Quantitative analysis of the persistent photoconductivity effect in Cu(In,Ga)Se2
NASA Astrophysics Data System (ADS)
Maciaszek, Marek; Zabierowski, Paweł
2018-04-01
The magnitude of the persistent photoconductivity effect (PPC) in two sets of Cu(In,Ga)Se2 samples, differing in the amount of cadmium and sodium, was measured. Using equations describing the magnitude of PPC, metastable defect and shallow acceptor densities were calculated. The method of the analysis of PPC in the presence of a deep acceptor level was presented. Based on obtained results, we drew conclusions about reasons of decreased PPC in Cu(In,Ga)Se2 without sodium as well as the role of (VSe-VCu) complexes in establishing the carrier concentration in Cu(In,Ga)Se2 with and without sodium.
NASA Astrophysics Data System (ADS)
Yadav, Harish Kumar; Sreenivas, K.; Gupta, Vinay
2010-05-01
Photoconductivity relaxation in rf magnetron sputtered ZnO thin films integrated with ultrathin tin metal overlayer is investigated. Charge carriers induced at the ZnO-metal interface by the tin metal overlayer compensates the surface lying trap centers and leads to the enhanced photoresponse. On termination of ultraviolet radiation, recombination of the photoexcited electrons with the valence band holes leaves the excess carriers deeply trapped at the recombination center and holds the dark conductivity level at a higher value. Equilibrium between the recombination centers and valence band, due to trapped charges, eventually stimulates the persistent photoconductivity in the Sn/ZnO photodetectors.
Photo-Ultrasonic Study of Extrinsic Photoconductivity in N-Gallium Arsenide
NASA Astrophysics Data System (ADS)
Bradshaw, Randall Grant
We have measured the velocity of piezoelectrically -active, ultrasonic shear waves between 1.5 K and 68 K for undoped and for oxygen-doped n-type GaAs, during and after illumination at 4.2 K. The results reveal photoconductivity, persistent photoconductivity, and thermally stimulated conductivity. In both samples the Fermi level in the dark is controlled by excess non-shallow donors near 0.2 eV below the conduction band. Analysis of these effects in oxygen-doped material indicates that there are mid-gap and much shallower photoionizable levels and that there is an electron trap near 20 meV below the conduction band. The undoped n-GaAs sample exhibits photoconductivity quenching with photons in the range 0.95-1.26 eV which, by analysis of the quenching rate, is attributed to the EL2 defect. In addition, levels with large hole capture coefficients have been detected.
Persistent photoconductivity in two-dimensional Mo 1-xW xSe 2–MoSe 2 van der Waals heterojunctions
Puretzky, Alexander A.; Basile, Leonardo; Idrobo, Juan Carlos; ...
2016-02-16
Van der Waals (vdW) heterojunctions consisting of vertically-stacked individual or multiple layers of two-dimensional (2D) layered semiconductors, especially the transition metal dichalcogenides (TMDs), are fascinating new artificial solids just nanometers-thin that promise novel optoelectronic functionalities due to the sensitivity of their electronic and optical properties to strong quantum confinement and interfacial interactions. Here, monolayers of n-type MoSe 2 and p-type Mo 1-xW xSe 2–MoSe 2 are grown by vapor transport methods, then transferred and stamped to form artificial vdW heterostructures with different interlayer orientations. Atomic-resolution Z-contrast electron microscopy and electron diffraction are used to characterize both the individual monolayers andmore » the atomic registry between layers in the bilayer vdW heterostructures. These measurements are compared with photoluminescence and low-frequency Raman spectroscopy, which indicates strong interlayer coupling in heterostructures. Remarkably, the heterojunctions exhibit an unprecedented photoconductivity effect that persists at room temperature for several days. This persistent photoconductivity is shown to be tunable by applying a gate bias that equilibrates the charge distribution. Furthermore, these measurements indicate that such ultrathin vdW heterojunctions can function as rewritable optoelectronic switches or memory elements under time-dependent photo-illumination, an effect which appears promising for new monolayer TMDs-based optoelectronic devices applications.« less
Enhanced ultraviolet photoconductivity in porous GaN prepared by metal-assisted electroless etching
NASA Astrophysics Data System (ADS)
Guo, X. Y.; Williamson, T. L.; Bohn, P. W.
2006-10-01
The ultraviolet photoconductivity of porous GaN (PGaN) produced by Pt-assisted electroless etching has been investigated. The photoresponse of PGaN prepared from highly doped GaN ( n>1018 cm) shows enhanced ( 15×) magnitude and faster decay of persistent photoconductivity relative to bulk crystalline (CGaN), suggesting advantages for PGaN in photodetector applications. A space charge model for changes in photoconductivity is used to explain these observations. Heightened defect density in the etched material plays an important role in the enhanced photoconductivity in PGaN. Flux-dependent optical quenching (OQ) behavior, linked to the presence of metastable states, is also observed in PGaN as in CGaN.
Photoconductivity in DNA-Porphyrin Complexes
NASA Astrophysics Data System (ADS)
Myint, Peco; Oxford, Emma; Nyazenga, Collence; Smith, Walter; Qi, Zhengqing; Johnson, A. T.
2015-03-01
We have measured the photoconductivity of λ - DNA that is modified by intercalating a porphyrin compound, meso-tetrakis(N-methyl-4-pyridiniumyl)porphyrin (TMPyP), into its base stacks. Intercalation was verified by a red shift and hypochromism of the Soret absorption peak. The DNA/porphyrin strands were then deposited onto oxidized silicon substrates which had been patterned with interdigitated electrodes, and blown dry. Electrical measurements were carried out under nitrogen, using illumination from a 445 nm laser; this wavelength falls within the absorption peak of the DNA/porphyrin complexes. When initially measured under dry nitrogen, the complexes show no photoconductivity or dark conductivity. However, at relative humidities of 30% and above, we do observe dark conductivity, and also photoconductivity that grows with time. Photoconductivity gets larger at higher relative humidity. Remarkably, when the humidity is lowered again, some photoconductivity is now observed, indicating a change that persists for more than 24 hours. It may be that the humidity alters the structure of the DNA, perhaps allowing for better alignment of the bases. This work was supported by NSF Grant BMAT-1306170.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prakash, Nisha, E-mail: prakasnisha@gmail.com; Barvat, Arun; Anand, Kritika
2016-05-23
The surface roughness and defect density of GaN epitaxial layers grown on c-plane sapphire substrate are investigated and found to be dependent on nitridation temperature. GaN epitaxial layers grown after nitridation of sapphire at 200°C have a higher defect density and higher surface roughness compared to the GaN layers grown at 646°C nitridation as confirmed by atomic force microscopy (AFM). The persistent photoconductivity (PPC) was observed in both samples and it was found to be decreasing with decreasing temperature in the range 150-300°C due to long carrier lifetime and high electron mobility at low temperature. The photoresponse of the GaNmore » films grown in this study exhibit improved PPC due to their better surface morphology at 646°C nitrided sample. The point defects or extended microstructure defects limits the photocarrier lifetime and electron mobility at 200°C nitrided sample.« less
Two Carrier Analysis of Persistent Photoconductivity in Modulation-Doped Structures
NASA Technical Reports Server (NTRS)
Schacham, S. E.; Mena, R. A.; Haugland, E. J.; Alterovitz, S. A.
1995-01-01
A simultaneous fit of Hall and conductivity data gives quantitative results on the carrier concentration and mobility in both the quantum well and the parallel conduction channel. In this study this method was applied to reveal several new findings on the effect of persistent photoconductivity (PPC) on free-carrier concentrations and mobilities. The increase in the two-dimensional electron-gas (2DEG) concentration is significantly smaller than the apparent one derived from single carrier analysis of the Hall coefficient. In the two types of structures investigated, delta doped and continuously doped barrier, the apparent concentration almost doubles following illumination, while analysis reveals an increase of about 20% in the 2DEG. The effect of PPC on mobility depends on the structure. For the sample with a continuously doped barrier the mobility in the quantum well more than doubles. This increase is attributed to the effective screening of the ionized donors by the large electron concentration in the barrier. In the delta doped barrier sample the mobility is reduced by almost a factor of 2. This decrease is probably caused by strong coupling between the two wells, as is demonstrated by self-consistent analysis.
Metal nanoparticles triggered persistent negative photoconductivity in silk protein hydrogels
NASA Astrophysics Data System (ADS)
Gogurla, Narendar; Sinha, Arun K.; Naskar, Deboki; Kundu, Subhas C.; Ray, Samit K.
2016-03-01
Silk protein is a natural biopolymer with intriguing properties, which are attractive for next generation bio-integrated electronic and photonic devices. Here, we demonstrate the negative photoconductive response of Bombyx mori silk protein fibroin hydrogels, triggered by Au nanoparticles. The room temperature electrical conductivity of Au-silk hydrogels is found to be enhanced with the incorporation of Au nanoparticles over the control sample, due to the increased charge transporting networks within the hydrogel. Au-silk lateral photoconductor devices show a unique negative photoconductive response under an illumination of 325 nm, with excitation energy higher than the characteristic metal plasmon resonance band. The enhanced photoconductance yield in the hydrogels over the silk protein is attributed to the photo-oxidation of amino groups in the β-pleated sheets of the silk around the Au nanoparticles followed by the breaking of charge transport networks. The Au-silk nanocomposite does not show any photoresponse under visible illumination because of the localization of excited charges in Au nanoparticles. The negative photoconductive response of hybrid Au-silk under UV illumination may pave the way towards the utilization of silk for future bio-photonic devices using metal nanoparticle platforms.
Influence of N incorporation on persistent photoconductivity in GaAsN alloys
NASA Astrophysics Data System (ADS)
Field, R. L., III; Jin, Y.; Cheng, H.; Dannecker, T.; Jock, R. M.; Wang, Y. Q.; Kurdak, C.; Goldman, R. S.
2013-04-01
We examine the role of N environment on persistent photoconductivity (PPC) in GaAs1-xNx films. For x > 0.006, significant PPC is observed at cryogenic temperatures, with the PPC magnitude increasing with increasing x due to an increase in the density of N-induced levels. Interestingly, rapid thermal annealing suppresses the PPC magnitude and reduces the N interstitial fraction; thus, the N-induced level is likely associated with N interstitials. PPC is attributed to the photogeneration of carriers from N-induced levels to the conduction-band edge, leading to a modified N molecular bond configuration. With the addition of thermal energy, the ground state configuration is restored; the N-induced level is then able to accept carriers and the conductivity decays to its preillumination value.
Conductance relaxation in GeBiTe: Slow thermalization in an open quantum system
NASA Astrophysics Data System (ADS)
Ovadyahu, Z.
2018-02-01
This work describes the microstructure and transport properties of GeBixTey films with emphasis on their out-of-equilibrium behavior. Persistent-photoconductivity (PPC), previously studied in the phase-change compound GeSbxTey , is also quite prominent in this system. Much weaker PPC response is observed in the pure GeTe compound and when alloying GeTe with either In or Mn. Films made from these compounds share the same crystallographic structure, the same p -type conductivity, a similar compositional disorder extending over mesoscopic scales, and similar mosaic morphology. The enhanced photoconductive response exhibited by the Sb and Bi alloys may therefore be related to their common chemistry. Persistent photoconductivity is observable in GeBixTey films at the entire range of sheet resistances studied in this work (≈103Ω to ≈55 M Ω ). The excess conductance produced by a brief exposure to infrared illumination decays with time as a stretched exponential (Kohlrausch law). Intrinsic electron-glass effects, on the other hand, are observable in thin films of GeBixTey only for samples that are strongly localized just like it was noted with the seven electron glasses previously studied. These include a memory dip which is the defining attribute of the phenomenon. The memory dip in GeBixTey is the widest amongst the germanium-telluride alloys studied to date consistent with the high carrier concentration N ≥1021cm-3 of this compound. The thermalization process exhibited in either the PPC state or in the electron-glass regime is sluggish but the temporal law of the relaxation from the out-of-equilibrium state is distinctly different. Coexistence of the two phenomena give rise to some nontrivial effects, in particular, the visibility of the memory dip is enhanced in the PPC state. The relation between this effect and the dependence of the memory-effect magnitude on the ratio between the interparticle interaction and quench disorder is discussed.
Photocurrent modulation under dual excitation in individual GaN nanowires.
Yadav, Shivesh; Deb, Swarup; Gupta, Kantimay Das; Dhar, Subhabrata
2018-06-21
The photo-response properties of vapor-liquid-solid (VLS) grown [101[combining macron]0] oriented individual GaN nanowires of the diameter ranging from 30 to 100 nm are investigated under the joint illumination of above and sub-bandgap lights. When illuminated with above-bandgap light, these wires show persistent photoconductivity (PPC) effects with long build-up and decay times. The study reveals the quenching of photoconductivity (PC) upon illumination with an additional sub-bandgap light. PC recovers when the sub-bandgap illumination is withdrawn. A rate equation model attributing the PPC effect to the entrapment of photo-generated holes in the surface states and the PC quenching effect on the sub-bandgap light driven release of the holes from the trapped states has been proposed. The average height of the capture barrier has been found to be about 400 meV. The study also suggests that the capture barrier has a broad distribution with an upper cut-off energy of ∼2 eV.
Influence of N incorporation on persistent photoconductivity in GaAsN alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field III, R. L.; Jin, Y.; Cheng, H.
2013-04-08
We examine the role of N environment on persistent photoconductivity (PPC) in GaAs 1-xN x films. For x > 0.006, significant PPC is observed at cryogenic temperatures, with the PPC magnitude increasing with increasing x due to an increase in the density of N-induced levels. Interestingly, rapid thermal annealing suppresses the PPC magnitude and reduces the N interstitial fraction; thus, the N-induced level is likely associated with N interstitials. PPC is attributed to the photogeneration of carriers from N-induced levels to the conduction-band edge, leading to a modified N molecular bond configuration. With the addition of thermal energy, the groundmore » state configuration is restored; the N-induced level is then able to accept carriers and the conductivity decays to its preillumination value.« less
Bistability of Hydrogen in ZnO: Origin of Doping Limit and Persistent Photoconductivity
Nahm, Ho-Hyun; Park, C. H.; Kim, Yong-Sung
2014-01-01
Substitutional hydrogen at oxygen site (HO) is well-known to be a robust source of n-type conductivity in ZnO, but a puzzling aspect is that the doping limit by hydrogen is only about 1018 cm−3, even if solubility limit is much higher. Another puzzling aspect of ZnO is persistent photoconductivity, which prevents the wide applications of the ZnO-based thin film transistor. Up to now, there is no satisfactory theory about two puzzles. We report the bistability of HO in ZnO through first-principles electronic structure calculations. We find that as Fermi level is close to conduction bands, the HO can undergo a large lattice relaxation, through which a deep level can be induced, capturing electrons and the deep state can be transformed into shallow donor state by a photon absorption. We suggest that the bistability can give explanations to two puzzling aspects. PMID:24535157
Bistability of hydrogen in ZnO: origin of doping limit and persistent photoconductivity.
Nahm, Ho-Hyun; Park, C H; Kim, Yong-Sung
2014-02-18
Substitutional hydrogen at oxygen site (HO) is well-known to be a robust source of n-type conductivity in ZnO, but a puzzling aspect is that the doping limit by hydrogen is only about 10(18) cm(-3), even if solubility limit is much higher. Another puzzling aspect of ZnO is persistent photoconductivity, which prevents the wide applications of the ZnO-based thin film transistor. Up to now, there is no satisfactory theory about two puzzles. We report the bistability of HO in ZnO through first-principles electronic structure calculations. We find that as Fermi level is close to conduction bands, the HO can undergo a large lattice relaxation, through which a deep level can be induced, capturing electrons and the deep state can be transformed into shallow donor state by a photon absorption. We suggest that the bistability can give explanations to two puzzling aspects.
Room-temperature photodetection dynamics of single GaN nanowires.
González-Posada, F; Songmuang, R; Den Hertog, M; Monroy, E
2012-01-11
We report on the photocurrent behavior of single GaN n-i-n nanowires (NWs) grown by plasma-assisted molecular-beam epitaxy on Si(111). These structures present a photoconductive gain in the range of 10(5)-10(8) and an ultraviolet (350 nm) to visible (450 nm) responsivity ratio larger than 6 orders of magnitude. Polarized light couples with the NW geometry with a maximum photoresponse for polarization along the NW axis. The photocurrent scales sublinearly with optical power, following a I ~ P(β) law (β < 1) in the measured range with β increasing with the measuring frequency. The photocurrent time response remains in the millisecond range, which is in contrast to the persistent (hours) photoconductivity effects observed in two-dimensional photoconductors. The photocurrent is independent of the measuring atmosphere, either in the air or in vacuum. Results are interpreted taking into account the effect of surface states and the total depletion of the NW intrinsic region. © 2011 American Chemical Society
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nam, Chang-Yong; Stein, Aaron
Ultrathin semiconductor nanowires enable high-performance chemical sensors and photodetectors, but their synthesis and device integration by standard complementary metal-oxide-semiconductor (CMOS)-compatible processes remain persistent challenges. This work demonstrates fully CMOS-compatible synthesis and integration of parallel-aligned polycrystalline ZnO nanowire arrays into ultraviolet photodetectors via infiltration synthesis, material hybridization technique derived from atomic layer deposition. The nanowire photodetector features unique, high device performances originating from extreme charge carrier depletion, achieving photoconductive on–off ratios of >6 decades, blindness to visible light, and ultralow dark currents as low as 1 fA, the lowest reported for nanostructure-based photoconductive photodetectors. Surprisingly, the low dark current is invariantmore » with increasing number of nanowires and the photodetector shows unusual superlinear photoconductivity, observed for the first time in nanowires, leading to increasing detector responsivity and other parameters for higher incident light powers. Temperature-dependent carrier concentration and mobility reveal the photoelectrochemical-thermionic emission process at grain boundaries, responsible for the observed unique photodetector performances and superlinear photoconductivity. Here, the results elucidate fundamental processes responsible for photogain in polycrystalline nanostructures, providing useful guidelines for developing nanostructure-based detectors and sensors. Lastly, the developed fully CMOS-compatible nanowire synthesis and device fabrication methods also have potentials for scalable integration of nanowire sensor devices and circuitries.« less
Nam, Chang-Yong; Stein, Aaron
2017-11-15
Ultrathin semiconductor nanowires enable high-performance chemical sensors and photodetectors, but their synthesis and device integration by standard complementary metal-oxide-semiconductor (CMOS)-compatible processes remain persistent challenges. This work demonstrates fully CMOS-compatible synthesis and integration of parallel-aligned polycrystalline ZnO nanowire arrays into ultraviolet photodetectors via infiltration synthesis, material hybridization technique derived from atomic layer deposition. The nanowire photodetector features unique, high device performances originating from extreme charge carrier depletion, achieving photoconductive on–off ratios of >6 decades, blindness to visible light, and ultralow dark currents as low as 1 fA, the lowest reported for nanostructure-based photoconductive photodetectors. Surprisingly, the low dark current is invariantmore » with increasing number of nanowires and the photodetector shows unusual superlinear photoconductivity, observed for the first time in nanowires, leading to increasing detector responsivity and other parameters for higher incident light powers. Temperature-dependent carrier concentration and mobility reveal the photoelectrochemical-thermionic emission process at grain boundaries, responsible for the observed unique photodetector performances and superlinear photoconductivity. Here, the results elucidate fundamental processes responsible for photogain in polycrystalline nanostructures, providing useful guidelines for developing nanostructure-based detectors and sensors. Lastly, the developed fully CMOS-compatible nanowire synthesis and device fabrication methods also have potentials for scalable integration of nanowire sensor devices and circuitries.« less
Franz-Keldysh effect in epitaxial ZnO thin films
NASA Astrophysics Data System (ADS)
Bridoux, G.; Villafuerte, M.; Ferreyra, J. M.; Guimpel, J.; Nieva, G.; Figueroa, C. A.; Straube, B.; Heluani, S. P.
2018-02-01
Photoconductance spectroscopy has been studied in epitaxial ZnO thin films with different thicknesses that range between 136 and 21 nm. We report a systematic decrease in photoconductivity and a red shift in band edge photoconductance spectra when the thickness is reduced. For thinner films, it is found that the effective energy gap value diminishes. By time dependent photoconductivity measurements, we found an enhanced contribution of the slow relaxation times for thicker films. These effects are interpreted in terms of a band-bending contribution where the Franz-Keldysh effect and the polarization of ZnO play a major role in thinner films.
Electronic defects in the halide antiperovskite semiconductor Hg3Se2I2
NASA Astrophysics Data System (ADS)
Kim, Joon-Il; Peters, John A.; He, Yihui; Liu, Zhifu; Das, Sanjib; Kontsevoi, Oleg Y.; Kanatzidis, Mercouri G.; Wessels, Bruce W.
2017-10-01
Halide perovskites have emerged as a potential photoconducting material for photovoltaics and hard radiation detection. We investigate the nature of charge transport in the semi-insulating chalcohalide Hg3Se2I2 compound using the temperature dependence of dark current, thermally stimulated current (TSC) spectroscopy, and photoconductivity measurements as well as first-principles density functional theory (DFT) calculations. Dark conductivity measurements and TSC spectroscopy indicate the presence of multiple shallow and deep level traps that have relatively low concentrations of the order of 1013-1015c m-3 and capture cross sections of ˜10-16c m2 . A distinct persistent photoconductivity is observed at both low temperatures (<170 K ) and high temperatures (>230 K), with major implications for room-temperature compound semiconductor radiation detection. From preliminary DFT calculations, the origin of the traps is attributed to intrinsic vacancy defects (VHg, VSe, and VI) and interstitials (Seint) or other extrinsic impurities. The results point the way for future improvements in crystal quality and detector performance.
Origins of Persistent Photoconductivity in GaAsN Alloys
NASA Astrophysics Data System (ADS)
Field, R. L., III; Wang, Y. Q.; Kurdak, C.; Goldman, R. S.
2013-03-01
In GaAs1-xNx alloys, we observe significant persistent photoconductivity (PPC) at cryogenic temperatures for x > 0.006, with the PPC strength increasing with increasing x and decreasing upon rapid-thermal annealing (RTA). Since the RTA-induced suppression is accompanied by a reduction of the interstitial N fraction, the N-induced donor state is likely associated with N pairs. PPC is attributed to the promotion of carriers from a ground N-pair state to the conduction band edge, inducing modifications in the N-pair molecular bond configuration. When illumination is terminated, an energy barrier hinders the return of carriers to the N-pair induced complex. With the addition of thermal energy, the original N-pair configuration is restored and the N-pair induced complex is then able to accept carriers. We use PPC at cryogenic temperatures to go through a metal-insulator transition in GaAsN by increasing the carrier density with illumination. For different illumination durations we determine the minimum metallic conductivity, giving us the critical carrier density, nc, at the transition point. We then determine the effective mass, m * , using the Mott criterion nc1 / 3 aH = 0.26 where aH = (4 πɛ h2) /(e2 m *) is the Bohr radius. We use PPC to induce a metal-insulator transition in GaAsN. We will discuss the effective mass as a function of N concentration and compare to the predictions of the band anticrossing model.
Excitonic terahertz photoconductivity in intrinsic semiconductor nanowires.
Yan, Jie-Yun
2018-06-13
Excitonic terahertz photoconductivity in intrinsic semiconductor nanowires is studied. Based on the excitonic theory, the numerical method to calculate the photoconductivity spectrum in the nanowires is developed, which can simulate optical pump terahertz-probe spectroscopy measurements on real nanowires and thereby calculate the typical photoconductivity spectrum. With the help of the energetic structure deduced from the calculated linear absorption spectrum, the numerically observed shift of the resonant peak in the photoconductivity spectrum is found to result from the dominant exciton transition between excited or continuum states to the ground state, and the quantitative analysis is in good agreement with the quantum plasmon model. Besides, the dependence of the photoconductivity on the polarization of the terahertz field is also discussed. The numerical method and supporting theoretical analysis provide a new tool for experimentalists to understand the terahertz photoconductivity in intrinsic semiconductor nanowires at low temperatures or for nanowires subjected to below bandgap photoexcitation, where excitonic effects dominate.
Role of self-trapped holes in the photoconductive gain of β-gallium oxide Schottky diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armstrong, Andrew M.; Crawford, Mary H.; Jayawardena, Asanka
Solar-blind photodetection and photoconductive gain > 50 corresponding to a responsivity > 8 A/W was observed for β-Ga 2O 3 Schottky photodiodes. We investigated the origin of photoconductive gain. Current-voltage characteristics of the diodes did not indicate avalanche breakdown, which excludes carrier multiplication by impact ionization as the source for gain. However, photocapacitance measurements indicated a mechanism for hole localization for above-band gap illumination, suggesting self-trapped hole formation. Comparison of photoconductivity and photocapacitance spectra indicated that self-trapped hole formation coincides with the strong photoconductive gain. We conclude that self-trapped hole formation near the Schottky diode lowers the effective Schottky barriermore » in reverse bias, producing photoconductive gain. Ascribing photoconductive gain to an inherent property like self-trapping of holes can explain the operation of a variety of β-Ga 2O 3 photodetectors.« less
Role of self-trapped holes in the photoconductive gain of β-gallium oxide Schottky diodes
Armstrong, Andrew M.; Crawford, Mary H.; Jayawardena, Asanka; ...
2016-03-10
Solar-blind photodetection and photoconductive gain > 50 corresponding to a responsivity > 8 A/W was observed for β-Ga 2O 3 Schottky photodiodes. We investigated the origin of photoconductive gain. Current-voltage characteristics of the diodes did not indicate avalanche breakdown, which excludes carrier multiplication by impact ionization as the source for gain. However, photocapacitance measurements indicated a mechanism for hole localization for above-band gap illumination, suggesting self-trapped hole formation. Comparison of photoconductivity and photocapacitance spectra indicated that self-trapped hole formation coincides with the strong photoconductive gain. We conclude that self-trapped hole formation near the Schottky diode lowers the effective Schottky barriermore » in reverse bias, producing photoconductive gain. Ascribing photoconductive gain to an inherent property like self-trapping of holes can explain the operation of a variety of β-Ga 2O 3 photodetectors.« less
Excitonic terahertz photoconductivity in intrinsic semiconductor nanowires
NASA Astrophysics Data System (ADS)
Yan, Jie-Yun
2018-06-01
Excitonic terahertz photoconductivity in intrinsic semiconductor nanowires is studied. Based on the excitonic theory, the numerical method to calculate the photoconductivity spectrum in the nanowires is developed, which can simulate optical pump terahertz-probe spectroscopy measurements on real nanowires and thereby calculate the typical photoconductivity spectrum. With the help of the energetic structure deduced from the calculated linear absorption spectrum, the numerically observed shift of the resonant peak in the photoconductivity spectrum is found to result from the dominant exciton transition between excited or continuum states to the ground state, and the quantitative analysis is in good agreement with the quantum plasmon model. Besides, the dependence of the photoconductivity on the polarization of the terahertz field is also discussed. The numerical method and supporting theoretical analysis provide a new tool for experimentalists to understand the terahertz photoconductivity in intrinsic semiconductor nanowires at low temperatures or for nanowires subjected to below bandgap photoexcitation, where excitonic effects dominate.
NASA Astrophysics Data System (ADS)
Lee, Minkyung; Kim, Minho; Jo, Jeong-Wan; Park, Sung Kyu; Kim, Yong-Hoon
2018-01-01
This study offers a combinatorial approach for suppressing the persistent photo-conductance (PPC) characteristic in solution-processed amorphous oxide semiconductor (AOS) thin-film transistors (TFTs) in order to achieve rapid photo-recovery. Various analyses were used to examine the photo-instability of indium-gallium-zinc-oxide (IGZO) TFTs including negative-bias-illumination-stress (NBIS) and transient photo-response behaviors. It was found that the indium ratio in metallic components had a significant impact on their PPC and photo-recovery characteristics. In particular, when the indium ratio was low (51.5%), the PPC characteristic was significantly suppressed and achieving rapid photo-recovery was possible without significantly affecting the electrical performance of AOSs. These results imply that the optimization of the indium composition ratio may allow achieving highly photo-stable and near PPC-free characteristics while maintaining high electrical performance of AOSs. It is considered that the negligible PPC behavior and rapid photo-recovery observed in IGZO TFTs with a lower indium composition are attributed to the less activation energy required for the neutralization of ionized oxygen vacancies.
Persistent photoconductivity in oxygen-ion implanted KNbO3 bulk single crystal
NASA Astrophysics Data System (ADS)
Tsuruoka, R.; Shinkawa, A.; Nishimura, T.; Tanuma, C.; Kuriyama, K.; Kushida, K.
2016-12-01
Persistent Photoconductivity (PPC) in oxygen-ion implanted KNbO3 ([001] oriented bulk single crystals; perovskite structure; ferroelectric with a band gap of 3.16 eV) is studied in air at room temperature to prevent the degradation of its crystallinity caused by the phase transition. The residual hydrogens in un-implanted samples are estimated to be 5×1014 cm-2 from elastic recoil detection analysis (ERDA). A multiple-energy implantation of oxygen ions into KNbO3 is performed using energies of 200, 400, and 600 keV (each ion fluence:1.0×1014 cm-2). The sheet resistance varies from >108 Ω/□ for an un-implanted sample to 1.9×107 Ω/□ for as-implanted one, suggesting the formation of donors due to hydrogen interstitials and oxygen vacancies introduced by the ion implantation. The PPC is clearly observed with ultraviolet and blue LEDs illumination rather than green, red, and infrared, suggesting the release of electrons from the metastable conductive state below the conduction band relating to the charge states of the oxygen vacancy.
Irkhin, P; Najafov, H; Podzorov, V
2015-10-19
Fundamental understanding of photocarrier generation, transport and recombination under a steady-state photoexcitation has been an important goal of organic electronics and photonics, since these processes govern such electronic properties of organic semiconductors as, for instance, photoconductivity. Here, we discovered that photoconductivity of a highly ordered organic semiconductor rubrene exhibits several distinct regimes, in which photocurrent as a function of cw (continuous wave) excitation intensity is described by a power law with exponents sequentially taking values 1, 1/3 and ¼. We show that in pristine crystals this photocurrent is generated at the very surface of the crystals, while the bulk photocurrent is drastically smaller and follows a different sequence of exponents, 1 and ½. We describe a simple experimental procedure, based on an application of "gauge effect" in high vacuum, that allows to disentangle the surface and bulk contributions to photoconductivity. A model based on singlet exciton fission, triplet fusion and triplet-charge quenching that can describe these non-trivial effects in photoconductivity of highly ordered organic semiconductors is proposed. Observation of these effects in photoconductivity and modeling of the underlying microscopic mechanisms described in this work represent a significant step forward in our understanding of electronic properties of organic semiconductors.
Berry, Christopher; Hashemi, Mohammad Reza; Unlu, Mehmet; Jarrahi, Mona
2013-07-08
In this video article we present a detailed demonstration of a highly efficient method for generating terahertz waves. Our technique is based on photoconduction, which has been one of the most commonly used techniques for terahertz generation (1-8). Terahertz generation in a photoconductive emitter is achieved by pumping an ultrafast photoconductor with a pulsed or heterodyned laser illumination. The induced photocurrent, which follows the envelope of the pump laser, is routed to a terahertz radiating antenna connected to the photoconductor contact electrodes to generate terahertz radiation. Although the quantum efficiency of a photoconductive emitter can theoretically reach 100%, the relatively long transport path lengths of photo-generated carriers to the contact electrodes of conventional photoconductors have severely limited their quantum efficiency. Additionally, the carrier screening effect and thermal breakdown strictly limit the maximum output power of conventional photoconductive terahertz sources. To address the quantum efficiency limitations of conventional photoconductive terahertz emitters, we have developed a new photoconductive emitter concept which incorporates a plasmonic contact electrode configuration to offer high quantum-efficiency and ultrafast operation simultaneously. By using nano-scale plasmonic contact electrodes, we significantly reduce the average photo-generated carrier transport path to photoconductor contact electrodes compared to conventional photoconductors (9). Our method also allows increasing photoconductor active area without a considerable increase in the capacitive loading to the antenna, boosting the maximum terahertz radiation power by preventing the carrier screening effect and thermal breakdown at high optical pump powers. By incorporating plasmonic contact electrodes, we demonstrate enhancing the optical-to-terahertz power conversion efficiency of a conventional photoconductive terahertz emitter by a factor of 50 (10).
Effect of buffer layer on photoresponse of MoS2 phototransistor
NASA Astrophysics Data System (ADS)
Miyamoto, Yuga; Yoshikawa, Daiki; Takei, Kuniharu; Arie, Takayuki; Akita, Seiji
2018-06-01
An atomically thin MoS2 field-effect transistor (FET) is expected as an ultrathin photosensor with high sensitivity. However, a persistent photoconductivity phenomenon prevents high-speed photoresponse. Here, we investigate the photoresponse of a MoS2 FET with a thin Al2O3 buffer layer on a SiO2 gate insulator. The application of a 2-nm-thick Al2O3 buffer layer greatly improves not only the steady state properties but also the response speed from 1700 to 0.2 s. These experimental results are well explained by the random localized potential fluctuation model combined with the model based on the recombination of the bounded electrons around the trapped hole.
Irkhin, P.; Najafov, H.; Podzorov, V.
2015-01-01
Fundamental understanding of photocarrier generation, transport and recombination under a steady-state photoexcitation has been an important goal of organic electronics and photonics, since these processes govern such electronic properties of organic semiconductors as, for instance, photoconductivity. Here, we discovered that photoconductivity of a highly ordered organic semiconductor rubrene exhibits several distinct regimes, in which photocurrent as a function of cw (continuous wave) excitation intensity is described by a power law with exponents sequentially taking values 1, 1/3 and ¼. We show that in pristine crystals this photocurrent is generated at the very surface of the crystals, while the bulk photocurrent is drastically smaller and follows a different sequence of exponents, 1 and ½. We describe a simple experimental procedure, based on an application of “gauge effect” in high vacuum, that allows to disentangle the surface and bulk contributions to photoconductivity. A model based on singlet exciton fission, triplet fusion and triplet-charge quenching that can describe these non-trivial effects in photoconductivity of highly ordered organic semiconductors is proposed. Observation of these effects in photoconductivity and modeling of the underlying microscopic mechanisms described in this work represent a significant step forward in our understanding of electronic properties of organic semiconductors. PMID:26478121
Electrochromic projection and writing device
Branz, Howard M.; Benson, David K.
2002-01-01
A display and projection apparatus includes an electrochromic material and a photoconductive material deposited in tandem used in conjunction with a light filtering means for filtering light transmitted through the electrochromic material. When an electric field is applied across the electrochromic material and the photoconductive material, light that is incident onto the photoconductive material through the surface of the projection apparatus causes the photoconductive material to conduct current locally in proportion to the amount of light incident on the photoconductive material. The flow of current causes the underlying portions of the electrochromic material to switch from an opaque state to a clear or transmissive state, thereby allowing back-light to propagate through the electrochromic material to create a visible image on the surface of the projection apparatus. Reversal of the electric field causes the electrochromic material to revert back to its opaque state, thereby blocking the transmission of back-light and effectively erasing the image from the surface of the projection apparatus.
Aono, Masami; Miyazaki, Hisashi; Takekiyo, Takahiro; Tsuzuki, Seiji; Abe, Hiroshi
2018-02-21
We investigated the optical absorption and photoconductivity of iodine-excess ionic liquids (ILs) based on 1-alkyl-3-methyl imidazolium iodide ([C n mim][I]; n = 3, 4, and 6). The iodide concentration m was 2 ≦ m ≦ 8, which was determined by the molar fraction [C n mim] + : [I m ] - = 1 : m. By adding iodine, an absorption edge shifted from 282 nm in the UV region to around 600 nm in the visible-light region. The optical bandgaps E o decreased gradually from 2.3 eV to 1.9 eV with increasing m from 2 to 8. The alkyl-side chain lengths of the cations have little effect on the E o . This experimental result was confirmed by ab initio molecular orbital calculations. The effects were reflected in the photoconductivity of the ILs, as expected. [C 4 mim][I m ] exhibited greater photo-induced electron generation compared with [C 3 mim][I m ] and [C 6 mim][I m ]. The photoconductivity in both [C 3 mim][I m ] and [C 6 mim][I m ] increased slightly with increasing m. The trend of photoconductivity in [C 4 mim][I m ] exhibited an N-shaped form. The highest photoconductivity 1.6 was observed in [C 4 mim][I 8 ].
Role of polymer matrix on photo-sensitivity of CdSe polymer nanocomposites
NASA Astrophysics Data System (ADS)
Kaur, Ramneek; Tripathi, S. K.
2018-04-01
This paper reports the effect of three different polymer matrices (PVP, PMMA and PVK) and Ag doping on the photo-sensitivity of CdSe polymer nanocomposites. The results reveal that the photoconductivity is high for linear chain polymer nanocomposites as compared to aromatic ones with decreasing trend as: CdSe-PMMA > CdSe-PVP > CdSe-PVK. The large substituents or branches along the polymer backbone hinder the stacking sequences in CdSe-PVK nanocomposites resulting in lowest photoconductivity. On contrary, CdSe-PVK nanocomposite exhibit highest photosensitivity. The reason behind it is the low value of dark conductivity in CdSe-PVK nanocomposite and photoconductive PVK matrix. With Ag doping, no considerable effect on the value of photosensitivity has been observed. The obtained results indicate that the photo-conducting properties of these polymer nanocomposites can be tuned by using different polymer matrices.
Light-Induced Peroxide Formation in ZnO: Origin of Persistent Photoconductivity
Kang, Youngho; Nahm, Ho-Hyun; Han, Seungwu
2016-01-01
The persistent photoconductivity (PPC) in ZnO has been a critical problem in opto-electrical devices employing ZnO such as ultraviolet sensors and thin film transistors for the transparent display. While the metastable state of oxygen vacancy (VO) is widely accepted as the microscopic origin of PPC, recent experiments on the influence of temperature and oxygen environments are at variance with the VO model. In this study, using the density-functional theory calculations, we propose a novel mechanism of PPC that involves the hydrogen-zinc vacancy defect complex (2H-VZn). We show that a substantial amount of 2H-VZn can exist during the growth process due to its low formation energy. The light absorption of 2H-VZn leads to the metastable state that is characterized by the formation of (peroxide) around the defect, leaving the free carriers in the conduction band. Furthermore, we estimate the lifetime of photo-electrons to be ~20 secs, which is similar to the experimental observation. Our model also explains the experimental results showing that PPC is enhanced (suppressed) in oxygen-rich (low-temperature) conditions. By revealing a convincing origin of PPC in ZnO, we expect that the present work will pave the way for optimizing optoelectronic properties of ZnO. PMID:27748378
Persistent photoconductivity in ZnO nanowires: Influence of oxygen and argon ambient
NASA Astrophysics Data System (ADS)
Madel, M.; Huber, F.; Mueller, R.; Amann, B.; Dickel, M.; Xie, Y.; Thonke, K.
2017-03-01
ZnO nanowires typically show persistent photoconductivity (PPC), which depends in their temporal behaviour on the ambient. We investigate ZnO nanowires in oxygen and argon ambient and analyze the PPC both on the short and on the long time scale to sort out the underlying mechanisms. Wavelength dependent excitation shows the energy barrier for the PPC to be around 150 meV below the band gap of ZnO, independent of the ambient atmosphere. In photocurrent measurements at constant wavelength, a log-logistic dependence of the conductivity on the partial oxygen pressure is observed. The experimental results are compared to a model of Bonasewicz et al. [J. Electrochem. Soc. 133, 2270 (1986)] and can be explained by oxygen adsorption processes occurring on the surface of the ZnO nanowires. From temperature dependent measurements of the decay times in oxygen and argon ambient, the related activation energies for the fast and slow decay processes are determined. Comparing our results to theoretical calculations of energy levels of intrinsic defects [Janotti and Van de Walle, Phys. Status Solidi B 248, 799 (2011)], we find oxygen vacancies to be related to the fast decay processes, whereas adsorption and desorption processes of oxygen on the ZnO nanowire surface account for the slow part.
Characterization of memory and measurement history in photoconductivity of nanocrystal arrays
NASA Astrophysics Data System (ADS)
Fairfield, Jessamyn A.; Dadosh, Tali; Drndic, Marija
2010-10-01
Photoconductivity in nanocrystal films has been previously characterized, but memory effects have received little attention despite their importance for device applications. We show that the magnitude and temperature dependence of the photocurrent in CdSe/ZnS core-shell nanocrystal arrays depends on the illumination and electric field history. Changes in photoconductivity occur on a few-hour timescale, and subband gap illumination of nanocrystals prior to measurements modifies the photocurrent more than band gap illumination. The observed effects can be explained by charge traps within the band gap that are filled or emptied, which may alter nonradiative recombination processes and affect photocurrent.
The influence of visible light on transparent zinc tin oxide thin film transistors
NASA Astrophysics Data System (ADS)
Görrn, P.; Lehnhardt, M.; Riedl, T.; Kowalsky, W.
2007-11-01
The characteristics of transparent zinc tin oxide thin film transistors (TTFTs) upon illumination with visible light are reported. Generally, a reversible decrease of threshold voltage Vth, saturation field effect mobility μsat, and an increase of the off current are found. The time scale of the recovery in the dark is governed by the persistent photoconductivity in the semiconductor. Devices with tuned [Zn]:[Sn] ratio show a shift of Vth of less 2V upon illumination at 5mW/cm2 (brightness >30000cd/m2) throughout the visible spectrum. These results demonstrate TTFTs which are candidates as pixel drivers in transparent active-matrix organic light emitting diode displays.
Nonlinear, anisotropic, and giant photoconductivity in intrinsic and doped graphene
NASA Astrophysics Data System (ADS)
Singh, Ashutosh; Ghosh, Saikat; Agarwal, Amit
2018-01-01
We present a framework to calculate the anisotropic and nonlinear photoconductivity for two band systems with application to graphene. In contrast to the usual perturbative (second order in the optical field strength) techniques, we calculate photoconductivity to all orders in the optical field strength. In particular, for graphene, we find the photoresponse to be giant (at large optical field strengths) and anisotropic. The anisotropic photoresponse in graphene is correlated with polarization of the incident field, with the response being similar to that of a half-wave plate. We predict that the anisotropy in the simultaneous measurement of longitudinal (σx x) and transverse (σy x) photoconductivity, with four probes, offers a unique experimental signature of the photovoltaic response, distinguishing it from the thermal-Seebeck and bolometric effects in photoresponse.
Trap-induced photoconductivity in singlet fission pentacene diodes
NASA Astrophysics Data System (ADS)
Qiao, Xianfeng; Zhao, Chen; Chen, Bingbing; Luan, Lin
2014-07-01
This paper reports a trap-induced photoconductivity in ITO/pentacene/Al diodes by using current-voltage and magneto-conductance measurements. The comparison of photoconductivity between pentacene diodes with and without trap clearly shows that the traps play a critical role in generating photoconductivity. It shows that no observable photoconductivity is detected for trap-free pentacene diodes, while significant photoconductivity is observed in diodes with trap. This is because the initial photogenerated singlet excitons in pentacene can rapidly split into triplet excitons with higher binding energy prior to dissociating into free charge carriers. The generated triplet excitons react with trapped charges to release charge-carriers from traps, leading to a trap-induced photoconductivity in the single-layer pentacene diodes. Our studies elucidated the formation mechanisms of photoconductivity in pentacene diodes with extremely fast singlet fission rate.
Ultrafast photoconductivity of undoped cuprates
NASA Astrophysics Data System (ADS)
Dodge, J. Steven; Farahani, Amir; Petersen, Jesse; Liang, Ruixing; Bozovic, Ivan
2010-03-01
Using a visible pump-THz probe technique, we studied the ultrafast transient photoconductivity of the insulating cuprate La2CuO4, and compared it with earlier measurements of Sr2CuO2Cl2 and YBa2Cu3O6. In all these compounds, we observe a rapid onset of photoconductivity that is followed by a non-exponential relaxation on a picosecond time scales, the dynamics of which are independent of photocarrier concentration ranging from 0.2 to 1.5 percent. The photoconductivity decay is qualitatively similar to the decay of the photoinduced gap absorption in Sr2CuO2Cl2,footnotetextJ. S. Dodge, arXiv:0910.5048 indicating a common origin for the two effects. Assuming a quantum efficiency of unity, the estimated peak mobility for all three compounds is within 0.1-0.4 cm^2/V.s; this is lower than the Hall mobility in chemically doped systems with similar carrier concentrations,footnotetext Ando et al, Phys. Rev. Lett. 87, 017001 (2001) but orders of magnitude larger than earlier DC photoconductivity results.footnotetextThio et al, Phys. Rev. B 42, 10800 (1990) The similarity of the peak photoconductivity across three different compounds indicates that it is an intrinsic feature of the copper oxide plane.
Features of Stationary Photoconductivity of High-Ohmic Semiconductors Under Local Illumination
NASA Astrophysics Data System (ADS)
Lysenko, A. P.; Belov, A. G.; Kanevskii, V. E.; Odintsova, E. A.
2018-04-01
Photoconductivity has been thoroughly studied for a long time. However, most researchers have examined photoconductivity of semiconductors while illuminating the entire surface of samples. The present paper examines the effect of local exposure that ensures a high level of injection of free charge carriers upon the conductivity of high-ohmic cadmium telluride and semi-insulating gallium arsenide samples and upon the properties of ohmic contacts to samples. The authors found that regardless of the exposure area the value of transition resistance of ohmic contacts decreases and the concentration of the main charge carriers increases in the sample in proportion to radiation intensity. This research uncovered a number of previously unknown effects that are interesting from the physical point of view. This paper focuses on discussing these effects.
Berry, C W; Wang, N; Hashemi, M R; Unlu, M; Jarrahi, M
2013-01-01
Even though the terahertz spectrum is well suited for chemical identification, material characterization, biological sensing and medical imaging, practical development of these applications has been hindered by attributes of existing terahertz optoelectronics. Here we demonstrate that the use of plasmonic contact electrodes can significantly mitigate the low-quantum efficiency performance of photoconductive terahertz optoelectronics. The use of plasmonic contact electrodes offers nanoscale carrier transport path lengths for the majority of photocarriers, increasing the number of collected photocarriers in a subpicosecond timescale and, thus, enhancing the optical-to-terahertz conversion efficiency of photoconductive terahertz emitters and the detection sensitivity of photoconductive terahertz detectors. We experimentally demonstrate 50 times higher terahertz radiation powers from a plasmonic photoconductive emitter in comparison with a similar photoconductive emitter with non-plasmonic contact electrodes, as well as 30 times higher terahertz detection sensitivities from a plasmonic photoconductive detector in comparison with a similar photoconductive detector with non-plasmonic contact electrodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiao, Xianfeng, E-mail: qiaoxianfeng@hotmail.com; Zhao, Chen; Chen, Bingbing
This paper reports a trap-induced photoconductivity in ITO/pentacene/Al diodes by using current-voltage and magneto-conductance measurements. The comparison of photoconductivity between pentacene diodes with and without trap clearly shows that the traps play a critical role in generating photoconductivity. It shows that no observable photoconductivity is detected for trap-free pentacene diodes, while significant photoconductivity is observed in diodes with trap. This is because the initial photogenerated singlet excitons in pentacene can rapidly split into triplet excitons with higher binding energy prior to dissociating into free charge carriers. The generated triplet excitons react with trapped charges to release charge-carriers from traps, leadingmore » to a trap-induced photoconductivity in the single-layer pentacene diodes. Our studies elucidated the formation mechanisms of photoconductivity in pentacene diodes with extremely fast singlet fission rate.« less
Cyclotron resonance in InAs/AlSb quantum wells in magnetic fields up to 45 T
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spirin, K. E., E-mail: spirink@ipmras.ru; Krishtopenko, S. S.; Sadofyev, Yu. G.
Electron cyclotron resonance in InAs/AlSb heterostructures with quantum wells of various widths in pulsed magnetic fields up to 45 T are investigated. Our experimental cyclotron energies are in satisfactory agreement with the results of theoretical calculations performed using the eight-band kp Hamiltonian. The shift of the cyclotron resonance (CR) line, which corresponds to the transition from the lowest Landau level to the low magnetic-field region, is found upon varying the electron concentration due to the negative persistent photoconductivity effect. It is shown that the observed shift of the CR lines is associated with the finite width of the density ofmore » states at the Landau levels.« less
Hammond, Robert B.; Paulter, Nicholas G.; Wagner, Ronald S.
1984-01-01
A photoconducting device fabricated from Fe-doped, semi-insulating InP crystals exhibits an exponential decay transient with decay time inversely related to Fe concentration. Photoconductive gain as high as 5 is demonstrated in photoconducting devices with AuGe and AuSn contacts. Response times from 150 to 1000 picoseconds can be achieved.
Hammond, R.B.; Paulter, N.G.; Wagner, R.S.
A photoconducting device fabricated from Fe-doped, semi-insulating InP crystals exhibits an exponential decay transient with decay time inversely related to Fe concentration. Photoconductive gain as high as 5 is demonstrated in photoconducting devices with AuGe and AuSn contacts. Response times from 150 to 1000 picoseconds can be achieved.
Photoconductive terahertz near-field detector with a hybrid nanoantenna array cavity
Mitrofanov, Oleg; Brener, Igal; Luk, Ting S.; ...
2015-11-19
Nanoscale structuring of optical materials leads to modification of their properties and can be used for improving efficiencies of photonic devices and for enabling new functionalities. In ultrafast optoelectronic switches for generation and detection of terahertz (THz) radiation, incorporation of nanostructures allows us to overcome inherent limitations of photoconductive materials. We propose and demonstrate a nanostructured photoconductive THz detector for sampling highly localized THz fields, down to the level of λ/150. The nanostructure that consists of an array of optical nanoantennas and a distributed Bragg reflector forms a hybrid cavity, which traps optical gate pulses within the photoconductive layer. Themore » effect of photon trapping is observed as enhanced absorption at a designed wavelength. This optically thin photoconductive THz detector allows us to detect highly confined evanescent THz fields coupled through a deeply subwavelength aperture as small as 2 μm (λ/150 at 1 THz). As a result, by monolithically integrating the THz detector with apertures ranging from 2 to 5 μm we realize higher spatial resolution and higher sensitivity in aperture-type THz near-field microscopy and THz time-domain spectroscopy.« less
NASA Astrophysics Data System (ADS)
Davidenko, N. A.; Ishchenko, A. A.; Kozinets, A. V.; Kostenko, L. I.; Kurdyukova, I. V.; Mokrinskaya, E. V.; Studzinskii, S. L.; Chuprina, N. G.
2011-03-01
We have studied the photoconducting properties of films of ferrocene-containing oligomer with additives of squarylium and merocyanine dyes based on ferrocene and tetranitrofluorene in the dye absorption region. We have studied the characteristic features of the effect of an external magnetic field on the photocurrents. After the magnetic field is turned on, the photocurrent increases in the samples with squarylium dye and decreases in the samples with merocyanine dye. We discuss the hypothesis that in the first case, as a result of an internal photoelectric effect, predominantly triplet charge pairs are formed, while in the second case predominantly singlet charge pairs are formed. The latter may be one of the reasons for the higher photoconductivity of films with squarylium dye compared with merocyanine dye.
Transport properties of epitaxial lift off films
NASA Technical Reports Server (NTRS)
Mena, R. A.; Schacham, S. E.; Young, P. G.; Haugland, E. J.; Alterovitz, S. A.
1993-01-01
Transport properties of epitaxially lifted-off (ELO) films were characterized using conductivity, Hall, and Shubnikov-de Haas measurements. A 10-15 percent increase in the 2D electron gas concentration was observed in these films as compared with adjacent conventional samples. We believe this result to be caused by a backgating effect produced by a charge build up at the interface of the ELO film and the quartz substrate. This increase results in a substantial decrease in the quantum lifetime in the ELO samples, by 17-30 percent, but without a degradation in carrier mobility. Under persistent photoconductivity, only one subband was populated in the conventional structure, while in the ELO films the population of the second subband was clearly visible. However, the increase of the second subband concentration with increasing excitation is substantially smaller than anticipated due to screening of the backgating effect.
Polysilicon photoconductor for integrated circuits
Hammond, Robert B.; Bowman, Douglas R.
1989-01-01
A photoconductive element of polycrystalline silicon is provided with intrinsic response time which does not limit overall circuit response. An undoped polycrystalline silicon layer is deposited by LPCVD to a selected thickness on silicon dioxide. The deposited polycrystalline silicon is then annealed at a selected temperature and for a time effective to obtain crystal sizes effective to produce an enhanced current output. The annealed polycrystalline layer is subsequently exposed and damaged by ion implantation to a damage factor effective to obtain a fast photoconductive response.
Polysilicon photoconductor for integrated circuits
Hammond, Robert B.; Bowman, Douglas R.
1990-01-01
A photoconductive element of polycrystalline silicon is provided with intrinsic response time which does not limit overall circuit response. An undoped polycrystalline silicon layer is deposited by LPCVD to a selected thickness on silicon dioxide. The deposited polycrystalline silicon is then annealed at a selected temperature and for a time effective to obtain crystal sizes effective to produce an enhanced current output. The annealed polycrystalline layer is subsequently exposed and damaged by ion implantation to a damage factor effective to obtain a fast photoconductive response.
Polysilicon photoconductor for integrated circuits
Hammond, R.B.; Bowman, D.R.
1989-04-11
A photoconductive element of polycrystalline silicon is provided with intrinsic response time which does not limit overall circuit response. An undoped polycrystalline silicon layer is deposited by LPCVD to a selected thickness on silicon dioxide. The deposited polycrystalline silicon is then annealed at a selected temperature and for a time effective to obtain crystal sizes effective to produce an enhanced current output. The annealed polycrystalline layer is subsequently exposed and damaged by ion implantation to a damage factor effective to obtain a fast photoconductive response. 6 figs.
NASA Astrophysics Data System (ADS)
Sasaki, T.; Hafuri, M.; Suda, T.; Nakano, M.; Funada, K.; Ohta, M.; Terazono, T.; Le, K. V.; Naka, Y.
2017-08-01
Effect of ferroelectricity on the photorefractive effect of ferroelectric liquid crystal blends was investigated. The photorefractive effect of ferroelectric liquid crystal blends strongly depend on the ferroelectricity of the blend. We have prepared a series of ferroelectric liquid crystal blends that contains several concentrations of a chiral compound while keeping a constant concentration of a photoconductive moiety. The photorefractive properties of the ferroelectric liquid crystal blends were discussed with relations to the ferroelectric properties of the blends.
Infrared Quenched Photoinduced Superconductivity
NASA Astrophysics Data System (ADS)
Federici, J. F.; Chew, D.; Guttierez-Solana, J.; Molina, G.; Savin, W.; Wilber, W.
1996-03-01
Persistant photoconductivity (PPC) and photoinduced superconductivity (PISC) in oxygen deficient YBa_2Cu_3O_6+x have received recent attention. It has been suggested that oxygen vacancy defects play an important role in the PISC/PPC mechanism.(J. F. Federici, D. Chew, B. Welker, W. Savin, J. Gutierrez-Solana, and T. Fink, Phys. Rev. B), December 1995 Supported by National Science Foundation In this model, defects trap photogenerated electrons so that electron-hole recombination can not occur thereby allowing photogenerated holes to contribute to the carrier density. Nominally, the photoinduced state is long-lived, persisting for days at low temperature. Experiment results will be presented demonstrating that the photoinduced superconductivity state can be quenched using infrared radiation. Implications for the validity of the PISC/PCC defect model will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Il’in, A. S., E-mail: as.ilin@physics.msu.ru; Fantina, N. P.; Martyshov, M. N.
The effect of cadmium-selenide quantum dots addition on the electrical and photoelectric properties of nanocrystalline indium oxide with nanocrystal dimensions in the range from 7 to 40 nm is studied. By impedance spectroscopy, it is shown that the addition of quantum dots substantially influences the resistance of interfaces between In{sub 2}O{sub 3} crystals. A change in the character of the photoconductivity spectrum of In{sub 2}O{sub 3} upon the addition of CdSe quantum dots is detected, and it is established that this change depends on the In{sub 2}O{sub 3}-nanocrystal dimensions. An energy band diagram is proposed to explain the observed changemore » in the photoconductivity spectrum of In{sub 2}O{sub 3} upon the addition of CdSe quantum dots.« less
Light controlled prebreakdown characteristics of a semi-insulating GaAs photoconductive switch
NASA Astrophysics Data System (ADS)
Xiangrong, Ma; Wei, Shi; Weili, Ji; Hong, Xue
2011-12-01
A 4 mm gap semi-insulating (SI) GaAs photoconductive switch (PCSS) was triggered by a pulse laser with a wavelength of 1064 nm and a pulse energy of 0.5 mJ. In the experiment, when the bias field was 4 kV, the switch did not induce self-maintained discharge but worked in nonlinear (lock-on) mode. The phenomenon is analyzed as follows: an exciton effect contributes to photoconduction in the generation and dissociation of excitons. Collision ionization, avalanche multiplication and the exciton effect can supply carrier concentration and energy when an outside light source was removed. Under the combined influence of these factors, the SI-GaAs PCSS develops into self-maintained discharge rather than just in the light-controlled prebreakdown status. The characteristics of the filament affect the degree of damage to the switch.
NASA Astrophysics Data System (ADS)
Musiienko, A.; Grill, R.; Moravec, P.; Korcsmáros, G.; Rejhon, M.; Pekárek, J.; Elhadidy, H.; Šedivý, L.; Vasylchenko, I.
2018-04-01
Photo-Hall effect spectroscopy was used in the study of deep levels in high resistive CdZnTe. The monochromator excitation in the photon energy range 0.65-1.77 eV was complemented by a laser diode high-intensity excitation at selected photon energies. A single sample characterized by multiple unusual features like negative differential photoconductivity and anomalous depression of electron mobility was chosen for the detailed study involving measurements at both the steady and dynamic regimes. We revealed that the Hall mobility and photoconductivity can be both enhanced and suppressed by an additional illumination at certain photon energies. The anomalous mobility decrease was explained by an excitation of the inhomogeneously distributed deep level at the energy Ev + 1.0 eV, thus enhancing potential non-uniformities. The appearance of negative differential photoconductivity was interpreted by an intensified electron occupancy of that level by a direct valence band-to-level excitation. Modified Shockley-Read-Hall theory was used for fitting experimental results by a model comprising five deep levels. Properties of the deep levels and their impact on the device performance were deduced.
Method and system for photoconductive detector signal correction
Carangelo, Robert M.; Hamblen, David G.; Brouillette, Carl R.
1992-08-04
A corrective factor is applied so as to remove anomalous features from the signal generated by a photoconductive detector, and to thereby render the output signal highly linear with respect to the energy of incident, time-varying radiation. The corrective factor may be applied through the use of either digital electronic data processing means or analog circuitry, or through a combination of those effects.
Method and system for photoconductive detector signal correction
Carangelo, R.M.; Hamblen, D.G.; Brouillette, C.R.
1992-08-04
A corrective factor is applied so as to remove anomalous features from the signal generated by a photoconductive detector, and to thereby render the output signal highly linear with respect to the energy of incident, time-varying radiation. The corrective factor may be applied through the use of either digital electronic data processing means or analog circuitry, or through a combination of those effects. 5 figs.
Photoconductivity of Macroporous and Nonporous Silicon with Ultrathin Oxide Layers
NASA Astrophysics Data System (ADS)
Konin, K. P.; Goltvyansky, Yu. V.; Karachevtseva, L. A.; Karas, M. I.; Morozovs'ka, D. V.
2018-06-01
The photoconductivity of macroporous silicon with ultrathin oxide layers of 2.7-30 nm in thickness at short-wave optical excitation was studied. The following feature was revealed: a nonmonotonic change in the photoconductivity as a function of the oxide thickness. At a minimum thickness, the photoconductivity is negative; in the interval 6.8-15 nm, it is very much suppressed; at 15-30 nm, it is positive. Suppression of photoconductivity over a wide thickness range indicates an abnormally high concentration of traps and capture centers for charge carriers of both signs. Such a change in the photoconductivity corresponds to the known results on the continuous morphological rearrangement of the oxide in the thickness range from 6-7 nm to 12-15 nm from the coesite-like (4-membered SiO4 tetrahedra rings) to the tridymite-like (6-membered SiO4 tetrahedra rings). The suppression of photoconductivity in the intermediate range probably demonstrates the collective, antisynergetic action of these coexisting oxide forms on the nonequilibrium charge carriers. These coexisting oxide forms manifest themselves as an unusual collective defect.
Substrate effects in high gain, low operating voltage SnSe2 photoconductor
NASA Astrophysics Data System (ADS)
Krishna, Murali; Kallatt, Sangeeth; Majumdar, Kausik
2018-01-01
High gain photoconductive devices find wide spread applications in low intensity light detection. Ultra-thin layered materials have recently drawn a lot of attention from researchers in this regard. However, in general, a large operating voltage is required to obtain large responsivity in these devices. In addition, the characteristics are often confounded by substrate induced trap effects. Here we report multi-layer SnSe2 based photoconductive devices using two different structures: (1) SiO2 substrate supported inter-digitated electrode (IDE), and (2) suspended channel. The IDE device exhibits a responsivity of ≈ {10}3 A W-1 and ≈ 8.66× {10}4 A W-1 at operating voltages of 1 mV and 100 mV, respectively—a superior low voltage performance over existing literature on planar 2D structures. However, the responsivity reduces by more than two orders of magnitude, while the transient response improves for the suspended device—providing insights into the critical role played by the channel-substrate interface in the gain mechanism. The results, on one hand, are promising for highly sensitive photoconductive applications consuming ultra-low power, and on the other hand, show a generic methodology that could be applied to other layered material based photoconductive devices as well for extracting the intrinsic behavior.
Effects of oxygen vacancy on the photoconductivity in BaSnO3
NASA Astrophysics Data System (ADS)
Park, Jisung; Char, Kookrin; Institute of Applied Physics, Department of Physics; Astronomy, Seoul National University Team
We have found the photoconductive behavior of BaSnO3, especially their magnitude and time dependence, is very sensitive to the oxygen vacancy concentration. We made epitaxial BaSnO3 film with BaHfO3 buffer layer by pulsed laser deposition. As we had reported before, MgO substrate with its large band gap size about 7.8 eV was used to exclude any photoconductance from the substrate. BaHfO3 layer was used to reduce the threading dislocation density in BaSnO3 film. To control the oxygen vacancy concentration in the BaSnO3 film, we annealed the sample in Ar or O2 atmosphere with varying annealing conditions. After each annealing process, photoconductivity of BaSnO3 was measured during illumination of UV light. The result showed that the magnitude of photoconductivity of BaSnO3 increased after annealing at higher temperature in Ar atmosphere, while the changes in the dark current remains minimal. The result can be explained by a hole trap mechanism. Higher Fermi level due to the increased oxygen vacancy concentration can cause occupation of deep acceptor levels in dislocations of the BaSnO3 film. These occupied deep acceptor levels in turn trap photo-generated holes so that the recombination of electron-hole pair is deterred. Samsung Science and Technology Foundation.
Enhanced photoconductivity by melt quenching method for amorphous organic photorefractive materials
NASA Astrophysics Data System (ADS)
Tsujimura, S.; Fujihara, T.; Sassa, T.; Kinashi, K.; Sakai, W.; Ishibashi, K.; Tsutsumi, N.
2014-10-01
For many optical semiconductor fields of study, the high photoconductivity of amorphous organic semiconductors has strongly been desired, because they make the manufacture of high-performance devices easy when controlling charge carrier transport and trapping is otherwise difficult. This study focuses on the correlation between photoconductivity and bulk state in amorphous organic photorefractive materials to probe the nature of the performance of photoconductivity and to enhance the response time and diffraction efficiency of photorefractivity. The general cooling processes of the quenching method achieved enhanced photoconductivity and a decreased filling rate for shallow traps. Therefore, sample processing, which was quenching in the present case, for photorefractive composites significantly relates to enhanced photorefractivity.
Impurity-induced photoconductivity of narrow-gap Cadmium–Mercury–Telluride structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozlov, D. V., E-mail: dvkoz@impras.ru; Rumyantsev, V. V.; Morozov, S. V.
2015-12-15
The photoconductivity (PC) spectra of CdHgTe (MCT) solid solutions with a Cd fraction of 17 and 19% are measured. A simple model for calculating the states of doubly charged acceptors in MCT solid solutions, which makes it possible to describe satisfactorily the observed photoconductivity spectra, is proposed. The found lines in the photoconductivity spectra of narrow-gap MCT structures are associated with transitions between the states of both charged and neutral acceptor centers.
Radiation-induced extrinsic photoconductivity in Li-doped Si.
NASA Technical Reports Server (NTRS)
Fenimore, E.; Mortka, T.; Corelli, J. C.
1972-01-01
Investigation of the effects of lithium on radiation-produced complexes having long-time stability by examining the localized energy levels in the forbidden gap which give rise to extrinsic photoconductivity. The levels are found to disappear and in some cases shift with annealing in the 100-450 C temperature range. Due to the complexity of the system and the present lack of adequate theory, no complete analysis of the data obtained could be made.
NASA Astrophysics Data System (ADS)
Yokoyama, Kenji; Arishima, Koichi; Sukegawa, Ken
1994-07-01
Photorefractive polymers with the same electro-optic effect were fabricated to investigate the photorefractive effects in different photoconductive systems. The photoconduction in the polymers was varied by the addition of squarylium dye to diethylaminobenzaldehyde-diphenylhydrazone (DEH), by the formation of a charge-transfer complex between tetracyanoquinodimethane and DEH, and by the thermal decomposition of DEH. The largest photorefractive effect was observed in the thermally decomposed polymer among these polymers. A diffraction efficiency of 1.1% and a beam-coupling gain coefficient of 10 cm-1 were achieved in a 34.9 V/μm dc electric field.
Photoconduction in amorphous thin films of Se90Sb10-xAgx glassy alloys
NASA Astrophysics Data System (ADS)
Sharma, Suresh Kumar; Shukla, R. K.; Dwivedi, Prabhat K.; Kumar, A.
2017-10-01
The present paper reports the steady state photoconductivity and photosensitivity response of thermally evaporated amorphous thin films of Se90Sb10-xAgx(x = 2, 4, 6, 8, 10). Temperature dependence of dark conductivity is studied and activation energy is calculated for different samples. Temperature dependence of photoconductivity is also studied at different intensities. From temperature dependence of photoconductivity activation energy is computed at different intensities which are found to vary from 0.26 to 0.47 eV. Intensity dependence of photoconductivity has also been studied at different temperatures. These curves are plotted on logarithmic scale and found to be straight lines which show that photoconductivity follows a power law with intensity. Composition dependence of dark conductivity, activation energy of DC conduction and photosensitivity show that these parameters are highly. composition dependent and show a discontinuity at a particular composition when Ag concentration becomes 6 at. %. This is explained in terms of transition from floppy state to mechanically stabilized state at this composition.
Negative Photoconductance in Heavily Doped Si Nanowire Field-Effect Transistors.
Baek, Eunhye; Rim, Taiuk; Schütt, Julian; Baek, Chang-Ki; Kim, Kihyun; Baraban, Larysa; Cuniberti, Gianaurelio
2017-11-08
We report the first observation of negative photoconductance (NPC) in n- and p-doped Si nanowire field-effect transistors (FETs) and demonstrate the strong influence of doping concentrations on the nonconventional optical switching of the devices. Furthermore, we show that the NPC of Si nanowire FETs is dependent on the wavelength of visible light due to the phonon-assisted excitation to multiple conduction bands with different band gap energies that would be a distinct optoelectronic property of indirect band gap semiconductor. We attribute the main driving force of NPC in Si nanowire FETs to the photogenerated hot electrons trapping by dopants ions and interfacial states. Finally, comparing back- and top-gate modulation, we derive the mechanisms of the transition between negative and positive photoconductance regimes in nanowire devices. The transition is decided by the competition between the light-induced interfacial trapping and the recombination of mobile carriers, which is dependent on the light intensity and the doping concentration.
NASA Technical Reports Server (NTRS)
Gange, Robert Allen (Inventor)
1977-01-01
A holographic recording medium comprising a conductive substrate, a photoconductive layer and an electrically alterable layer of a linear, low molecular weight hydrocarbon polymer has improved fatigue resistance. An acrylic barrier layer can be interposed between the photoconductive and electrically alterable layers.
NASA Astrophysics Data System (ADS)
Hegmann, F. A.; Tykwinski, R. R.; Lui, K. P.; Bullock, J. E.; Anthony, J. E.
2002-11-01
We have measured transient photoconductivity in functionalized pentacene molecular crystals using ultrafast optical pump-terahertz probe techniques. The single crystal samples were excited using 800nm, 100fs pulses, and the change in transmission of time-delayed, subpicosecond terahertz pulses was used to probe the photoconducting state over a temperature range from 10 to 300K. A subpicosecond rise in photoconductivity is observed, suggesting that mobile carriers are a primary photoexcitation. At times longer than 4ps, a power-law decay is observed consistent with dispersive transport.
Optical and photoconductivity spectra of novel Ag₂In₂SiS₆ and Ag₂In₂GeS₆ chalcogenide crystals.
Chmiel, M; Piasecki, M; Myronchuk, G; Lakshminarayana, G; Reshak, Ali H; Parasyuk, O G; Kogut, Yu; Kityk, I V
2012-06-01
Complex spectral studies of near-band gap and photoconductive spectra for novel Ag(2)In(2)SiS(6) and Ag(2)In(2)GeS(6) single crystals are presented. The spectral dependences of photoconductivity clearly show an existence of spectral maxima within the 450 nm-540 nm and 780 nm-920 nm. The fundamental absorption edge is analyzed by Urbach rule. The origin of the spectral photoconductivity spectral maxima is discussed. Temperature dependences of the spectra were done. The obtained spectral features allow to propose the titled crystals as photosensors. An analysis of the absorption and photoconductivity spectra is given within a framework of oversimplified spectroscopic model of complex chalcogenide crystals. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yadav, Harish Kumar; Sreenivas, K.; Gupta, Vinay
2010-02-01
Ultraviolet photoconductivity relaxation in ZnO thin films deposited by rf magnetron sputtering are investigated. Effect of oxygen partial pressure in the reactive gas mixture and film thickness on the photoconductivity transients is studied. A different photodetector configuration comprising ZnO thin film with an ultrathin overlayer of metals like Cu, Al, Sn, Au, Cr, and Te was designed and tested. Photoresponse signal were found to be stronger (four to seven times) in these configurations than the pure ZnO thin films. Sn(30 nm)/ZnO sample exhibits highest responsivity of ˜8.57 kV/W whereas Te(20 nm)/ZnO structure presents highest sensitivity of ˜31.3×103 compared to unloaded ZnO thin film. Enhancement in the photoresponse of ZnO thin films is attributed to the change in surface conductivity due to induced charge carriers at the interface because of the difference in work function and oxygen affinity values of metal overlayer with the underlying semiconducting layer. Charge carrier transfer from the metal layer to ZnO creates a surplus of electrons at the interface; a fraction of which are captured by the defect centers (traps) at the surface whereas the remaining one represents free carriers in the conduction band and are responsible for the enhanced photoconductivity.
Light-induced metal-insulator transition in a switchable mirror.
Hoekstra, A F; Roy, A S; Rosenbaum, T F; Griessen, R; Wijngaarden, R J; Koeman, N J
2001-06-04
Rare earth hydride films can be converted reversibly from metallic mirrors to insulating windows simply by changing the surrounding hydrogen gas pressure at room temperature. At low temperatures, in situ doping is not possible in this way as hydrogen cannot diffuse. However, our finding of persistent photoconductivity under ultraviolet illumination offers an attractive possibility to tune yttrium hydride through the T = 0 metal-insulator transition. Conductivity and Hall measurements are used to determine critical exponents. The unusually large value for the product of the static and dynamical critical exponents appears to signify the important role played by electron-electron interactions.
McNeill, Alexandra R; Hyndman, Adam R; Reeves, Roger J; Downard, Alison J; Allen, Martin W
2016-11-16
ZnO is a prime candidate for future use in transparent electronics; however, development of practical materials requires attention to factors including control of its unusual surface band bending and surface reactivity. In this work, we have modified the O-polar (0001̅), Zn-polar (0001), and m-plane (101̅0) surfaces of ZnO with phosphonic acid (PA) derivatives and measured the effect on the surface band bending and surface sensitivity to atmospheric oxygen. Core level and valence band synchrotron X-ray photoemission spectroscopy was used to measure the surface band bending introduced by PA modifiers with substituents of opposite polarity dipole moment: octadecylphosphonic acid (ODPA) and 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctylphosphonic acid (F 13 OPA). Both PAs act as surface electron donors, increasing the downward band bending and the strength of the two-dimensional surface electron accumulation layer on all of the ZnO surfaces investigated. On the O-polar (0001̅) and m-plane (101̅0) surfaces, the ODPA modifier produced the largest increase in downward band bending relative to the hydroxyl-terminated unmodified surface of 0.55 and 0.35 eV, respectively. On the Zn-polar (0001) face, the F 13 OPA modifier gave the largest increase (by 0.50 eV) producing a total downward band bending of 1.00 eV, representing ∼30% of the ZnO band gap. Ultraviolet (UV) photoinduced surface wettability and photoconductivity measurements demonstrated that the PA modifiers are effective at decreasing the sensitivity of the surface toward atmospheric oxygen. Modification with PA derivatives produced a large increase in the persistence of UV-induced photoconductivity and a large reduction in UV-induced changes in surface wettability.
Ultrahigh photoconductivity of bandgap-graded CdSxSe1-x nanowires probed by terahertz spectroscopy
NASA Astrophysics Data System (ADS)
Liu, Hongwei; Lu, Junpeng; Yang, Zongyin; Teng, Jinghua; Ke, Lin; Zhang, Xinhai; Tong, Limin; Sow, Chorng Haur
2016-06-01
Superiorly high photoconductivity is desirable in optoelectronic materials and devices for information transmission and processing. Achieving high photoconductivity via bandgap engineering in a bandgap-graded semiconductor nanowire has been proposed as a potential strategy. In this work, we report the ultrahigh photoconductivity of bandgap-graded CdSxSe1-x nanowires and its detailed analysis by means of ultrafast optical-pump terahertz-probe (OPTP) spectroscopy. The recombination rates and carrier mobility are quantitatively obtained via investigation of the transient carrier dynamics in the nanowires. By analysis of the terahertz (THz) spectra, we obtain an insight into the bandgap gradient and band alignment to carrier transport along the nanowires. The demonstration of the ultrahigh photoconductivity makes bandgap-graded CdSxSe1-x nanowires a promising candidate as building blocks for nanoscale electronic and photonic devices.
Hole-Impeded-Doping-Superlattice LWIR Detectors
NASA Technical Reports Server (NTRS)
Maserjian, Joseph
1991-01-01
Hole-Impeded-Doping-Superlattice (HIDS) InAs devices proposed for use as photoconductive or photovoltaic detectors of radiation in long-wavelength infrared (LWIR) range of 8 to 17 micrometers. Array of HIDS devices fabricated on substrates GaAs or Si. Radiation incident on black surface, metal contacts for picture elements serve as reactors, effectively doubling optical path and thereby increasing absorption of photons. Photoconductive detector offers advantages of high gain and high impedance; photovoltaic detector offers lower noise and better interface to multiplexer readouts.
NASA Astrophysics Data System (ADS)
Seo, Hokuto; Aihara, Satoshi; Namba, Masakazu; Watabe, Toshihisa; Ohtake, Hiroshi; Kubota, Misao; Egami, Norifumi; Hiramatsu, Takahiro; Matsuda, Tokiyoshi; Furuta, Mamoru; Nitta, Hiroshi; Hirao, Takashi
2010-01-01
Our group has been developing a new type of image sensor overlaid with three organic photoconductive films, which are individually sensitive to only one of the primary color components (blue (B), green (G), or red (R) light), with the aim of developing a compact, high resolution color camera without any color separation optical systems. In this paper, we firstly revealed the unique characteristics of organic photoconductive films. Only choosing organic materials can tune the photoconductive properties of the film, especially excellent wavelength selectivities which are good enough to divide the incident light into three primary colors. Color separation with vertically stacked organic films was also shown. In addition, the high-resolution of organic photoconductive films sufficient for high-definition television (HDTV) was confirmed in a shooting experiment using a camera tube. Secondly, as a step toward our goal, we fabricated a stacked organic image sensor with G- and R-sensitive organic photoconductive films, each of which had a zinc oxide (ZnO) thin film transistor (TFT) readout circuit, and demonstrated image pickup at a TV frame rate. A color image with a resolution corresponding to the pixel number of the ZnO TFT readout circuit was obtained from the stacked image sensor. These results show the potential for the development of high-resolution prism-less color cameras with stacked organic photoconductive films.
Photoconductivity of Activated Carbon Fibers
DOE R&D Accomplishments Database
Kuriyama, K.; Dresselhaus, M. S.
1990-08-01
The photoconductivity is measured on a high-surface-area disordered carbon material, namely activated carbon fibers, to investigate their electronic properties. Measurements of decay time, recombination kinetics and temperature dependence of the photoconductivity generally reflect the electronic properties of a material. The material studied in this paper is a highly disordered carbon derived from a phenolic precursor, having a huge specific surface area of 1000--2000m{sup 2}/g. Our preliminary thermopower measurements suggest that this carbon material is a p-type semiconductor with an amorphous-like microstructure. The intrinsic electrical conductivity, on the order of 20S/cm at room temperature, increases with increasing temperature in the range 30--290K. In contrast with the intrinsic conductivity, the photoconductivity in vacuum decreases with increasing temperature. The recombination kinetics changes from a monomolecular process at room temperature to a biomolecular process at low temperatures. The observed decay time of the photoconductivity is {approx equal}0.3sec. The magnitude of the photoconductive signal was reduced by a factor of ten when the sample was exposed to air. The intrinsic carrier density and the activation energy for conduction are estimated to be {approx equal}10{sup 21}/cm{sup 3} and {approx equal}20meV, respectively. The majority of the induced photocarriers and of the intrinsic carriers are trapped, resulting in the long decay time of the photoconductivity and the positive temperature dependence of the conductivity.
The ultrafast dynamics and conductivity of photoexcited graphene at different Fermi energies
Turchinovich, Dmitry; Kläui, Mathias; Hendry, Euan; Polini, Marco
2018-01-01
For many of the envisioned optoelectronic applications of graphene, it is crucial to understand the subpicosecond carrier dynamics immediately following photoexcitation and the effect of photoexcitation on the electrical conductivity—the photoconductivity. Whereas these topics have been studied using various ultrafast experiments and theoretical approaches, controversial and incomplete explanations concerning the sign of the photoconductivity, the occurrence and significance of the creation of additional electron-hole pairs, and, in particular, how the relevant processes depend on Fermi energy have been put forward. We present a unified and intuitive physical picture of the ultrafast carrier dynamics and the photoconductivity, combining optical pump–terahertz probe measurements on a gate-tunable graphene device, with numerical calculations using the Boltzmann equation. We distinguish two types of ultrafast photo-induced carrier heating processes: At low (equilibrium) Fermi energy (EF ≲ 0.1 eV for our experiments), broadening of the carrier distribution involves interband transitions (interband heating). At higher Fermi energy (EF ≳ 0.15 eV), broadening of the carrier distribution involves intraband transitions (intraband heating). Under certain conditions, additional electron-hole pairs can be created [carrier multiplication (CM)] for low EF, and hot carriers (hot-CM) for higher EF. The resultant photoconductivity is positive (negative) for low (high) EF, which in our physical picture, is explained using solely electronic effects: It follows from the effect of the heated carrier distributions on the screening of impurities, consistent with the DC conductivity being mostly due to impurity scattering. The importance of these insights is highlighted by a discussion of the implications for graphene photodetector applications. PMID:29756035
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korsunskii, M.I.
1973-01-01
Translated from Russian by E. Harnik. This book investigates the nature and properties of anomalous (negative) photoconductivity observed in specially treated (mercury-activated) amorphous selenium films. A phenomenological theory is given, some properties of long-life traps are described, and a new type of centers (s-centers or storage centers) is discussed. Preparation of anomalously photoconductive Se and possible applications are considered. (86 references) (DLC)
NASA Astrophysics Data System (ADS)
Nagaoka, Akira; Kuciauskas, Darius; Scarpulla, Michael A.
2017-12-01
Cd-rich composition and group-V element doping are of interest for simultaneously maximizing the hole concentration and minority carrier lifetime in CdTe, but the critical details concerning point defects are not yet fully established. Herein, we report on the properties of arsenic doped CdTe single crystals grown from Cd solvent by the travelling heater method. The photoluminescence spectra and activation energy of 74 ± 2 meV derived from the temperature-dependent Hall effect are consistent with AsTe as the dominant acceptor. Doping in the 1016 to 1017/cm3 range is achieved for measured As concentrations between 1016 and 1020/cm3 with the highest doping efficiency of 40% occurring near 1017 As/cm3. We observe persistent photoconductivity, a hallmark of light-induced metastable configuration changes consistent with AX behavior. Additionally, quenching experiments reveal at least two mechanisms of increased p-type doping in the dark, one decaying over 2-3 weeks and the other persisting for at least 2 months. These results provide essential insights for the application of As-doped CdTe in thin film solar cells.
Nagaoka, Akira; Kuciauskas, Darius; Scarpulla, Michael A.
2017-12-04
Cd-rich composition and group-V element doping are of interest for simultaneously maximizing the hole concentration and minority carrier lifetime in CdTe, but the critical details concerning point defects are not yet fully established. Herein, we report on the properties of arsenic doped CdTe single crystals grown from Cd solvent by the travelling heater method. The photoluminescence spectra and activation energy of 74 +/- 2 meV derived from the temperature-dependent Hall effect are consistent with AsTe as the dominant acceptor. Doping in the 10^16 to 10^17/cm^3 range is achieved for measured As concentrations between 10^16 and 10^20/cm^3 with the highest dopingmore » efficiency of 40% occurring near 10^17 As/cm^3. We observe persistent photoconductivity, a hallmark of light-induced metastable configuration changes consistent with AX behavior. Additionally, quenching experiments reveal at least two mechanisms of increased p-type doping in the dark, one decaying over 2-3 weeks and the other persisting for at least 2 months. These results provide essential insights for the application of As-doped CdTe in thin film solar cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagaoka, Akira; Kuciauskas, Darius; Scarpulla, Michael A.
Cd-rich composition and group-V element doping are of interest for simultaneously maximizing the hole concentration and minority carrier lifetime in CdTe, but the critical details concerning point defects are not yet fully established. Herein, we report on the properties of arsenic doped CdTe single crystals grown from Cd solvent by the travelling heater method. The photoluminescence spectra and activation energy of 74 +/- 2 meV derived from the temperature-dependent Hall effect are consistent with AsTe as the dominant acceptor. Doping in the 10^16 to 10^17/cm^3 range is achieved for measured As concentrations between 10^16 and 10^20/cm^3 with the highest dopingmore » efficiency of 40% occurring near 10^17 As/cm^3. We observe persistent photoconductivity, a hallmark of light-induced metastable configuration changes consistent with AX behavior. Additionally, quenching experiments reveal at least two mechanisms of increased p-type doping in the dark, one decaying over 2-3 weeks and the other persisting for at least 2 months. These results provide essential insights for the application of As-doped CdTe in thin film solar cells.« less
High frequency modulation circuits based on photoconductive wide bandgap switches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampayan, Stephen
Methods, systems, and devices for high voltage and/or high frequency modulation. In one aspect, an optoelectronic modulation system includes an array of two or more photoconductive switch units each including a wide bandgap photoconductive material coupled between a first electrode and a second electrode, a light source optically coupled to the WBGP material of each photoconductive switch unit via a light path, in which the light path splits into multiple light paths to optically interface with each WBGP material, such that a time delay of emitted light exists along each subsequent split light path, and in which the WBGP materialmore » conducts an electrical signal when a light signal is transmitted to the WBGP material, and an output to transmit the electrical signal conducted by each photoconductive switch unit. The time delay of the photons emitted through the light path is substantially equivalent to the time delay of the electrical signal.« less
High voltage photo switch package module
Sullivan, James S; Sanders, David M; Hawkins, Steven A; Sampayan, Stephen E
2014-02-18
A photo-conductive switch package module having a photo-conductive substrate or wafer with opposing electrode-interface surfaces, and at least one light-input surface. First metallic layers are formed on the electrode-interface surfaces, and one or more optical waveguides having input and output ends are bonded to the substrate so that the output end of each waveguide is bonded to a corresponding one of the light-input surfaces of the photo-conductive substrate. This forms a waveguide-substrate interface for coupling light into the photo-conductive wafer. A dielectric material such as epoxy is then used to encapsulate the photo-conductive substrate and optical waveguide so that only the metallic layers and the input end of the optical waveguide are exposed. Second metallic layers are then formed on the first metallic layers so that the waveguide-substrate interface is positioned under the second metallic layers.
Photoconductivity in nanostructured sulfur-doped V2O5 thin films
NASA Astrophysics Data System (ADS)
Mousavi, M.; Yazdi, Sh. Tabatabai
2016-03-01
In this paper, S-doped vanadium oxide thin films with doping levels up to 40 at.% are prepared via spray pyrolysis method on glass substrates, and the effect of S-doping on the structural and photoconductivity related properties of β-V2O5 thin films is studied. The results show that most of the films have been grown in the tetragonal β-V2O5 phase structure with the preferred orientation along [200]. With increasing the doping level, the samples tend to be amorphous. The structure of the samples reveals to be nanobelt-shaped whose width decreases from nearly 100 nm to 40 nm with S concentration. The photoconductivity measurements show that by increasing the S-doping level, the photosensitivity increases, which is due to the prolonged electron’s lifetime as a result of enhanced defect states acting as trap levels.
Lifetime and diffusion length measurements on silicon material and solar cells
NASA Technical Reports Server (NTRS)
Othmer, S.; Chen, S. C.
1978-01-01
Experimental methods were evaluated for the determination of lifetime and diffusion length in silicon intentionally doped with potentially lifetime-degrading impurities found in metallurgical grade silicon, impurities which may be residual in low-cost silicon intended for use in terrestrial flat-plate arrays. Lifetime measurements were made using a steady-state photoconductivity method. Diffusion length determinations were made using short-circuit current measurements under penetrating illumination. Mutual consistency among all experimental methods was verified, but steady-state photoconductivity was found preferable to photoconductivity decay at short lifetimes and in the presence of traps. The effects of a number of impurities on lifetime in bulk material, and on diffusion length in cells fabricated from this material, were determined. Results are compared with those obtained using different techniques. General agreement was found in terms of the hierarchy of impurities which degrade the lifetime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuang, Shendong; Tang, Nujiang; Chen, Zhuo, E-mail: zchen@nju.edu.cn
Solution-processed graphene quantum dots (GQDs) possess a moderate bandgap, which make them a promising candidate for optoelectronics devices. However, negative photoconductivity (NPC) and hysteresis that happen in the photoelectric conversion process could be harmful to performance of the GQDs-based devices. So far, their origins and relations have remained elusive. Here, we investigate experimentally the origins of the NPC and hysteresis in GQDs. By comparing the hysteresis and photoconductance of GQDs under different relative humidity conditions, we are able to demonstrate that NPC and hysteresis coexist in GQDs and both are attributed to the carrier trapping effect of surface adsorbed moisture.more » We also demonstrate that GQDs could exhibit positive photoconductivity with three-order-of-magnitude reduction of hysteresis after a drying process and a subsequent encapsulation. Considering the pervasive moisture adsorption, our results may pave the way for a commercialization of semiconducting graphene-based and diverse solution-based optoelectronic devices.« less
Magnetospectroscopy of double HgTe/CdHgTe quantum wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bovkun, L. S.; Krishtopenko, S. S.; Ikonnikov, A. V., E-mail: antikon@ipmras.ru
2016-11-15
The magnetoabsorption spectra in double HgTe/CdHgTe quantum wells (QWs) with normal and inverted band structures are investigated. The Landau levels in symmetric QWs with a rectangular potential profile are calculated based on the Kane 8 × 8 model. The presence of a tunnel-transparent barrier is shown to lead to the splitting of states and “doubling” of the main magnetoabsorption lines. At a QW width close to the critical one the presence of band inversion and the emergence of a gapless band structure, similar to bilayer graphene, are shown for a structure with a single QW. The shift of magnetoabsorption linesmore » as the carrier concentration changes due to the persistent photoconductivity effect associated with a change in the potential profile because of trap charge exchange is detected. This opens up the possibility for controlling topological phase transitions in such structures.« less
Subband Quantum Scattering Times for Algaas/GaAs Obtained Using Digital Filtering
NASA Technical Reports Server (NTRS)
Mena, R. A.; Schacham, S. E.; Haughland, E. J.; Alterovitz, S. A.; Bibyk, S. B.; Ringel, S. A.
1995-01-01
In this study we investigate both the transport and quantum scattering times as a function of the carrier concentration for a modulation doped Al(0.3)Ga(0.7)As/GaAs structure. Carriers in the well are generated as a result of the persistent photoconductivity effect. When more than one subband becomes populated, digital filtering is used to separate the components for each of the excited subbands. We find that the quantum scattering time for the ground subband increases initially as the carrier concentration is increased. However, once the second subband becomes populated, the ground subband scattering time begins to decrease. The quantum scattering time for the excited subband is also observed to decrease as the concentration is increased. From the ratio of the transport and quantum scattering times, it is seen that the transport in the well becomes more isotropic also as the concentration is increased.
Organic photovoltaic cells utilizing ultrathin sensitizing layer
Forrest, Stephen R [Ann Arbor, MI; Yang, Fan [Piscataway, NJ; Rand, Barry P [Somers, NY
2011-09-06
A photosensitive device includes a plurality of organic photoconductive materials disposed in a stack between a first electrode and a second electrode, including a first continuous layer of donor host material, a second continuous layer of acceptor host material, and at least one other organic photoconductive material disposed as a plurality of discontinuous islands between the first continuous layer and the second continuous layer. Each of these other photoconductive materials has an absorption spectra different from the donor host material and the acceptor host material. Preferably, each of the discontinuous islands consists essentially of a crystallite of the respective organic photoconductive material, and more preferably, the crystallites are nanocrystals.
Magneto-photoconductivity of three dimensional topological insulator bismuth telluride
NASA Astrophysics Data System (ADS)
Cao, Bingchen; Eginligil, Mustafa; Yu, Ting
2018-03-01
Magnetic field dependence of the photocurrent in a 3D topological insulator is studied. Among the 3D topological insulators bismuth telluride has unique hexagonal warping and spin texture which has been studied by photoemission, scanning tunnelling microscopy and transport. Here, we report on low temperature magneto-photoconductivity, up to 7 T, of two metallic bismuth telluride topological insulator samples with 68 and 110 nm thicknesses excited by 2.33 eV photon energy along the magnetic field perpendicular to the sample plane. At 4 K, both samples exhibit negative magneto-photoconductance below 4 T, which is as a result of weak-antilocalization of Dirac fermions similar to the previous observations in electrical transport. However the thinner sample shows positive magneto-photoconductance above 4 T. This can be attributed to the coupling of surface states. On the other hand, the thicker sample shows no positive magneto-photoconductance up to 7 T since there is only one surface state at play. By fitting the magneto-photoconductivity data of the thicker sample to the localization formula, we obtain weak antilocalization behaviour at 4, 10, and 20 K, as expected; however, weak localization behaviour at 30 K, which is a sign of surface states masked by bulk states. Also, from the temperature dependence of phase coherence length bulk carrier-carrier interaction is identified separately from the surface states. Therefore, it is possible to distinguish surface states by magneto-photoconductivity at low temperature, even in metallic samples.
NASA Technical Reports Server (NTRS)
Boeer, K. W.
1971-01-01
Theoretical and experimental investigations on CdS single crystals and CuxS:CdS photovoltaic cells prepared from CdS single crystals by a chemical-dip procedure are described. The studies are aimed at clarifying cell mechanisms which affect key cell properties (efficiency, reliability, and lifetime) by examining the properties of intrinsic and extrinsic defects in the junction and surface regions and their effects on carrier transport through these regions. The experimental research described includes studies of thermal, infrared, and field quenching of acceptor-doped CdS crystals; investigation of optical and electrical properties of CuxS:CdS photovoltaic cells (current-voltage characteristics, spectral distribution of photocurrent and photovoltage) and the dependence of these properties on temperature and light intensity; measurement of changes, as a result of heat treatment in ultrahigh vacuum, in the spectral distribution of photoconductivity at room temperature and liquid nitrogen temperature, the luminescence spectrum at liquid nitrogen temperature, and the thermally stimulated current curves of CdS crystals; determination of the effect of irradiation with 150 keV (maximum) X-rays on the spectral distribution of photoconductivity and thermally-stimulated current of CdS crystals; and studies of the effect of growth conditions on the photoconductive properties of CdS crystals.
High Current, Multi-Filament Photoconductive Semiconductor Switching
2011-06-01
linear PCSS triggered with a 100 fs laser pulse . Figure 1. A generic photoconductive semiconductor switch rapidly discharges a charged capacitor...switching is the most critical challenge remaining for photoconductive semiconductor switch (PCSS) applications in Pulsed Power. Many authors have...isolation and control, pulsed or DC charging, and long device lifetime, provided the current per filament is limited to 20-30A for short pulse (10
Anomalous photoconductive behavior of a single InAs nanowire photodetector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Junshuai; Yan, Xin; Sun, Fukuan
2015-12-28
We report on a bare InAs nanowire photodetector which exhibits an anomalous photoconductive behavior. Under low-power illumination, the current is smaller than the dark current, and monotonously decreases as the excitation power increases. When the excitation power is high enough, the current starts to increase normally. The phenomenon is attributed to different electron mobilities in the “core” and “shell” of a relatively thick nanowire originating from the surface effect, which result in a quickly dropped “core current” and slowly increased “shell current” under illumination.
NASA Astrophysics Data System (ADS)
Govatski, J. A.; da Luz, M. G. E.; Koehler, M.
2015-01-01
We study the geminated pair dissociation probability φ as function of applied electric field and temperature in energetically disordered nD media. Regardless nD, for certain parameters regions φ versus the disorder degree (σ) displays anomalous minimum (maximum) at low (moderate) fields. This behavior is compatible with a transport energy which reaches a maximum and then decreases to negative values as σ increases. Our results explain the temperature dependence of the persistent photoconductivity in C60 single crystals going through order-disorder transitions. They also indicate how an energetic disorder spatial variation may contribute to higher exciton dissociation in multicomponent donor/acceptor systems.
Quantum fluctuations and the closing of the Coulomb gap in a correlated insulator.
Roy, A S; Hoekstra, A F Th; Rosenbaum, T F; Griessen, R
2002-12-30
The "switchable mirror" yttrium hydride is one of the few strongly correlated systems with a continuous Mott-Hubbard metal-insulator transition. We systematically map out the low temperature electrical transport from deep in the insulator to the quantum critical point using persistent photoconductivity as a drive parameter. Both activated hopping over a Coulomb gap and power-law quantum fluctuations must be included to describe the data. Collapse of the data onto a universal curve within a dynamical scaling framework (with corrections) requires znu=6.0+/-0.5, where nu and z are the static and dynamical critical exponents, respectively.
Photoconductivity in BiFeO3 thin films
NASA Astrophysics Data System (ADS)
Basu, S. R.; Martin, L. W.; Chu, Y. H.; Gajek, M.; Ramesh, R.; Rai, R. C.; Xu, X.; Musfeldt, J. L.
2008-03-01
The optical properties of epitaxial BiFeO3 thin films have been characterized in the visible range. Variable temperature spectra show an absorption onset near 2.17eV, a direct gap (2.667±0.005eV at 300K), and charge transfer excitations at higher energy. Additionally, we report photoconductivity in BiFeO3 films under illumination from a 100mW /cm2 white light source. A direct correlation is observed between the magnitude of the photoconductivity and postgrowth cooling pressure. Dark conductivities increased by an order of magnitude when comparing films cooled in 760 and 0.1Torr. Large increases in photoconductivity are observed in light.
Photoconductivity in Dirac materials
NASA Astrophysics Data System (ADS)
Shao, J. M.; Yang, G. W.
2015-11-01
Two-dimensional (2D) Dirac materials including graphene and the surface of a three-dimensional (3D) topological insulator, and 3D Dirac materials including 3D Dirac semimetal and Weyl semimetal have attracted great attention due to their linear Dirac nodes and exotic properties. Here, we use the Fermi's golden rule and Boltzmann equation within the relaxation time approximation to study and compare the photoconductivity of Dirac materials under different far- or mid-infrared irradiation. Theoretical results show that the photoconductivity exhibits the anisotropic property under the polarized irradiation, but the anisotropic strength is different between 2D and 3D Dirac materials. The photoconductivity depends strongly on the relaxation time for different scattering mechanism, just like the dark conductivity.
Simultaneous Thermoelectric and Optoelectronic Characterization of Individual Nanowires.
Léonard, François; Song, Erdong; Li, Qiming; Swartzentruber, Brian; Martinez, Julio A; Wang, George T
2015-12-09
Semiconducting nanowires have been explored for a number of applications in optoelectronics such as photodetectors and solar cells. Currently, there is ample interest in identifying the mechanisms that lead to photoresponse in nanowires in order to improve and optimize performance. However, distinguishing among the different mechanisms, including photovoltaic, photothermoelectric, photoemission, bolometric, and photoconductive, is often difficult using purely optoelectronic measurements. In this work, we present an approach for performing combined and simultaneous thermoelectric and optoelectronic measurements on the same individual nanowire. We apply the approach to GaN/AlGaN core/shell and GaN/AlGaN/GaN core/shell/shell nanowires and demonstrate the photothermoelectric nature of the photocurrent observed at the electrical contacts at zero bias, for above- and below-bandgap illumination. Furthermore, the approach allows for the experimental determination of the temperature rise due to laser illumination, which is often obtained indirectly through modeling. We also show that under bias, both above- and below-bandgap illumination leads to a photoresponse in the channel with signatures of persistent photoconductivity due to photogating. Finally, we reveal the concomitant presence of photothermoelectric and photogating phenomena at the contacts in scanning photocurrent microscopy under bias by using their different temporal response. Our approach is applicable to a broad range of nanomaterials to elucidate their fundamental optoelectronic and thermoelectric properties.
NASA Astrophysics Data System (ADS)
Chung, S. J.; Senthil Kumar, M.; Lee, Y. S.; Suh, E.-K.; An, M. H.
2010-05-01
Mg-doped and In-Mg co-doped p-type GaN epilayers were grown using the metal organic chemical vapour deposition technique. The effect of In co-doping on the physical properties of p-GaN layer was examined by high resolution x-ray diffraction (HRXRD), transmission electron microscopy (TEM), Hall effect, photoluminescence (PL) and persistent photoconductivity (PPC) at room temperature. An improved crystalline quality and a reduction in threading dislocation density are evidenced upon In doping in p-GaN from HRXRD and TEM images. Hole conductivity, mobility and carrier density also significantly improved by In co-doping. PL studies of the In-Mg co-doped sample revealed that the peak position is blue shifted to 3.2 eV from 2.95 eV of conventional p-GaN and the PL intensity is increased by about 25%. In addition, In co-doping significantly reduced the PPC effect in p-type GaN layers. The improved electrical and optical properties are believed to be associated with the active participation of isolated Mg impurities.
Yan, Hong; Zhang, Zhaoting; Wang, Shuanhu; Zhang, Hongrui; Chen, Changle; Jin, Kexin
2017-11-08
Modulating transport behaviors of two-dimensional electron gases are of critical importance for applications of the next-generation multifunctional oxide electronics. In this study, transport behaviors of LaAlO 3 /SrTiO 3 heterointerfaces modified through the Ni dopant and the light irradiation have been investigated. Through the Ni dopant, the resistances increase significantly and a resistance upturn phenomenon due to the Kondo effect is observed at T < 40 K. Under a 360 nm light irradiation, the interfaces exhibit a persistent photoconductivity and a suppressed Kondo effect at low temperature due to the increased mobility measured through the photo-Hall method. Moreover, the relative changes in resistance of interfaces induced by light are increased from 800 to 6600% at T = 12 K with increasing the substitution of Ni, which is discussed by the band bending and the lattice effect due to the Ni dopant. This work paves the way for better controlling the emerging properties of complex oxide heterointerfaces and would be helpful for photoelectric device applications based on all-oxides.
NASA Astrophysics Data System (ADS)
Chen, Tianyu; Nam, Yoon-Ho; Wang, Xinke; Han, Peng; Sun, Wenfeng; Feng, Shengfei; Ye, Jiasheng; Song, Jae-Won; Lee, Jung-Ho; Zhang, Chao; Zhang, Yan
2018-01-01
We present femtosecond optical pump-terahertz probe studies on the ultrafast dynamical processes of photo-generated charge carriers in silicon photovoltaic cells with various nanostructured surfaces and doping densities. The pump-probe measurements provide direct insight on the lifetime of photo-generated carriers, frequency-dependent complex dielectric response along with photoconductivity of silicon photovoltaic cells excited by optical pump pulses. A lifetime of photo-generated carriers of tens of nanosecond is identified from the time-dependent pump-induced attenuation of the terahertz transmission. In addition, we find a large value of the imaginary part of the dielectric function and of the real part of the photoconductivity in silicon photovoltaic cells with micron length nanowires. We attribute these findings to the result of defect-enhanced electron-photon interactions. Moreover, doping densities of phosphorous impurities in silicon photovoltaic cells are also quantified using the Drude-Smith model with our measured frequency-dependent complex photoconductivities.
Braly, Ian L; Stoddard, Ryan J; Rajagopal, Adharsh; Jen, Alex K-Y; Hillhouse, Hugh W
2018-06-06
Photovoltaic (PV) device development is much more expensive and time consuming than the development of the absorber layer alone. This perspective focuses on two methods that can be used to rapidly assess and develop PV absorber materials independent of device development. The absorber material properties of quasi-Fermi level splitting and carrier diffusion length under steady effective one-Sun illumination are indicators of a material's ability to achieve high VOC and JSC. These two material properties can be rapidly and simultaneously assessed with steady-state absolute intensity photoluminescence and photoconductivity measurements. As a result, these methods are extremely useful for predicting the quality and stability of PV materials prior to PV device development. Here, we summarize the methods, discuss their strengths and weaknesses, and compare photoluminescence and photoconductivity results with device performance for four hybrid perovskite compositions of various bandgaps (1.35 to 1.82 eV), CISe, CIGSe, and CZTSe.
Failure mechanism of THz GaAs photoconductive antenna
NASA Astrophysics Data System (ADS)
Qadri, Syed B.; Wu, Dong H.; Graber, Benjamin D.; Mahadik, Nadeemullah A.; Garzarella, Anthony
2012-07-01
We investigated the failure mechanism of THz GaAs photoconductive antenna using high resolution x-ray diffraction topography. From these studies, it was found that grain boundaries are formed during the high frequency device operation. This results in the segregation of gold at the boundaries causing electromigration of the metal between the gold micro-strips. This disrupts the photocurrents from being produced by femtosecond laser thus preventing terahertz beam generation from the photoconductive antennae leading to device failure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Y. C.; Gao, J., E-mail: jugao@hku.hk
2016-08-22
Co-doped amorphous carbon (Co-C)/silicon heterostructures were fabricated by growing Co-C films on n-type Si substrates using pulsed laser deposition. A photovoltaic effect (PVE) has been observed at room temperature. Open-circuit voltage V{sub oc} = 320 mV and short-circuit current density J{sub sc }= 5.62 mA/cm{sup 2} were measured under illumination of 532-nm light with the power of 100 mW/cm{sup 2}. In contrast, undoped amorphous carbon/Si heterostructures revealed no significant PVE. Based on the PVE and photoconductivity (PC) investigated at different temperatures, it was found that the energy conversion efficiency increased with increasing the temperature and reached the maximum at room temperature, while the photoconductivity showed amore » reverse temperature dependence. The observed competition between PVE and PC was correlated with the way to distribute absorbed photons. The possible mechanism, explaining the enhanced PVE and PC in the Co-C/Si heterostructures, might be attributed to light absorption enhanced by localized surface plasmons in Co nanoparticles embedded in the carbon matrix.« less
NASA Astrophysics Data System (ADS)
Ravikumar, M.; Valanarasu, S.; Chandramohan, R.; Jacob, S. Santhosh Kumar; Kathalingam, A.
2015-08-01
CdO thin films were deposited on glass and silicon substrates by simple perfume atomizer at 350°C using cadmium acetate and trisodium citrate (TSC). The effect of the TSC concentration on the structural, morphological, optical, and photoconductive properties of the prepared CdO thin films was investigated. X-Ray diffraction (XRD) studies of the deposited films revealed improvement in crystalline nature with increase of TSC concentration. Films prepared without TSC showed porous nature, not fully covering the substrate, whereas films prepared using TSC exhibited full coverage of the substrate with uniform particles. Optical transmittance study of the films showed high transmittance (50% to 60%), and the absorption edge was found to shift towards the red region depending on the TSC concentration. The films exhibited a direct band-to-band transition with bandgap varying between 2.31 eV and 2.12 eV. Photoconductivity studies of the n-CdO/ p-Si structure for various TSC concentrations were also carried out. I- V characteristics of this n-CdO/ p-Si structure revealed the formation of rectifying junctions, and its photoconductivity was found to increase with the TSC concentration.
Enhancement of Local Photovoltaic Current at Ferroelectric Domain Walls in BiFeO3
Yang, Ming-Min; Bhatnagar, Akash; Luo, Zheng-Dong; Alexe, Marin
2017-01-01
Domain walls, which are intrinsically two dimensional nano-objects exhibiting nontrivial electronic and magnetic behaviours, have been proven to play a crucial role in photovoltaic properties of ferroelectrics. Despite this recognition, the electronic properties of domain walls under illumination until now have been accessible only to macroscopic studies and their effects upon the conduction of photovoltaic current still remain elusive. The lack of understanding hinders the developing of nanoscale devices based on ferroelectric domain walls. Here, we directly characterize the local photovoltaic and photoconductive properties of 71° domain walls on BiFeO3 thin films with a nanoscale resolution. Local photovoltaic current, proven to be driven by the bulk photovoltaic effect, has been probed over the whole illuminated surface by using a specially designed photoelectric atomic force microscopy and found to be significantly enhanced at domain walls. Additionally, spatially resolved photoconductive current distribution reveals a higher density of excited carriers at domain walls in comparison with domains. Our measurements demonstrate that domain wall enhanced photovoltaic current originates from its high conduction rather than the internal electric field. This photoconduction facilitated local photovoltaic current is likely to be a universal property of topological defects in ferroelectric semiconductors. PMID:28216672
Enhancement of Local Photovoltaic Current at Ferroelectric Domain Walls in BiFeO3.
Yang, Ming-Min; Bhatnagar, Akash; Luo, Zheng-Dong; Alexe, Marin
2017-02-20
Domain walls, which are intrinsically two dimensional nano-objects exhibiting nontrivial electronic and magnetic behaviours, have been proven to play a crucial role in photovoltaic properties of ferroelectrics. Despite this recognition, the electronic properties of domain walls under illumination until now have been accessible only to macroscopic studies and their effects upon the conduction of photovoltaic current still remain elusive. The lack of understanding hinders the developing of nanoscale devices based on ferroelectric domain walls. Here, we directly characterize the local photovoltaic and photoconductive properties of 71° domain walls on BiFeO 3 thin films with a nanoscale resolution. Local photovoltaic current, proven to be driven by the bulk photovoltaic effect, has been probed over the whole illuminated surface by using a specially designed photoelectric atomic force microscopy and found to be significantly enhanced at domain walls. Additionally, spatially resolved photoconductive current distribution reveals a higher density of excited carriers at domain walls in comparison with domains. Our measurements demonstrate that domain wall enhanced photovoltaic current originates from its high conduction rather than the internal electric field. This photoconduction facilitated local photovoltaic current is likely to be a universal property of topological defects in ferroelectric semiconductors.
NASA Astrophysics Data System (ADS)
Kudrin, A. V.; Dorokhin, M. V.; Zdoroveishchev, A. V.; Demina, P. B.; Vikhrova, O. V.; Kalent'eva, I. L.; Ved', M. V.
2017-11-01
A photoconductive detector of circularly polarized radiation based on the metal-insulator-semiconductor structure of CoPt/(Al2O3/SiO2/Al2O3)/InGaAs/GaAs is created. The efficiency of detection of circularly polarized radiation is 0.75% at room temperature. The operation of the detector is based on the manifestation of the effect of magnetic circular dichroism in the CoPt layer, that is, the dependence of the CoPt transmission coefficient on the sign of the circular polarization of light and magnetization.
Yardimci, Nezih Tolga; Lu, Hong; Jarrahi, Mona
2016-11-07
We present a high-power and broadband photoconductive terahertz emitter operating at telecommunication optical wavelengths, at which compact and high-performance fiber lasers are commercially available. The presented terahertz emitter utilizes an ErAs:InGaAs substrate to achieve high resistivity and short carrier lifetime characteristics required for robust operation at telecommunication optical wavelengths. It also uses a two-dimensional array of plasmonic nano-antennas to offer significantly higher optical-to-terahertz conversion efficiencies compared to the conventional photoconductive emitters, while maintaining broad operation bandwidths. We experimentally demonstrate pulsed terahertz radiation over 0.1-5 THz frequency range with the power levels as high as 300 μ W. This is the highest-reported terahertz radiation power from a photoconductive emitter operating at telecommunication optical wavelengths.
Yardimci, Nezih Tolga; Lu, Hong; Jarrahi, Mona
2016-01-01
We present a high-power and broadband photoconductive terahertz emitter operating at telecommunication optical wavelengths, at which compact and high-performance fiber lasers are commercially available. The presented terahertz emitter utilizes an ErAs:InGaAs substrate to achieve high resistivity and short carrier lifetime characteristics required for robust operation at telecommunication optical wavelengths. It also uses a two-dimensional array of plasmonic nano-antennas to offer significantly higher optical-to-terahertz conversion efficiencies compared to the conventional photoconductive emitters, while maintaining broad operation bandwidths. We experimentally demonstrate pulsed terahertz radiation over 0.1–5 THz frequency range with the power levels as high as 300 μW. This is the highest-reported terahertz radiation power from a photoconductive emitter operating at telecommunication optical wavelengths. PMID:27916999
Laser-controlled optical transconductance varistor system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Hoang T.; Stuart, Brent C.
2017-07-11
An optical transconductance varistor system having a modulated radiation source configured to provide modulated stimulus, a wavelength converter operably connected to the modulated radiation source to produce a modulated stimulus having a predetermined wavelength, and a wide bandgap semiconductor photoconductive material in contact between two electrodes. The photoconductive material is operably coupled, such as by a beam transport module, to receive the modulated stimulus having the predetermined wavelength to control a current flowing through the photoconductive material when a voltage potential is present across the electrodes.
Reduced mobility and PPC in In(.20)Ga(.80)As / Al(.23)Ga(.77)As HEMT structure
NASA Technical Reports Server (NTRS)
Schacham, S. E.; Mena, Rafael A.; Haugland, Edward J.; Alterovitz, Samuel A.
1992-01-01
Transport properties of a pseudomorphic In(.20)Ga(.80)As/Al(.23)Ga(.77)As High Electron Mobility Transistor (HEMT) structure were measured by Hall and SdH techniques. Two samples of identical structures but with different doping levels were compared. Low temperature mobility measurements as a function of concentration coincides with the onset of second subband occupancy, indicating that the decrease in mobility is due to intersubband scattering. In spite of the low Al content (23 percent), large persistent photoconductivity (PPC) was observed in the highly doped sample only, showing a direct correlation between the PPC and doping concentration of the barrier layer.
NASA Astrophysics Data System (ADS)
Wu, Dong Ho; Kim, Christopher; Graber, Benjamin
2014-03-01
Photoconductive antenna is one of the most popular methods to produce a broadband terahertz beam. Our recent experiments indicate that a photoconductive antenna containing a pair of parallel micro-strip-line electrodes produces both incoherent and coherent terahertz beam. When we drive the antenna with a low bias voltage and a weak femto-second laser power, it produces mostly coherent terahertz beam. However, as the bias voltage and/or the femto-second laser power increase, the incoherent terahertz beam strength increases exponentially with the bias voltage.[1] When the bias voltage and/or the femto-second laser power exceeds critical values, heat associated with the incoherent beam eventually leads to a catastrophic antenna failure, resulting in a permanent damage on the antenna.[2] In order to improve our photoconductive antenna we have implemented a chaotic geometry in the photoconductive antenna's electrodes. Our experimental results show that the new antenna produces substantially more coherent terahertz beam and much less incoherent terahertz beam. We will present the details of our experimental results and discuss the merits of new antenna design. We will also examine some theory to understand our experimental results. Supported by DTRA.
Draper, Emily R.; Lee, Jonathan R.; Wallace, Matthew; Jäckel, Frank; Cowan, Alexander J.
2016-01-01
We show that a perylene bisimide (PBI)-based gelator forms self-sorted mixtures with a stilbene-based gelator. To form the self-sorted gels, we use a slow pH change induced by the hydrolysis of glucono-δ-lactone (GdL) to gluconic acid. We prove that self-sorting occurs using NMR spectroscopy, UV-Vis spectroscopy, rheology, and viscometry. The corresponding xerogels are photoconductive. Importantly, the wavelength dependence of the photoconductive films is different to that of the films formed from the perylene bisimide alone. Transient absorption spectroscopy of the xerogels reveals changes in the spectrum of the PBI on the picosecond timescale in the presence of stilbene with a PBI radical anion being formed within 10 ps when the stilbene is present. The ability to form the PBI radical anion under visible light leads to the enhanced spectral response of the multicomponent gels. These systems therefore have potential as useful visible-active optoelectronics. PMID:28451108
Simultaneous thermoelectric and optoelectronic characterization of individual nanowires
Leonard, Francois; Wang, George T.; Swartzentruber, Brian S.; ...
2015-11-03
Semiconducting nanowires have been explored for a number of applications in optoelectronics such as photodetectors and solar cells. Currently, there is ample interest in identifying the mechanisms that lead to photoresponse in nanowires in order to improve and optimize performance. However, distinguishing among the different mechanisms, including photovoltaic, photothermoelectric, photoemission, bolometric, and photoconductive, is often difficult using purely optoelectronic measurements. In this work, we present an approach for performing combined and simultaneous thermoelectric and optoelectronic measurements on the same individual nanowire. We apply the approach to GaN/AlGaN core/shell and GaN/AlGaN/GaN core/shell/shell nanowires and demonstrate the photothermoelectric nature of the photocurrentmore » observed at the electrical contacts at zero bias, for above- and below-bandgap illumination. Furthermore, the approach allows for the experimental determination of the temperature rise due to laser illumination, which is often obtained indirectly through modeling. We also show that under bias, both above- and below-bandgap illumination leads to a photoresponse in the channel with signatures of persistent photoconductivity due to photogating. Finally, we reveal the concomitant presence of photothermoelectric and photogating phenomena at the contacts in scanning photocurrent microscopy under bias by using their different temporal response. Furthermore, our approach is applicable to a broad range of nanomaterials to elucidate their fundamental optoelectronic and thermoelectric properties.« less
Light-Gated Memristor with Integrated Logic and Memory Functions.
Tan, Hongwei; Liu, Gang; Yang, Huali; Yi, Xiaohui; Pan, Liang; Shang, Jie; Long, Shibing; Liu, Ming; Wu, Yihong; Li, Run-Wei
2017-11-28
Memristive devices are able to store and process information, which offers several key advantages over the transistor-based architectures. However, most of the two-terminal memristive devices have fixed functions once made and cannot be reconfigured for other situations. Here, we propose and demonstrate a memristive device "memlogic" (memory logic) as a nonvolatile switch of logic operations integrated with memory function in a single light-gated memristor. Based on nonvolatile light-modulated memristive switching behavior, a single memlogic cell is able to achieve optical and electrical mixed basic Boolean logic of reconfigurable "AND", "OR", and "NOT" operations. Furthermore, the single memlogic cell is also capable of functioning as an optical adder and digital-to-analog converter. All the memlogic outputs are memristive for in situ data storage due to the nonvolatile resistive switching and persistent photoconductivity effects. Thus, as a memdevice, the memlogic has potential for not only simplifying the programmable logic circuits but also building memristive multifunctional optoelectronics.
Oh, Young Jun; Noh, Hyeon-Kyun; Chang, Kee Joo
2015-01-01
Oxygen vacancies have been considered as the origin of threshold voltage instability under negative bias illumination stress in amorphous oxide thin film transistors. Here we report the results of first-principles molecular dynamics simulations for the drift motion of oxygen vacancies. We show that oxygen vacancies, which are initially ionized by trapping photoexcited hole carriers, can easily migrate under an external electric field. Thus, accumulated hole traps near the channel/dielectric interface cause negative shift of the threshold voltage, supporting the oxygen vacancy model. In addition, we find that ionized oxygen vacancies easily recover their neutral defect configurations by capturing electrons when the Fermi level increases. Our results are in good agreement with the experimental observation that applying a positive gate bias pulse of short duration eliminates hole traps and thus leads to the recovery of device stability from persistent photoconductivity. PMID:27877799
A ZnO nanowire-based photo-inverter with pulse-induced fast recovery.
Raza, Syed Raza Ali; Lee, Young Tack; Hosseini Shokouh, Seyed Hossein; Ha, Ryong; Choi, Heon-Jin; Im, Seongil
2013-11-21
We demonstrate a fast response photo-inverter comprised of one transparent gated ZnO nanowire field-effect transistor (FET) and one opaque FET respectively as the driver and load. Under ultraviolet (UV) light the transfer curve of the transparent gate FET shifts to the negative side and so does the voltage transfer curve (VTC) of the inverter. After termination of UV exposure the recovery of photo-induced current takes a long time in general. This persistent photoconductivity (PPC) is due to hole trapping on the surface of ZnO NWs. Here, we used a positive voltage short pulse after UV exposure, for the first time resolving the PPC issue in nanowire-based photo-detectors by accumulating electrons at the ZnO/dielectric interface. We found that a pulse duration as small as 200 ns was sufficient to reach a full recovery to the dark state from the UV induced state, realizing a fast UV detector with a voltage output.
Generation-recombination noise in extrinsic photoconductive detectors
NASA Technical Reports Server (NTRS)
Brukilacchio, T. J.; Skeldon, M. D.; Boyd, R. W.
1984-01-01
A theory of generation-recombination noise is presented and applied to the analysis of the performance limitations of extrinsic photoconductive detectors. The theory takes account both of the photoinduced generation of carriers and of thermal generation that is due to the finite temperature of the detector. Explicit formulas are derived that relate the detector response time, responsivity, and noise equivalent power to the material properties of the photoconductor (such as the presence of compensating impurities) and to the detector's operating conditions, such as its temperature and the presence of background radiation. The detector's performance is shown to degrade at high background levels because of saturation effects.
Long wavelength, high gain InAsSb strained-layer superlattice photoconductive detectors
Biefeld, Robert M.; Dawson, L. Ralph; Fritz, Ian J.; Kurtz, Steven R.; Zipperian, Thomas E.
1991-01-01
A high gain photoconductive device for 8 to 12 .mu.m wavelength radiation including an active semiconductor region extending from a substrate to an exposed face, the region comprising a strained-layer superlattice of alternating layers of two different InAs.sub.1-x Sb.sub.x compounds having x>0.75. A pair of spaced electrodes are provided on the exposed face, and changes in 8 to 12 .mu.m radiation on the exposed face cause a large photoconductive gain between the spaced electrodes.
NASA Astrophysics Data System (ADS)
Peng, Nan; Huang, Feng; Chu, Sheng; Chen, Hao
2016-12-01
The solar-blind-ultraviolet (SBUV) detection industry demands high sensitivity as well as easy processability for its semiconductor devices. Photoconductive detectors have the simplest structure. However, the electrodes covering the illuminated side cause optical shielding losses, resulting in a relatively low sensitivity of such devices. Through finite-difference time-domain (FDTD) simulation, we demonstrated that surface-plasmon-based enhanced SBUV transmission is achievable for Al interdigital electrodes (IDEs) with a period ⩽200 nm and an interval ⩾140 nm. Under this parameter setting, a larger interval and smaller period leads to further enhancement of SBUV transmission. Particularly, we have found that different possible dielectric environments, such as Ni insertion, Al oxidization, and MgF2 anti-oxidation, would not exert fatal effects on this enhancement. Besides, such an enhancement is maintained under the angle of incidence within 10°, which is large enough for practical SBUV detection. Our research reveals the feasibility of high sensitivity by a simple photoconductive device, showing profound significance for an applicable SBUV detector.
Directly tailoring photon-electron coupling for sensitive photoconductance
NASA Astrophysics Data System (ADS)
Huang, Zhiming; Zhou, Wei; Huang, Jingguo; Wu, Jing; Gao, Yanqing; Qu, Yue; Chu, Junhao
2016-03-01
The coupling between photons and electrons is at the heart of many fundamental phenomena in nature. Despite tremendous advances in controlling electrons by photons in engineered energy-band systems, control over their coupling is still widely lacking. Here we demonstrate an unprecedented ability to couple photon-electron interactions in real space, in which the incident electromagnetic wave directly tailors energy bands of solid to generate carriers for sensitive photoconductance. By spatially coherent manipulation of metal-wrapped material system through anti-symmetric electric field of the irradiated electromagnetic wave, electrons in the metals are injected and accumulated in the induced potential well (EIW) produced in the solid. Respective positive and negative electric conductances are easily observed in n-type and p-type semiconductors into which electrons flow down from the two metallic sides under light irradiation. The photoconductivity is further confirmed by sweeping the injected electrons out of the semiconductor before recombination applied by sufficiently strong electric fields. Our work opens up new perspectives for tailoring energy bands of solids and is especially relevant to develop high effective photon detection, spin injection, and energy harvesting in optoelectronics and electronics.
NASA Technical Reports Server (NTRS)
Gange, Robert Allen (Inventor)
1977-01-01
A holographic recording medium comprising a conductive substrate, a photoconductive layer and an electrically alterable layer of a linear, low molecular weight hydrocarbon polymer has improved fatigue resistance. An acrylic barrier layer can be interposed between the photoconductive and electrically alterable layers.
NASA Astrophysics Data System (ADS)
Chen, Long-chao; Fan, Wen-hui
2011-08-01
The numerical simulation of terahertz generation and detection in the interaction between femtosecond laser pulse and photoconductive material has been reported in this paper. The simulation model based on the Drude-Lorentz theory is used, and takes into account the phenomena that photo-generated electrons and holes are separated by the external bias field, which is screened by the space-charge field simultaneously. According to the numerical calculation, the terahertz time-domain waveforms and their Fourier-transformed spectra are presented under different conditions. The simulation results indicate that terahertz generation and detection properties of photoconductive antennas are largely influenced by three major factors, including photo-carriers' lifetime, laser pulse width and pump laser power. Finally, a simple model has been applied to simulate the detected terahertz pulses by photoconductive antennas with various photo-carriers' lifetimes, and the results show that the detected terahertz spectra are very different from the spectra radiated from the emitter.
Organic hybrid planar-nanocrystalline bulk heterojunctions
Forrest, Stephen R [Ann Arbor, MI; Yang, Fan [Piscataway, NJ
2011-03-01
A photosensitive optoelectronic device having an improved hybrid planar bulk heterojunction includes a plurality of photoconductive materials disposed between the anode and the cathode. The photoconductive materials include a first continuous layer of donor material and a second continuous layer of acceptor material. A first network of donor material or materials extends from the first continuous layer toward the second continuous layer, providing continuous pathways for conduction of holes to the first continuous layer. A second network of acceptor material or materials extends from the second continuous layer toward the first continuous layer, providing continuous pathways for conduction of electrons to the second continuous layer. The first network and the second network are interlaced with each other. At least one other photoconductive material is interspersed between the interlaced networks. This other photoconductive material or materials has an absorption spectra different from the donor and acceptor materials.
Organic hybrid planar-nanocrystalline bulk heterojunctions
Forrest, Stephen R.; Yang, Fan
2013-04-09
A photosensitive optoelectronic device having an improved hybrid planar bulk heterojunction includes a plurality of photoconductive materials disposed between the anode and the cathode. The photoconductive materials include a first continuous layer of donor material and a second continuous layer of acceptor material. A first network of donor material or materials extends from the first continuous layer toward the second continuous layer, providing continuous pathways for conduction of holes to the first continuous layer. A second network of acceptor material or materials extends from the second continuous layer toward the first continuous layer, providing continuous pathways for conduction of electrons to the second continuous layer. The first network and the second network are interlaced with each other. At least one other photoconductive material is interspersed between the interlaced networks. This other photoconductive material or materials has an absorption spectra different from the donor and acceptor materials.
Negative terahertz photoconductivity in 2D layered materials.
Lu, Junpeng; Liu, Hongwei; Sun, Jing
2017-11-17
The remarkable qualities of 2D layered materials such as wide spectral coverage, high strength and great flexibility mean that ultrathin 2D layered materials have the potential to meet the criteria of next-generation optoelectronic devices. Photoconductivity is one of the critical parameters of materials applied to optoelectronics. In contrast to traditional semiconductors, specific ultrathin 2D layers present anomalous negative photoconductivity. This opens a new avenue for designing novel optoelectronic devices. It is important to have a deep understanding of the fundamentals of this anomalous response, in order to design and optimize such devices. In this review, we provide an overview of the observation of negative photoconductivity in 2D layered materials including graphene, topological insulators and transitional metal dichalcogenides. We also summarize recent reports on investigations into the fundamental mechanism using ultrafast terahertz (THz) spectroscopies. Finally, we conclude the review by discussing the existing challenges and proposing the possible prospects of this direction of research.
High Sensitivity Terahertz Detection through Large-Area Plasmonic Nano-Antenna Arrays.
Yardimci, Nezih Tolga; Jarrahi, Mona
2017-02-16
Plasmonic photoconductive antennas have great promise for increasing responsivity and detection sensitivity of conventional photoconductive detectors in time-domain terahertz imaging and spectroscopy systems. However, operation bandwidth of previously demonstrated plasmonic photoconductive antennas has been limited by bandwidth constraints of their antennas and photoconductor parasitics. Here, we present a powerful technique for realizing broadband terahertz detectors through large-area plasmonic photoconductive nano-antenna arrays. A key novelty that makes the presented terahertz detector superior to the state-of-the art is a specific large-area device geometry that offers a strong interaction between the incident terahertz beam and optical pump at the nanoscale, while maintaining a broad operation bandwidth. The large device active area allows robust operation against optical and terahertz beam misalignments. We demonstrate broadband terahertz detection with signal-to-noise ratio levels as high as 107 dB.
High Sensitivity Terahertz Detection through Large-Area Plasmonic Nano-Antenna Arrays
Yardimci, Nezih Tolga; Jarrahi, Mona
2017-01-01
Plasmonic photoconductive antennas have great promise for increasing responsivity and detection sensitivity of conventional photoconductive detectors in time-domain terahertz imaging and spectroscopy systems. However, operation bandwidth of previously demonstrated plasmonic photoconductive antennas has been limited by bandwidth constraints of their antennas and photoconductor parasitics. Here, we present a powerful technique for realizing broadband terahertz detectors through large-area plasmonic photoconductive nano-antenna arrays. A key novelty that makes the presented terahertz detector superior to the state-of-the art is a specific large-area device geometry that offers a strong interaction between the incident terahertz beam and optical pump at the nanoscale, while maintaining a broad operation bandwidth. The large device active area allows robust operation against optical and terahertz beam misalignments. We demonstrate broadband terahertz detection with signal-to-noise ratio levels as high as 107 dB. PMID:28205615
Konstantatos, Gerasimos; Levina, Larissa; Fischer, Armin; Sargent, Edward H
2008-05-01
Photoconductive photodetectors fabricated using simple solution-processing have recently been shown to exhibit high gains (>1000) and outstanding sensitivities ( D* > 10(13) Jones). One ostensible disadvantage of exploiting photoconductive gain is that the temporal response is limited by the release of carriers from trap states. Here we show that it is possible to introduce specific chemical species onto the surfaces of colloidal quantum dots to produce only a single, desired trap state having a carefully selected lifetime. In this way we demonstrate a device that exhibits an attractive photoconductive gain (>10) combined with a response time ( approximately 25 ms) useful in imaging. We achieve this by preserving a single surface species, lead sulfite, while eliminating lead sulfate and lead carboxylate. In doing so we preserve the outstanding sensitivity of these devices, achieving a specific detectivity of 10(12) Jones in the visible, while generating a temporal response suited to imaging applications.
Tellurium doping effect in avalanche-mode amorphous selenium photoconductive film
NASA Astrophysics Data System (ADS)
Park, Wug-Dong; Tanioka, Kenkichi
2014-11-01
Amorphous selenium (a-Se) high-gain avalanche rushing amorphous photoconductor (HARP) film has been used for highly sensitive imaging devices. To improve the spectral response of a-Se HARP photoconductive film at a long wavelength, the tellurium (Te) doping effect in an 8-μm-thick a-Se HARP film was investigated. The thickness of the Te-doped a-Se layer in the 8-μm-thick a-Se HARP films was varied from 60 to 120 nm. The signal current increases significantly due to the avalanche multiplication when the target voltage is increased over the threshold voltage. In the 8-μm-thick a-Se HARP film with a Te-doped layer, the spectral response at a long wavelength was improved in comparison with the a-Se HARP film without a Te-doped layer. In addition, the increase of the lag in the 8-μm-thick a-Se HARP target with a Te-doped layer of 120 nm is caused by the photoconductive lag due to the electrons trapped in the Te-doped layer. Based on the current-voltage characteristics, spectral response, and lag characteristics of the 8-μm-thick a-Se HARP targets, the Te-doped layer thickness of 90 nm is suitable for the 8-μm-thick a-Se HARP film.
Optically coupled methods for microwave impedance microscopy
NASA Astrophysics Data System (ADS)
Johnston, Scott R.; Ma, Eric Yue; Shen, Zhi-Xun
2018-04-01
Scanning Microwave Impedance Microscopy (MIM) measurement of photoconductivity with 50 nm resolution is demonstrated using a modulated optical source. The use of a modulated source allows for the measurement of photoconductivity in a single scan without a reference region on the sample, as well as removing most topographical artifacts and enhancing signal to noise as compared with unmodulated measurement. A broadband light source with a tunable monochrometer is then used to measure energy resolved photoconductivity with the same methodology. Finally, a pulsed optical source is used to measure local photo-carrier lifetimes via MIM, using the same 50 nm resolution tip.
Photoconductive switch package
Ca[rasp, George J
2013-10-22
A photoconductive switch is formed of a substrate that has a central portion of SiC or other photoconductive material and an outer portion of cvd-diamond or other suitable material surrounding the central portion. Conducting electrodes are formed on opposed sides of the substrate, with the electrodes extending beyond the central portion and the edges of the electrodes lying over the outer portion. Thus any high electric fields produced at the edges of the electrodes lie outside of and do not affect the central portion, which is the active switching element. Light is transmitted through the outer portion to the central portion to actuate the switch.
Two-step photoconductivity in LiY x Lu1 - x F4:Ce,Yb crystals
NASA Astrophysics Data System (ADS)
Nurtdinova, L. A.; Korableva, S. L.; Leontiev, A. V.
2016-10-01
Photoconductivity of LiY x Lu1- x F4:Ce,Yb ( x = 0-1) crystals is measured under one- and two-step excitation. It is established that the photoconductivity is due to intra-center transitions from excited states of Ce3+ ions. The position of the ground 4 f-state of Ce3+ ion relative to the bottom of the conduction band is determined. The choice of pumping conditions to obtain the lasing on the 5 d-4 f transitions of trivalent cerium in these active media is substantiated.
DOE R&D Accomplishments Database
Heeger, A. J.; MacDiarmid, A. G.
1980-06-05
Despite great theoretical and technological interest in polyacetylene, (CH){sub x}, the basic features of its band structure have not been unambiguously resolved. Since photoconductivity and optical absorption data have frequently been used to infer information on the band structure of semiconductors, such measurements were carried out on (CH){sub x}. The main results of an extensive study of the photoconductivity (..delta.. sigma{sub ph}) and absorption coefficient (..cap alpha..) in (CH){sub x} are presented. The absence of photoconductivity in cis-(CH){sub x}, despite the similarity in optical properties indicates that ..delta.. sigma/sub ph/ in trans-(CH){sub x} is induced by isomerization. It is found that isomerization generates states deep inside the gap that act as safe traps for minority carriers and thereby enhance the photoconductivity. Compensation of trans-(CH){sub x} with ammonia appears to decrease the number of safe traps, whereas acceptor doping increases their number. Thus, chemical doping can be used to control the photoconductive response. The energy of safe traps inside the gap is independent of the process used to generate them; indicative of an intrinsic localized defect level in trans-(CH){sub x}. A coherent picture based on the soliton model can explain these results, including the safe trapping.
Role of interface states on electron transport in a-Si:H/nc-Si:H multilayer structures
NASA Astrophysics Data System (ADS)
Yadav, Asha; Kumari, Juhi; Agarwal, Pratima
2018-05-01
In this paper we report, I-V characteristic of a-Si:H/nc-Si:H multilayer structures in lateral as well as transverse direction. In lateral geometry, where the interfaces are parallel to the direction of electronic transport, residual photo conductivity (persistent photoconductivity) is observed after the light was turned off. On the other hand, in transverse geometry, where interfaces are along the direction of electronic transport, the space charge limited currents are affected and higher density of states is obtained. The PPC was more in the structures where numbers of such interface were more. These results have been understood in terms of the charge carriers trapped at the interface, which influence the electronic transport.
Nonlinear Optical Properties of Semiconducting Polymers.
1990-01-01
geberation in both cis and trans- polyacetylene. In the fast transient photoconductivity area, we will attempt to move into the sub-picosecond regime...spectroscopy (ir through visible) of third harmonic geberation in both cis and trans- polyacetylene. In the fast transient photoconductivity area, we will
Characterization of polycrystalline TlBr films for radiographic detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, P.R.; Shah, K.S.; Cirignano, L.J.
1999-06-01
Vapor deposited films of thallium bromide are evaluated as potential photoconductive layers in new large-area radiographic detectors. The attractiveness of the material lies in its inherent high effective atomic number and high density. Polycrystalline films up to 200 {micro}m in diameter. Current-voltage (IV) tests indicate a bulk resistivity of 10{sup 9}--10{sup 10} {Omega}-cm, limited by ionic conduction. Instability of current with time is also observed, but it can be minimized with cooling. The films demonstrate high gain at relatively low field strengths as compared to other photoconductive layers. Benefits and drawbacks of TlBr are compared to other materials, and possiblemore » solutions are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penillard, A., E-mail: anne.penillard@espci.fr; Tripon-Canseliet, C.; Maksimovic, I.
2016-01-14
We present a microwave photoconductive switch based on exfoliated black phosphorus and strongly responding to a 1.55 μm optical excitation. According to its number of atomic layers, exfoliated black phosphorus presents unique properties for optoelectronic applications, like a tunable direct bandgap from 0.3 eV to 2 eV, strong mobilities, and strong conductivities. The switch shows a maximum ON/OFF ratio of 17 dB at 1 GHz, and 2.2 dB at 20 GHz under 1.55-μm laser excitation at 50 mW, never achieved with bidimensional materials.
Solid state photosensitive devices which employ isolated photosynthetic complexes
Peumans, Peter; Forrest, Stephen R.
2009-09-22
Solid state photosensitive devices including photovoltaic devices are provided which comprise a first electrode and a second electrode in superposed relation; and at least one isolated Light Harvesting Complex (LHC) between the electrodes. Preferred photosensitive devices comprise an electron transport layer formed of a first photoconductive organic semiconductor material, adjacent to the LHC, disposed between the first electrode and the LHC; and a hole transport layer formed of a second photoconductive organic semiconductor material, adjacent to the LHC, disposed between the second electrode and the LHC. Solid state photosensitive devices of the present invention may comprise at least one additional layer of photoconductive organic semiconductor material disposed between the first electrode and the electron transport layer; and at least one additional layer of photoconductive organic semiconductor material, disposed between the second electrode and the hole transport layer. Methods of generating photocurrent are provided which comprise exposing a photovoltaic device of the present invention to light. Electronic devices are provided which comprise a solid state photosensitive device of the present invention.
Photoconductive properties of Bi{sub 2}S{sub 3} nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andzane, J., E-mail: jana.andzane@lu.lv; Kunakova, G.; Erts, D.
2015-02-14
The photoconductive properties of Bi{sub 2}S{sub 3} nanowires synthesized inside anodized alumina (AAO) membrane have been characterized as a function of illuminating photon energy between the wavelengths of 500 to 900 nm and at constant illumination intensity of 1–4 μW·cm{sup −2}. Photoconductivity spectra, photocurrent values, photocurrent onset/decay times of individual Bi{sub 2}S{sub 3} nanowires liberated from the AAO membrane were determined and compared with those of arrays of as-produced Bi{sub 2}S{sub 3} nanowires templated inside pores of AAO membrane. The alumina membrane was found to significantly influence the photoconductive properties of the AAO-hosted Bi{sub 2}S{sub 3} nanowires, when compared to liberated frommore » the AAO membrane individual Bi{sub 2}S{sub 3} nanowires, possibly due to charge carrier trapping at the interface between the nanowire surface and the pore walls.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Hyun-Sik; Jeon, Sanghun, E-mail: jeonsh@korea.ac.kr
Upon light exposure, an indium-zinc-oxide (IZO) thin-film transistor (TFT) presents higher photoconductivity by several orders of magnitude at the negative gate bias region. Among various device geometrical factors, scaling down the channel length of the photo-transistor results in an anomalous increase in photoconductivity. To probe the origin of this high photoconductivity in short-channel device, we measured transient current, current–voltage, and capacitance–voltage characteristics of IZO–TFTs with various channel lengths and widths before and after illumination. Under the illumination, the equilibrium potential region which lies far from front interface exists only in short-channel devices, forming the un-depleted conducting back channel. This regionmore » plays an important role in carrier transport under the illumination, leading to high photoconductivity in short-channel devices. Photon exposure coupled with gate-modulated band bending for short-channel devices leads to the accumulation of V{sub o}{sup ++} at the front channel and screening negative gate bias, thereby generating high current flow in the un-depleted back-channel region.« less
Giant Hall Photoconductivity in Narrow-Gapped Dirac Materials
NASA Astrophysics Data System (ADS)
Song, Justin C. W.; Kats, Mikhail A.
2016-12-01
Carrier dynamics acquire a new character in the presence of Bloch-band Berry curvature, which naturally arises in gapped Dirac materials (GDMs). Here we argue that photoresponse in GDMs with small band gaps is dramatically enhanced by Berry curvature. This manifests in a giant and saturable Hall photoconductivity when illuminated by circularly polarized light. Unlike Hall motion arising from a Lorentz force in a magnetic field, which impedes longitudinal carrier motion, Hall photoconductivity arising from Berry curvature can boost longitudinal carrier transport. In GDMs, this results in a helicity-dependent photoresponse in the Hall regime, where photoconductivity is dominated by its Hall component. We find that the induced Hall conductivity per incident irradiance is enhanced by up to six orders of magnitude when moving from the visible regime (with corresponding band gaps) to the far infrared. These results suggest that narrow-gap GDMs are an ideal test-bed for the unique physics that arise in the presence of Berry curvature, and open a new avenue for infrared and terahertz optoelectronics.
Photoconductive switch package
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caporaso, George J.
2015-10-27
A photoconductive switch is formed of a substrate that has a central portion of SiC or other photoconductive material and an outer portion of cvd-diamond or other suitable material surrounding the central portion. Conducting electrodes are formed on opposed sides of the substrate, with the electrodes extending beyond the central portion and the edges of the electrodes lying over the outer portion. Thus any high electric fields produced at the edges of the electrodes lie outside of and do not affect the central portion, which is the active switching element. Light is transmitted through the outer portion to the centralmore » portion to actuate the switch.« less
Vanadium supersaturated silicon system: a theoretical and experimental approach
NASA Astrophysics Data System (ADS)
Garcia-Hemme, Eric; García, Gregorio; Palacios, Pablo; Montero, Daniel; García-Hernansanz, Rodrigo; Gonzalez-Diaz, Germán; Wahnon, Perla
2017-12-01
The effect of high dose vanadium ion implantation and pulsed laser annealing on the crystal structure and sub-bandgap optical absorption features of V-supersaturated silicon samples has been studied through the combination of experimental and theoretical approaches. Interest in V-supersaturated Si focusses on its potential as a material having a new band within the Si bandgap. Rutherford backscattering spectrometry measurements and formation energies computed through quantum calculations provide evidence that V atoms are mainly located at interstitial positions. The response of sub-bandgap spectral photoconductance is extended far into the infrared region of the spectrum. Theoretical simulations (based on density functional theory and many-body perturbation in GW approximation) bring to light that, in addition to V atoms at interstitial positions, Si defects should also be taken into account in explaining the experimental profile of the spectral photoconductance. The combination of experimental and theoretical methods provides evidence that the improved spectral photoconductance up to 6.2 µm (0.2 eV) is due to new sub-bandgap transitions, for which the new band due to V atoms within the Si bandgap plays an essential role. This enables the use of V-supersaturated silicon in the third generation of photovoltaic devices.
NASA Astrophysics Data System (ADS)
Arad-Vosk, N.; Beach, R.; Ron, A.; Templeman, T.; Golan, Y.; Sarusi, G.; Sa'ar, A.
2018-03-01
Thin films of lead sulfide alloyed with thorium and oxygen were deposited on GaAs substrates and processed to produce a photo-diode structure. Structural, optical and electrical characterizations indicate the presence of small nanoscale domains (NDs) that are characterized by dense packaging, high quality interfaces and a blue-shift of the energy bandgap toward the short wavelength infrared range of the spectrum. Photocurrent spectroscopy revealed a considerable photoconductivity that is correlated with excitation of carriers in the NDs of lead sulfide alloyed with thorium and oxygen. Furthermore, the appearance of a photovoltaic effect under near infrared illumination indicates a quasi-type II band alignment at the interface of the GaAs and the film of NDs.
Arad-Vosk, N; Beach, R; Ron, A; Templeman, T; Golan, Y; Sarusi, G; Sa'ar, A
2018-03-16
Thin films of lead sulfide alloyed with thorium and oxygen were deposited on GaAs substrates and processed to produce a photo-diode structure. Structural, optical and electrical characterizations indicate the presence of small nanoscale domains (NDs) that are characterized by dense packaging, high quality interfaces and a blue-shift of the energy bandgap toward the short wavelength infrared range of the spectrum. Photocurrent spectroscopy revealed a considerable photoconductivity that is correlated with excitation of carriers in the NDs of lead sulfide alloyed with thorium and oxygen. Furthermore, the appearance of a photovoltaic effect under near infrared illumination indicates a quasi-type II band alignment at the interface of the GaAs and the film of NDs.
Enhancing UV photoconductivity of ZnO nanobelt by polyacrylonitrile functionalization
NASA Astrophysics Data System (ADS)
He, J. H.; Lin, Yen H.; McConney, Michael E.; Tsukruk, Vladimir V.; Wang, Zhong L.; Bao, Gang
2007-10-01
UV photodetector fabricated using a single ZnO nanobelt (NB) has shown a photoresponse enhancement up to 750 times higher than that of a bare ZnO NB after coating with ˜20nm plasma polymerized acrylonitrile (PP-AN) nanoscale film. The mechanism for this colossal photoconductivity is suggested as a consequence of the efficient exciton dissociation under UV illumination due to enhanced electron transfer from valence band of ZnO NB to the PP-AN and then back to the conduction band of ZnO. This process has demonstrated an easy and effective method for improving the performance of the nanowire/NB-based devices, possibly leading to supersensitive UV detector for applications in imaging, photosensing, and intrachip optical interconnects.
Wide Bandgap Extrinsic Photoconductive Switches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, James S.
2012-01-20
Photoconductive semiconductor switches (PCSS) have been investigated since the late 1970s. Some devices have been developed that withstand tens of kilovolts and others that switch hundreds of amperes. However, no single device has been developed that can reliably withstand both high voltage and switch high current. Yet, photoconductive switches still hold the promise of reliable high voltage and high current operation with subnanosecond risetimes. Particularly since good quality, bulk, single crystal, wide bandgap semiconductor materials have recently become available. In this chapter we will review the basic operation of PCSS devices, status of PCSS devices and properties of the widemore » bandgap semiconductors 4H-SiC, 6H-SiC and 2H-GaN.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, J. S.
2014-04-28
We report the high power operation of nitrogen doped, vanadium compensated, 6H-SiC, extrinsic photoconductive switches with improved vanadium and nitrogen dopant density. Photoconductive switching tests are performed on 1 mm thick, m-plane, switch substrates at switch voltage and currents up to 17 kV and 1.5 kA, respectively. Sub-ohm minimum switch on resistance is achieved for peak optical intensities ≥35 MW/cm{sup 2} at 532 nm applied to the switch facet. A reduction of greater than nine orders of magnitude is observed in switch material resistivity between dark and illuminated states.
A comparative study of photoconductivity in LaTiO3/SrTiO3 and LaAlO3/SrTiO3 2-DEG heterostructures
NASA Astrophysics Data System (ADS)
Rastogi, A.; Hossain, Z.; Budhani, R. C.
2013-02-01
Here we compare the growth temperature dependence of the response of LaTiO3/SrTiO3 and LaAlO3/SrTiO3 2D-electron gas (2-DEG) field effect structure to the optical radiation of near ultraviolet frequency and electrostatic gate field. For both the films the resistance of the channel increases significantly as growth temperature is lowered from 800 to 700 °C. These heterostructures show the photoconductivity (PC) simulated by UV light of λ ≤ 400 nm. The PC follows the stretched exponential dynamics. It is found that photo-response of the LaTiO3 films is prominent and has larger decay time constant as compare to LaAlO3 films. The effect of electric field on the photo-induced conducting state is also studied.
NASA Astrophysics Data System (ADS)
Zhuang, ShenDong; Chen, Yan; Zhang, WeiChao; Chen, Zhuo; Wang, ZhenLin
2018-01-01
We report on the experimental realization of a graphene quantum dots (GQD)-based humidity sensor and ultraviolet (UV) photodetector. We demonstrate that the conductance of the GQD increases linearly with increasing relative humidity (RH) of the surrounding environment due to the carrier trapping effect, which forms the basis of a humidity sensor. When the sensor is operated in the dark state, the sensitivity can reach as high as 0.48 nS RH -1. The GQD are also found to exhibit light intensity dependent negative photoconductivity under the UV irradiation, which can be exploited for UV detection. As a result of these carrier trapping and de-trapping processes, the performance of the photodetector can be significantly improved with the increasing RH, and the photoresponsivity can reach a high value of -418.1 μA W-1 in the high humid state of RH=90%.
NASA Technical Reports Server (NTRS)
Peng, C. K.; Sinha, S.; Morkoc, H.
1987-01-01
Modulation-doped In(x)Ga(1-x)As/In(0.52)Al(0.48)As/InP structures were grown by molecular-beam epitaxy with x values between 53 and 70 percent. For pseudomorphic cases, graded instead of abrupt interfaces were used. Hall mobility and persistent photoconductivity measurements as a function of temperature were used to characterize samples with different structural parameters. Consistent trends in the variation of mobilities and two-dimensional carrier concentration, n(2D), under light and dark conditions have been observed and discussed in terms of applicable scattering mechanisms. The Hall mobilities are comparable to the best results obtained to date but with significantly higher n(2D) concentration.
Optical spectroscopy and band gap analysis of hybrid improper ferroelectric Ca3Ti2O7
NASA Astrophysics Data System (ADS)
Musfeldt, Janice; Cherian, Judy; Birol, Turan; Harms, Nathan; Gao, Bin; Cheong, Sang; Vanderbilt, David
We bring together optical absorption spectroscopy, photoconductivity, and first principles calculations to reveal the electronic structure of the room temperature ferroelectric Ca3Ti2O7. The 3.94 eV direct gap in Ca3Ti2O7 is charge transfer in nature and noticeably higher than that in CaTiO3 (3.4 eV), a finding that we attribute to dimensional confinement in the n = 2 member of the Ruddlesden-Popper series. While Sr substitution introduces disorder and broadens the gap edge slightly, oxygen deficiency reduces the gap to 3.7 eV and gives rise to a broad tail that persists to much lower energies. MSD, BES, U. S. DoE and DMREF, NSF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherian, Judy G.; Harms, Nathan C.; Birol, Turan
2016-06-27
We bring together optical absorption spectroscopy, photoconductivity, and first principles calculations to reveal the electronic structure of the room temperature ferroelectric Ca{sub 3}Ti{sub 2}O{sub 7}. The 3.94 eV direct gap in Ca{sub 3}Ti{sub 2}O{sub 7} is charge transfer in nature and noticeably higher than that in CaTiO{sub 3} (3.4 eV), a finding that we attribute to dimensional confinement in the n = 2 member of the Ruddlesden-Popper series. While Sr substitution introduces disorder and broadens the gap edge slightly, oxygen deficiency reduces the gap to 3.7 eV and gives rise to a broad tail that persists to much lower energies.
Roll-to-roll light directed electrophoretic deposition system and method
Pascall, Andrew J.; Kuntz, Joshua
2017-06-06
A roll-to-roll light directed electrophoretic deposition system and method advances a roll of a flexible electrode web substrate along a roll-to-roll process path, where a material source is positioned to provide on the flexible electrode web substrate a thin film colloidal dispersion of electrically charged colloidal material dispersed in a fluid. A counter electrode is also positioned to come in contact with the thin film colloidal dispersion opposite the flexible electrode web substrate, where one of the counter electrode and the flexible electrode web substrate is a photoconductive electrode. A voltage source is connected to produce an electric potential between the counter electrode and the flexible electrode web substrate to induce electrophoretic deposition on the flexible electrode web substrate when the photoconductive electrode is rendered conductive, and a patterned light source is arranged to illuminate the photoconductive electrode with a light pattern and render conductive illuminated areas of the photoconductive electrode so that a patterned deposit of the electrically charged colloidal material is formed on the flexible electrode web substrate.
Photo-conductance of a single Quantum Dot
NASA Astrophysics Data System (ADS)
Zimmers, Alexandre; Wang, Hongyue; Lhuillier, Emmanuel; Yu, Qian; Dubertret, Benoit; Aubin, Herve; Ulysse, Christian; LPEM Collaboration
One promising strategy for the development of nanoscale resonant spin sensors is to measure the spin-dependent photo-current in Quantum Dots (QDots) containing spin-dependent recombination centers. To reach single spin sensitivity will require measurements of the photo-conductance of single QDots. We present here an experimental study of the conductance and photo-conductance of single HgSe QDots as function of drain and gate voltage. The evolution of the differential conductance dI/dV spectrum with the gate voltage demonstrates that single HgSe QDots are forming the junction. The amplitude of the gap measured in the differential conductance spectrum changes with the occupation level. A large inter-band gap, 0,85eV, is observed for the empty QDot, a smaller intra-band gap 0,25eV is observed for the doubly occupied QDot. These gap energies are consistent with the values extracted from the optical absorption spectrum. Upon illuminating the QDot junction, we show that the photo-conductive signal produced by this single QDot can be measured with a simple demodulation method. ANR Grant ''QUANTICON'' 10-0409-01 / DIM Nano-K / Chinese Scholarship Council.
Tuneable photoconductivity and mobility enhancement in printed MoS2/graphene composites
NASA Astrophysics Data System (ADS)
Kelly, Adam G.; Murphy, Conor; Vega-Mayoral, Victor; Harvey, Andrew; Sajad Esmaeily, Amir; Hallam, Toby; McCloskey, David; Coleman, Jonathan N.
2017-12-01
With the aim of increasing carrier mobility in nanosheet-network devices, we have investigated MoS2-graphene composites as active regions in printed photodetectors. Combining liquid exfoliation and inkjet-printing, we fabricated all-printed photodetectors with graphene electrodes and MoS2-graphene composite channels with various graphene mass fractions (0 ⩽ M f ⩽ 16 wt%). The increase in channel dark conductivity with M f was consistent with percolation theory for composites below the percolation threshold. While the photoconductivity increased with graphene content, it did so more slowly than the dark conductivity, such that the fractional photoconductivity decayed rapidly with increasing M f. We propose that both mobility and dark carrier density increase with graphene content according to percolation-like scaling laws, while photo-induced carrier density is essentially independent of graphene loading. This leads to percolation-like scaling laws for both photoconductivity and fractional photoconductivity—in excellent agreement with the data. These results imply that channel mobility and carrier density increase up to 100-fold with the addition of 16 wt% graphene.
Yardimci, Nezih Tolga; Cakmakyapan, Semih; Hemmati, Soroosh; Jarrahi, Mona
2017-06-23
The scope and potential uses of time-domain terahertz imaging and spectroscopy are mainly limited by the low optical-to-terahertz conversion efficiency of photoconductive terahertz sources. State-of-the-art photoconductive sources utilize short-carrier-lifetime semiconductors to recombine carriers that cannot contribute to efficient terahertz generation and cause additional thermal dissipation. Here, we present a novel photoconductive terahertz source that offers a significantly higher efficiency compared with terahertz sources fabricated on short-carrier-lifetime substrates. The key innovative feature of this source is the tight three-dimensional confinement of the optical pump beam around the terahertz nanoantennas that are used as radiating elements. This is achieved by means of a nanocavity formed by plasmonic structures and a distributed Bragg reflector. Consequently, almost all of the photo-generated carriers can be routed to the terahertz nanoantennas within a sub-picosecond time-scale. This results in a very strong, ultrafast current that drives the nanoantennas to produce broadband terahertz radiation. We experimentally demonstrate that this terahertz source can generate 4 mW pulsed terahertz radiation under an optical pump power of 720 mW over the 0.1-4 THz frequency range. This is the highest reported power level for terahertz radiation from a photoconductive terahertz source, representing more than an order of magnitude of enhancement in the optical-to-terahertz conversion efficiency compared with state-of-the-art photoconductive terahertz sources fabricated on short-carrier-lifetime substrates.
Yardimci, Nezih Tolga; Cakmakyapan, Semih; Hemmati, Soroosh; ...
2017-06-23
The scope and potential uses of time-domain terahertz imaging and spectroscopy are mainly limited by the low optical-to-terahertz conversion efficiency of photoconductive terahertz sources. State-of-theart photoconductive sources utilize short-carrier-lifetime semiconductors to recombine carriers that cannot contribute to efficient terahertz generation and cause additional thermal dissipation. Here, we present a novel photoconductive terahertz source that offers a significantly higher efficiency compared with terahertz sources fabricated on short-carrier-lifetime substrates. The key innovative feature of this source is the tight three-dimensional confinement of the optical pump beam around the terahertz nanoantennas that are used as radiating elements. This is achieved by means ofmore » a nanocavity formed by plasmonic structures and a distributed Bragg reflector. Consequently, almost all of the photo-generated carriers can be routed to the terahertz nanoantennas within a sub-picosecond time-scale. This results in a very strong, ultrafast current that drives the nanoantennas to produce broadband terahertz radiation. We experimentally demonstrate that this terahertz source can generate 4 mW pulsed terahertz radiation under an optical pump power of 720 mW over the 0.1–4 THz frequency range. This is the highest reported power level for terahertz radiation from a photoconductive terahertz source, representing more than an order of magnitude of enhancement in the optical-to-terahertz conversion efficiency compared with state-of-the-art photoconductive terahertz sources fabricated on shortcarrier- lifetime substrates.« less
NASA Astrophysics Data System (ADS)
Cari; Mahfudli Fadli, U.; Bayu Prasada, A.; Supriyanto, A.
2017-01-01
The aims of the research to were know performance of DSSC using the dye of Zingiber, Cinnamomum, Curcuma, and Oryza as a photosensitizer with a variation of dye deposition area with spin coating techniques. The structure of the samples as a sandwich consisting of the working electrode (TiO2), dye, electrodes of platinum (Pt) and the electrolyte sandwiched between two electrodes. Test absorbance dye using UV-Visible Spectrophotometer Lambda 25, using a two-point conductivity test probes El Kahfi 100 and characterization test IV using a Keithley 2602A. For Zingiber results showed that absorbance at 243 nm and 279 nm, photoconductivity of 0.29 Ω-1m-1 and the efficiency is 0.015% on 0.5 cm2. Cinnamomum results showed that absorbance at 253 nm and 403 nm, photoconductivity of 0.11 Ω-1m-1 and the efficiency is 0.002% on 3 cm2. Curcuma results showed that absorbance at 243 nm and 422 nm, photoconductivity of 0.177 Ω-1m-1 and the efficiency is 0.072% on 3 cm2. Oryza results showed that absorbance at 240 nm and 423 nm, photoconductivity of 0.21 Ω-1m-1 and the efficiency is 0.04% on 2.25 cm2. Best absorbance value was obtained from Oryza dye; the highest photoconductivity was obtained from Zingiber dye, and the highest efficiency was obtained from Curcuma dye.
NASA Astrophysics Data System (ADS)
Ikonnikov, A. V.; Zholudev, M. S.; Spirin, K. E.; Lastovkin, A. A.; Maremyanin, K. V.; Aleshkin, V. Ya; Gavrilenko, V. I.; Drachenko, O.; Helm, M.; Wosnitza, J.; Goiran, M.; Mikhailov, N. N.; Dvoretskii, S. A.; Teppe, F.; Diakonova, N.; Consejo, C.; Chenaud, B.; Knap, W.
2011-12-01
Cyclotron resonance spectra of 2D electrons in HgTe/CdxHg1-xTe (0 1 3) quantum well (QW) heterostructures with inverted band structure have been thoroughly studied in quasiclassical magnetic fields versus the electron concentration varied using the persistent photoconductivity effect. The cyclotron mass is shown to increase with QW width in contrast to QWs with normal band structure. The measured values of cyclotron mass are shown to be systematically less than those calculated using the 8 × 8 Kane model with conventional set of HgTe and CdTe material parameters. In quantizing pulsed magnetic fields (Landau level filling factor less than unity) up to 45 T, both intraband (CR) and interband magnetoabsorption have been studied at radiation wavelengths 14.8 and 11.4 µm for the first time. The results obtained are compared with the allowed transition energies between Landau levels in the valence and conduction bands calculated within the same model, the calculated energies being again systematically less (by 3-14%) than the observed optical transition energies.
NASA Astrophysics Data System (ADS)
Muhtadi, S.; Hwang, S.; Coleman, A.; Asif, F.; Lunev, A.; Chandrashekhar, M. V. S.; Khan, A.
2017-04-01
We report on AlGaN field effect transistors over AlN/sapphire templates with selective area grown n-Al0.5Ga0.5N channel layers for which a field-effect mobility of 55 cm2/V-sec was measured. Using a pulsed plasma enhanced chemical vapor deposition deposited 100 A thick SiO2 layer as the gate-insulator, the gate-leakage currents were reduced by three orders of magnitude. These devices with or without gate insulators are excellent solar-blind ultraviolet detectors, and they can be operated either in the photoconductive or the photo-voltaic modes. In the photo-conductive mode, gain arising from hole-trapping in the depletion region leads to steady-state photoresponsivity as high as 1.2 × 106A/W at 254 nm, which drops sharply below 290 nm. A hole-trapping limited detector response time of 34 ms, fast enough for real-time flame-detection and imaging applications, was estimated.
Transient photoconductivity in the ferromagnetic semiconductor CdCr2Se4
NASA Technical Reports Server (NTRS)
Walser, A. D.; Alfano, R. R.
1988-01-01
The transient photoconductive response time of the ferromagnetic semiconductor CdCr2Se4 was measured to be smaller than 90 ps, the response time of the scope. The measurements were performed at room temperature (300 K) for 0.53 and 1.06 microns excitations using a mode locked frequency-doubled YAG laser.
Efficient photoconductive terahertz detector with all-dielectric optical metasurface
NASA Astrophysics Data System (ADS)
Mitrofanov, Oleg; Siday, Thomas; Thompson, Robert J.; Luk, Ting Shan; Brener, Igal; Reno, John L.
2018-05-01
We designed an optically thin photoconductive channel as an all-dielectric metasurface comprising an array of low-temperature grown GaAs nanobeams and a sub-surface distributed Bragg reflector. The metasurface exhibited enhanced optical absorption, and it was integrated into a photoconductive THz detector, which showed high efficiency and sensitivity as a result. The detector produced photocurrents over one order of magnitude higher compared to a similar detector with an unstructured surface with only 0.5 mW of optical excitation while exhibiting high dark resistance required for low-noise detection in THz time-domain spectroscopy and imaging. At that level of optical excitation, the metasurface detector showed a high signal to noise ratio of 106. The detector showed saturation above that level.
Photoconductivity of few-layered p-WSe2 phototransistors via multi-terminal measurements
NASA Astrophysics Data System (ADS)
Pradhan, Nihar R.; Garcia, Carlos; Holleman, Joshua; Rhodes, Daniel; Parker, Chason; Talapatra, Saikat; Terrones, Mauricio; Balicas, Luis; McGill, Stephen A.
2016-12-01
Recently, two-dimensional materials and in particular transition metal dichalcogenides (TMDs) have been extensively studied because of their strong light-matter interaction and the remarkable optoelectronic response of their field-effect transistors (FETs). Here, we report a photoconductivity study from FETs built from few-layers of p-WSe2 measured in a multi-terminal configuration under illumination by a 532 nm laser source. The photogenerated current was measured as a function of the incident optical power, of the drain-to-source bias and of the gate voltage. We observe a considerably larger photoconductivity when the phototransistors were measured via a four-terminal configuration when compared to a two-terminal one. For an incident laser power of 248 nW, we extract 18 A W-1 and ˜4000% for the two-terminal responsivity (R) and the concomitant external quantum efficiency (EQE) respectively, when a bias voltage V ds = 1 V and a gate voltage V bg = 10 V are applied to the sample. R and EQE are observed to increase by 370% to ˜85 A W-1 and ˜20 000% respectively, when using a four-terminal configuration. Thus, we conclude that previous reports have severely underestimated the optoelectronic response of transition metal dichalcogenides, which in fact reveals a remarkable potential for photosensing applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Shang-Hsuan; Chan, Ching-Hsiang; Liang, Ching-Tarng
2016-01-25
We report systematic studies based on photoluminescence, Hall, and photoconductivity measurements together with theoretical modeling in order to identify mechanisms for the photo-induced charge transfer effects in ZnO thin film incorporated with the Au nano-islands (AuNIs). Significant enhancement of near band edge emission and improvement in conductivity of ZnO/AuNIs samples after illumination are observed, which are attributed to the photo-induced hot electrons in Au which are then transferred into the conduction band of ZnO as long as the excitation energy is higher than the offset between the ZnO conduction-band minimum and Au Fermi level. Our experimental results are consistent withmore » the general features predicted by first principles calculations.« less
Photoconductivity of CdS under high pressure
NASA Astrophysics Data System (ADS)
Savić, Pavle; Urošević, Vladeta
1987-04-01
The photoconductivity of the high-pressure (rocksalt) phase of CdS has been investigated over the 30-120 kbar pressure range. A decrease of the photo-threshold from 1.60 eV (at 30 kbar) to 1.49 eV (at 120 kbar) indicates an indirect gap semiconductor. The values obtained have been compared with the Savić-Kašanin theory.
Nelson, Scott D.
2016-05-10
A photoconductive switch having a wide bandgap semiconductor material substrate between opposing electrodes, with one of the electrodes having an aperture or apertures at an electrode-substrate interface for transversely directing radiation therethrough from a radiation source into a triple junction region of the substrate, so as to geometrically constrain the conductivity path to within the triple junction region.
Novel Devices and Components for THz Systems
2014-04-25
sources that have a higher THz-power-to-cost ratio than the current state of the art. Photoconductive antennas are mostly used to conduct ...a higher THz-power-to-cost ratio than the current state of the art. Photoconductive antennas are mostly used to conduct spectroscopy measurements...when incoming photons switch the semiconductor to a conducting state current can flow through the antenna
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rumyantsev, V. V., E-mail: rumyantsev@ipmras.ru; Ikonnikov, A. V.; Antonov, A. V.
2013-11-15
The spectra and relaxation kinetics of interband photoconductivity are investigated in narrow-gap Hg{sub 1-x}Cd{sub x}Te epitaxial films with x = 0.19-0.23 and in structures with HgCdTe-based quantum wells (QWs), having an interband-transition energy in the range of 30-90 meV, grown by molecular-beam epitaxy on GaAs (013) substrates. A long-wavelength sensitivity band caused by impurities or defects is found in the spectra of the structures with quantum wells in addition to the interband photoconductivity. It is shown that the lifetimes of nonequilibrium carriers in the structures with QWs is less than in bulk samples at the same optical-transition energy. From themore » measured carrier lifetimes, the ampere-watt responsivity and the equivalent noise power for a film with x = 0.19 at a wavelength of 19 {mu}m are estimated. When investigating the relaxation kinetics of the photoconductivity at 4.2 K in high excitation regime, it is revealed that radiative recombination is dominant over other mechanisms of nonequilibrium-carrier recombination.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, S.; Yan, F.; Zaunbrecher, K.
2012-06-01
Imaging techniques can be applied to multicrystalline silicon solar cells throughout the production process, which includes as early as when the bricks are cut from the cast ingot. Photoluminescence (PL) imaging of the band-to-band radiative recombination is used to characterize silicon quality and defects regions within the brick. PL images of the brick surfaces are compared to minority-carrier lifetimes measured by resonant-coupled photoconductive decay (RCPCD). Photoluminescence images on silicon bricks can be correlated to lifetime measured by photoconductive decay and could be used for high-resolution characterization of material before wafers are cut. The RCPCD technique has shown the longest lifetimesmore » of any of the lifetime measurement techniques we have applied to the bricks. RCPCD benefits from the low-frequency and long-excitation wavelengths used. In addition, RCPCD is a transient technique that directly monitors the decay rate of photoconductivity and does not rely on models or calculations for lifetime. The measured lifetimes over brick surfaces have shown strong correlations to the PL image intensities; therefore, this correlation could then be used to transform the PL image into a high-resolution lifetime map.« less
Study of the impurity photoconductivity in p-InSb using epitaxial p{sup +} contacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eminov, Sh. O., E-mail: shikhamirem@gmail.com
2016-08-15
The optical absorption coefficient α in p{sup +}-InSb layers (with hole concentrations of p ≈ 1 × 10{sup 17}–1.2 × 10{sup 19} cm{sup –3}), grown by liquid-phase epitaxy on p-InSb substrates, is measured in the spectral range of 5-12 µm at 90 K, and the impurity photoconductivity is measured (at 60 and 90 K) in p{sup +}–p structures. It is found that a in the p{sup +} layers reaches a value of 7000 cm{sup –1} (at p ≈ 2 × 10{sup 19} cm{sup –1}). It is shown that the measured substrate value of (α ≈1–3 cm{sup –1}) is overestimated inmore » comparison with estimates (α ≈ 0.1 cm{sup –1}) based on comparing the photoconductivity data. This discrepancy is explained by the fact that the optical transitions of holes responsible for photoconductivity are obscured by the excitation of electrons to the conduction band. The photoionization cross section for these transitions does not exceed 1 × 10{sup –15} cm{sup 2}.« less
High voltage photo-switch package module having encapsulation with profiled metallized concavities
Sullivan, James S; Sanders, David M; Hawkins, Steven A; Sampayan, Stephen A
2015-05-05
A photo-conductive switch package module having a photo-conductive substrate or wafer with opposing electrode-interface surfaces metalized with first metallic layers formed thereon, and encapsulated with a dielectric encapsulation material such as for example epoxy. The first metallic layers are exposed through the encapsulation via encapsulation concavities which have a known contour profile, such as a Rogowski edge profile. Second metallic layers are then formed to line the concavities and come in contact with the first metal layer, to form profiled and metalized encapsulation concavities which mitigate enhancement points at the edges of electrodes matingly seated in the concavities. One or more optical waveguides may also be bonded to the substrate for coupling light into the photo-conductive wafer, with the encapsulation also encapsulating the waveguides.
Study of GaN nanowires converted from β-Ga2O3 and photoconduction in a single nanowire
NASA Astrophysics Data System (ADS)
Kumar, Mukesh; Kumar, Sudheer; Chauhan, Neha; Sakthi Kumar, D.; Kumar, Vikram; Singh, R.
2017-08-01
The formation of GaN nanowires from β-Ga2O3 nanowires and photoconduction in a fabricated single GaN nanowire device has been studied. Wurtzite phase GaN were formed from monoclinic β-Ga2O3 nanowires with or without catalyst particles at their tips. The formation of faceted nanostructures from catalyst droplets presented on a nanowire tip has been discussed. The nucleation of GaN phases in β-Ga2O3 nanowires and their subsequent growth due to interfacial strain energy has been examined using a high resolution transmission electron microscope. The high quality of the converted GaN nanowire is confirmed by fabricating single nanowire photoconducting devices which showed ultra high responsivity under ultra-violet illumination.
Photoconductive circuit element pulse generator
Rauscher, Christen
1989-01-01
A pulse generator for characterizing semiconductor devices at millimeter wavelength frequencies where a photoconductive circuit element (PCE) is biased by a direct current voltage source and produces short electrical pulses when excited into conductance by short laser light pulses. The electrical pulses are electronically conditioned to improve the frequency related amplitude characteristics of the pulses which thereafter propagate along a transmission line to a device under test.
Control of the recombination time in photoconductive detectors
NASA Astrophysics Data System (ADS)
Pacheco, M. T. T.; Ghizoni, C. C.; Scolari, S. L.
1980-07-01
The current generated at a photoconductive cell depends upon the density of states of the electromagnetic field in the semiconductor film. This density of states is a function of the film geometry and dielectric properties. In this work we demonstrate that, for highly scattering substrate surfaces, which implies in a low density of states, the signal to noise ratio is better than that for smooth surfaces.
Reznik, Nikita; Komljenovic, Philip T; Germann, Stephen; Rowlands, John A
2008-03-01
A new amorphous selenium (a-Se) digital radiography detector is introduced. The proposed detector generates a charge image in the a-Se layer in a conventional manner, which is stored on electrode pixels at the surface of the a-Se layer. A novel method, called photoconductively activated switch (PAS), is used to read out the latent x-ray charge image. The PAS readout method uses lateral photoconduction at the a-Se surface which is a revolutionary modification of the bulk photoinduced discharge (PID) methods. The PAS method addresses and eliminates the fundamental weaknesses of the PID methods--long readout times and high readout noise--while maintaining the structural simplicity and high resolution for which PID optical readout systems are noted. The photoconduction properties of the a-Se surface were investigated and the geometrical design for the electrode pixels for a PAS radiography system was determined. This design was implemented in a single pixel PAS evaluation system. The results show that the PAS x-ray induced output charge signal was reproducible and depended linearly on the x-ray exposure in the diagnostic exposure range. Furthermore, the readout was reasonably rapid (10 ms for pixel discharge). The proposed detector allows readout of half a pixel row at a time (odd pixels followed by even pixels), thus permitting the readout of a complete image in 30 s for a 40 cm x 40 cm detector with the potential of reducing that time by using greater readout light intensity. This demonstrates that a-Se based x-ray detectors using photoconductively activated switches could form a basis for a practical integrated digital radiography system.
Improving Photoconductance of Fluorinated Donors with Fluorinated Acceptors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garner, Logan E.; Larson, Bryon; Oosterhout, Stefan
2016-11-21
This work investigates the influence of fluorination of both donor and acceptor materials on the generation of free charge carriers in small molecule donor/fullerene acceptor BHJ OPV active layers. A fluorinated and non-fluorinated small molecule analogue were synthesized and their optoelectronic properties characterized. The intrinsic photoconductance of blends of these small molecule donors was investigated using time-resolved microwave conductivity. Blends of the two donor molecules with a traditional non-fluorinated fullerene (PC70BM) as well as a fluorinated fullerene (C60(CF3)2-1) were investigated using 5% and 50% fullerene loading. We demonstrate for the first time that photoconductance in a 50:50 donor:acceptor BHJ blendmore » using a fluorinated fullerene can actually be improved relative to a traditional non-fluorinated fullerene by fluorinating the donor molecule as well.« less
NASA Astrophysics Data System (ADS)
Vijayakumar, P.; Ramasamy, P.
2016-08-01
AgGa0.5In0.5Se2 single crystal was grown using modified vertical Bridgman method. The structural perfection of the AgGa0.5In0.5Se2 single crystal has been analyzed by high-resolution X-ray diffraction rocking curve measurements. The structural and compositional uniformities of AgGa0.5In0.5Se2 were studied using Raman scattering spectroscopy at room temperature. The FWHM of the Γ1 (W1) and Γ5L (Γ15) measured at different regions of the crystal confirms that the composition throughout its length is fairly uniform. Thermal properties of the as-grown crystal, including specific heat, thermal diffusivity and thermal conductivity have been investigated. The multiple shot surface laser damage threshold value was measured using Nd:YAG laser. Photoconductivity measurements with different temperatures have confirmed the positive photoconducting behavior. Second harmonic generation (SHG) on powder samples has been measured using the Kurtz and Perry technique and the results display that AgGa0.5In0.5Se2 is a phase-matchable NLO material. The hardness behavior has been measured using Vickers micro hardness measurement and the indentation size effect has been observed. The classical Meyer's law, propositional resistance model and modified propositional resistance model have been used to analyse the micro hardness behavior.
Photonic Crystal/Nano-Electronic Device Structures for Large Array Thermal Imaging
2007-11-19
order to improve the signal to noise ratio of the detection, a larger photocurrent is desirable. To increase the photocurrent of QWIPs , one needs to...CLASSIFICATION OF: Lattice-matched InGaAs/Inp quantum well infrared detector ( QWIP ) exhibits high photoconductive gain but un-adjustable detection wavelength...Title ABSTRACT Lattice-matched InGaAs/Inp quantum well infrared detector ( QWIP ) exhibits high photoconductive gain but un-adjustable detection
Continuous wave terahertz radiation from an InAs/GaAs quantum-dot photomixer device
NASA Astrophysics Data System (ADS)
Kruczek, T.; Leyman, R.; Carnegie, D.; Bazieva, N.; Erbert, G.; Schulz, S.; Reardon, C.; Reynolds, S.; Rafailov, E. U.
2012-08-01
Generation of continuous wave radiation at terahertz (THz) frequencies from a heterodyne source based on quantum-dot (QD) semiconductor materials is reported. The source comprises an active region characterised by multiple alternating photoconductive and QD carrier trapping layers and is pumped by two infrared optical signals with slightly offset wavelengths, allowing photoconductive device switching at the signals' difference frequency ˜1 THz.
Photoconducting positions monitor and imaging detector
Shu, Deming; Kuzay, Tuncer M.
2000-01-01
A photoconductive, high energy photon beam detector/monitor for detecting x-rays and gamma radiation, having a thin, disk-shaped diamond substrate with a first and second surface, and electrically conductive coatings, or electrodes, of a predetermined configuration or pattern, disposed on the surfaces of the substrate. A voltage source and a current amplifier is connected to the electrodes to provide a voltage bias to the electrodes and to amplify signals from the detector.
Optically controlled electrophoresis with a photoconductive substrate
NASA Astrophysics Data System (ADS)
Inami, Wataru; Nagashima, Taiki; Kawata, Yoshimasa
2018-05-01
A photoconductive substrate is used to perform electrophoresis. Light-induced micro-particle flow manipulation is demonstrated without using a fabricated flow channel. The path along which the particles were moved was formed by an illuminated light pattern on the substrate. Because the substrate conductivity and electric field distribution can be modified by light illumination, the forces acting on the particles can be controlled. This technique has potential applications as a high functionality analytical device.
Substrate for thin silicon solar cells
Ciszek, Theodore F.
1995-01-01
A photovoltaic device for converting solar energy into electrical signals comprises a substrate, a layer of photoconductive semiconductor material grown on said substrate, wherein the substrate comprises an alloy of boron and silicon, the boron being present in a range of from 0.1 to 1.3 atomic percent, the alloy having a lattice constant substantially matched to that of the photoconductive semiconductor material and a resistivity of less than 1.times.10.sup.-3 ohm-cm.
Growth and characterization of AgGa0.5In0.5Se2 single crystals by modified vertical Bridgman method
NASA Astrophysics Data System (ADS)
Vijayakumar, P.; Ramasamy, P.
2016-05-01
AgGa0.5In0.5Se2 single crystal was grown using a double wall quartz ampoule with accelerated crucible rotation technique by modified vertical Bridgman method. The structural perfection was measured using HRXRD. The grown single crystal composition was measured using ICP-OES analysis and compositional uniformities were measured using Raman spectroscopy analysis. Photoconductivity measurements confirm the positive photoconducting nature.
NASA Astrophysics Data System (ADS)
Valverde-Aguilar, G.; Manríquez Zepeda, J. L.
2015-03-01
Amorphous and crystalline ZnO thin films were obtained by the sol-gel process. A precursor solution of ZnO was synthesized by using zinc acetate dehydrate as inorganic precursor at room temperature. The films were spin-coated on silicon and glass wafers and gelled in humid air. The films were calcined at 450 °C for 15 min to produce ZnO nanocrystals with a wurtzite structure. Crystalline ZnO film exhibits an absorption band located at 359 nm (3.4 eV). Photoconductivity technique was used to determine the charge transport mechanism on both kinds of films. Experimental data were fitted with straight lines at darkness and under illumination at 355 and 633 nm wavelengths. This indicates an ohmic behavior. The photovoltaic and photoconductivity parameters were determined from the current density versus the applied electrical field results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aoki, Makoto; Hiromoto, Norihisa, E-mail: dnhirom@ipc.shizuoka.ac
2015-10-15
We describe a 4-K-cryocooled dual-band terahertz (THz) photoconductive detector system with background-limited performance. The detector system comprises two THz photoconductive detectors covering a response in a wide frequency range from 1.5 to 4 THz, low noise amplifiers, optical low-pass filters to eliminate input radiation of higher frequencies, and a mechanical 4 K Gifford-McMahon refrigerator that provides practical and convenient operation without a liquid He container. The electrical and optical performances of the THz detector system were evaluated at a detector temperature of 4 K under 300 K background radiation. We proved that the detector system can achieve background-limited noise-equivalent-power onmore » the order of 10{sup −14} W/Hz{sup 1/2} in the frequency range from 1.5 to 4 THz even if the vibration noise of the mechanical refrigerator is present.« less
Controlling Photoconductivity in PBI Films by Supramolecular Assembly.
Draper, Emily R; Archibald, Lewis J; Nolan, Michael C; Schweins, Ralf; Zwijnenburg, Martijn A; Sproules, Stephen; Adams, Dave J
2018-03-15
Perylene bisimides (PBIs) self-assemble in solution. The solubility of the PBIs is commonly changed through the choice of substituents at the imide positions. It is generally assumed this substitution does not affect the electronic properties of the PBI, and that the properties of the self-assembled aggregate are essentially that of the isolated molecule. However, substituents do affect the self-assembly, resulting in potentially different packing in the formed aggregates. Here, we show that the photoconductivity of films formed from a library of substituted PBIs varies strongly with the substituent and demonstrate that this is due to the different ways in which they pack. Our results open the possibility for tuning the optoelectronic properties of self-assembled PBIs by controlling the aggregate structure through careful choice of substituent, as demonstrated by us here optimising the photoconductivity of PBI films in this way. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Controlling Photoconductivity in PBI Films by Supramolecular Assembly
Archibald, Lewis J.; Nolan, Michael C.; Schweins, Ralf; Zwijnenburg, Martijn A.; Sproules, Stephen
2018-01-01
Abstract Perylene bisimides (PBIs) self‐assemble in solution. The solubility of the PBIs is commonly changed through the choice of substituents at the imide positions. It is generally assumed this substitution does not affect the electronic properties of the PBI, and that the properties of the self‐assembled aggregate are essentially that of the isolated molecule. However, substituents do affect the self‐assembly, resulting in potentially different packing in the formed aggregates. Here, we show that the photoconductivity of films formed from a library of substituted PBIs varies strongly with the substituent and demonstrate that this is due to the different ways in which they pack. Our results open the possibility for tuning the optoelectronic properties of self‐assembled PBIs by controlling the aggregate structure through careful choice of substituent, as demonstrated by us here optimising the photoconductivity of PBI films in this way. PMID:29405458
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Zhaodong; Yang, Mengjin; Schulz, Philip
Organic-inorganic perovskite solar cells have attracted tremendous attention because of their remarkably high power conversion efficiencies. To further improve device performance, it is imperative to obtain fundamental understandings on the photo-response and long-term stability down to the microscopic level. Here, we report the quantitative nanoscale photoconductivity imaging on two methylammonium lead triiodide thin films with different efficiencies by light-stimulated microwave impedance microscopy. The microwave signals are largely uniform across grains and grain boundaries, suggesting that microstructures do not lead to strong spatial variations of the intrinsic photo-response. In contrast, the measured photoconductivity and lifetime are strongly affected by bulk propertiesmore » such as the sample crystallinity. As visualized by the spatial evolution of local photoconductivity, the degradation process begins with the disintegration of grains rather than nucleation and propagation from visible boundaries between grains. In conclusion, our findings provide insights to improve the electro-optical properties of perovskite thin films towards large-scale commercialization.« less
Photoconductive circuit element reflectometer
Rauscher, Christen
1990-01-01
A photoconductive reflectometer for characterizing semiconductor devices at millimeter wavelength frequencies where a first photoconductive circuit element (PCE) is biased by a direct current voltage source and produces short electrical pulses when excited into conductance by short first laser light pulses. The electrical pulses are electronically conditioned to improve the frequency related amplitude characteristics of the pulses which thereafter propagate along a transmission line to a device under test. Second PCEs are connected along the transmission line to sample the signals on the transmission line when excited into conductance by short second laser light pulses, spaced apart in time a variable period from the first laser light pulses. Electronic filters connected to each of the second PCEs act as low-pass filters and remove parasitic interference from the sampled signals and output the sampled signals in the form of slowed-motion images of the signals on the transmission line.
Photoconductive circuit element reflectometer
Rauscher, C.
1987-12-07
A photoconductive reflectometer for characterizing semiconductor devices at millimeter wavelength frequencies where a first photoconductive circuit element (PCE) is biased by a direct current voltage source and produces short electrical pulses when excited into conductance by short first laser light pulses. The electrical pulses are electronically conditioned to improve the frequency related amplitude characteristics of the pulses which thereafter propagate along a transmission line to a device under test. Second PCEs are connected along the transmission line to sample the signals on the transmission line when excited into conductance by short second laser light pulses, spaced apart in time a determinable period from the first laser light pulses. Electronic filters connected to each of the second PCEs act as low-pass filters and remove parasitic interference from the sampled signals and output the sampled signals in the form of slowed-motion images of the signals on the transmission line. 4 figs.
Optimization Of Optoelectronic Characteristics Of Sintered Cadmium Sulphide Photoconductive Layers
NASA Astrophysics Data System (ADS)
Chockalingam, Mary J.; Suryanarayana, C. V.
1986-11-01
Photograde cadmium sulphide useful for sintered polycrystalline cadmium sulphide photoconductive cells as also for solar cells can be prepared by a simple chemical reaction between a soluble cadmium salt and thiourea in an aqueous alkaline solution by optimising the pH, temperature and concentration of the constituents in the bath. The precipitated cadmium-sulphide after drying at 120°C was found to result in a photograde quality of 99.999% pure cadmium sulphide as estimated by atomic absorption spectrophotometer. Details are given in this paper, of the process of preparation of CdS powder, screen printing and sintering the cadmium sulphide layers to give finally the photoconductive cell which gave on irradiation a change in the resistance of six to seven orders. The sintering technique and the mechanism of the reaction resulting in high photosensitivity of the layer obtained are discussed in detail.
Aoki, Makoto; Hiromoto, Norihisa
2015-10-01
We describe a 4-K-cryocooled dual-band terahertz (THz) photoconductive detector system with background-limited performance. The detector system comprises two THz photoconductive detectors covering a response in a wide frequency range from 1.5 to 4 THz, low noise amplifiers, optical low-pass filters to eliminate input radiation of higher frequencies, and a mechanical 4 K Gifford-McMahon refrigerator that provides practical and convenient operation without a liquid He container. The electrical and optical performances of the THz detector system were evaluated at a detector temperature of 4 K under 300 K background radiation. We proved that the detector system can achieve background-limited noise-equivalent-power on the order of 10(-14) W/Hz(1/2) in the frequency range from 1.5 to 4 THz even if the vibration noise of the mechanical refrigerator is present.
Extreme sensitivity of graphene photoconductivity to environmental gases.
Docherty, Callum J; Lin, Cheng-Te; Joyce, Hannah J; Nicholas, Robin J; Herz, Laura M; Li, Lain-Jong; Johnston, Michael B
2012-01-01
Graphene is a single layer of covalently bonded carbon atoms, which was discovered only 8 years ago and yet has already attracted intense research and commercial interest. Initial research focused on its remarkable electronic properties, such as the observation of massless Dirac fermions and the half-integer quantum Hall effect. Now graphene is finding application in touch-screen displays, as channels in high-frequency transistors and in graphene-based integrated circuits. The potential for using the unique properties of graphene in terahertz-frequency electronics is particularly exciting; however, initial experiments probing the terahertz-frequency response of graphene are only just emerging. Here we show that the photoconductivity of graphene at terahertz frequencies is dramatically altered by the adsorption of atmospheric gases, such as nitrogen and oxygen. Furthermore, we observe the signature of terahertz stimulated emission from gas-adsorbed graphene. Our findings highlight the importance of environmental conditions on the design and fabrication of high-speed, graphene-based devices.
Piatkowski, Piotr; Cohen, Boiko; Ponseca, Carlito S; Salado, Manuel; Kazim, Samrana; Ahmad, Shahzada; Sundström, Villy; Douhal, Abderrazzak
2016-01-07
We report on studies of the formamidinium lead triiodide (FAPbI3) perovskite film using time-resolved terahertz (THz) spectroscopy (TRTS) and flash photolysis to explore charge carriers generation, migration, and recombination. The TRTS results show that upon femtosecond excitation above the absorption edge, the initial high photoconductivity (∼75 cm(2) V(-1) s(-1)) remains constant at least up to 8 ns, which corresponds to a diffusion length of 25 μm. Pumping below the absorption edge results in a mobility of 40 cm(2) V(-1) s(-1) suggesting lower mobility of charge carriers located at the bottom of the conduction band or shallow sub-bandgap states. Furthermore, analysis of the THz kinetics reveals rising components of <1 and 20 ps, reflecting dissociation of excitons having different binding energies. Flash photolysis experiments indicate that trapped charge carriers persist for milliseconds.
High Performance Molybdenum Disulfide Amorphous Silicon Heterojunction Photodetector
Esmaeili-Rad, Mohammad R.; Salahuddin, Sayeef
2013-01-01
One important use of layered semiconductors such as molybdenum disulfide (MoS2) could be in making novel heterojunction devices leading to functionalities unachievable using conventional semiconductors. Here we demonstrate a metal-semiconductor-metal heterojunction photodetector, made of MoS2 and amorphous silicon (a-Si), with rise and fall times of about 0.3 ms. The transient response does not show persistent (residual) photoconductivity, unlike conventional a-Si devices where it may last 3–5 ms, thus making this heterojunction roughly 10X faster. A photoresponsivity of 210 mA/W is measured at green light, the wavelength used in commercial imaging systems, which is 2−4X larger than that of a-Si and best reported MoS2 devices. The device could find applications in large area electronics, such as biomedical imaging, where a fast response is critical. PMID:23907598
Substrate for thin silicon solar cells
Ciszek, T.F.
1995-03-28
A photovoltaic device for converting solar energy into electrical signals comprises a substrate, a layer of photoconductive semiconductor material grown on said substrate, wherein the substrate comprises an alloy of boron and silicon, the boron being present in a range of from 0.1 to 1.3 atomic percent, the alloy having a lattice constant substantially matched to that of the photoconductive semiconductor material and a resistivity of less than 1{times}10{sup {minus}3} ohm-cm. 4 figures.
Ga2O3-In2O3 thin films on sapphire substrates: Synthesis and ultraviolet photoconductivity
NASA Astrophysics Data System (ADS)
Muslimov, A. E.; Butashin, A. V.; Kolymagin, A. B.; Nabatov, B. V.; Kanevsky, V. M.
2017-11-01
The structure and electrical and optical properties of β-Ga2O3-In2O3 thin films on sapphire substrates with different orientations have been investigated. The samples have been prepared by annealing of gallium-indium metallic films on sapphire substrates in air at different gallium-to-indium ratios in the initial mixture. The photoconductivity of these structures in the solar-blind ultraviolet spectral region has been examined.
High voltage photoconductive switch package
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caporaso, George J.
2016-11-22
A photoconductive switch having a wide bandgap material substrate between opposing electrodes, and a doped dielectric filler that is in contact with both the electrodes and the substrate at the triple point. The dielectric filler material is doped with a conductive material to make it partially or completely conducting, to minimize the field enhancement near the triple point both when the substrate is not conducting in the "off" state and when the substrate is rendered conducting by radiation in the "on" state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barandiarán, Zoila, E-mail: zoila.barandiaran@uam.es; Seijo, Luis; Instituto Universitario de Ciencia de Materiales Nicolás Cabrera and Condensed Matter Physics Center
2015-10-14
Dopant-to-host electron transfer is calculated using ab initio wavefunction-based embedded cluster methods for Yb/Ca pairs in CaF{sub 2} and Yb/Sr pairs in SrF{sub 2} crystals to investigate the mechanism of photoconductivity. The results show that, in these crystals, dopant-to-host electron transfer is a two-photon process mediated by the 4f{sup N−1}5d excited states of Y b{sup 2+}: these are reached by the first photon excitation; then, they absorb the second photon, which provokes the Y b{sup 2+} + Ca{sup 2+} (Sr{sup 2+}) → Y b{sup 3+} + Ca{sup +} (Sr{sup +}) electron phototransfer. This mechanism applies to all the observed Ymore » b{sup 2+} 4f–5d absorption bands with the exception of the first one: Electron transfer cannot occur at the first band wavelengths in CaF{sub 2}:Y b{sup 2+} because the Y b{sup 3+}–Ca{sup +} states are not reached by the two-photon absorption. In contrast, Yb-to-host electron transfer is possible in SrF{sub 2}:Y b{sup 2+} at the wavelengths of the first 4f–5d absorption band, but the mechanism is different from that described above: first, the two-photon excitation process occurs within the Y b{sup 2+} active center, then, non-radiative Yb-to-Sr electron transfer can occur. All of these features allow to interpret consistently available photoconductivity experiments in these materials, including the modulation of the photoconductivity by the absorption spectrum, the differences in photoconductivity thresholds observed in both hosts, and the peculiar photosensitivity observed in the SrF{sub 2} host, associated with the lowest 4f–5d band.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozlov, D. V., E-mail: dvkoz@ipmras.ru; Rumyantsev, V. V.; Morozov, S. V.
A long-wavelength band caused by transitions between states related to the valence band is detected in the photoconductivity spectra of Hg{sub y}Te{sub 1–y}/Cd{sub x}Hg{sub 1–x}Te (CMT) structures with quantum wells. The energy states of mercury vacancies in quantum wells of CMT structures is calculated taking into account a chemical shift. It is shown that the long-wavelength band observed in the photoconductivity spectra of these structures is associated with the ionization of divalent acceptor centers which are such vacancies.
NASA Astrophysics Data System (ADS)
Rahmati, Ehsan; Ahmadi-Boroujeni, Mehdi
2018-04-01
One of the shortcomings of photoconductive (PC) antennas in terahertz (THz) generation is low effective radiated power in the desirable direction. In this paper, we propose a defective photonic crystal (DPC) substrate consisting of a customized 2D array of air holes drilled into a solid substrate in order to improve the radiation characteristics of THz PC antennas. The effect of the proposed structure on the performance of a conventional THz PC antenna has been examined from several aspects including radiation efficiency, directivity, and field distribution. By comparing the radiation performance of the THz antenna on the proposed DPC substrate to that of the conventional solid substrate, it is shown that the proposed technique can significantly improve the efficiency and directivity of the THz PC antenna over a wide frequency range. It is achieved by reducing the amount of power coupled to the substrate surface waves and limiting the radiation in undesirable directions. In addition, it is found that the sensitivity of directivity to the substrate thickness is considerably decreased and the adverse Fabry-Perot effects of the thick substrate are reduced by the application of the proposed DPC substrate.
Impact of grain boundaries on efficiency and stability of organic-inorganic trihalide perovskites
Chu, Zhaodong; Yang, Mengjin; Schulz, Philip; ...
2017-12-20
Organic-inorganic perovskite solar cells have attracted tremendous attention because of their remarkably high power conversion efficiencies. To further improve device performance, it is imperative to obtain fundamental understandings on the photo-response and long-term stability down to the microscopic level. Here, we report the quantitative nanoscale photoconductivity imaging on two methylammonium lead triiodide thin films with different efficiencies by light-stimulated microwave impedance microscopy. The microwave signals are largely uniform across grains and grain boundaries, suggesting that microstructures do not lead to strong spatial variations of the intrinsic photo-response. In contrast, the measured photoconductivity and lifetime are strongly affected by bulk propertiesmore » such as the sample crystallinity. As visualized by the spatial evolution of local photoconductivity, the degradation process begins with the disintegration of grains rather than nucleation and propagation from visible boundaries between grains. In conclusion, our findings provide insights to improve the electro-optical properties of perovskite thin films towards large-scale commercialization.« less
Surface State-Dominated Photoconduction and THz Generation in Topological Bi2Te2Se Nanowires
2017-01-01
Topological insulators constitute a fascinating class of quantum materials with nontrivial, gapless states on the surface and insulating bulk states. By revealing the optoelectronic dynamics in the whole range from femto- to microseconds, we demonstrate that the long surface lifetime of Bi2Te2Se nanowires allows us to access the surface states by a pulsed photoconduction scheme and that there is a prevailing bolometric response of the surface states. The interplay of the surface and bulk states dynamics on the different time scales gives rise to a surprising physical property of Bi2Te2Se nanowires: their pulsed photoconductance changes polarity as a function of laser power. Moreover, we show that single Bi2Te2Se nanowires can be used as THz generators for on-chip high-frequency circuits at room temperature. Our results open the avenue for single Bi2Te2Se nanowires as active modules in optoelectronic high-frequency and THz circuits. PMID:28081604
NASA Astrophysics Data System (ADS)
Seo, Hokuto; Aihara, Satoshi; Watabe, Toshihisa; Ohtake, Hiroshi; Sakai, Toshikatsu; Kubota, Misao; Egami, Norifumi; Hiramatsu, Takahiro; Matsuda, Tokiyoshi; Furuta, Mamoru; Hirao, Takashi
2011-02-01
A color image was produced by a vertically stacked image sensor with blue (B)-, green (G)-, and red (R)-sensitive organic photoconductive films, each having a thin-film transistor (TFT) array that uses a zinc oxide (ZnO) channel to read out the signal generated in each organic film. The number of the pixels of the fabricated image sensor is 128×96 for each color, and the pixel size is 100×100 µm2. The current on/off ratio of the ZnO TFT is over 106, and the B-, G-, and R-sensitive organic photoconductive films show excellent wavelength selectivity. The stacked image sensor can produce a color image at 10 frames per second with a resolution corresponding to the pixel number. This result clearly shows that color separation is achieved without using any conventional color separation optical system such as a color filter array or a prism.
A π-gel scaffold for assembling fullerene to photoconducting supramolecular rods
Nair, Vishnu Sukumaran; Mukhopadhyay, Rahul Dev; Saeki, Akinori; Seki, Shu; Ajayaghosh, Ayyappanpillai
2016-01-01
Nonequilibrium self-assembly of molecules holds a huge prospect as a tool for obtaining new-generation materials for future applications. Crystallization of neutral molecules within a supramolecular gel matrix is one example in which two nonequilibrium processes occur orthogonal to each other. On the other hand, electronically interacting donor-acceptor two-component systems are expected to form phase-miscible hybrid systems. Contrary to the expectation, we report the behavior of a π-gel, derived from oligo(p-phenylenevinylene), OPVA, as a scaffold for the phase separation and crystallization of fullerene (C60) to supramolecular rods with increased transient photoconductivity (φƩμmax = 2.4 × 10−4 cm2 V−1 s−1). The C60 supramolecular rods in the π-gel medium exhibited high photocurrent in comparison to C60 loaded in a non–π-gel medium. This finding provides an opportunity for large-scale preparation of micrometer-sized photoconducting rods of fullerenes for device application. PMID:27679815
Li, Yanbo; Cooper, Jason K.; Liu, Wenjun; ...
2016-08-18
Formation of planar heterojunction perovskite solar cells exhibiting both high efficiency and stability under continuous operation remains a challenge. Here, we show this can be achieved by using a defective TiO 2 thin film as the electron transport layer. TiO 2 layers with native defects are deposited by electron beam evaporation in an oxygen-deficient environment. Deep-level hole traps are introduced in the TiO 2 layers and contribute to a high photoconductive gain and reduced photocatalytic activity. The high photoconductivity of the TiO 2 electron transport layer leads to improved efficiency for the fabricated planar devices. A maximum power conversion efficiencymore » of 19.0% and an average PCE of 17.5% are achieved. In addition, the reduced photocatalytic activity of the TiO 2 layer leads to enhanced long-Term stability for the planar devices. Under continuous operation near the maximum power point, an efficiency of over 15.4% is demonstrated for 100 h.« less
Wide Bandgap Extrinsic Photoconductive Switches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, James S.
2013-07-03
Semi-insulating Gallium Nitride, 4H and 6H Silicon Carbide are attractive materials for compact, high voltage, extrinsic, photoconductive switches due to their wide bandgap, high dark resistance, high critical electric field strength and high electron saturation velocity. These wide bandgap semiconductors are made semi-insulating by the addition of vanadium (4H and 6HSiC) and iron (2H-GaN) impurities that form deep acceptors. These deep acceptors trap electrons donated from shallow donor impurities. The electrons can be optically excited from these deep acceptor levels into the conduction band to transition the wide bandgap semiconductor materials from a semi-insulating to a conducting state. Extrinsic photoconductivemore » switches with opposing electrodes have been constructed using vanadium compensated 6H-SiC and iron compensated 2H-GaN. These extrinsic photoconductive switches were tested at high voltage and high power to determine if they could be successfully used as the closing switch in compact medical accelerators.« less
Huang, Y H; Chen, R S; Zhang, J R; Huang, Y S
2015-12-07
The electronic transport properties of two-dimensional (2D) niobium diselenide (NbSe2) layer materials with two-hexagonal single-crystalline structures grown by chemical vapor transport were investigated. Those NbSe2 nanostructures isolated simply using mechanical exfoliation were found to exhibit lower conductivity and semiconducting properties, compared with their bulk metallic counterparts. Benefiting from lower dark conductivity, NbSe2 nanoflakes exhibit a remarkable photoresponse under different wavelengths and intensity excitations. The photocurrent responsivity and photoconductive gain can reach 3.8 A W(-1) and 300, respectively; these values are higher than those of graphene and MoS2 monolayers and are comparable with those of GaS and GaSe nanosheets. The presence of electron trap states at the surface was proposed as an explanation for the reduced dark conductivity and enhanced photoconductivity in the 2D NbSe2 nanostructures. This work identifies another possibility for the application of a metallic layer material as an optoelectronic component in addition to an ultrathin transparent conducting material.
Wide Bandgap Extrinsic Photoconductive Switches
NASA Astrophysics Data System (ADS)
Sullivan, James Stephen
Wide Bandgap Extrinsic Photoconductive Switches Semi-insulating Gallium Nitride, 4H and 6H Silicon Carbide are attractive materials for compact, high voltage, extrinsic, photoconductive switches due to their wide bandgap, high dark resistance, high critical electric field strength and high electron saturation velocity. These wide bandgap semiconductors are made semi-insulating by the addition of vanadium (4H and 6H-SiC) and iron (2H-GaN) impurities that form deep acceptors. These deep acceptors trap electrons donated from shallow donor impurities. The electrons can be optically excited from these deep acceptor levels into the conduction band to transition the wide bandgap semiconductor materials from a semi-insulating to a conducting state. Extrinsic photoconductive switches with opposing electrodes have been constructed using vanadium compensated 6H-SiC and iron compensated 2H-GaN. These extrinsic photoconductive switches were tested at high voltage and high power to determine if they could be successfully used as the closing switch in compact medical accelerators. The successful development of a vanadium compensated, 6H-SiC extrinsic photoconductive switch for use as a closing switch for compact accelerator applications was realized by improvements made to the vanadium, nitrogen and boron impurity densities. The changes made to the impurity densities were based on the physical intuition outlined and simple rate equation models. The final 6H-SiC impurity 'recipe' calls for vanadium, nitrogen and boron densities of 2.5 e17 cm-3, 1.25e17 cm-3 and ≤ 1e16 cm-3, respectively. This recipe was originally developed to maximize the quantum efficiency of the vanadium compensated 6H-SiC, while maintaining a thermally stable semi-insulating material. The rate equation models indicate that, besides increasing the quantum efficiency, the impurity recipe should be expected to also increase the carrier recombination time. Three generations of 6H-SiC materials were tested. The third generation vanadium compensated 6H-SiC has average impurity densities close to the recipe values. Extrinsic photoconductive switches constructed from the third generation vanadium compensated, 6H-SiC, 1 mm thick, 1 cm2, substrates have achieved high power operation at 16 kV with pulsed currents exceeding 1400 Amperes and a minimum on resistance of 1 ohm. The extrinsic photoconductive switch performance of the third generation 6H-SiC material was improved by a factor of up to 50 for excitation at the 532 nm wavelength compared to the initial 6H-SiC material. Switches based on this material have been incorporated into a prototype compact proton medical accelerator being developed by the Compact Particle Acceleration Corporation (CPAC). The vanadium compensated, 6H-SiC, extrinsic photoconductive switch operates differently when excited by 1064, or 532 nm, wavelength light. The 6H-SiC extrinsic photoconductive switch is a unipolar device when excited with 1064 nm light. The carriers are electrons excited from filled vanadium acceptor levels and other electron traps located within 1.17 eV of the conduction band. The switch is bipolar at 532 nm since the carriers consist of holes, as well as electrons. The holes are primarily generated by the excitation of valence band electrons into empty trap/acceptor levels and by two-photon absorption. Carrier generation by two-photon absorption becomes more important at high applied optical intensity at 532 nm and contributes to the supralinear behavior of switch conductance as a function of optical power. The 6H-SiC switch material is trap dominated at low nitrogen to vanadium ratios. The trap dominated vanadium compensated 6H-SiC exhibits low quantum efficiency when excited with 1064 and 532 nm light and has a carrier recombination time of ˜ 150 - 300 ps. The vanadium compensated 6H-SiC transitions to an impurity dominated material as the ratio of nitrogen to vanadium is increased to 0.5. The increased nitrogen doping produces a material with much higher quantum efficiency and carrier recombination time of 0.9 to 1.0 ns. The iron compensated 2H-GaN did not perform well as an extrinsic photoconductive switch. The density of carriers generated at 1064 nm was, low indicating that there were very few electrons trapped in the iron acceptor level located at 0.5 - 0.6 eV below the conduction band. Carrier generation at 532 nm was dominated by two photon absorption resulting in the switch conductance increasing as the square of applied optical intensity. A minimum switch resistance of 0.8 ohms was calculated for the 400 nm thick, 1.2 by 1.2 cm, 2H-GaN switch for an applied optical intensity of 41.25 MW/cm2. An optical intensity of ˜ 70 MW/cm2 at 532 nm would be required to achieve a 0.8 ohm on resistance for a 1 mm thick, 1 cm2, 2H-GaN switch.
Photoconductivity in organic thin films: From picoseconds to seconds after excitation
NASA Astrophysics Data System (ADS)
Day, J.; Subramanian, S.; Anthony, J. E.; Lu, Z.; Twieg, R. J.; Ostroverkhova, O.
2008-06-01
We present a detailed study, on time scales from picoseconds to seconds, of transient and continuous wave (cw) photoconductivity in solution-grown thin films of functionalized pentacene (Pc), anthradithiophene (ADT), and dicyanomethylenedihydrofuran (DCDHF). In all films, at temperatures of 285-350 K, we observe fast carrier photogeneration and nonthermally activated charge transport on picosecond time scales. At ˜30 ps after photoexcitation at room temperature and at applied electric field of 1.2×104 V/cm, values obtained for the product of mobility and photogeneration efficiency, μη, in ADT-tri-isoproplysilylethynyl-(TIPS)-F, Pc-TIPS, and DCDHF films are ˜0.018-0.025, ˜0.01-0.022, and ˜0.002-0.004 cm2/V s, respectively, depending on the film quality, and are weakly electric field dependent. In functionalized ADT and Pc films, the power-law decay dynamics of the transient photoconductivity is observed, on time scales of up to ˜1 μs after photoexcitation, in the best samples. In contrast, in DCDHF amorphous glass, most of the photogenerated carriers are trapped within ˜200 ps. Transport of photoexcited carriers on longer time scales is probed by cw illumination through an optical chopper, with a variable chopper frequency. In contrast with what is observed on picosecond time scales, charge carriers on millisecond and longer time scales are predominantly localized, and are characterized by a broad distribution of carrier lifetimes. Such carriers make the principal contributions to dc photoconductivity.
Characterization of III-V Semiconductors.
1981-04-01
Conversion Photoluminescence InP Hall Effect Mass Spectroscopy Ion Implantation Photoconductivity Donor-Acceptor 20. ABSTRACT (Continue on reverse side If...Characteristiss .. 72 10.0 FAR INFRARED STUDIES IN GaAs. ....................... 76I11.0 SPARK-SOURCE MASS SPECTROSCOPY IN GaAs...concen- tration, as measured by spark-source mass spectroscopy (SSMS), and the Hall 7 mobility. However, we found that, unfortunately, commercially
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, A. S.; Bentley, C. D.; Foster, J. M.
2008-10-15
Photoconductive detectors (PCDs) are routinely used alongside vacuum x-ray diodes (XRDs) to provide an alternative x-ray flux measurement at laser facilities such as HELEN at AWE Aldermaston, UK, and Omega at the Laboratory for Laser Energetics. To evaluate diamond PCDs as an alternative to XRD arrays, calibration measurements made at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory are used to accurately calculate the x-ray flux from a laser-heated target. This is compared to a flux measurement using the Dante XRD diagnostic. Estimates indicate that the photoinduced conductivity from measurements made at Omega are too large, and calculationsmore » using the radiometric calibrations made at the NSLS agree with this hypothesis. High-purity, single-crystal, chemical vapor deposited (CVD) diamond samples are compared to natural type-IIa PCDs and show promising high resistivity effects, the corollary of which preliminary results show is a slower response time.« less
Extreme sensitivity of graphene photoconductivity to environmental gases
Docherty, Callum J.; Lin, Cheng-Te; Joyce, Hannah J.; Nicholas, Robin J.; Herz, Laura M.; Li, Lain-Jong; Johnston, Michael B.
2012-01-01
Graphene is a single layer of covalently bonded carbon atoms, which was discovered only 8 years ago and yet has already attracted intense research and commercial interest. Initial research focused on its remarkable electronic properties, such as the observation of massless Dirac fermions and the half-integer quantum Hall effect. Now graphene is finding application in touch-screen displays, as channels in high-frequency transistors and in graphene-based integrated circuits. The potential for using the unique properties of graphene in terahertz-frequency electronics is particularly exciting; however, initial experiments probing the terahertz-frequency response of graphene are only just emerging. Here we show that the photoconductivity of graphene at terahertz frequencies is dramatically altered by the adsorption of atmospheric gases, such as nitrogen and oxygen. Furthermore, we observe the signature of terahertz stimulated emission from gas-adsorbed graphene. Our findings highlight the importance of environmental conditions on the design and fabrication of high-speed, graphene-based devices. PMID:23187628
Transient photoresponse in amorphous In-Ga-Zn-O thin films under stretched exponential analysis
NASA Astrophysics Data System (ADS)
Luo, Jiajun; Adler, Alexander U.; Mason, Thomas O.; Bruce Buchholz, D.; Chang, R. P. H.; Grayson, M.
2013-04-01
We investigated transient photoresponse and Hall effect in amorphous In-Ga-Zn-O thin films and observed a stretched exponential response which allows characterization of the activation energy spectrum with only three fit parameters. Measurements of as-grown films and 350 K annealed films were conducted at room temperature by recording conductivity, carrier density, and mobility over day-long time scales, both under illumination and in the dark. Hall measurements verify approximately constant mobility, even as the photoinduced carrier density changes by orders of magnitude. The transient photoconductivity data fit well to a stretched exponential during both illumination and dark relaxation, but with slower response in the dark. The inverse Laplace transforms of these stretched exponentials yield the density of activation energies responsible for transient photoconductivity. An empirical equation is introduced, which determines the linewidth of the activation energy band from the stretched exponential parameter β. Dry annealing at 350 K is observed to slow the transient photoresponse.
NASA Astrophysics Data System (ADS)
Gupta, Abhishek; Rana, Goutam; Bhattacharya, Arkabrata; Singh, Abhishek; Jain, Ravikumar; Bapat, Rudheer D.; Duttagupta, S. P.; Prabhu, S. S.
2018-05-01
Photoconductive antennas (PCAs) are among the most conventional devices used for emission as well as detection of terahertz (THz) radiation. However, due to their low optical-to-THz conversion efficiencies, applications of these devices in out-of-laboratory conditions are limited. In this paper, we report several factors of enhancement in THz emission efficiency from conventional PCAs by coating a nano-layer of dielectric (TiO2) on the active area between the electrodes of a semi-insulating GaAs-based device. Extensive experiments were done to show the effect of thicknesses of the TiO2 layer on the THz power enhancement with different applied optical power and bias voltages. Multiphysics simulations were performed to elucidate the underlying physics behind the enhancement of efficiency of the PCA. Additionally, this layer increases the robustness of the electrode gaps of the PCAs with high electrical insulation as well as protect it from external dust particles.
NASA Astrophysics Data System (ADS)
Azadinia, M.; Fathollahi, M. R.; Mosadegh, M.; Boroumand, F. A.; Mohajerani, E.
2017-10-01
With the purpose of examining the impact of donor polymer on the performance of nanocomposite photodetectors (PDs) and to better understand the underlying physics, different wide-bandgap semiconducting polymers, poly(N-vinylcarbazole), poly(9, 9-di-n-octylfluorenyl-2, 7-diyl) , and [9,9'-dioctyl-fluorene-2,7-diyl]-copoly[diphenyl-p-tolyl-amine-4,4'-diyl] (BFE), are mixed with ZnO nanoparticles (NPs) to fabricate hybrid UV PDs. Three different polymer matrix nanocomposites were investigated that differ in the electron-trap depth in the nanocomposite and also the carrier tunneling energy at the interface. All the fabricated PDs exhibit strong photoconductive gain characteristics which can be attributed to trapped electron accumulation and band bending at the cathode interface. Experimental results show that the manipulation of the photoactive nanocomposite improves the PD properties simultaneously, namely, the external quantum efficiency (EQE, ˜104%), the maximum detectivity (D*, ˜1013 Jones), and the linear dynamic range (LDR, ˜85 dB). In addition, the gain bandwidth product of the device improves more than 50 times. Furthermore, the effect of the photogenerated carrier profile within the active layer is investigated experimentally by changing the direction of the incident light using a transparent cathode. Interestingly, under illumination through the Al cathode, faster photocurrent response, wider spectral range toward the deep UV region, and higher EQE in relatively low voltages are observed. These considerations might provide a general strategy to fabricate low-cost photoconductive PDs with a reasonably good combination of gain, response speed, LDR, and selectivity.
NASA Astrophysics Data System (ADS)
Takada, Shunji; Ihama, Mikio; Inuiya, Masafumi
2006-02-01
Digital still cameras overtook film cameras in Japanese market in 2000 in terms of sales volume owing to their versatile functions. However, the image-capturing capabilities such as sensitivity and latitude of color films are still superior to those of digital image sensors. In this paper, we attribute the cause for the high performance of color films to their multi-layered structure, and propose the solid-state image sensors with stacked organic photoconductive layers having narrow absorption bands on CMOS read-out circuits.
Electro-chemical manifestation of nanoplasmonics in fractal media
NASA Astrophysics Data System (ADS)
Baskin, Emmanuel; Iomin, Alexander
2013-06-01
Electrodynamics of composite materials with fractal geometry is studied in the framework of fractional calculus. This consideration establishes a link between fractal geometry of the media and fractional integrodifferentiation. The photoconductivity in the vicinity of the electrode-electrolyte fractal interface is studied. The methods of fractional calculus are employed to obtain an analytical expression for the giant local enhancement of the optical electric field inside the fractal composite structure at the condition of the surface plasmon excitation. This approach makes it possible to explain experimental data on photoconductivity in the nano-electrochemistry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seyidov, MirHasan Yu., E-mail: smirhasan@gyte.edu.tr; Suleymanov, Rauf A.; Institute of Physics Azerbaijan National Academy of Sciences, AZ-1143 Baku
2014-12-07
The strong enhancement, by several orders of magnitude, of the excitonic peak within the photoconductivity spectrum of TlGaSe{sub 2} semiconductor was observed. The samples were polarized in external dc electric field, which was applied prior to the measurements. Due to the accumulation of charges near the surface, an internal electric field was formed. Electron-hole pairs that were created after the absorption of light are fallen in and then separated by the built-in electric field, which prevents radiative recombination process.
GaAs photoconductive semiconductor switch
Loubriel, Guillermo M.; Baca, Albert G.; Zutavern, Fred J.
1998-01-01
A high gain, optically triggered, photoconductive semiconductor switch (PCSS) implemented in GaAs as a reverse-biased pin structure with a passivation layer above the intrinsic GaAs substrate in the gap between the two electrodes of the device. The reverse-biased configuration in combination with the addition of the passivation layer greatly reduces surface current leakage that has been a problem for prior PCSS devices and enables employment of the much less expensive and more reliable DC charging systems instead of the pulsed charging systems that needed to be used with prior PCSS devices.
Mar, Alan [Albuquerque, NM; Zutavern, Fred J [Albuquerque, NM; Loubriel, Guillermo [Albuquerque, NM
2007-02-06
An improved photoconductive semiconductor switch comprises multiple-line optical triggering of multiple, high-current parallel filaments between the switch electrodes. The switch can also have a multi-gap, interdigitated electrode for the generation of additional parallel filaments. Multi-line triggering can increase the switch lifetime at high currents by increasing the number of current filaments and reducing the current density at the contact electrodes in a controlled manner. Furthermore, the improved switch can mitigate the degradation of switching conditions with increased number of firings of the switch.
In-plane electrical transport in n-type selectively doped GaSb/AlGaSb multiquantum wells
NASA Astrophysics Data System (ADS)
Ghezzi, C.; Cioce, B.; Magnanini, R.; Parisini, A.
2001-11-01
Results are reported regarding in-plane electrical transport in n-type selectively doped GaSb/AlGaSb multiquantum wells. In the samples, which were grown by molecular beam epitaxy, only the central regions of the Al0.40Ga0.60Sb barriers were Te doped. Low-field, low-temperature Hall measurements in the dark demonstrated the presence in the GaSb wells of a degenerate electron gas with nonzero occupancy only for the lowest miniband. A positive persistent photoconductivity effect, related to the DX character of the Te impurity, was also observed. This behavior enabled the μ electron mobility to be measured at T=10 K as a function of the nS sheet carrier density. Since the experimental data were consistent with a dominant role of the interface roughness scattering in the limiting of μ, the height, Δ, and the lateral size, Λ, of the interface roughness were determined from the analysis of the μ=μ(nS) dependence. Acceptable values of Δ were obtained, consistent with results of structural investigations in single quantum well samples of GaSb/Al0.40Ga0.60Sb [E. Kh. Mukhamedzhanov, C. Bocchi, S. Franchi, A. Baraldi, R. Magnanini, and L. Nasi, J. Appl. Phys. 87, 4234 (2000)].
RF switching network: a novel technique for IR sensing
NASA Astrophysics Data System (ADS)
Mechtel, Deborah M.; Jenkins, R. Brian; Joyce, Peter J.; Nelson, Charles L.
2016-05-01
Rapid sensing of near infrared (IR) energy on a composite structure would provide information that could mitigate damage to composite structures. This paper describes a novel technique that implements photoconductive sensors in a radio frequency (RF) switching network designed to locate in real time the position and intensity of IR radiation incident on a composite structure. In the implementation described here, photoconductive sensors act as rapid response switches in a two layer RF network embedded in an FR-4 laminate. To detect radiation, phosphorous doped silicon photoconductive sensors are inserted in GHz range RF transmission lines. Photoconductive sensors use semiconductor materials that are optically sensitive at material dependent wavelengths. Incident radiation at the appropriate wavelength produces hole-electron pairs, so that the semiconductor becomes a conductor. By permitting signal propagation only when a sensor is illuminated, the RF signals are selectively routed from the lower layer transmission lines to the upper layer lines, thereby pinpointing the location and strength of incident radiation on a structure. Simulations based on a high frequency 3D planar electromagnetics model are presented and compared to experimental results. Experimental results are described for GHz range RF signal control for 300 mW and 180 mW incident energy from 975 nm and 1060 nm wavelength lasers respectively, where upon illumination, RF transmission line signal output power doubled when compared to non-illuminated results. Experimental results are reported for 100 W incident energy from a 1060 nm laser. Test results illustrate that real-time signal processing would permit a structure or vehicle to be controlled in response to incident radiation
Detector signal correction method and system
Carangelo, Robert M.; Duran, Andrew J.; Kudman, Irwin
1995-07-11
Corrective factors are applied so as to remove anomalous features from the signal generated by a photoconductive detector, and to thereby render the output signal highly linear with respect to the energy of incident, time-varying radiation. The corrective factors may be applied through the use of either digital electronic data processing means or analog circuitry, or through a combination of those effects.
Detector signal correction method and system
Carangelo, R.M.; Duran, A.J.; Kudman, I.
1995-07-11
Corrective factors are applied so as to remove anomalous features from the signal generated by a photoconductive detector, and to thereby render the output signal highly linear with respect to the energy of incident, time-varying radiation. The corrective factors may be applied through the use of either digital electronic data processing means or analog circuitry, or through a combination of those effects. 5 figs.
Photoconductivity, pH Sensitivity, Noise, and Channel Length Effects in Si Nanowire FET Sensors
NASA Astrophysics Data System (ADS)
Gasparyan, Ferdinand; Zadorozhnyi, Ihor; Khondkaryan, Hrant; Arakelyan, Armen; Vitusevich, Svetlana
2018-03-01
Silicon nanowire (NW) field-effect transistor (FET) sensors of various lengths were fabricated. Transport properties of Si NW FET sensors were investigated involving noise spectroscopy and current-voltage (I-V) characterization. The static I-V dependencies demonstrate the high quality of fabricated silicon FETs without leakage current. Transport and noise properties of NW FET structures were investigated under different light illumination conditions, as well as in sensor configuration in an aqueous solution with different pH values. Furthermore, we studied channel length effects on the photoconductivity, noise, and pH sensitivity. The magnitude of the channel current is approximately inversely proportional to the length of the current channel, and the pH sensitivity increases with the increase of channel length approaching the Nernst limit value of 59.5 mV/pH. We demonstrate that dominant 1/f-noise can be screened by the generation-recombination plateau at certain pH of the solution or external optical excitation. The characteristic frequency of the generation-recombination noise component decreases with increasing of illumination power. Moreover, it is shown that the measured value of the slope of 1/f-noise spectral density dependence on the current channel length is 2.7 which is close to the theoretically predicted value of 3.
Dense Ge nanocrystals embedded in TiO2 with exponentially increased photoconduction by field effect.
Lepadatu, A-M; Slav, A; Palade, C; Dascalescu, I; Enculescu, M; Iftimie, S; Lazanu, S; Teodorescu, V S; Ciurea, M L; Stoica, T
2018-03-20
Si and Ge nanocrystals in oxides are of a large interest for photo-effect applications due to the fine-tuning of the optical bandgap by quantum confinement in nanocrystals. In this work, dense Ge nanocrystals suitable for enhanced photoconduction were fabricated from 60% Ge in TiO 2 amorphous layers by low temperature rapid thermal annealing at 550 °C. An exponential increase of the photocurrent with the applied voltage was observed in coplanar structure of Ge nanocrystals composite films deposited on oxidized Si wafers. The behaviour was explained by field effect control of the Fermi level at the Ge nanocrystals-TiO 2 layer/substrate interfaces. The blue-shift of the absorption gap from bulk Ge value to 1.14 eV was evidenced in both photocurrent spectra and optical reflection-transmission experiments, in good agreement with quantum confinement induced bandgap broadening in Ge nanocrystal with sizes of about 5 nm as found from HRTEM and XRD investigations. A nonmonotonic spectral dependence of the refractive index is associated to the Ge nanocrystals formation. The nanocrystal morphology is also in good agreement with the Coulomb gap hopping mechanism of T -1/2 -type explaining the temperature dependence of the dark conduction.
Patra, Astam K; Banerjee, Biplab; Bhaumik, Asim
2018-01-01
Semiconduction nanoparticles are intensively studied due to their huge potential in optoelctronic applications. Here we report an efficient chemical route for hydrothermal synthesis of aggregated mesoporous cadmium sulfide (CdS) nanoparticles using supramolecular-assembly of ionic and water soluble sodium salicylate as the capping agent. The nanostructure, mesophase, optical property and photoconductivity of these mesoporous CdS materials have been characterized by using small and wide angle powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), N2-sorption, Raman analysis, Fourier transformed infrared (FT-IR), UV-Visible DSR spectroscopy, and photoconductivity measurement. Wide angle XRD pattern and high resolution TEM image analysis suggested that the particle size of the materials is within 10 nm and the nanoparticles are in well-crystallized cubic phase. Mesoporous CdS nanoparticles showed drastically enhanced photoelectrochemical response under visible light irradiation on entrapping a photosensitizer (dye) molecule in the interparticle spaces. Efficient synthesis strategy and the enhanced photo response in the mesoporous CdS material could facilitate the designing of other porous semiconductor oxide/sulfide and their applications in photon-to-electron conversion processes.
NASA Astrophysics Data System (ADS)
Park, Sun-Young; Elbersen, Rick; Huskens, Jurriaan; Gardeniers, Han; Lee, Joo-Yul; Mul, Guido; Heo, Jinhee
2017-07-01
Solar-to-hydrogen conversion by water splitting in photoelectrochemical cells (PECs) is a promising approach to alleviate problems associated with intermittency in solar energy supply and demand. Several interfacial resistances in photoelectrodes limit the performance of such cells, while the properties of interfaces are not easy to analyze in situ. We applied photoconductive-AFM to analyze the performance of WO3/p+n Si photoanodes, containing an ultra-thin metal interface of either Au or Pt. The Au interface consisted of Au nanoparticles with well-ordered interspacing, while Pt was present in the form of a continuous film. Photoconductive-AFM data show that upon illumination significantly larger currents are measured for the WO3/p+n Si anode equipped with the Au interface, as compared to the WO3/p+n Si anode with the Pt interface, in agreement with the better performance of the former electrode in a photoelectrochemical cell. The remarkable performance of the Au-containing electrode is proposed to be the result of favorable electron-hole recombination rates induced by the Au nanoparticles in a plasmon resonance excited state.
NASA Astrophysics Data System (ADS)
Morgenstern Horing, Norman J.; Popov, Vyacheslav V.
2006-04-01
Recent experimental observations by X.G. Peralta and S.J. Allen, et al. of dc photoconductivity resonances in steady source-drain current subject to terahertz radiation in a grid-gated double-quantum well FET suggested an association with plasmon resonances. This association was definitively confirmed for some parameter ranges in our detailed electrodynamic absorbance calculations. In this paper we propose that the reason that the dc photoconductance resonances match the plasmon resonances in semiconductors is based on a nonlinear dynamic screening mechanism. In this, we employ a shielded potential approximation that is nonlinear in the terahertz field to determine the nonequilibrium Green's function and associated density perturbation that govern the nonequilibrium dielectric polarization of the medium. This ''conditioning'' of the system by the incident THz radiation results in resonant polarization response at the plasmon frequencies which, in turn, causes a sharp drop of the resistive shielded impurity scattering potentials and attendant increase of the dc source-drain current. This amounts to disabling the impurity scattering mechanism by plasmon resonant behavior in nonlinear screening.
The preparation method of terahertz monolithic integrated device
NASA Astrophysics Data System (ADS)
Zhang, Cong; Su, Bo; He, Jingsuo; Zhang, Hongfei; Wu, Yaxiong; Zhang, Shengbo; Zhang, Cunlin
2018-01-01
The terahertz monolithic integrated device is to integrate the pumping area of the terahertz generation, the detection area of the terahertz receiving and the metal waveguide of terahertz transmission on the same substrate. The terahertz generation and detection device use a photoconductive antenna structure the metal waveguide use a microstrip line structure. The evanescent terahertz-bandwidth electric field extending above the terahertz transmission line interacts with, and is modified by, overlaid dielectric samples, thus enabling the characteristic vibrational absorption resonances in the sample to be probed. In this device structure, since the semiconductor substrate of the photoconductive antenna is located between the strip conductor and the dielectric layer of the microstrip line, and the semiconductor substrate cannot grow on the dielectric layer directly. So how to prepare the semiconductor substrate of the photoconductive antenna and how to bond the semiconductor substrate to the dielectric layer of the microstrip line is a key step in the terahertz monolithic integrated device. In order to solve this critical problem, the epitaxial wafer structure of the two semiconductor substrates is given and transferred to the desired substrate by two methods, respectively.
Surface state-dominated photoconduction and THz-generation in topological Bi2Te2Se-nanowires
NASA Astrophysics Data System (ADS)
Seifert, Paul; Vaklinova, Kristina; Kern, Klaus; Burghard, Marko; Holleitner, Alexander
Topological insulators constitute a fascinating class of quantum materials with non-trivial, gapless states on the surface and trivial, insulating bulk states. In revealing the optoelectronic dynamics in the whole range from femto- to microseconds, we demonstrate that the long surface lifetime of Bi2Te2Se-nanowires allows to access the surface states by a pulsed photoconduction scheme and that there is a prevailing bolometric response of the surface states. The interplay of the surface state dynamics on the different timescales gives rise to a surprising physical property of Bi2Te2Se-nanowires: their pulsed photoconductance changes polarity as a function of laser power. Moreover, we show that single Bi2Te2Se-nanowires can be used as THz-generators for on-chip high-frequency circuits at room temperature. Our results open the avenue for single Bi2Te2Se-nanowires as active modules in optoelectronic high-frequency and THz-circuits. We acknowledge financial support by the ERC Grant NanoReal (n306754).
Negative differential photoconductance in gold nanoparticle arrays in the Coulomb blockade regime.
Mangold, Markus A; Calame, Michel; Mayor, Marcel; Holleitner, Alexander W
2012-05-22
We investigate the photoconductance of gold nanoparticle arrays in the Coulomb blockade regime. Two-dimensional, hexagonal crystals of nanoparticles are produced by self-assembly. The nanoparticles are weakly coupled to their neighbors by a tunneling conductance. At low temperatures, the single electron charging energy of the nanoparticles dominates the conductance properties of the array. The Coulomb blockade of the nanoparticles can be lifted by optical excitation with a laser beam. The optical excitation leads to a localized heating of the arrays, which in turn gives rise to a local change in conductance and a redistribution of the overall electrical potential in the arrays. We introduce a dual-beam optical excitation technique to probe the distribution of the electrical potential in the nanoparticle array. A negative differential photoconductance is the direct consequence of the redistribution of the electrical potential upon lifting of the Coulomb blockade. On the basis of our model, we calculate the optically induced current from the dark current-voltage characteristics of the nanoparticle array. The calculations closely reproduce the experimental observations.
Weppelman, I G C; Moerland, R J; Hoogenboom, J P; Kruit, P
2018-01-01
We present a new method to create ultrashort electron pulses by integrating a photoconductive switch with an electrostatic deflector. This paper discusses the feasibility of such a system by analytical and numerical calculations. We argue that ultrafast electron pulses can be achieved for micrometer scale dimensions of the blanker, which are feasible with MEMS-based fabrication technology. According to basic models, the design presented in this paper is capable of generating 100 fs electron pulses with spatial resolutions of less than 10 nm. Our concept for an ultrafast beam blanker (UFB) may provide an attractive alternative to perform ultrafast electron microscopy, as it does not require modification of the microscope nor realignment between DC and pulsed mode of operation. Moreover, only low laser pulse energies are required. Due to its small dimensions the UFB can be inserted in the beam line of a commercial microscope via standard entry ports for blankers or variable apertures. The use of a photoconductive switch ensures minimal jitter between laser and electron pulses. Copyright © 2017 Elsevier B.V. All rights reserved.
Dynamic defect correlations dominate activated electronic transport in SrTiO3
Snijders, Paul C.; Şen, Cengiz; McConnell, Michael P.; Ma, Ying-Zhong; May, Andrew F.; Herklotz, Andreas; Wong, Anthony T.; Ward, T. Zac
2016-01-01
Strontium titanate (SrTiO3, STO) is a critically important material for the study of emergent electronic phases in complex oxides, as well as for the development of applications based on their heterostructures. Despite the large body of knowledge on STO, there are still many uncertainties regarding the role of defects in the properties of STO, including their influence on ferroelectricity in bulk STO and ferromagnetism in STO-based heterostructures. We present a detailed analysis of the decay of persistent photoconductivity in STO single crystals with defect concentrations that are relatively low but significantly affect their electronic properties. The results show that photo-activated electron transport cannot be described by a superposition of the properties due to independent point defects as current models suggest but is, instead, governed by defect complexes that interact through dynamic correlations. These results emphasize the importance of defect correlations for activated electronic transport properties of semiconducting and insulating perovskite oxides. PMID:27443503
Dynamic defect correlations dominate activated electronic transport in SrTiO 3
Snijders, Paul C.; Sen, Cengiz; McConnell, Michael P.; ...
2016-07-22
Strontium titanate (SrTiO 3, STO) is a critically important material for the study of emergent electronic phases in complex oxides, as well as for the development of applications based on their heterostructures. Despite the large body of knowledge on STO, there are still many uncertainties regarding the role of defects in the properties of STO, including their influence on ferroelectricity in bulk STO and ferromagnetism in STO-based heterostructures. In this paper, we present a detailed analysis of the decay of persistent photoconductivity in STO single crystals with defect concentrations that are relatively low but significantly affect their electronic properties. Themore » results show that photo-activated electron transport cannot be described by a superposition of the properties due to independent point defects as current models suggest but is, instead, governed by defect complexes that interact through dynamic correlations. In conclusion, these results emphasize the importance of defect correlations for activated electronic transport properties of semiconducting and insulating perovskite oxides.« less
Electric field detection of phase-locked near-infrared pulses using photoconductive antenna.
Katayama, I; Akai, R; Bito, M; Matsubara, E; Ashida, M
2013-07-15
We have demonstrated that a photoconductive antenna gated with 5-fs ultrashort laser pulses can detect electric field transients of near-infrared pulses at least up to 180 THz. Measured sensitivity spectrum of the antenna shows a good agreement with a simple calculation, demonstrating the promising capability of the antenna to near infrared spectroscopy. Using this setup, near-infrared time-domain spectroscopy and characterization of phase controlled near-infrared pulses are demonstrated. Observed absorption spectrum of a polystyrene film and complex refractive index dispersion of a fused silica plate both agree well with those obtained by the conventional methods.
Photoconductivity response time in amorphous semiconductors
NASA Astrophysics Data System (ADS)
Adriaenssens, G. J.; Baranovskii, S. D.; Fuhs, W.; Jansen, J.; Öktü, Ö.
1995-04-01
The photoconductivity response time of amorphous semiconductors is examined theoretically on the basis of standard definitions for free- and trapped-carrier lifetimes, and experimentally for a series of a-Si1-xCx:H alloys with x<0.1. Particular attention is paid to its dependence on carrier generation rate and temperature. As no satisfactory agreement between models and experiments emerges, a simple theory is developed that can account for the experimental observations on the basis of the usual multiple-trappping ideas, provided a small probability of direct free-carrier recombination is included. The theory leads to a stretched-exponential photocurrent decay.
GaAs photoconductive semiconductor switch
Loubriel, G.M.; Baca, A.G.; Zutavern, F.J.
1998-09-08
A high gain, optically triggered, photoconductive semiconductor switch (PCSS) implemented in GaAs as a reverse-biased pin structure with a passivation layer above the intrinsic GaAs substrate in the gap between the two electrodes of the device is disclosed. The reverse-biased configuration in combination with the addition of the passivation layer greatly reduces surface current leakage that has been a problem for prior PCSS devices and enables employment of the much less expensive and more reliable DC charging systems instead of the pulsed charging systems that needed to be used with prior PCSS devices. 5 figs.
Epitaxial stresses in an InGaAs photoconductive layer for terahertz antennas
NASA Astrophysics Data System (ADS)
Khusyainov, D. I.; Buryakov, A. M.; Bilyk, V. R.; Mishina, E. D.; Ponomarev, D. S.; Khabibullin, R. A.; Yachmenev, A. E.
2017-11-01
The effect of epitaxial stresses on the excess-carrier dynamics and the terahertz radiation spectrum of the InyGa1-yAs films have been investigated by optical pump-probe and terahertz time-domain spectroscopy. It has been demonstrated that a InyGa1-yAs film with a higher mechanical stress has the shorter excesscarrier lifetime and broader terahertz radiation spectrum.
NASA Astrophysics Data System (ADS)
Engst, C. R.; Rommel, M.; Bscheid, C.; Eisele, I.; Kutter, C.
2017-12-01
Minority carrier lifetime (lifetime) measurements are performed on corona-charged silicon wafers by means of Microwave Detected Photoconductivity (MDP). The corona charge is deposited on the front and back sides of oxidized wafers in order to adjust accumulation conditions. Once accumulation is established, interface recombination is suppressed and bulk lifetimes are obtained. Neither contacts nor non-CMOS compatible preparation techniques are required in order to achieve accumulation conditions, which makes the method ideally suited for inline characterization. The novel approach, termed ChargedMDP (CMDP), is used to investigate neutron transmutation doped (NTD) float zone silicon with resistivities ranging from 6.0 to 8.2 kΩ cm. The bulk properties of 150 mm NTD wafers are analyzed in detail by performing measurements of the carrier lifetime and the steady-state photoconductivity at various injection levels. The results are compared with MDP measurements of uncharged wafers as well as to the established charged microwave detected Photoconductance Decay (charge-PCD) method. Besides analyzing whole wafers, CMDP measurements are performed on oxide test-structures on a patterned wafer. Finally, the oxide properties are characterized by means of charge-PCD as well as capacitance-voltage measurements. With CMDP, average bulk lifetimes up to 33.1 ms are measured, whereby significant variations are observed among wafers, which are produced out of the same ingot but oxidized in different furnaces. The observed lifetime variations are assumed to be caused by contaminations, which are introduced during the oxidation process. The results obtained by CMDP were neither accessible by means of conventional MDP measurements of uncharged wafers nor with the established charge-PCD method.
Hsieh, Yun-Lin; Lai, Yu-Lin; Chen, Hui-Lin; Hung, Cheng-Yuan; Chen, Xiu-Ling; Lee, Shyh-Yuan
2008-09-01
In this study, the authors attempted to develop a photoconductive method for measuring light transmission through a crown restoration to the root dentin; metal-ceramic crowns with four coping designs (metal collar, and metal framework ending 0, 1, and 2mm coronal to the axiogingival line angle) and two all-ceramic crowns (Empress II and In-Ceram Alumina) were compared. According to pre-registered templates, 36 crowns were fabricated for an extracted central incisor. A cadmium sulfide (CdS) photoconductive cell was secured onto the root of a tooth, which was fixed in a light box. The validity and reliability of the experimental design were verified, and the impedance of the cell was recorded when the crowns were placed on the prepared tooth with or without try-in pastes under a constant luminance. A significant correlation (r= -0.99, p<0.001) was found between the light intensity and impedance of the CdS cell, and a 1.15% coefficient of variation between repeated measurements was observed. In this study, Empress II crowns had the smallest impedance, indicating that they provided the best light transmission. Conventional metal-ceramic crowns had the least light transmission, which was significantly improved by reducing the metal collar (p<0.05). The framework of metal-ceramic crowns which ended 2mm coronal to the axiogingival line angle showed as much light transmission as the In-Ceram crowns. The impedance increased when try-in pastes were employed in all test groups. The photoconductive method was proven to be a reliable technique for measuring the light transmitted through restorations into the adjacent tissue.
NASA Technical Reports Server (NTRS)
Sugimoto, A.; Kato, S.; Inoue, H.; Imoto, E.
1985-01-01
The photocurrents of the substituted anthracenes, 1,5-diacetylanthracene (2), 1-acetylanthracene (3), 9-acetylanthracene (4), 1,5-dichloroanthracene (5), 1,5-diethylanthracene (6), 1,5-dimethoxyanthracene (7), 9-cyanoanthracene (8), and anthracene (1) were measured by using their surface type cells in nitrogen. The compounds of (1), (5), (6), (7), and (8) showed the photocurrent spectra which corresponded to the absorption spectra of their evaporated films. In the cases of (2) and (3), however, the anomalous photocurrent appeared in the threshold region of their absorption spectra. The appearance of the anomalous photocurrent was characteristic of anthracenes having the acetyl group at 1- and/or 5-position. The magnitude of the photocurrents of the 1,5-disubstituted anthracenes was similar to that of (1). The photocurrents of the monosubstituted anthracenes were smaller than that of (1). Among the monosubstituted anthracenes, the compound (4) showed no photocurrent under the same conditions. Contrary to the results obtained in the cases of phenazines, the photoconductivities of the anthracene derivatives became better in air.
Al-Naamani, Eman; Gopal, Anesh; Ide, Marina; Osaka, Itaru; Saeki, Akinori
2017-11-01
The shapes and lengths of the alkyl chains of conjugated polymers greatly affect the efficiencies of organic photovoltaic devices. This often results in a trade-off between solubility and self-organizing behavior; however, each material has specific optimal chains. Here we report on the effect of alkyl side chains on the film morphologies, crystallinities, and optoelectronic properties of new benzobisthiazole-naphthobisthiadiazole (PBBT-NTz) polymers. The power conversion efficiencies (PCEs) of linear-branched and all-branched polymers range from 2.5% to 6.6%; the variations in these PCEs are investigated by atomic force microscopy, two-dimensional X-ray diffraction (2D-GIXRD), and transient photoconductivity techniques. The best-performing linear-branched polymer, bearing dodecyl and decyltetradecyl chains (C12-DT), exhibits nanometer-scale fibers along with the highest crystallinity, comprising predominant edge-on and partial face-on orientations. This morphology leads to the highest photoconductivity and the longest carrier lifetime. These results highlight the importance of long alkyl chains for inducing intermolecular stacking, which is in contrast to observations made for analogous previously reported polymers.
2010-07-26
NO. 0704-0188 56050- EL .12 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO 8. PERFORMING ORGANIZATION REPORT NUMBER...policy or decision, unless so designated by other documentation. Approved for public release; distribution is unlimited. ... 56050.12- EL The effect of...separate electrons from oxidizing species. Additionally, NT or NW geometry also provides enhanced light scattering3 which may improve ab - sorption of
Intensity-Dependence Absorption and Photorefractive Effects in Barium Titanate
1988-09-01
S) barium titanate (U) George A. Brost , Ra and A. Motes, James R. Rotge’ 13& TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.. Mo.. Day) 15...the copyright owner. Inthnsity-dependent absorption and photorefractive effects in barium titanate0 ELECTE 0 G. A. Brost , R. A. Motes, and 1. R. Rotge...Opt. Soc. Am. B/Vol. 5, No. 9/September 1988 Brost et al. CONDUCTION BAND the relative contributions of photoconductivities and dark conductivities
The photosensitivity of carbon quantum dots/CuAlO2 films composites.
Pan, Jiaqi; Sheng, Yingzhuo; Zhang, Jingxiang; Wei, Jumeng; Huang, Peng; Zhang, Xin; Feng, Boxue
2015-07-31
Carbon quantum dots/CuAlO2 films were prepared by a simple route through which CuAlO2 films prepared by sol-gel on crystal quartz substrates were composited with carbon quantum dots on their surface. The characterization results indicated that CuAlO2 films were well combined with carbon quantum dots. The photoconductivity of carbon quantum dots/CuAlO2 films was investigated under illumination and darkness switching, and was demonstrated to be significantly enhanced compared with CuAlO2 films. Through analysis, this enhancement of photoconductivity was attributed to the carbon quantum dots with unique up-converted photoluminescence behavior.
The photosensitivity of carbon quantum dots/CuAlO2 films composites
NASA Astrophysics Data System (ADS)
Pan, Jiaqi; Sheng, Yingzhuo; Zhang, Jingxiang; Wei, Jumeng; Huang, Peng; Zhang, Xin; Feng, Boxue
2015-07-01
Carbon quantum dots/CuAlO2 films were prepared by a simple route through which CuAlO2 films prepared by sol-gel on crystal quartz substrates were composited with carbon quantum dots on their surface. The characterization results indicated that CuAlO2 films were well combined with carbon quantum dots. The photoconductivity of carbon quantum dots/CuAlO2 films was investigated under illumination and darkness switching, and was demonstrated to be significantly enhanced compared with CuAlO2 films. Through analysis, this enhancement of photoconductivity was attributed to the carbon quantum dots with unique up-converted photoluminescence behavior.
Sensitivity of PbSnTe:In films to the radiation of free electron laser
NASA Astrophysics Data System (ADS)
Akimov, A. N.; Epov, V. S.; Klimov, A. E.; Kubarev, V. V.; Paschin, N. S.
2018-01-01
The analysis of experimental data on the observation of photoresponse in narrow gap semiconductor Pb1-x Sn x Te:In films grown by the method of molecular beam epitaxy, exposing samples to the powerful radiation of the Novosibirsk free electron laser (wavelength range of about 70-240 μm) under different measurement conditions, is presented in the paper. Both the positive and negative photoconductivities were detected. In a magnetic field, the resonance-type photoconductivity was observed. The results are discussed within the framework of the model taking into account the existence of different capture levels in PbSnTe.
Photoconductive ZnO Films Printed on Flexible Substrates by Inkjet and Aerosol Jet Techniques
NASA Astrophysics Data System (ADS)
Winarski, D. J.; Kreit, E.; Heckman, E. M.; Flesburg, E.; Haseman, M.; Aga, R. S.; Selim, F. A.
2018-02-01
Zinc oxide (ZnO) thin films have remarkable versatility in sensor applications. Here, we report simple ink synthesis and printing methods to deposit ZnO photodetectors on a variety of flexible and transparent substrates, including polyimide (Kapton), polyethylene terephthalate, cyclic olefin copolymer (TOPAS), and quartz. X-ray diffraction analysis revealed the dependence of the film orientation on the substrate type and sintering method, and ultraviolet-visible (UV-Vis) absorption measurements revealed a band edge near 380 nm. van der Pauw technique was used to measure the resistivity of undoped ZnO and indium/gallium-codoped ZnO (IGZO) films. IGZO films showed lower resistivity and larger average grain size compared with undoped ZnO films due to addition of In3+ and Ga3+, which act as donors. A 365-nm light-emitting diode was used to photoirradiate the films to study their photoconductive response as a function of light intensity at 300 K. The results revealed that ZnO films printed by aerosol jet and inkjet techniques exhibited five orders of magnitude photoconductivity, indicating that such films are viable options for use in flexible photodetectors.
NASA Astrophysics Data System (ADS)
Jiang, Chuanpeng; Zhang, Pengpeng
2018-02-01
Using photoconductive atomic force microscopy and Kelvin probe force microscopy, we characterize the local electrical properties of grains and grain boundaries of organic-inorganic hybrid perovskite (CH3NH3PbI3) thin films on top of a poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS)/ITO substrate. Three discrete photoconductivity levels are identified among perovskite grains, likely corresponding to the crystal orientation of each grain. Local J-V curves recorded on these grains further suggest an anti-correlation behavior between the short circuit current (JSC) and open circuit voltage (VOC). This phenomenon can be attributed to diffusion-limited surface recombination at the non-selective perovskite-tip contact, where a higher carrier mobility established in the perovskite grain results in an enhanced surface recombination and thus a lower VOC. In addition, the photoresponse of perovskite films displays a pronounced heterogeneity across the grain boundaries, with the boundaries formed between grains of the same photoconductivity level displaying even enhanced photocurrent and open circuit voltage compared to those of the adjacent grain interiors. These observations highlight the significance of controlling the microstructure of perovskite thin films, which will be a necessary route for further improving the efficiency of perovskite solar cells.
Radio frequency switching network: a technique for infrared sensing
NASA Astrophysics Data System (ADS)
Mechtel, Deborah M.; Jenkins, R. Brian; Joyce, Peter J.; Nelson, Charles L.
2016-10-01
This paper describes a unique technique that implements photoconductive sensors in a radio frequency (RF) switching network designed to locate in real-time the position and intensity of IR radiation incident on a composite structure. In the implementation described here, photoconductive sensors act as rapid response switches in a two-layer RF network embedded in an FR-4 laminate. To detect radiation, phosphorous-doped silicon photoconductive sensors are inserted in GHz range RF transmission lines. By permitting signal propagation only when a sensor is illuminated, the RF signals are selectively routed from lower layer transmission lines to upper layer lines, thereby pinpointing the location and strength of incident radiation. Simulations based on a high frequency three-dimensional planar electromagnetics model are presented and compared to the experimental results. The experimental results are described for GHz range RF signal control for 300- and 180-mW incident energy from 975- to 1060-nm wavelength lasers, respectively, where upon illumination, RF transmission line signal output power doubled when compared to nonilluminated results. The experimental results are also reported for 100-W incident energy from a 1060-nm laser. Test results illustrate real-time signal processing would permit a structure to be controlled in response to incident radiation.
NASA Astrophysics Data System (ADS)
Chu, Zhaodong; Yang, Mengjin; Schulz, Philip; Wu, Di; Zhu, Kai; Li, Xiaoqin; Lai, Keji
The remarkable performance of organic-inorganic perovskite solar cells (PSCs) is challenging the dogma that solution-processed thin films are inevitably associated with inferior energy conversion efficiencies. The surprisingly low impact of polycrystallinity on the film quality highlights the unusual photo-response of intrinsic defects and grain boundaries in these materials. Here, we report the first quantitative nanoscale photoconductivity imaging on methylammonium lead triiodide (MAPbI3) thin films by microwave impedance microscopy with light stimulation. The local photoconductivity as a function of the above-gap laser power is consistent with the high carrier mobility and long lifetime of MAPbI3. The photo-response is largely uniform across grains and grain boundaries, which is direct evidence on the inherently benign nature of microstructures in the perovskite thin films. For encapsulated MAPbI3 films, the observed long-term degradation in photoconductivity begins with the disintegration of large grains due to the diffusion of water molecules through the capping layer. Our work suggests that the striking PSC performance is deeply rooted in the nanoscale optoelectronic properties of MAPbI3. We gratefully acknowledge financial support from NSF EFMA-1542747.
Spectral photosensitivity of an organic semiconductor in a submicron metal grating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blinov, L. M., E-mail: lev39blinov@gmail.com; Lazarev, V. V.; Yudin, S. G.
The photoelectric effect in films of the copper phthalocyanine organic semiconductor (α-CuPc) has been experimentally studied for two fundamentally different geometries. A sample in the first, normal geometry is fabricated in the form of a sandwich with an α-CuPc film between a transparent SnO{sub 2} electrode on a substrate and an upper reflecting Al electrode. In the second case of the planar geometry, the semiconductor is deposited on the substrate with a system of submicron chromium interdigital electrodes. It has been found that the effective photoconductivity in the planar geometry is more than two orders of magnitude higher than thatmore » in the normal geometry. In addition to the classical model (without excitons), a simple exciton model has been proposed within which a relation has been obtained between the probability of the formation of electron–hole pairs and the characteristic recombination and dissociation times of excitons. An increase in the photoconductivity in the planar geometry has been explained within the exciton model by an increase in the rate of dissociation of excitons into electron–hole pairs owing to acceptor oxygen molecules, which diffuse more efficiently into the film in the case of the planar geometry where the upper electrode is absent.« less
Optoelectrofluidic enhanced immunoreaction based on optically-induced dynamic AC electroosmosis.
Han, Dongsik; Park, Je-Kyun
2016-04-07
We report a novel optoelectrofluidic immunoreaction system based on electroosmotic flow for enhancing antibody-analyte binding efficiency on a surface-based sensing system. Two conventional indium tin oxide glass slides are assembled to provide a reaction chamber for a tiny volume of sample droplet (∼5 μL), in which the top layer is employed as an antibody-immobilized substrate and the bottom layer acts as a photoconductive layer of an optoelectrofluidic device. Under the application of an AC voltage, an illuminated light pattern on the photoconductive layer causes strong counter-rotating vortices to transport analytes from the bulk solution to the vicinity of the assay spot on the glass substrate. This configuration overcomes the slow immunoreaction problem of a diffusion-based sensing system, resulting in the enhancement of binding efficiency via an optoelectrofluidic method. Furthermore, we investigate the effect of optically-induced dynamic AC electroosmotic flow on optoelectrofluidic enhancement for surface-based immunoreaction with a mathematical simulation study and real experiments using immunoglobulin G (IgG) and anti-IgG. As a result, dynamic light patterns provided better immunoreaction efficiency than static light patterns due to effective mass transport of the target analyte, resulting in an achievement of 2.18-fold enhancement under a growing circular light pattern compared to the passive mode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rumyantsev, V. V., E-mail: rumyantsev@ipm.sci-nnov.ru; Fadeev, M. A.; Morozov, S. V.
2016-12-15
The interband photoconductivity and photoluminescence in narrow-gap HgCdTe-based waveguide structures with quantum wells (QWs) (designed for long-wavelength stimulated emission under optical pumping) are investigated. The photoconductivity relaxation times in n-type structures reach several microseconds, due to which stimulated emission at a wavelength of 10.2 μm occurs at a low threshold pump intensity (~100 W/cm{sup 2}) at 20 K. In the p-type structures obtained by annealing (to increase the mercury vacancy concentration), even spontaneous emission from the QWs is not detected because of a dramatic decrease in the carrier lifetime with respect to Shockley–Read–Hall nonradiative recombination.
Highly efficient quantum dot-based photoconductive THz materials and devices
NASA Astrophysics Data System (ADS)
Rafailov, E. U.; Leyman, R.; Carnegie, D.; Bazieva, N.
2013-09-01
We demonstrate Terahertz (THz) signal sources based on photoconductive (PC) antenna devices comprising active layers of InAs semiconductor quantum dots (QDs) on GaAs. Antenna structures comprised of multiple active layers of InAs:GaAs PC materials are optically pumped using ultrashort pulses generated by a Ti:Sapphire laser and CW dualwavelength laser diodes. We also characterised THz output signals using a two-antenna coherent detection system. We discuss preliminary performance data from such InAs:GaAs THz devices which exhibit efficient emission of both pulsed and continuous wave (CW) THz signals and significant optical-to-THz conversion at both absorption wavelength ranges, <=850 nm and <=1300 nm.
Uncovering the density of nanowire surface trap states hidden in the transient photoconductance.
Xu, Qiang; Dan, Yaping
2016-09-21
The gain of nanoscale photoconductors is closely correlated with surface trap states. Mapping out the density of surface trap states in the semiconductor bandgap is crucial for engineering the performance of nanoscale photoconductors. Traditional capacitive techniques for the measurement of surface trap states are not readily applicable to nanoscale devices. Here, we demonstrate a simple technique to extract the information on the density of surface trap states hidden in the transient photoconductance that is widely observed. With this method, we found that the density of surface trap states of a single silicon nanowire is ∼10(12) cm(-2) eV(-1) around the middle of the upper half bandgap.
NASA Astrophysics Data System (ADS)
Globisch, B.; Dietz, R. J. B.; Nellen, S.; Göbel, T.; Schell, M.
2016-12-01
The influence of post-growth annealing on the electrical properties, the transient carrier dynamics and the performance as THz photoconductive receiver of Beryllium (Be) doped InGaAs/InAlAs multilayer heterostructures grown at 130 °C in a molecular beam epitaxy (MBE) system was investigated. We studied samples with nominally Be doping concentrations of 8 ×10 17 cm-3 - 1.2 ×1019 cm3 annealed for 15 min. - 120 min. at temperatures between 500 °C - 600 °C. In contrast to previous publications, the results show consistently that annealing increases the electron lifetime of the material. In analogy to the annealing properties of low-temperature grown (LTG) GaAs we explain our findings by the precipitation of arsenic antisite defects. The knowledge of the influence of annealing on the material properties allowed for the fabrication of broadband THz photoconductive receivers with an electron lifetime below 300 fs and varying electrical properties. We found that the noise of the detected THz pulse trace in time-domain spectroscopy (TDS) was directly determined by the resistance of the photoconductive receiver and the peak-to-peak amplitude of the THz pulse correlated with the electron mobility.
NASA Astrophysics Data System (ADS)
Malov, V. V.; Tameev, A. R.; Novikov, S. V.; Khenkin, M. V.; Kazanskii, A. G.; Vannikov, A. V.
2015-08-01
Optical and photoelectric properties of modern photosensitive polymers are of great interest due to their prospects for photovoltaic applications. In particular, an investigation of absorption and photoconductivity edge of these materials could provide valuable information. For these purpose we applied the constant photocurrent method which has proved its efficiency for inorganic materials. PCDTBT and PTB7 polymers were used as objects for the study as well as their blends with a fullerene derivative PC71BM. The measurements by constant photocurrent method (CPM) show that formation of bulk heterojunction (BHJ) in the blends increases photoconductivity and results in a redshift of the photocurrent edge in the doped polymers compared with that in the neat polymers. Obtained from CPM data, spectral dependences of absorption coefficient were approximated using Gaussian distribution of density-of-states within HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) bands. The approximation procedure allowed us to evaluate rather optical than electrical bandgaps for the studied materials. Moreover, spectra of polymer:PC71BM blends were fitted well by the sum of two Gaussian peaks which reveal both the transitions within the polymer and the transitions involving charge transfer states at the donor-acceptor interface in the BHJ.
CVD-diamond-based position sensitive photoconductive detector for high-flux x-rays and gamma rays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu, D.
1999-04-19
A position-sensitive photoconductive detector (PSPCD) using insulating-type CVD diamond as its substrate material has been developed at the Advanced Photon Source (APS). Several different configurations, including a quadrant pattern for a x-ray-transmitting beam position monitor (TBPM) and 1-D and 2-D arrays for PSPCD beam profilers, have been developed. Tests on different PSPCD devices with high-heat-flux undulator white x-ray beam, as well as with gamma-ray beams from {sup 60}Co sources have been done at the APS and National Institute of Standards and Technology (NIST). It was proven that the insulating-type CVD diamond can be used to make a hard x-ray andmore » gamma-ray position-sensitive detector that acts as a solid-state ion chamber. These detectors are based on the photoconductivity principle. A total of eleven of these TBPMs have been installed on the APS front ends for commissioning use. The linear array PSPCD beam profiler has been routinely used for direct measurements of the undulator white beam profile. More tests with hard x-rays and gamma rays are planned for the CVD-diamond 2-D imaging PSPCD. Potential applications include a high-dose-rate beam profiler for fourth-generation synchrotrons radiation facilities, such as free-electron lasers.« less
Deep centers in AlGaN-based light emitting diode structures
NASA Astrophysics Data System (ADS)
Polyakov, A. Y.; Smirnov, N. B.; Govorkov, A. V.; Mil'vidskii, M. G.; Usikov, A. S.; Pushnyi, B. V.; Lundin, W. V.
1999-10-01
Deep traps were studied in GaN homojunction and AlGaN/GaN heterojunction light emitting diode (LED) p-i-n structures by means of deep levels transient spectroscopy (DLTS), admittance and electroluminescence (EL) spectra measurements. It is shown that, in homojunction LED structures, the EL spectra comes from recombination involving Mg acceptors in-diffusing into the active i-layer. This Mg in-diffusion is strongly suppressed in heterostructures with the upper p-type layer containing about 5% of Al. As a result the main peak in the EL spectra of heterostructures is shifted toward higher energy compared to homojunctions. Joint doping of the i-layer with Zn and Si allows to shift the main EL peak to longer wavelength. The dominant electron traps observed in the studied LED structures had ionization energies of 0.55 and 0.85 eV. The dominant hole traps had apparent ionization energies of 0.85 and 0.4 eV. The latter traps were shown to be metastable and it is argued that they could be at least in part responsible for the persistent photoconductivity observed in p-GaN.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boieriu, P.; Grein, C.H.; Velicu, S.
2006-02-06
We present the results of using an electron cyclotron resonance (ECR) plasma to incorporate hydrogen into long wavelength infrared HgCdTe layers grown by molecular beam epitaxy. Both as-grown and annealed layers doped in situ with indium were hydrogenated. Secondary ion mass spectroscopy confirmed the incorporation of hydrogen. Hall and photoconductive lifetime measurements were used to assess the effects of the hydrogenation. Increases in the electron mobilities and minority carrier lifetimes were observed for almost all ECR conditions.
André, A; Theurer, C; Lauth, J; Maiti, S; Hodas, M; Samadi Khoshkhoo, M; Kinge, S; Meixner, A J; Schreiber, F; Siebbeles, L D A; Braun, K; Scheele, M
2017-01-31
We simultaneously surface-functionalize PbS nanocrystals with Cu 4,4',4'',4'''-tetraaminophthalocyanine and assemble this hybrid material into macroscopic monolayers. Electron microscopy and X-ray scattering reveal a granular mesocrystalline structure with strong coherence between the atomic lattice and the superlattice of nanocrystals within each domain. Terahertz spectroscopy and field-effect transistor measurements indicate efficient coupling of holes throughout the hybrid thin film, in conjunction with a pronounced photoresponse. We demonstrate the potential of this material for optoelectronic applications by fabricating a light-effect transistor.
NASA Astrophysics Data System (ADS)
Kuznetsov, K. A.; Galiev, G. B.; Kitaeva, G. Kh; Kornienko, V. V.; Klimov, E. A.; Klochkov, A. N.; Leontyev, A. A.; Pushkarev, S. S.; Maltsev, P. P.
2018-07-01
The terahertz (THz) wave generation by the spiral photoconductive antennas fabricated on the low-temperature and high-temperature grown undoped and Si-doped In0.5Ga0.5As films is studied by the terahertz time-domain spectroscopy method. The In0.5Ga0.5As layers were grown by molecular beam epitaxy on GaAs substrates with (1 0 0) and (1 1 1)A crystallographic orientations utilizing step-graded In x Ga1‑x As metamorphic buffer. The antennas are excited by radiation of Er3+-fiber laser at 1.56 μm wavelength in two regimes: with pulse durations of 2.5 ps or 100 fs. It is found that the THz wave generation is 3–4 times more effective in the case of InGaAs-based antennas on (1 1 1)A GaAs substrates as compared to the (1 0 0) substrates. Power-voltage characteristic of the LT-InGaAs antenna up to and beyond threshold breakdown voltage are reported.
Breakover mechanism of GaAs photoconductive switch triggering spark gap for high power applications
NASA Astrophysics Data System (ADS)
Tian, Liqiang; Shi, Wei; Feng, Qingqing
2011-11-01
A spark gap (SG) triggered by a semi-insulating GaAs photoconductive semiconductor switch (PCSS) is presented. Currents as high as 5.6 kA have been generated using the combined switch, which is excited by a laser pulse with energy of 1.8 mJ and under a bias of 4 kV. Based on the transferred-electron effect and gas streamer theory, the breakover characteristics of the combined switch are analyzed. The photoexcited carrier density in the PCSS is calculated. The calculation and analysis indicate that the PCSS breakover is caused by nucleation of the photoactivated avalanching charge domain. It is shown that the high output current is generated by the discharge of a high-energy gas streamer induced by the strong local electric field distortion or by overvoltage of the SG resulting from quenching of the avalanching domain, and periodic oscillation of the current is caused by interaction between the gas streamer and the charge domain. The cycle of the current oscillation is determined by the rise time of the triggering electric pulse generated by the PCSS, the pulse transmission time between the PCSS and the SG, and the streamer transit time in the SG.
HgCdTe Photoconductive Mixers for 2-8 THz
NASA Technical Reports Server (NTRS)
Betz, A. L.; Boreiko, R. T.; Sivananthan, S.; Ashokan, R.
2001-01-01
Heterodyne spectroscopy has been taken to wavelengths as short as 63 micrometers with Schottky-diode mixers. Schottkys, however, are relatively insensitive compared to superconducting mixers such as the hot-electron microbolometer (HEB), which has an effective quantum efficiency of 3% at 120 micrometers (2.5 THz). Although HEB sensitivities are bound to improve, there will always be losses associated with antenna coupling of radiation into sub-micron size devices. Another approach to far infrared (FIR) mixer design is to use a photoconductive device which can be made much larger than a wavelength, and thus act as its own antenna. For example, HgCdTe photodiodes have been used as mixers in the lambda = 10 micrometers band for over 25 years, with sensitivities now only a factor of 2 from the quantum-noise-limit. HgCdTe can also be applied at FIR wavelengths, but surprisingly little work has been done to date. The exception is the pioneering work of Spears and Kostiuk and Spears, who developed HgCdTe photomixers for the 20-120 micrometer region. The spectral versatility of the HgCdTe alloy is well recognized for wavelengths as long as 8-20 micrometers. What is not so recognized, however, is that theoretically there is no long wavelength limit for appropriately composited HgCdTe. Although Spears successfully demonstrated a photoconductive response from HgCdTe at 120 micrometers, this initial effort was apparently never followed up, in part because of the difficulty of controlling the HgCdTe alloy composition with liquid-phase-epitaxy (LPE) techniques. With the availability of precise molecular-beam-epitaxy (MBE) since the early 1990's, it is now appropriate to reconsider HgCdTe for detector applications longward of lambda = 20 micrometers. We recently initiated an effort to fabricate detectors and mixers using II-VI materials for FIR wavelengths. Of particular interest are device structures called superlattices, which offer a number of advantages for high sensitivity direct detectors and very long wavelength heterodyne mixers.
High frequency GaAlAs modulator and photodetector for phased array antenna applications
NASA Technical Reports Server (NTRS)
Claspy, P. C.; Chorey, C. M.; Hill, S. M.; Bhasin, K. B.
1988-01-01
A waveguide Mach-Zehnder electro-optic modulator and an interdigitated photoconductive detector designed to operate at 820 nm, fabricated on different GaAlAs/GaAs heterostructure materials, are being investigated for use in optical interconnects in phased array antenna systems. Measured optical attenuation effects in the modulator are discussed and the observed modulation performance up to 1 GHz is presented. Measurements of detector frequency response are described and results presented.
Fundamental Investigations into the Infrared Properties of Carbon Nanotubes
2013-01-23
Judy Wu. Development of Nanopatterned Fluorine-Doped Tin Oxide Electrodes for Dye-Sensitized Solar Cells with Improved Light Trapping, ACS Applied...heterojunction solar cell photocurrent enhancement, Nanoscale, (06 2012): 0. doi: 10.1039/c2nr30735a 08/30/2011 1.00 Rongtao Lu, Rayyan Kamal, Judy Z Wu...Jun Li, Judy Wu. The effect of annealing on the photoconductivity of carbon nanofiber/TiO2core-shell nanowires for use in dye-sensitized solar cells
Dynamics of photogenerated nonequilibrium electronic states in Ar+-ion-irradiated SrTiO3
NASA Astrophysics Data System (ADS)
Kumar, Dushyant; Hossain, Z.; Budhani, R. C.
2015-05-01
A metallic surface is realized on stoichiometric and insulating (100) SrTiO3 by Ar+-ion irradiation. The sheet carrier density and Hall mobility of the layer are ˜4.0 ×1014cm-2 and ˜2 ×103cm2/Vs , respectively, at 15 K for the irradiation dose of ˜4.2 ×1018ions/cm2 . These samples display ultraviolet light sensitive photoconductivity (PC) which is enhanced abruptly below the temperature (≈100 K) where SrTiO3 crystal undergoes an antiferrodistortive cubic-to-tetragonal (Oh1→D4h 18 ) structural phase transition. This behavior of PC maps well with the temperature dependence of dielectric function and electric field induced conductivity. The longevity of the PC state also shows a distinct change below ≈100 K. At T >100 K its decay is thermally activated with an energy barrier of ≈36 meV, whereas at T <100 K it becomes independent of temperature. We have examined the effect of electrostatic gating on the lifetime of the PC state. One nontrivial result is the ambient temperature quenching of the photoconducting state by the negative gate field. This observation opens avenues for designing a solid state photoelectric switch. The origin and lifetime of the PC state are understood in the light of field effect induced band bending, defect dynamics, and thermal relaxation processes.
Influence of silver doping on surface defect characteristics of TiO{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tripathi, S. K., E-mail: surya@pu.ac.in; Rani, Mamta; Department of Physics, DAV University Jalandhar, - 144 001, Punjab
2015-08-28
In the present work, we proposed a novel silver doped TiO{sub 2} polyethylene conjugated films to improve the performance of DSSCs. Oxides nanoparticles dispersed in a semiconducting polymer form the active layer of a solar cell. Localized surface plasmon resonance effects associated with spatially dispersed silver (Ag) nanoparticles can be exploited to enhance the light-harvesting efficiency, the photocurrent density and the overall light-to electrical-energy-conversion efficiency of high-area DSSCs based TiO{sub 2} photoanodes. Silver doped titanium dioxide (TiO{sub 2}:Ag) is prepared by sol-gel technique and deposited on fluorine doped indium oxide (FTO) coated glass substrates by using doctor blade technique atmore » 550°C from aqueous solutions of titanium butoxide and silver nitrate precursors. The effect of Ag doping on electrical properties of films is studied. The Ag-TiO{sub 2} films are about 548 times more photosensitive as compare to the pure TiO{sub 2} sample. The presence of metallic Ag nanoparticles and oxygen vacancy on the surface of TiO{sub 2} nanoparticles promotes the separation of photogenerated electron-hole pairs and thus enhances the photosensitivity. Photoconduction mechanism of all prepared samples is investigated by performing transient photoconductivity measurements on TiO{sub 2} and Ag-TiO{sub 2} films keeping intensity of light constant.« less
NASA Astrophysics Data System (ADS)
Karuppasamy, P.; Pandian, Muthu Senthil; Ramasamy, P.
2018-04-01
The semi-organic single crystal of piperazinium tetrachlorozincate monohydrate (PTCZ) was successfully grown by slow evaporation solution technique (SEST). The grown crystal was subjected to the single crystal XRD studies for confirming the unit cell parameters. The optical quality of the grown crystal was identified by the UV-Vis NIR spectrum analysis and the optical band gap energy was calculated. The photoconductivity study reveals that the grown crystal has positive photoconductive nature. The mechanical stability of the grown crystal was analyzed using Vickers microhardness analyzer. The third-order nonlinear optical properties such as nonlinear refractive index (n2), absorption co-efficient (β) and susceptibility (χ(3)) were studied by Z-scan technique at 640 nm using solid state laser.
Planar electroluminescent panel techniques
NASA Technical Reports Server (NTRS)
Kerr, C.; Kell, R. E.
1973-01-01
Investigations of planar electroluminescent multipurpose displays with latch-in memory are described. An 18 x 24 in. flat, thin address panel with elements spacing of 0.100 in. was constructed which demonstrated essentially uniform luminosity of 3-5 foot lamberts for each of its 43200 EL cells. A working model of a 4-bit EL-PC (electroluminescent photoconductive) electrooptical decoder was made which demonstrated the feasibility of this concept. A single-diagram electroluminescent display device with photoconductive-electroluminescent latch-in memory was constructed which demonstrated the conceptual soundness of this principle. Attempts to combine these principles in a single PEL multipurpose display with latch-in memory were unsuccessful and were judged to exceed the state-of-the-art for close-packed (0.10 in. centers) photoconductor-electroluminescent cell assembly.
Intermediate type excitons in Schottky barriers of A3B6 layer semiconductors and UV photodetectors
NASA Astrophysics Data System (ADS)
Alekperov, O. Z.; Guseinov, N. M.; Nadjafov, A. I.
2006-09-01
Photoelectric and photovoltaic spectra of Schottky barrier (SB) structures of InSe, GaSe and GaS layered semiconductors (LS) are investigated at quantum energies from the band edge excitons of corresponding materials up to 6.5eV. Spectral dependences of photoconductivity (PC) of photo resistors and barrier structures are strongly different at the quantum energies corresponding to the intermediate type excitons (ITE) observed in these semiconductors. It was suggested that high UV photoconductivity of A3B6 LS is due to existence of high mobility light carriers in the depth of the band structure. It is shown that SB of semitransparent Au-InSe is high sensitive photo detector in UV region of spectra.
NASA Astrophysics Data System (ADS)
Dietz, R. J. B.; Brahm, A.; Velauthapillai, A.; Wilms, A.; Lammers, C.; Globisch, B.; Koch, M.; Notni, G.; Tünnermann, A.; Göbel, T.; Schell, M.
2015-01-01
We investigate properties of MBE grown photoconductive terahertz (THz) antennas based on the InGaAs/InAlAs/InP material system aimed for an excitation wavelength of approx. 1060 nm. Therefore, we analyze several different approaches concerning growth parameters, layer and material compositions as well as doping. The carrier dynamics are probed via transient white-light pump-probe spectroscopy as well as THz Time Domain Spectroscopy (TDS) measurements. We find that the electron capture probability is reduced for higher electron energies. By adjusting the material band gap this can be resolved and lifetimes of 1.3 ps are obtained. These short lifetimes enable the detection of THz TDS spectra with a bandwidth exceeding 4 THz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azuma, Chiori; Kawano, Takuto; Kakemoto, Hirofumi
2014-11-07
The addition of photo-controllable properties to tungsten trioxide (WO{sub 3}) is of interest for developing practical applications of WO{sub 3} as well as for interpreting such phenomena from scientific viewpoints. Here, a sputtered crystalline WO{sub 3} thin film generated thermoelectric power due to ultraviolet (UV) light-induced band-gap excitation and was accompanied by a photochromic reaction resulting from generating W{sup 5+} ions. The thermoelectric properties (electrical conductivity (σ) and Seebeck coefficient (S)) and coloration of WO{sub 3} could be reversibly switched by alternating the external stimulus between UV light irradiation and dark storage. After irradiating the film with UV light, σmore » increased, whereas the absolute value of S decreased, and the photochromic (coloration) reaction was detected. Notably, the opposite behavior was exhibited by WO{sub 3} after dark storage, and this reversible cycle could be repeated at least three times. Moreover, photo-thermoelectric effects (photo-conductive effect (photo-conductivity, σ{sub photo}) and photo-Seebeck effect (photo-Seebeck coefficient, S{sub photo})) were also detected in response to visible-light irradiation of the colored WO{sub 3} thin films. Under visible-light irradiation, σ{sub photo} and the absolute value of S{sub photo} increased and decreased, respectively. These effects are likely attributable to the excitation of electrons from the mid-gap visible light absorption band (W{sup 5+} state) to the conduction band of WO{sub 3}. Our findings demonstrate that the simultaneous, reversible switching of multiple properties of WO{sub 3} thin film is achieved by the application of an external stimulus and that this material exhibits photo-thermoelectric effects when irradiated with visible-light.« less
Murasawa, Kengo; Sato, Koki; Hidaka, Takehiko
2011-05-01
A new method for measuring optical-beat frequencies in the terahertz (THz) region using microwave higher harmonics is presented. A microwave signal was applied to the antenna gap of a photoconductive (PC) device emitting a continuous electromagnetic wave at about 1 THz by the photomixing technique. The microwave higher harmonics with THz frequencies are generated in the PC device owing to the nonlinearity of the biased photoconductance, which is briefly described in this article. Thirteen nearly periodic peaks in the photocurrent were observed when the microwave was swept from 16 to 20 GHz at a power of -48 dBm. The nearly periodic peaks are generated by the homodyne detection of the optical beat with the microwave higher harmonics when the frequency of the harmonics coincides with the optical-beat frequency. Each peak frequency and its peak width were determined by fitting a Gaussian function, and the order of microwave harmonics was determined using a coarse (i.e., lower resolution) measurement of the optical-beat frequency. By applying the Kalman algorithm to the peak frequencies of the higher harmonics and their standard deviations, the optical-beat frequency near 1 THz was estimated to be 1029.81 GHz with the standard deviation of 0.82 GHz. The proposed method is applicable to a conventional THz-wave generator with a photomixer.
Johnston, Steven W.; Ahrenkiel, Richard K.
2002-01-01
An apparatus for measuring the minority carrier lifetime of a semiconductor sample using radio-frequency coupling. The measuring apparatus includes an antenna that is positioned a coupling distance from a semiconductor sample which is exposed to light pulses from a laser during sampling operations. A signal generator is included to generate high frequency, such as 900 MHz or higher, sinusoidal waveform signals that are split into a reference signal and a sample signal. The sample signal is transmitted into a sample branch circuit where it passes through a tuning capacitor and a coaxial cable prior to reaching the antenna. The antenna is radio-frequency coupled with the adjacent sample and transmits the sample signal, or electromagnetic radiation corresponding to the sample signal, to the sample and receives reflected power or a sample-coupled-photoconductivity signal back. To lower impedance and speed system response, the impedance is controlled by limiting impedance in the coaxial cable and the antenna reactance. In one embodiment, the antenna is a waveguide/aperture hybrid antenna having a central transmission line and an adjacent ground flange. The sample-coupled-photoconductivity signal is then transmitted to a mixer which also receives the reference signal. To enhance the sensitivity of the measuring apparatus, the mixer is operated to phase match the reference signal and the sample-coupled-photoconductivity signal.
NASA Astrophysics Data System (ADS)
Zhou, Tian-Yu; Liu, Xue-Chao; Huang, Wei; Dai, Chong-Chong; Zheng, Yan-Qing; Shi, Er-Wei
2015-04-01
Al-doped ZnO thin film (AZO) is used as a subcontact layer in 6H-SiC photoconductive semiconductor switches (PCSSs) to reduce the on-state resistance and optimize the device structure. Our photoconductive test shows that the on-state resistance of lateral PCSS with an n+-AZO subcontact layer is 14.7% lower than that of PCSS without an n+-AZO subcontact layer. This occurs because a heavy-doped AZO thin film can improve Ohmic contact properties, reduce contact resistance, and alleviate Joule heating. Combined with the high transparance characteristic at 532 nm of AZO film, vertical structural PCSS devices are designed and their structural superiority is discussed. This paper provides a feasible route for fabricating high performance SiC PCSS by using conductive and transparent ZnO-based materials. Project supported by the Innovation Program of the Shanghai Institute of Ceramics (Grant No. Y39ZC1110G), the Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX2-EW-W10), the Industry-Academic Joint Technological Innovations Fund Project of Jiangsu Province, China (Grant No. BY2011119), the Natural Science Foundation of Shanghai (Grant No. 14ZR1419000), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61404146), and the National High-tech R & D Program of China (Grant Nos. 2013AA031603 and 2014AA032602).
Direct measurement of the resistivity weighting function
NASA Astrophysics Data System (ADS)
Koon, D. W.; Chan, Winston K.
1998-12-01
We have directly measured the resistivity weighting function—the sensitivity of a four-wire resistance measurement to local variations in resistivity—for a square specimen of photoconducting material. This was achieved by optically perturbing the local resistivity of the specimen while measuring the effect of this perturbation on its four-wire resistance. The weighting function we measure for a square geometry with electrical leads at its corners agrees well with calculated results, displaying two symmetric regions of negative weighting which disappear when van der Pauw averaging is performed.
NASA Astrophysics Data System (ADS)
Makhlouf, Houssin; Weber, Matthieu; Messaoudi, Olfa; Tingry, Sophie; Moret, Matthieu; Briot, Olivier; Chtoutou, Radhouane; Bechelany, Mikhael
2017-12-01
Cu2O/ZnO nanowires (NWs) heterojunctions were successfully prepared by combining Atomic layer Deposition (ALD) and Electrochemical Deposition (ECD) processes. The crystallinity, morphology and photoconductivity properties of the Cu2O/ZnO nanostructures have been investigated. The properties of the Cu2O absorber layer and the nanostructured heterojunction were studied in order to understand the mechanisms lying behind the low photoconductivity measured. It has been found that the interface state defects and the high resistivity of Cu2O film were limiting the photovoltaic properties of the prepared devices. The understanding presented in this work is expected to enable the optimization of solar cell devices based on Cu2O/ZnO nanomaterials and improve their overall performance.
NASA Astrophysics Data System (ADS)
Pandian, Muthu Senthil; Karuppasamy, P.; Kamalesh, T.; Ramasamy, P.; Verma, Sunil
2018-04-01
The optically good quality organic single crystals of triphenylphosphine oxide 4-nitrophenol (TP4N) were successfully grown by slow evaporation solution technique (SEST) using methanol as solvent. The lattice parameters of the grown crystal were confirmed by single crystal X-ray diffraction analysis. The optical transmittance, cut-off wavelength and band gap of the TP4N crystal were obtained by UV-Vis NIR spectrum analysis. The photoluminescence studies were carried out to find out the luminesce properties of TP4N single crystal. The photoconductivity studies reveal that the TP4N crystal has negative photoconductive nature. The third order nonlinear susceptibility (χ(3)) of TP4N crystal was evaluated using the Z-scan technique at 640 nm.
Low temperature grown GaNAsSb: A promising material for photoconductive switch application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, K. H.; Yoon, S. F.; Wicaksono, S.
2013-09-09
We report a photoconductive switch using low temperature grown GaNAsSb as the active material. The GaNAsSb layer was grown at 200 °C by molecular beam epitaxy in conjunction with a radio frequency plasma-assisted nitrogen source and a valved antimony cracker source. The low temperature growth of the GaNAsSb layer increased the dark resistivity of the switch and shortened the carrier lifetime. The switch exhibited a dark resistivity of 10{sup 7} Ω cm, a photo-absorption of up to 2.1 μm, and a carrier lifetime of ∼1.3 ps. These results strongly support the suitability of low temperature grown GaNAsSb in the photoconductivemore » switch application.« less
Conductive Photo-Activated Porphyrin-ZnO Nanostructured Gas Sensor Array.
Magna, Gabriele; Catini, Alexandro; Kumar, Raj; Palmacci, Massimo; Martinelli, Eugenio; Paolesse, Roberto; di Natale, Corrado
2017-04-01
Chemoresistors working at room temperature are attractive for low-consumption integrated sensors. Previous studies show that this feature can be obtained with photoconductive porphyrins-coated ZnO nanostructures. Furthermore, variations of the porphyrin molecular structure alter both the chemical sensitivity and the photoconductivity, and can be used to define the sensor characteristics. Based on these assumptions, we investigated the properties of an array of four sensors made of a layer of ZnO nanoparticles coated with porphyrins with the same molecular framework but different metal atoms. The array was tested with five volatile organic compounds (VOCs), each measured at different concentrations. Results confirm that the features of individual porphyrins influence the sensor behavior, and the differences among sensors are enough to enable the discrimination of volatile compounds disregarding their concentration.
High gain photoconductive semiconductor switch having tailored doping profile zones
Baca, Albert G.; Loubriel, Guillermo M.; Mar, Alan; Zutavern, Fred J; Hjalmarson, Harold P.; Allerman, Andrew A.; Zipperian, Thomas E.; O'Malley, Martin W.; Helgeson, Wesley D.; Denison, Gary J.; Brown, Darwin J.; Sullivan, Charles T.; Hou, Hong Q.
2001-01-01
A photoconductive semiconductor switch with tailored doping profile zones beneath and extending laterally from the electrical contacts to the device. The zones are of sufficient depth and lateral extent to isolate the contacts from damage caused by the high current filaments that are created in the device when it is turned on. The zones may be formed by etching depressions into the substrate, then conducting epitaxial regrowth in the depressions with material of the desired doping profile. They may be formed by surface epitaxy. They may also be formed by deep diffusion processes. The zones act to reduce the energy density at the contacts by suppressing collective impact ionization and formation of filaments near the contact and by reducing current intensity at the contact through enhanced current spreading within the zones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-01-01
Nine authored articles are included covering: natural heat engine, photoconductivity, the Caribbean Basin, energy in Central America, peat, geothermal energy, and the MANIAC computer. Separate abstracts were prepared for the articles. (DLC)
NASA Astrophysics Data System (ADS)
Serafini, John; Hossain, A.; James, R. B.; Guziewicz, M.; Kruszka, R.; Słysz, W.; Kochanowska, D.; Domagala, J. Z.; Mycielski, A.; Sobolewski, Roman
2017-07-01
We present our studies on both photoconductive (PC) and electro-optic (EO) responses of (Cd,Mg)Te single crystals. In an In-doped Cd0.92Mg0.08Te single crystal, subpicosecond electrical pulses were optically generated via a PC effect, coupled into a transmission line, and, subsequently, detected using an internal EO sampling scheme, all in the same (Cd,Mg)Te material. For photo-excitation and EO sampling, we used femtosecond optical pulses generated by the same Ti:sapphire laser with the wavelengths of 410 and 820 nm, respectively. The shortest transmission line distance between the optical excitation and EO sampling points was 75 μm. By measuring the transient waveforms at different distances from the excitation point, we calculated the transmission-line complex propagation factor, as well as the THz frequency attenuation factor and the propagation velocity, all of which allowed us to reconstruct the electromagnetic transient generated directly at the excitation point, showing that the original PC transient was subpicosecond in duration with a fall time of ˜500 fs. Finally, the measured EO retardation, together with the amount of the electric-field penetration, allowed us to determine the magnitude of the internal EO effect in our (Cd,Mg)Te crystal. The obtained THz-frequency EO coefficient was equal to 0.4 pm/V, which is at the lower end among the values reported for CdTe-based ternaries, apparently, due to the disorientation of the tested crystal that resulted in the non-optimal EO measurement condition.
Serafini, John; Hossain, A.; James, R. B.; ...
2017-07-03
We present our studies on both photoconductive (PC) and electro-optic (EO) responses of (Cd,Mg)Te single crystals. In an In-doped Cd 0.92Mg 0.08Te single crystal, subpicosecond electrical pulses were optically generated via a PC effect, coupled into a transmission line, and, subsequently, detected using an internal EO sampling scheme, all in the same (Cd,Mg)Te material. For photo-excitation and EO sampling, we used femtosecond optical pulses generated by the same Ti:sapphire laser with the wavelength 410 and 820 nm, respectively. The shortest transmission line distance between the optical excitation and EO sampling points was 75 μm. By measuring the transient waveforms atmore » different distances from the excitation point, we calculated the transmission-line complex propagation factor, as well as the THz frequency attenuation factor and the propagation velocity, all of which allowed us to reconstruct the electromagnetic transient generated directly at the excitation point, showing that the original PC transient was subpicosecond in duration with a fall time of ~500 fs. Finally, the measured EO retardation, together with the amount of the electric-field penetration, allowed us to determine the magnitude of the internal EO effect in our (Cd,Mg)Te crystal. The obtained THz-frequency EO coefficient was equal to 0.4 pm/V, which is at the lower end among the values reported for CdTe-based ternaries, due to a twinned structure and misalignment of the tested (Cd,Mg)Te crystal.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Wug-Dong; Tanioka, Kenkichi
Amorphous selenium (a-Se) high-gain avalanche rushing amorphous photoconductor (HARP) film has been used for highly sensitive imaging devices. To improve the spectral response of a-Se HARP photoconductive film at a long wavelength, the tellurium (Te) doping effect in an 8-μm-thick a-Se HARP film was investigated. The thickness of the Te-doped a-Se layer in the 8-μm-thick a-Se HARP films was varied from 60 to 120 nm. The signal current increases significantly due to the avalanche multiplication when the target voltage is increased over the threshold voltage. In the 8-μm-thick a-Se HARP film with a Te-doped layer, the spectral response at a longmore » wavelength was improved in comparison with the a-Se HARP film without a Te-doped layer. In addition, the increase of the lag in the 8-μm-thick a-Se HARP target with a Te-doped layer of 120 nm is caused by the photoconductive lag due to the electrons trapped in the Te-doped layer. Based on the current-voltage characteristics, spectral response, and lag characteristics of the 8-μm-thick a-Se HARP targets, the Te-doped layer thickness of 90 nm is suitable for the 8-μm-thick a-Se HARP film.« less
Analysis of photoconductive mechanisms of organic-on-inorganic photodiodes
NASA Astrophysics Data System (ADS)
Ocaya, R. O.; Dere, A.; Al-Sehemi, Abdullah G.; Al-Ghamdi, Ahmed A.; Soylu, M.; Yakuphanoglu, F.
2017-09-01
In this work, it is shown that choosing an organic-on-inorganic Schottky diode for photoconductive sensing by a using a power law exponent (PLE or γ) determined at a single bias point is a limited approach. The standard literature approach does not highlight any bias voltage effects on the distribution of interface state density and other operationally important parameters. In this paper we suggest a new empirical method that holistically highlights the variation of γ with voltage, irradiance and temperature to reach a more informed choice of photosensor for real applications. We obtain a simple, plausible relation of the variation of barrier height, Φ, with voltage, irradiance and temperature. The method is evaluated with data collected previously for Schottky diodes of structure Al/p-Si/organic-semiconductor (OSC)/Au, where OSC is Coumarin-doped with graphene oxide (GO), Cobalt Phthacyanine (CoPC) doped with GO or PCBM doped with GO, respectively. The method reproduces published data for the three diodes reported at specific bias and provides for the first time some qualitative evidence of barrier height variation with light intensity, for which a possible physical basis is also given. Typically, Schottky barrier height is characterized using dark current leading to an under reporting of the effect of illumination on barrier height. Finally, since recombination mechanisms are gauged on the basis of the magnitude of PLE, the method facilitates the identification of the recombination mechanism at a given bias.
Investigation of high-voltage pulse trigger generator based on photo-conductive semiconductor switch
NASA Astrophysics Data System (ADS)
Chu, Xu; Liu, Jin-Liang; Wang, Lang-Ning; Qiu, Yong-Feng
2018-06-01
The trigger to generate high-voltage pulse is one of the most important parts in a pulsed-power system, especially for the conduction characteristics of the main switch. However, traditional triggers usually have the drawbacks of large structure and worse long-term working stability, which goes against the demands of pulsed-power system miniaturization and stability. In the paper, a pulse trigger using photo-conductive semiconductor switch was developed, which is of small size, stable performance and steep leading edge of the output pulse rise. It is found that the output trigger pulse rise time is 14 ns, and the jitter of 20 shots is 330 ps. Applying the designed pulsed trigger in a field distortion switch and a triggered vacuum switch, experiments show that the switches could be triggered stably with reduced jitter.
Gamma ray measurements with photoconductive detectors using a dense plasma focus.
May, M J; Brown, G V; Halvorson, C; Schmidt, A; Bower, D; Tran, B; Lewis, P; Hagen, C
2014-11-01
Photons in the MeV range emitted from the dense plasma focus (DPF) at the NSTec North Las Vegas Facility have been measured with both neutron-damaged GaAs and natural diamond photoconductive detectors (PCDs). The DPF creates or "pinches" plasmas of various gases (e.g., H2, D2, Ne, Ar., etc.) that have enough energy to create MeV photons from either bremsstrahlung and/or (n,n(')) reactions if D2 gas is used. The high bandwidth of the PCDs enabled the first ever measurement of the fast micro-pinches present in DPF plasmas. Comparisons between a slower more conventional scintillator/photomultiplier tube based nuclear physics detectors were made to validate the response of the PCDs to fast intense MeV photon signals. Significant discrepancies in the diamond PCD responses were evident.
NASA Astrophysics Data System (ADS)
Platt, Sean P.; Attah, Isaac K.; Aziz, Saadullah; El-Shall, M. Samy
2015-05-01
Dimer radical cations of aromatic and polycyclic aromatic molecules are good model systems for a fundamental understanding of photoconductivity and ferromagnetism in organic materials which depend on the degree of charge delocalization. The structures of the dimer radical cations are difficult to determine theoretically since the potential energy surface is often very flat with multiple shallow minima representing two major classes of isomers adopting the stacked parallel or the T-shape structure. We present experimental results, based on mass-selected ion mobility measurements, on the gas phase structures of the naphthalene+ṡ ṡ naphthalene homodimer and the naphthalene+ṡ ṡ benzene heterodimer radical cations at different temperatures. Ion mobility studies reveal a persistence of the stacked parallel structure of the naphthalene+ṡ ṡ naphthalene homodimer in the temperature range 230-300 K. On the other hand, the results reveal that the naphthalene+ṡ ṡ benzene heterodimer is able to exhibit both the stacked parallel and T-shape structural isomers depending on the experimental conditions. Exploitation of the unique structural motifs among charged homo- and heteroaromatic-aromatic interactions may lead to new opportunities for molecular design and recognition involving charged aromatic systems.
NASA Astrophysics Data System (ADS)
Kwon, Hyunah; Sung, Ji Ho; Lee, Yuna; Jo, Moon-Ho; Kim, Jong Kyu
2018-01-01
Enhancements in photocatalytic performance under visible light have been reported by noble metal functionalization on nanostructured TiO2; however, the non-uniform and discrete distribution of metal nanoparticles on the TiO2 surface makes it difficult to directly clarify the optical and electrical mechanisms. Here, we investigate the light absorption and the charge separation at the metal/TiO2 Schottky junctions by using a unique device architecture with an array of TiO2 nanohelixes (NHs) forming Schottky junctions both with Au-top and Pt-bottom electrodes. Wavelength-dependent photocurrent measurements through the Pt/TiO2 NHs/Au structures revealed that the origin of the visible light absorption and the separation of photogenerated carriers is the internal photoemission at the metal/nanostructured TiO2 Schottky junctions. In addition, a huge persistent photoconductivity was observed by the time-dependent photocurrent measurement, implying a long lifetime of the photogenerated carriers before recombination. We believe that the results help one to understand the role of metal functionalization on TiO2 and hence to enhance the photocatalytic efficiency by utilizing appropriately designed Schottky junctions.
Jang, Jun Tae; Park, Jozeph; Ahn, Byung Du; Kim, Dong Myong; Choi, Sung-Jin; Kim, Hyun-Suk; Kim, Dae Hwan
2015-07-22
Persistent photoconduction (PPC) is a phenomenon that limits the application of oxide semiconductor thin-film transistors (TFTs) in optical sensor-embedded displays. In the present work, a study on zinc oxynitride (ZnON) semiconductor TFTs based on the combination of experimental results and device simulation is presented. Devices incorporating ZnON semiconductors exhibit negligible PPC effects compared with amorphous In-Ga-Zn-O (a-IGZO) TFTs, and the difference between the two types of materials are examined by monochromatic photonic C-V spectroscopy (MPCVS). The latter method allows the estimation of the density of subgap states in the semiconductor, which may account for the different behavior of ZnON and IGZO materials with respect to illumination and the associated PPC. In the case of a-IGZO TFTs, the oxygen flow rate during the sputter deposition of a-IGZO is found to influence the amount of PPC. Small oxygen flow rates result in pronounced PPC, and large densities of valence band tail (VBT) states are observed in the corresponding devices. This implies a dependence of PPC on the amount of oxygen vacancies (VO). On the other hand, ZnON has a smaller bandgap than a-IGZO and contains a smaller density of VBT states over the entire range of its bandgap energy. Here, the concept of activation energy window (AEW) is introduced to explain the occurrence of PPC effects by photoinduced electron doping, which is likely to be associated with the formation of peroxides in the semiconductor. The analytical methodology presented in this report accounts well for the reduction of PPC in ZnON TFTs, and provides a quantitative tool for the systematic development of phototransistors for optical sensor-embedded interactive displays.
NASA Technical Reports Server (NTRS)
Hopkins, R. H.; Davis, J. R.; Rohatgi, A.; Campbell, R. B.; Blais, P. D.; Rai-Choudhury, P.; Stapleton, R. E.; Mollenkopf, H. C.; Mccormick, J. R.
1980-01-01
Two major topics are treated: methods to measure and evaluate impurity effects in silicon and comprehensive tabulations of data derived during the study. Discussions of deep level spectroscopy, detailed dark I-V measurements, recombination lifetime determination, scanned laser photo-response, conventional solar cell I-V techniques, and descriptions of silicon chemical analysis are presented and discussed. The tabulated data include lists of impurity segregation coefficients, ingot impurity analyses and estimated concentrations, typical deep level impurity spectra, photoconductive and open circuit decay lifetimes for individual metal-doped ingots, and a complete tabulation of the cell I-V characteristics of nearly 200 ingots.
Charge distribution and response time for a modulation-doped extrinsic infrared detector
NASA Technical Reports Server (NTRS)
Hadek, Victor
1987-01-01
The electric charge distribution and response time of a modulation-doped extrinsic infrared detector are determined. First, it is demonstrated theoretically that the photoconductive layer is effectively depleted of ionized majority-impurity charges so that scattering is small and mobility is high for photogenerated carriers. Then, using parameters appropriate to an actual detector, the predicted response time is 10 to the -8th to about 10 to the -9th s, which is much faster than comparable conventional detectors. Thus, the modulation-doped detector design would be valuable for heterodyne applications.
Improved insulator layer for MIS devices
NASA Technical Reports Server (NTRS)
Miller, W. E.
1980-01-01
Insulating layer of supersonic conductor such as LaF sub 3 has been shown able to impart improved electrical properties to photoconductive detectors and promises to improve other metal/insulator/semiconductor (MIS) devices, e.g., MOSFET and integrated circuits.
NASA Astrophysics Data System (ADS)
Hussain, Amreen A.; Pal, Arup R.; Patil, Dinkar S.
2014-05-01
We report high performance flexible hybrid ultraviolet photodetector with solar-blind sensitivity using nanocomposite film of plasma polymerized aniline-titanium dioxide. A facile solvent-free plasma technique is used to synthesize superior quality hybrid material with high yield. The hybrid photodetector exhibited high photoconductive gain of the order of ˜105 and fast speed with response and recovery time of 22.87 ms and 34.23 ms. This is an excellent result towards getting a balance in the response speed and photoconductive gain trade-off of the photodetectors reported so far. In addition, the device has the advantages of enhanced photosensitivity ((Ilight - Idark)/Idark) of the order of ˜102 and high responsivity of ˜104 AW-1. All the merits substantiates that, to prepare hybrid material, plasma based method holds potential to be an easy way for realizing large scale nanostructured photodetectors for practical applications.
Hall mobility and photoconductivity in TlGaSeS crystals
NASA Astrophysics Data System (ADS)
Qasrawi, A. F.; Gasanly, N. M.
2013-01-01
In this work, the fundamental properties of the TlGaSeS single crystals are investigated by means of temperature dependent electrical resistivity and Hall mobility. The crystal photo-responsibility as function of illumination intensity and temperature is also tested in the temperature range of 350-160 K. The study allowed the determination of acceptor centers as 230 and 450 meV below and above 260 K, and recombination centers as 181, 363, and 10 meV at low, moderate, and high temperatures, respectively. While the temperature-dependent Hall mobility behaved abnormally, the photoconductivity analysis reflected an illumination intensity dependent recombination center. Namely, the recombination center increased from 10 to 90 meV as the light intensity increased from 27.9 to 76.7 mW cm-2, respectively. That strange behavior was attributed to the temporary shift in Fermi level caused by photoexcitation.
Wilcox, R.B.
1991-09-10
A planar transparent light conducting means and an improved optically activated electrical switch made using the novel light conducting means are disclosed. The light conducting means further comprise light scattering means on one or more opposite planar surfaces thereof to transmit light from the light conducting means into adjacent media and reflective means on other surfaces of the light conducting means not containing the light scattering means. The optically activated electrical switch comprises at least two stacked photoconductive wafers, each having electrodes formed on both surfaces thereof, and separated by the planar transparent light conducting means. The light scattering means on the light conducting means face surfaces of the wafers not covered by the electrodes to transmit light from the light conducting means into the photoconductive wafers to uniformly illuminate and activate the switch. 11 figures.
Four-terminal circuit element with photonic core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampayan, Stephen
A four-terminal circuit element is described that includes a photonic core inside of the circuit element that uses a wide bandgap semiconductor material that exhibits photoconductivity and allows current flow through the material in response to the light that is incident on the wide bandgap material. The four-terminal circuit element can be configured based on various hardware structures using a single piece or multiple pieces or layers of a wide bandgap semiconductor material to achieve various designed electrical properties such as high switching voltages by using the photoconductive feature beyond the breakdown voltages of semiconductor devices or circuits operated basedmore » on electrical bias or control designs. The photonic core aspect of the four-terminal circuit element provides unique features that enable versatile circuit applications to either replace the semiconductor transistor-based circuit elements or semiconductor diode-based circuit elements.« less
Zhang, Ying; Zhang, Xiaoling; Li, Shaoxian; Gu, Jianqiang; Li, Yanfeng; Tian, Zhen; Ouyang, Chunmei; He, Mingxia; Han, Jiaguang; Zhang, Weili
2016-01-01
We demonstrate a 4-f terahertz time-domain spectroscopy (THz-TDS) system using an organic crystal DSTMS as the THz emitter and a low temperature grown (LTG) InGaAs/InAlAs photoconductive antenna as the receiver. The system covers a frequency range from 0.2 up to 8 THz. The influences of the pump laser power, the probe laser power and the azimuthal angle of the DSTMS crystal on the time-domain THz amplitude are experimentally analyzed. The frequency accuracy of the system is verified by measuring two metamaterial samples and a lactose film in this THz-TDS system. The proposed combination of DSTMS emission and PC antenna detection realizes a compact and low-cost THz-TDS scheme with an ultra-broad bandwidth, which may promote the development and the applications of THz-TDS techniques. PMID:27244689
Wu, Qing; Liu, Yu; Wang, Hailong; Li, Yuan; Huang, Wei; Zhao, Jianhua; Chen, Yonghai
2017-01-01
In the absent of magnetic field, we have observed the anisotropic spin polarization degree of photoconduction (SPD-PC) in (Ga,Mn)As/GaAs heterojunction. We think three kinds of mechanisms contribute to the magnetic related signal, (i) (Ga,Mn)As self-producing due to the valence band polarization, (ii) unequal intensity of left and right circularly polarized light reaching to GaAs layer to excite unequal spin polarized carriers in GaAs layer, and (iii) (Ga,Mn)As as the spin filter layer for spin transport from GaAs to (Ga,Mn)As. Different from the previous experiments, the influence coming from the Zeeman splitting induced by an external magnetic field can be avoided here. While temperature dependence experiment indicates that the SPD-PC is mixed with the magnetic uncorrelated signals, which may come from current induced spin polarization. PMID:28084437
NASA Astrophysics Data System (ADS)
Wilson, Nicholas; Mauch, Daniel; Meyers, Vincent; Feathers, Shannon; Dickens, James; Neuber, Andreas
2017-08-01
The electrical and optical characteristics of a high-power UV light emitting diode (LED) (365 nm wavelength) were evaluated under pulsed operating conditions at current amplitudes several orders of magnitude beyond the LED's manufacturer specifications. Geared towards triggering of photoconductive semiconductor switches (PCSSs) for pulsed power applications, measurements were made over varying pulse widths (25 ns-100 μs), current (0 A-250 A), and repetition rates (single shot-5 MHz). The LED forward voltage was observed to increase linearly with increasing current (˜3.5 V-53 V) and decrease with increasing pulse widths. The peak optical power observed was >30 W, and a maximum system efficiency of 23% was achieved. The evaluated LED and auxiliary hardware were successfully used as the optical trigger source for a 4H-SiC PCSS. The lowest measured on-resistance of SiC was approximately 67 kΩ.
Wilson, Nicholas; Mauch, Daniel; Meyers, Vincent; Feathers, Shannon; Dickens, James; Neuber, Andreas
2017-08-01
The electrical and optical characteristics of a high-power UV light emitting diode (LED) (365 nm wavelength) were evaluated under pulsed operating conditions at current amplitudes several orders of magnitude beyond the LED's manufacturer specifications. Geared towards triggering of photoconductive semiconductor switches (PCSSs) for pulsed power applications, measurements were made over varying pulse widths (25 ns-100 μs), current (0 A-250 A), and repetition rates (single shot-5 MHz). The LED forward voltage was observed to increase linearly with increasing current (∼3.5 V-53 V) and decrease with increasing pulse widths. The peak optical power observed was >30 W, and a maximum system efficiency of 23% was achieved. The evaluated LED and auxiliary hardware were successfully used as the optical trigger source for a 4H-SiC PCSS. The lowest measured on-resistance of SiC was approximately 67 kΩ.
Photoconductivity induced by nanoparticle segregated grain-boundary in spark plasma sintered BiFeO3
NASA Astrophysics Data System (ADS)
Nandy, Subhajit; Mocherla, Pavana S. V.; Sudakar, C.
2017-05-01
Photoconductivity studies on spark plasma sintered BiFeO3 samples with two contrasting morphologies, viz., nanoparticle-segregated grain boundary (BFO-AP) and clean grain boundary (BFO-AA), show that their photo-response is largely influenced by the grain boundary defects. Impedance analyses at 300 K and 573 K clearly demarcate the contributions from grain, grain-boundary, and the nanoparticle-segregated grain-boundary conductivities. I-V characteristics under 1 sun illumination show one order of higher conductivity for BFO-AP, whereas conductivity decreases for BFO-AA sample. Larger photocurrent in BFO-AP is attributed to the extra conduction path provided by oxygen vacancies on the nanoparticle surfaces residing at the grain boundaries. Creation of photo-induced traps under illumination and the absence of surface conduction channels in BFO-AA are surmised to result in a decreased conductivity on illumination.
A Real-Time Ultraviolet Radiation Imaging System Using an Organic Photoconductive Image Sensor†
Okino, Toru; Yamahira, Seiji; Yamada, Shota; Hirose, Yutaka; Odagawa, Akihiro; Kato, Yoshihisa; Tanaka, Tsuyoshi
2018-01-01
We have developed a real time ultraviolet (UV) imaging system that can visualize both invisible UV light and a visible (VIS) background scene in an outdoor environment. As a UV/VIS image sensor, an organic photoconductive film (OPF) imager is employed. The OPF has an intrinsically higher sensitivity in the UV wavelength region than those of conventional consumer Complementary Metal Oxide Semiconductor (CMOS) image sensors (CIS) or Charge Coupled Devices (CCD). As particular examples, imaging of hydrogen flame and of corona discharge is demonstrated. UV images overlapped on background scenes are simply made by on-board background subtraction. The system is capable of imaging weaker UV signals by four orders of magnitude than that of VIS background. It is applicable not only to future hydrogen supply stations but also to other UV/VIS monitor systems requiring UV sensitivity under strong visible radiation environment such as power supply substations. PMID:29361742
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alberding, Brian G.; Heilweil, Edwin J., E-mail: edwin.heilweil@nist.gov; Kushto, Gary P.
2016-05-30
Non-contact, optical time-resolved terahertz spectroscopy has been used to study the transient photoconductivity of nanometer-scale metallic films deposited on the fused quartz substrates. Samples of 8 nm thick gold or titanium show an instrument-limited (ca. 0.5 ps) decrease in conductivity following photoexcitation due to electron-phonon coupling and subsequent increased lattice temperatures which increases charge carrier scattering. In contrast, for samples of 8 nm gold with a 4 nm adhesion layer of titanium or chromium, a ca. 70 ps rise time for the lattice temperature increase is observed. These results establish the increased transient terahertz transmission sign change of metallic compared to semiconductor materials.more » The results also suggest nanoscale gold films that utilize an adhesion material do not consist of distinct layers.« less
NASA Astrophysics Data System (ADS)
Chandran, Senthilkumar; Paulraj, Rajesh; Ramasamy, P.
2017-06-01
Semi-organic lithium hydrogen oxalate monohydrate non-linear optical single crystals have been grown by slow evaporation solution technique at 40 °C. The nucleation parameters such as critical radius, interfacial tension, and critical free energy change have been evaluated using the experimental data. The solubility and the nucleation curve of the crystal at different temperatures have been analyzed. The crystal has a positive temperature coefficient of solubility. The metastable zone width and induction period have been determined for the aqueous solution growth of lithium hydrogen oxalate monohydrate. The UV-vis-NIR spectrum showed this crystal has high transparency. The photoconductivity studies indicate lithium hydrogen oxalate monohydrate has positive photoconductivity behaviour. The low etch pit density observed on (0 0 1) crystal surface and the high resolution x-ray difraction analysis indicate the good quality of the grown crystals
Optically thin hybrid cavity for terahertz photo-conductive detectors
Thompson, Robert J.; Siday, T.; Glass, S.; ...
2017-01-23
Here, the efficiency of photoconductive (PC) devices, including terahertz detectors, is constrained by the bulk optical constants of PC materials. Here, we show that optical absorption in a PC layer can be modified substantially within a hybrid cavity containing nanoantennas and a Distributed Bragg Reflector. We find that a hybrid cavity, consisting of a GaAs PC layer of just 50 nm, can be used to absorb >75% of incident photons by trapping the light within the cavity. We provide an intuitive model, which describes the dependence of the optimum operation wavelength on the cavity thickness. We also find that themore » nanoantenna size is a critical parameter, small variations of which lead to both wavelength shifting and reduced absorption in the cavity, suggesting that impedance matching is key for achieving efficient absorption in the optically thin hybrid cavities.« less
Zhang, Ying; Zhang, Xiaoling; Li, Shaoxian; Gu, Jianqiang; Li, Yanfeng; Tian, Zhen; Ouyang, Chunmei; He, Mingxia; Han, Jiaguang; Zhang, Weili
2016-05-31
We demonstrate a 4-f terahertz time-domain spectroscopy (THz-TDS) system using an organic crystal DSTMS as the THz emitter and a low temperature grown (LTG) InGaAs/InAlAs photoconductive antenna as the receiver. The system covers a frequency range from 0.2 up to 8 THz. The influences of the pump laser power, the probe laser power and the azimuthal angle of the DSTMS crystal on the time-domain THz amplitude are experimentally analyzed. The frequency accuracy of the system is verified by measuring two metamaterial samples and a lactose film in this THz-TDS system. The proposed combination of DSTMS emission and PC antenna detection realizes a compact and low-cost THz-TDS scheme with an ultra-broad bandwidth, which may promote the development and the applications of THz-TDS techniques.
Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene.
Chen, Hsiang-Yu; Lo, Michael K F; Yang, Guanwen; Monbouquette, Harold G; Yang, Yang
2008-09-01
Polymer-inorganic nanocrystal composites offer an attractive means to combine the merits of organic and inorganic materials into novel electronic and photonic systems. However, many applications of these composites are limited by the solubility and distribution of the nanocrystals in the polymer matrices. Here we show that blending CdTe nanoparticles into a polymer-fullerene matrix followed by solvent annealing can achieve high photoconductive gain under low applied voltages. The surface capping ligand renders the nanoparticles highly soluble in the polymer blend, thereby enabling high CdTe loadings. An external quantum efficiency as high as approximately 8,000% at 350 nm was achieved at -4.5 V. Hole-dominant devices coupled with atomic force microscopy images show a higher concentration of nanoparticles near the cathode-polymer interface. The nanoparticles and trapped electrons assist hole injection into the polymer under reverse bias, contributing to efficiency values in excess of 100%.
Harris, John Richardson; Caporaso, George J; Sampayan, Stephen E
2013-10-22
A system and method for producing modulated electrical signals. The system uses a variable resistor having a photoconductive wide bandgap semiconductor material construction whose conduction response to changes in amplitude of incident radiation is substantially linear throughout a non-saturation region to enable operation in non-avalanche mode. The system also includes a modulated radiation source, such as a modulated laser, for producing amplitude-modulated radiation with which to direct upon the variable resistor and modulate its conduction response. A voltage source and an output port, are both operably connected to the variable resistor so that an electrical signal may be produced at the output port by way of the variable resistor, either generated by activation of the variable resistor or propagating through the variable resistor. In this manner, the electrical signal is modulated by the variable resistor so as to have a waveform substantially similar to the amplitude-modulated radiation.
Wilcox, Russell B.
1991-01-01
A planar transparent light conducting means and an improved optically activated electrical switch made using the novel light conducting means are disclosed. The light conducting means further comprise light scattering means on one or more opposite planar surfaces thereof to transmit light from the light conducting means into adjacent media and reflective means on other surfaces of the light conducting means not containing the light scattering means. The optically activated electrical switch comprises at least two stacked photoconductive wafers, each having electrodes formed on both surfaces thereof, and separated by the planar transparent light conducting means. The light scattering means on the light conducting means face surfaces of the wafers not covered by the electrodes to transmit light from the light conducting means into the photoconductive wafers to uniformly illuminate and activate the switch.
Nano-antenna in a photoconductive photomixer for highly efficient continuous wave terahertz emission
Tanoto, H.; Teng, J. H.; Wu, Q. Y.; Sun, M.; Chen, Z. N.; Maier, S. A.; Wang, B.; Chum, C. C.; Si, G. Y.; Danner, A. J.; Chua, S. J.
2013-01-01
We report highly efficient continuous-wave terahertz (THz) photoconductive antenna based photomixer employing nano-gap electrodes in the active region. The tip-to-tip nano-gap electrode structure provides strong THz field enhancement and acts as a nano-antenna to radiate the THz wave generated in the active region of the photomixer. In addition, it provides good impedance matching to the THz planar antenna and exhibits a lower RC time constant, allowing more efficient radiation especially at the higher part of the THz spectrum. As a result, the output intensity of the photomixer with the new nano-gap electrode structure in the active region is two orders of magnitude higher than that of a photomixer with typical interdigitated electrodes. Significant improvement in the THz emission bandwidth was also observed. An efficient continuous wave THz source will greatly benefit compact THz system development for high resolution THz spectroscopy and imaging applications. PMID:24100840
Dark current in multilayer stabilized amorphous selenium based photoconductive x-ray detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frey, Joel B.; Belev, George; Kasap, Safa O.
2012-07-01
We report on experimental results which show that the dark current in n-i-p structured, amorphous selenium films is independent of i-layer thickness in samples with consistently thick blocking layers. We have observed, however, a strong dependence on the n-layer thickness and positive contact metal chosen. These results indicate that the dominant source of the dark current is carrier injection from the contacts and any contribution from carriers thermally generated in the bulk of the photoconductive layer is negligible. This conclusion is supported by a description of the dark current transients at different applied fields by a model which assumes onlymore » carrier emission over a Schottky barrier. This model also predicts that while hole injection is initially dominant, some time after the application of the bias, electron injection may become the dominant source of dark current.« less
Photoconductivity in reactively evaporated copper indium selenide thin films
NASA Astrophysics Data System (ADS)
Urmila, K. S.; Asokan, T. Namitha; Pradeep, B.; Jacob, Rajani; Philip, Rachel Reena
2014-01-01
Copper indium selenide thin films of composition CuInSe2 with thickness of the order of 130 nm are deposited on glass substrate at a temperature of 423 ±5 K and pressure of 10-5 mbar using reactive evaporation, a variant of Gunther's three temperature method with high purity Copper (99.999%), Indium (99.999%) and Selenium (99.99%) as the elemental starting materials. X-ray diffraction (XRD) studies shows that the films are polycrystalline in nature having preferred orientation of grains along the (112) plane. The structural type of the film is found to be tetragonal with particle size of the order of 32 nm. The structural parameters such as lattice constant, particle size, dislocation density, number of crystallites per unit area and strain in the film are also evaluated. The surface morphology of CuInSe2 films are studied using 2D and 3D atomic force microscopy to estimate the grain size and surface roughness respectively. Analysis of the absorption spectrum of the film recorded using UV-Vis-NIR Spectrophotometer in the wavelength range from 2500 nm to cutoff revealed that the film possess a direct allowed transition with a band gap of 1.05 eV and a high value of absorption coefficient (α) of 106 cm-1 at 570 nm. Photoconductivity at room temperature is measured after illuminating the film with an FSH lamp (82 V, 300 W). Optical absorption studies in conjunction with the good photoconductivity of the prepared p-type CuInSe2 thin films indicate its suitability in photovoltaic applications.
Optimization of the photorefractivity in II-IV semiconductors. Final report, March 1996--March 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jagannathan, G.V.; Trivedi, S.B.; Kutcher, S.W.
1998-11-01
This work was aimed at optimization of the photorefractivity in the II-VI semiconductors CdTe, ZnTe and Cd{sub x{minus}1}Zn{sub (x)}Te for real-time optical signal processing applications at near infrared wavelengths. During this work, several crystals of ZnTe, CdTe and Cd{sub x{minus}1}Zn{sub (x)}Te were grown. Crystal growth of ZnTe and CdTe was carried out using low supersaturation nucleation and `contactless` growth by Vertical Physical Vapor Transport (PVT) in closed ampoules and the CdTe and Cd{sub x{minus}1}Zn{sub (x)}Te crystals were grown using the vertical Bridgman technique. The quality of the crystals grown during this work was evaluated based on optical, electrical and structuralmore » characterization. Infrared microscopy was used to examine the internal crystalline structure of the samples. Most of the crystals grown during this work exhibited photorefractivity and photoconductivity. The resistivity of the vanadium doped crystals under dark conditions was found to be between 10 {sup 8} to 10 {sup 10} ohms cm. The resistivity decreased significantly in the presence of illumination indicating that the crystals were highly photoconductive. The photorefractive properties of the crystals grown during this project were characterized by two beam coupling. All of the measurements revealed a strong photorefractive nonlinear effect.« less
NASA Astrophysics Data System (ADS)
Moon, Kiwon; Lee, Eui Su; Lee, Il-Min; Park, Dong Woo; Park, Kyung Hyun
2018-01-01
Time-domain and frequency-domain terahertz (THz) spectroscopy systems often use materials fabricated with exotic and expensive methods that intentionally introduce defects to meet short carrier lifetime requirements. In this study, we demonstrate the development of a nano-photomixer that meets response speed requirements without using defect-incorporated, low-temperature-grown (LTG) semiconductors. Instead, we utilized a thin InGaAs layer grown on a semi-insulating InP substrate by metal-organic chemical vapor deposition (MOCVD) combined with nano-electrodes to manipulate local ultrafast photo-carrier dynamics via a carefully designed field-enhancement and plasmon effect. The developed nano-structured photomixer can detect continuous-wave THz radiation up to a frequency of 2 THz with a peak carrier collection efficiency of 5%, which is approximately 10 times better than the reference efficiency of 0.4%. The better efficiency results from the high carrier mobility of the MOCVD-grown InGaAs thin layer with the coincidence of near-field and plasmon-field distributions in the nano-structure. Our result not only provides a generally applicable methodology for manipulating ultrafast carrier dynamics by means of nano-photonic techniques to break the trade-off relation between the carrier lifetime and mobility in typical LTG semiconductors but also contributes to mass-producible photo-conductive THz detectors to facilitate the widespread application of THz technology.
Carrier-selective interlayer materials for silicon solar cell contacts
NASA Astrophysics Data System (ADS)
Xue, Muyu; Islam, Raisul; Chen, Yusi; Chen, Junyan; Lu, Ching-Ying; Mitchell Pleus, A.; Tae, Christian; Xu, Ke; Liu, Yi; Kamins, Theodore I.; Saraswat, Krishna C.; Harris, James S.
2018-04-01
This work presents titanium oxide (TiOx) and nickel oxide (NiOx) as promising carrier-selective interlayer materials for metal-interlayer-semiconductor contacts for silicon solar cells. The electron-conducting, hole-blocking behavior of TiOx and the opposite carrier-selective behavior of NiOx are investigated using the transmission-line-method. The Fermi level depinning effect and the tunneling resistance are demonstrated to be dependent on the interlayer oxide thickness and annealing temperature. NiOx is furthermore experimentally demonstrated to be capable of improving the effective minority carrier lifetime by quasi-steady-state photoconductance method. Our study demonstrates that TiOx and NiOx can be effective carrier-selective materials for Si solar cells and provides a framework for characterizing carrier-selective contacts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaubas, E., E-mail: eugenijus.gaubas@ff.vu.lt; Ceponis, T.; Jasiunas, A.
Evolution of the microwave-probed photoconductivity transients and of the proton induced luminescence has simultaneously been examined in polycrystalline CdS layers evaporated in vacuum during exposure to a 1.6 MeV proton beam. The decrease of the intensity of luminescence peaked at 510 and 709 nm wavelengths and of values of the effective carrier lifetime has been correlated in dependence of proton irradiation fluence. The defect introduction rate has been evaluated by the comparative analysis of the laser and proton beam induced luminescence. The difference of a carrier pair generation mechanism inherent for light and for a proton beam has been revealed.
Effect of Ge atoms on crystal structure and optoelectronic properties of hydrogenated Si-Ge films
NASA Astrophysics Data System (ADS)
Li, Tianwei; Zhang, Jianjun; Ma, Ying; Yu, Yunwu; Zhao, Ying
2017-07-01
Optoelectronic and structural properties of hydrogenated microcrystalline silicon-germanium (μc-Si1-xGex:H) alloys prepared by radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) were investigated. When the Ge atoms were predominantly incorporated in amorphous matrix, the dark and photo-conductivity decreased due to the reduced crystalline volume fraction of the Si atoms (XSi-Si) and the increased Ge dangling bond density. The photosensitivity decreased monotonously with Ge incorporation under higher hydrogen dilution condition, which was attributed to the increase in both crystallization of Ge and the defect density.
Photoconductive Switching of a Blumlein Pulser
1987-06-01
Diamond Laboratories Adelphi, Maryland 20783 Lawrence J. Bovino U. S. Army LABCOM Electronics Technology and Devices Laboratory Fort Monmouth, New... Bovino , T. Burke, R. Youmans, M. Weiner and J. Carter, "Recent Advances in Optically Controlled Bulk Semicon- ductor switches," in Proceedings of
High field CdS detector for infrared radiation
NASA Technical Reports Server (NTRS)
Tyagi, R. C.; Boer, K. W.; Hadley, H. C.; Robertson, J. B.
1972-01-01
New and highly sensitive method of detecting infrared irradiation makes possible solid state infrared detector which is more sensitive near room temperature than usual photoconductive low band gap semiconductor devices. Reconfiguration of high field domains in cadmium sulphide crystals provides basis for discovery.
Park, Younggeun; Ryu, Byunghoon; Oh, Bo-Ram; Song, Yujing; Liang, Xiaogan; Kurabayashi, Katsuo
2017-06-27
Monitoring of the time-varying immune status of a diseased host often requires rapid and sensitive detection of cytokines. Metallic nanoparticle-based localized surface plasmon resonance (LSPR) biosensors hold promise to meet this clinical need by permitting label-free detection of target biomolecules. These biosensors, however, continue to suffer from relatively low sensitivity as compared to conventional immunoassay methods that involve labeling processes. Their response speeds also need to be further improved to enable rapid cytokine quantification for critical care in a timely manner. In this paper, we report an immunobiosensing device integrating a biotunable nanoplasmonic optical filter and a highly sensitive few-layer molybdenum disulfide (MoS 2 ) photoconductive component, which can serve as a generic device platform to meet the need of rapid cytokine detection with high sensitivity. The nanoplasmonic filter consists of anticytokine antibody-conjugated gold nanoparticles on a SiO 2 thin layer that is placed 170 μm above a few-layer MoS 2 photoconductive flake device. The principle of the biosensor operation is based on tuning the delivery of incident light to the few-layer MoS 2 photoconductive flake thorough the nanoplasmonic filter by means of biomolecular surface binding-induced LSPR shifts. The tuning is dependent on cytokine concentration on the nanoplasmonic filter and optoelectronically detected by the few-layer MoS 2 device. Using the developed optoelectronic biosensor, we have demonstrated label-free detection of IL-1β, a pro-inflammatory cytokine, with a detection limit as low as 250 fg/mL (14 fM), a large dynamic range of 10 6 , and a short assay time of 10 min. The presented biosensing approach could be further developed and generalized for point-of-care diagnosis, wearable bio/chemical sensing, and environmental monitoring.
Shih, Fu-Yu; Wu, Yueh-Chun; Shih, Yi-Siang; Shih, Ming-Chiuan; Wu, Tsuei-Shin; Ho, Po-Hsun; Chen, Chun-Wei; Chen, Yang-Fang; Chiu, Ya-Ping; Wang, Wei-Hua
2017-03-21
Two-dimensional (2D) materials are composed of atomically thin crystals with an enormous surface-to-volume ratio, and their physical properties can be easily subjected to the change of the chemical environment. Encapsulation with other layered materials, such as hexagonal boron nitride, is a common practice; however, this approach often requires inextricable fabrication processes. Alternatively, it is intriguing to explore methods to control transport properties in the circumstance of no encapsulated layer. This is very challenging because of the ubiquitous presence of adsorbents, which can lead to charged-impurity scattering sites, charge traps, and recombination centers. Here, we show that the short-circuit photocurrent originated from the built-in electric field at the MoS 2 junction is surprisingly insensitive to the gaseous environment over the range from a vacuum of 1 × 10 -6 Torr to ambient condition. The environmental insensitivity of the short-circuit photocurrent is attributed to the characteristic of the diffusion current that is associated with the gradient of carrier density. Conversely, the photocurrent with bias exhibits typical persistent photoconductivity and greatly depends on the gaseous environment. The observation of environment-insensitive short-circuit photocurrent demonstrates an alternative method to design device structure for 2D-material-based optoelectronic applications.
Inhibition of unintentional extra carriers by Mn valence change for high insulating devices
Guo, Daoyou; Li, Peigang; Wu, Zhenping; Cui, Wei; Zhao, Xiaolong; Lei, Ming; Li, Linghong; Tang, Weihua
2016-01-01
For intrinsic oxide semiconductors, oxygen vacancies served as the electron donors have long been, and inevitably still are, attributed as the primary cause of conductivity, making oxide semiconductors seem hard to act as high insulating materials. Meanwhile, the presence of oxygen vacancies often leads to a persistent photoconductivity phenomenon which is not conducive to the practical use in the fast photoelectric response devices. Herein, we propose a possible way to reduce the influence of oxygen vacancies by introducing a valence change doping in the monoclinic β-Ga2O3 epitaxial thin film. The unintentional extra electrons induced by oxygen vacancies can be strongly suppressed by the change valence of the doped Mn ions from +3 to +2. The resistance for the Mn-doped Ga2O3 increases two orders of magnitude in compared with the pure Ga2O3. As a result, photodetector based on Mn-doped Ga2O3 thin films takes on a lower dark current, a higher sensitivity, and a faster photoresponse time, exhibiting a promising candidate using in high performance solar-blind photodetector. The study presents that the intentional doping of Mn may provide a convenient and reliable method of obtaining high insulating thin film in oxide semiconductor for the application of specific device. PMID:27068227
Apparatus for Teaching Physics.
ERIC Educational Resources Information Center
Connolly, Walter
1986-01-01
A relatively simple opto-electronic setup is described that utilizes a cadmium sulphide (CdS) photoconductive cell to detect resonance of a stretched vibrating string or wire. The display may be either an oscilloscope or a frequency counter. Also describes an inexpensive socket for flanged-base light bulbs. (JN)
Optically initiated silicon carbide high voltage switch
Caporaso, George J [Livermore, CA; Sampayan, Stephen E [Manteca, CA; Sullivan, James S [Livermore, CA; Sanders,; David, M [Livermore, CA
2011-02-22
An improved photoconductive switch having a SiC or other wide band gap substrate material, such as GaAs and field-grading liners composed of preferably SiN formed on the substrate adjacent the electrode perimeters or adjacent the substrate perimeters for grading the electric fields.
2008-12-31
component hybrid nanocrystals constituting pentacene or single wall carbon nanotube (SWCNT) as well as through control of interfacial chemistry and linkage...nanotubes-quantum dot conjugates or pentacene -quantum dot composits into organic matrices significantly improved photoconductivity of polymer/nanocrystal
NASA Astrophysics Data System (ADS)
Lin, Chaojing; Morita, Kyosuke; Muraki, Koji; Fujisawa, Toshimasa
2018-04-01
Edge magnetoplasmons (EMPs) are unidirectional charge density waves travelling in an edge channel of a two-dimensional electron gas in the quantum Hall regime. We present both generation and detection schemes with a photoconductive switch (PCS) for EMPs. Here, the conductance of the PCS is modulated by irradiation with a laser beam, whose amplitude can be modulated by an external signal. When the PCS is used as a generator, the electrical current from the PCS is injected into the edge channel to excite EMPs. When the PCS is used as a detector, the electronic potential induced by EMPs is applied to the PCS with a modulated laser beam so as to constitute a phase-sensitive measurement. For both experiments, we confirm that the time of flight for the EMPs increases with the magnetic field in agreement with the EMP characteristics. Combination of the two schemes would be useful in investigating and utilizing EMPs at higher frequencies.
Electrical and Optical Studies of Deep Levels in Nominally Undoped Thallium Bromide
NASA Astrophysics Data System (ADS)
Smith, Holland M.; Haegel, Nancy M.; Phillips, David J.; Cirignano, Leonard; Ciampi, Guido; Kim, Hadong; Chrzan, Daryl C.; Haller, Eugene E.
2014-02-01
Photo-induced conductivity transient spectroscopy (PICTS) and cathodoluminescence (CL) measurements were performed on nominally undoped detector grade samples of TlBr. In PICTS measurements, nine traps were detected in the temperature range 80-250 K using four-gate analysis. Five of the traps are tentatively identified as electron traps, and four as hole traps. CL measurements yielded two broad peaks common to all samples and most likely associated with defects. Correlations between the optically and electrically detected deep levels are considered. Above 250 K, the photoconductivity transients measured in the PICTS experiments exhibited anomalous transient behavior, indicated by non-monotonic slope variations as a function of time. The origin of the transients is under further investigation, but their presence precludes the accurate determination of trap parameters in TlBr above 250 K with traditional PICTS analysis. Their discovery was made possible by the use of a PICTS system that records whole photoconductivity transients, as opposed to reduced and processed signals.
Huang, Chen-Han; Lin, Hsing-Ying; Lau, Ben-Chao; Liu, Chih-Yi; Chui, Hsiang-Chen; Tzeng, Yonhua
2010-12-20
We report on plasmon induced optical switching of electrical conductivity in two-dimensional (2D) arrays of silver (Ag) nanoparticles encapsulated inside nanochannels of porous anodic aluminum oxide (AAO) films. The reversible switching of photoconductivity greatly enhanced by an array of closely spaced Ag nanoparticles which are isolated from each other and from the ambient by thin aluminum oxide barrier layers are attributed to the improved electron transport due to the localized surface plasmon resonance and coupling among Ag nanoparticles. The photoconductivity is proportional to the power, and strongly dependent on the wavelength of light illumination. With Ag nanoparticles being isolated from the ambient environments by a thin layer of aluminum oxide barrier layer of controlled thickness in nanometers to tens of nanometers, deterioration of silver nanoparticles caused by environments is minimized. The electrochemically fabricated nanostructured Ag/AAO is inexpensive and promising for applications to integrated plasmonic circuits and sensors.
Li, Wei-Shi; Saeki, Akinori; Yamamoto, Yohei; Fukushima, Takanori; Seki, Shu; Ishii, Noriyuki; Kato, Kenichi; Takata, Masaki; Aida, Takuzo
2010-07-05
To tailor organic p/n heterojunctions with molecular-level precision, a rational design strategy using side-chain incompatibility of a covalently connected donor-acceptor (D-A) dyad has been successfully carried out. An oligothiophene-perylenediimide dyad, when modified with triethylene glycol side chains at one terminus and dodecyl side chains at the other (2(Amphi)), self-assembles into nanofibers with a long-range D/A heterojunction. In contrast, when the dyad is modified with dodecyl side chains at both termini (2(Lipo)), ill-defined microfibers result. In steady-state measurements using microgap electrodes, a cast film of the nanofiber of 2(Amphi) displays far better photoconducting properties than that of the microfiber of 2(Lipo). Flash-photolysis time-resolved microwave conductivity measurements, in conjunction with transient absorption spectroscopy, clearly indicate that the nanofiber of 2(Amphi) intrinsically allows for better carrier generation and transport properties than the microfibrous assembly of 2(Lipo).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galiev, G. B.; Pushkarev, S. S., E-mail: s-s-e-r-p@mail.ru; Buriakov, A. M.
The efficiency of the generation and detection of terahertz radiation in the range up to 3 THz by LT-GaAs films containing equidistant Si doping δ layers and grown by molecular beam epitaxy on GaAs (100) and (111)Ga substrates is studied by terahertz spectroscopy. Microstrip photoconductive antennas are fabricated on the film surface. Terahertz radiation is generated by exposure of the antenna gap to femtosecond optical laser pulses. It is shown that the intensity of terahertz radiation from the photoconductive antenna on LT-GaAs/GaAs (111)Ga is twice as large as the intensity of a similar antenna on LT-GaAs/GaAs(100) and the sensitivity ofmore » the antenna on LT-GaAs/GaAs (111)Ga as a terahertz-radiation detector exceeds that of the antenna on LT-GaAs/GaAs(100) by a factor of 1.4.« less
NASA Astrophysics Data System (ADS)
Bodnarchuk, Maryna I.; Yakunin, Sergii; Piveteau, Laura; Kovalenko, Maksym V.
2015-12-01
Colloidal inorganic nanocrystals (NCs), functionalized with inorganic capping ligands, such as metal chalcogenide complexes (MCCs), have recently emerged as versatile optoelectronic materials. As-prepared, highly charged MCC-capped NCs are dispersible only in highly polar solvents, and lack the ability to form long-range ordered NC superlattices. Here we report a simple and general methodology, based on host-guest coordination of MCC-capped NCs with macrocyclic ethers (crown ethers and cryptands), enabling the solubilization of inorganic-capped NCs in solvents of any polarity and improving the ability to form NC superlattices. The corona of organic molecules can also serve as a convenient knob for the fine adjustment of charge transport and photoconductivity in films of NCs. In particular, high-infrared-photon detectivities of up to 3.3 × 1011 Jones with a fast response (3 dB cut-off at 3 kHz) at the wavelength of 1,200 nm were obtained with films of PbS/K3AsS4/decyl-18-crown-6 NCs.
NASA Astrophysics Data System (ADS)
Rao, G. Babu; Rajesh, P.; Ramasamy, P.
2017-06-01
Dye inclusion crystals have attracted researchers in the context of crystal growth for applications in solid state lasers. Pure and 0.1 mol% amaranth doped KAP single crystals, were grown from aqueous solutions by slow evaporation technique at room temperature. The grown crystals are up to the dimension of 12×10×3 mm3. Attempt is made to improve the growth rate, optical, piezoelectric and photoconductive properties of pure KAP single crystal with addition of amaranth dye as a dopant. Various characterization studies were made for both pure and dye doped KAP. Thermal stability of the crystals is tested from thermogravimetric and differential thermal analysis (TG/DTA). There is only one endothermic peak indicating decomposition point. Higher optical transparency for dye doped KAP crystal was identified from the UV-vis spectrum. Etching studies showed an improvement in the optical quality of the KAP crystal after doping with amaranth dye. The positive photoconductive nature is observed from both pure and amaranth doped KAP.
Supramolecular core-shell nanoparticles for photoconductive device applications
NASA Astrophysics Data System (ADS)
Cheng, Chih-Chia; Chen, Jem-Kun; Shieh, Yeong-Tarng; Lee, Duu-Jong
2016-08-01
We report a breakthrough discovery involving supramolecular-based strategies to construct novel core-shell heterojunction nanoparticles with hydrophilic adenine-functionalized polythiophene (PAT) as the core and hydrophobic phenyl-C61-butyric acid methyl ester (PCBM) as the shell, which enables the conception of new functional supramolecular assemblies for constructing functional nanomaterials for applications in optoelectronic devices. The generated nanoparticles exhibit uniform spherical shape, well-controlled tuning of particle size with narrow size distributions, and excellent electrochemical stability in solution and the solid state owing to highly efficient energy transfer from PAT to PCBM. When the PAT/PCBM nanoparticles were fabricated into a photoconducting layer in an electronic device, the resulting device showed excellent electric conduction characteristics, including an electrically-tunable voltage-controlled switch, and high short-circuit current and open-circuit voltage. These observations demonstrate how the self-assembly of PAT/PCBM into specific nanostructures may help to promote efficient charge generation and transport processes, suggesting potential for a wide variety of applications as a promising candidate material for bulk heterojunction polymer devices.
NASA Astrophysics Data System (ADS)
Stephens, A. W.; Green, M. A.
1996-10-01
A method for measuring minority-carrier mobility using microwave-detected photoconductance decay without requiring bulk lifetime, estimates is presented. Three different measurements on a single sample yield values for surface recombination velocity, bulk lifetime, and diffusivity. For each measurement the surface conditions of the sample are changed, allowing extraction of different parameters. The usefulness of 0.08 molar ethanol/iodine solution as a means of achieving such good surface passivation is demonstrated. The following procedure was used to achieve high surface recombination. A CF4 plasma surface etch was shown to achieve the same level of surface damage as mechanical abrasion. The advantage of the new method is that it completely eliminates the chance of breaking samples during the abrasion process, which is of particular advantage for thin samples. The new experimental method for minority-carrier mobility measurement is evaluated using carrier lifetime measurements made on a commercially available Leo Giken ``Wafer-τ'' lifetime tester.
NASA Astrophysics Data System (ADS)
Patsha, Avinash; Pandian, Ramanathaswamy; Dhara, Sandip; Tyagi, A. K.
2015-10-01
The electrical and photodiode characteristics of ensemble and single p-GaN nanowire and n-Si heterojunction devices were studied. Ideality factor of the single nanowire p-GaN/n-Si device was found to be about three times lower compared to that of the ensemble nanowire device. Apart from the deep-level traps in p-GaN nanowires, defect states due to inhomogeneity in Mg dopants in the ensemble nanowire device are attributed to the origin of the high ideality factor. Photovoltaic mode of the ensemble nanowire device showed an improvement in the fill-factors up to 60% over the single nanowire device with fill-factors up to 30%. Responsivity of the single nanowire device in the photoconducting mode was found to be enhanced by five orders, at 470 nm. The enhanced photoresponse of the single nanowire device also confirms the photoconduction due to defect states in p-GaN nanowires.
Applying contact to individual silicon nanowires using a dielectrophoresis (DEP)-based technique
NASA Astrophysics Data System (ADS)
Leiterer, Christian; Broenstrup, Gerald; Jahr, Norbert; Urban, Matthias; Arnold, Cornelia; Christiansen, Silke; Fritzsche, Wolfgang
2013-05-01
One major challenge for the technological use of nanostructures is the control of their electrical and optoelectronic properties. For that purpose, extensive research into the electrical characterization and therefore a fast and reliable way of contacting these structures are needed. Here, we report on a new, dielectrophoresis (DEP)-based technique, which enables to apply sufficient and reliable contact to individual nanostructures, like semiconducting nanowires (NW), easily and without the need for lithography. The DEP contacting technique presented in this article can be done without high-tech equipment and monitored in situ with an optical microscope. In the presented experiments, individual SiNWs are trapped and subsequently welded between two photolithographically pre-patterned electrodes by applying varying AC voltages to the electrodes. To proof the quality of these contacts, I-V curves, photoresponse and photoconductivity of a single SiNW were measured. Furthermore, the measured photoconductivity in dependence on the wavelength of illuminated light and was compared with calculations predicting the absorption spectra of an individual SiNW.
Nanoparticle-assisted high photoconductive gain in polymer/fullerene matrix
Chen, Hsiang-Yu; Lo, Michael K. F.; Yang, Guanwen; Monbouquette, Harold G.; Yang, Yang
2014-01-01
Polymer/inorganic nanocrystal composites1–10 offer an attractive means to combine the merits of organic and inorganic materials into novel electronic and photonic systems. However, many applications of these composites are limited by the solubility11 and distribution of nanocrystals (NCs) in polymer matrices. Here, a high photoconductive gain has been achieved by blending cadmium telluride (CdTe) nanoparticles (NPs) into a polymer/fullerene matrix followed by a solvent annealing12 process. The NP surface capping ligand, N-phenyl-N’-methyldithiocarbamate, renders the NPs highly soluble in the polymer blend thereby enabling high nanocrystal loadings. An external quantum efficiency (EQE) as high as ~8000% (at 350nm) is reached at −4.5V. Hole-dominant devices coupled with AFM images are studied to uncover the probable mechanism. We observe a higher concentration of CdTe NPs is located near the cathode/polymer interface. These NPs with trapped electrons assist hole injection into the polymer under reverse bias, which contributes to greater than 100% EQE. PMID:18772915
Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy.
Joyce, Hannah J; Wong-Leung, Jennifer; Yong, Chaw-Keong; Docherty, Callum J; Paiman, Suriati; Gao, Qiang; Tan, H Hoe; Jagadish, Chennupati; Lloyd-Hughes, James; Herz, Laura M; Johnston, Michael B
2012-10-10
Using transient terahertz photoconductivity measurements, we have made noncontact, room temperature measurements of the ultrafast charge carrier dynamics in InP nanowires. InP nanowires exhibited a very long photoconductivity lifetime of over 1 ns, and carrier lifetimes were remarkably insensitive to surface states despite the large nanowire surface area-to-volume ratio. An exceptionally low surface recombination velocity (170 cm/s) was recorded at room temperature. These results suggest that InP nanowires are prime candidates for optoelectronic devices, particularly photovoltaic devices, without the need for surface passivation. We found that the carrier mobility is not limited by nanowire diameter but is strongly limited by the presence of planar crystallographic defects such as stacking faults in these predominantly wurtzite nanowires. These findings show the great potential of very narrow InP nanowires for electronic devices but indicate that improvements in the crystallographic uniformity of InP nanowires will be critical for future nanowire device engineering.
NASA Astrophysics Data System (ADS)
Clay, Robert D.; Clay, John P.
1984-12-01
Clay Engineering Inc. currently has a proposal before DARPA to manufacture large optical quality diamond for use as optical material. The manufactured diamond will be approximately 100 mm in diameter by 100 mm long. The cost of producing the diamond is expected to be three dollars per carat. It is expected that total impurities of a few parts per billion can readily be obtained. A study of diamond is a study of the effects of impurities. The elements boron and nitrogen can replace carbon atoms in the lattice structure, making diamond a "P" or "N" type semiconductor. Diamonds which are not semiconductors are classified as type IIa. The presence of B or N in the lattice causes diamond to photoconduct in ultraviolet light. All type I and III) and most type IIa diamonds photoconduct. The manufactured diamond will not photoconduct and will have an electrical resistivity greater than 1018 ohm*m. All non-lattice impurities are in the form of inclusions which dramatically affect the mechanical properties of diamond. High purity diamond has a coefficient of absorption of order 10-3 cm-1 at wavelengths of 8 to 12 micro metres, which makes it useful for infrared applications. It also has a low coefficient of absorption at wavelengths greater than 12 micro metres. For missile and aircraft applications, diamond is relatively immune to erosion or pitting damage by sand and rain. Diamond will readily withstand the stagnation temperature of Mach 3 flight and will go to Mach 4.8 with an anti-reflective coating to protect it from oxygen attack. Diamond is highly resistant to thermal shock, which makes it valuable for high energy laser applications. Using R = St (1-)) k/Ea as a measure of thermal shock resistance, diamond is 107 w/m vs "sapphire" and Zerodur at 104 and fused quartz at 1.45x103. Diamond does not perform well in the 2.5-7.5 micro metres and less than 0.4 micro metres wavelengths. Intense beams of less than 0.4 micro metres energy can create color centers in diamond. For laser pulses of such short duration that thermal shock is not a problem, diamond will take less peak power than some competing materials, such as quartz. One could take advantage of the superior strength of diamond and use a thinner slice to obtain equal peak power capacity.
Green synthesis of water soluble semiconductor nanocrystals and their applications
NASA Astrophysics Data System (ADS)
Wang, Ying
II-VI semiconductor nanomaterials, e.g. CdSe and CdTe, have attracted great attention over the past decades due to their fascinating optical and electrical properties. The research presented here focuses on aqueous semiconductor nanomaterials. The work can be generally divided into three parts: synthesis, property study and application. The synthetic work is devoted to develop new methods to prepare shape- and structure-controlled II-VI semiconductor nanocrystals including nanoparticles and nanowires. CdSe and CdSe CdS semiconductor nanocrystals have been synthesized using sodium citrate as a stabilizer. Upon prolonged illumination with visible light, photoluminescence quantum yield of those quantum dots can be enhanced up to 5000%. The primary reason for luminescence enhancement is considered to be the removing of specific surface states (photocorrosion) and the smoothing of the CdSe core surface (photoannealing). CdTe nanowires are prepared through self-organization of stabilizer-depleted CdTe nanoparticles. The dipolar-dipolar attraction is believed to be the driving force of nanowire formation. The rich surface chemistry of CdTe nanowire is reflected by the formation of silica shell with different morphologies when nanowires with different capping ligands are used. Te and Se nanowires are prepared by chemical decomposition of CdTe and CdSe nanoparticles in presence of an external chemical stimulus, EDTA. These results not only provide a new example of NP→NW transformation, but also lead to a better understanding of the molecular process occurring in the stabilizer-depleted nanoparticles. The applications of those semiconductor materials are primarily based on the construction of nano-structured ultrathin films with desirable functions by using layer-by-layer technique (LBL). We demonstrate that light-induced micro-scale multicolor luminescent patterns can be obtained on photoactivable CdSe/CdS nanoparticles thin films by combining the advantages of LBL as well as high-throughput and simplicity of photolithography. Photoconductive LBL thin films are fabricated from Te nanowires. The thin film has distinctively metallic mirror-like appearance and displays strong photoconductance effect characteristic of narrow band-gap semiconductors. In-situ reduction of gold results in formation of Au nanoparticles adhering to Te nanowires, which leads to the disappearance of photoconductivity of the Te thin film. Those nanomaterials are considered for various applications, such as light emitting devices, data storage materials, biosensors, photodetectors.
Behavior of temperature-dependent dc-photoconductivity in hot-wall deposited CaAl2Se4 layers
NASA Astrophysics Data System (ADS)
Jeong, J. W.; Hong, K. J.; Jeong, T. S.; Youn, C. J.
2017-10-01
The dc-photoconductive characteristic on the hot-wall grown CaAl2Se4 (CAS) layers was explored as a function of temperature. From the photocurrent (PC) measurement, three PC peaks A, B, and C corresponded to the intrinsic transitions, which represent the band-to-band transitions from the valence-band states of Γ2(A), Γ3 + Γ4(B), and Γ3 + Γ4(C) to the conduction-band state of Γ1, respectively. Based on these PC results, the optical band-gap energy was well matched by E g ( T) = E g (0) - 4.94 × 10-3 T 2/( T + 552), where E g (0) is found to be 3.8239, 3.8716, and 3.8801 eV for three peaks A, B, and C, respectively. Thus, the effect of the crystal field and spin-orbit splitting (These values were extracted out to be 47.7 and 8.5 meV, respectively.) was observed and calculated by means of the PC spectroscopy. However, PC intensity gradually decreased with decreasing temperature unlike an ordinary behavior. In the log J ph vs 1/ T plot, two dominant traplevels were observed to be 20.81 meV at temperatures of 300 - 70 K and 1.18 meV at temperatures below 70 K. Consequently, we extract out that these trapping centers caused by native defects in CAS confine the PC intensity as temperature decreases.
Compact optical transconductance varistor
Sampayan, Stephen
2015-09-22
A compact radiation-modulated transconductance varistor device having both a radiation source and a photoconductive wide bandgap semiconductor material (PWBSM) integrally formed on a substrate so that a single interface is formed between the radiation source and PWBSM for transmitting PWBSM activation radiation directly from the radiation source to the PWBSM.
Nonlinear Optical Properties of Semiconducting Polymers
1990-10-26
harmonic geberation in both cis and trans- polyacetylene. in the fast transient photoconductivity area, we will attempt to move into the sub-picosecond...addition, we plan to carry out a full spectroscopy (ir through visible) of third harmonic geberation in both cis and trans- polyacetylene. In the fast
Sharp, Kenneth G.; D'Errico, John J.
1988-01-01
The invention relates to a method of forming amorphous, photoconductive, and semiconductive silicon films on a substrate by the vapor phase thermal decomposition of a fluorohydridodisilane or a mixture of fluorohydridodisilanes. The invention is useful for the protection of surfaces including electronic devices.
Optically-initiated silicon carbide high voltage switch with contoured-profile electrode interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, James S.; Hawkins, Steven A.
An improved photoconductive switch having a SiC or other wide band gap substrate material with opposing contoured profile cavities which have a contoured profile selected from one of Rogowski, Bruce, Chang, Harrison, and Ernst profiles, and two electrodes with matching contoured-profile convex interface surfaces.
NASA Technical Reports Server (NTRS)
Hill, Scott M.; Claspy, Paul C.
1988-01-01
Interdigitated photoconductive detectors of various geometries were fabricated on AlGaAs/GaAs heterostructure material. The processes used in the fabrication of these devices are described, and the results of a study of their optical and electrical characteristics are presented.
NASA Astrophysics Data System (ADS)
Jang, Jun Tae; Ko, Daehyun; Choi, Sungju; Kang, Hara; Kim, Jae-Young; Yu, Hye Ri; Ahn, Geumho; Jung, Haesun; Rhee, Jihyun; Lee, Heesung; Choi, Sung-Jin; Kim, Dong Myong; Kim, Dae Hwan
2018-02-01
In this study, we investigated how the structure and oxygen flow rate (OFR) during the sputter-deposition affects the photo-responses of amorphous indium-gallium-zinc-oxide (a-IGZO)-based photodetector devices. As the result of comparing three types of device structures with one another, which are a global Schottky diode, local Schottky diode, and thin-film transistor (TFT), the IGZO TFT with the gate pulse technique suppressing the persistent photoconductivity (PPC) is the most promising photodetector in terms of a high photo-sensitivity and uniform sensing characteristic. In order to analyze the IGZO TFT-based photodetectors more quantitatively, the time-evolution of sub-gap density-of-states (DOS) was directly observed under photo-illumination and consecutively during the PPC-compensating period with applying the gate pulse. It shows that the increased ionized oxygen vacancy (VO2+) defects under photo-illumination was fully recovered by the positive gate pulse and even overcompensated by additional electron trapping. Based on experimentally extracted sub-gap DOS, the origin on PPC was successfully decomposed into the hole trapping and the VO ionization. Although the VO ionization is enhanced in lower OFR (O-poor) device, the PPC becomes more severe in high OFR (O-rich) device because the hole trapping dominates the PPC in IGZO TFT under photo-illumination rather than the VO ionization and more abundant holes are trapped into gate insulator and/or interface in O-rich TFTs. Similarly, the electron trapping during the PPC-compensating period with applying the positive gate pulse becomes more prominent in O-rich TFTs. It is attributed to more hole/electron traps in the gate insulator and/or interface, which is associated with oxygen interstitials, or originates from the ion bombardment-related lower quality gate oxide in O-rich devices.
Shekhar, Shashank; Cho, Duckhyung; Cho, Dong-Guk; Yang, Myungjae; Hong, Seunghun
2018-05-18
We develolped a method to directly image the nanoscale effects of localized noise-source activities on photoconducting charge transports in domain structures of phase-separated polymer-blend films of Poly(9,9-di-n-octylfluorenyl-2,7-diyl) and Poly(9,9-di-n-octylfluorene-alt-benzothiadiazole). For the imaging, current and noise maps of the polymer-blend were recorded using a conducting nanoprobe in contact with the surface, enabling the conductivity (σ) and noise-source density (N T ) mappings under an external stimulus. The blend-films exhibited the phase-separation between the constituent polymers at domains level. Within a domain, high σ (low N T ) and low σ (high N T ) regions were observed, which could be associated with the ordered and disordered regions of a domain. In the N T maps, we observed that noise-sources strongly affected the conduction mechanism, resulting in a scaling behavior of σ ∝ [Formula: see text] in both ordered and disordered regions. When a blend film was under an influence of an external stimulus such as a high bias or an illumination, an increase in the σ was observed, but that also resulted in increases in the N T as a trade-off. Interestingly, the Δσ versus ΔN T plot exhibited an unusual scaling behavior of Δσ ∝ [Formula: see text] which is attributed to the de-trapping of carriers from deep traps by the external stimuli. In addition, we found that an external stimulus increased the conductivity at the interfaces without significantly increasing their N T , which can be the origin of the superior performances of polymer-blend based devices. These results provide valuable insight about the effects of noise-sources on nanoscale optoelectronic properties in polymer-blend films, which can be an important guideline for improving devices based on polymer-blend.
NASA Astrophysics Data System (ADS)
Shekhar, Shashank; Cho, Duckhyung; Cho, Dong-Guk; Yang, Myungjae; Hong, Seunghun
2018-05-01
We develolped a method to directly image the nanoscale effects of localized noise-source activities on photoconducting charge transports in domain structures of phase-separated polymer-blend films of Poly(9,9-di-n-octylfluorenyl-2,7-diyl) and Poly(9,9-di-n-octylfluorene-alt-benzothiadiazole). For the imaging, current and noise maps of the polymer-blend were recorded using a conducting nanoprobe in contact with the surface, enabling the conductivity (σ) and noise-source density (N T) mappings under an external stimulus. The blend-films exhibited the phase-separation between the constituent polymers at domains level. Within a domain, high σ (low N T) and low σ (high N T) regions were observed, which could be associated with the ordered and disordered regions of a domain. In the N T maps, we observed that noise-sources strongly affected the conduction mechanism, resulting in a scaling behavior of σ ∝ {{N}{{T}}}-0.5 in both ordered and disordered regions. When a blend film was under an influence of an external stimulus such as a high bias or an illumination, an increase in the σ was observed, but that also resulted in increases in the N T as a trade-off. Interestingly, the Δσ versus ΔN T plot exhibited an unusual scaling behavior of Δσ ∝ {{Δ }}{{N}{{T}}}0.5, which is attributed to the de-trapping of carriers from deep traps by the external stimuli. In addition, we found that an external stimulus increased the conductivity at the interfaces without significantly increasing their N T, which can be the origin of the superior performances of polymer-blend based devices. These results provide valuable insight about the effects of noise-sources on nanoscale optoelectronic properties in polymer-blend films, which can be an important guideline for improving devices based on polymer-blend.
Coupling and decoupling of the accelerating units for pulsed synchronous linear accelerator
NASA Astrophysics Data System (ADS)
Shen, Yi; Liu, Yi; Ye, Mao; Zhang, Huang; Wang, Wei; Xia, Liansheng; Wang, Zhiwen; Yang, Chao; Shi, Jinshui; Zhang, Linwen; Deng, Jianjun
2017-12-01
A pulsed synchronous linear accelerator (PSLA), based on the solid-state pulse forming line, photoconductive semiconductor switch, and high gradient insulator technologies, is a novel linear accelerator. During the prototype PSLA commissioning, the energy gain of proton beams was found to be much lower than expected. In this paper, the degradation of the energy gain is explained by the circuit and cavity coupling effect of the accelerating units. The coupling effects of accelerating units are studied, and the circuit topologies of these two kinds of coupling effects are presented. Two methods utilizing inductance and membrane isolations, respectively, are proposed to reduce the circuit coupling effects. The effectiveness of the membrane isolation method is also supported by simulations. The decoupling efficiency of the metal drift tube is also researched. We carried out the experiments on circuit decoupling of the multiple accelerating cavity. The result shows that both circuit decoupling methods could increase the normalized voltage.
Optically controlled redshift switching effects in hybrid fishscale metamaterials
NASA Astrophysics Data System (ADS)
Wang, Yu; Zhu, Jinwei; Zhang, Hao; Zhang, Wenxing; Dong, Guohua; Ye, Peng; Lv, Tingting; Zhu, Zheng; Li, Yuxiang; Guan, Chunying; Shi, Jinhui
2018-05-01
We numerically demonstrate optically controlled THz response in a hybrid fishscale metamaterial with embedded photoconductive silicon at oblique incidence of TE wave. The oblique incidence allows excitation of Fano-type trapped mode resonance in a 2-fold rotational symmetric metamaterial. The hybrid fishscale metamaterial exhibits an optically controlled redshift switching effect in the THz range. The switching effect is dominated by the conductivity of the silicon instead of mechanically adjusting angles of incidence. The tuning frequency range is up to 0.3THz with a large modulation depth and high transmission in the "ON" state. The fishscale metamaterial-based switching has been experimentally verified by its microwave counterpart integrated by variable resistors. Our work provides an alternative route to realize tunable Fano-type response in metamaterials and is of importance to active manipulation, sensing and switching of THz waves in practical applications.
Additives to silane for thin film silicon photovoltaic devices
Hurley, Patrick Timothy; Ridgeway, Robert Gordon; Hutchison, Katherine Anne; Langan, John Giles
2013-09-17
Chemical additives are used to increase the rate of deposition for the amorphous silicon film (.alpha.Si:H) and/or the microcrystalline silicon film (.mu.CSi:H). The electrical current is improved to generate solar grade films as photoconductive films used in the manufacturing of Thin Film based Photovoltaic (TFPV) devices.
Quantum Dot Detector Enhancement for Narrow Band Multispectral Applications
2013-12-01
19 2.4.3 Dark Current and Noise Current Measurement of QDIPs ............................ 20 3.0...Current of QDIPs Measured by Source Meter .................................................. 21 Figure 20: Schematic View of Noise Current Setup...Photodetectors, or QWIPs ), reduced dependence of the carrier distribution on the temperature, higher photoconductive gain, carrier lifetimes 10-100 times
NASA Astrophysics Data System (ADS)
Rajesh, K.; Arun, A.; Mani, A.; Praveen Kumar, P.
2016-10-01
The 4-methylimidazolium picrate has been synthesized and characterized successfully. Single and powder x-ray diffraction studies were conducted which confirmed the crystal structure, and the value of the strain was calculated. The crystal perfection was determined by a HRXR diffractometer. The transmission spectrum exhibited a better transmittance of the crystal in the entire visible region with a lower cut-off wavelength of 209 nm. The linear absorption value was calculated by the optical limiting method. A birefringence study was also carried out. Second and third order nonlinear optical properties of the crystal were found by second harmonic generation and the z-scan technique. The crystals were also characterized by dielectric measurement and a photoconductivity analyzer to determine the dielectric property and the optical conductivity of the crystal. The laser damage threshold activity of the grown crystal was studied by a Q-switched Nd:YAG laser beam. Thermal studies established that the compound did not undergo a phase transition and was stable up to 240 °C.
Bias-switchable negative and positive photoconductivity in 2D FePS3 ultraviolet photodetectors.
Gao, Yi; Lei, Shuijin; Kang, Tingting; Fei, Linfeng; Mak, Chee-Leung; Yuan, Jian; Zhang, Mingguang; Li, Shaojuan; Bao, Qiaoliang; Zeng, Zhongming; Wang, Zhao; Gu, Haoshuang; Zhang, Kai
2018-06-15
Metal-phosphorus-trichalcogenides (MPTs), represented by NiPS 3 , FePS 3 , etc, are newly developed 2D wide-bandgap semiconductors and have been proposed as excellent candidates for ultraviolet (UV) optoelectronics. In spite of having superior advantages for solar-blind UV photodetectors, including those free of surface trap states, being highly compatible with versatile integrations as well as having an appropriate band gap, to date relevant study is rare. In this work, the photoresponse characteristic of UV detectors based on few-layer FePS 3 has been comprehensively investigated. The responsivity of the photodetector, which is observed to be determined by bias gate voltage, may achieve as high as 171.6 mAW -1 under the illumination of 254 nm weak light, which is comparable to most commercial UV detectors. Notably, both negative and positive photoconductivities exist in the FePS 3 photodetectors and can be controllably switched with bias voltage. The eminent and novel photoresponse property paves the way for the further development and practical use of 2D MPTs in high-performance UV photodetections.
Bodnarchuk, Maryna I; Yakunin, Sergii; Piveteau, Laura; Kovalenko, Maksym V
2015-12-09
Colloidal inorganic nanocrystals (NCs), functionalized with inorganic capping ligands, such as metal chalcogenide complexes (MCCs), have recently emerged as versatile optoelectronic materials. As-prepared, highly charged MCC-capped NCs are dispersible only in highly polar solvents, and lack the ability to form long-range ordered NC superlattices. Here we report a simple and general methodology, based on host-guest coordination of MCC-capped NCs with macrocyclic ethers (crown ethers and cryptands), enabling the solubilization of inorganic-capped NCs in solvents of any polarity and improving the ability to form NC superlattices. The corona of organic molecules can also serve as a convenient knob for the fine adjustment of charge transport and photoconductivity in films of NCs. In particular, high-infrared-photon detectivities of up to 3.3 × 10(11) Jones with a fast response (3 dB cut-off at 3 kHz) at the wavelength of 1,200 nm were obtained with films of PbS/K3AsS4/decyl-18-crown-6 NCs.
NASA Astrophysics Data System (ADS)
Shanmugavadivu, T.; Dhandapani, M.; Naveen, S.; Lokanath, N. K.
2017-09-01
An organic NLO active material N,N‧-diphenylguanidinium picrate: diacetone solvate (C13H14N3+. C6H2N3O7-. 2C3H6O) (DPGPD) was synthesized and single crystals were grown by slow evaporation-solution growth technique at room temperature. DPGPD crystallizes in monoclinic crystal system with noncentrosymmetric space group, Cc confirmed by single crystal X-ray diffraction analysis. The presence of various functional groups was identified from FT-IR spectral analysis and the proton transfer during the formation of compound was confirmed by NMR spectroscopic techniques. The thermal stability was investigated by TG/DTA analyses. Optical transmittance was measured by UV-Vis-NIR spectroscopy and band gap energy was calculated. Photoluminescence spectrum was used to explore its applicability towards laser diodes. Dielectric property of the material was ascertained at different temperatures and it is found that the grown crystal has higher dielectric constant in low frequencies. Photoconductivity study revealed that DPGPD exhibits positive photoconductivity. SHG property was found to be 0.6 times higher than that of KDP.
Interplay of hot electrons from localized and propagating plasmons.
Hoang, Chung V; Hayashi, Koki; Ito, Yasuo; Gorai, Naoki; Allison, Giles; Shi, Xu; Sun, Quan; Cheng, Zhenzhou; Ueno, Kosei; Goda, Keisuke; Misawa, Hiroaki
2017-10-03
Plasmon-induced hot-electron generation has recently received considerable interest and has been studied to develop novel applications in optoelectronics, photovoltaics and green chemistry. Such hot electrons are typically generated from either localized plasmons in metal nanoparticles or propagating plasmons in patterned metal nanostructures. Here we simultaneously generate these heterogeneous plasmon-induced hot electrons and exploit their cooperative interplay in a single metal-semiconductor device to demonstrate, as an example, wavelength-controlled polarity-switchable photoconductivity. Specifically, the dual-plasmon device produces a net photocurrent whose polarity is determined by the balance in population and directionality between the hot electrons from localized and propagating plasmons. The current responsivity and polarity-switching wavelength of the device can be varied over the entire visible spectrum by tailoring the hot-electron interplay in various ways. This phenomenon may provide flexibility to manipulate the electrical output from light-matter interaction and offer opportunities for biosensors, long-distance communications, and photoconversion applications.Plasmon-induced hot electrons have potential applications spanning photodetection and photocatalysis. Here, Hoang et al. study the interplay between hot electrons generated by localized and propagating plasmons, and demonstrate wavelength-controlled polarity-switchable photoconductivity.
Structural, photoconductivity, and dielectric studies of polythiophene-tin oxide nanocomposites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murugavel, S., E-mail: starin85@gmail.com; Malathi, M., E-mail: mmalathi@vit.ac.in
2016-09-15
Highlights: • Synthesis of polythiophene-tin oxide nanocomposites confirmed by FTIR and EDAX. • SEM shows SnO{sub 2} nanoparticles embedded within polythiophene matrix. • Stability and isoelectric point suggest nanoparticle–matrix interaction. • High dielectric constant due to high Maxwell–Wagner interfacial polarization. - Abstract: Polythiophene-tinoxide (PT-SnO{sub 2}) nanocomposites were prepared by in situ chemical oxidative polymerization, in the presence of various concentrations of SnO{sub 2} nanoparticles. Samples were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy and Zeta potential measurements. Morphologies and elemental compositions were investigated by transmission electron microscopy, field-emission scanning electron microscopy and energy-dispersive X-ray spectroscopy.more » The photoconductivity of the nanocomposites was studied by field-dependent dark and photo conductivity measurements. Their dielectric properties were investigated using dielectric spectroscopy, in the frequency range of 1kHz–1 MHz. The results indicated that the SnO{sub 2} nanoparticles in the PT-SnO{sub 2} nanocomposite were responsible for its enhanced dielectric performance.« less
Bias-switchable negative and positive photoconductivity in 2D FePS3 ultraviolet photodetectors
NASA Astrophysics Data System (ADS)
Gao, Yi; Lei, Shuijin; Kang, Tingting; Fei, Linfeng; Mak, Chee-Leung; Yuan, Jian; Zhang, Mingguang; Li, Shaojuan; Bao, Qiaoliang; Zeng, Zhongming; Wang, Zhao; Gu, Haoshuang; Zhang, Kai
2018-06-01
Metal-phosphorus-trichalcogenides (MPTs), represented by NiPS3, FePS3, etc, are newly developed 2D wide-bandgap semiconductors and have been proposed as excellent candidates for ultraviolet (UV) optoelectronics. In spite of having superior advantages for solar-blind UV photodetectors, including those free of surface trap states, being highly compatible with versatile integrations as well as having an appropriate band gap, to date relevant study is rare. In this work, the photoresponse characteristic of UV detectors based on few-layer FePS3 has been comprehensively investigated. The responsivity of the photodetector, which is observed to be determined by bias gate voltage, may achieve as high as 171.6 mAW‑1 under the illumination of 254 nm weak light, which is comparable to most commercial UV detectors. Notably, both negative and positive photoconductivities exist in the FePS3 photodetectors and can be controllably switched with bias voltage. The eminent and novel photoresponse property paves the way for the further development and practical use of 2D MPTs in high-performance UV photodetections.
Bodnarchuk, Maryna I.; Yakunin, Sergii; Piveteau, Laura; Kovalenko, Maksym V.
2015-01-01
Colloidal inorganic nanocrystals (NCs), functionalized with inorganic capping ligands, such as metal chalcogenide complexes (MCCs), have recently emerged as versatile optoelectronic materials. As-prepared, highly charged MCC-capped NCs are dispersible only in highly polar solvents, and lack the ability to form long-range ordered NC superlattices. Here we report a simple and general methodology, based on host–guest coordination of MCC-capped NCs with macrocyclic ethers (crown ethers and cryptands), enabling the solubilization of inorganic-capped NCs in solvents of any polarity and improving the ability to form NC superlattices. The corona of organic molecules can also serve as a convenient knob for the fine adjustment of charge transport and photoconductivity in films of NCs. In particular, high-infrared-photon detectivities of up to 3.3 × 1011 Jones with a fast response (3 dB cut-off at 3 kHz) at the wavelength of 1,200 nm were obtained with films of PbS/K3AsS4/decyl-18-crown-6 NCs. PMID:26647828
Magnetic field tunability of spin polarized excitations in a high temperature magnet
NASA Astrophysics Data System (ADS)
Holinsworth, Brian; Sims, Hunter; Cherian, Judy; Mazumdar, Dipanjan; Harms, Nathan; Chapman, Brandon; Gupta, Arun; McGill, Steve; Musfeldt, Janice
Magnetic semiconductors are at the heart of modern device physics because they naturally provide a non-zero magnetic moment below the ordering temperature, spin-dependent band gap, and spin polarization that originates from exchange-coupled magnetization or an applied field creating a spin-split band structure. Strongly correlated spinel ferrites are amongst the most noteworthy contenders for semiconductor spintronics. NiFe2O4, in particular, displays spin-filtering, linear magnetoresistance, and wide application in the microwave regime. To unravel the spin-charge interaction in NiFe2O4, we bring together magnetic circular dichroism, photoconductivity, and prior optical absorption with complementary first principles calculations. Analysis uncovers a metamagnetic transition modifying electronic structure in the minority channel below the majority channel gap, exchange splittings emerging from spin-split bands, anisotropy of excitons surrounding the indirect gap, and magnetic-field dependent photoconductivity. These findings open the door for the creation and control of spin-polarized excitations from minority channel charge charge transfer in NiFe2O4 and other members of the spinel ferrite family.
NASA Astrophysics Data System (ADS)
Solanki, S. Siva Bala; Rajesh, N. P.; Suthan, T.
2018-07-01
The benzyl 4-hydroxybenzoate single crystal has been grown by vertical Bridgman technique. The grown crystal was confirmed by single crystal X-ray diffraction studies. The presence of functional groups in the crystal was confirmed by Fourier transform infrared (FTIR) spectral studies. The thermal behaviour of the grown crystal was analyzed by thermogravimetric analysis (TGA), differential thermal analysis (DTA) and differential scanning calorimetric (DSC) studies. Optical behaviour of the grown benzyl 4-hydroxybenzoate crystal was studied by UV-Vis-NIR spectral analysis. Fluorescence spectrum shows near violet light emission. The second harmonic generation behaviour of benzyl 4-hydroxybenzoate was analyzed. The laser damage threshold value of benzyl 4-hydroxybenzoate was measured as 2.16 GW/cm2. The dielectric measurements of benzyl 4-hydroxybenzoate crystal were carried out with different frequencies 1 kHz to 1 MHz versus different temperatures ranging from 313 to 353 K. Photoconductivity study shows that the grown benzyl 4-hydroxybenzoate crystal belongs to negative photoconductivity property. The mechanical strength of the crystal was calculated by Vickers microhardness study.
Ultrafast Spectral Photoresponse of Bilayer Graphene: Optical Pump-Terahertz Probe Spectroscopy.
Kar, Srabani; Nguyen, Van Luan; Mohapatra, Dipti R; Lee, Young Hee; Sood, A K
2018-02-27
Photoinduced terahertz conductivity Δσ(ω) of Bernal stacked bilayer graphene (BLG) with different dopings is measured by time-resolved optical pump terahertz probe spectroscopy. The real part of photoconductivity Δσ(ω) (Δσ Re (ω)) is positive throughout the spectral range 0.5-2.5 THz in low-doped BLG. This is in sharp contrast to Δσ(ω) for high-doped bilayer graphene where Δσ Re (ω) is negative at low frequency and positive on the high frequency side. We use Boltzmann transport theory to understand quantitatively the frequency dependence of Δσ(ω), demanding the energy dependence of different scattering rates such as short-range impurity scattering, Coulomb scattering, carrier-acoustic phonon scattering, and substrate surface optical phonon scattering. We find that the short-range disorder scattering dominates over other processes. The calculated photoconductivity captures very well the experimental conductivity spectra as a function of lattice temperature varying from 300 to 4 K, without any empirical fitting procedures adopted so far in the literature. This helps us to understand the intraband conductivity of photoexcited hot carriers in 2D materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsuo, Y.S.; Deng, X.J.; Smith, E.B.
We have studied the rehydrogenation and post-hydrogenation of a-Si:H using a Kaufman ion beam source. The achievement of an air-mass-one (AM1), photo-to-dark conductivity ratio of 5.6 x 10/sup 5/ with a rehydrogenated a-Si:H sample was reported earlier (Y. S. Tsuo, E. B. Smith, and S. K. Deb, Appl. Phys. Lett. 51, 1436 (1987)). In this communication we report recent results of the rehydrogenation study and new results of a study of the post-hydrogenation of amorphous silicon deposited by glow discharge at 480 /sup 0/C. AM1 photo-to-dark conductivity ratios as high as 9.5 x 10/sup 6/ (with a photoconductivity of 8.6more » x 10/sup -6/ ..cap omega.. cm/sup -1/) and 1.1 x 10/sup 5/ (with a photoconductivity of 6.3 x 10/sup -6/ ..cap omega.. cm/sup -1/) have been obtained with a rehydrogenated sample and a post-hydrogenated sample, respectively. We also report the results of the hydrogen depth profile and photostability measurements of these samples.« less
Embedded Coplanar Strips Traveling-Wave Photomixers
NASA Technical Reports Server (NTRS)
Wyss, R. A.; Lee, T.; Pearson, J. C.; Matsuura, S.; Blake, G. A.; Kadow, C.; Gossard, A. C.
2001-01-01
The electric field distribution in photomixers with electrodes deposited on the surface has already been calculated. It was shown that the strength of the electric field diminishes rapidly with depth. It was argued that the resulting reduction of the effective interaction volume of the device lowers the optical-to-heterodyne conversion. In this paper, we will present the results of our investigation on the influence of the electrode placement on the performance of photomixers. We have fabricated and measured traveling-wave photomixer devices which have both embedded and surface electrodes - the nominal spacing between the electrodes was 2 micrometers. Devices were made using either low-temperature-grown (LTG)-GaAs or ErAs:GaAs as the photoconductive material. The dark current, photocurrent, and radio frequency (RF) emission were measured at nominally 1 THz. The experimental data show a surprising difference in the behavior of ErAs:GaAs devices when the electrodes are embedded. A factor of two increase in RF radiation is observed for electric fields < 20 kV/cm. No such improvement was observed for the LTG-GaAs devices. We argue that the distinctive behavior of the two photoconductive materials is due to differences in the crystal structure - LTG-GaAs is isotropic, while ErAs:GaAs is uniaxial. We find that the carrier mobility in-plane (parallel) to the ErAs layers in the ErAs:GaAs superlattice is larger than orthogonal to these layers. The data indicate that carrier velocity overshoot is responsible for the excess radiation produced for the embedded electrode ErAs:GaAs devices.
NASA Astrophysics Data System (ADS)
Pichan, Karuppasamy; Muthu, Senthil Pandian; Perumalsamy, Ramasamy
2017-09-01
The organic single crystal of piperazinium bis(4-hydroxybenzenesulphonate) (P4HBS) was grown by slow evaporation solution technique (SEST) at room temperature. The lattice parameters of the grown crystal were confirmed by single crystal X-ray diffraction analysis. Functional groups of P4HBS crystal were confirmed by FTIR spectrum analysis. The optical quality of the grown crystal was identified by the UV-Vis NIR spectrum analysis. The grown crystal has good optical transmittance in the range of 410-1100 nm. In photoluminescence spectrum, sharp emission peaks are observed, which indicates the ultraviolet (UV) emission. The photoconductivity study reveals that the grown crystal has negative photoconductive nature. The thermal behaviour of the P4HBS crystal was investigated by thermogravimetric and differential thermal analysis (TG-DTA). The mechanical stability of grown crystal was analyzed and the indentation size effect (ISE) was explained by Hays-Kendall's (HK) approach and proportional specimen resistance model (PSRM). Chemical etching study was carried out and the etch pit density (EPD) was calculated. The dielectric constant (ε‧) and dielectric loss (tan δ) as a function of frequency were measured for the grown crystal. The solid state parameters such as valence electron, plasma energy, Penn gap and Fermi energy were evaluated theoretically for the P4HBS using the empirical relation. The estimated values are used to calculate the electronic polarizability. The third-order nonlinear optical properties such as nonlinear refractive index (n2), absorption co-efficient (β) and susceptibility (χ(3)) were studied by Z-scan technique at 632.8 nm using He-Ne laser.
NASA Astrophysics Data System (ADS)
Masuzawa, Tomoaki; Ebisudani, Taishi; Ochiai, Jun; Saito, Ichitaro; Yamada, Takatoshi; Chua, Daniel H. C.; Mimura, Hidenori; Okano, Ken
2016-09-01
Although present imaging devices are mostly silicon-based devices such as CMOS and CCD, these devices are reaching their sensitivity limit due to the band gap of silicon. Amorphous selenium (a-Se) is a promising candidate for high- sensitivity photo imaging devices, because of its low thermal noise, high spatial resolution, as well as adaptability to wide-area deposition. In addition, internal signal amplification is reported on a-Se based photodetectors, which enables a photodetector having effective quantum efficiency over 100 % against visible light. Since a-Se has sensitivity to UV and soft X-rays, the reported internal signal amplification should be applicable to UV and X-ray detection. However, application of the internal signal amplification required high voltage, which caused unexpected breakdown at the contact or thin-film transistor-based signal read-out. For this reason, vacuum devices having electron-beam read-out is proposed. The advantages of vacuum-type devices are vacuum insulation and its extremely low dark current. In this study, we present recent progresses in developing a-Se based photoconductive films and photodetector using nitrogen-doped diamond electron beam source as signal read-out. A novel electrochemical method is used to dope impurities into a-Se, turning the material from weak p-type to n-type. A p-n junction is formed within a-Se photoconductive film, which has increased the sensitivity of a-Se based photodetector. Our result suggests a possibility of high sensitivity photodetector that can potentially break the limit of silicon-based devices.
Magnetic field effect on the optoelectronic response of amorphous hydrogenated silicon
NASA Astrophysics Data System (ADS)
McLaughlin, Ryan; Sun, Dali; Zhang, Chuang; Ehrenfreund, Eitan; Vardeny, Zeev Valy
We have studied the magneto-photoluminescence and magneto photoconductivity in amorphous hydrogenated silicon (a-Si:H) thin films and devices as a function of temperature up to field of 5 Tesla. The magnetic field effects (MFE) are interpreted as spin mixing between spin-singlet and spin-triplet charge pairs due to the ''delta- g'' mechanism that is based on the g-value difference between the paired electron and hole, which directly affects the rate of radiative recombination and charge carrier separation, respectively. We found that the MFE(B) response does not form a Lorentzian (that is expected from the ''delta- g'' mechanism) due to disorder in the film that results in a broad distribution of e-h recombination rates, which could be extracted directly by time-resolved photoluminescence.
NASA Astrophysics Data System (ADS)
Umetani, Keiji; Yagi, Naoto; Suzuki, Yoshio; Ogasawara, Yasuo; Kajiya, Fumihiko; Matsumoto, Takeshi; Tachibana, Hiroyuki; Goto, Masami; Yamashita, Takenori; Imai, Shigeki; Kajihara, Yasumasa
2000-04-01
A microangiography system using monochromatized synchrotron radiation has been investigated as a diagnostic tool for circulatory disorders and early stage malignant tumors. The monochromatized X-rays with energies just above the contrast agent K-absorption edge energy can produce the highest contrast image of the contrast agent in small blood vessels. At SPring-8, digital microradiography with 6 - 24 micrometer pixel sizes has been carried out using two types of detectors designed for X-ray indirect and direct detection. The indirect-sensing detectors are fluorescent-screen optical-lens coupling systems using a high-sensitivity pickup-tube camera and a CCD camera. An X-ray image on the fluorescent screen is focused on the photoconductive layer of the pickup tube and the photosensitive area of the CCD by a small F number lens. The direct-sensing detector consists of an X-ray direct- sensing pickup tube with a beryllium faceplate for X-ray incidence to the photoconductive layer. Absorbed X-rays in the photoconductive layer are directly converted to photoelectrons and then signal charges are readout by electron beam scanning. The direct-sensing detector was expected to have higher spatial resolution in comparison with the indict-sensing detectors. Performance of the X-ray image detectors was examined at the bending magnet beamline BL20B2 using monochromatized X-ray at SPring-8. Image signals from the camera are converted into digital format by an analog-to- digital converter and stored in a frame memory with image format of 1024 X 1024 pixels. In preliminary experiments, tumor vessel specimens using barium contrast agent were prepared for taking static images. The growth pattern of tumor-induced vessels was clearly visualized. Heart muscle specimens were prepared for imaging of 3-dimensional microtomography using the fluorescent-screen CCD camera system. The complex structure of small blood vessels with diameters of 30 - 40 micrometer was visualized as a 3- dimensional CT image.
NASA Astrophysics Data System (ADS)
Xiao, Jinchong; Yin, Zongyou; Yang, Bo; Liu, Yi; Ji, Li; Guo, Jun; Huang, Ling; Liu, Xuewei; Yan, Qingyu; Zhang, Hua; Zhang, Qichun
2011-11-01
Organic nanowires of 9,10-dibromoanthracene (DBA) and 9,10-dicyanoanthracene (DCNA) were obtained by adding the THF solution of DBA/DCNA into water containing P123 surfactants. The as-prepared nanowires were characterized by UV-vis, fluorescence spectra, Field Emission Scanning Electron Microscopy (FESEM), and Transmission Electron Microscopy (TEM). We found that DBA and DCNA nanowires emitted green light rather than blue light for molecules in THF solution. The red-shift UV and fluorescent spectra of DBA and DCNA nanowires implied that these nanowires were formed through J-aggregation. The photoconducting study of DBA/DCNA nanowire-based network on rGO/SiO2/Si shows different photocurrent behaviors upon irradiation, which displayed that electron transfer from DCNA nanowire to rGO was stronger than that of DBA nanowires to rGO.Organic nanowires of 9,10-dibromoanthracene (DBA) and 9,10-dicyanoanthracene (DCNA) were obtained by adding the THF solution of DBA/DCNA into water containing P123 surfactants. The as-prepared nanowires were characterized by UV-vis, fluorescence spectra, Field Emission Scanning Electron Microscopy (FESEM), and Transmission Electron Microscopy (TEM). We found that DBA and DCNA nanowires emitted green light rather than blue light for molecules in THF solution. The red-shift UV and fluorescent spectra of DBA and DCNA nanowires implied that these nanowires were formed through J-aggregation. The photoconducting study of DBA/DCNA nanowire-based network on rGO/SiO2/Si shows different photocurrent behaviors upon irradiation, which displayed that electron transfer from DCNA nanowire to rGO was stronger than that of DBA nanowires to rGO. Electronic supplementary information (ESI) available: XRD patterns and simulations, and FT-IR spectra. CCDC reference numbers 840471. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c1nr10655d
John, Rohit Abraham; Liu, Fucai; Chien, Nguyen Anh; Kulkarni, Mohit R; Zhu, Chao; Fu, Qundong; Basu, Arindam; Liu, Zheng; Mathews, Nripan
2018-06-01
Emulation of brain-like signal processing with thin-film devices can lay the foundation for building artificially intelligent learning circuitry in future. Encompassing higher functionalities into single artificial neural elements will allow the development of robust neuromorphic circuitry emulating biological adaptation mechanisms with drastically lesser neural elements, mitigating strict process challenges and high circuit density requirements necessary to match the computational complexity of the human brain. Here, 2D transition metal di-chalcogenide (MoS 2 ) neuristors are designed to mimic intracellular ion endocytosis-exocytosis dynamics/neurotransmitter-release in chemical synapses using three approaches: (i) electronic-mode: a defect modulation approach where the traps at the semiconductor-dielectric interface are perturbed; (ii) ionotronic-mode: where electronic responses are modulated via ionic gating; and (iii) photoactive-mode: harnessing persistent photoconductivity or trap-assisted slow recombination mechanisms. Exploiting a novel multigated architecture incorporating electrical and optical biases, this incarnation not only addresses different charge-trapping probabilities to finely modulate the synaptic weights, but also amalgamates neuromodulation schemes to achieve "plasticity of plasticity-metaplasticity" via dynamic control of Hebbian spike-time dependent plasticity and homeostatic regulation. Coexistence of such multiple forms of synaptic plasticity increases the efficacy of memory storage and processing capacity of artificial neuristors, enabling design of highly efficient novel neural architectures. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermally activated persistent photoconductivity & donor binding energy in high mobility AlAs QWs
NASA Astrophysics Data System (ADS)
Dasgupta, S.; Knaak, C.; Fontcuberta, A.; Bichler, M.; Abstreiter, G.; Grayson, M.
2008-03-01
In AlAs, valley index is important quantum number which can help understand interactions. However, important parameters for growth such as donor binding energy and Si δ-doping efficiency were unknown and AlAs quantum wells (QWs) typically did not conduct in dark. We grew series of (001) and (110) oriented double-sided doped n-type AlAs QWs and deduced Si donor binding energy δ in Al0.45Ga0.55 As and doping efficiency η. They work in dark possibly because dilute charge traps in substrate are screened by backside doping. From dark saturation density for doping series we deduced δdk=65.2 meV [1]. Our studies show thermally activated PPC where sample is illuminated at 4 K and returned to dark without appreciable density increase. As temperature is increased to 30 K, density doubles, indicating shallow binding energy δPIA=0 meV post-illumination anneal (PIA). Doping efficiency after illumination for (001) facet was found to be η=n2D/nSi=35% and for (110) η=17%. With this understanding, we designed (001) AlAs QW with PIA density n=2.4 x 10^11 cm-2 and mobility μ=4.3 x 10^5 cm^2/Vs(330 mK), improvement of almost an order of magnitude over published results. [1] Dasgupta, et al. APL (2007)
Shallow to deep transformation of Se donors in GaSb under hydrostatic pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Navarro-Contreras, H.; de Anda-Salazar, F.; Olvera-Hernandez, J.
1999-03-01
We have observed that highly doped GaSb:Se, which is opaque to far IR radiation, becomes transparent at hydrostatic pressures above 9.8{plus_minus}2&hthinsp;kbar. We discuss how this behavior may be explained by the transformation of Se shallow donors into Se-DX (where DX is the unknown donor or X donor) centers in GaSb. Under this assumption the position of the Se-DX energy level at zero pressure is calculated to lie 80{plus_minus}30 meV above the conduction band at atmospheric pressure. The onset of transparency allowed us to observe several multiphonon absorbance features. We assign six of them to two-phonon absorptions. From the measured pressuremore » dependence of the TO phonon, the Gr{umlt u}neisen parameter for this compound is calculated to be {gamma}{sub TO}=1.23{plus_minus}0.18. No persistent photoconductivity is observed for these Se-DX centers, a fact that may be explained by the expectation that the optical energy necessary to transform them back into the shallow form is larger than the band-gap energy of GaSb at all pressures examined, although it may be also an indication that the Se shallow donors change to deep donors associated with the L{sub 1} minima of ionization energy larger than 90 meV. {copyright} {ital 1999} {ital The American Physical Society}« less
CW-THz vector spectroscopy and imaging system based on 1.55-µm fiber-optics.
Kim, Jae-Young; Song, Ho-Jin; Yaita, Makoto; Hirata, Akihiko; Ajito, Katsuhiro
2014-01-27
We present a continuous-wave terahertz (THz) vector spectroscopy and imaging system based on a 1.5-µm fiber optic uni-traveling-carrier photodiode and InGaAs photo-conductive receiver. Using electro-optic (EO) phase modulators for THz phase control with shortened optical paths, the system achieves fast vector measurement with effective phase stabilization. Dynamic ranges of 100 dB · Hz and 75 dB · Hz at 300 GHz and 1 THz, and phase stability of 1.5° per minute are obtained. With the simultaneous measurement of absorbance and relative permittivity, we demonstrate non-destructive analyses of pharmaceutical cocrystals inside tablets within a few minutes.
Optical-Microwave Interactions in Semiconductor Devices.
1981-03-01
Interdigital Photoconductors ( IDPC ) ......... ..... 112 G. Conclusions.. ....... .. 120 6 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK . 121...The detector developed at the Hughes Research Laboratories ( IDPC ) involves placing an interdigital metal electrode 53- 5 5 structure on top of a F...easier to perform with the IDPC detector. We believe the interdigital photoconductive detector has many advantages over existing detectors. First, the
Microwave systems analysis, solar power satellite. [alignment of the antenna array
NASA Technical Reports Server (NTRS)
1979-01-01
Various alternative active approaches to achieving aand maintaining flatness for the microwave power transmission system (MPTS) were studied. A baseline active alignment scheme was developed which includes subarray attachment mechanisms, height and tilting adjustments, service corridors, a rotating laser beam reference system, monopulse pointing techniques, and the design of a beam-centering photoconductive sensor.
Optoelectrofluidic field separation based on light-intensity gradients
Lee, Sanghyun; Park, Hyun Jin; Yoon, Jin Sung; Kang, Kwan Hyoung
2010-01-01
Optoelectrofluidic field separation (OEFS) of particles under light -intensity gradient (LIG) is reported, where the LIG illumination on the photoconductive layer converts the short-ranged dielectrophoresis (DEP) force to the long-ranged one. The long-ranged DEP force can compete with the hydrodynamic force by alternating current electro-osmosis (ACEO) over the entire illumination area for realizing effective field separation of particles. In the OEFS system, the codirectional illumination and observation induce the levitation effect, compensating the attenuation of the DEP force under LIG illumination by slightly floating particles from the surface. Results of the field separation and concentration of diverse particle pairs (0.82–16 μm) are well demonstrated, and conditions determining the critical radius and effective particle manipulation are discussed. The OEFS with codirectional LIG strategy could be a promising particle manipulation method in many applications where a rapid manipulation of biological cells and particles over the entire working area are of interest. PMID:20697461
Optoelectrofluidic field separation based on light-intensity gradients.
Lee, Sanghyun; Park, Hyun Jin; Yoon, Jin Sung; Kang, Kwan Hyoung
2010-07-14
Optoelectrofluidic field separation (OEFS) of particles under light -intensity gradient (LIG) is reported, where the LIG illumination on the photoconductive layer converts the short-ranged dielectrophoresis (DEP) force to the long-ranged one. The long-ranged DEP force can compete with the hydrodynamic force by alternating current electro-osmosis (ACEO) over the entire illumination area for realizing effective field separation of particles. In the OEFS system, the codirectional illumination and observation induce the levitation effect, compensating the attenuation of the DEP force under LIG illumination by slightly floating particles from the surface. Results of the field separation and concentration of diverse particle pairs (0.82-16 mum) are well demonstrated, and conditions determining the critical radius and effective particle manipulation are discussed. The OEFS with codirectional LIG strategy could be a promising particle manipulation method in many applications where a rapid manipulation of biological cells and particles over the entire working area are of interest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmad, Shabir, E-mail: shaphyjmi@gmail.com; Sethi, Riti; Nasir, Mohd
2015-08-28
Present work focuses on the effect of swift heavy ion (SHI) irradiation of 50MeV Li{sup 3+} ions by varying the fluencies in the range of 1×10{sup 12} to 5×10{sup 13} ions/cm{sup 2} on the morphological, structural, optical and electrical properties of amorphous Se{sub 95}Zn{sub 5} thin films. Thin films of ~250nm thickness were deposited on cleaned glass substrates by thermal evaporation technique. X-ray diffraction (XRD) analysis shows the pristine thin film of Se{sub 95}Zn{sub 5} growsin hexagonal phase structure. Also it was found that the small peak observed in XRD spectra vanishes after SHI irradiation indicates the defects of themore » material increases. The optical parameters: absorption coefficient (α), extinction coefficient (K), refractive index (n) optical band gap (E{sub g}) and Urbach’s energy (E{sub U}) are determined from optical absorption spectra data measured from spectrophotometry in the wavelength range 200-1000nm. It was found that the values of absorption coefficient, refractive index and extinction coefficient increases while the value optical band gap decreases with the increase of ion fluence. This post irradiation change in the optical parameters was interpreted in terms of bond distribution model. Electrical properties such as dc conductivity and temperature dependent photoconductivity of investigated thin films were carried out in the temperature range 309-370 K. Analysis of data shows activation energy of dark current is greater as compared to activation energy photocurrent. The value of activation energy decreases with the increase of ion fluence indicates that the defect density of states increases.Also it was found that the value of dc conductivity and photoconductivity increases with the increase of ion fluence.« less
Miniature CW and active internally Q-switched Nd:MgO:LiNbO/sub 3/ lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cordova-Plaza, A.; Digonnet, M.J.F.; Shaw, H.J.
1987-02-01
The authors report a 10 mW threshold mixture device in which internal Q-switching of a single Nd:MgO:LiNbO/sub 3/ crystal is achieved. Pulsewidths of 30 ns have been observed. Peak powers of 5 W have been attained with less than 60 mW of 598 nm pump power and with less than 1 percent output coupling. The switching voltage is lower than 300 V. The consequences of the elastooptic effect and the photoconductivity on device performance are investigated. A highly efficient CW laser and a low threshold CW laser made of the same material are also reported. Photorefractive damage due to themore » photovoltaic effect is found to be almost nonexistent in these lasers when pumped in the near-infrared.« less
Marin, Brandon C; Ramirez, Julian; Root, Samuel E; Aklile, Eden; Lipomi, Darren J
2017-01-01
Graphene decorated with metallic nanoparticles exhibits electronic, optical, and mechanical properties that neither the graphene nor the metal possess alone. These composite films have electrical conductivity and optical properties that can be modulated by a range of physical, chemical, and biological signals. Such properties are controlled by the morphology of the nanoisland films, which can be deposited on graphene using a variety of techniques, including in situ chemical synthesis and physical vapor deposition. These techniques produce non-random (though loosely defined) morphologies, but can be combined with lithography to generate deterministic patterns. Applications of these composite films include chemical sensing and catalysis, energy storage and transport (including photoconductivity), mechanical sensing (using a highly sensitive piezroresistive effect), optical sensing (including so-called "piezoplasmonic" effects), and cellular biophysics (i.e sensing the contractions of cardiomyocytes and myoblasts).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiskumara, R.; Joshi, R. P., E-mail: ravi.joshi@ttu.edu; Mauch, D.
A model-based analysis of the steady-state, current-voltage response of semi-insulating 4H-SiC is carried out to probe the internal mechanisms, focusing on electric field driven effects. Relevant physical processes, such as multiple defects, repulsive potential barriers to electron trapping, band-to-trap impact ionization, and field-dependent detrapping, are comprehensively included. Results of our model match the available experimental data fairly well over orders of magnitude variation in the current density. A number of important parameters are also extracted in the process through comparisons with available data. Finally, based on our analysis, the possible presence of holes in the samples can be discounted upmore » to applied fields as high as ∼275 kV/cm.« less
NASA Astrophysics Data System (ADS)
Joyce, Hannah J.; Baig, Sarwat A.; Parkinson, Patrick; Davies, Christopher L.; Boland, Jessica L.; Tan, H. Hoe; Jagadish, Chennupati; Herz, Laura M.; Johnston, Michael B.
2017-06-01
Bare unpassivated GaAs nanowires feature relatively high electron mobilities (400-2100 cm2 V-1 s-1) and ultrashort charge carrier lifetimes (1-5 ps) at room temperature. These two properties are highly desirable for high speed optoelectronic devices, including photoreceivers, modulators and switches operating at microwave and terahertz frequencies. When engineering these GaAs nanowire-based devices, it is important to have a quantitative understanding of how the charge carrier mobility and lifetime can be tuned. Here we use optical-pump-terahertz-probe spectroscopy to quantify how mobility and lifetime depend on the nanowire surfaces and on carrier density in unpassivated GaAs nanowires. We also present two alternative frameworks for the analysis of nanowire photoconductivity: one based on plasmon resonance and the other based on Maxwell-Garnett effective medium theory with the nanowires modelled as prolate ellipsoids. We find the electron mobility decreases significantly with decreasing nanowire diameter, as charge carriers experience increased scattering at nanowire surfaces. Reducing the diameter from 50 nm to 30 nm degrades the electron mobility by up to 47%. Photoconductivity dynamics were dominated by trapping at saturable states existing at the nanowire surface, and the trapping rate was highest for the nanowires of narrowest diameter. The maximum surface recombination velocity, which occurs in the limit of all traps being empty, was calculated as 1.3 × 106 cm s-1. We note that when selecting the optimum nanowire diameter for an ultrafast device, there is a trade-off between achieving a short lifetime and a high carrier mobility. To achieve high speed GaAs nanowire devices featuring the highest charge carrier mobilities and shortest lifetimes, we recommend operating the devices at low charge carrier densities.
Piezochromism and structural and electronic properties of benz[a]anthracene under pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Weizhao; Zhang, Rong; Yao, Yansun
2017-01-31
We report a combined experimental and theoretical study of the high pressure behavior of a herringbone-type hydrocarbon benz[a]anthracene (BaA) using fluorescence spectroscopy, X-ray diffraction, optical absorption, photoconductivity measurements, and first-principles density functional theory (DFT) calculations. The ambient-pressure molecular solid phase of BaA was found to be stable up to ~15.0 GPa. Increasing the external pressure within this region would induce a reversible piezochromic colour change in the sample, from yellow-green to light brown. The reversibility of the colour change was confirmed by both optical observations and fluorescence measurements. Further compression beyond 15 GPa leads to polymerization of the sample andmore » formation of an amorphous hydrogenated carbon. The low pressure crystalline phase is not recoverable when the sample is decompressed from pressure above 15 GPa. DFT investigation of the structures at zero temperature suggests that the formation of a crystalline polymeric phase can take place between 30 and 117 GPa, however the kinetic barriers hinder the process at low pressure regions. The phase transition is therefore suggested to proceed along a gradual transition path to an amorphous phase at a lower reaction threshold, activated by finite temperature effects. Optical absorption measurements reveal that the band gap of BaA decreases at high pressure, from 2.4 eV at 0.5 GPa to 1.0 eV at 50.6 GPa. The DFT calculations further suggest that the band gap of BaA in the molecular phase could reduce to ~0.1 eV at 117 GPa. Photoconductivity measurements show a continuous increase of photocurrent in the molecular phase region, which most likely originated from the increase of carrier mobility under pressure.« less
Temporal switching jitter in photoconductive switches
DOE Office of Scientific and Technical Information (OSTI.GOV)
GAUDET,JOHN A.; SKIPPER,MICHAEL C.; ABDALLA,MICHAEL D.
This paper reports on a recent comparison made between the Air Force Research Laboratory (AFRL) gallium arsenide, optically-triggered switch test configuration and the Sandia National Laboratories (SNL) gallium arsenide, optically-triggered switch test configuration. The purpose of these measurements was to compare the temporal switch jitter times. It is found that the optical trigger laser characteristics are dominant in determining the PCSS jitter.
Liquid helium-cooled MOSFET preamplifier for use with astronomical bolometer
NASA Technical Reports Server (NTRS)
Goebel, J. H.
1977-01-01
A liquid helium-cooled p-channel enhancement mode MOSFET, the 3N167, is found to have sufficiently low noise for use as a preamplifier with helium-cooled bolometers that are used in infrared astronomy. Its characteristics at 300, 77, and 4.2 K are presented. It is also shown to have useful application with certain photoconductive and photovoltaic infrared detectors.
NASA Astrophysics Data System (ADS)
Mukherjee, Bablu; Tok, Eng Soon; Haur Sow, Chorng
2013-03-01
Single crystal GeSe2 nanobelts were grown using chemical vapor deposition techniques. Morphology of the nanostructures was characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffractometry (XRD) and Raman spectroscopy. Electronic transport properties, impedance spectroscopy, photoconductive characteristics and temperature-dependent electrical resistivity measurements were carried out on individual GeSe2 nanobelt devices. The photosensitivity of single GeSe2 nanobelt (NB) devices was examined with two different excitation wavelengths of laser beams with photon energies above band gap and at sub-band gap of the NB. A maximum photoconductive gain 106 % was achieved at a wavelength of 808 nm. The magnitude of the photocurrent and response time of the individual GeSe2 NB device indicate that the photoresponse could be attributed to the presence of isolated mid band gap defect levels. Temperature dependent photocurrent measurements indicate the rough estimation of the energy levels for the defect states. Localized photostudy shows that the large photoresponse of the device primarily occurs at the metal-NB contact regions. Department of Physics, 2 Science Drive 3, National University of Singapore (NUS), Singapore 117542
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talochkin, A. B., E-mail: tal@isp.nsc.ru; Novosibirsk State University, Novosibirsk 630090; Chistokhin, I. B.
2016-04-07
Photoconductivity (PC) spectra of Si/Ge(GeSn)/Si structures with the ultra-thin (1.0–2.3 nm) Ge and GeSn alloy layers grown by the low-temperature (T = 100 °C) molecular beam epitaxy are studied. Photoresponse in the range of 1.2–0.4 eV related to light absorption in the buried Ge(GeSn) layer is observed. It is shown that in case of lateral PC, a simple diffusion model can be used to determine the absorption coefficient of this layer α ∼ 10{sup 5 }cm{sup −1}. This value is 100 times larger than that of a single Ge quantum dot layer and is reached significantly above the band gap of most bulk semiconductors. The observedmore » absorption is caused by optical transitions between electron and hole states localized at the interfaces. The anomalous high value of α can be explained by the unusual state of Ge(GeSn) layer with high concentration of dangling bonds, the optical properties of which have been predicted theoretically by Knief and von Niessen (Phys. Rev. B 59, 12940 (1999)).« less
Photoconductivity of high-voltage space insulating materials
NASA Technical Reports Server (NTRS)
Coffey, H. T.; Nanevicz, J. E.; Adamo, R. C.
1975-01-01
The dark and photoconductivities of four high voltage spacecraft insulators, Kapton-H, FEP Teflon, Parylene, and fused quartz, were studied under a variety of conditions intended to simulate a space environment. All measurements were made in a vacuum of less than .00001 torr while the temperature was varied from 22 C to 100 C. Some of the samples used employed conventional deposited metal electrodes--others employed electrodes composed either of an electron beam or a plasma formed by ionization of the residual gas in the test chamber. Test results show: (1) Kapton had unusual conduction properties; it conductivity decreased by more than an order of magnitude when heated at 100 C in a vacuum, but ultimately attained a stable and reproducible value. (2) Both Teflon and fused quartz had high dark resistivities but low photoresistivities when exposed to UV. Optical-density measurements revealed that both materials transmitted UV with little attenuation. (3) Parylene was found to have a low but relatively stable resistivity--comparatively minor changes occurred upon heating or illuminating the sample. Optical-density measurements showed that Parylene was absorbent in the UV and would prevent photoemission from the metal electrode on the back surface.
Yue, Yang; Yang, Zhichun; Liu, Nishuang; Liu, Weijie; Zhang, Hui; Ma, Yanan; Yang, Congxing; Su, Jun; Li, Luying; Long, Fei; Zou, Zhengguang; Gao, Yihua
2016-12-27
Nowadays, the integrated systems on a plane substrate containing energy harvesting, energy storing, and working units are strongly desired with the fast development of wearable and portable devices. Here, a simple, low cost, and scalable strategy involving ink printing and electrochemical deposition is proposed to fabricate a flexible integrated system on a plane substrate containing an all-solid-state asymmetric microsupercapacitor (MSC), a photoconduct-type photodetector of perovskite nanowires (NWs), and a wireless charging coil. In the asymmetric MSCs, MnO 2 -PPy and V 2 O 5 -PANI composites are used as positive and negative electrodes, respectively. Typical values of energy density in the range of 15-20 mWh cm -3 at power densities of 0.3-2.5 W cm -3 with an operation potential window of 1.6 V are achieved. In the system, the wireless charging coil receives energy from a wireless power transmitter, which then can be stored in the MSC to drive the photoconductive detector of perovskite NWs in sequence. The designed integrated system exhibits a stable photocurrent response comparable with the detector driven by an external power source. This research provides an important routine to fabricate integrated systems.
Ropagnol, X; Khorasaninejad, M; Raeiszadeh, M; Safavi-Naeini, S; Bouvier, M; Côté, C Y; Laramée, A; Reid, M; Gauthier, M A; Ozaki, T
2016-05-30
We report the generation of free space terahertz (THz) pulses with energy up to 8.3 ± 0.2 µJ from an encapsulated interdigitated ZnSe Large Aperture Photo-Conductive Antenna (LAPCA). An aperture of 12.2 cm2 is illuminated using a 400 nm pump laser with multi-mJ energies at 10 Hz repetition rate. The calculated THz peak electric field is 331 ± 4 kV/cm with a spectrum characterized by a median frequency of 0.28 THz. Given its relatively low frequency, this THz field will accelerate charged particles efficiently having very large ponderomotive energy of 15 ± 1 eV for electrons in vacuum. The scaling of the emission is studied with respect to the dimensions of the antenna, and it is observed that the capacitance of the LAPCA leads to a severe decrease in and distortion of the biasing voltage pulse, fundamentally limiting the maximum applied bias field and consequently the maximum energy of the radiated THz pulses. In order to demonstrate the advantages of this source in the strong field regime, an open-aperture Z-scan experiment was performed on n-doped InGaAs, which showed significant absorption bleaching.
Charge relaxation and dynamics in organic semiconductors
NASA Astrophysics Data System (ADS)
Kwok, H. L.
2006-08-01
Charge relaxation in dispersive materials is often described in terms of the stretched exponential function (Kohlrausch law). The process can be explained using a "hopping" model which in principle, also applies to charge transport such as current conduction. This work analyzed reported transient photoconductivity data on functionalized pentacene single crystals using a geometric hopping model developed by B. Sturman et al and extracted values (or range of values) on the materials parameters relevant to charge relaxation as well as charge transport. Using the correlated disorder model (CDM), we estimated values of the carrier mobility for the pentacene samples. From these results, we observed the following: i) the transport site density appeared to be of the same order of magnitude as the carrier density; ii) it was possible to extract lower bound values on the materials parameters linked to the transport process; and iii) by matching the simulated charge decay to the transient photoconductivity data, we were able to refine estimates on the materials parameters. The data also allowed us to simulate the stretched exponential decay. Our observations suggested that the stretching index and the carrier mobility were related. Physically, such interdependence would allow one to demarcate between localized molecular interactions and distant coulomb interactions.
Lo, Kin Cheung; Hau, King In; Chan, Wai Kin
2018-04-05
Functional polymer/carbon nanotube (CNT) hybrid materials can serve as a good model for light harvesting systems based on CNTs. This paper presents the synthesis of block copolymer/CNT hybrids and the characterization of their photocurrent responses by both experimental and computational approaches. A series of functional diblock copolymers was synthesized by reversible addition-fragmentation chain transfer polymerizations for the dispersion and functionalization of CNTs. The block copolymers contain photosensitizing ruthenium complexes and modified pyrene-based anchoring units. The photocurrent responses of the polymer/CNT hybrids were measured by photoconductive atomic force microscopy (PCAFM), from which the experimental data were analyzed by vigorous statistical models. The difference in photocurrent response among different hybrids was correlated to the conformations of the hybrids, which were elucidated by molecular dynamics simulations, and the electronic properties of polymers. The photoresponse of the block copolymer/CNT hybrids can be enhanced by introducing an electron-accepting block between the photosensitizing block and the CNT. We have demonstrated that the application of a rigorous statistical methodology can unravel the charge transport properties of these hybrid materials and provide general guidelines for the design of molecular light harvesting systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rani, Amita; Kurchania, Rajnish; Tripathi, S. K., E-mail: surya@pu.ac.in
2016-05-06
Present communication deals with the study of electrical conductivity measurements of Cu doped CdSe-PVA nanocomposite via chemical method. In electrical measurements, the dark conductivity (σ{sub d}) and the photoconductivity (σ{sub ph}) of CdSe prepared thin films have been studied in the temperature range of 308–343 K. The effect of temperature and the intensity on conductivity has been analyzed for CdSe and CdSe:Cu nanocomposite films. The conductivity of all the samples increases with increasing temperature indicating the semiconducting behavior of the samples. The value of photo activation energy is less than the dark activation energy due to the shift in energy levelsmore » under illumination.« less
Virtual gap dielectric wall accelerator
Caporaso, George James; Chen, Yu-Jiuan; Nelson, Scott; Sullivan, Jim; Hawkins, Steven A
2013-11-05
A virtual, moving accelerating gap is formed along an insulating tube in a dielectric wall accelerator (DWA) by locally controlling the conductivity of the tube. Localized voltage concentration is thus achieved by sequential activation of a variable resistive tube or stalk down the axis of an inductive voltage adder, producing a "virtual" traveling wave along the tube. The tube conductivity can be controlled at a desired location, which can be moved at a desired rate, by light illumination, or by photoconductive switches, or by other means. As a result, an impressed voltage along the tube appears predominantly over a local region, the virtual gap. By making the length of the tube large in comparison to the virtual gap length, the effective gain of the accelerator can be made very large.
Molecular design and nanoscale engineering of organic nanofibril donor-acceptor heterojunctions
NASA Astrophysics Data System (ADS)
Huang, Helin
Organic nanofibril heterojunction materials have gained increasing research interest due to their broad applications in organic semiconductor devices. In order to enhance the device performance, we have investigated the structure-property relationship of these nanostructures by designing and synthesizing functional building block molecules, selfassembling the molecules into well-defined nanofibers, fabricating the nanofibers into optical and electrical devices, and testing their photoconductivity and sensor properties. In Chapter 2, we present a simple approach to fabricate efficient nanofibril heterojunctions by interfacial engineering of electron donor (D) coating onto acceptor (A) nanofibers. The nanofibers both create a large D/A interface for increased charge separation and act as long-range transport pathways for photogenerated charge carriers towards the electrodes, and the alkyl groups modified at the A molecules not only enable effective surface adsorption of D molecules on the nanofibers for effective electron-transfer communication, but also spatially separate the photogenerated charge carriers to prevent their recombination. In Chapter 3, we further investigated the effect of D molecular structure and coating morphology on photoconductivity of organic nanofiber materials. A series of D molecules with varying side-chain modifications were synthesized and investigated for the different intermolecular arrangements caused by pi-pi stacking in balance with steric hindrance of side-chains. Different molecular assemblies of D resulted in distinctive phase segregation between D and A nanofiber, which significantly affects the interfacial charge separation. In Chapter 4, we developed an alternative nanofibril heterojunction structure that is composed of D as the nanofiber, onto which a monolayer of A molecule was coated. Due to the strong redox (charge transfer) interaction between D and A, the nanofibril junction demonstrated high conductivity even without light illumination, which makes this material suitable for applications in chemiresistor sensors for detection of amines. In Chapter 5, a series of perylene tetracarboxylic monoimides were synthesized through a one-step reaction between cycloalkyl amines and the parent perylene dianhydride. The selection of appropriate reaction medium is the most critical for achieving the high purity of product. This approach opens up a new way for large scale production of the monoimides, which are the precursor for making a variety of perylene based building block molecules.
Light Actuation of Liquid by Optoelectrowetting
2005-06-01
liquid lenses with variable focal length [7]. Transport of liquid in droplet forms offers many advan- tages. It eliminates the need for pumps and...novel mechanism for light actuation of liquid droplets. This is realized by integrating a photoconductive material underneath the electrowetting ...optoelectrowetting 2.1. General concept Fig. 1(a) shows the general electrowetting mechanism. A droplet of polarizable liquid is placed on a substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mora, J.; Pascall, A.; Dudoff, J.
I spent the quarter working in Lawrence Livermore National Laboratory’s (LLNL) Materials Engineering Division. The group I have been working with (I’ve been here for two summers already) focuses on advanced manufacturing techniques such as stereolithography, electrophoretic deposition, and the printing of silicon based inks. Part of the goal of what is done in our group is to create designer materials not by altering the composition but by altering the micro-architecture. Our technology can create shapes that are not possible with traditional manufacturing techniques. This allows us to create structures that are light, yet very strong and stiff. It alsomore » allows us to create materials with property gradients. In other words, we can make structures and parts that are stronger in some locations than others. I have been working with electrophoretic deposition for the duration of my stay and have focused on advancing the technology from a thin-film technique to a true additive manufacturing paradigm. Put succinctly, electrophoretic deposition is the deposition of particles in suspension with electric fields. Particles have a potential on the surface which allows them to be driven to an electrode using an electric field. The particles then deposit onto the conductive regions of the substrate, traditionally, the entire surface. Electrophoretic deposition is powerful in that it can handle a wide variety of materials (ceramics, metals, bacteria), create material gradients in the deposits, and create layered deposition of multiple materials. A drawback of traditional electrophoretic deposition is that patterned deposits are only possible with a non-reconfigurable patterned electrode. A technique was developed at LLNL that allows for the arbitrary patterning of the electric field using photoconductive electrodes and light. This way, you can create interesting shapes and reconfigure the pattern of the deposit using the same electrode. A photoconductive electrode is made by hydrothermally growing titania nanorods onto a transparent current collector. A photomask is used to block incoming some light and only allow the desired pattern of light through. The photoconductive electrode then activates when and where the light hits, once an electric field is applied. Particles will migrate to the areas of illumation and deposit.« less
Improved understanding of the recombination rate at inverted p+ silicon surfaces
NASA Astrophysics Data System (ADS)
To, Alexander; Ma, Fajun; Hoex, Bram
2017-08-01
The effect of positive fixed charge on the recombination rate at SiN x -passivated p+ surfaces is studied in this work. It is shown that a high positive fixed charge on a low defect density, passivated doped surface can result in a near injection level independent lifetime in a certain injection level range. This behaviour is modelled with advanced computer simulations using Sentaurus TCAD, which replicates the measurements conditions during a photoconductance based effective minority carrier lifetime measurement. The resulting simulations show that the shape of the injection level dependent lifetime is a result of the surface recombination rate, which is non-linear due to the surfaces moving into inversion with increasing injection level. As a result, the surface recombination rate switches from being limited by electrons to holes. Equations describing the surface saturation current density, J 0s, during this regime are also derived in this work.
Simulations of terahertz pulse emission from thin-film semiconductor structures
NASA Astrophysics Data System (ADS)
Semichaevsky, Andrey
The photo-Dember effect is the formation of transient electric dipoles due to the interaction of semiconductors with ultrashort optical pulses. Typically the optically-induced dipole moments vary on the ns- or ps- scales, leading to the emission of electromagnetic pulses with terahertz (THz) bandwidths. One of the applications of the photo-Dember effect is a photoconductive dipole antenna (PDA). This work presents a computational model of a PDA based on Maxwell's equations coupled to the Boltzmann transport equation. The latter is solved semiclassically for the doped GaAs using a continuum approach. The emphasis is on the accurate prediction of the emitted THz pulse shape and bandwidth, particularly when materials are doped with a rare-earth metal such as erbium or terbium that serve as carrier recombination centers. Field-dependent carrier mobility is determined from particle-based simulations. Some of the previous experimental results are used as a basis for comparison with our model.
Graphene field-effect transistors as room-temperature terahertz detectors.
Vicarelli, L; Vitiello, M S; Coquillat, D; Lombardo, A; Ferrari, A C; Knap, W; Polini, M; Pellegrini, V; Tredicucci, A
2012-10-01
The unique optoelectronic properties of graphene make it an ideal platform for a variety of photonic applications, including fast photodetectors, transparent electrodes in displays and photovoltaic modules, optical modulators, plasmonic devices, microcavities, and ultra-fast lasers. Owing to its high carrier mobility, gapless spectrum and frequency-independent absorption, graphene is a very promising material for the development of detectors and modulators operating in the terahertz region of the electromagnetic spectrum (wavelengths in the hundreds of micrometres), still severely lacking in terms of solid-state devices. Here we demonstrate terahertz detectors based on antenna-coupled graphene field-effect transistors. These exploit the nonlinear response to the oscillating radiation field at the gate electrode, with contributions of thermoelectric and photoconductive origin. We demonstrate room temperature operation at 0.3 THz, showing that our devices can already be used in realistic settings, enabling large-area, fast imaging of macroscopic samples.
NASA Astrophysics Data System (ADS)
Gerasimov, G. N.; Gromov, V. F.; Trakhtenberg, L. I.
2018-06-01
The properties of nanostructured composites based on metal oxides and metal-polymer materials are analyzed, along with ways of preparing them. The effect the interaction between metal and semiconductor nanoparticles has on the conductivity, photoconductivity, catalytic activity, and magnetic, dielectric, and sensor properties of nanocomposites is discussed. It is shown that as a result of this interaction, a material can acquire properties that do not exist in systems of isolated particles. The transfer of electrons between metal particles of different sizes in polymeric matrices leads to specific dielectric losses, and to an increase in the rate and a change in the direction of chemical reactions catalyzed by these particles. The interaction between metal-oxide semiconductor particles results in the electronic and chemical sensitization of sensor effects in nanostructured composite materials. Studies on creating molecular machines (Brownian motors), devices for magnetic recording of information, and high-temperature superconductors based on nanostructured systems are reviewed.
Sun, Zhihua; Liu, Xitao; Khan, Tariq; Ji, Chengmin; Asghar, Muhammad Adnan; Zhao, Sangen; Li, Lina; Hong, Maochun; Luo, Junhua
2016-05-23
Perovskite-type ferroelectrics composed of organometallic halides are emerging as a promising alternative to conventional photovoltaic devices because of their unique photovoltaic effects (PVEs). A new layered perovskite-type photoferroelectric, bis(cyclohexylaminium) tetrabromo lead (1), is presented. The material exhibits an exceptional anisotropy of bulk PVEs. Upon photoexcitation, superior photovoltaic behaviors are created along its inorganic layers, which are composed of corner-sharing PbBr6 octahedra. Semiconducting activity with remarkable photoconductivity is achieved in the vertical direction, showing sizeable on/off current ratios (>10(4) ), which compete with the most active photovoltaic material CH3 NH3 PbI3 . In 1 the temperature-dependence of photovoltage coincides fairly well with that of polarization, confirming the dominant role of ferroelectricity in such highly anisotropic PVEs. This finding sheds light on bulk PVEs in ferroelectric materials, and promotes their application in optoelectronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Introduction to lead salt infrared detectors
NASA Astrophysics Data System (ADS)
Kondas, David A.
1993-02-01
This technical report establishes the background necessary to understand how lead sulfide (PbS) and lead selenide (PbSe) infrared detectors operate. Both detectors, which are members of the lead salt family of infrared detectors, use the photoconductive effect to detect energy residing within the infrared region of the electromagnetic spectrum. PbS detectors are useful for detecting energies in the 1 to 3 micrometer region, while PbSe detectors can detect energies in the 1 to 7 micrometer region. They are essentially polycrystalline thin films which are fabricated by chemical deposition techniques in either single element or multi-element array configurations. The significance of the electronic structure of these crystalline films and the effects of temperature on their operation and performance are discussed. The history of the development of lead salt detectors from the early years before World War I to the more recent developments is detailed. In addition, an overview of a typical infrared system is also presented.
Recombination Processes on Low Bandgap Antimonides for Thermophotovoltaic Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saroop, Sudesh
1999-09-01
Recombination processes in antimonide-based (TPV) devices have been investigated using a technique, in which a Nd-YAG pulsed laser is materials for thermophotovoltaic radio-frequency (RF) photoreflectance used to excite excess carriers and the short-pulse response and photoconductivity decay are monitored with an inductively-coupled non-contacting RF probe. The system has been used to characterize surface and bulk recombination mechanisms in Sb-based materials.
Advanced Infrared Photodetectors (Materials Review)
1993-12-01
Telluride DMS Dilute Magnetic Semiconductor R)V Field of View FPP Focal Plane Processing IR Infrared LPE Liquid Phase Epitaxy LWIR Long Wave Infrared...operation is normal. Photoconductive (PC) cadmium mercury telluride (CdxHgl-xTe. x - 0.167) has a LWIR cutoff at room temperature; however, operation is...reliability, lightweight On-chip clocks and bias circuits An initial use of FPP is nonuniformity correction (NUC) since spatial response nonuniformity is
Synthesis of thin films and materials utilizing a gaseous catalyst
Morse, Daniel E; Schwenzer, Birgit; Gomm, John R; Roth, Kristian M; Heiken, Brandon; Brutchey, Richard
2013-10-29
A method for the fabrication of nanostructured semiconducting, photoconductive, photovoltaic, optoelectronic and electrical battery thin films and materials at low temperature, with no molecular template and no organic contaminants. High-quality metal oxide semiconductor, photovoltaic and optoelectronic materials can be fabricated with nanometer-scale dimensions and high dopant densities through the use of low-temperature biologically inspired synthesis routes, without the use of any biological or biochemical templates.
Sensitive Infrared Photodetectors: Optimized Electron Kinetics for Room-Temperature Operation
2010-12-20
QD levels; (iii) High photoconductive gain and responsivity; (iv) Low generation-recombination noise due to the long photoelectron lifetime. The...etc. [1-6]. For example, quantum-well infrared photodetectors ( QWIPs ) is currently a well-established technology, which is widely employed in...various imaging devices working at liquid nitrogen temperatures and below [7,8]. At 77K, modern QWIPs operating around λ = 10 μm demonstrate the
Enhancing performing characteristics of organic semiconducting films by improved solution processing
Bazan, Guillermo C; Moses, Daniel; Peet, Jeffrey; Heeger, Alan J
2014-05-13
Improved processing methods for enhanced properties of conjugated polymer films are disclosed, as well as the enhanced conjugated polymer films produced thereby. Addition of low molecular weight alkyl-containing molecules to solutions used to form conjugated polymer films leads to improved photoconductivity and improvements in other electronic properties. The enhanced conjugated polymer films can be used in a variety of electronic devices, such as solar cells and photodiodes.
2016-09-27
contact regions and epitaxial capping layer are fabricated to investigate the advantages of both approaches. Devices were fabricated with various... Contacts 7 2.5 Packaging 11 3. Conclusions 12 4. References 13 Appendix. Detailed Fabrication Process 15 List of Symbols, Abbreviations, and...regions in violet (overlaying previous patterns) .......7 Fig. 6 Mask 4: intrinsic device contact window regions in orange (overlaying previous
Patents and Licenses Through 1994,
1994-01-01
Chiang was employed at Honeywell Radiation Center, where she worked on mercury cadmium telluride (HgCdTe) and gallium phosphide photoconductive...5,251,225 Gallium Indium Arsenide Phosphide 4,258,375; 4,372,791; 4,718,070;4,722,092 Gallium Indium Arsenide Phosphide /Indium Phosphide ...Indirect-Gap Semiconductor 3,636,471 Indium Arsenide 2,990,259 Indium Gallium Arsenide 4,746,620 Indium Phosphide 2,990,259; 4,376,285
Lead sulfide - Silicon MOSFET infrared focal plane development
NASA Technical Reports Server (NTRS)
Barrett, J. R.; Jhabvala, M. D.
1983-01-01
A process for directly integrating photoconductive lead sulfide (PbS) infrared detector material with silicon MOS integrated circuits has been developed primarily for application in long (greater than 10,000 detector elements) linear arrays for pushbroom scanning applications. The processing technology is based on the conventional PMOS and CMOS technologies with a variation in the metallization. Results and measurements on a fully integrated eight-element multiplexer are shown.
Avalanche Photoconductive Switching
1989-06-01
implantation and by MBE growth , and p-type material was created by MBE growth of a Be doped layer. Ion implantation creates a heavily doped layer...which is used commonly for GaAs integrated circuits. We plan to use Ti-Pt-Au for p-type contacts in the future. Experimental Results Test Confi...optical wavelenght does not significantly affect the switching process. Another feature of this mode of operation is that there is a threshold
NASA Astrophysics Data System (ADS)
Maussang, K.; Palomo, J.; Manceau, J.-M.; Colombelli, R.; Sagnes, I.; Li, L. H.; Linfield, E. H.; Davies, A. G.; Mangeney, J.; Tignon, J.; Dhillon, S. S.
2017-04-01
Interdigitated photoconductive (iPC) switches are powerful and convenient devices for time-resolved spectroscopy, with the ability to operate both as sources and detectors of terahertz (THz) frequency pulses. However, reflection of the emitted or detected radiation within the device substrate itself can lead to echoes that inherently limit the spectroscopic resolution achievable for their use in time-domain spectroscopy (TDS) systems. In this work, we demonstrate a design of low-temperature-grown-GaAs (LT-GaAs) iPC switches for THz pulse detection that suppresses such unwanted echoes. This is realized through the growth of a buried multilayer LT-GaAs structure that retains its ultrafast properties, which, after wafer bonding to a metal-coated host substrate, results in an iPC switch with a metal plane buried at a subwavelength depth below the LT-GaAs surface. Using this device as a detector, and coupling it to an echo-less iPC source, enables echo-free THz-TDS and high-resolution spectroscopy, with a resolution limited only by the temporal length of the measurement governed by the mechanical delay line used. As a proof-of-principle, the 212-221 and the 101-212 rotational lines of water vapor have been spectrally resolved, demonstrating a spectral resolution below 10 GHz.
Yarema, Maksym; Pichler, Stefan; Sytnyk, Mykhailo; Seyrkammer, Robert; Lechner, Rainer T; Fritz-Popovski, Gerhard; Jarzab, Dorota; Szendrei, Krisztina; Resel, Roland; Korovyanko, Oleksandra; Loi, Maria Antonietta; Paris, Oskar; Hesser, Günter; Heiss, Wolfgang
2011-05-24
Here, we present a hot injection synthesis of colloidal Ag chalcogenide nanocrystals (Ag(2)Se, Ag(2)Te, and Ag(2)S) that resulted in exceptionally small nanocrystal sizes in the range between 2 and 4 nm. Ag chalcogenide nanocrystals exhibit band gap energies within the near-infrared spectral region, making these materials promising as environmentally benign alternatives to established infrared active nanocrystals containing toxic metals such as Hg, Cd, and Pb. We present Ag(2)Se nanocrystals in detail, giving size-tunable luminescence with quantum yields above 1.7%. The luminescence, with a decay time on the order of 130 ns, was shown to improve due to the growth of a monolayer thick ZnSe shell. Photoconductivity with a quantum efficiency of 27% was achieved by blending the Ag(2)Se nanocrystals with a soluble fullerene derivative. The co-injection of lithium silylamide was found to be crucial to the synthesis of Ag chalcogenide nanocrystals, which drastically increased their nucleation rate even at relatively low growth temperatures. Because the same observation was made for the nucleation of Cd chalcogenide nanocrystals, we conclude that the addition of lithium silylamide might generally promote wet-chemical synthesis of metal chalcogenide nanocrystals, including in as-yet unexplored materials.
Mapping photovoltaic performance with nanoscale resolution
Kutes, Yasemin; Aguirre, Brandon A.; Bosse, James L.; ...
2015-10-16
Photo-conductive AFM spectroscopy (‘pcAFMs’) is proposed as a high-resolution approach for investigating nanostructured photovoltaics, uniquely providing nanoscale maps of photovoltaic (PV) performance parameters such as the short circuit current, open circuit voltage, maximum power, or fill factor. The method is demonstrated with a stack of 21 images acquired during in situ illumination of micropatterned polycrystalline CdTe/CdS, providing more than 42,000 I/V curves spatially separated by ~5 nm. For these CdTe/CdS microcells, the calculated photoconduction ranges from 0 to 700 picoSiemens (pS) upon illumination with ~1.6 suns, depending on location and biasing conditions. Mean short circuit currents of 2 pA, maximummore » powers of 0.5 pW, and fill factors of 30% are determined. The mean voltage at which the detected photocurrent is zero is determined to be 0.7 V. Significantly, enhancements and reductions in these more commonly macroscopic PV performance metrics are observed to correlate with certain grains and grain boundaries, and are confirmed to be independent of topography. Furthermore, these results demonstrate the benefits of nanoscale resolved PV functional measurements, reiterate the importance of microstructural control down to the nanoscale for 'PV devices, and provide a widely applicable new approach for directly investigating PV materials.« less
Growth and properties of rare-earth arsenide InGaAs nanocomposites for terahertz generation
NASA Astrophysics Data System (ADS)
Salas, R.; Guchhait, S.; Sifferman, S. D.; McNicholas, K. M.; Dasika, V. D.; Krivoy, E. M.; Jung, D.; Lee, M. L.; Bank, S. R.
2015-02-01
We explore the electrical, optical, and structural properties of fast photoconductors of In0.53Ga0.47As containing a number of different rare-earth arsenide nanostructures. The rare-earth species provides a route to tailor the properties of the photoconductive materials. LuAs, GdAs, and LaAs nanostructures were embedded into InGaAs in a superlattice structure and compared to the relatively well-studied ErAs:InGaAs system. LaAs:InGaAs was found to have the highest dark resistivities, while GdAs:InGaAs had the lowest carrier lifetimes and highest carrier mobility at moderate depositions. The quality of the InGaAs overgrowth appears to have the most significant effect on the properties of these candidate fast photoconductors.
Organic Semiconductor Photovoltaics
NASA Astrophysics Data System (ADS)
Sariciftci, Niyazi Serdar
2005-03-01
Recent developments on organic photovoltaic elements are reviewed. Semiconducting conjugated polymers and molecules as well as nanocrystalline inorganic semiconductors are used in composite thin films. The photophysics of such photoactive devices is based on the photoinduced charge transfer from donor type semiconducting molecules onto acceptor type molecules such as Buckminsterfullerene, C60 and/or nanoparticles. Similar to the first steps in natural photosynthesis, this photoinduced electron transfer leads to a number of potentially interesting applications which include sensitization of the photoconductivity and photovoltaic phenomena. Examples of photovoltaic architectures are discussed with their potential in terrestrial solar energy conversion. Several materials are introduced and discussed for their photovoltaic activities. Furthermore, nanomorphology has been investigated with AFM, SEM and TEM. The morphology/property relationship for a given photoactive system is found to be a major effect.
Antimony sulfide thin films prepared by laser assisted chemical bath deposition
NASA Astrophysics Data System (ADS)
Shaji, S.; Garcia, L. V.; Loredo, S. L.; Krishnan, B.; Aguilar Martinez, J. A.; Das Roy, T. K.; Avellaneda, D. A.
2017-01-01
Antimony sulfide (Sb2S3) thin films were prepared by laser assisted chemical bath deposition (LACBD) technique. These thin films were deposited on glass substrates from a chemical bath containing antimony chloride, acetone and sodium thiosulfate under various conditions of normal chemical bath deposition (CBD) as well as in-situ irradiation of the chemical bath using a continuous laser of 532 nm wavelength. Structure, composition, morphology, optical and electrical properties of the Sb2S3 thin films produced by normal CBD and LACBD were analyzed by X-Ray diffraction (XRD), Raman Spectroscopy, Atomic force microscopy (AFM), X-Ray photoelectron spectroscopy (XPS), UV-vis spectroscopy and Photoconductivity. The results showed that LACBD is an effective synthesis technique to obtain Sb2S3 thin films for optoelectronic applications.
NASA Astrophysics Data System (ADS)
Frey, Joel Brandon
Recently, the world of diagnostic radiography has seen the integration of digital flat panel x-ray image detectors into x-ray imaging systems, replacing analog film screens. These flat panel x-ray imagers (FPXIs) have been shown to produce high quality x-ray images and provide many advantages that are inherent to a fully digital technology. Direct conversion FPXIs based on a photoconductive layer of stabilized amorphous selenium (a-Se) have been commercialized and have proven particularly effective in the field of mammography. In the operation of these detectors, incident x-ray photons are converted directly to charge carriers in the a-Se layer and drifted to electrodes on either side of the layer by a large applied field (10 V/microm). The applied field causes a dark current to flow which is not due to the incident radiation and this becomes a source of noise which can reduce the dynamic range of the detector. The level of dark current in commercialized detectors has been reduced by the deposition of thin n- and p- type blocking layers between the electrodes and the bulk of the a-Se. Despite recent research into the dark current in metal/a-Se/metal sandwich structures, much is still unknown about the true cause and nature of this phenomenon. The work in this Ph.D. thesis describes an experimental and theoretical study of the dark current in these structures. Experiments have been performed on five separate sets of a-Se samples which approximate the photoconductive layer in an FPXI. The dark current has been measured as a function of time, sample structure, applied field, sample thickness and contact metal used. This work has conclusively shown that the dark current is almost entirely due to the injection of charge carriers from the contacts and the contribution of Poole-Frenkel enhanced bulk thermal generation is negligible. There is also evidence that while the dark current is initially controlled by the injection of holes from the positive contact, several minutes after the application of the bias, the dark current due to hole injection may decay to the point where the electron current becomes significant and even dominant. These conclusions are supported by numerical calculations of the dark current transients which have been calibrated to match experimental results. Work detailed in this Ph.D. thesis also focuses on Monte Carlo modeling of the x-ray sensitivity of a-Se FPXIs. The higher the x-ray sensitivity of a detector, the lower the radiation dose required to acquire an acceptable image. FPXIs can experience a decrease in the x-ray sensitivity of the photoconductive layer with accumulating exposure, leading to a phenomenon known as "ghosting". Modeling this decrease in sensitivity can uncover the reasons behind it. The Monte Carlo model described in this thesis is a continuation of a previous model which now considers the effects of the n- and p-like blocking layers and the flow of dark current between x-ray exposures. The simulation results explain how deep trapping of photogenerated charge carriers, and the resulting effect on the electric field distribution, contribute to sensitivity loss. The model has shown excellent agreement with experimental data and has accurately predicted a sensitivity recovery once exposure has ceased which is due to primarily to the relaxation of metastable x-ray-induced carrier trap states.
NASA Astrophysics Data System (ADS)
Broser, I.; Broser, R.; Birkicht, E.
1990-04-01
Heavily indium-doped CdS crystals are studied by comparing their optical and electrical properties. It is shown that in the near infrared spectral region for highly conducting crystals the correlation of electrical conductivity and optical effects can still be understood in the frame of the classical Drude-Lorentz model. Even for high doping the relaxation time τ and the effective mass m ∗ of the electrons are not markedly different from the room temperature values of "pure" crystals. At photon energies near the band gap, however, optical spectra in transmission, reflectivity, and emission show clearly the existence of band-tails and screening effects. A different situation holds for a highly compensated specimen: They are in a wide temperature region highly isolating, show activated photoconductivity and special structures in the optical spectra near the band gap. Their properties can be explained by assuming a meandering bandbending due to the combined action of donors and acceptors and the assumption of spatially isolated electron and hole droplets [6].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Kenta; Watanabe, Takuya; Kakemoto, Hirofumi
We report the photo- and gas-controllable properties of platinum-loaded tungsten trioxide (Pt/WO{sub 3}), which is of interest for developing practical applications of WO{sub 3} as well as for interpreting such phenomena from scientific viewpoints. Here, a Pt/WO{sub 3} thin film generated a thermoelectric power due to the ultraviolet-light-induced band-gap excitation (photochromic (PC) reaction) and/or dark storage in formic acid vapor (gaschromic (GC) reaction) in the absence of O{sub 2}, resulting from the generation of W{sup 5+} ions. After such chromic reactions, the electrical conductivity (σ) is increased, whereas the absolute value of the Seebeck coefficient (S) is decreased. The changesmore » in σ and S and their rate of change for consistency increased in the order of: during the PC reaction < during the GC reaction < during simultaneous PC and GC reactions. The opposite behaviors, a decrease in σ and an increase in S, were exhibited by Pt/WO{sub 3} in the presence of O{sub 2} after dark storage or visible-light irradiation. This reversible cycle could be repeated. Moreover, anomalous, nontrivial photo-thermoelectric effects (a photoconductive effect (photoconductivity, σ{sub photo}) and a photo-Seebeck effect (photo-Seebeck coefficient, S{sub photo})) were also detected in response to the visible-light irradiation of Pt/WO{sub 3} in the absence of O{sub 2} after chromic reactions. Under visible-light irradiation, both σ{sub photo} and the absolute value of S{sub photo} are increased. After the irradiation, both values were decreased, that is, σ and the absolute value of S were smaller than σ{sub photo} and the absolute value of S{sub photo}, respectively. These effects are likely to be due to the photoinduced charge carriers and the accumulated electrons in Pt contributing to the increase in σ{sub photo}. In addition, electrons are extracted from the W{sup 5+} state, decreasing the number of W{sup 5+} in H{sub x}WO{sub 3} and thus contributing to the increase in S{sub photo}. After light irradiation, the accumulated electrons in Pt are returned to the energetically favorable W{sup 5+} state, and Pt/H{sub x}WO{sub 3} are returned to the initial state. Then both σ and S are decreased. The mechanisms of our anomalous, nontrivial photo-thermoelectric effects are presumed to be different from that involving the two-carrier contribution to the transport properties.« less
Microwave characteristics of GaAs MMIC integratable optical detectors
NASA Technical Reports Server (NTRS)
Claspy, Paul C.; Hill, Scott M.; Bhasin, Kul B.
1989-01-01
Interdigitated photoconductive detectors were fabricated on microwave device structures, making them easily integratable with Monolithic Microwave Integrated Circuits (MMIC). Detector responsivity as high as 2.5 A/W and an external quantum efficiency of 3.81 were measured. Response speed was nearly independent of electrode geometry, and all detectors had usable response at frequencies to 6 GHz. A small signal model of the detectors based on microwave measurements was also developed.
Program for Research on Conducting Polymers
1991-07-17
Excitations in Polyaniline (Synthetic Metals). 29. Transient Photoconductivity in Oriented Irans-Polyacetylene Prepared by the Naarmann-Theophilou Method...State Physics). 33. X-Ray Scattering from Crystalline Polyaniline (Polymer Commun.). 34. Photogenerated Carriers in La2CuO4,YBa2Cu3O7-8 and TI2Ba2Ca...1- x)GdxCu208: Polarizability-Induced Pairing of Polarons (Synthetic Metals). 35. Spectroscopic Studies of Polyaniline in Solution and in Spin-Cast
Quantum Dot Detector Enhancement for Narrow Band Multispectral Applications
2012-10-01
19 2.4.3 Dark Current and Noise Current Measurement of QDIPs.................................21 3 References...20 Figure 19: Dark Current of QDIPs Measured by Source Meter…………………………………………21 Figure 20: Schematic View of Noise Current Setup...temperature, higher photoconductive gain, carrier lifetimes 10-100 times longer than Quantum Well Infrared Photodetectors ( QWIPs ), and giving rise to a
Detection Of Gas-Phase Polymerization in SiH4 And GeH4
NASA Technical Reports Server (NTRS)
Shing, Yuh-Han; Perry, Joseph W.; Allevato, Camillo E.
1990-01-01
Inelastic scattering of laser light found to indicate onset of gas-phase polymerization in plasma-enhanced chemical-vapor deposition (PECVD) of photoconductive amorphous hydrogenated silicon/germanium alloy (a-SiGe:H) film. In PECVD process, film deposited from radio-frequency glow-discharge plasma of silane (SiH4) and germane (GeH4) diluted with hydrogen. Gas-phase polymerization undesirable because it causes formation of particulates and defective films.
Design parameters of a resonant infrared photoconductor with unity quantum efficiency
NASA Technical Reports Server (NTRS)
Farhoomand, Jam; Mcmurray, Robert E., Jr.
1991-01-01
This paper proposes a concept of a resonant infrared photoconductor that has characteristics of 100 percent quantum efficiency, high photoconductive gain, and very low noise equivalent power. Central to this concept is an establishment of a high-finesse absorption cavity internal to the detector element. A theoretical analysis is carried out, demonstrating this concept and providing some design guidelines. A Ge:Ga FIR detector is presently being fabricated using this approach.
NASA Astrophysics Data System (ADS)
Wang, Kaiwei; Wang, Xiaoping
2017-08-01
In order to enhance the practical education and hands-on experience of optoelectronics and eliminate the overlapping contents that previously existed in the experiments section adhering to several different courses, a lab course of "Applied Optoelectronics Laboratory" has been established in the College of Optical Science and Engineering, Zhejiang University. The course consists of two sections, i.e., basic experiments and project design. In section 1, basic experiments provide hands-on experience with most of the fundamental concept taught in the corresponding courses. These basic experiments including the study of common light sources such as He-Ne laser, semiconductor laser and solid laser and LED; the testing and analysis of optical detectors based on effects of photovoltaic effect, photoconduction effect, photo emissive effect and array detectors. In section 2, the course encourages students to build a team and establish a stand-alone optical system to realize specific function by taking advantage of the basic knowledge learned from section 1. Through these measures, students acquired both basic knowledge and the practical application skills. Moreover, interest in science has been developed among students.
Jiang, Dongyue; Park, Sung-Yong
2016-05-21
Technical advances in electrowetting-on-dielectric (EWOD) over the past few years have extended our attraction to three-dimensional (3D) devices capable of providing more flexibility and functionality with larger volumetric capacity than conventional 2D planar ones. However, typical 3D EWOD devices require complex and expensive fabrication processes for patterning and wiring of pixelated electrodes that also restrict the minimum droplet size to be manipulated. Here, we present a flexible single-sided continuous optoelectrowetting (SCOEW) device which is not only fabricated by a spin-coating method without the need for patterning and wiring processes, but also enables light-driven 3D droplet manipulations. To provide photoconductive properties, previous optoelectrowetting (OEW) devices have used amorphous silicon (a-Si) typically fabricated through high-temperature processes over 300 °C such as CVD or PECVD. However, most of the commercially-available flexible substrates such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) experience serious thermal deformation under such high-temperature processes. Because of this compatibility issue of conventional OEW devices with flexible substrates, light-driven 3D droplet manipulations have not yet been demonstrated on flexible substrates. Our study overcomes this compatibility issue by using a polymer-based photoconductive material, titanium oxide phthalocyanine (TiOPc) and thus SCOEW devices can be simply fabricated on flexible substrates through a low-cost, spin-coating method. In this paper, analytical studies were conducted to understand the effects of light patterns on static contact angles and EWOD forces. For experimental validations of our study, flexible SCOEW devices were successfully fabricated through the TiOPc-based spin-coating method and light-driven droplet manipulations (e.g. transportation, merging, and splitting) have been demonstrated on various 3D terrains such as inclined, vertical, upside-down, and curved surfaces. Our flexible SCOEW technology offers the benefits of device simplicity, flexibility, and functionality over conventional EWOD and OEW devices by enabling optical droplet manipulations on a 3D featureless surface.
Kavitha, M K; Gopinath, Pramod; John, Honey
2015-06-14
ZnO is a wide direct bandgap semiconductor; its absorption can be tuned to the visible spectral region by controlling the intrinsic defect levels. Combining graphene with ZnO can improve its performance by photo-induced charge separation by ZnO and electronic transport through graphene. When reduced graphene oxide-ZnO is prepared by a hydrothermal method, the photophysical studies indicate that oxygen vacancy defect states are healed out by diffusion of oxygen from GO to ZnO during its reduction. Because of the passivation of oxygen vacancies, the visible light photoconductivity of the hybrid is depleted, compared to pure ZnO. In order to overcome this reduction in photocurrent, a photoelectrode is fabricated by layer-by-layer (LBL) self-assembly of ZnO and reduced graphene oxide. The multilayer films are fabricated by the electrostatic LBL self-assembly technique using negatively charged poly(sodium 4-styrene sulfonate)-reduced graphene oxide (PSS-rGO) and positively charged polyacrylamide-ZnO (PAM-ZnO) as building blocks. The multilayer films fabricated by this technique will be highly interpenetrating; it will enhance the interaction between the ZnO and rGO perpendicular to the electrode surface. Upon illumination under bias voltage defect assisted excitation occurs in ZnO and the photogenerated charge carriers can transfer to graphene. The electron transferred to graphene sheets can recombine in two ways; either it can recombine with the holes in the valence band of ZnO in its bilayer or the ZnO in the next bilayer. This type of tunnelling of electrons from graphene to the successive bilayers will result in efficient charge transfer. This transfer and propagation of electron will enhance as the number of bilayers increases, which in turn improve the photocurrent of the multilayer films. Therefore this self-assembly technique is an effective approach to fabricate semiconductor-graphene films with excellent conductivity.
Yu, Jingjing; Javaid, Kashif; Liang, Lingyan; Wu, Weihua; Liang, Yu; Song, Anran; Zhang, Hongliang; Shi, Wen; Chang, Ting-Chang; Cao, Hongtao
2018-03-07
A visible-blind ultraviolet (UV) photodetector was designed based on a three-terminal electronic device of thin-film transistor (TFT) coupled with two-terminal p-n junction optoelectronic device, in hope of combining the beauties of both of the devices together. Upon the uncovered back-channel surface of amorphous indium-gallium-zinc-oxide (IGZO) TFT, we fabricated PEDOT:PSS/SnO x /IGZO heterojunction structure, through which the formation of a p-n junction and directional carrier transfer of photogenerated carriers were experimentally validated. As expected, the photoresponse characteristics of the newly designed photodetector, with a photoresponsivity of 984 A/W at a wavelength of 320 nm, a UV-visible rejection ratio up to 3.5 × 10 7 , and a specific detectivity up to 3.3 × 10 14 Jones, are not only competitive compared to the previous reports but also better than those of the pristine IGZO phototransistor. The hybrid photodetector could be operated in the off-current region with low supply voltages (<0.1 V) and ultralow power dissipation (<10 nW under illumination and ∼0.2 pW in the dark). Moreover, by applying a short positive gate pulse onto the gate, the annoying persistent photoconductivity presented in the wide band gap oxide-based devices could be suppressed conveniently, in hope of improving the response rate. With the terrific photoresponsivity along with the advantages of photodetecting pixel integration, the proposed phototransistor could be potentially used in high-performance visible-blind UV photodetector pixel arrays.
Exciton localization in solution-processed organolead trihalide perovskites
He, Haiping; Yu, Qianqian; Li, Hui; Li, Jing; Si, Junjie; Jin, Yizheng; Wang, Nana; Wang, Jianpu; He, Jingwen; Wang, Xinke; Zhang, Yan; Ye, Zhizhen
2016-01-01
Organolead trihalide perovskites have attracted great attention due to the stunning advances in both photovoltaic and light-emitting devices. However, the photophysical properties, especially the recombination dynamics of photogenerated carriers, of this class of materials are controversial. Here we report that under an excitation level close to the working regime of solar cells, the recombination of photogenerated carriers in solution-processed methylammonium–lead–halide films is dominated by excitons weakly localized in band tail states. This scenario is evidenced by experiments of spectral-dependent luminescence decay, excitation density-dependent luminescence and frequency-dependent terahertz photoconductivity. The exciton localization effect is found to be general for several solution-processed hybrid perovskite films prepared by different methods. Our results provide insights into the charge transport and recombination mechanism in perovskite films and help to unravel their potential for high-performance optoelectronic devices. PMID:26996605
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ponomarev, D. S., E-mail: ponomarev-dmitr@mail.ru; Khabibullin, R. A.; Yachmenev, A. E.
The results of time-domain spectroscopy of the terahertz (THz) generation in a structure with an In{sub 0.38}Ga{sub 0.62}As photoconductive layer are presented. This structure grown by molecular-beam epitaxy on a GaAs substrate using a metamorphic buffer layer allows THz generation with a wide frequency spectrum (to 6 THz). This is due to the additional contribution of the photo-Dember effect to THz generation. The measured optical-to-terahertz conversion efficiency in this structure is 10{sup –5} at a rather low optical fluence of ~40 μJ/cm{sup 2}, which is higher than that in low-temperature grown GaAs by almost two orders of magnitude.
Optoelectrofluidic platforms for chemistry and biology.
Hwang, Hyundoo; Park, Je-Kyun
2011-01-07
Extraordinary advances in lab on a chip systems have been made on the basis of the development of micro/nanofluidics and its fusion with other technologies based on electrokinetics and optics. Optoelectrofluidic technology, which has been recently introduced as a new manipulation scheme, allows programmable manipulation of particles or fluids in microenvironments based on optically induced electrokinetics. Herein, the behaviour of particles or fluids can be controlled by inducing or perturbing electric fields on demand in an optical manner, which includes photochemical, photoconductive, and photothermal effects. This elegant scheme of the optoelectrofluidic platform has attracted attention in various fields of science and engineering. A lot of research on optoelectrofluidic manipulation technologies has been reported and the field has advanced rapidly, although some technical hurdles still remain. This review describes recent developments and future perspectives of optoelectrofluidic platforms for chemical and biological applications.
The mechanism of the UV band edge photorefractivity suppression in highly doped LiNbO3:Zr crystals
NASA Astrophysics Data System (ADS)
Xin, Fei-fei
2017-11-01
The ultraviolet (UV) band edge photorefractivity of LiNbO3:Zr at 325 nm has been investigated. The experimental results show that the resistance against photorefraction at 325 nm is quite obvious but not as strong as that at 351 nm, when the doping concentration of Zr reaches 2.0 mol%. It is reported that the photorefractivity in other tetravalently doped LiNbO3 crystals, such as LiNbO3:Hf and LiNbO3:Sn, is enhanced dramatically with doping concentration over threshold. Here we give an explicit explanation on such seemly conflicting behaviors of tetravalently doped LiNbO3, which is ascribed to the combined effect of increased photoconductivity and the absorption strength of the band edge photorefractive centers.
Carlson, David E.
1980-01-01
The dark conductivity and photoconductivity of an N-type and/or undoped hydrogenated amorphous silicon layer fabricated by an AC or DC proximity glow discharge in silane can be increased through the incorporation of argon in an amount from 10 to about 90 percent by volume of the glow discharge atmosphere which contains a silicon-hydrogen containing compound in an amount of from about 90 to about 10 volume percent.
2010-09-01
doped with Au, Hg, Cd, Be, or Ga); or (3) photoemissive such as metal silicides and negative electron affinity materials. Photoconductive and...plasma (ICP) etching and metallization as required by the design of the sensors at different levels of processing were carried out using either AZ...Second, after all the processing and metallization is completed, the sensor material (Hg1–xCdxTe) and the substrate (silicon) must be dry etched
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cottingham, Patrick, E-mail: pcotting@usc.edu; Morey, Jennifer R.; Institute for Quantum Matter, Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218
2016-10-15
We report instrumentation for photovoltage and photocurrent spectroscopy over a larger continuous range of wavelengths, temperatures, and applied magnetic fields than other instruments described in the literature: 350 nm≤λ≤1700 nm, 1.8 K≤T≤300 K, and B≤9 T. This instrument uses a modulated monochromated incoherent light source with total power<30 μW in combination with an LED in order to probe selected regions of non-linear responses while maintaining low temperatures and avoiding thermal artifacts. The instrument may also be used to measure a related property, the photomagnetoresistance. We demonstrate the importance of normalizing measured responses for variations in light power and describe amore » rigorous process for performing these normalizations. We discuss several circuits suited to measuring different types of samples and provide analysis for converting measured values into physically relevant properties. Uniform approaches to measurement of these photoproperties are essential for reliable quantitative comparisons between emerging new materials with energy applications. - Highlights: • A novel instrument for measuring photoconductivity and photocurrents of materials and devices. • Continuous parameter space: 350 nm≤λ≤1700, 1.8 K≤T≤300 K, and B≤9 T. • Methodology for treating non-linear responses and variable lamp intensity. • Mathematical detail for extracting properties of materials from measured values is provided.« less
Carrier transport performance of Cd0.9Zn0.1Te detector by direct current photoconductive technology
NASA Astrophysics Data System (ADS)
Ling, Yunpeng; Min, Jiahua; Liang, Xiaoyan; Zhang, Jijun; Yang, Liuqing; Zhang, Ying; Li, Ming; Liu, Zhaoxin; Wang, Linjun
2017-01-01
In this paper, based on the derivation of the Hecht model and Many model, we establish a new theoretical model and deduce its mathematical equation by considering an even-distributed charged center of certain concentration under constant illumination. This model helps us deeply understand the carrier transport performance of Cd0.9Zn0.1Te (CZT) under various illuminations and non-uniform distribution of the internal electric field in CZT. In our research, direct current photoconductive technology (DCPT) is applied to assess the electrical transport properties of carriers in CZT crystals, which is verified by room temperature Am-241 alpha-particle responses and charge collection efficiency test. The mobility-lifetime product ( μτ ) for carriers is extracted from fitting the Hecht model by DCPT for CZT radiated from the cathode and anode by a constant laser, respectively. Moreover, the carrier transport properties of CZT under various light intensities and during a wide range of temperatures are also taken and analyzed in detail, which enable us to develop the best performance of CZT. In addition, we figure out a method for estimating μeτe and μhτh on different positions of CZT wafer on the basis of the pixel detector that collects single polarity charge, and several corrective actions have improved the accuracy of the measurement.
Wibowo, Arief C; Malliakas, Christos D; Liu, Zhifu; Peters, John A; Sebastian, Maria; Chung, Duck Young; Wessels, Bruce W; Kanatzidis, Mercouri G
2013-06-17
We investigated an antimony chalcohalide compound, SbSeI, as a potential semiconductor material for X-ray and γ-ray detection. SbSeI has a wide band gap of 1.70 eV with a density of 5.80 g/cm(3), and it crystallizes in the orthorhombic Pnma space group with a one-dimensional chain structure comprised of infinite zigzag chains of dimers [Sb2Se4I8]n running along the crystallographic b axis. In this study, we investigate conditions for vertical Bridgman crystal growth using combinations of the peak temperature and temperature gradients as well as translation rate set in a three-zone furnace. SbSeI samples grown at 495 °C peak temperature and 19 °C/cm temperature gradient with 2.5 mm/h translation rate produced a single phase of columnar needlelike crystals aligned along the translational direction of the growth. The ingot sample exhibited an n-type semiconductor with resistivity of ∼10(8) Ω·cm. Photoconductivity measurements on these specimens allowed us to determine mobility-lifetime (μτ) products for electron and hole carriers that were found to be of similar order of magnitude (∼10(-4) cm(2)/V). Further, the SbSeI ingot with well-aligned, one-dimensional columnar needlelike crystals shows an appreciable response of Ag Kα X-ray.
A study of trap and recombination centers in MAPbI3 perovskites.
Gordillo, G; Otálora, C A; Ramirez, A A
2016-12-07
Trapping and recombination processes in thin films of CH 3 NH 3 PbI 3 (MAPbI 3 ) were studied by means of transient photoconductivity measurements and theoretical simulations of the relaxation curves resulting from the photocurrent measurements; in particular, the influence of temperature as well as of the sample temperature and intensity of illumination and pressure inside the measurement system on the photoconductivity response, were studied. The experimental curves of photocurrent were analyzed using the real part of the Fourier transform. The study revealed that the photocurrent of the MAPbI 3 films, measured at atmospheric pressure, is mainly governed by surface related processes induced by chemisorption and desorption of oxygen, whereas the photocurrent resulting from measurements performed in a vacuum is mainly governed by bulk related processes. It was found that, in general, the photocurrent response is affected by both trap assisted fast recombination processes and traps whose activation process is delayed, with the contribution in the intensity of the photocurrent of the first process being greater that of the second one. Evidence that the MAPbI 3 film exhibits a deep trap state at around 459 meV attributed to trap assisted recombination was found; furthermore, the MAPbI 3 films present shallow trap states at 129 and 24 meV that correspond to trap states whose activation process is delayed.
NASA Astrophysics Data System (ADS)
Sakthy Priya, S.; Alexandar, A.; Surendran, P.; Lakshmanan, A.; Rameshkumar, P.; Sagayaraj, P.
2017-04-01
An efficient organic nonlinear optical single crystal of L-arginine maleate dihydrate (LAMD) has been grown by slow evaporation solution technique (SEST) and slow cooling technique (SCT). The crystalline perfection of the crystal was examined using high-resolution X-ray diffractometry (HRXRD) analysis. Photoluminescence study confirmed the optical properties and defects level in the crystal lattice. Electromechanical behaviour was observed using piezoelectric co-efficient (d33) analysis. The photoconductivity analysis confirmed the negative photoconducting nature of the material. The dielectric constant and loss were measured as a function of frequency with varying temperature and vice-versa. The laser damage threshold (LDT) measurement was carried out using Nd:YAG Laser with a wavelength of 1064 nm (Focal length is 35 cm) and the obtained results showed that LDT value of the crystal is high compared to KDP crystal. The high laser damage threshold of the grown crystal makes it a potential candidate for second and higher order nonlinear optical device application. The third order nonlinear optical parameters of LAMD crystal is determined by open-aperture and closed-aperture studies using Z-scan technique. The third order linear and nonlinear optical parameters such as the nonlinear refractive index (n2), two photon absorption coefficient (β), Real part (Reχ3) and imaginary part (Imχ3) of third-order nonlinear optical susceptibility are calculated.
NASA Astrophysics Data System (ADS)
Wang, Yue; Zhang, Li-Ying; Mei, Jin-Shuo; Zhang, Wen-Chao; Tong, Yi-Jing
2015-12-01
We propose an improved design and numerical study of an optimized tunable plasmonics artificial material resonator in the terahertz regime. We demonstrate that tunability can be realized with a transmission intensity as much as ˜61% in the lower frequency resonance, which is implemented through the effect of photoconductive switching under photoexcitation. In the higher frequency resonance, we show that spoof surface plasmons along the interface of metal/dielectric provide new types of electromagnetic resonances. Our approach opens up possibilities for the interface of metamaterial and plasmonics to be applied to optically tunable THz switching. Project supported by the National Natural Science Foundation of China (Grant No. 61201075), the Natural Science Foundation of Heilongjiang Province, China (Grant No. F2015039), the Young Scholar Project of Heilongjiang Provincial Education Bureau, China (Grant No. 1254G021), the China Postdoctoral Science Foundation (Grant No. 2012M511507), and the Science Funds for the Young Innovative Talents of Harbin University of Science and Technology, China (Grant No. 201302).
Understanding the Implications of a LINAC’s Microstructure on Devices and Photocurrent Models
McLain, Michael Lee; McDonald, Joseph Kyle; Hembree, Charles E.; ...
2017-10-20
Here, the effect of a linear accelerator’s (LINAC’s) microstructure (i.e., train of narrow pulses) on devices and the associated transient photocurrent models are investigated. The data indicate that the photocurrent response of Si-based RF bipolar junction transistors and RF p-i-n diodes is considerably higher when taking into account the microstructure effects. Similarly, the response of diamond, SiO 2, and GaAs photoconductive detectors (standard radiation diagnostics) is higher when taking into account the microstructure. This has obvious hardness assurance implications when assessing the transient response of devices because the measured photocurrent and dose rate levels could be underestimated if microstructure effectsmore » are not captured. Indeed, the rate the energy is deposited in a material during the microstructure peaks is much higher than the filtered rate which is traditionally measured. In addition, photocurrent models developed with filtered LINAC data may be inherently inaccurate if a device is able to respond to the microstructure.« less
A filterless, visible-blind, narrow-band, and near-infrared photodetector with a gain
NASA Astrophysics Data System (ADS)
Shen, Liang; Zhang, Yang; Bai, Yang; Zheng, Xiaopeng; Wang, Qi; Huang, Jinsong
2016-06-01
In many applications of near-infrared (NIR) light detection, a band-pass filter is needed to exclude the noise caused by visible light. Here, we demonstrate a filterless, visible-blind, narrow-band NIR photodetector with a full-width at half-maximum of <50 nm for the response spectrum. These devices have a thick (>4 μm) nanocomposite absorbing layers made of polymer-fullerene:lead sulfide (PbS) quantum dots (QDs). The PbS QDs yield a photoconductive gain due to their hole-trapping effect, which effectively enhances both the responsivity and the visible rejection ratio of the external quantum efficiency by >10 fold compared to those without PbS QDs. Encouragingly, the inclusion of the PbS QDs does not increase the device noise. We directly measured a noise equivalent power (NEP) of 6.1 pW cm-2 at 890 nm, and a large linear dynamic range (LDR) over 11 orders of magnitude. The highly sensitive visible-blind NIR narrow-band photodetectors may find applications in biomedical engineering.
Understanding the Implications of a LINAC’s Microstructure on Devices and Photocurrent Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLain, Michael Lee; McDonald, Joseph Kyle; Hembree, Charles E.
Here, the effect of a linear accelerator’s (LINAC’s) microstructure (i.e., train of narrow pulses) on devices and the associated transient photocurrent models are investigated. The data indicate that the photocurrent response of Si-based RF bipolar junction transistors and RF p-i-n diodes is considerably higher when taking into account the microstructure effects. Similarly, the response of diamond, SiO 2, and GaAs photoconductive detectors (standard radiation diagnostics) is higher when taking into account the microstructure. This has obvious hardness assurance implications when assessing the transient response of devices because the measured photocurrent and dose rate levels could be underestimated if microstructure effectsmore » are not captured. Indeed, the rate the energy is deposited in a material during the microstructure peaks is much higher than the filtered rate which is traditionally measured. In addition, photocurrent models developed with filtered LINAC data may be inherently inaccurate if a device is able to respond to the microstructure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vashisht, Geetanjali, E-mail: geetanjali@rrcat.gov.in; Dixit, V. K., E-mail: dixit@rrcat.gov.in; Porwal, S.
2016-03-07
The effect of charge carrier localization resulting in “S-shaped” temperature dependence of the photoluminescence peak energy of InAs{sub x}P{sub 1−x}/InP quantum wells (QWs) is distinctly revealed by the temperature dependent surface photo voltage (SPV) and photoconductivity (PC) processes. It is observed that the escape efficiency of carriers from QWs depends on the localization energy, where the carriers are unable to contribute in SPV/PC signal below a critical temperature. Below the critical temperature, carriers are strongly trapped in the localized states and are therefore unable to escape from the QW. Further, the critical temperature increases with the magnitude of localization energymore » of carriers. Carrier localization thus plays a pivotal role in defining the operating temperature range of InAs{sub x}P{sub 1−x}/InP QW detectors.« less
NASA Astrophysics Data System (ADS)
Jahangir, Ifat; Uddin, M. Ahsan; Singh, Amol K.; Koley, Goutam; Chandrashekhar, M. V. S.
2017-10-01
We demonstrate a large area MoS2/graphene barristor, using a transfer-free method for producing 3-5 monolayer (ML) thick MoS2. The gate-controlled diodes show good rectification, with an ON/OFF ratio of ˜103. The temperature dependent back-gated study reveals Richardson's coefficient to be 80.3 ± 18.4 A/cm2/K and a mean electron effective mass of (0.66 ± 0.15)m0. Capacitance and current based measurements show the effective barrier height to vary over a large range of 0.24-0.91 eV due to incomplete field screening through the thin MoS2. Finally, we show that this barristor shows significant visible photoresponse, scaling with the Schottky barrier height. A response time of ˜10 s suggests that photoconductive gain is present in this device, resulting in high external quantum efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sterczewski, L. A., E-mail: lukasz.sterczewski@pwr.edu.pl; Grzelczak, M. P.; Plinski, E. F.
In this paper, we present an electronic circuit used to bias a photoconductive antenna that generates terahertz radiation. The working principles and the design process for the device are discussed in detail. The noise and shape of the wave measurements for a built device are considered. Furthermore, their impact on a terahertz pulse and its spectra is also examined. The proposed implementation is simple to build, robust and offers a real improvement over THz instrumentation due to the frequency tuning. Additionally, it provides for galvanic isolation and ESD protection.
Monolithically integrated active optical devices. [with application in optical communication
NASA Technical Reports Server (NTRS)
Ballantyne, J.; Wagner, D. K.; Kushner, B.; Wojtzcuk, S.
1981-01-01
Considerations relevant to the monolithic integration of optical detectors, lasers, and modulators with high speed amplifiers are discussed. Some design considerations for representative subsystems in the GaAs-AlGaAs and GaInAs-InP materials systems are described. Results of a detailed numerical design of an electro-optical birefringent filter for monolithic integration with a laser diode is described, and early experimental results on monolithic integration of broadband MESFET amplifiers with photoconductive detectors are reported.
2011-08-07
cutting and imaging, with p- and i -GaN regions estimated to be ,1 mm in thickness36. This detector was used in photoconductive mode, with a preamplifier...D., Khoo, I . C., Salamo, G. J., Stegeman, G. I . & Van Straland, E. W. Nonlinear refraction and absorption: mechanisms and magnitudes. Adv. Opt...Am. B 9, 2065–2074 (1992). 14. Sheik- Bahae , M., Wang, J., DeSalvo, R., Hagan, D. J. & Van Styland, E. W. Measurement of nondegenerate nonlinearities
Investigation of Optically Induced Avalanching in GaAs
1989-06-01
by Bovino , et al 4 to increase the hold off voltage. The button switch design of Fig. 4c has been used by several researchers5 ’ 7 to obtain the...ul Long flashover palh Figure 3b. 434 Optical Jlatlern a. Mourou Switch b. Bovino Switch c. Button Switch Figure 4. Photoconductive Switches...Technology and Devices Laboratory, ERADCOM (by L. Bovino , et. all) 4 • The deposition recipe for the contacts is 1) 50 ANi (provides contact to GaAs
Quantum dot rolled-up microtube optoelectronic integrated circuit.
Bhowmick, Sishir; Frost, Thomas; Bhattacharya, Pallab
2013-05-15
A rolled-up microtube optoelectronic integrated circuit operating as a phototransceiver is demonstrated. The microtube is made of a InGaAs/GaAs strained bilayer with InAs self-organized quantum dots inserted in the GaAs layer. The phototransceiver consists of an optically pumped microtube laser and a microtube photoconductive detector connected by an a-Si/SiO2 waveguide. The loss in the waveguide and responsivity of the entire phototransceiver circuit are 7.96 dB/cm and 34 mA/W, respectively.
Investigation of Electrical and Optical Properties of Bulk III-V Ternary Semiconductors
2009-03-01
metalorganic vapour phase epitaxial grown (MOVPE) InxGa1-xSb with indium mole fractions less than 0.06. [28] They observed that GaSb and InxGa1-xSb had...Treideris, A. Krotkus, and K. Grigoras, “Picosecond GaAs and InGaAs photoconductive switches obtained by low-temperature metal-organic chemical vapour ...Time Dependent Annealing Study of Silicon Implanted Aluminum Gallium Nitride,” Master’s Thesis, Air Force Institute of Technology (AU), Wright
Multifunctional Macromolecules
1993-10-01
wash bottles. This converts the highly toxic HCN into relatively harmless sodium cyanate . Draege tube "sniffers" were used inside the hood to detect...thickness of 4 pm and metallized with a 100 nm thick gold electrode. Using a dc power supply and a picoammeter, steady state photoconduction...analyze the data obtained using P2ANS in this work. I An 8 pm sample of 50/50 P2ANS/MMA was metallized and poled at 100 V/pm for 5 minutes at 140*C. The
Lifetime of excess electrons in Cu–Zn–Sn–Se powders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novikov, G. F., E-mail: ngf@icp.ac.ru; Gapanovich, M. V.; Gremenok, V. F.
2017-01-15
The method of time-resolved microwave photoconductivity at a frequency of 36 GHz in the range of temperatures of 200–300 K is used to study the kinetics of the annihilation of charge carriers in Cu–Zn–Sn–Se powders obtained by the solid-phase method of synthesis in cells. The lifetime of excess electrons at room temperature is found to be shorter than 5 ns. The activation energy for the process of recombination amounted to E{sub a} ~ 0.054 eV.
Mechanical grooving effect on the gettering efficiency of crystalline silicon based solar cells
NASA Astrophysics Data System (ADS)
Zarroug, Ahmed; Hamed, Zied Ben; Derbali, Lotfi; Ezzaouia, Hatem
2017-04-01
This paper examines a gettering process of Czochralski silicon (CZ) via mechanical texture, followed by two step heat treatment in the presence of porous silicon layer (PSL) under oxygen flow gas. It is shown that a process with PS has a positive trend of improvement in the electronic quality, and found to be more efficient when used in combination with mechanical grooving. We obtained a significant increase of the effective minority carrier lifetime and majority charge carriers mobility. Thus, there is an apparent decrease in the resistivity. These parameters were estimated through a The Quasi-Steady-State Photo-Conductance technique (QSSPC), the van Der Pauw method and Hall Effect. Particularly, we have made obvious that the large enhancement of the electronic quality of the wafers can be related to the presence of grooves, the influence during which the gettering process is of importance to overcome the unexpected saturation phenomena. The current voltage I-V characteristics of all samples had been measured under illumination. They were shown to enhance the photovoltaic properties of solar cells.
NASA Astrophysics Data System (ADS)
Marmon, Jason; Rai, Satish; Wang, Kai; Zhou, Weilie; Zhang, Yong
2016-03-01
Modern electronics are developing electronic-optical integrated circuits, while their electronic backbone, e.g. field-effect transistors (FETs), remains the same. However, further FET down scaling is facing physical and technical challenges. A light-effect transistor (LET) offers electronic-optical hybridization at the component level, which can continue Moore’s law to quantum region without requiring a FET’s fabrication complexity, e.g. physical gate and doping, by employing optical gating and photoconductivity. Multiple independent gates are therefore readily realized to achieve unique functionalities without increasing chip space. Here we report LET device characteristics and novel digital and analog applications, such as optical logic gates and optical amplification. Prototype CdSe-nanowire-based LETs show output and transfer characteristics resembling advanced FETs, e.g. on/off ratios up to ~1.0x106 with a source-drain voltage of ~1.43 V, gate-power of ~260 nW, and subthreshold swing of ~0.3 nW/decade (excluding losses). Our work offers new electronic-optical integration strategies and electronic and optical computing approaches.
NASA Astrophysics Data System (ADS)
Mao, Yifei; Zhang, Jijun; Lin, Liwen; Lai, Jianming; Min, Jiahua; Liang, Xiaoyan; Huang, Jian; Tang, Ke; Wang, Linjun
2018-04-01
Different wavelength IR light (770-1150 nm) was used to evaluate the effect of IR light on the carrier transport performance of CdZnTe detector. The effective mobility-lifetime product (μτ*) of CdZnTe achieved 10-2 cm2 V-1 when the IR wavelength was in the range of 820-920 nm, but decreased to 1 × 10-4 cm2 V-1 when the wavelength was longer than 920 nm. The mechanism about how IR light affecting the carrier transport property of CdZnTe detector was analyzed with Shockley-Read-Hall model. The defect of doubly ionized Cd vacancy ([VCd]2-) was found to be the main factor that assist IR light affecting the μτ of CdZnTe detector. The photoconductive experiment under 770-1150 nm IR illumination was carried out, and three kinds of photocurrent curve were detected and analyzed by solving the Hecht equation. The experiments demonstrated the effect of [VCd]2- defect on the carrier transport property of CdZnTe detector under IR illumination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faye, Mbaye; Bordessoule, Michel; Kanouté, Brahim
When using bright, small effective size sources, such as synchrotron radiation light beam, for broadband spectroscopy at spectral or spatial high resolution for mid-IR FTIR measurements, a marked detectivity improvement can be achieved by setting up a device matching the detector optical étendue to that of the source. Further improvement can be achieved by reducing the background unmodulated flux and other intrinsic noise sources using a lower temperature cryogen, such as liquid helium. By the combined use of cooled apertures, cold reimaging optics, filters and adapted detector polarization, and preamplification electronics, the sensitivity of a HgCdTe photoconductive IR detector canmore » be improved by a significant factor with respect to standard commercial devices (more than one order of magnitude on average over 6–20 μm region) and the usable spectral range extended to longer wavelengths. The performances of such an optimized detector developed on the AILES Beamline at SOLEIL are presented here.« less
Optically tunable Quincke rotation of a nanometer-thin oblate spheroid
NASA Astrophysics Data System (ADS)
Gu, Yu; Zeng, Haibo
2017-08-01
Ever since the discovery of Quincke rotation (spontaneous rotation of a particle in fluid under a dc electric field) more than 100 years ago [G. Quincke, Ann. Phys. (Leipzig) 295, 417 (1896), 10.1002/andp.18962951102], the strength of the dc field has been the only external parameter to actively tune the rotation speed. In this paper we theoretically propose an optically tunable Quincke rotor exploiting the photoconductivity of a semiconducting nanometer-thin oblate spheroid. A full analysis of the instability of the Quincke rotation reveals that, unlike a prolate spheroid, no bistability is possible in such a dynamical system. In addition, the required material property and the strength of the dc electric field needed to realize the rotation are also elucidated. It is also predicted that light can be used to tune the spinning speed or simply turn on and off the Quincke rotation very effectively.
Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices
Moon, Kiwon; Lee, Il-Min; Shin, Jun-Hwan; Lee, Eui Su; Kim, Namje; Lee, Won-Hui; Ko, Hyunsung; Han, Sang-Pil; Park, Kyung Hyun
2015-01-01
Photoconductive antennas with nano-structured electrodes and which show significantly improved performances have been proposed to satisfy the demand for compact and efficient terahertz (THz) sources. Plasmonic field enhancement was previously considered the dominant mechanism accounting for the improvements in the underlying physics. However, we discovered that the role of plasmonic field enhancement is limited and near-field distribution of bias field should be considered as well. In this paper, we clearly show that the locally enhanced bias field due to the size effect is much more important than the plasmonic enhanced absorption in the nano-structured electrodes for the THz emitters. Consequently, an improved nano-electrode design is presented by tailoring bias field distribution and plasmonic enhancement. Our findings will pave the way for new perspectives in the design and analysis of plasmonic nano-structures for more efficient THz photonic devices. PMID:26347288
Pan, C B; Zha, F X; Song, Y X; Shao, J; Dai, Y; Chen, X R; Ye, J Y; Wang, S M
2015-07-15
Femtosecond laser drilled holes of GaSbBi were characterized by the joint measurements of photoconductivity (PC) spectroscopy and laser-beam-induced current (LBIC) mapping. The excitation light in PC was focused down to 60 μm presenting the spectral information of local electronic property of individual holes. A redshift of energy band edge of about 6-8 meV was observed by the PC measurement when the excitation light irradiated on the laser drilled holes. The spatial resolving of photoelectric property was achieved by the LBIC mapping which shows "pseudo-holes" with much larger dimensions than the geometric sizes of the holes. The reduced LBIC current with the pseudo-holes is associated with the redshift effect indicating that the electronic property of the rim areas of the holes is modified by the femtosecond laser drilling.
NASA Astrophysics Data System (ADS)
Sibirmovsky, Y. D.; Vasil'evskii, I. S.; Vinichenko, A. N.; Zhigunov, D. M.; Eremin, I. S.; Kolentsova, O. S.; Safonov, D. A.; Kargin, N. I.
2017-11-01
Samples of δ-Si doped AlGaAs/GaAs/AlGaAs HEMT heterostructures with GaAs quantum rings (QRs) on top of the quantum well (QW) were grown by molecular beam epitaxy and their properties were compared to the reference samples without QRs. The thickness of the QW was 6 - 10 nm for the samples with QRs and 20 nm for the reference samples. Photoluminescence measurements at low temperatures for all samples show at least two distinct lines in addition to the bulk GaAs line. The Hall effect and low temperature magnetotransport measurements at 4 - 320 K show that conductivity with and without illumination decreases significantly with QRs introduction, however the relative photoconductivity increases. Samples with 6 nm QW are insulating, which could be caused by the strong localization of the charge carriers in the QRs.
Shallow Heavily Doped n++ Germanium by Organo-Antimony Monolayer Doping.
Alphazan, Thibault; Díaz Álvarez, Adrian; Martin, François; Grampeix, Helen; Enyedi, Virginie; Martinez, Eugénie; Rochat, Névine; Veillerot, Marc; Dewitte, Marc; Nys, Jean-Philippe; Berthe, Maxime; Stiévenard, Didier; Thieuleux, Chloé; Grandidier, Bruno
2017-06-14
Functionalization of Ge surfaces with the aim of incorporating specific dopant atoms to form high-quality junctions is of particular importance for the development of solid-state devices. In this study, we report the shallow doping of Ge wafers with a monolayer doping strategy that is based on the controlled grafting of Sb precursors and the subsequent diffusion of Sb into the wafer upon annealing. We also highlight the key role of citric acid in passivating the surface before its reaction with the Sb precursors and the benefit of a protective SiO 2 overlayer that enables an efficient incorporation of Sb dopants with a concentration higher than 10 20 cm -3 . Microscopic four-point probe measurements and photoconductivity experiments show the full electrical activation of the Sb dopants, giving rise to the formation of an n++ Sb-doped layer and an enhanced local field-effect passivation at the surface of the Ge wafer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varade, Vaibhav, E-mail: vaibhav.tvarade@gmail.com; Jagtap, Amardeep M.; Koteswara Rao, K. S. R.
2015-06-07
Temperature and photo-dependent current–voltage characteristics are investigated in thin film devices of a hybrid-composite comprising of organic semiconductor poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) and cadmium telluride quantum dots (CdTe QDs). A detailed study of the charge injection mechanism in ITO/PEDOT:PSS-CdTe QDs/Al device exhibits a transition from direct tunneling to Fowler–Nordheim tunneling with increasing electric field due to formation of high barrier at the QD interface. In addition, the hybrid-composite exhibits a huge photoluminescence quenching compared to aboriginal CdTe QDs and high increment in photoconductivity (∼ 400%), which is attributed to the charge transfer phenomena. The effective barrier height (Φ{sub B} ≈ 0.68 eV) ismore » estimated from the transition voltage and the possible origin of its variation with temperature and photo-illumination is discussed.« less
NASA Technical Reports Server (NTRS)
Cashman, Thomas; Demko, Rikako; Uppala, Nischala; Vemulapalli, Jyothi; Welch, Bryan; Hambourger, Paul D.
2003-01-01
We have prepared transparent films with a sheet relativity of 10(exp 1) to 10(exp 12) ohm/square by co-depositing a transparent conducting oxide (TCO) with magnesium fluoride, using two independently controlled RF magnetron sputter guns to facilitate adjustment of the film composition, Co-deposited indium tin oxide (ITO) and MgF2 on quartz and flexible polymeric substrate exhibited reasonably stable sheet resistivity over several months' time, with substantially lower optical reflectance than that of pure ITO. However, exposure to low-intensity blue light reduces sheet resistivity by as much as two orders of magnitude. Our results suggest this photoconductivity effect may be present in all InO(x)-based materials. We find that sheet resistivity can by "tuned" by admitting a small amount of high-purity air during deposition offering the possibility of closed loop process control.
Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices.
Moon, Kiwon; Lee, Il-Min; Shin, Jun-Hwan; Lee, Eui Su; Kim, Namje; Lee, Won-Hui; Ko, Hyunsung; Han, Sang-Pil; Park, Kyung Hyun
2015-09-08
Photoconductive antennas with nano-structured electrodes and which show significantly improved performances have been proposed to satisfy the demand for compact and efficient terahertz (THz) sources. Plasmonic field enhancement was previously considered the dominant mechanism accounting for the improvements in the underlying physics. However, we discovered that the role of plasmonic field enhancement is limited and near-field distribution of bias field should be considered as well. In this paper, we clearly show that the locally enhanced bias field due to the size effect is much more important than the plasmonic enhanced absorption in the nano-structured electrodes for the THz emitters. Consequently, an improved nano-electrode design is presented by tailoring bias field distribution and plasmonic enhancement. Our findings will pave the way for new perspectives in the design and analysis of plasmonic nano-structures for more efficient THz photonic devices.
The Sunk Cost Effect with Pigeons: Some Determinants of Decisions about Persistence
ERIC Educational Resources Information Center
Macaskill, Anne C.; Hackenberg, Timothy D.
2012-01-01
The sunk cost effect occurs when an individual persists following an initial investment, even when persisting is costly in the long run. The current study used a laboratory model of the sunk cost effect. Two response alternatives were available: Pigeons could persist by responding on a schedule key with mixed ratio requirements, or escape by…
Interband Photoconductivity of Metamorphic InAs/InGaAs Quantum Dots in the 1.3-1.55-μm Window
NASA Astrophysics Data System (ADS)
Golovynskyi, Sergii; Datsenko, Oleksandr I.; Seravalli, Luca; Trevisi, Giovanna; Frigeri, Paola; Babichuk, Ivan S.; Golovynska, Iuliia; Qu, Junle
2018-04-01
Photoelectric properties of the metamorphic InAs/In x Ga1 - x As quantum dot (QD) nanostructures were studied at room temperature, employing photoconductivity (PC) and photoluminescence spectroscopies, electrical measurements, and theoretical modeling. Four samples with different stoichiometry of In x Ga1 - x As cladding layer have been grown: indium content x was 0.15, 0.24, 0.28, and 0.31. InAs/In0.15Ga0.85As QD structure was found to be photosensitive in the telecom range at 1.3 μm. As x increases, a redshift was observed for all the samples, the structure with x = 0.31 was found to be sensitive near 1.55 μm, i.e., at the third telecommunication window. Simultaneously, only a slight decrease in the QD PC was recorded for increasing x, thus confirming a good photoresponse comparable with the one of In0.15Ga0.75As structures and of GaAs-based QD nanostructures. Also, the PC reduction correlate with the similar reduction of photoluminescence intensity. By simulating theoretically the quantum energy system and carrier localization in QDs, we gained insight into the PC mechanism and were able to suggest reasons for the photocurrent reduction, by associating them with peculiar behavior of defects in such a type of structures. All this implies that metamorphic QDs with a high x are valid structures for optoelectronic infrared light-sensitive devices.
History of HgTe-based photodetectors in Poland
NASA Astrophysics Data System (ADS)
Rogalski, A.
2010-09-01
In Poland, the HgCdTe studies began in 1960 at the Institute of Physics, Warsaw University. The material processing laboratory was created by Giriat and later by Dziuba, Gałązka, and others. Bridgman technique with sealed thick wall quartz ampoules was used to grow material suitable for research and experimental devices. Among the first papers published in 1961 and 1963 there were the Polish works devoted to preparation, doping, and electrical properties of HgCdTe. Infrared detector's research and development efforts in Poland were concentrated mostly on uncooled market niche. At the beginning, a modified isothermal vapour phase epitaxy has been used for research and commercial fabrication of photoconductive, photoelectromagnetic and other HgCdTe devices. Bulk growth and liquid phase epitaxy were also used. Recently, the fabrication of infrared devices relies on low temperature epitaxial technique, namely metalorganic vapour phase deposition. At present stage of development, the photoconductive and photoelectromagnetic (PEM) detectors are gradually replaced with photovoltaic devices which offer inherent advantages of no electric or magnetic bias, no heat load and no flicker noise. Potentially, photodiodes offer high performance and very fast response. However, conventional photovoltaic uncooled detectors suffer from low quantum efficiency and very low junction resistance. The problems have been solved with advanced band gap engineered architecture, multiple cell heterojunction devices connected in series, and monolithic integration of the detectors with microoptics. In final part of the paper, the Polish achievements in technology and performance of HgMnTe and HgZnTe photodetectors are presented.
Printable organometallic perovskite enables large-area, low-dose X-ray imaging
NASA Astrophysics Data System (ADS)
Kim, Yong Churl; Kim, Kwang Hee; Son, Dae-Yong; Jeong, Dong-Nyuk; Seo, Ja-Young; Choi, Yeong Suk; Han, In Taek; Lee, Sang Yoon; Park, Nam-Gyu
2017-10-01
Medical X-ray imaging procedures require digital flat detectors operating at low doses to reduce radiation health risks. Solution-processed organic-inorganic hybrid perovskites have characteristics that make them good candidates for the photoconductive layer of such sensitive detectors. However, such detectors have not yet been built on thin-film transistor arrays because it has been difficult to prepare thick perovskite films (more than a few hundred micrometres) over large areas (a detector is typically 50 centimetres by 50 centimetres). We report here an all-solution-based (in contrast to conventional vacuum processing) synthetic route to producing printable polycrystalline perovskites with sharply faceted large grains having morphologies and optoelectronic properties comparable to those of single crystals. High sensitivities of up to 11 microcoulombs per air KERMA of milligray per square centimetre (μC mGyair-1 cm-2) are achieved under irradiation with a 100-kilovolt bremsstrahlung source, which are at least one order of magnitude higher than the sensitivities achieved with currently used amorphous selenium or thallium-doped cesium iodide detectors. We demonstrate X-ray imaging in a conventional thin-film transistor substrate by embedding an 830-micrometre-thick perovskite film and an additional two interlayers of polymer/perovskite composites to provide conformal interfaces between perovskite films and electrodes that control dark currents and temporal charge carrier transportation. Such an all-solution-based perovskite detector could enable low-dose X-ray imaging, and could also be used in photoconductive devices for radiation imaging, sensing and energy harvesting.
Printable organometallic perovskite enables large-area, low-dose X-ray imaging.
Kim, Yong Churl; Kim, Kwang Hee; Son, Dae-Yong; Jeong, Dong-Nyuk; Seo, Ja-Young; Choi, Yeong Suk; Han, In Taek; Lee, Sang Yoon; Park, Nam-Gyu
2017-10-04
Medical X-ray imaging procedures require digital flat detectors operating at low doses to reduce radiation health risks. Solution-processed organic-inorganic hybrid perovskites have characteristics that make them good candidates for the photoconductive layer of such sensitive detectors. However, such detectors have not yet been built on thin-film transistor arrays because it has been difficult to prepare thick perovskite films (more than a few hundred micrometres) over large areas (a detector is typically 50 centimetres by 50 centimetres). We report here an all-solution-based (in contrast to conventional vacuum processing) synthetic route to producing printable polycrystalline perovskites with sharply faceted large grains having morphologies and optoelectronic properties comparable to those of single crystals. High sensitivities of up to 11 microcoulombs per air KERMA of milligray per square centimetre (μC mGy air -1 cm -2 ) are achieved under irradiation with a 100-kilovolt bremsstrahlung source, which are at least one order of magnitude higher than the sensitivities achieved with currently used amorphous selenium or thallium-doped cesium iodide detectors. We demonstrate X-ray imaging in a conventional thin-film transistor substrate by embedding an 830-micrometre-thick perovskite film and an additional two interlayers of polymer/perovskite composites to provide conformal interfaces between perovskite films and electrodes that control dark currents and temporal charge carrier transportation. Such an all-solution-based perovskite detector could enable low-dose X-ray imaging, and could also be used in photoconductive devices for radiation imaging, sensing and energy harvesting.
NASA Astrophysics Data System (ADS)
Ryzhii, V.; Shur, M. S.; Ryzhii, M.; Karasik, V. E.; Otsuji, T.
2018-01-01
We developed a device model for pixelless converters of far/mid-infrared radiation (FIR/MIR) images into near-infrared/visible (NIR/VIR) images. These converters use polycrystalline graphene layers (PGLs) immersed in the van der Waals materials integrated with a light emitting diode (LED). The PGL serves as an element of the PGL infrared photodetector (PGLIP) sensitive to the incoming FIR/MIR due to the interband absorption. The spatially non-uniform photocurrent generated in the PGLIP repeats (mimics) the non-uniform distribution (image) created by the incident FIR/MIR. The injection of the nonuniform photocurrent into the LED active layer results in the nonuniform NIR/VIR image reproducing the FIR/MIR image. The PGL and the entire layer structure are not deliberately partitioned into pixels. We analyze the characteristics of such pixelless PGLIP-LED up-converters and show that their image contrast transfer function and the up-conversion efficiency depend on the PGL lateral resistivity. The up-converter exhibits high photoconductive gain and conversion efficiency when the lateral resistivity is sufficiently high. Several teams have successfully demonstrated the large area PGLs with the resistivities varying in a wide range. Such layers can be used in the pixelless PGLIP-LED image up-converters. The PGLIP-LED image up-converters can substantially surpass the image up-converters based on the quantum-well infrared photodetector integrated with the LED. These advantages are due to the use of the interband FIR/NIR absorption and a high photoconductive gain in the GLIPs.
NASA Astrophysics Data System (ADS)
Kajamuhideen, M. S.; Sethuraman, K.; Ramamurthi, K.; Ramasamy, P.
2018-02-01
A splendid nonlinear optical single crystals diphenylguanidinium perchlorate (DPGP) was lucratively grown by low cost solvent evaporation method with the dimensions of 8 × 4 × 2 mm3. Structural and morphological studies of grown crystal were confirmed using X-ray diffraction studies. The presence of diverse functional groups was identified using FTIR and RAMAN studies. The molecular structure of a grown crystal was inveterate by NMR studies. The optical transmittance of DPGP crystal was analyzed using UV-vis-NIR studies. Photoluminescence spectrum shows sharp, well defined emission peak at 388 nm. Thermal studies assign that adduct is stable with the melting point of 164 °C. Microhardness studies declare that DPGP crystal belongs to the soft material class and their yield strength and elastic stiffness constant values were evaluated. Photoconductivity studies revealed the negative photoconductive nature of DPGP crystal. Second harmonic generation (SHG) efficiency of the DPGP crystal was 1.4 times that of potassium dihydrogen phosphate. Etching studies were carried out for different etching time. The dielectric studies were performed at different frequency. Laser damage threshold properties of DPGP crystal were examined using Nd:YAG laser system. The HOMO-LUMO energy gap evident the charge transfer interaction of the molecule. The calculated first order hyperpolarizability value is 5 times greater than that of urea. Thus, the grown DPGP single crystals are well suited for NLO device fabrications.
NASA Astrophysics Data System (ADS)
Chen, Xiangyu; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa
2016-02-01
By using optical electric-field-induced second-harmonic generation (EFISHG) technique, we studied carrier behavior caused by contact electrification (CE) in an organic double-layer element. This double-layer sample was half suspended in the open air, where one electrode (anode or cathode) was connected with a Cu foil for electrification while the other electrode was floated. Results showed two distinct carrier behaviors, depending on the (anode or cathode) connections to the Cu foil, and these carrier behaviors were analyzed based on the Maxwell-Wagner model. The double-layer sample works as a simple solar cell device. The photovoltaic effect and CE process have been proved to be two paralleled effects without strong interaction with each other, while photoconductivity changing in the sample can enhance the relaxation of CE induced charges. By probing the carrier behavior in this half-suspended device, the EFISHG technique has been demonstrated to be an effective non-contact method for clarifying the CE effect on related energy harvesting devices and electronics devices. Meanwhile, the related physical analysis in this letter is also useful for elucidating the fundamental characteristic of hybrid energy system based on solar cell and triboelectric nanogenerator.
Scanning Probe Microscopy of Organic Solar Cells
NASA Astrophysics Data System (ADS)
Reid, Obadiah G.
Nanostructured composites of organic semiconductors are a promising class of materials for the manufacture of low-cost solar cells. Understanding how the nanoscale morphology of these materials affects their efficiency as solar energy harvesters is crucial to their eventual potential for large-scale deployment for primary power generation. In this thesis we describe the use of optoelectronic scanning-probe based microscopy methods to study this efficiency-structure relationship with nanoscale resolution. In particular, our objective is to make spatially resolved measurements of each step in the power conversion process from photons to an electric current, including charge generation, transport, and recombination processes, and correlate them with local device structure. We have achieved two aims in this work: first, to develop and apply novel electrically sensitive scanning probe microscopy experiments to study the optoelectronic materials and processes discussed above; and second, to deepen our understanding of the physics underpinning our experimental techniques. In the first case, we have applied conductive-, and photoconductive atomic force (cAFM & pcAFM) microscopy to measure both local photocurrent collection and dark charge transport properties in a variety of model and novel organic solar cell composites, including polymer/fullerene blends, and polymer-nanowire/fullerene blends, finding that local heterogeneity is the rule, and that improvements in the uniformity of specific beneficial nanostructures could lead to large increases in efficiency. We have used scanning Kelvin probe microscopy (SKPM) and time resolved-electrostatic force microscopy (trEFM) to characterize all-polymer blends, quantifying their sensitivity to photochemical degradation and the subsequent formation of local charge traps. We find that while trEFM provides a sensitive measure of local quantum efficiency, SKPM is generally unsuited to measurements of efficiency, less sensitive than trEFM, and of greater utility in identifying local changes in steady-state charge density that can be associated with charge trapping. In the second case, we have developed a new understanding of charge transport between a sharp AFM tip and planar substrates applicable to conductive and photoconductive atomic force microscopy, and shown that hole-only transport characteristics can be easily obtained including quantitative values of the charge carrier mobility. Finally, we have shown that intensity-dependent photoconductive atomic force microscopy measurements can be used to infer the 3D structure of organic photovoltaic materials, and gained new insight into the influence vertical composition of the these devices can have on their open-circuit voltage and its intensity dependence.
NASA Astrophysics Data System (ADS)
Schroeder, David James
From the results presented here a number of conclusions regarding the effects of point defects on the properties of epitaxial single crystal CuInsb{1-x}Gasb{x}Sesb2 (CIGS) may be drawn. These conclusions may be divided into three categories: the effects of point defects on Ga diffusion and diffusivity, the influence of impurities and alloying elements on doping and mobility, and the effects of impurities on minority carrier recombination kinetics. The diffusivity of Ga into CIGS during growth was found to be strongly dependent of the Cu/In ratio of the growing layer. Diffusivity ranged from a minimum of 2.7×10sp{-13}\\ cmsp2/s at Cu/In = 0.94 to 5 × 10sp{-11} cmsp2/s at Cu/In = 1.41 and 7×10sp{-12} cmsp2/s at Cu/In = 0.43. The diffusion occurred by a vacancy mechanism with Ga, apparently, diffusing through either Cu or In vacancies. The sharp change in diffusivity with changing Cu/In ratio helps to explain the difficulty in maintaining a desired Ga profile in polycrystalline CIGS device absorber layers. Increasing Ga content was found to increase both acceptor and donor density. The decrease in Jsbsc found in Ga-containing polycrystalline devices, is likely caused by a large increase in acceptor density, which may cause less inversion of the surface of the p-type CIGS making the junction more sensitive to surface states. The effect of adding Na by diffusion from either NaOH or Nasp2Se was to reduce the donor density. These results help to explain results in polycrystalline CIGS devices where Na increased hole concentrations, Vsboc, and device efficiency. Unlike Ga and Na, Cr and Se were not found to have any strong effect when added in concentrations ≤10sp{19} cmsp{-3} using ion implantation. The lack of an effect of Se on doping conclusively determines that Na has an effect beyond simply introducing either O or Se into the bulk of the CIGS. While both implanted Se and Cr created large numbers of donors and acceptors before being annealed, both caused a decrease in acceptor concentration after annealing with the effect of Cr being larger than that of Se. Both Se and Cr reduced hole mobility over the entire temperature range investigated. These results imply that CIGS-based devices should be insensitive to accidental transition metal contamination. The steady state photoconductivity of samples which had been ion implanted with Se and Cr, as well as samples which were contaminated with Na by diffusion, was measured. These measurements were made to determine whether contamination by these elements or severe radiation damage affects minority carrier recombination kinetics. In all cases the photoconductivity was found to be unaffected other than by changes in mobility. (Abstract shortened by UMI.)
Effect of Co2+ Ions Doping on the Structural and Optical Properties of Magnesium Aluminate
NASA Astrophysics Data System (ADS)
Kanwal, Kiran; Ismail, Bushra; Rajani, K. S.; Kissinger, N. J. Suthan; Zeb, Aurang
2017-07-01
Cobalt-doped nanosized magnesium aluminate (Mg1-xCoxAl2O4) samples having different compositions ( x = 0.2, 0.4, 0.6, 0.8, 1.0) were synthesized by a chemical co-precipitation method. All samples were characterized by means of x-ray diffraction (XRD), scanning electron microscopy, Fourier transform infrared spectroscopy, ultra violet-visible spectroscopy, photoluminescence and diffused reflectance spectroscopy. The results of XRD revealed that the samples were spinel single phase cubic close packed crystalline materials. The lattice constant and x-ray density were found to be affected by the ionic radii of the doped metal cations. Using the Debye-Scherrer formula, the calculated crystalline size was found to be Co2+ ion concentration-dependent and varied between 32 nm and 40 nm. Nano-dimensions and phase of the Mg1-xCoxAl2O4 samples were analyzed and the replacement of Mg2+ ions with Co2+ ions was confirmed by elemental analysis. Three strong absorption bands at 540 nm, 580 nm and 630 nm were observed for the doped samples which are attributed to the three spin-allowed 4T1g (4F) → 4T2g, 4A2g, 4T1g (4P) electronic transitions of Co2+ at tetrahedral lattice sites. Nanophosphors have optical properties different from bulk because of spatial confinement and non-radiative relaxation. Decreases in particle size can increase the surface area and the defects, which can in turn increase the luminescent efficiency to make it very useful for tunable laser operations, persistent phosphorescence, color centers, photoconductivity and luminescence for display technology. MgAl2O4 was doped with Co2+ ions using a co-precipitation method and the optical absorption studies revealed that there is a decrease of band gap due to the increase of Co2+ content. The emission intensity of this phosphor is observed at 449 nm with a sharp peak attributed to the smaller size of the particles and the homogeneity of the powder.
Transparent ceramic photo-optical semiconductor high power switches
Werne, Roger W.; Sullivan, James S.; Landingham, Richard L.
2016-01-19
A photoconductive semiconductor switch according to one embodiment includes a structure of sintered nanoparticles of a high band gap material exhibiting a lower electrical resistance when excited by light relative to an electrical resistance thereof when not exposed to the light. A method according to one embodiment includes creating a mixture comprising particles, at least one dopant, and at least one solvent; adding the mixture to a mold; forming a green structure in the mold; and sintering the green structure to form a transparent ceramic. Additional system, methods and products are also presented.
Dante Soft X-ray Power Diagnostic for NIF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewald, E; Campbell, K; Turner, R
2004-04-15
Soft x-ray power diagnostics are essential for measuring spectrally resolved the total x-ray flux, radiation temperature, conversion efficiency and albedo that are important quantities for the energetics of indirect drive hohlraums. At the Nova or Omega Laser Facilities, these measurements are performed mainly with Dante, but also with DMX and photo-conductive detectors (PCD's). The Dante broadband spectrometer is a collection of absolute calibrated vacuum x-ray diodes, thin filters and x-ray mirrors used to measure the soft x-ray emission for photon energies above 50 eV.
Germanium Blocked Impurity Band (BIB) detectors
NASA Technical Reports Server (NTRS)
Haller, E. E.; Baumann, H.; Beeman, J. W.; Hansen, W. L.; Luke, P. N.; Lutz, M.; Rossington, C. S.; Wu, I. C.
1989-01-01
Information is given in viewgraph form. The advantages of the Si blocked impurity band (BIB) detector invented by M. D. Petroff and M. G. Stabelbroek are noted: smaller detection volume leading to a reduction of cosmic ray interference, extended wavelength response because of dopant wavefunction overlap, and photoconductive gain of unity. It is argued that the stated advantages of Si BIB detectors should be realizable for Ge BIB detectors. Information is given on detector development, subtrate choice and preparation, wafer polising, epitaxy, characterization of epi layers, and preliminary Ge BIB detector test results.
Infrared Focal Plane Arrays Based on Semiconductor Quantum Dots
2002-01-01
an ensemble of self -assembled InAs/GaAs or InAs/InP quantum dots (QDs) are typically in the range of 10-30 monolayers [1]. Here, we report on InAs...photoconductive properties of QDIPs based on self organized InAs quantum dots grown on In.52Al.48As/InP(100), using the MBE technique. Dr. Gendry grew the...composed of 10 layers of self assembled InAs dots, separated by 500 Å thick InAlAs (lattice matched to the semi-insulating InP substrate) barrier
Fabrication of all-inorganic nanocrystal solids through matrix encapsulation of nanocrystal arrays.
Kinder, Erich; Moroz, Pavel; Diederich, Geoffrey; Johnson, Alexa; Kirsanova, Maria; Nemchinov, Alexander; O'Connor, Timothy; Roth, Dan; Zamkov, Mikhail
2011-12-21
A general strategy for low-temperature processing of colloidal nanocrystals into all-inorganic films is reported. The present methodology goes beyond the traditional ligand-interlinking scheme and relies on encapsulation of morphologically defined nanocrystal arrays into a matrix of a wide-band gap semiconductor, which preserves optoelectronic properties of individual nanoparticles while rendering the nanocrystal film photoconductive. Fabricated solids exhibit excellent thermal stability, which is attributed to the heteroepitaxial structure of nanocrystal-matrix interfaces, and show compelling light-harvesting performance in prototype solar cells. © 2011 American Chemical Society
Jeon, Sanghun; Song, Ihun; Lee, Sungsik; Ryu, Byungki; Ahn, Seung-Eon; Lee, Eunha; Kim, Young; Nathan, Arokia; Robertson, John; Chung, U-In
2014-11-05
A technique for invisible image capture using a photosensor array based on transparent conducting oxide semiconductor thin-film transistors and transparent interconnection technologies is presented. A transparent conducting layer is employed for the sensor electrodes as well as interconnection in the array, providing about 80% transmittance at visible-light wavelengths. The phototransistor is a Hf-In-Zn-O/In-Zn-O heterostructure yielding a high quantum-efficiency in the visible range. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Oxidation of GaAs substrates to enable β-Ga2O3 films for sensors and optoelectronic devices
NASA Astrophysics Data System (ADS)
Mao, Howard; Alhalaili, Badriyah; Kaya, Ahmet; Dryden, Daniel M.; Woodall, Jerry M.; Islam, M. Saif
2017-08-01
A very simple and inexpensive method for growing β-Ga2O3 films by heating GaAs wafers at high temperature in a furnace was found to contribute to large-area, high-quality β-Ga2O3 nanoscale thin films as well as nanowires depending on the growth conditions. We present the material characterization results including the optical band gap, Schottky barrier height with metal (gold), field ionization and photoconductance of β-Ga2O3 film and nanowires.
High-speed 1.3 -1.55 um InGaAs/InP PIN photodetector for microwave photonics
NASA Astrophysics Data System (ADS)
Kozyreva, O. A.; Solov'ev, Y. V.; Polukhin, I. S.; Mikhailov, A. K.; Mikhailovskiy, G. A.; Odnoblyudov, M. A.; Gareev, E. Z.; Kolodeznyi, E. S.; Novikov, I. I.; Karachinsky, L. Ya; Egorov, A. Yu; Bougrov, V. E.
2017-11-01
We have fabricated the 1.3-1.55 um PIN photodetector based on InGaAs/InP heterostructure. Measurement results of optical and electrical characteristics of PIN photodetector chip were the following: photoconductivity at 1550 nm was 0.65 A/W and internal capacitance was 0.025 pF. Microwave model of photodetector was developed and verified by measurements of scattering matrix. The implementation of broadband (up to 20 GHz) hybrid integrated matching and biasing circuit for high-speed photodetector is presented.