed by increased glucose levels in both sweat and blood. In conclusion, our solution opens the possibility for a broad range of noninvasive diagnostic and general population health monitoring applications.« less

  20. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform

    PubMed Central

    Emaminejad, Sam; Gao, Wei; Wu, Eric; Davies, Zoe A.; Yin Yin Nyein, Hnin; Challa, Samyuktha; Ryan, Sean P.; Fahad, Hossain M.; Chen, Kevin; Shahpar, Ziba; Talebi, Salmonn; Milla, Carlos; Javey, Ali; Davis, Ronald W.

    2017-01-01

    Perspiration-based wearable biosensors facilitate continuous monitoring of individuals’ health states with real-time and molecular-level insight. The inherent inaccessibility of sweat in sedentary individuals in large volume (≥10 µL) for on-demand and in situ analysis has limited our ability to capitalize on this noninvasive and rich source of information. A wearable and miniaturized iontophoresis interface is an excellent solution to overcome this barrier. The iontophoresis process involves delivery of stimulating agonists to the sweat glands with the aid of an electrical current. The challenge remains in devising an iontophoresis interface that can extract sufficient amount of sweat for robust sensing, without electrode corrosion and burning/causing discomfort in subjects. Here, we overcame this challenge through realizing an electrochemically enhanced iontophoresis interface, integrated in a wearable sweat analysis platform. This interface can be programmed to induce sweat with various secretion profiles for real-time analysis, a capability which can be exploited to advance our knowledge of the sweat gland physiology and the secretion process. To demonstrate the clinical value of our platform, human subject studies were performed in the context of the cystic fibrosis diagnosis and preliminary investigation of the blood/sweat glucose correlation. With our platform, we detected the elevated sweat electrolyte content of cystic fibrosis patients compared with that of healthy control subjects. Furthermore, our results indicate that oral glucose consumption in the fasting state is followed by increased glucose levels in both sweat and blood. Our solution opens the possibility for a broad range of noninvasive diagnostic and general population health monitoring applications. PMID:28416667

  1. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emaminejad, Sam; Gao, Wei; Wu, Eric

    Perspiration-based wearable biosensors facilitate continuous monitoring of individuals' health states with real-time and molecular-level insight. The inherent inaccessibility of sweat in sedentary individuals in large volume (≥10 μL) for on-demand and in situ analysis has limited our ability to capitalize on this noninvasive and rich source of information. A wearable and miniaturized iontophoresis interface is an excellent solution to overcome this barrier. The iontophoresis process involves delivery of stimulating agonists to the sweat glands with the aid of an electrical current. The challenge remains in devising an iontophoresis interface that can extract sufficient amount of sweat for robust sensing, withoutmore » electrode corrosion and burning/causing discomfort in subjects. Here, we overcame this challenge through realizing an electrochemically enhanced iontophoresis interface, integrated in a wearable sweat analysis platform. This interface can be programmed to induce sweat with various secretion profiles for real-time analysis, a capability which can be exploited to advance our knowledge of the sweat gland physiology and the secretion process. To demonstrate the clinical value of our platform, human subject studies were performed in the context of the cystic fibrosis diagnosis and preliminary investigation of the blood/sweat glucose correlation. With our platform, we detected the elevated sweat electrolyte content of cystic fibrosis patients compared with that of healthy control subjects. Furthermore, our results indicate that oral glucose consumption in the fasting state is followed by increased glucose levels in both sweat and blood. In conclusion, our solution opens the possibility for a broad range of noninvasive diagnostic and general population health monitoring applications.« less

  2. Restoration Science in New York Harbor: It takes a (large, diverse and engaged) village

    NASA Astrophysics Data System (ADS)

    Newton, R.; Birney, L.; Janis, S.; Groome, M.; Palmer, M.; Bone, E.; O'Neil, J. M.; Hill, J.; Dennison, W.; Malinowski, P.; Kohne, L.; Molina, M.; Moore, G.; Woods, N.

    2015-12-01

    The Curriculum + Community Enterprise for Restoration Science (CCE-RS) facilitates partnerships between scientists and middle school educators on ecological restoration and environmental monitoring projects. The educational model is designed to wrap around the student, including classroom instruction, field science, after-school programs and engagement with the student's community. Its pillars include: a teacher training fellowship at Pace University, student curriculum, a digital platform, afterschool and summer mentoring, and community exhibits. The digital platform includes a tablet app tailored to the project's field protocols and linked to a database shared across schools and partnering institutions. Through the digital platform, data is integrated into a single citizen-science monitoring project, teachers share curriculum and best practices, and students link directly to their peers at other schools. Curriculum development has been collaborative between scientists, science education specialists, and secondary school teachers. The CCE-RS is rooted in project-based learning: the New York Harbor School has engaged high school students in environmental monitoring and oyster restoration in the Harbor for about the last decade. The science partners (U. of Maryland and Columbia) have been working with students and other citizen scientists in outdoor science over about the last decade. Local partners in outside-the-classroom education include the New York Academy of Sciences, The River Project, which will provide field education services, and Good Shepherd Services, which provides after-school programming in schools serving primarily poor families. Scientists on the project engage directly with teachers and informal educators in curriculum development and citizen-science outreach. We present the lessons learned from our first cohort of Fellows, the pedagogical model, and the digital platform, which is extensible to other ecological restoration settings.

  3. A contact-force regulated photoplethysmography (PPG) platform

    NASA Astrophysics Data System (ADS)

    Sim, Jai Kyoung; Ahn, Bongyoung; Doh, Il

    2018-04-01

    A photoplethysmography (PPG) platform integrated with a miniaturized force-regulator is proposed in this study. Because a thermo-pneumatic type regulator maintains a consistent contact-force between the PPG probe and the measuring site, a consistent and stable PPG signal can be obtained. We designed and fabricated a watch-type PPG platform with an overall size of 35 mm × 19 mm. In the PPG measurement on the radial artery wrist while posture of the wrist is changed to extension, neutral, or flexion, regulation of the contact-force provides consistent PPG measurements for which the variations in the PPG amplitude (PPGA) was 7.2 %. The proposed PPG platform can be applied to biosignal measurements in various fields such as PPG-based ANS monitoring to estimate nociception, sleep apnea syndrome, and psychological stress.

  4. New Tools for New Research in Psychiatry: A Scalable and Customizable Platform to Empower Data Driven Smartphone Research.

    PubMed

    Torous, John; Kiang, Mathew V; Lorme, Jeanette; Onnela, Jukka-Pekka

    2016-05-05

    A longstanding barrier to progress in psychiatry, both in clinical settings and research trials, has been the persistent difficulty of accurately and reliably quantifying disease phenotypes. Mobile phone technology combined with data science has the potential to offer medicine a wealth of additional information on disease phenotypes, but the large majority of existing smartphone apps are not intended for use as biomedical research platforms and, as such, do not generate research-quality data. Our aim is not the creation of yet another app per se but rather the establishment of a platform to collect research-quality smartphone raw sensor and usage pattern data. Our ultimate goal is to develop statistical, mathematical, and computational methodology to enable us and others to extract biomedical and clinical insights from smartphone data. We report on the development and early testing of Beiwe, a research platform featuring a study portal, smartphone app, database, and data modeling and analysis tools designed and developed specifically for transparent, customizable, and reproducible biomedical research use, in particular for the study of psychiatric and neurological disorders. We also outline a proposed study using the platform for patients with schizophrenia. We demonstrate the passive data capabilities of the Beiwe platform and early results of its analytical capabilities. Smartphone sensors and phone usage patterns, when coupled with appropriate statistical learning tools, are able to capture various social and behavioral manifestations of illnesses, in naturalistic settings, as lived and experienced by patients. The ubiquity of smartphones makes this type of moment-by-moment quantification of disease phenotypes highly scalable and, when integrated within a transparent research platform, presents tremendous opportunities for research, discovery, and patient health.

  5. New Tools for New Research in Psychiatry: A Scalable and Customizable Platform to Empower Data Driven Smartphone Research

    PubMed Central

    Torous, John; Kiang, Mathew V; Lorme, Jeanette

    2016-01-01

    Background A longstanding barrier to progress in psychiatry, both in clinical settings and research trials, has been the persistent difficulty of accurately and reliably quantifying disease phenotypes. Mobile phone technology combined with data science has the potential to offer medicine a wealth of additional information on disease phenotypes, but the large majority of existing smartphone apps are not intended for use as biomedical research platforms and, as such, do not generate research-quality data. Objective Our aim is not the creation of yet another app per se but rather the establishment of a platform to collect research-quality smartphone raw sensor and usage pattern data. Our ultimate goal is to develop statistical, mathematical, and computational methodology to enable us and others to extract biomedical and clinical insights from smartphone data. Methods We report on the development and early testing of Beiwe, a research platform featuring a study portal, smartphone app, database, and data modeling and analysis tools designed and developed specifically for transparent, customizable, and reproducible biomedical research use, in particular for the study of psychiatric and neurological disorders. We also outline a proposed study using the platform for patients with schizophrenia. Results We demonstrate the passive data capabilities of the Beiwe platform and early results of its analytical capabilities. Conclusions Smartphone sensors and phone usage patterns, when coupled with appropriate statistical learning tools, are able to capture various social and behavioral manifestations of illnesses, in naturalistic settings, as lived and experienced by patients. The ubiquity of smartphones makes this type of moment-by-moment quantification of disease phenotypes highly scalable and, when integrated within a transparent research platform, presents tremendous opportunities for research, discovery, and patient health. PMID:27150677

  6. Supervised versus unsupervised technology-based levodopa monitoring in Parkinson's disease: an intrasubject comparison.

    PubMed

    Lopane, Giovanna; Mellone, Sabato; Corzani, Mattia; Chiari, Lorenzo; Cortelli, Pietro; Calandra-Buonaura, Giovanna; Contin, Manuela

    2018-06-01

    We aimed to assess the intrasubject reproducibility of a technology-based levodopa (LD) therapeutic monitoring protocol administered in supervised versus unsupervised conditions in patients with Parkinson's disease (PD). The study design was pilot, intrasubject, single center, open and prospective. Twenty patients were recruited. Patients performed a standardized monitoring protocol instrumented by an ad hoc embedded platform after their usual first morning LD dose in two different randomized ambulatory sessions: one under a physician's supervision, the other self-administered. The protocol is made up of serial motor and non-motor tests, including alternate finger tapping, Timed Up and Go test, and measurement of blood pressure. Primary motor outcomes included comparisons of intrasubject LD subacute motor response patterns over the 3-h test in the two experimental conditions. Secondary outcomes were the number of intrasession serial test repetitions due to technical or handling errors and patients' satisfaction with the unsupervised LD monitoring protocol. Intrasubject LD motor response patterns were concordant between the two study sessions in all patients but one. Platform handling problems averaged 4% of total planned serial tests for both sessions. Ninety-five percent of patients were satisfied with the self-administered LD monitoring protocol. To our knowledge, this study is the first to explore the potential of unsupervised technology-based objective motor and non-motor tasks to monitor subacute LD dosing effects in PD patients. The results are promising for future telemedicine applications.

  7. Application of Smart Solid State Sensor Technology in Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Xu, Jennifer C.; Dungan, L.K.; Makel, D.; Ward, B.; Androjna, D.

    2008-01-01

    Aerospace applications require a range of chemical sensing technologies to monitor conditions in both space vehicles and aircraft operations. One example is the monitoring of oxygen. For example, monitoring of ambient oxygen (O2) levels is critical to ensuring the health, safety, and performance of humans living and working in space. Oxygen sensors can also be incorporated in detection systems to determine if hazardous leaks are occurring in space propulsion systems and storage facilities. In aeronautic applications, O2 detection has been investigated for fuel tank monitoring. However, as noted elsewhere, O2 is not the only species of interest in aerospace applications with a wide range of species of interest being relevant to understand an environmental or vehicle condition. These include combustion products such as CO, HF, HCN, and HCl, which are related to both the presence of a fire and monitoring of post-fire clean-up operations. This paper discusses the development of an electrochemical cell platform based on a polymer electrolyte, NAFION, and a three-electrode configuration. The approach has been to mature this basic platform for a range of applications and to test this system, combined with "Lick and Stick" electronics, for its viability to monitor an environment related to astronaut crew health and safety applications with an understanding that a broad range of applications can be addressed with a core technology.

  8. Design of Initial Opacity Platform at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Heeter, R. F.; Ahmed, M. F.; Ayers, S. L.; Emig, J. A.; Iglesias, C. A.; Liedahl, D. A.; Schneider, M. B.; Wilson, B. G.; Huffman, E. J.; King, J. A.; Opachich, Y. P.; Ross, P. W.; Bailey, J. E.; Rochau, G. A.; Craxton, R. S.; Garcia, E. M.; McKenty, P. W.; Zhang, R.; Cardenas, T.; Devolder, B. G.; Dodd, E. S.; Kline, J. L.; Sherrill, M. E.; Perry, T. S.

    2016-10-01

    The absorption and re-emission of x-rays by partly stripped ions plays a critical role in stars and in many laboratory plasmas. A NIF Opacity Platform has been designed to resolve a persistent disagreement between theory and experiments on the Sandia Z facility, studying iron in conditions closely related to the solar radiation-convection transition boundary. A laser heated hohlraum ``oven'' will produce iron plasmas at temperatures >150 eV and electron densities >=7x1021/cm3, and be probed with continuum X-rays from a capsule implosion backlighter source. The resulting X-ray transmission spectra will be recorded on a specially designed Opacity Spectrometer. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  9. Adding navigation, artificial audition and vital sign monitoring capabilities to a telepresence mobile robot for remote home care applications.

    PubMed

    Laniel, Sebastien; Letourneau, Dominic; Labbe, Mathieu; Grondin, Francois; Polgar, Janice; Michaud, Francois

    2017-07-01

    A telepresence mobile robot is a remote-controlled, wheeled device with wireless internet connectivity for bidirectional audio, video and data transmission. In health care, a telepresence robot could be used to have a clinician or a caregiver assist seniors in their homes without having to travel to these locations. Many mobile telepresence robotic platforms have recently been introduced on the market, bringing mobility to telecommunication and vital sign monitoring at reasonable costs. What is missing for making them effective remote telepresence systems for home care assistance are capabilities specifically needed to assist the remote operator in controlling the robot and perceiving the environment through the robot's sensors or, in other words, minimizing cognitive load and maximizing situation awareness. This paper describes our approach adding navigation, artificial audition and vital sign monitoring capabilities to a commercially available telepresence mobile robot. This requires the use of a robot control architecture to integrate the autonomous and teleoperation capabilities of the platform.

  10. First evaluation of foraminiferal metabarcoding for monitoring environmental impact from an offshore oil drilling site.

    PubMed

    Laroche, Olivier; Wood, Susanna A; Tremblay, Louis A; Ellis, Joanne I; Lejzerowicz, Franck; Pawlowski, Jan; Lear, Gavin; Atalah, Javier; Pochon, Xavier

    2016-09-01

    At present, environmental impacts from offshore oil and gas activities are partly determined by measuring changes in macrofauna diversity. Morphological identification of macrofauna is time-consuming, expensive and dependent on taxonomic expertise. In this study, we evaluated the applicability of using foraminiferal-specific metabarcoding for routine monitoring. Sediment samples were collected along distance gradients from two oil platforms off Taranaki (New Zealand) and their physico-chemical properties, foraminiferal environmental DNA/RNA, and macrofaunal composition analyzed. Macrofaunal and foraminiferal assemblages showed similar shifts along impact gradients, but responded differently to environmental perturbations. Macrofauna were affected by hypoxia, whereas sediment grain size appeared to drive shifts in foraminifera. We identified eight foraminiferal molecular operational taxonomic units that have potential to be used as bioindicator taxa. Our results show that metabarcoding represents an effective tool for assessing foraminiferal communities near offshore oil and gas platforms, and that it can be used to complement current monitoring techniques. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Smart telemedicine support for continuous glucose monitoring: the embryo of a future global agent for diabetes care.

    PubMed

    Rigla, Mercedes

    2011-01-01

    Although current systems for continuous glucose monitoring (CGM) are the result of progressive technological improvement, and although a beneficial effect on glucose control has been demonstrated, few patients are using them. Something similar has happened to telemedicine (TM); in spite of the long-term experience, which began in the early 1980s, no TM system has been widely adopted, and presential visits are still almost the only way diabetologists and patients communicate. The hypothesis developed in this article is that neither CGM nor TM will ever be routinely implemented separately, and their consideration as essential elements for standard diabetes care will one day come from their integration as parts of a telemedical monitoring platform. This platform, which should include artificial intelligence for giving decision support to patients and physicians, will represent the core of a more complex global agent for diabetes care, which will provide control algorithms and risk analysis among other essential functions. © 2010 Diabetes Technology Society.

  12. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics.

    PubMed

    Kim, Jayoung; Imani, Somayeh; de Araujo, William R; Warchall, Julian; Valdés-Ramírez, Gabriela; Paixão, Thiago R L C; Mercier, Patrick P; Wang, Joseph

    2015-12-15

    This article demonstrates an instrumented mouthguard capable of non-invasively monitoring salivary uric acid (SUA) levels. The enzyme (uricase)-modified screen printed electrode system has been integrated onto a mouthguard platform along with anatomically-miniaturized instrumentation electronics featuring a potentiostat, microcontroller, and a Bluetooth Low Energy (BLE) transceiver. Unlike RFID-based biosensing systems, which require large proximal power sources, the developed platform enables real-time wireless transmission of the sensed information to standard smartphones, laptops, and other consumer electronics for on-demand processing, diagnostics, or storage. The mouthguard biosensor system offers high sensitivity, selectivity, and stability towards uric acid detection in human saliva, covering the concentration ranges for both healthy people and hyperuricemia patients. The new wireless mouthguard biosensor system is able to monitor SUA level in real-time and continuous fashion, and can be readily expanded to an array of sensors for different analytes to enable an attractive wearable monitoring system for diverse health and fitness applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics

    PubMed Central

    Kim, Jayoung; Imani, Somayeh; de Araujo, William R.; Warchall, Julian; Valdés-Ramírez, Gabriela; Paixão, Thiago R.L.C.; Mercier, Patrick P.; Wang, Joseph

    2016-01-01

    This article demonstrates an instrumented mouthguard capable of non-invasively monitoring salivary uric acid (SUA) levels. The enzyme (uricase)-modified screen printed electrode system has been integrated onto a mouthguard platform along with anatomically-miniaturized instrumentation electronics featuring a potentiostat, microcontroller, and a Bluetooth Low Energy (BLE) transceiver. Unlike RFID-based biosensing systems, which require large proximal power sources, the developed platform enables real-time wireless transmission of the sensed information to standard smartphones, laptops, and other consumer electronics for on-demand processing, diagnostics, or storage. The mouthguard biosensor system offers high sensitivity, selectivity, and stability towards uric acid detection in human saliva, covering the concentration ranges for both healthy people and hyperuricemia patients. The new wireless mouthguard biosensor system is able to monitor SUA level in real-time and continuous fashion, and can be readily expanded to an array of sensors for different analytes to enable an attractive wearable monitoring system for diverse health and fitness applications. PMID:26276541

  14. Automatic aeroponic irrigation system based on Arduino’s platform

    NASA Astrophysics Data System (ADS)

    Montoya, A. P.; Obando, F. A.; Morales, J. G.; Vargas, G.

    2017-06-01

    The recirculating hydroponic culture techniques, as aeroponics, has several advantages over traditional agriculture, aimed to improve the efficiently and environmental impact of agriculture. These techniques require continuous monitoring and automation for proper operation. In this work was developed an automatic monitored aeroponic-irrigation system based on the Arduino’s free software platform. Analog and digital sensors for measuring the temperature, flow and level of a nutrient solution in a real greenhouse were implemented. In addition, the pH and electric conductivity of nutritive solutions are monitored using the Arduino’s differential configuration. The sensor network, the acquisition and automation system are managed by two Arduinos modules in master-slave configuration, which communicate one each other wireless by Wi-Fi. Further, data are stored in micro SD memories and the information is loaded on a web page in real time. The developed device brings important agronomic information when is tested with an arugula culture (Eruca sativa Mill). The system also could be employ as an early warning system to prevent irrigation malfunctions.

  15. Navigation and Positioning System Using High Altitude Platforms Systems (HAPS)

    NASA Astrophysics Data System (ADS)

    Tsujii, Toshiaki; Harigae, Masatoshi; Harada, Masashi

    Recently, some countries have begun conducting feasibility studies and R&D projects on High Altitude Platform Systems (HAPS). Japan has been investigating the use of an airship system that will function as a stratospheric platform for applications such as environmental monitoring, communications and broadcasting. If pseudolites were mounted on the airships, their GPS-like signals would be stable augmentations that would improve the accuracy, availability, and integrity of GPS-based positioning systems. Also, the sufficient number of HAPS can function as a positioning system independent of GPS. In this paper, a system design of the HAPS-based positioning system and its positioning error analyses are described.

  16. Rapid, Affordable, and Point-of-Care Water Monitoring Via a Microfluidic DNA Sensor and a Mobile Interface for Global Health

    PubMed Central

    Ghanbari, Sarah; Ravikumar, Anusha; Seubert, John; Figueira, Silvia

    2013-01-01

    Contaminated water is a serious concern in many developing countries with severe health consequences particularly for children. Current methods for monitoring waterborne pathogens are often time consuming, expensive, and labor intensive, making them not suitable for these regions. Electrochemical detection in a microfluidic platform offers many advantages such as portability, minimal use of instrumentation, and easy integration with electronics. In many parts of the world, however, the required equipment for pathogen detection through electrochemical sensors is either not available or insufficiently portable, and operators may not be trained to use these sensors and interpret results, ultimately preventing its wide adoption. Counterintuitively, these same regions often have an extensive mobile phone infrastructure, suggesting the possibility of integrating electrochemical detection of bacterial pathogens with a mobile platform. Toward a solution to water quality interventions, we demonstrate a microfluidic electrochemical sensor combined with a mobile interface that detects the sequences from bacterial pathogens, suitable for rapid, affordable, and point-of-care water monitoring. We employ the transduction of DNA hybridization into a readily detectable electric signal by means of a conformational change of DNA stem-loop structure. Using this platform, we successfully demonstrate the detection of as low as 100 nM E. coli sequences and the automatic interpretation and mapping of the detection results via a mobile application. PMID:27170858

  17. Nanobarcode gene expression monitoring system for potential miniaturized space applications

    NASA Astrophysics Data System (ADS)

    Ruan, Weiming; Eastman, P. Scott; Cooke, Patrick A.; Park, Jennifer S.; Chu, Julia S. F.; Gray, Joe W.; Li, Song; Chen, Fanqing Frank

    Manned mission to space has been threatened by various cosmos risks including radiation, mirogravity, vacuum, confinement, etc., which may cause genetic variations of astronauts and eventually lead to damages of their health. Thus, the development of small biomedical devices, which can monitor astronaut gene expression changes, is useful for future long-term space missions. Using magnetic microbeads packed with nanocrystal quantum dots at controlled ratios, we were able to generate highly multiplexed nanobarcodes, which can encode a flexible panel of genes. Also, by using a reporter quantum dot, this nanobarcode platform can monitor and quantify gene expression level with improved speed and sensitivity. As a comparison, we studied TGF-β1 induced transcription changes in human bone marrow mesenchymal stem cells with both the nanobarcode microbead system and the Affymetrix GeneChip ® HTA system, which is currently considered as the industrial standard. Though using only 1/20 of the sample RNA, the nanobarcode system showed sensitivity equivalent to Affymetrix GeneChip ® system. The coefficient of variation, dynamic range, and accuracy of the nanobarcodes measurement is equivalent to that of the GeneChip ® HTA system. Therefore, this newly invented nanobarcode microbead platform is thought to be sensitive, flexible, cost-effective and accurate in a level equivalent to the conventional methods. As an extension of the use of this new platform, spacecrafts may carry this miniaturized system as a diagnostic tool for the astronauts.

  18. A Reference Model for Monitoring IoT WSN-Based Applications.

    PubMed

    Capella, Juan Vicente; Campelo, José Carlos; Bonastre, Alberto; Ors, Rafael

    2016-10-30

    The Internet of Things (IoT) is, at this moment, one of the most promising technologies that has arisen for decades. Wireless Sensor Networks (WSNs) are one of the main pillars for many IoT applications, insofar as they require to obtain context-awareness information. The bibliography shows many difficulties in their real implementation that have prevented its massive deployment. Additionally, in IoT environments where data producers and data consumers are not directly related, compatibility and certification issues become fundamental. Both problems would profit from accurate knowledge of the internal behavior of WSNs that must be obtained by the utilization of appropriate tools. There are many ad-hoc proposals with no common structure or methodology, and intended to monitor a particular WSN. To overcome this problem, this paper proposes a structured three-layer reference model for WSN Monitoring Platforms (WSN-MP), which offers a standard environment for the design of new monitoring platforms to debug, verify and certify a WSN's behavior and performance, and applicable to every WSN. This model also allows the comparative analysis of the current proposals for monitoring the operation of WSNs. Following this methodology, it is possible to achieve a standardization of WSN-MP, promoting new research areas in order to solve the problems of each layer.

  19. New strategies for SHM based on a multichannel wireless AE node

    NASA Astrophysics Data System (ADS)

    Godinez-Azcuaga, Valery; Ley, Obdulia

    2014-03-01

    This paper discusses the development of an Acoustic Emission (AE) wireless node and its application for SHM (Structural Health Monitoring). The instrument development was planned for applications monitoring steel and concrete bridges components. The final product, now commercially available, is a sensor node which includes multiple sensing elements, on board signal processing and analysis capabilities, signal conditioning electronics, power management circuits, wireless data transmission element and energy harvesting unit. The sensing elements are capable of functioning in both passive and active modes, while the multiple parametric inputs are available for connecting various sensor types to measure external characteristics affecting the performance of the structure under monitoring. The output of all these sensors are combined and analyzed at the node in order to minimize the data transmission rate, which consumes significant amount of power. Power management circuits are used to reduce the data collection intervals through selective data acquisition strategies and minimize the sensor node power consumption. This instrument, known as the 1284, is an excellent platform to deploy SHM in the original bridge applications, but initial prototypes has shown significant potential in monitoring composite wind turbine blades and composites mockups of Unmanned Autonomous Vehicles (UAV) components; currently we are working to extend the use of this system to fields such as coal flow, power transformer, and off-shore platform monitoring.

  20. A web platform for landuse, climate, demography, hydrology and beach erosion in the Black Sea catchment

    PubMed Central

    Lehmann, Anthony; Guigoz, Yaniss; Ray, Nicolas; Mancosu, Emanuele; Abbaspour, Karim C.; Rouholahnejad Freund, Elham; Allenbach, Karin; De Bono, Andrea; Fasel, Marc; Gago-Silva, Ana; Bär, Roger; Lacroix, Pierre; Giuliani, Gregory

    2017-01-01

    The Black Sea catchment (BSC) is facing important demographic, climatic and landuse changes that may increase pollution, vulnerability and scarcity of water resources, as well as beach erosion through sea level rise. Limited access to reliable time-series monitoring data from environmental, statistical, and socio-economical sources is a major barrier to policy development and decision-making. To address these issues, a web-based platform was developed to enable discovery and access to key environmental information for the region. This platform covers: landuse, climate, and demographic scenarios; hydrology and related water vulnerability and scarcity; as well as beach erosion. Each data set has been obtained with state-of-the-art modelling tools from available monitoring data using appropriate validation methods. These analyses were conducted using global and regional data sets. The data sets are intended for national to regional assessments, for instance for prioritizing environmental protection projects and investments. Together they form a unique set of information, which lay out future plausible change scenarios for the BSC, both for scientific and policy purposes. PMID:28675383

  1. A web platform for landuse, climate, demography, hydrology and beach erosion in the Black Sea catchment.

    PubMed

    Lehmann, Anthony; Guigoz, Yaniss; Ray, Nicolas; Mancosu, Emanuele; Abbaspour, Karim C; Rouholahnejad Freund, Elham; Allenbach, Karin; De Bono, Andrea; Fasel, Marc; Gago-Silva, Ana; Bär, Roger; Lacroix, Pierre; Giuliani, Gregory

    2017-07-04

    The Black Sea catchment (BSC) is facing important demographic, climatic and landuse changes that may increase pollution, vulnerability and scarcity of water resources, as well as beach erosion through sea level rise. Limited access to reliable time-series monitoring data from environmental, statistical, and socio-economical sources is a major barrier to policy development and decision-making. To address these issues, a web-based platform was developed to enable discovery and access to key environmental information for the region. This platform covers: landuse, climate, and demographic scenarios; hydrology and related water vulnerability and scarcity; as well as beach erosion. Each data set has been obtained with state-of-the-art modelling tools from available monitoring data using appropriate validation methods. These analyses were conducted using global and regional data sets. The data sets are intended for national to regional assessments, for instance for prioritizing environmental protection projects and investments. Together they form a unique set of information, which lay out future plausible change scenarios for the BSC, both for scientific and policy purposes.

  2. Long-Term Outdoor Reliability Assessment of a Wireless Unit for Air-Quality Monitoring Based on Nanostructured Films Integrated on Micromachined Platforms

    PubMed Central

    Leccardi, Matteo; Decarli, Massimiliano; Lorenzelli, Leandro; Milani, Paolo; Mettala, Petteri; Orava, Risto; Barborini, Emanuele

    2012-01-01

    We have fabricated and tested in long-term field operating conditions a wireless unit for outdoor air quality monitoring. The unit is equipped with two multiparametric sensors, one miniaturized thermo-hygrometer, front-end analogical and digital electronics, and an IEEE 802.15.4 based module for wireless data transmission. Micromachined platforms were functionalized with nanoporous metal-oxides to obtain multiparametric sensors, hosting gas-sensitive, anemometric and temperature transducers. Nanoporous metal-oxide layer was directly deposited on gas sensing regions of micromachined platform batches by hard-mask patterned supersonic cluster beam deposition. An outdoor, roadside experiment was arranged in downtown Milan (Italy), where one wireless sensing unit was continuously operated side by side with standard gas chromatographic instrumentation for air quality measurements. By means of a router PC, data from sensing unit and other instrumentation were collected, merged, and sent to a remote data storage server, through an UMTS device. The whole-system robustness as well as sensor dataset characteristics were continuously characterized over a run-time period of 18 months. PMID:22969394

  3. Cloud-enabled microscopy and droplet microfluidic platform for specific detection of Escherichia coli in water.

    PubMed

    Golberg, Alexander; Linshiz, Gregory; Kravets, Ilia; Stawski, Nina; Hillson, Nathan J; Yarmush, Martin L; Marks, Robert S; Konry, Tania

    2014-01-01

    We report an all-in-one platform - ScanDrop - for the rapid and specific capture, detection, and identification of bacteria in drinking water. The ScanDrop platform integrates droplet microfluidics, a portable imaging system, and cloud-based control software and data storage. The cloud-based control software and data storage enables robotic image acquisition, remote image processing, and rapid data sharing. These features form a "cloud" network for water quality monitoring. We have demonstrated the capability of ScanDrop to perform water quality monitoring via the detection of an indicator coliform bacterium, Escherichia coli, in drinking water contaminated with feces. Magnetic beads conjugated with antibodies to E. coli antigen were used to selectively capture and isolate specific bacteria from water samples. The bead-captured bacteria were co-encapsulated in pico-liter droplets with fluorescently-labeled anti-E. coli antibodies, and imaged with an automated custom designed fluorescence microscope. The entire water quality diagnostic process required 8 hours from sample collection to online-accessible results compared with 2-4 days for other currently available standard detection methods.

  4. Remotely deployable aerial inspection using tactile sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacLeod, C. N.; Cao, J.; Pierce, S. G.

    For structural monitoring applications, the use of remotely deployable Non-Destructive Evaluation (NDE) inspection platforms offer many advantages, including improved accessibility, greater safety and reduced cost, when compared to traditional manual inspection techniques. The use of such platforms, previously reported by researchers at the University Strathclyde facilitates the potential for rapid scanning of large areas and volumes in hazardous locations. A common problem for both manual and remote deployment approaches lies in the intrinsic stand-off and surface coupling issues of typical NDE probes. The associated complications of these requirements are obviously significantly exacerbated when considering aerial based remote inspection and deployment,more » resulting in simple visual techniques being the preferred sensor payload. Researchers at Bristol Robotics Laboratory have developed biomimetic tactile sensors modelled on the facial whiskers (vibrissae) of animals such as rats and mice, with the latest sensors actively sweeping their tips across the surface in a back and forth motion. The current work reports on the design and performance of an aerial inspection platform and the suitability of tactile whisking sensors to aerial based surface monitoring applications.« less

  5. Monitoring of Low Levels of Furfural in Power Transformer Oil with a Sensor System Based on a POF-MIP Platform

    PubMed Central

    Cennamo, Nunzio; De Maria, Letizia; D’Agostino, Girolamo; Zeni, Luigi; Pesavento, Maria

    2015-01-01

    In this work an innovative, miniaturized and low cost optical chemical sensor (POF-MIP platform), based on a molecular imprinted polymer (MIP) and surface plasmon resonance in a plastic optical fiber (POF), is presented and preliminarily tested for monitoring of furfural (furan-2-carbaldehyde) in transformer oil. To this end, the optical platform was coupled to an MIP layer, highly selective for furfural. The ability of the developed sensor to directly detect furfural in the insulating oil was investigated. The detection limit of the sensor has been found to be 9 ppb, with a linear response up to about 30 ppb. However there is a sensible response up to 0.15 ppm. Because of the small linearity range, the Hill equation is suggested for the quantification. The sensor has been effectively tested in real oil samples collected from aged electrical equipment removed from service. The assessed concentration of furfural is in good agreement with that evaluated by a high pressure liquid chromatography (HLPC) method, confirming the good selectivity of the proposed sensor. PMID:25871719

  6. An ultra low energy biomedical signal processing system operating at near-threshold.

    PubMed

    Hulzink, J; Konijnenburg, M; Ashouei, M; Breeschoten, A; Berset, T; Huisken, J; Stuyt, J; de Groot, H; Barat, F; David, J; Van Ginderdeuren, J

    2011-12-01

    This paper presents a voltage-scalable digital signal processing system designed for the use in a wireless sensor node (WSN) for ambulatory monitoring of biomedical signals. To fulfill the requirements of ambulatory monitoring, power consumption, which directly translates to the WSN battery lifetime and size, must be kept as low as possible. The proposed processing platform is an event-driven system with resources to run applications with different degrees of complexity in an energy-aware way. The architecture uses effective system partitioning to enable duty cycling, single instruction multiple data (SIMD) instructions, power gating, voltage scaling, multiple clock domains, multiple voltage domains, and extensive clock gating. It provides an alternative processing platform where the power and performance can be scaled to adapt to the application need. A case study on a continuous wavelet transform (CWT)-based heart-beat detection shows that the platform not only preserves the sensitivity and positive predictivity of the algorithm but also achieves the lowest energy/sample for ElectroCardioGram (ECG) heart-beat detection publicly reported today.

  7. Realtime Gas Emission Monitoring at Hazardous Sites Using a Distributed Point-Source Sensing Infrastructure

    PubMed Central

    Manes, Gianfranco; Collodi, Giovanni; Gelpi, Leonardo; Fusco, Rosanna; Ricci, Giuseppe; Manes, Antonio; Passafiume, Marco

    2016-01-01

    This paper describes a distributed point-source monitoring platform for gas level and leakage detection in hazardous environments. The platform, based on a wireless sensor network (WSN) architecture, is organised into sub-networks to be positioned in the plant’s critical areas; each sub-net includes a gateway unit wirelessly connected to the WSN nodes, hence providing an easily deployable, stand-alone infrastructure featuring a high degree of scalability and reconfigurability. Furthermore, the system provides automated calibration routines which can be accomplished by non-specialized maintenance operators without system reliability reduction issues. Internet connectivity is provided via TCP/IP over GPRS (Internet standard protocols over mobile networks) gateways at a one-minute sampling rate. Environmental and process data are forwarded to a remote server and made available to authenticated users through a user interface that provides data rendering in various formats and multi-sensor data fusion. The platform is able to provide real-time plant management with an effective; accurate tool for immediate warning in case of critical events. PMID:26805832

  8. An Optical Biosensing Platform using Reprecipitated Polyaniline Microparticles

    NASA Astrophysics Data System (ADS)

    Nemzer, Louis; Epstein, Arthur

    2009-03-01

    A great deal of effort remains focused on the goal of developing a continuous in vivo glucose monitoring system for patients with diabetes mellitus. We report a proof-of-concept study on a reagentless optical biosensing platform that circumvents the problems usually associated with direct glucose detection by utilizing the UV-VIS absorption properties of polyaniline, a biocompatible polymer. When the enzyme glucose oxidase is entrapped within reprecipitated polyaniline microparticles, a glucose molecule readily donates two protons and two electrons to the polyaniline, reversibly altering the polymer's oxidation state. The resultant change can be monitored by measuring the absorption at wavelengths that fall within the ``optical window'' for skin. The micro-structured morphology also insures a high surface-area to volume ratio. Data from in vitro prototype devices indicate that in the low enzyme-loading regime, the response can be fit to the Michaelis-Menten model for enzyme kinetics, but at higher enzyme loading, diffusion effects dominate. As a biosensing platform, the system also has the potential to be adapted to detect other biologically relevant analytes, including cholesterol and ethanol.

  9. Monitoring of low levels of furfural in power transformer oil with a sensor system based on a POF-MIP platform.

    PubMed

    Cennamo, Nunzio; De Maria, Letizia; D'Agostino, Girolamo; Zeni, Luigi; Pesavento, Maria

    2015-04-13

    In this work an innovative, miniaturized and low cost optical chemical sensor (POF-MIP platform), based on a molecular imprinted polymer (MIP) and surface plasmon resonance in a plastic optical fiber (POF), is presented and preliminarily tested for monitoring of furfural (furan-2-carbaldehyde) in transformer oil. To this end, the optical platform was coupled to an MIP layer, highly selective for furfural. The ability of the developed sensor to directly detect furfural in the insulating oil was investigated. The detection limit of the sensor has been found to be 9 ppb, with a linear response up to about 30 ppb. However there is a sensible response up to 0.15 ppm. Because of the small linearity range, the Hill equation is suggested for the quantification. The sensor has been effectively tested in real oil samples collected from aged electrical equipment removed from service. The assessed concentration of furfural is in good agreement with that evaluated by a high pressure liquid chromatography (HLPC) method, confirming the good selectivity of the proposed sensor.

  10. CHRONIOUS: an open, ubiquitous and adaptive chronic disease management platform for chronic obstructive pulmonary disease (COPD), chronic kidney disease (CKD) and renal insufficiency.

    PubMed

    Rosso, R; Munaro, G; Salvetti, O; Colantonio, S; Ciancitto, F

    2010-01-01

    CHRONIOUS is an highly innovative Information and Communication Technologies (ICT) research Initiative that aspires to implement its vision for ubiquitous health and lifestyle monitoring. The 17 European project partners are strictly working together since February 2008 to realize and open platform to manage and monitor elderly patients with chronic diseases and many difficulties to reach hospital centers for routine controls. The testing activities will be done in Italy and Spain involving COPD (Chronic Obstructive Pulmonary Disease) and CKD (Chronic Kidney Disease) patients, these being widespread and highly expensive in terms of social and economic costs. Patients, equipped by wearable technologies and sensors and interacting with lifestyle interfaces, will be assisted by healthcare personnel able to check the health record and critical conditions through the Chronious platform data analysis and decision support system. Additionally, the new ontology based literature search engine will help the clinicians in the standardization of care delivery process. This paper is to present the main project objectives and its principal components from the intelligent system point of view.

  11. Cloud-Enabled Microscopy and Droplet Microfluidic Platform for Specific Detection of Escherichia coli in Water

    PubMed Central

    Kravets, Ilia; Stawski, Nina; Hillson, Nathan J.; Yarmush, Martin L.; Marks, Robert S.; Konry, Tania

    2014-01-01

    We report an all-in-one platform – ScanDrop – for the rapid and specific capture, detection, and identification of bacteria in drinking water. The ScanDrop platform integrates droplet microfluidics, a portable imaging system, and cloud-based control software and data storage. The cloud-based control software and data storage enables robotic image acquisition, remote image processing, and rapid data sharing. These features form a “cloud” network for water quality monitoring. We have demonstrated the capability of ScanDrop to perform water quality monitoring via the detection of an indicator coliform bacterium, Escherichia coli, in drinking water contaminated with feces. Magnetic beads conjugated with antibodies to E. coli antigen were used to selectively capture and isolate specific bacteria from water samples. The bead-captured bacteria were co-encapsulated in pico-liter droplets with fluorescently-labeled anti-E. coli antibodies, and imaged with an automated custom designed fluorescence microscope. The entire water quality diagnostic process required 8 hours from sample collection to online-accessible results compared with 2–4 days for other currently available standard detection methods. PMID:24475107

  12. Spatial Variations in Drought Persistence in the South-Central U.S.

    NASA Astrophysics Data System (ADS)

    Leasor, Z. T.; Quiring, S. M.

    2016-12-01

    Drought is one of the most prominent climatic hazards in the south-central United States. This study examines spatial variations in meteorological drought persistence using high-resolution PRISM gridded precipitation data from 1900-2015. The Standardized Precipitation Index (SPI) is used to represent meteorological drought conditions. The study region covers Texas, Oklahoma, and Kansas. Droughts are first divided into different severity categories using the classification employed by the U.S. National Drought Monitor. The frequency and duration of each drought event is determined and this is used to calculate drought persistence. Our results indicate that drought persistence in the south-central U.S. varies as a function of drought severity. In addition, drought persistence also varies substantially over space and time. The probability of drought termination is a function of drought severity, geographic location and time of the year. In addition, there is evidence that drought persistence is influenced by global teleconnections and land-atmosphere interactions. The results of this drought persistence climatology can benefit seasonal forecasting and the current understanding of drought recovery.

  13. Understanding patient compliance and persistence with osteoporosis therapy.

    PubMed

    Gold, Deborah T

    2011-04-01

    Chronic non-terminal diseases, including postmenopausal osteoporosis, are associated with poor treatment compliance and persistence. The longer a patient with osteoporosis complies and persists with treatment, the lower the risk of fracture. Retrospective studies with emphasis on real-world data have led to a greater understanding of the factors affecting medication compliance and persistence, and their association with improved treatment outcomes. However, these data do not contain information about patient choices of medication or patient commitment to particular medication regimens. Patient preferences can affect compliance and persistence behaviours. While recent evidence questions the importance of dosing regimen in patient preferences, other recent data show that medication efficacy and safety remain the most important determinants of patient preference. Informed patient decision making about treatment options, adverse effects and outcomes can have a beneficial impact on medication-taking behaviour. Healthcare professionals play a crucial role in the management of factors associated with poor compliance and persistence with osteoporosis therapies. Education about disease consequences and differences among treatment options, as well as treatment monitoring and positive reinforcement, are crucial to improving medication compliance and persistence in osteoporotic patients.

  14. Wide-Area Persistent Energy-Efficient Maritime Sensing

    DTIC Science & Technology

    2015-09-30

    Matt Reynolds, Lefteris Kampianakis, and Andreas Pedrosse-Engel at UW designed and tested a Software Defined Radar testbed as well as an Arduino - based ...hardware based on a software-defined radio platform. 2) Development of a standalone Arduino - based backscatter node. 3) Analysis of the limits of the... Arduino - based node that can modulate radar backscatter with data received from a sensor using a low-power Arduino Nano processor. Figure 5 shows a

  15. Automated Camera Array Fine Calibration

    NASA Technical Reports Server (NTRS)

    Clouse, Daniel; Padgett, Curtis; Ansar, Adnan; Cheng, Yang

    2008-01-01

    Using aerial imagery, the JPL FineCalibration (JPL FineCal) software automatically tunes a set of existing CAHVOR camera models for an array of cameras. The software finds matching features in the overlap region between images from adjacent cameras, and uses these features to refine the camera models. It is not necessary to take special imagery of a known target and no surveying is required. JPL FineCal was developed for use with an aerial, persistent surveillance platform.

  16. Robo-Lector – a novel platform for automated high-throughput cultivations in microtiter plates with high information content

    PubMed Central

    Huber, Robert; Ritter, Daniel; Hering, Till; Hillmer, Anne-Kathrin; Kensy, Frank; Müller, Carsten; Wang, Le; Büchs, Jochen

    2009-01-01

    Background In industry and academic research, there is an increasing demand for flexible automated microfermentation platforms with advanced sensing technology. However, up to now, conventional platforms cannot generate continuous data in high-throughput cultivations, in particular for monitoring biomass and fluorescent proteins. Furthermore, microfermentation platforms are needed that can easily combine cost-effective, disposable microbioreactors with downstream processing and analytical assays. Results To meet this demand, a novel automated microfermentation platform consisting of a BioLector and a liquid-handling robot (Robo-Lector) was sucessfully built and tested. The BioLector provides a cultivation system that is able to permanently monitor microbial growth and the fluorescence of reporter proteins under defined conditions in microtiter plates. Three examplary methods were programed on the Robo-Lector platform to study in detail high-throughput cultivation processes and especially recombinant protein expression. The host/vector system E. coli BL21(DE3) pRhotHi-2-EcFbFP, expressing the fluorescence protein EcFbFP, was hereby investigated. With the method 'induction profiling' it was possible to conduct 96 different induction experiments (varying inducer concentrations from 0 to 1.5 mM IPTG at 8 different induction times) simultaneously in an automated way. The method 'biomass-specific induction' allowed to automatically induce cultures with different growth kinetics in a microtiter plate at the same biomass concentration, which resulted in a relative standard deviation of the EcFbFP production of only ± 7%. The third method 'biomass-specific replication' enabled to generate equal initial biomass concentrations in main cultures from precultures with different growth kinetics. This was realized by automatically transferring an appropiate inoculum volume from the different preculture microtiter wells to respective wells of the main culture plate, where subsequently similar growth kinetics could be obtained. Conclusion The Robo-Lector generates extensive kinetic data in high-throughput cultivations, particularly for biomass and fluorescence protein formation. Based on the non-invasive on-line-monitoring signals, actions of the liquid-handling robot can easily be triggered. This interaction between the robot and the BioLector (Robo-Lector) combines high-content data generation with systematic high-throughput experimentation in an automated fashion, offering new possibilities to study biological production systems. The presented platform uses a standard liquid-handling workstation with widespread automation possibilities. Thus, high-throughput cultivations can now be combined with small-scale downstream processing techniques and analytical assays. Ultimately, this novel versatile platform can accelerate and intensify research and development in the field of systems biology as well as modelling and bioprocess optimization. PMID:19646274

  17. Reading Mammal Diversity from Flies: The Persistence Period of Amplifiable Mammal mtDNA in Blowfly Guts (Chrysomya megacephala) and a New DNA Mini-Barcode Target.

    PubMed

    Lee, Ping-Shin; Sing, Kong-Wah; Wilson, John-James

    2015-01-01

    Most tropical mammal species are threatened or data-deficient. Data collection is impeded by the traditional monitoring approaches which can be laborious, expensive and struggle to detect cryptic diversity. Monitoring approaches using mammal DNA derived from invertebrates are emerging as cost- and time-effective alternatives. As a step towards development of blowfly-derived DNA as an effective method for mammal monitoring in the biodiversity hotspot of Peninsular Malaysia, our objectives were (i) to determine the persistence period of amplifiable mammal mtDNA in blowfly guts through a laboratory feeding experiment (ii) to design and test primers that can selectively amplify mammal COI DNA mini-barcodes in the presence of high concentrations of blowfly DNA. The persistence period of amplifiable mammal mtDNA in blowfly guts was 24 h to 96 h post-feeding indicating the need for collecting flies within 24 h of capture to detect mammal mtDNA of sufficient quantity and quality. We designed a new primer combination for a COI DNA mini-barcode that did not amplify blowfly DNA and showed 89% amplification success for a dataset of mammals from Peninsular Malaysia. The short (205 bp) DNA mini-barcode could distinguish most mammal species (including separating dark taxa) and is of suitable length for high-throughput sequencing. Our new DNA mini-barcode target and a standardized trapping protocol with retrieval of blowflies every 24 h could point the way forward in the development of blowfly-derived DNA as an effective method for mammal monitoring.

  18. Reading Mammal Diversity from Flies: The Persistence Period of Amplifiable Mammal mtDNA in Blowfly Guts (Chrysomya megacephala) and a New DNA Mini-Barcode Target

    PubMed Central

    Lee, Ping-Shin; Sing, Kong-Wah; Wilson, John-James

    2015-01-01

    Most tropical mammal species are threatened or data-deficient. Data collection is impeded by the traditional monitoring approaches which can be laborious, expensive and struggle to detect cryptic diversity. Monitoring approaches using mammal DNA derived from invertebrates are emerging as cost- and time-effective alternatives. As a step towards development of blowfly-derived DNA as an effective method for mammal monitoring in the biodiversity hotspot of Peninsular Malaysia, our objectives were (i) to determine the persistence period of amplifiable mammal mtDNA in blowfly guts through a laboratory feeding experiment (ii) to design and test primers that can selectively amplify mammal COI DNA mini-barcodes in the presence of high concentrations of blowfly DNA. The persistence period of amplifiable mammal mtDNA in blowfly guts was 24 h to 96 h post-feeding indicating the need for collecting flies within 24 h of capture to detect mammal mtDNA of sufficient quantity and quality. We designed a new primer combination for a COI DNA mini-barcode that did not amplify blowfly DNA and showed 89% amplification success for a dataset of mammals from Peninsular Malaysia. The short (205 bp) DNA mini-barcode could distinguish most mammal species (including separating dark taxa) and is of suitable length for high-throughput sequencing. Our new DNA mini-barcode target and a standardized trapping protocol with retrieval of blowflies every 24 h could point the way forward in the development of blowfly-derived DNA as an effective method for mammal monitoring. PMID:25898278

  19. Cerebral Correlates of Abnormal Emotion Conflict Processing in Euthymic Bipolar Patients: A Functional MRI Study.

    PubMed

    Favre, Pauline; Polosan, Mircea; Pichat, Cédric; Bougerol, Thierry; Baciu, Monica

    2015-01-01

    Patients with bipolar disorder experience cognitive and emotional impairment that may persist even during the euthymic state of the disease. These persistent symptoms in bipolar patients (BP) may be characterized by disturbances of emotion regulation and related fronto-limbic brain circuitry. The present study aims to investigate the modulation of fronto-limbic activity and connectivity in BP by the processing of emotional conflict. Fourteen euthymic BP and 13 matched healthy subjects (HS) underwent functional magnetic resonance imaging (fMRI) while performing a word-face emotional Stroop task designed to dissociate the monitoring/generation of emotional conflict from its resolution. Functional connectivity was determined by means of psychophysiological interaction (PPI) approach. Relative to HS, BP were slower to process incongruent stimuli, reflecting higher amount of behavioral interference during emotional Stroop. Furthermore, BP showed decreased activation of the right dorsolateral prefrontal cortex (DLPFC) during the monitoring and a lack of bilateral amygdala deactivation during the resolution of the emotional conflict. In addition, during conflict monitoring, BP showed abnormal positive connectivity between the right DLPFC and several regions of the default mode network. Overall, our results highlighted dysfunctional processing of the emotion conflict in euthymic BP that may be subtended by abnormal activity and connectivity of the DLPFC during the conflict monitoring, which, in turn, leads to failure of amygdala deactivation during the resolution of the conflict. Emotional dysregulation in BP may be underpinned by a lack of top-down cognitive control and a difficulty to focus on the task due to persistent self-oriented attention.

  20. In situ monitoring of intracellular controlled drug release from mesoporous silica nanoparticles coated with pH-responsive charge-reversal polymer.

    PubMed

    Zhang, Peng; Wu, Tong; Kong, Ji-Lie

    2014-10-22

    Therapeutic platforms such as chemotherapy that respond to physical and biological stimuli are highly desirable for effective cancer therapy. In this study, pH-responsive charge-reversal, polymer-coated mesoporous silica nanoparticles [PAH-cit/APTES-MSNs; PAH-cit refers to poly(allylamine)-citraconic anhydride; APTES refers to (3-aminopropyl)triethoxysilane] were synthesized for application as drug-delivery systems for the treatment of malignant cells. Confocal laser scanning microscopy (CLSM) revealed that the PAH-cit/APTES-MSNs nanocomposite effectively delivered and released doxorubicin hydrochloride to the nucleus of HeLa (human cervical carcinoma) cells. Additionally, the real-time dynamic drug-release process was monitored by CLSM. The current pH-controlled-smart-release platform holds promise in drug-delivery and cancer therapy-related applications.

  1. Influence of platform switching on bone-level alterations: a three-year randomized clinical trial.

    PubMed

    Enkling, N; Jöhren, P; Katsoulis, J; Bayer, S; Jervøe-Storm, P-M; Mericske-Stern, R; Jepsen, S

    2013-12-01

    The concept of platform switching has been introduced to implant dentistry based on clinical observations of reduced peri-implant crestal bone loss. However, published data are controversial, and most studies are limited to 12 months. The aim of the present randomized clinical trial was to test the hypothesis that platform switching has a positive impact on crestal bone-level changes after 3 years. Two implants with a diameter of 4 mm were inserted crestally in the posterior mandible of 25 patients. The intraindividual allocation of platform switching (3.3-mm platform) and the standard implant (4-mm platform) was randomized. After 3 months of submerged healing, single-tooth crowns were cemented. Patients were followed up at short intervals for monitoring of healing and oral hygiene. Statistical analysis for the influence of time and platform type on bone levels employed the Brunner-Langer model. At 3 years, the mean radiographic peri-implant bone loss was 0.69 ± 0.43 mm (platform switching) and 0.74 ± 0.57 mm (standard platform). The mean intraindividual difference was 0.05 ± 0.58 mm (95% confidence interval: -0.19, 0.29). Crestal bone-level alteration depended on time (p < .001) but not on platform type (p = .363). The present randomized clinical trial could not confirm the hypothesis of a reduced peri-implant crestal bone loss, when implants had been restored according to the concept of platform switching.

  2. A surface enhanced Raman scattering quantitative analytical platform for detection of trace Cu coupled the catalytic reaction and gold nanoparticle aggregation with label-free Victoria blue B molecular probe.

    PubMed

    Li, Chongning; Ouyang, Huixiang; Tang, Xueping; Wen, Guiqing; Liang, Aihui; Jiang, Zhiliang

    2017-01-15

    With development of economy and society, there is an urgent need to develop convenient and sensitive methods for detection of Cu 2+ pollution in water. In this article, a simple and sensitive SERS sensor was proposed to quantitative analysis of trace Cu 2+ in water. The SERS sensor platform was prepared a common gold nanoparticle (AuNP)-SiO 2 sol substrate platform by adsorbing HSA, coupling with the catalytic reaction of Cu 2+ -ascorbic acid (H 2 A)-dissolved oxygen, and using label-free Victoria blue B (VBB) as SERS molecular probes. The SERS sensor platform response to the AuNP aggregations by hydroxyl radicals (•OH) oxidizing from the Cu 2+ catalytic reaction, which caused the SERS signal enhancement. Therefore, by monitoring the increase of SERS signal, Cu 2+ in water can be determined accurately. The results show that the SERS sensor platforms owns a linear response with a range from 0.025 to 25μmol/L Cu 2+ , and with a detection limit of 0.008μmol/L. In addition, the SERS method demonstrated good specificity for Cu 2+ , which can determined accurately trace Cu 2+ in water samples, and good recovery and accuracy are obtained for the water samples. With its high selectivity and good accuracy, the sensitive SERS quantitative analysis method is expected to be a promising candidate for determining copper ions in environmental monitoring and food safety. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Eodataservice.org: Big Data Platform to Enable Multi-disciplinary Information Extraction from Geospatial Data

    NASA Astrophysics Data System (ADS)

    Natali, S.; Mantovani, S.; Barboni, D.; Hogan, P.

    2017-12-01

    In 1999, US Vice-President Al Gore outlined the concept of `Digital Earth' as a multi-resolution, three-dimensional representation of the planet to find, visualise and make sense of vast amounts of geo- referenced information on physical and social environments, allowing to navigate through space and time, accessing historical and forecast data to support scientists, policy-makers, and any other user. The eodataservice platform (http://eodataservice.org/) implements the Digital Earth Concept: eodatasevice is a cross-domain platform that makes available a large set of multi-year global environmental collections allowing data discovery, visualization, combination, processing and download. It implements a "virtual datacube" approach where data stored on distributed data centers are made available via standardized OGC-compliant interfaces. Dedicated web-based Graphic User Interfaces (based on the ESA-NASA WebWorldWind technology) as well as web-based notebooks (e.g. Jupyter notebook), deskop GIS tools and command line interfaces can be used to access and manipulate the data. The platform can be fully customized on users' needs. So far eodataservice has been used for the following thematic applications: High resolution satellite data distribution Land surface monitoring using SAR surface deformation data Atmosphere, ocean and climate applications Climate-health applications Urban Environment monitoring Safeguard of cultural heritage sites Support to farmers and (re)-insurances in the agriculturés field In the current work, the EO Data Service concept is presented as key enabling technology; furthermore various examples are provided to demonstrate the high level of interdisciplinarity of the platform.

  4. Operational use of open satellite data for marine water quality monitoring

    NASA Astrophysics Data System (ADS)

    Symeonidis, Panagiotis; Vakkas, Theodoros

    2017-09-01

    The purpose of this study was to develop an operational platform for marine water quality monitoring using near real time satellite data. The developed platform utilizes free and open satellite data available from different data sources like COPERNICUS, the European Earth Observation Initiative, or NASA, from different satellites and instruments. The quality of the marine environment is operationally evaluated using parameters like chlorophyll-a concentration, water color and Sea Surface Temperature (SST). For each parameter, there are more than one dataset available, from different data sources or satellites, to allow users to select the most appropriate dataset for their area or time of interest. The above datasets are automatically downloaded from the data provider's services and ingested to the central, spatial engine. The spatial data platform uses the Postgresql database with the PostGIS extension for spatial data storage and Geoserver for the provision of the spatial data services. The system provides daily, 10 days and monthly maps and time series of the above parameters. The information is provided using a web client which is based on the GET SDI PORTAL, an easy to use and feature rich geospatial visualization and analysis platform. The users can examine the temporal variation of the parameters using a simple time animation tool. In addition, with just one click on the map, the system provides an interactive time series chart for any of the parameters of the available datasets. The platform can be offered as Software as a Service (SaaS) to any area in the Mediterranean region.

  5. Refining an Asynchronous Telerehabilitation Platform for Speech-Language Pathology: Engaging End-Users in the Process

    PubMed Central

    Hill, Annie J.; Breslin, Hugh M.

    2016-01-01

    Asynchronous telerehabilitation in which computer-based interventions are remotely monitored and adapted offline is an emerging service delivery model in the rehabilitation of communication disorders. The asynchronous nature of this model may hold a benefit over its synchronous counterpart by eliminating scheduling issues and thus improving efficiency in a healthcare landscape of constrained resource allocation. The design of asynchronous telerehabilitation platforms should therefore ensure efficiency and flexibility. The authors have been engaged in a program of research to develop and evaluate an asynchronous telerehabilitation platform for use in speech-language pathology. eSALT is a novel asynchronous telerehabilitation platform in which clinicians design and individualize therapy tasks for transfer to a client's mobile device. An inbuilt telerehabilitation module allows for remote monitoring and updating of tasks. This paper introduces eSALT and reports outcomes from an usability study that considered the needs of two end-user groups, people with aphasia and clinicians, in the on-going refinement of eSALT. In the study participants with aphasia were paired with clinicians who used eSALT to design and customize therapy tasks. After training on the mobile device the participants engaged in therapy at home for a period of 3 weeks, while clinicians remotely monitored and updated tasks. Following the home trial, participants, and clinicians engaged in semi-structured interviews and completed surveys on the usability of eSALT and their satisfaction with the platform. Content analysis of data involving five participants and three clinicians revealed a number of usability themes including ease of use, user support, satisfaction, limitations, and potential improvements. These findings were translated into a number of refinements of the eSALT platform including the development of a client interface for use on the Apple iPad®, greater variety in feedback options to both the participant and clinician, automatic transfer of results to the clinician, and expansion of the task template list. This research highlights the importance of including end-users in the process of technology refinement, in order to ensure effective and efficient use of the technology. Future directions for research are discussed including clinical trials in which the effectiveness of and adherence to intervention protocols using asynchronous telerehabilitation are examined. PMID:28066211

  6. Biomimetic Graphene-Based 3D Scaffold for Long-Term Cell Culture and Real-Time Electrochemical Monitoring.

    PubMed

    Hu, Xue-Bo; Liu, Yan-Ling; Wang, Wen-Jie; Zhang, Hai-Wei; Qin, Yu; Guo, Shan; Zhang, Xin-Wei; Fu, Lei; Huang, Wei-Hua

    2018-01-16

    Current achievements on electrochemical monitoring of cells are often gained on two-dimensional (2D) substrates, which fail in mimicking the cellular environments and accurately reproducing the cellular functions within a three-dimensional (3D) tissue. In this regard, 3D scaffold concurrently integrated with the function of cell culture and electrochemical sensing is conceivably a promising platform to monitor cells in real time under their in vivo-like 3D microenvironments. However, it is particularly challenging to construct such a multifunctional scaffold platform. Herein, we developed a 3-aminophenylboronic acid (APBA) functionalized graphene foam (GF) network, which combines the biomimetic property of APBA with the mechanical and electrochemical properties of GF. Hence, the GF network can serve as a 3D scaffold to culture cells for a long period with high viability and simultaneously as an electrode for highly sensitive electrochemical sensing. This allows monitoring of gaseous messengers H 2 S released from the cells cultured on the 3D scaffold in real time. This work represents considerable progress in fabricating 3D cell culture scaffold with electrochemical properties, thereby facilitating future studies of physiologically relevant processes.

  7. Flood evolution assessment and monitoring using hydrological modelling techniques: analysis of the inundation areas at a regional scale

    NASA Astrophysics Data System (ADS)

    Podhoranyi, M.; Kuchar, S.; Portero, A.

    2016-08-01

    The primary objective of this study is to present techniques that cover usage of a hydrodynamic model as the main tool for monitoring and assessment of flood events while focusing on modelling of inundation areas. We analyzed the 2010 flood event (14th May - 20th May) that occurred in the Moravian-Silesian region (Czech Republic). Under investigation were four main catchments: Opava, Odra, Olše and Ostravice. Four hydrodynamic models were created and implemented into the Floreon+ platform in order to map inundation areas that arose during the flood event. In order to study the dynamics of the water, we applied an unsteady flow simulation for the entire area (HEC-RAS 4.1). The inundation areas were monitored, evaluated and recorded semi-automatically by means of the Floreon+ platform. We focused on information about the extent and presence of the flood areas. The modeled flooded areas were verified by comparing them with real data from different sources (official reports, aerial photos and hydrological networks). The study confirmed that hydrodynamic modeling is a very useful tool for mapping and monitoring of inundation areas. Overall, our models detected 48 inundation areas during the 2010 flood event.

  8. Smart healthcare textile sensor system for unhindered-pervasive health monitoring

    NASA Astrophysics Data System (ADS)

    Rai, Pratyush; Kumar, Prashanth S.; Oh, Sechang; Kwon, Hyeokjun; Mathur, Gyanesh N.; Varadan, Vijay K.; Agarwal, M. P.

    2012-04-01

    Simultaneous monitoring of physiological parameters- multi-lead Electrocardiograph (ECG), Heart rate variability, and blood pressure- is imperative to all forms of medical treatments. Using an array of signal recording devices imply that the patient will have to be confined to a bed. Textiles offer durable platform for embedded sensor and communication systems. The smart healthcare textile, presented here, is a mobile system for remote/wireless data recording and conditioning. The wireless textile system has been designed to monitor a patient in a non-obstructive way. It has a potential for facilitating point of care medicine and streamlining ambulatory medicine. The sensor systems were designed and fabricated with textile based components for easy integration on textile platform. An innovative plethysmographic blood pressure monitoring system was designed and tested as an alternative to inflatable blood pressure sphygmomanometer. Flexible dry electrodes technology was implemented for ECG. The sensor systems were tested and conditioned to daily activities of patients, which is not permissible with halter type systems. The signal quality was assessed for it applicability to medical diagnosis. The results were used to corroborate smart textile sensor system's ability to function as a point of care system that can provide quality healthcare.

  9. [A Smart Low-Power-Consumption ECG Monitor Based on MSP430F5529 and CC2540].

    PubMed

    Gong, Yuan; Cao, Jin; Luo, Zehui; Zhou, Guohui

    2015-07-01

    A design of ECG monitor was presented in this paper. It is based on the latest MCU and BLE4.0 technologies and can interact with multi-platform smart devices with extra low power consumption. Besides, a clinical expansion part can realize functions including displaying the real-time ECG and heart rate curve, reading abnormal ECG signals stored in the monitor, and setting alarm threshold. These functions are suitable for follow-up use.

  10. HIFU Monitoring and Control with Dual-Mode Ultrasound Arrays

    NASA Astrophysics Data System (ADS)

    Casper, Andrew Jacob

    The biological effects of high-intensity focused ultrasound (HIFU) have been known and studied for decades. HIFU has been shown capable of treating a wide variety of diseases and disorders. However, despite its demonstrated potential, HIFU has been slow to gain clinical acceptance. This is due, in part, to the difficulty associated with robustly monitoring and controlling the delivery of the HIFU energy. The non-invasive nature of the surgery makes the assessment of treatment progression difficult, leading to long treatment times and a significant risk of under treatment. This thesis research develops new techniques and systems for robustly monitoring HIFU therapies for the safe and efficacious delivery of the intended treatment. Systems and algorithms were developed for the two most common modes of HIFU delivery systems: single-element and phased array applicators. Delivering HIFU with a single element transducer is a widely used technique in HIFU therapies. The simplicity of a single element offers many benefits in terms of cost and overall system complexity. Typical monitoring schemes rely on an external device (e.g. diagnostic ultrasound or MRI) to assess the progression of therapy. The research presented in this thesis explores using the same element to both deliver and monitor the HIFU therapy. The use of a dual-mode ultrasound transducer (DMUT) required the development of an FPGA based single-channel arbitrary waveform generator and high-speed data acquisition unit. Data collected from initial uncontrolled ablations led to the development of monitoring and control algorithms which were implemented directly on the FPGA. Close integration between the data acquisition and arbitrary waveform units allowed for fast, low latency control over the ablation process. Results are presented that demonstrate control of HIFU therapies over a broad range of intensities and in multiple in vitro tissues. The second area of investigation expands the DMUT research to an ultrasound phased-array. The phased-array allows for electronic steering of the HIFU focus and imaging of the acoustic medium. Investigating the dual-mode ultrasound array (DMUA) required the design and construction of a novel ultrasound-guided focused ultrasound (USgFUS) platform. The platform consisted of custom hardware designed for the unique requirements of operating a phased-array in both therapeutic and imaging modes. The platform also required the development of FPGA based signal processing and GPU based beamforming algorithms for online monitoring of the therapy process. The results presented in this thesis represent the first demonstration of a real-time USgFUS platform based around a DMUA. Experimental imaging and therapy results from series of animal experiments, including a 12 animal GLP study, are presented. In addition, in vitro control results, which build upon the DMUT work, are presented.

  11. Urban Monitoring Based on SENTINEL-1 Data Using Permanent Scatterer Interferometry and SAR Tomography

    NASA Astrophysics Data System (ADS)

    Crosetto, M.; Budillon, A.; Johnsy, A.; Schirinzi, G.; Devanthéry, N.; Monserrat, O.; Cuevas-González, M.

    2018-04-01

    A lot of research and development has been devoted to the exploitation of satellite SAR images for deformation measurement and monitoring purposes since Differential Interferometric Synthetic Apertura Radar (InSAR) was first described in 1989. In this work, we consider two main classes of advanced DInSAR techniques: Persistent Scatterer Interferometry and Tomographic SAR. Both techniques make use of multiple SAR images acquired over the same site and advanced procedures to separate the deformation component from the other phase components, such as the residual topographic component, the atmospheric component, the thermal expansion component and the phase noise. TomoSAR offers the advantage of detecting either single scatterers presenting stable proprieties over time (Persistent Scatterers) and multiple scatterers interfering within the same range-azimuth resolution cell, a significant improvement for urban areas monitoring. This paper addresses a preliminary inter-comparison of the results of both techniques, for a test site located in the metropolitan area of Barcelona (Spain), where interferometric Sentinel-1 data were analysed.

  12. Racial and Ethnic Differences in Diurnal Cortisol Rhythms in Preadolescents: The Role of Parental Psychosocial Risk and Monitoring

    PubMed Central

    Martin, Christina Gamache; Bruce, Jacqueline; Fisher, Philip A.

    2012-01-01

    Racial/ethnic minorities experience persistent health disparities due in part to their exposure to chronic SES and psychosocial risk. The hypothalamic-pituitary-adrenal axis and its hormonal end product, cortisol, are believed to mediate the associations between chronic stress and poor health. In this study, racial/ethnic differences in diurnal salivary cortisol rhythms in 179 preadolescent youths and the contributing roles of SES risk, psychosocial risk, perceived discrimination, harsh parenting, and parental monitoring were examined. The analyses revealed racial/ethnic differences in diurnal cortisol rhythms, with African Americans having significantly flatter morning-to-evening cortisol slopes than Caucasians and with Latinos having significantly lower evening cortisol levels than Caucasians. Greater psychosocial risk and less parental monitoring were associated with flatter cortisol slopes. Racial/ethnic differences on the cortisol measures persisted when controlling for SES, psychosocial risk, and parenting quality. The need to assess chronic risk across the lifespan and disentangle possible genetic from environmental contributors is discussed. PMID:22414445

  13. The Trouble with Color.

    ERIC Educational Resources Information Center

    Merchant, David

    1999-01-01

    Discusses problems with color quality in Web sites. Topics include differences in monitor settings, including contrast; amount of video RAM; user preference settings; browser-safe colors; cross-platform readability; and gamma values. (LRW)

  14. 50 CFR 218.115 - Requirements for monitoring and reporting.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Narrative description of sensors and platforms utilized for marine mammal detection and timeline... sensor; (vi) Length of time observers maintained visual contact with marine mammal; (vii) Wave height...

  15. Experimental research on a vibration isolation platform for momentum wheel assembly

    NASA Astrophysics Data System (ADS)

    Zhou, Weiyong; Li, Dongxu

    2013-03-01

    This paper focuses on experimental research on a vibration isolation platform for momentum wheel assembly (MWA). A vibration isolation platform, consisting of four folded beams, was designed to isolate the microvibrations produced by MWA during operation. The performance of the platform was investigated with an impact test to verify the natural frequencies and damping coefficients of the system when the MWA was at rest, and with a measurement system consisting of a Kistler table and an optical tabletop to monitor the microvibrations produced when the MWA operated at stable speed. The results show that although the sixth natural frequency of the system is 26.29 Hz (1577 rev/min) when the MWA is at rest, the critical speed occurs at 2600 rev/min due to the gyroscopic effect of the flywheel, and that the platform can effectively isolate the high frequency disturbances in the 100-300 Hz range in all six degrees of freedom. Thus, the gyroscopic effect force deserves more attention in the design and analysis of vibration isolation platform for rotating wheel assembly, and the platform in this paper is particularly effective for MWA, which generally operates at high rotating speed range.

  16. Long-term monitoring of persistent organic pollutants (POPs) at the Norwegian Troll station in Dronning Maud Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Kallenborn, R.; Breivik, K.; Eckhardt, S.; Lunder, C. R.; Manø, S.; Schlabach, M.; Stohl, A.

    2013-07-01

    A first long-term monitoring of selected persistent organic pollutants (POPs) in Antarctic air has been conducted at the Norwegian research station Troll (Dronning Maud Land). As target contaminants 32 PCB congeners, α- and γ-hexachlorocyclohexane (HCH), trans- and cis-chlordane, trans- and cis-nonachlor, p,p'- and o,p-DDT, DDD, DDE as well as hexachlorobenzene (HCB) were selected. The monitoring program with weekly samples taken during the period 2007-2010 was coordinated with the parallel program at the Norwegian Arctic monitoring site (Zeppelin mountain, Ny-Ålesund, Svalbard) in terms of priority compounds, sampling schedule as well as analytical methods. The POP concentration levels found in Antarctica were considerably lower than Arctic atmospheric background concentrations. Similar to observations for Arctic samples, HCB is the predominant POP compound, with levels of around 22 pg m-3 throughout the entire monitoring period. In general, the following concentration distribution was found for the Troll samples analyzed: HCB > Sum HCH > Sum PCB > Sum DDT > Sum chlordanes. Atmospheric long-range transport was identified as a major contamination source for POPs in Antarctic environments. Several long-range transport events with elevated levels of pesticides and/or compounds with industrial sources were identified based on retroplume calculations with a Lagrangian particle dispersion model (FLEXPART).

  17. Blood pressure self-monitoring in pregnancy: examining feasibility in a prospective cohort study.

    PubMed

    Tucker, Katherine L; Taylor, Kathryn S; Crawford, Carole; Hodgkinson, James A; Bankhead, Clare; Carver, Tricia; Ewers, Elizabeth; Glogowska, Margaret; Greenfield, Sheila M; Ingram, Lucy; Hinton, Lisa; Khan, Khalid S; Locock, Louise; Mackillop, Lucy; McCourt, Christine; Pirie, Alexander M; Stevens, Richard; McManus, Richard J

    2017-12-28

    Raised blood pressure (BP) affects approximately 10% of pregnancies worldwide, and a high proportion of affected women develop pre-eclampsia. This study aimed to evaluate the feasibility of self-monitoring of BP in pregnancy in women at higher risk of pre-eclampsia. This prospective cohort study of self-monitoring BP in pregnancy was carried out in two hospital trusts in Birmingham and Oxford and thirteen primary care practices in Oxfordshire. Eligible women were those defined by the UK National Institute for Health and Care Excellence (NICE) guidelines as at higher risk of pre-eclampsia. A total of 201 participants were recruited between 12 and 16 weeks of pregnancy and were asked to take two BP readings twice daily three times a week through their pregnancy. Primary outcomes were recruitment, retention and persistence of self-monitoring. Study recruitment and retention were analysed with descriptive statistics. Survival analysis was used to evaluate the persistence of self-monitoring and the performance of self-monitoring in the early detection of gestational hypertension, compared to clinic BP monitoring. Secondary outcomes were the mean clinic and self-monitored BP readings and the performance of self-monitoring in the detection of gestational hypertension and pre-eclampsia compared to clinic BP. Of 201 women recruited, 161 (80%) remained in the study at 36 weeks or to the end of their pregnancy, 162 (81%) provided any home readings suitable for analysis, 148 (74%) continued to self-monitor at 20 weeks and 107 (66%) at 36 weeks. Self-monitored readings were similar in value to contemporaneous matched clinic readings for both systolic and diastolic BP. Of the 23 who developed gestational hypertension or pre-eclampsia and self-monitored, 9 (39%) had a raised home BP prior to a raised clinic BP. Self-monitoring of BP in pregnancy is feasible and has potential to be useful in the early detection of gestational hypertensive disorders but maintaining self-monitoring throughout pregnancy requires support and probably enhanced training.

  18. Use of a nesting platform by Gull-billed Terns and Black Skimmers at the Salton Sea, California

    USGS Publications Warehouse

    Molina, Kathy C.; Ricca, Mark A.; Miles, A. Keith; Schoneman, Christian

    2009-01-01

    In 2006, we constructed an elevated nesting platform at the Salton Sea, California, and monitored its use by Gull-billed Terns and Black Skimmers over three subsequent breeding seasons. Black Skimmers were the first to colonize the platform with a total of five nests in 2006. In 2007 Gull-billed Terns colonized the platform with a total of 28 nests and the number of Black Skimmer nests increased to 20. Neither species nested on the platform in 2008. Low success for both species was probably influenced by at least two factors. First, when both species nested on the platform, nest densities were higher than is typical of their colonies on larger, earthen islands, and colony success may have been reduced by overcrowding. Second, lack of access to water may have reduced chicks' ability to thermoregulate effectively in the hot environment of the Salton Sea. Refinements to the size, design, and location of artificial nesting habitats are necessary to enhance productivity of colonial groundnesting birds at the Salton Sea successfully.

  19. A versatile modular bioreactor platform for Tissue Engineering

    PubMed Central

    Schuerlein, Sebastian; Schwarz, Thomas; Krziminski, Steffan; Gätzner, Sabine; Hoppensack, Anke; Schwedhelm, Ivo; Schweinlin, Matthias; Walles, Heike

    2016-01-01

    Abstract Tissue Engineering (TE) bears potential to overcome the persistent shortage of donor organs in transplantation medicine. Additionally, TE products are applied as human test systems in pharmaceutical research to close the gap between animal testing and the administration of drugs to human subjects in clinical trials. However, generating a tissue requires complex culture conditions provided by bioreactors. Currently, the translation of TE technologies into clinical and industrial applications is limited due to a wide range of different tissue‐specific, non‐disposable bioreactor systems. To ensure a high level of standardization, a suitable cost‐effectiveness, and a safe graft production, a generic modular bioreactor platform was developed. Functional modules provide robust control of culture processes, e.g. medium transport, gas exchange, heating, or trapping of floating air bubbles. Characterization revealed improved performance of the modules in comparison to traditional cell culture equipment such as incubators, or peristaltic pumps. By combining the modules, a broad range of culture conditions can be achieved. The novel bioreactor platform allows using disposable components and facilitates tissue culture in closed fluidic systems. By sustaining native carotid arteries, engineering a blood vessel, and generating intestinal tissue models according to a previously published protocol the feasibility and performance of the bioreactor platform was demonstrated. PMID:27492568

  20. A versatile modular bioreactor platform for Tissue Engineering.

    PubMed

    Schuerlein, Sebastian; Schwarz, Thomas; Krziminski, Steffan; Gätzner, Sabine; Hoppensack, Anke; Schwedhelm, Ivo; Schweinlin, Matthias; Walles, Heike; Hansmann, Jan

    2017-02-01

    Tissue Engineering (TE) bears potential to overcome the persistent shortage of donor organs in transplantation medicine. Additionally, TE products are applied as human test systems in pharmaceutical research to close the gap between animal testing and the administration of drugs to human subjects in clinical trials. However, generating a tissue requires complex culture conditions provided by bioreactors. Currently, the translation of TE technologies into clinical and industrial applications is limited due to a wide range of different tissue-specific, non-disposable bioreactor systems. To ensure a high level of standardization, a suitable cost-effectiveness, and a safe graft production, a generic modular bioreactor platform was developed. Functional modules provide robust control of culture processes, e.g. medium transport, gas exchange, heating, or trapping of floating air bubbles. Characterization revealed improved performance of the modules in comparison to traditional cell culture equipment such as incubators, or peristaltic pumps. By combining the modules, a broad range of culture conditions can be achieved. The novel bioreactor platform allows using disposable components and facilitates tissue culture in closed fluidic systems. By sustaining native carotid arteries, engineering a blood vessel, and generating intestinal tissue models according to a previously published protocol the feasibility and performance of the bioreactor platform was demonstrated. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. GOES data-collection system instrumentation, installation, and maintenance manual

    USGS Publications Warehouse

    Blee, J.W.; Herlong, H.E.; Kaufmann, C.D.; Hardee, J.H.; Field, M.L.; Middelburg, R.F.

    1986-01-01

    The purpose of the manual is to describe the installation, operation, and maintenance of Geostationary Operational Environmental Satellite (GOES) data collection platforms (DCP's) and associated equipment. This manual is not a substitute for DCP manufacturers ' manuals but is additional material that describes the application of data-collection platforms in the Water Resources Division. Power supplies, encoders, antennas, Mini Monitors, voltage analog devices, and the installation of these at streamflow-gaging stations are discussed in detail. (USGS)

  2. Application of metal magnetic memory technology on defects detection of jack-up platform

    NASA Astrophysics Data System (ADS)

    Xu, Changhang; Cheng, Liping; Xie, Jing; Yin, Xiaokang; Chen, Guoming

    2016-02-01

    Metal magnetic memory test (MMMT), which is an effective way in evaluating early damages of ferrimagnets, can determine the existence of material stresses concentration and premature defects. As one of offshore oil exploration and development equipment, jack-up platform always generate stress concentration during its life-cycle due to complicated loading condition and the hash marine environment, which will decline the bearing capacity and cause serious consequences. The paper conducts in situ experiments of defects detection on some key structural components of jack-up platform using MMMT. The signals acquired by MMM-System are processed for feature extraction to evaluate the severity of structure stress concentration. The results show that the method presented in this paper based on MMMT can provide an effective and convenient way of defect detection and structural health monitoring for Jack-up Platform.

  3. Zoonotic cutaneous leishmaniasis in northeastern Iran: a GIS-based spatio-temporal multi-criteria decision-making approach.

    PubMed

    Mollalo, A; Khodabandehloo, E

    2016-07-01

    Zoonotic cutaneous leishmaniasis (ZCL) constitutes a serious public health problem in many parts of the world including Iran. This study was carried out to assess the risk of the disease in an endemic province by developing spatial environmentally based models in yearly intervals. To fill the gap of underestimated true burden of ZCL and short study period, analytical hierarchy process (AHP) and fuzzy AHP decision-making methods were used to determine the ZCL risk zones in a Geographic Information System platform. Generated risk maps showed that high-risk areas were predominantly located at the northern and northeastern parts in each of the three study years. Comparison of the generated risk maps with geocoded ZCL cases at the village level demonstrated that in both methods more than 90%, 70% and 80% of the cases occurred in high and very high risk areas for the years 2010, 2011, and 2012, respectively. Moreover, comparison of the risk categories with spatially averaged normalized difference vegetation index (NDVI) images and a digital elevation model of the study region indicated persistent strong negative relationships between these environmental variables and ZCL risk degrees. These findings identified more susceptible areas of ZCL and will help the monitoring of this zoonosis to be more targeted.

  4. Framework for Evaluating the Health Impact of the Scale-Up of Malaria Control Interventions on All-Cause Child Mortality in Sub-Saharan Africa.

    PubMed

    Yé, Yazoume; Eisele, Thomas P; Eckert, Erin; Korenromp, Eline; Shah, Jui A; Hershey, Christine L; Ivanovich, Elizabeth; Newby, Holly; Carvajal-Velez, Liliana; Lynch, Michael; Komatsu, Ryuichi; Cibulskis, Richard E; Moore, Zhuzhi; Bhattarai, Achuyt

    2017-09-01

    Concerted efforts from national and international partners have scaled up malaria control interventions, including insecticide-treated nets, indoor residual spraying, diagnostics, prompt and effective treatment of malaria cases, and intermittent preventive treatment during pregnancy in sub-Saharan Africa (SSA). This scale-up warrants an assessment of its health impact to guide future efforts and investments; however, measuring malaria-specific mortality and the overall impact of malaria control interventions remains challenging. In 2007, Roll Back Malaria's Monitoring and Evaluation Reference Group proposed a theoretical framework for evaluating the impact of full-coverage malaria control interventions on morbidity and mortality in high-burden SSA countries. Recently, several evaluations have contributed new ideas and lessons to strengthen this plausibility design. This paper harnesses that new evaluation experience to expand the framework, with additional features, such as stratification, to examine subgroups most likely to experience improvement if control programs are working; the use of a national platform framework; and analysis of complete birth histories from national household surveys. The refined framework has shown that, despite persisting data challenges, combining multiple sources of data, considering potential contributions from both fundamental and proximate contextual factors, and conducting subnational analyses allows identification of the plausible contributions of malaria control interventions on malaria morbidity and mortality.

  5. Production code control system for hydrodynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slone, D.M.

    1997-08-18

    We describe how the Production Code Control System (pCCS), written in Perl, has been used to control and monitor the execution of a large hydrodynamics simulation code in a production environment. We have been able to integrate new, disparate, and often independent, applications into the PCCS framework without the need to modify any of our existing application codes. Both users and code developers see a consistent interface to the simulation code and associated applications regardless of the physical platform, whether an MPP, SMP, server, or desktop workstation. We will also describe our use of Perl to develop a configuration managementmore » system for the simulation code, as well as a code usage database and report generator. We used Perl to write a backplane that allows us plug in preprocessors, the hydrocode, postprocessors, visualization tools, persistent storage requests, and other codes. We need only teach PCCS a minimal amount about any new tool or code to essentially plug it in and make it usable to the hydrocode. PCCS has made it easier to link together disparate codes, since using Perl has removed the need to learn the idiosyncrasies of system or RPC programming. The text handling in Perl makes it easy to teach PCCS about new codes, or changes to existing codes.« less

  6. Extreme flood impact on estuarine and coastal biogeochemistry: the 2013 Elbe flood

    NASA Astrophysics Data System (ADS)

    Voynova, Yoana G.; Brix, Holger; Petersen, Wilhelm; Weigelt-Krenz, Sieglinde; Scharfe, Mirco

    2017-02-01

    Within the context of the predicted and observed increase in droughts and floods with climate change, large summer floods are likely to become more frequent. These extreme events can alter typical biogeochemical patterns in coastal systems. The extreme Elbe River flood in June 2013 not only caused major damages in several European countries but also generated large-scale biogeochemical changes in the Elbe estuary and the adjacent German Bight. The high-frequency monitoring network within the Coastal Observing System for Northern and Arctic Seas (COSYNA) captured the flood influence on the German Bight. Data from a FerryBox station in the Elbe estuary (Cuxhaven) and from a FerryBox platform aboard the M/V Funny Girl ferry (traveling between Büsum and Helgoland) documented the salinity changes in the German Bight, which persisted for about 2 months after the peak discharge. The Elbe flood generated a large influx of nutrients and dissolved and particulate organic carbon on the coast. These conditions subsequently led to the onset of a phytoplankton bloom, observed by dissolved oxygen supersaturation, and higher than usual pH in surface coastal waters. The prolonged stratification also led to widespread bottom water dissolved oxygen depletion, unusual for the southeastern German Bight in the summer.

  7. U.S. Geological Survey Emerging Applications of Unmanned Aircraft Systems

    NASA Astrophysics Data System (ADS)

    Hutt, M. E.

    2012-12-01

    In anticipation of transforming the research methods and resource management techniques employed across the Department of the Interior, the U.S. Geological Survey (USGS) Unmanned Aircraft Systems (UAS) Project Office is conducting missions using small UAS- sUAS platforms (<20 lbs.). The USGS is dedicated to expanding the use of sUAS technology in support of scientific, resource and land management missions. UAS technology is currently being used by USGS and our partners to monitor environmental conditions, analyze the impacts of climate change, respond to natural hazards, understand landscape change rates and consequences, conduct wildlife inventories and support related land management and law enforcement missions. Our ultimate goal is to support informed decision making by creating the opportunity, via UAS technology, to gain access to an increased level of persistent monitoring of earth surface processes (forest health conditions, wildfires, earthquake zones, invasive species, etc.) in areas that have been logistically difficult, cost prohibitive or technically impossible to obtain consistent, reliable, timely information. USGS is teaming with the Department of the Interior Aviation Management Directorate to ensure the safe and cost effective adoption of UAS technology. While the USGS is concentrating on operating sUAS, the immense value of increased flight time and more robust sensor capabilities available on larger platforms cannot be ignored. We are partnering with several groups including the Department of Homeland Security, National Aeronautics and Space Administration, Department of Defense, and National Oceanic and Atmospheric Administration for access to data collected from their fleet of high altitude, long endurance (HALE) UAS. The HALE systems include state of the art sensors including Electro-Optical, Thermal Infrared and Synthetic Aperture Radar (SAR). The data being collected by High Altitude, Long Endurance (HALE) systems is can be routinely shared in near real time at several DOI- USGS locations. Analysis tools are becoming available that can produce a robust set of products including a geo-referenced base for value added investigations. Much like the use of global positioning systems, unmanned aircraft systems have the potential of enabling us to be better stewards of the land. We are actively working to develop applications of the traditional full motion video capabilities and are engaged in developing additional sensor capabilities for sUAS including- magnetometers, temperature, radio telemetry, chemical and biological gas detection, and gimbal mounted "photogrammetric" cameras.

  8. Systematic and Open Identification of Researchers and Authors: Focus on Open Researcher and Contributor ID

    PubMed Central

    Akazhanov, Nurbek A.; Voronov, Alexander A.; Kitas, George D.

    2014-01-01

    Unique identifiers of researchers and authors can help all stakeholders of scientific communications improve their workflows. There have been several attempts to establish professional networks of scholars and list their scholarly achievements on digital platforms. Some of these platforms such as Google Scholar, Web of Knowledge and PubMed are searched to pick relevant peer reviewers, assess authors' publication history or choose suitable candidates for research and academic projects. However, each of these hubs has its specific applications, limiting the universal use for permanent tagging of researcher profiles. The Open Researcher and Contributor ID (ORCID) initiative, launched in 2012, is aimed at registering scholarly contributors and averting the persistent ambiguity of recorded author names. The ORCID registry is growing fast and integrating with other ID-generating platforms, thereby increasing the functionality of the integrated systems. ORCID identifiers are increasingly used for selecting peer reviewers and acknowledging various scholarly contributions (e.g., published articles, reviewer comments, conference presentations). The initiative offers unique opportunities for transparent disclosures of author contributions and competing interests and improving ethical standards of research, editing, and publishing. PMID:25408574

  9. Systematic and open identification of researchers and authors: focus on open researcher and contributor ID.

    PubMed

    Gasparyan, Armen Yuri; Akazhanov, Nurbek A; Voronov, Alexander A; Kitas, George D

    2014-11-01

    Unique identifiers of researchers and authors can help all stakeholders of scientific communications improve their workflows. There have been several attempts to establish professional networks of scholars and list their scholarly achievements on digital platforms. Some of these platforms such as Google Scholar, Web of Knowledge and PubMed are searched to pick relevant peer reviewers, assess authors' publication history or choose suitable candidates for research and academic projects. However, each of these hubs has its specific applications, limiting the universal use for permanent tagging of researcher profiles. The Open Researcher and Contributor ID (ORCID) initiative, launched in 2012, is aimed at registering scholarly contributors and averting the persistent ambiguity of recorded author names. The ORCID registry is growing fast and integrating with other ID-generating platforms, thereby increasing the functionality of the integrated systems. ORCID identifiers are increasingly used for selecting peer reviewers and acknowledging various scholarly contributions (e.g., published articles, reviewer comments, conference presentations). The initiative offers unique opportunities for transparent disclosures of author contributions and competing interests and improving ethical standards of research, editing, and publishing.

  10. The Persistence of the Pamphlet: On the Continued Relevance of the Health Information Pamphlet in the Digital Age.

    PubMed

    Sium, Aman; Giuliani, Meredith; Papadakos, Janet

    2017-09-01

    Since the early 2000s, web and digital health information and education has progressed in both volume and innovation (Dutta-Bergman 2006; Mano, Computers in Human Behavior 39 404 412, 2014). A growing number of leading Canadian health institutions (e.g., hospitals, community health centers, and health ministries) are migrating much of their vital public health information and education, once restricted to pamphlets and other physically distributed materials, to online platforms. Examples of these platforms are websites and web pages, eLearning modules, eBooks, streamed classrooms, audiobooks, and online health videos. The steady migration of health information to online platforms is raising important questions for fields of patient education, such as cancer education. These questions include, but are not limited to (a) are pamphlets still a useful modality for patient information and education when so much is available on the Internet? (b) If so, what should be the relationship between print-based and online health information and education, and when should one modality take precedence over the other? This article responds to these questions within the Canadian health care context.

  11. Dynamic composition of medical support services in the ICU: Platform and algorithm design details.

    PubMed

    Hristoskova, Anna; Moeyersoon, Dieter; Van Hoecke, Sofie; Verstichel, Stijn; Decruyenaere, Johan; De Turck, Filip

    2010-12-01

    The Intensive Care Unit (ICU) is an extremely data-intensive environment where each patient needs to be monitored 24/7. Bedside monitors continuously register vital patient values (such as serum creatinine, systolic blood pressure) which are recorded frequently in the hospital database (e.g. every 2 min in the ICU of the Ghent University Hospital), laboratories generate hundreds of results of blood and urine samples, and nurses measure blood pressure and temperature up to 4 times an hour. The processing of such large amount of data requires an automated system to support the physicians' daily work. The Intensive Care Service Platform (ICSP) offers the needed support through the development of medical support services for processing and monitoring patients' data. With an increased deployment of these medical support services, reusing existing services as building blocks to create new services offers flexibility to the developer and accelerates the design process. This paper presents a new addition to the ICSP, the Dynamic Composer for Web services. Based on a semantic description of the medical support services, this Composer enables a service to be executed by creating a composition of medical services that provide the needed calculations. The composition is achieved using various algorithms satisfying certain quality of service (QoS) constraints and requirements. In addition to the automatic composition the paper also proposes a recovery mechanism in case of unavailable services. When executing the composition of medical services, unavailable services are dynamically replaced by equivalent services or a new composition achieving the same result. The presented platform and QoS algorithms are put through extensive performance and scalability tests for typical ICU scenarios, in which basic medical services are composed to a complex patient monitoring service. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Historic Shipwrecks as Ecosystem Monitoring Platforms in the Wake of Deepwater Horizon? Results of the Gulf of Mexico Shipwreck Corrosion, Hydrocarbon Exposure, Microbiology, and Archaeology (GOM-SCHEMA) Project

    NASA Astrophysics Data System (ADS)

    Damour, M.; Hamdan, L. J.; Salerno, J. L.; McGown, C.; Blackwell, C. A.; Church, R.; Warren, D.; Horrell, C.; Jordan, B.; Moore, J.

    2016-02-01

    Historic shipwrecks and other archaeological sites are protected by a well-established body of historic preservation laws intended to preserve these sensitive, non-renewable resources. While the cultural, historical, and archaeological value of historic shipwrecks is unequivocal, their function and value as ecosystem monitoring platforms following a major environmental disaster is becoming apparent. Shipwrecks have been found in previous studies to serve as artificial reefs and hotspots of biodiversity, essentially providing the basis for an intact ecosystem. This is especially true in the deepwater marine environment where natural hard-bottom is sparse. Micro- and macro-infaunal diversity on shipwrecks and their sensitivity to environmental change demonstrates the suitability of these platforms for monitoring ecosystem impact and recovery. After the 2010 Deepwater Horizon oil spill, the Bureau of Ocean Energy Management (BOEM) and partners initiated a multidisciplinary study to examine spill effects on shipwrecks and their associated microbial communities. To assess these impacts and to perform comparative analyses, the team collected microbiological, geochemical, and archaeological data at wooden- and metal-hulled shipwrecks within and outside of the subsurface spill-impacted area. Microbial community biodiversity informs us of micro-scale changes while 3D laser and sonar data reveal macro-scale changes. A multidisciplinary approach informs us of the roles microorganisms have in shipwreck degradation and corrosion as well as their response to ecosystem impacts. Results of the study identified multiple lines of evidence that sites were impacted by exposure to spill-related contaminants. Future multidisciplinary studies at these sites, as part of a long-term monitoring program, should inform on ecosystem recovery.

  13. Designing Robust and Reliable Timestamps for Remote Patient Monitoring.

    PubMed

    Clarke, Malcolm; Schluter, Paul; Reinhold, Barry; Reinhold, Brian

    2015-09-01

    Having timestamps that are robust and reliable is essential for remote patient monitoring in order for patient data to have context and to be correlated with other data. However, unlike hospital systems for which guidelines on timestamps are currently provided by HL7 and IHE, remote patient monitoring platforms are: operated in environments where it can be difficult to synchronize with reliable time sources; include devices with simple or no clock; and may store data spanning significant periods before able to upload. Existing guidelines prove inadequate. This paper analyzes the requirements and the operating scenarios of remote patient monitoring platforms and defines a framework to convey information on the conditions under which observations were made by the device and forwarded by the gateway in order for data to be managed appropriately and to include both reference to local time and an underlying continuous reference timeline. We define the timestamp formats of HL7 to denote the different conditions of operation and describe extensions to the existing definition of the HL7 timestamp to differentiate between time local to GMT (+0000) and universal coordinated time or network time protocol time where no geographic time zone is implied (-0000). We further describe how timestamps from devices having only simple or no clocks might be managed reliably by a gateway to provide timestamps that are referenced to local time and an underlying continuous reference timeline. We extend the HL7 message to include information to permit a subsequent receiver of the data to understand the quality of the timestamp and how it has been translated. We present evaluation from deploying a platform for 12 months.

  14. Using Mobile Monitoring to Assess Spatial Variability in Urban Air Pollution Levels: Opportunities and Challenges (Invited)

    NASA Astrophysics Data System (ADS)

    Larson, T.

    2010-12-01

    Measuring air pollution concentrations from a moving platform is not a new idea. Historically, however, most information on the spatial variability of air pollutants have been derived from fixed site networks operating simultaneously over space. While this approach has obvious advantages from a regulatory perspective, with the increasing need to understand ever finer scales of spatial variability in urban pollution levels, the use of mobile monitoring to supplement fixed site networks has received increasing attention. Here we present examples of the use of this approach: 1) to assess existing fixed-site fine particle networks in Seattle, WA, including the establishment of new fixed-site monitoring locations; 2) to assess the effectiveness of a regulatory intervention, a wood stove burning ban, on the reduction of fine particle levels in the greater Puget Sound region; and 3) to assess spatial variability of both wood smoke and mobile source impacts in both Vancouver, B.C. and Tacoma, WA. Deducing spatial information from the inherently spatio-temporal measurements taken from a mobile platform is an area that deserves further attention. We discuss the use of “fuzzy” points to address the fine-scale spatio-temporal variability in the concentration of mobile source pollutants, specifically to deduce the broader distribution and sources of fine particle soot in the summer in Vancouver, B.C. We also discuss the use of principal component analysis to assess the spatial variability in multivariate, source-related features deduced from simultaneous measurements of light scattering, light absorption and particle-bound PAHs in Tacoma, WA. With increasing miniaturization and decreasing power requirements of air monitoring instruments, the number of simultaneous measurements that can easily be made from a mobile platform is rapidly increasing. Hopefully the methods used to design mobile monitoring experiments for differing purposes, and the methods used to interpret those measurements will keep pace.

  15. Mood recognition in bipolar patients through the PSYCHE platform: preliminary evaluations and perspectives.

    PubMed

    Valenza, Gaetano; Gentili, Claudio; Lanatà, Antonio; Scilingo, Enzo Pasquale

    2013-01-01

    Bipolar disorders are characterized by a series of both depressive and manic or hypomanic episodes. Although common and expensive to treat, the clinical assessment of bipolar disorder is still ill-defined. In the current literature several correlations between mood disorders and dysfunctions involving the autonomic nervous system (ANS) can be found. The objective of this work is to develop a novel mood recognition system based on a pervasive, wearable and personalized monitoring system using ANS-related biosignals. The monitoring platform used in this study is the core sensing system of the personalized monitoring systems for care in mental health (PSYCHE) European project. It is comprised of a comfortable sensorized t-shirt that can acquire the inter-beat interval time series, the heart rate, and the respiratory dynamics for long-term monitoring during the day and overnight. In this study, three bipolar patients were followed for a period of 90 days during which up to six monitoring sessions and psychophysical evaluations were performed for each patient. Specific signal processing techniques and artificial intelligence algorithms were applied to analyze more than 120 h of data. Experimental results are expressed in terms of confusion matrices and an exhaustive descriptive statistics of the most relevant features is reported as well. A classification accuracy of about 97% is achieved for the intra-subject analysis. Such an accuracy was found in distinguishing relatively good affective balance state (euthymia) from severe clinical states (severe depression and mixed state) and is lower in distinguishing euthymia from the milder states (accuracy up to 88%). The PSYCHE platform could provide a viable decision support system in order to improve mood assessment in patient care. Evidences about the correlation between mood disorders and ANS dysfunctions were found and the obtained results are promising for an effective biosignal-based mood recognition. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Mobile Monitoring of Diesel Particulate Matter Exposure within Five Urban Microenvironments, Portland, OR

    NASA Astrophysics Data System (ADS)

    Orlando, P. J.; Bennett, B. A.; George, L. A.

    2016-12-01

    Diesel particulate matter (DPM) is a hazardous air pollutant linked to mortality and morbidity outcomes including cancer, cardiovascular disease, and adverse respiratory effects. The EPA's Air Toxics Assessment indicated that more than 50% of Oregonians are exposed to 10 times the ambient benchmark concentration (ABC) of 0.1 μgm-3 for DPM. These model estimates have not been verified with measurements, potentially limiting policy action. We developed a mobile monitoring platform to ground-truth model predictions and characterize DPM spatial variation. Using black carbon (BC) as a marker, concentrations within five urban microenvironments (a construction site, an arterial, a bus mall, a city park, and an indoor workspace) were sampled within Portland, OR. The mobile monitoring platform consisted of a bicycle and trailer equipped with an aethalometer measuring BC mass, a Data Ram 4 measuring total PM2.5 mass, and a Q-Starz GPS recording location; each instrument was monitoring in 1 second intervals. Concentrations of BC were used as an indicator of DPM. The construction site had the highest DPM concentration (7 μg m-3). The indoor workspace and the park had the lowest DPM (0.3 μg m-3). Near the construction site, DPM constituted approximately 50% of the total PM2.5. However, at the park, DPM was attributed to only 6% of the total PM2.5, while the indoor space constituted 15%. Concentrations of BC near construction sites were observed to exceed 67 times the state ABC of 0.1 μg m-3 (Figure). These results signify the need to better characterize the urban exposure to DPM, as even the cleanest microenvironments may be 3 times above the ABC. Our mobile monitoring platform will help further elucidate how local-scale sources contribute to the broader distribution of DPM within Portland, while providing a tool for both residents and DEQ to effectively mitigate the health impacts from DPM exposure.

  17. Synchronization of Coupled Mechanical Oscillators

    NASA Astrophysics Data System (ADS)

    Kennedy, Linda; Andereck, Barbara

    2007-10-01

    The Kuramoto model is used to describe synchronization of non-linear oscillators in biological, chemical, and physics systems. Using identical metronomes with similar frequencies on a movable platform, as per J. Pantaleone Am. J. Phys. 70, 992 (2002), we hope to realize a mechanical example of this model. A variety of materials were used for the movable platforms that coupled the metronomes. Platforms were either allowed to roll on cylindrical supports or suspended in pendulum fashion from the ceiling. Metronomes were started out of phase and allowed to synchronize. Measurements by PASCO photogates monitored by a LabView program were used to determine the phase difference between the two metronomes as a function of time. The dynamics of the metronome coupling was described by two second-order differential equations involving four key parameters: platform coupling, oscillation angle, damping/driving strength, and intrinsic frequency difference. Outstanding agreement between theory and experiment was achieved when the vertical motion of the platform and metronomes was included in the governing equations.

  18. Paper-based Platform for Urinary Creatinine Detection.

    PubMed

    Sittiwong, Jarinya; Unob, Fuangfa

    2016-01-01

    A new paper platform was developed for the colorimetric detection of creatinine. The filter paper was coated with 3-propylsulfonic acid trimethoxysilane and used as the platform. Creatinine in a cationic form was extracted onto the paper via an ion-exchange mechanism and detected through the Jaffé reaction, resulting in a yellow-orange color complex. The color change on the paper could be observed visually, and the quantitative detection of creatinine was achieved through monitoring the color intensity change. The color intensity of creatinine complexes on the paper platform as a function of the creatinine concentration provided a linear range for creatinine detection in the range of 10 - 60 mg L(-1) and a detection limit of 4.2 mg L(-1). The accuracy of the proposed paper-based method was comparable to the conventional standard Jaffé method. This paper platform could be applied for simple and rapid detection of creatinine in human urine samples with a low consumption of reagent.

  19. Effects of offshore platforms on soft-bottom macro-benthic assemblages: a case study in a Mediterranean gas field.

    PubMed

    Terlizzi, Antonio; Bevilacqua, Stanislao; Scuderi, Danilo; Fiorentino, Dario; Guarnieri, Giuseppe; Giangrande, Adriana; Licciano, Margherita; Felline, Serena; Fraschetti, Simonetta

    2008-07-01

    The exploitation of fossil fuels in the Mediterranean Sea will likely lead to an increase in the number of offshore platforms, a recognized threat for marine biodiversity. To date, in this basin, few attempts have been made to assess the impact of offshore gas and oil platforms on the biodiversity of benthic assemblages. Here, we adopted a structured experimental design coupled with high taxonomic resolution to outline putative effects of gas platforms on soft-bottom macrofauna assemblages in the North Ionian Sea. The analysis was based on a total of 20,295 specimens of 405 taxa, almost entirely identified at species level. Multivariate and univariate analyses showed idiosyncratic patterns of assemblage change with increasing distance from the platforms. Potential reasons underlying such inconsistency are analyzed and the view that structured experimental monitoring is a crucial tool to quantify the extent and magnitude of potential threats and to provide sound baseline information on biodiversity patterns is supported.

  20. Australian defence requirements and initiatives in smart materials and structures

    NASA Astrophysics Data System (ADS)

    Wilson, Alan R.; Galea, Stephen C.; Scala, Christine; Wong, Albert

    2002-11-01

    The Australian Defence Force is increasingly facing escalating costs on through-life support for major platforms (ships, aircraft and land vehicles). The application of smart materials and structures technologies in platform management systems is seen as a very promising approach to reduce these costs and to potentially achieve significant enhancement of platform capability. A new DSTO Key Initiative, 'Smart Materials and Structures', has been recently developed and funded to address these technologies. The Initiative will build on and grow the current activities within DSTO and promote collaboration with external Australian institutes and industry. This paper will present an overview of the Initiative and the generic sensor and system issues inherent in the 'whole-of-platform' and 'whole-of-life' monitoring and management of major defence platforms. Examples for some particular elements of this will be drawn from current work in DSTO. Other presentations in the conference will cover the technical and scientific aspects of these in more detail.

  1. SpaceDock: A Performance Task Platform for Spaceflight Operations

    NASA Technical Reports Server (NTRS)

    Marshburn, Thomas H.; Strangman, Gary E.; Strauss, Monica S.; Sutton, Jeffrey P.

    2003-01-01

    Preliminary evidence during both short- and long-duration spaceflight indicates that perceptual-motor coordination changes occur and persist in-flight. However, there is presently no in-flight method for evaluating astronaut performance on mission-critical tasks such as docking. We present a portable platform we have developed for attempting and evaluating docking, and describe the results of a pilot study wherein flight novices learned the docking task. Methods: A dual-joystick, six degrees of freedom platform-called SpaceDock-was developed to enable portable, adaptable performance testing in a spaceflight operations setting. Upon this platform, a simplified docking task was created, involving a constant rate of approach towards a docking target and requiring the user to correct translation in two dimensions and attitude orientation along one dimension (either pitch or roll). Ten flight naive subjects performed the task over a 45 min period and all joystick inputs and timings were collected, from which we could successfully reconstruct travel paths, input profiles and relative target displacements. Results: Subjects exhibited significant improvements in docking over the course of the experiment. Learning to compensate for roll-alterations was robust, whereas compensation for pitch-alterations was not in evidence in this population and relatively short training period. Conclusion: The SpaceDock platform can provide a novel method for training and testing subjects, on a spaceflight-relevant task, and can be used to examine behavioral learning, strategy use, and has been adapted for use in brain imaging experiments.

  2. Monitoring The Stability Of Levees With Time-Series ENVISAT ASAR Images

    NASA Astrophysics Data System (ADS)

    Pei, Yuanyuan; Liao, Mingsheng; Wang, Teng; Zhang, Lu

    2012-01-01

    Levees are constructed to protect coastal cities from typhoon, flood, and sea tide. Since the stability of levees is important, it is necessary to monitor their deformation regularly. Repeat-track space-borne SAR images are useful for environment monitoring, especially for ground deformation monitoring. Shanghai resides on the Yangtze River Delta on China’s eastern coast. Each year, the city is hit by typhoons from the Pacific Ocean and threatened by the flood of the Yangtze River. We used Persistent Scatterer Interferometry to monitor the deformation of the levees. Our experiments show that the levees around Pudong airport and Lingang town suffer from serious deformation.

  3. Cross-Clade Ultrasensitive PCR-Based Assays To Measure HIV Persistence in Large-Cohort Studies

    PubMed Central

    Vandergeeten, Claire; Fromentin, Rémi; Merlini, Esther; Lawani, Mariam B.; DaFonseca, Sandrina; Bakeman, Wendy; McNulty, Amanda; Ramgopal, Moti; Michael, Nelson; Kim, Jerome H.; Ananworanich, Jintanat

    2014-01-01

    ABSTRACT A small pool of infected cells persists in HIV-infected individuals receiving antiretroviral therapy (ART). Here, we developed ultrasensitive assays to precisely measure the frequency of cells harboring total HIV DNA, integrated HIV DNA, and two long terminal repeat (2-LTR) circles. These assays are performed on cell lysates, which circumvents the labor-intensive step of DNA extraction, and rely on the coquantification of each HIV molecular form together with CD3 gene sequences to precisely measure cell input. Using primary isolates from HIV subtypes A, B, C, D, and CRF01_A/E, we demonstrate that these assays can efficiently quantify low target copy numbers from diverse HIV subtypes. We further used these assays to measure total HIV DNA, integrated HIV DNA, and 2-LTR circles in CD4+ T cells from HIV-infected subjects infected with subtype B. All samples obtained from ART-naive subjects were positive for the three HIV molecular forms (n = 15). Total HIV DNA, integrated HIV DNA, and 2-LTR circles were detected in, respectively, 100%, 94%, and 77% of the samples from individuals in which HIV was suppressed by ART. Higher levels of total HIV DNA and 2-LTR circles were detected in untreated subjects than individuals on ART (P = 0.0003 and P = 0.0004, respectively), while the frequency of CD4+ T cells harboring integrated HIV DNA did not differ between the two groups. These results demonstrate that these novel assays have the ability to quantify very low levels of HIV DNA of multiple HIV subtypes without the need for nucleic acid extraction, making them well suited for the monitoring of viral persistence in large populations of HIV-infected individuals. IMPORTANCE Since the discovery of viral reservoirs in HIV-infected subjects receiving suppressive ART, measuring the degree of viral persistence has been one of the greatest challenges in the field of HIV research. Here, we report the development and validation of ultrasensitive assays to measure HIV persistence in HIV-infected individuals from multiple geographical regions. These assays are relatively inexpensive, do not require DNA extraction, and can be completed in a single day. Therefore, they are perfectly adapted to monitor HIV persistence in large cohorts of HIV-infected individuals and, given their sensitivity, can be used to monitor the efficacy of therapeutic strategies aimed at interfering with HIV persistence after prolonged ART. PMID:25122785

  4. Total-Internal-Reflection Platforms for Chemical and Biological Sensing Applications

    NASA Astrophysics Data System (ADS)

    Sapsford, Kim E.

    Sensing platforms based on the principle of total internal reflection (TIR) represent a fairly mature yet still expanding and exciting field of research. Sensor development has mainly been driven by the need for rapid, stand-alone, automated devices for application in the fields of clinical diagnosis and screening, food and water safety, environmental monitoring, and chemical and biological warfare agent detection. The technologies highlighted in this chapter are continually evolving, taking advantage of emerging advances in microfabrication, lab-on-a-chip, excitation, and detection techniques. This chapter describes many of the underlying principles of TIR-based sensing platforms and additionally focusses on planar TIR fluorescence (TIRF)-based chemical and biological sensors.

  5. NASA NDE Applications for Mobile MEMS Devices and Sensors

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.; Barclay, R. O.

    2008-01-01

    NASA would like new devices and sensors for performing nondestructive evaluation (NDE) of aerospace vehicles. These devices must be small in size/volume, mass, and power consumption. The devices must be autonomous and mobile so they can access the internal structures of aircraft and spacecraft and adequately monitor the structural health of these craft. The platforms must be mobile in order to transport NDE sensors for evaluating structural integrity and determining whether further investigations will be required. Microelectromechanical systems (MEMS) technology is crucial to the development of the mobile platforms and sensor systems. This paper presents NASA s needs for micro mobile platforms and MEMS sensors that will enable NDE to be performed on aerospace vehicles.

  6. A wellness software platform with smart wearable devices and the demonstration report for personal wellness management

    NASA Astrophysics Data System (ADS)

    Kang, Won-Seok; Son, Chang-Sik; Lee, Sangho; Choi, Rock-Hyun; Ha, Yeong-Mi

    2017-07-01

    In this paper, we introduce a wellness software platform, called WellnessHumanCare, is a semi-automatic wellness management software platform which has the functions of complex wellness data acquisition(mental, physical and environmental one) with smart wearable devices, complex wellness condition analysis, private-aware online/offline recommendation, real-time monitoring apps (Smartphone-based, Web-based) and so on and we has demonstrated a wellness management service with 79 participants (experimental group: 39, control group: 40) who has worked at experimental group (H Corp.) and control group (K Corp.), Korea and 3 months in order to show the efficiency of the WellnessHumanCare.

  7. Optofluidic platforms based on surface-enhanced Raman scattering.

    PubMed

    Lim, Chaesung; Hong, Jongin; Chung, Bong Geun; deMello, Andrew J; Choo, Jaebum

    2010-05-01

    We report recent progress in the development of surface-enhanced Raman scattering (SERS)-based optofluidic platforms for the fast and sensitive detection of chemical and biological analytes. In the current context, a SERS-based optofluidic platform is defined as an integrated analytical device composed of a microfluidic element and a sensitive Raman spectrometer. Optofluidic devices for SERS detection normally involve nanocolloid-based microfluidic systems or metal nanostructure-embedded microfluidic systems. In the current review, recent advances in both approaches are surveyed and assessed. Additionally, integrated real-time sensing systems that combine portable Raman spectrometers with microfluidic devices are also reviewed. Such real-time sensing systems have significant utility in environmental monitoring, forensic science and homeland defense applications.

  8. Path planning for persistent surveillance applications using fixed-wing unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Keller, James F.

    This thesis addresses coordinated path planning for fixed-wing Unmanned Aerial Vehicles (UAVs) engaged in persistent surveillance missions. While uniquely suited to this mission, fixed wing vehicles have maneuver constraints that can limit their performance in this role. Current technology vehicles are capable of long duration flight with a minimal acoustic footprint while carrying an array of cameras and sensors. Both military tactical and civilian safety applications can benefit from this technology. We make three main contributions: C1 A sequential path planner that generates a C 2 flight plan to persistently acquire a covering set of data over a user designated area of interest. The planner features the following innovations: • A path length abstraction that embeds kino-dynamic motion constraints to estimate feasible path length. • A Traveling Salesman-type planner to generate a covering set route based on the path length abstraction. • A smooth path generator that provides C 2 routes that satisfy user specified curvature constraints. C2 A set of algorithms to coordinate multiple UAVs, including mission commencement from arbitrary locations to the start of a coordinated mission and de-confliction of paths to avoid collisions with other vehicles and fixed obstacles. C3 A numerically robust toolbox of spline-based algorithms tailored for vehicle routing validated through flight test experiments on multiple platforms. A variety of tests and platforms are discussed. The algorithms presented are based on a technical approach with approximately equal emphasis on analysis, computation, dynamic simulation, and flight test experimentation. Our planner (C1) directly takes into account vehicle maneuverability and agility constraints that could otherwise render simple solutions infeasible. This is especially important when surveillance objectives elevate the importance of optimized paths. Researchers have developed a diverse range of solutions for persistent surveillance applications but few directly address dynamic maneuver constraints. The key feature of C1 is a two stage sequential solution that discretizes the problem so that graph search techniques can be combined with parametric polynomial curve generation. A method to abstract the kino-dynamics of the aerial platforms is then presented so that a graph search solution can be adapted for this application. An A* Traveling Salesman Problem (TSP) algorithm is developed to search the discretized space using the abstract distance metric to acquire more data or avoid obstacles. Results of the graph search are then transcribed into smooth paths based on vehicle maneuver constraints. A complete solution for a single vehicle periodic tour of the area is developed using the results of the graph search algorithm. To execute the mission, we present a simultaneous arrival algorithm (C2) to coordinate execution by multiple vehicles to satisfy data refresh requirements and to ensure there are no collisions at any of the path intersections. We present a toolbox of spline-based algorithms (C3) to streamline the development of C2 continuous paths with numerical stability. These tools are applied to an aerial persistent surveillance application to illustrate their utility. Comparisons with other parametric polynomial approaches are highlighted to underscore the benefits of the B-spline framework. Performance limits with respect to feasibility constraints are documented.

  9. Fermi GBM: Results from the First Year +

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2009-01-01

    Gamma-ray Burst Monitor (GBM) has performed well in the first year+. GBM triggers 353 Gamma-ray Bursts (GRBs), 168 SGR events, 18 TGFs, and 1 solar flare to date. Short GRBs appear contracted in time and shifted to higher energy than long GRBs. Pulsed persistent emission from SGR 1550-5418 detected. TGFs are shorter, have higher average photon energies, and much higher count rates than GRBs. GBM monitoring of accreting pulsars provides long-term spin-histories. GBM Earth occultation monitoring complements Swift.

  10. Generation of Classical DInSAR and PSI Ground Motion Maps on a Cloud Thematic Platform

    NASA Astrophysics Data System (ADS)

    Mora, Oscar; Ordoqui, Patrick; Romero, Laia

    2016-08-01

    This paper presents the experience of ALTAMIRA INFORMATION uploading InSAR (Synthetic Aperture Radar Interferometry) services in the Geohazard Exploitation Platform (GEP), supported by ESA. Two different processing chains are presented jointly with ground motion maps obtained from the cloud computing, one being DIAPASON for classical DInSAR and SPN (Stable Point Network) for PSI (Persistent Scatterer Interferometry) processing. The product obtained from DIAPASON is the interferometric phase related to ground motion (phase fringes from a SAR pair). SPN provides motion data (mean velocity and time series) on high-quality pixels from a stack of SAR images. DIAPASON is already implemented, and SPN is under development to be exploited with historical data coming from ERS-1/2 and ENVISAT satellites, and current acquisitions of SENTINEL-1 in SLC and TOPSAR modes.

  11. RAPID: Collaborative Commanding and Monitoring of Lunar Assets

    NASA Technical Reports Server (NTRS)

    Torres, Recaredo J.; Mittman, David S.; Powell, Mark W.; Norris, Jeffrey S.; Joswig, Joseph C.; Crockett, Thomas M.; Abramyan, Lucy; Shams, Khawaja S.; Wallick, Michael; Allan, Mark; hide

    2011-01-01

    RAPID (Robot Application Programming Interface Delegate) software utilizes highly robust technology to facilitate commanding and monitoring of lunar assets. RAPID provides the ability for intercenter communication, since these assets are developed in multiple NASA centers. RAPID is targeted at the task of lunar operations; specifically, operations that deal with robotic assets, cranes, and astronaut spacesuits, often developed at different NASA centers. RAPID allows for a uniform way to command and monitor these assets. Commands can be issued to take images, and monitoring is done via telemetry data from the asset. There are two unique features to RAPID: First, it allows any operator from any NASA center to control any NASA lunar asset, regardless of location. Second, by abstracting the native language for specific assets to a common set of messages, an operator may control and monitor any NASA lunar asset by being trained only on the use of RAPID, rather than the specific asset. RAPID is easier to use and more powerful than its predecessor, the Astronaut Interface Device (AID). Utilizing the new robust middleware, DDS (Data Distribution System), developing in RAPID has increased significantly over the old middleware. The API is built upon the Java Eclipse Platform, which combined with DDS, provides platform-independent software architecture, simplifying development of RAPID components. As RAPID continues to evolve and new messages are being designed and implemented, operators for future lunar missions will have a rich environment for commanding and monitoring assets.

  12. Hydrologic monitoring using open-source Arduino logging platforms in a socio-hydrological system of the drought-prone tropics, Guanacaste, Costa Rica

    NASA Astrophysics Data System (ADS)

    Hund, S. V.; Johnson, M. S.; Steyn, D. G.; Keddie, T.; Morillas, L.

    2015-12-01

    Water supply is highly disputed in the tropics of northwestern Costa Rica where rainfall exhibits high seasonal variability and long annual dry seasons. Water shortages are common during the dry season, and water conflicts emerge between domestic water users, intensively irrigated agriculture, the tourism industry, and ecological flows. Climate change may further increase the variability of precipitation and the risk for droughts, and pose challenges for small rural agricultural communities experiencing water stress. To adapt to seasonal droughts and improve resilience of communities to future changes, it is essential to increase understanding of interactions between components of the coupled hydrological-social system. Yet, hydrological monitoring and data on water use within developing countries of the humid tropics is limited. To address these challenges and contribute to extended monitoring networks, low-cost and open-source monitoring platforms were developed based off Arduino microelectronic boards and software and combined with hydrological sensors to monitor river stage and groundwater levels in two watersheds of Guanacaste, Costa Rica. Hydrologic monitoring stations are located in remote locations and powered by solar panels. Monitoring efforts were made possible through collaboration with local rural communities, and complemented with a mix of digitized water extraction data and community water use narratives to increase understanding of water use and challenges. We will present the development of the Arduino logging system, results of water supply in relation to water use for both the wet and dry season, and discuss these results within a socio-hydrological system context.

  13. A mobile monitoring system of blood pressure for underserved in China by information and communication technology service.

    PubMed

    Jiang, Jiehui; Yan, Zhuangzhi; Kandachar, Prabhu; Freudenthal, Adinda

    2010-05-01

    High blood pressure (BP, hypertension) is a leading chronic condition in China and has become the main risk factor for many high-risk diseases, such as heart attacks. However, the platform for chronic disease measurement and management is still lacking, especially for underserved Chinese. To achieve the early diagnosis of hypertension, one BP monitoring system has been designed. The proposed design consists of three main parts: user domain, server domain, and channel domain. All three units and their materialization, validation tests on reliability, and usability are described in this paper, and the conclusion is that the current design concept is feasible and the system can be developed toward sufficient reliability and affordability with further optimization. This idea might also be extended into one platform for other physiological signals, such as blood sugar and ECG.

  14. Development of Android based Smart Power Saving System

    NASA Astrophysics Data System (ADS)

    Gupta, Ashutosh; Kumar, Pradeep; Ghosh, Tathagata; Bhawna, Shruthi. S.

    2017-08-01

    An android based smart power saving system has been presented in this paper. For this purpose, an application is developed for controlling the intensity of an AC supply using a dimmer circuit in android platform and to monitor the current flow on different intensity level a current sensor is used in the circuit. Dimmer circuit provides a 16-different intensity level to control the flow of current and help in power saving. The system is very simple and robust as it is based on android platform.

  15. Bellerophon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lingerfelt, Eric J; Messer, II, Otis E

    2017-01-02

    The Bellerophon software system supports CHIMERA, a production-level HPC application that simulates the evolution of core-collapse supernovae. Bellerophon enables CHIMERA's geographically dispersed team of collaborators to perform job monitoring and real-time data analysis from multiple supercomputing resources, including platforms at OLCF, NERSC, and NICS. Its multi-tier architecture provides an encapsulated, end-to-end software solution that enables the CHIMERA team to quickly and easily access highly customizable animated and static views of results from anywhere in the world via a cross-platform desktop application.

  16. Wireless implantable electronic platform for chronic fluorescent-based biosensors.

    PubMed

    Valdastri, Pietro; Susilo, Ekawahyu; Förster, Thilo; Strohhöfer, Christof; Menciassi, Arianna; Dario, Paolo

    2011-06-01

    The development of a long-term wireless implantable biosensor based on fluorescence intensity measurement poses a number of technical challenges, ranging from biocompatibility to sensor stability over time. One of these challenges is the design of a power efficient and miniaturized electronics, enabling the biosensor to move from bench testing to long term validation, up to its final application in human beings. In this spirit, we present a wireless programmable electronic platform for implantable chronic monitoring of fluorescent-based autonomous biosensors. This system is able to achieve extremely low power operation with bidirectional telemetry, based on the IEEE802.15.4-2003 protocol, thus enabling over three-year battery lifetime and wireless networking of multiple sensors. During the performance of single fluorescent-based sensor measurements, the circuit drives a laser diode, for sensor excitation, and acquires the amplified signals from four different photodetectors. In vitro functionality was preliminarily tested for both glucose and calcium monitoring, simply by changing the analyte-binding protein of the biosensor. Electronics performance was assessed in terms of timing, power consumption, tissue exposure to electromagnetic fields, and in vivo wireless connectivity. The final goal of the presented platform is to be integrated in a complete system for blood glucose level monitoring that may be implanted for at least one year under the skin of diabetic patients. Results reported in this paper may be applied to a wide variety of biosensors based on fluorescence intensity measurement.

  17. A colorimetric platform for sensitively differentiating telomere DNA with different lengths, monitoring G-quadruplex and dsDNA based on silver nanoclusters and unmodified gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Qu, Fei; Chen, Zeqiu; You, Jinmao; Song, Cuihua

    2018-05-01

    Human telomere DNA plays a vital role in genome integrity control and carcinogenesis as an indication for extensive cell proliferation. Herein, silver nanoclusters (Ag NCs) templated by polymer and unmodified gold nanoparticles (Au NPs) are designed as a new colorimetric platform for sensitively differentiating telomere DNA with different lengths, monitoring G-quadruplex and dsDNA. Ag NCs can produce the aggregation of Au NPs, so the color of Au NPs changes to blue and the absorption peak moves to 700 nm. While the telomere DNA can protect Au NPs from aggregation, the color turns to red again and the absorption band blue shift. Benefiting from the obvious color change, we can differentiate the length of telomere DNA by naked eyes. As the length of telomere DNA is longer, the variation of color becomes more noticeable. The detection limits of telomere DNA containing 10, 22, 40, 64 bases are estimated to be 1.41, 1.21, 0.23 and 0.22 nM, respectively. On the other hand, when telomere DNA forms G-quadruplex in the presence of K+, or dsDNA with complementary sequence, both G-quadruplex and dsDNA can protect Au NPs better than the unfolded telomere DNA. Hence, a new colorimetric platform for monitoring structure conversion of DNA is established by Ag NCs-Au NPs system, and to prove this type of application, a selective K+ sensor is developed.

  18. Intensive time series data exploitation: the Multi-sensor Evolution Analysis (MEA) platform

    NASA Astrophysics Data System (ADS)

    Mantovani, Simone; Natali, Stefano; Folegani, Marco; Scremin, Alessandro

    2014-05-01

    The monitoring of the temporal evolution of natural phenomena must be performed in order to ensure their correct description and to allow improvements in modelling and forecast capabilities. This assumption, that is obvious for ground-based measurements, has not always been true for data collected through space-based platforms: except for geostationary satellites and sensors, that allow providing a very effective monitoring of phenomena with geometric scale from regional to global; smaller phenomena (with characteristic dimension lower than few kilometres) have been monitored with instruments that could collect data only with a time interval in the order of several days; bi-temporal techniques have been the most used ones for years, in order to characterise temporal changes and try identifying specific phenomena. The more the number of flying sensor has grown and their performance improved, the more their capability of monitoring natural phenomena at a smaller geographic scale has grown: we can now count on tenth of years of remotely sensed data, collected by hundreds of sensors that are now accessible from a wide users' community, and the techniques for data processing have to be adapted to move toward a data intensive exploitation. Starting from 2008, the European Space Agency has initiated the development of the Multi-sensor Evolution Analysis (MEA) platform (https://mea.eo.esa.int), whose first aim was to permit the access and exploitation of long term remotely sensed satellite data from different platforms: 15 years of global (A)ATSR data together with 5 years of regional AVNIR-2 data were loaded into the system and were used, through a web-based graphic user interface, for land cover change analysis. The MEA data availability has grown during years integrating multi-disciplinary data that feature spatial and temporal dimensions: so far tenths of Terabytes of data in the land and atmosphere domains are available and can be visualized and exploited, keeping the time dimension as the most relevant one (https://mea.eo.esa.int/data_availability.html). MEA is also used as Climate Data gateway in the framework of the FP7 EarthServer Project. In the present work, principles of the MEA platform are presented, emphasizing the general concept and the methods that have been implemented for data access (including OGC standard data access) and exploitation. In order to show its effectiveness, use cases focused on multi-field and multi-temporal data analysis are shown.

  19. Work Coordination Engine

    NASA Technical Reports Server (NTRS)

    Zendejas, Silvino; Bui, Tung; Bui, Bach; Malhotra, Shantanu; Chen, Fannie; Kim, Rachel; Allen, Christopher; Luong, Ivy; Chang, George; Sadaqathulla, Syed

    2009-01-01

    The Work Coordination Engine (WCE) is a Java application integrated into the Service Management Database (SMDB), which coordinates the dispatching and monitoring of a work order system. WCE de-queues work orders from SMDB and orchestrates the dispatching of work to a registered set of software worker applications distributed over a set of local, or remote, heterogeneous computing systems. WCE monitors the execution of work orders once dispatched, and accepts the results of the work order by storing to the SMDB persistent store. The software leverages the use of a relational database, Java Messaging System (JMS), and Web Services using Simple Object Access Protocol (SOAP) technologies to implement an efficient work-order dispatching mechanism capable of coordinating the work of multiple computer servers on various platforms working concurrently on different, or similar, types of data or algorithmic processing. Existing (legacy) applications can be wrapped with a proxy object so that no changes to the application are needed to make them available for integration into the work order system as "workers." WCE automatically reschedules work orders that fail to be executed by one server to a different server if available. From initiation to completion, the system manages the execution state of work orders and workers via a well-defined set of events, states, and actions. It allows for configurable work-order execution timeouts by work-order type. This innovation eliminates a current processing bottleneck by providing a highly scalable, distributed work-order system used to quickly generate products needed by the Deep Space Network (DSN) to support space flight operations. WCE is driven by asynchronous messages delivered via JMS indicating the availability of new work or workers. It runs completely unattended in support of the lights-out operations concept in the DSN.

  20. Development and Sensing Properties Study of Underwater Assembled Water Depth-Inclination Sensors for a Multi-Component Mooring System, Using a Self-Contained Technique

    PubMed Central

    Wu, Wenhua; Feng, Jiaguo; Xie, Bin; Tang, Da; Yue, Qianjin; Xie, Ribin

    2016-01-01

    Prototype monitoring techniques play an important role in the safety guarantee of mooring systems in marine engineering. In general, the complexities of harsh ocean environmental conditions bring difficulties to the traditional monitoring methods of application, implementation and maintenance. Large amounts of existing mooring systems still lack valid monitoring strategies. In this paper, an underwater monitoring method which may be used to achieve the mechanical responses of a multi-point catenary mooring system, is present. A novel self-contained assembled water depth-inclination (D-I) sensor is designed and manufactured. Several advanced technologies, such as standalone, low power consumption and synchronism, are considered to satisfy the long-term implementation requirements with low cost during the design process. The design scheme of the water resistance barrel and installation clamp, which satisfies the diver installation, are also provided in the paper. An on-site test has previously been carried out on a production semisubmersible platform in the South China Sea. The prototype data analyses, including the D-I value in the time domain (including the data recorded during the mooring retraction and release process) and spectral characteristics, are presented to reveal the accuracy, feasibility and stability of the sensor in terms of fitting for the prototype monitoring of catenary mooring systems, especially for in-service aging platforms. PMID:27854357

  1. Experimental study on distributed optical fiber-based approach monitoring saturation line in levee engineering

    NASA Astrophysics Data System (ADS)

    Su, Huaizhi; Li, Hao; Kang, Yeyuan; Wen, Zhiping

    2018-02-01

    Seepage is one of key factors which affect the levee engineering safety. The seepage danger without timely detection and rapid response may likely lead to severe accidents such as seepage failure, slope instability, and even levee break. More than 90 percent of levee break events are caused by the seepage. It is very important for seepage behavior identification to determine accurately saturation line in levee engineering. Furthermore, the location of saturation line has a major impact on slope stability in levee engineering. Considering the structure characteristics and service condition of levee engineering, the distributed optical fiber sensing technology is introduced to implement the real-time observation of saturation line in levee engineering. The distributed optical fiber temperature sensor system (DTS)-based monitoring principle of saturation line in levee engineering is investigated. An experimental platform, which consists of DTS, heating system, water-supply system, auxiliary analysis system and levee model, is designed and constructed. The monitoring experiment of saturation line in levee model is implemented on this platform. According to the experimental results, the numerical relationship between moisture content and thermal conductivity in porous medium is identified. A line heat source-based distributed optical fiber method obtaining the thermal conductivity in porous medium is developed. A DTS-based approach is proposed to monitor the saturation line in levee engineering. The embedment pattern of optical fiber for monitoring saturation line is presented.

  2. Operational Monitoring of GOME-2 and IASI Level 1 Product Processing at EUMETSAT

    NASA Astrophysics Data System (ADS)

    Livschitz, Yakov; Munro, Rosemary; Lang, Rüdiger; Fiedler, Lars; Dyer, Richard; Eisinger, Michael

    2010-05-01

    The growing complexity of operational level 1 radiance products from Low Earth Orbiting (LEO) platforms like EUMETSATs Metop series makes near-real-time monitoring of product quality a challenging task. The main challenge is to provide a monitoring system which is flexible and robust enough to identify and to react to anomalies which may be previously unknown to the system, as well as to provide all means and parameters necessary in order to support efficient ad-hoc analysis of the incident. The operational monitoring system developed at EUMETSAT for monitoring of GOME-2 and IASI level 1 data allows to perform near-real-time monitoring of operational products and instrument's health in a robust and flexible fashion. For effective information management, the system is based on a relational database (Oracle). An Extract, Transform, Load (ETL) process transforms products in EUMETSAT Polar System (EPS) format into relational data structures. The identification of commonalities between products and instruments allows for a database structure design in such a way that different data can be analyzed using the same business intelligence functionality. An interactive analysis software implementing modern data mining techniques is also provided for a detailed look into the data. The system is effectively used for day-to-day monitoring, long-term reporting, instrument's degradation analysis as well as for ad-hoc queries in case of an unexpected instrument or processing behaviour. Having data from different sources on a single instrument and even from different instruments, platforms or numerical weather prediction within the same database allows effective cross-comparison and looking for correlated parameters. Automatic alarms raised by checking for deviation of certain parameters, for data losses and other events significantly reduce time, necessary to monitor the processing on a day-to-day basis.

  3. Operational Monitoring of GOME-2 and IASI Level 1 Product Processing at EUMETSAT

    NASA Astrophysics Data System (ADS)

    Livschitz, Y.; Munro, R.; Lang, R.; Fiedler, L.; Dyer, R.; Eisinger, M.

    2009-12-01

    The growing complexity of operational level 1 radiance products from Low Earth Orbiting (LEO) platforms like EUMETSATs Metop series makes near-real-time monitoring of product quality a challenging task. The main challenge is to provide a monitoring system which is flexible and robust enough to identify and to react to anomalies which may be previously unknown to the system, as well as to provide all means and parameters necessary in order to support efficient ad-hoc analysis of the incident. The operational monitoring system developed at EUMETSAT for monitoring of GOME-2 and IASI level 1 data allows to perform near-real-time monitoring of operational products and instrument’s health in a robust and flexible fashion. For effective information management, the system is based on a relational database (Oracle). An Extract, Transform, Load (ETL) process transforms products in EUMETSAT Polar System (EPS) format into relational data structures. The identification of commonalities between products and instruments allows for a database structure design in such a way that different data can be analyzed using the same business intelligence functionality. An interactive analysis software implementing modern data mining techniques is also provided for a detailed look into the data. The system is effectively used for day-to-day monitoring, long-term reporting, instrument’s degradation analysis as well as for ad-hoc queries in case of an unexpected instrument or processing behaviour. Having data from different sources on a single instrument and even from different instruments, platforms or numerical weather prediction within the same database allows effective cross-comparison and looking for correlated parameters. Automatic alarms raised by checking for deviation of certain parameters, for data losses and other events significantly reduce time, necessary to monitor the processing on a day-to-day basis.

  4. Cell division in Escherichia coli cultures monitored at single cell resolution

    PubMed Central

    Roostalu, Johanna; Jõers, Arvi; Luidalepp, Hannes; Kaldalu, Niilo; Tenson, Tanel

    2008-01-01

    Background A fundamental characteristic of cells is the ability to divide. To date, most parameters of bacterial cultures, including cell division, have been measured as cell population averages, assuming that all bacteria divide at a uniform rate. Results We monitored the division of individual cells in Escherichia coli cultures during different growth phases. Our experiments are based on the dilution of green fluorescent protein (GFP) upon cell division, monitored by flow cytometry. The results show that the vast majority of E. coli cells in exponentially growing cultures divided uniformly. In cultures that had been in stationary phase up to four days, no cell division was observed. However, upon dilution of stationary phase culture into fresh medium, two subpopulations of cells emerged: one that started dividing and another that did not. These populations were detectable by GFP dilution and displayed different side scatter parameters in flow cytometry. Further analysis showed that bacteria in the non-growing subpopulation were not dead, neither was the difference in growth capacity reducible to differences in stationary phase-specific gene expression since we observed uniform expression of several stress-related promoters. The presence of non-growing persisters, temporarily dormant bacteria that are tolerant to antibiotics, has previously been described within growing bacterial populations. Using the GFP dilution method combined with cell sorting, we showed that ampicillin lyses growing bacteria while non-growing bacteria retain viability and that some of them restart growth after the ampicillin is removed. Thus, our method enables persisters to be monitored even in liquid cultures of wild type strains in which persister formation has low frequency. Conclusion In principle, the approaches developed here could be used to detect differences in cell division in response to different environmental conditions and in cultures of unicellular organisms other than E. coli. PMID:18430255

  5. The role of ICP monitoring in patients with persistent cerebrospinal fluid leak following spinal surgery: a case series.

    PubMed

    Craven, Claudia; Toma, Ahmed K; Khan, Akbar A; Watkins, Laurence D

    2016-09-01

    Cerebrospinal fluid (CSF) leak following spinal surgery is a relatively common surgical complication. A disturbance in the underlying CSF dynamics could be the causative factor in a small group of patients with refractory CSF leaks that require multiple surgical repairs and prolonged hospital admission. A retrospective case series of patients with persistent post spinal surgery CSF leak referred to the hydrocephalus service for continuous intracranial pressure (ICP) monitoring. Patients' notes were reviewed for medical history, ICP data, radiological data, and subsequent management and outcome. Five patients (two males/three females, mean age, 35.4 years) were referred for ICP monitoring over a 12-month period. These patients had prolonged CSF leak despite multiple repair attempts 252 ± 454 days (mean ± SD). On ICP monitoring, all five patients had abnormal results, with the mean ICP 8.95 ± 4.41 mmHg. Four had abnormal pulse amplitudes, mean 6.15 mmHg ± 1.22 mmHg. All five patients underwent an intervention. Three patients underwent insertion of ventriculoperitoneal (VP) shunts. One patient had venous sinus stent insertion and one patient underwent medical management with acetazolamide. All five of the patients' CSF leak resolved post intervention. The mean time to resolution of CSF leak post intervention was 10.8  ± 12.9 days. Abnormal cerebrospinal fluid dynamics could be the underlying factor in patients with a persistent and treatment-refractory CSF leak post spinal surgery. Treatments aimed at lowering ICP may be beneficial in this group of patients. Whether abnormal pressure and dynamics represent a pre-existing abnormality or is induced by spinal surgery should be a subject of further study.

  6. MOXE: An X-ray all-sky monitor for Soviet Spectrum-X-Gamma Mission

    NASA Technical Reports Server (NTRS)

    Priedhorsky, W.; Fenimore, E. E.; Moss, C. E.; Kelley, R. L.; Holt, S. S.

    1989-01-01

    A Monitoring Monitoring X-Ray Equipment (MOXE) is being developed for the Soviet Spectrum-X-Gamma Mission. MOXE is an X-ray all-sky monitor based on array of pinhole cameras, to be provided via a collaboration between Goddard Space Flight Center and Los Alamos National Laboratory. The objectives are to alert other observers on Spectrum-X-Gamma and other platforms of interesting transient activity, and to synoptically monitor the X-ray sky and study long-term changes in X-ray binaries. MOXE will be sensitive to sources as faint as 2 milliCrab (5 sigma) in 1 day, and cover the 2 to 20 KeV band.

  7. Application of near field communication for health monitoring in daily life.

    PubMed

    Strömmer, Esko; Kaartinen, Jouni; Pärkkä, Juha; Ylisaukko-Oja, Arto; Korhonen, Ilkka

    2006-01-01

    We study the possibility of applying an emerging RFID-based communication technology, NFC (Near Field Communication), to health monitoring. We suggest that NFC is, compared to other competing technologies, a high-potential technology for short-range connectivity between health monitoring devices and mobile terminals. We propose practices to apply NFC to some health monitoring applications and study the benefits that are attainable with NFC. We compare NFC to other short-range communication technologies such as Bluetooth and IrDA, and study the possibility of improving the usability of health monitoring devices with NFC. We also introduce a research platform for technical evaluation, applicability study and application demonstrations of NFC.

  8. Using Latent Selection Difference to Model Persistence in a Declining Population

    PubMed Central

    Erickson, Mara E.; Found-Jackson, Christine; Boyce, Mark S.

    2014-01-01

    Population persistence is a direct measure of the viability of a population. Monitoring the distribution of declining populations or subpopulations over time can yield estimates of persistence, which we show can be modeled as a latent selection difference (LSD) contrasting attributes of sites where populations have persisted versus those that have not. Predicted persistence can be modeled with predictor covariates to identify factors correlated with species persistence. We demonstrate how to model persistence based on changes in occupancy that can include adjustments for detection probability. Using a known historical distribution of the western grebe (Aechmophorus occidentalis), we adapted methods originally developed for occupancy modeling to evaluate how environmental covariates including emergent vegetation and human developments have affected western grebe persistence in Alberta. The relative probability of persistence was correlated with the extent of shoreline bulrush (Scirpus lacustris), which is important vegetation for nesting cover. We also documented that western grebe populations were less likely to persist on lakes in the boreal forest, primarily located on the northern boundary of the species' range. Factors influencing occupancy were different than those determining persistence by western grebes; persistence and occupancy were not correlated. Persistence was more likely on lakes with recreational development, reflecting reliance by grebes on the larger, fish-bearing waterbodies that also are attractive for lakeshore development. Unfortunately, the correlation with recreational development on Alberta's lakes puts grebes at risk for loss of brood-rearing habitats—primary threats to altricial birds—if steps are not taken to prevent disturbance to bulrush stands. Identifying factors related to the persistence of a species—especially one in decline—is a fundamental step in conservation management. PMID:24866172

  9. An interactive ICT platform for early assessment and management of patient-reported concerns among older adults living in ordinary housing - development and feasibility.

    PubMed

    Algilani, Samal; Langius-Eklöf, Ann; Kihlgren, Annica; Blomberg, Karin

    2017-06-01

    To develop and test feasibility and acceptability of an interactive ICT platform integrated in a tablet for collecting and managing patient-reported concerns of older adults in home care. Using different ICT applications, for example interactive tablets for self-assessment of health and health issues based on health monitoring as well as other somatic and psychiatric monitoring systems may improve quality of life, staff and patient communication and feelings of being reassured. The European Commission hypothesises that introduction of ICT applications to the older population will enable improved health. However, evidence-based and user-based applications are scarce. The design is underpinned by the Medical Research Council's complex intervention evaluation framework. A mixed-method approach was used combining interviews with older adults and healthcare professionals, and logged quantitative data. In cooperation with a health management company, a platform operated by an interactive application for reporting and managing health-related problems in real time was developed. Eight older adults receiving home care were recruited to test feasibility. They were equipped with the application and reported three times weekly over four weeks, and afterwards interviewed about their experiences. Three nurses caring for them were interviewed. The logged data were extracted as a coded file. The older adults reported as instructed, in total 107 reports (Mean 13). The most frequent concerns were pain, fatigue and dizziness. The older adults experienced the application as meaningful with overall positive effects as well as potential benefits for the nurses involved. The overall findings in this study indicated high feasibility among older adults using the ICT platform. The study's results support further development of the platform, as well as tests in full-scale studies and in other populations. An ICT platform increased the older adults' perception of involvement and facilitated communication between the patient and nurses. © 2016 John Wiley & Sons Ltd.

  10. Solving the problem of comparing whole bacterial genomes across different sequencing platforms.

    PubMed

    Kaas, Rolf S; Leekitcharoenphon, Pimlapas; Aarestrup, Frank M; Lund, Ole

    2014-01-01

    Whole genome sequencing (WGS) shows great potential for real-time monitoring and identification of infectious disease outbreaks. However, rapid and reliable comparison of data generated in multiple laboratories and using multiple technologies is essential. So far studies have focused on using one technology because each technology has a systematic bias making integration of data generated from different platforms difficult. We developed two different procedures for identifying variable sites and inferring phylogenies in WGS data across multiple platforms. The methods were evaluated on three bacterial data sets and sequenced on three different platforms (Illumina, 454, Ion Torrent). We show that the methods are able to overcome the systematic biases caused by the sequencers and infer the expected phylogenies. It is concluded that the cause of the success of these new procedures is due to a validation of all informative sites that are included in the analysis. The procedures are available as web tools.

  11. Smart Sensor Systems for Aerospace Applications: From Sensor Development to Application Testing

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Xu, J. C.; Dungan, L. K.; Ward, B. J.; Rowe, S.; Williams, J.; Makel, D. B.; Liu, C. C.; Chang, C. W.

    2008-01-01

    The application of Smart Sensor Systems for aerospace applications is a multidisciplinary process consisting of sensor element development, element integration into Smart Sensor hardware, and testing of the resulting sensor systems in application environments. This paper provides a cross-section of these activities for multiple aerospace applications illustrating the technology challenges involved. The development and application testing topics discussed are: 1) The broadening of sensitivity and operational range of silicon carbide (SiC) Schottky gas sensor elements; 2) Integration of fire detection sensor technology into a "Lick and Stick" Smart Sensor hardware platform for Crew Exploration Vehicle applications; 3) Extended testing for zirconia based oxygen sensors in the basic "Lick and Stick" platform for environmental monitoring applications. It is concluded that that both core sensor platform technology and a basic hardware platform can enhance the viability of implementing smart sensor systems in aerospace applications.

  12. A high performance scientific cloud computing environment for materials simulations

    NASA Astrophysics Data System (ADS)

    Jorissen, K.; Vila, F. D.; Rehr, J. J.

    2012-09-01

    We describe the development of a scientific cloud computing (SCC) platform that offers high performance computation capability. The platform consists of a scientific virtual machine prototype containing a UNIX operating system and several materials science codes, together with essential interface tools (an SCC toolset) that offers functionality comparable to local compute clusters. In particular, our SCC toolset provides automatic creation of virtual clusters for parallel computing, including tools for execution and monitoring performance, as well as efficient I/O utilities that enable seamless connections to and from the cloud. Our SCC platform is optimized for the Amazon Elastic Compute Cloud (EC2). We present benchmarks for prototypical scientific applications and demonstrate performance comparable to local compute clusters. To facilitate code execution and provide user-friendly access, we have also integrated cloud computing capability in a JAVA-based GUI. Our SCC platform may be an alternative to traditional HPC resources for materials science or quantum chemistry applications.

  13. The GeoCitizen-approach: community-based spatial planning – an Ecuadorian case study

    PubMed Central

    Atzmanstorfer, Karl; Resl, Richard; Eitzinger, Anton; Izurieta, Xiomara

    2014-01-01

    Over the last years, geospatial web platforms, social media, and volunteered geographic information (VGI) have opened a window of opportunity for traditional Public Participatory GIS (PPGIS) to usher in a new era. Taking advantage of these technological achievements, this paper presents a new approach for a citizen-orientated framework of spatial planning that aims at integrating participatory community work into existing decision-making structures. One major cornerstone of the presented approach is the application of a social geoweb platform (the GeoCitizen platform) that combines geo-web technologies and social media in one single tool allowing citizens to collaboratively report observations, discuss ideas, solve, and monitor problems in their living environment at a local level. This paper gives an account of an ongoing participatory land-zoning process in the Capital District of Quito, Ecuador, where the GeoCitizen platform is applied in a long-term study. PMID:27019644

  14. Fault detection and diagnosis for gas turbines based on a kernelized information entropy model.

    PubMed

    Wang, Weiying; Xu, Zhiqiang; Tang, Rui; Li, Shuying; Wu, Wei

    2014-01-01

    Gas turbines are considered as one kind of the most important devices in power engineering and have been widely used in power generation, airplanes, and naval ships and also in oil drilling platforms. However, they are monitored without man on duty in the most cases. It is highly desirable to develop techniques and systems to remotely monitor their conditions and analyze their faults. In this work, we introduce a remote system for online condition monitoring and fault diagnosis of gas turbine on offshore oil well drilling platforms based on a kernelized information entropy model. Shannon information entropy is generalized for measuring the uniformity of exhaust temperatures, which reflect the overall states of the gas paths of gas turbine. In addition, we also extend the entropy to compute the information quantity of features in kernel spaces, which help to select the informative features for a certain recognition task. Finally, we introduce the information entropy based decision tree algorithm to extract rules from fault samples. The experiments on some real-world data show the effectiveness of the proposed algorithms.

  15. The ASTER Volcano Archive (AVA): High Spatial Resolution Global Monitoring of Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Linick, J. P.; Pieri, D. C.; Davies, A. G.; Reath, K.; Mars, J. C.; Hubbard, B. E.; Sanchez, R. M.; Tan, H. L.

    2017-12-01

    The ASTER Volcano Archive (AVA) is a data system focused on collecting and cataloguing higher level remote sensing data products for all Holocene volcanoes over the last several decades, producing volcanogenic science products for global detection, mapping, and modeling of effusive eruptions at high spatial resolution, and providing rapid bulk dissemination of relevant data products to the science community at large. Space-based optical platforms such as ASTER, EO-1, and Landsat, are a critical component for global monitoring systems to provide the capability for volcanic hazard assessment and modeling, and are a vital addition to in-situ measurements. The AVA leverages these instruments for the automated generation of lava flow emplacement maps, sulfur dioxide monitoring, thermal anomaly detection, and modeling of integrated thermal emission across the world's volcanoes. Additionally, we provide slope classified alteration and lahar inundation maps with potential inundation zones for certain relevant volcanoes. We explore the AVA's data product retrieval API, and describe how scientists can rapidly retrieve bulk products using the AVA platform with a focus on practical applications for both general analysis and hazard response.

  16. PlaIMoS: A Remote Mobile Healthcare Platform to Monitor Cardiovascular and Respiratory Variables

    PubMed Central

    Miramontes, Ramses; Aquino, Raúl; Flores, Arturo; Rodríguez, Guillermo; Anguiano, Rafael; Ríos, Arturo; Edwards, Arthur

    2017-01-01

    The number of elderly and chronically ill patients has grown significantly over the past few decades as life expectancy has increased worldwide, leading to increased demands on the health care system and significantly taxing traditional health care practices. Consequently, there is an urgent need to use technology to innovate and more constantly and intensely monitor, report and analyze critical patient physiological parameters beyond conventional clinical settings in a more efficient and cost effective manner. This paper presents a technological platform called PlaIMoS which consists of wearable sensors, a fixed measurement station, a network infrastructure that employs IEEE 802.15.4 and IEEE 802.11 to transmit data with security mechanisms, a server to analyze all information collected and apps for iOS, Android and Windows 10 mobile operating systems to provide real-time measurements. The developed architecture, designed primarily to record and report electrocardiogram and heart rate data, also monitors parameters associated with chronic respiratory illnesses, including patient blood oxygen saturation and respiration rate, body temperature, fall detection and galvanic resistance. PMID:28106832

  17. PlaIMoS: A Remote Mobile Healthcare Platform to Monitor Cardiovascular and Respiratory Variables.

    PubMed

    Miramontes, Ramses; Aquino, Raúl; Flores, Arturo; Rodríguez, Guillermo; Anguiano, Rafael; Ríos, Arturo; Edwards, Arthur

    2017-01-19

    The number of elderly and chronically ill patients has grown significantly over the past few decades as life expectancy has increased worldwide, leading to increased demands on the health care system and significantly taxing traditional health care practices. Consequently, there is an urgent need to use technology to innovate and more constantly and intensely monitor, report and analyze critical patient physiological parameters beyond conventional clinical settings in a more efficient and cost effective manner. This paper presents a technological platform called PlaIMoS which consists of wearable sensors, a fixed measurement station, a network infrastructure that employs IEEE 802.15.4 and IEEE 802.11 to transmit data with security mechanisms, a server to analyze all information collected and apps for iOS, Android and Windows 10 mobile operating systems to provide real-time measurements. The developed architecture, designed primarily to record and report electrocardiogram and heart rate data, also monitors parameters associated with chronic respiratory illnesses, including patient blood oxygen saturation and respiration rate, body temperature, fall detection and galvanic resistance.

  18. The Emerging Wireless Body Area Network on Android Smartphones: A Review

    NASA Astrophysics Data System (ADS)

    Puspitaningayu, P.; Widodo, A.; Yundra, E.

    2018-01-01

    Our society now has driven us into an era where almost everything can be digitally monitored and controlled including the human body. The growth of wireless body area network (WBAN), as a specific scope of sensor networks which mounted or attached to human body also developing rapidly. It allows people to monitor their health and several daily activities. This study is intended to review the trend of WBAN especially on Android, one of the most popular smartphone platforms. A systematic literature review is concerned to the following parameters: the purpose of the device and/or application, the type of sensors, the type of Android device, and its connectivity. Most of the studies were more concern to healthcare or medical monitoring systems: blood pressure, electro cardiograph, tremor detection, etc. On the other hand, the rest of them aimed for activity tracker, environment sensing, and epidemic control. After all, those studies shown that not only Android can be a powerful platform to process data from various sensors but also smartphones can be a good alternative to develop WBANs for medical and other daily applications.

  19. Wearable sensor platform and mobile application for use in cognitive behavioral therapy for drug addiction and PTSD.

    PubMed

    Fletcher, Richard Ribón; Tam, Sharon; Omojola, Olufemi; Redemske, Richard; Kwan, Joyce

    2011-01-01

    We present a wearable sensor platform designed for monitoring and studying autonomic nervous system (ANS) activity for the purpose of mental health treatment and interventions. The mobile sensor system consists of a sensor band worn on the ankle that continuously monitors electrodermal activity (EDA), 3-axis acceleration, and temperature. A custom-designed ECG heart monitor worn on the chest is also used as an optional part of the system. The EDA signal from the ankle bands provides a measure sympathetic nervous system activity and used to detect arousal events. The optional ECG data can be used to improve the sensor classification algorithm and provide a measure of emotional "valence." Both types of sensor bands contain a Bluetooth radio that enables communication with the patient's mobile phone. When a specific arousal event is detected, the phone automatically presents therapeutic and empathetic messages to the patient in the tradition of Cognitive Behavioral Therapy (CBT). As an example of clinical use, we describe how the system is currently being used in an ongoing study for patients with drug-addiction and post-traumatic stress disorder (PTSD).

  20. Bluetooth wireless monitoring, diagnosis and calibration interface for control system of fuel cell bus in Olympic demonstration

    NASA Astrophysics Data System (ADS)

    Hua, Jianfeng; Lin, Xinfan; Xu, Liangfei; Li, Jianqiu; Ouyang, Minggao

    With the worldwide deterioration of the natural environment and the fossil fuel crisis, the possible commercialization of fuel cell vehicles has become a hot topic. In July 2008, Beijing started a clean public transportation plan for the 29th Olympic games. Three fuel cell city buses and 497 other low-emission vehicles are now serving the Olympic core area and Beijing urban areas. The fuel cell buses will operate along a fixed bus line for 1 year as a public demonstration of green energy vehicles. Due to the specialized nature of fuel cell engines and electrified power-train systems, measurement, monitoring and calibration devices are indispensable. Based on the latest Bluetooth wireless technology, a novel Bluetooth universal data interface was developed for the control system of the fuel cell city bus. On this platform, a series of wireless portable control auxiliary systems have been implemented, including wireless calibration, a monitoring system and an in-system programming platform, all of which are ensuring normal operation of the fuel cell buses used in the demonstration.

Top