Sample records for persistent vegetative state

  1. Effects of percutaneous endoscopic gastrostomy on survival of patients in a persistent vegetative state after stroke.

    PubMed

    Wu, Kunpeng; Chen, Ying; Yan, Caihong; Huang, Zhijia; Wang, Deming; Gui, Peigen; Bao, Juan

    2017-10-01

    To assess the effect of percutaneous endoscopic gastrostomy on short- and long-term survival of patients in a persistent vegetative state after stroke and determine the relevant prognostic factors. Stroke may lead to a persistent vegetative state, and the effect of percutaneous endoscopic gastrostomy on survival of stroke patients in a persistent vegetative state remains unclear. Prospective study. A total of 97 stroke patients in a persistent vegetative state hospitalised from January 2009 to December 2011 at the Second Hospital, University of South China, were assessed in this study. Percutaneous endoscopic gastrostomy was performed in 55 patients, and mean follow-up time was 18 months. Survival rate and risk factors were analysed. Median survival in the 55 percutaneous endoscopic gastrostomy-treated patients was 17·6 months, higher compared with 8·2 months obtained for the remaining 42 patients without percutaneous endoscopic gastrostomy treatment. Univariate analyses revealed that age, hospitalisation time, percutaneous endoscopic gastrostomy treatment status, family financial situation, family care, pulmonary infection and nutrition were significantly associated with survival. Multivariate analysis indicated that older age, no gastrostomy, poor family care, pulmonary infection and poor nutritional status were independent risk factors affecting survival. Indeed, percutaneous endoscopic gastrostomy significantly improved the nutritional status and decreased pulmonary infection rate in patients with persistent vegetative state after stroke. Interestingly, median survival time was 20·3 months in patients with no or one independent risk factors of poor prognosis (n = 38), longer compared with 8·7 months found for patients with two or more independent risk factors (n = 59). Percutaneous endoscopic gastrostomy significantly improves long-term survival of stroke patients in a persistent vegetative state and is associated with improved nutritional status and decreased pulmonary infection. Percutaneous endoscopic gastrostomy is a promising option for the management of stroke patients in a persistent vegetative state. © 2016 John Wiley & Sons Ltd.

  2. More Dead than Dead: Perceptions of Persons in the Persistent Vegetative State

    ERIC Educational Resources Information Center

    Gray, Kurt; Knickman, T. Anne; Wegner, Daniel M.

    2011-01-01

    Patients in persistent vegetative state (PVS) may be biologically alive, but these experiments indicate that people see PVS as a state curiously more dead than dead. Experiment 1 found that PVS patients were perceived to have less mental capacity than the dead. Experiment 2 explained this effect as an outgrowth of afterlife beliefs, and the…

  3. A long-term intensive behavioral treatment study in patients with persistent vegetative state or minimally conscious state.

    PubMed

    Lotze, Martin; Schertel, Karin; Birbaumer, Niels; Kotchoubey, Boris

    2011-02-01

    Persistent vegetative state is regarded as "permanent", if it persists for more than 1 year for traumatic aetiology, or for more than 3 months for other aetiologies. This is also the case for patients in a minimally conscious state. In order to investigate possible improvements after this period we treated and observed 7 such patients over a period of 6 months. An ABA-BAB study design was used, with sensory stimulation and social-tactile intervention as treatment regimes. Changes were documented by clinical evaluation and blind behavioural assessment through video monitoring. Clinical scores improved significantly after treatment. Video assessment also indicated significant changes in the patients' behaviour. During the initial period of therapy, social tactile interaction improved patients' activity, while sensory stimulation impaired activity. During the main part of therapy, both types of treatment yielded similar positive results. This study indicates the possibility of achieving behavioural improvements with regard to the responsiveness of patients with long-lasting persistent vegetative state and minimally conscious state by use of long-term treatment.

  4. Soil-geomorphic heterogeneity governs patchy vegetation dynamics at an arid ecotone.

    PubMed

    Bestelmeyer, Brandon T; Ward, Judy P; Havstad, Kris M

    2006-04-01

    Soil properties are well known to affect vegetation, but the role of soil heterogeneity in the patterning of vegetation dynamics is poorly documented. We asked whether the location of an ecotone separating grass-dominated and sparsely vegetated areas reflected only historical variation in degradation or was related to variation in inherent soil properties. We then asked whether changes in the cover and spatial organization of vegetated and bare patches assessed using repeat aerial photography reflected self-organizing dynamics unrelated to soil variation or the stable patterning of soil variation. We found that the present-day ecotone was related to a shift from more weakly to more strongly developed soils. Parts of the ecotone were stable over a 60-year period, but shifts between bare and vegetated states, as well as persistently vegetated and bare states, occurred largely in small (<40 m2) patches throughout the study area. The probability that patches were presently vegetated or bare, as well as the probability that vegetation persisted and/or established over the 60-year period, was negatively related to surface calcium carbonate and positively related to subsurface clay content. Thus, only a fraction of the landscape was susceptible to vegetation change, and the sparsely vegetated area probably featured a higher frequency of susceptible soil patches. Patch dynamics and self-organizing processes can be constrained by subtle (and often unrecognized) soil heterogeneity.

  5. Exacerbated grassland degradation and desertification in Central Asia during 2000-2014.

    PubMed

    Zhang, Geli; Biradar, Chandrashekhar M; Xiao, Xiangming; Dong, Jinwei; Zhou, Yuting; Qin, Yuanwei; Zhang, Yao; Liu, Fang; Ding, Mingjun; Thomas, Richard J

    2018-03-01

    Grassland degradation and desertification is a complex process, including both state conversion (e.g., grasslands to deserts) and gradual within-state change (e.g., greenness dynamics). Existing studies hardly separated the two components and analyzed it as a whole based on time series vegetation index data, which cannot provide a clear and comprehensive picture for grassland degradation and desertification. Here we propose an integrated assessment strategy, by considering both state conversion and within-state change of grasslands, to investigate grassland degradation and desertification process in Central Asia. First, annual maps of grasslands and sparsely vegetated land were generated to track the state conversions between them. The results showed increasing grasslands were converted to sparsely vegetated lands from 2000 to 2014, with the desertification region concentrating in the latitude range of 43-48° N. A frequency analysis of grassland vs. sparsely vegetated land classification in the last 15 yr allowed a recognition of persistent desert zone (PDZ), persistent grassland zone (PGZ), and transitional zone (TZ). The TZ was identified in southern Kazakhstan as one hotspot that was unstable and vulnerable to desertification. Furthermore, the trend analysis of Enhanced Vegetation Index during thermal growing season (EVI TGS ) was investigated in individual zones using linear regression and Mann-Kendall approaches. An overall degradation across the area was found; moreover, the second desertification hotspot was identified in northern Kazakhstan with significant decreasing in EVI TGS , which was located in PGZ. Finally, attribution analyses of grassland degradation and desertification were conducted by considering precipitation, temperature, and three different drought indices. We found persistent droughts were the main factor for grassland degradation and desertification in Central Asia. Considering both state conversion and gradual within-state change processes, this study provided reference information for identification of desertification hotspots to support further grassland degradation and desertification treatment, and the method could be useful to be extended to other regions. © 2017 by the Ecological Society of America.

  6. The burdens-benefits ratio consideration for medical administration of nutrition and hydration to persons in the persistent vegetative state.

    PubMed

    Harvey, John C

    2006-04-01

    In this article, Harvey notes the initial confusion about the statement made by the pope concerning artificial nutrition and hydration on patients suffering persistent vegetative states (PVS) due to misunderstanding through the translation of the pope's words. He clarifies and assesses what was meant by the statement. He also discusses the problems of terminology concerned with the subject of PVS. Harvey concludes that the papal allocution was in line with traditional Catholic bioethics, and that while maintaining the life of a patient is favorable, in particular cases this presumption wanes when it is clear that this treatment modality would be futile or very burdensome.

  7. More dead than dead: perceptions of persons in the persistent vegetative state.

    PubMed

    Gray, Kurt; Knickman, T Anne; Wegner, Daniel M

    2011-11-01

    Patients in persistent vegetative state (PVS) may be biologically alive, but these experiments indicate that people see PVS as a state curiously more dead than dead. Experiment 1 found that PVS patients were perceived to have less mental capacity than the dead. Experiment 2 explained this effect as an outgrowth of afterlife beliefs, and the tendency to focus on the bodies of PVS patients at the expense of their minds. Experiment 3 found that PVS is also perceived as "worse" than death: people deem early death better than being in PVS. These studies suggest that people perceive the minds of PVS patients as less valuable than those of the dead - ironically, this effect is especially robust for those high in religiosity. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. The best interests of persistently vegetative patients: to die rather that to live?

    PubMed

    Chan, Tak Kwong; Tipoe, George Lim

    2014-03-01

    Adults without the capacity to make their own medical decisions have their rights protected under the Mental Capacity Act (2005) in the UK. The underlying principle of the court's decisions is the best interests test, and the evaluation of best interests is a welfare appraisal. Although the House of Lords in the well-known case of Bland held that the decision to withhold treatment for patients in a persistent vegetative state should not be based on their best interests, judges in recent cases have still held that the best interests of persistently vegetative patients demand that the right to die with dignity prevails over society's interest to preserve life. The basis of suggesting that it is in the best interests for one who is alive (although vegetative) in peace to die in peace is weak. Even if it may not be in their best interests to live on, it may not be so to die either. The phrase 'the right to dignity/to die with dignity' has been misused as a trump card to justify the speculation that a vegetative patient would necessarily refuse to live on machines. Without disrespect to the court's decision, we argue that the use of the best interests test to authorise withdrawing/withholding treatment from persistently vegetative patients without an advance directive is problematic. We propose that the court could have reached the same decision by considering only the futility of treatment without working through the controversial best interests of the patient.

  9. Monitoring Tropical Cyclone Impacts on the Coastal Vegetation of the Southeastern USA in the First Decade of the 21st Century

    NASA Astrophysics Data System (ADS)

    Brun, J.; Barros, A. P.

    2010-12-01

    Hurricanes and tropical storms are powerful and hazardous meteorological phenomena causing damages to natural and built areas all around the world. However, on the flip side, Tropical cyclones provide a significant influx of freshwater resources to surface and subsurface reservoirs during the warm season. Therefore it is important to understand ecosystem response to such extreme climatic events, especially in a context of potential changes in the track, frequency or strength of these phenomena that could be induced by climatic change. Here we present a method to measure vegetation disturbance persistence in the aftermath of tropical cyclones based on MODIS North American Carbon Program (NACP) vegetation indices (8-day composite at 500m spatial resolution) was developed with the objective of assessing the eco-hydrological impact of hurricanes in the South-East United States. This technique is based on the relationship between vegetation stress and the persistence of standardized Enhanced Vegetation Index (EVI) anomalies along the terrestrial path of hurricanes. An independent evaluation was conducted against 25 years (1982-2006) of AVHRR data from the Global Inventory Modeling and Mapping Studies (GIMMS) database. The data show that in the aftermath of hurricane landfall, there is a significant decrease in chlorophyll activity at very low elevations, including coastal marshes, wetlands, and the drainage networks of major river systems aligned with the terrestrial path of the storm. This vegetation activity disturbance persists longer (up two 2 years) in coastal areas than in inland forests and could be consistent with impact of salt intrusion in shallow coastal aquifers. In alluvial plains, the spatial pattern of the vegetation anomalies persistence seems to be mostly associated with flooding.

  10. Prevalence differences of patients in vegetative state in The Netherlands and Vienna, Austria: a comparison of values and ethics.

    PubMed

    Beljaars, Daniëlle E A; Valckx, Wilhelmina J A R M; Stepan, Christoph; Donis, Johann; Lavrijsen, Jan C M

    2015-01-01

    Little is known about prevalence of persistent vegetative state/unresponsive wakefulness syndrome and comparisons between countries. The aim of this column was to explore reasons for the comparable count of patients in vegetative state found in prevalence studies in nursing homes in 1 European country (Netherlands) compared with a single European city (Vienna, Austria). The column is based on a literature review of vegetative state in The Netherlands and Vienna in the period 2007-2008, in the context of professional interactions with families and physicians of patients in vegetative state. In addition, in both countries, families and physicians were interviewed to illustrate views. Comparable between the 2 settings are the population characteristics and the definition of, and criteria, for vegetative state. A difference can be found in the development of authoritative policy guidelines in the Netherlands, after public debates and jurisdiction, which did not exist in Vienna at the time. There also seem to be different societal values concerning rehabilitation and end-of-life decisions for patients in vegetative state. The most important explanation for the vegetative state prevalence differences between the Netherlands and Vienna can be found in the different societal values about patients in vegetative state and their treatment and rehabilitation. In the Netherlands, life prolonging medical treatment, including artificial nutrition and hydration, is considered futile and can be withdrawn if there is no prospect of recovery. In Vienna, however, patients in vegetative state are regarded as severely disabled and in need of long-term rehabilitation and social reintegration. There is no end-of-life discussion in this context.

  11. The Terri Schiavo case: legal, ethical, and medical perspectives.

    PubMed

    Perry, Joshua E; Churchill, Larry R; Kirshner, Howard S

    2005-11-15

    Although tragic, the plight of Terri Schiavo provides a valuable case study. The conflicts and misunderstandings surrounding her situation offer important lessons in medicine, law, and ethics. Despite media saturation and intense public interest, widespread confusion lingers regarding the diagnosis of persistent vegetative state, the judicial processes involved, and the appropriateness of the ethical framework used by those entrusted with Terri Schiavo's care. First, the authors review the current medical understanding of persistent vegetative state, including the requirements for patient examination, the differential diagnosis, and the practice guidelines of the American Academy of Neurology regarding artificial nutrition and hydration for patients with this diagnosis. Second, they examine the legal history, including the 2000 trial, the 2002 evidentiary hearing, and the subsequent appeals. The authors argue that the law did not fail Terri Schiavo, but produced the highest-quality evidence and provided the most judicial review of any end-of-life guardianship case in U.S. history. Third, they review alternative ethical frameworks for understanding the Terri Schiavo case and contend that the principle of respect for autonomy is paramount in this case and in similar cases. Far from being unusual, the manner in which Terri Schiavo's case was reviewed and the basis for the decision reflect a broad medical, legal, and ethical consensus. Greater clarity regarding the persistent vegetative state, less apprehension of the presumed mysteries of legal proceedings, and greater appreciation of the ethical principles at work are the chief benefits obtained from studying this provocative case.

  12. Limbic hyperconnectivity in the vegetative state.

    PubMed

    Di Perri, Carol; Bastianello, Stefano; Bartsch, Andreas J; Pistarini, Caterina; Maggioni, Giorgio; Magrassi, Lorenzo; Imberti, Roberto; Pichiecchio, Anna; Vitali, Paolo; Laureys, Steven; Di Salle, Francesco

    2013-10-15

    To investigate functional connectivity between the default mode network (DMN) and other networks in disorders of consciousness. We analyzed MRI data from 11 patients in a vegetative state and 7 patients in a minimally conscious state along with age- and sex-matched healthy control subjects. MRI data analysis included nonlinear spatial normalization to compensate for disease-related anatomical distortions. We studied brain connectivity data from resting-state MRI temporal series, combining noninferential (independent component analysis) and inferential (seed-based general linear model) methods. In DMN hypoconnectivity conditions, a patient's DMN functional connectivity shifts and paradoxically increases in limbic structures, including the orbitofrontal cortex, insula, hypothalamus, and the ventral tegmental area. Concurrently with DMN hypoconnectivity, we report limbic hyperconnectivity in patients in vegetative and minimally conscious states. This hyperconnectivity may reflect the persistent engagement of residual neural activity in self-reinforcing neural loops, which, in turn, could disrupt normal patterns of connectivity.

  13. The historical origins of the vegetative state: Received wisdom and the utility of the text.

    PubMed

    Adams, Zoe M; Fins, Joseph J

    2017-01-01

    The persistent vegetative state (PVS) is one of the most iconic and misunderstood phrases in clinical neuroscience. Coined as a diagnostic category by Scottish neurosurgeon Bryan Jennett and American neurologist Fred Plum in 1972, the phrase "vegetative" first appeared in Aristotle's treatise On the Soul (circa mid-fourth century BCE). Aristotle influenced neuroscientists of the nineteenth and early-twentieth centuries, Xavier Bichat and Walter Timme, and informed their conceptions of the vegetative nervous system. Plum credits Bichat and Timme in his use of the phrase, thus putting the ancient and modern in dialogue. In addition to exploring Aristotle's definition of the "vegetative" in the original Greek, we put Aristotle in conversation with his contemporaries-Plato and the Hippocratics-to better apprehend theories of mind and consciousness in antiquity. Utilizing the discipline of reception studies in classics scholarship, we demonstrate the importance of etymology and historical origin when considering modern medical nosology.

  14. Effects of a large wildfire on vegetation structure in a variable fire mosaic.

    PubMed

    Foster, C N; Barton, P S; Robinson, N M; MacGregor, C I; Lindenmayer, D B

    2017-12-01

    Management guidelines for many fire-prone ecosystems highlight the importance of maintaining a variable mosaic of fire histories for biodiversity conservation. Managers are encouraged to aim for fire mosaics that are temporally and spatially dynamic, include all successional states of vegetation, and also include variation in the underlying "invisible mosaic" of past fire frequencies, severities, and fire return intervals. However, establishing and maintaining variable mosaics in contemporary landscapes is subject to many challenges, one of which is deciding how the fire mosaic should be managed following the occurrence of large, unplanned wildfires. A key consideration for this decision is the extent to which the effects of previous fire history on vegetation and habitats persist after major wildfires, but this topic has rarely been investigated empirically. In this study, we tested to what extent a large wildfire interacted with previous fire history to affect the structure of forest, woodland, and heath vegetation in Booderee National Park in southeastern Australia. In 2003, a summer wildfire burned 49.5% of the park, increasing the extent of recently burned vegetation (<10 yr post-fire) to more than 72% of the park area. We tracked the recovery of vegetation structure for nine years following the wildfire and found that the strength and persistence of fire effects differed substantially between vegetation types. Vegetation structure was modified by wildfire in forest, woodland, and heath vegetation, but among-site variability in vegetation structure was reduced only by severe fire in woodland vegetation. There also were persistent legacy effects of the previous fire regime on some attributes of vegetation structure including forest ground and understorey cover, and woodland midstorey and overstorey cover. For example, woodland midstorey cover was greater on sites with higher fire frequency, irrespective of the severity of the 2003 wildfire. Our results show that even after a large, severe wildfire, underlying fire histories can contribute substantially to variation in vegetation structure. This highlights the importance of ensuring that efforts to reinstate variation in vegetation fire age after large wildfires do not inadvertently reduce variation in vegetation structure generated by the underlying invisible mosaic. © 2017 by the Ecological Society of America.

  15. GRAZING POTENTIAL INDEX (GPI) AND SURFACE WATER QUALITY IN THE STATE OF OREGON: I. LIKELIHOOD OF ANIMAL PATHOGENIC PRESENCE USING ENTEROCOCCI

    EPA Science Inventory

    Cattle grazing is a widespread and persistent ecological stressor in the Western United States. Cattle impact surface water quality by introducing nutrients and bacteria and indirectly damaging stream banks or removing vegetation cover leading to increased sediment loads and incr...

  16. Voxel-based statistical analysis of cerebral glucose metabolism in patients with permanent vegetative state after acquired brain injury.

    PubMed

    Kim, Yong Wook; Kim, Hyoung Seop; An, Young-Sil; Im, Sang Hee

    2010-10-01

    Permanent vegetative state is defined as the impaired level of consciousness longer than 12 months after traumatic causes and 3 months after non-traumatic causes of brain injury. Although many studies assessed the cerebral metabolism in patients with acute and persistent vegetative state after brain injury, few studies investigated the cerebral metabolism in patients with permanent vegetative state. In this study, we performed the voxel-based analysis of cerebral glucose metabolism and investigated the relationship between regional cerebral glucose metabolism and the severity of impaired consciousness in patients with permanent vegetative state after acquired brain injury. We compared the regional cerebral glucose metabolism as demonstrated by F-18 fluorodeoxyglucose positron emission tomography from 12 patients with permanent vegetative state after acquired brain injury with those from 12 control subjects. Additionally, covariance analysis was performed to identify regions where decreased changes in regional cerebral glucose metabolism significantly correlated with a decrease of level of consciousness measured by JFK-coma recovery scale. Statistical analysis was performed using statistical parametric mapping. Compared with controls, patients with permanent vegetative state demonstrated decreased cerebral glucose metabolism in the left precuneus, both posterior cingulate cortices, the left superior parietal lobule (P(corrected) < 0.001), and increased cerebral glucose metabolism in the both cerebellum and the right supramarginal cortices (P(corrected) < 0.001). In the covariance analysis, a decrease in the level of consciousness was significantly correlated with decreased cerebral glucose metabolism in the both posterior cingulate cortices (P(uncorrected) < 0.005). Our findings suggest that the posteromedial parietal cortex, which are part of neural network for consciousness, may be relevant structure for pathophysiological mechanism in patients with permanent vegetative state after acquired brain injury.

  17. Decontamination of biological agents from drinking water infrastructure: a literature review and summary.

    PubMed

    Szabo, Jeff; Minamyer, Scott

    2014-11-01

    This report summarizes the current state of knowledge on the persistence of biological agents on drinking water infrastructure (such as pipes) along with information on decontamination should persistence occur. Decontamination options for drinking water infrastructure have been explored for some biological agents, but data gaps remain. Data on bacterial spore persistence on common water infrastructure materials such as iron and cement-mortar lined iron show that spores can be persistent for weeks after contamination. Decontamination data show that common disinfectants such as free chlorine have limited effectiveness. Decontamination results with germinant and alternate disinfectants such as chlorine dioxide are more promising. Persistence and decontamination data were collected on vegetative bacteria, such as coliforms, Legionella and Salmonella. Vegetative bacteria are less persistent than spores and more susceptible to disinfection, but the surfaces and water quality conditions in many studies were only marginally related to drinking water systems. However, results of real-world case studies on accidental contamination of water systems with E. coli and Salmonella contamination show that flushing and chlorination can help return a water system to service. Some viral persistence data were found, but decontamination data were lacking. Future research suggestions focus on expanding the available biological persistence data to other common infrastructure materials. Further exploration of non-traditional drinking water disinfectants is recommended for future studies. Published by Elsevier Ltd.

  18. Persistence of triclopyr in Alaska subarctic environments

    USDA-ARS?s Scientific Manuscript database

    Field dissipation and vertical mobility of the butoxyethyl ester of triclopyr was assessed in two distinct geographic locations within the state of Alaska. Interior sites near Delta Junction included vegetated plots within highway rights-of-way (ROW) and Conservation Reserve Program (CRP) fields and...

  19. Vegetation productivity responses to drought on tribal lands in the four corners region of the Southwest USA

    NASA Astrophysics Data System (ADS)

    El-Vilaly, Mohamed Abd Salam; Didan, Kamel; Marsh, Stuart E.; van Leeuwen, Willem J. D.; Crimmins, Michael A.; Munoz, Armando Barreto

    2018-03-01

    For more than a decade, the Four Corners Region has faced extensive and persistent drought conditions that have impacted vegetation communities and local water resources while exacerbating soil erosion. These persistent droughts threaten ecosystem services, agriculture, and livestock activities, and expose the hypersensitivity of this region to inter-annual climate variability and change. Much of the intermountainWestern United States has sparse climate and vegetation monitoring stations, making fine-scale drought assessments difficult. Remote sensing data offers the opportunity to assess the impacts of the recent droughts on vegetation productivity across these areas. Here, we propose a drought assessment approach that integrates climate and topographical data with remote sensing vegetation index time series. Multisensor Normalized Difference Vegetation Index (NDVI) time series data from 1989 to 2010 at 5.6 km were analyzed to characterize the vegetation productivity changes and responses to the ongoing drought. A multi-linear regression was applied to metrics of vegetation productivity derived from the NDVI time series to detect vegetation productivity, an ecosystem service proxy, and changes. The results show that around 60.13% of the study area is observing a general decline of greenness ( p<0.05), while 3.87% show an unexpected green up, with the remaining areas showing no consistent change. Vegetation in the area show a significant positive correlation with elevation and precipitation gradients. These results, while, confirming the region's vegetation decline due to drought, shed further light on the future directions and challenges to the region's already stressed ecosystems. Whereas the results provide additional insights into this isolated and vulnerable region, the drought assessment approach used in this study may be adapted for application in other regions where surface-based climate and vegetation monitoring record is spatially and temporally limited.

  20. Content of Advance Directives for Individuals with Advanced Dementia

    PubMed Central

    Black, Betty S.; Phillips, Hilary; Fahrendorf, Sarah Richardson; Schwartz, Jack; Angelino, Andrew F.; Anderson, Danielle; Rabins, Peter V.

    2010-01-01

    Objectives To examine how people with end-stage dementia have conveyed their wishes for end-of-life care in advance directives. Methods The documents of 123 residents of three Maryland nursing homes, all with end-stage dementia, were reviewed. Results More years of education and White race were significantly associated with having an advance directive. With the exceptions of comfort care and pain treatment, advance directives were used primarily to restrict, not request, many forms of care at the end-of-life. Decisions about care for end-stage conditions such as Alzheimer's dementia are less often addressed in these documents than for terminal conditions and persistent vegetative state. Discussion In order for advance directives to better reflect a person's wishes, discussions with individuals and families about advance directives should include a range of care issues in the settings of terminal illness, persistent vegetative state or end-stage illness. These documents should be reviewed periodically to make certain they convey accurately the person's treatment preferences. PMID:18625761

  1. Advance directives and the persistent vegetative state in Victoria: a human rights perspective.

    PubMed

    Porter, Deborah

    2005-11-01

    With advances in medical technology, it is now possible to sustain the life of a person in a persistent vegetative state (PVS) until a decision is made to withhold or withdraw life-sustaining treatment. Who makes that decision? Under the Medical Treatment Act 1988 (Vic) there is no legally enforceable right for a person to choose, in advance, what intervention that person will and will not accept if he or she ends up in a PVS. The best that can be achieved is that a person can appoint an agent who is empowered to refuse medical treatment on the person's behalf in the event of incompetence. It is suggested that this mechanism ignores two fundamental human rights: self-determination and the inherent right to dignity. This article proposes the development of an advance directive mechanism that provides for a person to refuse, in advance, specified intervention, thereby respecting fundamental human rights and alleviating the existing need for an agent to second-guess a person's desires and best interests.

  2. Distinguishing linear, nonlinear, transient and persistent vegetation dynamics to characterize empirical signatures of ecological resilience

    USDA-ARS?s Scientific Manuscript database

    Background/Question/Methods To characterize and interpret ecological resilience and state change is a fundamental question in ecology. In the same ecosystem, across different communities, one can encounter relative stability, abrupt directional shifts, transient reversible change, as well as nondire...

  3. The vegetative state--a syndrome in search of a name.

    PubMed

    von Wild, K; Laureys, S T; Gerstenbrand, F; Dolce, G; Onose, G

    2012-02-22

    In 2002, Bryan Jennett chose the caption "A syndrome in search of a name" for the first chapter of his book "The vegetative state--medical facts, ethical and legal dilemmas", which, in summary, can be taken as his legacy. Jennett coined the term "VegetativeState" (VS), which became the preferential name for the syndrome of wakeful unresponsiveness in the English literature, with the intention to specify the concern and dilemmas in connection with the naming "vegetative", "persistent" and "permanent". In Europe, Apallic Syndrome (AS) is still in use. The prevalence of VS/AS in hospital settings in Europe is 0.5-2/100.000 population year; one-third traumatic brain damage, 70% following intracranial haemorrhages, tumours, cerebral hypoxemia after cardiac arrest, and end stage of certain progressive neurological diseases. VS/AS reflects brain pathology of (a) consciousness, self-awareness, (b) behaviour, and (c) certain brain structures, so that patients are awake but total unresponsive. The ambiguity of the naming "vegetative" (meant to refer to the preserved vegetative (autonomous nervous system) can suggest that the patient is no more a human but "vegetable" like. And "apallic" does not mean being definitively and completely anatomically disconnected from neocortical structures. In 2009, having joined the International Task Force on the Vegetative State, we proposed the new term "Unresponsive Wakefulness Syndrome" (UWS) to enable (neuro-)scientists, the medical community, and the public to assess and define all stages accurately in a human way. The Unresponsive Wakefulness Syndrome (UWS) could replace the VS/AS nomenclature in science and public with social competence.

  4. Vegetative state is a pejorative term.

    PubMed

    Machado, Calixto; Estévez, Mario; Carrick, Frederick R; Rodríguez, Rafael; Pérez-Nellar, Jesús; Chinchilla, Mauricio; Machado, Yanín; Pérez-Hoz, Grisel; Carballo, Maylén; Fleitas, Marcia; Pando, Alejandro

    2012-01-01

    The term persistent vegetative state (PVS) refers to the only circumstance in which an apparent dissociation of both components of consciousness is found, characterized by preservation of wakefulness with an apparent loss of awareness. Several authors have recently demonstrated by functional neuroimaging studies that a small subset of unresponsive "vegetative" patients may show unambiguous signs of consciousness and command following that is inaccessible to clinical examination at the bedside. The term "estado vegetativo" used in Spanish to describe the PVS syndrome by physicians came from the English-Spanish translation. The Spanish term "vegetativo" is related to unconscious vital functions, and "vegetal" is relative to plants. According to our experience, when a physician informs to patients' relatives that his/her family member's diagnosis is a "estado vegetativo", they understand the he/she is no more a human being, that there is no hope of recovery. The European Task Force on Disorders of Consciousness has recently proposed a new term, unresponsive wakefulness syndrome (UWS), to assist society in avoiding the depreciatory term vegetative state. Our group has embraced the use of the new term UWS and might suggest that we change our concept and use of the term MCS to minimally responsive wakefulness state (MRWS), or minimally aware wakefulness state (MAWS). Medical terms must be current and avoid any pejorative description of patients, which will promote our abilities to serve humankind and challenge neuroscientists to offer society new and realistic hopes for neurorehabilitation.

  5. Annual runoff in the United States

    USGS Publications Warehouse

    Langbein, Walter Basil

    1949-01-01

    The water that drains from the land into creeks and rivers is called runoff. Supplying many of our basic human needs for water, runoff occurs chiefly as a residual of rainfall after Nature’s take – that is, after the persistent demands of evaporation from land and transpiration from vegetation have been supplied.

  6. Co-evolution of Riparian Vegetation and Channel Dynamics in an Aggrading Braided River System, Mount Pinatubo, Philippines

    NASA Astrophysics Data System (ADS)

    Gran, K. B.; Michal, T.

    2014-12-01

    Increased bank stability by riparian vegetation in braided rivers can decrease bed reworking rates and focus the flow. The magnitude of influence and resulting channel morphology are functions of vegetation strength vs. channel dynamics, a concept encapsulated in a dimensionless ratio between timescales for vegetation growth and channel reworking known as T*. We investigate this relationship in an aggrading braided river at Mount Pinatubo, Philippines, and compare results to numerical and physical models. Gradual reductions in post-eruption sediment loads have reduced bed reworking rates, allowing vegetation to persist year-round and impact channel dynamics on the Pasig-Potrero and Sacobia Rivers. From 2009-2011, we collected data detailing vegetation extent, type, density, and root strength. Incorporating these data into RipRoot and BSTEM models shows cohesion due to roots increased from zero in unvegetated conditions to >10.2 kPa in densely-growing grasses. Field-based parameters were incorporated into a cellular model comparing vegetation growth and sediment mobility effects on braided channel dynamics. The model shows that both low sediment mobility and high vegetation strength lead to less active systems, reflecting trends observed in the field. An estimated T* between 0.8 - 2.3 for the Pasig-Potrero River suggests channels were mobile enough to maintain the braidplain width clear of vegetation and even experience slight gains in area through annual removal of existing vegetation. However, persistent vegetation focused flow and thus aggradation over the unvegetated fraction of braidplain, leading to an aggradational imbalance and transition to a more avulsive state. While physical models predict continued narrowing of the active braidplain as T* declines, the future trajectory of channel-vegetation interactions at Pinatubo as sedimentation rates decline appears more complicated due to strong seasonal variability in precipitation and sediment loads. By 2011, seasonal incision in the dry season had started to occur, lowering the water-table, and impeding vegetation growth.

  7. Assessment of outcome after severe brain damage.

    PubMed

    Jennett, B; Bond, M

    1975-03-01

    Persisting disability after brain damage usually comprises both mental and physical handicap. The mental component is often the more important in contributing to overall social disability. Lack of an objective scale leads to vague and over-optimistic estimates of outcome, which obscure the ultimate results of early management. A five-point scale is described--death, persistent vegetative state, severe disability, moderate disability, and good recovery. Duration as well as intensity of disability should be included in an index of ill-health; this applies particularly after head injury, because many disabled survivors are young.

  8. Ethics roundtable debate: Withdrawal of tube feeding in a patient with persistent vegetative state where the patients wishes are unclear and there is family dissension

    PubMed Central

    Buckley, Tom; Crippen, David; DeWitt, Anthony L; Fisher, Malcolm; Liolios, Antonios; Scheetz, Christine L; Whetstine, Leslie M

    2004-01-01

    The decision to withdraw or withhold life supporting treatment in moribund patients is difficult under any circumstances. When the patient becomes incompetent to clarify their wishes regarding continued maintenance in long-term facilities, surrogates sometimes cannot agree, further clouding the issue. We examine a case where the State's interests come into play, forcing a controversial resolution. PMID:15025760

  9. Projected Future Vegetation Changes for the Northwest United States and Southwest Canada at a Fine Spatial Resolution Using a Dynamic Global Vegetation Model.

    PubMed

    Shafer, Sarah L; Bartlein, Patrick J; Gray, Elizabeth M; Pelltier, Richard T

    2015-01-01

    Future climate change may significantly alter the distributions of many plant taxa. The effects of climate change may be particularly large in mountainous regions where climate can vary significantly with elevation. Understanding potential future vegetation changes in these regions requires methods that can resolve vegetation responses to climate change at fine spatial resolutions. We used LPJ, a dynamic global vegetation model, to assess potential future vegetation changes for a large topographically complex area of the northwest United States and southwest Canada (38.0-58.0°N latitude by 136.6-103.0°W longitude). LPJ is a process-based vegetation model that mechanistically simulates the effect of changing climate and atmospheric CO2 concentrations on vegetation. It was developed and has been mostly applied at spatial resolutions of 10-minutes or coarser. In this study, we used LPJ at a 30-second (~1-km) spatial resolution to simulate potential vegetation changes for 2070-2099. LPJ was run using downscaled future climate simulations from five coupled atmosphere-ocean general circulation models (CCSM3, CGCM3.1(T47), GISS-ER, MIROC3.2(medres), UKMO-HadCM3) produced using the A2 greenhouse gases emissions scenario. Under projected future climate and atmospheric CO2 concentrations, the simulated vegetation changes result in the contraction of alpine, shrub-steppe, and xeric shrub vegetation across the study area and the expansion of woodland and forest vegetation. Large areas of maritime cool forest and cold forest are simulated to persist under projected future conditions. The fine spatial-scale vegetation simulations resolve patterns of vegetation change that are not visible at coarser resolutions and these fine-scale patterns are particularly important for understanding potential future vegetation changes in topographically complex areas.

  10. The Vegetative State – A Syndrome in Search of a Name

    PubMed Central

    von Wild, K; Laureys, ST; Gerstenbrand, F; Dolce, G; Onose, G

    2012-01-01

    In 2002, Bryan Jennett chose the caption “A syndrome in search of a name” for the first chapter of his book “The vegetative state - medical facts, ethical and legal dilemmas”, which, in summary, can be taken as his legacy. Jennett coined the term "VegetativeState" (VS), which became the preferential name for the syndrome of wakeful unresponsiveness in the English literature, with the intention to specify the concern and dilemmas in connection with the naming "vegetative", "persistent" and "permanent". In Europe, Apallic Syndrome (AS) is still in use. The prevalence of VS/AS in hospital settings in Europe is 0.5–2/100.000 population year; one-third traumatic brain damage, 70% following intracranial haemorrhages, tumours, cerebral hypoxemia after cardiac arrest, and end stage of certain progressive neurological diseases. VS/AS reflects brain pathology of (a) consciousness, self-awareness, (b) behaviour, and (c) certain brain structures, so that patients are awake but total unresponsive. The ambiguity of the naming “vegetative” (meant to refer to the preserved vegetative (autonomous nervous system) can suggest that the patient is no more a human but “vegetable” like. And “apallic” does not mean being definitively and completely anatomically disconnected from neocortical structures. In 2009, having joined the International Task Force on the Vegetative State, we proposed the new term “Unresponsive Wakefulness Syndrome” (UWS) to enable (neuro-)scientists, the medical community, and the public to assess and define all stages accurately in a human way. The Unresponsive Wakefulness Syndrome (UWS) could replace the VS/AS nomenclature in science and public with social competence. PMID:22574081

  11. Satellite-observed changes in vegetation sensitivities to surface soil moisture and total water storage variations since the 2011 Texas drought

    NASA Astrophysics Data System (ADS)

    A, Geruo; Velicogna, Isabella; Kimball, John S.; Du, Jinyang; Kim, Youngwook; Colliander, Andreas; Njoku, Eni

    2017-05-01

    We combine soil moisture (SM) data from AMSR-E and AMSR-2, and changes in terrestrial water storage (TWS) from time-variable gravity data from GRACE to delineate and characterize the evolution of drought and its impact on vegetation growth. GRACE-derived TWS provides spatially continuous observations of changes in overall water supply and regional drought extent, persistence and severity, while satellite-derived SM provides enhanced delineation of shallow-depth soil water supply. Together these data provide complementary metrics quantifying available plant water supply. We use these data to investigate the supply changes from water components at different depths in relation to satellite-based enhanced vegetation index (EVI) and gross primary productivity (GPP) from MODIS and solar-induced fluorescence (SIF) from GOME-2, during and following major drought events observed in the state of Texas, USA and its surrounding semiarid area for the past decade. We find that in normal years the spatial pattern of the vegetation-moisture relationship follows the gradient in mean annual precipitation. However since the 2011 hydrological drought, vegetation growth shows enhanced sensitivity to surface SM variations in the grassland area located in central Texas, implying that the grassland, although susceptible to drought, has the capacity for a speedy recovery. Vegetation dependency on TWS weakens in the shrub-dominated west and strengthens in the grassland and forest area spanning from central to eastern Texas, consistent with changes in water supply pattern. We find that in normal years GRACE TWS shows strong coupling and similar characteristic time scale to surface SM, while in drier years GRACE TWS manifests stronger persistence, implying longer recovery time and prolonged water supply constraint on vegetation growth. The synergistic combination of GRACE TWS and surface SM, along with remote-sensing vegetation observations provides new insights into drought impact on vegetation-moisture relationship, and unique information regarding vegetation resilience and the recovery of hydrological drought.

  12. Do those who cannot speak really have a voice?

    PubMed

    Dew, Betty

    1992-01-01

    Joseph Finelli, after a heart transplant, is being artificially maintained by medications and a gastrostomy tube (G-tube). He is not brain dead nor in a persistent vegetative state. In my role as court-appointed Guardian ad Litem (GAL-court investigator), it appears to me that Mr. Finelli is being treated against his stated goals and values. After applying the substituted judgment factors, I recommend the withdrawal of the medication which sustains his life. His family adamantly opposes my position.

  13. The relation between persistent coma and brain ischemia after severe brain injury.

    PubMed

    Cheng, Quan; Jiang, Bing; Xi, Jian; Li, Zhen Yan; Liu, Jin Fang; Wang, Jun Yu

    2013-12-01

    To investigate the relation between brain ischemia and persistent vegetative state after severe traumatic brain injury. The 66 patients with severe brain injury were divided into two groups: The persistent coma group (coma duration ≥10 d) included 51 patients who had an admission Glasgow Coma Scale (GCS) of 5-8 and were unconscious for more than 10 d. There were 15 patients in the control group, their admission GCS was 5-8, and were unconscious for less than 10 d. The brain areas, including frontal, parietal, temporal, occipital lobes and thalamus, were measured by Single Photon Emission Computed Tomography (SPECT). In the first SPECT scan, multiple areas of cerebral ischemia were documented in all patients in both groups, whereas bilateral thalamic ischemia were presented in all patients in the persistent coma group and were absented in the control group. In the second SPECT scan taken during the period of analepsia, with an indication that unilateral thalamic ischemia were persisted in 28 of 41 patients in persistent coma group(28/41,68.29%). Persistent coma after severe brain injury is associated with bilateral thalamic ischemia.

  14. Modeling the potential persistence of various ecological systems under CMIP5 future climate and land use scenarios throughout California, USA

    NASA Astrophysics Data System (ADS)

    Baker, B.; Ferschweiler, K.; Bachelet, D. M.; Sleeter, B. M.

    2016-12-01

    California's geographic location, topographic complexity and latitudinal climatic gradient give rise to great biological and ecological diversity. However, increased land use pressure, altered seasonal weather patterns, and changes in temperature and precipitation regimes are having pronounced effects on ecosystems and the multitude of services they provide for an increasing population. As a result, natural resource managers are faced with formidable challenges to maintain these critical services. The goals of this project were to better understand how projected 21st century climate and land-use change scenarios may alter ecosystem dynamics, the spatial distribution of various vegetation types and land-use patterns, and to provide a coarse scale "triage map" of where land managers may want to concentrate efforts to reduce ecological stress in order to mitigate the potential impacts of a changing climate. We used the MC2 dynamic global vegetation model and the LUCAS state-and-transition simulation model to simulate the potential effects of future climate and land-use change on ecological processes for the state of California. Historical climate data were obtained from the PRISM dataset and nine CMIP5 climate models were run for the RCP 8.5 scenario. Climate projections were combined with a business-as-usual land-use scenario based on local-scale land use histories. For ease of discussion, results from five simulation runs (historic, hot-dry, hot-wet, warm-dry, and warm-wet) are presented. Results showed large changes in the extent of urban and agricultural lands. In addition, several simulated potential vegetation types persisted in situ under all four future scenarios, although alterations in total area, total ecosystem carbon, and forest vigor (NPP/LAI) were noted. As might be expected, the majority of the forested types that persisted occurred on public lands. However, more than 78% of the simulated subtropical mixed forest and 26% of temperate evergreen needleleaf forest types persisted on private lands under all four future scenarios. Result suggest that building collaborations across management borders could be valuable tool to guide natural resource management actions into the future.

  15. Historic macrophyte development in Par Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grace, J.B.

    1985-08-01

    Aerial photographs from 1975, 1980, and 1983 were examined to evaluate the changes that have occurred in the wetland vegetation of Par Pond, a reactor-cooling reservoir. Evaluation of the aerial photographs was based on comparisons with ground-level vegetation maps made during July 1984. Comparisons of photographs from August and December of 1983 revealed the main seasonal change in the aerial coverage of wetland vegetation to be the wintertime loss of non-persistent emergent species such as Nelumbo lutea and Nymphaea odorata. Comparisons between September 1980 and August 1983 revealed that the lakeward extent of non-persistent macrophytes has increased by an averagemore » of 8.2 m, though not all sites have changed equally. For persistent macrophytes (principally Typha), the average increase in lakeward extent between December 1975 and August 1983 was 3.48 m. The extensive development of wetland vegetation in Par Pond as well as the substantial spread of vegetation over only a few years time indicates the high suitability of this habitat for the growth of wetland plants.« less

  16. Climate and vegetational regime shifts in the late Paleozoic ice age earth.

    PubMed

    DiMichele, W A; Montañez, I P; Poulsen, C J; Tabor, N J

    2009-03-01

    The late Paleozoic earth experienced alternation between glacial and non-glacial climates at multiple temporal scales, accompanied by atmospheric CO2 fluctuations and global warming intervals, often attended by significant vegetational changes in equatorial latitudes of Pangaea. We assess the nature of climate-vegetation interaction during two time intervals: middle-late Pennsylvanian transition and Pennsylvanian-Permian transition, each marked by tropical warming and drying. In case study 1, there is a catastrophic intra-biomic reorganization of dominance and diversity in wetland, evergreen vegetation growing under humid climates. This represents a threshold-type change, possibly a regime shift to an alternative stable state. Case study 2 is an inter-biome dominance change in western and central Pangaea from humid wetland and seasonally dry to semi-arid vegetation. Shifts between these vegetation types had been occurring in Euramerican portions of the equatorial region throughout the late middle and late Pennsylvanian, the drier vegetation reaching persistent dominance by Early Permian. The oscillatory transition between humid and seasonally dry vegetation appears to demonstrate a threshold-like behavior but probably not repeated transitions between alternative stable states. Rather, changes in dominance in lowland equatorial regions were driven by long-term, repetitive climatic oscillations, occurring with increasing intensity, within overall shift to seasonal dryness through time. In neither case study are there clear biotic or abiotic warning signs of looming changes in vegetational composition or geographic distribution, nor is it clear that there are specific, absolute values or rates of environmental change in temperature, rainfall distribution and amount, or atmospheric composition, approach to which might indicate proximity to a terrestrial biotic-change threshold.

  17. Projected future vegetation changes for the northwest United States and southwest Canada at a fine spatial resolution using a dynamic global vegetation model.

    USGS Publications Warehouse

    Shafer, Sarah; Bartlein, Patrick J.; Gray, Elizabeth M.; Pelltier, Richard T.

    2015-01-01

    Future climate change may significantly alter the distributions of many plant taxa. The effects of climate change may be particularly large in mountainous regions where climate can vary significantly with elevation. Understanding potential future vegetation changes in these regions requires methods that can resolve vegetation responses to climate change at fine spatial resolutions. We used LPJ, a dynamic global vegetation model, to assess potential future vegetation changes for a large topographically complex area of the northwest United States and southwest Canada (38.0–58.0°N latitude by 136.6–103.0°W longitude). LPJ is a process-based vegetation model that mechanistically simulates the effect of changing climate and atmospheric CO2 concentrations on vegetation. It was developed and has been mostly applied at spatial resolutions of 10-minutes or coarser. In this study, we used LPJ at a 30-second (~1-km) spatial resolution to simulate potential vegetation changes for 2070–2099. LPJ was run using downscaled future climate simulations from five coupled atmosphere-ocean general circulation models (CCSM3, CGCM3.1(T47), GISS-ER, MIROC3.2(medres), UKMO-HadCM3) produced using the A2 greenhouse gases emissions scenario. Under projected future climate and atmospheric CO2 concentrations, the simulated vegetation changes result in the contraction of alpine, shrub-steppe, and xeric shrub vegetation across the study area and the expansion of woodland and forest vegetation. Large areas of maritime cool forest and cold forest are simulated to persist under projected future conditions. The fine spatial-scale vegetation simulations resolve patterns of vegetation change that are not visible at coarser resolutions and these fine-scale patterns are particularly important for understanding potential future vegetation changes in topographically complex areas.

  18. Projected Future Vegetation Changes for the Northwest United States and Southwest Canada at a Fine Spatial Resolution Using a Dynamic Global Vegetation Model

    PubMed Central

    Shafer, Sarah L.; Bartlein, Patrick J.; Gray, Elizabeth M.; Pelltier, Richard T.

    2015-01-01

    Future climate change may significantly alter the distributions of many plant taxa. The effects of climate change may be particularly large in mountainous regions where climate can vary significantly with elevation. Understanding potential future vegetation changes in these regions requires methods that can resolve vegetation responses to climate change at fine spatial resolutions. We used LPJ, a dynamic global vegetation model, to assess potential future vegetation changes for a large topographically complex area of the northwest United States and southwest Canada (38.0–58.0°N latitude by 136.6–103.0°W longitude). LPJ is a process-based vegetation model that mechanistically simulates the effect of changing climate and atmospheric CO2 concentrations on vegetation. It was developed and has been mostly applied at spatial resolutions of 10-minutes or coarser. In this study, we used LPJ at a 30-second (~1-km) spatial resolution to simulate potential vegetation changes for 2070–2099. LPJ was run using downscaled future climate simulations from five coupled atmosphere-ocean general circulation models (CCSM3, CGCM3.1(T47), GISS-ER, MIROC3.2(medres), UKMO-HadCM3) produced using the A2 greenhouse gases emissions scenario. Under projected future climate and atmospheric CO2 concentrations, the simulated vegetation changes result in the contraction of alpine, shrub-steppe, and xeric shrub vegetation across the study area and the expansion of woodland and forest vegetation. Large areas of maritime cool forest and cold forest are simulated to persist under projected future conditions. The fine spatial-scale vegetation simulations resolve patterns of vegetation change that are not visible at coarser resolutions and these fine-scale patterns are particularly important for understanding potential future vegetation changes in topographically complex areas. PMID:26488750

  19. Extensive wildfires, climate change, and an abrupt state change in subalpine ribbon forests, Colorado.

    PubMed

    Calder, W John; Shuman, Bryan

    2017-10-01

    Ecosystems may shift abruptly when the effects of climate change and disturbance interact, and landscapes with regularly patterned vegetation may be especially vulnerable to abrupt shifts. Here we use a fossil pollen record from a regularly patterned ribbon forest (alternating bands of forests and meadows) in Colorado to examine whether past changes in wildfire and climate produced abrupt vegetation shifts. Comparing the percentages of conifer pollen with sedimentary δ 18 O data (interpreted as an indicator of temperature or snow accumulation) indicates a first-order linear relationship between vegetation composition and climate change with no detectable lags over the past 2,500 yr (r = 0.55, P < 0.001). Additionally, however, we find that the vegetation changed abruptly within a century of extensive wildfires, which were recognized in a previous study to have burned approximately 80% of the surrounding 1,000 km 2 landscape 1,000 yr ago when temperatures rose ~0.5°C. The vegetation change was larger than expected from the effects of climate change alone. Pollen assemblages changed from a composition associated with closed subalpine forests to one similar to modern ribbon forests. Fossil pollen assemblages then remained like those from modern ribbon forests for the following ~1,000 yr, providing a clear example of how extensive disturbances can trigger persistent new vegetation states and alter how vegetation responds to climate. © 2017 by the Ecological Society of America.

  20. HOW STRONG IS THE RELATIONSHIP BETWEEN RAINFALL VARIABILITY AND CAATINGA PRODUCTIVITY? A CASE STUDY UNDER A CHANGING CLIMATE.

    PubMed

    Salimon, Cleber; Anderson, Liana

    2017-05-22

    Despite the knowledge of the influence of rainfall on vegetation dynamics in semiarid tropical Brazil, few studies address and explore quantitatively the various aspects of this relationship. Moreover, Northeast Brazil is expected to have its rainfall reduced by as much as 60% until the end of the 21st Century, under scenario AII of the IPCC Report 2010. We sampled and analyzed satellite-derived monthly rainfall and a vegetation index data for 40 sites with natural vegetation cover in Paraíba State, Brazil from 2001 to 2012. In addition, the anomalies for both variables were calculated. Rainfall variation explained as much as 50% of plant productivity, using the vegetation index as a proxy, and rainfall anomaly explained 80% of the vegetation productivity anomaly. In an extreme dry year (2012), with 65% less rainfall than average for the period 2001-2012, the vegetation index decreased by 25%. If such decrease persists in a long term trend in rainfall reduction, this could lead to a disruption in this ecosystem functioning and the dominant vegetation could become even more xeric or desert-like, bringing serious environmental, social and economical impacts.

  1. Use of the Köppen-Trewartha climate classification to evaluate climatic refugia in statistically derived ecoregions for the People’s Republic of China

    Treesearch

    B. Baker; Henry Diaz; William Hargrove; Forrest Hoffman

    2010-01-01

    Changes in climate as projected by state-of-the-art climate models are likely to result in novel combinations of climate and topo-edaphic factors that will have substantial impacts on the distribution and persistence of natural vegetation and animal species. We have used multivariate techniques to quantify some of these changes; the...

  2. Remote sensing analysis of vegetation recovery following short-interval fires in Southern California shrublands.

    PubMed

    Meng, Ran; Dennison, Philip E; D'Antonio, Carla M; Moritz, Max A

    2014-01-01

    Increased fire frequency has been shown to promote alien plant invasions in the western United States, resulting in persistent vegetation type change. Short interval fires are widely considered to be detrimental to reestablishment of shrub species in southern California chaparral, facilitating the invasion of exotic annuals and producing "type conversion". However, supporting evidence for type conversion has largely been at local, site scales and over short post-fire time scales. Type conversion has not been shown to be persistent or widespread in chaparral, and past range improvement studies present evidence that chaparral type conversion may be difficult and a relatively rare phenomenon across the landscape. With the aid of remote sensing data covering coastal southern California and a historical wildfire dataset, the effects of short interval fires (<8 years) on chaparral recovery were evaluated by comparing areas that burned twice to adjacent areas burned only once. Twelve pairs of once- and twice-burned areas were compared using normalized burn ratio (NBR) distributions. Correlations between measures of recovery and explanatory factors (fire history, climate and elevation) were analyzed by linear regression. Reduced vegetation cover was found in some lower elevation areas that were burned twice in short interval fires, where non-sprouting species are more common. However, extensive type conversion of chaparral to grassland was not evident in this study. Most variables, with the exception of elevation, were moderately or poorly correlated with differences in vegetation recovery.

  3. Remote Sensing Analysis of Vegetation Recovery following Short-Interval Fires in Southern California Shrublands

    PubMed Central

    Meng, Ran; Dennison, Philip E.; D’Antonio, Carla M.; Moritz, Max A.

    2014-01-01

    Increased fire frequency has been shown to promote alien plant invasions in the western United States, resulting in persistent vegetation type change. Short interval fires are widely considered to be detrimental to reestablishment of shrub species in southern California chaparral, facilitating the invasion of exotic annuals and producing “type conversion”. However, supporting evidence for type conversion has largely been at local, site scales and over short post-fire time scales. Type conversion has not been shown to be persistent or widespread in chaparral, and past range improvement studies present evidence that chaparral type conversion may be difficult and a relatively rare phenomenon across the landscape. With the aid of remote sensing data covering coastal southern California and a historical wildfire dataset, the effects of short interval fires (<8 years) on chaparral recovery were evaluated by comparing areas that burned twice to adjacent areas burned only once. Twelve pairs of once- and twice-burned areas were compared using normalized burn ratio (NBR) distributions. Correlations between measures of recovery and explanatory factors (fire history, climate and elevation) were analyzed by linear regression. Reduced vegetation cover was found in some lower elevation areas that were burned twice in short interval fires, where non-sprouting species are more common. However, extensive type conversion of chaparral to grassland was not evident in this study. Most variables, with the exception of elevation, were moderately or poorly correlated with differences in vegetation recovery. PMID:25337785

  4. Organizing the pantry: cache management improves quality of overwinter food stores in a montane mammal

    USGS Publications Warehouse

    Jakopak, Rhiannon P.; Hall, L. Embere; Chalfoun, Anna D.

    2017-01-01

    Many mammals create food stores to enhance overwinter survival in seasonal environments. Strategic arrangement of food within caches may facilitate the physical integrity of the cache or improve access to high-quality food to ensure that cached resources meet future nutritional demands. We used the American pika (Ochotona princeps), a food-caching lagomorph, to evaluate variation in haypile (cache) structure (i.e., horizontal layering by plant functional group) in Wyoming, United States. Fifty-five percent of 62 haypiles contained at least 2 discrete layers of vegetation. Adults and juveniles layered haypiles in similar proportions. The probability of layering increased with haypile volume, but not haypile number per individual or nearby forage diversity. Vegetation cached in layered haypiles was also higher in nitrogen compared to vegetation in unlayered piles. We found that American pikas frequently structured their food caches, structured caches were larger, and the cached vegetation in structured piles was of higher nutritional quality. Improving access to stable, high-quality vegetation in haypiles, a critical overwinter food resource, may allow individuals to better persist amidst harsh conditions.

  5. Fire chronology and windstorm effects on persistence of a disjunct oak-shortleaf pine community

    Treesearch

    Michael D. Jones; Marlin L. Bowles

    2012-01-01

    We investigated effects of a human-altered fire regime and wind storms on persistence of disjunct oak-shortleaf pine vegetation occurring along 5.5 km of xeric habitat on the east bluffs of the Mississippi River in Union County, IL. In 2009, we resampled vegetation transects established in seven stands in 1954 and obtained 26 cross sections containing fire scars from...

  6. Importance of Soil Amendments: Survival of Bacterial Pathogens in Manure and Compost Used as Organic Fertilizers.

    PubMed

    Sharma, Manan; Reynnells, Russell

    2016-08-01

    Biological soil amendments (BSAs) such as manure and compost are frequently used as organic fertilizers to improve the physical and chemical properties of soils. However, BSAs have been known to be a reservoir for enteric bacterial pathogens such as enterohemorrhagic Escherichia coli (EHEC), Salmonella spp., and Listeria spp. There are numerous mechanisms by which manure may transfer pathogens to growing fruits and vegetables, and several outbreaks of infections have been linked to manure-related contamination of leafy greens. In the United States several commodity-specific guidelines and current and proposed federal rules exist to provide guidance on the application of BSAs as fertilizers to soils, some of which require an interval between the application of manure to soils and the harvest of fruits and vegetables. This review examines the survival, persistence, and regrowth/resuscitation of bacterial pathogens in manure, biosolids, and composts. Moisture, along with climate and the physicochemical properties of soil, manure, or compost, plays a significant role in the ability of pathogens to persist and resuscitate in amended soils. Adaptation of enteric bacterial pathogens to the nonhost environment of soils may also extend their persistence in manure- or compost-amended soils. The presence of antibiotic-resistance genes in soils may also be increased by manure application. Overall, BSAs applied as fertilizers to soils can support the survival and regrowth of pathogens. BSAs should be handled and applied in a manner that reduces the prevalence of pathogens in soils and the likelihood of transfer of food-borne pathogens to fruits and vegetables. This review will focus on two BSAs-raw manure and composted manure (and other feedstocks)-and predominantly on the survival of enteric bacterial pathogens in BSAs as applied to soils as organic fertilizers.

  7. The impact of persistent volcanic degassing on vegetation: A case study at Turrialba volcano, Costa Rica

    NASA Astrophysics Data System (ADS)

    Tortini, R.; van Manen, S. M.; Parkes, B. R. B.; Carn, S. A.

    2017-07-01

    Although the impacts of large volcanic eruptions on the global environment have been frequently studied, the impacts of lower tropospheric emissions from persistently degassing volcanoes remain poorly understood. Gas emissions from persistent degassing exceed those from sporadic eruptive activity, and can have significant long-term (years to decades) effects on local and regional scales, both on humans and the environment. Here, we exploit a variety of high temporal and high spatial resolution satellite-based time series and complementary ground-based measurements of element deposition and surveys of species richness, to enable a comprehensive spatio-temporal assessment of sulfur dioxide (SO2) emissions and their associated impacts on vegetation at Turrialba volcano (Costa Rica) from 2000 to 2013. We observe increased emissions of SO2 coincident with a decline in vegetation health downwind of the vents, in accordance with the prevalent wind direction at Turrialba. We also find that satellite-derived vegetation indices at various spatial resolutions are able to accurately define the vegetation kill zone, the extent of which is independently confirmed by ground-based sampling, and monitor its expansion over time. In addition, ecological impacts in terms of vegetation composition and diversity and physiological damage to vegetation, all spatially correspond to fumigation by Turrialba's plume. This study shows that analyzing and relating satellite observations to conditions and impacts on the ground can provide an increased understanding of volcanic degassing, its impacts in terms of the long-term vegetation response and the potential of satellite-based monitoring to inform hazard management strategies related to land use.

  8. Persistence of poliovirus 1 in soil and on vegetables grown in soil previously flooded with inoculated sewage sludge or effluent.

    PubMed Central

    Tierney, J T; Sullivan, R; Larkin, E P

    1977-01-01

    Land disposal of sewage sludge and effluent is becoming a common practice in the United States. The fertilizer content and humus value of such wastes are useful for agricultural purposes, and the recycling of sewage onto the land eliminates many of our stream pollution problems. The potential exists for crops grown in such irrigated soil to be contaminated by viruses that may be present in the sewage. Studies were initiated to determine viral persistence in soil and on crops grown under natural conditions in field plots that had been flooded to a depth of 1 inch (2.54 cm) with poliovirus 1-inoculated sewage wastes. Lettuce and radishes were planted in sludge- or effluent-flooded soil. In one study, the vegetables were planted 1 day before flooding, and in another they were planted 3 days after the plots were flooded. Survival of poliovirus 1 in soil irrigated with inoculated sewage sludge and effluent was determined during two summer growing seasons and one winter period. The longest period of survival was during the winter, when virus was detected after 96 days. During the summer, the longest survival period was 11 days. Poliovirus 1 was recovered from the mature vegetables 23 days after flooding of the plots had ceased. Lettuce and radishes are usually harvested 3 to 4 weeks after planting. PMID:189685

  9. Rethinking the role of edaphic condition in halophyte vegetation degradation on salt marshes due to coastal defense structure

    NASA Astrophysics Data System (ADS)

    Xie, Tian; Cui, Baoshan; Bai, Junhong; Li, Shanze; Zhang, Shuyan

    2018-02-01

    Determining how human disturbance affects plant community persistence and species conservation is one of the most pressing ecological challenges. The large-scale disturbance form defense structures usually have a long-term and potential effect on phytocommunity in coastal saltmarshes. Coastal defense structures usually remove the effect of tidal wave on tidal salt marshes. As a consequence, edaphic factors such as the salinity and moisture contents are disturbed by tidal action blocking. However, few previous studies have explicitly addressed the response of halophyte species persistence and dynamics to the changing edaphic conditions. The understanding of the response of species composition in seed banks and aboveground vegetation to the stress is important to identify ecological effect of coastal defense structures and provide usefully insight into restoration. Here, we conducted a field study to distinguish the density, species composition and relationships of seed bank with aboveground vegetation between tidal flat wetlands with and without coastal defense structures. We also addressed the role of edaphic condition in vegetation degradation caused by coastal defense structures in combination with field monitor and greenhouse experiments. Our results showed the density of the seed bank and aboveground vegetation in the tidal flat without coastal defense structures was significantly lower than the surrounded flat with coastal defense structures. A total of 14 species were founded in the surrounded flat seed bank and 11 species in the tidal flat, but three species were only recorded in aboveground vegetation of the tidal flat which was much lower than 24 aboveground species in the surrounded flat. The absent of species in aboveground vegetation contributed to low germination rate which depend on the edaphic condition. The germination of seeds in the seed bank were inhabited by high soil salinity in the tidal flat and low soil moisture in the surrounded flat. Our study supported the hypothesis that the change of edaphic condition caused by coastal defense structures was the main reason for the difference of the species composition similarity between aboveground vegetation and the soil seed bank between the tidal and surrounded flats. Therefore, mitigating the hydrological disturbance and maintaining the original state of edaphic factors would be useful implications for reducing the ecological effect of defense structure to vegetation communities in coastal salt marshes.

  10. Drought in Southwestern United States

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The southwestern United States pined for water in late March and early April 2007. This image is based on data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite from March 22 through April 6, 2007, and it shows the Normalized Difference Vegetation Index, or NDVI, for the period. In this NDVI color scale, green indicates areas of healthier-than-usual vegetation, and only small patches of green appear in this image, near the California-Nevada border and in Utah. Larger areas of below-normal vegetation are more common, especially throughout California. Pale yellow indicates areas with generally average vegetation. Gray areas appear where no data were available, likely due to persistent clouds or snow cover. According to the April 10, 2007, update from the U.S. Drought Monitor, most of the southwestern United Sates, including Utah, Nevada, California, and Arizona, experienced moderate to extreme drought. The hardest hit areas were southeastern California and southwestern Arizona. Writing for the Drought Monitor, David Miskus of the Joint Agricultural Weather Facility reported that March 2007 had been unusually dry for the southwestern United States. While California's and Utah's reservoir storage was only slightly below normal, reservoir storage was well below normal for New Mexico and Arizona. In early April, an international research team published an online paper in Science noting that droughts could become more common for the southwestern United States and northern Mexico, as these areas were already showing signs of drying. Relying on the same computer models used in the Intergovernmental Panel on Climate Change (IPCC) report released in early 2007, the researchers who published in Science concluded that global warming could make droughts more common, not just in the American Southwest, but also in semiarid regions of southern Europe, Mediterranean northern Africa, and the Middle East.

  11. O the Interpretation of Climatic Change from the Fossil Record: Climatic Change in Central and Eastern United States for the Past 2000 Years Estimated from Pollen Data.

    NASA Astrophysics Data System (ADS)

    Gajewski, Konrad J.

    Pollen records from varved-lake sediments at seven locations in the northeastern United States record late Holocene climate changes over the past 1000-2000 years. Simplification of pollen diagrams by principal component analysis documents that climate changes affect vegetation at all sites, and not just at "sensitive" sites or ecotones. All seven pollen records show a long-term trend, medium frequency oscillations and higher frequency fluctuations. The between-site similarity of the trend and the coherency of the medium frequency oscillations demonstrates the importance of climate forcing to vegetation change at these scales. Response of vegetation to a climatic change is quite rapid, and depends not only on the nature of the climate fluctuation, but also on the pre-existing state of the vegetation. Multiple regression and canonical correlation techniques were used to calculate calibration functions from a spatial network of modern pollen and climate data. When analyzed at comparable scales, the spatial distribution of pollen assemblages in northeastern United States are related both to summer temperature and annual precipitation. Although summer temperature and annual precipitation are coupled, this coupling is not so strong as to negate the use of univariate calibration models. Over the 2000-year period of time, a gradual summer cooling of about 1.0(DEGREES)C/1000 years has occurred. Superimposed on the long-term trend are medium frequency temperature fluctuations of amplitude about 0.5(DEGREES)C that persist for several centuries. Annual precipitation is relatively constant, except for a period of increased rainfall from 600 years ago to the present in southern Maine.

  12. Aridification of the Indian Subcontinent during the Holocene: Implications for Landscape Evolution, Sedimentation, Carbon Cycle, and Human Civilizations

    DTIC Science & Technology

    2012-06-01

    of flora for both sites. For the Godavari River basin the  13 Cwax record shows a gradual increase in aridity- adapted vegetation from ~4,000 until...1,700 years ago followed by the persistence of aridity- adapted plants to the present. The oxygen isotopic composition of planktonic foraminifera...for a gradual increase in the proportion of aridity- adapted vegetation from ~4,000 until 1,700 years ago followed by the persistence of aridity

  13. Glacial legacies on interglacial vegetation at the Pliocene-Pleistocene transition in NE Asia

    PubMed Central

    Herzschuh, Ulrike; Birks, H. John B.; Laepple, Thomas; Andreev, Andrei; Melles, Martin; Brigham-Grette, Julie

    2016-01-01

    Broad-scale climate control of vegetation is widely assumed. Vegetation-climate lags are generally thought to have lasted no more than a few centuries. Here our palaeoecological study challenges this concept over glacial–interglacial timescales. Through multivariate analyses of pollen assemblages from Lake El'gygytgyn, Russian Far East and other data we show that interglacial vegetation during the Plio-Pleistocene transition mainly reflects conditions of the preceding glacial instead of contemporary interglacial climate. Vegetation–climate disequilibrium may persist for several millennia, related to the combined effects of permafrost persistence, distant glacial refugia and fire. In contrast, no effects from the preceding interglacial on glacial vegetation are detected. We propose that disequilibrium was stronger during the Plio-Pleistocene transition than during the Mid-Pliocene Warm Period when, in addition to climate, herbivory was important. By analogy to the past, we suggest today's widespread larch ecosystem on permafrost is not in climate equilibrium. Vegetation-based reconstructions of interglacial climates used to assess atmospheric CO2–temperature relationships may thus yield misleading simulations of past global climate sensitivity. PMID:27338025

  14. A New Approach to Monitoring Coastal Marshes for Persistent Flooding

    NASA Astrophysics Data System (ADS)

    Kalcic, M. T.; Underwood, L. W.; Fletcher, R. M.

    2012-12-01

    Many areas in coastal Louisiana are below sea level and protected from flooding by a system of natural and man-made levees. Flooding is common when the levees are overtopped by storm surge or rising rivers. Many levees in this region are further stressed by erosion and subsidence. The floodwaters can become constricted by levees and trapped, causing prolonged inundation. Vegetative communities in coastal regions, from fresh swamp forest to saline marsh, can be negatively affected by inundation and changes in salinity. As saltwater persists, it can have a toxic effect upon marsh vegetation causing die off and conversion to open water types, destroying valuable species habitats. The length of time the water persists and the average annual salinity are important variables in modeling habitat switching (cover type change). Marsh type habitat switching affects fish, shellfish, and wildlife inhabitants, and can affect the regional ecosystem and economy. There are numerous restoration and revitalization projects underway in the coastal region, and their effects on the entire ecosystem need to be understood. For these reasons, monitoring persistent saltwater intrusion and inundation is important. For this study, persistent flooding in Louisiana coastal marshes was mapped using MODIS (Moderate Resolution Imaging Spectroradiometer) time series of a Normalized Difference Water Index (NDWI). The time series data were derived for 2000 through 2009, including flooding due to Hurricane Rita in 2005 and Hurricane Ike in 2008. Using the NDWI, duration and extent of flooding can be inferred. The Time Series Product Tool (TSPT), developed at NASA SSC, is a suite of software developed in MATLAB® that enables improved-quality time series images to be computed using advanced temporal processing techniques. This software has been used to compute time series for monitoring temporal changes in environmental phenomena, (e.g. NDVI times series from MODIS), and was modified and used to compute the NDWI indices and also the Normalized Difference Soil Index (NDSI). Coastwide Reference Monitoring System (CRMS) water levels from various hydrologic monitoring stations and aerial photography were used to optimize thresholds for MODIS-derived time series of NDWI and to validate resulting flood maps. In most of the profiles produced for post-hurricane assessment, the increase in the NDWI index (from storm surge) is accompanied by a decrease in the vegetation index (NDVI) and then a period of declining water. The NDSI index represents non-green or dead vegetation and increases after the hurricane's destruction of the marsh vegetation. Behavior of these indices over time is indicative of which areas remain flooded, which areas recover to their former levels of vegetative vigor, and which areas are stressed or in transition. Tracking these indices over time shows the recovery rate of vegetation and the relative behavior to inundation persistence. The results from this study demonstrated that identification of persistent marsh flooding, utilizing the tools developed in this study, provided an approximate 70-80 percent accuracy rate when compared to the actual days flooded at the CRMS stations.

  15. A New Approach to Monitoring Coastal Marshes for Persistent Flooding

    NASA Technical Reports Server (NTRS)

    Kalcic, M. T.; Undersood, Lauren W.; Fletcher, Rose

    2012-01-01

    Many areas in coastal Louisiana are below sea level and protected from flooding by a system of natural and man-made levees. Flooding is common when the levees are overtopped by storm surge or rising rivers. Many levees in this region are further stressed by erosion and subsidence. The floodwaters can become constricted by levees and trapped, causing prolonged inundation. Vegetative communities in coastal regions, from fresh swamp forest to saline marsh, can be negatively affected by inundation and changes in salinity. As saltwater persists, it can have a toxic effect upon marsh vegetation causing die off and conversion to open water types, destroying valuable species habitats. The length of time the water persists and the average annual salinity are important variables in modeling habitat switching (cover type change). Marsh type habitat switching affects fish, shellfish, and wildlife inhabitants, and can affect the regional ecosystem and economy. There are numerous restoration and revitalization projects underway in the coastal region, and their effects on the entire ecosystem need to be understood. For these reasons, monitoring persistent saltwater intrusion and inundation is important. For this study, persistent flooding in Louisiana coastal marshes was mapped using MODIS (Moderate Resolution Imaging Spectroradiometer) time series of a Normalized Difference Water Index (NDWI). The time series data were derived for 2000 through 2009, including flooding due to Hurricane Rita in 2005 and Hurricane Ike in 2008. Using the NDWI, duration and extent of flooding can be inferred. The Time Series Product Tool (TSPT), developed at NASA SSC, is a suite of software developed in MATLAB(R) that enables improved-quality time series images to be computed using advanced temporal processing techniques. This software has been used to compute time series for monitoring temporal changes in environmental phenomena, (e.g. NDVI times series from MODIS), and was modified and used to compute the NDWI indices and also the Normalized Difference Soil Index (NDSI). Coastwide Reference Monitoring System (CRMS) water levels from various hydrologic monitoring stations and aerial photography were used to optimize thresholds for MODIS-derived time series of NDWI and to validate resulting flood maps. In most of the profiles produced for post-hurricane assessment, the increase in the NDWI index (from storm surge) is accompanied by a decrease in the vegetation index (NDVI) and then a period of declining water. The NDSI index represents non-green or dead vegetation and increases after the hurricane s destruction of the marsh vegetation. Behavior of these indices over time is indicative of which areas remain flooded, which areas recover to their former levels of vegetative vigor, and which areas are stressed or in transition. Tracking these indices over time shows the recovery rate of vegetation and the relative behavior to inundation persistence. The results from this study demonstrated that identification of persistent marsh flooding, utilizing the tools developed in this study, provided an approximate 70-80 percent accuracy rate when compared to the actual days flooded at the CRMS stations.

  16. Current validity of diagnosis of permanent vegetative state: A longitudinal study in a sample of patients with altered states of consciousness.

    PubMed

    Noé, E; Olaya, J; Colomer, C; Moliner, B; Ugart, P; Rodriguez, C; Llorens, R; Ferri, J

    2017-07-13

    Altered states of consciousness have traditionally been associated with poor prognosis. At present, clinical differences between these entities are beginning to be established. Our study included 37 patients diagnosed with vegetative state/unresponsive wakefulness syndrome (UWS) and 43 in a minimally conscious state (MCS) according to the Coma Recovery Scale-Revised (CRS-R). All patients were followed up each month for at least 6 months using the CRS-R. We recorded the time points when vegetative state progressed from 'persistent' to 'permanent' based on the cut-off points established by the Multi-Society-Task-Force: 12 months in patients with traumatic injury and 3 months in those with non-traumatic injury. A logistic regression model was used to determine the factors potentially predicting which patients will emerge from MCS. In the UWS group, 23 patients emerged from UWS but only 9 emerged from MCS. Of the 43 patients in the MCS group, 26 patients emerged from that state during follow-up. Eight of the 23 patients (34.7%) who emerged from UWS and 17 of the 35 (48.6%) who emerged from MCS recovered after the time points proposed by the Multi-Society-Task-Force. According to the multivariate regression analysis, aetiology (P<.01), chronicity (P=.01), and CRS-R scores at admission (P<.001) correctly predicted emergence from MCS in 77.5% of the cases. UWS and MCS are different clinical entities in terms of diagnosis and outcomes. Some of the factors traditionally associated with poor prognosis, such as time from injury and likelihood of recovery, should be revaluated. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Persistent Supercooling of Reproductive Shoots Is Enabled by Structural Ice Barriers Being Active Despite an Intact Xylem Connection

    PubMed Central

    Pfaller, Kristian; Wagner, Johanna

    2016-01-01

    Extracellular ice nucleation usually occurs at mild subzero temperatures in most plants. For persistent supercooling of certain plant parts ice barriers are necessary to prevent the entry of ice from already frozen tissues. The reproductive shoot of Calluna vulgaris is able to supercool down to below -22°C throughout all developmental stages (shoot elongation, flowering, fruiting) despite an established xylem conductivity. After localization of the persistent ice barrier between the reproductive and vegetative shoot at the base of the pedicel by infrared differential thermal analysis, the currently unknown structural features of the ice barrier tissue were anatomically analyzed on cross and longitudinal sections. The ice barrier tissue was recognized as a 250 μm long constriction zone at the base of the pedicel that lacked pith tissue and intercellular spaces. Most cell walls in this region were thickened and contained hydrophobic substances (lignin, suberin, and cutin). A few cell walls had what appeared to be thicker cellulose inclusions. In the ice barrier tissue, the area of the xylem was as much as 5.7 times smaller than in vegetative shoots and consisted of tracheids only. The mean number of conducting units in the xylem per cross section was reduced to 3.5% of that in vegetative shoots. Diameter of conducting units and tracheid length were 70% and 60% (respectively) of that in vegetative shoots. From vegetative shoots water transport into the ice barrier must pass pit membranes that are likely impermeable to ice. Pit apertures were about 1.9 μm x 0.7 μm, which was significantly smaller than in the vegetative shoot. The peculiar anatomical features of the xylem at the base of the pedicel suggest that the diameter of pores in pit membranes could be the critical constriction for ice propagation into the persistently supercooled reproductive shoots of C. vulgaris. PMID:27632365

  18. Persistent Supercooling of Reproductive Shoots Is Enabled by Structural Ice Barriers Being Active Despite an Intact Xylem Connection.

    PubMed

    Kuprian, Edith; Tuong, Tan D; Pfaller, Kristian; Wagner, Johanna; Livingston, David P; Neuner, Gilbert

    2016-01-01

    Extracellular ice nucleation usually occurs at mild subzero temperatures in most plants. For persistent supercooling of certain plant parts ice barriers are necessary to prevent the entry of ice from already frozen tissues. The reproductive shoot of Calluna vulgaris is able to supercool down to below -22°C throughout all developmental stages (shoot elongation, flowering, fruiting) despite an established xylem conductivity. After localization of the persistent ice barrier between the reproductive and vegetative shoot at the base of the pedicel by infrared differential thermal analysis, the currently unknown structural features of the ice barrier tissue were anatomically analyzed on cross and longitudinal sections. The ice barrier tissue was recognized as a 250 μm long constriction zone at the base of the pedicel that lacked pith tissue and intercellular spaces. Most cell walls in this region were thickened and contained hydrophobic substances (lignin, suberin, and cutin). A few cell walls had what appeared to be thicker cellulose inclusions. In the ice barrier tissue, the area of the xylem was as much as 5.7 times smaller than in vegetative shoots and consisted of tracheids only. The mean number of conducting units in the xylem per cross section was reduced to 3.5% of that in vegetative shoots. Diameter of conducting units and tracheid length were 70% and 60% (respectively) of that in vegetative shoots. From vegetative shoots water transport into the ice barrier must pass pit membranes that are likely impermeable to ice. Pit apertures were about 1.9 μm x 0.7 μm, which was significantly smaller than in the vegetative shoot. The peculiar anatomical features of the xylem at the base of the pedicel suggest that the diameter of pores in pit membranes could be the critical constriction for ice propagation into the persistently supercooled reproductive shoots of C. vulgaris.

  19. Patients in a persistent vegetative state attitudes and reactions of family members.

    PubMed

    Tresch, D D; Sims, F H; Duthie, E H; Goldstein, M D

    1991-01-01

    Patients in a persistent vegetative state (PVS) constituted approximately 3% of the population in four Milwaukee nursing homes. In order to understand family members' attitudes and reactions toward such patients, 33 (92%) of 36 family members of patients in PVS contacted were studied. The age of the patients ranged from 19 to 95 with a mean age of 73.4 +/- 17.2 years, and family members' ages ranged from 41 to 89 with a mean age of 61.8 +/- 3.3 years. The etiology of the PVS varied from dementia to cerebral trauma. The mean duration of the PVS was 54 +/- 8.4 months (range 12 to 204). Family members reported that they visited patients 260 times during the first year following the onset of the PVS and were still visiting at a rate of 209 visits yearly at the time of the interview. There was no significant correlation between the frequency of the family members visits and the duration of the PVS, the patient's or family member's age, or the family member's relationship to the patient. Ninety percent of patients were considered by family members to have some awareness of pain, light or darkness, environment, taste, verbal conversation, or the family member's presence. Most family members thought they understood the patient's medical condition, and the majority did not expect the patient to improve. Nevertheless, the majority of family members wanted the patient to undergo therapeutic interventions, including transfer to the acute hospital and surgery.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Zolpidem arousing effect in persistent vegetative state patients: autonomic, EEG and behavioral assessment.

    PubMed

    Machado, Calixto; Estévez, Mario; Rodríguez, Rafael; Pérez-Nellar, Jesús; Chinchilla, Mauricio; DeFina, Philip; Leisman, Gerry; Carrick, Frederick R; Melillo, Robert; Schiavi, Adam; Gutiérrez, Joel; Carballo, Maylén; Machado, Andrés; Olivares, Ana; Pérez-Cruz, Nuvia

    2014-01-01

    To study the Zolpidem arousing effect in persistent vegetative state (PVS) patients combining clinical evaluation, autonomic assessment by heart rate variability (HRV), and EEG records. We studied a group of 8 PVS patients and other 8 healthy control subjects, matched by age and gender. The patients and controls received drug or placebo in two experimental sessions, separated by 10-14 days. The first 30 minutes of the session were considered the basal record, and then Zolpidem was administered. All participants were evaluated clinically, by EEG, and by HRV during the basal record, and for 90 minutes after drug intake. We found in all patients, time-related arousing signs after Zolpidem intake: behavioral (yawns and hiccups), activation of EEG cortical activity, and a vagolytic chronotropic effect without a significant increment of the vasomotor sympathetic tone. We demonstrated time-related arousing signs after Zolpidem intake. We discussed possible mechanisms to explain these patho-physiological findings regarding EEG cortical activation and an autonomic vagolytic drug effect. As this autonomic imbalance might induce cardiocirculatory complications, which we didn't find in any of our patients, we suggest developing future trials under control of physiological indices by bedside monitoring. However, considering that this arousing Zolpidem effect might be certainly related to brain function improvement, it should be particularly considered for the development of new neuro-rehabilitation programs in PVS cases. According to the literature review, we claim that this is the first report about the vagolitic effect of Zolpidem in PVS cases.

  1. Vegetation study in support of the design and optimization of vegetative soil covers, Sandia National Laboratories, Albuquerque, New Mexico.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peace, Gerald; Goering, Timothy James; Knight, Paul J.

    A vegetation study was conducted in Technical Area 3 at Sandia National Laboratories, Albuquerque, New Mexico in 2003 to assist in the design and optimization of vegetative soil covers for hazardous, radioactive, and mixed waste landfills at Sandia National Laboratories/New Mexico and Kirtland Air Force Base. The objective of the study was to obtain site-specific, vegetative input parameters for the one-dimensional code UNSAT-H and to identify suitable, diverse native plant species for use on vegetative soil covers that will persist indefinitely as a climax ecological community with little or no maintenance. The identification and selection of appropriate native plant speciesmore » is critical to the proper design and long-term performance of vegetative soil covers. Major emphasis was placed on the acquisition of representative, site-specific vegetation data. Vegetative input parameters measured in the field during this study include root depth, root length density, and percent bare area. Site-specific leaf area index was not obtained in the area because there was no suitable platform to measure leaf area during the 2003 growing season due to severe drought that has persisted in New Mexico since 1999. Regional LAI data was obtained from two unique desert biomes in New Mexico, Sevilletta Wildlife Refuge and Jornada Research Station.« less

  2. Distinctive channel geometry and riparian vegetation: A geomorphic classification for arid ephemeral streams

    NASA Astrophysics Data System (ADS)

    Sutfin, N.; Shaw, J. R.; Wohl, E. E.; Cooper, D.

    2012-12-01

    Interactions between hydrology, channel form, and riparian vegetation along arid ephemeral streams are not thoroughly understood and current stream classifications do not adequately represent variability in channel geometry and associated riparian communities. Relatively infrequent hydrologic disturbances in dryland environments are responsible for creation and maintenance of channel form that supports riparian communities. To investigate the influence of channel characteristics on riparian vegetation in the arid southwestern United States, we develop a geomorphic classification for arid ephemeral streams based on the degree of confinement and the composition of confining material that provide constraints on available moisture. Our conceptual model includes five stream types: 1) bedrock channels entirely confined by exposed bedrock and devoid of persistent alluvium; 2) bedrock with alluvium channels at least partially confined by bedrock but containing enough alluvium to create bedforms that persist through time; 3) incised alluvium channels bound only by unconsolidated alluvial material into which they are incised; 4) braided washes that exhibit multi-thread, braided characteristics regardless of the composition of confining material; and 5) piedmont headwater 0-2nd order streams (Strahler) confined only by unconsolidated alluvium and which initiate as secondary channels on piedmont surfaces. Eighty-six study reaches representing the five stream types were surveyed on the U.S. Army Yuma Proving Ground in the Sonoran Desert of southwestern Arizona. Non-parametric multivariate analysis of variance (PERMANOVA) indicates significant differences between the five stream types with regards to channel geometry (i.e., stream gradient, width-to-depth ratio, the ratio between valley width and channel width (Wv/Wc), shear stress, and unit stream power) and riparian vegetation (i.e., presence and canopy coverage by species, canopy stratum, and life form). Discriminant analysis of the physical driving variables is being conducted to produce a model that predicts stream type and resulting riparian vegetation communities based on channel geometry. This model will be tested on a separate set of 15 study reaches surveyed on the Barry M. Goldwater Air Force Range in southern Arizona. The resulting classification will provide a basis for examining relationships between hydrology, channel and watershed characteristics, riparian vegetation and ecosystem sensitivity of ephemeral streams in arid regions of the American Southwest.

  3. Does any aspect of mind survive brain damage that typically leads to a persistent vegetative state? Ethical considerations

    PubMed Central

    Panksepp, Jaak; Fuchs, Thomas; Garcia, Victor Abella; Lesiak, Adam

    2007-01-01

    Recent neuroscientific evidence brings into question the conclusion that all aspects of consciousness are gone in patients who have descended into a persistent vegetative state (PVS). Here we summarize the evidence from human brain imaging as well as neurological damage in animals and humans suggesting that some form of consciousness can survive brain damage that commonly causes PVS. We also raise the issue that neuroscientific evidence indicates that raw emotional feelings (primary-process affects) can exist without any cognitive awareness of those feelings. Likewise, the basic brain mechanisms for thirst and hunger exist in brain regions typically not damaged by PVS. If affective feelings can exist without cognitive awareness of those feelings, then it is possible that the instinctual emotional actions and pain "reflexes" often exhibited by PVS patients may indicate some level of mentality remaining in PVS patients. Indeed, it is possible such raw affective feelings are intensified when PVS patients are removed from life-supports. They may still experience a variety of primary-process affective states that could constitute forms of suffering. If so, withdrawal of life-support may violate the principle of nonmaleficence and be tantamount to inflicting inadvertent "cruel and unusual punishment" on patients whose potential distress, during the process of dying, needs to be considered in ethical decision-making about how such individuals should be treated, especially when their lives are ended by termination of life-supports. Medical wisdom may dictate the use of more rapid pharmacological forms of euthanasia that minimize distress than the de facto euthanasia of life-support termination that may lead to excruciating feelings of pure thirst and other negative affective feelings in the absence of any reflective awareness. PMID:18086316

  4. Tropical grassy biomes: misunderstood, neglected, and under threat.

    PubMed

    Parr, Catherine L; Lehmann, Caroline E R; Bond, William J; Hoffmann, William A; Andersen, Alan N

    2014-04-01

    Tropical grassy biomes (TGBs) are globally extensive, provide critical ecosystem services, and influence the earth-atmosphere system. Yet, globally applied biome definitions ignore vegetation characteristics that are critical to their functioning and evolutionary history. Hence, TGB identification is inconsistent and misinterprets the ecological processes governing vegetation structure, with cascading negative consequences for biodiversity. Here, we discuss threats linked to the definition of TGB, the Clean Development Mechanism (CDM) and Reducing Emissions from Deforestation and Forest Degradation schemes (REDD+), and enhanced atmospheric CO2, which may facilitate future state shifts. TGB degradation is insidious and less visible than in forested biomes. With human reliance on TGBs and their propensity for woody change, ecology and evolutionary history are fundamental to not only the identification of TGBs, but also their management for future persistence. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Using Latent Selection Difference to Model Persistence in a Declining Population

    PubMed Central

    Erickson, Mara E.; Found-Jackson, Christine; Boyce, Mark S.

    2014-01-01

    Population persistence is a direct measure of the viability of a population. Monitoring the distribution of declining populations or subpopulations over time can yield estimates of persistence, which we show can be modeled as a latent selection difference (LSD) contrasting attributes of sites where populations have persisted versus those that have not. Predicted persistence can be modeled with predictor covariates to identify factors correlated with species persistence. We demonstrate how to model persistence based on changes in occupancy that can include adjustments for detection probability. Using a known historical distribution of the western grebe (Aechmophorus occidentalis), we adapted methods originally developed for occupancy modeling to evaluate how environmental covariates including emergent vegetation and human developments have affected western grebe persistence in Alberta. The relative probability of persistence was correlated with the extent of shoreline bulrush (Scirpus lacustris), which is important vegetation for nesting cover. We also documented that western grebe populations were less likely to persist on lakes in the boreal forest, primarily located on the northern boundary of the species' range. Factors influencing occupancy were different than those determining persistence by western grebes; persistence and occupancy were not correlated. Persistence was more likely on lakes with recreational development, reflecting reliance by grebes on the larger, fish-bearing waterbodies that also are attractive for lakeshore development. Unfortunately, the correlation with recreational development on Alberta's lakes puts grebes at risk for loss of brood-rearing habitats—primary threats to altricial birds—if steps are not taken to prevent disturbance to bulrush stands. Identifying factors related to the persistence of a species—especially one in decline—is a fundamental step in conservation management. PMID:24866172

  6. Model-based evidence for persistent species zonation shifts in the southern Rocky Mountains under a warming climate

    NASA Astrophysics Data System (ADS)

    Foster, A.; Shuman, J. K.; Shugart, H. H., Jr.; Dwire, K. A.; Fornwalt, P.; Sibold, J.; Negrón, J. F.

    2016-12-01

    Forests in the Rocky Mountains are a crucial part of the North American carbon budget, but increases in disturbances such as insect outbreaks and fire, in conjunction with climate change, threaten their vitality. Mean annual temperatures in the western United States have increased by 2°C since 1950 and the higher elevations are warming faster than the rest of the landscape. It is predicted that this warming trend will continue, and that by the end of this century, nearly 50% of the western US landscape will have climate profiles with no current analog within that region. Individual tree-based modeling allows various climate change scenarios and their effects on forest dynamics to be tested. We use an updated individual-based gap model, the University of Virginia Forest Model Enhanced (UVAFME) at a subalpine site in the southern Rocky Mountains. UVAFME has been quantitatively and qualitatively validated in the southern Rocky Mountains, and results show that UVAFME-output on size structure, biomass, and species composition compares reasonably to inventory data and descriptions of vegetation zonation and successional dynamics for the region. We perform a climate sensitivity test in which temperature is first increased linearly by 2°C over 100 years, stabilized for 200 years, cooled back to present climate values over 100 years, and again stabilized for 200 years. This test is conducted to determine what effect elevated temperatures may have on vegetation zonation, and how persistent the changes may be if the climate is brought back to its current state. Results show that elevated temperatures within the southern Rocky Mountains may lead to decreases in biomass and changes in species composition as species migrate upslope. These changes are also likely to be fairly persistent for at least one- to two-hundred years. The results from this study suggest that UVAFME and other individual-based gap models can be used to inform forest management and climate mitigation strategies for this vitally important region.

  7. Scavenger removal: Bird and bat carcass persistence in a tropical wind farm

    NASA Astrophysics Data System (ADS)

    Villegas-Patraca, Rafael; Macías-Sánchez, Samuel; MacGregor-Fors, Ian; Muñoz-Robles, Carlos

    2012-08-01

    Energy produced by wind farms has diverse positive environmental effects, but can also be related to negative impacts, including wildlife mortality through collisions with wind turbines. Bird and bat mortality caused by collisions with wind turbines can be estimated indirectly by counting carcasses within wind farms. However, carcass removal by scavengers often biases such measurements. In this study, we identified the main scavengers removing bird and bat carcasses in a tropical wind farm. A known fate analysis was done to assess the effect of carcass type (i.e., small bird, large bird, bat), vegetation type (i.e., secondary vegetation, croplands) and season (dry and rainy seasons of 2009) on carcass persistence rates. We identified three main scavenger groups, with mammals being the most abundant group. Our results show high rates of carcass removal relative to previous studies, especially for bats; there were fewer remaining carcasses after 20 days in our tropical site than in non-tropical environments reported elsewhere. We found a higher carcass persistence rate during the rainy season than in the dry season, possibly due to a greater abundance of food resources for scavenger organisms in the rainy season. Although we found some evidence for higher persistence rates for large bird carcasses than for small bird and bat carcasses during the rainy season, overall carcass type was not a strong predictor of persistence rates. Similarly, we did not find a strong effect of vegetation type on carcass persistence rates. Results suggest that in order to estimate accurate bird and bat mortality in tropical wind farm areas, seasonality should be incorporated to correction factors of carcass removal rates.

  8. Desertification, land use, and the transformation of global drylands

    USGS Publications Warehouse

    Bestelmeyer, Brandon T.; Okin, Gregory S.; Duniway, Michael C.; Archer, Steven R.; Sayre, Nathan F.; Williamson, Jebediah C.; Herrick, Jeffrey E.

    2015-01-01

    Desertification is an escalating concern in global drylands, yet assessments to guide management and policy responses are limited by ambiguity concerning the definition of “desertification” and what processes are involved. To improve clarity, we propose that assessments of desertification and land transformation be placed within a state change–land-use change (SC–LUC) framework. This framework considers desertification as state changes occurring within the context of particular land uses (eg rangeland, cropland) that interact with land-use change. State changes that can be readily reversed are distinguished from regime shifts, which are state changes involving persistent alterations to vegetation or soil properties. Pressures driving the transformation of rangelands to other types of land uses may be low, fluctuating, or high, and may influence and be influenced by state change. We discuss how the SC–LUC perspective can guide more effective assessment of desertification and management of drylands.

  9. Establishing consciousness in non-communicative patients: a modern-day version of the Turing test.

    PubMed

    Stins, John F

    2009-03-01

    In a recent study of a patient in a persistent vegetative state, [Owen, A. M., Coleman, M. R., Boly, M., Davis, M. H., Laureys, S., & Pickard, J. D. (2006). Detecting awareness in the vegetative state. Science, 313, 1402] claimed that they had demonstrated the presence of consciousness in this patient. This bold conclusion was based on the isomorphy between brain activity in this patient and a set of conscious control subjects, obtained in various imagery tasks. However, establishing consciousness in unresponsive patients is fraught with methodological and conceptual difficulties. The aim of this paper is to demonstrate that the current debate surrounding consciousness in VS patients has parallels in the artificial intelligence (AI) debate as to whether machines can think. Basically, (Owen et al., 2006) used a method analogous to the Turing test to reveal the presence of consciousness, whereas their adversaries adopted a line of reasoning akin to Searle's Chinese room argument. Highlighting the correspondence between these two debates can help to clarify the issues surrounding consciousness in non-communicative agents.

  10. Childhood intermittent and persistent rhinitis prevalence and climate and vegetation: a global ecologic analysis.

    PubMed

    Fuertes, Elaine; Butland, Barbara K; Ross Anderson, H; Carlsten, Chris; Strachan, David P; Brauer, Michael

    2014-10-01

    The effect of climate change and its effects on vegetation growth, and consequently on rhinitis, are uncertain. To examine between- and within-country associations of climate measures and the normalized difference vegetation index with intermittent and persistent rhinitis symptoms in a global context. Questionnaire data from 6- to 7-year-olds and 13- to 14-year-olds were collected in phase 3 of the International Study of Asthma and Allergies in Childhood. Associations of intermittent (>1 symptom report but not for 2 consecutive months) and persistent (symptoms for ≥2 consecutive months) rhinitis symptom prevalences with temperature, precipitation, vapor pressure, and the normalized difference vegetation index were assessed in linear mixed-effects regression models adjusted for gross national income and population density. The mean difference in prevalence per 100 children (with 95% confidence intervals [CIs]) per interquartile range increase of exposure is reported. The country-level intermittent symptom prevalence was associated with several country-level climatic measures, including the country-level mean monthly temperature (6.09 °C; 95% CI, 2.06-10.11°C per 10.4 °C), precipitation (3.10 mm; 95% CI, 0.46-5.73 mm; per 67.0 mm), and vapor pressure (6.21 hPa; 95% CI, 2.17-10.24 hPa; per 10.4 hPa) among 13- to 14-year-olds (222 center in 94 countries). The center-level persistent symptom prevalence was positively associated with several center-level climatic measures. Associations with climate were also found for the 6- to 7-year-olds (132 center in 57 countries). Several between- and within-country spatial associations between climatic factors and intermittent and persistent rhinitis symptom prevalences were observed. These results provide suggestive evidence that climate (and future changes in climate) may influence rhinitis symptom prevalence. Copyright © 2014 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  11. Grazing disturbance increases transient but decreases persistent soil seed bank.

    PubMed

    Ma, Miaojun; Walck, Jeffrey L; Ma, Zhen; Wang, Lipei; Du, Guozhen

    2018-04-30

    Very few studies have examined whether the impacts of grazing disturbance on soil seed banks occur directly or indirectly through aboveground vegetation and soil properties. The potential role of the seed bank in alpine wetland restoration is also unknown. We used SEM (structural equation modeling) to explore the direct effect of grazing disturbance on the seed bank and the indirect effect through aboveground vegetation and soil properties. We also studied the role of the seed bank on the restoration potential in wetlands with various grazing intensities: low (fenced, winter grazed only), medium (seasonally grazed), and high (whole-year grazed). For the seed bank, species richness and density per plot showed no difference among grazing intensities for each depth (0-5, 5-10, 10-15 cm) and for the whole depth (0-15 cm) in spring and summer. There was no direct effect of grazing disturbance on seed bank richness and density both in spring and summer, and also no indirect effect on the seed bank through its direct effect on vegetation richness and abundance. Grazing disturbance indirectly increased spring seed bank density but decreased summer seed bank density through its direct effect (negative correlation) on soil moisture and total nitrogen and its indirect effect on vegetation abundance. Species composition of the vegetation changed with grazing regime, but that of the seed bank did not. An increased trend of similarity between the seed bank and aboveground vegetation with increased grazing disturbance was found in the shallow depth and in the whole depth only in spring. Although there was almost no change in seed bank size with grazing intensities, grazing disturbance increased the quantity of transient seeds but decreased persistent seeds. Persistent seeds stored in the soil could play a crucial role in vegetation regeneration and in restoration of degraded wetland ecosystems. The seed bank should be an integral part of alpine wetland restoration programs. © 2018 by the Ecological Society of America.

  12. SMART - Recognising the value of existing practice and introducing recent developments: leaving no stone unturned in the assessment and treatment of the PDOC patient.

    PubMed

    Gill-Thwaites, H; Elliott, K E; Munday, R

    2017-04-18

    Over the last 25 years there have been a number of papers highlighting the issues of high rates of misdiagnosis in prolonged disorders of consciousness (PDOC) (Andrews, K., Murphy, L., Munday, R., & Littlewood, C. (1996). Misdiagnosis of the vegetative state: Retrospective study in a rehabilitation unit. BMJ, 313(7048), 13-16; Childs, N. L., Mercer, W. N., & Childs, H. W. (1993). Accuracy of diagnosis of persistent vegetative state. Neurology, 43(8), 1465-1467). Surprisingly, these rates still remain at the same level despite defined criteria for diagnosis (Schnakers, C., Vanhaudenhuyse, A., Giacino, J., Ventura, M., Boly, M., Majerus, S.,…Laureys, S. (2009). Diagnostic accuracy of the vegetative and minimally conscious state: Clinical consensus versus standardized neurobehavioral assessment. BMC Neurology, 9(35), 1-5; Van Erp, W., Larvrijsen, J., Vos, P., Bor, H., Laureys, S., & Koopmans, R. (2015). The vegetative state: Prevalence, misdiagnosis and treatment limitations. JAMDA, 85, e9-85.e14. doi: 10.1016/j.jamda.2014.10.014 ). This indicates the continued need for careful standardised assessment by skilled assessors to identify all potential meaningful responses and to establish a correct and incontrovertible diagnosis. The Sensory Modality Assessment and Rehabilitation Technique (SMART) is one of three assessments identified for the assessment of PDOC in the Royal College of Physician guidelines (Royal College of Physicians, 2013 ). The RCP guidelines and recent publications have highlighted and substantiated the value of some of the existing practices and unique features of the SMART. In recognition of the need to keep SMART current, SMART Version 3 is being developed and will be launched shortly. The interim SMART developments will be introduced in this paper and applied to practice through the illustration of a case study. Evidence suggests that SMART is a current and invaluable tool for the clinical and medico-legal assessment and treatment of the PDOC patient.

  13. Assessing vulnerable and expanding vegetation stands and species in the San Francisco Bay Area for conservation management under climate change

    NASA Astrophysics Data System (ADS)

    Morueta-Holme, N.; Heller, N. E.; McLaughlin, B.; Weiss, S. B.; Ackerly, D.

    2015-12-01

    The distribution of suitable climatic areas for species and vegetation types is expected to shift due to ongoing climate change. While the pace at which current distributions will shift is hard to quantify, predictions of where climatically suitable areas will be in the future can allow us to map 1) areas currently occupied by a species or vegetation type unlikely to persist through the end of this century (vulnerable stands), 2) areas likely to do better in the future and serve as nuclei for population expansion (expanding stands), and 3) areas likely to act as climate refugia (persisting stands). We quantified the vulnerability of 27 individual plant species and 27 vegetation types in the San Francisco Bay Area as well as the conservation importance, vulnerability, and resilience of selected management sites for climate change resilient conservation. To this end, we developed California-wide models of species and vegetation distributions using climate data from the 2014 California Basin Characterization Model at a 270 m resolution, projected to 18 different end-of century climate change scenarios. Combining these distribution models with high resolution maps of current vegetation, we were able to map projected vulnerable, expanding, and persisting stands within the Bay Area. We show that vegetation and species are expected to shift considerably within the study region over the next decades; although we also identify refugia potentially able to offset some of the negative impacts of climate change. We discuss the implications for managers that wish to incorporate climate change in conservation decisions, in particular related to choosing species for restoration, identifying areas to collect seeds for restoration, and preparing for expected major vegetation changes. Our evaluation of individual management sites highlights the need for stronger coordination of efforts across sites to prioritize monitoring and protection of species whose ranges are contracting elsewhere. Finally, we present and discuss novel ways in visualizing and communicating condensed predictions and their uncertainty to land managers and challenges inherent. This work is part of the Terrestrial Biodiversity and Climate Change Collaborative, committed to developing a scientific basis for climate adaptation conservation strategies.

  14. Emergence of a Latent Indian Cassava Mosaic Virus from Cassava Which Recovered from Infection by a Non-Persistent Sri Lankan Cassava Mosaic Virus

    PubMed Central

    Karthikeyan, Chockalingam; Patil, Basavaprabhu L.; Borah, Basanta K.; Resmi, Thulasi R.; Turco, Silvia; Pooggin, Mikhail M.; Hohn, Thomas; Veluthambi, Karuppannan

    2016-01-01

    The major threat for cassava cultivation on the Indian subcontinent is cassava mosaic disease (CMD) caused by cassava mosaic geminiviruses which are bipartite begomoviruses with DNA A and DNA B components. Indian cassava mosaic virus (ICMV) and Sri Lankan cassava mosaic virus (SLCMV) cause CMD in India. Two isolates of SLCMV infected the cassava cultivar Sengutchi in the fields near Malappuram and Thiruvananthapuram cities of Kerala State, India. The Malappuram isolate was persistent when maintained in the Madurai Kamaraj University (MKU, Madurai, Tamil Nadu, India) greenhouse, whereas the Thiruvananthapuram isolate did not persist. The recovered cassava plants with the non-persistent SLCMV, which were maintained vegetative in quarantine in the University of Basel (Basel, Switzerland) greenhouse, displayed re-emergence of CMD after a six-month period. Interestingly, these plants did not carry SLCMV but carried ICMV. It is interpreted that the field-collected, SLCMV-infected cassava plants were co-infected with low levels of ICMV. The loss of SLCMV in recovered cassava plants, under greenhouse conditions, then facilitated the re-emergence of ICMV. The partial dimer clones of the persistent and non-persistent isolates of SLCMV and the re-emerged isolate of ICMV were infective in Nicotiana benthamiana upon agroinoculation. Studies on pseudo-recombination between SLCMV and ICMV in N. benthamiana provided evidence for trans-replication of ICMV DNA B by SLCMV DNA A. PMID:27690084

  15. The Supreme Court's spring term: abortion, the right to die, and the decline of privacy rights.

    PubMed

    Wing, K R

    1990-01-01

    Wing analyzes the constitutional significance and the important long-term implications for health policy of three 1990 U.S. Supreme Court decisions: Hodgson v. Minnesota, Ohio v. Akron Center for Reproductive Health, and Cruzan v. Director, Missouri Department of Health. Hodgson and Ohio upheld state statutes requiring parental notification of a minor's impending abortion. Cruzan upheld a state court decision refusing to allow the family of a patient in a persistent vegetative state to discontinue life-sustaining treatment. Wing argues that these decisions reach far beyond "the abortion issue" or "the right to die." Not only have they narrowed the constitutional protection of individual privacy, but they allow states to regulate activities like abortion in a manner that indicates that the Court is prepared to repeal the notion that individual privacy is entitled to enhanced judicial protection.

  16. Soil moisture response to experimentally altered snowmelt timing is mediated by soil, vegetation, and regional climate patterns

    USGS Publications Warehouse

    Conner, Lafe G; Gill, Richard A.; Belnap, Jayne

    2016-01-01

    Soil moisture in seasonally snow-covered environments fluctuates seasonally between wet and dry states. Climate warming is advancing the onset of spring snowmelt and may lengthen the summer-dry state and ultimately cause drier soil conditions. The magnitude of either response may vary across elevation and vegetation types. We situated our study at the lower boundary of persistent snow cover and the upper boundary of subalpine forest with paired treatment blocks in aspen forest and open meadow. In treatments plots, we advanced snowmelt timing by an average of 14 days by adding dust to the snow surface during spring melt. We specifically wanted to know whether early snowmelt would increase the duration of the summer-dry period and cause soils to be drier in the early-snowmelt treatments compared with control plots. We found no difference in the onset of the summer-dry state and no significant differences in soil moisture between treatments. To better understand the reasons soil moisture did not respond to early snowmelt as expected, we examined the mediating influences of soil organic matter, texture, temperature, and the presence or absence of forest. In our study, late-spring precipitation may have moderated the effects of early snowmelt on soil moisture. We conclude that landscape characteristics, including soil, vegetation, and regional weather patterns, may supersede the effects of snowmelt timing in determining growing season soil moisture, and efforts to anticipate the impacts of climate change on seasonally snow-covered ecosystems should take into account these mediating factors. 

  17. Vegetation and Ecological Characteristics of Mixed-Conifer and Red Fir Forests at the Teakettle Experimental Forest

    Treesearch

    Malcolm North; Brian Oakley; Jiquan Chen; Heather Erickson; Andrew Gray; Antonio Izzo; Dale Johnson; Siyan Ma; Jim Marra; Marc Meyer; Kathryn Purcell; Tom Rambo; Dave Rizzo; Brent Roath; Tim Schowalter

    2002-01-01

    Detailed analysis of mixed-conifer and red fir forests were made from extensive, large vegetation sampling, systematically conducted throughout the Teakettle Experimental Forest. Mixed conifer is characterized by distinct patch conditions of closed-canopy tree clusters, persistent gaps and shrub thickets. This heterogeneous spatial structure provides contrasting...

  18. Relating salt marsh pore water geochemistry patterns to vegetation zones and hydrologic influences

    NASA Astrophysics Data System (ADS)

    Moffett, Kevan B.; Gorelick, Steven M.

    2016-03-01

    Physical, chemical, and biological factors influence vegetation zonation in salt marshes and other wetlands, but connections among these factors could be better understood. If salt marsh vegetation and marsh pore water geochemistry coorganize, e.g., via continuous plant water uptake and persistently unsaturated sediments controlling vegetation zone-specific pore water geochemistry, this could complement known physical mechanisms of marsh self-organization. A high-resolution survey of pore water geochemistry was conducted among five salt marsh vegetation zones at the same intertidal elevation. Sampling transects were arrayed both parallel and perpendicular to tidal channels. Pore water geochemistry patterns were both horizontally differentiated, corresponding to vegetation zonation, and vertically differentiated, relating to root influences. The geochemical patterns across the site were less broadly related to marsh hydrology than to vegetation zonation. Mechanisms contributing to geochemical differentiation included: root-induced oxidation and nutrient (P) depletion, surface and creek-bank sediment flushing by rainfall or tides, evapotranspiration creating aerated pore space for partial sediment flushing in some areas while persistently saturated conditions hindered pore water renewal in others, and evapoconcentration of pore water solutes overall. The concentrated pore waters draining to the tidal creeks accounted for 41% of ebb tide solutes (median of 14 elements), including being a potentially toxic source of Ni but a slight sink for Zn, at least during the short, winter study period in southern San Francisco Bay. Heterogeneous vegetation effects on pore water geochemistry are not only significant locally within the marsh but may broadly influence marsh-estuary solute exchange and ecology.

  19. Persistence of Escherichia coli and Salmonella in surface soil following application of liquid hog manure for production of pickling cucumbers.

    PubMed

    Côté, Caroline; Quessy, Sylvain

    2005-05-01

    Liquid hog manure is routinely applied to farm land as a crop fertilizer. However, this practice raises food safety concerns, especially when manure is used on fruit and vegetable crops. The objectives of this project were to evaluate the persistence of Escherichia coli and Salmonella in surface soil after application of liquid hog manure to fields where pickling cucumbers were grown and to verify the microbiological quality of harvested cucumbers. Mineral fertilizers were replaced by liquid hog manure at various ratios in the production of pickling cucumbers in a 3-year field study. The experimental design was a randomized complete block comprising four replicates in sandy loam (years 1, 2, and 3) and loamy sand (year 3). Soil samples were taken at a depth of 20 cm every 2 weeks after June application of organic and inorganic fertilizers. Vegetable samples were also taken at harvest time. Liquid hog manure, soil, and vegetable (washed and unwashed) samples were analyzed for the presence of Salmonella and E. coli. An exponential decrease of E. coli populations was observed in surface soil after the application of manure. The estimated average time required to reach undetectable concentrations of E. coli in sandy loam varied from 56 to 70 days, whereas the absence of E. coli was estimated at 77 days in loamy sand. The maximal Salmonella persistence in soil was 54 days. E. coli and Salmonella were not detected in any vegetable samples.

  20. Carbon and nitrogen mineralization and persistence of organic residues under conservation and conventional tillage

    USDA-ARS?s Scientific Manuscript database

    A combination of high biomass cover crops with organic mulches may be an option for no-till vegetable production, but mineralization rates from these residues is lacking. The objective of this study was to assess nutrient release rates and persistence from mimosa, lespedeza, oat straw, and soybean r...

  1. Persistence and elimination of human norovirus in food and on food contact surfaces: a critical review

    USDA-ARS?s Scientific Manuscript database

    This critical review addresses the persistence of human norovirus (NoV) in water, shellfish, processed meats, soils and organic wastes; on berries, herbs, vegetables, fruits and salads; and on food contact surfaces. The review focuses on studies using NoV; information from studies involving only su...

  2. Monitoring persistence of the entomopathogenic fungus Metarhizium anisopliae under simulated field conditions with the aim of controlling adult Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    2014-01-01

    Background Entomopathogenic fungi are potential candidates for use in integrated vector management, with recent emphasis aimed at developing adult mosquito control methods. Here we investigated the persistence of the fungus Metarhizium anisopliae when tested against female A. aegypti under field conditions. Methods Black cotton cloths impregnated with M. anisopliae conidia, formulated in vegetable oil + isoparaffin, were maintained on a covered veranda for up to 30 days. At specific times, pieces of the cloths were removed, placed in Tween 80 and the resuspended conidia were sprayed directly onto mosquitoes. The persistence of conidia impregnated on black cloths using three different carriers was evaluated in test rooms. Fifty mosquitoes were released into each room and after a 5 day period, the surviving insects were captured. Another 50 insects were then released into each room. The capacity of the fungus at reducing mosquito survival was evaluated over a total of 35 days. Results Conidia extracted from cloths maintained on the veranda for 2 to 18 days remained virulent, with 28 to 60% mosquito survival observed. Mosquito survival following exposure to fungus impregnated cloths showed that fungus + Tween caused similar reductions to that of fungus + vegetable oil. Mosquitoes exposed to the formulation fungus + vegetable oil had survival rates of 36% over the first 5 days of the experiment. Following the release of the second cohort of mosquitoes (6-11days), survival increased to 50%. The survival of the 12–17 day cohort (78%) was statistically equal to that of the controls (84%). Formulation of the fungus in vegetable oil + isoparaffin increased the persistence of the fungus, with the 18–23 day cohort (64% survival) still showing statistical differences to that of the controls (87% survival). Conclusions The potential of entomopathogenic fungi for the control of adult A. aegypti was confirmed under field conditions. Vegetable oil + isoparaffin formulations of M. anisopliae significantly increased the effectiveness of the fungus, thus reducing the need for frequent changes of black cloths in residences. Our future aim is to obtain effective control of mosquito populations, with cloths only needing to being replaced once a month. PMID:24766705

  3. Monitoring persistence of the entomopathogenic fungus Metarhizium anisopliae under simulated field conditions with the aim of controlling adult Aedes aegypti (Diptera: Culicidae).

    PubMed

    Carolino, Aline T; Paula, Adriano R; Silva, Carlos P; Butt, Tariq M; Samuels, Richard I

    2014-04-25

    Entomopathogenic fungi are potential candidates for use in integrated vector management, with recent emphasis aimed at developing adult mosquito control methods. Here we investigated the persistence of the fungus Metarhizium anisopliae when tested against female A. aegypti under field conditions. Black cotton cloths impregnated with M. anisopliae conidia, formulated in vegetable oil + isoparaffin, were maintained on a covered veranda for up to 30 days. At specific times, pieces of the cloths were removed, placed in Tween 80 and the resuspended conidia were sprayed directly onto mosquitoes. The persistence of conidia impregnated on black cloths using three different carriers was evaluated in test rooms. Fifty mosquitoes were released into each room and after a 5 day period, the surviving insects were captured. Another 50 insects were then released into each room. The capacity of the fungus at reducing mosquito survival was evaluated over a total of 35 days. Conidia extracted from cloths maintained on the veranda for 2 to 18 days remained virulent, with 28 to 60% mosquito survival observed. Mosquito survival following exposure to fungus impregnated cloths showed that fungus + Tween caused similar reductions to that of fungus + vegetable oil. Mosquitoes exposed to the formulation fungus + vegetable oil had survival rates of 36% over the first 5 days of the experiment. Following the release of the second cohort of mosquitoes (6-11days), survival increased to 50%. The survival of the 12-17 day cohort (78%) was statistically equal to that of the controls (84%). Formulation of the fungus in vegetable oil + isoparaffin increased the persistence of the fungus, with the 18-23 day cohort (64% survival) still showing statistical differences to that of the controls (87% survival). The potential of entomopathogenic fungi for the control of adult A. aegypti was confirmed under field conditions. Vegetable oil + isoparaffin formulations of M. anisopliae significantly increased the effectiveness of the fungus, thus reducing the need for frequent changes of black cloths in residences. Our future aim is to obtain effective control of mosquito populations, with cloths only needing to being replaced once a month.

  4. Post-fire logging produces minimal persistent impacts on understory vegetation in northeastern Oregon, USA

    Treesearch

    David W. Peterson; Erich Dodson

    2016-01-01

    Post-fire forest management commonly requires accepting some negative ecological impacts from management activities in order to achieve management objectives. Managers need to know, however, whether ecological impacts from post-fire management activities are transient or cause long-term ecosystem degradation. We studied the long-term response of understory vegetation...

  5. Characterizing Seasonal Drought, Water Supply Pattern and Their Impact on Vegetation Growth Using Satellite Soil Moisture Data, GRACE Water Storage and Precipitation Observations

    NASA Astrophysics Data System (ADS)

    A, G.; Velicogna, I.; Kimball, J. S.; Du, J.; Kim, Y.; Njoku, E. G.; Colliander, A.

    2016-12-01

    We combine soil moisture (SM) data from AMSR-E, AMSR-2 and SMAP, terrestrial water storage (TWS) changes from GRACE and precipitation measurements from GPCP to delineate and characterize drought and water supply pattern and its impact on vegetation growth. GRACE TWS provides spatially continuous observations of total terrestrial water storage changes and regional drought extent, persistence and severity, while satellite derived soil moisture estimates provide enhanced delineation of plant-available soil moisture. Together these data provide complementary metrics quantifying available plant water supply and have important implications for water resource management. We use these data to investigate the supply changes from different water components in relation to satellite based vegetation productivity metrics from MODIS, before, during and following the major drought events observed in the continental US during the past 13 years. We observe consistent trends and significant correlations between monthly time series of TWS, SM, and vegetation productivity. In Texas and surrounding semi-arid areas, we find that the spatial pattern of the vegetation-moisture relation follows the gradient in mean annual precipitation. In Texas, GRACE TWS and surface SM show strong coupling and similar characteristic time scale in relatively normal years, while during the 2011 onward hydrological drought, GRACE TWS manifests a longer time scale than that of surface SM, implying stronger drought persistence in deeper water storage. In the Missouri watershed, we find a spatially varying vegetation-moisture relationship where in the drier northwestern portion of the basin, the inter-annual variability in summer vegetation productivity is closely associated with changes in carry-on GRACE TWS from spring, whereas in the moist southeastern portion of the basin, summer precipitation is the dominant controlling factor on vegetation growth.

  6. Effects of disturbance associated with seismic exploration for oil and gas reserves in coastal marshes

    USGS Publications Warehouse

    Howard, Rebecca J.; Wells, Christopher J.; Michot, Thomas C.; Johnson, Darren J.

    2014-01-01

    Anthropogenic disturbances in wetland ecosystems can alter the composition and structure of plant assemblages and affect system functions. Extensive oil and gas extraction has occurred in wetland habitats along the northern Gulf of Mexico coast since the early 1900s. Activities involved with three-dimensional (3D) seismic exploration for these resources cause various disturbances to vegetation and soils. We documented the impact of a 3D seismic survey in coastal marshes in Louisiana, USA, along transects established before exploration began. Two semi-impounded marshes dominated by Spartina patens were in the area surveyed. Vegetation, soil, and water physicochemical data were collected before the survey, about 6 weeks following its completion, and every 3 months thereafter for 2 years. Soil cores for seed bank emergence experiments were also collected. Maximum vegetation height at impact sites was reduced in both marshes 6 weeks following the survey. In one marsh, total vegetation cover was also reduced, and dead vegetation cover increased, at impact sites 6 weeks after the survey. These effects, however, did not persist 3 months later. No effects on soil or water properties were identified. The total number of seeds that germinated during greenhouse studies increased at impact sites 5 months following the survey in both marshes. Although some seed bank effects persisted 1 year, these effects were not reflected in standing vegetation. The marshes studied were therefore resilient to the impacts resulting from 3D seismic exploration because vegetation responses were short term in that they could not be identified a few months following survey completion.

  7. Effects of Disturbance Associated With Seismic Exploration for Oil and Gas Reserves in Coastal Marshes

    NASA Astrophysics Data System (ADS)

    Howard, Rebecca J.; Wells, Christopher J.; Michot, Thomas C.; Johnson, Darren J.

    2014-07-01

    Anthropogenic disturbances in wetland ecosystems can alter the composition and structure of plant assemblages and affect system functions. Extensive oil and gas extraction has occurred in wetland habitats along the northern Gulf of Mexico coast since the early 1900s. Activities involved with three-dimensional (3D) seismic exploration for these resources cause various disturbances to vegetation and soils. We documented the impact of a 3D seismic survey in coastal marshes in Louisiana, USA, along transects established before exploration began. Two semi-impounded marshes dominated by Spartina patens were in the area surveyed. Vegetation, soil, and water physicochemical data were collected before the survey, about 6 weeks following its completion, and every 3 months thereafter for 2 years. Soil cores for seed bank emergence experiments were also collected. Maximum vegetation height at impact sites was reduced in both marshes 6 weeks following the survey. In one marsh, total vegetation cover was also reduced, and dead vegetation cover increased, at impact sites 6 weeks after the survey. These effects, however, did not persist 3 months later. No effects on soil or water properties were identified. The total number of seeds that germinated during greenhouse studies increased at impact sites 5 months following the survey in both marshes. Although some seed bank effects persisted 1 year, these effects were not reflected in standing vegetation. The marshes studied were therefore resilient to the impacts resulting from 3D seismic exploration because vegetation responses were short term in that they could not be identified a few months following survey completion.

  8. Effects of disturbance associated with seismic exploration for oil and gas reserves in coastal marshes.

    PubMed

    Howard, Rebecca J; Wells, Christopher J; Michot, Thomas C; Johnson, Darren J

    2014-07-01

    Anthropogenic disturbances in wetland ecosystems can alter the composition and structure of plant assemblages and affect system functions. Extensive oil and gas extraction has occurred in wetland habitats along the northern Gulf of Mexico coast since the early 1900s. Activities involved with three-dimensional (3D) seismic exploration for these resources cause various disturbances to vegetation and soils. We documented the impact of a 3D seismic survey in coastal marshes in Louisiana, USA, along transects established before exploration began. Two semi-impounded marshes dominated by Spartina patens were in the area surveyed. Vegetation, soil, and water physicochemical data were collected before the survey, about 6 weeks following its completion, and every 3 months thereafter for 2 years. Soil cores for seed bank emergence experiments were also collected. Maximum vegetation height at impact sites was reduced in both marshes 6 weeks following the survey. In one marsh, total vegetation cover was also reduced, and dead vegetation cover increased, at impact sites 6 weeks after the survey. These effects, however, did not persist 3 months later. No effects on soil or water properties were identified. The total number of seeds that germinated during greenhouse studies increased at impact sites 5 months following the survey in both marshes. Although some seed bank effects persisted 1 year, these effects were not reflected in standing vegetation. The marshes studied were therefore resilient to the impacts resulting from 3D seismic exploration because vegetation responses were short term in that they could not be identified a few months following survey completion.

  9. Reoccupation of floodplains by rivers and its relation to the age structure of floodplain vegetation

    USGS Publications Warehouse

    Konrad, Christopher P.

    2012-01-01

    River channel dynamics over many decades provide a physical control on the age structure of floodplain vegetation as a river occupies and abandons locations. Floodplain reoccupation by a river, in particular, determines the interval of time during which vegetation can establish and mature. A general framework for analyzing floodplain reoccupation and a time series model are developed and applied to five alluvial rivers in the United States. Channel dynamics in these rivers demonstrate time-scale dependence with short-term oscillation in active channel area in response to floods and subsequent vegetation growth and progressive lateral movement that accounts for much of the cumulative area occupied by the rivers over decades. Rivers preferentially reoccupy locations recently abandoned causing a decreasing probability of reoccupation with time since abandonment. For a typical case, a river is 10 times more likely to reoccupy an area it abandoned in the past decade than it is to reoccupy an area it abandoned 30 yrs ago. The decreasing probability of reoccupation over time is consistent with observations of persistent stands of late seral stage floodplain forest. A power function provides a robust approach for estimating the cumulative area occupied by a river and the age structure of riparian forests resulting from a specific historical sequence of streamflow in comparison to either linear or exponential alternatives.

  10. Primary studies of trace quantities of green vegetation in Mono Lake area using 1990 AVIRIS data

    NASA Technical Reports Server (NTRS)

    Chen, Zhi-Kang; Elvidge, Chris D.; Groeneveld, David P.

    1992-01-01

    Our primary results in Jasper Ridge Biological Preserve indicate that high spectral resolution Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data may provide a substantial advantage in vegetation, based on the chlorophyll red edge feature from 700-780 nm. The chlorophyll red edge was detected for green vegetation cover as low as 4.8 percent. The objective of our studies in Mono Lake area is to continue the experiments performed in Jasper Ridge and to examine the persistence of red edge feature of trace quantities of green vegetation for different plant communities with non-uniform soil backgrounds.

  11. Ecosystem functioning is enveloped by hydrometeorological variability.

    PubMed

    Pappas, Christoforos; Mahecha, Miguel D; Frank, David C; Babst, Flurin; Koutsoyiannis, Demetris

    2017-09-01

    Terrestrial ecosystem processes, and the associated vegetation carbon dynamics, respond differently to hydrometeorological variability across timescales, and so does our scientific understanding of the underlying mechanisms. Long-term variability of the terrestrial carbon cycle is not yet well constrained and the resulting climate-biosphere feedbacks are highly uncertain. Here we present a comprehensive overview of hydrometeorological and ecosystem variability from hourly to decadal timescales integrating multiple in situ and remote-sensing datasets characterizing extra-tropical forest sites. We find that ecosystem variability at all sites is confined within a hydrometeorological envelope across sites and timescales. Furthermore, ecosystem variability demonstrates long-term persistence, highlighting ecological memory and slow ecosystem recovery rates after disturbances. However, simulation results with state-of-the-art process-based models do not reflect this long-term persistent behaviour in ecosystem functioning. Accordingly, we develop a cross-time-scale stochastic framework that captures hydrometeorological and ecosystem variability. Our analysis offers a perspective for terrestrial ecosystem modelling and paves the way for new model-data integration opportunities in Earth system sciences.

  12. Case study of water-soluble metal containing organic constituents of biomass burning aerosol.

    PubMed

    Chang-Graham, Alexandra L; Profeta, Luisa T M; Johnson, Timothy J; Yokelson, Robert J; Laskin, Alexander; Laskin, Julia

    2011-02-15

    Natural and prescribed biomass fires are a major source of aerosols that may persist in the atmosphere for several weeks. Biomass burning aerosols (BBA) can be associated with long-range transport of water-soluble N-, S-, P-, and metal-containing species. In this study, BBA samples were collected using a particle-into-liquid sampler (PILS) from laboratory burns of vegetation collected on military bases in the southeastern and southwestern United States. The samples were then analyzed using high resolution electrospray ionization mass spectrometry (ESI/HR-MS) that enabled accurate mass measurements for hundreds of species with m/z values between 70 and 1000 and assignment of elemental formulas. Mg, Al, Ca, Cr, Mn, Fe, Ni, Cu, Zn, and Ba-containing organometallic species were identified. The results suggest that the biomass may have accumulated metal-containing species that were re-emitted during biomass burning. Further research into the sources, dispersion, and persistence of metal-containing aerosols, as well as their environmental effects, is needed.

  13. Measuring landscape-scale spread and persistence of an invaded submerged plant community from airborne remote sensing.

    PubMed

    Santos, Maria J; Khanna, Shruti; Hestir, Erin L; Greenberg, Jonathan A; Ustin, Susan L

    2016-09-01

    Processes of spread and patterns of persistence of invasive species affect species and communities in the new environment. Predicting future rates of spread is of great interest for timely management decisions, but this depends on models that rely on understanding the processes of invasion and historic observations of spread and persistence. Unfortunately, the rates of spread and patterns of persistence are difficult to model or directly observe, especially when multiple rates of spread and diverse persistence patterns may be co-occurring over the geographic distribution of the invaded ecosystem. Remote sensing systematically acquires data over large areas at fine spatial and spectral resolutions over multiple time periods that can be used to quantify spread processes and persistence patterns. We used airborne imaging spectroscopy data acquired once a year for 5 years from 2004 to 2008 to map an invaded submerged aquatic vegetation (SAV) community across 2220 km 2 of waterways in the Sacramento-San Joaquin River Delta, California, USA, and measured its spread rate and its persistence. Submerged aquatic vegetation covered 13-23 km 2 of the waterways (6-11%) every year. Yearly new growth accounted for 40-60% of the SAV area, ~50% of which survived to following year. Spread rates were overall negative and persistence decreased with time. From this dataset, we were able to identify both radial and saltatorial spread of the invaded SAV in the entire extent of the Delta over time. With both decreasing spread rate and persistence, it is possible that over time the invasion of this SAV community could decrease its ecological impact. A landscape-scale approach allows measurements of all invasion fronts and the spatial anisotropies associated with spread processes and persistence patterns, without spatial interpolation, at locations both proximate and distant to the focus of invasion at multiple points in time. © 2016 by the Ecological Society of America.

  14. Hydrologic restoration in a dynamic subtropical mangrove-to-marsh ecotone

    USGS Publications Warehouse

    Howard, Rebecca J.; Day, Richard H.; Krauss, Ken W.; From, Andrew S.; Allain, Larry K.; Cormier, Nicole

    2017-01-01

    Extensive hydrologic modifications in coastal regions across the world have occurred to support infrastructure development, altering the function of many coastal wetlands. Wetland restoration success is dependent on the existence of hydrologic regimes that support development of appropriate soils and the growth and persistence of wetland vegetation. In Florida, United States, the Comprehensive Everglades Restoration Program (CERP) seeks to restore, protect, and preserve water resources of the greater Everglades region. Herein we describe vegetation dynamics in a mangrove-to-marsh ecotone within the impact area of a CERP hydrologic restoration project currently under development. Vegetation communities are also described for a similar area outside the project area. We found that vegetation shifts within the impact area occurred over a 7-year period; cover of herbaceous species varied by location, and an 88% increase in the total number of mangrove seedlings was documented. We attribute these shifts to the existing modified hydrologic regime, which is characterized by a low volume of freshwater sheet flow compared with historical conditions (i.e. before modification), as well as increased tidal influence. We also identified a significant trend of decreasing soil surface elevation at the impact area. The CERP restoration project is designed to increase freshwater sheet flow to the impact area. Information from our study characterizing existing vegetation dynamics prior to implementation of the restoration project is required to allow documentation of long-term project effects on plant community composition and structure within a framework of background variation, thereby allowing assessment of the project's success in restoring critical ecosystem functions.

  15. A review of the evidence of zolpidem efficacy in neurological disability after brain damage due to stroke, trauma and hypoxia: A justification of further clinical trials.

    PubMed

    Sutton, J A; Clauss, R P

    2017-01-01

    During 15 years, 23 clinical reports and 6 studies have demonstrated associations between sub-sedative doses of zolpidem and recoveries from brain damage due to strokes, trauma and hypoxia. Clinical findings include unexpected awakenings from vegetative states and regressions of stroke symptoms after dosing that disappear during elimination and reappear on repeat dosing. Initially single-photon emission computed tomography scans showed improved perfusion within, around and distant from infarctions. Then positron emission tomography scans and electroencephalography detected renewed metabolic and neuronal activity. Placebo or a similar, gamma-aminobutyric acid (GABA)-ergic, sedative zopiclone has no such effect. The effect appears only several months after the injury, reflecting recent evidence in mice of substantial differences between the states of GABA receptors in acute and chronic repair phases of recovery. Zolpidem's good safety record and rapid absorption further indicate a need for more clinical trials. List of acronyms: BOLD, Blood-Oxygen-Level Dependent contrast imaging in MRI; CRS, Coma Recovery Scale; CRS-R, Coma Recovery Scale Revised; CSI, Cerebral State Index; CSM, Cerebral State Monitor; DOC, Disorder of Consciousness; EEG, Electro Encephalography; FDG-PET, FluoroDeoxyGlucose-Positron Emission Tomography; FTD, Frontotemporal dementia; GABA, Gamma-Aminobutyric Acid; MCS, Minimally Conscious State; M-EEG, Magneto-Encephalography; MRI, Magnetic Resonance Image; MSN, Median Spiny Neurones; PET, Positron Emission Tomography; PVS, Persistent Vegetative Sate; RLAC, Rancho Los Amigos Cognitive scores; SPECT, Single-photon emission computed tomography; TFES, Tinetti Falls Efficacy Scale; 99mTc HMPAO, Technetium hexamethylpropyleneamine oxime.

  16. Alternative states of a semiarid grassland ecosystem: implications for ecosystem services

    USGS Publications Warehouse

    Miller, Mark E.; Belote, R. Travis; Bowker, Matthew A.; Garman, Steven L.

    2011-01-01

    Ecosystems can shift between alternative states characterized by persistent differences in structure, function, and capacity to provide ecosystem services valued by society. We examined empirical evidence for alternative states in a semiarid grassland ecosystem where topographic complexity and contrasting management regimes have led to spatial variations in levels of livestock grazing. Using an inventory data set, we found that plots (n = 72) cluster into three groups corresponding to generalized alternative states identified in an a priori conceptual model. One cluster (biocrust) is notable for high coverage of a biological soil crust functional group in addition to vascular plants. Another (grass-bare) lacks biological crust but retains perennial grasses at levels similar to the biocrust cluster. A third (annualized-bare) is dominated by invasive annual plants. Occurrence of grass-bare and annualized-bare conditions in areas where livestock have been excluded for over 30 years demonstrates the persistence of these states. Significant differences among all three clusters were found for percent bare ground, percent total live cover, and functional group richness. Using data for vegetation structure and soil erodibility, we also found large among-cluster differences in average levels of dust emissions predicted by a wind-erosion model. Predicted emissions were highest for the annualized-bare cluster and lowest for the biocrust cluster, which was characterized by zero or minimal emissions even under conditions of extreme wind. Results illustrate potential trade-offs among ecosystem services including livestock production, soil retention, carbon storage, and biodiversity conservation. Improved understanding of these trade-offs may assist ecosystem managers when evaluating alternative management strategies.

  17. Fairy circle landscapes under the sea

    PubMed Central

    Ruiz-Reynés, Daniel; Gomila, Damià; Sintes, Tomàs; Hernández-García, Emilio; Marbà, Núria; Duarte, Carlos M.

    2017-01-01

    Short-scale interactions yield large-scale vegetation patterns that, in turn, shape ecosystem function across landscapes. Fairy circles, which are circular patches bare of vegetation within otherwise continuous landscapes, are characteristic features of semiarid grasslands. We report the occurrence of submarine fairy circle seascapes in seagrass meadows and propose a simple model that reproduces the diversity of seascapes observed in these ecosystems as emerging from plant interactions within the meadow. These seascapes include two extreme cases, a continuous meadow and a bare landscape, along with intermediate states that range from the occurrence of persistent but isolated fairy circles, or solitons, to seascapes with multiple fairy circles, banded vegetation, and “leopard skin” patterns consisting of bare seascapes dotted with plant patches. The model predicts that these intermediate seascapes extending across kilometers emerge as a consequence of local demographic imbalances along with facilitative and competitive interactions among the plants with a characteristic spatial scale of 20 to 30 m, consistent with known drivers of seagrass performance. The model, which can be extended to clonal growth plants in other landscapes showing fairy rings, reveals that the different seascapes observed hold diagnostic power as to the proximity of seagrass meadows to extinction points that can be used to identify ecosystems at risks. PMID:28782035

  18. Influence of Epicuticular Physicochemical Properties on Porcine Rotavirus Adsorption to 24 Leafy Green Vegetables and Tomatoes

    PubMed Central

    Palma-Salgado, Sindy Paola; Storm, Andrew Page; Feng, Hao; Juvik, John A.; Nguyen, Thanh H.

    2015-01-01

    Foodborne diseases are a persistent problem in the United States and worldwide. Fresh produce, especially those used as raw foods like salad vegetables, can be contaminated, causing illness. In this study, we determined the number of rotaviruses adsorbed on produce surfaces using group A porcine rotaviruses and 24 cultivars of leafy vegetables and tomato fruits. We also characterized the physicochemical properties of each produce’s outermost surface layer, known as the epicuticle. The number of rotaviruses found on produce surfaces varied among cultivars. Three-dimensional crystalline wax structures on the epicuticular surfaces were found to significantly contribute to the inhibition of viral adsorption to the produce surfaces (p = 0.01). We found significant negative correlations between the number of rotaviruses adsorbed on the epicuticular surfaces and the concentrations of alkanes, fatty acids, and total waxes on the epicuticular surfaces. Partial least square model fitting results suggest that alkanes, ketones, fatty acids, alcohols, contact angle and surface roughness together can explain 60% of the variation in viral adsorption. The results suggest that various fresh produce surface properties need to be collectively considered for efficient sanitation treatments. Up to 10.8% of the originally applied rotaviruses were found on the produce surfaces after three washing treatments, suggesting a potential public health concern regarding rotavirus contamination. PMID:26181904

  19. Exacerbated degradation and desertification of grassland in Central Asia

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Xiao, X.; Biradar, C. M.; Dong, J.; Zhou, Y.; Qin, Y.; Zhang, Y.; Liu, F.; Ding, M.; Thomas, R. J.

    2016-12-01

    Grassland desertification is a complex process, including both state conversion (e.g., grasslands to deserts) and gradual within-state change (e.g., greenness dynamics). Existing studies generally did not separate the two components and analyzed them based on time series vegetation indices, which however cannot provide a clear and comprehensive picture for desertification. Here we proposed a desertification zone classification-based grassland degradation strategy to detect the grassland desertification process in Central Asia. First, annual spatially explicit maps of grasslands and deserts were generated to track the conversion between grasslands and deserts. The results showed that 13 % of grasslands were converted to deserts from 2000 to 2014, with an increasing desertification trend northward in the latitude range of 43-48°N. Second, a fragile and unstable Transitional zone was identified in southern Kazakhstan based on desert frequency maps. Third, gradual vegetation dynamics during the thermal growing season (EVITGS) were investigated using linear regression and Mann-Kendall approaches. The results indicated that grasslands generally experienced widespread degradation in Central Asia, with an additional hotspot identified in the northern Kazakhstan. Finally, attribution analyses of desertification were conducted by correlating vegetation dynamics with three different drought indices (Palmer Drought Severity Index (PDSI), Standardized Precipitation Index (SPI), and Drought Severity Index (DSI)), precipitation, and temperature, and showed that grassland desertification was exacerbated by droughts, and persistent drought was the main factor for grassland desertification in Central Asia. This study provided essential information for taking practical actions to prevent the further desertification and targeting right spots for better intervention to combat the land degradation in the region.

  20. Aruna Shanbaug: Is Her Demise the End of the Road for Legislation on Euthanasia in India?

    PubMed

    Kanchan, Tanuj; Atreya, Alok; Krishan, Kewal

    2016-08-01

    Aruna Ramachandra Shanbaug breathed her last after 42 years of being in a persistent vegetative state. Euthanasia in any form is not permitted in India and it was only in the year 2011 that a petition was filed in the court that urged the cessation of her force feeding with a nasogastric tube and the request for her peaceful death. What followed was a string of arguments and counter arguments relating to Euthanasia. The sad demise of Aruna Shanbaug is not the end of an individual, but may be the end of the road for clear cut guidelines and legislation on Euthanasia in India.

  1. Sod-seeding to modify coastal bermuda grass on reclaimed lignite overburden in Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skousen, J.G.

    1986-01-01

    This study was conducted to investigate the ability of nine low-maintenance species to establish and persist with Coastal bermuda grass (Cynodon dactylon (L.) Pers.) established on reclaimed lignite overburden; to evaluate the establishment and persistence of seventeen low-maintenance species seeded in overburden with no vegetation cover; and to examine seeding mixtures and rates for establishing low-maintenance species into three cover types (bermuda grass, oats, (Avena fatua L.) and no cover). Seventeen low-maintenance species established and persisted in overburden without fertilization during years of low precipitation. Several seeded grasses showed sufficient stand development in monoculture for erosion control. Most of themore » other seeded species were slower in establishment, yet persisted on the site and promoted multiple use of the reclaimed area. Recommended seeding rates were generally adequate for seedling establishment in oat, bermuda grass, and no vegetation cover types. Sod-seeding into bermuda grass resulted in higher seedling densities than those in oats and no cover because of stored moisture beneath the sod during bermuda grass dormancy. Using /sup 15/N-labelled fertilizer, Coastal bermuda grass demonstrated the ability to rapidly recovery applied N. Maximilian sunflower (Helianthus maximiliani Schrad.) was suppressed by Coastal bermuda grass in mixture at all fertilizer N rates.« less

  2. Changing attitudes and practices in foregoing life-sustaining treatments.

    PubMed

    Sprung, C L

    1990-04-25

    Advances in medical technology and practices have been associated with improved patient outcomes. At times, the price of this progress has included great financial costs and human suffering. During the last two decades, there have been significant changes in medical practices in America. In the late 1960s and early 1970s, the removal of a respirator or hydration or nutrition from a patient who was not brain dead was considered a deviation from accepted medical practices. In 1976, the Quinlan case allowed the removal of a ventilator from a patient in a persistent vegetative state. Subsequent court decisions in the 1980s have equated hydration and artificial feeding with other forms of life-sustaining treatments and have allowed their withdrawal in patients who were not terminally ill. Prominent physicians have recently stated that it is not immoral for a physician to assist in the rational suicide of a terminally ill patient. Active euthanasia programs in the United States are likely in the near future.

  3. Interannual variability of human plague occurrence in the Western United States explained by tropical and North Pacific Ocean climate variability.

    PubMed

    Ari, Tamara Ben; Gershunov, Alexander; Tristan, Rouyer; Cazelles, Bernard; Gage, Kenneth; Stenseth, Nils C

    2010-09-01

    Plague is a vector-borne, highly virulent zoonotic disease caused by the bacterium Yersinia pestis. It persists in nature through transmission between its hosts (wild rodents) and vectors (fleas). During epizootics, the disease expands and spills over to other host species such as humans living in or close to affected areas. Here, we investigate the effect of large-scale climate variability on the dynamics of human plague in the western United States using a 56-year time series of plague reports (1950-2005). We found that El Niño Southern Oscillation and Pacific Decadal Oscillation in combination affect the dynamics of human plague over the western United States. The underlying mechanism could involve changes in precipitation and temperatures that impact both hosts and vectors. It is suggested that snow also may play a key role, possibly through its effects on summer soil moisture, which is known to be instrumental for flea survival and development and sustained growth of vegetation for rodents.

  4. Community food environments and healthy food access among older adults: A review of the evidence for the Senior Farmers' Market Nutrition Program (SFMNP).

    PubMed

    O'Dare Wilson, Kellie

    2017-04-01

    Although an array of federal, state, and local programs exist that target food insecurity and the specific nutritional needs of seniors, food insecurity among older adults in the United States remains a persistent problem, particularly in minority and rural populations. Food insecurity is highly predictive of inadequate fresh fruit and vegetable (FFV) consumption in particular. The Senior Farmers' Market Nutrition Program (SFMNP) is a community-based program to help seniors purchase FFVs at farmer's markets in their neighborhoods. The SFMNP continues to grow; however, little is known about the effectiveness of the program. The purposes of this article are to (1) highlight the importance of community and neighborhood based food insecurity programs, specifically emphasizing the importance of FFV access for seniors, (2) review the current state of the evidence on the SFMNP, and (3) provide recommendations for researchers and policy-makers wishing to continue to advance the knowledge base in neighborhood-based food security among older adults.

  5. Artificial feeding--solid ground, not a slippery slope.

    PubMed

    Steinbrook, R; Lo, B

    1988-02-04

    Decisions about artificial feeding arouse more controversy than those involving any other life-sustaining treatment. Because food and water are generally considered basic elements of humane care, representing love and concern for the helpless, it is often thought that they must always be provided. In a landmark decision, the Supreme Judicial Court of Massachusetts ruled that a feeding tube could be removed from a patient in a persistent vegetative state if this was consistent with his previously expressed wishes. The case of Paul E. Brophy, Sr., is part of an emerging medical and legal consensus on the withholding of artificial feeding from adult patients. The view is growing that tube and intravenous feeding should be likened to other medical interventions and not to the routine provision of nursing care or comfort. Competent patients have the right to refuse such feeding. Feeding can also be stopped incompetent patients who have earlier stated such a wish.

  6. Long-term persistence of seeded grass species: an unwanted side effect of ecological restoration.

    PubMed

    Rydgren, Knut; Auestad, Inger; Hamre, Liv Norunn; Hagen, Dagmar; Rosef, Line; Skjerdal, Gudrun

    2016-07-01

    Spoil heaps are the visible footprint of hydropower production, particularly in vulnerable alpine environments. Speeding up vegetation development by seeding commercial grass species has been a common restoration practice for the last 50 years, but we lack information on whether seeded species decline and allow native plant cover to develop. We visually estimated cover of native vascular plants and five seeded grass species (Agrostis capillaris, Festuca ovina, Festuca rubra, Schedonorus pratensis and Phleum pratense) on eight spoil heaps at different elevations (boreal-alpine zone) in western Norway. Spoil heap vegetation was censused twice (9-20 and 24-36 years after spoil heap construction); the undisturbed surrounding vegetation was also censused on the second occasion. Total cover on the spoil heaps showed some increase, but remained far below that in surrounding areas. Cover of seeded grass species in the surroundings was low (but not negligible), indicating suboptimal establishment ability. Seeded species usually covered less than 20 % of the spoil heaps, and only F. rubra, F. ovina and A. capillaris contributed substantially. Proportional cover indicated better initial establishment by seeded species, but their cover decreased between the censuses on all but the highest located spoil heap. The persistence of seeded grass species is problematic, and despite the decrease in proportional cover, they are likely to persist for decades on spoil heaps, posing a risk of invasion of surrounding areas. We therefore recommend replacing the practice of seeding with more appropriate restoration measures.

  7. A 30-year chronosequence of burned areas in Arizona: effects of wildfires on vegetation in Sonoran Desert Tortoise (Gopherus morafkai) habitats

    USGS Publications Warehouse

    Shryock, Daniel F.; Esque, Todd C.; Chen, Felicia C.

    2015-01-01

    Fire is widely regarded as a key evolutionary force in fire-prone ecosystems, with effects spanning multiple levels of organization, from species and functional group composition through landscape-scale vegetation structure, biomass, and diversity (Pausas and others, 2004; Bond and Keeley 2005; Pausas and Verdu, 2008). Ecosystems subjected to novel fire regimes may experience profound changes that are difficult to predict, including persistent losses of vegetation cover and diversity (McLaughlin and Bowers, 1982; Brown and Minnich, 1986; Brooks, 2012), losses to seed banks (Esque and others, 2010a), changes in demographic processes (Esque and others, 2004; DeFalco and others, 2010), increased erosion (Soulard and others, 2013), changes in nutrient availability (Esque and others, 2010b), increased dominance of invasive species (Esque and others, 2002; Brooks and others, 2004), and transitions to alternative community states (Davies and others, 2012). In the deserts of the Southwestern United States, fire size and frequency have increased substantially over the last several decades because of an invasive grass/fire feedback cycle (Schmid and Rogers, 1988; D’Antonio and Vitousek, 1992; Swantek and others, 1999; Brooks and Matchett, 2006; Esque and others, 2010a), in which invasive annual species are able to establish fuel loads capable of sustaining large-scale wildfires following years of high rainfall (Esque and Schwalbe, 2002). Native perennial vegetation is not well-adapted to fire in these environments, and widespread, physiognomically dominant species such as creosote bush (Larrea tridentata), Joshua tree (Yucca brevifolia), giant saguaro cactus (Carnegiea gigantea), and paloverde (Parkinsonia spp.) may be reduced or eliminated (Brown and Minnich, 1986; Esque and others, 2006; DeFalco and others, 2010), potentially affecting wildlife populations including the Sonoran and federally threatened Mojave Desert Tortoises (Gopherus morafkai and Gopherus agassizii, respectively; Brooks and Esque, 2002; Esque and others, 2003; Drake and others, in press).

  8. Stability measures in arid ecosystems

    NASA Astrophysics Data System (ADS)

    Nosshi, M. I.; Brunsell, N. A.; Koerner, S.

    2015-12-01

    Stability, the capacity of ecosystems to persist in the face of change, has proven its relevance as a fundamental component of ecological theory. Here, we would like to explore meaningful and quantifiable metrics to define stability, with a focus on highly variable arid and semi-arid savanna ecosystems. Recognizing the importance of a characteristic timescale to any definition of stability, our metrics will be focused scales from annual to multi-annual, capturing different aspects of stability. Our three measures of stability, in increasing order of temporal scale, are: (1) Ecosystem resistance, quantified as the degree to which the system maintains its mean state in response to a perturbation (drought), based on inter-annual variability in Normalized Difference Vegetation Index (NDVI). (2) An optimization approach, relevant to arid systems with pulse dynamics, that models vegetation structure and function based on a trade off between the ability to respond to resource availability and avoid stress. (3) Community resilience, measured as species turnover rate (β diversity). Understanding the nature of stability in structurally-diverse arid ecosystems, which are highly variable, yields theoretical insight which has practical implications.

  9. State Indicator Report on Fruits and Vegetables, 2009

    ERIC Educational Resources Information Center

    Centers for Disease Control and Prevention, 2009

    2009-01-01

    The "State Indicator Report on Fruits and Vegetables, 2009" provides for the first time information on fruit and vegetable (F&V) consumption and policy and environmental support within each state. Fruits and vegetables, as part of a healthy diet, are important for optimal child growth, weight management, and chronic disease…

  10. Satellites See Double Jeopardy for Socal Fire Season

    NASA Image and Video Library

    2013-05-13

    Extensive and persistent rains between Jan. 24 and Jan. 27, 2013, significantly increased soil moisture and enhanced vegetation growth in Southern California based on data from NASA Aqua spacecraft and ISRO Oceansat-2 satellite.

  11. Long-term disturbance dynamics and resilience of tropical peat swamp forests

    PubMed Central

    Cole, Lydia E S; Bhagwat, Shonil A; Willis, Katherine J

    2015-01-01

    1. The coastal peat swamp forests of Sarawak, Malaysian Borneo, are undergoing rapid conversion, predominantly into oil palm plantations. This wetland ecosystem is assumed to have experienced insignificant disturbance in the past, persisting under a single ecologically-stable regime. However, there is limited knowledge of the past disturbance regime, long-term functioning and fundamentally the resilience of this ecosystem to changing natural and anthropogenic perturbations through time. 2. In this study, long-term ecological data sets from three degraded peatlands in Sarawak were collected to shed light on peat swamp forest dynamics. Fossil pollen and charcoal were counted in each sedimentary sequence to reconstruct vegetation and investigate responses to past environmental disturbance, both natural and anthropogenic. 3. Results demonstrate that peat swamp forest taxa have dominated these vegetation profiles throughout the last c. 2000-year period despite the presence of various drivers of disturbance. Evidence for episodes of climatic variability, predominantly linked to ENSO events, and wildfires is present throughout. However, in the last c. 500 years, burning and indicators of human disturbance have elevated beyond past levels at these sites, concurrent with a reduction in peat swamp forest pollen. 4. Two key insights have been gained through this palaeoecological analysis: (i) peat swamp forest vegetation has demonstrated resilience to disturbance caused by burning and climatic variability in Sarawak in the late Holocene, however (ii) coincident with increased fire combined with human impact c. 500 years ago, these communities started to decline. 5. Synthesis. Sarawak's coastal peat swamps have demonstrated resilience to past natural disturbances, with forest vegetation persisting through episodes of fire and climatic variability. However, palaeoecological data presented here suggest that recent, anthropogenic disturbances are of a greater magnitude, causing the observed decline in the peat swamp forest communities in the last c. 500 years and challenging the ecosystem's persistence. This study greatly extends our knowledge of the ecological functioning of these understudied ecosystems, providing baseline information on the past vegetation and its response to disturbance. This understanding is central to developing management strategies that foster resilience in the remaining peat swamp forests and ensure continued provision of services, namely carbon storage, from this globally important ecosystem. PMID:26120202

  12. Long-term disturbance dynamics and resilience of tropical peat swamp forests.

    PubMed

    Cole, Lydia E S; Bhagwat, Shonil A; Willis, Katherine J

    2015-01-01

    1. The coastal peat swamp forests of Sarawak, Malaysian Borneo, are undergoing rapid conversion, predominantly into oil palm plantations. This wetland ecosystem is assumed to have experienced insignificant disturbance in the past, persisting under a single ecologically-stable regime. However, there is limited knowledge of the past disturbance regime, long-term functioning and fundamentally the resilience of this ecosystem to changing natural and anthropogenic perturbations through time. 2. In this study, long-term ecological data sets from three degraded peatlands in Sarawak were collected to shed light on peat swamp forest dynamics. Fossil pollen and charcoal were counted in each sedimentary sequence to reconstruct vegetation and investigate responses to past environmental disturbance, both natural and anthropogenic. 3. Results demonstrate that peat swamp forest taxa have dominated these vegetation profiles throughout the last c . 2000-year period despite the presence of various drivers of disturbance. Evidence for episodes of climatic variability, predominantly linked to ENSO events, and wildfires is present throughout. However, in the last c . 500 years, burning and indicators of human disturbance have elevated beyond past levels at these sites, concurrent with a reduction in peat swamp forest pollen. 4. Two key insights have been gained through this palaeoecological analysis: (i) peat swamp forest vegetation has demonstrated resilience to disturbance caused by burning and climatic variability in Sarawak in the late Holocene, however (ii) coincident with increased fire combined with human impact c . 500 years ago, these communities started to decline. 5. Synthesis . Sarawak's coastal peat swamps have demonstrated resilience to past natural disturbances, with forest vegetation persisting through episodes of fire and climatic variability. However, palaeoecological data presented here suggest that recent, anthropogenic disturbances are of a greater magnitude, causing the observed decline in the peat swamp forest communities in the last c . 500 years and challenging the ecosystem's persistence. This study greatly extends our knowledge of the ecological functioning of these understudied ecosystems, providing baseline information on the past vegetation and its response to disturbance. This understanding is central to developing management strategies that foster resilience in the remaining peat swamp forests and ensure continued provision of services, namely carbon storage, from this globally important ecosystem.

  13. Monitoring Coastal Marshes for Persistent Saltwater Intrusion

    DTIC Science & Technology

    2010-06-01

    for the normalized difference indices (vegetation, soil, and water– NDVI , NDSI, and NDWI) for both MODIS and Landsat 5 and 7, referred to as the...Normalized Difference Index transformation [4]. The MODIS indices are 250 m ( NDVI ) and 500 m (NDWI and NDSI), and the Landsat indices are 30 m...indices are shown for two locations in Fig. 1 and Fig 2. Each figure shows the NDSI (soil), NDVI (vegetation), and NDWI (water) index as a function of

  14. Self-organized multi-species vegetation patterns: the role of connectivity of environmental niches in natural water harvesting ecosystems

    NASA Astrophysics Data System (ADS)

    Callegaro, Chiara; Ursino, Nadia

    2016-04-01

    Self-organizing vegetation patterns are natural water harvesting systems in arid and semi-arid regions of the world and should be imitated when designing man-managed water-harvesting systems for rain-fed crop. Disconnected vegetated and bare zones, functioning as a source-sink system of resources, sustain vegetation growth and reduce water and soil losses. Mechanisms such as soil crusting over bare areas and soil loosening in vegetated areas feed back to the local net facilitation effect and contribute to maintain the patterned landscape structure. Dis-connectivity of run-off production and run-on infiltration sites reduces runoff production at the landscape scale, and increases water retention in the vegetated patches. What is the effect of species adaptation to different resource niches on the landscape structure? A minimal model for two coexisting species and soil moisture balance was formulated, to improve our understanding of the effects of species differentiation on the dynamics of plants and water at single-pattern and landscape scale within a tiger bush type ecosystem. A basic assumption of our model was that soil moisture availability is a proxy for the environmental niche of plant species. Connectivity and dis-connectivity of specific niches of adaptation of two differing plant species was an input parameter of our model, in order to test the effect of coexistence on the ecosystem structure. The ecosystem structure is the model outcome, including: patterns persistence of coexisting species; patterns persistence of one species with exclusion of the other; patterns decline with just one species surviving in a non organized structure; bare landscape with loss of both species. Results suggest that pattern-forming-species communities arise as a result of complementary niche adaptation (niche dis-connecivity), whereas niche superposition (niche connectivity) may lead to impoverishment of environmental resources and loss of vegetation cover and diversity.

  15. Hurricane Influences on Vegetation Community Change in Coastal Louisiana

    USGS Publications Warehouse

    Steyer, Gregory D.; Cretini, Kari Foster; Piazza, Sarai C.; Sharp, Leigh A.; Snedden, Gregg A.; Sapkota, Sijan

    2010-01-01

    The impacts of Hurricanes Katrina and Rita in 2005 on wetland vegetation were investigated in Louisiana coastal marshes. Vegetation cover, pore-water salinity, and nutrients data from 100 marsh sites covering the entire Louisiana coast were sampled for two consecutive growing seasons after the storms. A mixed-model nested ANOVA with Tukey's HSD test for post-ANOVA multiple comparisons was used to analyze the data. Significantly (p<0.05) lower vegetation cover was observed within brackish and fresh marshes in the west as compared to the east and central regions throughout 2006, but considerable increase in vegetation cover was noticed in fall 2007 data. Marshes in the west were stressed by prolonged saltwater logging and increased sulfide content. High salinity levels persisted throughout the study period for all marsh types, especially in the west. The marshes of coastal Louisiana are still recovering after the hurricanes; however, changes in the species composition have increased in these marshes.

  16. Persistence and Dissipation of Chlorpyrifos in Brassica Chinensis, Lettuce, Celery, Asparagus Lettuce, Eggplant, and Pepper in a Greenhouse

    PubMed Central

    Lu, Meng-Xiao; Jiang, Wayne W.; Wang, Jia-Lei; Jian, Qiu; Shen, Yan; Liu, Xian-Jin; Yu, Xiang-Yang

    2014-01-01

    The residue behavior of chlorpyrifos, which is one of the extensively used insecticides all around the world, in six vegetable crops was assessed under greenhouse conditions. Each of the vegetables was subjected to a foliar treatment with chlorpyrifos. Two analytical methods were developed using gas chromatography equipped with a micro-ECD detector (LOQ = 0.05 mg kg−1) and liquid chromatography with a tandem mass spectrometry (LOQ = 0.01 mg kg−1). The initial foliar deposited concentration of chlorpyrifos (mg kg−1) on the six vegetables followed the increasing order of brassica chinensis

  17. In thunder, lightning or in rain: what three doctors can do.

    PubMed

    Annas, G J

    1987-01-01

    Annas discusses three 1987 New Jersey Supreme Court cases in which the court decided that life-sustaining treatment could be terminated either because this was what the patient clearly wanted (In re Farrell and In re Peter) or because it was the family's best judgment of what the patient wanted (In re Jobes). He is critical of the court's opinions because they appear to place limits on the right to refuse treatment through the use of procedural "rules." By categorizing patients in terms of, for example, being in a persistent vegetative state, and by requiring medical consultations in cases involving refusal of life-sustaining treatment, the court followed the Quinlan precedent of focusing on decision making by physicians.

  18. Increasing Community Access to Fresh Fruits and Vegetables: A Case Study of the Farm Fresh Market Pilot Program in Cobb County, Georgia, 2014

    PubMed Central

    Coleman, Anne-Marie; Hermstad, April K.; Honeycutt, Sally; Munoz, Jennifer; Loh, Lorna; Brown, Agnes F.; Shipley, Rebecca; Kegler, Michelle C.

    2016-01-01

    Background Ecological models of health suggest that to effectively prevent chronic disease, community food environments must support healthy eating behaviors. However, disparities in access to healthy foods persist in the United States. Community Context The Farm Fresh Market (FFM) was a fruit and vegetable market that sold low-cost fresh produce in Cobb County, Georgia in 2014. Methods This case study describes the development of the FFM through a community engagement process and presents evaluation results from the project’s pilot implementation. Community engagement strategies included forming a community advisory board, conducting a needs assessment, and contracting with a community-based organization to implement the FFM. Outcome In the pilot year, the FFM served an average of 28.7 customers and generated an average of $140.20 in produce sales per market day. Most returning customers lived in the local community and reported a range of socioeconomic backgrounds. Most returning customers strongly agreed that the FFM made it easier (69.0%) and less expensive (79.0%) for them to buy fresh fruits and vegetables, reported that they ate more vegetables (65.0%) and fruit (55.0%) as a result of the FFM, and reported that they were very satisfied with the FFM overall (92.0%). Interpretation Results from this community case study underscore the importance of engaging communities in the development of community food environment interventions. Results also suggest that the FFM initiative was a feasible and acceptable way to respond to the community-identified public health priority of increasing access to healthy foods. PMID:26963860

  19. Increasing Community Access to Fresh Fruits and Vegetables: A Case Study of the Farm Fresh Market Pilot Program in Cobb County, Georgia, 2014.

    PubMed

    Woodruff, Rebecca C; Coleman, Anne-Marie; Hermstad, April K; Honeycutt, Sally; Munoz, Jennifer; Loh, Lorna; Brown, Agnes F; Shipley, Rebecca; Kegler, Michelle C

    2016-03-10

    Ecological models of health suggest that to effectively prevent chronic disease, community food environments must support healthy eating behaviors. However, disparities in access to healthy foods persist in the United States. The Farm Fresh Market (FFM) was a fruit and vegetable market that sold low-cost fresh produce in Cobb County, Georgia in 2014. This case study describes the development of the FFM through a community engagement process and presents evaluation results from the project's pilot implementation. Community engagement strategies included forming a community advisory board, conducting a needs assessment, and contracting with a community-based organization to implement the FFM. In the pilot year, the FFM served an average of 28.7 customers and generated an average of $140.20 in produce sales per market day. Most returning customers lived in the local community and reported a range of socioeconomic backgrounds. Most returning customers strongly agreed that the FFM made it easier (69.0%) and less expensive (79.0%) for them to buy fresh fruits and vegetables, reported that they ate more vegetables (65.0%) and fruit (55.0%) as a result of the FFM, and reported that they were very satisfied with the FFM overall (92.0%). Results from this community case study underscore the importance of engaging communities in the development of community food environment interventions. Results also suggest that the FFM initiative was a feasible and acceptable way to respond to the community-identified public health priority of increasing access to healthy foods.

  20. Greening of the Earth and its drivers

    DOE PAGES

    Zhu, Zaichun; Piao, Shilong; Myneni, Ranga B.; ...

    2016-04-25

    Global environmental change is rapidly altering the dynamics of terrestrial vegetation, with consequences for the functioning of the Earth system and provision of ecosystem services 1, 2. Yet how global vegetation is responding to the changing environment is not well established. Here we use three long-term satellite leaf area index (LAI) records and ten global ecosystem models to investigate four key drivers of LAI trends during 1982 2009. We show a persistent and widespread increase of growing season integrated LAI (greening) over 25% to 50% of the global vegetated area, whereas less than 4% of the globe shows decreasing LAImore » (browning). Factorial simulations with multiple global ecosystem models suggest that CO 2 fertilization effects explain 70% of the observed greening trend, followed by nitrogen deposition (9%), climate change (8%) and land cover change (LCC) (4%). CO 2 fertilization effects explain most of the greening trends in the tropics, whereas climate change resulted in greening of the high latitudes and the Tibetan Plateau. LCC contributed most to the regional greening observed in southeast China and the eastern United States. In conclusion, the regional effects of unexplained factors suggest that the next generation of ecosystem models will need to explore the impacts of forest demography, differences in regional management intensities for cropland and pastures, and other emerging productivity constraints such as phosphorus availability.« less

  1. Greening of the Earth and its drivers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Zaichun; Piao, Shilong; Myneni, Ranga B.

    Global environmental change is rapidly altering the dynamics of terrestrial vegetation, with consequences for the functioning of the Earth system and provision of ecosystem services 1, 2. Yet how global vegetation is responding to the changing environment is not well established. Here we use three long-term satellite leaf area index (LAI) records and ten global ecosystem models to investigate four key drivers of LAI trends during 1982 2009. We show a persistent and widespread increase of growing season integrated LAI (greening) over 25% to 50% of the global vegetated area, whereas less than 4% of the globe shows decreasing LAImore » (browning). Factorial simulations with multiple global ecosystem models suggest that CO 2 fertilization effects explain 70% of the observed greening trend, followed by nitrogen deposition (9%), climate change (8%) and land cover change (LCC) (4%). CO 2 fertilization effects explain most of the greening trends in the tropics, whereas climate change resulted in greening of the high latitudes and the Tibetan Plateau. LCC contributed most to the regional greening observed in southeast China and the eastern United States. In conclusion, the regional effects of unexplained factors suggest that the next generation of ecosystem models will need to explore the impacts of forest demography, differences in regional management intensities for cropland and pastures, and other emerging productivity constraints such as phosphorus availability.« less

  2. Mediterranean biomes: Evolution of their vegetation, floras and climate

    USGS Publications Warehouse

    Rundel, Philip W.; Arroyo, Mary T.K.; Cowling, R.M.; Keeley, J. E.; Lamont, B.B.; Vargas, Pablo

    2016-01-01

    Mediterranean-type ecosystems (MTEs) possess the highest levels of plant species richness in the world outside of the wet tropics. Sclerophyll vegetation similar to today’s mediterranean-type shrublands was already present on oligotrophic soils in the wet and humid climate of the Cretaceous, with fire-adapted Paleogene lineages in southwestern Australia and the Cape Region. The novel MTC seasonality present since the mid-Miocene has allowed colonization of MTEs from a regional species pool with associated diversification. Fire persistence has been a primary driving factor for speciation in four of the five regions. Understanding the regional patterns of plant species diversity among the MTEs involves complex interactions of geologic and climatic histories for each region as well as ecological factors that have promoted diversification in the Neogene and Quaternary. A critical element of species richness for many MTE lineages has been their ability to speciate and persist at fine spatial scales, with low rates of extinction.

  3. Dissipation of deltamethrin, triazophos, and endosulfan in ready mix formulations in tomato (Lycopersicon esculentum L.) and Egg plant (Solanum melongena L.).

    PubMed

    Mukherjee, Irani; Kumar, Ashok; Kumar, Aman

    2015-09-01

    Persistence of delltamethrin, endosulfan, and triazophos in egg plant and tomato was studied following application of two ready mix formulations of insecticides viz. deltametrhin and endosulfan (Cobra 5000; 0.75% deltamethrin + 29.5% endosulfan) and deltamethrin and triazophos (Annaconda Plus; 1% deltamethrin + 35% triazophos) at recommended (1.0 L/ha and double dose 2.0 L/ha). The residues of deltamethrin persisted till 7 and 5 days in tomato and egg plant fruits, respectively, in the ready mix formulation of Cobra 5000 whereas endosulfan persisted till 15 and 10 days in tomato and egg plant fruits, respectively. Dissipation of the insecticides followed first-order kinetics with half-life values of deltamethrin and endosulfan ranged from 2.6 to 4.7 and 1.4 to 1.7 days, respectively, for both the vegetables. In case of combination mix of deltamethrin and triazophos (Annaconda Plus), deltamethrin persisted beyond 5 days in both tomato and egg plant fruits, while triazophos persisted till 10 days in both the vegetables. Residues of deltamethrin and triazophos dissipated with half-life of 2.6-4.2 and 1.7-4.1 days, respectively, on tomato and egg plant fruits. Based on the Codex MRL limits, a safe waiting period of 5 and 3 days is suggested for tomato and egg plant, respectively, for the ready mix formulation of deltamethrin and endosulfan (Cobra 5000), and 5-day waiting period is suggested for tomato and egg plant for the combination mix of deltamethrin and triazophos.

  4. Constraining Centennial-Scale Ecosystem-Climate Interactions with a Pre-colonial Forest Reconstruction across the Upper Midwest and Northeastern United States

    NASA Astrophysics Data System (ADS)

    Matthes, J. H.; Dietze, M.; Fox, A. M.; Goring, S. J.; McLachlan, J. S.; Moore, D. J.; Poulter, B.; Quaife, T. L.; Schaefer, K. M.; Steinkamp, J.; Williams, J. W.

    2014-12-01

    Interactions between ecological systems and the atmosphere are the result of dynamic processes with system memories that persist from seconds to centuries. Adequately capturing long-term biosphere-atmosphere exchange within earth system models (ESMs) requires an accurate representation of changes in plant functional types (PFTs) through time and space, particularly at timescales associated with ecological succession. However, most model parameterization and development has occurred using datasets than span less than a decade. We tested the ability of ESMs to capture the ecological dynamics observed in paleoecological and historical data spanning the last millennium. Focusing on an area from the Upper Midwest to New England, we examined differences in the magnitude and spatial pattern of PFT distributions and ecotones between historic datasets and the CMIP5 inter-comparison project's large-scale ESMs. We then conducted a 1000-year model inter-comparison using six state-of-the-art biosphere models at sites that bridged regional temperature and precipitation gradients. The distribution of ecosystem characteristics in modeled climate space reveals widely disparate relationships between modeled climate and vegetation that led to large differences in long-term biosphere-atmosphere fluxes for this region. Model simulations revealed that both the interaction between climate and vegetation and the representation of ecosystem dynamics within models were important controls on biosphere-atmosphere exchange.

  5. Implementation of a Time Series Analysis for the Assessment of the Role of Climate Variability in a Post-Disturbance Savanna System

    NASA Astrophysics Data System (ADS)

    Gibbes, C.; Southworth, J.; Waylen, P. R.

    2013-05-01

    How do climate variability and climate change influence vegetation cover and vegetation change in savannas? A landscape scale investigation of the effect of changes in precipitation on vegetation is undertaken through the employment of a time series analysis. The multi-national study region is located within the Kavango-Zambezi region, and is delineated by the Okavango, Kwando, and Zambezi watersheds. A mean-variance time-series analysis quantifies vegetation dynamics and characterizes vegetation response to climate. The spatially explicit approach used to quantify the persistence of vegetation productivity permits the extraction of information regarding long term climate-landscape dynamics. Results show a pattern of reduced mean annual precipitation and increased precipitation variability across key social and ecological areas within the study region. Despite decreased mean annual precipitation since the mid to late 1970's vegetation trends predominantly indicate increasing biomass. The limited areas which have diminished vegetative cover relate to specific vegetation types, and are associated with declines in precipitation variability. Results indicate that in addition to short term changes in vegetation cover, long term trends in productive biomass are apparent, relate to spatial differences in precipitation variability, and potentially represent shifts vegetation composition. This work highlights the importance of time-series analyses for examining climate-vegetation linkages in a spatially explicit manner within a highly vulnerable region of the world.

  6. Double Up Food Bucks program effects on SNAP recipients' fruit and vegetable purchases.

    PubMed

    Steele-Adjognon, Marie; Weatherspoon, Dave

    2017-12-12

    To encourage the consumption of more fresh fruits and vegetables, the 2014 United Sates Farm Bill allocated funds to the Double Up Food Bucks Program. This program provided Supplemental Nutrition Assistance Program beneficiaries who spent $10 on fresh fruits and vegetables, in one transaction, with a $10 gift card exclusively for Michigan grown fresh fruits and vegetables. This study analyzes how fruit and vegetable expenditures, expenditure shares, variety and purchase decisions were affected by the initiation and conclusion, as well as any persistent effects of the program. Changes in fruit and vegetable purchase behaviors due to Double Up Food Bucks in a supermarket serving a low-income, predominantly Hispanic community in Detroit, Michigan were evaluated using a difference in difference fixed effects estimation strategy. We find that the Double Up Food Bucks program increased vegetable expenditures, fruit and vegetable expenditure shares, and variety of fruits and vegetables purchased but the effects were modest and not sustainable without the financial incentive. Fruit expenditures and the fruit and vegetable purchase decision were unaffected by the program. This study provides valuable insight on how a nutrition program influences a low-income, urban, Hispanic community's fruit and vegetable purchase behavior. Policy recommendations include either removing or lowering the purchase hurdle for incentive eligibility and dropping the Michigan grown requirement to better align with the customers' preferences for fresh fruits and vegetables.

  7. Can individual cognitions, self-regulation and environmental variables explain educational differences in vegetable consumption?: a cross-sectional study among Dutch adults.

    PubMed

    Springvloet, Linda; Lechner, Lilian; Oenema, Anke

    2014-12-06

    Educational differences in health-related behaviors, where low- and moderate-educated individuals have poorer outcomes than high-educated individuals, are persistent. The reasons for these differences remain poorly understood. This study explored whether individual cognitions, self-regulation and environmental-level factors may explain educational differences in vegetable consumption. A cross-sectional study was conducted among 1,342 Dutch adults, of whom 54.5% were low/moderate-educated. Individuals completed an online questionnaire, assessing education, vegetable consumption, demographics, individual cognitions (attitude towards consuming 200 grams of vegetables a day, self-efficacy, subjective norm, intention, perception of vegetables as being expensive), self-regulation (general self-regulation, vegetable-specific action- and coping planning) and environmental-level factors (perception of availability of vegetables in the supermarket and availability of vegetables at home). The joint-significance test was used to determine significant mediation effects. Low/moderate-educated individuals consumed less vegetables (M = 151.2) than high-educated individuals (M = 168.1, β = -0.15, P < .001). Attitude and availability of vegetables at home were found to partially mediate the association between education and vegetable consumption (percentage mediated effect: 24.46%). Since attitude and availability of vegetables at home partially explain the difference in vegetable consumption between low/moderate- and high-educated individuals, these variables may be good target points for interventions to promote vegetable consumption among low/moderate-educated individuals.

  8. The positive influence of state agricultural marketing programs on adults' fruit and vegetable consumption.

    PubMed

    Howlett, Elizabeth A; Burton, Scot; Newman, Christopher L; Faupel, Michel A

    2012-01-01

    To assess whether state-sponsored agricultural marketing programs had a positive influence on adult consumers' fruit and vegetable consumption. Differences in fruit and vegetable consumption between 2000 and 2005 in states that initiated marketing campaigns during this period and those that did not were examined. A representative sample (n  =  237,320) of adults aged 18 and older from states with and without marketing programs was used. The study used data from the 2000 and 2005 Behavioral Risk Factor Surveillance System. The number of fruit and vegetable servings per week and the percentage of respondents consuming five or more servings of fruits and vegetables per day were examined. Between-subjects analysis of variance and logistic regression. In the absence of a marketing campaign, there was a significant decrease in fruit and vegetable consumption between 2000 and 2005. In states with campaigns, consumption remained stable or increased. Marketing effects were stronger for women than for men. Conclusions . State-sponsored agricultural marketing programs had favorable effects on consumers' consumption of fruits and vegetables.

  9. Masking Vegetable Bitterness to Improve Palatability Depends on Vegetable Type and Taste Phenotype

    PubMed Central

    2013-01-01

    Consumption of dark green vegetables falls short of recommendations, in part, because of unpleasant bitterness. A laboratory-based study of 37 adults was used to determine bitter and hedonic responses to vegetables (asparagus, Brussels sprouts, kale) with bitter masking agents (1.33 M sodium acetate, 10 and 32 mM sodium chloride, and 3.2 mM aspartame) and then characterized by taste phenotype and vegetable liking. In repeated-measures ANOVA, aspartame was most effective at suppressing bitterness and improving hedonic responses for all sampled vegetables. Among the sodium salts, 32 mM sodium chloride decreased bitterness for kale and sodium acetate reduced bitterness across all vegetables with a tendency to increase liking for Brussels sprouts, as release from mixture suppression increased perceived sweetness. Participants were nearly equally divided into three 6-n-propylthiouracil (PROP) phenotype groups. Those tasting the least PROP bitterness (non-tasters) reported least vegetable bitterness, and the additives produced little change in vegetable liking. Aspartame persisted as the most effective bitter blocker for the PROP tasters (medium, supertasters), improving vegetable liking for the medium tasters but too much sweetness for supertasters. The sodium salts showed some bitter blocking for PROP tasters, particularly sodium acetate, without significant gains in vegetable liking. Via a survey, adults characterized as low vegetable likers reported greater increase in vegetable liking with the maskers than did vegetable likers. These results suggest that bitter masking agents (mainly sweeteners) can suppress bitterness to increase acceptance if they are matched to perceived vegetable bitterness or to self-reported vegetable disliking. PMID:23682306

  10. A long-term vegetation history of the Mojave-Colorado Desert ecotone at Joshua Tree National Park

    USGS Publications Warehouse

    Holmgren, Camille A.; Betancourt, Julio L.; Rylander, Kate A.

    2010-01-01

    Thirty-eight dated packrat middens were collected from upper desert (930–1357 m) elevations within Joshua Tree National Park near the ecotone between the Mojave Desert and Colorado Desert, providing a 30 ka record of vegetation change with remarkably even coverage for the last 15 ka. This record indicates that vegetation was relatively stable, which may reflect the lack of invasion by extralocal species during the late glacial and the early establishment and persistence of many desert scrub elements. Many of the species found in the modern vegetation assemblages were present by the early Holocene, as indicated by increasing Sørenson's Similarity Index values. C4 grasses and summer-flowering annuals arrived later at Joshua Tree National Park in the early Holocene, suggesting a delayed onset of warm-season monsoonal precipitation compared to other Sonoran Desert and Chihuahuan Desert localities to the east, where summer rains and C4 grasses persisted through the last glacial–interglacial cycle. This would suggest that contemporary flow of monsoonal moisture into eastern California is secondary to the core processes of the North American Monsoon, which remained intact throughout the late Quaternary. In the Holocene, northward displacement of the jet stream, in both summer and winter, allowed migration of the subtropical ridge as far north as southern Idaho and the advection of monsoonal moisture both westward into eastern California and northward into the southern Great Basin and Colorado Plateau.

  11. Interaction Between Ecohydrologic Dynamics and Microtopographic Variability Under Climate Change

    NASA Astrophysics Data System (ADS)

    Le, Phong V. V.; Kumar, Praveen

    2017-10-01

    Vegetation acclimation resulting from elevated atmospheric CO2 concentration, along with response to increased temperature and altered rainfall pattern, is expected to result in emergent behavior in ecologic and hydrologic functions. We hypothesize that microtopographic variability, which are landscape features typically of the length scale of the order of meters, such as topographic depressions, will play an important role in determining this dynamics by altering the persistence and variability of moisture. To investigate these emergent ecohydrologic dynamics, we develop a modeling framework, Dhara, which explicitly incorporates the control of microtopographic variability on vegetation, moisture, and energy dynamics. The intensive computational demand from such a modeling framework that allows coupling of multilayer modeling of the soil-vegetation continuum with 3-D surface-subsurface flow processes is addressed using hybrid CPU-GPU parallel computing framework. The study is performed for different climate change scenarios for an intensively managed agricultural landscape in central Illinois, USA, which is dominated by row-crop agriculture, primarily soybean (Glycine max) and maize (Zea mays). We show that rising CO2 concentration will decrease evapotranspiration, thus increasing soil moisture and surface water ponding in topographic depressions. However, increased atmospheric demand from higher air temperature overcomes this conservative behavior resulting in a net increase of evapotranspiration, leading to reduction in both soil moisture storage and persistence of ponding. These results shed light on the linkage between vegetation acclimation under climate change and microtopography variability controls on ecohydrologic processes.

  12. Interannual Variability of Human Plague Occurrence in the Western United States Explained by Tropical and North Pacific Ocean Climate Variability

    PubMed Central

    Ari, Tamara Ben; Gershunov, Alexander; Tristan, Rouyer; Cazelles, Bernard; Gage, Kenneth; Stenseth, Nils C.

    2010-01-01

    Plague is a vector-borne, highly virulent zoonotic disease caused by the bacterium Yersinia pestis. It persists in nature through transmission between its hosts (wild rodents) and vectors (fleas). During epizootics, the disease expands and spills over to other host species such as humans living in or close to affected areas. Here, we investigate the effect of large-scale climate variability on the dynamics of human plague in the western United States using a 56-year time series of plague reports (1950–2005). We found that El Niño Southern Oscillation and Pacific Decadal Oscillation in combination affect the dynamics of human plague over the western United States. The underlying mechanism could involve changes in precipitation and temperatures that impact both hosts and vectors. It is suggested that snow also may play a key role, possibly through its effects on summer soil moisture, which is known to be instrumental for flea survival and development and sustained growth of vegetation for rodents. PMID:20810830

  13. Nutrition and hydration: an analysis of the recent papal statement in the light of the Roman Catholic bioethical tradition.

    PubMed

    Shannon, Thomas A

    2006-04-01

    This article discusses the unexpectedly firm stance professed by John Paul II on the provision of artificial nutrition and hydration to patients who are in a persistent vegetative state, and it implications on previously held standards of judging medical treatments. The traditional ordinary/extraordinary care distinction is assessed in light of complexities of the recent allocution as well as its impact on Catholic individuals and in Catholic health care facilities. Shannon concludes that the papal allocution infers that the average Catholic patient is incapable of making proper judgments about their own care. Shannon sees the preservation of life at all costs as at least highly troubling, if not as a radical move against the Catholic medical ethics tradition.

  14. Place vs. time and vegetational persistence: A comparison of four tropical mires from the Illinois Basin during the height of the Pennsylvanian Ice Age

    USGS Publications Warehouse

    DiMichele, W.A.; Phillips, T.L.; Nelson, W. John

    2002-01-01

    Coal balls were collected from four coal beds in the southeastern part of the Illinois Basin. Collections were made from the Springfield, Herrin, and Baker coals in western Kentucky, and from the Danville Coal in southwestern Indiana. These four coal beds are among the principal mineable coals of the Illinois Basin and belong to the Carbondale and Shelburn Formations of late Middle Pennsylvanian age. Vegetational composition was analyzed quantitatively. Coal-ball samples from the Springfield, Herrin, and Baker are dominated by the lycopsid tree Lepidophloios, with lesser numbers of Psaronius tree ferns, medullosan pteridosperms, and the lycopsid trees Synchysidendron and Diaphorodendron. This vegetation is similar to that found in the Springfield and Herrin coals elsewhere in the Illinois Basin, as reported in previous studies. The Danville coal sample, which is considerably smaller than the others, is dominated by Psaronius with the lycopsids Sigillaria and Synchysidendron as subdominants. Coal balls from the Springfield coal were collected in zones directly from the coal bed and their zone-by-zone composition indicates three to four distinct plant assemblages. The other coals were analyzed as whole-seam random samples, averaging the landscape composition of the parent mire environments. This analysis indicates that these coals, separated from each other by marine and terrestrial-clastic deposits, have essentially the same floristic composition and, thus, appear to represent a common species pool that persisted throughout the late Middle Pennsylvanian, despite changes in baselevel and climate attendant the glacial interglacial cyclicity of the Pennsylvanian ice age. Patterns of species abundance and diversity are much the same for the Springfield, Herrin, and Baker, although each coal, both in the local area sampled, and regionally, has its own paleobotanical peculiarities. Despite minor differences, these coals indicate a high degree of recurrence of assemblage and landscape organization. The Danville departs dramatically from the dominance-diversity composition of the older coals, presaging patterns of tree-fern and Sigillaria dominance of Late Pennsylvanian coals of the eastern United States, but, nonetheless, built on a species pool shared with the older coals. ?? 2002 Elsevier Science B.V. All rights reserved.

  15. Late-Glacial Environmental Changes South of the Wisconsinan Terminal Moraine in the Eastern United States

    NASA Astrophysics Data System (ADS)

    Russell, Emily W. B.; Stanford, Scott D.

    2000-01-01

    Palynological analyses of two sediment cores, one 2.4 m long from northern Delaware, dated about 16,300 to 14,700 14C yr B.P., and one 1.8 m long from New Jersey just south of the Wisconsinan terminal moraine and dated about 13,600 to 12,500 14C yr B.P., give the first detailed evidence of vegetation in this area during these periods. The overall assemblages are similar to each other, with Picea and Pinus dominating the arboreal pollen and Poaceae and Cyperaceae the herbaceous flora. Nonarboreal pollen contributes about 30-50% of the total, indicating a very open vegetation or a mix of forest patches and open areas. Especially in Delaware, there is a diversity of other herbaceous pollen, including members of the Asteraceae, Fabaceae, and Ranunculaceae. The assemblages do not resemble current North American tundra or boreal forest assemblages; rather, they resemble assemblages characteristic of tundra on recently exposed land surfaces north of the Wisconsinan terminal moraine. The persistence of the assemblages for 1500-2000 years in late-glacial time suggests stable and cold climate during this time of glacier retreat.

  16. Late-glacial environmental changes south of the Wisconsinan terminal moraine in the Eastern United States

    USGS Publications Warehouse

    Russell, E.W.B.; Stanford, S.D.

    2000-01-01

    Palynological analyses of two sediment cores, one 2.4 m long from northern Delaware, dated about 16,300 to 14,700 14C yr B.P., and one 1.8 m long from New Jersey just south of the Wisconsinan terminal moraine and dated about 13,600 to 12,500 14C yr B.P., give the first detailed evidence of vegetation in this area during these periods. The overall assemblages are similar to each other, with Picea and Pinus dominating the arboreal pollen and Poaceae and Cyperaceae the herbaceous flora. Nonarboreal pollen contributes about 30-50% of the total, indicating a very open vegetation or a mix of forest patches and open areas. Especially in Delaware, there is a diversity of other herbaceous pollen, including members of the Asteraceae, Fabaceae, and Ranunculaceae. The assemblages do not resemble current North American tundra or boreal forest assemblages; rather, they resemble assemblages characteristic of tundra on recently exposed land surfaces north of the Wisconsinan terminal moraine. The persistence of the assemblages for 1500-2000 years in late-glacial time suggests stable and cold climate during this time of glacier retreat.

  17. TRY – a global database of plant traits

    PubMed Central

    Kattge, J; Díaz, S; Lavorel, S; Prentice, I C; Leadley, P; Bönisch, G; Garnier, E; Westoby, M; Reich, P B; Wright, I J; Cornelissen, J H C; Violle, C; Harrison, S P; Van Bodegom, P M; Reichstein, M; Enquist, B J; Soudzilovskaia, N A; Ackerly, D D; Anand, M; Atkin, O; Bahn, M; Baker, T R; Baldocchi, D; Bekker, R; Blanco, C C; Blonder, B; Bond, W J; Bradstock, R; Bunker, D E; Casanoves, F; Cavender-Bares, J; Chambers, J Q; Chapin, F S; Chave, J; Coomes, D; Cornwell, W K; Craine, J M; Dobrin, B H; Duarte, L; Durka, W; Elser, J; Esser, G; Estiarte, M; Fagan, W F; Fang, J; Fernández-Méndez, F; Fidelis, A; Finegan, B; Flores, O; Ford, H; Frank, D; Freschet, G T; Fyllas, N M; Gallagher, R V; Green, W A; Gutierrez, A G; Hickler, T; Higgins, S I; Hodgson, J G; Jalili, A; Jansen, S; Joly, C A; Kerkhoff, A J; Kirkup, D; Kitajima, K; Kleyer, M; Klotz, S; Knops, J M H; Kramer, K; Kühn, I; Kurokawa, H; Laughlin, D; Lee, T D; Leishman, M; Lens, F; Lenz, T; Lewis, S L; Lloyd, J; Llusià, J; Louault, F; Ma, S; Mahecha, M D; Manning, P; Massad, T; Medlyn, B E; Messier, J; Moles, A T; Müller, S C; Nadrowski, K; Naeem, S; Niinemets, Ü; Nöllert, S; Nüske, A; Ogaya, R; Oleksyn, J; Onipchenko, V G; Onoda, Y; Ordoñez, J; Overbeck, G; Ozinga, W A; Patiño, S; Paula, S; Pausas, J G; Peñuelas, J; Phillips, O L; Pillar, V; Poorter, H; Poorter, L; Poschlod, P; Prinzing, A; Proulx, R; Rammig, A; Reinsch, S; Reu, B; Sack, L; Salgado-Negret, B; Sardans, J; Shiodera, S; Shipley, B; Siefert, A; Sosinski, E; Soussana, J-F; Swaine, E; Swenson, N; Thompson, K; Thornton, P; Waldram, M; Weiher, E; White, M; White, S; Wright, S J; Yguel, B; Zaehle, S; Zanne, A E; Wirth, C

    2011-01-01

    Plant traits – the morphological, anatomical, physiological, biochemical and phenological characteristics of plants and their organs – determine how primary producers respond to environmental factors, affect other trophic levels, influence ecosystem processes and services and provide a link from species richness to ecosystem functional diversity. Trait data thus represent the raw material for a wide range of research from evolutionary biology, community and functional ecology to biogeography. Here we present the global database initiative named TRY, which has united a wide range of the plant trait research community worldwide and gained an unprecedented buy-in of trait data: so far 93 trait databases have been contributed. The data repository currently contains almost three million trait entries for 69 000 out of the world's 300 000 plant species, with a focus on 52 groups of traits characterizing the vegetative and regeneration stages of the plant life cycle, including growth, dispersal, establishment and persistence. A first data analysis shows that most plant traits are approximately log-normally distributed, with widely differing ranges of variation across traits. Most trait variation is between species (interspecific), but significant intraspecific variation is also documented, up to 40% of the overall variation. Plant functional types (PFTs), as commonly used in vegetation models, capture a substantial fraction of the observed variation – but for several traits most variation occurs within PFTs, up to 75% of the overall variation. In the context of vegetation models these traits would better be represented by state variables rather than fixed parameter values. The improved availability of plant trait data in the unified global database is expected to support a paradigm shift from species to trait-based ecology, offer new opportunities for synthetic plant trait research and enable a more realistic and empirically grounded representation of terrestrial vegetation in Earth system models.

  18. Demographic monitoring and population viability analysis of two rare beardtongues from the Uinta Basin

    USGS Publications Warehouse

    McCaffery, Rebecca M.; Reisor, Rita; Irvine, Kathryn M.; Brunson, Jessi

    2014-01-01

    Energy development, in combination with other environmental stressors, poses a persistent threat to rare species endemic to the energy-producing regions of the Western United States. Demographic analyses of monitored populations can provide key information on the natural dynamics of threatened plant and animal populations, and how they might be affected by ongoing and future development. In the Uinta Basin in Utah and Colorado, Graham’s beardtongue (Penstemon grahamii) and White River beardtongue (Penstemon scariosus var. albifluvis) are two rare endemic wildflowers that persist on oil shale habitats heavily impacted by current energy exploration and development, and slated for expanded traditional drilling and oil shale development. We described demographic characteristics and population viability for two populations of each species that have been monitored since 2004. First, we measured population size, survival rates, transitions between life stages, and recruitment using individually marked plants at the four study areas. Then, we used matrix population models to determine stochastic population growth rates (λ) and the probability that each population would persist 50 years into the future, given current conditions. The two P. grahamii study plots had small populations averaging 70 adult plants, and relatively constant and high survival in both vegetative and flowering plants. The two P. scariosus var. albifluvis study plots had populations that averaged 120 adult plants, with high and stable survival in flowering plants and variable survival in vegetative plants. Recruitment of new seedlings into all populations was low and variable, with most recruitment occurring in one or two years. Both P. grahamii populations had λ near 1.0 (stable). One P. scariosus var. albifluvis population appeared to be declining (λ=0.97), while the other was increasing (λ=1.16). Our analyses reveal populations that appear relatively stable, but that are susceptible to declines now and into the future. Increases in environmental variability, deterministic changes in habitat conditions or stressors, or a single catastrophic event could all have immediately deleterious impacts on the long-term growth trajectory of these populations.

  19. Remotely Sensed Northern Vegetation Response to Changing Climate: Growing Season and Productivity Perspective

    NASA Technical Reports Server (NTRS)

    Ganguly, S.; Park, Taejin; Choi, Sungho; Bi, Jian; Knyazikhin, Yuri; Myneni, Ranga

    2016-01-01

    Vegetation growing season and maximum photosynthetic state determine spatiotemporal variability of seasonal total gross primary productivity of vegetation. Recent warming induced impacts accelerate shifts on growing season and physiological status over Northern vegetated land. Thus, understanding and quantifying these changes are very important. Here, we first investigate how vegetation growing season and maximum photosynthesis state are evolved and how such components contribute on inter-annual variation of seasonal total gross primary productivity. Furthermore, seasonally different response of northern vegetation to changing temperature and water availability is also investigated. We utilized both long-term remotely sensed data to extract larger scale growing season metrics (growing season start, end and duration) and productivity (i.e., growing season summed vegetation index, GSSVI) for answering these questions. We find that regionally diverged growing season shift and maximum photosynthetic state contribute differently characterized productivity inter-annual variability and trend. Also seasonally different response of vegetation gives different view of spatially varying interaction between vegetation and climate. These results highlight spatially and temporally varying vegetation dynamics and are reflective of biome-specific responses of northern vegetation to changing climate.

  20. Predicting the response of the Amazon rainforest to persistent drought conditions under current and future climates: a major challenge for global land surface models

    NASA Astrophysics Data System (ADS)

    Joetzjer, E.; Delire, C.; Douville, H.; Ciais, P.; Decharme, B.; Fisher, R.; Christoffersen, B.; Calvet, J. C.; da Costa, A. C. L.; Ferreira, L. V.; Meir, P.

    2014-08-01

    While a majority of Global Climate Models project dryer and longer dry seasons over the Amazon under higher CO2 levels, large uncertainties surround the response of vegetation to persistent droughts in both present-day and future climates. We propose a detailed evaluation of the ability of the ISBACC Land Surface Model to capture drought effects on both water and carbon budgets, comparing fluxes and stocks at two recent ThroughFall Exclusion (TFE) experiments performed in the Amazon. We also explore the model sensitivity to different Water Stress Function (WSF) and to an idealized increase in CO2 concentration and/or temperature. In spite of a reasonable soil moisture simulation, ISBACC struggles to correctly simulate the vegetation response to TFE whose amplitude and timing is highly sensitive to the WSF. Under higher CO2 concentration, the increased Water Use Efficiency (WUE) mitigates the ISBACC's sensitivity to drought. While one of the proposed WSF formulation improves the response of most ISBACC fluxes, except respiration, a parameterization of drought-induced tree mortality is missing for an accurate estimate of the vegetation response. Also, a better mechanistic understanding of the forest responses to drought under a warmer climate and higher CO2 concentration is clearly needed.

  1. Implications of scale-independent habitat specialization on persistence of a rare small mammal

    USGS Publications Warehouse

    Cleaver, Michael; Klinger, Robert C.; Anderson, Steven T.; Maier, Paul A.; Clark, Jonathan

    2015-01-01

    We assessed the habitat use patterns of the Amargosa vole Microtus californicus scirpensis , an endangered rodent endemic to wetland vegetation along a 3.5 km stretch of the Amargosa River in the Mojave Desert, USA. Our goals were to: (1) quantify the vole’s abundance, occupancy rates and habitat selection patterns along gradients of vegetation cover and spatial scale; (2) identify the processes that likely had the greatest influence on its habitat selection patterns. We trapped voles monthly in six 1 ha grids from January to May 2012 and measured habitat structure at subgrid (View the MathML source225m2) and trap (View the MathML source1m2) scales in winter and spring seasons. Regardless of scale, analyses of density, occupancy and vegetation structure consistently indicated that voles occurred in patches of bulrush (Schoenoplectus americanus ; Cyperaceae) where cover >50%. The majority of evidence indicates the vole's habitat selectivity is likely driven by bulrush providing protection from intense predation. However, a combination of selective habitat use and limited movement resulted in a high proportion of apparently suitable bulrush patches being unoccupied. This suggests the Amargosa vole's habitat selection behavior confers individual benefits but may not allow the overall population to persist in a changing environment.

  2. Persistence of Coastal Vegetation in Supratidal Zones of Northern China

    PubMed Central

    Yang, Hongxiao; Chu, Jianmin

    2013-01-01

    Coastal vegetation comprises a number of coastal specialists and terrestrial generalists. It remains unclear how they persist on disturbed and undisturbed coastal conditions. We tested the hypothesis that coastal specialists may be superior to terrestrial generalists on supratidal zones of coasts, but their superiority can be influenced by human disturbances. Eight separate sandy coasts of the Shandong Peninsula were sampled, representing for disturbed and undisturbed sandy coasts. Plants growing on their supratidal zones were surveyed. On this basis, we compared the relative dominances, niche widths, and commonness of all species, and also analyzed species diversities of the coasts. Coastal specialists were found to be more common and widespread on supratidal zones of the sandy coasts than terrestrial generalists haphazardly invading from hinterlands. Coastal specialists exhibited lower Sørensen dissimilarities than terrestrial generalists among the coasts. Tourist trampling seemed more detrimental than pond fishery to coastal vegetation. Relative to terrestrial generalists, coastal specialists responded to human disturbances more deterministically, with steady decreases in species diversities. These evidences verify that coastal specialists are intrinsically superior to terrestrial generalists on supratidal zones of coasts, especially of undisturbed coasts, because their dispersal among coasts adapts well to local storm surge regime. They also validate that human disturbances can depress the superiority of coastal specialists, partly by inducing invasion of terrestrial generalists. PMID:24224026

  3. Conservation biological control in strawberry: effect of different pollen on development, survival, and reproduction of Neoseiulus californicus (Acari: Phytoseiidae).

    PubMed

    Gugole Ottaviano, María F; Cédola, Claudia V; Sánchez, Norma E; Greco, Nancy M

    2015-12-01

    Wild vegetation surrounding crops may provide temporary habitat and potential food sources for phytoseiids in different seasons. Monthly vegetation samples of wild plants adjacent to strawberry plants and wild plants in a vegetation strip close to the crop were taken. The frequency of Neoseiulus californicus, Tetranychus urticae and other mites and insects was recorded. In addition, in a laboratory assay, the survival, developmental time and fecundity of females fed on pollen of strawberry and pollen of wild plants where N. californicus was recorded during their flowering, were estimated. Pollen from Urtica urens, Lamium amplexicaule, Convolvulus arvensis, Sonchus oleraceous, Galega officinalis, and Fragaria x ananassa (strawberry) allowed development of N. californicus to adult, but not reproduction. Survival was 70-80 % when fed on pollen from S. oleraceus, G. officinalis and C. arvensis, 80-90 % when fed on pollen from U. urens and F. x ananassa, and more than 90 % when fed on T. urticae and on pollen from L. amplexicaule. In autumn and winter, U. urens, L. amplexicaule and S. oleraceous could promote the persistence of N. californicus when prey density in strawberry is low, offering T. urticae, thrips and pollen. In summer, pollen of C. arvensis and G. officinalis would contribute to the persistence of N. californicus when the strawberry crop is ending and offers scarce food resources. Although the pollen of these plants would not enable the predator population to increase, the presence of these plants in the vicinity of strawberry could contribute to the persistence of N. californicus population and help to limit T. urticae growth when this pest begins to colonize the crop.

  4. The Lasting Influences of Early Food-Related Variety Experience: A Longitudinal Study of Vegetable Acceptance from 5 Months to 6 Years in Two Populations

    PubMed Central

    Maier-Nöth, Andrea; Schaal, Benoist; Leathwood, Peter; Issanchou, Sylvie

    2016-01-01

    Children’s vegetable consumption falls below current recommendations, highlighting the need to identify strategies that can successfully promote better acceptance of vegetables. Recently, experimental studies have reported promising interventions that increase acceptance of vegetables. The first, offering infants a high variety of vegetables at weaning, increased acceptance of new foods, including vegetables. The second, offering an initially disliked vegetable at 8 subsequent meals markedly increased acceptance for that vegetable. So far, these effects have been shown to persist for at least several weeks. We now present follow-up data at 15 months, 3 and 6 years obtained through questionnaire (15 mo, 3y) and experimental (6y) approaches. At 15 months, participants who had been breast-fed were reported as eating and liking more vegetables than those who had been formula-fed. The initially disliked vegetable that became accepted after repeated exposure was still liked and eaten by 79% of the children. At 3 years, the initially disliked vegetable was still liked and eaten by 73% of the children. At 6 years, observations in an experimental setting showed that children who had been breast-fed and children who had experienced high vegetable variety at the start of weaning ate more of new vegetables and liked them more. They were also more willing to taste vegetables than formula-fed children or the no or low variety groups. The initially disliked vegetable was still liked by 57% of children. This follow-up study suggests that experience with chemosensory variety in the context of breastfeeding or at the onset of complementary feeding can influence chemosensory preferences for vegetables into childhood. PMID:26968029

  5. Reduced mortality after severe head injury will increase the demands for rehabilitation services.

    PubMed

    Eker, C; Schalén, W; Asgeirsson, B; Grände, P O; Ranstam, J; Nordström, C H

    2000-07-01

    In 1989, a new therapy to reduce intracranial pressure in severely head-injured patients was introduced in Lund. The new treatment reduced mortality significantly. The present study describes the quality of life for the survivors. The study includes 53 patients treated during 1989-1994, according to a new treatment protocol for increased intracranial pressure ('Lund concept' group). During 1982-1986, 38 patients were managed according to a protocol including high dose thiopentone ('Thiopentone' group). The two groups are compared regarding neurophysical and psychiatric symptoms as well as aspects regarding the patient's role, performance, interpersonal relationship, frictions, feelings and satisfaction in work, areas of social and leisure activities, and extended family. Mortality was reduced from 47% to 8%, but the number of patients with a persistent vegetative state and/or remaining severe disability did not increase. However, the number of patients with persisting emotional and intellectual deficits increased significantly. The new treatment regime has dramatically increased the number of survivors after severe head trauma. Although most patients have a favourable outcome, there are more patients with remaining sequelae and disabilities, and the demand for qualified rehabilitation has increased.

  6. Historical and modern disturbance regimes, stand structures, and landscape dynamics in piñon-juniper vegetation of the western United States

    USGS Publications Warehouse

    Romme, William H.; Allen, Craig D.; Bailey, John D.; Baker, William L.; Bestelmeyer, Brandon T.; Brown, Peter M.; Eisenhart, Karen S.; Floyd, M. Lisa; Huffman, David W.; Jacobs, Brian F.; Miller, Richard F.; Muldavin, Esteban H.; Swetnam, Thomas W.; Tausch, Robin J.; Weisberg, Peter J.

    2009-01-01

    Piñon–juniper is a major vegetation type in western North America. Effective management of these ecosystems has been hindered by inadequate understanding of 1) the variability in ecosystem structure and ecological processes that exists among the diverse combinations of piñons, junipers, and associated shrubs, herbs, and soil organisms; 2) the prehistoric and historic disturbance regimes; and 3) the mechanisms driving changes in vegetation structure and composition during the past 150 yr. This article summarizes what we know (and don't know) about three fundamentally different kinds of piñon–juniper vegetation. Persistent woodlands are found where local soils, climate, and disturbance regimes are favorable for piñon, juniper, or a mix of both; fires have always been infrequent in these woodlands. Piñon–juniper savannas are found where local soils and climate are suitable for both trees and grasses; it is logical that low-severity fires may have maintained low tree densities before disruption of fire regimes following Euro-American settlement, but information is insufficient to support any confident statements about historical disturbance regimes in these savannas. Wooded shrublands are found where local soils and climate support a shrub community, but trees can increase during moist climatic conditions and periods without disturbance and decrease during droughts and following disturbance. Dramatic increases in tree density have occurred in portions of all three types of piñon–juniper vegetation, although equally dramatic mortality events have also occurred in some areas. The potential mechanisms driving increases in tree density—such as recovery from past disturbance, natural range expansion, livestock grazing, fire exclusion, climatic variability, and CO2 fertilization—generally have not received enough empirical or experimental investigation to predict which is most important in any given location. The intent of this synthesis is 1) to provide a source of information for managers and policy makers; and 2) to stimulate researchers to address the most important unanswered questions.

  7. A nonlinear coupled soil moisture-vegetation model

    NASA Astrophysics Data System (ADS)

    Liu, Shikuo; Liu, Shida; Fu, Zuntao; Sun, Lan

    2005-06-01

    Based on the physical analysis that the soil moisture and vegetation depend mainly on the precipitation and evaporation as well as the growth, decay and consumption of vegetation a nonlinear dynamic coupled system of soil moisture-vegetation is established. Using this model, the stabilities of the steady states of vegetation are analyzed. This paper focuses on the research of the vegetation catastrophe point which represents the transition between aridness and wetness to a great extent. It is shown that the catastrophe point of steady states of vegetation depends mainly on the rainfall P and saturation value v0, which is selected to balance the growth and decay of vegetation. In addition, when the consumption of vegetation remains constant, the analytic solution of the vegetation equation is obtained.

  8. Vegetation shifts observed in arctic tundra 17 years after fire

    USGS Publications Warehouse

    Barrett, Kirsten; Rocha, Adrian V.; van de Weg, Martine Janet; Shaver, Gaius

    2012-01-01

    With anticipated climate change, tundra fires are expected to occur more frequently in the future, but data on the long-term effects of fire on tundra vegetation composition are scarce. This study addresses changes in vegetation structure that have persisted for 17 years after a tundra fire on the North Slope of Alaska. Fire-related shifts in vegetation composition were assessed from remote-sensing imagery and ground observations of the burn scar and an adjacent control site. Early-season remotely sensed imagery from the burn scar exhibits a low vegetation index compared with the control site, whereas the late-season signal is slightly higher. The range and maximum vegetation index are greater in the burn scar, although the mean annual values do not differ among the sites. Ground observations revealed a greater abundance of moss in the unburned site, which may account for the high early growing season normalized difference vegetation index (NDVI) anomaly relative to the burn. The abundance of graminoid species and an absence of Betula nana in the post-fire tundra sites may also be responsible for the spectral differences observed in the remotely sensed imagery. The partial replacement of tundra by graminoid-dominated ecosystems has been predicted by the ALFRESCO model of disturbance, climate and vegetation succession.

  9. Distribution of Bemisia tabaci (Hemiptera: Aleyrodidae) biotypes in North America after the Q invasion.

    PubMed

    McKenzie, Cindy L; Bethke, James A; Byrne, Frank J; Chamberlin, Joseph R; Dennehy, Timothy J; Dickey, Aaron M; Gilrein, Dan; Hall, Paula M; Ludwig, Scott; Oetting, Ronald D; Osborne, Lance S; Schmale, Lin; Shatters, Robert G

    2012-06-01

    After the 2004 discovery of the Bemisia tabaci (Gennadius) (Hemiptera Aleyrodidae) Q biotype in the United States, there was a vital need to determine the geographical and host distribution as well as its interaction with the resident B biotype because of its innate ability to rapidly develop high-level insecticide resistance that persists in the absence of exposure. As part of a coordinated country-wide effort, an extensive survey of B. tabaci biotypes was conducted in North America, with the cooperation of growers, industry, local, state, and federal agencies, to monitor the introduction and distribution of the Q biotype. The biotype status of submitted B. tabaci samples was determined either by polymerase chain reaction amplification and sequencing of a mitochondrial cytochrome oxidase I small subunit gene fragment and characterization of two biotype discriminating nuclear microsatellite markers or esterase zymogram analysis. Two hundred and eighty collections were sampled from the United States, Bermuda, Canada, and Mexico during January 2005 through December 2011. Host plants were split between ornamental plant and culinary herb (67%) and vegetable and field crop (33%) commodities. The New World biotype was detected on field-grown tomatoes (Solanum lycopersicum L.) in Mexico (two) and in commercial greenhouses in Texas (three) and represented 100% of these five collections. To our knowledge, the latter identification represents the first report of the New World biotype in the United States since its rapid displacement in the late 1980s after the introduction of biotype B. Seventy-one percent of all collections contained at least one biotype B individual, and 53% of all collections contained only biotype B whiteflies. Biotype Q was detected in 23 states in the United States, Canada (British Columbia and Ontario territories), Bermuda, and Mexico. Forty-five percent of all collections were found to contain biotype Q in samples from ornamentals, herbs and a single collection from tomato transplants located in protected commercial horticultural greenhouses, but there were no Q detections in outdoor agriculture (vegetable or field crops). Ten of the 15 collections (67%) from Canada and a single collection from Bermuda contained biotype Q, representing the first reports of biotype Q for both countries. Three distinct mitochondrial haplotypes of B. tabaci biotype Q whiteflies were detected in North America Our data are consistent with the inference of independent invasions from at least three different locations. Of the 4,641 individuals analyzed from 517 collections that include data from our previous work, only 16 individuals contained genetic or zymogram evidence of possible hybridization of the Q and B biotypes, and there was no evidence that rare hybrid B-Q marker co-occurrences persisted in any populations.

  10. Abnormal Functional MRI BOLD Contrast in the Vegetative State after Severe Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Heelmann, Volker

    2010-01-01

    For the rehabilitation process, the treatment of patients surviving brain injury in a vegetative state is still a serious challenge. The aim of this study was to investigate patients exhibiting severely disturbed consciousness using functional magnetic resonance imaging. Five cases of posttraumatic vegetative state and one with minimal…

  11. Predicting landscape vegetation dynamics using state-and-transition simulation models

    Treesearch

    Colin J. Daniel; Leonardo Frid

    2012-01-01

    This paper outlines how state-and-transition simulation models (STSMs) can be used to project changes in vegetation over time across a landscape. STSMs are stochastic, empirical simulation models that use an adapted Markov chain approach to predict how vegetation will transition between states over time, typically in response to interactions between succession,...

  12. TRACKING CHLORDANE COMPOSITIONAL AND CHIRAL PROFILES IN SOIL AND VEGETATION. (R828174)

    EPA Science Inventory

    The cycling of chlordane and other persistent organic pollutants through the environment must be comprehensively elucidated to assess adequately the human health risks posed from such contaminants. In this study the compositional and chiral profiles of weathered chlordane resi...

  13. 33 CFR 154.1020 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., 154.1047, 154.1225, or 154.1325, as appropriate; ice conditions, temperatures, weather-related.... Animal fat means a non-petroleum oil, fat, or grease derived from animals, and not specifically... non-petroleum oil of any kind that is not generally an animal fat or vegetable oil. Persistent oil...

  14. Persistence and mobility of nitrofen (niclofen, TOK) in mineral and organic soils.

    PubMed

    Murty, A S; Miles, J R; Tu, C M

    1982-01-01

    Residues of nitrofen in farm soils, persistence of nitrofen in field microplots, mobility of nitrofen in natural soils and the role of microbial flora in its degradation were studied. Muck soils from vegetable farms in southwestern Ontario contained up to 35 ppm nitrofen in mid-season (August), which decreased to 18 ppm by October. The herbicide was less persistent in sand than in muck. Degradation was slightly faster in sand and muck soils receiving two sprays, than in those sprayed once. From an initial deposit of ca. 2 and 10 ppm resp., in sand and muck field microplots, ca. 2 and 15% persisted after 16 wk. Leaching of nitrofen by water through sand was negligible, and it was even more strongly adsorbed onto organic soil. Natural microbial flora seemed to play an important role in the degradation of nitrofen in soil. Ca. 15 and 38% resp., of the initial concentration persisted in natural sandy loam and muck 16 wk after treatment at 10 ppm, whereas about 94 and 82% resp., persisted in sterilized sandy loam and muck at the same period.

  15. Modeling Feedbacks Between Water and Vegetation in the Climate System

    NASA Technical Reports Server (NTRS)

    Miller, James R.; Russell, Gary L.; Hansen, James E. (Technical Monitor)

    2001-01-01

    Not only is water essential for life on earth, but life itself affects the global hydrologic cycle and consequently the climate of the planet. Whether the global feedbacks between life and the hydrologic cycle tend to stabilize the climate system about some equilibrium level is difficult to assess. We use a global climate model to examine how the presence of vegetation can affect the hydrologic cycle in a particular region. A control for the present climate is compared with a model experiment in which the Sahara Desert is replaced by vegetation in the form of trees and shrubs common to the Sahel region. A second model experiment is designed to identify the separate roles of two different effects of vegetation, namely the modified albedo and the presence of roots that can extract moisture from deeper soil layers. The results show that the presence of vegetation leads to increases in precipitation and soil moisture in western Sahara. In eastern Sahara, the changes are less clear. The increase in soil moisture is greater when the desert albedo is replaced by the vegetation albedo than when both the vegetation albedo and roots are added. The effect of roots is to withdraw water from deeper layers during the dry season. One implication of this study is that the insertion of vegetation into the Sahara modifies the hydrologic cycle so that the vegetation is more likely to persist than initially.

  16. The Trajectories and Impacts of Land Use and Land Cover Change: A Global Synthesis

    NASA Astrophysics Data System (ADS)

    Mustard, J. F.; Fisher, T. R.; Prince, S. D.; Soja, A. J.; Elmore, A. J.

    2001-12-01

    We have summarized the trajectories of land cover and land use change (LCLUC) and the resulting impacts through a synthesis of results from studies encompassing a wide range of environments. While the specific changes and impacts are in some ways unique to each environment, we have nevertheless identified some general principles that seem to apply across all regions. The LCLUC trajectory of a particular landscape under influence by human actions begins with the transition from conditions dominated by natural vegetation to a frontier state. Land use activities in a frontier state are centered primarily around resource extraction and development of infrastructure such as roads or ports. Under the proper conditions (e.g. soils, climate), the frontier state gives way to an agricultural landscape by further conversion of natural vegetation to agriculture and management of cleared land for agriculture. The maximum extent of this conversion is a function of local biophysical and socio-economic factors. For example conversion of arid lands may be limited by water availability, access to capital for development of water resources and access to markets for the products. Given the appropriate conditions (e.g. economic and social policy, generation of wealth), LCLUC evolves as large settlements and industrialization develop in concert with high land prices and agricultural intensification. In some cases (e.g., New England, Appalachia), economic conditions (e.g., better land for agriculture elsewhere) may result in reversion of agriculture to natural vegetation. The last stage in LCLUC is conversion of agriculture to residential and suburban environments (e.g., Baltimore/Washington corridor). Examination of global land cover indicates that every stage is currently present, with areas like the Eastern United States and Western Europe as examples of regions having experienced all stages, while parts of the Amazon basin, Siberia, and Africa are moving through the frontier transition. Whether these frontier regions will evolve along the general LCLUC trajectory will depend on biophysical and socio-economic factors. Some regions like Siberia may never evolve to the agricultural stage and persist as a frontier landscape with its associated impacts. The impacts on biogeochemical and social systems are the most dramatic during transitions between states, with lesser impacts or even recovery during periods of stasis. However, displacement of natural vegetation by anthropogenic land uses currently results in enhanced water yields and higher fluxes of elements such as N and P, which encourage eutrophication of lakes and coastal waters without further land cover change. Social and economic policies are the primary drivers of LCLUC, and regulations are critical for controlling the impacts, especially in the later stages.

  17. Impact of dairy manure pre-application treatment on manure composition, soil dynamics of antibiotic resistance genes, and abundance of antibiotic-resistance genes on vegetables at harvest.

    PubMed

    Tien, Yuan-Ching; Li, Bing; Zhang, Tong; Scott, Andrew; Murray, Roger; Sabourin, Lyne; Marti, Romain; Topp, Edward

    2017-03-01

    Manuring ground used for crop production is an important agricultural practice. Should antibiotic-resistant enteric bacteria carried in the manure be transferred to crops that are consumed raw, their consumption by humans or animals will represent a route of exposure to antibiotic resistance genes. Treatment of manures prior to land application is a potential management option to reduce the abundance of antibiotic resistance genes entrained with manure application. In this study, dairy manure that was untreated, anaerobically digested, mechanically dewatered or composted was applied to field plots that were then cropped to lettuce, carrots and radishes. The impact of treatment on manure composition, persistence of antibiotic resistance gene targets in soil following application, and distribution of antibiotic resistance genes and bacteria on vegetables at harvest was determined. Composted manure had the lowest abundance of antibiotic resistance gene targets compared to the other manures. There was no significant difference in the persistence characteristics of antibiotic resistance genes following land application of the various manures. Compared to unmanured soil, antibiotic resistance genes were detected more frequently in soil receiving raw or digested manure, whereas they were not in soil receiving composted manure. The present study suggests that vegetables grown in ground receiving raw or digested manure are at risk of contamination with manure-borne antibiotic resistant bacteria, whereas vegetables grown in ground receiving composted manure are less so. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  18. fatalityCMR: capture-recapture software to correct raw counts of wildlife fatalities using trial experiments for carcass detection probability and persistence time

    USGS Publications Warehouse

    Peron, Guillaume; Hines, James E.

    2014-01-01

    Many industrial and agricultural activities involve wildlife fatalities by collision, poisoning or other involuntary harvest: wind turbines, highway network, utility network, tall structures, pesticides, etc. Impacted wildlife may benefit from official protection, including the requirement to monitor the impact. Carcass counts can often be conducted to quantify the number of fatalities, but they need to be corrected for carcass persistence time (removal by scavengers and decay) and detection probability (searcher efficiency). In this article we introduce a new piece of software that fits a superpopulation capture-recapture model to raw count data. It uses trial data to estimate detection and daily persistence probabilities. A recurrent issue is that fatalities of rare, protected species are infrequent, in which case the software offers the option to switch to an ‘evidence of absence’ mode, i.e., estimate the number of carcasses that may have been missed by field crews. The software allows distinguishing between different turbine types (e.g. different vegetation cover under turbines, or different technical properties), as well between two carcass age-classes or states, with transition between those classes (e.g, fresh and dry). There is a data simulation capacity that may be used at the planning stage to optimize sampling design. Resulting mortality estimates can be used 1) to quantify the required amount of compensation, 2) inform mortality projections for proposed development sites, and 3) inform decisions about management of existing sites.

  19. Improving vegetation and mowing management in highway corridors : interim report.

    DOT National Transportation Integrated Search

    1978-01-01

    Ky-31 tall fescue was found to be the best adapted cool season perennial grass for use in Virginia. Persistence of fine-leaved, short grasses was poor. Late winter-early spring seeding of perennial legumes was found to be the best season for seeding ...

  20. Improving vegetation and mowing management in highway corridors : final report.

    DOT National Transportation Integrated Search

    1979-01-01

    Ky-31 tall fescue was found to be the best adapted cool season perennial grass for use in Virginia. Persistence of fine-leaved, short grasses was poor. Late winter-early spring seeding of perennial legumes was found to be the best season for seeding ...

  1. Remote Sensing Approach to Drought Monitoring to Inform Range Management at the Hopi Tribe and Navajo Nation

    NASA Astrophysics Data System (ADS)

    El Vilaly, M. M.; Van Leeuwen, W. J.; Didan, K.; Marsh, S. E.; Crimmins, , M. A.

    2012-12-01

    The Hopi Tribe and Navajo Nation are situated in the Northeastern corner of Arizona in the Colorado River Plateau. For more than a decade, the area has faced extensive and persistent drought conditions that have impacted vegetation communities and local water resources while exacerbating soil erosion. Moreover, these persistent droughts threaten ecosystem services, agriculture, and livestock production activities, and make this region sensitive to inter-annual climate variability and change. The limited hydroclimatic observations, bolstered by numerous anecdotal drought impact reports, indicate that the region has been suffering through an almost 15-year long drought which is threatening its socio-economic development. The objective of this research is to employ remote sensing data to monitor the ongoing drought and inform management and decision-making. The overall goals of this study are to develop a common understanding of the current status of drought across the area in order to understand the existing seasonal and inter-annual relationships between climate variability and vegetation dynamics. To analyze and investigate vegetation responses to climate variability, land use practices, and environmental factors in Hopi and Navajo nation during the last 22 years, a drought assessment framework was developed that integrates climate and topographical data with land surface remote sensing time series data. Multi-sensor Normalized Difference Vegetation Index time series data were acquired from the vegetation index and phenology project (vip.arizona.edu) from 1989 to 2010 at 5.6 km, were analyzed to characterize the intra-annual changes of vegetation, seasonal phenology and inter-annual vegetation response to climate variability and environmental factors. Due to the low number of retrieval obtained from TIMESAT software, we developed a new framework that can maximize the number of retrieval. Four vegetation development stages, annual integrated NDVI (Net Primary Production (NPP)), minimum annual NDVI, maximum annual NDVI, and annual amplitude, were extracted using that new framework. A multi-linear regression has been applied to these vegetation phenology metrics as well as to the relationship between pheno-metrics and environmental variables, to detect potential vegetation changes and to examine the existing relationship between vegetation dynamics and rainfall and elevation gradients. The results suggest that vegetation behavior is foremost governed by rainfall gradients (R-square =0.74). Trend analyses confirmed that around 80 percent of pixels showed a general decline of greenness with confidence level of 95% (p< 0.05), while 4 percent showed a general greening up. Vegetation in the area showed a significant and strong relationship with elevation and precipitation gradients. This correlation was more prominent at mid-elevations, which could be explained by the snowmelt dynamics and hydrological redistribution of water at that elevation. These tools, methods and results can be used to aid in monitoring and understanding climate change and variability impacts on vegetation productivity, ecosystem services, and water resources of the region, and to inform decision-makers and range managers at Hopi Tribe and Navajo nation. Keywords: drought, remote sensing, time series, vegetation dynamics, Hopi Tribe and Navajo Nations

  2. Global desertification: Drivers and feedbacks

    NASA Astrophysics Data System (ADS)

    D'Odorico, Paolo; Bhattachan, Abinash; Davis, Kyle F.; Ravi, Sujith; Runyan, Christiane W.

    2013-01-01

    Desertification is a change in soil properties, vegetation or climate, which results in a persistent loss of ecosystem services that are fundamental to sustaining life. Desertification affects large dryland areas around the world and is a major cause of stress in human societies. Here we review recent research on the drivers, feedbacks, and impacts of desertification. A multidisciplinary approach to understanding the drivers and feedbacks of global desertification is motivated by our increasing need to improve global food production and to sustainably manage ecosystems in the context of climate change. Classic desertification theories look at this process as a transition between stable states in bistable ecosystem dynamics. Climate change (i.e., aridification) and land use dynamics are the major drivers of an ecosystem shift to a “desertified” (or “degraded”) state. This shift is typically sustained by positive feedbacks, which stabilize the system in the new state. Desertification feedbacks may involve land degradation processes (e.g., nutrient loss or salinization), changes in rainfall regime resulting from land-atmosphere interactions (e.g., precipitation recycling, dust emissions), or changes in plant community composition (e.g., shrub encroachment, decrease in vegetation cover). We analyze each of these feedback mechanisms and discuss their possible enhancement by interactions with socio-economic drivers. Large scale effects of desertification include the emigration of “environmental refugees” displaced from degraded areas, climatic changes, and the alteration of global biogeochemical cycles resulting from the emission and long-range transport of fine mineral dust. Recent research has identified some possible early warning signs of desertification, which can be used as indicators of resilience loss and imminent shift to desert-like conditions. We conclude with a brief discussion on some desertification control strategies implemented in different regions around the world.

  3. Use of the forest vegetation simulator to quantify disturbance activities in state and transition models

    Treesearch

    Reuben Weisz; Don Vandendriesche

    2012-01-01

    The Forest Vegetation Simulator (FVS) has been used to provide rates of natural growth transitions under endemic conditions for use in State and Transition Models (STMs). This process has previously been presented. This paper expands on that work by citing the methods used to capture resultant vegetation states following disturbance activities; be it of natural causes...

  4. The Role of Biological Soil Crusts in Nitrogen Cycling and Soil Deflation in West Greenland

    NASA Astrophysics Data System (ADS)

    Heindel, R. C.; Governali, F. C.; Spickard, A. M.; Virginia, R. A.

    2017-12-01

    Although shrub expansion has been observed across the Arctic in moist tundra habitat, shrubs may be prevented from expanding in arid Arctic regions due to low soil moisture or soil erosion. This may be the case in Kangerlussuaq, West Greenland, where katabatic winds off the Greenland Ice Sheet have eroded distinct patches of mixed shrub tundra, resulting in nearly barren low productivity areas dominated by biological soil crusts (biocrusts) and graminoids. The future trajectory of these bare patches - persisting in a low biomass state or returning to a shrub-dominated state - depends on the role of the biocrust as either a long-term landscape cover limiting revegetation or as a successional facilitator. Prior to this study, little was known about the physical and ecological development of West Greenland biocrusts and how they may influence future vegetation dynamics. We found that biocrusts took 230 ± 48 years to fully develop, and that later stages of biocrust development were related to increased thickness and penetration resistance and decreased soil moisture, factors limiting shrub seedling establishment. The nitrogen (N) fixing lichen Stereocaulon sp. was found throughout the study region at all stages of biocrust development. Natural 15N abundance suggests that Stereocaulon sp. obtains about half of its N from biological fixation, and that some biologically-fixed N is incorporated into the underlying soils over time. Although soil N and C concentrations increased slightly with biocrust development, their levels under the most developed biocrusts remained low compared to the surrounding shrub and graminoid tundra. Our results suggest that deflation patches, triggered by long-term variations in climate, may remain in a low-productivity ecosystem state for hundreds to thousands of years, if precipitation and temperature regimes do not dramatically alter the vegetation potential of the region. However, if future climate change in the Arctic favors greater primary production, and the rate of soil deflation declines, then the productivity of the Kangerlussuaq tundra could increase, favoring a transition to a more vegetated and shrub-dominated landscape.

  5. Spatial And Temporal Trends Of Organic Pollutants In Vegetation From Remote And Rural Areas

    NASA Astrophysics Data System (ADS)

    Bartrons, Mireia; Catalan, Jordi; Penuelas, Josep

    2016-05-01

    Persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs) used in agricultural, industrial, and domestic applications are widely distributed and bioaccumulate in food webs, causing adverse effects to the biosphere. A review of published data for 1977-2015 for a wide range of vegetation around the globe indicates an extensive load of pollutants in vegetation. On a global perspective, the accumulation of POPs and PAHs in vegetation depends on the industrialization history across continents and distance to emission sources, beyond organism type and climatic variables. International regulations initially reduced the concentrations of POPs in vegetation in rural areas, but concentrations of HCB, HCHs, and DDTs at remote sites did not decrease or even increased over time, pointing to a remobilization of POPs from source areas to remote sites. The concentrations of compounds currently in use, PBDEs and PAHs, are still increasing in vegetation. Differential congener specific accumulation is mostly determined by continent—in accordance to the different regulations of HCHs, PCBs and PBDEs in different countries—and by plant type (PAHs). These results support a concerning general accumulation of toxic pollutants in most ecosystems of the globe that for some compounds is still far from being mitigated in the near future.

  6. The Effects of Temperature, Photoperiod, and Vernalization on Regrowth and Flowering Competence in Euphorbia Esula (Euphorbiaceae) Crown Buds

    USDA-ARS?s Scientific Manuscript database

    The herbaceous perennial weed Euphorbia esula (Euphorbiaceae) reproduces by vegetative and sexual means; characteristics that are key to its persistence and survival. In this study, we examined environmental effects on dormancy and flowering under controlled conditions to further validate field obse...

  7. Long-term effects of burn severity on non-native plant cover

    USDA-ARS?s Scientific Manuscript database

    Effects of burn severity on non-native plant invasion post-fire is of great concern to managers and researchers, especially given predicted increases in large, high severity fires. However, little else is known about long-term (>10 year) vegetation recovery and non-native plant persistence. We anal...

  8. Warming combined with more extreme precipitation regimes modifies the water sources used by trees

    DOE PAGES

    Grossiord, Charlotte; Sevanto, Sanna; Dawson, Todd E.; ...

    2016-09-09

    The persistence of vegetation under climate change will depend on a plant's capacity to exploit water resources. In addition, we analyzed water source dynamics in piñon pine and juniper trees subjected to precipitation reduction, atmospheric warming, and to both simultaneously.

  9. DROUGHT-INDUCED DECLINE OF SUBMERGED AQUATIC VEGETATION IN ESCAMBIA BAY, FL.

    EPA Science Inventory

    Locally, the recent decline of SAV was first noticed in Blackwater Bay, FL by N. Craft of Northwest Florida Aquatic Preserves (personal communication). High salinity persisted throughout the summer and fall of 2000 due to a severe drought that has affected much of the southeast ...

  10. Warming combined with more extreme precipitation regimes modifies the water sources used by trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grossiord, Charlotte; Sevanto, Sanna; Dawson, Todd E.

    The persistence of vegetation under climate change will depend on a plant's capacity to exploit water resources. In addition, we analyzed water source dynamics in piñon pine and juniper trees subjected to precipitation reduction, atmospheric warming, and to both simultaneously.

  11. Vegetation effects on soil organic matter chemistry of aggregate fractions in a Hawaiian forest

    USDA-ARS?s Scientific Manuscript database

    We examined chemical changes from live plant tissue to soil organic matter (SOM) to determine the persistence of individual plant compounds into soil aggregate fractions. We characterized the tissue chemistry of a slow- (Dicranopteris linearis) and fast-decomposing species (Cheirodendron trigynum) a...

  12. Trend shifts in satellite-derived vegetation growth in Central Eurasia, 1982-2013.

    PubMed

    Xu, Hao-Jie; Wang, Xin-Ping; Yang, Tai-Bao

    2017-02-01

    Central Eurasian vegetation is critical for the regional ecological security and the global carbon cycle. However, climatic impacts on vegetation growth in Central Eurasia are uncertain. The reason for this uncertainty lies in the fact that the response of vegetation to climate change showed nonlinearity, seasonality and differences among plant functional types. Based on remotely sensed vegetation index and in-situ meteorological data for the years 1982-2013, in conjunction with the latest land cover type product, we analyzed how vegetation growth trend varied across different seasons and evaluated vegetation response to climate variables at regional, biome and pixel scales. We found a persistent increase in the growing season NDVI over Central Eurasia during 1982-1994, whereas this greening trend has stalled since the mid-1990s in response to increased water deficit. The stalled trend in the growing season NDVI was largely attributed by summer and autumn NDVI changes. Enhanced spring vegetation growth after 2002 was caused by rapid spring warming. The response of vegetation to climatic factors varied in different seasons. Precipitation was the main climate driver for the growing season and summer vegetation growth. Changes in temperature and precipitation during winter and spring controlled the spring vegetation growth. Autumn vegetation growth was mainly dependent on the vegetation growth in summer. We found diverse responses of different vegetation types to climate drivers in Central Eurasia. Forests were more responsive to temperature than to precipitation. Grassland and desert vegetation responded more strongly to precipitation than to temperature in summer but more strongly to temperature than to precipitation in spring. In addition, the growth of desert vegetation was more dependent on winter precipitation than that of grasslands. This study has important implications for improving the performance of terrestrial ecosystem models to predict future vegetation response to climate change. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Predicting the response of the Amazon rainforest to persistent drought conditions under current and future climates: a major challenge for global land surface models

    NASA Astrophysics Data System (ADS)

    Joetzjer, E.; Delire, C.; Douville, H.; Ciais, P.; Decharme, B.; Fisher, R.; Christoffersen, B.; Calvet, J. C.; da Costa, A. C. L.; Ferreira, L. V.; Meir, P.

    2014-12-01

    While a majority of global climate models project drier and longer dry seasons over the Amazon under higher CO2 levels, large uncertainties surround the response of vegetation to persistent droughts in both present-day and future climates. We propose a detailed evaluation of the ability of the ISBACC (Interaction Soil-Biosphere-Atmosphere Carbon Cycle) land surface model to capture drought effects on both water and carbon budgets, comparing fluxes and stocks at two recent throughfall exclusion (TFE) experiments performed in the Amazon. We also explore the model sensitivity to different water stress functions (WSFs) and to an idealized increase in CO2 concentration and/or temperature. In spite of a reasonable soil moisture simulation, ISBACC struggles to correctly simulate the vegetation response to TFE whose amplitude and timing is highly sensitive to the WSF. Under higher CO2 concentrations, the increased water-use efficiency (WUE) mitigates the sensitivity of ISBACC to drought. While one of the proposed WSF formulations improves the response of most ISBACC fluxes, except respiration, a parameterization of drought-induced tree mortality is missing for an accurate estimate of the vegetation response. Also, a better mechanistic understanding of the forest responses to drought under a warmer climate and higher CO2 concentration is clearly needed.

  14. Persistence of soil organic matter as an ecosystem property.

    PubMed

    Schmidt, Michael W I; Torn, Margaret S; Abiven, Samuel; Dittmar, Thorsten; Guggenberger, Georg; Janssens, Ivan A; Kleber, Markus; Kögel-Knabner, Ingrid; Lehmann, Johannes; Manning, David A C; Nannipieri, Paolo; Rasse, Daniel P; Weiner, Steve; Trumbore, Susan E

    2011-10-05

    Globally, soil organic matter (SOM) contains more than three times as much carbon as either the atmosphere or terrestrial vegetation. Yet it remains largely unknown why some SOM persists for millennia whereas other SOM decomposes readily--and this limits our ability to predict how soils will respond to climate change. Recent analytical and experimental advances have demonstrated that molecular structure alone does not control SOM stability: in fact, environmental and biological controls predominate. Here we propose ways to include this understanding in a new generation of experiments and soil carbon models, thereby improving predictions of the SOM response to global warming.

  15. Persistence of soil organic matter as an ecosystem property

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, M.W.; Torn, M. S.; Abiven, S.

    2011-08-15

    Globally, soil organic matter (SOM) contains more than three times as much carbon as either the atmosphere or terrestrial vegetation. Yet it remains largely unknown why some SOM persists for millennia whereas other SOM decomposes readily—and this limits our ability to predict how soils will respond to climate change. Recent analytical and experimental advances have demonstrated that molecular structure alone does not control SOM stability: in fact, environmental and biological controls predominate. Here we propose ways to include this understanding in a new generation of experiments and soil carbon models, thereby improving predictions of the SOM response to global warming.

  16. Yesterday's forest, tomorrow's savannah? Legacies in the man-made hills of Appalachia

    NASA Astrophysics Data System (ADS)

    Ross, M. R. V.; Nippgen, F.; McGlynn, B. L.; Bernhardt, E. S.

    2017-12-01

    Mountaintop removal coal mines have converted more than 6,000 km2 of the steep forested valleys of Central Appalachian into a landscape of rolling hills covered by shrubby grasslands. These landscapes were created as a byproduct of extracting shallow coal seams from beneath hundreds of meters of overlying bedrock. Once broken apart by explosives, this excess rock overburden is deposited into valley fills and incorporated into reconstructed ridges. The landscapes left behind after mining are flattened and overlies highly fractured fill material that can be 100-fold deeper than natural soil. This fractured bedrock material can store 2-10 years worth of average precipitation, where any stored water is in contact with a reactive mix of unweathered carbonate bedrock and pyrite rich coal and shale residues. As a result, mountaintop mined watersheds have novel hydrologic and biogeochemical regimes with increases in baseflow and extremely rapid weathering that increases salinity by 10-25-fold. To date, little research has characterized the longevity of these impacts. We employed a combination of remote sensing and hydrologic watershed monitoring approaches to examine the long-term and linked changes in vegetation, hydrology, and water quality in a post-mine landscapes that were constructed between 1990 and 2016. We find that forest recovery on mountaintop mines progresses at half the rate of forest regrowth following clearcutting with persistent low canopy-height sections, consistent more with grasslands than forests. These vegetative changes are associated with decreases in runoff ratios as mines age and water moves through flatter, vegetated landscapes. However, vegetation change appears to be uncoupled from biogeochemical processes, with saline mine drainage persisting for decades, even as vegetation regrows. Our work suggests that time-since-mining of a watershed does not predict downstream water quality, while total valley fill volume remains a strong predictor of mean salinity and total weathering rates. This research highlights the importance of understanding how deep changes to a landscape alters the basic hydrology and biogeochemistry over years to decades.

  17. Heavily Oiled Salt Marsh following the Deepwater Horizon Oil Spill, Ecological Comparisons of Shoreline Cleanup Treatments and Recovery

    PubMed Central

    Zengel, Scott; Bernik, Brittany M.; Rutherford, Nicolle; Nixon, Zachary; Michel, Jacqueline

    2015-01-01

    The Deepwater Horizon oil spill affected hundreds of kilometers of coastal wetland shorelines, including salt marshes with persistent heavy oiling that required intensive shoreline “cleanup” treatment. Oiled marsh treatment involves a delicate balance among: removing oil, speeding the degradation of remaining oil, protecting wildlife, fostering habitat recovery, and not causing further ecological damage with treatment. To examine the effectiveness and ecological effects of treatment during the emergency response, oiling characteristics and ecological parameters were compared over two years among heavily oiled test plots subject to: manual treatment, mechanical treatment, natural recovery (no treatment, oiled control), as well as adjacent reference conditions. An additional experiment compared areas with and without vegetation planting following treatment. Negative effects of persistent heavy oiling on marsh vegetation, intertidal invertebrates, and shoreline erosion were observed. In areas without treatment, oiling conditions and negative effects for most marsh parameters did not considerably improve over two years. Both manual and mechanical treatment were effective at improving oiling conditions and vegetation characteristics, beginning the recovery process, though recovery was not complete by two years. Mechanical treatment had additional negative effects of mixing oil into the marsh soils and further accelerating erosion. Manual treatment appeared to strike the right balance between improving oiling and habitat conditions while not causing additional detrimental effects. However, even with these improvements, marsh periwinkle snails showed minimal signs of recovery through two years, suggesting that some ecosystem components may lag vegetation recovery. Planting following treatment quickened vegetation recovery and reduced shoreline erosion. Faced with comparable marsh oiling in the future, we would recommend manual treatment followed by planting. We caution against the use of intensive treatment methods with lesser marsh oiling. Oiled controls (no treatment “set-asides”) are essential for judging marsh treatment effectiveness and ecological effects; we recommend their use when applying intensive treatment methods. PMID:26200349

  18. The contribution of brown vegetation to vegetation dynamics

    USDA-ARS?s Scientific Manuscript database

    Indices of vegetation dynamics that include both green vegetation (GV) and non-photosynthetic vegetation (NPV), that is, brown vegetation, were applied to MODIS surface reflectance data from 2000 to 2006 for the southwestern United States. These indices reveal that the cover of NPV, a measure of veg...

  19. Millennial Climatic Fluctuations Are Key to the Structure of Last Glacial Ecosystems

    PubMed Central

    Huntley, Brian; Allen, Judy R. M.; Collingham, Yvonne C.; Hickler, Thomas; Lister, Adrian M.; Singarayer, Joy; Stuart, Anthony J.; Sykes, Martin T.; Valdes, Paul J.

    2013-01-01

    Whereas fossil evidence indicates extensive treeless vegetation and diverse grazing megafauna in Europe and northern Asia during the last glacial, experiments combining vegetation models and climate models have to-date simulated widespread persistence of trees. Resolving this conflict is key to understanding both last glacial ecosystems and extinction of most of the mega-herbivores. Using a dynamic vegetation model (DVM) we explored the implications of the differing climatic conditions generated by a general circulation model (GCM) in “normal” and “hosing” experiments. Whilst the former approximate interstadial conditions, the latter, designed to mimic Heinrich Events, approximate stadial conditions. The “hosing” experiments gave simulated European vegetation much closer in composition to that inferred from fossil evidence than did the “normal” experiments. Given the short duration of interstadials, and the rate at which forest cover expanded during the late-glacial and early Holocene, our results demonstrate the importance of millennial variability in determining the character of last glacial ecosystems. PMID:23613985

  20. Millennial climatic fluctuations are key to the structure of last glacial ecosystems.

    PubMed

    Huntley, Brian; Allen, Judy R M; Collingham, Yvonne C; Hickler, Thomas; Lister, Adrian M; Singarayer, Joy; Stuart, Anthony J; Sykes, Martin T; Valdes, Paul J

    2013-01-01

    Whereas fossil evidence indicates extensive treeless vegetation and diverse grazing megafauna in Europe and northern Asia during the last glacial, experiments combining vegetation models and climate models have to-date simulated widespread persistence of trees. Resolving this conflict is key to understanding both last glacial ecosystems and extinction of most of the mega-herbivores. Using a dynamic vegetation model (DVM) we explored the implications of the differing climatic conditions generated by a general circulation model (GCM) in "normal" and "hosing" experiments. Whilst the former approximate interstadial conditions, the latter, designed to mimic Heinrich Events, approximate stadial conditions. The "hosing" experiments gave simulated European vegetation much closer in composition to that inferred from fossil evidence than did the "normal" experiments. Given the short duration of interstadials, and the rate at which forest cover expanded during the late-glacial and early Holocene, our results demonstrate the importance of millennial variability in determining the character of last glacial ecosystems.

  1. Comparison of organochlorine pesticides and polychlorinated biphenyls residues in vegetables, grain and soil from organic and conventional farming in Poland.

    PubMed

    Witczak, Agata; Abdel-Gawad, Hassan

    2012-01-01

    Organic and conventional crops were studied by identifying the relationship between persistent organic pollutants in cereals, vegetables and soil. The residues of organochlorine pesticides and polychlorinated biphenyls (PCBs) were determined in grains (rye and wheat), vegetables (carrots and beets) and soil collected from the fields. PCB residues recorded in the beets from organic farming were as high as 3.71 ppb dry weight (dry wt.), while in the soil from conventional farming of beets 0.53 ppb dry wt. Among vegetables, higher concentrations of pesticides were detected in organically grown beets (190.63 ppb dry wt.). Soil samples from the organic farming contained lower levels of organochlorine pesticide residues compared to the conventional farming. Taking into account toxicity equivalent (TEQ), the conventionally grown carrots accumulated the most toxic PCBs. Non-ortho and mono-ortho PCBs were also noted in the grain of conventionally grown rye and amounted to 3.05 pg-TEQ/g wet wt.

  2. Assessing environmental impacts of constructed wetland effluents for vegetable crop irrigation.

    PubMed

    Castorina, A; Consoli, S; Barbagallo, S; Branca, F; Farag, A; Licciardello, F; Cirelli, G L

    2016-01-01

    The objective of this study was to monitor and assess environmental impacts of reclaimed wastewater (RW), used for irrigation of vegetable crops, on soil, crop quality and irrigation equipment. During 2013, effluents of a horizontal sub-surface flow constructed treatment wetland (TW) system, used for tertiary treatment of sanitary wastewater from a small rural municipality located in Eastern Sicily (Italy), were reused by micro-irrigation techniques to irrigate vegetable crops. Monitoring programs, based on in situ and laboratory analyses were performed for assessing possible adverse effects on water-soil-plant systems caused by reclaimed wastewater reuse. In particular, experimental results evidenced that Escherichia coli content found in RW would not present a risk for rotavirus infection following WHO (2006) standards. Irrigated soil was characterized by a certain persistence of microbial contamination and among the studied vegetable crops, lettuce responds better, than zucchini and eggplants, to the irrigation with low quality water, evidencing a bettering of nutraceutical properties and production parameters.

  3. Biogeomorphic feedback between plant growth and flooding causes alternative stable states in an experimental floodplain

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Wang, Qiao; Meire, Dieter; Ma, Wandong; Wu, Chuanqing; Meng, Zhen; Van de Koppel, Johan; Troch, Peter; Verhoeven, Ronny; De Mulder, Tom; Temmerman, Stijn

    2016-07-01

    It is important to understand the mechanisms of vegetation establishment on bare substrate in a disturbance-driven ecosystem because of many valuable ecosystem services. This study tested for empirical indications of local alternative stable states controlled by biogeomorphic feedbacks using flume experiments with alfalfa: (1) single flood experiments different in flood intensity and plant growth, (2) long-term evolution experiments with repeated flooding and seeding. We observed: (1) a combination of thresholds in plant growth and flooding magnitude for upgrowing seedlings to survive; (2) bimodality in vegetation biomass after floods indicating the existence of two alternative states, either densely vegetated or bare; (3) facilitation of vegetation establishment by the spatial pattern formation of channels and sand bars. In conclusion, empirical indicators were demonstrated for local alternative stable states in a disturbance-driven ecosystem associated with biogeomorphic feedbacks, which could contribute to the protection and restoration of vegetation in such ecosystems.

  4. Climate refugia: The physical, hydrologic and disturbance basis

    NASA Astrophysics Data System (ADS)

    Holden, Z. A.; Maneta, M. P.; Forthofer, J.

    2015-12-01

    Projected changes in global climate and associated shifts in vegetation have increased interest in understanding species persistence at local scales. We examine the climatic and physical factors that could mediate changes in the distribution of vegetation in regions of complex topography. Using massive networks of low-cost temperature and humidity sensors, we developed topographically-resolved daily historical gridded temperature data for the US Northern Rockies. We used the WindNinja model to create daily historical wind speed maps across the same domain. Using a spatially distributed ecohydrology model (ECH2O) we examine separately the sensitivity of modeled evapotranspiration and soil moisture to wind, radiation, soil properties, minimum temperature and humidity. A suite of physical factors including lower wind speeds, cold air drainage, solar shading and increased soil depth reduce evapotranspiration and increase late season moisture availability in valley bottoms. Evapotranspiration shows strong sensitivity to spatial variability in surface wind speed, suggesting that sheltering effects from winds may be an important factor contributing to mountain refugia. Fundamental to our understanding of patterns of vegetation change is the role of stand-replacing wildfires, which modify the physical environment and subsequent patterns of species persistence and recruitment. Using satellite-derived maps of burn severity for recent fires in the US Northern Rockies we examined relationships between wind speed, cold air drainage potential and soil depth and the occurrence of unburned and low severity fire. Severe fire is less likely to occur in areas with high cold air drainage potential and low wind speeds, suggesting that sheltered valley bottoms have mediated the severity of recent wildfires. Our finding highlight the complex physical mechanisms by which mountain weather and climate mediate fire-induced vegetation changes in the US Northern Rocky Mountains.

  5. Persistence at distributional edges: Columbia spotted frog habitat in the arid Great Basin, USA

    PubMed Central

    Arkle, Robert S; Pilliod, David S

    2015-01-01

    A common challenge in the conservation of broadly distributed, yet imperiled species is understanding which factors facilitate persistence at distributional edges, locations where populations are often vulnerable to extirpation due to changes in climate, land use, or distributions of other species. For Columbia spotted frogs (Rana luteiventris) in the Great Basin (USA), a genetically distinct population segment of conservation concern, we approached this problem by examining (1) landscape-scale habitat availability and distribution, (2) water body-scale habitat associations, and (3) resource management-identified threats to persistence. We found that areas with perennial aquatic habitat and suitable climate are extremely limited in the southern portion of the species’ range. Within these suitable areas, native and non-native predators (trout and American bullfrogs [Lithobates catesbeianus]) are widespread and may further limit habitat availability in upper- and lower-elevation areas, respectively. At the water body scale, spotted frog occupancy was associated with deeper sites containing abundant emergent vegetation and nontrout fish species. Streams with American beaver (Castor canadensis) frequently had these structural characteristics and were significantly more likely to be occupied than ponds, lakes, streams without beaver, or streams with inactive beaver ponds, highlighting the importance of active manipulation of stream environments by beaver. Native and non-native trout reduced the likelihood of spotted frog occupancy, especially where emergent vegetation cover was sparse. Intensive livestock grazing, low aquatic connectivity, and ephemeral hydroperiods were also negatively associated with spotted frog occupancy. We conclude that persistence of this species at the arid end of its range has been largely facilitated by habitat stability (i.e., permanent hydroperiod), connectivity, predator-free refugia, and a commensalistic interaction with an ecosystem engineer. Beaver-induced changes to habitat quality, stability, and connectivity may increase spotted frog population resistance and resilience to seasonal drought, grazing, non-native predators, and climate change, factors which threaten local or regional persistence. PMID:26380699

  6. Persistence at distributional edges: Columbia spotted frog habitat in the arid Great Basin, USA.

    PubMed

    Arkle, Robert S; Pilliod, David S

    2015-09-01

    A common challenge in the conservation of broadly distributed, yet imperiled species is understanding which factors facilitate persistence at distributional edges, locations where populations are often vulnerable to extirpation due to changes in climate, land use, or distributions of other species. For Columbia spotted frogs (Rana luteiventris) in the Great Basin (USA), a genetically distinct population segment of conservation concern, we approached this problem by examining (1) landscape-scale habitat availability and distribution, (2) water body-scale habitat associations, and (3) resource management-identified threats to persistence. We found that areas with perennial aquatic habitat and suitable climate are extremely limited in the southern portion of the species' range. Within these suitable areas, native and non-native predators (trout and American bullfrogs [Lithobates catesbeianus]) are widespread and may further limit habitat availability in upper- and lower-elevation areas, respectively. At the water body scale, spotted frog occupancy was associated with deeper sites containing abundant emergent vegetation and nontrout fish species. Streams with American beaver (Castor canadensis) frequently had these structural characteristics and were significantly more likely to be occupied than ponds, lakes, streams without beaver, or streams with inactive beaver ponds, highlighting the importance of active manipulation of stream environments by beaver. Native and non-native trout reduced the likelihood of spotted frog occupancy, especially where emergent vegetation cover was sparse. Intensive livestock grazing, low aquatic connectivity, and ephemeral hydroperiods were also negatively associated with spotted frog occupancy. We conclude that persistence of this species at the arid end of its range has been largely facilitated by habitat stability (i.e., permanent hydroperiod), connectivity, predator-free refugia, and a commensalistic interaction with an ecosystem engineer. Beaver-induced changes to habitat quality, stability, and connectivity may increase spotted frog population resistance and resilience to seasonal drought, grazing, non-native predators, and climate change, factors which threaten local or regional persistence.

  7. Persistence at distributional edges: Columbia spotted frog habitat in the arid Great Basin, USA

    USGS Publications Warehouse

    Arkle, Robert S.; Pilliod, David S.

    2015-01-01

    A common challenge in the conservation of broadly distributed, yet imperiled species is understanding which factors facilitate persistence at distributional edges, locations where populations are often vulnerable to extirpation due to changes in climate, land use, or distributions of other species. For Columbia spotted frogs (Rana luteiventris) in the Great Basin (USA), a genetically distinct population segment of conservation concern, we approached this problem by examining (1) landscape-scale habitat availability and distribution, (2) water body-scale habitat associations, and (3) resource management-identified threats to persistence. We found that areas with perennial aquatic habitat and suitable climate are extremely limited in the southern portion of the species’ range. Within these suitable areas, native and non-native predators (trout and American bullfrogs [Lithobates catesbeianus]) are widespread and may further limit habitat availability in upper- and lower-elevation areas, respectively. At the water body scale, spotted frog occupancy was associated with deeper sites containing abundant emergent vegetation and nontrout fish species. Streams with American beaver (Castor canadensis) frequently had these structural characteristics and were significantly more likely to be occupied than ponds, lakes, streams without beaver, or streams with inactive beaver ponds, highlighting the importance of active manipulation of stream environments by beaver. Native and non-native trout reduced the likelihood of spotted frog occupancy, especially where emergent vegetation cover was sparse. Intensive livestock grazing, low aquatic connectivity, and ephemeral hydroperiods were also negatively associated with spotted frog occupancy. We conclude that persistence of this species at the arid end of its range has been largely facilitated by habitat stability (i.e., permanent hydroperiod), connectivity, predator-free refugia, and a commensalistic interaction with an ecosystem engineer. Beaver-induced changes to habitat quality, stability, and connectivity may increase spotted frog population resistance and resilience to seasonal drought, grazing, non-native predators, and climate change, factors which threaten local or regional persistence.

  8. The AMMA-CATCH Gourma observatory site in Mali: Relating climatic variations to changes in vegetation, surface hydrology, fluxes and natural resources

    NASA Astrophysics Data System (ADS)

    Mougin, E.; Hiernaux, P.; Kergoat, L.; Grippa, M.; de Rosnay, P.; Timouk, F.; Le Dantec, V.; Demarez, V.; Lavenu, F.; Arjounin, M.; Lebel, T.; Soumaguel, N.; Ceschia, E.; Mougenot, B.; Baup, F.; Frappart, F.; Frison, P. L.; Gardelle, J.; Gruhier, C.; Jarlan, L.; Mangiarotti, S.; Sanou, B.; Tracol, Y.; Guichard, F.; Trichon, V.; Diarra, L.; Soumaré, A.; Koité, M.; Dembélé, F.; Lloyd, C.; Hanan, N. P.; Damesin, C.; Delon, C.; Serça, D.; Galy-Lacaux, C.; Seghieri, J.; Becerra, S.; Dia, H.; Gangneron, F.; Mazzega, P.

    2009-08-01

    SummaryThe Gourma site in Mali is one of the three instrumented meso-scale sites deployed in West-Africa as part of the African Monsoon Multi-disciplinary Analysis (AMMA) project. Located both in the Sahelian zone sensu stricto, and in the Saharo-Sahelian transition zone, the Gourma meso-scale window is the northernmost site of the AMMA-CATCH observatory reached by the West African Monsoon. The experimental strategy includes deployment of a variety of instruments, from local to meso-scale, dedicated to monitoring and documentation of the major variables characterizing the climate forcing, and the spatio-temporal variability of surface processes and state variables such as vegetation mass, leaf area index (LAI), soil moisture and surface fluxes. This paper describes the Gourma site, its associated instrumental network and the research activities that have been carried out since 1984. In the AMMA project, emphasis is put on the relations between climate, vegetation and surface fluxes. However, the Gourma site is also important for development and validation of satellite products, mainly due to the existence of large and relatively homogeneous surfaces. The social dimension of the water resource uses and governance is also briefly analyzed, relying on field enquiry and interviews. The climate of the Gourma region is semi-arid, daytime air temperatures are always high and annual rainfall amounts exhibit strong inter-annual and seasonal variations. Measurements sites organized along a north-south transect reveal sharp gradients in surface albedo, net radiation, vegetation production, and distribution of plant functional types. However, at any point along the gradient, surface energy budget, soil moisture and vegetation growth contrast between two main types of soil surfaces and hydrologic systems. On the one hand, sandy soils with high water infiltration rates and limited run-off support almost continuous herbaceous vegetation with scattered woody plants. On the other hand, water infiltration is poor on shallow soils, and vegetation is sparse and discontinuous, with more concentrated run-off that ends in pools or low lands within structured endorheic watersheds. Land surface in the Gourma is characterized by rapid response to climate variability, strong intra-seasonal, seasonal and inter-annual variations in vegetation growth, soil moisture and energy balance. Despite the multi-decadal drought, which still persists, ponds and lakes have increased, the grass cover has largely recovered, and there are signs of increased tree cover at least in the low lands.

  9. Weed establishment and persistence after water pipeline installation and reclamation in the mixed grass prairie of western North Dakota

    USDA-ARS?s Scientific Manuscript database

    In the northern mixed grass prairie, the dominant native vegetation type is a stable perennial grass community. Increasing human activity in western North Dakota in combination with propagule availability from historic agricultural activity may lead to greater incidence of prairie colonization by no...

  10. Hierarchical analysis of vegetation dynamics over 71 years: Soil-rainfall interactions in a Chihuahuan Desert ecosystem

    USDA-ARS?s Scientific Manuscript database

    Proliferation of woody plants in grasslands and savannas (hereafter, “rangelands”) is a persistent problem globally. This widely-observed shift from grass to shrub dominance in rangelands worldwide has been heterogeneous in space and time largely due to cross-scale interactions between soils, climat...

  11. Previous land use alters plant allocation and growth in forest herbs

    Treesearch

    Jennifer M. Fraterrigo; Monica G. Turner; Scott M. Pearson

    2006-01-01

    Former human practices can persistently influence forest ecosystems, particularly by altering the distribution and abundance of vegetation. Previous research has focused on the role of colonization success in governing plant community patterns in abandoned forests, but few studies have explored how changes in the performance of adult plants may contribute to...

  12. Assessment of the Persistence of Vapour Evolved from Neat CH contamination on Prairie Terrain (Record of FPP-81-1)

    DTIC Science & Technology

    1983-01-01

    infrared gas analyzer, equipped with a 20 m pathlenth gas cell , was used to obtain vapour concentration in real time. The sampling probe for the...lth’lt lrt’ nt1 ) sli tiongly absorbed by the vegetation. I-SIl KI(’TFl

  13. Snow cover variability in a forest ecotone of the Oregon Cascades via MODIS Terra products

    Treesearch

    Tihomir Sabinov Kostadinov; Todd R. Lookingbill

    2015-01-01

    Snowcover pattern and persistence have important implications for planetary energy balance, climate sensitivity to forcings, and vegetation structure, function, and composition. Variability in snow cover within mountainous regions of the Pacific Northwest, USA is attributable to a combination of anthropogenic climate change and climate oscillations. However,...

  14. Directional analysis of CO2 persistence at a rural site.

    PubMed

    Pérez, Isidro A; Sánchez, M Luisa; García, M Ángeles; Paredes, Vanessa

    2011-09-01

    Conditional probability was used to establish persistence of CO(2) concentrations at a rural site. Measurements extended over three years and were performed with a CO(2) continuous monitor and a sodar. Concentrations in the usual range at this site were proposed as the truncation level to calculate conditional probability, allowing us to determine the extent of CO(2) sequences. Extension of episodes may be inferred from these values. Persistence of wind directions revealed two groups of sectors, one with a persistence of about 16 h and another of about 9 h. Cumulative distribution of CO(2) was calculated in each wind sector and three groups, associated with different concentration origins, were established. One group was linked to transport and local sources, another to the rural environment, and a third to transport of clean air masses. Daily evolution of concentrations revealed major differences during the night and monthly analysis allowed us to associate group 1 with the vegetation cycle and group 3 with wind speed from December to April. Persistence of concentrations was obtained, and group 3 values were lower for concentrations above the truncation level, whereas persistence of groups 1 and 2 was similar. However, group 3 persistence was, in general, between group 1 and 2 persistence for concentrations below the truncation level. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Defining human death: an intersection of bioethics and metaphysics.

    PubMed

    Manninen, Bertha Alvarez

    2009-01-01

    For many years now, bioethicists, physicians, and others in the medical field have disagreed concerning how to best define human death. Different theories range from the Harvard Criteria of Brain Death, which defines death as the cessation of all brain activity, to the Cognitive Criteria, which is based on the loss of almost all core mental properties, e.g., memory, self-consciousness, moral agency, and the capacity for reason. A middle ground is the Irreversibility Standard, which defines death as occurring when the capacity for consciousness is forever lost. Given all these different theories, how can we begin to approach solving the issue of how to define death? I propose that a necessary starting point is discussing an even more fundamental question that properly belongs in the philosophical field of metaphysics: we must first address the issue of diachronic identity over time, and the persistence conditions of personal identity. In this paper, I illustrate the interdependent relationship between this metaphysical question and questions concerning the definition of death. I also illustrate how it is necessary to antecedently attend to the metaphysical issue of defining death before addressing certain issues in medical ethics, e.g., whether it is morally permissible to euthanize patients in persistent vegetative states or procure organs from anencephalic infants.

  16. Demographic and genetic viability of a medium-sized ground-dwelling mammal in a fire prone, rapidly urbanizing landscape.

    PubMed

    Ramalho, Cristina E; Ottewell, Kym M; Chambers, Brian K; Yates, Colin J; Wilson, Barbara A; Bencini, Roberta; Barrett, Geoff

    2018-01-01

    The rapid and large-scale urbanization of peri-urban areas poses major and complex challenges for wildlife conservation. We used population viability analysis (PVA) to evaluate the influence of urban encroachment, fire, and fauna crossing structures, with and without accounting for inbreeding effects, on the metapopulation viability of a medium-sized ground-dwelling mammal, the southern brown bandicoot (Isoodon obesulus), in the rapidly expanding city of Perth, Australia. We surveyed two metapopulations over one and a half years, and parameterized the PVA models using largely field-collected data. The models revealed that spatial isolation imposed by housing and road encroachment has major impacts on I. obesulus. Although the species is known to persist in small metapopulations at moderate levels of habitat fragmentation, the models indicate that these populations become highly vulnerable to demographic decline, genetic deterioration, and local extinction under increasing habitat connectivity loss. Isolated metapopulations were also predicted to be highly sensitive to fire, with large-scale fires having greater negative impacts on population abundance than small-scale ones. To reduce the risk of decline and local extirpation of I. obesulus and other small- to medium-sized ground-dwelling mammals in urbanizing, fire prone landscapes, we recommend that remnant vegetation and vegetated, structurally-complex corridors between habitat patches be retained. Well-designed road underpasses can be effective to connect habitat patches and reduce the probability of inbreeding and genetic differentiation; however, adjustment of fire management practices to limit the size of unplanned fires and ensure the retention of long unburnt vegetation will also be required to ensure persistence. Our study supports the evidence that in rapidly urbanizing landscapes, a pro-active conservation approach is required that manages species at the metapopulation level and that prioritizes metapopulations and habitat with greater long-term probability of persistence and conservation capacity, respectively. This strategy may help us prevent future declines and local extirpations, and currently relatively common species from becoming rare.

  17. Demographic and genetic viability of a medium-sized ground-dwelling mammal in a fire prone, rapidly urbanizing landscape

    PubMed Central

    Ottewell, Kym M.; Chambers, Brian K.; Yates, Colin J.; Wilson, Barbara A.; Bencini, Roberta; Barrett, Geoff

    2018-01-01

    The rapid and large-scale urbanization of peri-urban areas poses major and complex challenges for wildlife conservation. We used population viability analysis (PVA) to evaluate the influence of urban encroachment, fire, and fauna crossing structures, with and without accounting for inbreeding effects, on the metapopulation viability of a medium-sized ground-dwelling mammal, the southern brown bandicoot (Isoodon obesulus), in the rapidly expanding city of Perth, Australia. We surveyed two metapopulations over one and a half years, and parameterized the PVA models using largely field-collected data. The models revealed that spatial isolation imposed by housing and road encroachment has major impacts on I. obesulus. Although the species is known to persist in small metapopulations at moderate levels of habitat fragmentation, the models indicate that these populations become highly vulnerable to demographic decline, genetic deterioration, and local extinction under increasing habitat connectivity loss. Isolated metapopulations were also predicted to be highly sensitive to fire, with large-scale fires having greater negative impacts on population abundance than small-scale ones. To reduce the risk of decline and local extirpation of I. obesulus and other small- to medium-sized ground-dwelling mammals in urbanizing, fire prone landscapes, we recommend that remnant vegetation and vegetated, structurally-complex corridors between habitat patches be retained. Well-designed road underpasses can be effective to connect habitat patches and reduce the probability of inbreeding and genetic differentiation; however, adjustment of fire management practices to limit the size of unplanned fires and ensure the retention of long unburnt vegetation will also be required to ensure persistence. Our study supports the evidence that in rapidly urbanizing landscapes, a pro-active conservation approach is required that manages species at the metapopulation level and that prioritizes metapopulations and habitat with greater long-term probability of persistence and conservation capacity, respectively. This strategy may help us prevent future declines and local extirpations, and currently relatively common species from becoming rare. PMID:29444118

  18. Effect of vegetation management for reducing damage to lodgepole pine seedlings from northern pocket gophers

    USGS Publications Warehouse

    Engeman, Richard M.; Barnes, Victor G.; Anthony, Richard M.; Krupa, Heather W.

    1997-01-01

    The effects of vegetation management on northern pocket gopher (Thomomys talpoides) activity and damage to lodgepole pine (Pinus contorta) seedlings were studied using 2,4-D herbicide to alter the habitat. Treatments were applied to a large (8.1 ha) treatment unit and observed effects were compared with an untreated control unit of the same size. The greatly reduced forb and grass cover on the treated unit was associated with a corresponding decrease in pocket gopher activity that persisted for 6 years after initial treatment. Times until seedlings first incurred gopher damage and overall survival of seedlings were greatly increased on the treated unit.

  19. Building a delta: Interactions between water, sediment, and vegetation in an experimental system

    NASA Astrophysics Data System (ADS)

    Piliouras, A.; Kim, W.; Carlson, B.

    2013-12-01

    Vegetation is an important part of morphodynamics in river deltas, but it has not been thoroughly investigated in physical delta models. We conducted a set of experiments in the Sediment Transport and Earth-surface Processes (STEP) Basin at the University of Texas at Austin to examine the effects of vegetation on delta growth and dynamics. One experiment was conducted without vegetation (Run 1), and four (Runs 2-5) were conducted using alfalfa (Medicago sativa) as a proxy for riparian vegetation, one of which included cycles between flood and normal flow discharges (Run 5). Results indicate that vegetation increased sediment trapping on the delta topset, increasing delta slope and decreasing progradation rate as compared to the unvegetated experiment. Vegetation also caused a lack of channelization when the topset reached 20% plant cover, after which progradational delta lobes were no longer evident. Discharge fluctuations in Run 5, however, led to more topset reworking, resulting in lower vegetation density (< 20%) and the persistence of highly incisional channels. Experiments run only at flood stage resulted in consistently net depositional deltas with very little channel incision, regardless of the amount of vegetation. The addition of water and sediment discharge fluctuations in Run 5, however, created a cyclic pattern between periods of topset aggradation and periods of channel incision that were net erosional. We conclude that there is a two-way interaction between the vegetation and the channels through discharge fluctuations that aid in delta growth. (1) During floods, vegetation acts an efficient sediment trapper on the floodplain to aid in topset aggradation and maintain channel relief. During normal flow, vegetation also stabilizes channel banks, allowing channels to focus their flow and erode sediment from the bed. (2) During floods, channels transport sediment to the shoreline to create new deposits that can be colonized by vegetation and deliver sediment to the topset to increase vegetation elevation. During normal flow, channels rework the delta topset and remove seeds from occupied flow paths.

  20. When burdens of feeding outweigh benefits.

    PubMed

    Paris, J J

    1986-02-01

    On 21 October 1985, a Massachusetts probate court ruled in Brophy v. New England Sinai Hospital, denying Mrs. Paul Brophy's request that physicians remove the gastrostomy tube from her husband, who had been in a persistant vegetative state for over two years. Paris, a Roman Catholic priest and a professor of medical ethics who was called as an expert witness on behalf of the Brophy family, had testified previously in the Barber and Conroy cases. His testimony, printed here in edited form, is based on the rulings in these cases, as well as the Hier decision, on the 1983 President's Commission report, Deciding to Forego Life-Sustaining Treatment, and on published articles arguing both sides of the withholding food and fluids controversy. Paris concludes that there is no moral obligation to order, provide, or accept any treatment, even food and water, when there is little or no promise of benefit to a patient with a virtually hopeless prognosis.

  1. The Patient Self-Determination Act. A matter of life and death.

    PubMed

    Kelley, K

    1995-03-01

    The Patient Self-Determination Act (PSDA) is a federal law, and compliance is mandatory. It is the purpose of this act to ensure that a patient's right to self-determination in health care decisions be communicated and protected. Through advance directives--the living will and the durable power of attorney--the right to accept or reject medical or surgical treatment is available to adults while competent, so that in the event that such adults become incompetent to make decisions, they would more easily continue to control decisions affecting their health care. Without advance directives and the proper adherence to such directives, former President Richard Nixon and former First Lady Jacqueline Kennedy Onassis might still be alive today, in persistent vegetative states. This article examines the history of the act, its importance to each individual, the clinical, ethical and legal issues, and the role of health care professionals in effectively implementing and ensuring compliance of the PSDA.

  2. Mixed motives, mixed outcomes when accused parents won't agree to withdraw care.

    PubMed

    Appel, J M

    2009-10-01

    One of the basic tenets of paediatric ethics is that competent parents may render healthcare decisions for children who are too young or too incapacitated to make meaningful medical choices for themselves. In the USA, many jurisdictions have expanded this principle to include the right to terminate a child's life support, including nutrition and hydration, when that child enters a persistent vegetative state. However, this approach to the withdrawal of care in the paediatric setting has been put to the test by an increasing number of cases in which one or both parents are themselves accused of causing the child's life-threatening injuries. In such "mixed-motive" situations, parents may express a desire to keep a child on life support for religious or moral reasons; at the same time, forestalling the child's death may also prevent a murder charge against the accused parent. Principles need to be established for handling such tragic cases.

  3. Evolution of certain typical and atypical features in a case of subacute sclerosing panencephalitis

    PubMed Central

    Raut, Tushar Premraj; Singh, Maneesh Kumar; Garg, Ravindra Kumar; Rai, Dheeraj

    2012-01-01

    Subacute sclerosing panencephalitis (SSPE) is a slowly progressive inflammatory disease of the central nervous system caused by a persistent measles virus usually affecting the childhood and adolescent age group. Clinical features at onset are very subtle and non-specific. Certain atypical features can occur at onset or during the course of illness which can be misleading. Neuroimaging features often are non-specific. Features like myoclonic jerks, cognitive decline and typical EEG findings lead to a strong suspicion of SSPE. Here, we describe the stagewise progression of a case of SSPE in a 14-year-old girl who had myoclonic jerks and cognitive decline at onset. During the course of disease, the patient developed cortical vision loss, atypical extrapyramidal features like segmental and hemifacial dystonia ultimately leading to a bedbound vegetative state. EEG showed typical periodic discharges along with positive cerebrospinal fluid serology for measles. PMID:23266775

  4. Evolution of certain typical and atypical features in a case of subacute sclerosing panencephalitis.

    PubMed

    Raut, Tushar Premraj; Singh, Maneesh Kumar; Garg, Ravindra Kumar; Rai, Dheeraj

    2012-12-23

    Subacute sclerosing panencephalitis (SSPE) is a slowly progressive inflammatory disease of the central nervous system caused by a persistent measles virus usually affecting the childhood and adolescent age group. Clinical features at onset are very subtle and non-specific. Certain atypical features can occur at onset or during the course of illness which can be misleading. Neuroimaging features often are non-specific. Features like myoclonic jerks, cognitive decline and typical EEG findings lead to a strong suspicion of SSPE. Here, we describe the stagewise progression of a case of SSPE in a 14-year-old girl who had myoclonic jerks and cognitive decline at onset. During the course of disease, the patient developed cortical vision loss, atypical extrapyramidal features like segmental and hemifacial dystonia ultimately leading to a bedbound vegetative state. EEG showed typical periodic discharges along with positive cerebrospinal fluid serology for measles.

  5. Ecohydrologic function and disturbance of desert ephemeral stream channels

    NASA Astrophysics Data System (ADS)

    Bedford, D.; Macias, M.; Miller, D. M.; Newlander, A.; Perkins, K. S.; Sandquist, D. R.; Schwinning, S.

    2011-12-01

    In response to rare high-intensity or long duration rainstorms, runoff in desert ephemeral channels can redistribute water through landscapes and potentially serve as a resource subsidy. We are using transect studies, mapping, monitoring and manipulation experiments to investigate the ecohydrologic relations of these pervasive features with vegetation in the eastern Mojave Desert, USA. We focus on a gently sloping piedmont transected by a ~100 year old railroad that alters natural channel flow by diverting it through staggered culverts to areas downslope of the railroad. This creates three distinct ecohydrologic zones: 1) relatively undisturbed areas above the railroad, 2) areas below the railroad that receive enhanced flow where water is diverted through culverts (enhanced zones), and 3) areas below the railroad where water flow from upslope has been blocked (deprived zones). In all areas we found that vegetation cover and density are higher adjacent to stream channels and decrease with distance from the channels. Relative to the undisturbed areas, vegetation cover is higher in the enhanced areas, and lower in the deprived. Species-specific vegetation changes included higher cover of the drought deciduous sub-shrub Ambrosia dumosa in deprived zones and higher cover of the evergreen drought-tolerant shrub Larrea tridentata in enhanced zones. Using simulated channel runoff experiments, we found that most Larrea within 3 m, and Ambrosia within 1.5 m of an undisturbed stream channel physiologically responded to a water pulse and the responses persisted for over a month. Less pronounced responses were seen adjacent to channels in the deprived zones, and did not persist as long. Electrical resistance imaging of the watering experiments shows that water infiltrates vertically in channels and spreads laterally at depth; vegetation use of channel water in the deprived zones appears to be reduced. While we have no information on the pace of vegetation change due to channel modifications (diversions), we hypothesize that increased channel flow causes rapid changes that favor evergreen shrubs whose physiology and phenology allow them to utilize short pulses of moisture, while reduction or elimination of channel flow causes slower vegetation changes as plants become decoupled from the resource additions provided by runoff in channels. Furthermore, these deprived zones essentially operate in an enforced drought mode that likely favors drought-deciduous vegetation. Our results suggest that the spatial distribution of channels and conditions that generate runoff are key contributors to vegetation responses at the landscape scale, and are critical for understanding impacts of land use and climate change in this sensitive arid ecosystem. Further work will determine if the disturbances examined here extend outside the relatively small physical footprint affected by channel redistribution, blockage, and diversion.

  6. Estimating aboveground live understory vegetation carbon in the United States

    Treesearch

    Kristofer D Johnson; Grant M Domke; Matthew B Russell; Brian Walters; John Hom; Alicia Peduzzi; Richard Birdsey; Katelyn Dolan; Wenli Huang

    2017-01-01

    Despite the key role that understory vegetation plays in ecosystems and the terrestrial carbon cycle, it is often overlooked and has few quantitative measurements, especially at national scales. To understand the contribution of understory carbon to the United States (US) carbon budget, we developed an approach that relies on field measurements of understory vegetation...

  7. Open tundra persist, but arctic features decline-Vegetation changes in the warming Fennoscandian tundra.

    PubMed

    Vuorinen, Katariina E M; Oksanen, Lauri; Oksanen, Tarja; Pyykönen, Anni; Olofsson, Johan; Virtanen, Risto

    2017-09-01

    In the forest-tundra ecotone of the North Fennoscandian inland, summer and winter temperatures have increased by two to three centigrades since 1965, which is expected to result in major vegetation changes. To document the expected expansion of woodlands and scrublands and its impact on the arctic vegetation, we repeated a vegetation transect study conducted in 1976 in the Darju, spanning from woodland to a summit, 200 m above the tree line. Contrary to our expectations, tree line movement was not detected, and there was no increase in willows or shrubby mountain birches, either. Nevertheless, the stability of tundra was apparent. Small-sized, poorly competing arctic species had declined, lichen cover had decreased, and vascular plants, especially evergreen ericoid dwarf shrubs, had gained ground. The novel climate seems to favour competitive clonal species and species thriving in closed vegetation, creating a community hostile for seedling establishment, but equally hostile for many arctic species, too. Preventing trees and shrubs from invading the tundra is thus not sufficient for conserving arctic biota in the changing climate. The only dependable cure is to stop the global warming. © 2017 John Wiley & Sons Ltd.

  8. Flooding Frequency Alters Vegetation in Isolated Wetlands

    USGS Publications Warehouse

    Haag, Kim H.; Lee, Terrie M.

    2006-01-01

    Many isolated wetlands in central Florida occur as small, shallow depressions scattered throughout the karst topography of the region. In these wetlands, the water table approaches land surface seasonally, and water levels and flooding frequency are largely determined by differences between precipitation and evapotranspiration. Because much of the region is flat with little topographic relief, small changes in wetland water levels can cause large changes in wetland surface area. Persistent changes in wetland flooding frequencies, as a result of changes in rainfall or human activity, can cause a substantial change in the vegetation of thousands of acres of land. Understanding the effect that flooding frequency has on wetland vegetation is important to assessing the overall ecological status of wetlands. Wetland bathymetric mapping, when combined with water-level data and vegetation assessments, can enable scientists to determine the frequency of flooding at different elevations in a wetland and describe the effects of flooding frequency on wetland vegetation at those elevations. Five cypress swamps and five marshes were studied by the U.S. Geological Survey (USGS) during 2000-2004, as part of an interdisciplinary study of isolated wetlands in central Florida (Haag and others, 2005). Partial results from two of these marshes are described in this report.

  9. Plant traits demonstrate that temperate and tropical giant eucalypt forests are ecologically convergent with rainforest not savanna.

    PubMed

    Tng, David Y P; Jordan, Greg J; Bowman, David M J S

    2013-01-01

    Ecological theory differentiates rainforest and open vegetation in many regions as functionally divergent alternative stable states with transitional (ecotonal) vegetation between the two forming transient unstable states. This transitional vegetation is of considerable significance, not only as a test case for theories of vegetation dynamics, but also because this type of vegetation is of major economic importance, and is home to a suite of species of conservation significance, including the world's tallest flowering plants. We therefore created predictions of patterns in plant functional traits that would test the alternative stable states model of these systems. We measured functional traits of 128 trees and shrubs across tropical and temperate rainforest - open vegetation transitions in Australia, with giant eucalypt forests situated between these vegetation types. We analysed a set of functional traits: leaf carbon isotopes, leaf area, leaf mass per area, leaf slenderness, wood density, maximum height and bark thickness, using univariate and multivariate methods. For most traits, giant eucalypt forest was similar to rainforest, while rainforest, particularly tropical rainforest, was significantly different from the open vegetation. In multivariate analyses, tropical and temperate rainforest diverged functionally, and both segregated from open vegetation. Furthermore, the giant eucalypt forests overlapped in function with their respective rainforests. The two types of giant eucalypt forests also exhibited greater overall functional similarity to each other than to any of the open vegetation types. We conclude that tropical and temperate giant eucalypt forests are ecologically and functionally convergent. The lack of clear functional differentiation from rainforest suggests that giant eucalypt forests are unstable states within the basin of attraction of rainforest. Our results have important implications for giant eucalypt forest management.

  10. Plant Traits Demonstrate That Temperate and Tropical Giant Eucalypt Forests Are Ecologically Convergent with Rainforest Not Savanna

    PubMed Central

    Tng, David Y. P.; Jordan, Greg J.; Bowman, David M. J. S.

    2013-01-01

    Ecological theory differentiates rainforest and open vegetation in many regions as functionally divergent alternative stable states with transitional (ecotonal) vegetation between the two forming transient unstable states. This transitional vegetation is of considerable significance, not only as a test case for theories of vegetation dynamics, but also because this type of vegetation is of major economic importance, and is home to a suite of species of conservation significance, including the world’s tallest flowering plants. We therefore created predictions of patterns in plant functional traits that would test the alternative stable states model of these systems. We measured functional traits of 128 trees and shrubs across tropical and temperate rainforest – open vegetation transitions in Australia, with giant eucalypt forests situated between these vegetation types. We analysed a set of functional traits: leaf carbon isotopes, leaf area, leaf mass per area, leaf slenderness, wood density, maximum height and bark thickness, using univariate and multivariate methods. For most traits, giant eucalypt forest was similar to rainforest, while rainforest, particularly tropical rainforest, was significantly different from the open vegetation. In multivariate analyses, tropical and temperate rainforest diverged functionally, and both segregated from open vegetation. Furthermore, the giant eucalypt forests overlapped in function with their respective rainforests. The two types of giant eucalypt forests also exhibited greater overall functional similarity to each other than to any of the open vegetation types. We conclude that tropical and temperate giant eucalypt forests are ecologically and functionally convergent. The lack of clear functional differentiation from rainforest suggests that giant eucalypt forests are unstable states within the basin of attraction of rainforest. Our results have important implications for giant eucalypt forest management. PMID:24358359

  11. Texas Greenup

    NASA Technical Reports Server (NTRS)

    2007-01-01

    June 2007 was one of the wettest Junes on record for the state of Texas. Starting in late May, a string of low-pressure systems settled in over the U.S. Southern Plains and unleashed weeks of heavy to torrential rain. During the final week of June, much of Texas, Oklahoma, and Kansas received more than 330 percent of their average rainfall, said the National Climatic Data Center. The widespread heavy rain brought deadly floods to the entire region. On July 6, the Associated Press reported that every major river basin in Texas was at flood stage, an event that had not occurred since 1957. In addition to causing floods, the rains stimulated plant growth. The grassy, often arid, plains and plateaus of northern Mexico (bottom left), Texas (center), and New Mexico (top, left of center) burst to life with dense vegetation as this vegetation anomaly image shows. Regions where plants were growing more quickly or fuller than average are green, while areas where growth is below average are brown. Most of Texas is green, with a concentrated deep green, almost black, spot where vegetation growth was greatest. This area of western Texas is where the Pecos River flows out of New Mexico and heads southeast to the Rio Grande. In the darkest areas, vegetation was more than 100 percent above average. The brown spots in northeastern Texas and Oklahoma (top, right of center) may be areas where persistent clouds or water on the ground are hiding the plants from the satellite's view. Plants may also be growing less than average if swamped by too much rain. The image was made with data collected by the SPOT satellite between June 11 and June 20, 2007. NASA imagery created by Jesse Allen, Earth Observatory, using SPOT data provided courtesy of the USDA Foreign Agricultural Service and processed by Jennifer Small and Assaf Anyamba of the GIMMS Group at NASA GSFC.

  12. Natural vegetation of Oregon and Washington.

    Treesearch

    Jerry F. Franklin; C.T. Dyrness

    1973-01-01

    Major vegetational units of Oregon and Washington and their environmental relationships are described and illustrated. After an initial consideration of the vegetation components in the two States, major geographic areas and vegetation zones are detailed. Descriptions of each vegetation zone include composition and succession, as well as discussion of variations...

  13. Spatial-temporal Evolution of Vegetation Coverage and Analysis of it’s Future Trends in Wujiang River Basin

    NASA Astrophysics Data System (ADS)

    Xiao, Jianyong; Bai, Xiaoyong; Zhou, Dequan; Qian, Qinghuan; Zeng, Cheng; Chen, Fei

    2018-01-01

    Vegetation coverage dynamics is affected by climatic, topography and human activities, which is an important indicator reflecting the regional ecological environment. Revealing the spatial-temporal characteristics of vegetation coverage is of great significance to the protection and management of ecological environment. Based on MODIS NDVI data and the Maximum Value Composites (MVC), we excluded soil spectrum interference to calculate Fractional Vegetation Coverage (FVC). Then the long-term FVC was used to calculate the spatial pattern and temporal variation of vegetation in Wujiang River Basin from 2000 to 2016 by using Trend analysis and Hurst index. The relationship between topography and spatial distribution of FVC was analyzed. The main conclusions are as follows: (1) The multi-annual mean vegetation coverage reveals a spatial distribution variation characteristic of low value in midstream and high level in other parts of the basin, owing a mean value of 0.6567. (2) From 2000 to 2016, the FVC of the Wujiang River Basin fluctuated between 0.6110 and 0.7380, and the overall growth rate of FVC was 0.0074/a. (3) The area of vegetation coverage tending to improve is more than that going to degrade in the future. Grass land, Arable land and Others improved significantly; karst rocky desertification comprehensive management project lead to persistent vegetation coverage improvement of Grass land, Arable land and Others. Residential land is covered with obviously degraded vegetation, resulting of urban sprawl; (4) The spatial distribution of FVC is positively correlated with TNI. Researches of spatial-temporal evolution of vegetation coverage have significant meaning for the ecological environment protection and management of the Wujiang River Basin.

  14. What role do beds of submerged macrophytes play in structuring estuarine fish assemblages? Lessons from a warm-temperate South African estuary

    NASA Astrophysics Data System (ADS)

    Sheppard, Jill N.; James, Nicola C.; Whitfield, Alan K.; Cowley, Paul D.

    2011-11-01

    Habitat variability is one of the factors influencing species richness within estuarine systems, and a loss of habitat can result in a restructuring of the estuarine ichthyofaunal assemblage, particularly if these conditions persist over long time periods. The potential effects of the loss of extensive submerged macrophyte beds ( Ruppia cirrhosa and Potamogeton pectinatus) on an estuarine fish assemblage were investigated through an analysis of a long-term seine net catch dataset from the temporarily open/closed East Kleinemonde Estuary, South Africa. Catch data for a 12-year period, encompassing six years of macrophyte presence and six years of macrophyte senescence, indicated that the loss of this habitat did not influence species richness but changes in the relative abundance of certain species were evident. A shift in dominance from vegetation-associated species to those associated with sandy environments ( e.g. members of the family Mugilidae) was observed. However, species wholly dependent on macrophytes such as the critically endangered estuarine pipefish Syngnathus watermeyeri were only recorded during years when macrophyte beds were present, while vegetation-associated species such as the sparid Rhabdosargus holubi persisted at lower levels of relative abundance. The reduced abundance of all vegetation-associated fish species during years of macrophyte senescence was probably reflective of declining food resources resulting from the loss of macrophyte beds and/or increased vulnerability to predation. Submerged beds of aquatic plants are therefore important habitats within temporarily open/closed estuaries, South Africa's dominant estuary type.

  15. Performance of hybrid progeny formed between genetically modified herbicide-tolerant soybean and its wild ancestor

    PubMed Central

    Guan, Zheng-Jun; Zhang, Peng-Fei; Wei, Wei; Mi, Xiang-Cheng; Kang, Ding-Ming; Liu, Biao

    2015-01-01

    Gene flow from genetically modified (GM) crops to wild relatives might affect the evolutionary dynamics of weedy populations and result in the persistence of escaped genes. To examine the effects of this gene flow, the growth of F1 hybrids that were formed by pollinating wild soybean (Glycine soja) with glyphosate-tolerant GM soybean (G. max) or its non-GM counterpart was examined in a greenhouse. The wild soybean was collected from two geographical populations in China. The performance of the wild soybean and the F2 hybrids was further explored in a field trial. Performance was measured by several vegetative and reproductive growth parameters, including the vegetative growth period, pod number, seed number, above-ground biomass and 100-seed weight. The pod setting percentage was very low in the hybrid plants. Genetically modified hybrid F1 plants had a significantly longer period of vegetative growth, higher biomass and lower 100-seed weight than the non-GM ones. The 100-seed weight of both F1 and F2 hybrids was significantly higher than that of wild soybean in both the greenhouse and the field trial. No difference in plant growth was found between GM and non-GM F2 hybrids in the field trial. The herbicide-resistant gene appeared not to adversely affect the growth of introgressed wild soybeans, suggesting that the escaped transgene could persist in nature in the absence of herbicide use. PMID:26507568

  16. Post-fire vegetation recovery in Portugal based on spot/vegetation data

    NASA Astrophysics Data System (ADS)

    Gouveia, C.; Dacamara, C. C.; Trigo, R. M.

    2010-04-01

    A procedure is presented that allows identifying large burned scars and the monitoring of vegetation recovery in the years following major fire episodes. The procedure relies on 10-day fields of Maximum Value Composites of Normalized Difference Vegetation Index (MVC-NDVI), with a 1 km×1 km spatial resolution obtained from the VEGETATION instrument. The identification of fire scars during the extremely severe 2003 fire season is performed based on cluster analysis of NDVI anomalies that persist during the vegetative cycle of the year following the fire event. Two regions containing very large burned scars were selected, located in Central and Southwestern Portugal, respectively, and time series of MVC-NDVI analysed before the fire events took place and throughout the post-fire period. It is shown that post-fire vegetation dynamics in the two selected regions may be characterised based on maps of recovery rates as estimated by fitting a monoparametric model of vegetation recovery to MVC-NDVI data over each burned scar. Results indicated that the recovery process in the region located in Central Portugal is mostly related to fire damage rather than to vegetation density before 2003, whereas the latter seems to have a more prominent role than vegetation conditions after the fire episode, e.g. in the case of the region in Southwestern Portugal. These differences are consistent with the respective predominant types of vegetation. The burned area located in Central Portugal is dominated by Pinus Pinaster whose natural regeneration crucially depends on the destruction of seeds present on the soil surface during the fire, whereas the burned scar in Southwestern Portugal was populated by Eucalyptus that may quickly re-sprout from buds after fire. Besides its simplicity, the monoparametric model of vegetation recovery has the advantage of being easily adapted to other low-resolution satellite data, as well as to other types of vegetation indices.

  17. Moisture and temperature changes associated with the mid-Holocene Tsuga decline in the northeastern United States

    NASA Astrophysics Data System (ADS)

    Marsicek, Jeremiah P.; Shuman, Bryan; Brewer, Simon; Foster, David R.; Oswald, W. Wyatt

    2013-11-01

    A decline of hemlock (Tsuga) populations at ca 5.5 ka (thousands of calibrated radiocarbon years before 1950 AD) stands out as the most abrupt vegetation change of the Holocene in North America, but remains poorly understood after decades of study. Recent analyses of fossil pollen have revealed a concurrent, abrupt oak (Quercus) decline and increases in the abundance of beech (Fagus) and pine (Pinus) on Cape Cod in eastern Massachusetts, but the replacement of drought-tolerant oaks by moisture-sensitive beeches appears inconsistent with low lake levels in the region at the same time. The oak and beech changes are also limited to coastal areas, and the coastal-inland differences require an explanation. Here, we develop a new lake-level reconstruction from Deep Pond, Cape Cod by using a transect of sediment cores and ground-penetrating radar (GPR) profiles to constrain the past elevations of the sandy, littoral zone of the pond. The reconstruction shows that a series of multi-century episodes of low water coincide with the abrupt hemlock and oak declines, and interrupt subsequent phases of hemlock recovery. The lake-level variations equal precipitation deficits of ˜100 mm superimposed on a Holocene long moisture increase of >400 mm. However, because moisture deficits do not easily explain the oak and beech changes, we also evaluate how the climate preferences of the regional vegetation changed over time by matching the fossil pollen assemblages from Deep Pond with their modern equivalents. Reconstructions of the precipitation requirements of the vegetation correlate well even in detail with the lake-level record (r = 0.88 at Deep Pond), and indicate close tracking of effective moisture (precipitation minus evapotranspiration) by the vegetation despite the abrupt species declines, which could have decoupled climate and vegetation trends. Reconstructions of the temperature preferences of the vegetation indicate that coastal sites may have cooled by 0.5-2.5 °C after ca 5.5 ka, while inland sites warmed by 0.5-1 °C. The change in coastal temperature preferences agrees with sea surface cooling in the western Atlantic Ocean of >1 °C. Consequently, the persistence of low hemlock abundance after 5.5 ka in the northeast U.S. may have resulted from oceanic changes that produced multi-century droughts and thus delayed the post-decline recovery of hemlock populations.

  18. Mapping forest canopy disturbance in the Upper Great Lakes, USA

    Treesearch

    James D. Garner; Mark D. Nelson; Brian G. Tavernia; Charles H. (Hobie) Perry; Ian W. Housman

    2015-01-01

    A map of forest canopy disturbance was generated for Michigan, Wisconsin, and most of Minnesota using 42 Landsat time series stacks (LTSS) and a vegetation change tracker (VCTw) algorithm. Corresponding winter imagery was used to reduce commission errors of forest disturbance by identifying areas of persistent snow cover. The resulting disturbance age map was classed...

  19. Viability of Blackbrush seed (Coleogyne ramosissima Torr. [Rosaceae]) following long-term storage

    Treesearch

    Rosemary Pendleton; Burton K. Pendleton; Susan E. Meyer; Stephanie Carlson; Elizabeth Morrison

    2012-01-01

    Blackbrush (Coleogyne ramosissima Torr. [Rosaceae]) is a landscape- dominant shrub that occurs in an ecotonal band between warm and cold deserts of the western US. This vegetation type is at considerable risk from stand-replacing wildfires due to the introduction of exotic annual grasses. Because blackbrush does not form a persistent seedbank, restoration following...

  20. Groundwater, Vegetation, and Atmosphere: Comparative Riparian Evapotranspiration, Restoration, and Water Salvage

    Treesearch

    J. R. Cleverly; C. N. Dahm; J. R. Thibault; D. McDonnell; J. E. Allred Coonrod

    2006-01-01

    As water shortages persist throughout the Western U.S., a great deal of money and effort is directed toward decreasing riparian water loss, thereby enabling continued water use by irrigators, industry, and municipalities. This study focuses upon long-term measurement of evapotranspiration (ET) by native and non-native riparian species along the Middle Rio Grande (MRG)...

  1. Persistent and susceptible bacteria with individual deaths.

    PubMed

    Zucca, Fabio

    2014-02-21

    The aim of this paper is to study two models for a bacterial population subject to antibiotic treatments. It is known that some bacteria are not sensitive to antibiotics. These bacteria, called persisters, are in a state called persistence and each bacterium can switch from this state to a non-persistent (or susceptible) state and back (with rates b and a respectively). Our models extend those introduced in Garet et al. (2012) by adding a random natural life cycle for each bacterium and by allowing bacteria in the susceptible state to escape the action of the antibiotic with a fixed probability 1-p (while every bacterium in a persistent state survives with probability 1). This last mechanism of survival to the antibiotics differs from the persistent state one (where reproduction is forbidden) since in this case the bacterium can replicate. We study two different models. In the first model we "inject" the antibiotics in the system at fixed, deterministic times while in the second one the time intervals are random. We show that, in order to kill eventually the whole bacterial population, these time intervals cannot be "too large". The maximum admissible length is increasing with respect to p; we see that even when p is close to 1, this interval length can be significantly smaller than in the case p=1. While in the case p=1 switching back and forth to the persistent state is the only chance of surviving for bacteria, when p<1 and the death rate in the persistent state, say dr, is positive then the situation is more complex. In this case our model suggests that if dr and b are positive (and fixed) then for higher values of p there is an interval for the rate a, say (0,ap) where switching to the persistent state is a good strategy while for a>ap the situation is less favorable than a=0. On the other hand, for smaller values of p the best strategy is a=0, that is, not switching. Finally, when dr=0, switching to the susceptible state is always a better strategy, from the bacterial point of view, than staying in the susceptible state all the times. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Driftcretions: The legacy impacts of driftwood on shoreline morphology

    NASA Astrophysics Data System (ADS)

    Kramer, Natalie; Wohl, Ellen

    2015-07-01

    This research demonstrates how vegetation interacts with physical processes to govern landscape development. We quantify and describe interactions among driftwood, sedimentation, and vegetation for Great Slave Lake, which is used as proxy for shoreline dynamics and landforms before deforestation and wood removal along major waterways. We introduce driftcretion to describe large, persistent concentrations of driftwood that interact with vegetation and sedimentation to influence shoreline evolution. We report the volume and distribution of driftwood along shorelines, the morphological impacts of driftwood delivery throughout the Holocene, and rates of driftwood accretion. Driftcretions facilitate the formation of complex, diverse morphologies that increase biological productivity and organic carbon capture and buffer against erosion. Driftcretions should be common on shorelines receiving a large wood supply and with processes which store wood permanently. We encourage others to work in these depositional zones to understand the physical and biological impacts of large wood export from river basins.

  3. Complementary Network-Based Approaches for Exploring Genetic Structure and Functional Connectivity in Two Vulnerable, Endemic Ground Squirrels

    PubMed Central

    Zero, Victoria H.; Barocas, Adi; Jochimsen, Denim M.; Pelletier, Agnès; Giroux-Bougard, Xavier; Trumbo, Daryl R.; Castillo, Jessica A.; Evans Mack, Diane; Linnell, Mark A.; Pigg, Rachel M.; Hoisington-Lopez, Jessica; Spear, Stephen F.; Murphy, Melanie A.; Waits, Lisette P.

    2017-01-01

    The persistence of small populations is influenced by genetic structure and functional connectivity. We used two network-based approaches to understand the persistence of the northern Idaho ground squirrel (Urocitellus brunneus) and the southern Idaho ground squirrel (U. endemicus), two congeners of conservation concern. These graph theoretic approaches are conventionally applied to social or transportation networks, but here are used to study population persistence and connectivity. Population graph analyses revealed that local extinction rapidly reduced connectivity for the southern species, while connectivity for the northern species could be maintained following local extinction. Results from gravity models complemented those of population graph analyses, and indicated that potential vegetation productivity and topography drove connectivity in the northern species. For the southern species, development (roads) and small-scale topography reduced connectivity, while greater potential vegetation productivity increased connectivity. Taken together, the results of the two network-based methods (population graph analyses and gravity models) suggest the need for increased conservation action for the southern species, and that management efforts have been effective at maintaining habitat quality throughout the current range of the northern species. To prevent further declines, we encourage the continuation of management efforts for the northern species, whereas conservation of the southern species requires active management and additional measures to curtail habitat fragmentation. Our combination of population graph analyses and gravity models can inform conservation strategies of other species exhibiting patchy distributions. PMID:28659969

  4. Degradation of N-nitrosodimethylamine (NDMA) in landscape soils.

    PubMed

    Yang, W C; Gan, J; Liu, W P; Green, R

    2005-01-01

    N-nitrosodimethylamine (NDMA), a potential carcinogen, was commonly found in treated wastewater as a by-product of chlorination. As treated water is increasingly used for landscape irrigation, there is an imperative need to understand the leaching risk for NDMA in landscape soils. In this study, adsorption and incubation experiments were conducted using landscape soils planted with turfgrass, ground cover, and trees. Adsorption of NDMA was negligibly weak (K(d) < 1) in all soils, indicating that NDMA has a high potential for moving with percolating water in these soils. Degradation of NDMA occurred at different rates among these soils. At 21 degrees C, the half-life (t(1/2)) of NDMA was 4.1 d for the ground cover soil, 5.6 d for the turfgrass soil, and 22.5 d for the tree soil. The persistence was substantially prolonged after autoclaving or when incubated at 10 degrees C. The rate of degradation was not significantly affected by the initial NDMA concentration or addition of organic and inorganic nutrient sources. The relative persistence was inversely correlated with soil organic matter content, soil microbial biomass, and soil dehydrogenase activity, suggesting the importance of microorganisms in NDMA degradation in these soils. These results suggest that the behavior of NDMA depends closely on the vegetation cover in a landscape system, and prolonged persistence and increased leaching may be expected in soils with sparse vegetation due to low organic matter content and limited microbial activity.

  5. Complementary Network-Based Approaches for Exploring Genetic Structure and Functional Connectivity in Two Vulnerable, Endemic Ground Squirrels.

    PubMed

    Zero, Victoria H; Barocas, Adi; Jochimsen, Denim M; Pelletier, Agnès; Giroux-Bougard, Xavier; Trumbo, Daryl R; Castillo, Jessica A; Evans Mack, Diane; Linnell, Mark A; Pigg, Rachel M; Hoisington-Lopez, Jessica; Spear, Stephen F; Murphy, Melanie A; Waits, Lisette P

    2017-01-01

    The persistence of small populations is influenced by genetic structure and functional connectivity. We used two network-based approaches to understand the persistence of the northern Idaho ground squirrel ( Urocitellus brunneus) and the southern Idaho ground squirrel ( U. endemicus ), two congeners of conservation concern. These graph theoretic approaches are conventionally applied to social or transportation networks, but here are used to study population persistence and connectivity. Population graph analyses revealed that local extinction rapidly reduced connectivity for the southern species, while connectivity for the northern species could be maintained following local extinction. Results from gravity models complemented those of population graph analyses, and indicated that potential vegetation productivity and topography drove connectivity in the northern species. For the southern species, development (roads) and small-scale topography reduced connectivity, while greater potential vegetation productivity increased connectivity. Taken together, the results of the two network-based methods (population graph analyses and gravity models) suggest the need for increased conservation action for the southern species, and that management efforts have been effective at maintaining habitat quality throughout the current range of the northern species. To prevent further declines, we encourage the continuation of management efforts for the northern species, whereas conservation of the southern species requires active management and additional measures to curtail habitat fragmentation. Our combination of population graph analyses and gravity models can inform conservation strategies of other species exhibiting patchy distributions.

  6. 21 CFR 101.44 - What are the 20 most frequently consumed raw fruits, vegetables, and fish in the United States?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false What are the 20 most frequently consumed raw... raw fruits, vegetables, and fish in the United States? (a) The 20 most frequently consumed raw fruits..., and watermelon. (b) The 20 most frequently consumed raw vegetables are: Asparagus, bell pepper...

  7. 21 CFR 101.44 - What are the 20 most frequently consumed raw fruits, vegetables, and fish in the United States?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false What are the 20 most frequently consumed raw... raw fruits, vegetables, and fish in the United States? (a) The 20 most frequently consumed raw fruits..., and watermelon. (b) The 20 most frequently consumed raw vegetables are: Asparagus, bell pepper...

  8. Do state-and-transition models derived from vegetation succession also represent avian succession in restored mine pits?

    PubMed

    Craig, Michael D; Stokes, Vicki L; Fontaine, Joseph B; Hardy, Giles E StJ; Grigg, Andrew H; Hobbs, Richard J

    2015-10-01

    State-and-transition models are increasingly used as a tool to inform management of post-disturbance succession and effective conservation of biodiversity in production landscapes. However, if they are to do this effectively, they need to represent faunal, as well as vegetation, succession. We assessed the congruence between vegetation and avian succession by sampling avian communities in each state of a state-and-transition model used to inform management of post-mining restoration in a production landscape in southwestern Australia. While avian communities differed significantly among states classified as on a desirable successional pathway, they did not differ between desirable and deviated states of the same post-mining age. Overall, we concluded there was poor congruence between vegetation and avian succession in this state-and-transition model. We identified four factors that likely contributed to this lack of congruence, which were that long-term monitoring of succession in restored mine pits was not used to update and improve models, states were not defined based on ecological processes and thresholds, states were not defined by criteria that were important in structuring the avian community, and states were not based on criteria that related to values in the reference community. We believe that consideration of these four factors in the development of state-and-transition models should improve their ability to accurately represent faunal, as well as vegetation, succession. Developing state-and-transition models that better incorporate patterns of faunal succession should improve the ability to manage post-disturbance succession across a range of ecosystems for biodiversity conservation.

  9. Diagnostic and Prognostic Capability of Newer Magnetic Resonance Imaging Brain Sequences in Diffuse Axonal Injury Patient.

    PubMed

    Bansal, Mayank; Sinha, Virendra Deo; Bansal, Juhi

    2018-01-01

    Diffuse axonal injury is one of the major causes of unconsciousness, profound neurologic deficits and persistent vegetative state after head trauma. In recent years, MR imaging has been gaining popularity as an adjunctive imaging method in patients with DAI. Our study aims to assess the relative diagnostic and prognostic capability of various MRI sequences. Retrospective observational study done in 1 year duration on 30 DAI patients. Clinical assessment done with GCS at admission and GOS at 6 month. MRI Brain FLAIR, DWI, T2*GRE AND SWI sequences taken. DAI grade were evaluated for different MRI sequences. Prognosis was correlated to total number of lesion/locations and DAI grade of patients. Statistical analysis was done using SPSS Statistical software (ver.20.0.0) and XL-Stat and ANOVA one way test, post hoc test (Turkey test) and Chi square test. We studied 30 male patients, mean age 32.57±8.72 ranges. The commonest mode of injury is RTA-80%, fall-16% followed by assault-3.33%. Out of 30 patients, 17 patients (56.67%) had GCS <=8, 13 patients (43.33%) had GCS between 9 and 12 and no patient had a GCS score between 13 and 15. The mean GCS score was 8.47±1.50. At a 6 month follow up, out of a total of 30 patients, 2 patients (6.66%) expired (GOS-1), 3 patients (10%) remained in persistent vegetative state (GOS-2), 11 patients (36.67%) and 10 patients (33.33%) were found to be severely (GOS-3) and moderately (GOS-4) disabled respectively and 4 patients (13.33%) showed good recovery (GOS-5). Mean GOS is 3.37+/-1.06. Newer imaging -SWI able to detects lesion better (diagnosis of DAI) as compared to other older sequences like FLAIR,DWI,T2*GRE. But no statistically significant found between total number of lesion/locations to the outcome and also newer imaging do not change the grade of DAI patients. Although advanced imaging in head injury, SWI helps in diagnosing the diffuse axonal injury more efficiently than other imaging sequences, but it is the grade of patients at admission that predicts the outcome best.

  10. Branched-chain amino acids may improve recovery from a vegetative or minimally conscious state in patients with traumatic brain injury: a pilot study.

    PubMed

    Aquilani, Roberto; Boselli, Mirella; Boschi, Federica; Viglio, Simona; Iadarola, Paolo; Dossena, Maurizia; Pastoris, Ornella; Verri, Manuela

    2008-09-01

    To investigate whether supplementation with branched-chain amino acids (BCAAs) may improve recovery of patients with a posttraumatic vegetative or minimally conscious state. Patients were randomly assigned to 15 days of intravenous BCAA supplementation (n=22; 19.6g/d) or an isonitrogenous placebo (n=19). Tertiary care rehabilitation setting. Patients (N=41; 29 men, 12 women; mean age, 49.5+/-21 y) with a posttraumatic vegetative or minimally conscious state, 47+/-24 days after the index traumatic event. Supplementation with BCAAs. Disability Rating Scale (DRS) as log(10)DRS. Fifteen days after admission to the rehabilitation department, the log(10)DRS score improved significantly only in patients who had received BCAAs (log(10)DRS score, 1.365+/-0.08 to 1.294+/-0.05; P<.001), while the log(10)DRS score in the placebo recipients remained virtually unchanged (log(10)DRS score, 1.373+/-0.03 to 1.37+/-0.03; P not significant). The difference in improvement of log(10)DRS score between the 2 groups was highly significant (P<.000). Moreover, 68.2% (n=15) of treated patients achieved a log(10)DRS point score of .477 or higher (3 as geometric mean) that allowed them to exit the vegetative or minimally conscious state. Supplemented BCAAs may improve the recovery from a vegetative or minimally conscious state in patients with posttraumatic vegetative or minimally conscious state.

  11. Percentage of youth meeting federal fruit and vegetable intake recommendations, Youth Risk Behavior Surveillance System, United States and 33 states, 2013

    PubMed Central

    Thompson, Frances E; Demissie, Zewditu

    2016-01-01

    Background National and state-level self-reported frequency of fruit and vegetable consumption is available for high school students from the Centers for Disease Control and Prevention’s Youth Risk Behavior Surveillance System (YRBSS). YRBSS monitors priority health-risk behaviors among a nationally representative sample of US high school students and representative samples of students in states and selected large urban school districts. However, YRBSS measures intake in times per day and not the cup equivalents national goals use, which limits interpretation. Objective To help states track youth progress, scoring algorithms were developed from external data and applied to 2013 YRBSS data to estimate the percentages of high school students in the nation and 33 states meeting US Department of Agriculture Food Patterns fruit and vegetable intake recommendations. Design 24-hour dietary recalls were used from the 2007–2010 National Health and Nutrition Examination Survey to fit sex-specific models for 14–18 year olds that estimate probabilities of meeting recommendations as a function of reported frequency of consumption and race/ethnicity, adjusting for day-to-day dietary variation. Model regression parameters were then applied to national cross-sectional YRBSS data (N=12,829) and to data from the 33 states (N=141,006) that had complete fruit and vegetable data to estimate percentages meeting recommendations. Results Based on the prediction equations, 8.5% of high school students nationwide met fruit recommendations (95% confidence interval 4.9%, 12.1%) and 2.1% met vegetable recommendations (95% confidence interval 0.0%, 8.1%). State estimates ranged from 5.3% in Nebraska and Missouri to 8.9% in Florida for fruit and 1.0% in New Jersey, North Dakota, and South Carolina to 3.3% in New Mexico for vegetables. Conclusions This method provides a new tool for states to track youth progress towards meeting dietary recommendations and indicates that a high percentage of youth in all states examined have low intakes of fruits and vegetables. PMID:27988220

  12. Trace metal contents of selected seeds and vegetables from oil producing areas of Nigeria.

    PubMed

    Wegwu, Matthew O; Omeodu, Stephen I

    2010-07-01

    The concentrations of accumulated trace metals in selected seeds and vegetables collected in the oil producing Rivers State of Nigeria were investigated. The values were compared with those of seeds and vegetables cultivated in Owerri, a less industrialized area in Nigeria. The lead (Pb) and cadmium (Cd) contents of the seeds obtained from Rivers State ranged between 0.10 and 0.23 microg/g dry weight, while those of the seeds cultivated in Owerri fell below the detection limit of 0.01 microg/g dry weight. The highest manganese (Mn) level (902 microg/g dry weight) was found in Irvingia garbonesis seeds cultivated in Rivers State. Similarly, the highest nickel (Ni) value (199 microg/g dry weight) was also obtained in I. garbonesis, however, in the seeds sampled in Owerri. The highest copper (Cu), zinc (Zn), and iron (Fe) levels (16.8, 5.27, and 26.2 microg/g dry weight, resp.) were detected in seeds collected in Rivers State. With the exception of Talinum triangulae, Ocinum gratissimum, and Piper guineese, with Pb levels of 0.09, 0.10, and 0.11 microg/g dry weight, respectively, the Pb and Cd levels in the vegetables grown in Owerri fell below the detection limit of 0.01 microg/g dry weight. The trace metal with the highest levels in all the vegetables studied was Mn, followed by Fe. The highest concentrations of Ni and Cu occurred in vegetables collected from Rivers State, while the highest level of Zn was observed in Piper guineese collected in Owerri, with a value of 21.4 microg/g dry weight. Although the trace metal concentrations of the seeds and vegetables collected in Rivers State tended to be higher than those of the seeds and vegetables grown in Owerri, the average levels of trace metals obtained in this study fell far below the WHO specifications for metals in foods.

  13. MC1: a dynamic vegetation model for estimating the distribution of vegetation and associated carbon, nutrients, and water—technical documentation. Version 1.0.

    Treesearch

    Dominique Bachelet; James M. Lenihan; Christopher Daly; Ronald P. Neilson; Dennis S. Ojima; William J. Parton

    2001-01-01

    Assessments of vegetation response to climate change have generally been made only by equilibrium vegetation models that predict vegetation composition under steady-state conditions. These models do not simulate either ecosystem biogeochemical processes or changes in ecosystem structure that may, in turn, act as feedbacks in determining the dynamics of vegetation...

  14. Anxiety in speakers who persist and recover from stuttering.

    PubMed

    Davis, Stephen; Shisca, Daniella; Howell, Peter

    2007-01-01

    The study was designed to see whether young children and adolescents who persist in their stutter (N=18) show differences in trait and/or state anxiety compared with people who recover from their stutter (N=17) and fluent control speakers (N=19). A fluent control group, a group of speakers who have been documented as stuttering in the past but do not stutter now and a group of speakers (also with a documented history of stuttering) who persist in their stuttering participated, all aged 10-17 years. The State-Trait Anxiety Inventory for Children was administered. There were no differences between persistent, recovered and control groups with regard to trait anxiety. The persistent group had higher state anxiety than controls and the recovered group for three out of four speaking situations. The findings are interpreted as showing that anxiety levels in certain affective states appear to be associated with the speaking problem. A reader should be able to appreciate the difference between state and trait anxiety understand views about how the role anxiety has on stuttering has changed over time appreciate different views about how anxiety affects speakers who persist and recover from stuttering see why longitudinal work is needed to study these issues.

  15. Ground settlement monitoring from temporarily persistent scatterers between two SAR acquisitions

    USGS Publications Warehouse

    Lei, Z.; Xiaoli, D.; Guangcai, F.; Zhong, L.

    2009-01-01

    We present an improved differential interferometric synthetic aperture radar (DInSAR) analysis method that measures motions of scatterers whose phases are stable between two SAR acquisitions. Such scatterers are referred to as temporarily persistent scatterers (TPS) for simplicity. Unlike the persistent scatterer InSAR (PS-InSAR) method that relies on a time-series of interferograms, the new algorithm needs only one interferogram. TPS are identified based on pixel offsets between two SAR images, and are specially coregistered based on their estimated offsets instead of a global polynomial for the whole image. Phase unwrapping is carried out based on an algorithm for sparse data points. The method is successfully applied to measure the settlement in the Hong Kong Airport area. The buildings surrounded by vegetation were successfully selected as TPS and the tiny deformation signal over the area was detected. ??2009 IEEE.

  16. Guidelines for Installation Natural Resource Protection during Training.

    DTIC Science & Technology

    1981-10-01

    continental United States. Educational material was then developed which adapted the basic concept to differing installation terrain, vegetation , and climates...but absolutely forbidden for most of the year in others. The terrain and vegetation shown in the artwork accompanying each section may also have to...regions reflecting variations in vegetation , climate, and ecology in the continental United States: (1) Northeast, (2) Southeast, (3) Upper Midwest, (4

  17. Increasing atmospheric CO2 overrides the historical legacy of multiple stable biome states in Africa.

    PubMed

    Moncrieff, Glenn R; Scheiter, Simon; Bond, William J; Higgins, Steven I

    2014-02-01

    The dominant vegetation over much of the global land surface is not predetermined by contemporary climate, but also influenced by past environmental conditions. This confounds attempts to predict current and future biome distributions, because even a perfect model would project multiple possible biomes without knowledge of the historical vegetation state. Here we compare the distribution of tree- and grass-dominated biomes across Africa simulated using a dynamic global vegetation model (DGVM). We explicitly evaluate where and under what conditions multiple stable biome states are possible for current and projected future climates. Our simulation results show that multiple stable biomes states are possible for vast areas of tropical and subtropical Africa under current conditions. Widespread loss of the potential for multiple stable biomes states is projected in the 21st Century, driven by increasing atmospheric CO2 . Many sites where currently both tree-dominated and grass-dominated biomes are possible become deterministically tree-dominated. Regions with multiple stable biome states are widespread and require consideration when attempting to predict future vegetation changes. Testing for behaviour characteristic of systems with multiple stable equilibria, such as hysteresis and dependence on historical conditions, and the resulting uncertainty in simulated vegetation, will lead to improved projections of global change impacts. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  18. Potential effects of the United States-Mexico border fence on wildlife.

    PubMed

    Flesch, Aaron D; Epps, Clinton W; Cain, James W; Clark, Matt; Krausman, Paul R; Morgart, John R

    2010-02-01

    Security infrastructure along international boundaries threatens to degrade connectivity for wildlife. To explore potential effects of a fence under construction along the U.S.-Mexico border on wildlife, we assessed movement behavior of two species with different life histories whose regional persistence may depend on transboundary movements. We used radiotelemetry to assess how vegetation and landscape structure affect flight and natal dispersal behaviors of Ferruginous Pygmy-Owls (Glaucidium brasilianum), and satellite telemetry, gene-flow estimates, and least-cost path models to assess movement behavior and interpopulation connectivity of desert bighorn sheep (Ovis canadensis mexicana). Flight height of Pygmy-Owls averaged only 1.4 m (SE 0.1) above ground, and only 23% of flights exceeded 4 m. Juvenile Pygmy-Owls dispersed at slower speeds, changed direction more, and had lower colonization success in landscapes with larger vegetation openings or higher levels of disturbance (p < or = 0.047), which suggests large vegetation gaps coupled with tall fences may limit transboundary movements. Female bighorn sheep crossed valleys up to 4.9 km wide, and microsatellite analyses indicated relatively high levels of gene flow and migration (95% CI for F(ST)=0.010-0.115, Nm = 1.9-24.8, M =10.4-15.4) between populations divided by an 11-km valley. Models of gene flow based on regional topography and movement barriers suggested that nine populations of bighorn sheep in northwestern Sonora are linked by dispersal with those in neighboring Arizona. Disruption of transboundary movement corridors by impermeable fencing would isolate some populations on the Arizona side. Connectivity for other species with similar movement abilities and spatial distributions may be affected by border development, yet mitigation strategies could address needs of wildlife and humans.

  19. Assessing the potential to restore historic grazing ecosystems with tortoise ecological replacements.

    PubMed

    Griffiths, Christine J; Zuël, Nicolas; Jones, Carl G; Ahamud, Zairabee; Harris, Stephen

    2013-08-01

    The extinction of large herbivores, often keystone species, can dramatically modify plant communities and impose key biotic thresholds that may prevent an ecosystem returning to its previous state and threaten native biodiversity. A potentially innovative, yet controversial, landscape-based long-term restoration approach is to replace missing plant-herbivore interactions with non-native herbivores. Aldabran giant (Aldabrachelys gigantea) and Madagascan radiated (Astrochelys radiata) tortoises, taxonomically and functionally similar to the extinct Mauritian giant tortoises (Cylindraspis spp.), were introduced to Round Island, Mauritius, in 2007 to control the non-native plants that were threatening persistence of native species. We monitored the response of the plant community to tortoise grazing for 11 months in enclosures before the tortoises were released and, compared the cost of using tortoises as weeders with the cost of using manual labor. At the end of this period, plant biomass; vegetation height and cover; and adult, seedling, flower, and seed abundance were 3-136 times greater in adjacent control plots than in the tortoise enclosures. After their release, the free-roaming tortoises grazed on most non-native plants and significantly reduced vegetation cover, height, and seed production, reflecting findings from the enclosure study. The tortoises generally did not eat native species, although they consumed those native species that increased in abundance following the eradication of mammalian herbivores. Our results suggest that introduced non-native tortoises are a more cost-effective approach to control non-native vegetation than manual weeding. Numerous long-term outcomes (e.g., change in species composition and soil seed bank) are possible following tortoise releases. Monitoring and adaptive management are needed to ensure that the replacement herbivores promote the recovery of native plants. © 2013 Society for Conservation Biology.

  20. Fire and climate suitability for woody vegetation communities in the south central United States

    USGS Publications Warehouse

    Stroh, Esther; Struckhoff, Matthew; Stambaugh, Michael C.; Guyette, Richard P.

    2018-01-01

    using a physical chemistry fire frequency model. We then used the fire probability data with additional climate parameters to construct maximum entropy environmental suitability models for three south central US vegetation communities. The modeled communities included an oak type (dominated by post oak, Quercus stellata Wangenh., and blackjack oak, Q. marilandica Münchh.), a mesquite type (dominated by honey mesquite, Prosopis glandulosa Torr., and velvet mesquite, P. velutina Wooton), and a pinyon−juniper type (dominated by pinyon pine, Pinus edulis Engelm., and Utah juniper, Juniperus osteosperma [Torr.] Little). We mapped baseline and future mean fire-climate suitability using data from three global climate models for 2040 to 2069 and 2070 to 2099; we also mapped future locations of threshold conditions for which all three models agreed on suitability for each community. Future projections included northward, southward, and eastward shifts in suitable conditions for the oaks along a broad path of fire-climate stability; an overall reduction in suitable area for historic mesquite communities coupled with potential expansion to new areas; and constriction and isolation of suitable conditions for pinyon−juniper communities. The inclusion of fire probability adds an important driver of vegetation distribution to climate envelope modeling. The simple models showed good fit, but future projections failed to account for future management activities or land use changes. Results provided information on potential future de-coupling and spatial re-arrangement of environmental conditions under which these communities have historically persisted and been managed. In particular, consensus threshold maps can inform long-term planning for maintenance or restoration of these communities, and they can be used as a potential tool for other communities in fire-prone environments within the study area and beyond its borders.

  1. Conversion of sagebrush shrublands to exotic annual grasslands negatively impacts small mammal communities

    USGS Publications Warehouse

    Ostoja, S.M.; Schupp, E.W.

    2009-01-01

    Aim The exotic annual cheatgrass (Bromus tectorum) is fast replacing sagebrush (Artemisia tridentata) communities throughout the Great Basin Desert and nearby regions in the Western United States, impacting native plant communities and altering fire regimes, which contributes to the long-term persistence of this weedy species. The effect of this conversion on native faunal communities remains largely unexamined. We assess the impact of conversion from native perennial to exotic annual plant communities on desert rodent communities. Location Wyoming big sagebrush shrublands and nearby sites previously converted to cheatgrass-dominated annual grasslands in the Great Basin Desert, Utah, USA. Methods At two sites in Tooele County, Utah, USA, we investigated with Sherman live trapping whether intact sagebrush vegetation and nearby converted Bromus tectorum-dominated vegetation differed in rodent abundance, diversity and community composition. Results Rodent abundance and species richness were considerably greater in sagebrush plots than in cheatgrass-dominated plots. Nine species were captured in sagebrush plots; five of these were also trapped in cheatgrass plots, all at lower abundances than in the sagebrush. In contrast, cheatgrass-dominated plots had no species that were not found in sagebrush. In addition, the site that had been converted to cheatgrass longer had lower abundances of rodents than the site more recently converted to cheatgrass-dominated plots. Despite large differences in abundances and species richness, Simpson's D diversity and Shannon-Wiener diversity and Brillouin evenness indices did not differ between sagebrush and cheatgrass-dominated plots. Main conclusions This survey of rodent communities in native sagebrush and in converted cheatgrass-dominated vegetation suggests that the abundances and community composition of rodents may be shifting, potentially at the larger spatial scale of the entire Great Basin, where cheatgrass continues to invade and dominate more landscape at a rapid rate. ?? 2009 Blackwell Publishing Ltd.

  2. Using Nutrition for Intervention and Prevention against Environmental Chemical Toxicity and Associated Diseases

    PubMed Central

    Hennig, Bernhard; Ettinger, Adrienne S.; Jandacek, Ronald J.; Koo, Sung; McClain, Craig; Seifried, Harold; Silverstone, Allen; Watkins, Bruce; Suk, William A.

    2007-01-01

    Background Nutrition and lifestyle are well-defined modulators of chronic diseases. Poor dietary habits (such as high intake of processed foods rich in fat and low intake of fruits and vegetables), as well as a sedentary lifestyle clearly contribute to today’s compromised quality of life in the United States. It is becoming increasingly clear that nutrition can modulate the toxicity of environmental pollutants. Objectives Our goal in this commentary is to discuss the recommendation that nutrition should be considered a necessary variable in the study of human disease associated with exposure to environmental pollutants. Discussion Certain diets can contribute to compromised health by being a source of exposure to environmental toxic pollutants. Many of these pollutants are fat soluble, and thus fatty foods often contain higher levels of persistent organics than does vegetable matter. Nutrition can dictate the lipid milieu, oxidative stress, and antioxidant status within cells. The modulation of these parameters by an individual’s nutritional status may have profound affects on biological processes, and in turn influence the effects of environmental pollutants to cause disease or dysfunction. For example, potential adverse health effects associated with exposure to polychlorinated biphenyls may increase as a result of ingestion of certain dietary fats, whereas ingestion of fruits and vegetables, rich in antioxidant and anti-inflammatory nutrients or bioactive compounds, may provide protection. Conclusions We recommend that future directions in environmental health research explore this nutritional paradigm that incorporates a consideration of the relationships between nutrition and lifestyle, exposure to environmental toxicants, and disease. Nutritional interventions may provide the most sensible means to develop primary prevention strategies of diseases associated with many environmental toxic insults. PMID:17450213

  3. Vegetation as self-adaptive coastal protection: Reduction of current velocity and morphologic plasticity of a brackish marsh pioneer.

    PubMed

    Carus, Jana; Paul, Maike; Schröder, Boris

    2016-03-01

    By reducing current velocity, tidal marsh vegetation can diminish storm surges and storm waves. Conversely, currents often exert high mechanical stresses onto the plants and hence affect vegetation structure and plant characteristics. In our study, we aim at analysing this interaction from both angles. On the one hand, we quantify the reduction of current velocity by Bolboschoenus maritimus, and on the other hand, we identify functional traits of B. maritimus' ramets along environmental gradients. Our results show that tidal marsh vegetation is able to buffer a large proportion of the flow velocity at currents under normal conditions. Cross-shore current velocity decreased with distance from the marsh edge and was reduced by more than 50% after 15 m of vegetation. We were furthermore able to show that plants growing at the marsh edge had a significantly larger diameter than plants from inside the vegetation. We found a positive correlation between plant thickness and cross-shore current which could provide an adaptive value in habitats with high mechanical stress. With the adapted morphology of plants growing at the highly exposed marsh edge, the entire vegetation belt is able to better resist the mechanical stress of high current velocities. This self-adaptive effect thus increases the ability of B. maritimus to grow and persist in the pioneer zone and may hence better contribute to ecosystem-based coastal protection by reducing current velocity.

  4. Early vegetation development on an exposed reservoir: implications for dam removal.

    PubMed

    Auble, Gregor T; Shafroth, Patrick B; Scott, Michael L; Roelle, James E

    2007-06-01

    The 4-year drawdown of Horsetooth Reservoir, Colorado, for dam maintenance, provides a case study analog of vegetation response on sediment that might be exposed from removal of a tall dam. Early vegetation recovery on the exposed reservoir bottom was a combination of (1) vegetation colonization on bare, moist substrates typical of riparian zones and reservoir sediment of shallow dams and (2) a shift in moisture status from mesic to the xeric conditions associated with the pre-impoundment upland position of most of the drawdown zone. Plant communities changed rapidly during the first four years of exposure, but were still substantially different from the background upland plant community. Predictions from the recruitment box model about the locations of Populus deltoides subsp. monilifera (plains cottonwood) seedlings relative to the water surface were qualitatively confirmed with respect to optimum locations. However, the extreme vertical range of water surface elevations produced cottonwood seed regeneration well outside the predicted limits of drawdown rate and height above late summer stage. The establishment and survival of cottonwood at high elevations and the differences between the upland plant community and the community that had developed after four years of exposure suggest that vegetation recovery following tall dam removal will follow a trajectory very different from a simple reversal of the response to dam construction, involving not only long time scales of establishment and growth of upland vegetation, but also possibly decades of persistence of legacy vegetation established during the reservoir to upland transition.

  5. Early vegetation development on an exposed reservoir: Implications for dam removal

    USGS Publications Warehouse

    Auble, G.T.; Shafroth, P.B.; Scott, M.L.; Roelle, J.E.

    2007-01-01

    The 4-year drawdown of Horsetooth Reservoir, Colorado, for dam maintenance, provides a case study analog of vegetation response on sediment that might be exposed from removal of a tall dam. Early vegetation recovery on the exposed reservoir bottom was a combination of (1) vegetation colonization on bare, moist substrates typical of riparian zones and reservoir sediment of shallow dams and (2) a shift in moisture status from mesic to the xeric conditions associated with the pre-impoundment upland position of most of the drawdown zone. Plant communities changed rapidly during the first four years of exposure, but were still substantially different from the background upland plant community. Predictions from the recruitment box model about the locations of Populus deltoides subsp. monilifera (plains cottonwood) seedlings relative to the water surface were qualitatively confirmed with respect to optimum locations. However, the extreme vertical range of water surface elevations produced cottonwood seed regeneration well outside the predicted limits of drawdown rate and height above late summer stage. The establishment and survival of cottonwood at high elevations and the differences between the upland plant community and the community that had developed after four years of exposure suggest that vegetation recovery following tall dam removal will follow a trajectory very different from a simple reversal of the response to dam construction, involving not only long time scales of establishment and growth of upland vegetation, but also possibly decades of persistence of legacy vegetation established during the reservoir to upland transition. ?? 2007 Springer Science+Business Media, LLC.

  6. Complexity confers stability: Climate variability, vegetation response and sand transport on longitudinal sand dunes in Australia's deserts

    NASA Astrophysics Data System (ADS)

    Hesse, Paul P.; Telfer, Matt W.; Farebrother, Will

    2017-04-01

    The relationship between antecedent precipitation, vegetation cover and sand movement on sand dunes in the Simpson and Strzelecki Deserts was investigated by repeated (up to four) surveys of dune crest plots (≈25 × 25 m) over a drought cycle (2002-2012) in both winter (low wind) and spring (high wind). Vegetation varied dramatically between surveys on vegetated and active dune crests. Indices of sand movement had significant correlations with vegetation cover: the depth of loose sand has a strong inverse relationship with crust (cyanobacterial and/or physical) while the area covered by ripples has a strong inverse relationship with the areal cover of vascular plants. However, the relationship between antecedent rainfall and vegetation cover was found to be complex. We tentatively identify two thresholds; (1) >10 mm of rainfall in the preceding 90 days leads to rapid and near total cover of crust and/or small plants <50 cm tall, and (2) >400 mm of rainfall in the preceding three years leads to higher cover of persistent and longer-lived plants >50 cm tall. These thresholds were used to predict days of low vegetation cover on dune crests. The combination of seasonality of predicted bare-crest days, potential sand drift and resultant sand drift direction explains observed patterns of sand drift on these dunes. The complex vegetation and highly variable rainfall regime confer meta-stability on the dunes through the range of responses to different intervals of antecedent rainfall and non-linear growth responses. This suggests that the geomorphic response of dunes to climate variation is complex and non-linear.

  7. Parasitic contamination of fresh vegetables sold at central markets in Khartoum state, Sudan.

    PubMed

    Mohamed, Mona Ali; Siddig, Emmanuel Edwar; Elaagip, Arwa Hassan; Edris, Ali Mahmoud Mohammed; Nasr, Awad Ahmed

    2016-03-11

    Fresh vegetables are considered as vital nutrients of a healthy diet as they supply the body with essential supplements. The consumption of raw vegetables is the main way for transmission of intestinal parasitic organisms. This study was aimed at detecting the parasitic contamination in fresh vegetables sold in two central open-aired markets in Khartoum state, Sudan. In this prospective cross-sectional study, a total of 260 fresh vegetable samples and 50 water samples used to sprinkle vegetable(s) were collected from two central open-aired markets (namely; Elshaabi and Central markets) during November 2011 to May 2012. The samples were microscopically examined for detection of parasitic life forms using standardized parasitological techniques for protozoans and helminthes worms. Of the 260 fresh vegetable samples, 35 (13.5 %) were microscopically positive for intestinal parasites whereas 7/50 (14 %) of water samples used to sprinkle vegetable(s) were found positives. Remarkably, high level of contamination in fresh vegetable samples was recorded in lettuce (Lactuca sativa) 36.4 % (4/11) while cayenne pepper (Capsicum annuum) and cucumber (Cucumis sativus) were not contaminated. The identified protozoans and helminthes were Entamoeba histolytica/dispar, Entamoeba coli, Giardia lamblia, Ascaris lumbricoides, Strongyloides stercoralis, T. trichiura and hookworms. The most predominant parasite encountered was E. histolytica/dispar (42.9 %) whereas both T. trichiura and A. lumbricoides (2.9 %) were the least detected parasites. None of the fresh vegetables had single parasitic contamination. The highest percentages found in water samples used to sprinkle vegetable(s) was for Strongyloides larvae 60 % (3/5). It is worth-mentioned that the rate of contamination in Elshaabi market was higher compared with Central market. However, there was no significant correlation between the type of vegetables and existence of parasites in both markets and a high significant relationship was observed between the type of parasite and total prevalence in fresh vegetables (p = 0.000). The study has identified a moderate rate of fresh vegetables contaminated with protozoan and helminthes. Contaminated fresh vegetables in central markets of Khartoum state may play a significant role in transmission of intestinal parasitic infections to humans, and the water used by greengrocers to sprinkle vegetable(s) can be implicated in vegetable contamination.

  8. Experimental trampling of vegetation. I. Relationship between trampling intensity and vegetation response

    Treesearch

    David N. Cole

    1995-01-01

    1. Experimental trampling was conducted in 18 vegetation types in five separate mountain regions in the United States. Each type was trampled 0-500 times. Response to trampling was assessed by determining vegetation cover 2 weeks after trampling and 1 year after trampling.2. Response varied significantly with trampling intensity and vegetation type. Trampling...

  9. Pen Branch stream corridor and Delta Wetlands change assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blohm, J.D.

    1995-06-01

    Airborne multispectral scanner data from 1987 to 1991 covering the Pen Branch corridor and delta at SRS were utilized to provide a detailed change detection analysis. The multispectral data were geo-referenced to a Universal Transverse Mercator projection using finite element registration. Each year was then classified into eleven different landcover categories, and the yearly changes in each landcover category were analyzed. The decrease in operations of K Reactor in 1988 has resulted in drying of the corridor and delta. This has led to the decline of nonpersistent vegetation and the increase of persistent vegetation. Cattails, willow, and bottomland hardwoods, inmore » particular, have grown to dominate the corridor and most of the delta.« less

  10. Alternative pathways to landscape transformation: Invasive grasses, burn severity and fire frequency in arid ecosystems

    USGS Publications Warehouse

    Klinger, Robert C.; Brooks, Matthew L.

    2017-01-01

    Arid ecosystems are often vulnerable to transformation to invasive-dominated states following fire, but data on persistence of these states are sparse. The grass/fire cycle is a feedback process between invasive annual grasses and fire frequency that often leads to the formation of alternative vegetation states dominated by the invasive grasses. However, other components of fire regimes, such as burn severity, also have the potential to produce long-term vegetation transformations. Our goal was to evaluate the influence of both fire frequency and burn severity on the transformation of woody-dominated communities to communities dominated by invasive grasses in major elevation zones of the Mojave Desert of western North America.We used a chronosequence design to collect data on herbaceous and woody cover at 229 unburned reference plots and 578 plots that burned between 1972 and 2010. We stratified the plots by elevation zone (low, mid, high), fire frequency (1–3 times) and years post-fire (YPF; 1–5, 6–10, 11–20 and 21–40 YPF). Burn severity for each plot was estimated by the difference normalized burn ratio.We identified two broad post-fire successional pathways. One was an outcome of fire frequency, resulting in a strong potential transformation via the grass/fire cycle. The second pathway was driven by burn severity, the critical aspect being that long-term transformation of a community could occur from just one fire in areas that burned at high or sometimes moderate severity. Dominance by invasive grasses was most likely to occur in low-and high-elevation communities; cover of native herbaceous species was often greater than that of invasive grasses in the mid-elevation zone.Synthesis. Invasive grasses can dominate a site that burned only one time in many decades at high severity, or a site that burned at low severity but multiple times in the same time period. However, high burn severity may predispose areas to more frequent fire because they have relatively high cover of invasive annual grass, suggesting burn severity and fire frequency have both independent and synergistic effects. Resilience in vegetation structure following fire in many arid communities may be limited to a narrow window of low burn severity in areas that have not burned in many decades.

  11. Persistence of Master's Students in the United States: Development and Testing of a Conceptual Model

    ERIC Educational Resources Information Center

    Cohen, Kristin E.

    2012-01-01

    This study was designed to investigate the factors that affect master's student persistence in the United States. More specifically, this study explored whether the following factors: students' background, institution's, academic, environmental and psychological influences, had a significant effect on whether a master's student persisted and/or…

  12. Resilience and vulnerability of permafrost to climate change

    Treesearch

    M.Torre Jorgenson; Vladimir Romanovsky; Jennifer Harden; Yuri Shur; Jonathan O' Donnell; Edward A.G. Schuur; Mikhail Kanevskiy; Sergei. Marchenko

    2010-01-01

    The resilience and vulnerability of permafrost to climate change depends on complex interactions among topography, water, soil, vegetation, and snow, which allow permafrost to persist at mean annual air temperatures (MAATs) as high as +2 °C and degrade at MAATs as low as -20°C. To assess these interactions, we compiled existing data and tested effects of varying...

  13. A general Landsat model to predict canopy defoliation in broadleaf deciduous forests

    Treesearch

    Phillip A. Townsend; Aditya Singh; Jane R. Foster; Nathan J. Rehberg; Clayton C. Kindon; Keith N. Eshleman; Steven W. Seagle

    2012-01-01

    Defoliation by insect herbivores can be a persistent disturbance affecting ecosystem functioning. We developed an approach to map canopy defoliation due to gypsy moth based on site differences in Landsat vegetation index values between non-defoliation and defoliation dates. Using field data from two study areas in the U.S. central Appalachians and five different years...

  14. Strategy for simultaneous molecular detection of the protozoan parasites Toxoplasma, Cryptosporidium and Giardia in food matrices and persistence on leaves of vegetables during storage at 4°C

    USDA-ARS?s Scientific Manuscript database

    Toxoplasma gondii, Cryptosporidium spp. and Giardia intestinalis are emerging pathogen parasites in the food domain. However, without standardized method for their detection in food matrices, parasitic foodborne outbreaks remain neglected. In this study, a new immunomagnetic separation assay (IMS To...

  15. Climate-induced fluvial dynamics in tropical Africa around the last glacial maximum?

    NASA Astrophysics Data System (ADS)

    Sangen, Mark; Neumann, Katharina; Eisenberg, Joachim

    2011-11-01

    The alluvia of the Ntem, Nyong and Sanaga fluvial systems in southern Cameroon recorded repeated fluvial activity fluctuations during the Late Pleistocene, including the last glacial maximum (LGM), the beginning of the African Humid Period and the northern hemispheric Bølling-Allerød. We applied a multi-proxy approach on alluvial stratigraphies dated between 22.4 and 13.0 cal ka BP, including remote sensing, sedimentological and morphogenetic methods, phytoliths, sponge spicules, 14C and δ 13C data. A distinct NE-SW gradient of landscape and fluvial dynamics around the LGM can be drawn, with evidence for the persistence of extended fluvial rainforest refuges only in the Ntem catchment. The Sanaga and Nyong catchment areas were characterized by frequent channel migrations, floodplain reorganization and unstable vegetation subject to fire, including grasslands, woodlands, and gallery forests with bamboo thickets. In spite of increasing rainfall after 16.4 cal ka BP, persisting landscape instability played the major role for fluvial system dynamics, floodplain transformations and vegetation development until 13.0 cal ka BP, before a general landscape stabilization and rainforest expansion set in at the beginning of the Holocene.

  16. Insecticide dissipation from soil and plant surfaces in tropical horticulture of southern Benin, West Africa.

    PubMed

    Rosendahl, Ingrid; Laabs, Volker; Atcha-Ahowé, Cyrien; James, Braima; Amelung, Wulf

    2009-06-01

    In Sub-Saharan Africa, horticulture provides livelihood opportunities for millions of people, especially in urban and peri-urban areas. Although the vegetable agroecosystems are often characterized by intensive pesticide use, risks resulting therefrom are largely unknown under tropical horticultural conditions. The objective of this study therefore was to study the fate of pesticides in two representative horticultural soils (Acrisol and Arenosol) and plants (Solanum macrocarpon L.) after field application and thus to gain first insight on environmental persistence and dispersion of typical insecticides used in vegetable horticulture in Benin, West Africa. On plant surfaces, dissipation was rapid with half lives ranging from 2 to 87 h (alpha-endosulfan < beta-endosulfan < deltamethrin). Soil dissipation was considerably slower than dissipation from plant surfaces with half-lives ranging from 3 (diazinon) to 74 d (total endosulfan), but persistence of pesticides in soil was still reduced compared to temperate climates. Nevertheless, for deltamethrin and endosulfan, a tendency for mid-term accumulation in soil upon repeated applications was observed. The soil and plant surface concentrations of the metabolite endosulfan sulfate increased during the entire trial period, indicating that this compound is a potential long-term pollutant even in tropical environments.

  17. The role of seed bank in the dynamics of understorey in an oak forest in Hungary.

    PubMed

    Koncz, G; Papp, Mária; Török, P; Kotroczó, Zs; Krakomperger, Zs; Matus, G; Tóthmérész, B

    2010-01-01

    We studied the potential role of seed bank in the dynamics of the understorey in a turkey oak-sessile oak forest (Querceteum petraeae-cerris) in Hungary. We used long-term records of the herb layer (1973-2006) and the seed bank composition of 2006 to assess the role of seed bank in the regeneration of herb layer. The total cover of herb layer decreased from 22% (1973) to 6% (1988), and remained low (<10%) till 2006; coinciding with the increasing cover of secondary canopy dominated by Acer campestre. We found a low density seed bank (ca. 1300 seeds/m2). Altogether 33 species were germinated from the soil samples. A few generalist weed species composed the majority of seed bank. It was possible to assign a seed bank type for 19 species; 14 species out of 19 was long-term persistent. We found that the characteristic perennial forest herbs and grasses had only sparse seed bank. The Jaccard similarity between vegetation and seed bank was low (<30%). Our results suggest that the continuous establishment of forest herbs are not based on local persistent seed bank; it should be based on vegetative spreading and/or seed rain.

  18. Catastrophic Shifts in Semiarid Vegetation-Soil Systems May Unfold Rapidly or Slowly.

    PubMed

    Karssenberg, Derek; Bierkens, Marc F P; Rietkerk, Max

    2017-12-01

    Under gradual change of a driver, complex systems may switch between contrasting stable states. For many ecosystems it is unknown how rapidly such a critical transition unfolds. Here we explore the rate of change during the degradation of a semiarid ecosystem with a model coupling the vegetation and geomorphological system. Two stable states-vegetated and bare-are identified, and it is shown that the change between these states is a critical transition. Surprisingly, the critical transition between the vegetated and bare state can unfold either rapidly over a few years or gradually over decennia up to millennia, depending on parameter values. An important condition for the phenomenon is the linkage between slow and fast ecosystems components. Our results show that, next to climate change and disturbance rates, the geological and geomorphological setting of a semiarid ecosystem is crucial in predicting its fate.

  19. Potential climatic impacts of vegetation change: A regional modeling study

    NASA Astrophysics Data System (ADS)

    Copeland, Jeffrey H.; Pielke, Roger A.; Kittel, Timothy G. F.

    1996-03-01

    The human species has been modifying the landscape long before the development of modern agrarian techniques. Much of the land area of the conterminous United States is currently used for agricultural production. In certain regions this change in vegetative cover from its natural state may have led to local climatic change. A regional climate version of the Colorado State University Regional Atmospheric Modeling System was used to assess the impact of a natural versus current vegetation distribution on the weather and climate of July 1989. The results indicate that coherent regions of substantial changes, of both positive and negative sign, in screen height temperature, humidity, wind speed, and precipitation are a possible consequence of land use change throughout the United States. The simulated changes in the screen height quantities were closely related to changes in the vegetation parameters of albedo, roughness length, leaf area index, and fractional coverage.

  20. Potential climatic impacts of vegetation change: A regional modeling study

    USGS Publications Warehouse

    Copeland, J.H.; Pielke, R.A.; Kittel, T.G.F.

    1996-01-01

    The human species has been modifying the landscape long before the development of modern agrarian techniques. Much of the land area of the conterminous United States is currently used for agricultural production. In certain regions this change in vegetative cover from its natural state may have led to local climatic change. A regional climate version of the Colorado State University Regional Atmospheric Modeling System was used to assess the impact of a natural versus current vegetation distribution on the weather and climate of July 1989. The results indicate that coherent regions of substantial changes, of both positive and negative sign, in screen height temperature, humidity, wind speed, and precipitation are a possible consequence of land use change throughout the United States. The simulated changes in the screen height quantities were closely related to changes in the vegetation parameters of albedo, roughness length, leaf area index, and fractional coverage. Copyright 1996 by the American Geophysical Union.

  1. Comparison of soil infiltration rates in burned and unburned mountainous watersheds

    USGS Publications Warehouse

    Martin, D.A.; Moody, J.A.

    2001-01-01

    Steady-state infiltration measurements were made at mountainous sites in New Mexico and Colorado, USA, with volcanic and granitic soils after wildfires and at comparable unburned sites. We measured infiltration in the New Mexico volcanic soils under two vegetation types, ponderosa pine and mixed conifer, and in the Colorado granitic soils under ponderosa pine vegetation. These measurements were made within high-severity burn areas using a portable infiltrometer with a 0.017 m2 infiltration area and artificial rainfall rates ranging from 97 to 440 mm h-1. Steady-state infiltration rates were less at all burned sites relative to unburned sites. The volcanic soil with ponderosa pine vegetation showed the greatest difference in infiltration rates with a ratio of steady-state infiltration rate in burned sites to unburned soils equal to 0.15. Volcanic soils with mixed conifer vegetation had a ratio (burned to unburned soils) of at most 0.38, and granitic soils with ponderosa pine vegetation had a ratio of 0.38. Steady-state infiltration rates on unburned volcanic and granitic soils with ponderosa pine vegetation are not statistically different. We present data on the particle-size distribution at all the study sites and examples of wetting patterns produced during the infiltration experiments. Published in 2001 by John Wiley and Sons, Ltd.

  2. Limited percentages of adults in Washington State meet the Dietary Guidelines for Americans recommended intakes of fruits and vegetables.

    PubMed

    Ta, Myduc L; VanEenwyk, Juliet; Bensley, Lillian

    2012-05-01

    Nutritious diets that include sufficient intake of fruits and vegetables promote health and reduce risk for chronic diseases. The 2005 Dietary Guidelines for Americans recommend four to 13 servings of fruits and vegetables daily for energy intake levels of 1,000 to 3,200 kcal, including seven to 13 servings for 1,600 to 3,000 kcal/day as recommended for adults aged ≥25 years. The 2006-2007 Washington Adult Health Survey, a cross-sectional study designed to measure risk factors for cardiovascular disease among a representative sample of Washington State residents aged ≥25 years, included a food frequency questionnaire (FFQ). The FFQ included approximately 120 food items and summary questions for fruits and vegetables that were used to compute energy intake and two measures of fruit and vegetable intake. Measure 1 was computed as the sum of intake of individual FFQ fruit and vegetable items; Measure 2 combined the summary questions with selected individual FFQ fruit and vegetable items. Depending on the measure used, approximately 14% to 22% of 519 participants with complete information met the guidelines for fruits, 11% to 15% for vegetables, and 5% to 6% for both fruits and vegetables. Participants aged ≥65 years and women were more likely to meet recommendations, compared with younger participants and men. Despite decades of public health attention, the vast majority of Washington State residents do not consume the recommended amount of fruits or vegetables daily. These findings underscore the need for developing and evaluating new approaches to promote fruit and vegetable consumption. Copyright © 2012 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  3. Sensory determinants of stated liking for vegetable names and actual liking for canned vegetables: A cross-country study among European adolescents.

    PubMed

    Dinnella, Caterina; Morizet, David; Masi, Camilla; Cliceri, Danny; Depezay, Laurence; Appleton, Katherine M; Giboreau, Agnés; Perez-Cueto, Federico J A; Hartwell, Heather; Monteleone, Erminio

    2016-12-01

    Sensory properties are reported as one of the main factors hindering an appropriate vegetable intake by the young. In the present work the sensory determinants of likings for vegetables were explored in adolescents of four European countries (Denmark, n = 88; France, n = 206; Italy, n = 110 and United Kingdom, n = 93). A questionnaire was designed to study cross country differences in stated liking for and familiarity with a list of vegetables popular among European markets (between-vegetable approach). A within-vegetable comparison approach with actual tasting was used to analyze differences and similarities in liking for canned pea and sweet corn samples across the countries. A close positive relationship between stated liking and familiarity was found. Irrespective of the country, one group of highly liked vegetables (carrots, tomatoes, green salad) was identified, characterized by innately liked tastes (sweet, umami), delicate flavour and bright appealing colour. A second group of highly disliked vegetables consists of cauliflowers and broccoli, characterized by disliked sensations such as bitter taste and objectionable flavour. Internal Preference Maps from actual liking scores indicate that the generally disliked tastes (bitter, sour), are clearly correlated with a negative hedonic response for both peas and sweet corn. The hedonic valence of a generally well accepted taste such as salty and texture descriptors depends on the type of vegetable. Internal preference maps from actual liking data indicate that flavour and appearance descriptors of the distinct sensory properties of each type of vegetable positively affect liking, while the intensity of unusual flavours is related to sample disliking. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Physiology of fresh-cut fruits and vegetables

    USDA-ARS?s Scientific Manuscript database

    The idea to pre-process fruits and vegetables in the fresh state started with fresh-cut salads and now has expanded to fresh-cut fruits and other vegetables. The fresh-cut portion of the fresh produce industry includes fruits, vegetables, sprouts, mushrooms and even herbs that are cut, cored, sliced...

  5. Can we grow organic or conventional vegetables sustainably without cover crops?

    USDA-ARS?s Scientific Manuscript database

    Vegetable and fruit consumption patterns in the United States show that most people need to eat far more fruits and vegetables to meet the current nutritional guidelines for a healthy diet. Following these guidelines would require more than doubling the harvested acreage for fruits and vegetables a...

  6. A review of perchlorate (ClO4-) occurrence in fruits and vegetables.

    PubMed

    Calderón, R; Godoy, F; Escudey, M; Palma, P

    2017-02-01

    Since the 1990s, a large number of studies around the world have reported the presence of perchlorate in different types of environmental matrices. In view of their inherent characteristics, such as high solubility, mobility, persistence, and low affinity for the surface of soil, perchlorates are mobilized through the water-soil system and accumulate in edible plant species of high human consumption. However, the ingestion of food products containing perchlorate represents a potential health risk to people due to their adverse effects on thyroid, hormone, and neuronal development, mainly in infants and fetuses. At present, research has been centered on determining sources, fates, and remediation methods and not on its real extension in vegetables under farming conditions. This review presents a comprehensive overview and update of the frequent detection of perchlorate in fruits and vegetables produced and marketed around the world. Additionally, the impact of fertilizer on the potential addition of perchlorate to soil and its mobility in the water-soil-plant system is discussed. This review is organized into the following sections: sources of perchlorate, mobility in the water-soil system, presence in fruits and vegetables in different countries, international regulations, and toxicological studies. Finally, recommendations for future studies concerning perchlorate in fruits and vegetables are presented.

  7. Catastrophic shifts in vegetation-soil systems may unfold rapidly or slowly independent of the rate of change in the system driver

    NASA Astrophysics Data System (ADS)

    Karssenberg, Derek; Bierkens, Marc

    2014-05-01

    Complex systems may switch between contrasting stable states under gradual change of a driver. Such critical transitions often result in considerable long-term damage because strong hysteresis impedes reversion, and the transition becomes catastrophic. Critical transitions largely reduce our capability of forecasting future system states because it is hard to predict the timing of their occurrence [2]. Moreover, for many systems it is unknown how rapidly the critical transition unfolds when the tipping point has been reached. The rate of change during collapse, however, is important information because it determines the time available to take action to reverse a shift [1]. In this study we explore the rate of change during the degradation of a vegetation-soil system on a hillslope from a state with considerable vegetation cover and large soil depths, to a state with sparse vegetation and a bare rock or negligible soil depths. Using a distributed, stochastic model coupling hydrology, vegetation, weathering and water erosion, we derive two differential equations describing the vegetation and the soil system, and their interaction. Two stable states - vegetated and bare - are identified by means of analytical investigation, and it is shown that the change between these two states is a critical transition as indicated by hysteresis. Surprisingly, when the tipping point is reached under a very slow increase of grazing pressure, the transition between the vegetated and the bare state can either unfold rapidly, over a few years, or gradually, occurring over decennia up to millennia. These differences in the rate of change during the transient state are explained by differences in bedrock weathering rates. This finding emphasizes the considerable uncertainty associated with forecasting catastrophic shifts in ecosystems, which is due to both difficulties in forecasting the timing of the tipping point and the rate of change when the transition unfolds. References [1] Hughes, T. P., Linares, C., Dakos, V., van de Leemput, I. a, & van Nes, E. H. (2013). Living dangerously on borrowed time during slow, unrecognized regime shifts. Trends in ecology & evolution, 28(3), 149-55. [2] Karssenberg, D., & Bierkens, M. F. P. (2012). Early-warning signals (potentially) reduce uncertainty in forecasted timing of critical shifts. Ecosphere, 3(2).

  8. Persistence of Undergraduate Students at Arizona State University: A Research Report on the Class Entering in Fall, 1976.

    ERIC Educational Resources Information Center

    Richardson, Richard C., Jr.; Attinasi, Louis C., Jr.

    The academic persistence of undergraduate students at Arizona State University was studied. Demographic and academic profiles were developed, and persistence rates were calculated for the overall population of 3,166 freshmen, and by gender and ethnicity. Additional demographic variables were residency status and age. The academic variables…

  9. Early-warning signals for catastrophic soil degradation

    NASA Astrophysics Data System (ADS)

    Karssenberg, Derek

    2010-05-01

    Many earth systems have critical thresholds at which the system shifts abruptly from one state to another. Such critical transitions have been described, among others, for climate, vegetation, animal populations, and geomorphology. Predicting the timing of critical transitions before they are reached is of importance because of the large impact on nature and society associated with the transition. However, it is notably difficult to predict the timing of a transition. This is because the state variables of the system show little change before the threshold is reached. As a result, the precision of field observations is often too low to provide predictions of the timing of a transition. A possible solution is the use of spatio-temporal patterns in state variables as leading indicators of a transition. It is becoming clear that the critically slowing down of a system causes spatio-temporal autocorrelation and variance to increase before the transition. Thus, spatio-temporal patterns are important candidates for early-warning signals. In this research we will show that these early-warning signals also exist in geomorphological systems. We consider a modelled vegetation-soil system under a gradually increasing grazing pressure causing an abrupt shift towards extensive soil degradation. It is shown that changes in spatio-temporal patterns occur well ahead of this catastrophic transition. A distributed model describing the coupled processes of vegetation growth and geomorphological denudation is adapted. The model uses well-studied simple process representations for vegetation and geomorphology. A logistic growth model calculates vegetation cover as a function of grazing pressure and vegetation growth rate. Evolution of the soil thickness is modelled by soil creep and wash processes, as a function of net rain reaching the surface. The vegetation and soil system are coupled by 1) decreasing vegetation growth with decreasing soil thickness and 2) increasing soil wash with decreasing vegetation cover. The model describes a critical, catastrophic transition of an underexploited system with low grazing pressure towards an overexploited system. The underexploited state has high vegetation cover and well developed soils, while the overexploited state has low vegetation cover and largely degraded soils. We first show why spatio-temporal patterns in vegetation cover, morphology, erosion rate, and sediment load should be expected to change well before the critical transition towards the overexploited state. Subsequently, spatio-temporal patterns are quantified by calculating statistics, in particular first order statistics and autocorrelation in space and time. It is shown that these statistics gradually change before the transition is reached. This indicates that the statistics may serve as early-warning signals in real-world applications. We also discuss the potential use of remote sensing to predict the critical transition in real-world landscapes.

  10. Defining functional biomes and monitoring their change globally.

    PubMed

    Higgins, Steven I; Buitenwerf, Robert; Moncrieff, Glenn R

    2016-11-01

    Biomes are important constructs for organizing understanding of how the worlds' major terrestrial ecosystems differ from one another and for monitoring change in these ecosystems. Yet existing biome classification schemes have been criticized for being overly subjective and for explicitly or implicitly invoking climate. We propose a new biome map and classification scheme that uses information on (i) an index of vegetation productivity, (ii) whether the minimum of vegetation activity is in the driest or coldest part of the year, and (iii) vegetation height. Although biomes produced on the basis of this classification show a strong spatial coherence, they show little congruence with existing biome classification schemes. Our biome map provides an alternative classification scheme for comparing the biogeochemical rates of terrestrial ecosystems. We use this new biome classification scheme to analyse the patterns of biome change observed over recent decades. Overall, 13% to 14% of analysed pixels shifted in biome state over the 30-year study period. A wide range of biome transitions were observed. For example, biomes with tall vegetation and minimum vegetation activity in the cold season shifted to higher productivity biome states. Biomes with short vegetation and low seasonality shifted to seasonally moisture-limited biome states. Our findings and method provide a new source of data for rigorously monitoring global vegetation change, analysing drivers of vegetation change and for benchmarking models of terrestrial ecosystem function. © 2016 John Wiley & Sons Ltd.

  11. Functioning and Disability of Children and Adolescents in a Vegetative State and a Minimally Conscious State: Identification of ICF-CY-Relevant Categories

    ERIC Educational Resources Information Center

    Leonardi, Matilde; Sattin, Davide; Giovannetti, Ambra M.; Pagani, Marco; Strazzer, Sandra; Villa, Federica; Martinuzzi, Andrea; Buffoni, Mara; Castelli, Enrico; Lispi, Maria Luisa; Trabacca, Antonio; Gennaro, Leonarda; Raggi, Alberto

    2012-01-01

    Children in a vegetative state (VS) and a minimally conscious state (MCS) experience severe limitations as a consequence of nervous system deficits and require consistent environmental support. However, disability in VS and MCS children has never been described following a model that accounts for the presence of the symptoms, limitations and the…

  12. Reorganization of vegetation, hydrology and soil carbon after permafrost degradation across heterogeneous boreal landscapes

    USGS Publications Warehouse

    Jorgenson, M. Torre; Harden, Jennifer; Kanevskiy, Mikhail; O'Donnell, Jonathan; Wickland, Kim; Ewing, Stephanie; Manies, Kristen; Zhuang, Qianlai; Shur, Yuri; Striegl, Robert G.; Koch, Joshua C.

    2013-01-01

    The diversity of ecosystems across boreal landscapes, successional changes after disturbance and complicated permafrost histories, present enormous challenges for assessing how vegetation, water and soil carbon may respond to climate change in boreal regions. To address this complexity, we used a chronosequence approach to assess changes in vegetation composition, water storage and soil organic carbon (SOC) stocks along successional gradients within four landscapes: (1) rocky uplands on ice-poor hillside colluvium, (2) silty uplands on extremely ice-rich loess, (3) gravelly–sandy lowlands on ice-poor eolian sand and (4) peaty–silty lowlands on thick ice-rich peat deposits over reworked lowland loess. In rocky uplands, after fire permafrost thawed rapidly due to low ice contents, soils became well drained and SOC stocks decreased slightly. In silty uplands, after fire permafrost persisted, soils remained saturated and SOC decreased slightly. In gravelly–sandy lowlands where permafrost persisted in drier forest soils, loss of deeper permafrost around lakes has allowed recent widespread drainage of lakes that has exposed limnic material with high SOC to aerobic decomposition. In peaty–silty lowlands, 2–4 m of thaw settlement led to fragmented drainage patterns in isolated thermokarst bogs and flooding of soils, and surface soils accumulated new bog peat. We were not able to detect SOC changes in deeper soils, however, due to high variability. Complicated soil stratigraphy revealed that permafrost has repeatedly aggraded and degraded in all landscapes during the Holocene, although in silty uplands only the upper permafrost was affected. Overall, permafrost thaw has led to the reorganization of vegetation, water storage and flow paths, and patterns of SOC accumulation. However, changes have occurred over different timescales among landscapes: over decades in rocky uplands and gravelly–sandy lowlands in response to fire and lake drainage, over decades to centuries in peaty–silty lowlands with a legacy of complicated Holocene changes, and over centuries in silty uplands where ice-rich soil and ecological recovery protect permafrost.

  13. Soil seed bank recovery occurs more rapidly than expected in semi-arid Mediterranean gypsum vegetation.

    PubMed

    Olano, J M; Caballero, I; Escudero, A

    2012-01-01

    Seed banks are critical in arid ecosystems and ensure the persistence of species. Despite the importance of seed banks, knowledge about their formation and the extent to which a seed bank can recover after severe perturbation remains scarce. If undisturbed, soil seed banks reflect a long vegetation history; therefore, we would expect that new soil seed banks and those of undisturbed soils require long periods to become similar with respect to both density and composition. In contrast, if soil seed banks are only a short- to mid-term reservoir in which long-term accumulation constitutes only a tiny fraction, they will recover rapidly from the vegetation. To shed light on this question, we evaluated seed bank formation in a semi-arid gypsum community. Soils from 300 plots were replaced with sterilized soil in an undisturbed semi-arid Mediterranean community. Seasonal changes in seed bank density and composition were monitored for 3 years by comparing paired sterilized and control soil samples at each plot. Differences in seed bank density between sterilized and control soil disappeared after 18 months. The composition of sterilized seed banks was correlated with that of the control plots from the first sampling date, and both were highly correlated with vegetation. Nearly 24 % of the seed bank density could be attributed to secondary dispersal. Most seeds died before emergence (66·41-71·33 %), whereas the rest either emerged (14·08-15·48 %) or persisted in the soil (14·59-18·11 %). Seed banks can recover very rapidly even under the limiting and stressful conditions of semi-arid environments. This recovery is based mainly on the seed rain at small scales together with secondary dispersal from intact seed banks in the vicinity. These results emphasize the relevance of processes occurring on short spatial scales in determining community structure.

  14. Salt Marsh development studies at Waquoit Bay, Massachusetts: Influence of geomorphology on long-term plant community structure

    NASA Astrophysics Data System (ADS)

    Orson, Richard A.; Howes, Brian L.

    1992-11-01

    Stochastic events relating to beach formation and inlet dynamics have been the major factors influencing the development of the Waquoit Bay tidal marshes. This results from the physical structure of the Waquoit Bay system where tidal exchange is limited to one or two small inlets and is in contrast to marsh development in nearby Barnstable Marsh where direct unrestricted exchange with Cape Cod Bay has smoothed the effects of stochastic events on vegetation development. We contend that vegetation development in salt marshes where connections to adjacent waters are restricted will be dominated by abiotic factors (e.g. storms, sedimentation rates, etc.) while those marshes directly linked to open bodies of water and where alterations to hydrodynamic factors are gradual, autecological processes (e.g. interspecific competition) will dominate long-term plant community development. The results from the five marsh systems within the Waquoit Bay complex suggest that once a vegetation change occurs the new community tended to persist for long periods of time (100's-1000's years). Stability of the 'new' community appeared to depend upon the stability of the physical structure of the system and/or time between perturbations necessary to allow the slower autecological processes to have a discernable effect. In order for the plant community to persist as long as observed, the vegetation must also be exerting an influence on the processes of development. Increased production of roots and rhizomes and growth characteristics (density of culms) are some of the factors which help to maintain long-term species dominance. It is clear from this investigation that the structure of the plant community at any one point in time is dependent upon numerous factors including historical developmental influences. To properly assess changes to the present plant community or determine recent rates of accretion, historic developmental trends must be considered. The factors that have influenced the development of marsh in the past will be important in understanding and formulating predictive models in the future.

  15. Herbaceous vegetation productivity, persistence, and metals uptake on a biosolids-amended mine soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evanylo, G.K.; Abaye, A.O.; Dundas, C.

    The selection of plant species is critical for the successful establishment and long-term maintenance of vegetation on reclaimed surface mined soils. A study was conducted to assess the capability of 16 forage grass and legume species in monocultures and mixes to establish and thrive on a reclaimed Appalachian surface mine amended with biosolids. The 0.15-ha coarse-textured, rocky, non-acid forming mined site was prepared for planting by grading to a 2% slope and amending sandstone overburden materials with a mixture of composted and dewatered, anaerobically digested biosolids at a rate of 368 Mg ha{sup -1} (dry weight). The high rate ofmore » biosolids applied provided favorable soil chemical properties but could not overcome physical property limitations due to shallow undeveloped soil perched atop a compacted soil layer at 25 cm depth. The plant species whose persistence and biomass production were the greatest after a decade or more of establishment (i.e., switchgrass, sericea lespedeza, reed canarygrass, tall fescue, and crownvetch) shared the physiological and reproductive characteristics of low fertility requirements, drought and moisture tolerance, and propagation by rhizome and/or stolons. Of these five species, two (tall fescue and sericea lespedeza) are or have been seeded commonly on Appalachian coal surface mines, and often dominate abandoned pasture sites. Despite the high rates of heavy metal-bearing biosolids applied to the soil, plant uptake of Cd, Cu, Ni, and Zn were well within critical concentrations more than a decade after establishment of the vegetation.« less

  16. Time-delay-induced dynamical behaviors for an ecological vegetation growth system driven by cross-correlated multiplicative and additive noises.

    PubMed

    Wang, Kang-Kang; Ye, Hui; Wang, Ya-Jun; Li, Sheng-Hong

    2018-05-14

    In this paper, the modified potential function, the stationary probability distribution function (SPDF), the mean growth time and the mean degeneration time for a vegetation growth system with time delay are investigated, where the vegetation system is assumed to be disturbed by cross-correlated multiplicative and additive noises. The results reveal some fact that the multiplicative and additive noises can both reduce the stability and speed up the decline of the vegetation system, while the strength of the noise correlation and time delay can both enhance the stability of the vegetation and slow down the depression process of the ecological system. On the other hand, with regard to the impacts of noises and time delay on the mean development and degeneration processes of the ecological system, it is discovered that 1) in the development process of the vegetation population, the increase of the noise correlation strength and time delay will restrain the regime shift from the barren state to the boom one, while the increase of the additive noise can lead to the fast regime shift from the barren state to the boom one. 2) Conversely, in the depression process of the ecological system, the increase of the strength of the correlation noise and time delay will prevent the regime shift from the boom state to the barren one. Comparatively, the increase of the additive and multiplicative noises can accelerate the regime shift from the boom state to the barren state.

  17. Three outbreaks of foodborne botulism caused by unsafe home canning of vegetables--Ohio and Washington, 2008 and 2009.

    PubMed

    Date, Kashmira; Fagan, Ryan; Crossland, Sandra; Maceachern, Dorothy; Pyper, Brian; Bokanyi, Rick; Houze, Yolanda; Andress, Elizabeth; Tauxe, Robert

    2011-12-01

    Foodborne botulism is a potentially fatal paralytic illness caused by ingestion of neurotoxin produced by the spore-forming bacterium Clostridium botulinum. Historically, home-canned vegetables have been the most common cause of botulism outbreaks in the United States. During 2008 and 2009, the Centers for Disease Control and Prevention (CDC) and state and local health departments in Ohio and Washington State investigated three outbreaks caused by unsafe home canning of vegetables. We analyzed CDC surveillance data for background on food vehicles that caused botulism outbreaks from 1999 to 2008. For the three outbreaks described, patients and their family members were interviewed and foods were collected. Laboratory testing of clinical and food samples was done at the respective state public health laboratories. From 1999 to 2008, 116 outbreaks of foodborne botulism were reported. Of the 48 outbreaks caused by home-prepared foods from the contiguous United States, 38% (18) were from home-canned vegetables. Three outbreaks of Type A botulism occurred in Ohio and Washington in September 2008, January 2009, and June 2009. Home-canned vegetables (green beans, green bean and carrot blend, and asparagus) served at family meals were confirmed as the source of each outbreak. In each instance, home canners did not follow canning instructions, did not use pressure cookers, ignored signs of food spoilage, and were unaware of the risk of botulism from consuming improperly preserved vegetables. Home-canned vegetables remain a leading cause of foodborne botulism. These outbreaks illustrate critical areas of concern in current home canning and food preparation knowledge and practices. Similar gaps were identified in a 2005 national survey of U.S. adults. Botulism prevention efforts should include targeted educational outreach to home canners.

  18. Radar and optical mapping of surge persistence and marsh dieback along the New Jersey Mid-Atlantic coast after Hurricane Sandy

    USGS Publications Warehouse

    Rangoonwala, Amina; Enwright, Nicholas M.; Ramsey, Elijah W.; Spruce, Joseph P.

    2016-01-01

    This study combined a radar-based time series of Hurricane Sandy surge and estimated persistence with optical sensor-based marsh condition change to assess potential causal linkages of surge persistence and marsh condition change along the New Jersey Atlantic Ocean coast. Results based on processed TerraSAR-X and COSMO-SkyMed synthetic aperture radar (SAR) images indicated that surge flooding persisted for 12 h past landfall in marshes from Great Bay to Great Egg Harbor Bay and up to 59 h after landfall in many back-barrier lagoon marshes. Marsh condition change (i.e. loss of green marsh vegetation) was assessed from optical satellite images (Satellite Pour l’Observation de la Terre and Moderate Resolution Imaging Spectroradiometer) collected before and after Hurricane Sandy. High change in condition often showed spatial correspondence, with high surge persistence in marsh surrounding the lagoon portion of Great Bay, while in contrast, low change and high persistence spatial correspondence dominated the interior marshes of the Great Bay and Great Egg Harbor Bay estuaries. Salinity measurements suggest that these areas were influenced by freshwater discharges after landfall possibly mitigating damage. Back-barrier marshes outside these regions exhibited mixed correspondences. In some cases, topographic features supporting longer surge persistence suggested that non-correspondence between radar and optical data-based results may be due to differential resilience; however, in many cases, reference information was lacking to determine a reason for non-correspondence.

  19. Using Behavioral Risk Factor Surveillance System data to estimate the percent of the population meeting USDA Food Patterns fruit and vegetable intake recommendations

    PubMed Central

    Moore, Latetia V; Dodd, Kevin W; Thompson, Frances E; Grimm, Kirsten A; Kim, Sonia A; Scanlon, Kelley S

    2015-01-01

    Most Americans do not eat enough fruits and vegetables with significant variation by state. State-level self-reported frequency of fruit and vegetable consumption is available from the Centers for Disease Control and Prevention’s Behavioral Risk Factor Surveillance System (BRFSS). However, BRFSS cannot be used to directly compare states’ progress towards national goals because of incongruence in units used to measure intake and because distributions from frequency data are not reflective of usual intake. To help states track progress, we developed scoring algorithms from external data and applied them to 2011 BRFSS data to estimate the percent of each state’s adult population meeting United States Department of Agriculture Food Patterns fruit and vegetable intake recommendations. We used 24 hour dietary recall data from the 2007–2010 National Health and Nutrition Examination Survey to fit sex- and age-specific models that estimate probabilities of meeting recommendations as functions of reported consumption frequency, race/ethnicity, and poverty-income ratio adjusting for intra-individual variation. Regression parameters derived from these models were applied to BRFSS to estimate percent meeting recommendations. We estimate that 7–18% of state populations met fruit recommendations and 5–12% met vegetable recommendations. Our method provides a new tool for states to track progress towards meeting dietary recommendations. PMID:25935424

  20. Promoting healthy food consumption: a review of state-level policies to improve access to fruits and vegetables.

    PubMed

    Hood, Carlyn; Martinez-Donate, Ana; Meinen, Amy

    2012-12-01

    Research indicates poor nutrition is a leading determinant of the development of chronic disease, and increasing fruit and vegetable consumption is one method for decreasing obesity. Many policies have focused on increasing the demand for fruits and vegetables through price reductions and coupons. However, without ensuring a stable supply, increased demand can continue to raise prices, crowding out individuals who may otherwise have purchased fruits and vegetables and ultimately leading to continued disparities in access. This paper presents a review of selected state-level policy options recently proposed or implemented in states across the United States, and provides an evidence-based lens through which food access policy can be shaped in the Midwest. This review and potential framework uses Wisconsin to illustrate the feasibility of different state-level decisions and their potential impact on particular populations. Future supply-side policies to consider include expanding Electronic Benefit Transfer to the Special Supplemental Nutrition Program for Women, Infants and Children (WIC),program and farmers markets, incentivizing the purchase of locally grown produce, assisting local specialty farmers directly, and/or establishing a state-level food policy council. This review reveals that a food policy council would create a more sustainable policy analysis process to better ensure future policy adoption is truly comprehensive, encompassing the production, distribution and purchase of locally grown fruits and vegetables.

  1. Low bone mineral density and fragility fractures in permanent vegetative state patients.

    PubMed

    Oppl, Bastian; Michitsch, Gabriele; Misof, Barbara; Kudlacek, Stefan; Donis, Johann; Klaushofer, Klaus; Zwerina, Jochen; Zwettler, Elisabeth

    2014-01-01

    Disuse of the musculoskeletal system causes bone loss. Whether patients in vegetative state, a dramatic example of immobilization after severe brain injury, suffer from bone loss and fractures is currently unknown. Serum markers of bone turnover, bone mineral density (BMD) measurements, and clinical data were cross-sectionally analyzed in 30 consecutive vegetative state patients of a dedicated apallic care unit between 2003 and 2007 and compared with age- and sex-matched healthy individuals. Vegetative state patients showed low calcium levels and vitamin D deficiency compared with healthy controls. Serum bone turnover markers revealed high turnover as evidenced by markedly elevated carboxy-terminal telopeptide of type I collagen (β-crosslaps) and increased levels of alkaline phosphatase. BMD measured by dual-energy X-ray absorptiometry (DXA) scanning showed strongly decreased T- and Z-scores for hip and spine. Over a period of 5 years, 8 fragility fractures occurred at peripheral sites in 6 of 30 patients (n = 3 femur, n = 2 tibia, n = 2 fibula, n = 1 humerus). In conclusion, high bone turnover and low BMD is highly prevalent in vegetative state patients, translating into a clinically relevant problem as shown by fragility fractures in 20% of patients over a time period of 5 years. . © 2014 American Society for Bone and Mineral Research.

  2. Hydrologic Impacts of Landslide Disturbances: Implications for Remobilization and Hazard Persistence

    NASA Astrophysics Data System (ADS)

    Mirus, Benjamin B.; Smith, Joel B.; Baum, Rex L.

    2017-10-01

    Landslides typically alter hillslope topography, but may also change the hydrologic connectivity and subsurface water-storage dynamics. In settings where mobile materials are not completely evacuated from steep slopes, influences of landslide disturbances on hillslope hydrology and susceptibility to subsequent failures remain poorly characterized. Since landslides often recur at the site of previous failures, we examine differences between a stable vegetated hillslope (VH) and a recent landslide (LS). These neighboring hillslopes exhibit similar topography and are situated on steep landslide-prone coastal bluffs of glacial deposits along the northeastern shore of Puget Sound, Washington. Our control hillslope, VH, is mantled by a heterogeneous colluvium, supporting a dense forest. In early 2013, our test hillslope, LS, also supported a forest before a landslide substantially altered the topography and disturbed the hillslope. In 2015, we observed a clay-rich landslide deposit at LS with sparse vegetation and limited root reinforcement, soil structures, and macropores. Our characterization of the sites also found matrix porosity and hydraulic conductivity are both lower at LS. Continuous monitoring during 2015-2016 revealed reduced effective precipitation at VH (due to canopy interception), an earlier seasonal transition to near-saturated conditions at LS, and longer persistence of positive pore pressures and slower drainage at LS (both seasonally and between major storm events). These differences, along with episodic, complex slope failures at LS support the hypothesis that, despite a reduced average slope, other disturbances introduced by landsliding may promote the hydrologic conditions leading to slope instability, thus contributing to the persistence of landslide hazards.

  3. Hydrologic impacts of landslide disturbances: Implications for remobilization and hazard persistence

    USGS Publications Warehouse

    Mirus, Benjamin B.; Smith, Joel B.; Baum, Rex L.

    2017-01-01

    Landslides typically alter hillslope topography, but may also change the hydrologic connectivity and subsurface water-storage dynamics. In settings where mobile materials are not completely evacuated from steep slopes, influences of landslide disturbances on hillslope hydrology and susceptibility to subsequent failures remain poorly characterized. Since landslides often recur at the site of previous failures, we examine differences between a stable vegetated hillslope (VH) and a recent landslide (LS). These neighboring hillslopes exhibit similar topography and are situated on steep landslide-prone coastal bluffs of glacial deposits along the northeastern shore of Puget Sound, Washington. Our control hillslope, VH, is mantled by a heterogeneous colluvium, supporting a dense forest. In early 2013, our test hillslope, LS, also supported a forest before a landslide substantially altered the topography and disturbed the hillslope. In 2015, we observed a clay-rich landslide deposit at LS with sparse vegetation and limited root reinforcement, soil structures, and macropores. Our characterization of the sites also found matrix porosity and hydraulic conductivity are both lower at LS. Continuous monitoring during 2015-2016 revealed reduced effective precipitation at VH (due to canopy interception), an earlier seasonal transition to near-saturated conditions at LS, and longer persistence of positive pore pressures and slower drainage at LS (both seasonally and between major storm events). These differences, along with episodic, complex slope failures at LS support the hypothesis that, despite a reduced average slope, other disturbances introduced by landsliding may promote the hydrologic conditions leading to slope instability, thus contributing to the persistence of landslide hazards.

  4. Outbreaks attributed to fresh leafy vegetables, United States, 1973–2012

    PubMed Central

    HERMAN, K. M.; HALL, A. J.; GOULD, L. H.

    2015-01-01

    SUMMARY Leafy vegetables are an essential component of a healthy diet; however, they have been associated with high-profile outbreaks causing severe illnesses. We reviewed leafy vegetable-associated outbreaks reported to the Centers for Disease Control and Prevention between 1973 and 2012. During the study period, 606 leafy vegetable-associated outbreaks, with 20 003 associated illnesses, 1030 hospitalizations, and 19 deaths were reported. On average, leafy vegetable-associated outbreaks were larger than those attributed to other food types. The pathogens that most often caused leafy vegetable-associated outbreaks were norovirus (55% of outbreaks with confirmed aetiology), Shiga toxin-producing Escherichia coli (STEC) (18%), and Salmonella (11%). Most outbreaks were attributed to food prepared in a restaurant or catering facility (85%). An ill food worker was implicated as the source of contamination in 31% of outbreaks. Efforts by local, state, and federal agencies to control leafy vegetable contamination and outbreaks should span from the point of harvest to the point of preparation. PMID:25697407

  5. Outbreaks attributed to fresh leafy vegetables, United States, 1973-2012.

    PubMed

    Herman, K M; Hall, A J; Gould, L H

    2015-10-01

    Leafy vegetables are an essential component of a healthy diet; however, they have been associated with high-profile outbreaks causing severe illnesses. We reviewed leafy vegetable-associated outbreaks reported to the Centers for Disease Control and Prevention between 1973 and 2012. During the study period, 606 leafy vegetable-associated outbreaks, with 20 003 associated illnesses, 1030 hospitalizations, and 19 deaths were reported. On average, leafy vegetable-associated outbreaks were larger than those attributed to other food types. The pathogens that most often caused leafy vegetable-associated outbreaks were norovirus (55% of outbreaks with confirmed aetiology), Shiga toxin-producing Escherichia coli (STEC) (18%), and Salmonella (11%). Most outbreaks were attributed to food prepared in a restaurant or catering facility (85%). An ill food worker was implicated as the source of contamination in 31% of outbreaks. Efforts by local, state, and federal agencies to control leafy vegetable contamination and outbreaks should span from the point of harvest to the point of preparation.

  6. NOAA-AVHRR image mosaics applied to vegetation identification

    NASA Astrophysics Data System (ADS)

    de Almeida, Maria d. G.; Ruddorff, Bernardo F.; Shimabukuro, Yosio E.

    2001-06-01

    In this paper, the maximum-value composite of images procedure from Normalized Difference Vegetation Index is used to get a cloud free image mosaic. The image mosaic is used to identify vegetation targets such as tropical forest, savanna and caatinga as well to make the vegetation cover mapping of Minas Gerais state, Brazil.

  7. A fresh fruit and vegetable program improves high school students' consumption of fresh produce

    USDA-ARS?s Scientific Manuscript database

    Low fruit and vegetable intake may be associated with overweight. The United States Department of Agriculture implemented the Fresh Fruit and Vegetable Program in 2006-2007. One Houston-area high school was selected and received funding to provide baskets of fresh fruits and vegetables daily for eac...

  8. Household income disparities in fruit and vegetable consumption by state and territory: results of the 2009 Behavioral Risk Factor Surveillance System.

    PubMed

    Grimm, Kirsten A; Foltz, Jennifer L; Blanck, Heidi M; Scanlon, Kelley S

    2012-12-01

    Few studies take into account the influence of family size on household resources when assessing income disparities in fruit and vegetable (F/V) consumption. Poverty income ratio (PIR) is a measure that utilizes both reported income and household size. We sought to examine state-specific disparities in meeting Healthy People 2010 objectives for F/V consumption by percent PIR. This analysis included 353,005 adults in 54 states and territories reporting data to the 2009 Behavioral Risk Factor Surveillance System in the United States. Percent PIR was calculated using the midpoint of self-reported income range and family size. The prevalences consuming at least two fruits and at least three vegetables per day were examined by percent PIR (<130% [greatest poverty], 130% to <200%, 200% to <400%, and ≥ 400% [least poverty]). The percent of adults consuming vegetables at least three times daily was significantly lower (21.3%) among those living at greatest poverty (<130% PIR) compared with 30.7% among those with least poverty (≥ 400% PIR). Daily consumption of vegetables at least three times was significantly lower among those with greatest poverty in a majority of states and territories surveyed (43 of 54). The overall percent of adults consuming fruits at least 2 times daily was also lower among those living at greatest vs least poverty, but the difference was smaller (32.0% vs 34.2%), with 14 states reporting a difference that was significantly lower among those with greatest poverty. Our study revealed that in 2009 a significantly lower proportion of US adults living at greatest poverty consumed fruits at least two times daily or vegetables at least three times daily compared with those with the least poverty, with greater disparity in vegetable intake. Policy and environmental strategies for increased affordability, access, availability, and point-of-decision information are approaches that may help disparate households purchase and consume F/V. Published by Elsevier Inc.

  9. Persistent bacterial infections, antibiotic tolerance, and the oxidative stress response

    PubMed Central

    Grant, Sarah Schmidt; Hung, Deborah T.

    2013-01-01

    Certain bacterial pathogens are able to evade the host immune system and persist within the human host. The consequences of persistent bacterial infections potentially include increased morbidity and mortality from the infection itself as well as an increased risk of dissemination of disease. Eradication of persistent infections is difficult, often requiring prolonged or repeated courses of antibiotics. During persistent infections, a population or subpopulation of bacteria exists that is refractory to traditional antibiotics, possibly in a non-replicating or metabolically altered state. This review highlights the clinical significance of persistent infections and discusses different in vitro models used to investigate the altered physiology of bacteria during persistent infections. We specifically focus on recent work establishing increased protection against oxidative stress as a key element of the altered physiologic state across different in vitro models and pathogens. PMID:23563389

  10. Monitoring and Characterizing Seasonal Drought, Water Supply Pattern and Their Impact on Vegetation Growth Using Satellite Soil Moisture Data, GRACE Water Storage and In-situ Observations.

    NASA Astrophysics Data System (ADS)

    A, G.; Velicogna, I.; Kimball, J. S.; Kim, Y.; Colliander, A.; Njoku, E. G.

    2015-12-01

    We combine soil moisture (SM) data from AMSR-E, AMSR-2 and SMAP, terrestrial water storage (TWS) changes from GRACE, in-situ groundwater measurements and atmospheric moisture data to delineate and characterize the evolution of drought and its impact on vegetation growth. GRACE TWS provides spatially continuous observations of total terrestrial water storage changes and regional drought extent, persistence and severity, while satellite derived soil moisture estimates provide enhanced delineation of plant-available soil moisture. Together these data provide complementary metrics quantifying available plant water supply. We use these data to investigate the supply changes from water components at different depth in relation to satellite based vegetation metrics, including vegetation greenness (NDVI) measures from MODIS and related higher order productivity (GPP) before, during and following the major drought events observed in the continental US for the past 14 years. We observe consistent trends and significant correlations between monthly time series of TWS, SM, NDVI and GPP. We study how changes in atmosphere moisture stress and coupling of water storage components at different depth impact on the spatial and temporal correlation between TWS, SM and vegetation metrics. In Texas, we find that surface SM and GRACE TWS agree with each other in general, and both capture the underlying water supply constraints to vegetation growth. Triggered by a transit increase in precipitation following the 2011 hydrological drought, vegetation productivity in Texas shows more sensitivity to surface SM than TWS. In the Great Plains, the correspondence between TWS and vegetation productivity is modulated by temperature-induced atmosphere moisture stress and by the coupling between surface soil moisture and groundwater through irrigation.

  11. Genetic and Anatomical Basis of the Barrier Separating Wakefulness and Anesthetic-Induced Unresponsiveness

    PubMed Central

    Hung, Hsiao-Tung; Koh, Kyunghee; Sowcik, Mallory; Sehgal, Amita; Kelz, Max B.

    2013-01-01

    A robust, bistable switch regulates the fluctuations between wakefulness and natural sleep as well as those between wakefulness and anesthetic-induced unresponsiveness. We previously provided experimental evidence for the existence of a behavioral barrier to transitions between these states of arousal, which we call neural inertia. Here we show that neural inertia is controlled by processes that contribute to sleep homeostasis and requires four genes involved in electrical excitability: Sh, sss, na and unc79. Although loss of function mutations in these genes can increase or decrease sensitivity to anesthesia induction, surprisingly, they all collapse neural inertia. These effects are genetically selective: neural inertia is not perturbed by loss-of-function mutations in all genes required for the sleep/wake cycle. These effects are also anatomically selective: sss acts in different neurons to influence arousal-promoting and arousal-suppressing processes underlying neural inertia. Supporting the idea that anesthesia and sleep share some, but not all, genetic and anatomical arousal-regulating pathways, we demonstrate that increasing homeostatic sleep drive widens the neural inertial barrier. We propose that processes selectively contributing to sleep homeostasis and neural inertia may be impaired in pathophysiological conditions such as coma and persistent vegetative states. PMID:24039590

  12. Aruna Shanbaug and the right to die with dignity: the battle continues.

    PubMed

    Kishore, R R

    2016-01-01

    Aruna Shanbaug's protracted continuance in a persistent vegetative state (PVS) for nearly 42 years needs to be viewed seriously by all those who believe in a person's inalienable right to dignity in dying. A terminally ill and/or incapacitated individual is a helpless person confronted with perpetual risk of intrusion in to his autonomy by the moral paternalists, owing to false notion of human virtues. Legislative inadequacy coupled with judicial heterogeneity has exposed the decision making process to unwarranted ambiguity. Misapplication of moral and juristic principles is a global challenge. 29-year-old Brittany Maynard's recent act of ending her life by migrating from California to Oregon has ignited a fierce debate and nearly half of the states in the USA are contemplating enactment of death with dignity legislation. Across the Atlantic, the European Court of Human Rights judgment on June 5, 2015, endorsing Vincent Lambert's right to end medical support, is a resounding affirmation of an individual's right to die with dignity. This article is an attempt to explore various dimensions of one's right to dignity in dying, in the global as well as the Indian context.

  13. Mapping coastal vegetation, land use and environmental impact from ERTS-1. [Delaware Bay area

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Vegetation map overlays at a scale of 1:24,000 compiled by multispectral analysis from NASA aircraft imagery for all of Delaware's wetlands are being used as ground truth for ERTS-1 mapping and by state agencies for wetlands management. Six major vegetation species were discriminated and mapped, including percentages of minor species. Analogue enhancements of wetlands vegetation and dredge-fill operations have been produced using General Electric's GEMS data processing and ERTS-1 false color composites. Digital, thematic land use, and vegetation mapping of entire Delaware Bay area is in progress using Bendix Corporation's Earth Resources Data System and ERTS-1 digital tapes. Statistical evaluation of target-group selection reliability has been completed. Three papers have been published on ERTS-1 coastal vegetation and land use. Local and state officials are participating in the ERTS-1 program as co-investigators.

  14. Subalpine vegetation pattern three decades after stand-replacing fire: Effects of landscape context and topography on plant community composition, tree regeneration, and diversity

    Treesearch

    Jonathan D. Coop; Robert T. Massatti; Anna W. Schoettle

    2010-01-01

    These subalpine wildfires generated considerable, persistent increases in plant species richness at local and landscape scales, and a diversity of plant communities. The findings suggest that fire suppression in such systems must lead to reduced diversity. Concerns about post-fire invasion by exotic plants appear unwarranted in high-elevation wilderness settings.

  15. Survival and persistence of non-pathogenic Escherichia coli and attenuated Escherichia coli O157:H7 in soils amended with animal manure in a greenhouse environment

    USDA-ARS?s Scientific Manuscript database

    Biological soil amendments (BSA's), including dairy cattle, poultry litter, and horse manure, play an important role in agriculture but may contain pathogens that can contaminate raw or ready-to-eat fruit and vegetable crops that are consumed raw. Proposed FDA standards include a 90- or 120-day inte...

  16. Vegetation survey of Moen, Dublon, Fefan, and Eten, State of Truk, Federated States of Micronesia

    Treesearch

    Marjorie Falanruw; Thomas G. Cole; Alan H Ambacher; Katherine E. McDuffie; John. Hom

    1987-01-01

    Truk is one of the four States of the Federated States of Micronesia (FSM). Knowledge of the extent and composition of its vegetation, including forest land, is needed for land-use planning. To fill this need, a formal agreement was drawn up between the High Commissioner of the Trust Territory of the Pacific Islands and two agencies of the U.S. Department of...

  17. Monitoring vegetation response to episodic disturbance events by using multitemporal vegetation indices

    USGS Publications Warehouse

    Steyer, Gregory D.; Couvillion, Brady R.; Barras, John A.

    2013-01-01

    Normalized Difference Vegetation Index (NDVI) derived from MODerate-resolution Imaging Spectroradiometer (MODIS) satellite imagery and land/water assessments from Landsat Thematic Mapper (TM) imagery were used to quantify the extent and severity of damage and subsequent recovery after Hurricanes Katrina and Rita of 2005 within the vegetation communities of Louisiana's coastal wetlands. Field data on species composition and total live cover were collected from 232 unique plots during multiple time periods to corroborate changes in NDVI values over time. Aprehurricane 5-year baseline time series clearly identified NDVI values by habitat type, suggesting the sensitivity of NDVI to assess and monitor phenological changes in coastal wetland habitats. Monthly data from March 2005 to November 2006 were compared to the baseline average to create a departure from average statistic. Departures suggest that over 33% (4,714 km2) of the prestorm, coastal wetlands experienced a substantial decline in the density and vigor of vegetation by October 2005 (poststorm), mostly in the east and west regions, where landfalls of Hurricanes Katrina and Rita occurred. The percentage of area of persistent vegetation damage due to long-lasting formation of new open water was 91.8% in the east and 81.0% and 29.0% in the central and west regions, respectively. Although below average NDVI values were observed in most marsh communities through November 2006, recovery of vegetation was evident. Results indicated that impacts and recovery from large episodic disturbance events that influence multiple habitat types can be accurately determined using NDVI, especially when integrated with assessments of physical landscape changes and field verifications.

  18. Monitoring vegetation response to episodic disturbance events by using multi-temporal vegetation indices

    USGS Publications Warehouse

    Steyer, Gregory D.; Couvillion, Brady R.; Barras, John A.

    2013-01-01

    Normalized Difference Vegetation Index (NDVI) derived from MODerate-resolution Imaging Spectroradiometer (MODIS) satellite imagery and land/water assessments from Landsat Thematic Mapper (TM) imagery were used to quantify the extent and severity of damage and subsequent recovery after Hurricanes Katrina and Rita of 2005 within the vegetation communities of Louisiana's coastal wetlands. Field data on species composition and total live cover were collected from 232 unique plots during multiple time periods to corroborate changes in NDVI values over time. Aprehurricane 5-year baseline time series clearly identified NDVI values by habitat type, suggesting the sensitivity of NDVI to assess and monitor phenological changes in coastal wetland habitats. Monthly data from March 2005 to November 2006 were compared to the baseline average to create a departure from average statistic. Departures suggest that over 33% (4,714 km2) of the prestorm, coastal wetlands experienced a substantial decline in the density and vigor of vegetation by October 2005 (poststorm), mostly in the east and west regions, where landfalls of Hurricanes Katrina and Rita occurred. The percentage of area of persistent vegetation damage due to long-lasting formation of new open water was 91.8% in the east and 81.0% and 29.0% in the central and west regions, respectively. Although below average NDVI values were observed in most marsh communities through November 2006, recovery of vegetation was evident. Results indicated that impacts and recovery from large episodic disturbance events that influence multiple habitat types can be accurately determined using NDVI, especially when integrated with assessments of physical landscape changes and field verifications.

  19. Relationship Between Woody Plant Colonization and Typha L. Encroachment in Stormwater Detention Basins

    NASA Astrophysics Data System (ADS)

    Plumb, Priscilla Bocskor; Day, Susan D.; Wynn-Thompson, Theresa M.; Seiler, John R.

    2013-10-01

    We studied stormwater detention basins where woody vegetation removal was suspended for 2 years in Virginia, USA to determine if woody vegetation can control Typha populations and how early woody plant succession interacts with Typha, other herbaceous vegetation, and site factors. Distribution and composition of woody vegetation, Typha and non- Typha herbaceous vegetation biomass, and site factors were assessed at 100 plots in four basins ranging in age from 7 to 17 years. A greenhouse study examined the interaction of shade and soil moisture on Typha biomass and persistence. Principal component analysis identified an environmental gradient associated with greater water table depths and decreased elevation that favored Typha but negatively influenced woody vegetation. Elevation was correlated with litter layer distribution, suggesting that initial topography influences subsequent environmental characteristics and thus plant communities. Soil organic matter at 0-10 cm ranged from 5.4 to 12.7 %. Woody plants present were native species with the exception of Ailanthus altissima and Pyrus calleryana. In the greenhouse, shade and reduced soil moisture decreased Typha biomass and rhizome length. The shade effect was strongest in flooded plants and the soil moisture effect was strongest for plants in full sun. Typha in dry soil and heavy shade had 95 % less total biomass and 83 % smaller rhizomes than Typha in flooded soil and full sun, but even moderate soil moisture reductions decreased above- and below-ground biomass by 63 and 56 %, respectively. Suspending maintenance allows restoration of woody vegetation dominated by native species and may suppress Typha invasion.

  20. Developmental and Environmental Influences on Young Children’s Vegetable Preferences and Consumption123

    PubMed Central

    2016-01-01

    Food intake patterns begin to be shaped at the earliest points in life. Early exposures and experiences are critical for the acceptance of some foods, particularly healthful foods such as vegetables, which often have a bitter component in their flavor profiles. In addition to repeated exposure to these foods, the quality and emotional tone of parent-child interactions are important in facilitating children’s acceptance of vegetables. During early childhood, parents are challenged by children’s developmental characteristics related to eating, such as the emergence of child neophobia, and by individual characteristics of the child that are more biologically based, including genetic predispositions to bitter taste and sensory sensitivities. Experimental studies consistently show that repeated exposure to novel and rejected familiar foods is the most powerful method to improve acceptance. However, the manner and persistence with which these exposures are performed are critical. Research investigating influences on children’s vegetable acceptance and ingestion has focused on associations among availability, parent intakes, child neophobia, and the parental feeding response to children’s reluctance to try and consume vegetables. Because young children’s dietary intakes are low and below dietary recommendations, investigations have focused more on factors that impede children’s vegetable acceptance, such as controlling feeding practices, than on positive influences. Research that addresses the multifaceted nature of these interactions among different levels of social-ecological environment, individual traits, parental feeding styles and practices, and socioeconomic influences and that uses longitudinal designs and complex statistical approaches is called for to ascertain more effective methods to improve children’s vegetable acceptance. PMID:26773030

  1. Exploring the role of trees in the evolution of meander bends: The Tagliamento River, Italy

    NASA Astrophysics Data System (ADS)

    Zen, Simone; Gurnell, Angela M.; Zolezzi, Guido; Surian, Nicola

    2017-07-01

    To date, the role of riparian trees in the formation of scroll bars, ridges, and swales during the evolution of meandering channels has been inferred largely from field observations with support from air photographs. In situ field observations are usually limited to relatively short periods of time, whereas the evolution of these morphological features may take decades. By combining field observations of inner bank morphology and overlying riparian woodland structure with a detailed historical analysis of airborne LiDAR data, panchromatic, and color images, we reconstruct the spatial and temporal evolution of the morphology and vegetation across four meander bends of the Tagliamento River, Italy. Specifically we reveal (i) the appearance of deposited trees and elongated vegetated patches on the inner bank of meander bends following flood events; (ii) temporal progression from deposited trees, through small to larger elongated vegetated patches (pioneer islands), to their coalescence into long, linear vegetated features that eventually become absorbed into the continuous vegetation cover of the riparian forest; and (iii) a spatial correspondence between the resulting scrolls and ridge and swale topography, and tree cover development and persistence. We provide a conceptual model of the mechanisms by which vegetation can contribute to the formation of sequence of ridges and swales on the convex bank of meander bends. We discuss how these insights into the biomorphological processes that control meander bends advance can inform modeling activities that aim to describe the lateral and vertical accretion of the floodplain during the evolution of vegetated river meanders.

  2. Developmental and Environmental Influences on Young Children's Vegetable Preferences and Consumption.

    PubMed

    Johnson, Susan L

    2016-01-01

    Food intake patterns begin to be shaped at the earliest points in life. Early exposures and experiences are critical for the acceptance of some foods, particularly healthful foods such as vegetables, which often have a bitter component in their flavor profiles. In addition to repeated exposure to these foods, the quality and emotional tone of parent-child interactions are important in facilitating children's acceptance of vegetables. During early childhood, parents are challenged by children's developmental characteristics related to eating, such as the emergence of child neophobia, and by individual characteristics of the child that are more biologically based, including genetic predispositions to bitter taste and sensory sensitivities. Experimental studies consistently show that repeated exposure to novel and rejected familiar foods is the most powerful method to improve acceptance. However, the manner and persistence with which these exposures are performed are critical. Research investigating influences on children's vegetable acceptance and ingestion has focused on associations among availability, parent intakes, child neophobia, and the parental feeding response to children's reluctance to try and consume vegetables. Because young children's dietary intakes are low and below dietary recommendations, investigations have focused more on factors that impede children's vegetable acceptance, such as controlling feeding practices, than on positive influences. Research that addresses the multifaceted nature of these interactions among different levels of social-ecological environment, individual traits, parental feeding styles and practices, and socioeconomic influences and that uses longitudinal designs and complex statistical approaches is called for to ascertain more effective methods to improve children's vegetable acceptance. © 2016 American Society for Nutrition.

  3. At the Crossroads: Does the Configuration of Roadside Vegetation Affect Woodland Bird Communities in Rural Landscapes?

    PubMed Central

    Hall, Mark; Nimmo, Dale; Bennett, Andrew F.

    2016-01-01

    In agricultural regions worldwide, linear networks of vegetation such as hedges, fencerows and live fences provide habitat for plant and animal species in heavily modified landscapes. In Australia, networks of remnant native vegetation along roadsides are a distinctive feature of many rural landscapes. Here, we investigated the richness and composition of woodland-dependent bird communities in networks of eucalypt woodland vegetation along roadsides, in an agricultural region in which >80% of native woodland and forest vegetation has been cleared. We stratified sites in a) cross sections and b) linear strips of roadside vegetation, to test the influence on woodland birds of site location and configuration in the linear network (the ‘intersection effect’). We also examined the influence of tree size at the site, the amount of wooded vegetation surrounding the site, and the abundance of an aggressive native species, the noisy miner Manorina melanocephala. Birds were surveyed at 26 pairs of sites (cross section or linear strip) on four occasions. A total of 66 species was recorded, including 35 woodland species. The richness of woodland bird species was influenced by site configuration, with more species present at cross sections, particularly those with larger trees (>30 cm diameter). However, the strongest influence on species richness was the relative abundance of the noisy miner. The richness of woodland birds at sites where noisy miners were abundant was ~20% of that where miners were absent. These results recognise the value of networks of roadside vegetation as habitat for woodland birds in depleted agricultural landscapes; but highlight that this value is not realised for much of this vast vegetation network because of the dominance of the noisy miner. Nevertheless, roadside vegetation is particularly important where the configuration of networks create nodes that facilitate movement. Globally, the protection, conservation and restoration of such linear networks has an important influence on the persistence of biota within human-dominated landscapes. PMID:27183227

  4. At the Crossroads: Does the Configuration of Roadside Vegetation Affect Woodland Bird Communities in Rural Landscapes?

    PubMed

    Hall, Mark; Nimmo, Dale; Bennett, Andrew F

    2016-01-01

    In agricultural regions worldwide, linear networks of vegetation such as hedges, fencerows and live fences provide habitat for plant and animal species in heavily modified landscapes. In Australia, networks of remnant native vegetation along roadsides are a distinctive feature of many rural landscapes. Here, we investigated the richness and composition of woodland-dependent bird communities in networks of eucalypt woodland vegetation along roadsides, in an agricultural region in which >80% of native woodland and forest vegetation has been cleared. We stratified sites in a) cross sections and b) linear strips of roadside vegetation, to test the influence on woodland birds of site location and configuration in the linear network (the 'intersection effect'). We also examined the influence of tree size at the site, the amount of wooded vegetation surrounding the site, and the abundance of an aggressive native species, the noisy miner Manorina melanocephala. Birds were surveyed at 26 pairs of sites (cross section or linear strip) on four occasions. A total of 66 species was recorded, including 35 woodland species. The richness of woodland bird species was influenced by site configuration, with more species present at cross sections, particularly those with larger trees (>30 cm diameter). However, the strongest influence on species richness was the relative abundance of the noisy miner. The richness of woodland birds at sites where noisy miners were abundant was ~20% of that where miners were absent. These results recognise the value of networks of roadside vegetation as habitat for woodland birds in depleted agricultural landscapes; but highlight that this value is not realised for much of this vast vegetation network because of the dominance of the noisy miner. Nevertheless, roadside vegetation is particularly important where the configuration of networks create nodes that facilitate movement. Globally, the protection, conservation and restoration of such linear networks has an important influence on the persistence of biota within human-dominated landscapes.

  5. State Policy Climates for College Student Success: An Analysis of State Policy Documents Pertaining to College Persistence and Completion

    ERIC Educational Resources Information Center

    McLendon, Michael K.; Tuchmayer, Jeremy B.; Park, Toby J.

    2010-01-01

    This article reports the findings of an exploratory analysis of state policy climates for college student persistence and completion. We performed an analysis of more than 100 documents collected from 8 states chosen largely on the basis of their performance on past "Measuring Up" reports. Our analysis of governors' state-of-the-state…

  6. Modeling of vegetation canopy reflectance: Status, issues and recommended future strategy

    NASA Technical Reports Server (NTRS)

    Goel, N. S. (Editor)

    1982-01-01

    Various technical issues related to mapping of vegetative type, condition and stage of maturity, utilizing remotely sensed spectral data are reviewed. The existing knowledge base of models, especially of radiative properties of the vegetation canopy and atmosphere, is reviewed to establish the state of the art for addressing the problem of vegetation mapping. Activities to advance the state of the art are recommended. They include working on canopy reflectance and atmospheric scattering models, and field measurements of canopy reflectance as well as of canopy components. Leaf area index (LAI) and solar radiation interception (SRI) are identified as the two most important vegetation variables requiring further investigation. It is recommended that activities related to sensing them or understanding their relationships with measurable variables, should be encouraged and supported.

  7. Phages in the global fruit and vegetable industry.

    PubMed

    Żaczek, M; Weber-Dąbrowska, B; Górski, A

    2015-03-01

    From recent articles, we have learned that phages can constitute a promising alternative in the food industry to eliminate bacterial pathogens from seedlings in greenhouse and field environments, as well as from fresh-cut food products. The fruit and vegetable industry requires quite a different approach than the meat or dairy industry. Several factors can inhibit efficacy of phage treatment such as plant watering or washing ready-to-eat products (water may dilute therapeutic doses), UV irradiation or extensive spreading of phytopathogens by wind, insects or even humans. Spontaneously occurring anomalous weather conditions in different parts of the world also may have an enormous impact on phage persistence in cultivations and on yields. Despite that, some phage preparations are commercially available and, without doubt, are much safer than chemical treatments. Along with increasing worldwide fruit and vegetable consumption, plant diseases and human foodborne illnesses are becoming a serious economic problem, resulting in a focus on optimization of phage treatment. © 2014 The Society for Applied Microbiology.

  8. Impacts, recovery rates, and treatment options for spilled oil in marshes.

    PubMed

    Michel, Jacqueline; Rutherford, Nicolle

    2014-05-15

    In a review of the literature on impacts of spilled oil on marshes, 32 oil spills and field experiments were identified with sufficient data to generate recovery curves and identify influencing factors controlling the rate of recovery. For many spills, recovery occurred within 1-2 growing seasons, even in the absence of any treatment. Recovery was longest for spills with the following conditions: Cold climate; sheltered settings; thick oil on the marsh surface; light refined products with heavy loading; oils that formed persistent thick residues; and intensive treatment. Recovery was shortest for spills with the following conditions: Warm climate; light to heavy oiling of the vegetation only; medium crude oils; and less-intensive treatment. Recommendations are made for treatment based on the following oiling conditions: Free-floating oil on the water in the marsh; thicker oil (>0.5 cm) on marsh surface; thinner oil (<0.5 cm) on marsh surface; heavy oil loading on vegetation; and light to moderate oil loading on vegetation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Evaluation of technology-assisted learning setups for undertaking assessment and providing intervention to persons with a diagnosis of vegetative state.

    PubMed

    Lancioni, Giulio; O'Reilly, Mark; Singh, Nirbhay; Buonocunto, Francesca; Sacco, Valentina; Colonna, Fabio; Navarro, Jorge; Lanzilotti, Crocifissa; Belardinelli, Marta Olivetti; Bosco, Andrea; Megna, Gianfranco; de Tommaso, Marina

    2009-01-01

    To evaluate the viability of technology-assisted learning setups for undertaking assessment and providing intervention to persons in vegetative state. Study I investigated whether three persons with a diagnosis of vegetative state could associate eye blinking or hand closure responses with contingent, positive stimulation, thus increasing their frequencies (showing signs of learning). Study II extended the learning process (introducing a new response and new stimuli) for one of the participants of Study I. Two of the participants of Study I succeeded in increasing their responses, indicating signs of learning. Study II showed that the participant (one of the two succeeding in Study I) acquired a new response to access new stimuli and could alternate this response with the one acquired in Study I. Learning might represent a basic level of knowledge and consciousness. Detecting signs of learning might help modify a previous diagnosis of vegetative state and support intervention/rehabilitation efforts.

  10. Events and decision-making in the long-term care of Dutch nursing home patients in a vegetative state.

    PubMed

    Lavrijsen, Jan; van den Bosch, Hans; Koopmans, Raymond; van Weel, Chris; Froeling, Paul

    2005-01-01

    To clarify characteristics of long-term care and treatment of patients in a vegetative state. Qualitative, descriptive study in a Dutch nursing home. Review of clinical records of patients in a vegetative state after acute brain damage between 1978-2002. Five patients received intensive care of a multi-disciplinary team and showed considerable co-morbidity. There was no standard scenario for end-of-life decisions. Physicians play a more proactive role by evaluating the total medical treatment instead of withholding therapy in case of incidental complications. The families' attitude is a crucial factor in their ultimate decision. There is no standard solution to alleviate the fate of patients in a vegetative state and their families. Withdrawing all medical treatment, including artificial nutrition and hydration, can be an acceptable scenario for letting the patient die. More research is needed to identify the factors that contribute to acceptance of the physician's decision by the family.

  11. The seed bank longevity index revisited: limited reliability evident from a burial experiment and database analyses.

    PubMed

    Saatkamp, Arne; Affre, Laurence; Dutoit, Thierry; Poschlod, Peter

    2009-09-01

    Seed survival in the soil contributes to population persistence and community diversity, creating a need for reliable measures of soil seed bank persistence. Several methods estimate soil seed bank persistence, most of which count seedlings emerging from soil samples. Seasonality, depth distribution and presence (or absence) in vegetation are then used to classify a species' soil seed bank into persistent or transient, often synthesized into a longevity index. This study aims to determine if counts of seedlings from soil samples yield reliable seed bank persistence estimates and if this is correlated to seed production. Seeds of 38 annual weeds taken from arable fields were buried in the field and their viability tested by germination and tetrazolium tests at 6 month intervals for 2.5 years. This direct measure of soil seed survival was compared with indirect estimates from the literature, which use seedling emergence from soil samples to determine seed bank persistence. Published databases were used to explore the generality of the influence of reproductive capacity on seed bank persistence estimates from seedling emergence data. There was no relationship between a species' soil seed survival in the burial experiment and its seed bank persistence estimate from published data using seedling emergence from soil samples. The analysis of complementary data from published databases revealed that while seed bank persistence estimates based on seedling emergence from soil samples are generally correlated with seed production, estimates of seed banks from burial experiments are not. The results can be explained in terms of the seed size-seed number trade-off, which suggests that the higher number of smaller seeds is compensated after germination. Soil seed bank persistence estimates correlated to seed production are therefore not useful for studies on population persistence or community diversity. Confusion of soil seed survival and seed production can be avoided by separate use of soil seed abundance and experimental soil seed survival.

  12. Detecting Anthropogenic and Climate Change Induced Land Cover and Land Use Change in the Vicinity of an Oil/gas Facility in Northwestern Siberia, Russia

    NASA Astrophysics Data System (ADS)

    Yu, Q.; Shiklomanov, N. I.; Streletskiy, D. A.; Engstrom, R.; Epstein, H. E.

    2015-12-01

    Arctic ecosystems are changing dramatically due to changes in climate, vegetation and human activities. Northwestern Siberia is one of the regions which has been undergoing various land cover and land use changes associated primarily with animal husbandry and oil/gas development. These changes have been exacerbated by warming climatic conditions over the last fifty years. In this study, we investigated land cover and land use changes associated with oil and gas development southeast of the city of Nadym within the context of climate change based on multi-source and multi-temporal remote sensing imagery. The impacts of land use on surface vegetation, radiation, and hydrological properties were evaluated using the Normalized Difference Vegetation Index (NDVI), albedo and the Normalized Difference Water Index (NDWI). The results from a comparison between high spatial resolution imagery acquired in1968 and 2006 indicate that the vegetation cover was reduced in areas disturbed by oil and gas development. Vegetation cover increased in natural landscapes over the same period,. Water logging was found along the linear structures near the oil/gas development, while in natural landscapes the drying of thermokarst lakes is evident due to permafrost degradation. Derived indices suggest that the direct impacts associated with infrastructure development are mostly within 100 m distance from the disturbance source. While these impacts are rather localized they persist for decades despite partial recovery of vegetation after the initial disturbance.

  13. Effects of Solar Geoengineering on Vegetation: Implications for Biodiversity and Conservation

    NASA Astrophysics Data System (ADS)

    Dagon, K.; Schrag, D. P.

    2017-12-01

    Climate change will have significant impacts on vegetation and biodiversity. Solar geoengineering has potential to reduce the climate effects of greenhouse gas emissions through albedo modification, yet more research is needed to better understand how these techniques might impact terrestrial ecosystems. Here we utilize the fully coupled version of the Community Earth System Model to run transient solar geoengineering simulations designed to stabilize radiative forcing starting mid-century, relative to the Representative Concentration Pathway 6 (RCP6) scenario. Using results from 100-year simulations, we analyze model output through the lens of ecosystem-relevant metrics. We find that solar geoengineering improves the conservation outlook under climate change, but there are still potential impacts on biodiversity. Two commonly used climate classification systems show shifts in vegetation under solar geoengineering relative to RCP6, though we acknowledge the associated uncertainties with these systems. We also show that rates of warming and the climate velocity are minimized globally under solar geoengineering by the end of the century, while trends persist over land in the Northern Hemisphere. Shifts in the amplitude of temperature and precipitation seasonal cycles are observed in the results, and have implications for vegetation phenology. Different metrics for vegetation productivity also show decreases under solar geoengineering relative to RCP6, but could be related to the model parameterization of nutrient cycling. Vegetation water cycling is found to be an important mechanism for understanding changes in ecosystems under solar geoengineering.

  14. Persistence of antibiotic resistance and plasmid-associated genes in soil following application of sewage sludge and abundance on vegetables at harvest.

    PubMed

    Rahube, Teddie O; Marti, Romain; Scott, Andrew; Tien, Yuan-Ching; Murray, Roger; Sabourin, Lyne; Duenk, Peter; Lapen, David R; Topp, Edward

    2016-07-01

    Sewage sludge recovered from wastewater treatment plants contains antibiotic residues and is rich in antibiotic resistance genes, selected for and enriched in the digestive tracts of human using antibiotics. The use of sewage sludge as a crop fertilizer constitutes a potential route of human exposure to antibiotic resistance genes through consumption of contaminated crops. Several gene targets associated with antibiotic resistance (catA1, catB3, ereA, ereB, erm(B), str(A), str(B), qnrD, sul1, and mphA), mobile genetic elements (int1, mobA, IncW repA, IncP1 groups -α, -β, -δ, -γ, -ε), and bacterial 16S rRNA (rrnS) were quantified by qPCR from soil and vegetable samples obtained from unamended and sludge-amended plots at an experimental field in London, Ontario. The qPCR data reveals an increase in abundance of gene targets in the soil and vegetables samples, indicating that there is potential for additional crop exposure to antibiotic resistance genes carried within sewage sludge following field application. It is therefore advisable to allow an appropriate delay period before harvesting of vegetables for human consumption.

  15. Experimental trampling of vegetation. II. Predictors of resistance and resilience

    Treesearch

    David N. Cole

    1995-01-01

    1. Experimental trampling was conducted in 18 vegetation types in five separate mountain regions in the United States. Each type was trampled 0-500 times and vegetation response was assessed 2 weeks and 1 year after trampling. 2. The response of vegetation to trampling is expressed in terms of three indices: resistance, tolerance and resilience. Resistance...

  16. Vegetation types on acid soils of Micronesia

    Treesearch

    Marjorie C. Falanruw; Thomas G.. Cole; Craig D. Whitesell

    1987-01-01

    The soils and vegetation of the Caroline high islands, Federated States of Micronesia, are being mapped by the U.S. Department of Agriculture's Forest Service and Soil Conservation Service. By the end of 1987, vegetation maps and reports on Kosrae, Pohnpei, Yap, four Truk Islands, and Palau are expected to be available. To compare soil types with vegetation types...

  17. Improved health behaviors persist over two years for employees in a worksite wellness program.

    PubMed

    LeCheminant, James D; Merrill, Ray M

    2012-10-01

    This study evaluates whether improvements in health behaviors related to a worksite wellness program persist through 2 years. The program was designed to build behavioral capability and self-efficacy by yielding immediately applicable skills and tools and segmenting the behavior change process into weekly, manageable doses. Analyses are based on 267 individuals employed from 2009 through 2011. Significant improvements were observed in the frequency and volume of exercise, and the consumption of vegetables and fruits over 12 and 24 months. Requests for health coaching significantly increased over the study period. Thus, the type of wellness program evaluated in this study produced sustainable health behaviors through 24 months, which likely will translate into future positive health outcomes and improved employee productivity.

  18. State-and-transition prototype model of riparian vegetation downstream of Glen Canyon Dam, Arizona

    USGS Publications Warehouse

    Ralston, Barbara E.; Starfield, Anthony M.; Black, Ronald S.; Van Lonkhuyzen, Robert A.

    2014-01-01

    Facing an altered riparian plant community dominated by nonnative species, resource managers are increasingly interested in understanding how to manage and promote healthy riparian habitats in which native species dominate. For regulated rivers, managing flows is one tool resource managers consider to achieve these goals. Among many factors that can influence riparian community composition, hydrology is a primary forcing variable. Frame-based models, used successfully in grassland systems, provide an opportunity for stakeholders concerned with riparian systems to evaluate potential riparian vegetation responses to alternative flows. Frame-based, state-and-transition models of riparian vegetation for reattachment bars, separation bars, and the channel margin found on the Colorado River downstream of Glen Canyon Dam were constructed using information from the literature. Frame-based models can be simple spreadsheet models (created in Microsoft® Excel) or developed further with programming languages (for example, C-sharp). The models described here include seven community states and five dam operations that cause transitions between states. Each model divides operations into growing (April–September) and non-growing seasons (October–March) and incorporates upper and lower bar models, using stage elevation as a division. The inputs (operations) can be used by stakeholders to evaluate flows that may promote dynamic riparian vegetation states, or identify those flow options that may promote less desirable states (for example, Tamarisk [Tamarix sp.] temporarily flooded shrubland). This prototype model, although simple, can still elicit discussion about operational options and vegetation response.

  19. "Death with dignity" in the Japanese context.

    PubMed

    Shimoda, Motomu

    2005-01-01

    In Japan, "death with dignity" is a widely known term that is distinguished from "euthanasia." It is generally defined as "the act of letting a terminally ill or a patient in a persistent vegetative state die by withdrawing life-sustaining treatment on request in the form of a living will." Most Japanese people consider death with dignity a desirable way of terminating one's life and it is therefore acceptable as a "natural death" or "humane death." Originally, death with dignity was regarded as a passive intervention, but since the 1990s, its connotations have changed in western countries; people claim that voluntary active euthanasia and physician-assisted suicide should be legalized as death with dignity or the "right to die." In this paper, I examine the points and problems of this new type of death with dignity and propose an alternative version of death with dignity especially for the Japanese context, i.e. the end-of-life care process in support of terminal living with dignity.

  20. An ethics of suffering: does it solve the problems we want to solve?: commentary.

    PubMed

    Edwards, Barbara Springer

    1991-01-01

    Erich H. Loewy proposes to elevate the moral obligation to prevent and relieve suffering to the level of a prima facie moral duty by delineating which beings are of primary moral worth and which are of secondary moral worth. Sentient beings have a capacity to suffer and are therefore of primary moral worth. Beings that are insentient cannot suffer; therefore such beings are only of secondary moral worth. Objects of secondary moral worth include patients in a persistent vegetative state (PVS) and brain-dead patients. This proposal, he says, would solve a number of problems in clinical bioethics. First, it would help to clarify our moral duties at the bedside. And secondly, by creating a hierarchy of moral values, it helps to differentiate which patients are owed our primary allegiance and resources. Despite his extensive and painstaking proof, I believe several questions remain about the use of the "capacity of sentient beings to suffer" as a basis for a universal grounding in ethics.

  1. The Changing United States Diet

    ERIC Educational Resources Information Center

    Page, Louise; Friend, Berta

    1978-01-01

    The nature of the United States diet has changed markedly in this century. We are using more meat, poultry, fish, and dairy products; sugars and other sweeteners; fats and oils; and processed fruits and vegetables. We are using fewer grain products, potatoes, fresh fruits and vegetables, and eggs. (BB)

  2. Diversity of ecological communities of the United States

    Treesearch

    J.D. Wickham; T.G. Wade; K.B. Jones; Kurt H. Riitters; R.V. O' Neill

    1995-01-01

    Biodiversity, although recognized as encompassing several levels of biological organization, is often thought of as species diversity. Three diversity estimates were calculated for the conterminous United States using satellite data acquired from the Advanced Very High Resolution Radiometer (AVHRR): land cover richness, vegetation richness, and vegetation clustering....

  3. Groundwater controls on river channel pattern

    NASA Astrophysics Data System (ADS)

    Bätz, Nico; Colombini, Pauline; Cherubini, Paolo; Lane, Stuart N.

    2017-04-01

    Braided rivers are characterized by high rates of morphological change. However, despite the potential for frequent disturbance, vegetated patches may develop within this system and influence long-term channel dynamics and channel patterns through the "engineering effects" of vegetation. The stabilizing effect of developing vegetation on morphological change has been widely shown by flume experiments and (historic) aerial pictures analysis. Thus, there is a balance between disturbance and stabilization, mediated through vegetation, that may determine the long-term geomorphic and biogeomorphic evolution of the river. It follows that with a change in disturbance frequency relative to the rate of vegetation establishment, a systematic geomorphological shift could occur. Research has addressed how changes in disturbance frequency affect river channel pattern, but has rarely addressed the way in which the stabilizing effects of biogeomorphic succession interact with disturbance frequency to maintain a river in a more dynamic or a less dynamic state. Here, we quantify how the interplay between groundwater access, disturbance frequency and vegetation succession, drive changes in channel pattern. We studied this complex interplay on a transitional gravel-bed river system (braided, wandering, meandering) close to Geneva (Switzerland) - the Allondon River. Dendroecological analysis demonstrate that vegetation growth is driven by groundwater access. Groundwater access conditions the rate of vegetation stabilization at the sub-reach scale and, due to a reduction in flood-related disturbance frequency over the last 50 years, drives a change in channel pattern. Where groundwater is shallower, vegetation encroachment rates were high and as flood-related disturbance decreased, the river has shifted towards a meandering state. Where groundwater was deeper, vegetation growth was limited by water-access and thus vegetation encroachment rates were low. Even though there was a reduction in flood disturbance, it was still sufficient to maintain a wandering/braided state. Thus, it appears that access to groundwater can control river channel pattern through its impact upon the "engineering effects" of vegetation. The results are important for river management as they highlight the non-linearity of developing vegetation in dynamic alluvial floodplains and the importance of considering the wider environmental setting and associated feedbacks between biotic and abiotic river components in defining long-term geomorphological river response.

  4. Understanding Persistent Food Insecurity: A Paradox of Place and Circumstance

    ERIC Educational Resources Information Center

    Mammen, Sheila; Bauer, Jean W.; Richards, Leslie

    2009-01-01

    Survey data from a U.S. Department of Agriculture funded multi-state longitudinal project revealed a paradox where rural low-income families from states considered prosperous were persistently more food insecure than similar families from less prosperous states. An examination of quantitative and qualitative data found that families in the food…

  5. State Farm-to-School Laws Influence the Availability of Fruits and Vegetables in School Lunches at US Public Elementary Schools

    ERIC Educational Resources Information Center

    Nicholson, Lisa; Turner, Lindsey; Schneider, Linda; Chriqui, Jamie; Chaloupka, Frank

    2014-01-01

    Background: State laws and farm-to-school programs (FTSPs) have the potential to increase fruit and vegetable (FV) availability in school meals. This study examined whether FV were more available in public elementary school lunches in states with a law requiring/encouraging FTSPs or with a locally grown-related law, and whether the relationship…

  6. Vegetation survey of Yap, Federated States of Micronesia

    Treesearch

    Marjorie C. Falanruw; Craig D. Whitesell; Thomas G. Cole; Colin D. MacLean; Alan H. Ambacher

    1987-01-01

    Yap is one of the four States in the Federated States of Micronesia. Knowledge of the extent and composition of its vegetation, including forest land, is needed for land-use planning. To fill this need, a formal agreement was drawn up between the High Commissioner of the U.S. Trust Territory of the Pacific Islands and two agencies of the U.S. Department of Agriculture-...

  7. 7 CFR 999.100 - Regulation governing imports of walnuts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE...-State inspector of the Fresh Products Standardization and Inspection Branch of the Fruit and Vegetable... regulations governing the inspection and certification of fresh fruits, vegetables, and other products (Part...

  8. Monitoring the state of vegetation in Hungary using 15 years long MODIS Data

    NASA Astrophysics Data System (ADS)

    Kern, Anikó; Bognár, Péter; Pásztor, Szilárd; Barcza, Zoltán; Timár, Gábor; Lichtenberger, János; Ferencz, Csaba

    2015-04-01

    Monitoring the state and health of the vegetation is essential to understand causes and severity of environmental change and to prepare for the negative effects of climate change on plant growth and productivity. Satellite remote sensing is the fundamental tool to monitor and study the changes of vegetation activity in general and to understand its relationship with the climate fluctuations. Vegetation indices and other vegetation related measures calculated from remotely sensed data are widely used to monitor and characterize the state of the terrestrial vegetation. Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI) are among the most popular indices that can be calculated from measurements of the MODerate resolution Imaging Spectroradiometer (MODIS) sensor onboard the NASA EOS-AM1/Terra and EOS-PM1/Aqua satellites (since 1999 and 2002 respectively). Based on the available, 15 years long MODIS data (2000-2014) the vegetation characteristics of Hungary was investigated in our research, primarily using vegetation indices. The MODIS NDVI and EVI (both part of the so-called MOD13 product of NASA) are freely available with a finest spatial resolution of 250 meters and a temporal resolution of 16 days since 2000/2002 (for Terra and Aqua respectively). The accuracy, the spatial resolution and temporal continuity of the MODIS products makes these datasets highly valuable despite of its relatively short temporal coverage. NDVI is also calculated routinely from the raw MODIS data collected by the receiving station of Eötvös Loránd University. In order to characterize vegetation activity and its variability within the Carpathian Basin the area-averaged annual cycles and their interannual variability were determined. The main aim was to find those years that can be considered as extreme according to specific indices. Using archive meteorological data the effects of extreme weather on vegetation activity and growth were investigated with emphasis on drought and heat waves. Te relationship between anomalies of vegetation characteristics and crop yield decrease in agricultural regions were characterised as well. The mean NDVI values of Hungary during the 15 years reveal the behaviour of the vegetation in the country, where the main land cover types (forest, agriculture and grassland) were distinguished as well. NDVI anomalies are analyzed separately for the main land cover types. Deviations from the potential maximum vegetation greenness are also calculated for the entire time period.

  9. 78 FR 45907 - United States Standards for Grades of Frozen Vegetables

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ... standards covered by these revisions are: frozen asparagus, frozen lima beans, frozen speckled butter beans..., lima beans, speckled butter beans, cooked squash, summer squash, etc., and not other vegetables. AMS... document. United States Standards for Grades of Frozen Lima Beans Update address for AMS. Change ``U.S...

  10. Economic impact of ecosystem services provided by ecologically sustainable roadside right of way vegetation management practices : [summary].

    DOT National Transportation Integrated Search

    2014-03-01

    The Florida Department of Transportation (FDOT) : has approximately 186,121 acres of right-of-way : (ROW) for roads in the State Highway System : (SHS), about half of which are vegetated. As in : many states, turfgrass is often used to stabilize : so...

  11. Vegetation dynamics and rainfall sensitivity of the Amazon.

    PubMed

    Hilker, Thomas; Lyapustin, Alexei I; Tucker, Compton J; Hall, Forrest G; Myneni, Ranga B; Wang, Yujie; Bi, Jian; Mendes de Moura, Yhasmin; Sellers, Piers J

    2014-11-11

    We show that the vegetation canopy of the Amazon rainforest is highly sensitive to changes in precipitation patterns and that reduction in rainfall since 2000 has diminished vegetation greenness across large parts of Amazonia. Large-scale directional declines in vegetation greenness may indicate decreases in carbon uptake and substantial changes in the energy balance of the Amazon. We use improved estimates of surface reflectance from satellite data to show a close link between reductions in annual precipitation, El Niño southern oscillation events, and photosynthetic activity across tropical and subtropical Amazonia. We report that, since the year 2000, precipitation has declined across 69% of the tropical evergreen forest (5.4 million km(2)) and across 80% of the subtropical grasslands (3.3 million km(2)). These reductions, which coincided with a decline in terrestrial water storage, account for about 55% of a satellite-observed widespread decline in the normalized difference vegetation index (NDVI). During El Niño events, NDVI was reduced about 16.6% across an area of up to 1.6 million km(2) compared with average conditions. Several global circulation models suggest that a rise in equatorial sea surface temperature and related displacement of the intertropical convergence zone could lead to considerable drying of tropical forests in the 21st century. Our results provide evidence that persistent drying could degrade Amazonian forest canopies, which would have cascading effects on global carbon and climate dynamics.

  12. Vegetation Dynamics and Rainfall Sensitivity of the Amazon

    NASA Technical Reports Server (NTRS)

    Hilker, Thomas; Lyapustin, Alexei I.; Tucker, Compton J.; Hall, Forrest G.; Myneni, Ranga B.; Wang, Yujie; Bi, Jian; Mendes de Moura, Yhasmin; Sellers, Piers J.

    2014-01-01

    We show that the vegetation canopy of the Amazon rainforest is highly sensitive to changes in precipitation patterns and that reduction in rainfall since 2000 has diminished vegetation greenness across large parts of Amazonia. Large-scale directional declines in vegetation greenness may indicate decreases in carbon uptake and substantial changes in the energy balance of the Amazon. We use improved estimates of surface reflectance from satellite data to show a close link between reductions in annual precipitation, El Nino southern oscillation events, and photosynthetic activity across tropical and subtropical Amazonia. We report that, since the year 2000, precipitation has declined across 69% of the tropical evergreen forest (5.4 million sq km) and across 80% of the subtropical grasslands (3.3 million sq km). These reductions, which coincided with a decline in terrestrial water storage, account for about 55% of a satellite-observed widespread decline in the normalized difference vegetation index (NDVI). During El Nino events, NDVI was reduced about 16.6% across an area of up to 1.6 million sq km compared with average conditions. Several global circulation models suggest that a rise in equatorial sea surface temperature and related displacement of the intertropical convergence zone could lead to considerable drying of tropical forests in the 21st century. Our results provide evidence that persistent drying could degrade Amazonian forest canopies, which would have cascading effects on global carbon and climate dynamics.

  13. Dynamics of global vegetation biomass simulated by the integrated Earth System Model

    NASA Astrophysics Data System (ADS)

    Mao, J.; Shi, X.; Di Vittorio, A. V.; Thornton, P. E.; Piao, S.; Yang, X.; Truesdale, J. E.; Bond-Lamberty, B. P.; Chini, L. P.; Thomson, A. M.; Hurtt, G. C.; Collins, W.; Edmonds, J.

    2014-12-01

    The global vegetation biomass stores huge amounts of carbon and is thus important to the global carbon budget (Pan et al., 2010). For the past few decades, different observation-based estimates and modeling of biomass in the above- and below-ground vegetation compartments have been comprehensively conducted (Saatchi et al., 2011; Baccini et al., 2012). However, uncertainties still exist, in particular for the simulation of biomass magnitude, tendency, and the response of biomass to climatic conditions and natural and human disturbances. The recently successful coupling of the integrated Earth System Model (iESM) (Di Vittorio et al., 2014; Bond-Lamberty et al., 2014), which links the Global Change Assessment Model (GCAM), Global Land-use Model (GLM), and Community Earth System Model (CESM), offers a great opportunity to understand the biomass-related dynamics in a fully-coupled natural and human modeling system. In this study, we focus on the systematic analysis and evaluation of the iESM simulated historical (1850-2005) and future (2006-2100) biomass changes and the response of the biomass dynamics to various impact factors, in particular the human-induced Land Use/Land Cover Change (LULCC). By analyzing the iESM simulations with and without the interactive LULCC feedbacks, we further study how and where the climate feedbacks affect socioeconomic decisions and LULCC, such as to alter vegetation carbon storage. References Pan Y et. al: A large and persistent carbon sink in the World's forests. Science 2011, 333:988-993. Saatchi SS et al: Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci 2011, 108:9899-9904. Baccini A et al: Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature Clim Change 2012, 2:182-185. Di Vittorio AV et al: From land use to land cover: restoring the afforestation signal in a coupled integrated assessment-earth system model and the implications for CMIP5 RCP simulations. Biogeosciences Discuss 2014, 11:7151-7188. Bond-Lamberty, B et al: Coupling earth system and integrated assessment models: The problem of steady state. Geosci. Model Dev. Discuss 2014, 7: 1499-1524, doi:10.5194/gmdd-7-1499-2014.

  14. Noise-induced transitions and shifts in a climate-vegetation feedback model.

    PubMed

    Alexandrov, Dmitri V; Bashkirtseva, Irina A; Ryashko, Lev B

    2018-04-01

    Motivated by the extremely important role of the Earth's vegetation dynamics in climate changes, we study the stochastic variability of a simple climate-vegetation system. In the case of deterministic dynamics, the system has one stable equilibrium and limit cycle or two stable equilibria corresponding to two opposite (cold and warm) climate-vegetation states. These states are divided by a separatrix going across a point of unstable equilibrium. Some possible stochastic scenarios caused by different externally induced natural and anthropogenic processes inherit properties of deterministic behaviour and drastically change the system dynamics. We demonstrate that the system transitions across its separatrix occur with increasing noise intensity. The climate-vegetation system therewith fluctuates, transits and localizes in the vicinity of its attractor. We show that this phenomenon occurs within some critical range of noise intensities. A noise-induced shift into the range of smaller global average temperatures corresponding to substantial oscillations of the Earth's vegetation cover is revealed. Our analysis demonstrates that the climate-vegetation interactions essentially contribute to climate dynamics and should be taken into account in more precise and complex models of climate variability.

  15. Dynamics of a Subterranean Trophic Cascade in Space and Time

    PubMed Central

    Ram, Karthik; Gruner, Daniel S.; McLaughlin, John P.; Preisser, Evan L.; Strong, Donald R.

    2008-01-01

    Trophic cascades, whereby predators indirectly benefit plant biomass by reducing herbivore pressure, form the mechanistic basis for classical biological control of pest insects. Entomopathogenic nematodes (EPN) are lethal to a variety of insect hosts with soil-dwelling stages, making them promising biocontrol agents. EPN biological control programs, however, typically fail because nematodes do not establish, persist and/or recycle over multiple host generations in the field. A variety of factors such as local abiotic conditions, host quantity and quality, and rates of movement affect the probability of persistence. Here, we review results from 13 years of study on the biology and ecology of an endemic population of Heterorhabditis marelatus (Rhabditida: Heterorhabditidae) in a California coastal prairie. In a highly seasonal abiotic environment with intrinsic variation in soils, vegetation structure, and host availability, natural populations of H. marelatus persisted at high incidence at some but not all sites within our study area. Through a set of field and lab experiments, we describe mechanisms and hypotheses to understand the persistence of H. marelatus. We suggest that further ecological study of naturally occurring EPN populations can yield significant insight to improve the practice and management of biological control of soil-dwelling insect pests. PMID:19259524

  16. Quality of Vegetables Based on Total Phenolic Concentration Is Lower in More Rural Consumer Food Environments in a Rural American State.

    PubMed

    Ahmed, Selena; Byker Shanks, Carmen

    2017-08-17

    While daily consumption of fruits and vegetables (FVs) is widely recognized to be associated with supporting nutrition and health, disparities exist in consumer food environments regarding access to high-quality produce based on location. The purpose of this study was to evaluate FV quality using total phenolic (TP) scores (a phytochemical measure for health-promoting attributes, flavor, appearance, and shelf-life) in consumer food environments along a rural to urban continuum in the rural state of Montana, United States. Significant differences were found in the means of the FV TP scores ( p < 0.0001) and vegetable TP scores ( p < 0.0001) on the basis of rurality, while no significant difference was found for fruit TP scores by rurality ( p < 0.2158). Specifically, FV TP scores and vegetable TP scores were highest for the least rural stores and lowest for the most rural stores. Results indicate an access gap to high-quality vegetables in more rural and more health-disparate consumer food environments of Montana compared to urban food environments. Findings highlight that food and nutrition interventions should aim to increase vegetable quality in rural consumer food environments in the state of Montana towards enhancing dietary quality and food choices. Future studies are called for that examine TP scores of a wide range of FVs in diverse food environments globally. Studies are further needed that examine linkages between FV quality, food choices, diets, and health outcomes towards enhancing food environments for public health.

  17. Oscillations in a simple climate-vegetation model

    NASA Astrophysics Data System (ADS)

    Rombouts, J.; Ghil, M.

    2015-05-01

    We formulate and analyze a simple dynamical systems model for climate-vegetation interaction. The planet we consider consists of a large ocean and a land surface on which vegetation can grow. The temperature affects vegetation growth on land and the amount of sea ice on the ocean. Conversely, vegetation and sea ice change the albedo of the planet, which in turn changes its energy balance and hence the temperature evolution. Our highly idealized, conceptual model is governed by two nonlinear, coupled ordinary differential equations, one for global temperature, the other for vegetation cover. The model exhibits either bistability between a vegetated and a desert state or oscillatory behavior. The oscillations arise through a Hopf bifurcation off the vegetated state, when the death rate of vegetation is low enough. These oscillations are anharmonic and exhibit a sawtooth shape that is characteristic of relaxation oscillations, as well as suggestive of the sharp deglaciations of the Quaternary. Our model's behavior can be compared, on the one hand, with the bistability of even simpler, Daisyworld-style climate-vegetation models. On the other hand, it can be integrated into the hierarchy of models trying to simulate and explain oscillatory behavior in the climate system. Rigorous mathematical results are obtained that link the nature of the feedbacks with the nature and the stability of the solutions. The relevance of model results to climate variability on various timescales is discussed.

  18. Oscillations in a simple climate-vegetation model

    NASA Astrophysics Data System (ADS)

    Rombouts, J.; Ghil, M.

    2015-02-01

    We formulate and analyze a simple dynamical systems model for climate-vegetation interaction. The planet we consider consists of a large ocean and a land surface on which vegetation can grow. The temperature affects vegetation growth on land and the amount of sea ice on the ocean. Conversely, vegetation and sea ice change the albedo of the planet, which in turn changes its energy balance and hence the temperature evolution. Our highly idealized, conceptual model is governed by two nonlinear, coupled ordinary differential equations, one for global temperature, the other for vegetation cover. The model exhibits either bistability between a vegetated and a desert state or oscillatory behavior. The oscillations arise through a Hopf bifurcation off the vegetated state, when the death rate of vegetation is low enough. These oscillations are anharmonic and exhibit a sawtooth shape that is characteristic of relaxation oscillations, as well as suggestive of the sharp deglaciations of the Quaternary. Our model's behavior can be compared, on the one hand, with the bistability of even simpler, Daisyworld-style climate-vegetation models. On the other hand, it can be integrated into the hierarchy of models trying to simulate and explain oscillatory behavior in the climate system. Rigorous mathematical results are obtained that link the nature of the feedbacks with the nature and the stability of the solutions. The relevance of model results to climate variability on various time scales is discussed.

  19. Consistent response of vegetation dynamics to recent climate change in tropical mountain regions.

    PubMed

    Krishnaswamy, Jagdish; John, Robert; Joseph, Shijo

    2014-01-01

    Global climate change has emerged as a major driver of ecosystem change. Here, we present evidence for globally consistent responses in vegetation dynamics to recent climate change in the world's mountain ecosystems located in the pan-tropical belt (30°N-30°S). We analyzed decadal-scale trends and seasonal cycles of vegetation greenness using monthly time series of satellite greenness (Normalized Difference Vegetation Index) and climate data for the period 1982-2006 for 47 mountain protected areas in five biodiversity hotspots. The time series of annual maximum NDVI for each of five continental regions shows mild greening trends followed by reversal to stronger browning trends around the mid-1990s. During the same period we found increasing trends in temperature but only marginal change in precipitation. The amplitude of the annual greenness cycle increased with time, and was strongly associated with the observed increase in temperature amplitude. We applied dynamic models with time-dependent regression parameters to study the time evolution of NDVI-climate relationships. We found that the relationship between vegetation greenness and temperature weakened over time or was negative. Such loss of positive temperature sensitivity has been documented in other regions as a response to temperature-induced moisture stress. We also used dynamic models to extract the trends in vegetation greenness that remain after accounting for the effects of temperature and precipitation. We found residual browning and greening trends in all regions, which indicate that factors other than temperature and precipitation also influence vegetation dynamics. Browning rates became progressively weaker with increase in elevation as indicated by quantile regression models. Tropical mountain vegetation is considered sensitive to climatic changes, so these consistent vegetation responses across widespread regions indicate persistent global-scale effects of climate warming and associated moisture stresses. © 2013 John Wiley & Sons Ltd.

  20. Relations between Vegetation and Geologic Framework in Barrier Island

    NASA Astrophysics Data System (ADS)

    Smart, N. H.; Ferguson, J. B.; Lehner, J. D.; Taylor, D.; Tuttle, L. F., II; Wernette, P. A.

    2017-12-01

    Barrier islands provide valuable ecosystems and protective services to coastal communities. The longevity of barrier islands is threatened by sea-level rise, human impacts, and extreme storms. The purpose of this research is to evaluate how vegetation dynamics interact with the subsurface and offshore framework geology to influence the beach and dune morphology. Beach and dune morphology can be viewed as free and/or forced behavior, where free systems are stochastic and the morphology is dependent on variations in the storm surge run-up, aeolian sediment supply and transport potential, and vegetation dynamics and persistence. Forced systems are those where patterns in the coastal morphology are determined by some other structural control, such as the underlying and offshore framework geology. Previous studies have documented the effects of geologic framework or vegetation dynamics on the beach and dunes, although none have examined possible control by vegetation dynamics in context of the geologic framework (i.e. combined free and forced behavior). Padre Island National Seashore (PAIS) was used to examine the interaction of free and forced morphology because the subsurface framework geology and surface beach and dune morphology are variable along the island. Vegetation dynamics were assessed by classifying geographically referenced historical aerial imagery into areas with vegetation and areas without vegetation, as well as LiDAR data to verify this imagery. The subsurface geologic structure was assessed using a combination of geophysical surveys (i.e. electromagnetic induction, ground-penetrating radar, and offshore seismic surveys). Comparison of the observed vegetation patterns and geologic framework leads to a series of questions surrounding how mechanistically these two drivers of coastal morphology are related. Upcoming coring and geophysical surveys will enable us to validate new and existing geophysical data. Results of this paper will help us better understand how barrier islands have responded to environmental change in the past should be integrated into current models of barrier island evolution in order to more accurately predict how the island will change over time in response to continued climatic variability.

  1. Growing up green on serpentine soils: Biogeochemistry of serpentine vegetation in the Central Coast Range of California

    USGS Publications Warehouse

    Oze, C.; Skinner, C.; Schroth, A.W.; Coleman, R.G.

    2008-01-01

    Serpentine soils derived from the weathering of ultramafic rocks and their metamorphic derivatives (serpentinites) are chemically prohibitive for vegetative growth. Evaluating how serpentine vegetation is able to persist under these chemical conditions is difficult to ascertain due to the numerous factors (climate, relief, time, water availability, etc.) controlling and affecting plant growth. Here, the uptake, incorporation, and distribution of a wide variety of elements into the biomass of serpentine vegetation has been investigated relative to vegetation growing on an adjacent chert-derived soil. Soil pH, electrical conductivity, organic C, total N, soil extractable elements, total soil elemental compositions and plant digestions in conjunction with spider diagrams are utilized to determine the chemical relationships of these soil and plant systems. Plant available Mg and Ca in serpentine soils exceed values assessed in chert soils. Magnesium is nearly 3 times more abundant than Ca in the serpentine soils; however, the serpentine soils are not Ca deficient with Ca concentrations as high as 2235 mg kg-1. Calcium to Mg ratios (Ca:Mg) in both serpentine and chert vegetation are greater than one in both below and above ground tissues. Soil and plant chemistry analyses support that Ca is not a limiting factor for plant growth and that serpentine vegetation is actively moderating Mg uptake as well as tolerating elevated concentrations of bioavailable Mg. Additionally, results demonstrate that serpentine vegetation suppresses the uptake of Fe, Cr, Ni, Mn and Co into its biomass. The suppressed uptake of these metals mainly occurs in the plants' roots as evident by the comparatively lower metal concentrations present in above ground tissues (twigs, leaves and shoots). This research supports earlier studies that have suggested that ion uptake discrimination and ion suppression in the roots are major mechanisms for serpentine vegetation to tolerate the chemistry of serpentine soils. ?? 2008 Elsevier Ltd.

  2. Identifying multiple timescale rainfall controls on Mojave Desert ecohydrology using an integrated data and modeling approach for Larrea tridentata

    USGS Publications Warehouse

    Ng, Gene-Hua Crystal; Bedford, David R.; Miller, David M.

    2015-01-01

    The perennial shrub Larrea tridentata is widely successful in North American warm deserts but is also susceptible to climatic perturbations. Understanding its response to rainfall variability requires consideration of multiple timescales. We examine intra-annual to multi-year relationships using model simulations of soil moisture and vegetation growth over 50 years in the Mojave National Preserve in southeastern California (USA). Ecohydrological model parameters are conditioned on field and remote sensing data using an ensemble Kalman filter. Although no specific periodicities were detected in the rainfall record, simulated leaf-area-index exhibits multi-year dynamics that are driven by multi-year (∼3-years) rains, but with up to a 1-year delay in peak response. Within a multi-year period, Larrea tridentata is more sensitive to winter rains than summer. In the most active part of the root zone (above ∼80 cm), >1-year average soil moisture drives vegetation growth, but monthly average soil moisture is controlled by root uptake. Moisture inputs reach the lower part of the root zone (below ∼80 cm) infrequently, but once there they can persist over a year to help sustain plant growth. Parameter estimates highlight efficient plant physiological properties facilitating persistent growth and high soil hydraulic conductivity allowing deep soil moisture stores. We show that soil moisture as an ecological indicator is complicated by bidirectional interactions with vegetation that depend on timescale and depth. Under changing climate, Larrea tridentata will likely be relatively resilient to shorter-term moisture variability but will exhibit higher sensitivity to shifts in seasonal to multi-year moisture inputs.

  3. Modeling Vegetation Growth Impact on Groundwater Recharge

    NASA Astrophysics Data System (ADS)

    Anurag, H.; Ng, G. H. C.; Tipping, R.

    2017-12-01

    Vegetation growth is affected by variability in climate and land-cover / land-use over a range of temporal and spatial scales. Vegetation also modifies water budget through interception and evapotranspiration and thus has a significant impact on groundwater recharge. Most groundwater recharge assessments represent vegetation using specified, static parameter, such as for leaf-area-index, but this neglects the effect of vegetation dynamics on recharge estimates. Our study addresses this gap by including vegetation growth in model simulations of recharge. We use NCAR's Community Land Model v4.5 with its BGC module (BGC is the new CLM4.5 biogeochemistry). It integrates prognostic vegetation growth with land-surface and subsurface hydrological processes and can thus capture the effect of vegetation on groundwater. A challenge, however, is the need to resolve uncertainties in model inputs ranging from vegetation growth parameters all the way down to the water table. We have compiled diverse data spanning meteorological inputs to subsurface geology and use these to implement ensemble model simulations to evaluate the possible effects of dynamic vegetation growth (versus specified, static vegetation parameterizations) on estimating groundwater recharge. We present preliminary results for select data-intensive test locations throughout the state of Minnesota (USA), which has a sharp east-west precipitation gradient that makes it an apt testbed for examining ecohydrologic relationships across different temperate climatic settings and ecosystems. Using the ensemble simulations, we examine the effect of seasonal to interannual variability of vegetation growth on recharge and water table depths, which has implications for predicting the combined impact of climate, vegetation, and geology on groundwater resources. Future work will include distributed model simulations over the entire state, as well as conditioning uncertain vegetation and subsurface parameters on remote sensing data and statewide water table records using data assimilation.

  4. 76 FR 13892 - Importation of Tomatoes With Stems From the Republic of Korea Into the United States

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-15

    ...: We are proposing to amend the fruits and vegetables regulations to allow, under certain conditions... INFORMATION: Background The regulations in ``Subpart--Fruits and Vegetables'' (7 CFR 319.56-1 through 319.56... vegetables into [[Page 13893

  5. Current state and projection of the probable original vegetation of the São Carlos region of São Paulo State, Brazil.

    PubMed

    Soares, J J; da Silva, D W; Lima, M I

    2003-08-01

    A map of the native vegetation remaining in São Carlos County was built based on aerial images, satellite images, and field observations, and a projection of the probable original vegetation was made by checking it against soil and relief surveys. The existing vegetation is very fragmented and improverished, consisting predominantly of cerrados (savanna vegetation of various physiognomies), semideciduous and riparian forest, and regeneration areas. Araucaria angustifolia (Bertol.) Kuntze, found in patches inside the semideciduous forest beginning at a minimum altitude of 850 m, has practically disappeared. By evaluating areas on the map for different forms of vegetation, we obtained the following results for original coverage: 27% cerrado (sparsely arboreal and short-shrub savanna, and wet meadows); 16% cerradão (arboreal savanna); 55% semideciduous and riparian forests; and 2% forest with A. angustifolia. There are now 2% cerrados; 2.5% cerradão; 1% semideciduous forest and riparian forests; 1.5% regeneration areas; and 0% forest with A. angustifolia.

  6. Analyzing vegetation dynamics of land systems with satellite data

    USGS Publications Warehouse

    Eidenshink, Jeffery C.; Haas, Robert H.

    1992-01-01

    Large area assessment of vegetation conditions is a major requirement for understanding the impact of weather on food, fiber, and forage production. The distribution of vegetation is largely associated with climate, terrain characteristics, and human activity. The interpretation of vegetation dynamics from satellite data can be improved by stratifying the land surface into ecoregions. The Soil Conservation Service, U.S. Department of Agriculture, has developed a system for mapping major land resource areas (MLRA) that groups land areas in the United States on the basis of climate, physiography, land use, and land cover characteristics.In 1989, the U.S. Geological Survey used National Oceanic and Atmospheric Administration weather satellite data to conduct a biweekly assessment of vegetation conditions in 17 western states. Advanced Very High Resolution Radiometer data were acquired daily, and were geographically registered, and the normalized difference vegetation index (NDVI) was computed for the Western United States during the 1989 growing season. Fifteen biweekly NDVI data sets were used to evaluate MLRA's as an appropriate stratification for monitoring and interpreting vegetation conditions in the study area.The results demonstrate the feasibility of using MLRA's to stratify areas for monitoring phenological development and vegetation condition assessment within the growing season. Assessments of the NDVI at biweekly intervals are adequate for monitoring seasonal growth patterns on MLRA's where rangelands, forests, or cultivated agriculture are the primary resource type. Descriptive statistics are indicators of the uniformity or diversity of land use and land cover within an MLRA. Growing season profiles of the NDVI are characterized by the seasonal effects of climate on various land use and land cover classes.

  7. Vegetation pattern formation in a fog-dependent ecosystem.

    PubMed

    Borthagaray, Ana I; Fuentes, Miguel A; Marquet, Pablo A

    2010-07-07

    Vegetation pattern formation is a striking characteristic of several water-limited ecosystems around the world. Typically, they have been described on runoff-based ecosystems emphasizing local interactions between water, biomass interception, growth and dispersal. Here, we show that this situation is by no means general, as banded patterns in vegetation can emerge in areas without rainfall and in plants without functional root (the Bromeliad Tillandsia landbeckii) and where fog is the principal source of moisture. We show that a simple model based on the advection of fog-water by wind and its interception by the vegetation can reproduce banded patterns which agree with empirical patterns observed in the Coastal Atacama Desert. Our model predicts how the parameters may affect the conditions to form the banded pattern, showing a transition from a uniform vegetated state, at high water input or terrain slope to a desert state throughout intermediate banded states. Moreover, the model predicts that the pattern wavelength is a decreasing non-linear function of fog-water input and slope, and an increasing function of plant loss and fog-water flow speed. Finally, we show that the vegetation density is increased by the formation of the regular pattern compared to the density expected by the spatially homogeneous model emphasizing the importance of self-organization in arid ecosystems. (c) 2010 Elsevier Ltd. All rights reserved.

  8. Secondary prevention after acute myocardial infarction: drug adherence, treatment goals, and predictors of health lifestyle habits. The BLITZ-4 Registry.

    PubMed

    Urbinati, Stefano; Olivari, Zoran; Gonzini, Lucio; Savonitto, Stefano; Farina, Rosario; Del Pinto, Maurizio; Valbusa, Alberto; Fantini, Giuseppe; Mazzoni, Alessandra; Maggioni, Aldo P

    2015-12-01

    To describe drug adherence and treatment goals, and to identify the independent predictors of smoking persistence and unsatisfactory lifestyle habits six months after an acute myocardial infarction (AMI). 11,706 patients with AMI (30% female, mean age 68 years) were enrolled in 163 large-volume coronary care units (CCUs). At six months, drug adherence was ≥90%, while blood pressure (BP) <140/90 mmHg, low density lipoprotein (LDL) <100 mg/dl (in patients on statins), HbA1c <7% (in treated diabetics), and smoking persistence were observed in 74%, 76%, 45%, and 27% of patients, respectively. Inadequate fish intake decreased from 73% to 55%, inadequate intake of fruit and vegetables from 32% to 23%, and insufficient exercise in eligible patients from 74% to 59% (p < 0.0001). At multivariable analysis, a post-discharge cardiac visit and referral to cardiac rehabilitation at follow-up were independently associated with a lower risk of insufficient physical exercise (odds ratio (OR) 0.71 and 0.70, respectively) and persistent smoking (OR 0.68 and 0.60), whereas only referral to cardiac rehabilitation was associated with a lower risk of inadequate fish and fruit/vegetable intake (OR 0.70 and 0.65). Six months after an AMI, despite a high adherence to drug treatments, BP, LDL, and diabetic goals are inadequately achieved. Subjects with healthy lifestyles improved after discharge, but the rate of those with regular exercise habits and adequate fish intake could be further improved. Access to post-discharge cardiac visit and referral to cardiac rehabilitation were associated with better adherence to healthy lifestyles. Knowledge of the variables associated with specific lifestyle changes may help in tailoring secondary prevention programmes. © The European Society of Cardiology 2014.

  9. Persistent organic pollutants (PCDD/Fs, dioxin-like PCBs, marker PCBs, and PBDEs) in health supplements on the Spanish market.

    PubMed

    Martí, M; Ortiz, X; Gasser, M; Martí, R; Montaña, M J; Díaz-Ferrero, J

    2010-03-01

    During the last years, consumption of health supplements has increased in our society. They are recommended as an additional source of minerals, vitamins, omega-3 and omega-6 fatty acids, in the diet. A lot of these supplements contain oils among their components (fish oils or vegetable oils), especially those recommended for their omega-3 content. Due to their persistence and lipophilic characteristics, polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), dioxin-like polychlorinated biphenyls (PCBs), marker PCBs, and polybrominated diphenyl ethers (PBDEs) bioaccumulate in fat tissues, especially in those animals, as fish, which show low metabolic capability. Therefore, the consumption of nutritional supplements with oil components can increase the intake of persistent organic pollutants (POPs) through the diet. The aim of this study was to analyse 15 of these supplements commercialized in Spain to determinate their POPs concentrations and their intake for their consumers. Concentrations of POPs in the dietary supplements studied (PCDD/Fs: 0.04-2.4 pg TEQ g(-1); dl-PCBs: 0.01-12.1 pg TEQ g(-1); marker PCBs: 0.17-116 ng g(-1); and PBDEs: 0.07-18.2 ng g(-1)) were in the low-medium range of those reported in literature for other countries. Vegetable oil and mineral-based supplements showed concentrations of POPs clearly lower than those based on fish oil. Among these, those based on cod liver oil presented the highest concentrations detected in the study, exceeding the maximum levels established in European regulations for marine oils for human consumption. In general, the intake of POPs via the consumption of these supplements would be lower than the intake derived from fish consumption. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  10. Ecological site-based assessments of wind and water erosion: informing accelerated soil erosion management in rangelands

    USGS Publications Warehouse

    Webb, Nicholas P.; Herrick, Jeffrey E.; Duniway, Michael C.

    2014-01-01

    Accelerated soil erosion occurs when anthropogenic processes modify soil, vegetation or climatic conditions causing erosion rates at a location to exceed their natural variability. Identifying where and when accelerated erosion occurs is a critical first step toward its effective management. Here we explore how erosion assessments structured in the context of ecological sites (a land classification based on soils, landscape setting and ecological potential) and their vegetation states (plant assemblages that may change due to management) can inform systems for reducing accelerated soil erosion in rangelands. We evaluated aeolian horizontal sediment flux and fluvial sediment erosion rates for five ecological sites in southern New Mexico, USA, using monitoring data and rangeland-specific wind and water erosion models. Across the ecological sites, plots in shrub-encroached and shrub-dominated vegetation states were consistently susceptible to aeolian sediment flux and fluvial sediment erosion. Both processes were found to be highly variable for grassland and grass-succulent states across the ecological sites at the plot scale (0.25 Ha). We identify vegetation thresholds that define cover levels below which rapid (exponential) increases in aeolian sediment flux and fluvial sediment erosion occur across the ecological sites and vegetation states. Aeolian sediment flux and fluvial erosion in the study area can be effectively controlled when bare ground cover is 100 cm in length is less than ~35%. Land use and management activities that alter cover levels such that they cross thresholds, and/or drive vegetation state changes, may increase the susceptibility of areas to erosion. Land use impacts that are constrained within the range of natural variability should not result in accelerated soil erosion. Evaluating land condition against the erosion thresholds identified here will enable identification of areas susceptible to accelerated soil erosion and the development of practical management solutions.

  11. Microbiological Spoilage of Fruits and Vegetables

    NASA Astrophysics Data System (ADS)

    Barth, Margaret; Hankinson, Thomas R.; Zhuang, Hong; Breidt, Frederick

    Consumption of fruit and vegetable products has dramatically increased in the United States by more than 30% during the past few decades. It is also estimated that about 20% of all fruits and vegetables produced is lost each year due to spoilage. The focus of this chapter is to provide a general background on microbiological spoilage of fruit and vegetable products that are organized in three categories: fresh whole fruits and vegetables, fresh-cut fruits and vegetables, and fermented or acidified vegetable products. This chapter will address characteristics of spoilage microorganisms associated with each of these fruit and vegetable categories including spoilage mechanisms, spoilage defects, prevention and control of spoilage, and methods for detecting spoilage microorganisms.

  12. Land Conversion in Amazonia and Northern South America; Influences on Regional Hydrology and Ecosystem Response

    NASA Astrophysics Data System (ADS)

    Knox, Ryan Gary

    A numerical model of the terrestrial biosphere (Ecosystem Demography Model) is compbined with an atmospheric model (Brazilian Regional Atmospheric Modeling System) to investigate how land conversion in the Amazon and Northern South America have changed the hydrology of the region, and to see if those changes are significant enough to produce an ecological response. Two numerical realizations of the structure and composition of terrestrial vegetation are used as boundary conditions in a simulation of the regional land surface and atmosphere. One realization seeks to capture the present day vegetation condition that includes human deforestation and land-conversion, the other is an estimate of the potential structure and composition of the region without human influence. Model output is assessed for consistent and significant differences in hydrometeorology. Locations that show compelling differences are taken as case studies. The seasonal biases in precipitation at these locations are then used to create perturbations to long-term climate datasets. These perturbations then drive long-term simulations of dynamic vegetation to see if the climate consistent with a potential regional vegetation could elicit a change in the vegetation equilibrium at the site. Results show that South American land conversion has had consistent impacts on the regional patterning of precipitation. At some locations, changes in precipitation are persistent and constitute a significant fraction of total precipitation. Land-conversion has decreased mean continental evaporation and increased mean moisture convergence. Case study simulations of long term vegetation dynamic indicate that a hydrologic climate consistent with regional potential vegetation can indeed have significant influence on ecosystem structure and composition, particularly in water limited growth conditions. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs@mit.edu)

  13. Wildlife species associated with non-coniferous vegetation in Pacific Northwest conifer forests: A review

    USGS Publications Warehouse

    Hagar, J.C.

    2007-01-01

    Non-coniferous vegetation, including herbs, shrubs, and broad-leaved trees, makes a vital contribution to ecosystem function and diversity in Pacific Northwest conifer forests. However, forest management has largely been indifferent or detrimental to shrubs and trees that have low commercial value, in spite of a paradigm shift towards more holistic management in recent decades. Forest management practices that are detrimental to broad-leaved trees and shrubs are likely to decrease habitat diversity for wildlife, but the number of species that may be affected has not previously been enumerated. I reviewed life history accounts for forest-dwelling vertebrate wildlife species and derived a list of 78 species in Oregon and Washington that are associated with non-coniferous vegetation. The diversity of direct and indirect food resources provided was the primary functional basis for associations of most species with non-coniferous vegetation. Thus, a diversity of herbs and broad-leaved trees and shrubs provides the foundation for food webs that contribute to diversity at multiple trophic levels in Pacific Northwest conifer forests. Given the number of species associated with non-coniferous vegetation in conifer-dominated forests, maintaining habitats that support diverse plant communities, particularly broad-leaved trees and shrubs, will be an important component of management strategies intended to foster biodiversity. Silvicultural practices such as modified planting densities, and pre-commercial and commercial thinning, can be used to control stand density in order to favor the development of understory herbs, shrubs, and a diversity of tree species within managed stands. Allowing shrubs and hardwood trees to develop and persist in early seral stands by curtailing vegetation control also would benefit many species associated with non-coniferous vegetation.

  14. The Climate-Population Nexus in the East African Horn: Emerging Degradation Trends in Rangeland and Pastoral Livelihood Zones

    NASA Astrophysics Data System (ADS)

    Pricope, N. G.; Husak, G. J.; Funk, C. C.; Lopez-Carr, D.

    2014-12-01

    Increasing climate variability and extreme weather conditions along with declining trends in both rainfall and temperature represent major risk factors affecting agricultural production and food security in many regions of the world. We identify regions where significant rainfall decrease from 1979-2011 over the entire continent of Africa couples with significant human population density increase. The rangelands of Ethiopia, Kenya, and Somalia in the East African Horn remain one of the world's most food insecure regions, yet have significantly increasing human populations predominantly dependent on pastoralist and agro-pastoralist livelihoods. Vegetation in this region is characterized by a variable mosaic of land covers, generally dominated by grasslands necessary for agro-pastoralism, interspersed by woody vegetation. Recent assessments indicate that widespread degradation is occurring, adversely impacting fragile ecosystems and human livelihoods. Using two underutilized MODIS products, we observe significant changes in vegetation patterns and productivity over the last decade all across the East African Horn. We observe significant vegetation browning trends in areas experiencing drying precipitation trends in addition to increasing population pressures. We also found that the drying precipitation trends only partially statistically explain the vegetation browning trends, further indicating that other factors such as population pressures and land use changes are responsible for the observed declining vegetation health. Furthermore, we show that the general vegetation browning trends persist even during years with normal rainfall conditions such as 2012, indicating potential long-term degradation of rangelands on which approximately 10 million people depend. These findings have serious implications for current and future regional food security monitoring and forecasting as well as for mitigation and adaptation strategies in a region where population is expected to continue increasing against a backdrop of drying climate trends.

  15. A marked animal-vegetal polarity in the localization of Na(+),K(+) -ATPase activity and its down-regulation following progesterone-induced maturation.

    PubMed

    Mohanty, Basant Kumar; Gupta, Brij L

    2012-02-01

    The stage-VI Xenopus oocyte has a very distinct animal-vegetal polarity with structural and functional asymmetry. In this study, we show the expression and distribution pattern of Na(+),K(+) -ATPase in stage-VI oocytes, and its changes following progesterone-induced maturation. Using enzyme-specific electron microscopy phosphatase histochemistry, [(3) H]-ouabain autoradiography, and immunofluorescence cytochemistry at light microscopic level, we find that Na(+),K(+) -ATPase activity is mainly confined to the animal hemisphere. Electron microscopy histochemical results also suggest that polarized distribution of Na(+),K(+) -ATPase activity persists following progesterone-induced maturation, and it becomes gradually more polarized towards the animal pole. The time course following progesterone-induced maturation suggests that there is an initial up-regulation and then gradual down-regulation of Na(+),K(+) -ATPase activity leading to germinal vesicle breakdown (GVBD). By GVBD, the Na(+),K(+) -ATPase activity is completely down-regulated due to endocytotic removal of pump molecules from the plasma membrane into the sub-cortical region of the oocyte. This study provides the first direct evidence for a marked asymmetric localization of Na(+),K(+) -ATPase activity in any vertebrate oocyte. Here, we propose that such asymmetry in Na(+),K(+) -ATPase activity in stage-VI oocytes, and their down-regulation following progesterone-induced maturation, is likely to have a role in the active state of the germinal vesicle in stage-VI oocytes and chromosomal condensation after GVBD. Copyright © 2011 Wiley Periodicals, Inc.

  16. Persistence time of charge carriers in defect states of molecular semiconductors.

    PubMed

    McMahon, David P; Troisi, Alessandro

    2011-06-07

    Charge carriers in organic crystals are often trapped in point defects. The persistence time of the charge in these defect states is evaluated by computing the escape rate from this state using non-adiabatic rate theory. Two cases are considered (i) the hopping between separate identical defect states and (ii) the hopping between a defect state and the bulk (delocalized) states. We show that only the second process is likely to happen with realistic defect concentrations and highlight that the inclusion of an effective quantum mode of vibration is essential for accurate computation of the rate. The computed persistence time as a function of the trap energy indicates that trap states shallower than ∼0.3 eV cannot be effectively investigated with some slow spectroscopic techniques such as THz spectroscopy or EPR commonly used to study the nature of excess charge in semiconductors.

  17. U.S. Fruit and Vegetable Processing Industries.

    ERIC Educational Resources Information Center

    Buckley, Katharine C.; And Others

    Because of shifts in consumer tastes and preferences, demographics, technology, government regulation, and the expanding interdependence of world markets, the United States fruit and vegetable processing industries must operate in a constantly changing and uncertain economic environment. U.S. per capita use of processed fruits and vegetables is…

  18. Type of vegetable oils used in cooking and risk of metabolic syndrome among Asian Indians.

    PubMed

    Lakshmipriya, Nagarajan; Gayathri, Rajagopal; Praseena, Kallingal; Vijayalakshmi, Parthasarathy; Geetha, Gunasekaran; Sudha, Vasudevan; Krishnaswamy, Kamala; Anjana, Ranjit Mohan; Henry, Jeyakumar; Mohan, Viswanathan

    2013-03-01

    There is little data on the type of vegetable oil used and the prevalence of metabolic syndrome (MS) in Asian Indians. Food frequency questionnaire was used to document the type of cooking oil in 1875 adults in Chennai city. MS was assessed by new harmonizing criteria. The prevalence of MS was higher among sunflower oil users (30.7%) than palmolein (23.2%) and traditional oil (17.1%, p < 0.001) users. The higher prevalence of MS in sunflower oil group persisted even when stratified according to body mass index, except in obese groups. The risk of MS was further compounded by quantity of refined cereals consumed. Higher LA%E and linoleic acid/alpha-linolenic acid ratio in sunflower oil probably contributes to increased risk of MS.

  19. Estimation of roughness coefficients for natural stream channels with vegetated banks

    USGS Publications Warehouse

    Coon, William F.

    1998-01-01

    Roughness coefficients for 21 stream sites in New York state are presented. The site-specific relation between roughness coefficent and flow depth varies in a predictable manner, depending on energy gradient, relative smoothness (Rd50), and channel-vegetation density. The percentage of wetted perimeter that is vegetated is a useful indicator of when streambank vegetation can affect the roughness coefficient. To estimate the magnitude of this effect requires evaluation of the density and percent of submergence of vegetation.

  20. Vegetative characteristics of five forest types across a Lake States sulfate disposition gradient.

    Treesearch

    Lewis F. Ohmann; David F. Grigal; Stephen R. Shifley; William E. Berguson

    1994-01-01

    Presents the vegetative characteristics of the five forest types that comprised the study plots established to test the hypothesis that the wet sulfate deposition gradient across the Lake States is reflected in the amount of accumulated sulfur in soil and tree tissue, which in turn is reflected in tree growth.

  1. Quantifying and Monetizing Potential Climate Change Policy Impacts on Terrestrial Ecosystem Carbon Storage and Wildfires in the United States

    EPA Science Inventory

    This paper quantifies and monetizes climate change impacts on carbon stored in terrestrial vegetation and wildfire incidence in the contiguous United States to assess the benefits of alternative mitigation policies. The MC-1 dynamic global vegetation model was used to develop int...

  2. Evasion of Short Interfering RNA-Directed Antiviral Silencing in Musa acuminata Persistently Infected with Six Distinct Banana Streak Pararetroviruses

    PubMed Central

    Rajeswaran, Rajendran; Seguin, Jonathan; Chabannes, Matthieu; Duroy, Pierre-Olivier; Laboureau, Nathalie; Farinelli, Laurent; Iskra-Caruana, Marie-Line

    2014-01-01

    ABSTRACT Vegetatively propagated crop plants often suffer from infections with persistent RNA and DNA viruses. Such viruses appear to evade the plant defenses that normally restrict viral replication and spread. The major antiviral defense mechanism is based on RNA silencing generating viral short interfering RNAs (siRNAs) that can potentially repress viral genes posttranscriptionally through RNA cleavage and transcriptionally through DNA cytosine methylation. Here we examined the RNA silencing machinery of banana plants persistently infected with six pararetroviruses after many years of vegetative propagation. Using deep sequencing, we reconstructed consensus master genomes of the viruses and characterized virus-derived and endogenous small RNAs. Consistent with the presence of endogenous siRNAs that can potentially establish and maintain DNA methylation, the banana genomic DNA was extensively methylated in both healthy and virus-infected plants. A novel class of abundant 20-nucleotide (nt) endogenous small RNAs with 5′-terminal guanosine was identified. In all virus-infected plants, 21- to 24-nt viral siRNAs accumulated at relatively high levels (up to 22% of the total small RNA population) and covered the entire circular viral DNA genomes in both orientations. The hotspots of 21-nt and 22-nt siRNAs occurred within open reading frame (ORF) I and II and the 5′ portion of ORF III, while 24-nt siRNAs were more evenly distributed along the viral genome. Despite the presence of abundant viral siRNAs of different size classes, the viral DNA was largely free of cytosine methylation. Thus, the virus is able to evade siRNA-directed DNA methylation and thereby avoid transcriptional silencing. This evasion of silencing likely contributes to the persistence of pararetroviruses in banana plants. IMPORTANCE We report that DNA pararetroviruses in Musa acuminata banana plants are able to evade DNA cytosine methylation and transcriptional gene silencing, despite being targeted by the host silencing machinery generating abundant 21- to 24-nucleotide short interfering RNAs. At the same time, the banana genomic DNA is extensively methylated in both healthy and virus-infected plants. Our findings shed light on the siRNA-generating gene silencing machinery of banana and provide a possible explanation why episomal pararetroviruses can persist in plants whereas true retroviruses with an obligatory genome-integration step in their replication cycle do not exist in plants. PMID:25056897

  3. Evasion of short interfering RNA-directed antiviral silencing in Musa acuminata persistently infected with six distinct banana streak pararetroviruses.

    PubMed

    Rajeswaran, Rajendran; Seguin, Jonathan; Chabannes, Matthieu; Duroy, Pierre-Olivier; Laboureau, Nathalie; Farinelli, Laurent; Iskra-Caruana, Marie-Line; Pooggin, Mikhail M

    2014-10-01

    Vegetatively propagated crop plants often suffer from infections with persistent RNA and DNA viruses. Such viruses appear to evade the plant defenses that normally restrict viral replication and spread. The major antiviral defense mechanism is based on RNA silencing generating viral short interfering RNAs (siRNAs) that can potentially repress viral genes posttranscriptionally through RNA cleavage and transcriptionally through DNA cytosine methylation. Here we examined the RNA silencing machinery of banana plants persistently infected with six pararetroviruses after many years of vegetative propagation. Using deep sequencing, we reconstructed consensus master genomes of the viruses and characterized virus-derived and endogenous small RNAs. Consistent with the presence of endogenous siRNAs that can potentially establish and maintain DNA methylation, the banana genomic DNA was extensively methylated in both healthy and virus-infected plants. A novel class of abundant 20-nucleotide (nt) endogenous small RNAs with 5'-terminal guanosine was identified. In all virus-infected plants, 21- to 24-nt viral siRNAs accumulated at relatively high levels (up to 22% of the total small RNA population) and covered the entire circular viral DNA genomes in both orientations. The hotspots of 21-nt and 22-nt siRNAs occurred within open reading frame (ORF) I and II and the 5' portion of ORF III, while 24-nt siRNAs were more evenly distributed along the viral genome. Despite the presence of abundant viral siRNAs of different size classes, the viral DNA was largely free of cytosine methylation. Thus, the virus is able to evade siRNA-directed DNA methylation and thereby avoid transcriptional silencing. This evasion of silencing likely contributes to the persistence of pararetroviruses in banana plants. We report that DNA pararetroviruses in Musa acuminata banana plants are able to evade DNA cytosine methylation and transcriptional gene silencing, despite being targeted by the host silencing machinery generating abundant 21- to 24-nucleotide short interfering RNAs. At the same time, the banana genomic DNA is extensively methylated in both healthy and virus-infected plants. Our findings shed light on the siRNA-generating gene silencing machinery of banana and provide a possible explanation why episomal pararetroviruses can persist in plants whereas true retroviruses with an obligatory genome-integration step in their replication cycle do not exist in plants. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  4. Now You See It, Now You Don't: Characterizing Ephemeral Snowpacks in the Great Basin

    NASA Astrophysics Data System (ADS)

    Petersky, R. S.; Harpold, A. A.

    2016-12-01

    It is expected that some seasonal snowpacks (persisting all winter) will transition to ephemeral snowpacks (persisting <60 days) due to increased ablation and shifts from snow to rain as a consequence of regional warming. This transition to ephemeral snowpacks will be particularly important in the Great Basin because it receives minimal precipitation and has few high elevation mountain ranges. Consequently, increased snow ephemerality potentially threatens water resources derived from mountain snowmelt. However, the current range and extent of ephemeral snowpacks in the Great Basin remains relatively unknown and under measured. We analyzed snow cover information obtained from MODIS imagery using an object-based approach to investigate three questions: 1) How does the range and extent of ephemeral snowpacks in the Great Basin increase in warm and dry years?, 2) What topographic areas are at risk for increasing ephemerality due to changes in the climate regime? and 3) What vegetation types are common in ephemeral snow zones? We found that the extent of snow-covered area declined between a colder, wetter year (2011) and a warmer, drier year (2015) by an area roughly the size of the state of Georgia. Moreover, the proportion of ephemeral snowpack increased by 19% from the wet year to the dry year. While the ecohydrologic consequences of these results remain relatively unknown, this research could potentially aid resource managers in selecting conservation locations and strategies (i.e. fire fuel reductions, grazing allotments, and species conservation) to adapt to variable and changing snowpack dynamics.

  5. STUDY DESIGN FOR A PILOT STUDY OF CHILDREN'S TOTAL EXPOSURE TO PERSISTENT PESTICIDES AND OTHER PERSISTENT ORGANIC PESTICIDES "CTEPP"

    EPA Science Inventory

    The Children's Total Exposure to Persistent Pesticides and Other Persistent Pollutant (CTEPP) study is one of the largest aggregate exposure studies of young children in the United States. The CTEPP study examines the exposures of about 260 preschool children and their primary ad...

  6. Genetic Diversity of Clinical and Environmental Strains of Salmonella enterica Serotype Weltevreden Isolated in Malaysia

    PubMed Central

    Thong, K. L.; Goh, Y. L.; Radu, S.; Noorzaleha, S.; Yasin, R.; Koh, Y. T.; Lim, V. K. E.; Rusul, G.; Puthucheary, S. D.

    2002-01-01

    The incidence of food-borne salmonellosis due to Salmonella enterica serotype Weltevreden is reported to be on the increase in Malaysia. The pulsed-field gel electrophoresis (PFGE) subtyping method was used to assess the extent of genetic diversity and clonality of Salmonella serotype Weltevreden strains from humans and the environment. PFGE of XbaI-digested chromosomal DNA from 95 strains of Salmonella serotype Weltevreden gave 39 distinct profiles with a wide range of Dice coefficients (0.27 to 1.00), indicating that PFGE is very discriminative and that multiple clones of Salmonella serotype Weltevreden exist among clinical and environmental isolates. Strains of one dominant pulsotype (pulsotype X1/X2) appeared to be endemic in this region, as they were consistently recovered from humans with salmonellosis between 1996 and 2001 and from raw vegetables. In addition, the sharing of similar PFGE profiles among isolates from humans, vegetables, and beef provides indirect evidence of the possible transmission of salmonellosis from contaminated raw vegetables and meat to humans. Furthermore, the recurrence of PFGE profile X21 among isolates found in samples of vegetables from one wet market indicated the persistence of this clone. The environment in the wet markets may represent a major source of cross-contamination of vegetables with Salmonella serotype Weltevreden. Antibiotic sensitivity tests showed that the clinical isolates of Salmonella serotype Weltevreden remained drug sensitive but that the vegetable isolates were resistant to at least two antibiotics. To the best of our knowledge, this is the first study to compare clinical and environmental isolates of Salmonella serotype Weltevreden in Malaysia. PMID:12089269

  7. Genetic diversity of clinical and environmental strains of Salmonella enterica serotype Weltevreden isolated in Malaysia.

    PubMed

    Thong, K L; Goh, Y L; Radu, S; Noorzaleha, S; Yasin, R; Koh, Y T; Lim, V K E; Rusul, G; Puthucheary, S D

    2002-07-01

    The incidence of food-borne salmonellosis due to Salmonella enterica serotype Weltevreden is reported to be on the increase in Malaysia. The pulsed-field gel electrophoresis (PFGE) subtyping method was used to assess the extent of genetic diversity and clonality of Salmonella serotype Weltevreden strains from humans and the environment. PFGE of XbaI-digested chromosomal DNA from 95 strains of Salmonella serotype Weltevreden gave 39 distinct profiles with a wide range of Dice coefficients (0.27 to 1.00), indicating that PFGE is very discriminative and that multiple clones of Salmonella serotype Weltevreden exist among clinical and environmental isolates. Strains of one dominant pulsotype (pulsotype X1/X2) appeared to be endemic in this region, as they were consistently recovered from humans with salmonellosis between 1996 and 2001 and from raw vegetables. In addition, the sharing of similar PFGE profiles among isolates from humans, vegetables, and beef provides indirect evidence of the possible transmission of salmonellosis from contaminated raw vegetables and meat to humans. Furthermore, the recurrence of PFGE profile X21 among isolates found in samples of vegetables from one wet market indicated the persistence of this clone. The environment in the wet markets may represent a major source of cross-contamination of vegetables with Salmonella serotype Weltevreden. Antibiotic sensitivity tests showed that the clinical isolates of Salmonella serotype Weltevreden remained drug sensitive but that the vegetable isolates were resistant to at least two antibiotics. To the best of our knowledge, this is the first study to compare clinical and environmental isolates of Salmonella serotype Weltevreden in Malaysia.

  8. Flow of water and sediments through Southwestern riparian systems

    Treesearch

    Leonard F. DeBano; Peter F. Ffolliott; Kenneth N. Brooks

    1996-01-01

    The paper describes streamflow, sediment movement and vegetation interactions within riparian systems of the southwestern United States. Riparian systems are found in a wide range of vegetation types, ranging from lower elevation desert environments to high elevation conifer forests. The climatic, vegetative and hydrologic processes operating in the southwestern...

  9. Weed Identification and Control in Vegetable Crops.

    ERIC Educational Resources Information Center

    Ferretti, Peter A., Comp.

    This agriculture extension service publication from Pennsylvania State University examines weed control and identification in vegetable crops. Contents include: (1) Types of weeds; (2) Reducing losses caused by weeds, general control methods and home garden weed control; (3) How herbicides are used; (4) Specific weeds in vegetable plantings; and…

  10. 7 CFR 318.13-13 - Movement of frozen fruits and vegetables.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE STATE OF HAWAII AND TERRITORIES QUARANTINE NOTICES Regulated Articles From Hawaii and the Territories § 318.13-13 Movement of frozen fruits and vegetables. Frozen fruits and vegetables may be certified for movement from Hawaii, Puerto Rico, Guam, the...

  11. Coma and vegetative states: state of the art and proposal of a novel approach combining existing coma scales.

    PubMed

    Bonsignore, Luca Tommaso; Macrì, Simone; Orsi, Paolo; Chiarotti, Flavia; Alleva, Enrico

    2014-01-01

    Brain damage of various aetiologies can lead to different disorders of consciousness (DOC), varying from coma to vegetative, to minimally conscious states. Each state is characterised by a different degree of wakefulness, awareness, pain sensitivity and is differentially handled with respect to treatment, ethical considerations and end-oflife decisions. Thus, its correct identification is crucial while devising or modulating appropriate treatment strategies. Actually, the main coma scales cannot always accurately determine the state of consciousness of an individual, while other tools (e.g. imaging techniques) present a certain degree of uncertainty. A complementary approach may be constituted by a 24-hour observation of patients, for a sufficient period of days, using an ad hoc behavioural scale, further correlated with physiological and pharmacological parameters measured on patients. The method herein described might help recognising the presence of consciousness of the different DOC patients, and thus discerning a vegetative from a minimally conscious state.

  12. Use of Vegetable Oil in Reductive Dechlorination of Tetrachloroethene

    DTIC Science & Technology

    2001-08-01

    12.5 g sodium bicarbonate (Fisher Scientific Co.), and 4.412 g of citric acid , trisodium salt dihydrate (99%, Aldrich 62 Chemical Co. Inc.) to 1 L of...relatively quickly, leading to low donor efficiency. Biomass and acetate were the most significant products of vegoil- fed microcosms. Volatile fatty acids ...longer than 2 carbons rarely persisted. Since these acids can act as good secondary donors in the aqueous phase, their absence implies that the

  13. Vegetation sensitivity to global anthropogenic carbon dioxide emissions in a topographically complex region

    USGS Publications Warehouse

    Diffenbaugh, N.S.; Sloan, L.C.; Snyder, M.A.; Bell, J.L.; Kaplan, J.; Shafer, S.L.; Bartlein, P.J.

    2003-01-01

    Anthropogenic increases in atmospheric carbon dioxide (CO2) concentrations may affect vegetation distribution both directly through changes in photosynthesis and water-use efficiency, and indirectly through CO2-induced climate change. Using an equilibrium vegetation model (BIOME4) driven by a regional climate model (RegCM2.5), we tested the sensitivity of vegetation in the western United States, a topographically complex region, to the direct, indirect, and combined effects of doubled preindustrial atmospheric CO2 concentrations. Those sensitivities were quantified using the kappa statistic. Simulated vegetation in the western United States was sensitive to changes in atmospheric CO2 concentrations, with woody biome types replacing less woody types throughout the domain. The simulated vegetation was also sensitive to climatic effects, particularly at high elevations, due to both warming throughout the domain and decreased precipitation in key mountain regions such as the Sierra Nevada of California and the Cascade and Blue Mountains of Oregon. Significantly, when the direct effects of CO2 on vegetation were tested in combination with the indirect effects of CO2-induced climate change, new vegetation patterns were created that were not seen in either of the individual cases. This result indicates that climatic and nonclimatic effects must be considered in tandem when assessing the potential impacts of elevated CO2 levels.

  14. A cross-sectional study of US rural adults’ consumption of fruits and vegetables: do they consume at least five servings daily?

    PubMed Central

    2012-01-01

    Background Rural residents are increasingly identified as being at greater risk for health disparities. These inequities may be related to health behaviors such as adequate fruits and vegetable consumption. There is little national-level population-based research about the prevalence of fruit and vegetable consumption by US rural population adults. The objective of this study was to examine the prevalence differences between US rural and non-rural adults in consuming at least five daily servings of combined fruits and vegetables. Methods Cross-sectional analysis of weighted 2009 Behavioral Risk Factor Surveillance Survey (BRFSS) data using bivariate and multivariate techniques. 52,259,789 US adults were identified as consuming at least five daily servings of fruits and vegetables of which 8,983,840 were identified as living in rural locales. Results Bivariate analysis revealed that in comparison to non-rural US adults, rural adults were less likely to consume five or more daily servings of fruits and vegetables (OR = 1.161, 95% CI 1.160-1.162). Logistic regression analysis revealed that US rural adults consuming at least five daily servings of fruits and vegetables were more likely to be female, non-Caucasian, married or living with a partner, living in a household without children, living in a household whose annual income was > $35,000, and getting at least moderate physical activity. They were also more likely to have a BMI of <30, have a personal physician, have had a routine medical exam in the past 12 months, self-defined their health as good to excellent and to have deferred medical care because of cost. When comparing the prevalence differences between rural and non-rural US adults within a state, 37 States had a lower prevalence of rural adults consuming at least five daily servings of fruits and vegetables and 11 States a higher prevalence of the same. Conclusions This enhanced understanding of fruit and vegetable consumption should prove useful to those seeking to lessen the disparity or inequity between rural and non-rural adults. Additionally, those responsible for health-related planning could benefit from the knowledge of how their state ranks in comparison to others vis-à-vis the consumption of fruits and vegetables by rural adults---a population increasingly being identified as one at risk for health disparities. PMID:22490063

  15. Quality of Vegetables Based on Total Phenolic Concentration Is Lower in More Rural Consumer Food Environments in a Rural American State

    PubMed Central

    2017-01-01

    While daily consumption of fruits and vegetables (FVs) is widely recognized to be associated with supporting nutrition and health, disparities exist in consumer food environments regarding access to high-quality produce based on location. The purpose of this study was to evaluate FV quality using total phenolic (TP) scores (a phytochemical measure for health-promoting attributes, flavor, appearance, and shelf-life) in consumer food environments along a rural to urban continuum in the rural state of Montana, United States. Significant differences were found in the means of the FV TP scores (p < 0.0001) and vegetable TP scores (p < 0.0001) on the basis of rurality, while no significant difference was found for fruit TP scores by rurality (p < 0.2158). Specifically, FV TP scores and vegetable TP scores were highest for the least rural stores and lowest for the most rural stores. Results indicate an access gap to high-quality vegetables in more rural and more health-disparate consumer food environments of Montana compared to urban food environments. Findings highlight that food and nutrition interventions should aim to increase vegetable quality in rural consumer food environments in the state of Montana towards enhancing dietary quality and food choices. Future studies are called for that examine TP scores of a wide range of FVs in diverse food environments globally. Studies are further needed that examine linkages between FV quality, food choices, diets, and health outcomes towards enhancing food environments for public health. PMID:28817093

  16. Competition between hardwood hammocks and mangroves

    USGS Publications Warehouse

    Sternberg, L.D.S.L.; Teh, S.Y.; Ewe, S.M.L.; Miralles-Wilhelm, F.; DeAngelis, D.L.

    2007-01-01

    The boundaries between mangroves and freshwater hammocks in coastal ecotones of South Florida are sharp. Further, previous studies indicate that there is a discontinuity in plant predawn water potentials, with woody plants either showing predawn water potentials reflecting exposure to saline water or exposure to freshwater. This abrupt concurrent change in community type and plant water status suggests that there might be feedback dynamics between vegetation and salinity. A model examining the salinity of the aerated zone of soil overlying a saline body of water, known as the vadose layer, as a function of precipitation, evaporation and plant water uptake is presented here. The model predicts that mixtures of saline and freshwater vegetative species represent unstable states. Depending on the initial vegetation composition, subsequent vegetative change will lead either to patches of mangrove coverage having a high salinity vadose zone or to freshwater hammock coverage having a low salinity vadose zone. Complete or nearly complete coverage by either freshwater or saltwater vegetation represents two stable steady-state points. This model can explain many of the previous observations of vegetation patterns in coastal South Florida as well as observations on the dynamics of vegetation shifts caused by sea level rise and climate change. ?? 2007 Springer Science+Business Media, LLC.

  17. Response of vegetation phenology to urbanization in the conterminous United States

    DOE PAGES

    Li, Xuecao; Zhou, Yuyu; Asrar, Ghassem R.; ...

    2016-12-18

    The influence of urbanization on vegetation phenology is gaining considerable attention due to its implications for human health, cycling of carbon and other nutrients in Earth system. In this study, we examined the relationship between change in vegetation phenology and urban size, an indicator of urbanization, for the conterminous United States. We studied more than 4500 urban clusters of varying size to determine the impact of urbanization on plant phenology, with the aids of remotely sensed observations since 2003–2012. We found that phenology cycle (changes in vegetation greenness) in urban areas starts earlier (start of season, SOS) and ends latermore » (end of season, EOS), resulting in a longer growing season length (GSL), when compared to the respective surrounding urban areas. The average difference of GSL between urban and rural areas over all vegetation types, considered in this study, is about 9 days.Also, the extended GSL in urban area is consistent among different climate zones in the United States, whereas their magnitudes are varying across regions. We found that a tenfold increase in urban size could result in an earlier SOS of about 1.3 days and a later EOS of around 2.4 days. As a result, the GSL could be extended by approximately 3.6 days with a range of 1.6–6.5 days for 25th ~ 75th quantiles, with a median value of about 2.1 days. For different vegetation types, the phenology response to urbanization, as defined by GSL, ranges from 1 to 4 days. In conclusion, the quantitative relationship between phenology and urbanization is of great use for developing improved models of vegetation phenology dynamics under future urbanization, and for developing change indicators to assess the impacts of urbanization on vegetation phenology.« less

  18. Vegetation of prairie potholes, North Dakota, in relation to quality of water and other environmental factors

    USGS Publications Warehouse

    Stewart, R.E.; Kantrud, H.A.

    1972-01-01

    Measurements of specific conductance provide an adequate indication of the average salinity of surface waters in natural ponds and lakes of the northern .prairie region. Yearly and seasonal variations in specific conductance were much greater in brackish and subsaline wetlands than in fresh-water areas. The principal vegetational types. Land-use practices of varying brackish to saline wetlands were sulfates and chlorides of sodium and magnesium. In less saline waters, carbonate and bicarbonate salts of calcium and potassium were of greater importance, but as salinity increased, the proportion of these compounds decreased rapidly.A major environmental factor controlling the establishment of marsh and aquatic vegetation is the permanence of surface water. Permanence is a measure of the extent to which surface water persists at a given site. Varying degrees of water permanence during the growing season led to the establishment of distinct vegetational types, which were differentiated primarily on the 'basis of community structure or life form of the dominant vegetation.Salinity of surface waters was closely correlated with differences in species composition of plant communities found in the principal vegetational types. Land-use practices of varying degrees of intensity also had a secondary influence on species composition. Since an unstable water chemistry is characteristic of most prairie ponds and lakes, it is more reliable to use the plant communities as indicators of average salinity than to use single measurements of specific conductance.Characteristic species of wetland vegetational types occupied the central deeper parts of pond and lake basins or occurred as concentric peripheral bands. The wetland vegetational types are wetland low-prairie, wet-meadow, shallow-marsh emergent, deep-marsh emergent, fen emergent, submerged and floating, natural drawdown, cropland drawdown, and cropland tillage vegetation. Combinations of species (plant associations) within these vegetational types were placed in one of six salinity categories designated as fresh, slightly brackish, moderately brackish, brackish, subsaline, and saline. Salt tolerance apparently varied greatly among the various marsh and aquatic plants since the num'ber of species represented in moderately brackish to saline communities decreased markedly with increased salinity of the surface water environment.

  19. Vegetation history of the English chalklands: a mid-Holocene pollen sequence from the Caburn, East Sussex

    NASA Astrophysics Data System (ADS)

    Waller, Martyn P.; Hamilton, Sue

    2000-03-01

    A pollen diagram has been produced from the base of the Caburn (East Sussex) that provides a temporally and spatially precise record of vegetation change on the English chalklands during the mid-Holocene (ca. 7100 to ca. 3800 cal. yr BP). During this period the slopes above the site appear to have been well-wooded, with vegetation analogous to modern Fraxinus-Acer-Mercurialis communities in which Tilia was also a prominent constituent. However, scrub and grassland taxa such as Juniperus communis, Cornus sanguinea and Plantago lanceolata are also regularly recorded along with, from ca. 6000 cal. yr BP onwards, species specific to Chalk grassland (e.g. Sanguisorba minor). This supports suggestions that elements of Chalk grassland persisted in lowland England through the Holocene. Such communities are most likely to have occupied the steepest slopes, although the processes that maintained them are unclear. Human interference with vegetation close to the site may have begun as early as ca. 6350 cal. yr BP and initially involved a woodland management practice such as coppicing. From the primary Ulmus decline (ca. 5700 cal. yr BP) onwards, phases of limited clearance accompanied by cereal cultivation occurred. Taxus baccata was an important component of the woodland which regenerated between these phases.

  20. Drought Effects on Riparian Vegetation in the Santa Clara River Basin Using Airborne Imaging Spectroscopy

    NASA Astrophysics Data System (ADS)

    Schmidt, C.; Miller, D.; Roberts, D. A.

    2017-12-01

    Riparian forests are groundwater-dependent ecosystems that are highly sensitive to changes in the water table. As climate change continues, droughts are likely to become more frequent and severe in Southern California, threatening the persistence of these ecosystems. From 2012 to 2017, California experienced the most severe drought in the past century, providing a case study to assess drought impacts. Using imagery collected by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) from 2013 and 2016, we evaluated changes in riparian forest health in a central section of the Santa Clara River Basin, a multi-use river located just north of Los Angeles. We used Constrained Reference Endmember Selection (CRES) to select reference endmembers of green vegetation (GV), non-photosynthetic vegetation (NPV), and rock/soil. We used spectral mixture analysis to estimate endmember fractions. We assessed changes in green vegetation cover and canopy water content at key monitoring sites based on the Relative GV Fraction, the Normalized Difference Water Index, and the Water Band Index. Preliminary results showed a decrease in the GV fraction and an increase in the NPV fraction, indicating an overall decline in riparian forest health as a result of drought. Our results demonstrate the spatial extent of drought effects in groundwater dependent ecosystems.

  1. Field evaluation of leaf blight-resistant plant introductions of Brassica Juncea and Brassica Rapa and elucidation of inheritance of resistance

    USDA-ARS?s Scientific Manuscript database

    Brassica leafy greens (Brassica juncea and Brassica rapa) represent one of the most economically important vegetable crop groups in the southeastern United States. In the last 10 years, numerous occurrences of a leaf blight disease on these leafy vegetables have been reported in several states. One ...

  2. Approaches to incorporating climate change effects in state and transition simulation models of vegetation

    Treesearch

    Becky K. Kerns; Miles A. Hemstrom; David Conklin; Gabriel I. Yospin; Bart Johnson; Dominique Bachelet; Scott Bridgham

    2012-01-01

    Understanding landscape vegetation dynamics often involves the use of scientifically-based modeling tools that are capable of testing alternative management scenarios given complex ecological, management, and social conditions. State-and-transition simulation model (STSM) frameworks and software such as PATH and VDDT are commonly used tools that simulate how landscapes...

  3. Forest Inventory and Analysis Database of the United States of America (FIA)

    Treesearch

    Andrew N. Gray; Thomas J. Brandeis; John D. Shaw; William H. McWilliams; Patrick Miles

    2012-01-01

    Extensive vegetation inventories established with a probabilistic design are an indispensable tool in describing distributions of species and community types and detecting changes in composition in response to climate or other drivers. The Forest Inventory and Analysis Program measures vegetation in permanent plots on forested lands across the United States of America...

  4. Forecasting timber, biomass, and tree carbon pools with the output of state and transition models

    Treesearch

    Xiaoping Zhou; Miles A. Hemstrom

    2012-01-01

    The Integrated Landscape Assessment Project (ILAP) uses spatial vegetation data and state and transition models (STM) to forecast future vegetation conditions and the interacting effects of natural disturbances and management activities. Results from ILAP will help land managers, planners, and policymakers evaluate management strategies that reduce fire risk, improve...

  5. 78 FR 64327 - Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for the Bi-State...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-28

    ... 2001 (Pub. L. 106-554; H.R. 5658)), and our associated Information Quality Guidelines, provide criteria..., agricultural lands, and steppe dominated by native grasses and forbs. However, the Bi-State DPS of greater sage... sagebrush vegetation as well as a vegetative understory composed of native grasses and forbs are essential...

  6. Characterizing meadow vegetation with multitemporal Landsat thematic mapper remote sensing.

    Treesearch

    Alan A. Ager; Karen E. Owens

    2004-01-01

    Wet meadows are important biological components in the Blue Mountains of eastern Oregon. Many meadows in the Blue Mountains and elsewhere in the Western United States are in a state of change owing to grazing, mining, logging, road development, and other factors. This project evaluated the utility of remotely sensed data to characterize and monitor meadow vegetation...

  7. Lacustrine Records of Holocene Mountain Glacier Fluctuations from Western Greenland

    NASA Astrophysics Data System (ADS)

    Schweinsberg, A.; Briner, J. P.; Bennike, O.

    2014-12-01

    Recent studies have focused on documenting fluctuations of the Greenland Ice Sheet margin throughout the Holocene but few data exist that constrain past changes of local glaciers independent of the ice sheet. Our research combines proglacial lake sediment analysis with cosmogenic 10Be dating of Holocene moraines and radiocarbon dating of ice-cap-killed vegetation with an overall objective to use this multi-proxy approach to generate a detailed record of the coupled climate-glacier system through the Holocene. Here, we present lacustrine records of mountain glacier variability from continuous pro-glacial lake sediment sequences recovered from two glaciated catchments in northeastern Nuussuaq, western Greenland. We use radiocarbon-dated sediments from Sikuiui and Pauiaivik lakes to reconstruct the timing of advance and retreat of local glaciers. Sediments were characterized with magnetic susceptibility (MS), gamma density, Itrax XRF and visible reflectance spectroscopy at 0.2 cm intervals and sediment organic matter at 0.5 cm intervals. Basal radiocarbon ages provide minimum-age constraints on deglaciation from Sikuiui and Pauiaivik lakes of ~9.6 and 8.7 ka, respectively. Organic-rich gyttja from deglaciation until ~5.0 ka in Pauiaivik Lake suggests minimal glacial extent there while slightly elevated MS values from ~9.0 - 7.0 ka in Sikuiui Lake may reflect early Holocene glacial advances. Minerogenic sediment input gradually increases starting at ~5.0 ka in Pauiaivik Lake, which we interpret as the onset of Neoglaciation in the catchment. Furthermore, a distinct episode of enhanced glacial activity from ~4.0 - 2.2 ka in Sikuiui Lake may be correlative to a period of persistent snowline lowering evidenced by radiocarbon dates of ice-killed vegetation from nearby ice cap margins. Results from these lacustrine records and our ice-killed vegetation dataset suggest a middle Holocene onset of Neoglaciation ~5.0 - 4.0 ka in this region. We are supplementing these records with cosmogenic 10Be exposure dating to further constrain the timing of deglaciation. In addition, these sedimentary archives will continue to be compared to radiocarbon dates of ice-killed vegetation along adjacent ice cap margins to determine if times of persistent snowline lowering are correlative to periods of glacier advance.

  8. Plant functional traits in relation to fire in crown-fire ecosystems

    USGS Publications Warehouse

    Pausas, Juli G.; Bradstock, Ross A.; Keith, David A.; Keeley, Jon E.

    2004-01-01

    Disturbance is a dominant factor in many ecosystems, and the disturbance regime is likely to change over the next decades in response to land-use changes and global warming. We assume that predictions of vegetation dynamics can be made on the basis of a set of life-history traits that characterize the response of a species to disturbance. For crown-fire ecosystems, the main plant traits related to postfire persistence are the ability to resprout (persistence of individuals) and the ability to retain a persistent seed bank (persistence of populations). In this context, we asked (1) to what extent do different life-history traits co-occur with the ability to resprout and/or the ability to retain a persistent seed bank among differing ecosystems and (2) to what extent do combinations of fire-related traits (fire syndromes) change in a fire regime gradient? We explored these questions by reviewing the literature and analyzing databases compiled from different crown-fire ecosystems (mainly eastern Australia, California, and the Mediterranean basin). The review suggests that the pattern of correlation between the two basic postfire persistent traits and other plant traits varies between continents and ecosystems. From these results we predict, for instance, that not all resprouters respond in a similar way everywhere because the associated plant traits of resprouter species vary in different places. Thus, attempts to generalize predictions on the basis of the resprouting capacity may have limited power at a global scale. An example is presented for Australian heathlands. Considering the combination of persistence at individual (resprouting) and at population (seed bank) level, the predictive power at local scale was significantly increased.

  9. Factors Associated with Student Persistence in an Online Program of Study: A Review of the Literature

    ERIC Educational Resources Information Center

    Hart, Carolyn

    2012-01-01

    This integrated literature review examined factors associated with the ability of students to persist in an online course. Lack of persistence in online education and its' consequence of attrition, is an identified problem within the United States and internationally. Terminology has wavered between persistence and success, where each has been…

  10. Bacterial persistence by RNA endonucleases

    PubMed Central

    Maisonneuve, Etienne; Shakespeare, Lana J.; Jørgensen, Mikkel Girke; Gerdes, Kenn

    2011-01-01

    Bacteria form persisters, individual cells that are highly tolerant to different types of antibiotics. Persister cells are genetically identical to nontolerant kin but have entered a dormant state in which they are recalcitrant to the killing activity of the antibiotics. The molecular mechanisms underlying bacterial persistence are unknown. Here, we show that the ubiquitous Lon (Long Form Filament) protease and mRNA endonucleases (mRNases) encoded by toxin-antitoxin (TA) loci are required for persistence in Escherichia coli. Successive deletion of the 10 mRNase-encoding TA loci of E. coli progressively reduced the level of persisters, showing that persistence is a phenotype common to TA loci. In all cases tested, the antitoxins, which control the activities of the mRNases, are Lon substrates. Consistently, cells lacking lon generated a highly reduced level of persisters. Moreover, Lon overproduction dramatically increased the levels of persisters in wild-type cells but not in cells lacking the 10 mRNases. These results support a simple model according to which mRNases encoded by TA loci are activated in a small fraction of growing cells by Lon-mediated degradation of the antitoxins. Activation of the mRNases, in turn, inhibits global cellular translation, and thereby induces dormancy and persistence. Many pathogenic bacteria known to enter dormant states have a plethora of TA genes. Therefore, in the future, the discoveries described here may lead to a mechanistic understanding of the persistence phenomenon in pathogenic bacteria. PMID:21788497

  11. Potential to curb the environmental burdens of American beef consumption using a novel plant-based beef substitute

    PubMed Central

    Moses, Rebekah; Sammons, Norman; Birkved, Morten

    2017-01-01

    The food demands of the United States (US) impart significant environmental pressures. The high rate of consumption of beef has been shown to be the largest driver of food-borne greenhouse gas emissions, water use and land occupation in the US diet. The environmental benefits of substituting animal products with vegetal foods are well documented, but significant psychological barriers persist in reducing meat consumption. Here we use life cycle assessment to appraise the environmental performance of a novel vegetal protein source in the mean US diet where it replaces ground beef, and in vegetarian and vegan diets where it substitutes for legumes, tofu and other protein sources. We find that relative to the mean US diet, vegetarian and vegan diets significantly reduce per-capita food-borne greenhouse gas emission (32% and 67%, respectively), blue water use (70% and 75%, respectively) and land occupation (70% and 79%, respectively), primarily in the form of rangeland. The substitution of 10%, 25% and 50% of ground beef with plant-based burger (PBB) at the national scale results in substantial reductions in annual US dietary greenhouse gas emissions (4.55–45.42 Mt CO2 equivalents), water consumption (1.30–12.00 km3) and land occupation (22300–190100 km2). Despite PBB’s elevated environmental pressures compared to other vegetal protein sources, we demonstrate that minimal risk exists for the disservices of PBB substitution in non-meat diets to outweigh the benefits of ground-beef substitution in the omnivorous American diet. Demand for plant-based oils in PBB production has the potential to increase land use pressures in biodiversity hotspots, though these could be obviated through responsible land stewardship. Although the apparent environmental benefits of the PBB are contingent on actual uptake of the product, this study demonstrates the potential for non-traditional protein substitutes to play a role in a transition towards more sustainable consumption regimes in the US and potentially abroad. PMID:29211775

  12. Potential to curb the environmental burdens of American beef consumption using a novel plant-based beef substitute.

    PubMed

    Goldstein, Benjamin; Moses, Rebekah; Sammons, Norman; Birkved, Morten

    2017-01-01

    The food demands of the United States (US) impart significant environmental pressures. The high rate of consumption of beef has been shown to be the largest driver of food-borne greenhouse gas emissions, water use and land occupation in the US diet. The environmental benefits of substituting animal products with vegetal foods are well documented, but significant psychological barriers persist in reducing meat consumption. Here we use life cycle assessment to appraise the environmental performance of a novel vegetal protein source in the mean US diet where it replaces ground beef, and in vegetarian and vegan diets where it substitutes for legumes, tofu and other protein sources. We find that relative to the mean US diet, vegetarian and vegan diets significantly reduce per-capita food-borne greenhouse gas emission (32% and 67%, respectively), blue water use (70% and 75%, respectively) and land occupation (70% and 79%, respectively), primarily in the form of rangeland. The substitution of 10%, 25% and 50% of ground beef with plant-based burger (PBB) at the national scale results in substantial reductions in annual US dietary greenhouse gas emissions (4.55-45.42 Mt CO2 equivalents), water consumption (1.30-12.00 km3) and land occupation (22300-190100 km2). Despite PBB's elevated environmental pressures compared to other vegetal protein sources, we demonstrate that minimal risk exists for the disservices of PBB substitution in non-meat diets to outweigh the benefits of ground-beef substitution in the omnivorous American diet. Demand for plant-based oils in PBB production has the potential to increase land use pressures in biodiversity hotspots, though these could be obviated through responsible land stewardship. Although the apparent environmental benefits of the PBB are contingent on actual uptake of the product, this study demonstrates the potential for non-traditional protein substitutes to play a role in a transition towards more sustainable consumption regimes in the US and potentially abroad.

  13. Profiles of California vegetation

    Treesearch

    William B. Critchfield

    1971-01-01

    This publication brings together 57 elevational profiles illustrating the dominant vegetation of much of the Sierra Nevada, southern Coast Ranges, and montane southern California as it existed in the 1930's. The profiles were drawn by Michael N. Dobrotin for the U.S. Forest Service's Vegetation Type Map survey, which mapped nearly half of the State's...

  14. Echohydrological implications of drought for forests in the United States

    Treesearch

    James M. Vose; Chelcy Ford Miniat; Charles H. Luce; Heidi Asbjornsen; Peter V. Caldwell; John L. Campbell; Gordon E. Grant; Daniel J. Isaak; Steven P. Loheide; Ge Sun

    2016-01-01

    The relationships among drought, surface water flow, and groundwater recharge are not straightforward for most forest ecosystems due to the strong role that vegetation plays in the forest water balance. Hydrologic responses to drought can be either mitigated or exacerbated by forest vegetation depending upon vegetation water use and how forest population dynamics...

  15. Satellite assessment of early-season forecasts for vegetation conditions of grazing allotments in Nevada, United States

    USDA-ARS?s Scientific Manuscript database

    Fifteen years of enhanced vegetation index data from the MODIS sensor are examined in conjunction with precipitation and the Palmer drought severity index to assess how well growing season conditions for vegetation within grazing allotments of Nevada can be predicted at different times of the year. ...

  16. Monitoring vegetation greenness with satellite data

    Treesearch

    Robert E. Burgan; Roberta A. Hartford

    1993-01-01

    Vegetation greenness can be monitored at 1-km resolution for the conterminous United States through data obtained from the Advanced Very High Resolution Radiometer on the NOAA-11 weather satellites. The data are used to calculate biweekly composites of the Normalized Difference Vegetation Index. The resulting composite images are updated weekly and made available to...

  17. Nutrition Education Intervention Improves Vegetable-Related Attitude, Self-Efficacy, Preference, and Knowledge of Fourth-Grade Students

    ERIC Educational Resources Information Center

    Wall, Denise E.; Least, Christine; Gromis, Judy; Lohse, Barbara

    2012-01-01

    Background: Impact of a classroom-based, standardized intervention to address limited vegetable consumption of fourth graders was assessed. Methods: A 4-lesson, vegetable-focused intervention, revised from extant materials was repurposed for Pennsylvania fourth graders with lessons aligned with state academic standards. A reliability-tested survey…

  18. Chapter 7: Developing climate-informed state-and-transition models

    Treesearch

    Miles A. Hemstrom; Jessica E. Halofsky; David R. Conklin; Joshua S. Halofsky; Dominique Bachelet; Becky K. Kerns

    2014-01-01

    Land managers and others need ways to understand the potential effects of climate change on local vegetation types and how management activities might be impacted by climate change. To date, climate change impact models have not included localized vegetation communities or the integrated effects of vegetation development dynamics, natural disturbances, and management...

  19. A remote sensing protocol for identifying rangelands with degraded productive capacity

    Treesearch

    Matthew C. Reeves; L. Scott Bagget

    2014-01-01

    Rangeland degradation is a growing problem throughout the world. An assessment process for com-paring the trend and state of vegetation productivity to objectively derived reference conditions wasdeveloped. Vegetation productivity was estimated from 2000 to 2012 using annual maximum Normalized Difference Vegetation Index (NDVI) from the MODIS satellite platform. Each...

  20. The LANDFIRE Refresh strategy: updating the national dataset

    USGS Publications Warehouse

    Nelson, Kurtis J.; Connot, Joel A.; Peterson, Birgit E.; Martin, Charley

    2013-01-01

    The LANDFIRE Program provides comprehensive vegetation and fuel datasets for the entire United States. As with many large-scale ecological datasets, vegetation and landscape conditions must be updated periodically to account for disturbances, growth, and natural succession. The LANDFIRE Refresh effort was the first attempt to consistently update these products nationwide. It incorporated a combination of specific systematic improvements to the original LANDFIRE National data, remote sensing based disturbance detection methods, field collected disturbance information, vegetation growth and succession modeling, and vegetation transition processes. This resulted in the creation of two complete datasets for all 50 states: LANDFIRE Refresh 2001, which includes the systematic improvements, and LANDFIRE Refresh 2008, which includes the disturbance and succession updates to the vegetation and fuel data. The new datasets are comparable for studying landscape changes in vegetation type and structure over a decadal period, and provide the most recent characterization of fuel conditions across the country. The applicability of the new layers is discussed and the effects of using the new fuel datasets are demonstrated through a fire behavior modeling exercise using the 2011 Wallow Fire in eastern Arizona as an example.

  1. Candidate soil indicators for monitoring the progress of constructed wetlands toward a natural state: a statistical approach

    USGS Publications Warehouse

    Stapanian, Martin A.; Adams, Jean V.; Fennessy, M. Siobhan; Mack, John; Micacchion, Mick

    2013-01-01

    A persistent question among ecologists and environmental managers is whether constructed wetlands are structurally or functionally equivalent to naturally occurring wetlands. We examined 19 variables collected from 10 constructed and nine natural emergent wetlands in Ohio, USA. Our primary objective was to identify candidate indicators of wetland class (natural or constructed), based on measurements of soil properties and an index of vegetation integrity, that can be used to track the progress of constructed wetlands toward a natural state. The method of nearest shrunken centroids was used to find a subset of variables that would serve as the best classifiers of wetland class, and error rate was calculated using a five-fold cross-validation procedure. The shrunken differences of percent total organic carbon (% TOC) and percent dry weight of the soil exhibited the greatest distances from the overall centroid. Classification based on these two variables yielded a misclassification rate of 11% based on cross-validation. Our results indicate that % TOC and percent dry weight can be used as candidate indicators of the status of emergent, constructed wetlands in Ohio and for assessing the performance of mitigation. The method of nearest shrunken centroids has excellent potential for further applications in ecology.

  2. The "near-death experience" during comas: psychotraumatic suffering or the taming of reality?

    PubMed

    Auxéméry, Y

    2013-09-01

    An near death experience (NDE) is the experience of an atypical state of consciousness that is induced by the neuropsychological consequences of a passage near death. Far from being a psychologically traumatic event, these experiences never cause flashbacks and can even eliminate the fear of death. Listening to patients who have shared their near death sensations has encouraged the reevaluation of the medical standards associated with NDEs. Over several decades, the patient has been positioned at the center of management decisions, with his or her will taken into account. Certain patients can be revived following neurological events, but their resuscitation is performed with the possibility of serious neurological sequelae, which might prevent a return to normal life. The patient may also remain unconscious, either transiently or in a more long term coma or persistent vegetative state. Nonetheless, several works have demonstrated the presence of neuronal activity, however little, in patients suffering from prolonged comas. The medical team then does not act as if the patient were not there but, on the contrary, considers the patient to be the subject, although unable to speak directly, to whom one speaks and of whom one speaks between caregivers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Public education and misinformation on brain death in mainstream media.

    PubMed

    Lewis, Ariane; Lord, Aaron S; Czeisler, Barry M; Caplan, Arthur

    2016-09-01

    We sought to evaluate the caliber of education mainstream media provides the public about brain death. We reviewed articles published prior to July 31, 2015, on the most shared/heavily trafficked mainstream media websites of 2014 using the names of patients from two highly publicized brain death cases, "Jahi McMath" and "Marlise Muñoz." We reviewed 208 unique articles. The subject was referred to as being "alive" or on "life support" in 72% (149) of the articles, 97% (144) of which also described the subject as being brain dead. A definition of brain death was provided in 4% (9) of the articles. Only 7% (14) of the articles noted that organ support should be discontinued after brain death declaration unless a family has agreed to organ donation. Reference was made to well-known cases of patients in persistent vegetative states in 16% (34) of articles and 47% (16) of these implied both patients were in the same clinical state. Mainstream media provides poor education to the public on brain death. Because public understanding of brain death impacts organ and tissue donation, it is important for physicians, organ procurement organizations, and transplant coordinators to improve public education on this topic. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Monitoring crop coefficient of orange orchards using energy balance and the remote sensed NDVI

    NASA Astrophysics Data System (ADS)

    Consoli, Simona; Cirelli, Giuseppe Luigi; Toscano, Attilio

    2006-09-01

    The structure of vegetation is paramount in regulating the exchange of mass and energy across the biosphereatmosphere interface. In particular, changes in vegetation density affected the partitioning of incoming solar energy into sensible and latent heat fluxes that may result in persistent drought through reductions in agricultural productivity and in the water resources availability. Limited research with citrus orchards has shown improvements to irrigation scheduling due to better water-use estimation and more appropriate timing of irrigation when crop coefficient (Kc) estimate, derived from remotely sensed multispectral vegetation indices (VIs), are incorporated into irrigation-scheduling algorithms. The purpose of this article is the application of an empirical reflectance-based model for the estimation of Kc and evapotranspiration fluxes (ET) using ground observations on climatic data and high-resolution VIs from ASTER TERRA satellite imagery. The remote sensed Kc data were used in developing the relationship with the normalized difference vegetation index (NDVI) for orange orchards during summer periods. Validation of remote sensed data on ET, Kc and vegetation features was deal through ground data observations and the resolution of the energy balance to derive latent heat flux density (λE), using measures of net radiation (Rn) and soil heat flux density (G) and estimate of sensible heat flux density (H) from high frequency temperature measurements (Surface Renewal technique). The chosen case study is that of an irrigation area covered by orange orchards located in Eastern Sicily, Italy) during the irrigation seasons 2005 and 2006.

  5. Vegetation dynamics and rainfall sensitivity of the Amazon

    PubMed Central

    Hilker, Thomas; Lyapustin, Alexei I.; Tucker, Compton J.; Hall, Forrest G.; Myneni, Ranga B.; Wang, Yujie; Bi, Jian; Mendes de Moura, Yhasmin; Sellers, Piers J.

    2014-01-01

    We show that the vegetation canopy of the Amazon rainforest is highly sensitive to changes in precipitation patterns and that reduction in rainfall since 2000 has diminished vegetation greenness across large parts of Amazonia. Large-scale directional declines in vegetation greenness may indicate decreases in carbon uptake and substantial changes in the energy balance of the Amazon. We use improved estimates of surface reflectance from satellite data to show a close link between reductions in annual precipitation, El Niño southern oscillation events, and photosynthetic activity across tropical and subtropical Amazonia. We report that, since the year 2000, precipitation has declined across 69% of the tropical evergreen forest (5.4 million km2) and across 80% of the subtropical grasslands (3.3 million km2). These reductions, which coincided with a decline in terrestrial water storage, account for about 55% of a satellite-observed widespread decline in the normalized difference vegetation index (NDVI). During El Niño events, NDVI was reduced about 16.6% across an area of up to 1.6 million km2 compared with average conditions. Several global circulation models suggest that a rise in equatorial sea surface temperature and related displacement of the intertropical convergence zone could lead to considerable drying of tropical forests in the 21st century. Our results provide evidence that persistent drying could degrade Amazonian forest canopies, which would have cascading effects on global carbon and climate dynamics. PMID:25349419

  6. Hydrology, Ecology and Pastoralism in the Sahel: Abrupt Changes in Surface Water Dynamics in a Coupled Natural-Human System

    NASA Astrophysics Data System (ADS)

    Hanan, N. P.; Prihodko, L.

    2008-12-01

    The Sahelian region of Africa is situated to the south of the Sahara desert, stretching from Senegal in the West to Sudan in the East. It is an area with semi-arid climate (300-600 mm mean annual precipitation) and long, severe, dry seasons (8-9 months without rain). Sahelian vegetation consists of extensive annual grasslands, with low tree and shrub density (generally < 5% canopy cover). Though rainfall limits the productivity of Sahelian vegetation, this self-same water limitation means that nutrients are relatively available and the nutrient value and digestibility of Sahelian vegetation is much higher than in the adjacent (wetter) savannas to the south. For this reason, the Sahel is a prized grazing resource. However, because domestic animals (cattle, sheep, goats) require regular access to drinking water, most areas of the Sahel are only accessible for grazing during the short rainy season while ephemeral surface pools persist. We will describe observations on one such ephemeral pool in northern Mali which underwent an unexpected transition from ephemeral to perennial during the years of average rainfall (1988-1992) following the severe Sahelian drought of 1985-86. As a result of this transformation a small village has established beside the lake and 5-10 thousand cattle now routinely remain in the watershed throughout the dry season. In this paper the dynamics that may have caused the shift from stable ephemeral lake to stable perennial lake, with no long-term increase in rainfall, will be explored. We will examine hypotheses for the change and how it may have arisen through interactions between hydrology, ecology, climate, humans, their livestock, and land use patterns in the lake catchment. It is likely that biological and physical thresholds were exceeded during the drought to trigger a temporary state change in the lake from ephemeral to perennial, which then triggered a socio-economic reorganization. We hypothesize that the resulting change in land use may now maintain the lake in its 'perennial' state. For how long remains uncertain. We will, furthermore, explore reports from elsewhere in the Sahel suggesting that this phenomenon may not be unique in space or time. If our hypotheses are correct, the interactions and feedbacks operating in our catchment may have broad implications for the ecology and management of the wider Sahel region.

  7. Mobility-induced persistent chimera states

    NASA Astrophysics Data System (ADS)

    Petrungaro, Gabriela; Uriu, Koichiro; Morelli, Luis G.

    2017-12-01

    We study the dynamics of mobile, locally coupled identical oscillators in the presence of coupling delays. We find different kinds of chimera states in which coherent in-phase and antiphase domains coexist with incoherent domains. These chimera states are dynamic and can persist for long times for intermediate mobility values. We discuss the mechanisms leading to the formation of these chimera states in different mobility regimes. This finding could be relevant for natural and technological systems composed of mobile communicating agents.

  8. Empirical analysis of vegetation dynamics and the possibility of a catastrophic desertification transition

    PubMed Central

    Kent, Rafi; Michael, Yaron; Shnerb, Nadav M.

    2017-01-01

    The process of desertification in the semi-arid climatic zone is considered by many as a catastrophic regime shift, since the positive feedback of vegetation density on growth rates yields a system that admits alternative steady states. Some support to this idea comes from the analysis of static patterns, where peaks of the vegetation density histogram were associated with these alternative states. Here we present a large-scale empirical study of vegetation dynamics, aimed at identifying and quantifying directly the effects of positive feedback. To do that, we have analyzed vegetation density across 2.5 × 106 km2 of the African Sahel region, with spatial resolution of 30 × 30 meters, using three consecutive snapshots. The results are mixed. The local vegetation density (measured at a single pixel) moves towards the average of the corresponding rainfall line, indicating a purely negative feedback. On the other hand, the chance of spatial clusters (of many “green” pixels) to expand in the next census is growing with their size, suggesting some positive feedback. We show that these apparently contradicting results emerge naturally in a model with positive feedback and strong demographic stochasticity, a model that allows for a catastrophic shift only in a certain range of parameters. Static patterns, like the double peak in the histogram of vegetation density, are shown to vary between censuses, with no apparent correlation with the actual dynamical features. Our work emphasizes the importance of dynamic response patterns as indicators of the state of the system, while the usefulness of static modality features appears to be quite limited. PMID:29261678

  9. Empirical analysis of vegetation dynamics and the possibility of a catastrophic desertification transition.

    PubMed

    Weissmann, Haim; Kent, Rafi; Michael, Yaron; Shnerb, Nadav M

    2017-01-01

    The process of desertification in the semi-arid climatic zone is considered by many as a catastrophic regime shift, since the positive feedback of vegetation density on growth rates yields a system that admits alternative steady states. Some support to this idea comes from the analysis of static patterns, where peaks of the vegetation density histogram were associated with these alternative states. Here we present a large-scale empirical study of vegetation dynamics, aimed at identifying and quantifying directly the effects of positive feedback. To do that, we have analyzed vegetation density across 2.5 × 106 km2 of the African Sahel region, with spatial resolution of 30 × 30 meters, using three consecutive snapshots. The results are mixed. The local vegetation density (measured at a single pixel) moves towards the average of the corresponding rainfall line, indicating a purely negative feedback. On the other hand, the chance of spatial clusters (of many "green" pixels) to expand in the next census is growing with their size, suggesting some positive feedback. We show that these apparently contradicting results emerge naturally in a model with positive feedback and strong demographic stochasticity, a model that allows for a catastrophic shift only in a certain range of parameters. Static patterns, like the double peak in the histogram of vegetation density, are shown to vary between censuses, with no apparent correlation with the actual dynamical features. Our work emphasizes the importance of dynamic response patterns as indicators of the state of the system, while the usefulness of static modality features appears to be quite limited.

  10. Analyses of GIMMS NDVI Time Series in Kogi State, Nigeria

    NASA Astrophysics Data System (ADS)

    Palka, Jessica; Wessollek, Christine; Karrasch, Pierre

    2017-10-01

    The value of remote sensing data is particularly evident where an areal monitoring is needed to provide information on the earth's surface development. The use of temporal high resolution time series data allows for detecting short-term changes. In Kogi State in Nigeria different vegetation types can be found. As the major population in this region is living in rural communities with crop farming the existing vegetation is slowly being altered. The expansion of agricultural land causes loss of natural vegetation, especially in the regions close to the rivers which are suitable for crop production. With regard to these facts, two questions can be dealt with covering different aspects of the development of vegetation in the Kogi state, the determination and evaluation of the general development of the vegetation in the study area (trend estimation) and analyses on a short-term behavior of vegetation conditions, which can provide information about seasonal effects in vegetation development. For this purpose, the GIMMS-NDVI data set, provided by the NOAA, provides information on the normalized difference vegetation index (NDVI) in a geometric resolution of approx. 8 km. The temporal resolution of 15 days allows the already described analyses. For the presented analysis data for the period 1981-2012 (31 years) were used. The implemented workflow mainly applies methods of time series analysis. The results show that in addition to the classical seasonal development, artefacts of different vegetation periods (several NDVI maxima) can be found in the data. The trend component of the time series shows a consistently positive development in the entire study area considering the full investigation period of 31 years. However, the results also show that this development has not been continuous and a simple linear modeling of the NDVI increase is only possible to a limited extent. For this reason, the trend modeling was extended by procedures for detecting structural breaks in the time series.

  11. Hydrologic Causes and Effects of Vegetation State Change in the Semiarid Southwest US: Observations and Model Results From a Small, Instrumented Watershed

    NASA Astrophysics Data System (ADS)

    Schreiner-McGraw, A.; Vivoni, E. R.

    2016-12-01

    Vegetation has changed dramatically over the last 150 years in the southwest United States due to a combination of overgrazing, climate change, and fire suppression. These changes are hypothesized to have had profound effects on the hydrologic cycle. In this study, we use a combination of long-term observations and a hydrologic model to investigate the causes of vegetation change and it's effects on hydrology in a semiarid catchment in New Mexico, USA. Our study site has undergone transitions between shrub dominance states. In this study we test two hypotheses: (1) the timing of plant available water combined with differing shrub phenologies has controlled changes in shrub dominance state, and (2) changes in the dominant shrub type will affect runoff and deep recharge from the watershed. Long-term data sets from the Jornada LTER allow us to compare previous vegetation states to the historical rainfall record. As the ecosystem shifted from tarbush-dominated to creosote-dominated to a mixed scrubland with mesquite establishment, we observed increases in the percent of annual rainfall that falls early in the growing season (GS; 3%, p = 0.04), the amount of large storms (>10 mm; 121%, p = 0.03), and the total rainfall (+30.4 mm, p = 0.03) during the early GS. We use data from satellites, UAV flights, and ground-based measurements to show that mesquite and creosote are most active during the early GS (April-July), while tarbush is most active during the late GS (August-November). To extend this analysis, we make use of a hydrologic model, tRIBS, that has vegetation phenology implemented for each of the target species. We built a present-time model based on vegetation classification from UAV flights and parameterization by field measurements. We calibrated and validated this model, then we built model scenarios based on historical vegetation maps and observed changes in soil properties. Model simulations demonstrate the strength of the phenological control on the hydrologic response as compared to soil changes that occur with heavy cattle grazing during the shrub transitions. They also illustrate in detail the effects that changing vegetation conditions have on semiarid runoff and deep recharge in the watershed and we discuss how the results are applicable to a broader region represented by the study site.

  12. Characterization of increased persistence and intensity of precipitation in the northeastern United States

    NASA Astrophysics Data System (ADS)

    Guilbert, Justin; Betts, Alan K.; Rizzo, Donna M.; Beckage, Brian; Bomblies, Arne

    2015-03-01

    We present evidence of increasing persistence in daily precipitation in the northeastern United States that suggests that global circulation changes are affecting regional precipitation patterns. Meteorological data from 222 stations in 10 northeastern states are analyzed using Markov chain parameter estimates to demonstrate that a significant mode of precipitation variability is the persistence of precipitation events. We find that the largest region-wide trend in wet persistence (i.e., the probability of precipitation in 1 day and given precipitation in the preceding day) occurs in June (+0.9% probability per decade over all stations). We also find that the study region is experiencing an increase in the magnitude of high-intensity precipitation events. The largest increases in the 95th percentile of daily precipitation occurred in April with a trend of +0.7 mm/d/decade. We discuss the implications of the observed precipitation signals for watershed hydrology and flood risk.

  13. Getting stuck in the blues: persistence of mental health problems in Australia.

    PubMed

    Roy, John; Schurer, Stefanie

    2013-09-01

    Do episodes of mental health (MH) problems cause future MH problems, and if yes, how strong are these dynamics? We quantify the degree of persistence in MH problems using nationally representative, longitudinal data from Australia and system generalized method of moments (GMM), and correlated random effects approaches are applied to separate true from spurious state dependence. Our results suggest only a moderate degree of persistence in MH problems when assuming that persistence is constant across the MH distribution once individual-specific heterogeneity is accounted for. However, individuals who fell once below a threshold that indicates an episode of depression are up to five times more likely to experience such a low score again a year later, indicating a strong element of state dependence in depression. Low income is a strong risk factor in state dependence for both men and women, which has important policy implications. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Outbreaks by canopy-feeding geometrid moth cause state-dependent shifts in understorey plant communities.

    PubMed

    Karlsen, Stein Rune; Jepsen, Jane Uhd; Odland, Arvid; Ims, Rolf Anker; Elvebakk, Arve

    2013-11-01

    The increased spread of insect outbreaks is among the most severe impacts of climate warming predicted for northern boreal forest ecosystems. Compound disturbances by insect herbivores can cause sharp transitions between vegetation states with implications for ecosystem productivity and climate feedbacks. By analysing vegetation plots prior to and immediately after a severe and widespread outbreak by geometrid moths in the birch forest-tundra ecotone, we document a shift in forest understorey community composition in response to the moth outbreak. Prior to the moth outbreak, the plots divided into two oligotrophic and one eutrophic plant community. The moth outbreak caused a vegetation state shift in the two oligotrophic communities, but only minor changes in the eutrophic community. In the spatially most widespread communities, oligotrophic dwarf shrub birch forest, dominance by the allelopathic dwarf shrub Empetrum nigrum ssp. hermaphroditum, was effectively broken and replaced by a community dominated by the graminoid Avenella flexuosa, in a manner qualitatively similar to the effect of wild fires in E. nigrum communities in coniferous boreal forest further south. As dominance by E. nigrum is associated with retrogressive succession the observed vegetation state shift has widespread implications for ecosystem productivity on a regional scale. Our findings reveal that the impact of moth outbreaks on the northern boreal birch forest system is highly initial-state dependent, and that the widespread oligotrophic communities have a low resistance to such disturbances. This provides a case for the notion that climate impacts on arctic and northern boreal vegetation may take place most abruptly when conveyed by changed dynamics of irruptive herbivores.

  15. Mechanisms for Differential Protein Production in Toxin–Antitoxin Systems

    PubMed Central

    Deter, Heather S.; Jensen, Roderick V.; Mather, William H.; Butzin, Nicholas C.

    2017-01-01

    Toxin–antitoxin (TA) systems are key regulators of bacterial persistence, a multidrug-tolerant state found in bacterial species that is a major contributing factor to the growing human health crisis of antibiotic resistance. Type II TA systems consist of two proteins, a toxin and an antitoxin; the toxin is neutralized when they form a complex. The ratio of antitoxin to toxin is significantly greater than 1.0 in the susceptible population (non-persister state), but this ratio is expected to become smaller during persistence. Analysis of multiple datasets (RNA-seq, ribosome profiling) and results from translation initiation rate calculators reveal multiple mechanisms that ensure a high antitoxin-to-toxin ratio in the non-persister state. The regulation mechanisms include both translational and transcriptional regulation. We classified E. coli type II TA systems into four distinct classes based on the mechanism of differential protein production between toxin and antitoxin. We find that the most common regulation mechanism is translational regulation. This classification scheme further refines our understanding of one of the fundamental mechanisms underlying bacterial persistence, especially regarding maintenance of the antitoxin-to-toxin ratio. PMID:28677629

  16. 7 CFR 318.13-4 - Approval of certain fruits and vegetables for interstate movement.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... found on the Internet at http://www.aphis.usda.gov/import_export/plants/manuals/ports/downloads/hawaii... the first State of arrival. (2) The fruits and vegetables originated from a pest-free area in the... articles are inspected and certified in the State of origin by an inspector and have been found free of one...

  17. 7 CFR 318.13-4 - Approval of certain fruits and vegetables for interstate movement.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... found on the Internet at http://www.aphis.usda.gov/import_export/plants/manuals/ports/downloads/hawaii... the first State of arrival. (2) The fruits and vegetables originated from a pest-free area in the... articles are inspected and certified in the State of origin by an inspector and have been found free of one...

  18. A Technology-Assisted Learning Setup as Assessment Supplement for Three Persons with a Diagnosis of Post-Coma Vegetative State and Pervasive Motor Impairment

    ERIC Educational Resources Information Center

    Lancioni, Giulio E.; Singh, Nirbhay N.; O'Reilly, Mark F.; Sigafoos, Jeff; Buonocunto, Francesca; Sacco, Valentina; Colonna, Fabio; Navarro, Jorge; Lanzilotti, Crocifissa; Bosco, Andrea; Megna, Gianfranco; De Tommaso, Marina

    2009-01-01

    Post-coma persons in an apparent condition of vegetative state and pervasive motor impairment pose serious problems in terms of assessment and intervention options. A technology-based learning assessment procedure might serve for them as a diagnostic supplement with possible implications for rehabilitation intervention. The learning assessment…

  19. Climate change in grasslands, shrublands, and deserts of the interior American West: a review and needs assessment

    Treesearch

    Deborah M. Finch

    2012-01-01

    Recent research and species distribution modeling predict large changes in the distributions of species and vegetation types in the western interior of the United States in response to climate change. This volume reviews existing climate models that predict species and vegetation changes in the western United States, and it synthesizes knowledge about climate change...

  20. Analgzing long-term changes in vegetation with geographic information system and remotely sensed data

    NASA Astrophysics Data System (ADS)

    Iverson, Louis R.; Risser, Paul G.

    Geographic information systems and remote sensing techniques are powerful tools in the analysis of long-term changes in vegetation and land use, especially because spatial information from two or more time intervals can be compared more readily than by manual methods. A primary restriction is the paucity of data that has been digitized from earlier periods. The Illinois State Geographic Information System has a number of automated data sets containing land-use information, including original land survey plat maps that show the boundaries of forests, prairies, and wetlands as they existed prior to European colonization in the early 1800s. More recent data include the United States Forest Service inventories of 1948, 1962, and 1985; the United States Geological Survey Land Use Data Analysis; National High Altitude Program photographs of vegetation; and Landsat MSS and TM information. These data can be used to compare vegetation patterns and changes in land use over time and to suggest factors that may have caused or influenced these variations. Profound changes have occurred in the Illinois landscape since European settlement, primarily because of conversion to agricultural use; in certain parts of the state, however, urbanization has been the major factor contributing to changes.

  1. Consequences of the Allee effect and intraspecific competition on population persistence under adverse environmental conditions.

    PubMed

    Petrovskii, Sergei; Blackshaw, Rod; Li, Bai-Lian

    2008-02-01

    The impact of intraspecific interactions on ecological stability and population persistence in terms of steady state(s) existence is considered theoretically based on a general competition model. We compare persistence of a structured population consisting of a few interacting (competitive) subpopulations, or groups, to persistence of the corresponding unstructured population. For a general case, we show that if the intra-group competition is stronger than the inter-group competition, then the structured population is less prone to extinction, i.e. it can persist in a parameter range where the unstructured population goes extinct. For a more specific case of a population with hierarchical competition, we show that relative viability of structured and unstructured populations depend on the type of density dependence in the population growth. Namely, while in the case of logistic growth, structured and unstructured populations exhibit equivalent persistence; in the case of Allee dynamics, the persistence of a hierarchically structured population is shown to be higher. We then apply these results to the case of behaviourally structured populations and demonstrate that an extreme form of individual aggression can be beneficial at the population level and enhance population persistence.

  2. Habit formation in children: Evidence from incentives for healthy eating.

    PubMed

    Loewenstein, George; Price, Joseph; Volpp, Kevin

    2016-01-01

    We present findings from a field experiment conducted at 40 elementary schools involving 8000 children and 400,000 child-day observations, which tested whether providing short-run incentives can create habit formation in children. Over a 3- or 5-week period, students received an incentive for eating a serving of fruits or vegetables during lunch. Relative to an average baseline rate of 39%, providing small incentives doubled the fraction of children eating at least one serving of fruits or vegetables. Two months after the end of the intervention, the consumption rate at schools remained 21% above baseline for the 3-week treatment and 44% above baseline for the 5-week treatment. These findings indicate that short-run incentives can produce changes in behavior that persist after incentives are removed. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Biocidal action of ozone-treated polystyrene surfaces on vegetative and sporulated bacteria

    NASA Astrophysics Data System (ADS)

    Mahfoudh, Ahlem; Barbeau, Jean; Moisan, Michel; Leduc, Annie; Séguin, Jacynthe

    2010-03-01

    Surfaces of materials can be modified to ensure specific interaction features with microorganisms. The current work discloses biocidal properties of polystyrene (PS) Petri-dish surfaces that have been exposed to a dry gaseous-ozone flow. Such treated PS surfaces are able to inactivate various species of vegetative and sporulated bacteria on a relatively short contact time. Denaturation of proteins seems likely based on a significant loss of enzymatic activity of the lysozyme protein. Characterization of these surfaces by atomic-force microscopy (AFM), Fourier-transform infra-red (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) reveals specific structural and chemical modifications as compared to untreated PS. Persistence of the biocidal properties of these treated surfaces is observed. This ozone-induced process is technically simple to achieve and does not require active precursors as in grafting.

  4. Plant Growth Regulators as Potential Tools in Aquatic Plant Management: Efficacy and Persistence in Small-Scale Tests

    DTIC Science & Technology

    1994-01-01

    gratefully acknowledge the support of the Waterways Experi- ment Station and Drs. Howard Westerdahl and Kurt Getsinger as this research was being conducted...E. Westerdahl , eds., Plant Growth Regulator Society of America, San Antonio, TX, 127-45. Anderson, L. W. J., and Dechoretz, N. (1988). "Bensulfuron...Vegetation Management. J. E. Kaufman and H. E. Westerdahl , eds., Plant Growth Regulator Society of America, San Antonio, TX, 155-86. Herbicide Handbook

  5. The influence of global climate change on the environmental fate of persistent organic pollutants: A review with emphasis on the Northern Hemisphere and the Arctic as a receptor

    NASA Astrophysics Data System (ADS)

    Ma, Jianmin; Hung, Hayley; Macdonald, Robie W.

    2016-11-01

    Following worldwide bans and restrictions on the use of many persistent organic pollutants (POPs) from the late 1970s, their regional and global distributions have become governed increasingly by phase partitioning between environmental reservoirs, such as air, water, soil, vegetation and ice, where POPs accumulated during the original applications. Presently, further transport occurs within the atmospheric and aquatic reservoirs. Increasing temperatures provide thermodynamic forcing to drive these chemicals out of reservoirs, like soil, vegetation, water and ice, and into the atmosphere where they can be transported rapidly by winds and then recycled among environmental media to reach locations where lower temperatures prevail (e.g., polar regions and high elevations). Global climate change, widely considered as global warming, is also manifested by changes in hydrological systems and in the cryosphere; with the latter now exhibiting widespread loss of ice cover on the Arctic Ocean and thawing of permafrost. All of these changes alter the cycling and fate of POPs. There is abundant evidence from observations and modeling showing that climate variation has an effect on POPs levels in biotic and abiotic environments. This article reviews recent progress in research on the effects of climate change on POPs with the intention of promoting awareness of the importance of interactions between climate and POPs in the geophysical and ecological systems.

  6. Prevalence of self-reported depressive symptoms in young adolescents.

    PubMed Central

    Schoenbach, V J; Kaplan, B H; Wagner, E H; Grimson, R C; Miller, F T

    1983-01-01

    To investigate the significance and measurement of depressive symptoms in young adolescents, 624 junior high school students were asked to complete the Center for Epidemiologic Studies Depression Scale (CES-D) during home interviews. In 384 usable symptom scales, item-scale correlations (most were above .50), inter-item correlations, coefficient alpha (.85), and patterns of reported symptoms were reasonable. Persistent symptoms were reported more often by Blacks, especially Black males. Prevalence of persistent symptoms in Whites was quite close to reported figures for adults, ranging from 1 per cent to 15 per cent in adolescent males and 2 per cent to 13 per cent in adolescent females. Adolescents reported persistent vegetative symptoms less often and psychosocial symptoms more often. Reports of symptoms without regard to duration were much more frequent in the adolescents, ranging from 18 per cent to 76 per cent in White males, 34 per cent to 76 per cent in White and Black females, and 41 per cent to 85 per cent in Black males. The results support the feasibility of using a self-report symptom scale to measure depressive symptoms in young adolescents. Transient symptoms reported by adolescents probably reflect their stage of development, but persistent symptoms are likely to have social psychiatric importance. PMID:6625033

  7. Reprint of: Synthesising the effects of land use on natural and managed landscapes.

    PubMed

    Thackway, Richard; Specht, Alison

    2015-11-15

    To properly manage our natural and managed landscapes, and to restore or repair degraded areas, it is important to know the changes that have taken place over time, particularly with respect to land use and its cumulative effect on ecological function. In common with many places in the world, where the industrial revolution resulted in profound changes to land use and management, Australia's landscapes have been transformed in the last 200 years. Initially the VAST (Vegetation Assets, States and Transitions) system was developed to describe and map changes in vegetation over time through a series of condition states or classes; here we describe an enhancement to the VAST method which will enable identification of the factors contributing to those changes in state as a result of changes in management practice. The 'VAST-2' system provides a structure in which to compile, interpret and sequence a range of data about past management practices, their effect on site and vegetation condition. Alongside a systematic chronology of land use and management, a hierarchy of indices is used to build a picture of the condition of the vegetation through time: 22 indicators within ten criteria representing three components of vegetation condition-regenerative capacity, vegetation structure and species composition-are scored using information from a variety of sources. These indicators are assessed relative to a pre-European reference state, either actual or synthetic. Each component is weighted proportionally to its contribution to the whole, determined through expert opinion. These weighted condition components are used to produce an aggregated transformation score for the vegetation. The application of this system to a range of sites selected across Australia's tropical, sub-tropical and temperate bioregions is presented, illustrating the utility of the system. Notably, the method accommodates a range of different types of information to be aggregated. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Vegetation growth enhancement in urban environments of the Conterminous United States.

    PubMed

    Jia, Wenxiao; Zhao, Shuqing; Liu, Shuguang

    2018-05-19

    Cities are natural laboratories for studying vegetation responses to global environmental changes because of their climate, atmospheric, and biogeochemical conditions. However, few holistic studies have been conducted on the impact of urbanization on vegetation growth. We decomposed the overall impacts of urbanization on vegetation growth into direct (replacement of original land surfaces by impervious built-up) and indirect (urban environments) components, using a conceptual framework and remotely-sensed data for 377 metropolitan statistical areas (MSAs) in the conterminous United States (CONUS) in 2001, 2006, and 2011. Results showed that urban pixels are often greener than expected given the amount of paved surface they contain. The vegetation growth enhancement due to indirect effects occurred in 88.4%, 90.8% and 92.9% of urban bins in 2001, 2006 and 2011, respectively. By defining offset value as the ratio of the absolute indirect and direct impact, we obtained that growth enhancement due to indirect effects compensated for about 29.2%, 29.5% and 31.0% of the reduced productivity due to loss of vegetated surface area on average in 2001, 2006, and 2011, respectively. Vegetation growth responses to urbanization showed little temporal variation but large regional differences with higher offset value in the western CONUS than in the eastern CONUS. Our study highlights the prevalence of vegetation growth enhancement in urban environments and the necessity of differentiating various impacts of urbanization on vegetation growth, and calls for tailored field experiments to understand the relative contributions of various driving forces to vegetation growth and predict vegetation responses to future global change using cities as harbingers. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Conditional bistability, a generic cellular mnemonic mechanism for robust and flexible working memory computations.

    PubMed

    Rodriguez, Guillaume; Sarazin, Matthieu; Clemente, Alexandra; Holden, Stephanie; Paz, Jeanne T; Delord, Bruno

    2018-04-30

    Persistent neural activity, the substrate of working memory, is thought to emerge from synaptic reverberation within recurrent networks. However, reverberation models do not robustly explain fundamental dynamics of persistent activity, including high-spiking irregularity, large intertrial variability, and state transitions. While cellular bistability may contribute to persistent activity, its rigidity appears incompatible with persistent activity labile characteristics. Here, we unravel in a cellular model a form of spike-mediated conditional bistability that is robust, generic and provides a rich repertoire of mnemonic computations. Under asynchronous synaptic inputs of the awakened state, conditional bistability generates spiking/bursting episodes, accounting for the irregularity, variability and state transitions characterizing persistent activity. This mechanism has likely been overlooked because of the sub-threshold input it requires and we predict how to assess it experimentally. Our results suggest a reexamination of the role of intrinsic properties in the collective network dynamics responsible for flexible working memory. SIGNIFICANCE STATEMENT This study unravels a novel form of intrinsic neuronal property, i.e. conditional bistability. We show that, thanks of its conditional character, conditional bistability favors the emergence of flexible and robust forms of persistent activity in PFC neural networks, in opposition to previously studied classical forms of absolute bistability. Specifically, we demonstrate for the first time that conditional bistability 1) is a generic biophysical spike-dependent mechanism of layer V pyramidal neurons in the PFC and that 2) it accounts for essential neurodynamical features for the organisation and flexibility of PFC persistent activity (the large irregularity and intertrial variability of the discharge and its organization under discrete stable states), which remain unexplained in a robust fashion by current models. Copyright © 2018 the authors.

  10. The effect of area size and predation on the time to extinction of prairie vole populations. simulation studies via SERDYCA: a Spatially-Explicit Individual-Based Model of Rodent Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostova, T; Carlsen, T

    2003-11-21

    We present a spatially-explicit individual-based computational model of rodent dynamics, customized for the prairie vole species, M. Ochrogaster. The model is based on trophic relationships and represents important features such as territorial competition, mating behavior, density-dependent predation and dispersal out of the modeled spatial region. Vegetation growth and vole fecundity are dependent on climatic components. The results of simulations show that the model correctly predicts the overall temporal dynamics of the population density. Time-series analysis shows a very good match between the periods corresponding to the peak population density frequencies predicted by the model and the ones reported in themore » literature. The model is used to study the relation between persistence, landscape area and predation. We introduce the notions of average time to extinction (ATE) and persistence frequency to quantify persistence. While the ATE decreases with decrease of area, it is a bell-shaped function of the predation level: increasing for 'small' and decreasing for 'large' predation levels.« less

  11. Hazardous air pollutants in industrial area of Mumbai - India.

    PubMed

    Srivastava, Anjali; Som, Dipanjali

    2007-09-01

    Hazardous Air Pollutants (HAPs) have a potential to be distributed into different component of environment with varying persistence. In the current study fourteen HAPs have been quantified in the air using TO-17 method in an industrial area of Mumbai. The distribution of these HAPs in different environmental compartments have been calculated using multi media mass balance model, TaPL3, along with long range transport potential and persistence. Results show that most of the target compounds partition mostly in air. Phenol and trifluralin, partition predominantly into soil while ethyl benzene and xylene partition predominantly into vegetation compartment. Naphthalene has the highest persistence followed by ethyl benzene, xylene and 1,1,1 trihloro ethane. Long range transport potential is maximum for 1,1,1 trichloroethane. Assessment of human health risk in terms of non-carcinogenic hazard and carcinogenic risk due to exposure to HAPs. have been estimated for industrial workers and residents in the study area considering all possible exposure routes using the output from TaPL3 model. The overall carcinogenic risk for residents and workers are estimated as high as unity along with very high hazard potential.

  12. Using the Fire Weather Index (FWI) to improve the estimation of fire emissions from fire radiative power (FRP) observations

    NASA Astrophysics Data System (ADS)

    Di Giuseppe, Francesca; Rémy, Samuel; Pappenberger, Florian; Wetterhall, Fredrik

    2018-04-01

    The atmospheric composition analysis and forecast for the European Copernicus Atmosphere Monitoring Services (CAMS) relies on biomass-burning fire emission estimates from the Global Fire Assimilation System (GFAS). The GFAS is a global system and converts fire radiative power (FRP) observations from MODIS satellites into smoke constituents. Missing observations are filled in using persistence, whereby observed FRP values from the previous day are progressed in time until a new observation is recorded. One of the consequences of this assumption is an increase of fire duration, which in turn translates into an increase of emissions estimated from fires compared to what is available from observations. In this study persistence is replaced by modelled predictions using the Canadian Fire Weather Index (FWI), which describes how atmospheric conditions affect the vegetation moisture content and ultimately fire duration. The skill in predicting emissions from biomass burning is improved with the new technique, which indicates that using an FWI-based model to infer emissions from FRP is better than persistence when observations are not available.

  13. The distribution of grasslands, savannas and forests in Africa: a new look at the relationships between vegetation, fire and climate at continental scale

    NASA Astrophysics Data System (ADS)

    D'Onofrio, Donatella; von Hardenberg, Jost; Baudena, Mara

    2017-04-01

    Savannas occupy about a fifth of the global land surface and store approximately 15% of the terrestrial carbon. They also encompass about 85% of the global land area burnt annually. Along an increasing rainfall gradient, they are the intermediate biome between grassland and forest. Undergoing and predicted increasing temperature and CO2 concentration, modified precipitation regimes, as well as increasing land-use intensity, are expected to induce important shifts in savanna structure and in the distribution of grasslands, savannas and forests. Owing to the large extent and productivity of savanna biomes, these changes could have larger impacts on the global biogeochemical cycle and precipitation than for any other biome, thus influencing the vegetation-climate system. The dynamics of these biomes has been long studied, and the current theory postulates that while arid savannas are observed because of tree-water limitation, and competition with grasses, in mesic conditions savannas persist because a grass-fire feedback exists, which can maintain them as an alternatively stable state to closed forests. This feedback is reinforced by the different responses of savanna and forest tree type. In this context, despite their relevance, grasses and tree types have been studied mostly in small scale ecological studies, while continental analyses focused on total tree cover only. Here we analyze a recent MODIS product including explicitly the non-tree vegetation cover, allowing us to illustrate for the first time at continental scale the importance of grass cover and of tree-fire responses in determining the emergence of the different biomes. We analyze the relationships of woody and herbaceous cover with fire return time (all from MODIS satellite observations), rainfall annual average and seasonality (from TRMM satellite measurements), and we include tree phenology information, based on the ESA Global Land Cover map, also used to exclude areas with large anthropogenic land use. From this analysis we distinctively observe that tropical vegetation dynamics changes along a rainfall gradient more markedly than previously observed, in particular identifying three zones: (i) a dry region, where grasses are dominant and water-limited, and fires are rare; (ii) an intermediate rainfall range, where savanna with grass dominance is the predominant biome, maintained by frequent fires and rainfall seasonality; and (iii) a more humid area, where both savannas and forests can occur, as determined by the grass-fire feedback and the occurrence of different types of trees. The analysis of these important ecological processes can also be applied to the evaluation of Dynamic Global Vegetation Models, that currently have particular difficulties in simulating tropical vegetation.

  14. Using the Integrative Model of Behavioral Prediction to Predict Vegetable Subgroup Consumption among College Students

    ERIC Educational Resources Information Center

    Senkowski, Valerie; Branscum, Paul; Maness, Sarah; Larson, Daniel

    2017-01-01

    Background: The United States Department of Agriculture (USDA) currently recommends that young adults consume 2.5-3 cups of vegetables daily, while also providing weekly recommendations for 5 vegetable subgroups: dark green, red and orange, beans and peas, starchy, and other. Purpose: The purpose of this study was to explore theory-based…

  15. 75 FR 6344 - Notice of Availability of Pest Risk Analyses for Importation of Fresh Figs, Pomegranates, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    .... David B. Lamb, Import Specialist, Regulatory Coordination and Compliance, PPQ, APHIS, 4700 River Road... prohibits or restricts the importation of fruits and vegetables into the United States from certain parts of... origin; The fruits or vegetables are treated in accordance with 7 CFR part 305; The fruits or vegetables...

  16. 75 FR 32900 - Notice of Availability of a Pest Risk Analysis for the Importation of Sweet Limes From Mexico...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-10

    ....gov ). FOR FURTHER INFORMATION CONTACT: Mr. David Lamb, Import Specialist, Regulatory Coordination and... vegetables into the United States from certain parts of the world to prevent plant pests from being... vegetables are treated in accordance with 7 CFR part 305; The fruits or vegetables are inspected in the...

  17. 75 FR 6345 - Notice of Availability of a Pest Risk Analysis for the Importation of Fresh False Coriander From...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ... FURTHER INFORMATION CONTACT: Mr. David Lamb, Import Specialist, Regulatory Coordination and Compliance... vegetables into the United States from certain parts of the world to prevent plant pests from being... vegetables are treated in accordance with 7 CFR part 305; The fruits or vegetables are inspected in the...

  18. Impact of the USDA Fresh Fruit and Vegetable Program on Children's Consumption

    ERIC Educational Resources Information Center

    Jamelske, Eric M.; Bica, Lori A.

    2012-01-01

    Purpose/Objectives: The United States Department of Agriculture initiated its Fresh Fruit and Vegetable Program (FFVP) in 2002. This study investigates the impact of the FFVP on children's fruit and vegetable consumption. Methods: Participants were fourth- and fifth- graders from two program schools (n = 124) and two control schools (n = 134) in…

  19. Increasing Fruit and Vegetable Consumption during Elementary School Snack Periods Using Incentives, Prompting and Role Modeling

    ERIC Educational Resources Information Center

    Bica, Lori A.; Jamelske, Eric M.; Lagorio, Carla H.

    2016-01-01

    Purpose/Objectives: American children's consumption of fruits and vegetables (FVs) does not meet current recommendations. Hence, several federally funded, school-based programs have been initiated over the last several years. One such program is the United States Department of Agriculture Fresh Fruit and Vegetable Program (FFVP), which provides…

  20. Building the United States National Vegetation Classification

    USGS Publications Warehouse

    Franklin, S.B.; Faber-Langendoen, D.; Jennings, M.; Keeler-Wolf, T.; Loucks, O.; Peet, R.; Roberts, D.; McKerrow, A.

    2012-01-01

    The Federal Geographic Data Committee (FGDC) Vegetation Subcommittee, the Ecological Society of America Panel on Vegetation Classification, and NatureServe have worked together to develop the United States National Vegetation Classification (USNVC). The current standard was accepted in 2008 and fosters consistency across Federal agencies and non-federal partners for the description of each vegetation concept and its hierarchical classification. The USNVC is structured as a dynamic standard, where changes to types at any level may be proposed at any time as new information comes in. But, because much information already exists from previous work, the NVC partners first established methods for screening existing types to determine their acceptability with respect to the 2008 standard. Current efforts include a screening process to assign confidence to Association and Group level descriptions, and a review of the upper three levels of the classification. For the upper levels especially, the expectation is that the review process includes international scientists. Immediate future efforts include the review of remaining levels and the development of a proposal review process.

  1. Impact of Idealized Stratospheric Aerosol Injection on the Future Ocean and Land Carbon Cycles

    NASA Astrophysics Data System (ADS)

    Tjiputra, J.; Lauvset, S.

    2017-12-01

    Using a state-of-the-art Earth system model, we simulate stratospheric aerosol injection (SAI) on top of the Representative Concentration Pathways 8.5 future scenario. Our idealized method prescribes aerosol concentration, linearly increasing from 2020 to 2100, and thereafter remaining constant until 2200. In one of the scenarios, the model able to project future warming below 2 degree toward 2100, despite greatier warming persists in the high latitudes. When SAI is terminated in 2100, a rapid global warming of 0.35 K yr-1 (as compared to 0.05 K yr-1 under RCP8.5) is simulated in the subsequent 10 years, and the global mean temperature rapidly returns to levels close to the reference state. In contrast to earlier findings, we show a weak response in the terrestrial carbon sink during SAI implementation in the 21st century, which we attribute to nitrogen limitation. The SAI increases the land carbon uptake in the temperate forest-, grassland-, and shrub-dominated regions. The resultant lower temperatures lead to a reduction in the heterotrophic respiration rate and increase soil carbon retention. Changes in precipitation patterns are key drivers for variability in vegetation carbon. Upon SAI termination, the level of vegetation carbon storage returns to the reference case, whereas the soil carbon remains high. The ocean absorbs nearly 10% more carbon in the geoengineered simulation than in the reference simulation, leading to a ˜15 ppm lower atmospheric CO2 concentration in 2100. The largest enhancement in uptake occurs in the North Atlantic. In both hemispheres' polar regions, SAI delays the sea ice melting and, consequently, export production remains low. Despite inducing little impact on surface acidification, in the deep water of North Atlantic, SAI-induced circulation changes accelerate the ocean acidification rate and broaden the affected area. Since the deep ocean provides vital ecosystem function and services, e.g., fish stocks, this accelerated changes could introduce broader negative impacts on human welfare.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshizumi, K.; Sasaki, A.; Kohda, M.

    We demonstrate gate-controlled switching between persistent spin helix (PSH) state and inverse PSH state, which are detected by quantum interference effect on magneto-conductance. These special symmetric spin states showing weak localization effect give rise to a long spin coherence when the strength of Rashba spin-orbit interaction (SOI) is close to that of Dresselhaus SOI. Furthermore, in the middle of two persistent spin helix states, where the Rashba SOI can be negligible, the bulk Dresselhaus SOI parameter in a modulation doped InGaAs/InAlAs quantum well is determined.

  3. Effect of the food production chain from farm practices to vegetable processing on outbreak incidence

    PubMed Central

    Jung, Yangjin; Jang, Hyein; Matthews, Karl R

    2014-01-01

    The popularity in the consumption of fresh and fresh-cut vegetables continues to increase globally. Fresh vegetables are an integral part of a healthy diet, providing vitamins, minerals, antioxidants and other health-promoting compounds. The diversity of fresh vegetables and packaging formats (spring mix in clamshell container, bagged heads of lettuce) support increased consumption. Unfortunately, vegetable production and processing practices are not sufficient to ensure complete microbial safety. This review highlights a few specific areas that require greater attention and research. Selected outbreaks are presented to emphasize the need for science-based ‘best practices’. Laboratory and field studies have focused on inactivation of pathogens associated with manure in liquid, slurry or solid forms. As production practices change, other forms and types of soil amendments are being used more prevalently. Information regarding the microbial safety of fish emulsion and pellet form of manure is limited. The topic of global climate change is controversial, but the potential effect on agriculture cannot be ignored. Changes in temperature, precipitation, humidity and wind can impact crops and the microorganisms that are associated with production environments. Climate change could potentially enhance the ability of pathogens to survive and persist in soil, water and crops, increasing human health risks. Limited research has focused on the prevalence and behaviour of viruses in pre and post-harvest environments and on vegetable commodities. Globally, viruses are a major cause of foodborne illnesses, but are seldom tested for in soil, soil amendments, manure and crops. Greater attention must also be given to the improvement in the microbial quality of seeds used in sprout production. Human pathogens associated with seeds can result in contamination of sprouts intended for human consumption, even when all appropriate ‘best practices’ are used by sprout growers. PMID:25251466

  4. Predicting intensity of white-tailed deer herbivory in the Central Appalachian Mountains

    USGS Publications Warehouse

    Kniowski, Andrew B.; Ford, W. Mark

    2018-01-01

    In eastern North America, white-tailed deer (Odocoileus virginianus) can have profound influences on forest biodiversity and forest successional processes. Moderate to high deer populations in the central Appalachians have resulted in lower forest biodiversity. Legacy effects in some areas persist even following deer population reductions or declines. This has prompted managers to consider deer population management goals in light of policies designed to support conservation of biodiversity and forest regeneration while continuing to support ample recreational hunting opportunities. However, despite known relationships between herbivory intensity and biodiversity impact, little information exists on the predictability of herbivory intensity across the varied and spatially diverse habitat conditions of the central Appalachians. We examined the predictability of browsing rates across central Appalachian landscapes at four environmental scales: vegetative community characteristics, physical environment, habitat configuration, and local human and deer population demographics. In an information-theoretic approach, we found that a model fitting the number of stems browsed relative to local vegetation characteristics received most (62%) of the overall support of all tested models assessing herbivory impact. Our data suggest that deer herbivory responded most predictably to differences in vegetation quantity and type. No other spatial factors or demographic factors consistently affected browsing intensity. Because herbivory, vegetation communities, and productivity vary spatially, we suggest that effective broad-scale herbivory impact assessment should include spatially-balanced vegetation monitoring that accounts for regional differences in deer forage preference. Effective monitoring is necessary to avoid biodiversity impacts and deleterious changes in vegetation community composition that are difficult to reverse and/or may not be detected using traditional deer-density based management goals.

  5. Escherichia coli contamination of vegetables grown in soils fertilized with noncomposted bovine manure: garden-scale studies.

    PubMed

    Ingham, Steven C; Losinski, Jill A; Andrews, Matthew P; Breuer, Jane E; Breuer, Jeffry R; Wood, Timothy M; Wright, Thomas H

    2004-11-01

    In this study we tested the validity of the National Organic Program (NOP) requirement for a > or =120-day interval between application of noncomposted manure and harvesting of vegetables grown in manure-fertilized soil. Noncomposted bovine manure was applied to 9.3-m2 plots at three Wisconsin sites (loamy sand, silt loam, and silty clay loam) prior to spring and summer planting of carrots, radishes, and lettuce. Soil and washed (30 s under running tap water) vegetables were analyzed for indigenous Escherichia coli. Within 90 days, the level of E. coli in manure-fertilized soil generally decreased by about 3 log CFU/g from initial levels of 4.2 to 4.4 log CFU/g. Low levels of E. coli generally persisted in manure-fertilized soil for more than 100 days and were detected in enriched soil from all three sites 132 to 168 days after manure application. For carrots and lettuce, at least one enrichment-negative sample was obtained < or =100 days after manure application for 63 and 88% of the treatments, respectively. The current > or =120-day limit provided an even greater likelihood of not detecting E. coli on carrots (> or =1 enrichment-negative result for 100% of the treatments). The rapid maturation of radishes prevented conclusive evaluation of a 100- or 120-day application-to-harvest interval. The absolute absence of E. coli from vegetables harvested from manure-fertilized Wisconsin soils may not be ensured solely by adherence to the NOP > or =120-day limit. Unless pathogens are far better at colonizing vegetables than indigenous E. coli strains are, it appears that the risk of contamination for vegetables grown in Wisconsin soils would be elevated only slightly by reducing the NOP requirement to > or =100 days.

  6. Soil and vegetation carbon turnover times across forest biomes in eastern China

    NASA Astrophysics Data System (ADS)

    Wang, Jingsong; Niu, Shuli

    2017-04-01

    1. Resent studies reveal that terrestrial biosphere is now a net carbon (C) sink for atmospheric C dixoide (CO2), however, whether this C sink can persist with climate change is still uncertain. Such uncertainty comes not only from C input, but also largely from C turnover times in an ecosystem. Knowledge of C turnover times is critical for modelling C cycle and evaluating C sink potential. Our current understanding of how long C can be stored in soils and vegetation and what are their controlling factors are still poorly understood. 2. We used C stocks from 1087 plots in soils and 2753 plots in vegetation and investigated the spatial patterns and controlling factors of C turnover times across the forest transect in the eastern China. 3. Our results showed a clear latitudinal pattern of C turnover times, with the lowest turnover times in the low-latitude zones and highest values in the high-latitude. Mean annual temperature (MAT) and mean annual precipitation (MAP) were the most important controlling factors on the soil C turnover times while forest age accounted for the most majority of variations in the vegetation C turnover times. Our findings also indicated that forest origin (planted forest, natural forest) was also responsible for the variations of vegetation C turnover times while forest type and soil properties were not the dominant controlling factors. 4. Our study highlights different dominant controlling factors on the soils and vegetation C turnover times and different mechanisms underlying above- and below-ground C turnover. The findings can help to better understand and reduce the large uncertainty in predictive models of the coupled carbon-climate system.

  7. Assessment of Vegetation Responses and Sensitivity to the Millennium Drought in Australia

    NASA Astrophysics Data System (ADS)

    Jiao, T.; Williams, C. A.

    2016-12-01

    During the period from 1997 to 2009, Australia experienced one of the most severe and persistent drought known as the Millennium Drought (MD). Major water shortages were reported across the Australian continent as well as a great many tree mortality during and post this drought event. Given the projection of hotter and drier conditions for much of the continent, it is critical to analyze the impacts of climate extremes like MD as an indicator of possible impacts of future trends. Despite many field investigation, large-area monitoring of vegetation decline from MD remains lacking. Here, multi-source remote sensing datasets and novel methods were employed to assess the impacts of MD on vegetation in Australia in terms of the magnitude and sensitivity. Vegetation variables examined include fraction of photosynthetically absorbed radiation (fPar), vegetation optical depth (VOD) and aboveground biomass (AGB). Drought indicators are calculated based on precipitation and potential evapotranspiration from meteorological data. We found consistent spatial patterns in drought-induced declines among fPar, VOD and AGB. Common declines were observed in the east of New South Wales (NSW), the southeast of Queensland, the center and east of Victoria, and Tasmania. Severe declines (>0.2) in fPar concentrate in open forests and shrub lands while regions with more than 0.1 of decline in VOD are found widely across biome types. The net decrease in AGB could reach more than 20 Mg C per ha in the west of Victoria and the southwest of NSW. Sensitivity analysis shows that forests followed by herbaceous are more sensitive to drought than shrubs in terms of declines in fPar and VOD. In addition, vegetation tends to have larger sensitivity in semi-arid or semi-mesic regions than in areas that are either too dry or too wet.

  8. Beyond habitat structure: Landscape heterogeneity explains the monito del monte (Dromiciops gliroides) occurrence and behavior at habitats dominated by exotic trees.

    PubMed

    Salazar, Daniela A; Fontúrbel, Francisco E

    2016-09-01

    Habitat structure determines species occurrence and behavior. However, human activities are altering natural habitat structure, potentially hampering native species due to the loss of nesting cavities, shelter or movement pathways. The South American temperate rainforest is experiencing an accelerated loss and degradation, compromising the persistence of many native species, and particularly of the monito del monte (Dromiciops gliroides Thomas, 1894), an arboreal marsupial that plays a key role as seed disperser. Aiming to compare 2 contrasting habitats (a native forest and a transformed habitat composed of abandoned Eucalyptus plantations and native understory vegetation), we assessed D. gliroides' occurrence using camera traps and measured several structural features (e.g. shrub and bamboo cover, deadwood presence, moss abundance) at 100 camera locations. Complementarily, we used radio telemetry to assess its spatial ecology, aiming to depict a more complete scenario. Moss abundance was the only significant variable explaining D. gliroides occurrence between habitats, and no structural variable explained its occurrence at the transformed habitat. There were no differences in home range, core area or inter-individual overlapping. In the transformed habitats, tracked individuals used native and Eucalyptus-associated vegetation types according to their abundance. Diurnal locations (and, hence, nesting sites) were located exclusively in native vegetation. The landscape heterogeneity resulting from the vicinity of native and Eucalyptus-associated vegetation likely explains D. gliroides occurrence better than the habitat structure itself, as it may be use Eucalyptus-associated vegetation for feeding purposes but depend on native vegetation for nesting. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  9. Integrating UAV and orbital remote sensing for spatiotemporal assessment of coastal vegetation health following hurricane events

    NASA Astrophysics Data System (ADS)

    Bernardes, S.; Madden, M.; Jordan, T.; Knight, A.; Aragon, A.

    2017-12-01

    Hurricane impacts often include the total or partial removal of vegetation due to strong winds (e.g., uprooted trees and broken trunks and limbs). Those impacts can usually be quickly assessed following hurricanes, by using established field and remote sensing methods. Conversely, impacts on vegetation health may present challenges for identification and assessment, as they are disconnected in time from the hurricane event and may be less evident. For instance, hurricanes may promote drastic increases in salinity of water available to roots and may increase exposure of aerial parts to salt spray. Derived stress conditions can negatively impact biological processes and may lead to plant decline and death. Large areas along the coast of the United States have been affected by hurricanes and show such damage (vegetation browning). Those areas may continue to be impacted, as climate projections indicate that hurricanes may become more frequent and intense, resulting from the warming of ocean waters. This work uses remote sensing tools and techniques to record and assess impacts resulting from recent hurricanes at Sapelo Island, a barrier island off the coast of the State of Georgia, United States. Analyses included change detection at the island using time series of co-registered Sentinel 2 and Landsat images. A field campaign was conducted in September 2017, which included flying three UAVs over the island and collecting high-overlap 20-megapixel RGB images at two spatial resolutions (1 and 2 inches/pixel). A five-band MicaSense RedEdge camera, a downwelling radiation sensor and calibration panel were used to collect calibrated multispectral images of multiple vegetation types, including healthy vegetation and vegetation affected by browning. Drone images covering over 600 acres were then analyzed for vegetation status and damage, with emphasis to vegetation removal and browning resulting from salinity alterations and salt spray. Results from images acquired by drones were then scaled-up to Sentinel 2 and Landsat spatial/spectral resolutions and tested using a control area. The work evaluated limits of detectability of vegetation damage using orbital systems and addresses changes in damage over time following hurricanes, including the spatiotemporal representation of damage severity in the affected areas.

  10. Advanced Very High Resolution Radiometer Normalized Difference Vegetation Index Composites

    USGS Publications Warehouse

    ,

    2005-01-01

    The Advanced Very High Resolution Radiometer (AVHRR) is a broad-band scanner with four to six bands, depending on the model. The AVHRR senses in the visible, near-, middle-, and thermal- infrared portions of the electromagnetic spectrum. This sensor is carried on a series of National Oceanic and Atmospheric Administration (NOAA) Polar Orbiting Environmental Satellites (POES), beginning with the Television InfraRed Observation Satellite (TIROS-N) in 1978. Since 1989, the United States Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) has been mapping the vegetation condition of the United States and Alaska using satellite information from the AVHRR sensor. The vegetation condition composites, more commonly called greenness maps, are produced every week using the latest information on the growth and condition of the vegetation. One of the most important aspects of USGS greenness mapping is the historical archive of information dating back to 1989. This historical stretch of information has allowed the USGS to determine a 'normal' vegetation condition. As a result, it is possible to compare the current week's vegetation condition with normal vegetation conditions. An above normal condition could indicate wetter or warmer than normal conditions, while a below normal condition could indicate colder or dryer than normal conditions. The interpretation of departure from normal will depend on the season and geography of a region.

  11. Evaluation of a linear spectral mixture model and vegetation indices (NDVI and EVI) in a study of schistosomiasis mansoni and Biomphalaria glabrata distribution in the state of Minas Gerais, Brazil.

    PubMed

    Guimarães, Ricardo J P S; Freitas, Corina C; Dutra, Luciano V; Scholte, Ronaldo G C; Amaral, Ronaldo S; Drummond, Sandra C; Shimabukuro, Yosio E; Oliveira, Guilherme C; Carvalho, Omar S

    2010-07-01

    This paper analyses the associations between Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) on the prevalence of schistosomiasis and the presence of Biomphalaria glabrata in the state of Minas Gerais (MG), Brazil. Additionally, vegetation, soil and shade fraction images were created using a Linear Spectral Mixture Model (LSMM) from the blue, red and infrared channels of the Moderate Resolution Imaging Spectroradiometer spaceborne sensor and the relationship between these images and the prevalence of schistosomiasis and the presence of B. glabrata was analysed. First, we found a high correlation between the vegetation fraction image and EVI and second, a high correlation between soil fraction image and NDVI. The results also indicate that there was a positive correlation between prevalence and the vegetation fraction image (July 2002), a negative correlation between prevalence and the soil fraction image (July 2002) and a positive correlation between B. glabrata and the shade fraction image (July 2002). This paper demonstrates that the LSMM variables can be used as a substitute for the standard vegetation indices (EVI and NDVI) to determine and delimit risk areas for B. glabrata and schistosomiasis in MG, which can be used to improve the allocation of resources for disease control.

  12. Effect of non-stationary accretion on spectral state transitions: An example of a persistent neutron star LMXB 4U1636–536

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Yu, Wen-Fei

    2018-03-01

    Observations of black hole and neutron star X-ray binaries show that the luminosity of the hard-to-soft state transition is usually higher than that of the soft-to-hard state transition, indicating additional parameters other than mass accretion rate are required to interpret spectral state transitions. It has been found in some individual black hole or neutron star soft X-ray transients that the luminosity corresponding to the hard-to-soft state transition is positively correlated with the peak luminosity of the following soft state. In this work, we report the discovery of the same correlation in the single persistent neutron star low mass X-ray binary (LMXB) 4U 1636–536 based on data from the All Sky Monitor (ASM) on board RXTE, the Gas Slit Camera (GSC) on board MAXI and the Burst Alert Telescope (BAT) on board Swift. We also found such a positive correlation holds in this persistent neutron star LMXB in a luminosity range spanning about a factor of four. Our results indicate that non-stationary accretion also plays an important role in driving X-ray spectral state transitions in persistent accreting systems with small accretion flares, which is much less dramatic compared with the bright outbursts seen in many Galactic LMXB transients.

  13. Airphoto assessment of changes in aquatic vegetation

    NASA Technical Reports Server (NTRS)

    Markham, B. L.; Philipson, W. R.; Russel, A. E.

    1977-01-01

    Large scale, multiyear, color and color infrared aerial photographs were used to evaluate changes in aquatic vegetation that have accompanied a reduction in phosphorus inputs to a phosphorus-limited, eutrophic lake in New York State. The study showed that the distribution of emergent, floating and submersed vegetation could be determined with little or no concurrent ground data; that various emergent and floating types could be separated and, with limited field checks, identified; and that different submersed types are generally not separable. Major vegetative types are characterized by spectral and nonspectral features, and a classification is developed for compiling time-sequential vegetation maps.

  14. Biochemical processes in sagebrush ecosystems: Interactions with terrain

    NASA Technical Reports Server (NTRS)

    Matson, P. (Principal Investigator); Reiners, W.; Strong, L.

    1985-01-01

    The objectives of a biogeochemical study of sagebrush ecosystems in Wyoming and their interactions with terrain are as follows: to describe the vegetational pattern on the landscape and elucidate controlling variables, to measure the soil properties and chemical cycling properties associated with the vegetation units, to associate soil properties with vegetation properties as measured on the ground, to develop remote sensing capabilities for vegetation and surface characteristics of the sagebrush landscape, to develop a system of sensing snow cover and indexing seasonal soil to moisture; and to develop relationships between temporal Thematic Mapper (TM) data and vegetation phenological state.

  15. Evaluating Evapotranspiration of Pine Forest, Switchgrass, and Pine- Switchgrass Intercroppings using Remote Sensing and Ground-based Methods

    NASA Astrophysics Data System (ADS)

    Amatya, D. M.; Panda, S.; Chescheir, G. M.; Nettles, J. E.; Appelboom, T.; Skaggs, R. W.

    2011-12-01

    Vast areas of the land in the Southeastern United States are under pine forests managed primarily for timber and related byproducts. Evapotranspiration (ET) is the major loss in the water balance of this forest ecosystem. A long-term (1988-2008) study to evaluate hydrologic and nutrient balance during a life cycle of a pine stand was just completed. The study used both monitoring and modeling approaches to evaluate hydrologic and water quality effects of silvicultural and water management treatments on three 25 ha experimental watersheds in eastern North Carolina (NC). The research was extended in 2009 to include a dedicated energy crop, switchgrass (Panicum virgatum), by adding an adjacent 25 ha watershed. These multiple watersheds are being used to evaluate the hydrologic and water quality effects of switchgrass alone, young pine with natural understory, and young pine with switchgrass intercropping compared to the control (pine stand with a natural understory). The biofuels study has been further expanded to two other southern states, Alabama (AL) and Mississippi (MS). Each has five small watersheds (< 25 ha size) consisting of the above treatments and an additional woody biomass removal treatment. In this presentation we provide methods for estimating ET for these treatment watersheds in all three states (NC, AL, and MS) using remote sensing based spatial high resolution multispectral satellite imagery data with ground truthing, where possible, together with sensor technology. This technology is making ET parameter estimation a reality for various crops and vegetation surfaces. Slope-based vegetation indices like Normalized Difference Vegetation Index (NDVI) and Green Vegetation Index (GVI) and distance-based vegetation indices like Soil Adjusted Vegetation Index (SAVI) and Perpendicular Vegetation Index (PVI) will be developed using the R and NIR bands, vegetation density, and background soil reflectance as necessary. Landsat and high resolution aerial imageries of vegetation and soils will be used. IDRISI Taiga software will be used for the indices development. The forested vegetation health will be correlated to the leaf chlorophyll content for determining the vegetation health with a subsequent derivation of available plant water for radiation. Models will be developed to correlate the plant and soil available water to different vegetation indices. Correlation models will also be developed to obtain information on climatic parameters like surface air temperature, net radiation, albedo, soil moisture content, and stomatal water availability from Landsat imageries. On-site weather parameters used for the PET estimates will be combined with other vegetation parameters like leaf area index (LAI) obtained using LIDAR data and NAIP orthophotos of different seasons. That will also help detect the upper and understory vegetation. The LIDAR data will be processed to obtain the volume of vegetation to correctly estimate the total ET for each treatment.

  16. Visual processing during recovery from vegetative state to consciousness: comparing behavioral indices to brain responses.

    PubMed

    Wijnen, V J M; Eilander, H J; de Gelder, B; van Boxtel, G J M

    2014-11-01

    Auditory stimulation is often used to evoke responses in unresponsive patients who have suffered severe brain injury. In order to investigate visual responses, we examined visual evoked potentials (VEPs) and behavioral responses to visual stimuli in vegetative patients during recovery to consciousness. Behavioral responses to visual stimuli (visual localization, comprehension of written commands, and object manipulation) and flash VEPs were repeatedly examined in eleven vegetative patients every two weeks for an average period of 2.6months, and patients' VEPs were compared to a healthy control group. Long-term outcome of the patients was assessed 2-3years later. Visual response scores increased during recovery to consciousness for all scales: visual localization, comprehension of written commands, and object manipulation. VEP amplitudes were smaller, and latencies were longer in the patient group relative to the controls. VEPs characteristics at first measurement were related to long-term outcome up to three years after injury. Our findings show the improvement of visual responding with recovery from the vegetative state to consciousness. Elementary visual processing is present, yet according to VEP responses, poorer in vegetative and minimally conscious state than in healthy controls, and remains poorer when patients recovered to consciousness. However, initial VEPs are related to long-term outcome. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. What about Master's Students? The Master's Student Persistence Model

    ERIC Educational Resources Information Center

    Cohen, Kristin E.

    2012-01-01

    This study was designed to investigate the factors that affect master's student persistence in the United States. More specifically, this study explored whether the following factors: students' background, institution's, academic, environmental and psychological influences, had a significant effect on whether a master's student persisted and/or…

  18. Modeling the capacity of riverscapes to support beaver dams

    NASA Astrophysics Data System (ADS)

    Macfarlane, William W.; Wheaton, Joseph M.; Bouwes, Nicolaas; Jensen, Martha L.; Gilbert, Jordan T.; Hough-Snee, Nate; Shivik, John A.

    2017-01-01

    The construction of beaver dams facilitates a suite of hydrologic, hydraulic, geomorphic, and ecological feedbacks that increase stream complexity and channel-floodplain connectivity that benefit aquatic and terrestrial biota. Depending on where beaver build dams within a drainage network, they impact lateral and longitudinal connectivity by introducing roughness elements that fundamentally change the timing, delivery, and storage of water, sediment, nutrients, and organic matter. While the local effects of beaver dams on streams are well understood, broader coverage network models that predict where beaver dams can be built and highlight their impacts on connectivity across diverse drainage networks are lacking. Here we present a capacity model to assess the limits of riverscapes to support dam-building activities by beaver across physiographically diverse landscapes. We estimated dam capacity with freely and nationally-available inputs to evaluate seven lines of evidence: (1) reliable water source, (2) riparian vegetation conducive to foraging and dam building, (3) vegetation within 100 m of edge of stream to support expansion of dam complexes and maintain large colonies, (4) likelihood that channel-spanning dams could be built during low flows, (5) the likelihood that a beaver dam is likely to withstand typical floods, (6) a suitable stream gradient that is neither too low to limit dam density nor too high to preclude the building or persistence of dams, and (7) a suitable river that is not too large to restrict dam building or persistence. Fuzzy inference systems were used to combine these controlling factors in a framework that explicitly also accounts for model uncertainty. The model was run for 40,561 km of streams in Utah, USA, and portions of surrounding states, predicting an overall network capacity of 356,294 dams at an average capacity of 8.8 dams/km. We validated model performance using 2852 observed dams across 1947 km of streams. The model showed excellent agreement with observed dam densities where beaver dams were present. Model performance was spatially coherent and logical, with electivity indices that effectively segregated capacity categories. That is, beaver dams were not found where the model predicted no dams could be supported, beaver avoided segments that were predicted to support rare or occasional densities, and beaver preferentially occupied and built dams in areas predicted to have pervasive dam densities. The resulting spatially explicit reach-scale (250 m long reaches) data identifies where dam-building activity is sustainable, and at what densities dams can occur across a landscape. As such, model outputs can be used to determine where channel-floodplain and wetland connectivity are likely to persist or expand by promoting increases in beaver dam densities.

  19. 21 CFR 172.838 - Polysorbate 65.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... solid-state, edible vegetable fat-water emulsions intended for use as substitutes for milk or cream in... finished edible vegetable fat-water emulsion. (5) As an emulsifier in cake icings and cake fillings, with...

  20. 21 CFR 172.838 - Polysorbate 65.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... solid-state, edible vegetable fat-water emulsions intended for use as substitutes for milk or cream in... finished edible vegetable fat-water emulsion. (5) As an emulsifier in cake icings and cake fillings, with...

  1. A guide for roadside vegetation management

    DOT National Transportation Integrated Search

    2009-10-01

    Implementing a comprehensive turf management program significantly reduces the overall cost of managing the vegetation along state roadways. This guide provides methods for efficiently and effectively managing the activities that will achieve and mai...

  2. Habitat use by elk (cervus elaphus) within structural stages of a managed forest of the northcentral United States

    Treesearch

    Mark A. Rumble; R. Scott Gamo

    2011-01-01

    Timber management is the most prominent land management activity in the Black Hills National Forest in the northcentral United States. Management units are stands 4-32 ha in size and are described using a hierarchal vegetative description including vegetation type, size class (age), and overstory canopy cover. For the most part, these stands are relatively homogeneous...

  3. Incentivizing Children's Fruit and Vegetable Consumption: Results of a United States Pilot Study of the "Food Dudes" Program

    ERIC Educational Resources Information Center

    Wengreen, Heidi J.; Madden, Gregory J.; Aguilar, Sheryl S.; Smits, Rochelle R.; Jones, Brooke A.

    2013-01-01

    Objective: Preliminary evaluation in the United States (US) of a school-based fruit and vegetable (F/V) intervention, known as the "Food Dudes" (FD) program, developed in the United Kingdom. Methods: Over 16 days (Phase 1), elementary-school children (n = 253) watched short videos featuring heroic peers (the FD) eating F/V and received a…

  4. Ground sample data for the Conterminous U.S. Land Cover Characteristics Database

    Treesearch

    Robert Burgan; Colin Hardy; Donald Ohlen; Gene Fosnight; Robert Treder

    1999-01-01

    Ground sample data were collected for a land cover database and raster map that portray 159 vegetation classes at 1 km2 resolution for the conterminous United States. Locations for 3,500 1 km2 ground sample plots were selected randomly across the United States. The number of plots representing each vegetation class was weighted by the proportionate coverage of each...

  5. Recent decline in crop water productivity in the United States: a call to grow "more crop per drop"

    NASA Astrophysics Data System (ADS)

    Marshall, M. T.; Tu, K. P.; Thenkabail, P.; Brown, J. F.

    2016-12-01

    Irrigation for agriculture accounts for approximately 80 to 90% of U.S. consumptive water use. Recent declines in freshwater supply for irrigated agriculture in the western U.S. is particularly alarming, because climate change, water withdrawals from growing and competing sectors, and water pollution, are projected to put further strain on this vital sector. Innovative water management strategies are being proposed to combat this eminent water crisis and include: developing water markets, improving crop water productivity (CWP: "more crop per drop"), and coordinating the use of surface and groundwater supplies. The increase in CWP through crop type or variety selection is particularly lucrative, because it aims to increase the marketable yield of a crop, while reducing the cost of consumptive water use. Here we estimated CWP from 2000-2015 for the Contiguous United States over the primary growing season (mid May - late October) using a recently developed and validated light-use efficiency model for estimating crop yield and the transpiration component of the Priestley-Taylor Jet Propulsion Laboratory evapotranspiration model. The models were parameterized with daily DAYMET 1 km meteorological and 7-day EROS Moderate Resolution Imaging Spectroradiometer 250 m vegetation data. An analysis will be performed on CWP and its components to characterize the magnitude, direction, and persistence of trends. CWP estimates and trends will be overlaid with the U.S. Department of Agriculture's Cropland Data Layer to rank major crops by water use versus marketable yield and to characterize intervention hotspots, respectively. County-level data on surface and ground water withdrawals for irrigated agriculture available through the U.S. Geological Survey will be used to further scrutinize emerging patterns. It is anticipated that over much of the irrigated areas of the western U.S. that persistent and decreasing trends in CWP for major water users (e.g. alfalfa) due to temperature-driven increases in atmospheric moisture demand or potential evapotranspiration will correspond to a decrease (increase) in surface (ground) water use for irrigation.

  6. Serving vegetables first: A strategy to increase vegetable consumption in elementary school cafeterias.

    PubMed

    Elsbernd, S L; Reicks, M M; Mann, T L; Redden, J P; Mykerezi, E; Vickers, Z M

    2016-01-01

    Vegetable consumption in the United States is low despite the wealth of evidence that vegetables play an important role in reducing risk of various chronic diseases. Because eating patterns developed in childhood continue through adulthood, we need to form healthy eating habits in children. The objective of this study was to determine if offering vegetables before other meal components would increase the overall consumption of vegetables at school lunch. We served kindergarten through fifth-grade students a small portion (26-33 g) of a raw vegetable (red and yellow bell peppers) while they waited in line to receive the rest of their lunch meal. They then had the options to take more of the bell peppers, a different vegetable, or no vegetable from the lunch line. We measured the amount of each vegetable consumed by each child. Serving vegetables first greatly increased the number of students eating vegetables. On intervention days most of the vegetables consumed came from the vegetables-first portions. Total vegetable intake per student eating lunch was low because most students chose to not eat vegetables, but the intervention significantly increased this value. Serving vegetables first is a viable strategy to increase vegetable consumption in elementary schools. Long-term implementation of this strategy may have an important impact on healthy eating habits, vegetable consumption, and the health consequences of vegetable intake. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Coccidioides niches and habitat parameters in the southwestern United States: A matter of scale

    USGS Publications Warehouse

    Fisher, F.S.; Bultman, M.W.; Johnson, S.M.; Pappagianis, D.; Zaborsky, E.; ,

    2007-01-01

    To determine habitat attributes and processes suitable for the growth of Coccidioides, soils were collected from sites in Arizona, California, and Utah where Coccidioides is known to have been present. Humans or animals or both have been infected by Coccidioides at all of the sites. Soil variables considered in the upper 20 cm of the soil profile included pH, electrical conductivity, salinity, selected anions, texture, mineralogy, vegetation types and density, and the overall geomorphologic and ecological settings. Thermometerswere buried to determine the temperature range in the upper part of the soil where Coccidioides is often found. With the exception of temperature regimes and soil textures, it is striking that none of the other variables or group of variables that might be definitive are indicative of the presence of Coccidioides. Vegetation ranges from sparse to relatively thick cover in lower Sonoran deserts, Chaparral-upper Sonoran brush and grasslands, and Mediterranean savannas and forested foothills. No particular grass, shrub, or forb is definitive. Material classified as very fine sand and silt is abundant in all of the Coccidioides-bearing soils and may be their most common shared feature. Clays are not abundant (less than 10%). All of the examined soil locations are noteworthy as generally 50% of the individuals who were exposed to the dust or were excavating dirt at the sites were infected. Coccidioides has persisted in the soil at a site in Dinosaur National Monument, Utah for 37 years and at a Tucson, Arizona site for 41 years. ?? 2007 New York Academy of Sciences.

  8. Recurrent fires and environment shape the vegetation in Quercus suber L. woodlands and maquis.

    PubMed

    Schaffhauser, Alice; Curt, Thomas; Véla, Errol; Tatoni, Thierry

    2012-06-01

    The effects of fire recurrence on vegetation patterns in Quercus suber L. and Erica-Cistus communities in Mediterranean fire-prone ecosystems of south-eastern France were examined on stands belonging to 5 fire classes, corresponding to different numbers of fires (from 0 to 4) and time intervals between fires since 1959. A common pool of species was identified among the plots, which was typical of both open and closed maquis. Fire recurrence reduced the abundance of trees and herbs, whereas it increased the abundance of small shrubs. Richness differed significantly between the most contrasting classes of fire recurrence, with maximal values found in control plots and minimal values in plots that had burned recurrently and recently. Equitability indices did not vary significantly, in contrast to Shannon's diversity index which mostly correlated with richness. Forest ecosystems that have burnt once or twice in the last 50 years were resilient; that is to say they recovered a biomass and composition similar to that of the pre-fire state. However, after more than 3-4 fires, shrubland communities displayed lower species richness and diversity indices than unburned plots. The time since the last fire and the number of fires were the most explanatory fire variables, governing the structure of post-fire plant communities. However, environmental factors, such as slope or exposure, also made a significant contribution. Higher rates of fire recurrence can affect the persistence or expansion of shrublands in the future, as observed in other Mediterranean areas. Copyright © 2012 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  9. Assimilation of GRACE Terrestrial Water Storage into a Land Surface Model: Evaluation 1 and Potential Value for Drought Monitoring in Western and Central Europe

    NASA Technical Reports Server (NTRS)

    Li, Bailing; Rodell, Matthew; Zaitchik, Benjamin F.; Reichle, Rolf H.; Koster, Randal D.; van Dam, Tonie M.

    2012-01-01

    A land surface model s ability to simulate states (e.g., soil moisture) and fluxes (e.g., runoff) is limited by uncertainties in meteorological forcing and parameter inputs as well as inadequacies in model physics. In this study, anomalies of terrestrial water storage (TWS) observed by the Gravity Recovery and Climate Experiment (GRACE) satellite mission were assimilated into the NASA Catchment land surface model in western and central Europe for a 7-year period, using a previously developed ensemble Kalman smoother. GRACE data assimilation led to improved runoff correlations with gauge data in 17 out of 18 hydrological basins, even in basins smaller than the effective resolution of GRACE. Improvements in root zone soil moisture were less conclusive, partly due to the shortness of the in situ data record. In addition to improving temporal correlations, GRACE data assimilation also reduced increasing trends in simulated monthly TWS and runoff associated with increasing rates of precipitation. GRACE assimilated root zone soil moisture and TWS fields exhibited significant changes in their dryness rankings relative to those without data assimilation, suggesting that GRACE data assimilation could have a substantial impact on drought monitoring. Signals of drought in GRACE TWS correlated well with MODIS Normalized Difference Vegetation Index (NDVI) data in most areas. Although they detected the same droughts during warm seasons, drought signatures in GRACE derived TWS exhibited greater persistence than those in NDVI throughout all seasons, in part due to limitations associated with the seasonality of vegetation.

  10. Medical futility in end-of-life care: report of the Council on Ethical and Judicial Affairs.

    PubMed

    1999-03-10

    Use of life-sustaining or invasive interventions in patients in a persistent vegetative state or who are terminally ill may only prolong the dying process. What constitutes futile intervention remains a point of controversy in the medical literature and in clinical practice. In clinical practice, controversy arises when the patient or proxy and the physician have discrepant values or goals of care. Since definitions of futile care are value laden, universal consensus on futile care is unlikely to be achieved. Rather, the American Medical Association Council on Ethical and Judicial Affairs recommends a process-based approach to futility determinations. The process includes at least 4 steps aimed at deliberation and resolution including all involved parties, 2 steps aimed at securing alternatives in the case of irreconcilable differences, and a final step aimed at closure when all alternatives have been exhausted. The approach is placed in the context of the circumstances in which futility claims are made, the difficulties of defining medical futility, and a discussion of how best to implement a policy on futility.

  11. Quantifying Vegetation Composition, Structure and Dynamics in Selected Australian Ecosystems: Science to Management

    NASA Astrophysics Data System (ADS)

    Phinn, S. R.; Scarth, P.; Armston, J.; Witte, C.; Danaher, T.; Flood, N.; Gill, T.; Lucas, R.

    2011-12-01

    Management of Australian ecosystems is carried out by state governments using information derived from satellite image data. The state of Queensland covers approximately 1.8 x 10^6 km^2 and uses satellite remote sensing and field survey programs to support legislated environmental monitoring, management and compliance activities.This poster outlines how the Joint Remote Sensing Research Program(JRSRP)delivered satellite image based data sets to address these activities by mapping foliage projective cover, vegetation height and biomass. Foliage projective cover (FPC), the vertically projected percentage cover of photosynthetic foliage of all strata, is produced from Landsat TM/ETM data using 88 scenes and over 1700 field sites. The JRSRP enabled government staff to be seconded to a university research group to work on the project, and the university provided postdoctoral and graduate student support. The JRSRP activities focussed on geometric and topographic corrections, BRDF corrections and time-series based approaches for correcting the archive of field survey and Landsat TM/ETM+ images. This has now progressed to a program using the entire Landsat TM/ETM+ archive on an annual basis and annual state-wide field survey data. The Landsat TM/ETM+ calibrations have been a critical input to the Landsat program's global vicarious calibration activities. Vegetation height is a critical parameter required for a range of state-wide activities and can be mapped accurately from field plots to regional areas using airborne Lidar. To develop statewide height estimates, an approach was developed using Icesat and existing vegetation community maps. By aggregating the spaceborne Icesat full waveform data within the mapped vegetation structure polygons it was possible to retrieve vegetation vertical structure information continuously across the landscape. This was used to derive mean canopy and understorey height, depth and density across Queensland, which was validated using airborne lidar data provided by the JRSRP. Biomass mapping is emerging as a critical environmental parameter for local, state and national agencies in Australia. Staff from JRSRP developed an approach with University of Aberystwyth in Wales, through JAXA's Kyoto and Carbon initiative, for acquiring ALOS PALSAR L-band image data, conducting geometric and radiometric corrections, and normalising for significant scene to scene differences in soil and vegetation moisture content. This pre-processing of 31 image strip time-series generated state-wide mosaics for Queensland that were then used with 1815 field survey sites collected across the state to produce a state-wide biomass estimation model for L-HV data, providing estimates for both remnant and non-remnant forests, with saturation at 263 Mg.Ha^-1 for 20% estimation error. The Joint Remote Sensing Research Program has enabled a sound approach to research and development for validated operational applications.

  12. Assimilation of Satellite-Derived Precipitation into the Regional Atmospheric Model System (RAMS): Its Impacts on the Weather and Hydrology in the Southwest United States

    NASA Astrophysics Data System (ADS)

    Yi, H.; Gao, X.; Sorooshian, S.

    2002-05-01

    As one aspect of the study of interactions between the atmosphere, vegetation, soil, and hydrology, there has been on going efforts to assimilate soil moisture data using coupled and uncoupled land surface-atmosphere hydrology models. The assimilation of soil moisture is expected to have influence due to its vital function in regulating runoff, partitioning latent and sensible heat, and through determining groundwater recharge. Soil moisture can provides long-term memory or persistence of the surface boundary condition, influencing large-scale atmospheric circulation over subsequent intervals. Now that the application of satellite remote sensing has become obvious to provide input parameters associated with land surface processes to the numerical models, this study utilizes remotely sensed precipitation data, PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks) to assimilate soil moisture and other soil surface characteristics. Compared to the other earlier modeling experiments of seasonal or interannual temporal scale in continental or global spatial scale, this study investigates short term predictability in regional scale with the southwest United States as a study area, which has unique metrological and geographical features that provide special difficulties for mesoscale modeling. Research objectives are to assimilate the PERSIANN precipitation data into the mesoscale model for model initialization, examine the influence and memory of model precipitation errors on the land surface and atmospheric processes, and thereby study the short term predictability of meteorology and hydrology in the Southwest United States.

  13. [Alternative stable states in coastal intertidal wetland ecosystems of Yangtze estuary, China].

    PubMed

    Li, Hui; Yuan, Lin; Zhang, Li Quan; Li, Wei; Li, Shi Hua; Zhao, Zhi Yuan

    2017-01-01

    Alternative stable states phenomenon widely exists in a variety of ecosystems and is closely related to ecosystem health and sustainable development. Although alternative stable states research has become the focus and hotspot of the ecology researches, only a few empirical evidences supported its behavior and mechanisms in coastal wetland ecosystems up to now. In our study, ta-king the intertidal wetland ecosystem in Chongming Dongtan Nature Reserve as study area, we aimed to: 1) test the existence of alternative stable states based on judgment conditions (bimodal characteristic and threshold effect) and determine the relative stable state types; 2) explore the formation mechanisms of alternative stable states by monitoring hydrological conditions, sediment accretion dynamics as well as vegetation growth parameters and analyzing the positive feedbacks between saltmarsh vegetation and sedimentary geomorphology. Our results showed that: 1) Normalized difference vegetation index (NDVI) frequentness distribution revealed obvious bimodality at saltmarsh pioneer zone. Propagule biomass threshold limited the establishment of plant patches representing the "saltmarsh" state. The presence of bimodality and biomass threshold demonstrated there are "mudflat" stable state and "saltmarsh" stable state with distinct structure and function in intertidal wetland ecosystem. 2) Current velocities, turbidities and direction perpendicular to the vegetation zone were the most important factors responsible for the sediments rapid accretion at saltmarsh pioneer zone in spring and summer. Sediments accretion significantly promoted the growth of saltmarsh plant. The positive feedbacks between plant growth and sediments accretion resulted in the formation of alternative stable states. 3) The expansion pattern of saltmarshes in the Chongming Dongtan intertidal wetland ecosystem also suggested that increases of sediments accretion could trigger the formation of "mudflat" stable state and "saltmarsh" stable state on landscape scale. The results from this study could enrich regime shift mechanisms researches and provide the scientific supports for coastal zone protection, restoration and comprehensive management, which could have important theoretical and practical meaning.

  14. Student feedback to improve the United States Department of Agriculture Fresh Fruit and Vegetable Program.

    PubMed

    Lin, Yi-Chun; Fly, Alyce D

    2016-06-01

    Fruit and vegetable consumption of children in the United States falls below recommendations. The U.S. Department of Agriculture Fresh Fruit and Vegetable Program (FFVP) is a national free-fruit and vegetable school distribution program designed to address this problem. This permanent, legislated program provides funding to qualified elementary schools for provision of additional fruit and vegetables outside of school meals. The objective of this study was to understand children's perceptions of FFVP after the intervention and formulate recommendations that may improve success of the intervention. Secondary data were obtained from 5,265 4(th)-6(th) graders at 51 randomly-selected FFVP intervention schools in Indiana. Anonymous questionnaires were completed late in the 2011-2012 academic year. Multilevel logistic regressions were used to determine associations between students' perceptions of program effects (4 close-ended items) and their preference toward the program. Content analysis was applied to a single open-ended item for program comments. Over 47% of students reported greater intake of fruit and vegetables due to FFVP, and over 66% reported liking the program. Student-reported program effects were positively associated with preference for the program (P < 0.01). Themes that emerged during analysis of 3,811 comments, included, students liked: the opportunity to try different kinds of fruit and vegetables, types and flavors of fruits served, and benefits of eating fruit. Fewer students liked the types of vegetables and their benefits. A small group disliked the program citing poor flavor of vegetables and quality of fruits. Important suggestions for the program include serving more dipping sauces for vegetables, cooking vegetables, and providing a greater variety of produce. The degree that students liked FFVP may predict the program's effects on fruit and vegetable intake. FFVP may become more acceptable to students by incorporating their suggestions. Program planners should consider these options for achieving program goals.

  15. Lifetime risk and persistence of psychiatric disorders across ethnic groups in the United States

    PubMed Central

    BRESLAU, JOSHUA; KENDLER, KENNETH S.; SU, MAXWELL; GAXIOLA-AGUILAR, SERGIO; KESSLER, RONALD C.

    2009-01-01

    Background Recent research in the United States has demonstrated striking health disparities across ethnic groups. Despite a longstanding interest in ethnic disadvantage in psychiatric epidemiology, patterns of psychiatric morbidity across ethnic groups have never been examined in a nationally representative sample. Method Ethnic differences in psychiatric morbidity are analyzed using data from the National Comorbidity Survey (NCS). The three largest ethnic groups in the United States – Hispanics, Non-Hispanic Blacks and Non-Hispanic Whites – were compared with respect to lifetime risk and persistence of three categories of psychiatric disorder: mood disorder, anxiety disorder, and substance use disorder. Results Where differences across ethnic groups were found in lifetime risk, socially disadvantaged groups had lower risk. Relative to Non-Hispanic Whites, Hispanics had lower lifetime risk of substance use disorder and Non-Hispanic Blacks had lower lifetime risk of mood, anxiety and substance use disorders. Where differences were found in persistence of disorders, disadvantaged groups had higher risk. Hispanics with mood disorders were more likely to be persistently ill as were Non-Hispanic Blacks with respect to both mood disorders and anxiety disorders. Closer examination found these differences to be generally consistent across population subgroups. Conclusions Members of disadvantaged ethnic groups in the United States do not have an increased risk for psychiatric disorders. Members of these groups, however, do tend to have more persistent disorders. Future research should focus on explanations for these findings, including the possibility that these comparisons are biased, and on potential means of reducing the disparity in persistence of disorders across ethnic groups. PMID:15841868

  16. Proceedings of the National Wetland Symposium: Wetland Hydrology Held in Chicago, Illinois on September 16-18 1987

    DTIC Science & Technology

    1987-09-16

    the leached sand at both outcrops. Woody wetland vegetation in the form of a shrub swamp or a wooded swamp, as suggested The leached sand overlies...till vertical feet of woody moss peat was deposited that is more friable and reddish brown in color either by the persistence of a shrub or wooded...important and the dominant typically marshes, replacing many shrub and source of water for wetlands located on river forested wetlands slopes or

  17. Use of remote sensing for monitoring deforestation in tropical and subtropical latitudes

    USGS Publications Warehouse

    Talbot, J. J.; Pettinger, Lawrence R.

    1981-01-01

    Factors limiting the application of Landsat data—including relatively low spatial resolution, persistent cloud cover in tropical regions, inadequate coverage of certain areas due to data-acquisition restraints and lack of local Landsat data receiving stations for real-time data recording—must be considered in any proposed study. Future improvements in Landsat capabilities might extend present applications beyond distinction of forest vs. non-forest cover, determination of gross vegetation or forest type, and generalized land use mapping.

  18. Deep cytoplasmic rearrangements in ventralized Xenopus embryos

    NASA Technical Reports Server (NTRS)

    Brown, E. E.; Denegre, J. M.; Danilchik, M. V.

    1993-01-01

    Following fertilization in Xenopus, dramatic rearrangements of the egg cytoplasm relocalize maternally synthesized egg components. During the first cell cycle the vegetal yolk mass rotates relative to the egg surface, toward the sperm entry point (SEP) (J. P. Vincent, G. F. Oster, and J. C. Gerhart, 1986, Dev. Biol. 113, 484-500), while concomitant deep cytoplasmic rearrangements occur in the animal hemisphere (M. V. Danilchik and J. M. Denegre, 1991, Development 111, 845-856). In this paper we examine the role of vegetal yolk mass rotation in producing the animal cytoplasmic rearrangements. We inhibited rotation by uv-irradiating embryos during the first cell cycle, a treatment that yields an extremely ventralized phenotype. Both uv-irradiated embryos and unirradiated control embryos show cytoplasmic rearrangements in the animal hemisphere during the first cell cycle. Cytoplasmic rearrangements on the SEP side of the embryo associated with the path of the sperm pronucleus, plus a swirl on the anti-SEP (dorsal) side, are seen, whether or not yolk mass rotation has occurred. This result suggests a role for the expanding sperm aster in directing animal hemisphere cytoplasmic movements. In unirradiated control embryos the anti-SEP (dorsal) swirl is larger than that in uv-irradiated embryos and often extends into the vegetal hemisphere, consistent with the animal cytoplasm having been pulled dorsally and vegetally by the sliding vegetal yolk mass. Thus the yolk mass rotation may normally enhance the dorsalward cytoplasmic movement, begun by the sperm aster, enough to induce normal axis formation. We extended our observations of unirradiated control and uv-irradiated embryos through early cleavages. The vegetal extent of the anti-SEP (dorsal) swirl pattern seen in control embryos persists through the early cleavage period, such that labeled animal cytoplasm extends deep into dorsal third-tier blastomeres at the 32-cell stage. Significantly, in uv-irradiated embryos, which have not undergone vegetal rotation, most of this labeled material remains more equatorial.

  19. Carbon cycling responses to a water table drawdown and decadal vegetation changes in a bog

    NASA Astrophysics Data System (ADS)

    Talbot, J.; Roulet, N. T.

    2009-12-01

    The quantity of carbon stored in peat depends on the imbalance between production and decomposition of organic matter. This imbalance is mainly controlled by the wetness of the peatland, usually described by the water table depth. However, long-term processes resulting from hydrological changes, such as vegetation succession, also play a major role in the biogeochemistry of peatlands. Previous studies have looked at the impact of a water table lowering on carbon fluxes in different types of peatlands. However, most of these studies were conducted within a time frame that did not allow the examination of vegetation changes due to the water table lowering. We conducted a study along a drainage gradient resulting from the digging of a drainage ditch 85 years ago in a portion of the Mer Bleue bog, located near Ottawa, Canada. According to water table reconstructions based on testate amoeba, the drainage dropped the water table by approximately 18 cm. On the upslope side of the ditch, the water table partly recovered and the vegetation changed only marginally. However, on the downslope side of the ditch, the water table stayed persistently lower and trees established (Larix and Betula). The importance of Sphagnum decreased with a lower water table, and evergreen shrubs were replaced by deciduous shrubs. The water table drop and subsequent vegetation changes had combined and individual effects on the carbon functioning of the peatland. Methane fluxes decreased because of the water table lowering, but were not affected by vegetation changes, whereas respiration and net ecosystem productivity were affected by both. The carbon storage of the system increased because of an increase in plant biomass, but the long-term carbon storage as peat decreased. The inclusion of the feedback effect that vegetation has on the carbon functioning of a peatland when a disturbance occurs is crucial to simulate the long-term carbon balance of this ecosystem.

  20. Pollen evidence for late pleistocene bering land bridge environments from Norton Sound, Northeastern Bering Sea, Alaska

    USGS Publications Warehouse

    Ager, T.A.; Phillips, R.L.

    2008-01-01

    After more than half a century of paleoenvironmental investigations, disagreements persist as to the nature of vegetation type and climate of the Bering land bridge (BLB) during the late Wisconsin (Sartan) glacial interval. Few data exist from sites on the former land bridge, now submerged under the Bering and Chukchi Seas. Two hypotheses have emerged during the past decade. The first, based on pollen data from Bering Sea islands and adjacent mainlands of western Alaska and Northeast Siberia, represents the likely predominant vegetation on the Bering land bridge during full-glacial conditions: graminoid-herb-willow tundra vegetation associated with cold, dry winters and cool, dry summer climate. The second hypothesis suggests that dwarf birch-shrub-herb tundra formed a broad belt across the BLB, and that mesic vegetation was associated with cold, snowier winters and moist, cool summers. As a step towards resolving this controversy, a sediment core from Norton Sound, northeastern Bering Sea was radiocarbon dated and analyzed for pollen content. Two pollen zones were identified. The older, bracketed by radiocarbon ages of 29,500 and 11,515 14C yr BP, contains pollen assemblages composed of grass, sedge, wormwood, willow, and a variety of herb (forb) taxa. These assemblages are interpreted to represent graminoid-herb-willow tundra vegetation that developed under an arid, cool climate regime. The younger pollen zone sediments were deposited about 11,515 14C yr BP, when rising sea level had begun to flood the BLB. This younger pollen zone contains pollen of birch, willow, heaths, aquatic plants, and spores of sphagnum moss. This is interpreted to represent a Lateglacial dwarf birch-heath-willow-herb tundra vegetation, likely associated with a wetter climate with deeper winter snows, and moist, cool summers. This record supports the first hypothesis, that graminoid-herb-willow tundra vegetation extended into the lowlands of the BLB during full glacial conditions of the late Wisconsin. ?? 2008 Regents of the University of Colorado.

  1. Multistate modeling of habitat dynamics: Factors affecting Florida scrub transition probabilities

    USGS Publications Warehouse

    Breininger, D.R.; Nichols, J.D.; Duncan, B.W.; Stolen, Eric D.; Carter, G.M.; Hunt, D.K.; Drese, J.H.

    2010-01-01

    Many ecosystems are influenced by disturbances that create specific successional states and habitat structures that species need to persist. Estimating transition probabilities between habitat states and modeling the factors that influence such transitions have many applications for investigating and managing disturbance-prone ecosystems. We identify the correspondence between multistate capture-recapture models and Markov models of habitat dynamics. We exploit this correspondence by fitting and comparing competing models of different ecological covariates affecting habitat transition probabilities in Florida scrub and flatwoods, a habitat important to many unique plants and animals. We subdivided a large scrub and flatwoods ecosystem along central Florida's Atlantic coast into 10-ha grid cells, which approximated average territory size of the threatened Florida Scrub-Jay (Aphelocoma coerulescens), a management indicator species. We used 1.0-m resolution aerial imagery for 1994, 1999, and 2004 to classify grid cells into four habitat quality states that were directly related to Florida Scrub-Jay source-sink dynamics and management decision making. Results showed that static site features related to fire propagation (vegetation type, edges) and temporally varying disturbances (fires, mechanical cutting) best explained transition probabilities. Results indicated that much of the scrub and flatwoods ecosystem was resistant to moving from a degraded state to a desired state without mechanical cutting, an expensive restoration tool. We used habitat models parameterized with the estimated transition probabilities to investigate the consequences of alternative management scenarios on future habitat dynamics. We recommend this multistate modeling approach as being broadly applicable for studying ecosystem, land cover, or habitat dynamics. The approach provides maximum-likelihood estimates of transition parameters, including precision measures, and can be used to assess evidence among competing ecological models that describe system dynamics. ?? 2010 by the Ecological Society of America.

  2. Response of vegetation phenology to urbanization in the conterminous United States.

    PubMed

    Li, Xuecao; Zhou, Yuyu; Asrar, Ghassem R; Mao, Jiafu; Li, Xiaoma; Li, Wenyu

    2017-07-01

    The influence of urbanization on vegetation phenology is gaining considerable attention due to its implications for human health, cycling of carbon and other nutrients in Earth system. In this study, we examined the relationship between change in vegetation phenology and urban size, an indicator of urbanization, for the conterminous United States. We studied more than 4500 urban clusters of varying size to determine the impact of urbanization on plant phenology, with the aids of remotely sensed observations since 2003-2012. We found that phenology cycle (changes in vegetation greenness) in urban areas starts earlier (start of season, SOS) and ends later (end of season, EOS), resulting in a longer growing season length (GSL), when compared to the respective surrounding urban areas. The average difference of GSL between urban and rural areas over all vegetation types, considered in this study, is about 9 days. Also, the extended GSL in urban area is consistent among different climate zones in the United States, whereas their magnitudes are varying across regions. We found that a tenfold increase in urban size could result in an earlier SOS of about 1.3 days and a later EOS of around 2.4 days. As a result, the GSL could be extended by approximately 3.6 days with a range of 1.6-6.5 days for 25th ~ 75th quantiles, with a median value of about 2.1 days. For different vegetation types, the phenology response to urbanization, as defined by GSL, ranges from 1 to 4 days. The quantitative relationship between phenology and urbanization is of great use for developing improved models of vegetation phenology dynamics under future urbanization, and for developing change indicators to assess the impacts of urbanization on vegetation phenology. © 2016 John Wiley & Sons Ltd.

  3. A Qualitative Investigation of the Factors Affecting Arab International Students' Persistence in the United States

    ERIC Educational Resources Information Center

    Rabia, Hazza Abu

    2017-01-01

    This qualitative study explored the factors that enhance Arab international students' persistence and facilitate their academic and cultural adjustment at postsecondary institutions in the United States. The sample for this study consisted of Arab international students from Saudi Arabia, Kuwait, Oman, Syria, UAE, Iraq, and Jordan. In-depth…

  4. Historical Maps from Modern Images: Using Remote Sensing to Model and Map Century-Long Vegetation Change in a Fire-Prone Region

    PubMed Central

    Callister, Kate E.; Griffioen, Peter A.; Avitabile, Sarah C.; Haslem, Angie; Kelly, Luke T.; Kenny, Sally A.; Nimmo, Dale G.; Farnsworth, Lisa M.; Taylor, Rick S.; Watson, Simon J.; Bennett, Andrew F.; Clarke, Michael F.

    2016-01-01

    Understanding the age structure of vegetation is important for effective land management, especially in fire-prone landscapes where the effects of fire can persist for decades and centuries. In many parts of the world, such information is limited due to an inability to map disturbance histories before the availability of satellite images (~1972). Here, we describe a method for creating a spatial model of the age structure of canopy species that established pre-1972. We built predictive neural network models based on remotely sensed data and ecological field survey data. These models determined the relationship between sites of known fire age and remotely sensed data. The predictive model was applied across a 104,000 km2 study region in semi-arid Australia to create a spatial model of vegetation age structure, which is primarily the result of stand-replacing fires which occurred before 1972. An assessment of the predictive capacity of the model using independent validation data showed a significant correlation (rs = 0.64) between predicted and known age at test sites. Application of the model provides valuable insights into the distribution of vegetation age-classes and fire history in the study region. This is a relatively straightforward method which uses widely available data sources that can be applied in other regions to predict age-class distribution beyond the limits imposed by satellite imagery. PMID:27029046

  5. Relationships between woody vegetation and geomorphological patterns in three gravel-bed rivers with different intensities of anthropogenic disturbance

    NASA Astrophysics Data System (ADS)

    Sitzia, T.; Picco, L.; Ravazzolo, D.; Comiti, F.; Mao, L.; Lenzi, M. A.

    2016-07-01

    We compared three gravel-bed rivers in north-eastern Italy (Brenta, Piave, Tagliamento) having similar bioclimate, geology and fluvial morphology, but affected by different intensities of anthropogenic disturbance related particularly to hydropower dams, training works and instream gravel mining. Our aim was to test whether a corresponding difference in the interactions between vegetation and geomorphological patterns existed among the three rivers. In equally spaced and sized plots (n = 710) we collected descriptors of geomorphic conditions, and presence-absence of woody species. In the less disturbed river (Tagliamento), spatial succession of woody communities from the floodplain to the channel followed a profile where higher elevation floodplains featured more developed tree communities, and lower elevation islands and bars were covered by pioneer communities. In the intermediate-disturbed river (Piave), islands and floodplains lay at similar elevation and both showed species indicators of mature developed communities. In the most disturbed river (Brenta), all these patterns were simplified, all geomorphic units lay at similar elevations, were not well characterized by species composition, and presented similar persistence age. This indicates that in human-disturbed rivers, channel and vegetation adjustments are closely linked in the long term, and suggests that intermediate levels of anthropogenic disturbance, such as those encountered in the Piave River, could counteract the natural, more dynamic conditions that may periodically fragment vegetated landscapes in natural rivers.

  6. Global change and terrestrial plant community dynamics

    DOE PAGES

    Franklin, Janet; Serra-Diaz, Josep M.; Syphard, Alexandra D.; ...

    2016-02-29

    Anthropogenic drivers of global change include rising atmospheric concentrations of carbon dioxide and other greenhouse gasses and resulting changes in the climate, as well as nitrogen deposition, biotic invasions, altered disturbance regimes, and land-use change. Predicting the effects of global change on terrestrial plant communities is crucial because of the ecosystem services vegetation provides, from climate regulation to forest products. In this article, we present a framework for detecting vegetation changes and attributing them to global change drivers that incorporates multiple lines of evidence from spatially extensive monitoring networks, distributed experiments, remotely sensed data, and historical records. Based on amore » literature review, we summarize observed changes and then describe modeling tools that can forecast the impacts of multiple drivers on plant communities in an era of rapid change. Observed responses to changes in temperature, water, nutrients, land use, and disturbance show strong sensitivity of ecosystem productivity and plant population dynamics to water balance and long-lasting effects of disturbance on plant community dynamics. Persistent effects of land-use change and human-altered fire regimes on vegetation can overshadow or interact with climate change impacts. Models forecasting plant community responses to global change incorporate shifting ecological niches, population dynamics, species interactions, spatially explicit disturbance, ecosystem processes, and plant functional responses. Lastly, monitoring, experiments, and models evaluating multiple change drivers are needed to detect and predict vegetation changes in response to 21st century global change.« less

  7. The survival of hepatitis A virus in fresh produce.

    PubMed

    Croci, Luciana; De Medici, Dario; Scalfaro, Concetta; Fiore, Alfonsina; Toti, Laura

    2002-02-25

    Fresh produce has been repeatedly implicated as the source of human viral infections, including infection with hepatitis A virus (HAV). The objective of the present study was to evaluate the HAV adsorption capacity of the surface of various fresh vegetables that are generally eaten raw and the persistence of the HAV. To this end, the authors experimentally contaminated samples of lettuce, fennel, and carrot by immersing them in sterile distilled water supplemented with an HAV suspension until reaching a concentration of 5 log tissue culture infectious dose (TCID50)/ml. After contamination, the samples were stored at 4 degrees C and analysed at 0, 2, 4, 7, and 9 days. To detect the HAV, RT-nested-PCR was used; positive samples were subjected to the quantitative determination using cell cultures. The three vegetables differed in terms of their adsorption capacity. The highest quantity of virus was consistently detected for lettuce, for which only a slight decrease was observed over time (HAV titre = 4.44 +/- 0.22 log TCID50/ml at day 0 vs. 2.46 +/- 0.17 log TCID50/ml at day 9, before washing). The virus remained vital through the last day of storage. For the other two vegetables, a greater decrease was observed, and complete inactivation had occurred at day 4 for carrot and at day 7 for fennel. For all three vegetables, washing does not guarantee a substantial reduction in the viral contamination.

  8. [Succession pattern of artificial vegetation community and its ecological mechanism in an arid desert region].

    PubMed

    Xu, Cailin; Li, Zizhen

    2003-09-01

    Focusing on the artificial vegetation protection system of the Shapotou section of Baotou-Lanzhou railway in the arid desert region of China, this paper examined the dynamics of dominant plant species and the succession pattern of artificial plant community in the process of establishing and developing regional artificial vegetation. It also studied the driving force and the ecologically intrinsic mechanism of the community succession. The results demonstrated that the species composition of the artificial vegetation dramatically changed after 40 years of succession, from original artificial plant community of shrub and semi-shrub to artificial-natural desert plant community with annual herb dominated. During the process of succession, the importance values of artificial shrubs, such as Caragana korshinskii and Hedysarum scoparius, decreased and gradually retreated from the artificial plant community, while the naturally multiplied annual herb, such as Eragrostis poaeoides, Bassia dasyphylla, Salsola ruthenica, Chloris virgata and etc., were presented one after another and gradually became dominant. Besides, Artemisia ordosica always played a key role in the community due to its ability of naturally sowing and self-replacement. This type of succession pattern was closely related to the shortage of precipitation resource in this region and the formation of soil crust which inhibited the reproduction of shrub and perennial herb with deep root systems. This study provided a theoretical ground for realizing persistent development of artificial plant community.

  9. Short-term Morphodynamics of an Eroding Salt Marsh Shoreline in the Delaware Estuary, USA

    NASA Astrophysics Data System (ADS)

    Fanta, D.; Quirk, T. E.

    2017-12-01

    Marsh edge morphology can change rapidly through erosional and depositional processes. Along seemingly similar stretches of marsh shoreline, erosion processes and rates can vary dramatically. In the Delaware Estuary, annual rates of edge erosion vary from a few centimeters to several meters across relatively short stretches of shoreline. Differences in erosion processes observed here include areas with and without vegetation growth seaward of the eroding marsh scarp. To better understand the factors that influence changes in marsh edge morphology, we examined wave energy, marsh scarp profile, and vegetation structure in relation to lateral erosion and accretion along two stretches of the Delaware Estuary for two years. Rates of erosion ranged from 0.01 to over 7 m/yr depending on shoreline exposure to waves and location on marsh scarp depth profile. Sediment deposition and accretion were up to an order of magnitude higher 15 cm from the marsh edge than 5 cm from the marsh edge, and were driven by storm events. In some areas, vegetation persisted seaward of eroding marshes where wave activity was dampened by a shallower bathymetric profile. Wave energy, distance from the edge and marsh elevation all contributed to vegetation structure, and therefore sedimentation and accretion dynamics. These results highlight the interactive nature of biophysical processes leading to lateral retreat or potential resilience of marsh edges.

  10. Interacting vegetative and thermal contributions to water movement in desert soil

    USGS Publications Warehouse

    Garcia, C.A.; Andraski, Brian J.; Stonestrom, David A.; Cooper, C.A.; Šimůnek, J.; Wheatcraft, S.W.

    2011-01-01

    Thermally driven water-vapor flow can be an important component of total water movement in bare soil and in deep unsaturated zones, but this process is often neglected when considering the effects of soil–plant–atmosphere interactions on shallow water movement. The objectives of this study were to evaluate the coupled and separate effects of vegetative and thermal-gradient contributions to soil water movement in desert environments. The evaluation was done by comparing a series of simulations with and without vegetation and thermal forcing during a 4.7-yr period (May 2001–December 2005). For vegetated soil, evapotranspiration alone reduced root-zone (upper 1 m) moisture to a minimum value (25 mm) each year under both isothermal and nonisothermal conditions. Variations in the leaf area index altered the minimum storage values by up to 10 mm. For unvegetated isothermal and nonisothermal simulations, root-zone water storage nearly doubled during the simulation period and created a persistent driving force for downward liquid fluxes below the root zone (total net flux ~1 mm). Total soil water movement during the study period was dominated by thermally driven vapor fluxes. Thermally driven vapor flow and condensation supplemented moisture supplies to plant roots during the driest times of each year. The results show how nonisothermal flow is coupled with plant water uptake, potentially influencing ecohydrologic relations in desert environments.

  11. Global change and terrestrial plant community dynamics

    PubMed Central

    Franklin, Janet; Serra-Diaz, Josep M.; Syphard, Alexandra D.; Regan, Helen M.

    2016-01-01

    Anthropogenic drivers of global change include rising atmospheric concentrations of carbon dioxide and other greenhouse gasses and resulting changes in the climate, as well as nitrogen deposition, biotic invasions, altered disturbance regimes, and land-use change. Predicting the effects of global change on terrestrial plant communities is crucial because of the ecosystem services vegetation provides, from climate regulation to forest products. In this paper, we present a framework for detecting vegetation changes and attributing them to global change drivers that incorporates multiple lines of evidence from spatially extensive monitoring networks, distributed experiments, remotely sensed data, and historical records. Based on a literature review, we summarize observed changes and then describe modeling tools that can forecast the impacts of multiple drivers on plant communities in an era of rapid change. Observed responses to changes in temperature, water, nutrients, land use, and disturbance show strong sensitivity of ecosystem productivity and plant population dynamics to water balance and long-lasting effects of disturbance on plant community dynamics. Persistent effects of land-use change and human-altered fire regimes on vegetation can overshadow or interact with climate change impacts. Models forecasting plant community responses to global change incorporate shifting ecological niches, population dynamics, species interactions, spatially explicit disturbance, ecosystem processes, and plant functional responses. Monitoring, experiments, and models evaluating multiple change drivers are needed to detect and predict vegetation changes in response to 21st century global change. PMID:26929338

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franklin, Janet; Serra-Diaz, Josep M.; Syphard, Alexandra D.

    Anthropogenic drivers of global change include rising atmospheric concentrations of carbon dioxide and other greenhouse gasses and resulting changes in the climate, as well as nitrogen deposition, biotic invasions, altered disturbance regimes, and land-use change. Predicting the effects of global change on terrestrial plant communities is crucial because of the ecosystem services vegetation provides, from climate regulation to forest products. In this article, we present a framework for detecting vegetation changes and attributing them to global change drivers that incorporates multiple lines of evidence from spatially extensive monitoring networks, distributed experiments, remotely sensed data, and historical records. Based on amore » literature review, we summarize observed changes and then describe modeling tools that can forecast the impacts of multiple drivers on plant communities in an era of rapid change. Observed responses to changes in temperature, water, nutrients, land use, and disturbance show strong sensitivity of ecosystem productivity and plant population dynamics to water balance and long-lasting effects of disturbance on plant community dynamics. Persistent effects of land-use change and human-altered fire regimes on vegetation can overshadow or interact with climate change impacts. Models forecasting plant community responses to global change incorporate shifting ecological niches, population dynamics, species interactions, spatially explicit disturbance, ecosystem processes, and plant functional responses. Lastly, monitoring, experiments, and models evaluating multiple change drivers are needed to detect and predict vegetation changes in response to 21st century global change.« less

  13. Alien and endangered plants in the Brazilian Cerrado exhibit contrasting relationships with vegetation biomass and N : P stoichiometry.

    PubMed

    Lannes, Luciola S; Bustamante, Mercedes M C; Edwards, Peter J; Venterink, Harry Olde

    2012-11-01

    Although endangered and alien invasive plants are commonly assumed to persist under different environmental conditions, surprisingly few studies have investigated whether this is the case. We examined how endangered and alien species are distributed in relation to community biomass and N : P ratio in the above-ground community biomass in savanna vegetation in the Brazilian Cerrado. For 60 plots, we related the occurrence of endangered (Red List) and alien invasive species to plant species richness, vegetation biomass and N : P ratio, and soil variables. Endangered plants occurred mainly in plots with relatively low above-ground biomass and high N : P ratios, whereas alien invasive species occurred in plots with intermediate to high biomass and low N : P ratios. Occurrences of endangered or alien plants were unrelated to extractable N and P concentrations in the soil. These contrasting distributions in the Cerrado imply that alien species only pose a threat to endangered species if they are able to invade sites occupied by these species and increase the above-ground biomass and/or decrease the N : P ratio of the vegetation. We found some evidence that alien species do increase above-ground community biomass in the Cerrado, but their possible effect on N : P stoichiometry requires further study. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  14. Self-reinforcing impacts of plant invasions change over time.

    PubMed

    Yelenik, Stephanie G; D'Antonio, Carla M

    2013-11-28

    Returning native species to habitats degraded by biological invasions is a critical conservation goal. A leading hypothesis poses that exotic plant dominance is self-reinforced by impacts on ecosystem processes, leading to persistent stable states. Invaders have been documented to modify fire regimes, alter soil nutrients or shift microbial communities in ways that feed back to benefit themselves over competitors. However, few studies have followed invasions through time to ask whether ecosystem impacts and feedbacks persist. Here we return to woodland sites in Hawai'i Volcanoes National Park that were invaded by exotic C4 grasses in the 1960s, the ecosystem impacts of which were studied intensively in the 1990s. We show that positive feedbacks between exotic grasses and soil nitrogen cycling have broken down, but rather than facilitating native vegetation, the weakening feedbacks facilitate new exotic species. Data from the 1990s showed that exotic grasses increased nitrogen-mineralization rates by two- to fourfold, but were nitrogen-limited. Thus, the impacts of the invader created a positive feedback early in the invasion. We now show that annual net soil nitrogen mineralization has since dropped to pre-invasion levels. In addition, a seedling outplanting experiment that varied soil nitrogen and grass competition demonstrates that the changing impacts of grasses do not favour native species re-establishment. Instead, decreased nitrogen availability most benefits another aggressive invader, the nitrogen-fixing tree Morella faya. Long-term studies of invasions may reveal that ecosystem impacts and feedbacks shift over time, but that this may not benefit native species recovery.

  15. Long-term outcome of patients presenting with acute infectious encephalitis of various causes in France.

    PubMed

    Mailles, Alexandra; De Broucker, Thomas; Costanzo, Pascale; Martinez-Almoyna, Laurent; Vaillant, Véronique; Stahl, Jean-Paul

    2012-05-01

    A prospective study of infectious encephalitis was conducted in France in 2007. In total, 253 patients were enrolled with a proven etiological diagnosis for 52%. The cohort of surviving patients with encephalitis was assessed for sequelae and impairment 3 years after enrollment. Patients, their family, and general practitioners (GPs) were interviewed by phone to document persisting symptoms, return to work, and past and current leisure activities, with standardized questionnaires. The IQCODE (Informant Questionnaire on Cognitive Decline in the Elderly) was completed with relatives. The global outcome was determined in all patients with the Glasgow outcome scale. In 2010, 20 patients (10%) were unavailable for follow-up, 2 (1%) were excluded, and 18 (9%) had died since hospital discharge. Data were available for 167 survivors and 9 patients whose death was related to the encephalitis. The outcome was favorable in 108 of 176 patients (61%) (71 with complete resolution), 31 (18%) were mildly impaired, 25 (14%) were severely impaired, and 3 (1%) were in a vegetative state. The most frequent symptoms were difficulty concentrating (42%), behavioral disorders (27%), speech disorders (20%), and memory loss (19%). Fifteen of 63 patients (24%) previously employed were still unable to resume work. Long-term outcome was significantly associated with comorbid conditions, age, level of education, and the causative agent of encephalitis. Most patients with encephalitis experienced a favorable outcome 3 years after hospital discharge. However, minor to severe disability persists in a high number of cases with consequences for everyday life. Physical and mental impairment should be evaluated in all patients with encephalitis, and neuropsychological rehabilitation implemented whenever needed.

  16. Landscape and meteorological factors affecting prevalence of three food-borne pathogens in fruit and vegetable farms.

    PubMed

    Strawn, Laura K; Fortes, Esther D; Bihn, Elizabeth A; Nightingale, Kendra K; Gröhn, Yrjö T; Worobo, Randy W; Wiedmann, Martin; Bergholz, Peter W

    2013-01-01

    Produce-related outbreaks have been traced back to the preharvest environment. A longitudinal study was conducted on five farms in New York State to characterize the prevalence, persistence, and diversity of food-borne pathogens in fresh produce fields and to determine landscape and meteorological factors that predict their presence. Produce fields were sampled four times per year for 2 years. A total of 588 samples were analyzed for Listeria monocytogenes, Salmonella, and Shiga toxin-producing Escherichia coli (STEC). The prevalence measures of L. monocytogenes, Salmonella, and STEC were 15.0, 4.6, and 2.7%, respectively. L. monocytogenes and Salmonella were detected more frequently in water samples, while STEC was detected with equal frequency across all sample types (soil, water, feces, and drag swabs). L. monocytogenes sigB gene allelic types 57, 58, and 61 and Salmonella enterica serovar Cerro were repeatedly isolated from water samples. Soil available water storage (AWS), temperature, and proximity to three land cover classes (water, roads and urban development, and pasture/hay grass) influenced the likelihood of detecting L. monocytogenes. Drainage class, AWS, and precipitation were identified as important factors in Salmonella detection. This information was used in a geographic information system framework to hypothesize locations of environmental reservoirs where the prevalence of food-borne pathogens may be elevated. The map indicated that not all croplands are equally likely to contain environmental reservoirs of L. monocytogenes. These findings advance recommendations to minimize the risk of preharvest contamination by enhancing models of the environmental constraints on the survival and persistence of food-borne pathogens in fields.

  17. Landscape and Meteorological Factors Affecting Prevalence of Three Food-Borne Pathogens in Fruit and Vegetable Farms

    PubMed Central

    Strawn, Laura K.; Fortes, Esther D.; Bihn, Elizabeth A.; Nightingale, Kendra K.; Gröhn, Yrjö T.; Worobo, Randy W.; Wiedmann, Martin

    2013-01-01

    Produce-related outbreaks have been traced back to the preharvest environment. A longitudinal study was conducted on five farms in New York State to characterize the prevalence, persistence, and diversity of food-borne pathogens in fresh produce fields and to determine landscape and meteorological factors that predict their presence. Produce fields were sampled four times per year for 2 years. A total of 588 samples were analyzed for Listeria monocytogenes, Salmonella, and Shiga toxin-producing Escherichia coli (STEC). The prevalence measures of L. monocytogenes, Salmonella, and STEC were 15.0, 4.6, and 2.7%, respectively. L. monocytogenes and Salmonella were detected more frequently in water samples, while STEC was detected with equal frequency across all sample types (soil, water, feces, and drag swabs). L. monocytogenes sigB gene allelic types 57, 58, and 61 and Salmonella enterica serovar Cerro were repeatedly isolated from water samples. Soil available water storage (AWS), temperature, and proximity to three land cover classes (water, roads and urban development, and pasture/hay grass) influenced the likelihood of detecting L. monocytogenes. Drainage class, AWS, and precipitation were identified as important factors in Salmonella detection. This information was used in a geographic information system framework to hypothesize locations of environmental reservoirs where the prevalence of food-borne pathogens may be elevated. The map indicated that not all croplands are equally likely to contain environmental reservoirs of L. monocytogenes. These findings advance recommendations to minimize the risk of preharvest contamination by enhancing models of the environmental constraints on the survival and persistence of food-borne pathogens in fields. PMID:23144137

  18. Ecosystem management can mitigate vegetation shifts induced by climate change in African savannas

    NASA Astrophysics Data System (ADS)

    Scheiter, Simon; Savadogo, Patrice

    2017-04-01

    The welfare of people in the tropics and sub-tropics strongly depends on goods and services that ecosystems supply. Flows of these ecosystem services are strongly influenced by interactions between climate change and land use. A prominent example are savannas, covering approximately 20% of the Earth's land surface. Key ecosystem services in these areas are fuel wood for cooking and heating, food production and livestock. Changes in the structure and dynamics of savanna vegetation may strongly influence local people's living conditions, as well as the climate system and biogeochemical cycles. We used a dynamic vegetation model to explore interactive effects of climate and land use on the vegetation structure, distribution and carbon cycling of African savannas under current and future conditions. More specifically, we simulate long term impacts of fire management, grazing and fuel wood harvesting. The model projects that under future climate without human land use impacts, large savanna areas would shift towards more wood dominated vegetation due to CO2 fertilization effects and changes in water use efficiency. However, land use activities can mitigate climate change impacts on vegetation to maintain desired ecosystem states that ensure fluxes of important ecosystem services. We then use optimization algorithms to identify sustainable land use strategies that maximize the utility of people managing savannas while preserving a stable vegetation state. Our results highlight that the development of land use policy for tropical and sub-tropical areas needs to account for climate change impacts on vegetation.

  19. Evaluation of an algorithm for the treatment of persistent diarrhoea: a multicentre study. International Working Group on Persistent Diarrhoea.

    PubMed Central

    1996-01-01

    Described are the findings of a multicentre cohort study to test an algorithm for the treatment of persistent diarrhoea relying on the use of locally available, inexpensive foods, vitamin and mineral supplementation, and the selective use of antibiotics to treat associated infections. The initial diet (A) contained cereals, vegetable oil, and animal milk or yoghurt. The diet (B) offered when the patient did not improve with the initial regimen was lactose free, and the energy from cereals was partially replaced by simple sugars. A total of 460 children with persistent diarrhoea, aged 4-36 months, were enrolled at study centres in Bangladesh, India, Mexico, Pakistan, Peru, and Viet Nam. The study population was young (11.5 +/- 5.7 months) and malnourished (mean weight-for-age Z-score, -3.03 +/- 0.86), and severe associated conditions were common (45% required rehydration or treatment of severe infections on admission). The overall success rate of the treatment algorithm was 80% (95% CI, 76-84%). The recovery rate among all children with only diet A was 65% (95% CI, 61-70%), and was 71% (95% CI, 62-81%) for those evaluated after receiving diet B. The children at the greatest risk for treatment failure were those who had acute associated illnesses (including cholera, septicaemia, and urinary tract infections), required intravenous antibiotics, and had the highest initial purging rates. Our results indicate that the short-term treatment of persistent diarrhoea can be accomplished safely and effectively, in the majority of patients, using an algorithm relying primarily on locally available foods and simple clinical guidelines. This study should help establish rational and effective treatment for persistent diarrhoea. PMID:9002328

  20. Radionuclide Concentrations in Terrestrial Vegetation and Soil Samples On and Around the Hanford Site, 1971 Through 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, Mary Ann; Poston, Ted M.; Fritz, Brad G.

    2011-07-29

    Environmental monitoring is conducted on the U.S. Department of Energy (DOE) Hanford Site to comply with DOE Orders and federal and state regulations. Major objectives of the monitoring are to characterize contaminant levels in the environment and to determine site contributions to the contaminant inventory. This report focuses on surface soil and perennial vegetation samples collected between 1971 and 2008 as part of the Pacific Northwest National Laboratory Surface Environmental Surveillance Project performed under contract to DOE. Areas sampled under this program are located on the Hanford Site but outside facility boundaries and on public lands surrounding the Hanford Site.more » Additional samples were collected during the past 8 years under DOE projects that evaluated parcels of land for radiological release. These data were included because the same sampling methodology and analytical laboratory were used for the projects. The spatial and temporal trends of six radionuclides collected over a 38-year period were evaluated. The radionuclides----cobalt-60, cesium-137, strontium-90, plutonium-238, plutonium-239/240, and uranium (reported either as uranium-238 or total uranium)----were selected because they persist in the environment and are still being monitored routinely and reported in Hanford Site environmental reports. All these radionuclides were associated with plutonium production and waste management of activities occurring on the site. Other sources include fallout from atmospheric testing of nuclear weapons, which ended in 1980, and the Chernobyl explosion in 1986. Uranium is also a natural component of the soil. This assessment of soil and vegetation data provides important information on the distribution of radionuclides in areas adjacent to industrial areas, established perimeter locations and buffer areas, and more offsite nearby and distant locations. The concentrations reflect a tendency for detection of some radionuclides close to where they were utilized onsite, but as one moves to unindustrialized areas on the site, surrounding buffer areas and perimeter location into the more distant sites, concentrations of these radionuclides approach background and cannot be distinguished from fallout activity. More importantly, concentrations in soil and vegetation samples did not exceed environmental benchmark concentrations, and associated exposure to human and ecological receptors were well below levels that are demonstratively hazardous to human health and the environment.« less

Top