Sample records for personal computer hardware

  1. A CLIPS based personal computer hardware diagnostic system

    NASA Technical Reports Server (NTRS)

    Whitson, George M.

    1991-01-01

    Often the person designated to repair personal computers has little or no knowledge of how to repair a computer. Described here is a simple expert system to aid these inexperienced repair people. The first component of the system leads the repair person through a number of simple system checks such as making sure that all cables are tight and that the dip switches are set correctly. The second component of the system assists the repair person in evaluating error codes generated by the computer. The final component of the system applies a large knowledge base to attempt to identify the component of the personal computer that is malfunctioning. We have implemented and tested our design with a full system to diagnose problems for an IBM compatible system based on the 8088 chip. In our tests, the inexperienced repair people found the system very useful in diagnosing hardware problems.

  2. Personal Computers.

    ERIC Educational Resources Information Center

    Toong, Hoo-min D.; Gupta, Amar

    1982-01-01

    Describes the hardware, software, applications, and current proliferation of personal computers (microcomputers). Includes discussions of microprocessors, memory, output (including printers), application programs, the microcomputer industry, and major microcomputer manufacturers (Apple, Radio Shack, Commodore, and IBM). (JN)

  3. OER Approach for Specific Student Groups in Hardware-Based Courses

    ERIC Educational Resources Information Center

    Ackovska, Nevena; Ristov, Sasko

    2014-01-01

    Hardware-based courses in computer science studies require much effort from both students and teachers. The most important part of students' learning is attending in person and actively working on laboratory exercises on hardware equipment. This paper deals with a specific group of students, those who are marginalized by not being able to…

  4. Acceleration of the matrix multiplication of Radiance three phase daylighting simulations with parallel computing on heterogeneous hardware of personal computer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuo, Wangda; McNeil, Andrew; Wetter, Michael

    2013-05-23

    Building designers are increasingly relying on complex fenestration systems to reduce energy consumed for lighting and HVAC in low energy buildings. Radiance, a lighting simulation program, has been used to conduct daylighting simulations for complex fenestration systems. Depending on the configurations, the simulation can take hours or even days using a personal computer. This paper describes how to accelerate the matrix multiplication portion of a Radiance three-phase daylight simulation by conducting parallel computing on heterogeneous hardware of a personal computer. The algorithm was optimized and the computational part was implemented in parallel using OpenCL. The speed of new approach wasmore » evaluated using various daylighting simulation cases on a multicore central processing unit and a graphics processing unit. Based on the measurements and analysis of the time usage for the Radiance daylighting simulation, further speedups can be achieved by using fast I/O devices and storing the data in a binary format.« less

  5. Transfer of numeric ASCII data files between Apple and IBM personal computers.

    PubMed

    Allan, R W; Bermejo, R; Houben, D

    1986-01-01

    Listings for programs designed to transfer numeric ASCII data files between Apple and IBM personal computers are provided with accompanying descriptions of how the software operates. Details of the hardware used are also given. The programs may be easily adapted for transferring data between other microcomputers.

  6. Stellar Inertial Navigation Workstation

    NASA Technical Reports Server (NTRS)

    Johnson, W.; Johnson, B.; Swaminathan, N.

    1989-01-01

    Software and hardware assembled to support specific engineering activities. Stellar Inertial Navigation Workstation (SINW) is integrated computer workstation providing systems and engineering support functions for Space Shuttle guidance and navigation-system logistics, repair, and procurement activities. Consists of personal-computer hardware, packaged software, and custom software integrated together into user-friendly, menu-driven system. Designed to operate on IBM PC XT. Applied in business and industry to develop similar workstations.

  7. What Are Some Types of Assistive Devices and How Are They Used?

    MedlinePlus

    ... in persons with hearing problems. Cognitive assistance, including computer or electrical assistive devices, can help people function following brain injury. Computer software and hardware, such as voice recognition programs, ...

  8. An Interactive Computer-Based Training Program for Beginner Personal Computer Maintenance.

    ERIC Educational Resources Information Center

    Summers, Valerie Brooke

    A computer-assisted instructional program, which was developed for teaching beginning computer maintenance to employees of Unisys, covered external hardware maintenance, proper diskette care, making software backups, and electro-static discharge prevention. The procedure used in developing the program was based upon the Dick and Carey (1985) model…

  9. Personal Computers in Iowa Vocational Agriculture Programs: Competency Assessment and Usage.

    ERIC Educational Resources Information Center

    Miller, W. Wade; And Others

    The competencies needed by Iowa vocational agriculture instructors at the secondary school level to integrate computer technology into the classroom were assessed, as well as the status of computer usage, types of computer use and software utilities and hardware used, and the sources of computer training obtained by instructors. Surveys were…

  10. Computers for the Disabled.

    ERIC Educational Resources Information Center

    Lazzaro, Joseph J.

    1993-01-01

    Describes adaptive technology for personal computers that accommodate disabled users and may require special equipment including hardware, memory, expansion slots, and ports. Highlights include vision aids, including speech synthesizers, magnification, braille, and optical character recognition (OCR); hearing adaptations; motor-impaired…

  11. The Next Generation of Personal Computers.

    ERIC Educational Resources Information Center

    Crecine, John P.

    1986-01-01

    Discusses factors converging to create high-capacity, low-cost nature of next generation of microcomputers: a coherent vision of what graphics workstation and future computing environment should be like; hardware developments leading to greater storage capacity at lower costs; and development of software and expertise to exploit computing power…

  12. The IBM PC as an Online Search Machine--Part 2: Physiology for Searchers.

    ERIC Educational Resources Information Center

    Kolner, Stuart J.

    1985-01-01

    Enumerates "hardware problems" associated with use of the IBM personal computer as an online search machine: purchase of machinery, unpacking of parts, and assembly into a properly functioning computer. Components that allow transformations of computer into a search machine (combination boards, printer, modem) and diagnostics software…

  13. Special Report on the Data Collection Programs for the Ground Based Nitrogen Washout Experiment. Volume 2 - Detailed Program Descriptions, Listings, Examples and Hardware Specifications

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Personal data input, decompression data, nitrogen washout, nitrogen data, and update computer programs are described. Input data and formats; program output, reports, and data; program flowcharts; program listings; sample runs with input and output pages; hardware operation; and engineering data are provided.

  14. Parallel approach in RDF query processing

    NASA Astrophysics Data System (ADS)

    Vajgl, Marek; Parenica, Jan

    2017-07-01

    Parallel approach is nowadays a very cheap solution to increase computational power due to possibility of usage of multithreaded computational units. This hardware became typical part of nowadays personal computers or notebooks and is widely spread. This contribution deals with experiments how evaluation of computational complex algorithm of the inference over RDF data can be parallelized over graphical cards to decrease computational time.

  15. Software-hardware complex for the input of telemetric information obtained from rocket studies of the radiation of the earth's upper atmosphere

    NASA Astrophysics Data System (ADS)

    Bazdrov, I. I.; Bortkevich, V. S.; Khokhlov, V. N.

    2004-10-01

    This paper describes a software-hardware complex for the input into a personal computer of telemetric information obtained by means of telemetry stations TRAL KR28, RTS-8, and TRAL K2N. Structural and functional diagrams are given of the input device and the hardware complex. Results that characterize the features of the input process and selective data of optical measurements of atmospheric radiation are given. © 2004

  16. Computer-Assisted Instruction for Severely Handicapped Persons: A Program Based on Stimulus Control Research Modifying Current Software and Hardware. November 1, 1988-April 1, 1990. Final Report.

    ERIC Educational Resources Information Center

    Karsh, Kathryn G.

    This final report describes activities of a federally funded project which developed an educational computer-assisted instructional program for persons with severe disabilities. A preliminary review of the literature identified specific inadequacies of most software for this population, such as: too few examples of a task or concept thus limiting…

  17. Software Reviews.

    ERIC Educational Resources Information Center

    Wulfson, Stephen, Ed.

    1990-01-01

    Reviewed are six computer software packages including "Lunar Greenhouse,""Dyno-Quest,""How Weather Works,""Animal Trackers,""Personal Science Laboratory," and "The Skeletal and Muscular Systems." Availability, functional, and hardware requirements are discussed. (CW)

  18. Pre-Hardware Optimization of Spacecraft Image Processing Algorithms and Hardware Implementation

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Petrick, David J.; Flatley, Thomas P.; Hestnes, Phyllis; Jentoft-Nilsen, Marit; Day, John H. (Technical Monitor)

    2002-01-01

    Spacecraft telemetry rates and telemetry product complexity have steadily increased over the last decade presenting a problem for real-time processing by ground facilities. This paper proposes a solution to a related problem for the Geostationary Operational Environmental Spacecraft (GOES-8) image data processing and color picture generation application. Although large super-computer facilities are the obvious heritage solution, they are very costly, making it imperative to seek a feasible alternative engineering solution at a fraction of the cost. The proposed solution is based on a Personal Computer (PC) platform and synergy of optimized software algorithms, and reconfigurable computing hardware (RC) technologies, such as Field Programmable Gate Arrays (FPGA) and Digital Signal Processors (DSP). It has been shown that this approach can provide superior inexpensive performance for a chosen application on the ground station or on-board a spacecraft.

  19. Virtual personal assistance

    NASA Astrophysics Data System (ADS)

    Aditya, K.; Biswadeep, G.; Kedar, S.; Sundar, S.

    2017-11-01

    Human computer communication has growing demand recent days. The new generation of autonomous technology aspires to give computer interfaces emotional states that relate and consider user as well as system environment considerations. In the existing computational model is based an artificial intelligent and externally by multi-modal expression augmented with semi human characteristics. But the main problem with is multi-model expression is that the hardware control given to the Artificial Intelligence (AI) is very limited. So, in our project we are trying to give the Artificial Intelligence (AI) more control on the hardware. There are two main parts such as Speech to Text (STT) and Text to Speech (TTS) engines are used accomplish the requirement. In this work, we are using a raspberry pi 3, a speaker and a mic as hardware and for the programing part, we are using python scripting.

  20. The cloud services innovation platform- enabling service-based environmental modelling using infrastructure-as-a-service cloud computing

    USDA-ARS?s Scientific Manuscript database

    Service oriented architectures allow modelling engines to be hosted over the Internet abstracting physical hardware configuration and software deployments from model users. Many existing environmental models are deployed as desktop applications running on user's personal computers (PCs). Migration ...

  1. The Computer and Recreation.

    ERIC Educational Resources Information Center

    Edwards, Paul

    The paper examines the applications of microcomputers to recreation programing for blind persons. The accessibility of microcomputers to this population is discussed, and the advantages as well as disadvantages of speech synthesis equipment are noted. Information is presented on the modification of hardware for Radio Shack and Apple computers.…

  2. A performance evaluation of the IBM 370/XT personal computer

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Triantafyllopoulos, Spiros

    1984-01-01

    An evaluation of the IBM 370/XT personal computer is given. This evaluation focuses primarily on the use of the 370/XT for scientific and technical applications and applications development. A measurement of the capabilities of the 370/XT was performed by means of test programs which are presented. Also included is a review of facilities provided by the operating system (VM/PC), along with comments on the IBM 370/XT hardware configuration.

  3. Personal hygienic concerns in long term space flight

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Data from numerous experiments and hardware inventories were scanned for Skylab personal hygiene use. A computer program was formulated for predicting the degree of man's involvement with personal hygiene needs. A tabulation was kept for such events as water intake, frequency of urination and defecation, accidents or events requiring clean-up, methods of clean-up, microbiological environment and shower water contamination.

  4. INTEGRATED MONITORING HARDWARE DEVELOPMENTS AT LOS ALAMOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. PARKER; J. HALBIG; ET AL

    1999-09-01

    The hardware of the integrated monitoring system supports a family of instruments having a common internal architecture and firmware. Instruments can be easily configured from application-specific personality boards combined with common master-processor and high- and low-voltage power supply boards, and basic operating firmware. The instruments are designed to function autonomously to survive power and communication outages and to adapt to changing conditions. The personality boards allow measurement of gross gammas and neutrons, neutron coincidence and multiplicity, and gamma spectra. In addition, the Intelligent Local Node (ILON) provides a moderate-bandwidth network to tie together instruments, sensors, and computers.

  5. Electronic Networking as an Avenue of Enhanced Professional Interchange.

    ERIC Educational Resources Information Center

    Ratcliff, James L.

    Electronic networking is communication between two or more people that involves one or more telecommunications media. There is electronic networking software available for most computers, including IBM, Apple, and Radio Shack personal computers. Depending upon the sophistication of the hardware and software used, individuals and groups can…

  6. Limits on fundamental limits to computation.

    PubMed

    Markov, Igor L

    2014-08-14

    An indispensable part of our personal and working lives, computing has also become essential to industries and governments. Steady improvements in computer hardware have been supported by periodic doubling of transistor densities in integrated circuits over the past fifty years. Such Moore scaling now requires ever-increasing efforts, stimulating research in alternative hardware and stirring controversy. To help evaluate emerging technologies and increase our understanding of integrated-circuit scaling, here I review fundamental limits to computation in the areas of manufacturing, energy, physical space, design and verification effort, and algorithms. To outline what is achievable in principle and in practice, I recapitulate how some limits were circumvented, and compare loose and tight limits. Engineering difficulties encountered by emerging technologies may indicate yet unknown limits.

  7. 76 FR 19285 - Request for Information Regarding Electronic Disclosure by Employee Benefit Plans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-07

    ..., fiber optic and wireless networks; hardware improvements to servers and personal computers improving... electronic media. For instance, the 2009 U.S. Census Bureau Current Population Survey (Census) found that 76.... \\3\\ The Census information may be found at http://www.census.gov/population/www/socdemo/computer.html...

  8. The Cybermobile: A Gateway for Public Access to Network-Based Information.

    ERIC Educational Resources Information Center

    Drumm, John E.; Groom, Frank M.

    1997-01-01

    Though the bookmobile has fallen on hard times, the cybermobile, a technology platform combining personal computing, CD-ROMs, fiber network, and wireless access to the Internet, may be the next step in mobile library services. Discusses standard vehicle, computer hardware, software, wireless access, and alliances with users, vendors, and community…

  9. Computer Center: Setting Up a Microcomputer Center--1 Person's Perspective.

    ERIC Educational Resources Information Center

    Duhrkopf, Richard, Ed.; Collins, Michael, A. J., Ed.

    1988-01-01

    Considers eight components to be considered in setting up a microcomputer center for use with college classes. Discussions include hardware, software, physical facility, furniture, technical support, personnel, continuing financial expenditures, and security. (CW)

  10. Controlling Laboratory Processes From A Personal Computer

    NASA Technical Reports Server (NTRS)

    Will, H.; Mackin, M. A.

    1991-01-01

    Computer program provides natural-language process control from IBM PC or compatible computer. Sets up process-control system that either runs without operator or run by workers who have limited programming skills. Includes three smaller programs. Two of them, written in FORTRAN 77, record data and control research processes. Third program, written in Pascal, generates FORTRAN subroutines used by other two programs to identify user commands with device-driving routines written by user. Also includes set of input data allowing user to define user commands to be executed by computer. Requires personal computer operating under MS-DOS with suitable hardware interfaces to all controlled devices. Also requires FORTRAN 77 compiler and device drivers written by user.

  11. Cloud Computing for Pharmacometrics: Using AWS, NONMEM, PsN, Grid Engine, and Sonic

    PubMed Central

    Sanduja, S; Jewell, P; Aron, E; Pharai, N

    2015-01-01

    Cloud computing allows pharmacometricians to access advanced hardware, network, and security resources available to expedite analysis and reporting. Cloud-based computing environments are available at a fraction of the time and effort when compared to traditional local datacenter-based solutions. This tutorial explains how to get started with building your own personal cloud computer cluster using Amazon Web Services (AWS), NONMEM, PsN, Grid Engine, and Sonic. PMID:26451333

  12. Cloud Computing for Pharmacometrics: Using AWS, NONMEM, PsN, Grid Engine, and Sonic.

    PubMed

    Sanduja, S; Jewell, P; Aron, E; Pharai, N

    2015-09-01

    Cloud computing allows pharmacometricians to access advanced hardware, network, and security resources available to expedite analysis and reporting. Cloud-based computing environments are available at a fraction of the time and effort when compared to traditional local datacenter-based solutions. This tutorial explains how to get started with building your own personal cloud computer cluster using Amazon Web Services (AWS), NONMEM, PsN, Grid Engine, and Sonic.

  13. A direct-to-drive neural data acquisition system.

    PubMed

    Kinney, Justin P; Bernstein, Jacob G; Meyer, Andrew J; Barber, Jessica B; Bolivar, Marti; Newbold, Bryan; Scholvin, Jorg; Moore-Kochlacs, Caroline; Wentz, Christian T; Kopell, Nancy J; Boyden, Edward S

    2015-01-01

    Driven by the increasing channel count of neural probes, there is much effort being directed to creating increasingly scalable electrophysiology data acquisition (DAQ) systems. However, all such systems still rely on personal computers for data storage, and thus are limited by the bandwidth and cost of the computers, especially as the scale of recording increases. Here we present a novel architecture in which a digital processor receives data from an analog-to-digital converter, and writes that data directly to hard drives, without the need for a personal computer to serve as an intermediary in the DAQ process. This minimalist architecture may support exceptionally high data throughput, without incurring costs to support unnecessary hardware and overhead associated with personal computers, thus facilitating scaling of electrophysiological recording in the future.

  14. A direct-to-drive neural data acquisition system

    PubMed Central

    Kinney, Justin P.; Bernstein, Jacob G.; Meyer, Andrew J.; Barber, Jessica B.; Bolivar, Marti; Newbold, Bryan; Scholvin, Jorg; Moore-Kochlacs, Caroline; Wentz, Christian T.; Kopell, Nancy J.; Boyden, Edward S.

    2015-01-01

    Driven by the increasing channel count of neural probes, there is much effort being directed to creating increasingly scalable electrophysiology data acquisition (DAQ) systems. However, all such systems still rely on personal computers for data storage, and thus are limited by the bandwidth and cost of the computers, especially as the scale of recording increases. Here we present a novel architecture in which a digital processor receives data from an analog-to-digital converter, and writes that data directly to hard drives, without the need for a personal computer to serve as an intermediary in the DAQ process. This minimalist architecture may support exceptionally high data throughput, without incurring costs to support unnecessary hardware and overhead associated with personal computers, thus facilitating scaling of electrophysiological recording in the future. PMID:26388740

  15. Laboratory process control using natural language commands from a personal computer

    NASA Technical Reports Server (NTRS)

    Will, Herbert A.; Mackin, Michael A.

    1989-01-01

    PC software is described which provides flexible natural language process control capability with an IBM PC or compatible machine. Hardware requirements include the PC, and suitable hardware interfaces to all controlled devices. Software required includes the Microsoft Disk Operating System (MS-DOS) operating system, a PC-based FORTRAN-77 compiler, and user-written device drivers. Instructions for use of the software are given as well as a description of an application of the system.

  16. A DNA sequence analysis package for the IBM personal computer.

    PubMed Central

    Lagrimini, L M; Brentano, S T; Donelson, J E

    1984-01-01

    We present here a collection of DNA sequence analysis programs, called "PC Sequence" (PCS), which are designed to run on the IBM Personal Computer (PC). These programs are written in IBM PC compiled BASIC and take full advantage of the IBM PC's speed, error handling, and graphics capabilities. For a modest initial expense in hardware any laboratory can use these programs to quickly perform computer analysis on DNA sequences. They are written with the novice user in mind and require very little training or previous experience with computers. Also provided are a text editing program for creating and modifying DNA sequence files and a communications program which enables the PC to communicate with and collect information from mainframe computers and DNA sequence databases. PMID:6546433

  17. Programmable personality interface for the dynamic infrared scene generator (IRSG2)

    NASA Astrophysics Data System (ADS)

    Buford, James A., Jr.; Mobley, Scott B.; Mayhall, Anthony J.; Braselton, William J.

    1998-07-01

    As scene generator platforms begin to rely specifically on commercial off-the-shelf (COTS) hardware and software components, the need for high speed programmable personality interfaces (PPIs) are required for interfacing to Infrared (IR) flight computer/processors and complex IR projectors in the hardware-in-the-loop (HWIL) simulation facilities. Recent technological advances and innovative applications of established technologies are beginning to allow development of cost effective PPIs to interface to COTS scene generators. At the U.S. Army Aviation and Missile Command (AMCOM) Missile Research, Development, and Engineering Center (MRDEC) researchers have developed such a PPI to reside between the AMCOM MRDEC IR Scene Generator (IRSG) and either a missile flight computer or the dynamic Laser Diode Array Projector (LDAP). AMCOM MRDEC has developed several PPIs for the first and second generation IRSGs (IRSG1 and IRSG2), which are based on Silicon Graphics Incorporated (SGI) Onyx and Onyx2 computers with Reality Engine 2 (RE2) and Infinite Reality (IR/IR2) graphics engines. This paper provides an overview of PPIs designed, integrated, tested, and verified at AMCOM MRDEC, specifically the IRSG2's PPI.

  18. Los Alamos radiation transport code system on desktop computing platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briesmeister, J.F.; Brinkley, F.W.; Clark, B.A.

    The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. These codes were originally developed many years ago and have undergone continual improvement. With a large initial effort and continued vigilance, the codes are easily portable from one type of hardware to another. The performance of scientific work-stations (SWS) has evolved to the point that such platforms can be used routinely to perform sophisticated radiation transport calculations. As the personal computer (PC) performance approaches that of the SWS, the hardware options for desk-top radiation transport calculations expands considerably. Themore » current status of the radiation transport codes within the LARTCS is described: MCNP, SABRINA, LAHET, ONEDANT, TWODANT, TWOHEX, and ONELD. Specifically, the authors discuss hardware systems on which the codes run and present code performance comparisons for various machines.« less

  19. Automated Counting of Particles To Quantify Cleanliness

    NASA Technical Reports Server (NTRS)

    Rhode, James

    2005-01-01

    A machine vision system, similar to systems used in microbiological laboratories to count cultured microbes, has been proposed for quantifying the cleanliness of nominally precisely cleaned hardware by counting residual contaminant particles. The system would include a microscope equipped with an electronic camera and circuitry to digitize the camera output, a personal computer programmed with machine-vision and interface software, and digital storage media. A filter pad, through which had been aspirated solvent from rinsing the hardware in question, would be placed on the microscope stage. A high-resolution image of the filter pad would be recorded. The computer would analyze the image and present a histogram of sizes of particles on the filter. On the basis of the histogram and a measure of the desired level of cleanliness, the hardware would be accepted or rejected. If the hardware were accepted, the image would be saved, along with other information, as a quality record. If the hardware were rejected, the histogram and ancillary information would be recorded for analysis of trends. The software would perceive particles that are too large or too numerous to meet a specified particle-distribution profile. Anomalous particles or fibrous material would be flagged for inspection.

  20. RenderMan design principles

    NASA Technical Reports Server (NTRS)

    Apodaca, Tony; Porter, Tom

    1989-01-01

    The two worlds of interactive graphics and realistic graphics have remained separate. Fast graphics hardware runs simple algorithms and generates simple looking images. Photorealistic image synthesis software runs slowly on large expensive computers. The time has come for these two branches of computer graphics to merge. The speed and expense of graphics hardware is no longer the barrier to the wide acceptance of photorealism. There is every reason to believe that high quality image synthesis will become a standard capability of every graphics machine, from superworkstation to personal computer. The significant barrier has been the lack of a common language, an agreed-upon set of terms and conditions, for 3-D modeling systems to talk to 3-D rendering systems for computing an accurate rendition of that scene. Pixar has introduced RenderMan to serve as that common language. RenderMan, specifically the extensibility it offers in shading calculations, is discussed.

  1. An Exploratory Study on a Chest-Worn Computer for Evaluation of Diet, Physical Activity and Lifestyle

    PubMed Central

    Sun, Mingui; Burke, Lora E.; Baranowski, Thomas; Fernstrom, John D.; Zhang, Hong; Chen, Hsin-Chen; Bai, Yicheng; Li, Yuecheng; Li, Chengliu; Yue, Yaofeng; Li, Zhen; Nie, Jie; Sclabassi, Robert J.; Mao, Zhi-Hong; Jia, Wenyan

    2015-01-01

    Recently, wearable computers have become new members in the family of mobile electronic devices, adding new functions to those provided by smartphones and tablets. As “always-on” miniature computers in the personal space, they will play increasing roles in the field of healthcare. In this work, we present our development of eButton, a wearable computer designed as a personalized, attractive, and convenient chest pin in a circular shape. It contains a powerful microprocessor, numerous electronic sensors, and wireless communication links. We describe its design concepts, electronic hardware, data processing algorithms, and its applications to the evaluation of diet, physical activity and lifestyle in the study of obesity and other chronic diseases. PMID:25708374

  2. An exploratory study on a chest-worn computer for evaluation of diet, physical activity and lifestyle.

    PubMed

    Sun, Mingui; Burke, Lora E; Baranowski, Thomas; Fernstrom, John D; Zhang, Hong; Chen, Hsin-Chen; Bai, Yicheng; Li, Yuecheng; Li, Chengliu; Yue, Yaofeng; Li, Zhen; Nie, Jie; Sclabassi, Robert J; Mao, Zhi-Hong; Jia, Wenyan

    2015-01-01

    Recently, wearable computers have become new members in the family of mobile electronic devices, adding new functions to those provided by smart-phones and tablets. As "always-on" miniature computers in the personal space, they will play increasing roles in the field of healthcare. In this work, we present our development of eButton, a wearable computer designed as a personalized, attractive, and convenient chest pin in a circular shape. It contains a powerful microprocessor, numerous electronic sensors, and wireless communication links. We describe its design concepts, electronic hardware, data processing algorithms, and its applications to the evaluation of diet, physical activity and lifestyle in the study of obesity and other chronic diseases.

  3. Maintenance of Microcomputers. Manual and Apple II Session, IBM Session.

    ERIC Educational Resources Information Center

    Coffey, Michael A.; And Others

    This guide describes maintenance procedures for IBM and Apple personal computers, provides information on detecting and diagnosing problems, and details diagnostic programs. Included are discussions of printers, terminals, disks, disk drives, keyboards, hardware, and software. The text is supplemented by various diagrams. (EW)

  4. Princeton VLSI Project.

    DTIC Science & Technology

    1984-01-01

    software, or using a local area network of personal computers. Since the hardware is not designed around the algorithms, improvements in the sequential...Hall, 1982. [4] Robinson, RW., and N.C. Wormald. Numbers of Cubic Graphs. Journa [5] Lane, T. Carnegie-Mellon University. Personal communication, 1/31...34Amdahl’s constant." It is not entirely clear why commercial machines have stayed close to this value, but market forces appear to have played an

  5. The Technological Evolution in Schools: Reflections and Projections.

    ERIC Educational Resources Information Center

    Higgins, James E.

    1991-01-01

    Presents a first-person account of one teacher's experiences with computer hardware and software. The article discusses various programs and applications, such as integrated learning systems, database searching via CD-ROM, desktop publishing, authoring programs, and indicates future changes in instruction with increasing use of technology. (SM)

  6. Moving beyond the White Cane: Building an Online Learning Environment for the Visually Impaired Professional.

    ERIC Educational Resources Information Center

    Mitchell, Donald P.; Scigliano, John A.

    2000-01-01

    Describes the development of an online learning environment for a visually impaired professional. Topics include physical barriers, intellectual barriers, psychological barriers, and technological barriers; selecting appropriate hardware and software; and combining technologies that include personal computers, Web-based resources, network…

  7. Embedded systems for supporting computer accessibility.

    PubMed

    Mulfari, Davide; Celesti, Antonio; Fazio, Maria; Villari, Massimo; Puliafito, Antonio

    2015-01-01

    Nowadays, customized AT software solutions allow their users to interact with various kinds of computer systems. Such tools are generally available on personal devices (e.g., smartphones, laptops and so on) commonly used by a person with a disability. In this paper, we investigate a way of using the aforementioned AT equipments in order to access many different devices without assistive preferences. The solution takes advantage of open source hardware and its core component consists of an affordable Linux embedded system: it grabs data coming from the assistive software, which runs on the user's personal device, then, after processing, it generates native keyboard and mouse HID commands for the target computing device controlled by the end user. This process supports any operating system available on the target machine and it requires no specialized software installation; therefore the user with a disability can rely on a single assistive tool to control a wide range of computing platforms, including conventional computers and many kinds of mobile devices, which receive input commands through the USB HID protocol.

  8. The Changing Business Environment: Implications for Vocational Curricula. State-of-the-Art Paper.

    ERIC Educational Resources Information Center

    Smith, E. Ray; Stallard, John J.

    The widespread use of the micro/personal computer and related technological advancements are having important impacts on information management in the modern electronic office. Some of the most common software applications include word processing, spread sheet analysis, data management, graphics, and communications. Ancillary hardware/software…

  9. Pages from the Desktop: Desktop Publishing Today.

    ERIC Educational Resources Information Center

    Crawford, Walt

    1994-01-01

    Discusses changes that have made desktop publishing appealing and reasonably priced. Hardware, software, and printer options for getting started and moving on, typeface developments, and the key characteristics of desktop publishing are described. The author's notes on 33 articles from the personal computing literature from January-March 1994 are…

  10. Automated Bilingual Circulation System Using PC Local Area Networks.

    ERIC Educational Resources Information Center

    Iskanderani, A. I.; Anwar, M. A.

    1992-01-01

    Describes a personal computer and LAN-based automated circulation system capable of handling both Arabic and Latin characters that was developed for use at King Abdullaziz University (Jeddah, Saudi Arabia). Outlines system requirements, system structure, hardware needs, and individual functional modules of the system. Numerous examples and flow…

  11. CRYSNET manual. Informal report. [Hardware and software of crystallographic computing network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None,

    1976-07-01

    This manual describes the hardware and software which together make up the crystallographic computing network (CRYSNET). The manual is intended as a users' guide and also provides general information for persons without any experience with the system. CRYSNET is a network of intelligent remote graphics terminals that are used to communicate with the CDC Cyber 70/76 computing system at the Brookhaven National Laboratory (BNL) Central Scientific Computing Facility. Terminals are in active use by four research groups in the field of crystallography. A protein data bank has been established at BNL to store in machine-readable form atomic coordinates and othermore » crystallographic data for macromolecules. The bank currently includes data for more than 20 proteins. This structural information can be accessed at BNL directly by the CRYSNET graphics terminals. More than two years of experience has been accumulated with CRYSNET. During this period, it has been demonstrated that the terminals, which provide access to a large, fast third-generation computer, plus stand-alone interactive graphics capability, are useful for computations in crystallography, and in a variety of other applications as well. The terminal hardware, the actual operations of the terminals, and the operations of the BNL Central Facility are described in some detail, and documentation of the terminal and central-site software is given. (RWR)« less

  12. A haptic interface for virtual simulation of endoscopic surgery.

    PubMed

    Rosenberg, L B; Stredney, D

    1996-01-01

    Virtual reality can be described as a convincingly realistic and naturally interactive simulation in which the user is given a first person illusion of being immersed within a computer generated environment While virtual reality systems offer great potential to reduce the cost and increase the quality of medical training, many technical challenges must be overcome before such simulation platforms offer effective alternatives to more traditional training means. A primary challenge in developing effective virtual reality systems is designing the human interface hardware which allows rich sensory information to be presented to users in natural ways. When simulating a given manual procedure, task specific human interface requirements dictate task specific human interface hardware. The following paper explores the design of human interface hardware that satisfies the task specific requirements of virtual reality simulation of Endoscopic surgical procedures. Design parameters were derived through direct cadaver studies and interviews with surgeons. Final hardware design is presented.

  13. The personal computer and GP-B management. [Gravity Probe experiment

    NASA Technical Reports Server (NTRS)

    Neighbors, A. K.

    1986-01-01

    The Gravity Probe-B (GP-B) experiment is one of the most sophisticated and challenging developments to be undertaken by NASA. Its objective is to measure the relativistic drift of gyroscopes in orbit about the earth. In this paper, the experiment is described, and the strategy of phased procurements for accomplishing the engineering development of the hardware is discussed. The microcomputer is a very convenient and powerful tool in the management of GP-B. It is used in creating and monitoring such project data as schedules, budgets, hardware procurements and technical and interface requirements. Commercially available software in word processing, database management, communications, spreadsheet, graphics and program management are used. Examples are described of the efficacy of the application of the computer by the management team.

  14. Pre-Hardware Optimization of Spacecraft Image Processing Software Algorithms and Hardware Implementation

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Flatley, Thomas P.; Hestnes, Phyllis; Jentoft-Nilsen, Marit; Petrick, David J.; Day, John H. (Technical Monitor)

    2001-01-01

    Spacecraft telemetry rates have steadily increased over the last decade presenting a problem for real-time processing by ground facilities. This paper proposes a solution to a related problem for the Geostationary Operational Environmental Spacecraft (GOES-8) image processing application. Although large super-computer facilities are the obvious heritage solution, they are very costly, making it imperative to seek a feasible alternative engineering solution at a fraction of the cost. The solution is based on a Personal Computer (PC) platform and synergy of optimized software algorithms and re-configurable computing hardware technologies, such as Field Programmable Gate Arrays (FPGA) and Digital Signal Processing (DSP). It has been shown in [1] and [2] that this configuration can provide superior inexpensive performance for a chosen application on the ground station or on-board a spacecraft. However, since this technology is still maturing, intensive pre-hardware steps are necessary to achieve the benefits of hardware implementation. This paper describes these steps for the GOES-8 application, a software project developed using Interactive Data Language (IDL) (Trademark of Research Systems, Inc.) on a Workstation/UNIX platform. The solution involves converting the application to a PC/Windows/RC platform, selected mainly by the availability of low cost, adaptable high-speed RC hardware. In order for the hybrid system to run, the IDL software was modified to account for platform differences. It was interesting to examine the gains and losses in performance on the new platform, as well as unexpected observations before implementing hardware. After substantial pre-hardware optimization steps, the necessity of hardware implementation for bottleneck code in the PC environment became evident and solvable beginning with the methodology described in [1], [2], and implementing a novel methodology for this specific application [6]. The PC-RC interface bandwidth problem for the class of applications with moderate input-output data rates but large intermediate multi-thread data streams has been addressed and mitigated. This opens a new class of satellite image processing applications for bottleneck problems solution using RC technologies. The issue of a science algorithm level of abstraction necessary for RC hardware implementation is also described. Selected Matlab functions already implemented in hardware were investigated for their direct applicability to the GOES-8 application with the intent to create a library of Matlab and IDL RC functions for ongoing work. A complete class of spacecraft image processing applications using embedded re-configurable computing technology to meet real-time requirements, including performance results and comparison with the existing system, is described in this paper.

  15. A parallel-processing approach to computing for the geographic sciences; applications and systems enhancements

    USGS Publications Warehouse

    Crane, Michael; Steinwand, Dan; Beckmann, Tim; Krpan, Greg; Liu, Shu-Guang; Nichols, Erin; Haga, Jim; Maddox, Brian; Bilderback, Chris; Feller, Mark; Homer, George

    2001-01-01

    The overarching goal of this project is to build a spatially distributed infrastructure for information science research by forming a team of information science researchers and providing them with similar hardware and software tools to perform collaborative research. Four geographically distributed Centers of the U.S. Geological Survey (USGS) are developing their own clusters of low-cost, personal computers into parallel computing environments that provide a costeffective way for the USGS to increase participation in the high-performance computing community. Referred to as Beowulf clusters, these hybrid systems provide the robust computing power required for conducting information science research into parallel computing systems and applications.

  16. 41 CFR Appendix A to Part 60 - 300-Guidelines on a Contractor's Duty To Provide Reasonable Accommodation

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... include providing adaptive hardware and software for computers, electronic visual aids, braille devices, talking calculators, magnifiers, audio recordings and braille or large-print materials. For persons with... vision or hearing impaired, e.g., by making an announcement available in braille, in large print, or on...

  17. Hypervisors as a Foothold for Personal Computer Security: An Agenda for the Research Community

    DTIC Science & Technology

    2012-01-13

    unintrusive solutions that boost security. For example, gamers are even buying hardware tokens to protect their World of Warcraft accounts [5]. Build...security technology. http://www. vmware.com/technology/security/vmsafe.html. [4] VNC. http://en.wikipedia.org/wiki/VNC. [5] World of warcraft to sell

  18. Editors and Hardware: Three Case Studies in Technology and Newspaper Management.

    ERIC Educational Resources Information Center

    Sylvie, George; Danielson, Wayne

    A study examined the impact on newspaper managers of three emerging technologies: videotex, personal computer networks, and pagination. The study predicted that: (1) the greater the relative advantage and compatibility of a technology, the less likely will the manager need to pursue motivational and controlling measures in getting subordinates to…

  19. Computer viruses

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.

    1988-01-01

    The worm, Trojan horse, bacterium, and virus are destructive programs that attack information stored in a computer's memory. Virus programs, which propagate by incorporating copies of themselves into other programs, are a growing menace in the late-1980s world of unprotected, networked workstations and personal computers. Limited immunity is offered by memory protection hardware, digitally authenticated object programs,and antibody programs that kill specific viruses. Additional immunity can be gained from the practice of digital hygiene, primarily the refusal to use software from untrusted sources. Full immunity requires attention in a social dimension, the accountability of programmers.

  20. Building A Help Desk System

    ERIC Educational Resources Information Center

    O'Shea, Sheryl

    2005-01-01

    Are you trying to support an entire school district full of computers with just a few hardware technicians? Do you have a non-technical person answering the phone? Are the teachers getting upset because of the length of time it takes to resolve their issues? Unfortunately, I had to answer yes to all three questions. Our school district includes…

  1. East-West paths to unconventional computing.

    PubMed

    Adamatzky, Andrew; Akl, Selim; Burgin, Mark; Calude, Cristian S; Costa, José Félix; Dehshibi, Mohammad Mahdi; Gunji, Yukio-Pegio; Konkoli, Zoran; MacLennan, Bruce; Marchal, Bruno; Margenstern, Maurice; Martínez, Genaro J; Mayne, Richard; Morita, Kenichi; Schumann, Andrew; Sergeyev, Yaroslav D; Sirakoulis, Georgios Ch; Stepney, Susan; Svozil, Karl; Zenil, Hector

    2017-12-01

    Unconventional computing is about breaking boundaries in thinking, acting and computing. Typical topics of this non-typical field include, but are not limited to physics of computation, non-classical logics, new complexity measures, novel hardware, mechanical, chemical and quantum computing. Unconventional computing encourages a new style of thinking while practical applications are obtained from uncovering and exploiting principles and mechanisms of information processing in and functional properties of, physical, chemical and living systems; in particular, efficient algorithms are developed, (almost) optimal architectures are designed and working prototypes of future computing devices are manufactured. This article includes idiosyncratic accounts of 'unconventional computing' scientists reflecting on their personal experiences, what attracted them to the field, their inspirations and discoveries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Instrumentino: An Open-Source Software for Scientific Instruments.

    PubMed

    Koenka, Israel Joel; Sáiz, Jorge; Hauser, Peter C

    2015-01-01

    Scientists often need to build dedicated computer-controlled experimental systems. For this purpose, it is becoming common to employ open-source microcontroller platforms, such as the Arduino. These boards and associated integrated software development environments provide affordable yet powerful solutions for the implementation of hardware control of transducers and acquisition of signals from detectors and sensors. It is, however, a challenge to write programs that allow interactive use of such arrangements from a personal computer. This task is particularly complex if some of the included hardware components are connected directly to the computer and not via the microcontroller. A graphical user interface framework, Instrumentino, was therefore developed to allow the creation of control programs for complex systems with minimal programming effort. By writing a single code file, a powerful custom user interface is generated, which enables the automatic running of elaborate operation sequences and observation of acquired experimental data in real time. The framework, which is written in Python, allows extension by users, and is made available as an open source project.

  3. Hardware based redundant multi-threading inside a GPU for improved reliability

    DOEpatents

    Sridharan, Vilas; Gurumurthi, Sudhanva

    2015-05-05

    A system and method for verifying computation output using computer hardware are provided. Instances of computation are generated and processed on hardware-based processors. As instances of computation are processed, each instance of computation receives a load accessible to other instances of computation. Instances of output are generated by processing the instances of computation. The instances of output are verified against each other in a hardware based processor to ensure accuracy of the output.

  4. Cloud computing approaches to accelerate drug discovery value chain.

    PubMed

    Garg, Vibhav; Arora, Suchir; Gupta, Chitra

    2011-12-01

    Continued advancements in the area of technology have helped high throughput screening (HTS) evolve from a linear to parallel approach by performing system level screening. Advanced experimental methods used for HTS at various steps of drug discovery (i.e. target identification, target validation, lead identification and lead validation) can generate data of the order of terabytes. As a consequence, there is pressing need to store, manage, mine and analyze this data to identify informational tags. This need is again posing challenges to computer scientists to offer the matching hardware and software infrastructure, while managing the varying degree of desired computational power. Therefore, the potential of "On-Demand Hardware" and "Software as a Service (SAAS)" delivery mechanisms cannot be denied. This on-demand computing, largely referred to as Cloud Computing, is now transforming the drug discovery research. Also, integration of Cloud computing with parallel computing is certainly expanding its footprint in the life sciences community. The speed, efficiency and cost effectiveness have made cloud computing a 'good to have tool' for researchers, providing them significant flexibility, allowing them to focus on the 'what' of science and not the 'how'. Once reached to its maturity, Discovery-Cloud would fit best to manage drug discovery and clinical development data, generated using advanced HTS techniques, hence supporting the vision of personalized medicine.

  5. Accessible high performance computing solutions for near real-time image processing for time critical applications

    NASA Astrophysics Data System (ADS)

    Bielski, Conrad; Lemoine, Guido; Syryczynski, Jacek

    2009-09-01

    High Performance Computing (HPC) hardware solutions such as grid computing and General Processing on a Graphics Processing Unit (GPGPU) are now accessible to users with general computing needs. Grid computing infrastructures in the form of computing clusters or blades are becoming common place and GPGPU solutions that leverage the processing power of the video card are quickly being integrated into personal workstations. Our interest in these HPC technologies stems from the need to produce near real-time maps from a combination of pre- and post-event satellite imagery in support of post-disaster management. Faster processing provides a twofold gain in this situation: 1. critical information can be provided faster and 2. more elaborate automated processing can be performed prior to providing the critical information. In our particular case, we test the use of the PANTEX index which is based on analysis of image textural measures extracted using anisotropic, rotation-invariant GLCM statistics. The use of this index, applied in a moving window, has been shown to successfully identify built-up areas in remotely sensed imagery. Built-up index image masks are important input to the structuring of damage assessment interpretation because they help optimise the workload. The performance of computing the PANTEX workflow is compared on two different HPC hardware architectures: (1) a blade server with 4 blades, each having dual quad-core CPUs and (2) a CUDA enabled GPU workstation. The reference platform is a dual CPU-quad core workstation and the PANTEX workflow total computing time is measured. Furthermore, as part of a qualitative evaluation, the differences in setting up and configuring various hardware solutions and the related software coding effort is presented.

  6. Use phase signals to promote lifetime extension for Windows PCs.

    PubMed

    Hickey, Stewart; Fitzpatrick, Colin; O'Connell, Maurice; Johnson, Michael

    2009-04-01

    This paper proposes a signaling methodology for personal computers. Signaling may be viewed as an ecodesign strategy that can positively influence the consumer to consumer (C2C) market process. A number of parameters are identified that can provide the basis for signal implementation. These include operating time, operating temperature, operating voltage, power cycle counts, hard disk drive (HDD) self-monitoring, and reporting technology (SMART) attributes and operating system (OS) event information. All these parameters are currently attainable or derivable via embedded technologies in modern desktop systems. A case study detailing a technical implementation of how the development of signals can be achieved in personal computers that incorporate Microsoft Windows operating systems is presented. Collation of lifetime temperature data from a system processor is demonstrated as a possible means of characterizing a usage profile for a desktop system. In addition, event log data is utilized for devising signals indicative of OS quality. The provision of lifetime usage data in the form of intuitive signals indicative of both hardware and software quality can in conjunction with consumer education facilitate an optimal remarketing strategy for used systems. This implementation requires no additional hardware.

  7. Application of a personal computer for the uncoupled vibration analysis of wind turbine blade and counterweight assemblies

    NASA Technical Reports Server (NTRS)

    White, P. R.; Little, R. R.

    1985-01-01

    A research effort was undertaken to develop personal computer based software for vibrational analysis. The software was developed to analytically determine the natural frequencies and mode shapes for the uncoupled lateral vibrations of the blade and counterweight assemblies used in a single bladed wind turbine. The uncoupled vibration analysis was performed in both the flapwise and chordwise directions for static rotor conditions. The effects of rotation on the uncoupled flapwise vibration of the blade and counterweight assemblies were evaluated for various rotor speeds up to 90 rpm. The theory, used in the vibration analysis codes, is based on a lumped mass formulation for the blade and counterweight assemblies. The codes are general so that other designs can be readily analyzed. The input for the codes is generally interactive to facilitate usage. The output of the codes is both tabular and graphical. Listings of the codes are provided. Predicted natural frequencies of the first several modes show reasonable agreement with experimental results. The analysis codes were originally developed on a DEC PDP 11/34 minicomputer and then downloaded and modified to run on an ITT XTRA personal computer. Studies conducted to evaluate the efficiency of running the programs on a personal computer as compared with the minicomputer indicated that, with the proper combination of hardware and software options, the efficiency of using a personal computer exceeds that of a minicomputer.

  8. A personal computer-based nuclear magnetic resonance spectrometer

    NASA Astrophysics Data System (ADS)

    Job, Constantin; Pearson, Robert M.; Brown, Michael F.

    1994-11-01

    Nuclear magnetic resonance (NMR) spectroscopy using personal computer-based hardware has the potential of enabling the application of NMR methods to fields where conventional state of the art equipment is either impractical or too costly. With such a strategy for data acquisition and processing, disciplines including civil engineering, agriculture, geology, archaeology, and others have the possibility of utilizing magnetic resonance techniques within the laboratory or conducting applications directly in the field. Another aspect is the possibility of utilizing existing NMR magnets which may be in good condition but unused because of outdated or nonrepairable electronics. Moreover, NMR applications based on personal computer technology may open up teaching possibilities at the college or even secondary school level. The goal of developing such a personal computer (PC)-based NMR standard is facilitated by existing technologies including logic cell arrays, direct digital frequency synthesis, use of PC-based electrical engineering software tools to fabricate electronic circuits, and the use of permanent magnets based on neodymium-iron-boron alloy. Utilizing such an approach, we have been able to place essentially an entire NMR spectrometer console on two printed circuit boards, with the exception of the receiver and radio frequency power amplifier. Future upgrades to include the deuterium lock and the decoupler unit are readily envisioned. The continued development of such PC-based NMR spectrometers is expected to benefit from the fast growing, practical, and low cost personal computer market.

  9. Personal computer security: part 1. Firewalls, antivirus software, and Internet security suites.

    PubMed

    Caruso, Ronald D

    2003-01-01

    Personal computer (PC) security in the era of the Health Insurance Portability and Accountability Act of 1996 (HIPAA) involves two interrelated elements: safeguarding the basic computer system itself and protecting the information it contains and transmits, including personal files. HIPAA regulations have toughened the requirements for securing patient information, requiring every radiologist with such data to take further precautions. Security starts with physically securing the computer. Account passwords and a password-protected screen saver should also be set up. A modern antivirus program can easily be installed and configured. File scanning and updating of virus definitions are simple processes that can largely be automated and should be performed at least weekly. A software firewall is also essential for protection from outside intrusion, and an inexpensive hardware firewall can provide yet another layer of protection. An Internet security suite yields additional safety. Regular updating of the security features of installed programs is important. Obtaining a moderate degree of PC safety and security is somewhat inconvenient but is necessary and well worth the effort. Copyright RSNA, 2003

  10. Microcomputer data acquisition and control.

    PubMed

    East, T D

    1986-01-01

    In medicine and biology there are many tasks that involve routine well defined procedures. These tasks are ideal candidates for computerized data acquisition and control. As the performance of microcomputers rapidly increases and cost continues to go down the temptation to automate the laboratory becomes great. To the novice computer user the choices of hardware and software are overwhelming and sadly most of the computer sales persons are not at all familiar with real-time applications. If you want to bill your patients you have hundreds of packaged systems to choose from; however, if you want to do real-time data acquisition the choices are very limited and confusing. The purpose of this chapter is to provide the novice computer user with the basics needed to set up a real-time data acquisition system with the common microcomputers. This chapter will cover the following issues necessary to establish a real time data acquisition and control system: Analysis of the research problem: Definition of the problem; Description of data and sampling requirements; Cost/benefit analysis. Choice of Microcomputer hardware and software: Choice of microprocessor and bus structure; Choice of operating system; Choice of layered software. Digital Data Acquisition: Parallel Data Transmission; Serial Data Transmission; Hardware and software available. Analog Data Acquisition: Description of amplitude and frequency characteristics of the input signals; Sampling theorem; Specification of the analog to digital converter; Hardware and software available; Interface to the microcomputer. Microcomputer Control: Analog output; Digital output; Closed-Loop Control. Microcomputer data acquisition and control in the 21st Century--What is in the future? High speed digital medical equipment networks; Medical decision making and artificial intelligence.

  11. Simple and powerful visual stimulus generator.

    PubMed

    Kremlácek, J; Kuba, M; Kubová, Z; Vít, F

    1999-02-01

    We describe a cheap, simple, portable and efficient approach to visual stimulation for neurophysiology which does not need any special hardware equipment. The method based on an animation technique uses the FLI autodesk animator format. This form of the animation is replayed by a special program ('player') providing synchronisation pulses toward recording system via parallel port. The 'player is running on an IBM compatible personal computer under MS-DOS operation system and stimulus is displayed on a VGA computer monitor. Various stimuli created with this technique for visual evoked potentials (VEPs) are presented.

  12. Hypermedia = hypercommunication

    NASA Technical Reports Server (NTRS)

    Laff, Mark R.

    1990-01-01

    New hardware and software technology gave application designers the freedom to use new realism in human computer interaction. High-quality images, motion video, stereo sound and music, speech, touch, gesture provide richer data channels between the person and the machine. Ultimately, this will lead to richer communication between people with the computer as an intermediary. The whole point of hyper-books, hyper-newspapers, virtual worlds, is to transfer the concept and relationships, the 'data structure', from the mind of creator to that of user. Some of the characteristics of this rich information channel are discussed, and some examples are presented.

  13. Management software for a universal device communication controller: application to monitoring and computerized infusions.

    PubMed

    Coussaert, E J; Cantraine, F R

    1996-11-01

    We designed a virtual device for a local area network observing, operating and connecting devices to a personal computer. To keep the widest field of application, we proceeded by using abstraction and specification rules of software engineering in the design and implementation of the hardware and software for the Infusion Monitor. We specially built a box of hardware to interface multiple medical instruments with different communication protocols to a PC via a single serial port. We called that box the Universal Device Communication Controller (UDCC). The use of the virtual device driver is illustrated by the Infusion Monitor implemented for the anaesthesia and intensive care workstation.

  14. A digitally implemented preambleless demodulator for maritime and mobile data communications

    NASA Astrophysics Data System (ADS)

    Chalmers, Harvey; Shenoy, Ajit; Verahrami, Farhad B.

    The hardware design and software algorithms for a low-bit-rate, low-cost, all-digital preambleless demodulator are described. The demodulator operates under severe high-noise conditions, fast Doppler frequency shifts, large frequency offsets, and multipath fading. Sophisticated algorithms, including a fast Fourier transform (FFT)-based burst acquisition algorithm, a cycle-slip resistant carrier phase tracker, an innovative Doppler tracker, and a fast acquisition symbol synchronizer, were developed and extensively simulated for reliable burst reception. The compact digital signal processor (DSP)-based demodulator hardware uses a unique personal computer test interface for downloading test data files. The demodulator test results demonstrate a near-ideal performance within 0.2 dB of theory.

  15. Profiling an application for power consumption during execution on a compute node

    DOEpatents

    Archer, Charles J; Blocksome, Michael A; Peters, Amanda E; Ratterman, Joseph D; Smith, Brian E

    2013-09-17

    Methods, apparatus, and products are disclosed for profiling an application for power consumption during execution on a compute node that include: receiving an application for execution on a compute node; identifying a hardware power consumption profile for the compute node, the hardware power consumption profile specifying power consumption for compute node hardware during performance of various processing operations; determining a power consumption profile for the application in dependence upon the application and the hardware power consumption profile for the compute node; and reporting the power consumption profile for the application.

  16. Integration of an open interface PC scene generator using COTS DVI converter hardware

    NASA Astrophysics Data System (ADS)

    Nordland, Todd; Lyles, Patrick; Schultz, Bret

    2006-05-01

    Commercial-Off-The-Shelf (COTS) personal computer (PC) hardware is increasingly capable of computing high dynamic range (HDR) scenes for military sensor testing at high frame rates. New electro-optical and infrared (EO/IR) scene projectors feature electrical interfaces that can accept the DVI output of these PC systems. However, military Hardware-in-the-loop (HWIL) facilities such as those at the US Army Aviation and Missile Research Development and Engineering Center (AMRDEC) utilize a sizeable inventory of existing projection systems that were designed to use the Silicon Graphics Incorporated (SGI) digital video port (DVP, also known as DVP2 or DD02) interface. To mate the new DVI-based scene generation systems to these legacy projection systems, CG2 Inc., a Quantum3D Company (CG2), has developed a DVI-to-DVP converter called Delta DVP. This device takes progressive scan DVI input, converts it to digital parallel data, and combines and routes color components to derive a 16-bit wide luminance channel replicated on a DVP output interface. The HWIL Functional Area of AMRDEC has developed a suite of modular software to perform deterministic real-time, wave band-specific rendering of sensor scenes, leveraging the features of commodity graphics hardware and open source software. Together, these technologies enable sensor simulation and test facilities to integrate scene generation and projection components with diverse pedigrees.

  17. Implementation of data acquisition interface using on-board field-programmable gate array (FPGA) universal serial bus (USB) link

    NASA Astrophysics Data System (ADS)

    Yussup, N.; Ibrahim, M. M.; Lombigit, L.; Rahman, N. A. A.; Zin, M. R. M.

    2014-02-01

    Typically a system consists of hardware as the controller and software which is installed in the personal computer (PC). In the effective nuclear detection, the hardware involves the detection setup and the electronics used, with the software consisting of analysis tools and graphical display on PC. A data acquisition interface is necessary to enable the communication between the controller hardware and PC. Nowadays, Universal Serial Bus (USB) has become a standard connection method for computer peripherals and has replaced many varieties of serial and parallel ports. However the implementation of USB is complex. This paper describes the implementation of data acquisition interface between a field-programmable gate array (FPGA) board and a PC by exploiting the USB link of the FPGA board. The USB link is based on an FTDI chip which allows direct access of input and output to the Joint Test Action Group (JTAG) signals from a USB host and a complex programmable logic device (CPLD) with a 24 MHz clock input to the USB link. The implementation and results of using the USB link of FPGA board as the data interfacing are discussed.

  18. Implementation of data acquisition interface using on-board field-programmable gate array (FPGA) universal serial bus (USB) link

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yussup, N.; Ibrahim, M. M.; Lombigit, L.

    Typically a system consists of hardware as the controller and software which is installed in the personal computer (PC). In the effective nuclear detection, the hardware involves the detection setup and the electronics used, with the software consisting of analysis tools and graphical display on PC. A data acquisition interface is necessary to enable the communication between the controller hardware and PC. Nowadays, Universal Serial Bus (USB) has become a standard connection method for computer peripherals and has replaced many varieties of serial and parallel ports. However the implementation of USB is complex. This paper describes the implementation of datamore » acquisition interface between a field-programmable gate array (FPGA) board and a PC by exploiting the USB link of the FPGA board. The USB link is based on an FTDI chip which allows direct access of input and output to the Joint Test Action Group (JTAG) signals from a USB host and a complex programmable logic device (CPLD) with a 24 MHz clock input to the USB link. The implementation and results of using the USB link of FPGA board as the data interfacing are discussed.« less

  19. [Hardware for graphics systems].

    PubMed

    Goetz, C

    1991-02-01

    In all personal computer applications, be it for private or professional use, the decision of which "brand" of computer to buy is of central importance. In the USA Apple computers are mainly used in universities, while in Europe computers of the so-called "industry standard" by IBM (or clones thereof) have been increasingly used for many years. Independently of any brand name considerations, the computer components purchased must meet the current (and projected) needs of the user. Graphic capabilities and standards, processor speed, the use of co-processors, as well as input and output devices such as "mouse", printers and scanners are discussed. This overview is meant to serve as a decision aid. Potential users are given a short but detailed summary of current technical features.

  20. A test matrix sequencer for research test facility automation

    NASA Technical Reports Server (NTRS)

    Mccartney, Timothy P.; Emery, Edward F.

    1990-01-01

    The hardware and software configuration of a Test Matrix Sequencer, a general purpose test matrix profiler that was developed for research test facility automation at the NASA Lewis Research Center, is described. The system provides set points to controllers and contact closures to data systems during the course of a test. The Test Matrix Sequencer consists of a microprocessor controlled system which is operated from a personal computer. The software program, which is the main element of the overall system is interactive and menu driven with pop-up windows and help screens. Analog and digital input/output channels can be controlled from a personal computer using the software program. The Test Matrix Sequencer provides more efficient use of aeronautics test facilities by automating repetitive tasks that were once done manually.

  1. Profiling an application for power consumption during execution on a plurality of compute nodes

    DOEpatents

    Archer, Charles J.; Blocksome, Michael A.; Peters, Amanda E.; Ratterman, Joseph D.; Smith, Brian E.

    2012-08-21

    Methods, apparatus, and products are disclosed for profiling an application for power consumption during execution on a compute node that include: receiving an application for execution on a compute node; identifying a hardware power consumption profile for the compute node, the hardware power consumption profile specifying power consumption for compute node hardware during performance of various processing operations; determining a power consumption profile for the application in dependence upon the application and the hardware power consumption profile for the compute node; and reporting the power consumption profile for the application.

  2. Efficient FIR Filter Implementations for Multichannel BCIs Using Xilinx System Generator.

    PubMed

    Ghani, Usman; Wasim, Muhammad; Khan, Umar Shahbaz; Mubasher Saleem, Muhammad; Hassan, Ali; Rashid, Nasir; Islam Tiwana, Mohsin; Hamza, Amir; Kashif, Amir

    2018-01-01

    Background . Brain computer interface (BCI) is a combination of software and hardware communication protocols that allow brain to control external devices. Main purpose of BCI controlled external devices is to provide communication medium for disabled persons. Now these devices are considered as a new way to rehabilitate patients with impunities. There are certain potentials present in electroencephalogram (EEG) that correspond to specific event. Main issue is to detect such event related potentials online in such a low signal to noise ratio (SNR). In this paper we propose a method that will facilitate the concept of online processing by providing an efficient filtering implementation in a hardware friendly environment by switching to finite impulse response (FIR). Main focus of this research is to minimize latency and computational delay of preprocessing related to any BCI application. Four different finite impulse response (FIR) implementations along with large Laplacian filter are implemented in Xilinx System Generator. Efficiency of 25% is achieved in terms of reduced number of coefficients and multiplications which in turn reduce computational delays accordingly.

  3. Eye gaze correction with stereovision for video-teleconferencing.

    PubMed

    Yang, Ruigang; Zhang, Zhengyou

    2004-07-01

    The lack of eye contact in desktop video teleconferencing substantially reduces the effectiveness of video contents. While expensive and bulky hardware is available on the market to correct eye gaze, researchers have been trying to provide a practical software-based solution to bring video-teleconferencing one step closer to the mass market. This paper presents a novel approach: Based on stereo analysis combined with rich domain knowledge (a personalized face model), we synthesize, using graphics hardware, a virtual video that maintains eye contact. A 3D stereo head tracker with a personalized face model is used to compute initial correspondences across two views. More correspondences are then added through template and feature matching. Finally, all the correspondence information is fused together for view synthesis using view morphing techniques. The combined methods greatly enhance the accuracy and robustness of the synthesized views. Our current system is able to generate an eye-gaze corrected video stream at five frames per second on a commodity 1 GHz PC.

  4. Round Girls in Square Computers: Feminist Perspectives on the Aesthetics of Computer Hardware.

    ERIC Educational Resources Information Center

    Carr-Chellman, Alison A.; Marra, Rose M.; Roberts, Shari L.

    2002-01-01

    Considers issues related to computer hardware, aesthetics, and gender. Explores how gender has influenced the design of computer hardware and how these gender-driven aesthetics may have worked to maintain, extend, or alter gender distinctions, roles, and stereotypes; discusses masculine media representations; and presents an alternative model.…

  5. Hardware Testing and System Evaluation: Procedures to Evaluate Commodity Hardware for Production Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goebel, J

    2004-02-27

    Without stable hardware any program will fail. The frustration and expense of supporting bad hardware can drain an organization, delay progress, and frustrate everyone involved. At Stanford Linear Accelerator Center (SLAC), we have created a testing method that helps our group, SLAC Computer Services (SCS), weed out potentially bad hardware and purchase the best hardware at the best possible cost. Commodity hardware changes often, so new evaluations happen periodically each time we purchase systems and minor re-evaluations happen for revised systems for our clusters, about twice a year. This general framework helps SCS perform correct, efficient evaluations. This article outlinesmore » SCS's computer testing methods and our system acceptance criteria. We expanded the basic ideas to other evaluations such as storage, and we think the methods outlined in this article has helped us choose hardware that is much more stable and supportable than our previous purchases. We have found that commodity hardware ranges in quality, so systematic method and tools for hardware evaluation were necessary. This article is based on one instance of a hardware purchase, but the guidelines apply to the general problem of purchasing commodity computer systems for production computational work.« less

  6. Adaptive awareness for personal and small group decision making.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perano, Kenneth J.; Tucker, Steve; Pancerella, Carmen M.

    2003-12-01

    Many situations call for the use of sensors monitoring physiological and environmental data. In order to use the large amounts of sensor data to affect decision making, we are coupling heterogeneous sensors with small, light-weight processors, other powerful computers, wireless communications, and embedded intelligent software. The result is an adaptive awareness and warning tool, which provides both situation awareness and personal awareness to individuals and teams. Central to this tool is a sensor-independent architecture, which combines both software agents and a reusable core software framework that manages the available hardware resources and provides services to the agents. Agents can recognizemore » cues from the data, warn humans about situations, and act as decision-making aids. Within the agents, self-organizing maps (SOMs) are used to process physiological data in order to provide personal awareness. We have employed a novel clustering algorithm to train the SOM to discern individual body states and activities. This awareness tool has broad applicability to emergency teams, military squads, military medics, individual exercise and fitness monitoring, health monitoring for sick and elderly persons, and environmental monitoring in public places. This report discusses our hardware decisions, software framework, and a pilot awareness tool, which has been developed at Sandia National Laboratories.« less

  7. Cellular computational platform and neurally inspired elements thereof

    DOEpatents

    Okandan, Murat

    2016-11-22

    A cellular computational platform is disclosed that includes a multiplicity of functionally identical, repeating computational hardware units that are interconnected electrically and optically. Each computational hardware unit includes a reprogrammable local memory and has interconnections to other such units that have reconfigurable weights. Each computational hardware unit is configured to transmit signals into the network for broadcast in a protocol-less manner to other such units in the network, and to respond to protocol-less broadcast messages that it receives from the network. Each computational hardware unit is further configured to reprogram the local memory in response to incoming electrical and/or optical signals.

  8. Person-like intelligent systems architectures for robotic shared control and automated operations

    NASA Technical Reports Server (NTRS)

    Erickson, Jon D.; Aucoin, Paschal J., Jr.; Ossorio, Peter G.

    1992-01-01

    An approach to rendering robotic systems as 'personlike' as possible to achieve needed capabilities is outlined. Human characteristics such as knowledge, motivation, know-how, performance, achievement and individual differences corresponding to propensities and abilities can be supplied, within limits, with computing software and hardware to robotic systems provided with sufficiently rich sensory configurations. Pushing these limits is the developmental path for more and more personlike robotic systems. The portions of the Person Concept that appear to be most directly relevant to this effort are described in the following topics: reality concepts (the state-of-affairs system and descriptive formats, behavior as intentional action, individual persons (person characteristics), social patterns of behavior (social practices), and boundary conditions (status maxims). Personlike robotic themes and considerations for a technical development plan are also discussed.

  9. The evolution of the ISOLDE control system

    NASA Astrophysics Data System (ADS)

    Jonsson, O. C.; Catherall, R.; Deloose, I.; Drumm, P.; Evensen, A. H. M.; Gase, K.; Focker, G. J.; Fowler, A.; Kugler, E.; Lettry, J.; Olesen, G.; Ravn, H. L.; Isolde Collaboration

    The ISOLDE on-line mass separator facility is operating on a Personal Computer based control system since spring 1992. Front End Computers accessing the hardware are controlled from consoles running Microsoft Windows ™ through a Novell NetWare4 ™ local area network. The control system is transparently integrated in the CERN wide office network and makes heavy use of the CERN standard office application programs to control and to document the running of the ISOLDE isotope separators. This paper recalls the architecture of the control system, shows its recent developments and gives some examples of its graphical user interface.

  10. The evolution of the ISOLDE control system

    NASA Astrophysics Data System (ADS)

    Jonsson, O. C.; Catherall, R.; Deloose, I.; Evensen, A. H. M.; Gase, K.; Focker, G. J.; Fowler, A.; Kugler, E.; Lettry, J.; Olesen, G.; Ravn, H. L.; Drumm, P.

    1996-04-01

    The ISOLDE on-line mass separator facility is operating on a Personal Computer based control system since spring 1992. Front End Computers accessing the hardware are controlled from consoles running Microsoft Windows® through a Novell NetWare4® local area network. The control system is transparently integrated in the CERN wide office network and makes heavy use of the CERN standard office application programs to control and to document the running of the ISOLDE isotope separators. This paper recalls the architecture of the control system, shows its recent developments and gives some examples of its graphical user interface.

  11. Computer hardware fault administration

    DOEpatents

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-09-14

    Computer hardware fault administration carried out in a parallel computer, where the parallel computer includes a plurality of compute nodes. The compute nodes are coupled for data communications by at least two independent data communications networks, where each data communications network includes data communications links connected to the compute nodes. Typical embodiments carry out hardware fault administration by identifying a location of a defective link in the first data communications network of the parallel computer and routing communications data around the defective link through the second data communications network of the parallel computer.

  12. Beat-ID: Towards a computationally low-cost single heartbeat biometric identity check system based on electrocardiogram wave morphology

    PubMed Central

    Paiva, Joana S.; Dias, Duarte

    2017-01-01

    In recent years, safer and more reliable biometric methods have been developed. Apart from the need for enhanced security, the media and entertainment sectors have also been applying biometrics in the emerging market of user-adaptable objects/systems to make these systems more user-friendly. However, the complexity of some state-of-the-art biometric systems (e.g., iris recognition) or their high false rejection rate (e.g., fingerprint recognition) is neither compatible with the simple hardware architecture required by reduced-size devices nor the new trend of implementing smart objects within the dynamic market of the Internet of Things (IoT). It was recently shown that an individual can be recognized by extracting features from their electrocardiogram (ECG). However, most current ECG-based biometric algorithms are computationally demanding and/or rely on relatively large (several seconds) ECG samples, which are incompatible with the aforementioned application fields. Here, we present a computationally low-cost method (patent pending), including simple mathematical operations, for identifying a person using only three ECG morphology-based characteristics from a single heartbeat. The algorithm was trained/tested using ECG signals of different duration from the Physionet database on more than 60 different training/test datasets. The proposed method achieved maximal averaged accuracy of 97.450% in distinguishing each subject from a ten-subject set and false acceptance and rejection rates (FAR and FRR) of 5.710±1.900% and 3.440±1.980%, respectively, placing Beat-ID in a very competitive position in terms of the FRR/FAR among state-of-the-art methods. Furthermore, the proposed method can identify a person using an average of 1.020 heartbeats. It therefore has FRR/FAR behavior similar to obtaining a fingerprint, yet it is simpler and requires less expensive hardware. This method targets low-computational/energy-cost scenarios, such as tiny wearable devices (e.g., a smart object that automatically adapts its configuration to the user). A hardware proof-of-concept implementation is presented as an annex to this paper. PMID:28719614

  13. Beat-ID: Towards a computationally low-cost single heartbeat biometric identity check system based on electrocardiogram wave morphology.

    PubMed

    Paiva, Joana S; Dias, Duarte; Cunha, João P S

    2017-01-01

    In recent years, safer and more reliable biometric methods have been developed. Apart from the need for enhanced security, the media and entertainment sectors have also been applying biometrics in the emerging market of user-adaptable objects/systems to make these systems more user-friendly. However, the complexity of some state-of-the-art biometric systems (e.g., iris recognition) or their high false rejection rate (e.g., fingerprint recognition) is neither compatible with the simple hardware architecture required by reduced-size devices nor the new trend of implementing smart objects within the dynamic market of the Internet of Things (IoT). It was recently shown that an individual can be recognized by extracting features from their electrocardiogram (ECG). However, most current ECG-based biometric algorithms are computationally demanding and/or rely on relatively large (several seconds) ECG samples, which are incompatible with the aforementioned application fields. Here, we present a computationally low-cost method (patent pending), including simple mathematical operations, for identifying a person using only three ECG morphology-based characteristics from a single heartbeat. The algorithm was trained/tested using ECG signals of different duration from the Physionet database on more than 60 different training/test datasets. The proposed method achieved maximal averaged accuracy of 97.450% in distinguishing each subject from a ten-subject set and false acceptance and rejection rates (FAR and FRR) of 5.710±1.900% and 3.440±1.980%, respectively, placing Beat-ID in a very competitive position in terms of the FRR/FAR among state-of-the-art methods. Furthermore, the proposed method can identify a person using an average of 1.020 heartbeats. It therefore has FRR/FAR behavior similar to obtaining a fingerprint, yet it is simpler and requires less expensive hardware. This method targets low-computational/energy-cost scenarios, such as tiny wearable devices (e.g., a smart object that automatically adapts its configuration to the user). A hardware proof-of-concept implementation is presented as an annex to this paper.

  14. Software-codec-based full motion video conferencing on the PC using visual pattern image sequence coding

    NASA Astrophysics Data System (ADS)

    Barnett, Barry S.; Bovik, Alan C.

    1995-04-01

    This paper presents a real time full motion video conferencing system based on the Visual Pattern Image Sequence Coding (VPISC) software codec. The prototype system hardware is comprised of two personal computers, two camcorders, two frame grabbers, and an ethernet connection. The prototype system software has a simple structure. It runs under the Disk Operating System, and includes a user interface, a video I/O interface, an event driven network interface, and a free running or frame synchronous video codec that also acts as the controller for the video and network interfaces. Two video coders have been tested in this system. Simple implementations of Visual Pattern Image Coding and VPISC have both proven to support full motion video conferencing with good visual quality. Future work will concentrate on expanding this prototype to support the motion compensated version of VPISC, as well as encompassing point-to-point modem I/O and multiple network protocols. The application will be ported to multiple hardware platforms and operating systems. The motivation for developing this prototype system is to demonstrate the practicality of software based real time video codecs. Furthermore, software video codecs are not only cheaper, but are more flexible system solutions because they enable different computer platforms to exchange encoded video information without requiring on-board protocol compatible video codex hardware. Software based solutions enable true low cost video conferencing that fits the `open systems' model of interoperability that is so important for building portable hardware and software applications.

  15. An evaluation of Skylab habitability hardware

    NASA Technical Reports Server (NTRS)

    Stokes, J.

    1974-01-01

    For effective mission performance, participants in space missions lasting 30-60 days or longer must be provided with hardware to accommodate their personal needs. Such habitability hardware was provided on Skylab. Equipment defined as habitability hardware was that equipment composing the food system, water system, sleep system, waste management system, personal hygiene system, trash management system, and entertainment equipment. Equipment not specifically defined as habitability hardware but which served that function were the Wardroom window, the exercise equipment, and the intercom system, which was occasionally used for private communications. All Skylab habitability hardware generally functioned as intended for the three missions, and most items could be considered as adequate concepts for future flights of similar duration. Specific components were criticized for their shortcomings.

  16. Programmable hardware for reconfigurable computing systems

    NASA Astrophysics Data System (ADS)

    Smith, Stephen

    1996-10-01

    In 1945 the work of J. von Neumann and H. Goldstein created the principal architecture for electronic computation that has now lasted fifty years. Nevertheless alternative architectures have been created that have computational capability, for special tasks, far beyond that feasible with von Neumann machines. The emergence of high capacity programmable logic devices has made the realization of these architectures practical. The original ENIAC and EDVAC machines were conceived to solve special mathematical problems that were far from today's concept of 'killer applications.' In a similar vein programmable hardware computation is being used today to solve unique mathematical problems. Our programmable hardware activity is focused on the research and development of novel computational systems based upon the reconfigurability of our programmable logic devices. We explore our programmable logic architectures and their implications for programmable hardware. One programmable hardware board implementation is detailed.

  17. Melanie II--a third-generation software package for analysis of two-dimensional electrophoresis images: I. Features and user interface.

    PubMed

    Appel, R D; Palagi, P M; Walther, D; Vargas, J R; Sanchez, J C; Ravier, F; Pasquali, C; Hochstrasser, D F

    1997-12-01

    Although two-dimensional electrophoresis (2-DE) computer analysis software packages have existed ever since 2-DE technology was developed, it is only now that the hardware and software technology allows large-scale studies to be performed on low-cost personal computers or workstations, and that setting up a 2-DE computer analysis system in a small laboratory is no longer considered a luxury. After a first attempt in the seventies and early eighties to develop 2-DE analysis software systems on hardware that had poor or even no graphical capabilities, followed in the late eighties by a wave of innovative software developments that were possible thanks to new graphical interface standards such as XWindows, a third generation of 2-DE analysis software packages has now come to maturity. It can be run on a variety of low-cost, general-purpose personal computers, thus making the purchase of a 2-DE analysis system easily attainable for even the smallest laboratory that is involved in proteome research. Melanie II 2-D PAGE, developed at the University Hospital of Geneva, is such a third-generation software system for 2-DE analysis. Based on unique image processing algorithms, this user-friendly object-oriented software package runs on multiple platforms, including Unix, MS-Windows 95 and NT, and Power Macintosh. It provides efficient spot detection and quantitation, state-of-the-art image comparison, statistical data analysis facilities, and is Internet-ready. Linked to proteome databases such as those available on the World Wide Web, it represents a valuable tool for the "Virtual Lab" of the post-genome area.

  18. A parallel-processing approach to computing for the geographic sciences

    USGS Publications Warehouse

    Crane, Michael; Steinwand, Dan; Beckmann, Tim; Krpan, Greg; Haga, Jim; Maddox, Brian; Feller, Mark

    2001-01-01

    The overarching goal of this project is to build a spatially distributed infrastructure for information science research by forming a team of information science researchers and providing them with similar hardware and software tools to perform collaborative research. Four geographically distributed Centers of the U.S. Geological Survey (USGS) are developing their own clusters of low-cost personal computers into parallel computing environments that provide a costeffective way for the USGS to increase participation in the high-performance computing community. Referred to as Beowulf clusters, these hybrid systems provide the robust computing power required for conducting research into various areas, such as advanced computer architecture, algorithms to meet the processing needs for real-time image and data processing, the creation of custom datasets from seamless source data, rapid turn-around of products for emergency response, and support for computationally intense spatial and temporal modeling.

  19. 34 CFR 464.42 - What limit applies to purchasing computer hardware and software?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... software? 464.42 Section 464.42 Education Regulations of the Offices of the Department of Education... computer hardware and software? Not more than ten percent of funds received under any grant under this part may be used to purchase computer hardware or software. (Authority: 20 U.S.C. 1208aa(f)) ...

  20. 34 CFR 464.42 - What limit applies to purchasing computer hardware and software?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... software? 464.42 Section 464.42 Education Regulations of the Offices of the Department of Education... computer hardware and software? Not more than ten percent of funds received under any grant under this part may be used to purchase computer hardware or software. (Authority: 20 U.S.C. 1208aa(f)) ...

  1. 34 CFR 464.42 - What limit applies to purchasing computer hardware and software?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... software? 464.42 Section 464.42 Education Regulations of the Offices of the Department of Education... computer hardware and software? Not more than ten percent of funds received under any grant under this part may be used to purchase computer hardware or software. (Authority: 20 U.S.C. 1208aa(f)) ...

  2. 34 CFR 464.42 - What limit applies to purchasing computer hardware and software?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... software? 464.42 Section 464.42 Education Regulations of the Offices of the Department of Education... computer hardware and software? Not more than ten percent of funds received under any grant under this part may be used to purchase computer hardware or software. (Authority: 20 U.S.C. 1208aa(f)) ...

  3. 34 CFR 464.42 - What limit applies to purchasing computer hardware and software?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... software? 464.42 Section 464.42 Education Regulations of the Offices of the Department of Education... computer hardware and software? Not more than ten percent of funds received under any grant under this part may be used to purchase computer hardware or software. (Authority: 20 U.S.C. 1208aa(f)) ...

  4. Use of a wireless local area network in an orthodontic clinic.

    PubMed

    Mupparapu, Muralidhar; Binder, Robert E; Cummins, John M

    2005-06-01

    Radiographic images and other patient records, including medical histories, demographics, and health insurance information, can now be stored digitally and accessed via patient management programs. However, digital image acquisition and diagnosis and treatment planning are independent tasks, and each is time consuming, especially when performed at different computer workstations. Networking or linking the computers in an office enhances access to imaging and treatment planning tools. Access can be further enhanced if the entire network is wireless. Thanks to wireless technology, stand-alone, desk-bound personal computers have been replaced with mobile, hand-held devices that can communicate with each other and the rest of the world via the Internet. As with any emerging technology, some issues should be kept in mind when adapting to the wireless environment. Foremost is network security. Second is the choice of mobile hardware devices that are used by the orthodontist, office staff, and patients. This article details the standards and choices in wireless technology that can be implemented in an orthodontic clinic and suggests how to select suitable mobile hardware for accessing or adding data to a preexisting network. The network security protocols discussed comply with HIPAA regulations and boost the efficiency of a modern orthodontic clinic.

  5. Computer technology forecast study for general aviation

    NASA Technical Reports Server (NTRS)

    Seacord, C. L.; Vaughn, D.

    1976-01-01

    A multi-year, multi-faceted program is underway to investigate and develop potential improvements in airframes, engines, and avionics for general aviation aircraft. The objective of this study was to assemble information that will allow the government to assess the trends in computer and computer/operator interface technology that may have application to general aviation in the 1980's and beyond. The current state of the art of computer hardware is assessed, technical developments in computer hardware are predicted, and nonaviation large volume users of computer hardware are identified.

  6. PC-assisted translation of photogrammetric papers

    NASA Astrophysics Data System (ADS)

    Güthner, Karlheinz; Peipe, Jürgen

    A PC-based system for machine translation of photogrammetric papers from the English into the German language and vice versa is described. The computer-assisted translating process is not intended to create a perfect interpretation of a text but to produce a rough rendering of the content of a paper. Starting with the original text, a continuous data flow is effected into the translated version by means of hardware (scanner, personal computer, printer) and software (OCR, translation, word processing, DTP). An essential component of the system is a photogrammetric microdictionary which is being established at present. It is based on several sources, including e.g. the ISPRS Multilingual Dictionary.

  7. Practical End-to-End Performance Testing Tool for High Speed 3G-Based Networks

    NASA Astrophysics Data System (ADS)

    Shinbo, Hiroyuki; Tagami, Atsushi; Ano, Shigehiro; Hasegawa, Toru; Suzuki, Kenji

    High speed IP communication is a killer application for 3rd generation (3G) mobile systems. Thus 3G network operators should perform extensive tests to check whether expected end-to-end performances are provided to customers under various environments. An important objective of such tests is to check whether network nodes fulfill requirements to durations of processing packets because a long duration of such processing causes performance degradation. This requires testers (persons who do tests) to precisely know how long a packet is hold by various network nodes. Without any tool's help, this task is time-consuming and error prone. Thus we propose a multi-point packet header analysis tool which extracts and records packet headers with synchronized timestamps at multiple observation points. Such recorded packet headers enable testers to calculate such holding durations. The notable feature of this tool is that it is implemented on off-the shelf hardware platforms, i.e., lap-top personal computers. The key challenges of the implementation are precise clock synchronization without any special hardware and a sophisticated header extraction algorithm without any drop.

  8. Computational System For Rapid CFD Analysis In Engineering

    NASA Technical Reports Server (NTRS)

    Barson, Steven L.; Ascoli, Edward P.; Decroix, Michelle E.; Sindir, Munir M.

    1995-01-01

    Computational system comprising modular hardware and software sub-systems developed to accelerate and facilitate use of techniques of computational fluid dynamics (CFD) in engineering environment. Addresses integration of all aspects of CFD analysis process, including definition of hardware surfaces, generation of computational grids, CFD flow solution, and postprocessing. Incorporates interfaces for integration of all hardware and software tools needed to perform complete CFD analysis. Includes tools for efficient definition of flow geometry, generation of computational grids, computation of flows on grids, and postprocessing of flow data. System accepts geometric input from any of three basic sources: computer-aided design (CAD), computer-aided engineering (CAE), or definition by user.

  9. Satellite Imagery Via Personal Computer

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Automatic Picture Transmission (APT) was incorporated by NASA in the Tiros 8 weather satellite. APT included an advanced satellite camera that immediately transmitted a picture as well as low cost receiving equipment. When an advanced scanning radiometer was later introduced, ground station display equipment would not readily adjust to the new format until GSFC developed an APT Digital Scan Converter that made them compatible. A NASA Technical Note by Goddard's Vermillion and Kamoski described how to build a converter. In 1979, Electro-Services, using this technology, built the first microcomputer weather imaging system in the U.S. The company changed its name to Satellite Data Systems, Inc. and now manufactures the WeatherFax facsimile display graphics system which converts a personal computer into a weather satellite image acquisition and display workstation. Hardware, antennas, receivers, etc. are also offered. Customers include U.S. Weather Service, schools, military, etc.

  10. On the use of inexact, pruned hardware in atmospheric modelling

    PubMed Central

    Düben, Peter D.; Joven, Jaume; Lingamneni, Avinash; McNamara, Hugh; De Micheli, Giovanni; Palem, Krishna V.; Palmer, T. N.

    2014-01-01

    Inexact hardware design, which advocates trading the accuracy of computations in exchange for significant savings in area, power and/or performance of computing hardware, has received increasing prominence in several error-tolerant application domains, particularly those involving perceptual or statistical end-users. In this paper, we evaluate inexact hardware for its applicability in weather and climate modelling. We expand previous studies on inexact techniques, in particular probabilistic pruning, to floating point arithmetic units and derive several simulated set-ups of pruned hardware with reasonable levels of error for applications in atmospheric modelling. The set-up is tested on the Lorenz ‘96 model, a toy model for atmospheric dynamics, using software emulation for the proposed hardware. The results show that large parts of the computation tolerate the use of pruned hardware blocks without major changes in the quality of short- and long-time diagnostics, such as forecast errors and probability density functions. This could open the door to significant savings in computational cost and to higher resolution simulations with weather and climate models. PMID:24842031

  11. 50 CFR 660.15 - Equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... receivers, computer hardware for electronic fish ticket software and computer hardware for electronic logbook software. (b) Performance and technical requirements for scales used to weigh catch at sea... ticket software provided by Pacific States Marine Fish Commission are required to meet the hardware and...

  12. Software for Acoustic Rendering

    NASA Technical Reports Server (NTRS)

    Miller, Joel D.

    2003-01-01

    SLAB is a software system that can be run on a personal computer to simulate an acoustic environment in real time. SLAB was developed to enable computational experimentation in which one can exert low-level control over a variety of signal-processing parameters, related to spatialization, for conducting psychoacoustic studies. Among the parameters that can be manipulated are the number and position of reflections, the fidelity (that is, the number of taps in finite-impulse-response filters), the system latency, and the update rate of the filters. Another goal in the development of SLAB was to provide an inexpensive means of dynamic synthesis of virtual audio over headphones, without need for special-purpose signal-processing hardware. SLAB has a modular, object-oriented design that affords the flexibility and extensibility needed to accommodate a variety of computational experiments and signal-flow structures. SLAB s spatial renderer has a fixed signal-flow architecture corresponding to a set of parallel signal paths from each source to a listener. This fixed architecture can be regarded as a compromise that optimizes efficiency at the expense of complete flexibility. Such a compromise is necessary, given the design goal of enabling computational psychoacoustic experimentation on inexpensive personal computers.

  13. Paper-Based and Computer-Based Concept Mappings: The Effects on Computer Achievement, Computer Anxiety and Computer Attitude

    ERIC Educational Resources Information Center

    Erdogan, Yavuz

    2009-01-01

    The purpose of this paper is to compare the effects of paper-based and computer-based concept mappings on computer hardware achievement, computer anxiety and computer attitude of the eight grade secondary school students. The students were randomly allocated to three groups and were given instruction on computer hardware. The teaching methods used…

  14. Speed challenge: a case for hardware implementation in soft-computing

    NASA Technical Reports Server (NTRS)

    Daud, T.; Stoica, A.; Duong, T.; Keymeulen, D.; Zebulum, R.; Thomas, T.; Thakoor, A.

    2000-01-01

    For over a decade, JPL has been actively involved in soft computing research on theory, architecture, applications, and electronics hardware. The driving force in all our research activities, in addition to the potential enabling technology promise, has been creation of a niche that imparts orders of magnitude speed advantage by implementation in parallel processing hardware with algorithms made especially suitable for hardware implementation. We review our work on neural networks, fuzzy logic, and evolvable hardware with selected application examples requiring real time response capabilities.

  15. Hardware architecture design of image restoration based on time-frequency domain computation

    NASA Astrophysics Data System (ADS)

    Wen, Bo; Zhang, Jing; Jiao, Zipeng

    2013-10-01

    The image restoration algorithms based on time-frequency domain computation is high maturity and applied widely in engineering. To solve the high-speed implementation of these algorithms, the TFDC hardware architecture is proposed. Firstly, the main module is designed, by analyzing the common processing and numerical calculation. Then, to improve the commonality, the iteration control module is planed for iterative algorithms. In addition, to reduce the computational cost and memory requirements, the necessary optimizations are suggested for the time-consuming module, which include two-dimensional FFT/IFFT and the plural calculation. Eventually, the TFDC hardware architecture is adopted for hardware design of real-time image restoration system. The result proves that, the TFDC hardware architecture and its optimizations can be applied to image restoration algorithms based on TFDC, with good algorithm commonality, hardware realizability and high efficiency.

  16. Survey of Available Artificial Intelligence Technologies for Addition Into Delta3D

    DTIC Science & Technology

    2006-09-01

    market today in the first person shooter genre. Not only does Epic Games produce their game Unreal Tournament with it, but other game development houses...newest and most capable hardware. Simply put, it creates a vicious cycle. Over the last few years, computer graphics have been driving game development and...take a look at a typical game development company to see how it is structured, one could expect to find a lot of programmers focused on the game

  17. Hybrid Architectures for Evolutionary Computing Algorithms

    DTIC Science & Technology

    2008-01-01

    other EC algorithms to FPGA Core Burns P1026/MAPLD 200532 Genetic Algorithm Hardware References S. Scott, A. Samal , and S. Seth, “HGA: A Hardware Based...on Parallel and Distributed Processing (IPPS/SPDP 󈨦), pp. 316-320, Proceedings. IEEE Computer Society 1998. [12] Scott, S. D. , Samal , A., and...Algorithm Hardware References S. Scott, A. Samal , and S. Seth, “HGA: A Hardware Based Genetic Algorithm”, Proceedings of the 1995 ACM Third

  18. Portable Computer Technology (PCT) Research and Development Program Phase 2

    NASA Technical Reports Server (NTRS)

    Castillo, Michael; McGuire, Kenyon; Sorgi, Alan

    1995-01-01

    The subject of this project report, focused on: (1) Design and development of two Advanced Portable Workstation 2 (APW 2) units. These units incorporate advanced technology features such as a low power Pentium processor, a high resolution color display, National Television Standards Committee (NTSC) video handling capabilities, a Personal Computer Memory Card International Association (PCMCIA) interface, and Small Computer System Interface (SCSI) and ethernet interfaces. (2) Use these units to integrate and demonstrate advanced wireless network and portable video capabilities. (3) Qualification of the APW 2 systems for use in specific experiments aboard the Mir Space Station. A major objective of the PCT Phase 2 program was to help guide future choices in computing platforms and techniques for meeting National Aeronautics and Space Administration (NASA) mission objectives. The focus being on the development of optimal configurations of computing hardware, software applications, and network technologies for use on NASA missions.

  19. Electronic processing and control system with programmable hardware

    NASA Technical Reports Server (NTRS)

    Alkalaj, Leon (Inventor); Fang, Wai-Chi (Inventor); Newell, Michael A. (Inventor)

    1998-01-01

    A computer system with reprogrammable hardware allowing dynamically allocating hardware resources for different functions and adaptability for different processors and different operating platforms. All hardware resources are physically partitioned into system-user hardware and application-user hardware depending on the specific operation requirements. A reprogrammable interface preferably interconnects the system-user hardware and application-user hardware.

  20. Hardware packet pacing using a DMA in a parallel computer

    DOEpatents

    Chen, Dong; Heidelberger, Phillip; Vranas, Pavlos

    2013-08-13

    Method and system for hardware packet pacing using a direct memory access controller in a parallel computer which, in one aspect, keeps track of a total number of bytes put on the network as a result of a remote get operation, using a hardware token counter.

  1. A Survey of Display Hardware and Software.

    ERIC Educational Resources Information Center

    Poore, Jesse H., Jr.; And Others

    Reported are two papers which deal with the fundamentals of display hardware and software in computer systems. The first report presents the basic principles of display hardware in terms of image generation from buffers presumed to be loaded and controlled by a digital computer. The concepts surrounding the electrostatic tube, the electromagnetic…

  2. Object and Facial Recognition in Augmented and Virtual Reality: Investigation into Software, Hardware and Potential Uses

    NASA Technical Reports Server (NTRS)

    Schulte, Erin

    2017-01-01

    As augmented and virtual reality grows in popularity, and more researchers focus on its development, other fields of technology have grown in the hopes of integrating with the up-and-coming hardware currently on the market. Namely, there has been a focus on how to make an intuitive, hands-free human-computer interaction (HCI) utilizing AR and VR that allows users to control their technology with little to no physical interaction with hardware. Computer vision, which is utilized in devices such as the Microsoft Kinect, webcams and other similar hardware has shown potential in assisting with the development of a HCI system that requires next to no human interaction with computing hardware and software. Object and facial recognition are two subsets of computer vision, both of which can be applied to HCI systems in the fields of medicine, security, industrial development and other similar areas.

  3. PREPARING FOR EXASCALE: ORNL Leadership Computing Application Requirements and Strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joubert, Wayne; Kothe, Douglas B; Nam, Hai Ah

    2009-12-01

    In 2009 the Oak Ridge Leadership Computing Facility (OLCF), a U.S. Department of Energy (DOE) facility at the Oak Ridge National Laboratory (ORNL) National Center for Computational Sciences (NCCS), elicited petascale computational science requirements from leading computational scientists in the international science community. This effort targeted science teams whose projects received large computer allocation awards on OLCF systems. A clear finding of this process was that in order to reach their science goals over the next several years, multiple projects will require computational resources in excess of an order of magnitude more powerful than those currently available. Additionally, for themore » longer term, next-generation science will require computing platforms of exascale capability in order to reach DOE science objectives over the next decade. It is generally recognized that achieving exascale in the proposed time frame will require disruptive changes in computer hardware and software. Processor hardware will become necessarily heterogeneous and will include accelerator technologies. Software must undergo the concomitant changes needed to extract the available performance from this heterogeneous hardware. This disruption portends to be substantial, not unlike the change to the message passing paradigm in the computational science community over 20 years ago. Since technological disruptions take time to assimilate, we must aggressively embark on this course of change now, to insure that science applications and their underlying programming models are mature and ready when exascale computing arrives. This includes initiation of application readiness efforts to adapt existing codes to heterogeneous architectures, support of relevant software tools, and procurement of next-generation hardware testbeds for porting and testing codes. The 2009 OLCF requirements process identified numerous actions necessary to meet this challenge: (1) Hardware capabilities must be advanced on multiple fronts, including peak flops, node memory capacity, interconnect latency, interconnect bandwidth, and memory bandwidth. (2) Effective parallel programming interfaces must be developed to exploit the power of emerging hardware. (3) Science application teams must now begin to adapt and reformulate application codes to the new hardware and software, typified by hierarchical and disparate layers of compute, memory and concurrency. (4) Algorithm research must be realigned to exploit this hierarchy. (5) When possible, mathematical libraries must be used to encapsulate the required operations in an efficient and useful way. (6) Software tools must be developed to make the new hardware more usable. (7) Science application software must be improved to cope with the increasing complexity of computing systems. (8) Data management efforts must be readied for the larger quantities of data generated by larger, more accurate science models. Requirements elicitation, analysis, validation, and management comprise a difficult and inexact process, particularly in periods of technological change. Nonetheless, the OLCF requirements modeling process is becoming increasingly quantitative and actionable, as the process becomes more developed and mature, and the process this year has identified clear and concrete steps to be taken. This report discloses (1) the fundamental science case driving the need for the next generation of computer hardware, (2) application usage trends that illustrate the science need, (3) application performance characteristics that drive the need for increased hardware capabilities, (4) resource and process requirements that make the development and deployment of science applications on next-generation hardware successful, and (5) summary recommendations for the required next steps within the computer and computational science communities.« less

  4. Inventory of environmental impact models related to energy technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, P.T.; Dailey, N.S.; Johnson, C.A.

    The purpose of this inventory is to identify and collect data on computer simulations and computational models related to the environmental effects of energy source development, energy conversion, or energy utilization. Information for 33 data fields was sought for each model reported. All of the information which could be obtained within the time alloted for completion of the project is presented for each model listed. Efforts will be continued toward acquiring the needed information. Readers who are interested in these particular models are invited to contact ESIC for assistance in locating them. In addition to the standard bibliographic information, othermore » data fields of interest to modelers, such as computer hardware and software requirements, algorithms, applications, and existing model validation information, are included. Indexes are provided for contact person, acronym, keyword, and title. The models are grouped into the following categories: atmospheric transport, air quality, aquatic transport, terrestrial food chains, soil transport, aquatic food chains, water quality, dosimetry, and human effects, animal effects, plant effects, and generalized environmental transport. Within these categories, the models are arranged alphabetically by last name of the contact person.« less

  5. Color Image Processing and Object Tracking System

    NASA Technical Reports Server (NTRS)

    Klimek, Robert B.; Wright, Ted W.; Sielken, Robert S.

    1996-01-01

    This report describes a personal computer based system for automatic and semiautomatic tracking of objects on film or video tape, developed to meet the needs of the Microgravity Combustion and Fluids Science Research Programs at the NASA Lewis Research Center. The system consists of individual hardware components working under computer control to achieve a high degree of automation. The most important hardware components include 16-mm and 35-mm film transports, a high resolution digital camera mounted on a x-y-z micro-positioning stage, an S-VHS tapedeck, an Hi8 tapedeck, video laserdisk, and a framegrabber. All of the image input devices are remotely controlled by a computer. Software was developed to integrate the overall operation of the system including device frame incrementation, grabbing of image frames, image processing of the object's neighborhood, locating the position of the object being tracked, and storing the coordinates in a file. This process is performed repeatedly until the last frame is reached. Several different tracking methods are supported. To illustrate the process, two representative applications of the system are described. These applications represent typical uses of the system and include tracking the propagation of a flame front and tracking the movement of a liquid-gas interface with extremely poor visibility.

  6. A Lossless Multichannel Bio-Signal Compression Based on Low-Complexity Joint Coding Scheme for Portable Medical Devices

    PubMed Central

    Kim, Dong-Sun; Kwon, Jin-San

    2014-01-01

    Research on real-time health systems have received great attention during recent years and the needs of high-quality personal multichannel medical signal compression for personal medical product applications are increasing. The international MPEG-4 audio lossless coding (ALS) standard supports a joint channel-coding scheme for improving compression performance of multichannel signals and it is very efficient compression method for multi-channel biosignals. However, the computational complexity of such a multichannel coding scheme is significantly greater than that of other lossless audio encoders. In this paper, we present a multichannel hardware encoder based on a low-complexity joint-coding technique and shared multiplier scheme for portable devices. A joint-coding decision method and a reference channel selection scheme are modified for a low-complexity joint coder. The proposed joint coding decision method determines the optimized joint-coding operation based on the relationship between the cross correlation of residual signals and the compression ratio. The reference channel selection is designed to select a channel for the entropy coding of the joint coding. The hardware encoder operates at a 40 MHz clock frequency and supports two-channel parallel encoding for the multichannel monitoring system. Experimental results show that the compression ratio increases by 0.06%, whereas the computational complexity decreases by 20.72% compared to the MPEG-4 ALS reference software encoder. In addition, the compression ratio increases by about 11.92%, compared to the single channel based bio-signal lossless data compressor. PMID:25237900

  7. Development of a PC-based ground support system for a small satellite instrument

    NASA Astrophysics Data System (ADS)

    Deschambault, Robert L.; Gregory, Philip R.; Spenler, Stephen; Whalen, Brian A.

    1993-11-01

    The importance of effective ground support for the remote control and data retrieval of a satellite instrument cannot be understated. Problems with ground support may include the need to base personnel at a ground tracking station for extended periods, and the delay between the instrument observation and the processing of the data by the science team. Flexible solutions to such problems in the case of small satellite systems are provided by using low-cost, powerful personal computers and off-the-shelf software for data acquisition and processing, and by using Internet as a communication pathway to enable scientists to view and manipulate satellite data in real time at any ground location. The personal computer based ground support system is illustrated for the case of the cold plasma analyzer flown on the Freja satellite. Commercial software was used as building blocks for writing the ground support equipment software. Several levels of hardware support, including unit tests and development, functional tests, and integration were provided by portable and desktop personal computers. Satellite stations in Saskatchewan and Sweden were linked to the science team via phone lines and Internet, which provided remote control through a central point. These successful strategies will be used on future small satellite space programs.

  8. Locating hardware faults in a data communications network of a parallel computer

    DOEpatents

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-01-12

    Hardware faults location in a data communications network of a parallel computer. Such a parallel computer includes a plurality of compute nodes and a data communications network that couples the compute nodes for data communications and organizes the compute node as a tree. Locating hardware faults includes identifying a next compute node as a parent node and a root of a parent test tree, identifying for each child compute node of the parent node a child test tree having the child compute node as root, running a same test suite on the parent test tree and each child test tree, and identifying the parent compute node as having a defective link connected from the parent compute node to a child compute node if the test suite fails on the parent test tree and succeeds on all the child test trees.

  9. Commonsense System Pricing; Or, How Much Will that $1,200 Computer Really Cost?

    ERIC Educational Resources Information Center

    Crawford, Walt

    1984-01-01

    Three methods employed to price and sell computer equipment are discussed: computer pricing, hardware pricing, system pricing (system includes complete computer and support hardware system and relatively complete software package). Advantages of system pricing are detailed, the author's system is described, and 10 systems currently available are…

  10. OS friendly microprocessor architecture: Hardware level computer security

    NASA Astrophysics Data System (ADS)

    Jungwirth, Patrick; La Fratta, Patrick

    2016-05-01

    We present an introduction to the patented OS Friendly Microprocessor Architecture (OSFA) and hardware level computer security. Conventional microprocessors have not tried to balance hardware performance and OS performance at the same time. Conventional microprocessors have depended on the Operating System for computer security and information assurance. The goal of the OS Friendly Architecture is to provide a high performance and secure microprocessor and OS system. We are interested in cyber security, information technology (IT), and SCADA control professionals reviewing the hardware level security features. The OS Friendly Architecture is a switched set of cache memory banks in a pipeline configuration. For light-weight threads, the memory pipeline configuration provides near instantaneous context switching times. The pipelining and parallelism provided by the cache memory pipeline provides for background cache read and write operations while the microprocessor's execution pipeline is running instructions. The cache bank selection controllers provide arbitration to prevent the memory pipeline and microprocessor's execution pipeline from accessing the same cache bank at the same time. This separation allows the cache memory pages to transfer to and from level 1 (L1) caching while the microprocessor pipeline is executing instructions. Computer security operations are implemented in hardware. By extending Unix file permissions bits to each cache memory bank and memory address, the OSFA provides hardware level computer security.

  11. Spacelab experiment computer study. Volume 1: Executive summary (presentation)

    NASA Technical Reports Server (NTRS)

    Lewis, J. L.; Hodges, B. C.; Christy, J. O.

    1976-01-01

    A quantitative cost for various Spacelab flight hardware configurations is provided along with varied software development options. A cost analysis of Spacelab computer hardware and software is presented. The cost study is discussed based on utilization of a central experiment computer with optional auxillary equipment. Groundrules and assumptions used in deriving the costing methods for all options in the Spacelab experiment study are presented. The groundrules and assumptions, are analysed and the options along with their cost considerations, are discussed. It is concluded that Spacelab program cost for software development and maintenance is independent of experimental hardware and software options, that distributed standard computer concept simplifies software integration without a significant increase in cost, and that decisions on flight computer hardware configurations should not be made until payload selection for a given mission and a detailed analysis of the mission requirements are completed.

  12. Parallel Rendering of Large Time-Varying Volume Data

    NASA Technical Reports Server (NTRS)

    Garbutt, Alexander E.

    2005-01-01

    Interactive visualization of large time-varying 3D volume datasets has been and still is a great challenge to the modem computational world. It stretches the limits of the memory capacity, the disk space, the network bandwidth and the CPU speed of a conventional computer. In this SURF project, we propose to develop a parallel volume rendering program on SGI's Prism, a cluster computer equipped with state-of-the-art graphic hardware. The proposed program combines both parallel computing and hardware rendering in order to achieve an interactive rendering rate. We use 3D texture mapping and a hardware shader to implement 3D volume rendering on each workstation. We use SGI's VisServer to enable remote rendering using Prism's graphic hardware. And last, we will integrate this new program with ParVox, a parallel distributed visualization system developed at JPL. At the end of the project, we Will demonstrate remote interactive visualization using this new hardware volume renderer on JPL's Prism System using a time-varying dataset from selected JPL applications.

  13. Distributed Hybrid Information and Plan Consensus HIPC for Semi-autonomous UAV Teams

    DTIC Science & Technology

    2015-09-18

    finalized. To do all of the onboard computations we are using Raspberry Pi B+’s (this hardware as shown in Fig. 16.) These computers are used to do all...public release. Figure 16: Raspberry Pi hardware Figure 17: Raspberry Pi hardware with case and DigiMesh Xbee Figure 18: Team of 11 Raspberry Pi powered...agents with Digimesh Xbee communication hardware. DISTRIBUTION A: Distribution approved for public release. Figure 19: Raspberry Pi network in real

  14. Computer-aided design and computer science technology

    NASA Technical Reports Server (NTRS)

    Fulton, R. E.; Voigt, S. J.

    1976-01-01

    A description is presented of computer-aided design requirements and the resulting computer science advances needed to support aerospace design. The aerospace design environment is examined, taking into account problems of data handling and aspects of computer hardware and software. The interactive terminal is normally the primary interface between the computer system and the engineering designer. Attention is given to user aids, interactive design, interactive computations, the characteristics of design information, data management requirements, hardware advancements, and computer science developments.

  15. Stream-based Hebbian eigenfilter for real-time neuronal spike discrimination

    PubMed Central

    2012-01-01

    Background Principal component analysis (PCA) has been widely employed for automatic neuronal spike sorting. Calculating principal components (PCs) is computationally expensive, and requires complex numerical operations and large memory resources. Substantial hardware resources are therefore needed for hardware implementations of PCA. General Hebbian algorithm (GHA) has been proposed for calculating PCs of neuronal spikes in our previous work, which eliminates the needs of computationally expensive covariance analysis and eigenvalue decomposition in conventional PCA algorithms. However, large memory resources are still inherently required for storing a large volume of aligned spikes for training PCs. The large size memory will consume large hardware resources and contribute significant power dissipation, which make GHA difficult to be implemented in portable or implantable multi-channel recording micro-systems. Method In this paper, we present a new algorithm for PCA-based spike sorting based on GHA, namely stream-based Hebbian eigenfilter, which eliminates the inherent memory requirements of GHA while keeping the accuracy of spike sorting by utilizing the pseudo-stationarity of neuronal spikes. Because of the reduction of large hardware storage requirements, the proposed algorithm can lead to ultra-low hardware resources and power consumption of hardware implementations, which is critical for the future multi-channel micro-systems. Both clinical and synthetic neural recording data sets were employed for evaluating the accuracy of the stream-based Hebbian eigenfilter. The performance of spike sorting using stream-based eigenfilter and the computational complexity of the eigenfilter were rigorously evaluated and compared with conventional PCA algorithms. Field programmable logic arrays (FPGAs) were employed to implement the proposed algorithm, evaluate the hardware implementations and demonstrate the reduction in both power consumption and hardware memories achieved by the streaming computing Results and discussion Results demonstrate that the stream-based eigenfilter can achieve the same accuracy and is 10 times more computationally efficient when compared with conventional PCA algorithms. Hardware evaluations show that 90.3% logic resources, 95.1% power consumption and 86.8% computing latency can be reduced by the stream-based eigenfilter when compared with PCA hardware. By utilizing the streaming method, 92% memory resources and 67% power consumption can be saved when compared with the direct implementation of GHA. Conclusion Stream-based Hebbian eigenfilter presents a novel approach to enable real-time spike sorting with reduced computational complexity and hardware costs. This new design can be further utilized for multi-channel neuro-physiological experiments or chronic implants. PMID:22490725

  16. Affordable Emerging Computer Hardware for Neuromorphic Computing Applications

    DTIC Science & Technology

    2011-09-01

    DATES COVERED (From - To) 4 . TITLE AND SUBTITLE AFFORDABLE EMERGING COMPUTER HARDWARE FOR NEUROMORPHIC COMPUTING APPLICATIONS 5a. CONTRACT NUMBER...speedup over software [3, 4 ]. 3 Table 1 shows a comparison of the computing performance, communication performance, power consumption...time is probably 5 frames per second, corresponding to 5 saccades. III. RESULTS AND DISCUSSION The use of IBM Cell-BE technology (Sony PlayStation

  17. Trends in computer hardware and software.

    PubMed

    Frankenfeld, F M

    1993-04-01

    Previously identified and current trends in the development of computer systems and in the use of computers for health care applications are reviewed. Trends identified in a 1982 article were increasing miniaturization and archival ability, increasing software costs, increasing software independence, user empowerment through new software technologies, shorter computer-system life cycles, and more rapid development and support of pharmaceutical services. Most of these trends continue today. Current trends in hardware and software include the increasing use of reduced instruction-set computing, migration to the UNIX operating system, the development of large software libraries, microprocessor-based smart terminals that allow remote validation of data, speech synthesis and recognition, application generators, fourth-generation languages, computer-aided software engineering, object-oriented technologies, and artificial intelligence. Current trends specific to pharmacy and hospitals are the withdrawal of vendors of hospital information systems from the pharmacy market, improved linkage of information systems within hospitals, and increased regulation by government. The computer industry and its products continue to undergo dynamic change. Software development continues to lag behind hardware, and its high cost is offsetting the savings provided by hardware.

  18. Development of Telemedicine Capabilities for a Joint US-Russian Space Biomedical Center for Training and Research

    NASA Technical Reports Server (NTRS)

    DeBakey, Michael E.

    1998-01-01

    From the perspective of scheduling, some medical consultations can have asynchronous and synchronous components. Consultations frequently involve the compilation of patient data, its analysis, a consultant's report, and a real-time conference between the referring physician and the consultant. The bandwidth of the Internet with Moscow and advances in the hardware and software of personal computing now make possible telemedicine events with store-and-forward components and real-time components. These are hybrid telemedicine and this paper describes such a case.

  19. A Method for Implementing Force-Limited Vibration Control

    NASA Technical Reports Server (NTRS)

    Worth, Daniel B.

    1997-01-01

    NASA/GSFC has implemented force-limited vibration control on a controller which can only accept one profile. The method uses a personal computer based digital signal processing board to convert force and/or moment signals into what appears to he an acceleration signal to the controller. This technique allows test centers with older controllers to use the latest force-limited control techniques for random vibration testing. The paper describes the method, hardware, and test procedures used. An example from a test performed at NASA/GSFC is used as a guide.

  20. Low-power hardware implementation of movement decoding for brain computer interface with reduced-resolution discrete cosine transform.

    PubMed

    Minho Won; Albalawi, Hassan; Xin Li; Thomas, Donald E

    2014-01-01

    This paper describes a low-power hardware implementation for movement decoding of brain computer interface. Our proposed hardware design is facilitated by two novel ideas: (i) an efficient feature extraction method based on reduced-resolution discrete cosine transform (DCT), and (ii) a new hardware architecture of dual look-up table to perform discrete cosine transform without explicit multiplication. The proposed hardware implementation has been validated for movement decoding of electrocorticography (ECoG) signal by using a Xilinx FPGA Zynq-7000 board. It achieves more than 56× energy reduction over a reference design using band-pass filters for feature extraction.

  1. Assessing medical residents' usage and perceived needs for personal digital assistants.

    PubMed

    Barrett, James R; Strayer, Scott M; Schubart, Jane R

    2004-02-01

    Health care professionals need information delivery tools for accessing information at the point of patient care. Personal digital assistants (PDAs), or hand-held devices demonstrate great promise as point of care information devices. An earlier study [The Constellation Project: experience and evaluation of personal digital assistants in the clinical environment, in: Proceedings of the 19th Annual Symposium on Computer Applications in Medical Care, 1995, 678] on the use of PDAs at the point of care found that hardware constraints, such as memory capability limited their usefulness, however, they were used frequently for accessing medical references and drug information [The Constellation Project: experience and evaluation of personal digital assistants in the clinical environment, in: Proceedings of the 19th Annual Symposium on Computer Applications in Medical Care, 1995, 678]. Since this study was completed in 1995, hand-held computer technology has advanced rapidly, and between 26 and 50% of physicians currently use PDAs [Physician's use of hand-helds increases from 15% in 1999 to 26% in 2001: Harris interactive poll results, Harris Poll. 8-24-2002 (electronic citation); ACP-ASIM survey finds nearly half of U.S. members use hand-held computers: ACP-ASIM press release, American College of Physicians, 9-3-2002 (electronic citation)]. This use appears higher among residents, with one recent study finding that over two-thirds of family practice residencies use hand-held computers in their training programs [J. Am. Med. Inform. Assoc. 9 (1) (2002) 80]. In this study, we systematically evaluate PDA usage by residents in our institution using quantitative and qualitative methods. Our evaluation included a brief on-line survey of 88 residents in seven residency programs including primary care and specialty practices. The surveys were completed between 26 October 2001 and 30 April 2002. Follow-up interviews with 15 of the surveyed residents were then conducted between 24 April 2002 and 13 May 2002. The original contributions of this study are the evaluation of residents in primary and specialty programs and evaluation of both medical application software and the conventional personal organizational software (such as calendars and to-do lists). This evaluation was also conducted using significantly advanced hardware and software compared with previous studies [The Constellation Project: experience and evaluation of personal digital assistants in the clinical environment, in: Proceedings of the 19th Annual Symposium on Computer Applications in Medical Care, 1995, 678]. Results of our survey and follow-up interviews of residents showed most residents use PDAs daily, regardless of practice or whether their program encourages PDAs. Uses include commercial medical references and personal organization software, such as calendars and address books. Concerns and drawbacks mentioned by these residents included physical size of the PDA and the potential for catastrophic data loss. Another issue raised by our results suggests that security and Health Information Portability and Accountability Act (HIPAA) compliance need to be addressed, in part by resident education about securing patient data on PDAs. Overall, PDAs may become even more widely used if two issues can be addressed: (a) providing secure clinical data for the current patients of a given resident, and (b) allaying concerns of catastrophic data loss from their PDAs (e.g. by educating residents about procedures to recover information from PDA backup files).

  2. Real-time computing platform for spiking neurons (RT-spike).

    PubMed

    Ros, Eduardo; Ortigosa, Eva M; Agís, Rodrigo; Carrillo, Richard; Arnold, Michael

    2006-07-01

    A computing platform is described for simulating arbitrary networks of spiking neurons in real time. A hybrid computing scheme is adopted that uses both software and hardware components to manage the tradeoff between flexibility and computational power; the neuron model is implemented in hardware and the network model and the learning are implemented in software. The incremental transition of the software components into hardware is supported. We focus on a spike response model (SRM) for a neuron where the synapses are modeled as input-driven conductances. The temporal dynamics of the synaptic integration process are modeled with a synaptic time constant that results in a gradual injection of charge. This type of model is computationally expensive and is not easily amenable to existing software-based event-driven approaches. As an alternative we have designed an efficient time-based computing architecture in hardware, where the different stages of the neuron model are processed in parallel. Further improvements occur by computing multiple neurons in parallel using multiple processing units. This design is tested using reconfigurable hardware and its scalability and performance evaluated. Our overall goal is to investigate biologically realistic models for the real-time control of robots operating within closed action-perception loops, and so we evaluate the performance of the system on simulating a model of the cerebellum where the emulation of the temporal dynamics of the synaptic integration process is important.

  3. Detailed requirements document for Stowage List and Hardware Tracking System (SLAHTS). [computer based information management system in support of space shuttle orbiter stowage configuration

    NASA Technical Reports Server (NTRS)

    Keltner, D. J.

    1975-01-01

    The stowage list and hardware tracking system, a computer based information management system, used in support of the space shuttle orbiter stowage configuration and the Johnson Space Center hardware tracking is described. The input, processing, and output requirements that serve as a baseline for system development are defined.

  4. Video-Game-Like Engine for Depicting Spacecraft Trajectories

    NASA Technical Reports Server (NTRS)

    Upchurch, Paul R.

    2009-01-01

    GoView is a video-game-like software engine, written in the C and C++ computing languages, that enables real-time, three-dimensional (3D)-appearing visual representation of spacecraft and trajectories (1) from any perspective; (2) at any spatial scale from spacecraft to Solar-system dimensions; (3) in user-selectable time scales; (4) in the past, present, and/or future; (5) with varying speeds; and (6) forward or backward in time. GoView constructs an interactive 3D world by use of spacecraft-mission data from pre-existing engineering software tools. GoView can also be used to produce distributable application programs for depicting NASA orbital missions on personal computers running the Windows XP, Mac OsX, and Linux operating systems. GoView enables seamless rendering of Cartesian coordinate spaces with programmable graphics hardware, whereas prior programs for depicting spacecraft trajectories variously require non-Cartesian coordinates and/or are not compatible with programmable hardware. GoView incorporates an algorithm for nonlinear interpolation between arbitrary reference frames, whereas the prior programs are restricted to special classes of inertial and non-inertial reference frames. Finally, whereas the prior programs present complex user interfaces requiring hours of training, the GoView interface provides guidance, enabling use without any training.

  5. Efficient Phase Unwrapping Architecture for Digital Holographic Microscopy

    PubMed Central

    Hwang, Wen-Jyi; Cheng, Shih-Chang; Cheng, Chau-Jern

    2011-01-01

    This paper presents a novel phase unwrapping architecture for accelerating the computational speed of digital holographic microscopy (DHM). A fast Fourier transform (FFT) based phase unwrapping algorithm providing a minimum squared error solution is adopted for hardware implementation because of its simplicity and robustness to noise. The proposed architecture is realized in a pipeline fashion to maximize throughput of the computation. Moreover, the number of hardware multipliers and dividers are minimized to reduce the hardware costs. The proposed architecture is used as a custom user logic in a system on programmable chip (SOPC) for physical performance measurement. Experimental results reveal that the proposed architecture is effective for expediting the computational speed while consuming low hardware resources for designing an embedded DHM system. PMID:22163688

  6. Development of simulation computer complex specification

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The Training Simulation Computer Complex Study was one of three studies contracted in support of preparations for procurement of a shuttle mission simulator for shuttle crew training. The subject study was concerned with definition of the software loads to be imposed on the computer complex to be associated with the shuttle mission simulator and the development of procurement specifications based on the resulting computer requirements. These procurement specifications cover the computer hardware and system software as well as the data conversion equipment required to interface the computer to the simulator hardware. The development of the necessary hardware and software specifications required the execution of a number of related tasks which included, (1) simulation software sizing, (2) computer requirements definition, (3) data conversion equipment requirements definition, (4) system software requirements definition, (5) a simulation management plan, (6) a background survey, and (7) preparation of the specifications.

  7. System Administrator for LCS Development Sets

    NASA Technical Reports Server (NTRS)

    Garcia, Aaron

    2013-01-01

    The Spaceport Command and Control System Project is creating a Checkout and Control System that will eventually launch the next generation of vehicles from Kennedy Space Center. KSC has a large set of Development and Operational equipment already deployed in several facilities, including the Launch Control Center, which requires support. The position of System Administrator will complete tasks across multiple platforms (Linux/Windows), many of them virtual. The Hardware Branch of the Control and Data Systems Division at the Kennedy Space Center uses system administrators for a variety of tasks. The position of system administrator comes with many responsibilities which include maintaining computer systems, repair or set up hardware, install software, create backups and recover drive images are a sample of jobs which one must complete. Other duties may include working with clients in person or over the phone and resolving their computer system needs. Training is a major part of learning how an organization functions and operates. Taking that into consideration, NASA is no exception. Training on how to better protect the NASA computer infrastructure will be a topic to learn, followed by NASA work polices. Attending meetings and discussing progress will be expected. A system administrator will have an account with root access. Root access gives a user full access to a computer system and or network. System admins can remove critical system files and recover files using a tape backup. Problem solving will be an important skill to develop in order to complete the many tasks.

  8. Distributed computing environments for future space control systems

    NASA Technical Reports Server (NTRS)

    Viallefont, Pierre

    1993-01-01

    The aim of this paper is to present the results of a CNES research project on distributed computing systems. The purpose of this research was to study the impact of the use of new computer technologies in the design and development of future space applications. The first part of this study was a state-of-the-art review of distributed computing systems. One of the interesting ideas arising from this review is the concept of a 'virtual computer' allowing the distributed hardware architecture to be hidden from a software application. The 'virtual computer' can improve system performance by adapting the best architecture (addition of computers) to the software application without having to modify its source code. This concept can also decrease the cost and obsolescence of the hardware architecture. In order to verify the feasibility of the 'virtual computer' concept, a prototype representative of a distributed space application is being developed independently of the hardware architecture.

  9. Computational physics in RISC environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rhoades, C.E. Jr.

    The new high performance Reduced Instruction Set Computers (RISC) promise near Cray-level performance at near personal-computer prices. This paper explores the performance, conversion and compatibility issues associated with developing, testing and using our traditional, large-scale simulation models in the RISC environments exemplified by the IBM RS6000 and MISP R3000 machines. The questions of operating systems (CTSS versus UNIX), compilers (Fortran, C, pointers) and data are addressed in detail. Overall, it is concluded that the RISC environments are practical for a very wide range of computational physic activities. Indeed, all but the very largest two- and three-dimensional codes will work quitemore » well, particularly in a single user environment. Easily projected hardware-performance increases will revolutionize the field of computational physics. The way we do research will change profoundly in the next few years. There is, however, nothing more difficult to plan, nor more dangerous to manage than the creation of this new world.« less

  10. Computational physics in RISC environments. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rhoades, C.E. Jr.

    The new high performance Reduced Instruction Set Computers (RISC) promise near Cray-level performance at near personal-computer prices. This paper explores the performance, conversion and compatibility issues associated with developing, testing and using our traditional, large-scale simulation models in the RISC environments exemplified by the IBM RS6000 and MISP R3000 machines. The questions of operating systems (CTSS versus UNIX), compilers (Fortran, C, pointers) and data are addressed in detail. Overall, it is concluded that the RISC environments are practical for a very wide range of computational physic activities. Indeed, all but the very largest two- and three-dimensional codes will work quitemore » well, particularly in a single user environment. Easily projected hardware-performance increases will revolutionize the field of computational physics. The way we do research will change profoundly in the next few years. There is, however, nothing more difficult to plan, nor more dangerous to manage than the creation of this new world.« less

  11. Using a Personal Device to Strengthen Password Authentication from an Untrusted Computer

    NASA Astrophysics Data System (ADS)

    Mannan, Mohammad; van Oorschot, P. C.

    Keylogging and phishing attacks can extract user identity and sensitive account information for unauthorized access to users' financial accounts. Most existing or proposed solutions are vulnerable to session hijacking attacks. We propose a simple approach to counter these attacks, which cryptographically separates a user's long-term secret input from (typically untrusted) client PCs; a client PC performs most computations but has access only to temporary secrets. The user's long-term secret (typically short and low-entropy) is input through an independent personal trusted device such as a cellphone. The personal device provides a user's long-term secrets to a client PC only after encrypting the secrets using a pre-installed, "correct" public key of a remote service (the intended recipient of the secrets). The proposed protocol (MP-Auth) realizes such an approach, and is intended to safeguard passwords from keyloggers, other malware (including rootkits), phishing attacks and pharming, as well as to provide transaction security to foil session hijacking. We report on a prototype implementation of MP-Auth, and provide a comparison of web authentication techniques that use an additional factor of authentication (e.g. a cellphone, PDA or hardware token).

  12. Optimizing agent-based transmission models for infectious diseases.

    PubMed

    Willem, Lander; Stijven, Sean; Tijskens, Engelbert; Beutels, Philippe; Hens, Niel; Broeckhove, Jan

    2015-06-02

    Infectious disease modeling and computational power have evolved such that large-scale agent-based models (ABMs) have become feasible. However, the increasing hardware complexity requires adapted software designs to achieve the full potential of current high-performance workstations. We have found large performance differences with a discrete-time ABM for close-contact disease transmission due to data locality. Sorting the population according to the social contact clusters reduced simulation time by a factor of two. Data locality and model performance can also be improved by storing person attributes separately instead of using person objects. Next, decreasing the number of operations by sorting people by health status before processing disease transmission has also a large impact on model performance. Depending of the clinical attack rate, target population and computer hardware, the introduction of the sort phase decreased the run time from 26% up to more than 70%. We have investigated the application of parallel programming techniques and found that the speedup is significant but it drops quickly with the number of cores. We observed that the effect of scheduling and workload chunk size is model specific and can make a large difference. Investment in performance optimization of ABM simulator code can lead to significant run time reductions. The key steps are straightforward: the data structure for the population and sorting people on health status before effecting disease propagation. We believe these conclusions to be valid for a wide range of infectious disease ABMs. We recommend that future studies evaluate the impact of data management, algorithmic procedures and parallelization on model performance.

  13. Performance Prediction Toolkit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chennupati, Gopinath; Santhi, Nanadakishore; Eidenbenz, Stephen

    The Performance Prediction Toolkit (PPT), is a scalable co-design tool that contains the hardware and middle-ware models, which accept proxy applications as input in runtime prediction. PPT relies on Simian, a parallel discrete event simulation engine in Python or Lua, that uses the process concept, where each computing unit (host, node, core) is a Simian entity. Processes perform their task through message exchanges to remain active, sleep, wake-up, begin and end. The PPT hardware model of a compute core (such as a Haswell core) consists of a set of parameters, such as clock speed, memory hierarchy levels, their respective sizes,more » cache-lines, access times for different cache levels, average cycle counts of ALU operations, etc. These parameters are ideally read off a spec sheet or are learned using regression models learned from hardware counters (PAPI) data. The compute core model offers an API to the software model, a function called time_compute(), which takes as input a tasklist. A tasklist is an unordered set of ALU, and other CPU-type operations (in particular virtual memory loads and stores). The PPT application model mimics the loop structure of the application and replaces the computational kernels with a call to the hardware model's time_compute() function giving tasklists as input that model the compute kernel. A PPT application model thus consists of tasklists representing kernels and the high-er level loop structure that we like to think of as pseudo code. The key challenge for the hardware model's time_compute-function is to translate virtual memory accesses into actual cache hierarchy level hits and misses.PPT also contains another CPU core level hardware model, Analytical Memory Model (AMM). The AMM solves this challenge soundly, where our previous alternatives explicitly include the L1,L2,L3 hit-rates as inputs to the tasklists. Explicit hit-rates inevitably only reflect the application modeler's best guess, perhaps informed by a few small test problems using hardware counters; also, hard-coded hit-rates make the hardware model insensitive to changes in cache sizes. Alternatively, we use reuse distance distributions in the tasklists. In general, reuse profiles require the application modeler to run a very expensive trace analysis on the real code that realistically can be done at best for small examples.« less

  14. Using a software-defined computer in teaching the basics of computer architecture and operation

    NASA Astrophysics Data System (ADS)

    Kosowska, Julia; Mazur, Grzegorz

    2017-08-01

    The paper describes the concept and implementation of SDC_One software-defined computer designed for experimental and didactic purposes. Equipped with extensive hardware monitoring mechanisms, the device enables the students to monitor the computer's operation on bus transfer cycle or instruction cycle basis, providing the practical illustration of basic aspects of computer's operation. In the paper, we describe the hardware monitoring capabilities of SDC_One and some scenarios of using it in teaching the basics of computer architecture and microprocessor operation.

  15. A software methodology for compiling quantum programs

    NASA Astrophysics Data System (ADS)

    Häner, Thomas; Steiger, Damian S.; Svore, Krysta; Troyer, Matthias

    2018-04-01

    Quantum computers promise to transform our notions of computation by offering a completely new paradigm. To achieve scalable quantum computation, optimizing compilers and a corresponding software design flow will be essential. We present a software architecture for compiling quantum programs from a high-level language program to hardware-specific instructions. We describe the necessary layers of abstraction and their differences and similarities to classical layers of a computer-aided design flow. For each layer of the stack, we discuss the underlying methods for compilation and optimization. Our software methodology facilitates more rapid innovation among quantum algorithm designers, quantum hardware engineers, and experimentalists. It enables scalable compilation of complex quantum algorithms and can be targeted to any specific quantum hardware implementation.

  16. EMG amplifier with wireless data transmission

    NASA Astrophysics Data System (ADS)

    Kowalski, Grzegorz; Wildner, Krzysztof

    2017-08-01

    Wireless medical diagnostics is a trend in modern technology used in medicine. This paper presents a concept of realization, architecture of hardware and software implementation of an elecromyography signal (EMG) amplifier with wireless data transmission. This amplifier consists of three components: analogue processing of bioelectric signal module, micro-controller circuit and an application enabling data acquisition via a personal computer. The analogue bioelectric signal processing circuit receives electromyography signals from the skin surface, followed by initial analogue processing and preparation of the signals for further digital processing. The second module is a micro-controller circuit designed to wirelessly transmit the electromyography signals from the analogue signal converter to a personal computer. Its purpose is to eliminate the need for wired connections between the patient and the data logging device. The third block is a computer application designed to display the transmitted electromyography signals, as well as data capture and analysis. Its purpose is to provide a graphical representation of the collected data. The entire device has been thoroughly tested to ensure proper functioning. In use, the device displayed the captured electromyography signal from the arm of the patient. Amplitude- frequency characteristics were set in order to investigate the bandwidth and the overall gain of the device.

  17. Scalable digital hardware for a trapped ion quantum computer

    NASA Astrophysics Data System (ADS)

    Mount, Emily; Gaultney, Daniel; Vrijsen, Geert; Adams, Michael; Baek, So-Young; Hudek, Kai; Isabella, Louis; Crain, Stephen; van Rynbach, Andre; Maunz, Peter; Kim, Jungsang

    2016-12-01

    Many of the challenges of scaling quantum computer hardware lie at the interface between the qubits and the classical control signals used to manipulate them. Modular ion trap quantum computer architectures address scalability by constructing individual quantum processors interconnected via a network of quantum communication channels. Successful operation of such quantum hardware requires a fully programmable classical control system capable of frequency stabilizing the continuous wave lasers necessary for loading, cooling, initialization, and detection of the ion qubits, stabilizing the optical frequency combs used to drive logic gate operations on the ion qubits, providing a large number of analog voltage sources to drive the trap electrodes, and a scheme for maintaining phase coherence among all the controllers that manipulate the qubits. In this work, we describe scalable solutions to these hardware development challenges.

  18. The use of PC based VR in clinical medicine: the VREPAR projects.

    PubMed

    Riva, G; Bacchetta, M; Baruffi, M; Borgomainerio, E; Defrance, C; Gatti, F; Galimberti, C; Fontaneto, S; Marchi, S; Molinari, E; Nugues, P; Rinaldi, S; Rovetta, A; Ferretti, G S; Tonci, A; Wann, J; Vincelli, F

    1999-01-01

    Virtual reality (VR) is an emerging technology that alters the way individuals interact with computers: a 3D computer-generated environment in which a person can move about and interact as if he actually was inside it. Given to the high computational power required to create virtual environments, these are usually developed on expensive high-end workstations. However, the significant advances in PC hardware that have been made over the last three years, are making PC-based VR a possible solution for clinical assessment and therapy. VREPAR - Virtual Reality Environments for Psychoneurophysiological Assessment and Rehabilitation - are two European Community funded projects (Telematics for health - HC 1053/HC 1055 - http://www.psicologia.net) that are trying to develop a modular PC-based virtual reality system for the medical market. The paper describes the rationale of the developed modules and the preliminary results obtained.

  19. SCOTCH: Secure Counting Of encrypTed genomiC data using a Hybrid approach.

    PubMed

    Chenghong, Wang; Jiang, Yichen; Mohammed, Noman; Chen, Feng; Jiang, Xiaoqian; Al Aziz, Md Momin; Sadat, Md Nazmus; Wang, Shuang

    2017-01-01

    As genomic data are usually at large scale and highly sensitive, it is essential to enable both efficient and secure analysis, by which the data owner can securely delegate both computation and storage on untrusted public cloud. Counting query of genotypes is a basic function for many downstream applications in biomedical research (e.g., computing allele frequency, calculating chi-squared statistics, etc.). Previous solutions show promise on secure counting of outsourced data but the efficiency is still a big limitation for real world applications. In this paper, we propose a novel hybrid solution to combine a rigorous theoretical model (homomorphic encryption) and the latest hardware-based infrastructure (i.e., Software Guard Extensions) to speed up the computation while preserving the privacy of both data owners and data users. Our results demonstrated efficiency by using the real data from the personal genome project.

  20. SCOTCH: Secure Counting Of encrypTed genomiC data using a Hybrid approach

    PubMed Central

    Chenghong, Wang; Jiang, Yichen; Mohammed, Noman; Chen, Feng; Jiang, Xiaoqian; Al Aziz, Md Momin; Sadat, Md Nazmus; Wang, Shuang

    2017-01-01

    As genomic data are usually at large scale and highly sensitive, it is essential to enable both efficient and secure analysis, by which the data owner can securely delegate both computation and storage on untrusted public cloud. Counting query of genotypes is a basic function for many downstream applications in biomedical research (e.g., computing allele frequency, calculating chi-squared statistics, etc.). Previous solutions show promise on secure counting of outsourced data but the efficiency is still a big limitation for real world applications. In this paper, we propose a novel hybrid solution to combine a rigorous theoretical model (homomorphic encryption) and the latest hardware-based infrastructure (i.e., Software Guard Extensions) to speed up the computation while preserving the privacy of both data owners and data users. Our results demonstrated efficiency by using the real data from the personal genome project. PMID:29854245

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busbey, A.B.

    A number of methods and products, both hardware and software, to allow data exchange between Apple Macintosh computers and MS-DOS based systems. These included serial null modem connections, MS-DOS hardware and/or software emulation, MS-DOS disk-reading hardware and networking.

  2. Network Information System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    1996-05-01

    The Network Information System (NWIS) was initially implemented in May 1996 as a system in which computing devices could be recorded so that unique names could be generated for each device. Since then the system has grown to be an enterprise wide information system which is integrated with other systems to provide the seamless flow of data through the enterprise. The system Iracks data for two main entities: people and computing devices. The following are the type of functions performed by NWIS for these two entities: People Provides source information to the enterprise person data repository for select contractors andmore » visitors Generates and tracks unique usernames and Unix user IDs for every individual granted cyber access Tracks accounts for centrally managed computing resources, and monitors and controls the reauthorization of the accounts in accordance with the DOE mandated interval Computing Devices Generates unique names for all computing devices registered in the system Tracks the following information for each computing device: manufacturer, make, model, Sandia property number, vendor serial number, operating system and operating system version, owner, device location, amount of memory, amount of disk space, and level of support provided for the machine Tracks the hardware address for network cards Tracks the P address registered to computing devices along with the canonical and alias names for each address Updates the Dynamic Domain Name Service (DDNS) for canonical and alias names Creates the configuration files for DHCP to control the DHCP ranges and allow access to only properly registered computers Tracks and monitors classified security plans for stand-alone computers Tracks the configuration requirements used to setup the machine Tracks the roles people have on machines (system administrator, administrative access, user, etc...) Allows systems administrators to track changes made on the machine (both hardware and software) Generates an adjustment history of changes on selected fields« less

  3. Costs of cloud computing for a biometry department. A case study.

    PubMed

    Knaus, J; Hieke, S; Binder, H; Schwarzer, G

    2013-01-01

    "Cloud" computing providers, such as the Amazon Web Services (AWS), offer stable and scalable computational resources based on hardware virtualization, with short, usually hourly, billing periods. The idea of pay-as-you-use seems appealing for biometry research units which have only limited access to university or corporate data center resources or grids. This case study compares the costs of an existing heterogeneous on-site hardware pool in a Medical Biometry and Statistics department to a comparable AWS offer. The "total cost of ownership", including all direct costs, is determined for the on-site hardware, and hourly prices are derived, based on actual system utilization during the year 2011. Indirect costs, which are difficult to quantify are not included in this comparison, but nevertheless some rough guidance from our experience is given. To indicate the scale of costs for a methodological research project, a simulation study of a permutation-based statistical approach is performed using AWS and on-site hardware. In the presented case, with a system utilization of 25-30 percent and 3-5-year amortization, on-site hardware can result in smaller costs, compared to hourly rental in the cloud dependent on the instance chosen. Renting cloud instances with sufficient main memory is a deciding factor in this comparison. Costs for on-site hardware may vary, depending on the specific infrastructure at a research unit, but have only moderate impact on the overall comparison and subsequent decision for obtaining affordable scientific computing resources. Overall utilization has a much stronger impact as it determines the actual computing hours needed per year. Taking this into ac count, cloud computing might still be a viable option for projects with limited maturity, or as a supplement for short peaks in demand.

  4. Real-time orthorectification by FPGA-based hardware acceleration

    NASA Astrophysics Data System (ADS)

    Kuo, David; Gordon, Don

    2010-10-01

    Orthorectification that corrects the perspective distortion of remote sensing imagery, providing accurate geolocation and ease of correlation to other images is a valuable first-step in image processing for information extraction. However, the large amount of metadata and the floating-point matrix transformations required to operate on each pixel make this a computation and I/O (Input/Output) intensive process. As result much imagery is either left unprocessed or loses timesensitive value in the long processing cycle. However, the computation on each pixel can be reduced substantially by using computational results of the neighboring pixels and accelerated by special pipelined hardware architecture in one to two orders of magnitude. A specialized coprocessor that is implemented inside an FPGA (Field Programmable Gate Array) chip and surrounded by vendorsupported hardware IP (Intellectual Property) shares the computation workload with CPU through PCI-Express interface. The ultimate speed of one pixel per clock (125 MHz) is achieved by the pipelined systolic array architecture. The optimal partition between software and hardware, the timing profile among image I/O and computation, and the highly automated GUI (Graphical User Interface) that fully exploits this speed increase to maximize overall image production throughput will also be discussed. The software that runs on a workstation with the acceleration hardware orthorectifies 16 Megapixels per second, which is 16 times faster than without the hardware. It turns the production time from months to days. A real-life successful story of an imaging satellite company that adopted such workstations for their orthorectified imagery production will be presented. The potential candidacy of the image processing computation that can be accelerated more efficiently by the same approach will also be analyzed.

  5. A streaming-based solution for remote visualization of 3D graphics on mobile devices.

    PubMed

    Lamberti, Fabrizio; Sanna, Andrea

    2007-01-01

    Mobile devices such as Personal Digital Assistants, Tablet PCs, and cellular phones have greatly enhanced user capability to connect to remote resources. Although a large set of applications are now available bridging the gap between desktop and mobile devices, visualization of complex 3D models is still a task hard to accomplish without specialized hardware. This paper proposes a system where a cluster of PCs, equipped with accelerated graphics cards managed by the Chromium software, is able to handle remote visualization sessions based on MPEG video streaming involving complex 3D models. The proposed framework allows mobile devices such as smart phones, Personal Digital Assistants (PDAs), and Tablet PCs to visualize objects consisting of millions of textured polygons and voxels at a frame rate of 30 fps or more depending on hardware resources at the server side and on multimedia capabilities at the client side. The server is able to concurrently manage multiple clients computing a video stream for each one; resolution and quality of each stream is tailored according to screen resolution and bandwidth of the client. The paper investigates in depth issues related to latency time, bit rate and quality of the generated stream, screen resolutions, as well as frames per second displayed.

  6. Will the future of knowledge work automation transform personalized medicine?

    PubMed

    Naik, Gauri; Bhide, Sanika S

    2014-09-01

    Today, we live in a world of 'information overload' which demands high level of knowledge-based work. However, advances in computer hardware and software have opened possibilities to automate 'routine cognitive tasks' for knowledge processing. Engineering intelligent software systems that can process large data sets using unstructured commands and subtle judgments and have the ability to learn 'on the fly' are a significant step towards automation of knowledge work. The applications of this technology for high throughput genomic analysis, database updating, reporting clinically significant variants, and diagnostic imaging purposes are explored using case studies.

  7. Fault tolerance in a supercomputer through dynamic repartitioning

    DOEpatents

    Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Takken, Todd E.

    2007-02-27

    A multiprocessor, parallel computer is made tolerant to hardware failures by providing extra groups of redundant standby processors and by designing the system so that these extra groups of processors can be swapped with any group which experiences a hardware failure. This swapping can be under software control, thereby permitting the entire computer to sustain a hardware failure but, after swapping in the standby processors, to still appear to software as a pristine, fully functioning system.

  8. Soft Computing Techniques for the Protein Folding Problem on High Performance Computing Architectures.

    PubMed

    Llanes, Antonio; Muñoz, Andrés; Bueno-Crespo, Andrés; García-Valverde, Teresa; Sánchez, Antonia; Arcas-Túnez, Francisco; Pérez-Sánchez, Horacio; Cecilia, José M

    2016-01-01

    The protein-folding problem has been extensively studied during the last fifty years. The understanding of the dynamics of global shape of a protein and the influence on its biological function can help us to discover new and more effective drugs to deal with diseases of pharmacological relevance. Different computational approaches have been developed by different researchers in order to foresee the threedimensional arrangement of atoms of proteins from their sequences. However, the computational complexity of this problem makes mandatory the search for new models, novel algorithmic strategies and hardware platforms that provide solutions in a reasonable time frame. We present in this revision work the past and last tendencies regarding protein folding simulations from both perspectives; hardware and software. Of particular interest to us are both the use of inexact solutions to this computationally hard problem as well as which hardware platforms have been used for running this kind of Soft Computing techniques.

  9. Hardware Acceleration of Adaptive Neural Algorithms.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, Conrad D.

    As tradit ional numerical computing has faced challenges, researchers have turned towards alternative computing approaches to reduce power - per - computation metrics and improve algorithm performance. Here, we describe an approach towards non - conventional computing that strengthens the connection between machine learning and neuroscience concepts. The Hardware Acceleration of Adaptive Neural Algorithms (HAANA) project ha s develop ed neural machine learning algorithms and hardware for applications in image processing and cybersecurity. While machine learning methods are effective at extracting relevant features from many types of data, the effectiveness of these algorithms degrades when subjected to real - worldmore » conditions. Our team has generated novel neural - inspired approa ches to improve the resiliency and adaptability of machine learning algorithms. In addition, we have also designed and fabricated hardware architectures and microelectronic devices specifically tuned towards the training and inference operations of neural - inspired algorithms. Finally, our multi - scale simulation framework allows us to assess the impact of microelectronic device properties on algorithm performance.« less

  10. Trainable hardware for dynamical computing using error backpropagation through physical media.

    PubMed

    Hermans, Michiel; Burm, Michaël; Van Vaerenbergh, Thomas; Dambre, Joni; Bienstman, Peter

    2015-03-24

    Neural networks are currently implemented on digital Von Neumann machines, which do not fully leverage their intrinsic parallelism. We demonstrate how to use a novel class of reconfigurable dynamical systems for analogue information processing, mitigating this problem. Our generic hardware platform for dynamic, analogue computing consists of a reciprocal linear dynamical system with nonlinear feedback. Thanks to reciprocity, a ubiquitous property of many physical phenomena like the propagation of light and sound, the error backpropagation-a crucial step for tuning such systems towards a specific task-can happen in hardware. This can potentially speed up the optimization process significantly, offering important benefits for the scalability of neuro-inspired hardware. In this paper, we show, using one experimentally validated and one conceptual example, that such systems may provide a straightforward mechanism for constructing highly scalable, fully dynamical analogue computers.

  11. Trainable hardware for dynamical computing using error backpropagation through physical media

    NASA Astrophysics Data System (ADS)

    Hermans, Michiel; Burm, Michaël; van Vaerenbergh, Thomas; Dambre, Joni; Bienstman, Peter

    2015-03-01

    Neural networks are currently implemented on digital Von Neumann machines, which do not fully leverage their intrinsic parallelism. We demonstrate how to use a novel class of reconfigurable dynamical systems for analogue information processing, mitigating this problem. Our generic hardware platform for dynamic, analogue computing consists of a reciprocal linear dynamical system with nonlinear feedback. Thanks to reciprocity, a ubiquitous property of many physical phenomena like the propagation of light and sound, the error backpropagation—a crucial step for tuning such systems towards a specific task—can happen in hardware. This can potentially speed up the optimization process significantly, offering important benefits for the scalability of neuro-inspired hardware. In this paper, we show, using one experimentally validated and one conceptual example, that such systems may provide a straightforward mechanism for constructing highly scalable, fully dynamical analogue computers.

  12. Walking robot: A design project for undergraduate students

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The objective of the University of Maryland walking robot project was to design, analyze, assemble, and test an intelligent, mobile, and terrain-adaptive system. The robot incorporates existing technologies in novel ways. The legs emulate the walking path of a human by an innovative modification of a crank-and-rocker mechanism. The body consists of two tripod frames connected by a turning mechanism. The two sets of three legs are mounted so as to allow the robot to walk with stability in its own footsteps. The computer uses a modular hardware design and distributed processing. Dual-port RAM is used to allow communication between a supervisory personal computer and seven microcontrollers. The microcontrollers provide low-level control for the motors and relieve the processing burden on the PC.

  13. Mitigating Communication Delays in Remotely Connected Hardware-in-the-loop Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cale, James; Johnson, Brian; Dall'Anese, Emiliano

    Here, this paper introduces a potential approach for mitigating the effects of communication delays between multiple, closed-loop hardware-in-the-loop experiments which are virtually connected, yet physically separated. The method consists of an analytical method for the compensation of communication delays, along with the supporting computational and communication infrastructure. The control design leverages tools for the design of observers for the compensation of measurement errors in systems with time-varying delays. The proposed methodology is validated through computer simulation and hardware experimentation connecting hardware-in-the-loop experiments conducted between laboratories separated by a distance of over 100 km.

  14. Mitigating Communication Delays in Remotely Connected Hardware-in-the-loop Experiments

    DOE PAGES

    Cale, James; Johnson, Brian; Dall'Anese, Emiliano; ...

    2018-03-30

    Here, this paper introduces a potential approach for mitigating the effects of communication delays between multiple, closed-loop hardware-in-the-loop experiments which are virtually connected, yet physically separated. The method consists of an analytical method for the compensation of communication delays, along with the supporting computational and communication infrastructure. The control design leverages tools for the design of observers for the compensation of measurement errors in systems with time-varying delays. The proposed methodology is validated through computer simulation and hardware experimentation connecting hardware-in-the-loop experiments conducted between laboratories separated by a distance of over 100 km.

  15. Accelerating artificial intelligence with reconfigurable computing

    NASA Astrophysics Data System (ADS)

    Cieszewski, Radoslaw

    Reconfigurable computing is emerging as an important area of research in computer architectures and software systems. Many algorithms can be greatly accelerated by placing the computationally intense portions of an algorithm into reconfigurable hardware. Reconfigurable computing combines many benefits of both software and ASIC implementations. Like software, the mapped circuit is flexible, and can be changed over the lifetime of the system. Similar to an ASIC, reconfigurable systems provide a method to map circuits into hardware. Reconfigurable systems therefore have the potential to achieve far greater performance than software as a result of bypassing the fetch-decode-execute operations of traditional processors, and possibly exploiting a greater level of parallelism. Such a field, where there is many different algorithms which can be accelerated, is an artificial intelligence. This paper presents example hardware implementations of Artificial Neural Networks, Genetic Algorithms and Expert Systems.

  16. GREEN SUPERCOMPUTING IN A DESKTOP BOX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HSU, CHUNG-HSING; FENG, WU-CHUN; CHING, AVERY

    2007-01-17

    The computer workstation, introduced by Sun Microsystems in 1982, was the tool of choice for scientists and engineers as an interactive computing environment for the development of scientific codes. However, by the mid-1990s, the performance of workstations began to lag behind high-end commodity PCs. This, coupled with the disappearance of BSD-based operating systems in workstations and the emergence of Linux as an open-source operating system for PCs, arguably led to the demise of the workstation as we knew it. Around the same time, computational scientists started to leverage PCs running Linux to create a commodity-based (Beowulf) cluster that provided dedicatedmore » computer cycles, i.e., supercomputing for the rest of us, as a cost-effective alternative to large supercomputers, i.e., supercomputing for the few. However, as the cluster movement has matured, with respect to cluster hardware and open-source software, these clusters have become much more like their large-scale supercomputing brethren - a shared (and power-hungry) datacenter resource that must reside in a machine-cooled room in order to operate properly. Consequently, the above observations, when coupled with the ever-increasing performance gap between the PC and cluster supercomputer, provide the motivation for a 'green' desktop supercomputer - a turnkey solution that provides an interactive and parallel computing environment with the approximate form factor of a Sun SPARCstation 1 'pizza box' workstation. In this paper, they present the hardware and software architecture of such a solution as well as its prowess as a developmental platform for parallel codes. In short, imagine a 12-node personal desktop supercomputer that achieves 14 Gflops on Linpack but sips only 185 watts of power at load, resulting in a performance-power ratio that is over 300% better than their reference SMP platform.« less

  17. The Ruggedized STD Bus Microcomputer - A low cost computer suitable for Space Shuttle experiments

    NASA Technical Reports Server (NTRS)

    Budney, T. J.; Stone, R. W.

    1982-01-01

    Previous space flight computers have been costly in terms of both hardware and software. The Ruggedized STD Bus Microcomputer is based on the commercial Mostek/Pro-Log STD Bus. Ruggedized PC cards can be based on commercial cards from more than 60 manufacturers, reducing hardware cost and design time. Software costs are minimized by using standard 8-bit microprocessors and by debugging code using commercial versions of the ruggedized flight boards while the flight hardware is being fabricated.

  18. Research in nonlinear structural and solid mechanics

    NASA Technical Reports Server (NTRS)

    Mccomb, H. G., Jr. (Compiler); Noor, A. K. (Compiler)

    1981-01-01

    Recent and projected advances in applied mechanics, numerical analysis, computer hardware and engineering software, and their impact on modeling and solution techniques in nonlinear structural and solid mechanics are discussed. The fields covered are rapidly changing and are strongly impacted by current and projected advances in computer hardware. To foster effective development of the technology perceptions on computing systems and nonlinear analysis software systems are presented.

  19. Chemical calculations on Cray computers

    NASA Technical Reports Server (NTRS)

    Taylor, Peter R.; Bauschlicher, Charles W., Jr.; Schwenke, David W.

    1989-01-01

    The influence of recent developments in supercomputing on computational chemistry is discussed with particular reference to Cray computers and their pipelined vector/limited parallel architectures. After reviewing Cray hardware and software the performance of different elementary program structures are examined, and effective methods for improving program performance are outlined. The computational strategies appropriate for obtaining optimum performance in applications to quantum chemistry and dynamics are discussed. Finally, some discussion is given of new developments and future hardware and software improvements.

  20. Color postprocessing for 3-dimensional finite element mesh quality evaluation and evolving graphical workstation

    NASA Technical Reports Server (NTRS)

    Panthaki, Malcolm J.

    1987-01-01

    Three general tasks on general-purpose, interactive color graphics postprocessing for three-dimensional computational mechanics were accomplished. First, the existing program (POSTPRO3D) is ported to a high-resolution device. In the course of this transfer, numerous enhancements are implemented in the program. The performance of the hardware was evaluated from the point of view of engineering postprocessing, and the characteristics of future hardware were discussed. Second, interactive graphical tools implemented to facilitate qualitative mesh evaluation from a single analysis. The literature was surveyed and a bibliography compiled. Qualitative mesh sensors were examined, and the use of two-dimensional plots of unaveraged responses on the surface of three-dimensional continua was emphasized in an interactive color raster graphics environment. Finally, a postprocessing environment was designed for state-of-the-art workstation technology. Modularity, personalization of the environment, integration of the engineering design processes, and the development and use of high-level graphics tools are some of the features of the intended environment.

  1. Developing information technology at the Medical Research Unit of the Albert Schweitzer Hospital in Lambaréné, Gabon.

    PubMed

    Dibacka, Paterne Lessihuin; Bounda, Yann; Nguema, Davy Ondo; Lell, Bertrand

    2010-03-01

    Information technology has become a key resource for research institutions, providing services such as hardware, software and network maintenance, as well as data management services. The IT department of the Medical Research Unit (MRU) of the Albert Schweitzer Hospital in Lambaréné, Gabon is a good example of how IT has developed at African Research Centres in recent years and demonstrates the scope of work that a modern research centre needs to offer. It illustrates the development in the past 15 years--from single computers maintained by investigators to the present situation of a group of well-trained local IT personal who are in charge of a variety of hardware and software and who also develop applications for use in a research environment. Open source applications are particularly suited for these needs and various applications are used in data management, data analysis, accounting, administration and quality management.

  2. Embedded Web Technology: Applying World Wide Web Standards to Embedded Systems

    NASA Technical Reports Server (NTRS)

    Ponyik, Joseph G.; York, David W.

    2002-01-01

    Embedded Systems have traditionally been developed in a highly customized manner. The user interface hardware and software along with the interface to the embedded system are typically unique to the system for which they are built, resulting in extra cost to the system in terms of development time and maintenance effort. World Wide Web standards have been developed in the passed ten years with the goal of allowing servers and clients to intemperate seamlessly. The client and server systems can consist of differing hardware and software platforms but the World Wide Web standards allow them to interface without knowing about the details of system at the other end of the interface. Embedded Web Technology is the merging of Embedded Systems with the World Wide Web. Embedded Web Technology decreases the cost of developing and maintaining the user interface by allowing the user to interface to the embedded system through a web browser running on a standard personal computer. Embedded Web Technology can also be used to simplify an Embedded System's internal network.

  3. Exploring Cloud Computing for Large-scale Scientific Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Guang; Han, Binh; Yin, Jian

    This paper explores cloud computing for large-scale data-intensive scientific applications. Cloud computing is attractive because it provides hardware and software resources on-demand, which relieves the burden of acquiring and maintaining a huge amount of resources that may be used only once by a scientific application. However, unlike typical commercial applications that often just requires a moderate amount of ordinary resources, large-scale scientific applications often need to process enormous amount of data in the terabyte or even petabyte range and require special high performance hardware with low latency connections to complete computation in a reasonable amount of time. To address thesemore » challenges, we build an infrastructure that can dynamically select high performance computing hardware across institutions and dynamically adapt the computation to the selected resources to achieve high performance. We have also demonstrated the effectiveness of our infrastructure by building a system biology application and an uncertainty quantification application for carbon sequestration, which can efficiently utilize data and computation resources across several institutions.« less

  4. Proceedings, Conference on the Computing Environment for Mathematical Software

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Recent advances in software and hardware technology which make it economical to create computing environments appropriate for specialized applications are addressed. Topics included software tools, FORTRAN standards activity, and features of languages, operating systems, and hardware that are important for the development, testing, and maintenance of mathematical software.

  5. Web-Compatible Graphics Visualization Framework for Online Instruction and Assessment of Hardware Concepts

    ERIC Educational Resources Information Center

    Chandramouli, Magesh; Chittamuru, Siva-Teja

    2016-01-01

    This paper explains the design of a graphics-based virtual environment for instructing computer hardware concepts to students, especially those at the beginner level. Photorealistic visualizations and simulations are designed and programmed with interactive features allowing students to practice, explore, and test themselves on computer hardware…

  6. 24 CFR 208.112 - Cost.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... increases. (b) At the owner's option, the cost of the computer software may include service contracts to... requirements. (c) The source of funds for the purchase of hardware or software, or contracting for services for... formatted data, including either the purchase and maintenance of computer hardware or software, or both, the...

  7. 9 CFR 205.101 - Certification-request and processing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... required by subsection (c)(2)(F) (details of computer hardware and software need not be furnished but the... of computer hardware and software need not be furnished but the results it will produce must be..., and requirements issued under such legislation or other legal authority and governing operation of the...

  8. Node Resource Manager: A Distributed Computing Software Framework Used for Solving Geophysical Problems

    NASA Astrophysics Data System (ADS)

    Lawry, B. J.; Encarnacao, A.; Hipp, J. R.; Chang, M.; Young, C. J.

    2011-12-01

    With the rapid growth of multi-core computing hardware, it is now possible for scientific researchers to run complex, computationally intensive software on affordable, in-house commodity hardware. Multi-core CPUs (Central Processing Unit) and GPUs (Graphics Processing Unit) are now commonplace in desktops and servers. Developers today have access to extremely powerful hardware that enables the execution of software that could previously only be run on expensive, massively-parallel systems. It is no longer cost-prohibitive for an institution to build a parallel computing cluster consisting of commodity multi-core servers. In recent years, our research team has developed a distributed, multi-core computing system and used it to construct global 3D earth models using seismic tomography. Traditionally, computational limitations forced certain assumptions and shortcuts in the calculation of tomographic models; however, with the recent rapid growth in computational hardware including faster CPU's, increased RAM, and the development of multi-core computers, we are now able to perform seismic tomography, 3D ray tracing and seismic event location using distributed parallel algorithms running on commodity hardware, thereby eliminating the need for many of these shortcuts. We describe Node Resource Manager (NRM), a system we developed that leverages the capabilities of a parallel computing cluster. NRM is a software-based parallel computing management framework that works in tandem with the Java Parallel Processing Framework (JPPF, http://www.jppf.org/), a third party library that provides a flexible and innovative way to take advantage of modern multi-core hardware. NRM enables multiple applications to use and share a common set of networked computers, regardless of their hardware platform or operating system. Using NRM, algorithms can be parallelized to run on multiple processing cores of a distributed computing cluster of servers and desktops, which results in a dramatic speedup in execution time. NRM is sufficiently generic to support applications in any domain, as long as the application is parallelizable (i.e., can be subdivided into multiple individual processing tasks). At present, NRM has been effective in decreasing the overall runtime of several algorithms: 1) the generation of a global 3D model of the compressional velocity distribution in the Earth using tomographic inversion, 2) the calculation of the model resolution matrix, model covariance matrix, and travel time uncertainty for the aforementioned velocity model, and 3) the correlation of waveforms with archival data on a massive scale for seismic event detection. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. Immersive Earth: Teaching Earth and Space with inexpensive immersive technology

    NASA Astrophysics Data System (ADS)

    Reiff, P. H.; Sumners, C.; Law, C. C.; Handron, K.

    2003-12-01

    In 1995 we pioneered "Space Update", the Digital Library for the rest of us", software that was so simple that a child could use it without a keyboard and yet would allow one-click updating of the daily earth and space science images without the dangers of having an open web browser on display. Thanks to NASA support, it allowed museums and schools to have a powerful exhibit for a tiny price. Over 40,000 disks in our series have been distributed so far to educators and the public. In 2003, with our partners we are again revolutionizing educational technology with a low-cost hardware and software solution to creating and displaying immersive content. Recently selected for funding as part of the REASoN competition, Immersive Earth is a partnership of scientists, museums, educators, and content providers. The hardware consists of a modest projector with a special fisheye lens to be used in an inflatable dome which many schools already have. This, coupled with a modest personal computer, can now easily project images and movies of earth and space, allows training students in 3-D content at a tiny fraction of the cost of a cave or fullscale dome theater. Another low-cost solution is the "Imove" system, where spherical movies can play on a personal computer, with the user changing the viewing direction with a joystick. We were the first to create immersive earth science shows, remain the leader in creating educational content that people want to see. We encourage people with "allsky" images or movies to bring it and see what it looks like inside a dome! Your content could be in our next show!

  10. Towards fully analog hardware reservoir computing for speech recognition

    NASA Astrophysics Data System (ADS)

    Smerieri, Anteo; Duport, François; Paquot, Yvan; Haelterman, Marc; Schrauwen, Benjamin; Massar, Serge

    2012-09-01

    Reservoir computing is a very recent, neural network inspired unconventional computation technique, where a recurrent nonlinear system is used in conjunction with a linear readout to perform complex calculations, leveraging its inherent internal dynamics. In this paper we show the operation of an optoelectronic reservoir computer in which both the nonlinear recurrent part and the readout layer are implemented in hardware for a speech recognition application. The performance obtained is close to the one of to state-of-the-art digital reservoirs, while the analog architecture opens the way to ultrafast computation.

  11. Dynamically allocating sets of fine-grained processors to running computations

    NASA Technical Reports Server (NTRS)

    Middleton, David

    1988-01-01

    Researchers explore an approach to using general purpose parallel computers which involves mapping hardware resources onto computations instead of mapping computations onto hardware. Problems such as processor allocation, task scheduling and load balancing, which have traditionally proven to be challenging, change significantly under this approach and may become amenable to new attacks. Researchers describe the implementation of this approach used by the FFP Machine whose computation and communication resources are repeatedly partitioned into disjoint groups that match the needs of available tasks from moment to moment. Several consequences of this system are examined.

  12. Spectral analysis method and sample generation for real time visualization of speech

    NASA Astrophysics Data System (ADS)

    Hobohm, Klaus

    A method for translating speech signals into optical models, characterized by high sound discrimination and learnability and designed to provide to deaf persons a feedback towards control of their way of speaking, is presented. Important properties of speech production and perception processes and organs involved in these mechanisms are recalled in order to define requirements for speech visualization. It is established that the spectral representation of time, frequency and amplitude resolution of hearing must be fair and continuous variations of acoustic parameters of speech signal must be depicted by a continuous variation of images. A color table was developed for dynamic illustration and sonograms were generated with five spectral analysis methods such as Fourier transformations and linear prediction coding. For evaluating sonogram quality, test persons had to recognize consonant/vocal/consonant words and an optimized analysis method was achieved with a fast Fourier transformation and a postprocessor. A hardware concept of a real time speech visualization system, based on multiprocessor technology in a personal computer, is presented.

  13. Performance/price estimates for cortex-scale hardware: a design space exploration.

    PubMed

    Zaveri, Mazad S; Hammerstrom, Dan

    2011-04-01

    In this paper, we revisit the concept of virtualization. Virtualization is useful for understanding and investigating the performance/price and other trade-offs related to the hardware design space. Moreover, it is perhaps the most important aspect of a hardware design space exploration. Such a design space exploration is a necessary part of the study of hardware architectures for large-scale computational models for intelligent computing, including AI, Bayesian, bio-inspired and neural models. A methodical exploration is needed to identify potentially interesting regions in the design space, and to assess the relative performance/price points of these implementations. As an example, in this paper we investigate the performance/price of (digital and mixed-signal) CMOS and hypothetical CMOL (nanogrid) technology based hardware implementations of human cortex-scale spiking neural systems. Through this analysis, and the resulting performance/price points, we demonstrate, in general, the importance of virtualization, and of doing these kinds of design space explorations. The specific results suggest that hybrid nanotechnology such as CMOL is a promising candidate to implement very large-scale spiking neural systems, providing a more efficient utilization of the density and storage benefits of emerging nano-scale technologies. In general, we believe that the study of such hypothetical designs/architectures will guide the neuromorphic hardware community towards building large-scale systems, and help guide research trends in intelligent computing, and computer engineering. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Digital avionics design and reliability analyzer

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The description and specifications for a digital avionics design and reliability analyzer are given. Its basic function is to provide for the simulation and emulation of the various fault-tolerant digital avionic computer designs that are developed. It has been established that hardware emulation at the gate-level will be utilized. The primary benefit of emulation to reliability analysis is the fact that it provides the capability to model a system at a very detailed level. Emulation allows the direct insertion of faults into the system, rather than waiting for actual hardware failures to occur. This allows for controlled and accelerated testing of system reaction to hardware failures. There is a trade study which leads to the decision to specify a two-machine system, including an emulation computer connected to a general-purpose computer. There is also an evaluation of potential computers to serve as the emulation computer.

  15. Hardware realization of an SVM algorithm implemented in FPGAs

    NASA Astrophysics Data System (ADS)

    Wiśniewski, Remigiusz; Bazydło, Grzegorz; Szcześniak, Paweł

    2017-08-01

    The paper proposes a technique of hardware realization of a space vector modulation (SVM) of state function switching in matrix converter (MC), oriented on the implementation in a single field programmable gate array (FPGA). In MC the SVM method is based on the instantaneous space-vector representation of input currents and output voltages. The traditional computation algorithms usually involve digital signal processors (DSPs) which consumes the large number of power transistors (18 transistors and 18 independent PWM outputs) and "non-standard positions of control pulses" during the switching sequence. Recently, hardware implementations become popular since computed operations may be executed much faster and efficient due to nature of the digital devices (especially concurrency). In the paper, we propose a hardware algorithm of SVM computation. In opposite to the existing techniques, the presented solution applies COordinate Rotation DIgital Computer (CORDIC) method to solve the trigonometric operations. Furthermore, adequate arithmetic modules (that is, sub-devices) used for intermediate calculations, such as code converters or proper sectors selectors (for output voltages and input current) are presented in detail. The proposed technique has been implemented as a design described with the use of Verilog hardware description language. The preliminary results of logic implementation oriented on the Xilinx FPGA (particularly, low-cost device from Artix-7 family from Xilinx was used) are also presented.

  16. Universal computer test stand (recommended computer test requirements). [for space shuttle computer evaluation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Techniques are considered which would be used to characterize areospace computers with the space shuttle application as end usage. The system level digital problems which have been encountered and documented are surveyed. From the large cross section of tests, an optimum set is recommended that has a high probability of discovering documented system level digital problems within laboratory environments. Defined is a baseline hardware, software system which is required as a laboratory tool to test aerospace computers. Hardware and software baselines and additions necessary to interface the UTE to aerospace computers for test purposes are outlined.

  17. Interfacing laboratory instruments to multiuser, virtual memory computers

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.; Stang, David B.; Roth, Don J.

    1989-01-01

    Incentives, problems and solutions associated with interfacing laboratory equipment with multiuser, virtual memory computers are presented. The major difficulty concerns how to utilize these computers effectively in a medium sized research group. This entails optimization of hardware interconnections and software to facilitate multiple instrument control, data acquisition and processing. The architecture of the system that was devised, and associated programming and subroutines are described. An example program involving computer controlled hardware for ultrasonic scan imaging is provided to illustrate the operational features.

  18. DANoC: An Efficient Algorithm and Hardware Codesign of Deep Neural Networks on Chip.

    PubMed

    Zhou, Xichuan; Li, Shengli; Tang, Fang; Hu, Shengdong; Lin, Zhi; Zhang, Lei

    2017-07-18

    Deep neural networks (NNs) are the state-of-the-art models for understanding the content of images and videos. However, implementing deep NNs in embedded systems is a challenging task, e.g., a typical deep belief network could exhaust gigabytes of memory and result in bandwidth and computational bottlenecks. To address this challenge, this paper presents an algorithm and hardware codesign for efficient deep neural computation. A hardware-oriented deep learning algorithm, named the deep adaptive network, is proposed to explore the sparsity of neural connections. By adaptively removing the majority of neural connections and robustly representing the reserved connections using binary integers, the proposed algorithm could save up to 99.9% memory utility and computational resources without undermining classification accuracy. An efficient sparse-mapping-memory-based hardware architecture is proposed to fully take advantage of the algorithmic optimization. Different from traditional Von Neumann architecture, the deep-adaptive network on chip (DANoC) brings communication and computation in close proximity to avoid power-hungry parameter transfers between on-board memory and on-chip computational units. Experiments over different image classification benchmarks show that the DANoC system achieves competitively high accuracy and efficiency comparing with the state-of-the-art approaches.

  19. Acceleration of fluoro-CT reconstruction for a mobile C-Arm on GPU and FPGA hardware: a simulation study

    NASA Astrophysics Data System (ADS)

    Xue, Xinwei; Cheryauka, Arvi; Tubbs, David

    2006-03-01

    CT imaging in interventional and minimally-invasive surgery requires high-performance computing solutions that meet operational room demands, healthcare business requirements, and the constraints of a mobile C-arm system. The computational requirements of clinical procedures using CT-like data are increasing rapidly, mainly due to the need for rapid access to medical imagery during critical surgical procedures. The highly parallel nature of Radon transform and CT algorithms enables embedded computing solutions utilizing a parallel processing architecture to realize a significant gain of computational intensity with comparable hardware and program coding/testing expenses. In this paper, using a sample 2D and 3D CT problem, we explore the programming challenges and the potential benefits of embedded computing using commodity hardware components. The accuracy and performance results obtained on three computational platforms: a single CPU, a single GPU, and a solution based on FPGA technology have been analyzed. We have shown that hardware-accelerated CT image reconstruction can be achieved with similar levels of noise and clarity of feature when compared to program execution on a CPU, but gaining a performance increase at one or more orders of magnitude faster. 3D cone-beam or helical CT reconstruction and a variety of volumetric image processing applications will benefit from similar accelerations.

  20. An Ibm PC/AT-Based Image Acquisition And Processing System For Quantitative Image Analysis

    NASA Astrophysics Data System (ADS)

    Kim, Yongmin; Alexander, Thomas

    1986-06-01

    In recent years, a large number of applications have been developed for image processing systems in the area of biological imaging. We have already finished the development of a dedicated microcomputer-based image processing and analysis system for quantitative microscopy. The system's primary function has been to facilitate and ultimately automate quantitative image analysis tasks such as the measurement of cellular DNA contents. We have recognized from this development experience, and interaction with system users, biologists and technicians, that the increasingly widespread use of image processing systems, and the development and application of new techniques for utilizing the capabilities of such systems, would generate a need for some kind of inexpensive general purpose image acquisition and processing system specially tailored for the needs of the medical community. We are currently engaged in the development and testing of hardware and software for a fairly high-performance image processing computer system based on a popular personal computer. In this paper, we describe the design and development of this system. Biological image processing computer systems have now reached a level of hardware and software refinement where they could become convenient image analysis tools for biologists. The development of a general purpose image processing system for quantitative image analysis that is inexpensive, flexible, and easy-to-use represents a significant step towards making the microscopic digital image processing techniques more widely applicable not only in a research environment as a biologist's workstation, but also in clinical environments as a diagnostic tool.

  1. Comparison of fMRI data analysis by SPM99 on different operating systems.

    PubMed

    Shinagawa, Hideo; Honda, Ei-ichi; Ono, Takashi; Kurabayashi, Tohru; Ohyama, Kimie

    2004-09-01

    The hardware chosen for fMRI data analysis may depend on the platform already present in the laboratory or the supporting software. In this study, we ran SPM99 software on multiple platforms to examine whether we could analyze fMRI data by SPM99, and to compare their differences and limitations in processing fMRI data, which can be attributed to hardware capabilities. Six normal right-handed volunteers participated in a study of hand-grasping to obtain fMRI data. Each subject performed a run that consisted of 98 images. The run was measured using a gradient echo-type echo planar imaging sequence on a 1.5T apparatus with a head coil. We used several personal computer (PC), Unix and Linux machines to analyze the fMRI data. There were no differences in the results obtained on several PC, Unix and Linux machines. The only limitations in processing large amounts of the fMRI data were found using PC machines. This suggests that the results obtained with different machines were not affected by differences in hardware components, such as the CPU, memory and hard drive. Rather, it is likely that the limitations in analyzing a huge amount of the fMRI data were due to differences in the operating system (OS).

  2. Deterrence of device counterfeiting, cloning, and subversion by substitution using hardware fingerprinting

    DOEpatents

    Hamlet, Jason R; Bauer, Todd M; Pierson, Lyndon G

    2014-09-30

    Deterrence of device subversion by substitution may be achieved by including a cryptographic fingerprint unit within a computing device for authenticating a hardware platform of the computing device. The cryptographic fingerprint unit includes a physically unclonable function ("PUF") circuit disposed in or on the hardware platform. The PUF circuit is used to generate a PUF value. A key generator is coupled to generate a private key and a public key based on the PUF value while a decryptor is coupled to receive an authentication challenge posed to the computing device and encrypted with the public key and coupled to output a response to the authentication challenge decrypted with the private key.

  3. CMOL/CMOS hardware architectures and performance/price for Bayesian memory - The building block of intelligent systems

    NASA Astrophysics Data System (ADS)

    Zaveri, Mazad Shaheriar

    The semiconductor/computer industry has been following Moore's law for several decades and has reaped the benefits in speed and density of the resultant scaling. Transistor density has reached almost one billion per chip, and transistor delays are in picoseconds. However, scaling has slowed down, and the semiconductor industry is now facing several challenges. Hybrid CMOS/nano technologies, such as CMOL, are considered as an interim solution to some of the challenges. Another potential architectural solution includes specialized architectures for applications/models in the intelligent computing domain, one aspect of which includes abstract computational models inspired from the neuro/cognitive sciences. Consequently in this dissertation, we focus on the hardware implementations of Bayesian Memory (BM), which is a (Bayesian) Biologically Inspired Computational Model (BICM). This model is a simplified version of George and Hawkins' model of the visual cortex, which includes an inference framework based on Judea Pearl's belief propagation. We then present a "hardware design space exploration" methodology for implementing and analyzing the (digital and mixed-signal) hardware for the BM. This particular methodology involves: analyzing the computational/operational cost and the related micro-architecture, exploring candidate hardware components, proposing various custom hardware architectures using both traditional CMOS and hybrid nanotechnology - CMOL, and investigating the baseline performance/price of these architectures. The results suggest that CMOL is a promising candidate for implementing a BM. Such implementations can utilize the very high density storage/computation benefits of these new nano-scale technologies much more efficiently; for example, the throughput per 858 mm2 (TPM) obtained for CMOL based architectures is 32 to 40 times better than the TPM for a CMOS based multiprocessor/multi-FPGA system, and almost 2000 times better than the TPM for a PC implementation. We later use this methodology to investigate the hardware implementations of cortex-scale spiking neural system, which is an approximate neural equivalent of BICM based cortex-scale system. The results of this investigation also suggest that CMOL is a promising candidate to implement such large-scale neuromorphic systems. In general, the assessment of such hypothetical baseline hardware architectures provides the prospects for building large-scale (mammalian cortex-scale) implementations of neuromorphic/Bayesian/intelligent systems using state-of-the-art and beyond state-of-the-art silicon structures.

  4. Best bang for your buck: GPU nodes for GROMACS biomolecular simulations

    PubMed Central

    Páll, Szilárd; Fechner, Martin; Esztermann, Ansgar; de Groot, Bert L.; Grubmüller, Helmut

    2015-01-01

    The molecular dynamics simulation package GROMACS runs efficiently on a wide variety of hardware from commodity workstations to high performance computing clusters. Hardware features are well‐exploited with a combination of single instruction multiple data, multithreading, and message passing interface (MPI)‐based single program multiple data/multiple program multiple data parallelism while graphics processing units (GPUs) can be used as accelerators to compute interactions off‐loaded from the CPU. Here, we evaluate which hardware produces trajectories with GROMACS 4.6 or 5.0 in the most economical way. We have assembled and benchmarked compute nodes with various CPU/GPU combinations to identify optimal compositions in terms of raw trajectory production rate, performance‐to‐price ratio, energy efficiency, and several other criteria. Although hardware prices are naturally subject to trends and fluctuations, general tendencies are clearly visible. Adding any type of GPU significantly boosts a node's simulation performance. For inexpensive consumer‐class GPUs this improvement equally reflects in the performance‐to‐price ratio. Although memory issues in consumer‐class GPUs could pass unnoticed as these cards do not support error checking and correction memory, unreliable GPUs can be sorted out with memory checking tools. Apart from the obvious determinants for cost‐efficiency like hardware expenses and raw performance, the energy consumption of a node is a major cost factor. Over the typical hardware lifetime until replacement of a few years, the costs for electrical power and cooling can become larger than the costs of the hardware itself. Taking that into account, nodes with a well‐balanced ratio of CPU and consumer‐class GPU resources produce the maximum amount of GROMACS trajectory over their lifetime. © 2015 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:26238484

  5. Best bang for your buck: GPU nodes for GROMACS biomolecular simulations.

    PubMed

    Kutzner, Carsten; Páll, Szilárd; Fechner, Martin; Esztermann, Ansgar; de Groot, Bert L; Grubmüller, Helmut

    2015-10-05

    The molecular dynamics simulation package GROMACS runs efficiently on a wide variety of hardware from commodity workstations to high performance computing clusters. Hardware features are well-exploited with a combination of single instruction multiple data, multithreading, and message passing interface (MPI)-based single program multiple data/multiple program multiple data parallelism while graphics processing units (GPUs) can be used as accelerators to compute interactions off-loaded from the CPU. Here, we evaluate which hardware produces trajectories with GROMACS 4.6 or 5.0 in the most economical way. We have assembled and benchmarked compute nodes with various CPU/GPU combinations to identify optimal compositions in terms of raw trajectory production rate, performance-to-price ratio, energy efficiency, and several other criteria. Although hardware prices are naturally subject to trends and fluctuations, general tendencies are clearly visible. Adding any type of GPU significantly boosts a node's simulation performance. For inexpensive consumer-class GPUs this improvement equally reflects in the performance-to-price ratio. Although memory issues in consumer-class GPUs could pass unnoticed as these cards do not support error checking and correction memory, unreliable GPUs can be sorted out with memory checking tools. Apart from the obvious determinants for cost-efficiency like hardware expenses and raw performance, the energy consumption of a node is a major cost factor. Over the typical hardware lifetime until replacement of a few years, the costs for electrical power and cooling can become larger than the costs of the hardware itself. Taking that into account, nodes with a well-balanced ratio of CPU and consumer-class GPU resources produce the maximum amount of GROMACS trajectory over their lifetime. © 2015 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

  6. Virtualization and cloud computing in dentistry.

    PubMed

    Chow, Frank; Muftu, Ali; Shorter, Richard

    2014-01-01

    The use of virtualization and cloud computing has changed the way we use computers. Virtualization is a method of placing software called a hypervisor on the hardware of a computer or a host operating system. It allows a guest operating system to run on top of the physical computer with a virtual machine (i.e., virtual computer). Virtualization allows multiple virtual computers to run on top of one physical computer and to share its hardware resources, such as printers, scanners, and modems. This increases the efficient use of the computer by decreasing costs (e.g., hardware, electricity administration, and management) since only one physical computer is needed and running. This virtualization platform is the basis for cloud computing. It has expanded into areas of server and storage virtualization. One of the commonly used dental storage systems is cloud storage. Patient information is encrypted as required by the Health Insurance Portability and Accountability Act (HIPAA) and stored on off-site private cloud services for a monthly service fee. As computer costs continue to increase, so too will the need for more storage and processing power. Virtual and cloud computing will be a method for dentists to minimize costs and maximize computer efficiency in the near future. This article will provide some useful information on current uses of cloud computing.

  7. Biomolecular computers with multiple restriction enzymes.

    PubMed

    Sakowski, Sebastian; Krasinski, Tadeusz; Waldmajer, Jacek; Sarnik, Joanna; Blasiak, Janusz; Poplawski, Tomasz

    2017-01-01

    The development of conventional, silicon-based computers has several limitations, including some related to the Heisenberg uncertainty principle and the von Neumann "bottleneck". Biomolecular computers based on DNA and proteins are largely free of these disadvantages and, along with quantum computers, are reasonable alternatives to their conventional counterparts in some applications. The idea of a DNA computer proposed by Ehud Shapiro's group at the Weizmann Institute of Science was developed using one restriction enzyme as hardware and DNA fragments (the transition molecules) as software and input/output signals. This computer represented a two-state two-symbol finite automaton that was subsequently extended by using two restriction enzymes. In this paper, we propose the idea of a multistate biomolecular computer with multiple commercially available restriction enzymes as hardware. Additionally, an algorithmic method for the construction of transition molecules in the DNA computer based on the use of multiple restriction enzymes is presented. We use this method to construct multistate, biomolecular, nondeterministic finite automata with four commercially available restriction enzymes as hardware. We also describe an experimental applicaton of this theoretical model to a biomolecular finite automaton made of four endonucleases.

  8. PCASSO: a design for secure communication of personal health information via the internet.

    PubMed

    Baker, D B; Masys, D R

    1999-05-01

    The Internet holds both promise and peril for the communications of person-identifiable health information. Because of technical features designed to promote accessibility and interoperability rather than security, Internet addressing conventions and transport protocols are vulnerable to compromise by malicious persons and programs. In addition, most commonly used personal computer (PC) operating systems currently lack the hardware-based system software protection and process isolation that are essential for ensuring the integrity of trusted applications. Security approaches designed for electronic commerce, that trade known security weaknesses for limited financial liability, are not sufficient for personal health data, where the personal damage caused by unintentional disclosure may be far more serious. To overcome these obstacles, we are developing and evaluating an Internet-based communications system called PCASSO (Patient-centered access to secure systems online) that applies state of the art security to health information. PCASSO includes role-based access control, multi-level security, strong device and user authentication, session-specific encryption and audit trails. Unlike Internet-based electronic commerce 'solutions,' PCASSO secures data end-to-end: in the server; in the data repository; across the network; and on the client. PCASSO is designed to give patients as well as providers access to personal health records via the Internet.

  9. Animation of finite element models and results

    NASA Technical Reports Server (NTRS)

    Lipman, Robert R.

    1992-01-01

    This is not intended as a complete review of computer hardware and software that can be used for animation of finite element models and results, but is instead a demonstration of the benefits of visualization using selected hardware and software. The role of raw computational power, graphics speed, and the use of videotape are discussed.

  10. Experiments with microcomputer-based artificial intelligence environments

    USGS Publications Warehouse

    Summers, E.G.; MacDonald, R.A.

    1988-01-01

    The U.S. Geological Survey (USGS) has been experimenting with the use of relatively inexpensive microcomputers as artificial intelligence (AI) development environments. Several AI languages are available that perform fairly well on desk-top personal computers, as are low-to-medium cost expert system packages. Although performance of these systems is respectable, their speed and capacity limitations are questionable for serious earth science applications foreseen by the USGS. The most capable artificial intelligence applications currently are concentrated on what is known as the "artificial intelligence computer," and include Xerox D-series, Tektronix 4400 series, Symbolics 3600, VAX, LMI, and Texas Instruments Explorer. The artificial intelligence computer runs expert system shells and Lisp, Prolog, and Smalltalk programming languages. However, these AI environments are expensive. Recently, inexpensive 32-bit hardware has become available for the IBM/AT microcomputer. USGS has acquired and recently completed Beta-testing of the Gold Hill Systems 80386 Hummingboard, which runs Common Lisp on an IBM/AT microcomputer. Hummingboard appears to have the potential to overcome many of the speed/capacity limitations observed with AI-applications on standard personal computers. USGS is a Beta-test site for the Gold Hill Systems GoldWorks expert system. GoldWorks combines some high-end expert system shell capabilities in a medium-cost package. This shell is developed in Common Lisp, runs on the 80386 Hummingboard, and provides some expert system features formerly available only on AI-computers including frame and rule-based reasoning, on-line tutorial, multiple inheritance, and object-programming. ?? 1988 International Association for Mathematical Geology.

  11. Computer hardware for radiologists: Part I

    PubMed Central

    Indrajit, IK; Alam, A

    2010-01-01

    Computers are an integral part of modern radiology practice. They are used in different radiology modalities to acquire, process, and postprocess imaging data. They have had a dramatic influence on contemporary radiology practice. Their impact has extended further with the emergence of Digital Imaging and Communications in Medicine (DICOM), Picture Archiving and Communication System (PACS), Radiology information system (RIS) technology, and Teleradiology. A basic overview of computer hardware relevant to radiology practice is presented here. The key hardware components in a computer are the motherboard, central processor unit (CPU), the chipset, the random access memory (RAM), the memory modules, bus, storage drives, and ports. The personnel computer (PC) has a rectangular case that contains important components called hardware, many of which are integrated circuits (ICs). The fiberglass motherboard is the main printed circuit board and has a variety of important hardware mounted on it, which are connected by electrical pathways called “buses”. The CPU is the largest IC on the motherboard and contains millions of transistors. Its principal function is to execute “programs”. A Pentium® 4 CPU has transistors that execute a billion instructions per second. The chipset is completely different from the CPU in design and function; it controls data and interaction of buses between the motherboard and the CPU. Memory (RAM) is fundamentally semiconductor chips storing data and instructions for access by a CPU. RAM is classified by storage capacity, access speed, data rate, and configuration. PMID:21042437

  12. Computational adaptive optics for broadband interferometric tomography of tissues and cells

    NASA Astrophysics Data System (ADS)

    Adie, Steven G.; Mulligan, Jeffrey A.

    2016-03-01

    Adaptive optics (AO) can shape aberrated optical wavefronts to physically restore the constructive interference needed for high-resolution imaging. With access to the complex optical field, however, many functions of optical hardware can be achieved computationally, including focusing and the compensation of optical aberrations to restore the constructive interference required for diffraction-limited imaging performance. Holography, which employs interferometric detection of the complex optical field, was developed based on this connection between hardware and computational image formation, although this link has only recently been exploited for 3D tomographic imaging in scattering biological tissues. This talk will present the underlying imaging science behind computational image formation with optical coherence tomography (OCT) -- a beam-scanned version of broadband digital holography. Analogous to hardware AO (HAO), we demonstrate computational adaptive optics (CAO) and optimization of the computed pupil correction in 'sensorless mode' (Zernike polynomial corrections with feedback from image metrics) or with the use of 'guide-stars' in the sample. We discuss the concept of an 'isotomic volume' as the volumetric extension of the 'isoplanatic patch' introduced in astronomical AO. Recent CAO results and ongoing work is highlighted to point to the potential biomedical impact of computed broadband interferometric tomography. We also discuss the advantages and disadvantages of HAO vs. CAO for the effective shaping of optical wavefronts, and highlight opportunities for hybrid approaches that synergistically combine the unique advantages of hardware and computational methods for rapid volumetric tomography with cellular resolution.

  13. High-Speed Noninvasive Eye-Tracking System

    NASA Technical Reports Server (NTRS)

    Talukder, Ashit; LaBaw, Clayton; Michael-Morookian, John; Monacos, Steve; Serviss, Orin

    2007-01-01

    The figure schematically depicts a system of electronic hardware and software that noninvasively tracks the direction of a person s gaze in real time. Like prior commercial noninvasive eye-tracking systems, this system is based on (1) illumination of an eye by a low-power infrared light-emitting diode (LED); (2) acquisition of video images of the pupil, iris, and cornea in the reflected infrared light; (3) digitization of the images; and (4) processing the digital image data to determine the direction of gaze from the centroids of the pupil and cornea in the images. Relative to the prior commercial systems, the present system operates at much higher speed and thereby offers enhanced capability for applications that involve human-computer interactions, including typing and computer command and control by handicapped individuals,and eye-based diagnosis of physiological disorders that affect gaze responses.

  14. Discovery & Interaction in Astro 101 Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Maloney, Frank Patrick; Maurone, Philip; DeWarf, Laurence E.

    2016-01-01

    The availability of low-cost, high-performance computing hardware and software has transformed the manner by which astronomical concepts can be re-discovered and explored in a laboratory that accompanies an astronomy course for arts students. We report on a strategy, begun in 1992, for allowing each student to understand fundamental scientific principles by interactively confronting astronomical and physical phenomena, through direct observation and by computer simulation. These experiments have evolved as :a) the quality and speed of the hardware has greatly increasedb) the corresponding hardware costs have decreasedc) the students have become computer and Internet literated) the importance of computationally and scientifically literate arts graduates in the workplace has increased.We present the current suite of laboratory experiments, and describe the nature, procedures, and goals in this two-semester laboratory for liberal arts majors at the Astro 101 university level.

  15. Vendors' Summit '88: A Special Report on the Hardware Industry.

    ERIC Educational Resources Information Center

    Goodspeed, Jonathan

    1988-01-01

    Presents report of the Hardware Vendors/Educators Forum, which was convened to discuss microcomputer hardware in elementary and secondary schools. Representatives from Commodore, IBM, Tandy/Radio Shack, and Apple Computer, addressed topics including sales and service, integrating technology into the curriculum, college versus secondary level…

  16. Reducing power consumption while synchronizing a plurality of compute nodes during execution of a parallel application

    DOEpatents

    Archer, Charles J [Rochester, MN; Blocksome, Michael A [Rochester, MN; Peters, Amanda A [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian E [Rochester, MN

    2012-01-10

    Methods, apparatus, and products are disclosed for reducing power consumption while synchronizing a plurality of compute nodes during execution of a parallel application that include: beginning, by each compute node, performance of a blocking operation specified by the parallel application, each compute node beginning the blocking operation asynchronously with respect to the other compute nodes; reducing, for each compute node, power to one or more hardware components of that compute node in response to that compute node beginning the performance of the blocking operation; and restoring, for each compute node, the power to the hardware components having power reduced in response to all of the compute nodes beginning the performance of the blocking operation.

  17. Reducing power consumption while synchronizing a plurality of compute nodes during execution of a parallel application

    DOEpatents

    Archer, Charles J [Rochester, MN; Blocksome, Michael A [Rochester, MN; Peters, Amanda E [Cambridge, MA; Ratterman, Joseph D [Rochester, MN; Smith, Brian E [Rochester, MN

    2012-04-17

    Methods, apparatus, and products are disclosed for reducing power consumption while synchronizing a plurality of compute nodes during execution of a parallel application that include: beginning, by each compute node, performance of a blocking operation specified by the parallel application, each compute node beginning the blocking operation asynchronously with respect to the other compute nodes; reducing, for each compute node, power to one or more hardware components of that compute node in response to that compute node beginning the performance of the blocking operation; and restoring, for each compute node, the power to the hardware components having power reduced in response to all of the compute nodes beginning the performance of the blocking operation.

  18. Grace: A cross-platform micromagnetic simulator on graphics processing units

    NASA Astrophysics Data System (ADS)

    Zhu, Ru

    2015-12-01

    A micromagnetic simulator running on graphics processing units (GPUs) is presented. Different from GPU implementations of other research groups which are predominantly running on NVidia's CUDA platform, this simulator is developed with C++ Accelerated Massive Parallelism (C++ AMP) and is hardware platform independent. It runs on GPUs from venders including NVidia, AMD and Intel, and achieves significant performance boost as compared to previous central processing unit (CPU) simulators, up to two orders of magnitude. The simulator paved the way for running large size micromagnetic simulations on both high-end workstations with dedicated graphics cards and low-end personal computers with integrated graphics cards, and is freely available to download.

  19. Addressing hypertext design and conversion issues

    NASA Technical Reports Server (NTRS)

    Glusko, Robert J.

    1990-01-01

    Hypertext is a network of information units connected by relational links. A hypertext system is a configuration of hardware and software that presents a hypertext to users and allows them to manage and access the information that it contains. Hypertext is also a user interface concept that closely supports the ways that people use printed information. Hypertext concepts encourage modularity and the elimination of redundancy in data bases because information can be stored only once but viewed in any appropriate context. Hypertext is such a hot idea because it is an enabling technology in that workstations and personal computers finally provide enough local processing power for hypertext user interfaces.

  20. Present status and future of the sophisticated work station

    NASA Astrophysics Data System (ADS)

    Ishida, Haruhisa

    The excellency of the work station is explained, by comparing the functions of software and hardware of work station with those of personal computer. As one of the examples utilizing the functions of work station, desk top publishing is explained. By describing the competition between the Group of ATT · Sun Microsystems which intends to have the leadership by integrating Berkeley version which is most popular at this moment and System V version, and the group led by IBM, future of UNIX as OS of work station is predicted. Development of RISC processor, TRON Plan and Sigma Projects by MITI are also mentioned as its background.

  1. Smart wireless sensor for physiological monitoring.

    PubMed

    Tomasic, Ivan; Avbelj, Viktor; Trobec, Roman

    2015-01-01

    Presented is a wireless body sensor capable of measuring local potential differences on a body surface. By using on-sensor signal processing capabilities, and developed algorithms for off-line signal processing on a personal computing device, it is possible to record single channel ECG, heart rate, breathing rate, EMG, and when three sensors are applied, even the 12-lead ECG. The sensor is portable, unobtrusive, and suitable for both inpatient and outpatient monitoring. The paper presents the sensor's hardware and results of power consumption analysis. The sensor's capabilities of recording various physiological parameters are also presented and illustrated. The paper concludes with envisioned sensor's future developments and prospects.

  2. The ISOLDE control system

    NASA Astrophysics Data System (ADS)

    Deloose, I.; Pace, A.

    1994-12-01

    The two CERN isotope separators named ISOLDE have been running on the new Personal Computer (PC) based control system since April 1992. The new architecture that makes heavy use of the commercial software and hardware of the PC market has been implemented on the 1700 geographically distributed control channels of the two separators and their experimental area. Eleven MSDOS Intel-based PCs with approximately 80 acquisition and control boards are used to access the equipment and are controlled from three PCs running Microsoft Windows used as consoles through a Novell Local Area Network. This paper describes the interesting solutions found and discusses the reduced programming workload and costs that have been obtained.

  3. Human-machine interface hardware: The next decade

    NASA Technical Reports Server (NTRS)

    Marcus, Elizabeth A.

    1991-01-01

    In order to understand where human-machine interface hardware is headed, it is important to understand where we are today, how we got there, and what our goals for the future are. As computers become more capable, faster, and programs become more sophisticated, it becomes apparent that the interface hardware is the key to an exciting future in computing. How can a user interact and control a seemingly limitless array of parameters effectively? Today, the answer is most often a limitless array of controls. The link between these controls and human sensory motor capabilities does not utilize existing human capabilities to their full extent. Interface hardware for teleoperation and virtual environments is now facing a crossroad in design. Therefore, we as developers need to explore how the combination of interface hardware, human capabilities, and user experience can be blended to get the best performance today and in the future.

  4. Spin-based quantum computation in multielectron quantum dots

    NASA Astrophysics Data System (ADS)

    Hu, Xuedong; Das Sarma, S.

    2001-10-01

    In a quantum computer the hardware and software are intrinsically connected because the quantum Hamiltonian (or more precisely its time development) is the code that runs the computer. We demonstrate this subtle and crucial relationship by considering the example of electron-spin-based solid-state quantum computer in semiconductor quantum dots. We show that multielectron quantum dots with one valence electron in the outermost shell do not behave simply as an effective single-spin system unless special conditions are satisfied. Our work compellingly demonstrates that a delicate synergy between theory and experiment (between software and hardware) is essential for constructing a quantum computer.

  5. Examining the architecture of cellular computing through a comparative study with a computer.

    PubMed

    Wang, Degeng; Gribskov, Michael

    2005-06-22

    The computer and the cell both use information embedded in simple coding, the binary software code and the quadruple genomic code, respectively, to support system operations. A comparative examination of their system architecture as well as their information storage and utilization schemes is performed. On top of the code, both systems display a modular, multi-layered architecture, which, in the case of a computer, arises from human engineering efforts through a combination of hardware implementation and software abstraction. Using the computer as a reference system, a simplistic mapping of the architectural components between the two is easily detected. This comparison also reveals that a cell abolishes the software-hardware barrier through genomic encoding for the constituents of the biochemical network, a cell's "hardware" equivalent to the computer central processing unit (CPU). The information loading (gene expression) process acts as a major determinant of the encoded constituent's abundance, which, in turn, often determines the "bandwidth" of a biochemical pathway. Cellular processes are implemented in biochemical pathways in parallel manners. In a computer, on the other hand, the software provides only instructions and data for the CPU. A process represents just sequentially ordered actions by the CPU and only virtual parallelism can be implemented through CPU time-sharing. Whereas process management in a computer may simply mean job scheduling, coordinating pathway bandwidth through the gene expression machinery represents a major process management scheme in a cell. In summary, a cell can be viewed as a super-parallel computer, which computes through controlled hardware composition. While we have, at best, a very fragmented understanding of cellular operation, we have a thorough understanding of the computer throughout the engineering process. The potential utilization of this knowledge to the benefit of systems biology is discussed.

  6. The K-12 Hardware Industry: A Heated Race that Shows No Sign of Letting Up.

    ERIC Educational Resources Information Center

    McCarthy, Robert

    1989-01-01

    This overview of the computer industry vendors that supply microcomputer hardware to educators for use in kindergarten through high school focuses on Apple, Tandy, Commodore, and IBM. The use of MS-DOS versus the operating system used in Apple computers is discussed, and pricing and service issues are raised. (LRW)

  7. Three-Dimensional Nanobiocomputing Architectures With Neuronal Hypercells

    DTIC Science & Technology

    2007-06-01

    Neumann architectures, and CMOS fabrication. Novel solutions of massive parallel distributed computing and processing (pipelined due to systolic... and processing platforms utilizing molecular hardware within an enabling organization and architecture. The design technology is based on utilizing a...Microsystems and Nanotechnologies investigated a novel 3D3 (Hardware Software Nanotechnology) technology to design super-high performance computing

  8. A Model for Minimizing Numeric Function Generator Complexity and Delay

    DTIC Science & Technology

    2007-12-01

    allow computation of difficult mathematical functions in less time and with less hardware than commonly employed methods. They compute piecewise...Programmable Gate Arrays (FPGAs). The algorithms and estimation techniques apply to various NFG architectures and mathematical functions. This...thesis compares hardware utilization and propagation delay for various NFG architectures, mathematical functions, word widths, and segmentation methods

  9. Microcomputer & Software Use in Michigan's Vocational-Technical Facilities: A Status Report.

    ERIC Educational Resources Information Center

    Harris, Richard

    This report is intended to help Michigan's vocational and technical teachers and administrators make decisions regarding the purchase of microcomputer hardware and software for professional use. Addressed in a discussion of computer hardware are current and planned inventories of microcomputer hardware located in the public vocational and…

  10. Computer hardware description languages - A tutorial

    NASA Technical Reports Server (NTRS)

    Shiva, S. G.

    1979-01-01

    The paper introduces hardware description languages (HDL) as useful tools for hardware design and documentation. The capabilities and limitations of HDLs are discussed along with the guidelines needed in selecting an appropriate HDL. The directions for future work are provided and attention is given to the implementation of HDLs in microcomputers.

  11. 32 CFR 327.4 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... combination of electronic hardware and software integrated in a variety of forms (firmware, programmable... electronic hardware and computer software integrated in a variety of forms (firmware, programmable software...

  12. 32 CFR 327.4 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... combination of electronic hardware and software integrated in a variety of forms (firmware, programmable... electronic hardware and computer software integrated in a variety of forms (firmware, programmable software...

  13. 32 CFR 327.4 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... combination of electronic hardware and software integrated in a variety of forms (firmware, programmable... electronic hardware and computer software integrated in a variety of forms (firmware, programmable software...

  14. 32 CFR 327.4 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... combination of electronic hardware and software integrated in a variety of forms (firmware, programmable... electronic hardware and computer software integrated in a variety of forms (firmware, programmable software...

  15. Modern Computational Techniques for the HMMER Sequence Analysis

    PubMed Central

    2013-01-01

    This paper focuses on the latest research and critical reviews on modern computing architectures, software and hardware accelerated algorithms for bioinformatics data analysis with an emphasis on one of the most important sequence analysis applications—hidden Markov models (HMM). We show the detailed performance comparison of sequence analysis tools on various computing platforms recently developed in the bioinformatics society. The characteristics of the sequence analysis, such as data and compute-intensive natures, make it very attractive to optimize and parallelize by using both traditional software approach and innovated hardware acceleration technologies. PMID:25937944

  16. Efficient architecture for spike sorting in reconfigurable hardware.

    PubMed

    Hwang, Wen-Jyi; Lee, Wei-Hao; Lin, Shiow-Jyu; Lai, Sheng-Ying

    2013-11-01

    This paper presents a novel hardware architecture for fast spike sorting. The architecture is able to perform both the feature extraction and clustering in hardware. The generalized Hebbian algorithm (GHA) and fuzzy C-means (FCM) algorithm are used for feature extraction and clustering, respectively. The employment of GHA allows efficient computation of principal components for subsequent clustering operations. The FCM is able to achieve near optimal clustering for spike sorting. Its performance is insensitive to the selection of initial cluster centers. The hardware implementations of GHA and FCM feature low area costs and high throughput. In the GHA architecture, the computation of different weight vectors share the same circuit for lowering the area costs. Moreover, in the FCM hardware implementation, the usual iterative operations for updating the membership matrix and cluster centroid are merged into one single updating process to evade the large storage requirement. To show the effectiveness of the circuit, the proposed architecture is physically implemented by field programmable gate array (FPGA). It is embedded in a System-on-Chip (SOC) platform for performance measurement. Experimental results show that the proposed architecture is an efficient spike sorting design for attaining high classification correct rate and high speed computation.

  17. Color graphics, interactive processing, and the supercomputer

    NASA Technical Reports Server (NTRS)

    Smith-Taylor, Rudeen

    1987-01-01

    The development of a common graphics environment for the NASA Langley Research Center user community and the integration of a supercomputer into this environment is examined. The initial computer hardware, the software graphics packages, and their configurations are described. The addition of improved computer graphics capability to the supercomputer, and the utilization of the graphic software and hardware are discussed. Consideration is given to the interactive processing system which supports the computer in an interactive debugging, processing, and graphics environment.

  18. Memory protection

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.

    1988-01-01

    Accidental overwriting of files or of memory regions belonging to other programs, browsing of personal files by superusers, Trojan horses, and viruses are examples of breakdowns in workstations and personal computers that would be significantly reduced by memory protection. Memory protection is the capability of an operating system and supporting hardware to delimit segments of memory, to control whether segments can be read from or written into, and to confine accesses of a program to its segments alone. The absence of memory protection in many operating systems today is the result of a bias toward a narrow definition of performance as maximum instruction-execution rate. A broader definition, including the time to get the job done, makes clear that cost of recovery from memory interference errors reduces expected performance. The mechanisms of memory protection are well understood, powerful, efficient, and elegant. They add to performance in the broad sense without reducing instruction execution rate.

  19. Inexact hardware for modelling weather & climate

    NASA Astrophysics Data System (ADS)

    Düben, Peter D.; McNamara, Hugh; Palmer, Tim

    2014-05-01

    The use of stochastic processing hardware and low precision arithmetic in atmospheric models is investigated. Stochastic processors allow hardware-induced faults in calculations, sacrificing exact calculations in exchange for improvements in performance and potentially accuracy and a reduction in power consumption. A similar trade-off is achieved using low precision arithmetic, with improvements in computation and communication speed and savings in storage and memory requirements. As high-performance computing becomes more massively parallel and power intensive, these two approaches may be important stepping stones in the pursuit of global cloud resolving atmospheric modelling. The impact of both, hardware induced faults and low precision arithmetic is tested in the dynamical core of a global atmosphere model. Our simulations show that both approaches to inexact calculations do not substantially affect the quality of the model simulations, provided they are restricted to act only on smaller scales. This suggests that inexact calculations at the small scale could reduce computation and power costs without adversely affecting the quality of the simulations.

  20. Programs for Testing Processor-in-Memory Computing Systems

    NASA Technical Reports Server (NTRS)

    Katz, Daniel S.

    2006-01-01

    The Multithreaded Microbenchmarks for Processor-In-Memory (PIM) Compilers, Simulators, and Hardware are computer programs arranged in a series for use in testing the performances of PIM computing systems, including compilers, simulators, and hardware. The programs at the beginning of the series test basic functionality; the programs at subsequent positions in the series test increasingly complex functionality. The programs are intended to be used while designing a PIM system, and can be used to verify that compilers, simulators, and hardware work correctly. The programs can also be used to enable designers of these system components to examine tradeoffs in implementation. Finally, these programs can be run on non-PIM hardware (either single-threaded or multithreaded) using the POSIX pthreads standard to verify that the benchmarks themselves operate correctly. [POSIX (Portable Operating System Interface for UNIX) is a set of standards that define how programs and operating systems interact with each other. pthreads is a library of pre-emptive thread routines that comply with one of the POSIX standards.

  1. Reconfigurable Hardware Adapts to Changing Mission Demands

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A new class of computing architectures and processing systems, which use reconfigurable hardware, is creating a revolutionary approach to implementing future spacecraft systems. With the increasing complexity of electronic components, engineers must design next-generation spacecraft systems with new technologies in both hardware and software. Derivation Systems, Inc., of Carlsbad, California, has been working through NASA s Small Business Innovation Research (SBIR) program to develop key technologies in reconfigurable computing and Intellectual Property (IP) soft cores. Founded in 1993, Derivation Systems has received several SBIR contracts from NASA s Langley Research Center and the U.S. Department of Defense Air Force Research Laboratories in support of its mission to develop hardware and software for high-assurance systems. Through these contracts, Derivation Systems began developing leading-edge technology in formal verification, embedded Java, and reconfigurable computing for its PF3100, Derivational Reasoning System (DRS ), FormalCORE IP, FormalCORE PCI/32, FormalCORE DES, and LavaCORE Configurable Java Processor, which are designed for greater flexibility and security on all space missions.

  2. Superconducting Optoelectronic Circuits for Neuromorphic Computing

    NASA Astrophysics Data System (ADS)

    Shainline, Jeffrey M.; Buckley, Sonia M.; Mirin, Richard P.; Nam, Sae Woo

    2017-03-01

    Neural networks have proven effective for solving many difficult computational problems, yet implementing complex neural networks in software is computationally expensive. To explore the limits of information processing, it is necessary to implement new hardware platforms with large numbers of neurons, each with a large number of connections to other neurons. Here we propose a hybrid semiconductor-superconductor hardware platform for the implementation of neural networks and large-scale neuromorphic computing. The platform combines semiconducting few-photon light-emitting diodes with superconducting-nanowire single-photon detectors to behave as spiking neurons. These processing units are connected via a network of optical waveguides, and variable weights of connection can be implemented using several approaches. The use of light as a signaling mechanism overcomes fanout and parasitic constraints on electrical signals while simultaneously introducing physical degrees of freedom which can be employed for computation. The use of supercurrents achieves the low power density (1 mW /cm2 at 20-MHz firing rate) necessary to scale to systems with enormous entropy. Estimates comparing the proposed hardware platform to a human brain show that with the same number of neurons (1 011) and 700 independent connections per neuron, the hardware presented here may achieve an order of magnitude improvement in synaptic events per second per watt.

  3. Remotely Accessible Testbed for Software Defined Radio Development

    NASA Technical Reports Server (NTRS)

    Lux, James P.; Lang, Minh; Peters, Kenneth J.; Taylor, Gregory H.

    2012-01-01

    Previous development testbeds have assumed that the developer was physically present in front of the hardware being used. No provision for remote operation of basic functions (power on/off or reset) was made, because the developer/operator was sitting in front of the hardware, and could just push the button manually. In this innovation, a completely remotely accessible testbed has been created, with all diagnostic equipment and tools set up for remote access, and using standardized interfaces so that failed equipment can be quickly replaced. In this testbed, over 95% of the operating hours were used for testing without the developer being physically present. The testbed includes a pair of personal computers, one running Linux and one running Windows. A variety of peripherals is connected via Ethernet and USB (universal serial bus) interfaces. A private internal Ethernet is used to connect to test instruments and other devices, so that the sole connection to the outside world is via the two PCs. An important design consideration was that all of the instruments and interfaces used stable, long-lived industry standards, such as Ethernet, USB, and GPIB (general purpose interface bus). There are no plug-in cards for the two PCs, so there are no problems with finding replacement computers with matching interfaces, device drivers, and installation. The only thing unique to the two PCs is the locally developed software, which is not specific to computer or operating system version. If a device (including one of the computers) were to fail or become unavailable (e.g., a test instrument needed to be recalibrated), replacing it is a straightforward process with a standard, off-the-shelf device.

  4. Computer Assisted REhabilitation (CARE) Lab: A novel approach towards Pediatric Rehabilitation 2.0.

    PubMed

    Olivieri, Ivana; Meriggi, Paolo; Fedeli, Cristina; Brazzoli, Elena; Castagna, Anna; Roidi, Marina Luisa Rodocanachi; Angelini, Lucia

    2018-01-01

    Pediatric Rehabilitation therapists have always worked using a variety of off-the-shelf or custom-made objects and devices, more recently including computer based systems. These Information and Communication Technology (ICT) solutions vary widely in complexity, from easy-to-use interactive videogame consoles originally intended for entertainment purposes to sophisticated systems specifically developed for rehabilitation.This paper describes the principles underlying an innovative "Pediatric Rehabilitation 2.0" approach, based on the combination of suitable ICT solutions and traditional rehabilitation, which has been progressively refined while building up and using a computer-assisted rehabilitation laboratory. These principles are thus summarized in the acronym EPIQ, to account for the terms Ecological, Personalized, Interactive and Quantitative. The paper also presents the laboratory, which has been designed to meet the children's rehabilitation needs and to empower therapists in their work. The laboratory is equipped with commercial hardware and specially developed software called VITAMIN: a virtual reality platform for motor and cognitive rehabilitation.

  5. Databases for LDEF results

    NASA Technical Reports Server (NTRS)

    Bohnhoff-Hlavacek, Gail

    1992-01-01

    One of the objectives of the team supporting the LDEF Systems and Materials Special Investigative Groups is to develop databases of experimental findings. These databases identify the hardware flown, summarize results and conclusions, and provide a system for acknowledging investigators, tracing sources of data, and future design suggestions. To date, databases covering the optical experiments, and thermal control materials (chromic acid anodized aluminum, silverized Teflon blankets, and paints) have been developed at Boeing. We used the Filemaker Pro software, the database manager for the Macintosh computer produced by the Claris Corporation. It is a flat, text-retrievable database that provides access to the data via an intuitive user interface, without tedious programming. Though this software is available only for the Macintosh computer at this time, copies of the databases can be saved to a format that is readable on a personal computer as well. Further, the data can be exported to more powerful relational databases, capabilities, and use of the LDEF databases and describe how to get copies of the database for your own research.

  6. ZOOM: a generic personal computer-based teaching program for public health and its application in schistosomiasis control.

    PubMed Central

    Martin, G. T.; Yoon, S. S.; Mott, K. E.

    1991-01-01

    Schistosomiasis, a group of parasitic diseases caused by Schistosoma parasites, is associated with water resources development and affects more than 200 million people in 76 countries. Depending on the species of parasite involved, disease of the liver, spleen, gastrointestinal or urinary tract, or kidneys may result. A computer-assisted teaching package has been developed by WHO for use in the training of public health workers involved in schistosomiasis control. The package consists of the software, ZOOM, and a schistosomiasis information file, Dr Schisto, and uses hypermedia technology to link pictures and text. ZOOM runs on the IBM-PC and IBM-compatible computers, is user-friendly, requires a minimal hardware configuration, and can interact with the user in English, French, Spanish or Portuguese. The information files for ZOOM can be created or modified by the instructor using a word processor, and thus can be designed to suit the need of students. No programming knowledge is required to create the stacks. PMID:1786618

  7. Power Efficient Hardware Architecture of SHA-1 Algorithm for Trusted Mobile Computing

    NASA Astrophysics Data System (ADS)

    Kim, Mooseop; Ryou, Jaecheol

    The Trusted Mobile Platform (TMP) is developed and promoted by the Trusted Computing Group (TCG), which is an industry standard body to enhance the security of the mobile computing environment. The built-in SHA-1 engine in TMP is one of the most important circuit blocks and contributes the performance of the whole platform because it is used as key primitives supporting platform integrity and command authentication. Mobile platforms have very stringent limitations with respect to available power, physical circuit area, and cost. Therefore special architecture and design methods for low power SHA-1 circuit are required. In this paper, we present a novel and efficient hardware architecture of low power SHA-1 design for TMP. Our low power SHA-1 hardware can compute 512-bit data block using less than 7,000 gates and has a power consumption about 1.1 mA on a 0.25μm CMOS process.

  8. A historical survey of algorithms and hardware architectures for neural-inspired and neuromorphic computing applications

    DOE PAGES

    James, Conrad D.; Aimone, James B.; Miner, Nadine E.; ...

    2017-01-04

    In this study, biological neural networks continue to inspire new developments in algorithms and microelectronic hardware to solve challenging data processing and classification problems. Here in this research, we survey the history of neural-inspired and neuromorphic computing in order to examine the complex and intertwined trajectories of the mathematical theory and hardware developed in this field. Early research focused on adapting existing hardware to emulate the pattern recognition capabilities of living organisms. Contributions from psychologists, mathematicians, engineers, neuroscientists, and other professions were crucial to maturing the field from narrowly-tailored demonstrations to more generalizable systems capable of addressing difficult problem classesmore » such as object detection and speech recognition. Algorithms that leverage fundamental principles found in neuroscience such as hierarchical structure, temporal integration, and robustness to error have been developed, and some of these approaches are achieving world-leading performance on particular data classification tasks. Additionally, novel microelectronic hardware is being developed to perform logic and to serve as memory in neuromorphic computing systems with optimized system integration and improved energy efficiency. Key to such advancements was the incorporation of new discoveries in neuroscience research, the transition away from strict structural replication and towards the functional replication of neural systems, and the use of mathematical theory frameworks to guide algorithm and hardware developments.« less

  9. A historical survey of algorithms and hardware architectures for neural-inspired and neuromorphic computing applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, Conrad D.; Aimone, James B.; Miner, Nadine E.

    In this study, biological neural networks continue to inspire new developments in algorithms and microelectronic hardware to solve challenging data processing and classification problems. Here in this research, we survey the history of neural-inspired and neuromorphic computing in order to examine the complex and intertwined trajectories of the mathematical theory and hardware developed in this field. Early research focused on adapting existing hardware to emulate the pattern recognition capabilities of living organisms. Contributions from psychologists, mathematicians, engineers, neuroscientists, and other professions were crucial to maturing the field from narrowly-tailored demonstrations to more generalizable systems capable of addressing difficult problem classesmore » such as object detection and speech recognition. Algorithms that leverage fundamental principles found in neuroscience such as hierarchical structure, temporal integration, and robustness to error have been developed, and some of these approaches are achieving world-leading performance on particular data classification tasks. Additionally, novel microelectronic hardware is being developed to perform logic and to serve as memory in neuromorphic computing systems with optimized system integration and improved energy efficiency. Key to such advancements was the incorporation of new discoveries in neuroscience research, the transition away from strict structural replication and towards the functional replication of neural systems, and the use of mathematical theory frameworks to guide algorithm and hardware developments.« less

  10. Hardware synthesis from DDL. [Digital Design Language for computer aided design and test of LSI

    NASA Technical Reports Server (NTRS)

    Shah, A. M.; Shiva, S. G.

    1981-01-01

    The details of the digital systems can be conveniently input into the design automation system by means of Hardware Description Languages (HDL). The Computer Aided Design and Test (CADAT) system at NASA MSFC is used for the LSI design. The Digital Design Language (DDL) has been selected as HDL for the CADAT System. DDL translator output can be used for the hardware implementation of the digital design. This paper addresses problems of selecting the standard cells from the CADAT standard cell library to realize the logic implied by the DDL description of the system.

  11. Biomolecular computers with multiple restriction enzymes

    PubMed Central

    Sakowski, Sebastian; Krasinski, Tadeusz; Waldmajer, Jacek; Sarnik, Joanna; Blasiak, Janusz; Poplawski, Tomasz

    2017-01-01

    Abstract The development of conventional, silicon-based computers has several limitations, including some related to the Heisenberg uncertainty principle and the von Neumann “bottleneck”. Biomolecular computers based on DNA and proteins are largely free of these disadvantages and, along with quantum computers, are reasonable alternatives to their conventional counterparts in some applications. The idea of a DNA computer proposed by Ehud Shapiro’s group at the Weizmann Institute of Science was developed using one restriction enzyme as hardware and DNA fragments (the transition molecules) as software and input/output signals. This computer represented a two-state two-symbol finite automaton that was subsequently extended by using two restriction enzymes. In this paper, we propose the idea of a multistate biomolecular computer with multiple commercially available restriction enzymes as hardware. Additionally, an algorithmic method for the construction of transition molecules in the DNA computer based on the use of multiple restriction enzymes is presented. We use this method to construct multistate, biomolecular, nondeterministic finite automata with four commercially available restriction enzymes as hardware. We also describe an experimental applicaton of this theoretical model to a biomolecular finite automaton made of four endonucleases. PMID:29064510

  12. Development of TGS2611 methane sensor and SHT11 humidity and temperature sensor for measuring greenhouse gas on peatlands in south kalimantan, indonesia

    NASA Astrophysics Data System (ADS)

    Sugriwan, I.; Soesanto, O.

    2017-05-01

    The research was focused on development of data acquisition system to monitor the content of methane, relative humidity and temperature on peatlands in South Kalimantan, Indonesia. Methane is one of greenhouse gases that emitted from peatlands; while humidity and temperature are important parameters of microclimate on peatlands. The content of methane, humidity and temperature are three parameters were monitored digitally, real time, continuously and automatically record by data acquisition systems that interfaced to the personal computer. The hardware of data acquisition system consists of power supply unit, TGS2611 methane gas sensor, SHT11 humidity and temperature sensors, voltage follower, ATMega8535 microcontroller, 16 × 2 LCD character and personal computer. ATMega8535 module is a device to manage all part in measuring instrument. The software which is responsible to take sensor data, calculate characteristic equation and send data to 16 × 2 LCD character are Basic Compiler. To interface between measuring instrument and personal computer is maintained by Delphi 7. The result of data acquisition showed on 16 × 2 LCD characters, PC monitor and database with developed by XAMPP. Methane, humidity, and temperature which release from peatlands are trapped by Closed-Chamber Measurement with dimension 60 × 50 × 40 cm3. TGS2611 methane gas sensor and SHT11 humidity and temperature sensor are calibrated to determine transfer function used to data communication between sensors and microcontroller and integrated into ATMega8535 Microcontroller. Calculation of RS and RL of TGS2611 methane gas sensor refer to data sheet and obtained respectively 1360 ohm and 905 ohm. The characteristic equation of TGS2611 satisfies equation VRL = 0.561 ln n - 2.2641 volt, with n is a various concentrations and VRL in volt. The microcontroller maintained the voltage signal than interfaced it to liquid crystal displays and personal computer (laptop) to display result of the measurement. The result of data acquisition saved on excels and database format.

  13. Graphical Methods: A Review of Current Methods and Computer Hardware and Software. Technical Report No. 27.

    ERIC Educational Resources Information Center

    Bessey, Barbara L.; And Others

    Graphical methods for displaying data, as well as available computer software and hardware, are reviewed. The authors have emphasized the types of graphs which are most relevant to the needs of the National Center for Education Statistics (NCES) and its readers. The following types of graphs are described: tabulations, stem-and-leaf displays,…

  14. Automating quantum experiment control

    NASA Astrophysics Data System (ADS)

    Stevens, Kelly E.; Amini, Jason M.; Doret, S. Charles; Mohler, Greg; Volin, Curtis; Harter, Alexa W.

    2017-03-01

    The field of quantum information processing is rapidly advancing. As the control of quantum systems approaches the level needed for useful computation, the physical hardware underlying the quantum systems is becoming increasingly complex. It is already becoming impractical to manually code control for the larger hardware implementations. In this chapter, we will employ an approach to the problem of system control that parallels compiler design for a classical computer. We will start with a candidate quantum computing technology, the surface electrode ion trap, and build a system instruction language which can be generated from a simple machine-independent programming language via compilation. We incorporate compile time generation of ion routing that separates the algorithm description from the physical geometry of the hardware. Extending this approach to automatic routing at run time allows for automated initialization of qubit number and placement and additionally allows for automated recovery after catastrophic events such as qubit loss. To show that these systems can handle real hardware, we present a simple demonstration system that routes two ions around a multi-zone ion trap and handles ion loss and ion placement. While we will mainly use examples from transport-based ion trap quantum computing, many of the issues and solutions are applicable to other architectures.

  15. AUDIO-CASI

    PubMed Central

    Cooley, Philip C.; Turner, Charles F.; O'Reilly, James M.; Allen, Danny R.; Hamill, David N.; Paddock, Richard E.

    2011-01-01

    This article reviews a multimedia application in the area of survey measurement research: adding audio capabilities to a computer-assisted interviewing system. Hardware and software issues are discussed, and potential hardware devices that operate from DOS platforms are reviewed. Three types of hardware devices are considered: PCMCIA devices, parallel port attachments, and laptops with built-in sound. PMID:22096271

  16. The Sociotechnical Boundaries of Hardware and Software: A Humpty Dumpty History

    ERIC Educational Resources Information Center

    Jesiek, Brent K.

    2006-01-01

    This article traces the historical development of the boundaries around computer software and hardware. On one hand, the author documents ongoing discussions about the technical equivalence of hardware and software. On the other hand, he accounts for the stubborn persistence of these terms as markers for two distinct spheres of technology,…

  17. Comparison of scientific computing platforms for MCNP4A Monte Carlo calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendricks, J.S.; Brockhoff, R.C.

    1994-04-01

    The performance of seven computer platforms is evaluated with the widely used and internationally available MCNP4A Monte Carlo radiation transport code. All results are reproducible and are presented in such a way as to enable comparison with computer platforms not in the study. The authors observed that the HP/9000-735 workstation runs MCNP 50% faster than the Cray YMP 8/64. Compared with the Cray YMP 8/64, the IBM RS/6000-560 is 68% as fast, the Sun Sparc10 is 66% as fast, the Silicon Graphics ONYX is 90% as fast, the Gateway 2000 model 4DX2-66V personal computer is 27% as fast, and themore » Sun Sparc2 is 24% as fast. In addition to comparing the timing performance of the seven platforms, the authors observe that changes in compilers and software over the past 2 yr have resulted in only modest performance improvements, hardware improvements have enhanced performance by less than a factor of [approximately]3, timing studies are very problem dependent, MCNP4Q runs about as fast as MCNP4.« less

  18. Store-operate-coherence-on-value

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Dong; Heidelberger, Philip; Kumar, Sameer

    A system, method and computer program product for performing various store-operate instructions in a parallel computing environment that includes a plurality of processors and at least one cache memory device. A queue in the system receives, from a processor, a store-operate instruction that specifies under which condition a cache coherence operation is to be invoked. A hardware unit in the system runs the received store-operate instruction. The hardware unit evaluates whether a result of the running the received store-operate instruction satisfies the condition. The hardware unit invokes a cache coherence operation on a cache memory address associated with the receivedmore » store-operate instruction if the result satisfies the condition. Otherwise, the hardware unit does not invoke the cache coherence operation on the cache memory device.« less

  19. Reconfigurable vision system for real-time applications

    NASA Astrophysics Data System (ADS)

    Torres-Huitzil, Cesar; Arias-Estrada, Miguel

    2002-03-01

    Recently, a growing community of researchers has used reconfigurable systems to solve computationally intensive problems. Reconfigurability provides optimized processors for systems on chip designs, and makes easy to import technology to a new system through reusable modules. The main objective of this work is the investigation of a reconfigurable computer system targeted for computer vision and real-time applications. The system is intended to circumvent the inherent computational load of most window-based computer vision algorithms. It aims to build a system for such tasks by providing an FPGA-based hardware architecture for task specific vision applications with enough processing power, using the minimum amount of hardware resources as possible, and a mechanism for building systems using this architecture. Regarding the software part of the system, a library of pre-designed and general-purpose modules that implement common window-based computer vision operations is being investigated. A common generic interface is established for these modules in order to define hardware/software components. These components can be interconnected to develop more complex applications, providing an efficient mechanism for transferring image and result data among modules. Some preliminary results are presented and discussed.

  20. Addressing Failures in Exascale Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snir, Marc; Wisniewski, Robert; Abraham, Jacob

    2014-01-01

    We present here a report produced by a workshop on Addressing failures in exascale computing' held in Park City, Utah, 4-11 August 2012. The charter of this workshop was to establish a common taxonomy about resilience across all the levels in a computing system, discuss existing knowledge on resilience across the various hardware and software layers of an exascale system, and build on those results, examining potential solutions from both a hardware and software perspective and focusing on a combined approach. The workshop brought together participants with expertise in applications, system software, and hardware; they came from industry, government, andmore » academia, and their interests ranged from theory to implementation. The combination allowed broad and comprehensive discussions and led to this document, which summarizes and builds on those discussions.« less

  1. Generic algorithms for high performance scalable geocomputing

    NASA Astrophysics Data System (ADS)

    de Jong, Kor; Schmitz, Oliver; Karssenberg, Derek

    2016-04-01

    During the last decade, the characteristics of computing hardware have changed a lot. For example, instead of a single general purpose CPU core, personal computers nowadays contain multiple cores per CPU and often general purpose accelerators, like GPUs. Additionally, compute nodes are often grouped together to form clusters or a supercomputer, providing enormous amounts of compute power. For existing earth simulation models to be able to use modern hardware platforms, their compute intensive parts must be rewritten. This can be a major undertaking and may involve many technical challenges. Compute tasks must be distributed over CPU cores, offloaded to hardware accelerators, or distributed to different compute nodes. And ideally, all of this should be done in such a way that the compute task scales well with the hardware resources. This presents two challenges: 1) how to make good use of all the compute resources and 2) how to make these compute resources available for developers of simulation models, who may not (want to) have the required technical background for distributing compute tasks. The first challenge requires the use of specialized technology (e.g.: threads, OpenMP, MPI, OpenCL, CUDA). The second challenge requires the abstraction of the logic handling the distribution of compute tasks from the model-specific logic, hiding the technical details from the model developer. To assist the model developer, we are developing a C++ software library (called Fern) containing algorithms that can use all CPU cores available in a single compute node (distributing tasks over multiple compute nodes will be done at a later stage). The algorithms are grid-based (finite difference) and include local and spatial operations such as convolution filters. The algorithms handle distribution of the compute tasks to CPU cores internally. In the resulting model the low-level details of how this is done is separated from the model-specific logic representing the modeled system. This contrasts with practices in which code for distributing of compute tasks is mixed with model-specific code, and results in a better maintainable model. For flexibility and efficiency, the algorithms are configurable at compile-time with the respect to the following aspects: data type, value type, no-data handling, input value domain handling, and output value range handling. This makes the algorithms usable in very different contexts, without the need for making intrusive changes to existing models when using them. Applications that benefit from using the Fern library include the construction of forward simulation models in (global) hydrology (e.g. PCR-GLOBWB (Van Beek et al. 2011)), ecology, geomorphology, or land use change (e.g. PLUC (Verstegen et al. 2014)) and manipulation of hyper-resolution land surface data such as digital elevation models and remote sensing data. Using the Fern library, we have also created an add-on to the PCRaster Python Framework (Karssenberg et al. 2010) allowing its users to speed up their spatio-temporal models, sometimes by changing just a single line of Python code in their model. In our presentation we will give an overview of the design of the algorithms, providing examples of different contexts where they can be used to replace existing sequential algorithms, including the PCRaster environmental modeling software (www.pcraster.eu). We will show how the algorithms can be configured to behave differently when necessary. References Karssenberg, D., Schmitz, O., Salamon, P., De Jong, K. and Bierkens, M.F.P., 2010, A software framework for construction of process-based stochastic spatio-temporal models and data assimilation. Environmental Modelling & Software, 25, pp. 489-502, Link. Best Paper Award 2010: Software and Decision Support. Van Beek, L. P. H., Y. Wada, and M. F. P. Bierkens. 2011. Global monthly water stress: 1. Water balance and water availability. Water Resources Research. 47. Verstegen, J. A., D. Karssenberg, F. van der Hilst, and A. P. C. Faaij. 2014. Identifying a land use change cellular automaton by Bayesian data assimilation. Environmental Modelling & Software 53:121-136.

  2. Light weight portable operator control unit using an Android-enabled mobile phone

    NASA Astrophysics Data System (ADS)

    Fung, Nicholas

    2011-05-01

    There have been large gains in the field of robotics, both in hardware sophistication and technical capabilities. However, as more capable robots have been developed and introduced to battlefield environments, the problem of interfacing with human controllers has proven to be challenging. Particularly in the field of military applications, controller requirements can be stringent and can range from size and power consumption, to durability and cost. Traditional operator control units (OCUs) tend to resemble laptop personal computers (PCs), as these devices are mobile and have ample computing power. However, laptop PCs are bulky and have greater power requirements. To approach this problem, a light weight, inexpensive controller was created based on a mobile phone running the Android operating system. It was designed to control an iRobot Packbot through the Army Research Laboratory (ARL) in-house Agile Computing Infrastructure (ACI). The hardware capabilities of the mobile phone, such as Wi- Fi communications, touch screen interface, and the flexibility of the Android operating system, made it a compelling platform. The Android based OCU offers a more portable package and can be easily carried by a soldier along with normal gear requirements. In addition, the one hand operation of the Android OCU allows for the Soldier to keep an unoccupied hand for greater flexibility. To validate the Android OCU as a capable controller, experimental data was collected evaluating use of the controller and a traditional, tablet PC based OCU. Initial analysis suggests that the Android OCU performed positively in qualitative data collected from participants.

  3. Spike-train acquisition, analysis and real-time experimental control using a graphical programming language (LabView).

    PubMed

    Nordstrom, M A; Mapletoft, E A; Miles, T S

    1995-11-01

    A solution is described for the acquisition on a personal computer of standard pulses derived from neuronal discharge, measurement of neuronal discharge times, real-time control of stimulus delivery based on specified inter-pulse interval conditions in the neuronal spike train, and on-line display and analysis of the experimental data. The hardware consisted of an Apple Macintosh IIci computer and a plug-in card (National Instruments NB-MIO16) that supports A/D, D/A, digital I/O and timer functions. The software was written in the object-oriented graphical programming language LabView. Essential elements of the source code of the LabView program are presented and explained. The use of the system is demonstrated in an experiment in which the reflex responses to muscle stretch are assessed for a single motor unit in the human masseter muscle.

  4. Physically Based Virtual Surgery Planning and Simulation Tools for Personal Health Care Systems

    NASA Astrophysics Data System (ADS)

    Dogan, Firat; Atilgan, Yasemin

    The virtual surgery planning and simulation tools have gained a great deal of importance in the last decade in a consequence of increasing capacities at the information technology level. The modern hardware architectures, large scale database systems, grid based computer networks, agile development processes, better 3D visualization and all the other strong aspects of the information technology brings necessary instruments into almost every desk. The last decade’s special software and sophisticated super computer environments are now serving to individual needs inside “tiny smart boxes” for reasonable prices. However, resistance to learning new computerized environments, insufficient training and all the other old habits prevents effective utilization of IT resources by the specialists of the health sector. In this paper, all the aspects of the former and current developments in surgery planning and simulation related tools are presented, future directions and expectations are investigated for better electronic health care systems.

  5. Features of commercial computer software systems for medical examiners and coroners.

    PubMed

    Hanzlick, R L; Parrish, R G; Ing, R

    1993-12-01

    There are many ways of automating medical examiner and coroner offices, one of which is to purchase commercial software products specifically designed for death investigation. We surveyed four companies that offer such products and requested information regarding each company and its hardware, software, operating systems, peripheral devices, applications, networking options, programming language, querying capability, coding systems, prices, customer support, and number and size of offices using the product. Although the four products (CME2, ForenCIS, InQuest, and Medical Examiner's Software System) are similar in many respects and each can be installed on personal computers, there are differences among the products with regard to cost, applications, and the other features. Death investigators interested in office automation should explore these products to determine the usefulness of each in comparison with the others and in comparison with general-purpose, off-the-shelf databases and software adaptable to death investigation needs.

  6. Taking the Observatory to the Astronomer

    NASA Astrophysics Data System (ADS)

    Bisque, T. M.

    1997-05-01

    Since 1992, Software Bisque's Remote Astronomy Software has been used by the Mt. Wilson Institute to allow interactive control of a 24" telescope and digital camera via modem. Software Bisque now introduces a comparable, relatively low-cost observatory system that allows powerful, yet "user-friendly" telescope and CCD camera control via the Internet. Utilizing software developed for the Windows 95/NT operating systems, the system offers point-and-click access to comprehensive celestial databases, extremely accurate telescope pointing, rapid download of digital CCD images by one or many users and flexible image processing software for data reduction and analysis. Our presentation will describe how the power of the personal computer has been leveraged to provide professional-level tools to the amateur astronomer, and include a description of this system's software and hardware components. The system software includes TheSky Astronomy Software?, CCDSoft CCD Astronomy Software?, TPoint Telescope Pointing Analysis System? software, Orchestrate? and, optionally, the RealSky CDs. The system hardware includes the Paramount GT-1100? Robotic Telescope Mount, as well as third party CCD cameras, focusers and optical tube assemblies.

  7. Cardiology office computer use: primer, pointers, pitfalls.

    PubMed

    Shepard, R B; Blum, R I

    1986-10-01

    An office computer is a utility, like an automobile, with benefits and costs that are both direct and hidden and potential for disaster. For the cardiologist or cardiovascular surgeon, the increasing power and decreasing costs of computer hardware and the availability of software make use of an office computer system an increasingly attractive possibility. Management of office business functions is common; handling and scientific analysis of practice medical information are less common. The cardiologist can also access national medical information systems for literature searches and for interactive further education. Selection and testing of programs and the entire computer system before purchase of computer hardware will reduce the chances of disappointment or serious problems. Personnel pretraining and planning for office information flow and medical information security are necessary. Some cardiologists design their own office systems, buy hardware and software as needed, write programs for themselves and carry out the implementation themselves. For most cardiologists, the better course will be to take advantage of the professional experience of expert advisors. This article provides a starting point from which the practicing cardiologist can approach considering, specifying or implementing an office computer system for business functions and for scientific analysis of practice results.

  8. Demonstration of a small programmable quantum computer with atomic qubits.

    PubMed

    Debnath, S; Linke, N M; Figgatt, C; Landsman, K A; Wright, K; Monroe, C

    2016-08-04

    Quantum computers can solve certain problems more efficiently than any possible conventional computer. Small quantum algorithms have been demonstrated on multiple quantum computing platforms, many specifically tailored in hardware to implement a particular algorithm or execute a limited number of computational paths. Here we demonstrate a five-qubit trapped-ion quantum computer that can be programmed in software to implement arbitrary quantum algorithms by executing any sequence of universal quantum logic gates. We compile algorithms into a fully connected set of gate operations that are native to the hardware and have a mean fidelity of 98 per cent. Reconfiguring these gate sequences provides the flexibility to implement a variety of algorithms without altering the hardware. As examples, we implement the Deutsch-Jozsa and Bernstein-Vazirani algorithms with average success rates of 95 and 90 per cent, respectively. We also perform a coherent quantum Fourier transform on five trapped-ion qubits for phase estimation and period finding with average fidelities of 62 and 84 per cent, respectively. This small quantum computer can be scaled to larger numbers of qubits within a single register, and can be further expanded by connecting several such modules through ion shuttling or photonic quantum channels.

  9. Demonstration of a small programmable quantum computer with atomic qubits

    NASA Astrophysics Data System (ADS)

    Debnath, S.; Linke, N. M.; Figgatt, C.; Landsman, K. A.; Wright, K.; Monroe, C.

    2016-08-01

    Quantum computers can solve certain problems more efficiently than any possible conventional computer. Small quantum algorithms have been demonstrated on multiple quantum computing platforms, many specifically tailored in hardware to implement a particular algorithm or execute a limited number of computational paths. Here we demonstrate a five-qubit trapped-ion quantum computer that can be programmed in software to implement arbitrary quantum algorithms by executing any sequence of universal quantum logic gates. We compile algorithms into a fully connected set of gate operations that are native to the hardware and have a mean fidelity of 98 per cent. Reconfiguring these gate sequences provides the flexibility to implement a variety of algorithms without altering the hardware. As examples, we implement the Deutsch-Jozsa and Bernstein-Vazirani algorithms with average success rates of 95 and 90 per cent, respectively. We also perform a coherent quantum Fourier transform on five trapped-ion qubits for phase estimation and period finding with average fidelities of 62 and 84 per cent, respectively. This small quantum computer can be scaled to larger numbers of qubits within a single register, and can be further expanded by connecting several such modules through ion shuttling or photonic quantum channels.

  10. Test plan for 32-bit microcomputers for the Water Resources Division; Chapter A, Test plan for acquisition of prototype 32-bit microcomputers

    USGS Publications Warehouse

    Hutchison, N.E.; Harbaugh, A.W.; Holloway, R.A.; Merk, C.F.

    1987-01-01

    The Water Resources Division (WRD) of the U.S. Geological Survey is evaluating 32-bit microcomputers to determine how they can complement, and perhaps later replace, the existing network of minicomputers. The WRD is also designing a National Water Information System (NWIS) that will combine and integrate the existing National Water Data Storage and Retrieval System (WATSTORE), National Water Data Exchange (NAWDEX), and components of several other existing systems. The procedures and testing done in a market evaluation of 32-bit microcomputers are documented. The results of the testing are documented in the NWIS Project Office. The market evaluation was done to identify commercially available hardware and software that could be used for implementing early NWIS prototypes to determine the applicability of 32-bit microcomputers for data base and general computing applications. Three microcomputers will be used for these prototype studies. The results of the prototype studies will be used to compile requirements for a Request for Procurement (RFP) for hardware and software to meet the WRD 's needs in the early 1990's. The identification of qualified vendors to provide the prototype hardware and software included reviewing industry literature, and making telephone calls and personal visits to prospective vendors. Those vendors that appeared to meet general requirements were required to run benchmark tests. (Author 's abstract)

  11. Real-time range generation for ladar hardware-in-the-loop testing

    NASA Astrophysics Data System (ADS)

    Olson, Eric M.; Coker, Charles F.

    1996-05-01

    Real-time closed loop simulation of LADAR seekers in a hardware-in-the-loop facility can reduce program risk and cost. This paper discusses an implementation of real-time range imagery generated in a synthetic environment at the Kinetic Kill Vehicle Hardware-in-the Loop facility at Eglin AFB, for the stimulation of LADAR seekers and algorithms. The computer hardware platform used was a Silicon Graphics Incorporated Onyx Reality Engine. This computer contains graphics hardware, and is optimized for generating visible or infrared imagery in real-time. A by-produce of the rendering process, in the form of a depth buffer, is generated from all objects in view during its rendering process. The depth buffer is an array of integer values that contributes to the proper rendering of overlapping objects and can be converted to range values using a mathematical formula. This paper presents an optimized software approach to the generation of the scenes, calculation of the range values, and outputting the range data for a LADAR seeker.

  12. A comparison of hardware description languages. [describing digital systems structure and behavior to a computer

    NASA Technical Reports Server (NTRS)

    Shiva, S. G.

    1978-01-01

    Several high level languages which evolved over the past few years for describing and simulating the structure and behavior of digital systems, on digital computers are assessed. The characteristics of the four prominent languages (CDL, DDL, AHPL, ISP) are summarized. A criterion for selecting a suitable hardware description language for use in an automatic integrated circuit design environment is provided.

  13. Department of Defense Computer Technology. A Report to Congress.

    DTIC Science & Technology

    1983-08-01

    system and evolves his employment tactics. (8) Lack of adequate competition. Conclusions Based on both software and hardware arguments, it is...environments, Services should be encouraged to use either common-commercial, ruggedized-commercial or "off-the-shelf" militarized computers based upon...the performance requirements of the specific application. Full consideration should be given to Ada- based systems where there is no strict hardware

  14. The Triangle: a Multiprocessor Architecture for Fast Curve and Surface Generation.

    DTIC Science & Technology

    1987-08-01

    design , curves and surfaces, graphics hardware. 20...curves, B-splines, computer-aided geometric design ; curves and sur- faces, graphics hardware. (k 12). -/ .... This work was supported in part by the...34 Electronic Design , October 30, 1986. 21. M. A. Penna and R. R. Patterson, Projective Geometry and its Applications to Computer Graphics , Prentice-Hall, Englewood Cliffs, N.J., 1985. 70,e, 41100vr -~ ~ - -- --

  15. Generic robot architecture

    DOEpatents

    Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID

    2010-09-21

    The present invention provides methods, computer readable media, and apparatuses for a generic robot architecture providing a framework that is easily portable to a variety of robot platforms and is configured to provide hardware abstractions, abstractions for generic robot attributes, environment abstractions, and robot behaviors. The generic robot architecture includes a hardware abstraction level and a robot abstraction level. The hardware abstraction level is configured for developing hardware abstractions that define, monitor, and control hardware modules available on a robot platform. The robot abstraction level is configured for defining robot attributes and provides a software framework for building robot behaviors from the robot attributes. Each of the robot attributes includes hardware information from at least one hardware abstraction. In addition, each robot attribute is configured to substantially isolate the robot behaviors from the at least one hardware abstraction.

  16. A hardware implementation of the discrete Pascal transform for image processing

    NASA Astrophysics Data System (ADS)

    Goodman, Thomas J.; Aburdene, Maurice F.

    2006-02-01

    The discrete Pascal transform is a polynomial transform with applications in pattern recognition, digital filtering, and digital image processing. It already has been shown that the Pascal transform matrix can be decomposed into a product of binary matrices. Such a factorization leads to a fast and efficient hardware implementation without the use of multipliers, which consume large amounts of hardware. We recently developed a field-programmable gate array (FPGA) implementation to compute the Pascal transform. Our goal was to demonstrate the computational efficiency of the transform while keeping hardware requirements at a minimum. Images are uploaded into memory from a remote computer prior to processing, and the transform coefficients can be offloaded from the FPGA board for analysis. Design techniques like as-soon-as-possible scheduling and adder sharing allowed us to develop a fast and efficient system. An eight-point, one-dimensional transform completes in 13 clock cycles and requires only four adders. An 8x8 two-dimensional transform completes in 240 cycles and requires only a top-level controller in addition to the one-dimensional transform hardware. Finally, through minor modifications to the controller, the transform operations can be pipelined to achieve 100% utilization of the four adders, allowing one eight-point transform to complete every seven clock cycles.

  17. Software environment for implementing engineering applications on MIMD computers

    NASA Technical Reports Server (NTRS)

    Lopez, L. A.; Valimohamed, K. A.; Schiff, S.

    1990-01-01

    In this paper the concept for a software environment for developing engineering application systems for multiprocessor hardware (MIMD) is presented. The philosophy employed is to solve the largest problems possible in a reasonable amount of time, rather than solve existing problems faster. In the proposed environment most of the problems concerning parallel computation and handling of large distributed data spaces are hidden from the application program developer, thereby facilitating the development of large-scale software applications. Applications developed under the environment can be executed on a variety of MIMD hardware; it protects the application software from the effects of a rapidly changing MIMD hardware technology.

  18. Verification of the FtCayuga fault-tolerant microprocessor system. Volume 1: A case study in theorem prover-based verification

    NASA Technical Reports Server (NTRS)

    Srivas, Mandayam; Bickford, Mark

    1991-01-01

    The design and formal verification of a hardware system for a task that is an important component of a fault tolerant computer architecture for flight control systems is presented. The hardware system implements an algorithm for obtaining interactive consistancy (byzantine agreement) among four microprocessors as a special instruction on the processors. The property verified insures that an execution of the special instruction by the processors correctly accomplishes interactive consistency, provided certain preconditions hold. An assumption is made that the processors execute synchronously. For verification, the authors used a computer aided design hardware design verification tool, Spectool, and the theorem prover, Clio. A major contribution of the work is the demonstration of a significant fault tolerant hardware design that is mechanically verified by a theorem prover.

  19. Virtual environment and computer-aided technologies used for system prototyping and requirements development

    NASA Technical Reports Server (NTRS)

    Logan, Cory; Maida, James; Goldsby, Michael; Clark, Jim; Wu, Liew; Prenger, Henk

    1993-01-01

    The Space Station Freedom (SSF) Data Management System (DMS) consists of distributed hardware and software which monitor and control the many onboard systems. Virtual environment and off-the-shelf computer technologies can be used at critical points in project development to aid in objectives and requirements development. Geometric models (images) coupled with off-the-shelf hardware and software technologies were used in The Space Station Mockup and Trainer Facility (SSMTF) Crew Operational Assessment Project. Rapid prototyping is shown to be a valuable tool for operational procedure and system hardware and software requirements development. The project objectives, hardware and software technologies used, data gained, current activities, future development and training objectives shall be discussed. The importance of defining prototyping objectives and staying focused while maintaining schedules are discussed along with project pitfalls.

  20. Computer hardware for radiologists: Part 2

    PubMed Central

    Indrajit, IK; Alam, A

    2010-01-01

    Computers are an integral part of modern radiology equipment. In the first half of this two-part article, we dwelt upon some fundamental concepts regarding computer hardware, covering components like motherboard, central processing unit (CPU), chipset, random access memory (RAM), and memory modules. In this article, we describe the remaining computer hardware components that are of relevance to radiology. “Storage drive” is a term describing a “memory” hardware used to store data for later retrieval. Commonly used storage drives are hard drives, floppy drives, optical drives, flash drives, and network drives. The capacity of a hard drive is dependent on many factors, including the number of disk sides, number of tracks per side, number of sectors on each track, and the amount of data that can be stored in each sector. “Drive interfaces” connect hard drives and optical drives to a computer. The connections of such drives require both a power cable and a data cable. The four most popular “input/output devices” used commonly with computers are the printer, monitor, mouse, and keyboard. The “bus” is a built-in electronic signal pathway in the motherboard to permit efficient and uninterrupted data transfer. A motherboard can have several buses, including the system bus, the PCI express bus, the PCI bus, the AGP bus, and the (outdated) ISA bus. “Ports” are the location at which external devices are connected to a computer motherboard. All commonly used peripheral devices, such as printers, scanners, and portable drives, need ports. A working knowledge of computers is necessary for the radiologist if the workflow is to realize its full potential and, besides, this knowledge will prepare the radiologist for the coming innovations in the ‘ever increasing’ digital future. PMID:21423895

  1. Computer hardware for radiologists: Part 2.

    PubMed

    Indrajit, Ik; Alam, A

    2010-11-01

    Computers are an integral part of modern radiology equipment. In the first half of this two-part article, we dwelt upon some fundamental concepts regarding computer hardware, covering components like motherboard, central processing unit (CPU), chipset, random access memory (RAM), and memory modules. In this article, we describe the remaining computer hardware components that are of relevance to radiology. "Storage drive" is a term describing a "memory" hardware used to store data for later retrieval. Commonly used storage drives are hard drives, floppy drives, optical drives, flash drives, and network drives. The capacity of a hard drive is dependent on many factors, including the number of disk sides, number of tracks per side, number of sectors on each track, and the amount of data that can be stored in each sector. "Drive interfaces" connect hard drives and optical drives to a computer. The connections of such drives require both a power cable and a data cable. The four most popular "input/output devices" used commonly with computers are the printer, monitor, mouse, and keyboard. The "bus" is a built-in electronic signal pathway in the motherboard to permit efficient and uninterrupted data transfer. A motherboard can have several buses, including the system bus, the PCI express bus, the PCI bus, the AGP bus, and the (outdated) ISA bus. "Ports" are the location at which external devices are connected to a computer motherboard. All commonly used peripheral devices, such as printers, scanners, and portable drives, need ports. A working knowledge of computers is necessary for the radiologist if the workflow is to realize its full potential and, besides, this knowledge will prepare the radiologist for the coming innovations in the 'ever increasing' digital future.

  2. Protecting Patient Records from Unwarranted Access

    NASA Astrophysics Data System (ADS)

    Gardner, Ryan; Garera, Sujata; Rubin, Aviel D.; Rajan, Anand; Rozas, Carlos V.; Sastry, Manoj

    Securing access to medical information is vital to protecting patient privacy. However, Electronic Patient Record (EPR) systems are vulnerable to a number of inside and outside threats. Adversaries can compromise EPR client machines to obtain a variety of highly sensitive information including valid EPR login credentials, without detection. Furthermore, medical staff can covertly view records of their choosing for personal interest or more malicious purposes. In particular, we observe that the lack of integrity measurement and auditability in these systems creates a potential threat to the privacy of patient information. We explore the use of virtualization and trusted computing hardware to address these problems. We identify open problems and encourage further research in the area.

  3. Computer-based desktop system for surgical videotape editing.

    PubMed

    Vincent-Hamelin, E; Sarmiento, J M; de la Puente, J M; Vicente, M

    1997-05-01

    The educational role of surgical video presentations should be optimized by linking surgical images to graphic evaluation of indications, techniques, and results. We describe a PC-based video production system for personal editing of surgical tapes, according to the objectives of each presentation. The hardware requirement is a personal computer (100 MHz processor, 1-Gb hard disk, 16 Mb RAM) with a PC-to-TV/video transfer card plugged into a slot. Computer-generated numerical data, texts, and graphics are transformed into analog signals displayed on TV/video. A Genlock interface (a special interface card) synchronizes digital and analog signals, to overlay surgical images to electronic illustrations. The presentation is stored as digital information or recorded on a tape. The proliferation of multimedia tools is leading us to adapt presentations to the objectives of lectures and to integrate conceptual analyses with dynamic image-based information. We describe a system that handles both digital and analog signals, production being recorded on a tape. Movies may be managed in a digital environment, with either an "on-line" or "off-line" approach. System requirements are high, but handling a single device optimizes editing without incurring such complexity that management becomes impractical to surgeons. Our experience suggests that computerized editing allows linking surgical scientific and didactic messages on a single communication medium, either a videotape or a CD-ROM.

  4. Parameters that affect parallel processing for computational electromagnetic simulation codes on high performance computing clusters

    NASA Astrophysics Data System (ADS)

    Moon, Hongsik

    What is the impact of multicore and associated advanced technologies on computational software for science? Most researchers and students have multicore laptops or desktops for their research and they need computing power to run computational software packages. Computing power was initially derived from Central Processing Unit (CPU) clock speed. That changed when increases in clock speed became constrained by power requirements. Chip manufacturers turned to multicore CPU architectures and associated technological advancements to create the CPUs for the future. Most software applications benefited by the increased computing power the same way that increases in clock speed helped applications run faster. However, for Computational ElectroMagnetics (CEM) software developers, this change was not an obvious benefit - it appeared to be a detriment. Developers were challenged to find a way to correctly utilize the advancements in hardware so that their codes could benefit. The solution was parallelization and this dissertation details the investigation to address these challenges. Prior to multicore CPUs, advanced computer technologies were compared with the performance using benchmark software and the metric was FLoting-point Operations Per Seconds (FLOPS) which indicates system performance for scientific applications that make heavy use of floating-point calculations. Is FLOPS an effective metric for parallelized CEM simulation tools on new multicore system? Parallel CEM software needs to be benchmarked not only by FLOPS but also by the performance of other parameters related to type and utilization of the hardware, such as CPU, Random Access Memory (RAM), hard disk, network, etc. The codes need to be optimized for more than just FLOPs and new parameters must be included in benchmarking. In this dissertation, the parallel CEM software named High Order Basis Based Integral Equation Solver (HOBBIES) is introduced. This code was developed to address the needs of the changing computer hardware platforms in order to provide fast, accurate and efficient solutions to large, complex electromagnetic problems. The research in this dissertation proves that the performance of parallel code is intimately related to the configuration of the computer hardware and can be maximized for different hardware platforms. To benchmark and optimize the performance of parallel CEM software, a variety of large, complex projects are created and executed on a variety of computer platforms. The computer platforms used in this research are detailed in this dissertation. The projects run as benchmarks are also described in detail and results are presented. The parameters that affect parallel CEM software on High Performance Computing Clusters (HPCC) are investigated. This research demonstrates methods to maximize the performance of parallel CEM software code.

  5. Computer vision camera with embedded FPGA processing

    NASA Astrophysics Data System (ADS)

    Lecerf, Antoine; Ouellet, Denis; Arias-Estrada, Miguel

    2000-03-01

    Traditional computer vision is based on a camera-computer system in which the image understanding algorithms are embedded in the computer. To circumvent the computational load of vision algorithms, low-level processing and imaging hardware can be integrated in a single compact module where a dedicated architecture is implemented. This paper presents a Computer Vision Camera based on an open architecture implemented in an FPGA. The system is targeted to real-time computer vision tasks where low level processing and feature extraction tasks can be implemented in the FPGA device. The camera integrates a CMOS image sensor, an FPGA device, two memory banks, and an embedded PC for communication and control tasks. The FPGA device is a medium size one equivalent to 25,000 logic gates. The device is connected to two high speed memory banks, an IS interface, and an imager interface. The camera can be accessed for architecture programming, data transfer, and control through an Ethernet link from a remote computer. A hardware architecture can be defined in a Hardware Description Language (like VHDL), simulated and synthesized into digital structures that can be programmed into the FPGA and tested on the camera. The architecture of a classical multi-scale edge detection algorithm based on a Laplacian of Gaussian convolution has been developed to show the capabilities of the system.

  6. Programming languages and compiler design for realistic quantum hardware.

    PubMed

    Chong, Frederic T; Franklin, Diana; Martonosi, Margaret

    2017-09-13

    Quantum computing sits at an important inflection point. For years, high-level algorithms for quantum computers have shown considerable promise, and recent advances in quantum device fabrication offer hope of utility. A gap still exists, however, between the hardware size and reliability requirements of quantum computing algorithms and the physical machines foreseen within the next ten years. To bridge this gap, quantum computers require appropriate software to translate and optimize applications (toolflows) and abstraction layers. Given the stringent resource constraints in quantum computing, information passed between layers of software and implementations will differ markedly from in classical computing. Quantum toolflows must expose more physical details between layers, so the challenge is to find abstractions that expose key details while hiding enough complexity.

  7. An emulator for minimizing computer resources for finite element analysis

    NASA Technical Reports Server (NTRS)

    Melosh, R.; Utku, S.; Islam, M.; Salama, M.

    1984-01-01

    A computer code, SCOPE, has been developed for predicting the computer resources required for a given analysis code, computer hardware, and structural problem. The cost of running the code is a small fraction (about 3 percent) of the cost of performing the actual analysis. However, its accuracy in predicting the CPU and I/O resources depends intrinsically on the accuracy of calibration data that must be developed once for the computer hardware and the finite element analysis code of interest. Testing of the SCOPE code on the AMDAHL 470 V/8 computer and the ELAS finite element analysis program indicated small I/O errors (3.2 percent), larger CPU errors (17.8 percent), and negligible total errors (1.5 percent).

  8. Programming languages and compiler design for realistic quantum hardware

    NASA Astrophysics Data System (ADS)

    Chong, Frederic T.; Franklin, Diana; Martonosi, Margaret

    2017-09-01

    Quantum computing sits at an important inflection point. For years, high-level algorithms for quantum computers have shown considerable promise, and recent advances in quantum device fabrication offer hope of utility. A gap still exists, however, between the hardware size and reliability requirements of quantum computing algorithms and the physical machines foreseen within the next ten years. To bridge this gap, quantum computers require appropriate software to translate and optimize applications (toolflows) and abstraction layers. Given the stringent resource constraints in quantum computing, information passed between layers of software and implementations will differ markedly from in classical computing. Quantum toolflows must expose more physical details between layers, so the challenge is to find abstractions that expose key details while hiding enough complexity.

  9. Resource Efficient Hardware Architecture for Fast Computation of Running Max/Min Filters

    PubMed Central

    Torres-Huitzil, Cesar

    2013-01-01

    Running max/min filters on rectangular kernels are widely used in many digital signal and image processing applications. Filtering with a k × k kernel requires of k 2 − 1 comparisons per sample for a direct implementation; thus, performance scales expensively with the kernel size k. Faster computations can be achieved by kernel decomposition and using constant time one-dimensional algorithms on custom hardware. This paper presents a hardware architecture for real-time computation of running max/min filters based on the van Herk/Gil-Werman (HGW) algorithm. The proposed architecture design uses less computation and memory resources than previously reported architectures when targeted to Field Programmable Gate Array (FPGA) devices. Implementation results show that the architecture is able to compute max/min filters, on 1024 × 1024 images with up to 255 × 255 kernels, in around 8.4 milliseconds, 120 frames per second, at a clock frequency of 250 MHz. The implementation is highly scalable for the kernel size with good performance/area tradeoff suitable for embedded applications. The applicability of the architecture is shown for local adaptive image thresholding. PMID:24288456

  10. A System Engineering Study and Concept Development for a Humanitarian Aid and Disaster Relief Operations Management Platform

    DTIC Science & Technology

    2016-09-01

    and network. The computing and network hardware are identified and include routers, servers, firewalls, laptops , backup hard drives, smart phones...deployable hardware units will be necessary. This includes the use of ruggedized laptops and desktop computers , a projector system, communications system...ENGINEERING STUDY AND CONCEPT DEVELOPMENT FOR A HUMANITARIAN AID AND DISASTER RELIEF OPERATIONS MANAGEMENT PLATFORM by Julie A. Reed September

  11. International Space Station USOS Waste and Hygiene Compartment Development

    NASA Technical Reports Server (NTRS)

    Link, Dwight E., Jr.; Broyan, James Lee, Jr.; Gelmis, Karen; Philistine, Cynthia; Balistreri, Steven

    2007-01-01

    The International Space Station (ISS) currently provides human waste collection and hygiene facilities in the Russian Segment Service Module (SM) which supports a three person crew. Additional hardware is planned for the United States Operational Segment (USOS) to support expansion of the crew to six person capability. The additional hardware will be integrated in an ISS standard equipment rack structure that was planned to be installed in the Node 3 element; however, the ISS Program Office recently directed implementation of the rack, or Waste and Hygiene Compartment (WHC), into the U.S. Laboratory element to provide early operational capability. In this configuration, preserved urine from the WHC waste collection system can be processed by the Urine Processor Assembly (UPA) in either the U.S. Lab or Node 3 to recover water for crew consumption or oxygen production. The human waste collection hardware is derived from the Service Module system and is provided by RSC-Energia. This paper describes the concepts, design, and integration of the WHC waste collection hardware into the USOS including integration with U.S. Lab and Node 3 systems.

  12. Scout: high-performance heterogeneous computing made simple

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jablin, James; Mc Cormick, Patrick; Herlihy, Maurice

    2011-01-26

    Researchers must often write their own simulation and analysis software. During this process they simultaneously confront both computational and scientific problems. Current strategies for aiding the generation of performance-oriented programs do not abstract the software development from the science. Furthermore, the problem is becoming increasingly complex and pressing with the continued development of many-core and heterogeneous (CPU-GPU) architectures. To acbieve high performance, scientists must expertly navigate both software and hardware. Co-design between computer scientists and research scientists can alleviate but not solve this problem. The science community requires better tools for developing, optimizing, and future-proofing codes, allowing scientists to focusmore » on their research while still achieving high computational performance. Scout is a parallel programming language and extensible compiler framework targeting heterogeneous architectures. It provides the abstraction required to buffer scientists from the constantly-shifting details of hardware while still realizing higb-performance by encapsulating software and hardware optimization within a compiler framework.« less

  13. Integrating Reconfigurable Hardware-Based Grid for High Performance Computing

    PubMed Central

    Dondo Gazzano, Julio; Sanchez Molina, Francisco; Rincon, Fernando; López, Juan Carlos

    2015-01-01

    FPGAs have shown several characteristics that make them very attractive for high performance computing (HPC). The impressive speed-up factors that they are able to achieve, the reduced power consumption, and the easiness and flexibility of the design process with fast iterations between consecutive versions are examples of benefits obtained with their use. However, there are still some difficulties when using reconfigurable platforms as accelerator that need to be addressed: the need of an in-depth application study to identify potential acceleration, the lack of tools for the deployment of computational problems in distributed hardware platforms, and the low portability of components, among others. This work proposes a complete grid infrastructure for distributed high performance computing based on dynamically reconfigurable FPGAs. Besides, a set of services designed to facilitate the application deployment is described. An example application and a comparison with other hardware and software implementations are shown. Experimental results show that the proposed architecture offers encouraging advantages for deployment of high performance distributed applications simplifying development process. PMID:25874241

  14. Neuromorphic Computing for Very Large Test and Evaluation Data Analysis

    DTIC Science & Technology

    2014-05-01

    analysis and utilization of newly available hardware- based artificial neural network chips. These two aspects of the program are complementary. The...neuromorphic architectures research focused on long term disruptive technologies with high risk but revolutionary potential. The hardware- based neural...today. Overall, hardware- based neural processing research allows us to study the fundamental system and architectural issues relevant for employing

  15. Hardware survey for the avionics test bed

    NASA Technical Reports Server (NTRS)

    Cobb, J. M.

    1981-01-01

    A survey of maor hardware items that could possibly be used in the development of an avionics test bed for space shuttle attached or autonomous large space structures was conducted in NASA Johnson Space Center building 16. The results of the survey are organized to show the hardware by laboratory usage. Computer systems in each laboratory are described in some detail.

  16. Operational Suitability Guide. Volume 2. Templates

    DTIC Science & Technology

    1990-05-01

    Intended mission, and the required technical and operational characteristics. The mission must be adequately defined and key hardware and software ...operational availability. With the use of fault-tolerant computer hardware and software , the system R&M will significantly improve end-to-end...should Include both hardware and software elements, as appropriate. Unique characteristics or unique support concepts should be Identified if they result

  17. Cloud Computing for radiologists.

    PubMed

    Kharat, Amit T; Safvi, Amjad; Thind, Ss; Singh, Amarjit

    2012-07-01

    Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future.

  18. Cloud Computing for radiologists

    PubMed Central

    Kharat, Amit T; Safvi, Amjad; Thind, SS; Singh, Amarjit

    2012-01-01

    Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future. PMID:23599560

  19. Development of small scale cluster computer for numerical analysis

    NASA Astrophysics Data System (ADS)

    Zulkifli, N. H. N.; Sapit, A.; Mohammed, A. N.

    2017-09-01

    In this study, two units of personal computer were successfully networked together to form a small scale cluster. Each of the processor involved are multicore processor which has four cores in it, thus made this cluster to have eight processors. Here, the cluster incorporate Ubuntu 14.04 LINUX environment with MPI implementation (MPICH2). Two main tests were conducted in order to test the cluster, which is communication test and performance test. The communication test was done to make sure that the computers are able to pass the required information without any problem and were done by using simple MPI Hello Program where the program written in C language. Additional, performance test was also done to prove that this cluster calculation performance is much better than single CPU computer. In this performance test, four tests were done by running the same code by using single node, 2 processors, 4 processors, and 8 processors. The result shows that with additional processors, the time required to solve the problem decrease. Time required for the calculation shorten to half when we double the processors. To conclude, we successfully develop a small scale cluster computer using common hardware which capable of higher computing power when compare to single CPU processor, and this can be beneficial for research that require high computing power especially numerical analysis such as finite element analysis, computational fluid dynamics, and computational physics analysis.

  20. Real-Time Hardware-in-the-Loop Simulation of Ares I Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Tobbe, Patrick; Matras, Alex; Walker, David; Wilson, Heath; Fulton, Chris; Alday, Nathan; Betts, Kevin; Hughes, Ryan; Turbe, Michael

    2009-01-01

    The Ares Real-Time Environment for Modeling, Integration, and Simulation (ARTEMIS) has been developed for use by the Ares I launch vehicle System Integration Laboratory at the Marshall Space Flight Center. The primary purpose of the Ares System Integration Laboratory is to test the vehicle avionics hardware and software in a hardware - in-the-loop environment to certify that the integrated system is prepared for flight. ARTEMIS has been designed to be the real-time simulation backbone to stimulate all required Ares components for verification testing. ARTE_VIIS provides high -fidelity dynamics, actuator, and sensor models to simulate an accurate flight trajectory in order to ensure realistic test conditions. ARTEMIS has been designed to take advantage of the advances in underlying computational power now available to support hardware-in-the-loop testing to achieve real-time simulation with unprecedented model fidelity. A modular realtime design relying on a fully distributed computing architecture has been implemented.

  1. A distributed, graphical user interface based, computer control system for atomic physics experiments

    NASA Astrophysics Data System (ADS)

    Keshet, Aviv; Ketterle, Wolfgang

    2013-01-01

    Atomic physics experiments often require a complex sequence of precisely timed computer controlled events. This paper describes a distributed graphical user interface-based control system designed with such experiments in mind, which makes use of off-the-shelf output hardware from National Instruments. The software makes use of a client-server separation between a user interface for sequence design and a set of output hardware servers. Output hardware servers are designed to use standard National Instruments output cards, but the client-server nature should allow this to be extended to other output hardware. Output sequences running on multiple servers and output cards can be synchronized using a shared clock. By using a field programmable gate array-generated variable frequency clock, redundant buffers can be dramatically shortened, and a time resolution of 100 ns achieved over effectively arbitrary sequence lengths.

  2. A distributed, graphical user interface based, computer control system for atomic physics experiments.

    PubMed

    Keshet, Aviv; Ketterle, Wolfgang

    2013-01-01

    Atomic physics experiments often require a complex sequence of precisely timed computer controlled events. This paper describes a distributed graphical user interface-based control system designed with such experiments in mind, which makes use of off-the-shelf output hardware from National Instruments. The software makes use of a client-server separation between a user interface for sequence design and a set of output hardware servers. Output hardware servers are designed to use standard National Instruments output cards, but the client-server nature should allow this to be extended to other output hardware. Output sequences running on multiple servers and output cards can be synchronized using a shared clock. By using a field programmable gate array-generated variable frequency clock, redundant buffers can be dramatically shortened, and a time resolution of 100 ns achieved over effectively arbitrary sequence lengths.

  3. Computer Technology: State of the Art.

    ERIC Educational Resources Information Center

    Withington, Frederic G.

    1981-01-01

    Describes the nature of modern general-purpose computer systems, including hardware, semiconductor electronics, microprocessors, computer architecture, input output technology, and system control programs. Seven suggested readings are cited. (FM)

  4. Computer Literacy for Teachers.

    ERIC Educational Resources Information Center

    Sarapin, Marvin I.; Post, Paul E.

    Basic concepts of computer literacy are discussed as they relate to industrial arts/technology education. Computer hardware development is briefly examined, and major software categories are defined, including database management, computer graphics, spreadsheet programs, telecommunications and networking, word processing, and computer assisted and…

  5. Biomorphic Multi-Agent Architecture for Persistent Computing

    NASA Technical Reports Server (NTRS)

    Lodding, Kenneth N.; Brewster, Paul

    2009-01-01

    A multi-agent software/hardware architecture, inspired by the multicellular nature of living organisms, has been proposed as the basis of design of a robust, reliable, persistent computing system. Just as a multicellular organism can adapt to changing environmental conditions and can survive despite the failure of individual cells, a multi-agent computing system, as envisioned, could adapt to changing hardware, software, and environmental conditions. In particular, the computing system could continue to function (perhaps at a reduced but still reasonable level of performance) if one or more component( s) of the system were to fail. One of the defining characteristics of a multicellular organism is unity of purpose. In biology, the purpose is survival of the organism. The purpose of the proposed multi-agent architecture is to provide a persistent computing environment in harsh conditions in which repair is difficult or impossible. A multi-agent, organism-like computing system would be a single entity built from agents or cells. Each agent or cell would be a discrete hardware processing unit that would include a data processor with local memory, an internal clock, and a suite of communication equipment capable of both local line-of-sight communications and global broadcast communications. Some cells, denoted specialist cells, could contain such additional hardware as sensors and emitters. Each cell would be independent in the sense that there would be no global clock, no global (shared) memory, no pre-assigned cell identifiers, no pre-defined network topology, and no centralized brain or control structure. Like each cell in a living organism, each agent or cell of the computing system would contain a full description of the system encoded as genes, but in this case, the genes would be components of a software genome.

  6. More About Software for No-Loss Computing

    NASA Technical Reports Server (NTRS)

    Edmonds, Iarina

    2007-01-01

    A document presents some additional information on the subject matter of "Integrated Hardware and Software for No- Loss Computing" (NPO-42554), which appears elsewhere in this issue of NASA Tech Briefs. To recapitulate: The hardware and software designs of a developmental parallel computing system are integrated to effectuate a concept of no-loss computing (NLC). The system is designed to reconfigure an application program such that it can be monitored in real time and further reconfigured to continue a computation in the event of failure of one of the computers. The design provides for (1) a distributed class of NLC computation agents, denoted introspection agents, that effects hierarchical detection of anomalies; (2) enhancement of the compiler of the parallel computing system to cause generation of state vectors that can be used to continue a computation in the event of a failure; and (3) activation of a recovery component when an anomaly is detected.

  7. Implementation of Multispectral Image Classification on a Remote Adaptive Computer

    NASA Technical Reports Server (NTRS)

    Figueiredo, Marco A.; Gloster, Clay S.; Stephens, Mark; Graves, Corey A.; Nakkar, Mouna

    1999-01-01

    As the demand for higher performance computers for the processing of remote sensing science algorithms increases, the need to investigate new computing paradigms its justified. Field Programmable Gate Arrays enable the implementation of algorithms at the hardware gate level, leading to orders of m a,gnitude performance increase over microprocessor based systems. The automatic classification of spaceborne multispectral images is an example of a computation intensive application, that, can benefit from implementation on an FPGA - based custom computing machine (adaptive or reconfigurable computer). A probabilistic neural network is used here to classify pixels of of a multispectral LANDSAT-2 image. The implementation described utilizes Java client/server application programs to access the adaptive computer from a remote site. Results verify that a remote hardware version of the algorithm (implemented on an adaptive computer) is significantly faster than a local software version of the same algorithm implemented on a typical general - purpose computer).

  8. FPGA-Based Stochastic Echo State Networks for Time-Series Forecasting.

    PubMed

    Alomar, Miquel L; Canals, Vincent; Perez-Mora, Nicolas; Martínez-Moll, Víctor; Rosselló, Josep L

    2016-01-01

    Hardware implementation of artificial neural networks (ANNs) allows exploiting the inherent parallelism of these systems. Nevertheless, they require a large amount of resources in terms of area and power dissipation. Recently, Reservoir Computing (RC) has arisen as a strategic technique to design recurrent neural networks (RNNs) with simple learning capabilities. In this work, we show a new approach to implement RC systems with digital gates. The proposed method is based on the use of probabilistic computing concepts to reduce the hardware required to implement different arithmetic operations. The result is the development of a highly functional system with low hardware resources. The presented methodology is applied to chaotic time-series forecasting.

  9. FPGA-Based Stochastic Echo State Networks for Time-Series Forecasting

    PubMed Central

    Alomar, Miquel L.; Canals, Vincent; Perez-Mora, Nicolas; Martínez-Moll, Víctor; Rosselló, Josep L.

    2016-01-01

    Hardware implementation of artificial neural networks (ANNs) allows exploiting the inherent parallelism of these systems. Nevertheless, they require a large amount of resources in terms of area and power dissipation. Recently, Reservoir Computing (RC) has arisen as a strategic technique to design recurrent neural networks (RNNs) with simple learning capabilities. In this work, we show a new approach to implement RC systems with digital gates. The proposed method is based on the use of probabilistic computing concepts to reduce the hardware required to implement different arithmetic operations. The result is the development of a highly functional system with low hardware resources. The presented methodology is applied to chaotic time-series forecasting. PMID:26880876

  10. Restricted Authentication and Encryption for Cyber-physical Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkpatrick, Michael S; Bertino, Elisa; Sheldon, Frederick T

    2009-01-01

    Cyber-physical systems (CPS) are characterized by the close linkage of computational resources and physical devices. These systems can be deployed in a number of critical infrastructure settings. As a result, the security requirements of CPS are different than traditional computing architectures. For example, critical functions must be identified and isolated from interference by other functions. Similarly, lightweight schemes may be required, as CPS can include devices with limited computing power. One approach that offers promise for CPS security is the use of lightweight, hardware-based authentication. Specifically, we consider the use of Physically Unclonable Functions (PUFs) to bind an access requestmore » to specific hardware with device-specific keys. PUFs are implemented in hardware, such as SRAM, and can be used to uniquely identify the device. This technology could be used in CPS to ensure location-based access control and encryption, both of which would be desirable for CPS implementations.« less

  11. ZEUS hardware control system

    NASA Astrophysics Data System (ADS)

    Loveless, R.; Erhard, P.; Ficenec, J.; Gather, K.; Heath, G.; Iacovacci, M.; Kehres, J.; Mobayyen, M.; Notz, D.; Orr, R.; Orr, R.; Sephton, A.; Stroili, R.; Tokushuku, K.; Vogel, W.; Whitmore, J.; Wiggers, L.

    1989-12-01

    The ZEUS collaboration is building a system to monitor, control and document the hardware of the ZEUS detector. This system is based on a network of VAX computers and microprocessors connected via ethernet. The database for the hardware values will be ADAMO tables; the ethernet connection will be DECNET, TCP/IP, or RPC. Most of the documentation will also be kept in ADAMO tables for easy access by users.

  12. Towards composition of verified hardware devices

    NASA Technical Reports Server (NTRS)

    Schubert, E. Thomas; Levitt, K.; Cohen, G. C.

    1991-01-01

    Computers are being used where no affordable level of testing is adequate. Safety and life critical systems must find a replacement for exhaustive testing to guarantee their correctness. Through a mathematical proof, hardware verification research has focused on device verification and has largely ignored system composition verification. To address these deficiencies, we examine how the current hardware verification methodology can be extended to verify complete systems.

  13. Development of IS2100: An Information Systems Laboratory.

    DTIC Science & Technology

    1985-03-01

    systems for digital logic; hardware architecture; machine, assembly, and high order language programming; and application packages such as database... applications and limitations. They should be able to define, demonstrate and/or discuss how computers are used, how they do their work, how to use them, and...limitations. Hands on operation of the hardware and software provides experience that aids in future selection of hardware systems and applications

  14. Computer Technology Directory.

    ERIC Educational Resources Information Center

    Exceptional Parent, 1990

    1990-01-01

    This directory lists approximately 300 commercial vendors that offer computer hardware, software, and communication aids for children with disabilities. The company listings indicate computer compatibility and specific disabilities served by their products. (JDD)

  15. Basic Microbiologic and Infection Control Information to Reduce the Potential Transmission of Pathogens to Patients via Computer Hardware

    PubMed Central

    Neely, Alice N.; Sittig, Dean F.

    2002-01-01

    Computer technology from the management of individual patient medical records to the tracking of epidemiologic trends has become an essential part of all aspects of modern medicine. Consequently, computers, including bedside components, point-of-care testing equipment, and handheld computer devices, are increasingly present in patients’ rooms. Recent articles have indicated that computer hardware, just as other medical equipment, may act as a reservoir for microorganisms and contribute to the transfer of pathogens to patients. This article presents basic microbiological concepts relative to infection, reviews the present literature concerning possible links between computer contamination and nosocomial colonizations and infections, discusses basic principles for the control of contamination, and provides guidelines for reducing the risk of transfer of microorganisms to susceptible patient populations. PMID:12223502

  16. QCE: A Simulator for Quantum Computer Hardware

    NASA Astrophysics Data System (ADS)

    Michielsen, Kristel; de Raedt, Hans

    2003-09-01

    The Quantum Computer Emulator (QCE) described in this paper consists of a simulator of a generic, general purpose quantum computer and a graphical user interface. The latter is used to control the simulator, to define the hardware of the quantum computer and to debug and execute quantum algorithms. QCE runs in a Windows 98/NT/2000/ME/XP environment. It can be used to validate designs of physically realizable quantum processors and as an interactive educational tool to learn about quantum computers and quantum algorithms. A detailed exposition is given of the implementation of the CNOT and the Toffoli gate, the quantum Fourier transform, Grover's database search algorithm, an order finding algorithm, Shor's algorithm, a three-input adder and a number partitioning algorithm. We also review the results of simulations of an NMR-like quantum computer.

  17. Integrated Hardware and Software for No-Loss Computing

    NASA Technical Reports Server (NTRS)

    James, Mark

    2007-01-01

    When an algorithm is distributed across multiple threads executing on many distinct processors, a loss of one of those threads or processors can potentially result in the total loss of all the incremental results up to that point. When implementation is massively hardware distributed, then the probability of a hardware failure during the course of a long execution is potentially high. Traditionally, this problem has been addressed by establishing checkpoints where the current state of some or part of the execution is saved. Then in the event of a failure, this state information can be used to recompute that point in the execution and resume the computation from that point. A serious problem arises when one distributes a problem across multiple threads and physical processors is that one increases the likelihood of the algorithm failing due to no fault of the scientist but as a result of hardware faults coupled with operating system problems. With good reason, scientists expect their computing tools to serve them and not the other way around. What is novel here is a unique combination of hardware and software that reformulates an application into monolithic structure that can be monitored in real-time and dynamically reconfigured in the event of a failure. This unique reformulation of hardware and software will provide advanced aeronautical technologies to meet the challenges of next-generation systems in aviation, for civilian and scientific purposes, in our atmosphere and in atmospheres of other worlds. In particular, with respect to NASA s manned flight to Mars, this technology addresses the critical requirements for improving safety and increasing reliability of manned spacecraft.

  18. Support for Diagnosis of Custom Computer Hardware

    NASA Technical Reports Server (NTRS)

    Molock, Dwaine S.

    2008-01-01

    The Coldfire SDN Diagnostics software is a flexible means of exercising, testing, and debugging custom computer hardware. The software is a set of routines that, collectively, serve as a common software interface through which one can gain access to various parts of the hardware under test and/or cause the hardware to perform various functions. The routines can be used to construct tests to exercise, and verify the operation of, various processors and hardware interfaces. More specifically, the software can be used to gain access to memory, to execute timer delays, to configure interrupts, and configure processor cache, floating-point, and direct-memory-access units. The software is designed to be used on diverse NASA projects, and can be customized for use with different processors and interfaces. The routines are supported, regardless of the architecture of a processor that one seeks to diagnose. The present version of the software is configured for Coldfire processors on the Subsystem Data Node processor boards of the Solar Dynamics Observatory. There is also support for the software with respect to Mongoose V, RAD750, and PPC405 processors or their equivalents.

  19. Using quantum chemistry muscle to flex massive systems: How to respond to something perturbing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertoni, Colleen

    Computational chemistry uses the theoretical advances of quantum mechanics and the algorithmic and hardware advances of computer science to give insight into chemical problems. It is currently possible to do highly accurate quantum chemistry calculations, but the most accurate methods are very computationally expensive. Thus it is only feasible to do highly accurate calculations on small molecules, since typically more computationally efficient methods are also less accurate. The overall goal of my dissertation work has been to try to decrease the computational expense of calculations without decreasing the accuracy. In particular, my dissertation work focuses on fragmentation methods, intermolecular interactionsmore » methods, analytic gradients, and taking advantage of new hardware.« less

  20. Software for Managing Inventory of Flight Hardware

    NASA Technical Reports Server (NTRS)

    Salisbury, John; Savage, Scott; Thomas, Shirman

    2003-01-01

    The Flight Hardware Support Request System (FHSRS) is a computer program that relieves engineers at Marshall Space Flight Center (MSFC) of most of the non-engineering administrative burden of managing an inventory of flight hardware. The FHSRS can also be adapted to perform similar functions for other organizations. The FHSRS affords a combination of capabilities, including those formerly provided by three separate programs in purchasing, inventorying, and inspecting hardware. The FHSRS provides a Web-based interface with a server computer that supports a relational database of inventory; electronic routing of requests and approvals; and electronic documentation from initial request through implementation of quality criteria, acquisition, receipt, inspection, storage, and final issue of flight materials and components. The database lists both hardware acquired for current projects and residual hardware from previous projects. The increased visibility of residual flight components provided by the FHSRS has dramatically improved the re-utilization of materials in lieu of new procurements, resulting in a cost savings of over $1.7 million. The FHSRS includes subprograms for manipulating the data in the database, informing of the status of a request or an item of hardware, and searching the database on any physical or other technical characteristic of a component or material. The software structure forces normalization of the data to facilitate inquiries and searches for which users have entered mixed or inconsistent values.

  1. A probability-based approach for assessment of roadway safety hardware.

    DOT National Transportation Integrated Search

    2017-03-14

    This report presents a general probability-based approach for assessment of roadway safety hardware (RSH). It was achieved using a reliability : analysis method and computational techniques. With the development of high-fidelity finite element (FE) m...

  2. Functional requirements document for the Earth Observing System Data and Information System (EOSDIS) Scientific Computing Facilities (SCF) of the NASA/MSFC Earth Science and Applications Division, 1992

    NASA Technical Reports Server (NTRS)

    Botts, Michael E.; Phillips, Ron J.; Parker, John V.; Wright, Patrick D.

    1992-01-01

    Five scientists at MSFC/ESAD have EOS SCF investigator status. Each SCF has unique tasks which require the establishment of a computing facility dedicated to accomplishing those tasks. A SCF Working Group was established at ESAD with the charter of defining the computing requirements of the individual SCFs and recommending options for meeting these requirements. The primary goal of the working group was to determine which computing needs can be satisfied using either shared resources or separate but compatible resources, and which needs require unique individual resources. The requirements investigated included CPU-intensive vector and scalar processing, visualization, data storage, connectivity, and I/O peripherals. A review of computer industry directions and a market survey of computing hardware provided information regarding important industry standards and candidate computing platforms. It was determined that the total SCF computing requirements might be most effectively met using a hierarchy consisting of shared and individual resources. This hierarchy is composed of five major system types: (1) a supercomputer class vector processor; (2) a high-end scalar multiprocessor workstation; (3) a file server; (4) a few medium- to high-end visualization workstations; and (5) several low- to medium-range personal graphics workstations. Specific recommendations for meeting the needs of each of these types are presented.

  3. Study of efficient video compression algorithms for space shuttle applications

    NASA Technical Reports Server (NTRS)

    Poo, Z.

    1975-01-01

    Results are presented of a study on video data compression techniques applicable to space flight communication. This study is directed towards monochrome (black and white) picture communication with special emphasis on feasibility of hardware implementation. The primary factors for such a communication system in space flight application are: picture quality, system reliability, power comsumption, and hardware weight. In terms of hardware implementation, these are directly related to hardware complexity, effectiveness of the hardware algorithm, immunity of the source code to channel noise, and data transmission rate (or transmission bandwidth). A system is recommended, and its hardware requirement summarized. Simulations of the study were performed on the improved LIM video controller which is computer-controlled by the META-4 CPU.

  4. Performance Comparison of Mainframe, Workstations, Clusters, and Desktop Computers

    NASA Technical Reports Server (NTRS)

    Farley, Douglas L.

    2005-01-01

    A performance evaluation of a variety of computers frequently found in a scientific or engineering research environment was conducted using a synthetic and application program benchmarks. From a performance perspective, emerging commodity processors have superior performance relative to legacy mainframe computers. In many cases, the PC clusters exhibited comparable performance with traditional mainframe hardware when 8-12 processors were used. The main advantage of the PC clusters was related to their cost. Regardless of whether the clusters were built from new computers or whether they were created from retired computers their performance to cost ratio was superior to the legacy mainframe computers. Finally, the typical annual maintenance cost of legacy mainframe computers is several times the cost of new equipment such as multiprocessor PC workstations. The savings from eliminating the annual maintenance fee on legacy hardware can result in a yearly increase in total computational capability for an organization.

  5. A New Look at NASA: Strategic Research In Information Technology

    NASA Technical Reports Server (NTRS)

    Alfano, David; Tu, Eugene (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on research undertaken by NASA to facilitate the development of information technologies. Specific ideas covered here include: 1) Bio/nano technologies: biomolecular and nanoscale systems and tools for assembly and computing; 2) Evolvable hardware: autonomous self-improving, self-repairing hardware and software for survivable space systems in extreme environments; 3) High Confidence Software Technologies: formal methods, high-assurance software design, and program synthesis; 4) Intelligent Controls and Diagnostics: Next generation machine learning, adaptive control, and health management technologies; 5) Revolutionary computing: New computational models to increase capability and robustness to enable future NASA space missions.

  6. Design and Implementation of a Brain Computer Interface System for Controlling a Robotic Claw

    NASA Astrophysics Data System (ADS)

    Angelakis, D.; Zoumis, S.; Asvestas, P.

    2017-11-01

    The aim of this paper is to present the design and implementation of a brain-computer interface (BCI) system that can control a robotic claw. The system is based on the Emotiv Epoc headset, which provides the capability of simultaneous recording of 14 EEG channels, as well as wireless connectivity by means of the Bluetooth protocol. The system is initially trained to decode what user thinks to properly formatted data. The headset communicates with a personal computer, which runs a dedicated software application, implemented under the Processing integrated development environment. The application acquires the data from the headset and invokes suitable commands to an Arduino Uno board. The board decodes the received commands and produces corresponding signals to a servo motor that controls the position of the robotic claw. The system was tested successfully on a healthy, male subject, aged 28 years. The results are promising, taking into account that no specialized hardware was used. However, tests on a larger number of users is necessary in order to draw solid conclusions regarding the performance of the proposed system.

  7. A review and a framework of handheld computer adoption in healthcare.

    PubMed

    Lu, Yen-Chiao; Xiao, Yan; Sears, Andrew; Jacko, Julie A

    2005-06-01

    Wide adoption of mobile computing technology can potentially improve information access, enhance workflow, and promote evidence-based practice to make informed and effective decisions at the point of care. Handheld computers or personal digital assistants (PDAs) offer portable and unobtrusive access to clinical data and relevant information at the point of care. This article reviews the literature on issues related to adoption of PDAs in health care and barriers to PDA adoption. Studies showed that PDAs were used widely in health care providers' practice, and the level of use is expected to rise rapidly. Most care providers found PDAs to be functional and useful in areas of documentation, medical reference, and access to patient data. Major barriers to adoption were identified as usability, security concerns, and lack of technical and organizational support. PDAs offer health care practitioners advantages to enhance their clinical practice. However, better designed PDA hardware and software applications, more institutional support, seamless integration of PDA technology with hospital information systems, and satisfactory security measures are necessary to increase acceptance and wide use of PDAs in healthcare.

  8. A multiarchitecture parallel-processing development environment

    NASA Technical Reports Server (NTRS)

    Townsend, Scott; Blech, Richard; Cole, Gary

    1993-01-01

    A description is given of the hardware and software of a multiprocessor test bed - the second generation Hypercluster system. The Hypercluster architecture consists of a standard hypercube distributed-memory topology, with multiprocessor shared-memory nodes. By using standard, off-the-shelf hardware, the system can be upgraded to use rapidly improving computer technology. The Hypercluster's multiarchitecture nature makes it suitable for researching parallel algorithms in computational field simulation applications (e.g., computational fluid dynamics). The dedicated test-bed environment of the Hypercluster and its custom-built software allows experiments with various parallel-processing concepts such as message passing algorithms, debugging tools, and computational 'steering'. Such research would be difficult, if not impossible, to achieve on shared, commercial systems.

  9. Computing Cluster for Large Scale Turbulence Simulations and Applications in Computational Aeroacoustics

    NASA Astrophysics Data System (ADS)

    Lele, Sanjiva K.

    2002-08-01

    Funds were received in April 2001 under the Department of Defense DURIP program for construction of a 48 processor high performance computing cluster. This report details the hardware which was purchased and how it has been used to enable and enhance research activities directly supported by, and of interest to, the Air Force Office of Scientific Research and the Department of Defense. The report is divided into two major sections. The first section after this summary describes the computer cluster, its setup, and some cluster performance benchmark results. The second section explains ongoing research efforts which have benefited from the cluster hardware, and presents highlights of those efforts since installation of the cluster.

  10. Fine-grained parallel RNAalifold algorithm for RNA secondary structure prediction on FPGA

    PubMed Central

    Xia, Fei; Dou, Yong; Zhou, Xingming; Yang, Xuejun; Xu, Jiaqing; Zhang, Yang

    2009-01-01

    Background In the field of RNA secondary structure prediction, the RNAalifold algorithm is one of the most popular methods using free energy minimization. However, general-purpose computers including parallel computers or multi-core computers exhibit parallel efficiency of no more than 50%. Field Programmable Gate-Array (FPGA) chips provide a new approach to accelerate RNAalifold by exploiting fine-grained custom design. Results RNAalifold shows complicated data dependences, in which the dependence distance is variable, and the dependence direction is also across two dimensions. We propose a systolic array structure including one master Processing Element (PE) and multiple slave PEs for fine grain hardware implementation on FPGA. We exploit data reuse schemes to reduce the need to load energy matrices from external memory. We also propose several methods to reduce energy table parameter size by 80%. Conclusion To our knowledge, our implementation with 16 PEs is the only FPGA accelerator implementing the complete RNAalifold algorithm. The experimental results show a factor of 12.2 speedup over the RNAalifold (ViennaPackage – 1.6.5) software for a group of aligned RNA sequences with 2981-residue running on a Personal Computer (PC) platform with Pentium 4 2.6 GHz CPU. PMID:19208138

  11. Toward a practical mobile robotic aid system for people with severe physical disabilities.

    PubMed

    Regalbuto, M A; Krouskop, T A; Cheatham, J B

    1992-01-01

    A simple, relatively inexpensive robotic system that can aid severely disabled persons by providing pick-and-place manipulative abilities to augment the functions of human or trained animal assistants is under development at Rice University and the Baylor College of Medicine. A stand-alone software application program runs on a Macintosh personal computer and provides the user with a selection of interactive windows for commanding the mobile robot via cursor action. A HERO 2000 robot has been modified such that its workspace extends from the floor to tabletop heights, and the robot is interfaced to a Macintosh SE via a wireless communications link for untethered operation. Integrated into the system are hardware and software which allow the user to control household appliances in addition to the robot. A separate Machine Control Interface device converts breath action and head or other three-dimensional motion inputs into cursor signals. Preliminary in-home and laboratory testing has demonstrated the utility of the system to perform useful navigational and manipulative tasks.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, Todd M.; Benjamin, Jacob S.; Wright, Virginia L.

    This paper will describe a practical methodology for understanding the cyber risk of a digital asset. This research attempts to gain a greater understanding of the cyber risk posed by a hardware-based computer asset by considering it as a sum of its hardware and software based sub-components.

  13. Systems Suitable for Information Professionals.

    ERIC Educational Resources Information Center

    Blair, John C., Jr.

    1983-01-01

    Describes computer operating systems applicable to microcomputers, noting hardware components, advantages and disadvantages of each system, local area networks, distributed processing, and a fully configured system. Lists of hardware components (disk drives, solid state disk emulators, input/output and memory components, and processors) and…

  14. Micros for the 1990's: An Update.

    ERIC Educational Resources Information Center

    Grosch, Audrey N.

    1991-01-01

    Discusses new hardware and software developments for microcomputers and considers strategies for future library microcomputing. Topics discussed include developments with Macintosh computers; the importance of local area networks (LANs); upgrading options for hardware; operating system upgrades; dynamic data exchange (DDE); microcomputer…

  15. Orbiter subsystem hardware/software interaction analysis. Volume 8: Forward reaction control system

    NASA Technical Reports Server (NTRS)

    Becker, D. D.

    1980-01-01

    The results of the orbiter hardware/software interaction analysis for the AFT reaction control system are presented. The interaction between hardware failure modes and software are examined in order to identify associated issues and risks. All orbiter subsystems and interfacing program elements which interact with the orbiter computer flight software are analyzed. The failure modes identified in the subsystem/element failure mode and effects analysis are discussed.

  16. SHI(EL)DS: A Novel Hardware-Based Security Backplane to Enhance Security with Minimal Impact to System Operation

    DTIC Science & Technology

    2008-03-01

    executables. The current roadblock to detecting Type I Malware consistantly is the practice of legitimate software , such as antivirus programs, using this... Software Security Systems . . 31 3.2.2 Advantages of Hardware . . . . . . . . . . . . . 32 3.2.3 Trustworthiness of Information . . . . . . . . . 33...Towards a Hardware Security Backplane . . . . . . . . . 42 IV. Review of State of the Art Computer Security Solutions . . . . . 46 4.1 Software

  17. Current trends in hardware and software for brain-computer interfaces (BCIs)

    NASA Astrophysics Data System (ADS)

    Brunner, P.; Bianchi, L.; Guger, C.; Cincotti, F.; Schalk, G.

    2011-04-01

    A brain-computer interface (BCI) provides a non-muscular communication channel to people with and without disabilities. BCI devices consist of hardware and software. BCI hardware records signals from the brain, either invasively or non-invasively, using a series of device components. BCI software then translates these signals into device output commands and provides feedback. One may categorize different types of BCI applications into the following four categories: basic research, clinical/translational research, consumer products, and emerging applications. These four categories use BCI hardware and software, but have different sets of requirements. For example, while basic research needs to explore a wide range of system configurations, and thus requires a wide range of hardware and software capabilities, applications in the other three categories may be designed for relatively narrow purposes and thus may only need a very limited subset of capabilities. This paper summarizes technical aspects for each of these four categories of BCI applications. The results indicate that BCI technology is in transition from isolated demonstrations to systematic research and commercial development. This process requires several multidisciplinary efforts, including the development of better integrated and more robust BCI hardware and software, the definition of standardized interfaces, and the development of certification, dissemination and reimbursement procedures.

  18. ELIPS: Toward a Sensor Fusion Processor on a Chip

    NASA Technical Reports Server (NTRS)

    Daud, Taher; Stoica, Adrian; Tyson, Thomas; Li, Wei-te; Fabunmi, James

    1998-01-01

    The paper presents the concept and initial tests from the hardware implementation of a low-power, high-speed reconfigurable sensor fusion processor. The Extended Logic Intelligent Processing System (ELIPS) processor is developed to seamlessly combine rule-based systems, fuzzy logic, and neural networks to achieve parallel fusion of sensor in compact low power VLSI. The first demonstration of the ELIPS concept targets interceptor functionality; other applications, mainly in robotics and autonomous systems are considered for the future. The main assumption behind ELIPS is that fuzzy, rule-based and neural forms of computation can serve as the main primitives of an "intelligent" processor. Thus, in the same way classic processors are designed to optimize the hardware implementation of a set of fundamental operations, ELIPS is developed as an efficient implementation of computational intelligence primitives, and relies on a set of fuzzy set, fuzzy inference and neural modules, built in programmable analog hardware. The hardware programmability allows the processor to reconfigure into different machines, taking the most efficient hardware implementation during each phase of information processing. Following software demonstrations on several interceptor data, three important ELIPS building blocks (a fuzzy set preprocessor, a rule-based fuzzy system and a neural network) have been fabricated in analog VLSI hardware and demonstrated microsecond-processing times.

  19. Potential of a suite of robot/computer-assisted motivating systems for personalized, home-based, stroke rehabilitation.

    PubMed

    Johnson, Michelle J; Feng, Xin; Johnson, Laura M; Winters, Jack M

    2007-03-01

    There is a need to improve semi-autonomous stroke therapy in home environments often characterized by low supervision of clinical experts and low extrinsic motivation. Our distributed device approach to this problem consists of an integrated suite of low-cost robotic/computer-assistive technologies driven by a novel universal access software framework called UniTherapy. Our design strategy for personalizing the therapy, providing extrinsic motivation and outcome assessment is presented and evaluated. Three studies were conducted to evaluate the potential of the suite. A conventional force-reflecting joystick, a modified joystick therapy platform (TheraJoy), and a steering wheel platform (TheraDrive) were tested separately with the UniTherapy software. Stroke subjects with hemiparesis and able-bodied subjects completed tracking activities with the devices in different positions. We quantify motor performance across subject groups and across device platforms and muscle activation across devices at two positions in the arm workspace. Trends in the assessment metrics were consistent across devices with able-bodied and high functioning strokes subjects being significantly more accurate and quicker in their motor performance than low functioning subjects. Muscle activation patterns were different for shoulder and elbow across different devices and locations. The Robot/CAMR suite has potential for stroke rehabilitation. By manipulating hardware and software variables, we can create personalized therapy environments that engage patients, address their therapy need, and track their progress. A larger longitudinal study is still needed to evaluate these systems in under-supervised environments such as the home.

  20. Key Issues in Instructional Computer Graphics.

    ERIC Educational Resources Information Center

    Wozny, Michael J.

    1981-01-01

    Addresses key issues facing universities which plan to establish instructional computer graphics facilities, including computer-aided design/computer aided manufacturing systems, role in curriculum, hardware, software, writing instructional software, faculty involvement, operations, and research. Thirty-seven references and two appendices are…

  1. 75 FR 25185 - Broadband Initiatives Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-07

    ..., excluding desktop or laptop computers, computer hardware and software (including anti-virus, anti-spyware, and other security software), audio or video equipment, computer network components... 10 desktop or laptop computers and individual workstations to be located within the rural library...

  2. Comparison of Analytical Predictions and Experimental Results for a Dual Brayton Power System (Discussion on Test Hardware and Computer Model for a Dual Brayton System)

    NASA Technical Reports Server (NTRS)

    Johnson, Paul K.

    2007-01-01

    NASA Glenn Research Center (GRC) contracted Barber-Nichols, Arvada, CO to construct a dual Brayton power conversion system for use as a hardware proof of concept and to validate results from a computational code known as the Closed Cycle System Simulation (CCSS). Initial checkout tests were performed at Barber- Nichols to ready the system for delivery to GRC. This presentation describes the system hardware components and lists the types of checkout tests performed along with a couple issues encountered while conducting the tests. A description of the CCSS model is also presented. The checkout tests did not focus on generating data, therefore, no test data or model analyses are presented.

  3. Managing coherence via put/get windows

    DOEpatents

    Blumrich, Matthias A [Ridgefield, CT; Chen, Dong [Croton on Hudson, NY; Coteus, Paul W [Yorktown Heights, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Hoenicke, Dirk [Ossining, NY; Ohmacht, Martin [Yorktown Heights, NY

    2011-01-11

    A method and apparatus for managing coherence between two processors of a two processor node of a multi-processor computer system. Generally the present invention relates to a software algorithm that simplifies and significantly speeds the management of cache coherence in a message passing parallel computer, and to hardware apparatus that assists this cache coherence algorithm. The software algorithm uses the opening and closing of put/get windows to coordinate the activated required to achieve cache coherence. The hardware apparatus may be an extension to the hardware address decode, that creates, in the physical memory address space of the node, an area of virtual memory that (a) does not actually exist, and (b) is therefore able to respond instantly to read and write requests from the processing elements.

  4. Managing coherence via put/get windows

    DOEpatents

    Blumrich, Matthias A [Ridgefield, CT; Chen, Dong [Croton on Hudson, NY; Coteus, Paul W [Yorktown Heights, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Hoenicke, Dirk [Ossining, NY; Ohmacht, Martin [Yorktown Heights, NY

    2012-02-21

    A method and apparatus for managing coherence between two processors of a two processor node of a multi-processor computer system. Generally the present invention relates to a software algorithm that simplifies and significantly speeds the management of cache coherence in a message passing parallel computer, and to hardware apparatus that assists this cache coherence algorithm. The software algorithm uses the opening and closing of put/get windows to coordinate the activated required to achieve cache coherence. The hardware apparatus may be an extension to the hardware address decode, that creates, in the physical memory address space of the node, an area of virtual memory that (a) does not actually exist, and (b) is therefore able to respond instantly to read and write requests from the processing elements.

  5. Silicon synaptic transistor for hardware-based spiking neural network and neuromorphic system

    NASA Astrophysics Data System (ADS)

    Kim, Hyungjin; Hwang, Sungmin; Park, Jungjin; Park, Byung-Gook

    2017-10-01

    Brain-inspired neuromorphic systems have attracted much attention as new computing paradigms for power-efficient computation. Here, we report a silicon synaptic transistor with two electrically independent gates to realize a hardware-based neural network system without any switching components. The spike-timing dependent plasticity characteristics of the synaptic devices are measured and analyzed. With the help of the device model based on the measured data, the pattern recognition capability of the hardware-based spiking neural network systems is demonstrated using the modified national institute of standards and technology handwritten dataset. By comparing systems with and without inhibitory synapse part, it is confirmed that the inhibitory synapse part is an essential element in obtaining effective and high pattern classification capability.

  6. Silicon synaptic transistor for hardware-based spiking neural network and neuromorphic system.

    PubMed

    Kim, Hyungjin; Hwang, Sungmin; Park, Jungjin; Park, Byung-Gook

    2017-10-06

    Brain-inspired neuromorphic systems have attracted much attention as new computing paradigms for power-efficient computation. Here, we report a silicon synaptic transistor with two electrically independent gates to realize a hardware-based neural network system without any switching components. The spike-timing dependent plasticity characteristics of the synaptic devices are measured and analyzed. With the help of the device model based on the measured data, the pattern recognition capability of the hardware-based spiking neural network systems is demonstrated using the modified national institute of standards and technology handwritten dataset. By comparing systems with and without inhibitory synapse part, it is confirmed that the inhibitory synapse part is an essential element in obtaining effective and high pattern classification capability.

  7. An Agent Inspired Reconfigurable Computing Implementation of a Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Weir, John M.; Wells, B. Earl

    2003-01-01

    Many software systems have been successfully implemented using an agent paradigm which employs a number of independent entities that communicate with one another to achieve a common goal. The distributed nature of such a paradigm makes it an excellent candidate for use in high speed reconfigurable computing hardware environments such as those present in modem FPGA's. In this paper, a distributed genetic algorithm that can be applied to the agent based reconfigurable hardware model is introduced. The effectiveness of this new algorithm is evaluated by comparing the quality of the solutions found by the new algorithm with those found by traditional genetic algorithms. The performance of a reconfigurable hardware implementation of the new algorithm on an FPGA is compared to traditional single processor implementations.

  8. Hardware platforms for MEMS gyroscope tuning based on evolutionary computation using open-loop and closed -loop frequency response

    NASA Technical Reports Server (NTRS)

    Keymeulen, Didier; Ferguson, Michael I.; Fink, Wolfgang; Oks, Boris; Peay, Chris; Terrile, Richard; Cheng, Yen; Kim, Dennis; MacDonald, Eric; Foor, David

    2005-01-01

    We propose a tuning method for MEMS gyroscopes based on evolutionary computation to efficiently increase the sensitivity of MEMS gyroscopes through tuning. The tuning method was tested for the second generation JPL/Boeing Post-resonator MEMS gyroscope using the measurement of the frequency response of the MEMS device in open-loop operation. We also report on the development of a hardware platform for integrated tuning and closed loop operation of MEMS gyroscopes. The control of this device is implemented through a digital design on a Field Programmable Gate Array (FPGA). The hardware platform easily transitions to an embedded solution that allows for the miniaturization of the system to a single chip.

  9. New Directions for Hardware-assisted Trusted Computing Policies (Position Paper)

    NASA Astrophysics Data System (ADS)

    Bratus, Sergey; Locasto, Michael E.; Ramaswamy, Ashwin; Smith, Sean W.

    The basic technological building blocks of the TCG architecture seem to be stabilizing. As a result, we believe that the focus of the Trusted Computing (TC) discipline must naturally shift from the design and implementation of the hardware root of trust (and the subsequent trust chain) to the higher-level application policies. Such policies must build on these primitives to express new sets of security goals. We highlight the relationship between enforcing these types of policies and debugging, since both activities establish the link between expected and actual application behavior. We argue that this new class of policies better fits developers' mental models of expected application behaviors, and we suggest a hardware design direction for enabling the efficient interpretation of such policies.

  10. Robotic laboratory for distance education

    NASA Astrophysics Data System (ADS)

    Luciano, Sarah C.; Kost, Alan R.

    2016-09-01

    This project involves the construction of a remote-controlled laboratory experiment that can be accessed by online students. The project addresses a need to provide a laboratory experience for students who are taking online courses to be able to provide an in-class experience. The chosen task for the remote user is an optical engineering experiment, specifically aligning a spatial filter. We instrument the physical laboratory set up in Tucson, AZ at the University of Arizona. The hardware in the spatial filter experiment is augmented by motors and cameras to allow the user to remotely control the hardware. The user interacts with a software on their computer, which communicates with a server via Internet connection to the host computer in the Optics Laboratory at the University of Arizona. Our final overall system is comprised of several subsystems. These are the optical experiment set-up, which is a spatial filter experiment; the mechanical subsystem, which interfaces the motors with the micrometers to move the optical hardware; the electrical subsystem, which allows for the electrical communications from the remote computer to the host computer to the hardware; and finally the software subsystem, which is the means by which messages are communicated throughout the system. The goal of the project is to convey as much of an in-lab experience as possible by allowing the user to directly manipulate hardware and receive visual feedback in real-time. Thus, the remote user is able to learn important concepts from this particular experiment and is able to connect theory to the physical world by actually seeing the outcome of a procedure. The latter is a learning experience that is often lost with distance learning and is one that this project hopes to provide.

  11. Collaborative Approach in the Development of High‐Performance Brain–Computer Interfaces for a Neuroprosthetic Arm: Translation from Animal Models to Human Control

    PubMed Central

    Collinger, Jennifer L.; Kryger, Michael A.; Barbara, Richard; Betler, Timothy; Bowsher, Kristen; Brown, Elke H. P.; Clanton, Samuel T.; Degenhart, Alan D.; Foldes, Stephen T.; Gaunt, Robert A.; Gyulai, Ferenc E.; Harchick, Elizabeth A.; Harrington, Deborah; Helder, John B.; Hemmes, Timothy; Johannes, Matthew S.; Katyal, Kapil D.; Ling, Geoffrey S. F.; McMorland, Angus J. C.; Palko, Karina; Para, Matthew P.; Scheuermann, Janet; Schwartz, Andrew B.; Skidmore, Elizabeth R.; Solzbacher, Florian; Srikameswaran, Anita V.; Swanson, Dennis P.; Swetz, Scott; Tyler‐Kabara, Elizabeth C.; Velliste, Meel; Wang, Wei; Weber, Douglas J.; Wodlinger, Brian

    2013-01-01

    Abstract Our research group recently demonstrated that a person with tetraplegia could use a brain–computer interface (BCI) to control a sophisticated anthropomorphic robotic arm with skill and speed approaching that of an able‐bodied person. This multiyear study exemplifies important principles in translating research from foundational theory and animal experiments into a clinical study. We present a roadmap that may serve as an example for other areas of clinical device research as well as an update on study results. Prior to conducting a multiyear clinical trial, years of animal research preceded BCI testing in an epilepsy monitoring unit, and then in a short‐term (28 days) clinical investigation. Scientists and engineers developed the necessary robotic and surgical hardware, software environment, data analysis techniques, and training paradigms. Coordination among researchers, funding institutes, and regulatory bodies ensured that the study would provide valuable scientific information in a safe environment for the study participant. Finally, clinicians from neurosurgery, anesthesiology, physiatry, psychology, and occupational therapy all worked in a multidisciplinary team along with the other researchers to conduct a multiyear BCI clinical study. This teamwork and coordination can be used as a model for others attempting to translate basic science into real‐world clinical situations. PMID:24528900

  12. Personal Computer Based Controller For Switched Reluctance Motor Drives

    NASA Astrophysics Data System (ADS)

    Mang, X.; Krishnan, R.; Adkar, S.; Chandramouli, G.

    1987-10-01

    Th9, switched reluctance motor (SRM) has recently gained considerable attention in the variable speed drive market. Two important factors that have contributed to this are, the simplicity of construction and the possibility of developing low cost con-trollers with minimum number of switching devices in the drive circuits. This is mainly due to the state-of-art of the present digital circuits technology and the low cost of switching devices. The control of this motor drive is under research. Optimized performance of the SRM motor drive is very dependent on the integration of the controller, converter and the motor. This research on system integration involves considerable changes in the control algorithms and their implementation. A Personal computer (PC) based controller is very appropriate for this purpose. Accordingly, the present paper is concerned with the design of a PC based controller for a SRM. The PC allows for real-time microprocessor control with the possibility of on-line system parameter modifications. Software reconfiguration of this controller is easier than a hardware based controller. User friendliness is a natural consequence of such a system. Considering the low cost of PCs, this controller will offer an excellent cost-effective means of studying the control strategies for the SRM drive intop greater detail than in the past.

  13. Quantum Heterogeneous Computing for Satellite Positioning Optimization

    NASA Astrophysics Data System (ADS)

    Bass, G.; Kumar, V.; Dulny, J., III

    2016-12-01

    Hard optimization problems occur in many fields of academic study and practical situations. We present results in which quantum heterogeneous computing is used to solve a real-world optimization problem: satellite positioning. Optimization problems like this can scale very rapidly with problem size, and become unsolvable with traditional brute-force methods. Typically, such problems have been approximately solved with heuristic approaches; however, these methods can take a long time to calculate and are not guaranteed to find optimal solutions. Quantum computing offers the possibility of producing significant speed-up and improved solution quality. There are now commercially available quantum annealing (QA) devices that are designed to solve difficult optimization problems. These devices have 1000+ quantum bits, but they have significant hardware size and connectivity limitations. We present a novel heterogeneous computing stack that combines QA and classical machine learning and allows the use of QA on problems larger than the quantum hardware could solve in isolation. We begin by analyzing the satellite positioning problem with a heuristic solver, the genetic algorithm. The classical computer's comparatively large available memory can explore the full problem space and converge to a solution relatively close to the true optimum. The QA device can then evolve directly to the optimal solution within this more limited space. Preliminary experiments, using the Quantum Monte Carlo (QMC) algorithm to simulate QA hardware, have produced promising results. Working with problem instances with known global minima, we find a solution within 8% in a matter of seconds, and within 5% in a few minutes. Future studies include replacing QMC with commercially available quantum hardware and exploring more problem sets and model parameters. Our results have important implications for how heterogeneous quantum computing can be used to solve difficult optimization problems in any field.

  14. Accelerated Adaptive MGS Phase Retrieval

    NASA Technical Reports Server (NTRS)

    Lam, Raymond K.; Ohara, Catherine M.; Green, Joseph J.; Bikkannavar, Siddarayappa A.; Basinger, Scott A.; Redding, David C.; Shi, Fang

    2011-01-01

    The Modified Gerchberg-Saxton (MGS) algorithm is an image-based wavefront-sensing method that can turn any science instrument focal plane into a wavefront sensor. MGS characterizes optical systems by estimating the wavefront errors in the exit pupil using only intensity images of a star or other point source of light. This innovative implementation of MGS significantly accelerates the MGS phase retrieval algorithm by using stream-processing hardware on conventional graphics cards. Stream processing is a relatively new, yet powerful, paradigm to allow parallel processing of certain applications that apply single instructions to multiple data (SIMD). These stream processors are designed specifically to support large-scale parallel computing on a single graphics chip. Computationally intensive algorithms, such as the Fast Fourier Transform (FFT), are particularly well suited for this computing environment. This high-speed version of MGS exploits commercially available hardware to accomplish the same objective in a fraction of the original time. The exploit involves performing matrix calculations in nVidia graphic cards. The graphical processor unit (GPU) is hardware that is specialized for computationally intensive, highly parallel computation. From the software perspective, a parallel programming model is used, called CUDA, to transparently scale multicore parallelism in hardware. This technology gives computationally intensive applications access to the processing power of the nVidia GPUs through a C/C++ programming interface. The AAMGS (Accelerated Adaptive MGS) software takes advantage of these advanced technologies, to accelerate the optical phase error characterization. With a single PC that contains four nVidia GTX-280 graphic cards, the new implementation can process four images simultaneously to produce a JWST (James Webb Space Telescope) wavefront measurement 60 times faster than the previous code.

  15. Advanced information processing system: Local system services

    NASA Technical Reports Server (NTRS)

    Burkhardt, Laura; Alger, Linda; Whittredge, Roy; Stasiowski, Peter

    1989-01-01

    The Advanced Information Processing System (AIPS) is a multi-computer architecture composed of hardware and software building blocks that can be configured to meet a broad range of application requirements. The hardware building blocks are fault-tolerant, general-purpose computers, fault-and damage-tolerant networks (both computer and input/output), and interfaces between the networks and the computers. The software building blocks are the major software functions: local system services, input/output, system services, inter-computer system services, and the system manager. The foundation of the local system services is an operating system with the functions required for a traditional real-time multi-tasking computer, such as task scheduling, inter-task communication, memory management, interrupt handling, and time maintenance. Resting on this foundation are the redundancy management functions necessary in a redundant computer and the status reporting functions required for an operator interface. The functional requirements, functional design and detailed specifications for all the local system services are documented.

  16. Locating hardware faults in a parallel computer

    DOEpatents

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-04-13

    Locating hardware faults in a parallel computer, including defining within a tree network of the parallel computer two or more sets of non-overlapping test levels of compute nodes of the network that together include all the data communications links of the network, each non-overlapping test level comprising two or more adjacent tiers of the tree; defining test cells within each non-overlapping test level, each test cell comprising a subtree of the tree including a subtree root compute node and all descendant compute nodes of the subtree root compute node within a non-overlapping test level; performing, separately on each set of non-overlapping test levels, an uplink test on all test cells in a set of non-overlapping test levels; and performing, separately from the uplink tests and separately on each set of non-overlapping test levels, a downlink test on all test cells in a set of non-overlapping test levels.

  17. Scientific Services on the Cloud

    NASA Astrophysics Data System (ADS)

    Chapman, David; Joshi, Karuna P.; Yesha, Yelena; Halem, Milt; Yesha, Yaacov; Nguyen, Phuong

    Scientific Computing was one of the first every applications for parallel and distributed computation. To this date, scientific applications remain some of the most compute intensive, and have inspired creation of petaflop compute infrastructure such as the Oak Ridge Jaguar and Los Alamos RoadRunner. Large dedicated hardware infrastructure has become both a blessing and a curse to the scientific community. Scientists are interested in cloud computing for much the same reason as businesses and other professionals. The hardware is provided, maintained, and administrated by a third party. Software abstraction and virtualization provide reliability, and fault tolerance. Graduated fees allow for multi-scale prototyping and execution. Cloud computing resources are only a few clicks away, and by far the easiest high performance distributed platform to gain access to. There may still be dedicated infrastructure for ultra-scale science, but the cloud can easily play a major part of the scientific computing initiative.

  18. Use of electronic microprocessor-based instrumentation by the U.S. geological survey for hydrologic data collection

    USGS Publications Warehouse

    Shope, William G.; ,

    1991-01-01

    The U.S. Geological Survey is acquiring a new generation of field computers and communications software to support hydrologic data-collection at field locations. The new computer hardware and software mark the beginning of the Survey's transition from the use of electromechanical devices and paper tapes to electronic microprocessor-based instrumentation. Software is being developed for these microprocessors to facilitate the collection, conversion, and entry of data into the Survey's National Water Information System. The new automated data-collection process features several microprocessor-controlled sensors connected to a serial digital multidrop line operated by an electronic data recorder. Data are acquired from the sensors in response to instructions programmed into the data recorder by the user through small portable lap-top or hand-held computers. The portable computers, called personal field computers, also are used to extract data from the electronic recorders for transport by courier to the office computers. The Survey's alternative to manual or courier retrieval is the use of microprocessor-based remote telemetry stations. Plans have been developed to enhance the Survey's use of the Geostationary Operational Environmental Satellite telemetry by replacing the present network of direct-readout ground stations with less expensive units. Plans also provide for computer software that will support other forms of telemetry such as telephone or land-based radio.

  19. The Personal Hearing System—A Software Hearing Aid for a Personal Communication System

    NASA Astrophysics Data System (ADS)

    Grimm, Giso; Guilmin, Gwénaël; Poppen, Frank; Vlaming, Marcel S. M. G.; Hohmann, Volker

    2009-12-01

    A concept and architecture of a personal communication system (PCS) is introduced that integrates audio communication and hearing support for the elderly and hearing-impaired through a personal hearing system (PHS). The concept envisions a central processor connected to audio headsets via a wireless body area network (WBAN). To demonstrate the concept, a prototype PCS is presented that is implemented on a netbook computer with a dedicated audio interface in combination with a mobile phone. The prototype can be used for field-testing possible applications and to reveal possibilities and limitations of the concept of integrating hearing support in consumer audio communication devices. It is shown that the prototype PCS can integrate hearing aid functionality, telephony, public announcement systems, and home entertainment. An exemplary binaural speech enhancement scheme that represents a large class of possible PHS processing schemes is shown to be compatible with the general concept. However, an analysis of hardware and software architectures shows that the implementation of a PCS on future advanced cell phone-like devices is challenging. Because of limitations in processing power, recoding of prototype implementations into fixed point arithmetic will be required and WBAN performance is still a limiting factor in terms of data rate and delay.

  20. A Study of Complex Deep Learning Networks on High Performance, Neuromorphic, and Quantum Computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potok, Thomas E; Schuman, Catherine D; Young, Steven R

    Current Deep Learning models use highly optimized convolutional neural networks (CNN) trained on large graphical processing units (GPU)-based computers with a fairly simple layered network topology, i.e., highly connected layers, without intra-layer connections. Complex topologies have been proposed, but are intractable to train on current systems. Building the topologies of the deep learning network requires hand tuning, and implementing the network in hardware is expensive in both cost and power. In this paper, we evaluate deep learning models using three different computing architectures to address these problems: quantum computing to train complex topologies, high performance computing (HPC) to automatically determinemore » network topology, and neuromorphic computing for a low-power hardware implementation. Due to input size limitations of current quantum computers we use the MNIST dataset for our evaluation. The results show the possibility of using the three architectures in tandem to explore complex deep learning networks that are untrainable using a von Neumann architecture. We show that a quantum computer can find high quality values of intra-layer connections and weights, while yielding a tractable time result as the complexity of the network increases; a high performance computer can find optimal layer-based topologies; and a neuromorphic computer can represent the complex topology and weights derived from the other architectures in low power memristive hardware. This represents a new capability that is not feasible with current von Neumann architecture. It potentially enables the ability to solve very complicated problems unsolvable with current computing technologies.« less

  1. Overreaction to External Attacks on Computer Systems Could Be More Harmful than the Viruses Themselves.

    ERIC Educational Resources Information Center

    King, Kenneth M.

    1988-01-01

    Discussion of the recent computer virus attacks on computers with vulnerable operating systems focuses on the values of educational computer networks. The need for computer security procedures is emphasized, and the ethical use of computer hardware and software is discussed. (LRW)

  2. Spaceborne computer executive routine functional design specification. Volume 2: Computer executive design for space station/base

    NASA Technical Reports Server (NTRS)

    Kennedy, J. R.; Fitzpatrick, W. S.

    1971-01-01

    The computer executive functional system design concepts derived from study of the Space Station/Base are presented. Information Management System hardware configuration as directly influencing the executive design is reviewed. The hardware configuration and generic executive design requirements are considered in detail in a previous report (System Configuration and Executive Requirements Specifications for Reusable Shuttle and Space Station/Base, 9/25/70). This report defines basic system primitives and delineates processes and process control. Supervisor states are considered for describing basic multiprogramming and multiprocessing systems. A high-level computer executive including control of scheduling, allocation of resources, system interactions, and real-time supervisory functions is defined. The description is oriented to provide a baseline for a functional simulation of the computer executive system.

  3. Merlin - Massively parallel heterogeneous computing

    NASA Technical Reports Server (NTRS)

    Wittie, Larry; Maples, Creve

    1989-01-01

    Hardware and software for Merlin, a new kind of massively parallel computing system, are described. Eight computers are linked as a 300-MIPS prototype to develop system software for a larger Merlin network with 16 to 64 nodes, totaling 600 to 3000 MIPS. These working prototypes help refine a mapped reflective memory technique that offers a new, very general way of linking many types of computer to form supercomputers. Processors share data selectively and rapidly on a word-by-word basis. Fast firmware virtual circuits are reconfigured to match topological needs of individual application programs. Merlin's low-latency memory-sharing interfaces solve many problems in the design of high-performance computing systems. The Merlin prototypes are intended to run parallel programs for scientific applications and to determine hardware and software needs for a future Teraflops Merlin network.

  4. Analytical Performance Modeling and Validation of Intel’s Xeon Phi Architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chunduri, Sudheer; Balaprakash, Prasanna; Morozov, Vitali

    Modeling the performance of scientific applications on emerging hardware plays a central role in achieving extreme-scale computing goals. Analytical models that capture the interaction between applications and hardware characteristics are attractive because even a reasonably accurate model can be useful for performance tuning before the hardware is made available. In this paper, we develop a hardware model for Intel’s second-generation Xeon Phi architecture code-named Knights Landing (KNL) for the SKOPE framework. We validate the KNL hardware model by projecting the performance of mini-benchmarks and application kernels. The results show that our KNL model can project the performance with prediction errorsmore » of 10% to 20%. The hardware model also provides informative recommendations for code transformations and tuning.« less

  5. Hardware device binding and mutual authentication

    DOEpatents

    Hamlet, Jason R; Pierson, Lyndon G

    2014-03-04

    Detection and deterrence of device tampering and subversion by substitution may be achieved by including a cryptographic unit within a computing device for binding multiple hardware devices and mutually authenticating the devices. The cryptographic unit includes a physically unclonable function ("PUF") circuit disposed in or on the hardware device, which generates a binding PUF value. The cryptographic unit uses the binding PUF value during an enrollment phase and subsequent authentication phases. During a subsequent authentication phase, the cryptographic unit uses the binding PUF values of the multiple hardware devices to generate a challenge to send to the other device, and to verify a challenge received from the other device to mutually authenticate the hardware devices.

  6. Real-time skin feature identification in a time-sequential video stream

    NASA Astrophysics Data System (ADS)

    Kramberger, Iztok

    2005-04-01

    Skin color can be an important feature when tracking skin-colored objects. Particularly this is the case for computer-vision-based human-computer interfaces (HCI). Humans have a highly developed feeling of space and, therefore, it is reasonable to support this within intelligent HCI, where the importance of augmented reality can be foreseen. Joining human-like interaction techniques within multimodal HCI could, or will, gain a feature for modern mobile telecommunication devices. On the other hand, real-time processing plays an important role in achieving more natural and physically intuitive ways of human-machine interaction. The main scope of this work is the development of a stereoscopic computer-vision hardware-accelerated framework for real-time skin feature identification in the sense of a single-pass image segmentation process. The hardware-accelerated preprocessing stage is presented with the purpose of color and spatial filtering, where the skin color model within the hue-saturation-value (HSV) color space is given with a polyhedron of threshold values representing the basis of the filter model. An adaptive filter management unit is suggested to achieve better segmentation results. This enables the adoption of filter parameters to the current scene conditions in an adaptive way. Implementation of the suggested hardware structure is given at the level of filed programmable system level integrated circuit (FPSLIC) devices using an embedded microcontroller as their main feature. A stereoscopic clue is achieved using a time-sequential video stream, but this shows no difference for real-time processing requirements in terms of hardware complexity. The experimental results for the hardware-accelerated preprocessing stage are given by efficiency estimation of the presented hardware structure using a simple motion-detection algorithm based on a binary function.

  7. Evaluation of Emerging Energy-Efficient Heterogeneous Computing Platforms for Biomolecular and Cellular Simulation Workloads.

    PubMed

    Stone, John E; Hallock, Michael J; Phillips, James C; Peterson, Joseph R; Luthey-Schulten, Zaida; Schulten, Klaus

    2016-05-01

    Many of the continuing scientific advances achieved through computational biology are predicated on the availability of ongoing increases in computational power required for detailed simulation and analysis of cellular processes on biologically-relevant timescales. A critical challenge facing the development of future exascale supercomputer systems is the development of new computing hardware and associated scientific applications that dramatically improve upon the energy efficiency of existing solutions, while providing increased simulation, analysis, and visualization performance. Mobile computing platforms have recently become powerful enough to support interactive molecular visualization tasks that were previously only possible on laptops and workstations, creating future opportunities for their convenient use for meetings, remote collaboration, and as head mounted displays for immersive stereoscopic viewing. We describe early experiences adapting several biomolecular simulation and analysis applications for emerging heterogeneous computing platforms that combine power-efficient system-on-chip multi-core CPUs with high-performance massively parallel GPUs. We present low-cost power monitoring instrumentation that provides sufficient temporal resolution to evaluate the power consumption of individual CPU algorithms and GPU kernels. We compare the performance and energy efficiency of scientific applications running on emerging platforms with results obtained on traditional platforms, identify hardware and algorithmic performance bottlenecks that affect the usability of these platforms, and describe avenues for improving both the hardware and applications in pursuit of the needs of molecular modeling tasks on mobile devices and future exascale computers.

  8. Establishing a Novel Modeling Tool: A Python-Based Interface for a Neuromorphic Hardware System

    PubMed Central

    Brüderle, Daniel; Müller, Eric; Davison, Andrew; Muller, Eilif; Schemmel, Johannes; Meier, Karlheinz

    2008-01-01

    Neuromorphic hardware systems provide new possibilities for the neuroscience modeling community. Due to the intrinsic parallelism of the micro-electronic emulation of neural computation, such models are highly scalable without a loss of speed. However, the communities of software simulator users and neuromorphic engineering in neuroscience are rather disjoint. We present a software concept that provides the possibility to establish such hardware devices as valuable modeling tools. It is based on the integration of the hardware interface into a simulator-independent language which allows for unified experiment descriptions that can be run on various simulation platforms without modification, implying experiment portability and a huge simplification of the quantitative comparison of hardware and simulator results. We introduce an accelerated neuromorphic hardware device and describe the implementation of the proposed concept for this system. An example setup and results acquired by utilizing both the hardware system and a software simulator are demonstrated. PMID:19562085

  9. Establishing a novel modeling tool: a python-based interface for a neuromorphic hardware system.

    PubMed

    Brüderle, Daniel; Müller, Eric; Davison, Andrew; Muller, Eilif; Schemmel, Johannes; Meier, Karlheinz

    2009-01-01

    Neuromorphic hardware systems provide new possibilities for the neuroscience modeling community. Due to the intrinsic parallelism of the micro-electronic emulation of neural computation, such models are highly scalable without a loss of speed. However, the communities of software simulator users and neuromorphic engineering in neuroscience are rather disjoint. We present a software concept that provides the possibility to establish such hardware devices as valuable modeling tools. It is based on the integration of the hardware interface into a simulator-independent language which allows for unified experiment descriptions that can be run on various simulation platforms without modification, implying experiment portability and a huge simplification of the quantitative comparison of hardware and simulator results. We introduce an accelerated neuromorphic hardware device and describe the implementation of the proposed concept for this system. An example setup and results acquired by utilizing both the hardware system and a software simulator are demonstrated.

  10. Generating clock signals for a cycle accurate, cycle reproducible FPGA based hardware accelerator

    DOEpatents

    Asaad, Sameth W.; Kapur, Mohit

    2016-01-05

    A method, system and computer program product are disclosed for generating clock signals for a cycle accurate FPGA based hardware accelerator used to simulate operations of a device-under-test (DUT). In one embodiment, the DUT includes multiple device clocks generating multiple device clock signals at multiple frequencies and at a defined frequency ratio; and the FPG hardware accelerator includes multiple accelerator clocks generating multiple accelerator clock signals to operate the FPGA hardware accelerator to simulate the operations of the DUT. In one embodiment, operations of the DUT are mapped to the FPGA hardware accelerator, and the accelerator clock signals are generated at multiple frequencies and at the defined frequency ratio of the frequencies of the multiple device clocks, to maintain cycle accuracy between the DUT and the FPGA hardware accelerator. In an embodiment, the FPGA hardware accelerator may be used to control the frequencies of the multiple device clocks.

  11. NASA Tech Briefs, February 2001. Volume 25, No. 2

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The topics include: 1) Application Briefs; 2) National Design Engineering Show Preview; 3) Marketing Inventions to Increase Income; 4) A Personal-Computer-Based Physiological Training System; 5) Reconfigurable Arrays of Transistors for Evolvable Hardware; 6) Active Tactile Display Device for Reading by a Blind Person; 7) Program Automates Management of IBM VM Computer Systems; 8) System for Monitoring the Environment of a Spacecraft Launch; 9) Measurement of Stresses and Strains in Muscles and Tendons; 10) Optical Measurement of Temperatures in Muscles and Tendons; 11) Small Low-Temperature Thermometer With Nanokelvin Resolution; 12) Heterodyne Interferometer With Phase-Modulated Carrier; 13) Rechargeable Batteries Based on Intercalation in Graphite; 14) Signal Processor for Doppler Measurements in Icing Research; 15) Model Optimizes Drying of Wet Sheets; 16) High-Performance POSS-Modified Polymeric Composites; 17) Model Simulates Semi-Solid Material Processing; 18) Modular Cryogenic Insulation; 19) Passive Venting for Alleviating Helicopter Tail-Boom Loads; 20) Computer Program Predicts Rocket Noise; 21) Process for Polishing Bare Aluminum to High Optical Quality; 22) External Adhesive Pressure-Wall Patch; 23) Java Implementation of Information-Sharing Protocol; 24) Electronic Bulletin Board Publishes Schedules in Real Time; 25) Apparatus Would Extract Water From the Martian Atmosphere; 26) Review of Research on Supercritical vs Subcritical Fluids; 27) Hybrid Regenerative Water-Recycling System; 28) Study of Fusion-Driven Plasma Thruster With Magnetic Nozzle; 29) Liquid/Vapor-Hydrazine Thruster Would Produce Small Impulses; and 30) Thruster Based on Sublimation of Solid Hydrazine

  12. Organization and use of a Software/Hardware Avionics Research Program (SHARP)

    NASA Technical Reports Server (NTRS)

    Karmarkar, J. S.; Kareemi, M. N.

    1975-01-01

    The organization and use is described of the software/hardware avionics research program (SHARP) developed to duplicate the automatic portion of the STOLAND simulator system, on a general-purpose computer system (i.e., IBM 360). The program's uses are: (1) to conduct comparative evaluation studies of current and proposed airborne and ground system concepts via single run or Monte Carlo simulation techniques, and (2) to provide a software tool for efficient algorithm evaluation and development for the STOLAND avionics computer.

  13. Handheld computing in pathology

    PubMed Central

    Park, Seung; Parwani, Anil; Satyanarayanan, Mahadev; Pantanowitz, Liron

    2012-01-01

    Handheld computing has had many applications in medicine, but relatively few in pathology. Most reported uses of handhelds in pathology have been limited to experimental endeavors in telemedicine or education. With recent advances in handheld hardware and software, along with concurrent advances in whole-slide imaging (WSI), new opportunities and challenges have presented themselves. This review addresses the current state of handheld hardware and software, provides a history of handheld devices in medicine focusing on pathology, and presents future use cases for such handhelds in pathology. PMID:22616027

  14. An approach to secure weather and climate models against hardware faults

    NASA Astrophysics Data System (ADS)

    Düben, Peter D.; Dawson, Andrew

    2017-03-01

    Enabling Earth System models to run efficiently on future supercomputers is a serious challenge for model development. Many publications study efficient parallelization to allow better scaling of performance on an increasing number of computing cores. However, one of the most alarming threats for weather and climate predictions on future high performance computing architectures is widely ignored: the presence of hardware faults that will frequently hit large applications as we approach exascale supercomputing. Changes in the structure of weather and climate models that would allow them to be resilient against hardware faults are hardly discussed in the model development community. In this paper, we present an approach to secure the dynamical core of weather and climate models against hardware faults using a backup system that stores coarse resolution copies of prognostic variables. Frequent checks of the model fields on the backup grid allow the detection of severe hardware faults, and prognostic variables that are changed by hardware faults on the model grid can be restored from the backup grid to continue model simulations with no significant delay. To justify the approach, we perform model simulations with a C-grid shallow water model in the presence of frequent hardware faults. As long as the backup system is used, simulations do not crash and a high level of model quality can be maintained. The overhead due to the backup system is reasonable and additional storage requirements are small. Runtime is increased by only 13 % for the shallow water model.

  15. An approach to secure weather and climate models against hardware faults

    NASA Astrophysics Data System (ADS)

    Düben, Peter; Dawson, Andrew

    2017-04-01

    Enabling Earth System models to run efficiently on future supercomputers is a serious challenge for model development. Many publications study efficient parallelisation to allow better scaling of performance on an increasing number of computing cores. However, one of the most alarming threats for weather and climate predictions on future high performance computing architectures is widely ignored: the presence of hardware faults that will frequently hit large applications as we approach exascale supercomputing. Changes in the structure of weather and climate models that would allow them to be resilient against hardware faults are hardly discussed in the model development community. We present an approach to secure the dynamical core of weather and climate models against hardware faults using a backup system that stores coarse resolution copies of prognostic variables. Frequent checks of the model fields on the backup grid allow the detection of severe hardware faults, and prognostic variables that are changed by hardware faults on the model grid can be restored from the backup grid to continue model simulations with no significant delay. To justify the approach, we perform simulations with a C-grid shallow water model in the presence of frequent hardware faults. As long as the backup system is used, simulations do not crash and a high level of model quality can be maintained. The overhead due to the backup system is reasonable and additional storage requirements are small. Runtime is increased by only 13% for the shallow water model.

  16. Human Systems Engineering for Launch processing at Kennedy Space Center (KSC)

    NASA Technical Reports Server (NTRS)

    Henderson, Gena; Stambolian, Damon B.; Stelges, Katrine

    2012-01-01

    Launch processing at Kennedy Space Center (KSC) is primarily accomplished by human users of expensive and specialized equipment. In order to reduce the likelihood of human error, to reduce personal injuries, damage to hardware, and loss of mission the design process for the hardware needs to include the human's relationship with the hardware. Just as there is electrical, mechanical, and fluids, the human aspect is just as important. The focus of this presentation is to illustrate how KSC accomplishes the inclusion of the human aspect in the design using human centered hardware modeling and engineering. The presentations also explain the current and future plans for research and development for improving our human factors analysis tools and processes.

  17. Lunar Applications in Reconfigurable Computing

    NASA Technical Reports Server (NTRS)

    Somervill, Kevin

    2008-01-01

    NASA s Constellation Program is developing a lunar surface outpost in which reconfigurable computing will play a significant role. Reconfigurable systems provide a number of benefits over conventional software-based implementations including performance and power efficiency, while the use of standardized reconfigurable hardware provides opportunities to reduce logistical overhead. The current vision for the lunar surface architecture includes habitation, mobility, and communications systems, each of which greatly benefit from reconfigurable hardware in applications including video processing, natural feature recognition, data formatting, IP offload processing, and embedded control systems. In deploying reprogrammable hardware, considerations similar to those of software systems must be managed. There needs to be a mechanism for discovery enabling applications to locate and utilize the available resources. Also, application interfaces are needed to provide for both configuring the resources as well as transferring data between the application and the reconfigurable hardware. Each of these topics are explored in the context of deploying reconfigurable resources as an integral aspect of the lunar exploration architecture.

  18. Real-time autocorrelator for fluorescence correlation spectroscopy based on graphical-processor-unit architecture: method, implementation, and comparative studies

    NASA Astrophysics Data System (ADS)

    Laracuente, Nicholas; Grossman, Carl

    2013-03-01

    We developed an algorithm and software to calculate autocorrelation functions from real-time photon-counting data using the fast, parallel capabilities of graphical processor units (GPUs). Recent developments in hardware and software have allowed for general purpose computing with inexpensive GPU hardware. These devices are more suited for emulating hardware autocorrelators than traditional CPU-based software applications by emphasizing parallel throughput over sequential speed. Incoming data are binned in a standard multi-tau scheme with configurable points-per-bin size and are mapped into a GPU memory pattern to reduce time-expensive memory access. Applications include dynamic light scattering (DLS) and fluorescence correlation spectroscopy (FCS) experiments. We ran the software on a 64-core graphics pci card in a 3.2 GHz Intel i5 CPU based computer running Linux. FCS measurements were made on Alexa-546 and Texas Red dyes in a standard buffer (PBS). Software correlations were compared to hardware correlator measurements on the same signals. Supported by HHMI and Swarthmore College

  19. A fast, programmable hardware architecture for spaceborne SAR processing

    NASA Technical Reports Server (NTRS)

    Bennett, J. R.; Cumming, I. G.; Lim, J.; Wedding, R. M.

    1983-01-01

    The launch of spaceborne SARs during the 1980's is discussed. The satellite SARs require high quality and high throughput ground processors. Compression ratios in range and azimuth of greater than 500 and 150 respectively lead to frequency domain processing and data computation rates in excess of 2000 million real operations per second for C-band SARs under consideration. Various hardware architectures are examined and two promising candidates and proceeds to recommend a fast, programmable hardware architecture for spaceborne SAR processing are selected. Modularity and programmability are introduced as desirable attributes for the purpose of HTSP hardware selection.

  20. Instrument Systems Analysis and Verification Facility (ISAVF) users guide

    NASA Technical Reports Server (NTRS)

    Davis, J. F.; Thomason, J. O.; Wolfgang, J. L.

    1985-01-01

    The ISAVF facility is primarily an interconnected system of computers, special purpose real time hardware, and associated generalized software systems, which will permit the Instrument System Analysts, Design Engineers and Instrument Scientists, to perform trade off studies, specification development, instrument modeling, and verification of the instrument, hardware performance. It is not the intent of the ISAVF to duplicate or replace existing special purpose facilities such as the Code 710 Optical Laboratories or the Code 750 Test and Evaluation facilities. The ISAVF will provide data acquisition and control services for these facilities, as needed, using remote computer stations attached to the main ISAVF computers via dedicated communication lines.

  1. Technology use among adults who are deaf and hard of hearing: a national survey.

    PubMed

    Maiorana-Basas, Michella; Pagliaro, Claudia M

    2014-07-01

    As society becomes increasingly more dependent on technology, information regarding the use, preference, and accessibility of commonly used devices and services among individuals who are deaf and hard of hearing (DHH) is crucial. Developing technologies that are functional and appropriately accessible allows persons who are DHH to fully participate in society, education, and business while also providing opportunities for personal and professional advancement. Although a few international studies have addressed the technology use of individuals who are DHH, none exist that focus on the needs, preferences, and accessibility of current Internet- and mobile-based technologies. Consequently, a national survey was conducted in the United States to determine the preference, frequency of use, and accessibility of various technologies (hardware, software, Web sites) by adults who are DHH and living in the United States. Findings indicate frequent use of smartphones and personal computers, specifically for text-based communication and web surfing, and little use of Teletypewriter/Telecommunications Device for the Deaf. Web site feature preferences include pictures and text, and captions over signed translations. Some results varied by demographics. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Lessons learned in creating spacecraft computer systems: Implications for using Ada (R) for the space station

    NASA Technical Reports Server (NTRS)

    Tomayko, James E.

    1986-01-01

    Twenty-five years of spacecraft onboard computer development have resulted in a better understanding of the requirements for effective, efficient, and fault tolerant flight computer systems. Lessons from eight flight programs (Gemini, Apollo, Skylab, Shuttle, Mariner, Voyager, and Galileo) and three reserach programs (digital fly-by-wire, STAR, and the Unified Data System) are useful in projecting the computer hardware configuration of the Space Station and the ways in which the Ada programming language will enhance the development of the necessary software. The evolution of hardware technology, fault protection methods, and software architectures used in space flight in order to provide insight into the pending development of such items for the Space Station are reviewed.

  3. Real time computer data system for the 40 x 80 ft wind tunnel facility at Ames Research Center

    NASA Technical Reports Server (NTRS)

    Cambra, J. M.; Tolari, G. P.

    1974-01-01

    The wind tunnel realtime computer system is a distributed data gathering system that features a master computer subsystem, a high speed data gathering subsystem, a quick look dynamic analysis and vibration control subsystem, an analog recording back-up subsystem, a pulse code modulation (PCM) on-board subsystem, a communications subsystem, and a transducer excitation and calibration subsystem. The subsystems are married to the master computer through an executive software system and standard hardware and FORTRAN software interfaces. The executive software system has four basic software routines. These are the playback, setup, record, and monitor routines. The standard hardware interfaces along with the software interfaces provide the system with the capability of adapting to new environments.

  4. Remote hardware-reconfigurable robotic camera

    NASA Astrophysics Data System (ADS)

    Arias-Estrada, Miguel; Torres-Huitzil, Cesar; Maya-Rueda, Selene E.

    2001-10-01

    In this work, a camera with integrated image processing capabilities is discussed. The camera is based on an imager coupled to an FPGA device (Field Programmable Gate Array) which contains an architecture for real-time computer vision low-level processing. The architecture can be reprogrammed remotely for application specific purposes. The system is intended for rapid modification and adaptation for inspection and recognition applications, with the flexibility of hardware and software reprogrammability. FPGA reconfiguration allows the same ease of upgrade in hardware as a software upgrade process. The camera is composed of a digital imager coupled to an FPGA device, two memory banks, and a microcontroller. The microcontroller is used for communication tasks and FPGA programming. The system implements a software architecture to handle multiple FPGA architectures in the device, and the possibility to download a software/hardware object from the host computer into its internal context memory. System advantages are: small size, low power consumption, and a library of hardware/software functionalities that can be exchanged during run time. The system has been validated with an edge detection and a motion processing architecture, which will be presented in the paper. Applications targeted are in robotics, mobile robotics, and vision based quality control.

  5. Automation of a Wave-Optics Simulation and Image Post-Processing Package on Riptide

    NASA Astrophysics Data System (ADS)

    Werth, M.; Lucas, J.; Thompson, D.; Abercrombie, M.; Holmes, R.; Roggemann, M.

    Detailed wave-optics simulations and image post-processing algorithms are computationally expensive and benefit from the massively parallel hardware available at supercomputing facilities. We created an automated system that interfaces with the Maui High Performance Computing Center (MHPCC) Distributed MATLAB® Portal interface to submit massively parallel waveoptics simulations to the IBM iDataPlex (Riptide) supercomputer. This system subsequently postprocesses the output images with an improved version of physically constrained iterative deconvolution (PCID) and analyzes the results using a series of modular algorithms written in Python. With this architecture, a single person can simulate thousands of unique scenarios and produce analyzed, archived, and briefing-compatible output products with very little effort. This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA). The views, opinions, and/or findings expressed are those of the author(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

  6. Marc Henry de Frahan | NREL

    Science.gov Websites

    Computing Project, Marc develops high-fidelity turbulence models to enhance simulation accuracy and efficient numerical algorithms for future high performance computing hardware architectures. Research Interests High performance computing High order numerical methods for computational fluid dynamics Fluid

  7. Security System Software

    NASA Technical Reports Server (NTRS)

    1993-01-01

    C Language Integration Production System (CLIPS), a NASA-developed expert systems program, has enabled a security systems manufacturer to design a new generation of hardware. C.CURESystem 1 Plus, manufactured by Software House, is a software based system that is used with a variety of access control hardware at installations around the world. Users can manage large amounts of information, solve unique security problems and control entry and time scheduling. CLIPS acts as an information management tool when accessed by C.CURESystem 1 Plus. It asks questions about the hardware and when given the answer, recommends possible quick solutions by non-expert persons.

  8. Automated Software Acceleration in Programmable Logic for an Efficient NFFT Algorithm Implementation: A Case Study.

    PubMed

    Rodríguez, Manuel; Magdaleno, Eduardo; Pérez, Fernando; García, Cristhian

    2017-03-28

    Non-equispaced Fast Fourier transform (NFFT) is a very important algorithm in several technological and scientific areas such as synthetic aperture radar, computational photography, medical imaging, telecommunications, seismic analysis and so on. However, its computation complexity is high. In this paper, we describe an efficient NFFT implementation with a hardware coprocessor using an All-Programmable System-on-Chip (APSoC). This is a hybrid device that employs an Advanced RISC Machine (ARM) as Processing System with Programmable Logic for high-performance digital signal processing through parallelism and pipeline techniques. The algorithm has been coded in C language with pragma directives to optimize the architecture of the system. We have used the very novel Software Develop System-on-Chip (SDSoC) evelopment tool that simplifies the interface and partitioning between hardware and software. This provides shorter development cycles and iterative improvements by exploring several architectures of the global system. The computational results shows that hardware acceleration significantly outperformed the software based implementation.

  9. Automated Software Acceleration in Programmable Logic for an Efficient NFFT Algorithm Implementation: A Case Study

    PubMed Central

    Rodríguez, Manuel; Magdaleno, Eduardo; Pérez, Fernando; García, Cristhian

    2017-01-01

    Non-equispaced Fast Fourier transform (NFFT) is a very important algorithm in several technological and scientific areas such as synthetic aperture radar, computational photography, medical imaging, telecommunications, seismic analysis and so on. However, its computation complexity is high. In this paper, we describe an efficient NFFT implementation with a hardware coprocessor using an All-Programmable System-on-Chip (APSoC). This is a hybrid device that employs an Advanced RISC Machine (ARM) as Processing System with Programmable Logic for high-performance digital signal processing through parallelism and pipeline techniques. The algorithm has been coded in C language with pragma directives to optimize the architecture of the system. We have used the very novel Software Develop System-on-Chip (SDSoC) evelopment tool that simplifies the interface and partitioning between hardware and software. This provides shorter development cycles and iterative improvements by exploring several architectures of the global system. The computational results shows that hardware acceleration significantly outperformed the software based implementation. PMID:28350358

  10. Exploiting current-generation graphics hardware for synthetic-scene generation

    NASA Astrophysics Data System (ADS)

    Tanner, Michael A.; Keen, Wayne A.

    2010-04-01

    Increasing seeker frame rate and pixel count, as well as the demand for higher levels of scene fidelity, have driven scene generation software for hardware-in-the-loop (HWIL) and software-in-the-loop (SWIL) testing to higher levels of parallelization. Because modern PC graphics cards provide multiple computational cores (240 shader cores for a current NVIDIA Corporation GeForce and Quadro cards), implementation of phenomenology codes on graphics processing units (GPUs) offers significant potential for simultaneous enhancement of simulation frame rate and fidelity. To take advantage of this potential requires algorithm implementation that is structured to minimize data transfers between the central processing unit (CPU) and the GPU. In this paper, preliminary methodologies developed at the Kinetic Hardware In-The-Loop Simulator (KHILS) will be presented. Included in this paper will be various language tradeoffs between conventional shader programming, Compute Unified Device Architecture (CUDA) and Open Computing Language (OpenCL), including performance trades and possible pathways for future tool development.

  11. Millisecond precision psychological research in a world of commodity computers: new hardware, new problems?

    PubMed

    Plant, Richard R; Turner, Garry

    2009-08-01

    Since the publication of Plant, Hammond, and Turner (2004), which highlighted a pressing need for researchers to pay more attention to sources of error in computer-based experiments, the landscape has undoubtedly changed, but not necessarily for the better. Readily available hardware has improved in terms of raw speed; multi core processors abound; graphics cards now have hundreds of megabytes of RAM; main memory is measured in gigabytes; drive space is measured in terabytes; ever larger thin film transistor displays capable of single-digit response times, together with newer Digital Light Processing multimedia projectors, enable much greater graphic complexity; and new 64-bit operating systems, such as Microsoft Vista, are now commonplace. However, have millisecond-accurate presentation and response timing improved, and will they ever be available in commodity computers and peripherals? In the present article, we used a Black Box ToolKit to measure the variability in timing characteristics of hardware used commonly in psychological research.

  12. Results of solar electric thrust vector control system design, development and tests

    NASA Technical Reports Server (NTRS)

    Fleischer, G. E.

    1973-01-01

    Efforts to develop and test a thrust vector control system TVCS for a solar-energy-powered ion engine array are described. The results of solar electric propulsion system technology (SEPST) III real-time tests of present versions of TVCS hardware in combination with computer-simulated attitude dynamics of a solar electric multi-mission spacecraft (SEMMS) Phase A-type spacecraft configuration are summarized. Work on an improved solar electric TVCS, based on the use of a state estimator, is described. SEPST III tests of TVCS hardware have generally proved successful and dynamic response of the system is close to predictions. It appears that, if TVCS electronic hardware can be effectively replaced by control computer software, a significant advantage in control capability and flexibility can be gained in future developmental testing, with practical implications for flight systems as well. Finally, it is concluded from computer simulations that TVCS stabilization using rate estimation promises a substantial performance improvement over the present design.

  13. Video Discs in Libraries.

    ERIC Educational Resources Information Center

    Barker, Philip

    1986-01-01

    Discussion of developments in information storage technology likely to have significant impact upon library utilization focuses on hardware (videodisc technology) and software developments (knowledge databases; computer networks; database management systems; interactive video, computer, and multimedia user interfaces). Three generic computer-based…

  14. A Home Computer Primer.

    ERIC Educational Resources Information Center

    Stone, Antonia

    1982-01-01

    Provides general information on currently available microcomputers, computer programs (software), hardware requirements, software sources, costs, computer games, and programing. Includes a list of popular microcomputers, providing price category, model, list price, software (cassette, tape, disk), monitor specifications, amount of random access…

  15. Airborne Electro-Optical Sensor Simulation System. Final Report.

    ERIC Educational Resources Information Center

    Hayworth, Don

    The total system capability, including all the special purpose and general purpose hardware comprising the Airborne Electro-Optical Sensor Simulation (AEOSS) System, is described. The functional relationship between hardware portions is described together with interface to the software portion of the computer image generation. Supporting rationale…

  16. Computerizing Your Program.

    ERIC Educational Resources Information Center

    Curtis, Rick

    This paper summarizes information about using computer hardware and software to aid in making purchase decisions that are based on user needs. The two major options in hardware are IBM-compatible machines and the Apple Macintosh line. The three basic software applications include word processing, database management, and spreadsheet applications.…

  17. Incorporating a Human-Computer Interaction Course into Software Development Curriculums

    ERIC Educational Resources Information Center

    Janicki, Thomas N.; Cummings, Jeffrey; Healy, R. Joseph

    2015-01-01

    Individuals have increasing options on retrieving information related to hardware and software. Specific hardware devices include desktops, tablets and smart devices. Also, the number of software applications has significantly increased the user's capability to access data. Software applications include the traditional web site, smart device…

  18. Software Design Improvements. Part 1; Software Benefits and Limitations

    NASA Technical Reports Server (NTRS)

    Lalli, Vincent R.; Packard, Michael H.; Ziemianski, Tom

    1997-01-01

    Computer hardware and associated software have been used for many years to process accounting information, to analyze test data and to perform engineering analysis. Now computers and software also control everything from automobiles to washing machines and the number and type of applications are growing at an exponential rate. The size of individual program has shown similar growth. Furthermore, software and hardware are used to monitor and/or control potentially dangerous products and safety-critical systems. These uses include everything from airplanes and braking systems to medical devices and nuclear plants. The question is: how can this hardware and software be made more reliable? Also, how can software quality be improved? What methodology needs to be provided on large and small software products to improve the design and how can software be verified?

  19. Addressing failures in exascale computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snir, Marc; Wisniewski, Robert W.; Abraham, Jacob A.

    2014-05-01

    We present here a report produced by a workshop on “Addressing Failures in Exascale Computing” held in Park City, Utah, August 4–11, 2012. The charter of this workshop was to establish a common taxonomy about resilience across all the levels in a computing system; discuss existing knowledge on resilience across the various hardware and software layers of an exascale system; and build on those results, examining potential solutions from both a hardware and software perspective and focusing on a combined approach. The workshop brought together participants with expertise in applications, system software, and hardware; they came from industry, government, andmore » academia; and their interests ranged from theory to implementation. The combination allowed broad and comprehensive discussions and led to this document, which summarizes and builds on those discussions.« less

  20. An iterative approach to region growing using associative memories

    NASA Technical Reports Server (NTRS)

    Snyder, W. E.; Cowart, A.

    1983-01-01

    Region growing, often given as a classical example of the recursive control structures used in image processing which are often awkward to implement in hardware where the intent is the segmentation of an image at raster scan rates, is addressed in light of the postulate that any computation which can be performed recursively can be performed easily and efficiently by iteration coupled with association. Attention is given to an algorithm and hardware structure able to perform region labeling iteratively at scan rates. Every pixel is individually labeled with an identifier which signifies the region to which it belongs. Difficulties otherwise requiring recursion are handled by maintaining an equivalence table in hardware transparent to the computer, which reads the labeled pixels. A simulation of the associative memory has demonstrated its effectiveness.

  1. Simplifying and speeding the management of intra-node cache coherence

    DOEpatents

    Blumrich, Matthias A [Ridgefield, CT; Chen, Dong [Croton on Hudson, NY; Coteus, Paul W [Yorktown Heights, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Phillip [Cortlandt Manor, NY; Hoenicke, Dirk [Ossining, NY; Ohmacht, Martin [Yorktown Heights, NY

    2012-04-17

    A method and apparatus for managing coherence between two processors of a two processor node of a multi-processor computer system. Generally the present invention relates to a software algorithm that simplifies and significantly speeds the management of cache coherence in a message passing parallel computer, and to hardware apparatus that assists this cache coherence algorithm. The software algorithm uses the opening and closing of put/get windows to coordinate the activated required to achieve cache coherence. The hardware apparatus may be an extension to the hardware address decode, that creates, in the physical memory address space of the node, an area of virtual memory that (a) does not actually exist, and (b) is therefore able to respond instantly to read and write requests from the processing elements.

  2. Managing coherence via put/get windows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blumrich, Matthias A; Chen, Dong; Coteus, Paul W

    A method and apparatus for managing coherence between two processors of a two processor node of a multi-processor computer system. Generally the present invention relates to a software algorithm that simplifies and significantly speeds the management of cache coherence in a message passing parallel computer, and to hardware apparatus that assists this cache coherence algorithm. The software algorithm uses the opening and closing of put/get windows to coordinate the activated required to achieve cache coherence. The hardware apparatus may be an extension to the hardware address decode, that creates, in the physical memory address space of the node, an areamore » of virtual memory that (a) does not actually exist, and (b) is therefore able to respond instantly to read and write requests from the processing elements.« less

  3. Malleable architecture generator for FPGA computing

    NASA Astrophysics Data System (ADS)

    Gokhale, Maya; Kaba, James; Marks, Aaron; Kim, Jang

    1996-10-01

    The malleable architecture generator (MARGE) is a tool set that translates high-level parallel C to configuration bit streams for field-programmable logic based computing systems. MARGE creates an application-specific instruction set and generates the custom hardware components required to perform exactly those computations specified by the C program. In contrast to traditional fixed-instruction processors, MARGE's dynamic instruction set creation provides for efficient use of hardware resources. MARGE processes intermediate code in which each operation is annotated by the bit lengths of the operands. Each basic block (sequence of straight line code) is mapped into a single custom instruction which contains all the operations and logic inherent in the block. A synthesis phase maps the operations comprising the instructions into register transfer level structural components and control logic which have been optimized to exploit functional parallelism and function unit reuse. As a final stage, commercial technology-specific tools are used to generate configuration bit streams for the desired target hardware. Technology- specific pre-placed, pre-routed macro blocks are utilized to implement as much of the hardware as possible. MARGE currently supports the Xilinx-based Splash-2 reconfigurable accelerator and National Semiconductor's CLAy-based parallel accelerator, MAPA. The MARGE approach has been demonstrated on systolic applications such as DNA sequence comparison.

  4. Cascaded VLSI neural network architecture for on-line learning

    NASA Technical Reports Server (NTRS)

    Thakoor, Anilkumar P. (Inventor); Duong, Tuan A. (Inventor); Daud, Taher (Inventor)

    1992-01-01

    High-speed, analog, fully-parallel, and asynchronous building blocks are cascaded for larger sizes and enhanced resolution. A hardware compatible algorithm permits hardware-in-the-loop learning despite limited weight resolution. A computation intensive feature classification application was demonstrated with this flexible hardware and new algorithm at high speed. This result indicates that these building block chips can be embedded as an application specific coprocessor for solving real world problems at extremely high data rates.

  5. Demonstration Advanced Avionics System (DAAS) functional description. [Cessna 402B aircraft

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A comprehensive set of general aviation avionics were defined for integration into an advanced hardware mechanization for demonstration in a Cessna 402B aircraft. Block diagrams are shown and system and computer architecture as well as significant hardware elements are described. The multifunction integrated data control center and electronic horizontal situation indicator are discussed. The functions that the DAAS will perform are examined. This function definition is the basis for the DAAS hardware and software design.

  6. birgHPC: creating instant computing clusters for bioinformatics and molecular dynamics.

    PubMed

    Chew, Teong Han; Joyce-Tan, Kwee Hong; Akma, Farizuwana; Shamsir, Mohd Shahir

    2011-05-01

    birgHPC, a bootable Linux Live CD has been developed to create high-performance clusters for bioinformatics and molecular dynamics studies using any Local Area Network (LAN)-networked computers. birgHPC features automated hardware and slots detection as well as provides a simple job submission interface. The latest versions of GROMACS, NAMD, mpiBLAST and ClustalW-MPI can be run in parallel by simply booting the birgHPC CD or flash drive from the head node, which immediately positions the rest of the PCs on the network as computing nodes. Thus, a temporary, affordable, scalable and high-performance computing environment can be built by non-computing-based researchers using low-cost commodity hardware. The birgHPC Live CD and relevant user guide are available for free at http://birg1.fbb.utm.my/birghpc.

  7. Computer graphics and the graphic artist

    NASA Technical Reports Server (NTRS)

    Taylor, N. L.; Fedors, E. G.; Pinelli, T. E.

    1985-01-01

    A centralized computer graphics system is being developed at the NASA Langley Research Center. This system was required to satisfy multiuser needs, ranging from presentation quality graphics prepared by a graphic artist to 16-mm movie simulations generated by engineers and scientists. While the major thrust of the central graphics system was directed toward engineering and scientific applications, hardware and software capabilities to support the graphic artists were integrated into the design. This paper briefly discusses the importance of computer graphics in research; the central graphics system in terms of systems, software, and hardware requirements; the application of computer graphics to graphic arts, discussed in terms of the requirements for a graphic arts workstation; and the problems encountered in applying computer graphics to the graphic arts. The paper concludes by presenting the status of the central graphics system.

  8. Examining the architecture of cellular computing through a comparative study with a computer

    PubMed Central

    Wang, Degeng; Gribskov, Michael

    2005-01-01

    The computer and the cell both use information embedded in simple coding, the binary software code and the quadruple genomic code, respectively, to support system operations. A comparative examination of their system architecture as well as their information storage and utilization schemes is performed. On top of the code, both systems display a modular, multi-layered architecture, which, in the case of a computer, arises from human engineering efforts through a combination of hardware implementation and software abstraction. Using the computer as a reference system, a simplistic mapping of the architectural components between the two is easily detected. This comparison also reveals that a cell abolishes the software–hardware barrier through genomic encoding for the constituents of the biochemical network, a cell's ‘hardware’ equivalent to the computer central processing unit (CPU). The information loading (gene expression) process acts as a major determinant of the encoded constituent's abundance, which, in turn, often determines the ‘bandwidth’ of a biochemical pathway. Cellular processes are implemented in biochemical pathways in parallel manners. In a computer, on the other hand, the software provides only instructions and data for the CPU. A process represents just sequentially ordered actions by the CPU and only virtual parallelism can be implemented through CPU time-sharing. Whereas process management in a computer may simply mean job scheduling, coordinating pathway bandwidth through the gene expression machinery represents a major process management scheme in a cell. In summary, a cell can be viewed as a super-parallel computer, which computes through controlled hardware composition. While we have, at best, a very fragmented understanding of cellular operation, we have a thorough understanding of the computer throughout the engineering process. The potential utilization of this knowledge to the benefit of systems biology is discussed. PMID:16849179

  9. Accelerating epistasis analysis in human genetics with consumer graphics hardware.

    PubMed

    Sinnott-Armstrong, Nicholas A; Greene, Casey S; Cancare, Fabio; Moore, Jason H

    2009-07-24

    Human geneticists are now capable of measuring more than one million DNA sequence variations from across the human genome. The new challenge is to develop computationally feasible methods capable of analyzing these data for associations with common human disease, particularly in the context of epistasis. Epistasis describes the situation where multiple genes interact in a complex non-linear manner to determine an individual's disease risk and is thought to be ubiquitous for common diseases. Multifactor Dimensionality Reduction (MDR) is an algorithm capable of detecting epistasis. An exhaustive analysis with MDR is often computationally expensive, particularly for high order interactions. This challenge has previously been met with parallel computation and expensive hardware. The option we examine here exploits commodity hardware designed for computer graphics. In modern computers Graphics Processing Units (GPUs) have more memory bandwidth and computational capability than Central Processing Units (CPUs) and are well suited to this problem. Advances in the video game industry have led to an economy of scale creating a situation where these powerful components are readily available at very low cost. Here we implement and evaluate the performance of the MDR algorithm on GPUs. Of primary interest are the time required for an epistasis analysis and the price to performance ratio of available solutions. We found that using MDR on GPUs consistently increased performance per machine over both a feature rich Java software package and a C++ cluster implementation. The performance of a GPU workstation running a GPU implementation reduces computation time by a factor of 160 compared to an 8-core workstation running the Java implementation on CPUs. This GPU workstation performs similarly to 150 cores running an optimized C++ implementation on a Beowulf cluster. Furthermore this GPU system provides extremely cost effective performance while leaving the CPU available for other tasks. The GPU workstation containing three GPUs costs $2000 while obtaining similar performance on a Beowulf cluster requires 150 CPU cores which, including the added infrastructure and support cost of the cluster system, cost approximately $82,500. Graphics hardware based computing provides a cost effective means to perform genetic analysis of epistasis using MDR on large datasets without the infrastructure of a computing cluster.

  10. Impact of Technology on the University of Miami.

    ERIC Educational Resources Information Center

    Little, Robert O.; Temares, M. Lewis

    As part of a long-range information systems planning effort at the University of Miami, the impact of technology on the organization was assessed. The assessment covered hardware, office automation, systems and database software, and communications. The trends in computer hardware point toward continued decreasing size and cost, placing computer…

  11. Large scale systems : a study of computer organizations for air traffic control applications.

    DOT National Transportation Integrated Search

    1971-06-01

    Based on current sizing estimates and tracking algorithms, some computer organizations applicable to future air traffic control computing systems are described and assessed. Hardware and software problem areas are defined and solutions are outlined.

  12. Computerizing the Accounting Curriculum.

    ERIC Educational Resources Information Center

    Nash, John F.; England, Thomas G.

    1986-01-01

    Discusses the use of computers in college accounting courses. Argues that the success of new efforts in using computers in teaching accounting is dependent upon increasing instructors' computer skills, and choosing appropriate hardware and software, including commercially available business software packages. (TW)

  13. Computer Series, 78.

    ERIC Educational Resources Information Center

    Moore, John W., Ed.

    1986-01-01

    Presents six brief articles dealing with the use of computers in teaching various topics in chemistry. Describes hardware and software applications which relate to protein graphics, computer simulated metabolism, interfaces between microcomputers and measurement devices, courseware available for spectrophotometers, and the calculation of elemental…

  14. 34 CFR 647.30 - What are allowable costs?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... internships during the summer. (d) Purchase of computer hardware, computer software, or other equipment for student development, project administration, and recordkeeping, if the applicant demonstrates to the...

  15. Introduction to Computer Aided Instruction in the Language Laboratory.

    ERIC Educational Resources Information Center

    Hughett, Harvey L.

    The first half of this book focuses on the rationale, ideas, and information for the use of technology, including microcomputers, to improve language teaching efficiency. Topics discussed include foreign language computer assisted instruction (CAI), hardware and software selection, computer literacy, educational computing organizations, ease of…

  16. Hardware Considerations for Computer Based Education in the 1980's.

    ERIC Educational Resources Information Center

    Hirschbuhl, John J.

    1980-01-01

    In the future, computers will be needed to sift through the vast proliferation of available information. Among new developments in computer technology are the videodisc microcomputers and holography. Predictions for future developments include laser libraries for the visually handicapped and Computer Assisted Dialogue. (JN)

  17. Reactor Operations Monitoring System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, M.M.

    1989-01-01

    The Reactor Operations Monitoring System (ROMS) is a VME based, parallel processor data acquisition and safety action system designed by the Equipment Engineering Section and Reactor Engineering Department of the Savannah River Site. The ROMS will be analyzing over 8 million signal samples per minute. Sixty-eight microprocessors are used in the ROMS in order to achieve a real-time data analysis. The ROMS is composed of multiple computer subsystems. Four redundant computer subsystems monitor 600 temperatures with 2400 thermocouples. Two computer subsystems share the monitoring of 600 reactor coolant flows. Additional computer subsystems are dedicated to monitoring 400 signals from assortedmore » process sensors. Data from these computer subsystems are transferred to two redundant process display computer subsystems which present process information to reactor operators and to reactor control computers. The ROMS is also designed to carry out safety functions based on its analysis of process data. The safety functions include initiating a reactor scram (shutdown), the injection of neutron poison, and the loadshed of selected equipment. A complete development Reactor Operations Monitoring System has been built. It is located in the Program Development Center at the Savannah River Site and is currently being used by the Reactor Engineering Department in software development. The Equipment Engineering Section is designing and fabricating the process interface hardware. Upon proof of hardware and design concept, orders will be placed for the final five systems located in the three reactor areas, the reactor training simulator, and the hardware maintenance center.« less

  18. Evaluation of Emerging Energy-Efficient Heterogeneous Computing Platforms for Biomolecular and Cellular Simulation Workloads

    PubMed Central

    Stone, John E.; Hallock, Michael J.; Phillips, James C.; Peterson, Joseph R.; Luthey-Schulten, Zaida; Schulten, Klaus

    2016-01-01

    Many of the continuing scientific advances achieved through computational biology are predicated on the availability of ongoing increases in computational power required for detailed simulation and analysis of cellular processes on biologically-relevant timescales. A critical challenge facing the development of future exascale supercomputer systems is the development of new computing hardware and associated scientific applications that dramatically improve upon the energy efficiency of existing solutions, while providing increased simulation, analysis, and visualization performance. Mobile computing platforms have recently become powerful enough to support interactive molecular visualization tasks that were previously only possible on laptops and workstations, creating future opportunities for their convenient use for meetings, remote collaboration, and as head mounted displays for immersive stereoscopic viewing. We describe early experiences adapting several biomolecular simulation and analysis applications for emerging heterogeneous computing platforms that combine power-efficient system-on-chip multi-core CPUs with high-performance massively parallel GPUs. We present low-cost power monitoring instrumentation that provides sufficient temporal resolution to evaluate the power consumption of individual CPU algorithms and GPU kernels. We compare the performance and energy efficiency of scientific applications running on emerging platforms with results obtained on traditional platforms, identify hardware and algorithmic performance bottlenecks that affect the usability of these platforms, and describe avenues for improving both the hardware and applications in pursuit of the needs of molecular modeling tasks on mobile devices and future exascale computers. PMID:27516922

  19. The Perfect Neuroimaging-Genetics-Computation Storm: Collision of Petabytes of Data, Millions of Hardware Devices and Thousands of Software Tools

    PubMed Central

    Dinov, Ivo D.; Petrosyan, Petros; Liu, Zhizhong; Eggert, Paul; Zamanyan, Alen; Torri, Federica; Macciardi, Fabio; Hobel, Sam; Moon, Seok Woo; Sung, Young Hee; Jiang, Zhiguo; Labus, Jennifer; Kurth, Florian; Ashe-McNalley, Cody; Mayer, Emeran; Vespa, Paul M.; Van Horn, John D.; Toga, Arthur W.

    2013-01-01

    The volume, diversity and velocity of biomedical data are exponentially increasing providing petabytes of new neuroimaging and genetics data every year. At the same time, tens-of-thousands of computational algorithms are developed and reported in the literature along with thousands of software tools and services. Users demand intuitive, quick and platform-agnostic access to data, software tools, and infrastructure from millions of hardware devices. This explosion of information, scientific techniques, computational models, and technological advances leads to enormous challenges in data analysis, evidence-based biomedical inference and reproducibility of findings. The Pipeline workflow environment provides a crowd-based distributed solution for consistent management of these heterogeneous resources. The Pipeline allows multiple (local) clients and (remote) servers to connect, exchange protocols, control the execution, monitor the states of different tools or hardware, and share complete protocols as portable XML workflows. In this paper, we demonstrate several advanced computational neuroimaging and genetics case-studies, and end-to-end pipeline solutions. These are implemented as graphical workflow protocols in the context of analyzing imaging (sMRI, fMRI, DTI), phenotypic (demographic, clinical), and genetic (SNP) data. PMID:23975276

  20. Framework for architecture-independent run-time reconfigurable applications

    NASA Astrophysics Data System (ADS)

    Lehn, David I.; Hudson, Rhett D.; Athanas, Peter M.

    2000-10-01

    Configurable Computing Machines (CCMs) have emerged as a technology with the computational benefits of custom ASICs as well as the flexibility and reconfigurability of general-purpose microprocessors. Significant effort from the research community has focused on techniques to move this reconfigurability from a rapid application development tool to a run-time tool. This requires the ability to change the hardware design while the application is executing and is known as Run-Time Reconfiguration (RTR). Widespread acceptance of run-time reconfigurable custom computing depends upon the existence of high-level automated design tools. Such tools must reduce the designers effort to port applications between different platforms as the architecture, hardware, and software evolves. A Java implementation of a high-level application framework, called Janus, is presented here. In this environment, developers create Java classes that describe the structural behavior of an application. The framework allows hardware and software modules to be freely mixed and interchanged. A compilation phase of the development process analyzes the structure of the application and adapts it to the target platform. Janus is capable of structuring the run-time behavior of an application to take advantage of the memory and computational resources available.

  1. 7 CFR 1421.401 - DMA responsibilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... peanut MAL, and LDP program training offered by CCC. (4) Provide sufficient personnel, computer hardware, computer communications systems, and software, as determined necessary by CCC, to administer the peanut MAL...

  2. 7 CFR 1421.401 - DMA responsibilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... peanut MAL, and LDP program training offered by CCC. (4) Provide sufficient personnel, computer hardware, computer communications systems, and software, as determined necessary by CCC, to administer the peanut MAL...

  3. 7 CFR 1421.401 - DMA responsibilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... peanut MAL, and LDP program training offered by CCC. (4) Provide sufficient personnel, computer hardware, computer communications systems, and software, as determined necessary by CCC, to administer the peanut MAL...

  4. Operators manual for a computer controlled impedance measurement system

    NASA Astrophysics Data System (ADS)

    Gordon, J.

    1987-02-01

    Operating instructions of a computer controlled impedance measurement system based in Hewlett Packard instrumentation are given. Hardware details, program listings, flowcharts and a practical application are included.

  5. Facilities | Computational Science | NREL

    Science.gov Websites

    technology innovation by providing scientists and engineers the ability to tackle energy challenges that scientists and engineers to take full advantage of advanced computing hardware and software resources

  6. NASA Tech Briefs, June 1996. Volume 20, No. 6

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Topics: New Computer Hardware; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences;Books and Reports.

  7. Networked Microcomputers--The Next Generation in College Computing.

    ERIC Educational Resources Information Center

    Harris, Albert L.

    The evolution of computer hardware for college computing has mirrored the industry's growth. When computers were introduced into the educational environment, they had limited capacity and served one user at a time. Then came large mainframes with many terminals sharing the resource. Next, the use of computers in office automation emerged. As…

  8. Mission: Define Computer Literacy. The Illinois-Wisconsin ISACS Computer Coordinators' Committee on Computer Literacy Report (May 1985).

    ERIC Educational Resources Information Center

    Computing Teacher, 1985

    1985-01-01

    Defines computer literacy and describes a computer literacy course which stresses ethics, hardware, and disk operating systems throughout. Core units on keyboarding, word processing, graphics, database management, problem solving, algorithmic thinking, and programing are outlined, together with additional units on spreadsheets, simulations,…

  9. Cloud Based Educational Systems and Its Challenges and Opportunities and Issues

    ERIC Educational Resources Information Center

    Paul, Prantosh Kr.; Lata Dangwal, Kiran

    2014-01-01

    Cloud Computing (CC) is actually is a set of hardware, software, networks, storage, services an interface combines to deliver aspects of computing as a service. Cloud Computing (CC) actually uses the central remote servers to maintain data and applications. Practically Cloud Computing (CC) is extension of Grid computing with independency and…

  10. Development of the method of aggregation to determine the current storage area using computer vision and radiofrequency identification

    NASA Astrophysics Data System (ADS)

    Astafiev, A.; Orlov, A.; Privezencev, D.

    2018-01-01

    The article is devoted to the development of technology and software for the construction of positioning and control systems in industrial plants based on aggregation to determine the current storage area using computer vision and radiofrequency identification. It describes the developed of the project of hardware for industrial products positioning system in the territory of a plant on the basis of radio-frequency grid. It describes the development of the project of hardware for industrial products positioning system in the plant on the basis of computer vision methods. It describes the development of the method of aggregation to determine the current storage area using computer vision and radiofrequency identification. Experimental studies in laboratory and production conditions have been conducted and described in the article.

  11. Novel algorithm implementations in DARC: the Durham AO real-time controller

    NASA Astrophysics Data System (ADS)

    Basden, Alastair; Bitenc, Urban; Jenkins, David

    2016-07-01

    The Durham AO Real-time Controller has been used on-sky with the CANARY AO demonstrator instrument since 2010, and is also used to provide control for several AO test-benches, including DRAGON. Over this period, many new real-time algorithms have been developed, implemented and demonstrated, leading to performance improvements for CANARY. Additionally, the computational performance of this real-time system has continued to improve. Here, we provide details about recent updates and changes made to DARC, and the relevance of these updates, including new algorithms, to forthcoming AO systems. We present the computational performance of DARC when used on different hardware platforms, including hardware accelerators, and determine the relevance and potential for ELT scale systems. Recent updates to DARC have included algorithms to handle elongated laser guide star images, including correlation wavefront sensing, with options to automatically update references during AO loop operation. Additionally, sub-aperture masking options have been developed to increase signal to noise ratio when operating with non-symmetrical wavefront sensor images. The development of end-user tools has progressed with new options for configuration and control of the system. New wavefront sensor camera models and DM models have been integrated with the system, increasing the number of possible hardware configurations available, and a fully open-source AO system is now a reality, including drivers necessary for commercial cameras and DMs. The computational performance of DARC makes it suitable for ELT scale systems when implemented on suitable hardware. We present tests made on different hardware platforms, along with the strategies taken to optimise DARC for these systems.

  12. 78 FR 43278 - Publication of Iran General License D

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-19

    ... D authorizes the exportation and reexportation to persons in Iran of certain services, software, and... Reexportation of Certain Services, Software, and Hardware Incident to the Exchange of Personal Communications (a... enable the services described in paragraph (a)(1), provided that such software is designated as EAR99...

  13. Application of Fault-Tolerant Computing For Spacecraft Using Commercial-Off-The-Shelf Microprocessors

    DTIC Science & Technology

    2000-06-01

    real - time operating system and design of a human-computer interface (HCI) for a triple modular redundant (TMR) fault-tolerant microprocessor for use in space-based applications. Once disadvantage of using COTS hardware components is their susceptibility to the radiation effects present in the space environment. and specifically, radiation-induced single-event upsets (SEUs). In the event of an SEU, a fault-tolerant system can mitigate the effects of the upset and continue to process from the last known correct system state. The TMR basic hardware

  14. An Application Development Platform for Neuromorphic Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dean, Mark; Chan, Jason; Daffron, Christopher

    2016-01-01

    Dynamic Adaptive Neural Network Arrays (DANNAs) are neuromorphic computing systems developed as a hardware based approach to the implementation of neural networks. They feature highly adaptive and programmable structural elements, which model arti cial neural networks with spiking behavior. We design them to solve problems using evolutionary optimization. In this paper, we highlight the current hardware and software implementations of DANNA, including their features, functionalities and performance. We then describe the development of an Application Development Platform (ADP) to support efficient application implementation and testing of DANNA based solutions. We conclude with future directions.

  15. Global synchronization of parallel processors using clock pulse width modulation

    DOEpatents

    Chen, Dong; Ellavsky, Matthew R.; Franke, Ross L.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Jeanson, Mark J.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Littrell, Daniel; Ohmacht, Martin; Reed, Don D.; Schenck, Brandon E.; Swetz, Richard A.

    2013-04-02

    A circuit generates a global clock signal with a pulse width modification to synchronize processors in a parallel computing system. The circuit may include a hardware module and a clock splitter. The hardware module may generate a clock signal and performs a pulse width modification on the clock signal. The pulse width modification changes a pulse width within a clock period in the clock signal. The clock splitter may distribute the pulse width modified clock signal to a plurality of processors in the parallel computing system.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, Brian W.; Hemmert, K. Scott; Underwood, Keith Douglas

    Achieving the next three orders of magnitude performance increase to move from petascale to exascale computing will require a significant advancements in several fundamental areas. Recent studies have outlined many of the challenges in hardware and software that will be needed. In this paper, we examine these challenges with respect to high-performance networking. We describe the repercussions of anticipated changes to computing and networking hardware and discuss the impact that alternative parallel programming models will have on the network software stack. We also present some ideas on possible approaches that address some of these challenges.

  17. Computer generated animation and movie production at LARC: A case study

    NASA Technical Reports Server (NTRS)

    Gates, R. L.; Matthews, C. G.; Vonofenheim, W. H.; Randall, D. P.; Jones, K. H.

    1984-01-01

    The process of producing computer generated 16mm movies using the MOVIE.BYU software package developed by Brigham Young University and the currently available hardware technology at the Langley Research Center is described. A general overview relates the procedures to a specific application. Details are provided which describe the data used, preparation of a storyboard, key frame generation, the actual animation, title generation, filming, and processing/developing the final product. Problems encountered in each of these areas are identified. Both hardware and software problems are discussed along with proposed solutions and recommendations.

  18. Parallel Computing for Probabilistic Response Analysis of High Temperature Composites

    NASA Technical Reports Server (NTRS)

    Sues, R. H.; Lua, Y. J.; Smith, M. D.

    1994-01-01

    The objective of this Phase I research was to establish the required software and hardware strategies to achieve large scale parallelism in solving PCM problems. To meet this objective, several investigations were conducted. First, we identified the multiple levels of parallelism in PCM and the computational strategies to exploit these parallelisms. Next, several software and hardware efficiency investigations were conducted. These involved the use of three different parallel programming paradigms and solution of two example problems on both a shared-memory multiprocessor and a distributed-memory network of workstations.

  19. Spherical roller bearing analysis. SKF computer program SPHERBEAN. Volume 3: Program correlation with full scale hardware tests

    NASA Technical Reports Server (NTRS)

    Kleckner, R. J.; Rosenlieb, J. W.; Dyba, G.

    1980-01-01

    The results of a series of full scale hardware tests comparing predictions of the SPHERBEAN computer program with measured data are presented. The SPHERBEAN program predicts the thermomechanical performance characteristics of high speed lubricated double row spherical roller bearings. The degree of correlation between performance predicted by SPHERBEAN and measured data is demonstrated. Experimental and calculated performance data is compared over a range in speed up to 19,400 rpm (0.8 MDN) under pure radial, pure axial, and combined loads.

  20. Space shuttle solid rocket booster cost-per-flight analysis technique

    NASA Technical Reports Server (NTRS)

    Forney, J. A.

    1979-01-01

    A cost per flight computer model is described which considers: traffic model, component attrition, hardware useful life, turnaround time for refurbishment, manufacturing rates, learning curves on the time to perform tasks, cost improvement curves on quantity hardware buys, inflation, spares philosophy, long lead, hardware funding requirements, and other logistics and scheduling constraints. Additional uses of the model include assessing the cost per flight impact of changing major space shuttle program parameters and searching for opportunities to make cost effective management decisions.

  1. STS-118 Astronaut Dave Williams Trains Using Virtual Reality Hardware

    NASA Technical Reports Server (NTRS)

    2007-01-01

    STS-118 astronaut and mission specialist Dafydd R. 'Dave' Williams, representing the Canadian Space Agency, uses Virtual Reality Hardware in the Space Vehicle Mock Up Facility at the Johnson Space Center to rehearse some of his duties for the upcoming mission. This type of virtual reality training allows the astronauts to wear special gloves and other gear while looking at a computer that displays simulating actual movements around the various locations on the station hardware which with they will be working.

  2. Development of a System to Validate Group 3 Facsimile Equipment. Phase I.

    DTIC Science & Technology

    1981-07-01

    such as modem , equalizer, line connection etc.) in hardware is. unavoidable. 3. Unless computer and test equipment are co-resident, hardware will be...network simulator. Most of this hardware/firmware has been developed for data transmission in general (v.27 ter/V.29 modems )or specifically for Group 3...system with the facsimile unit under test. 2. V.27 ter/V.29 modems - to handle facsimile data at the various data rate. 3. Modem control and switching

  3. Utility of an emulation and simulation computer model for air revitalization system hardware design, development, and test

    NASA Technical Reports Server (NTRS)

    Yanosy, J. L.; Rowell, L. F.

    1985-01-01

    Efforts to make increasingly use of suitable computer programs in the design of hardware have the potential to reduce expenditures. In this context, NASA has evaluated the benefits provided by software tools through an application to the Environmental Control and Life Support (ECLS) system. The present paper is concerned with the benefits obtained by an employment of simulation tools in the case of the Air Revitalization System (ARS) of a Space Station life support system. Attention is given to the ARS functions and components, a computer program overview, a SAND (solid amine water desorbed) bed model description, a model validation, and details regarding the simulation benefits.

  4. Diamond turning machine controller implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrard, K.P.; Taylor, L.W.; Knight, B.F.

    The standard controller for a Pnuemo ASG 2500 Diamond Turning Machine, an Allen Bradley 8200, has been replaced with a custom high-performance design. This controller consists of four major components. Axis position feedback information is provided by a Zygo Axiom 2/20 laser interferometer with 0.1 micro-inch resolution. Hardware interface logic couples the computers digital and analog I/O channels to the diamond turning machine`s analog motor controllers, the laser interferometer, and other machine status and control information. It also provides front panel switches for operator override of the computer controller and implement the emergency stop sequence. The remaining two components, themore » control computer hardware and software, are discussed in detail below.« less

  5. Business diversification - In the businesses of desk calculator, semiconductor and liquid crystal

    NASA Astrophysics Data System (ADS)

    Asada, Atsushi

    This is a record of the lecture at the 27th Annual Meeting on Information Science and Technology. Lecturer, a staff member of Sharp, Corp., explained its business diversification. The Company started with electric appliances. After coping with the application of computer technology, it made a success in the business of desk calculator. Aiming at making calculator for personal use, it coped with the business in semiconductor, and developed its business in liquid crystal for making calculator thinner. Based on these businesses, it expanded its business in OA appliances, and developed the business in combining electric appliances and information including distribution and marketing. The businesses in the age of 1990s will be requested to provide services by customizing hardware, software and system with efforts to enhance valued-added to them.

  6. PCDAS Version 2. 2: Remote network control and data acquisition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fishbaugher, M.J.

    1987-09-01

    This manual is intended for both technical and non-technical people who want to use the PCDAS remote network control and data acquisition software. If you are unfamiliar with remote data collection hardware systems designed at Pacific Northwest Laboratory (PNL), this introduction should answer your basic questions. Even if you have some experience with the PNL-designed Field Data Acquisition Systems (FDAS), it would be wise to review this material before attempting to set up a network. This manual was written based on the assumption that you have a rudimentary understanding of personal computer (PC) operations using Disk Operating System (DOS) versionmore » 2.0 or greater (IBM 1984). You should know how to create subdirectories and get around the subdirectory tree.« less

  7. A comprehensive approach to decipher biological computation to achieve next generation high-performance exascale computing.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, Conrad D.; Schiess, Adrian B.; Howell, Jamie

    2013-10-01

    The human brain (volume=1200cm3) consumes 20W and is capable of performing > 10^16 operations/s. Current supercomputer technology has reached 1015 operations/s, yet it requires 1500m^3 and 3MW, giving the brain a 10^12 advantage in operations/s/W/cm^3. Thus, to reach exascale computation, two achievements are required: 1) improved understanding of computation in biological tissue, and 2) a paradigm shift towards neuromorphic computing where hardware circuits mimic properties of neural tissue. To address 1), we will interrogate corticostriatal networks in mouse brain tissue slices, specifically with regard to their frequency filtering capabilities as a function of input stimulus. To address 2), we willmore » instantiate biological computing characteristics such as multi-bit storage into hardware devices with future computational and memory applications. Resistive memory devices will be modeled, designed, and fabricated in the MESA facility in consultation with our internal and external collaborators.« less

  8. Logistics in the Computer Lab.

    ERIC Educational Resources Information Center

    Cowles, Jim

    1989-01-01

    Discusses ways to provide good computer laboratory facilities for elementary and secondary schools. Topics discussed include establishing the computer lab and selecting hardware; types of software; physical layout of the room; printers; networking possibilities; considerations relating to the physical environment; and scheduling methods. (LRW)

  9. Is the Computer Revolution About to Happen in the Classroom?

    ERIC Educational Resources Information Center

    Smith, S.

    1984-01-01

    Both practical and irrational factors will substantially delay the widespread use of computer-assisted instruction (CAI) in Australia's schools, including the following: lack of suitable software, insufficient hardware, ignorance of what CAI offers, lack of expert advice, computer anxiety, reaction against computer zealots, and resistance to…

  10. What Chemists (or Chemistry Students) Need to Know about Computing.

    ERIC Educational Resources Information Center

    Swift, Mary L.; Zielinski, Theresa Julia

    1995-01-01

    Presents key points of an on-line conference discussion and integrates them with information from the literature. Key points included: computer as a tool for learning, study, research, and communication; hardware, software, computing concepts, and other teaching concerns; and the appropriate place for chemistry computer-usage instruction. (45…

  11. Is There a Microcomputer in Your Future? ComputerTown Thinks The Answer Is "Yes."

    ERIC Educational Resources Information Center

    Harvie, Barbara; Anton, Julie

    1983-01-01

    The services of ComputerTown, a nonprofit computer literacy project of the People's Computer Company in Menlo Park, California with 150 worldwide affiliates, are enumerated including getting started, funding sources, selecting hardware, software selection, support materials, administrative details, special offerings (classes, events), and common…

  12. Analysis of Software Systems for Specialized Computers,

    DTIC Science & Technology

    computer) with given computer hardware and software . The object of study is the software system of a computer, designed for solving a fixed complex of...purpose of the analysis is to find parameters that characterize the system and its elements during operation, i.e., when servicing the given requirement flow. (Author)

  13. The Next Computer Revolution.

    ERIC Educational Resources Information Center

    Peled, Abraham

    1987-01-01

    Discusses some of the future trends in the use of the computer in our society, suggesting that computing is now entering a new phase in which it will grow exponentially more powerful, flexible, and sophisticated in the next decade. Describes some of the latest breakthroughs in computer hardware and software technology. (TW)

  14. Potential of a suite of robot/computer-assisted motivating systems for personalized, home-based, stroke rehabilitation

    PubMed Central

    Johnson, Michelle J; Feng, Xin; Johnson, Laura M; Winters, Jack M

    2007-01-01

    Background There is a need to improve semi-autonomous stroke therapy in home environments often characterized by low supervision of clinical experts and low extrinsic motivation. Our distributed device approach to this problem consists of an integrated suite of low-cost robotic/computer-assistive technologies driven by a novel universal access software framework called UniTherapy. Our design strategy for personalizing the therapy, providing extrinsic motivation and outcome assessment is presented and evaluated. Methods Three studies were conducted to evaluate the potential of the suite. A conventional force-reflecting joystick, a modified joystick therapy platform (TheraJoy), and a steering wheel platform (TheraDrive) were tested separately with the UniTherapy software. Stroke subjects with hemiparesis and able-bodied subjects completed tracking activities with the devices in different positions. We quantify motor performance across subject groups and across device platforms and muscle activation across devices at two positions in the arm workspace. Results Trends in the assessment metrics were consistent across devices with able-bodied and high functioning strokes subjects being significantly more accurate and quicker in their motor performance than low functioning subjects. Muscle activation patterns were different for shoulder and elbow across different devices and locations. Conclusion The Robot/CAMR suite has potential for stroke rehabilitation. By manipulating hardware and software variables, we can create personalized therapy environments that engage patients, address their therapy need, and track their progress. A larger longitudinal study is still needed to evaluate these systems in under-supervised environments such as the home. PMID:17331243

  15. Data flow modeling techniques

    NASA Technical Reports Server (NTRS)

    Kavi, K. M.

    1984-01-01

    There have been a number of simulation packages developed for the purpose of designing, testing and validating computer systems, digital systems and software systems. Complex analytical tools based on Markov and semi-Markov processes have been designed to estimate the reliability and performance of simulated systems. Petri nets have received wide acceptance for modeling complex and highly parallel computers. In this research data flow models for computer systems are investigated. Data flow models can be used to simulate both software and hardware in a uniform manner. Data flow simulation techniques provide the computer systems designer with a CAD environment which enables highly parallel complex systems to be defined, evaluated at all levels and finally implemented in either hardware or software. Inherent in data flow concept is the hierarchical handling of complex systems. In this paper we will describe how data flow can be used to model computer system.

  16. Tutorial: Parallel Computing of Simulation Models for Risk Analysis.

    PubMed

    Reilly, Allison C; Staid, Andrea; Gao, Michael; Guikema, Seth D

    2016-10-01

    Simulation models are widely used in risk analysis to study the effects of uncertainties on outcomes of interest in complex problems. Often, these models are computationally complex and time consuming to run. This latter point may be at odds with time-sensitive evaluations or may limit the number of parameters that are considered. In this article, we give an introductory tutorial focused on parallelizing simulation code to better leverage modern computing hardware, enabling risk analysts to better utilize simulation-based methods for quantifying uncertainty in practice. This article is aimed primarily at risk analysts who use simulation methods but do not yet utilize parallelization to decrease the computational burden of these models. The discussion is focused on conceptual aspects of embarrassingly parallel computer code and software considerations. Two complementary examples are shown using the languages MATLAB and R. A brief discussion of hardware considerations is located in the Appendix. © 2016 Society for Risk Analysis.

  17. 160-fold acceleration of the Smith-Waterman algorithm using a field programmable gate array (FPGA)

    PubMed Central

    Li, Isaac TS; Shum, Warren; Truong, Kevin

    2007-01-01

    Background To infer homology and subsequently gene function, the Smith-Waterman (SW) algorithm is used to find the optimal local alignment between two sequences. When searching sequence databases that may contain hundreds of millions of sequences, this algorithm becomes computationally expensive. Results In this paper, we focused on accelerating the Smith-Waterman algorithm by using FPGA-based hardware that implemented a module for computing the score of a single cell of the SW matrix. Then using a grid of this module, the entire SW matrix was computed at the speed of field propagation through the FPGA circuit. These modifications dramatically accelerated the algorithm's computation time by up to 160 folds compared to a pure software implementation running on the same FPGA with an Altera Nios II softprocessor. Conclusion This design of FPGA accelerated hardware offers a new promising direction to seeking computation improvement of genomic database searching. PMID:17555593

  18. 160-fold acceleration of the Smith-Waterman algorithm using a field programmable gate array (FPGA).

    PubMed

    Li, Isaac T S; Shum, Warren; Truong, Kevin

    2007-06-07

    To infer homology and subsequently gene function, the Smith-Waterman (SW) algorithm is used to find the optimal local alignment between two sequences. When searching sequence databases that may contain hundreds of millions of sequences, this algorithm becomes computationally expensive. In this paper, we focused on accelerating the Smith-Waterman algorithm by using FPGA-based hardware that implemented a module for computing the score of a single cell of the SW matrix. Then using a grid of this module, the entire SW matrix was computed at the speed of field propagation through the FPGA circuit. These modifications dramatically accelerated the algorithm's computation time by up to 160 folds compared to a pure software implementation running on the same FPGA with an Altera Nios II softprocessor. This design of FPGA accelerated hardware offers a new promising direction to seeking computation improvement of genomic database searching.

  19. Advanced Architectures for Astrophysical Supercomputing

    NASA Astrophysics Data System (ADS)

    Barsdell, B. R.; Barnes, D. G.; Fluke, C. J.

    2010-12-01

    Astronomers have come to rely on the increasing performance of computers to reduce, analyze, simulate and visualize their data. In this environment, faster computation can mean more science outcomes or the opening up of new parameter spaces for investigation. If we are to avoid major issues when implementing codes on advanced architectures, it is important that we have a solid understanding of our algorithms. A recent addition to the high-performance computing scene that highlights this point is the graphics processing unit (GPU). The hardware originally designed for speeding-up graphics rendering in video games is now achieving speed-ups of O(100×) in general-purpose computation - performance that cannot be ignored. We are using a generalized approach, based on the analysis of astronomy algorithms, to identify the optimal problem-types and techniques for taking advantage of both current GPU hardware and future developments in computing architectures.

  20. Experimental comparison of two quantum computing architectures.

    PubMed

    Linke, Norbert M; Maslov, Dmitri; Roetteler, Martin; Debnath, Shantanu; Figgatt, Caroline; Landsman, Kevin A; Wright, Kenneth; Monroe, Christopher

    2017-03-28

    We run a selection of algorithms on two state-of-the-art 5-qubit quantum computers that are based on different technology platforms. One is a publicly accessible superconducting transmon device (www. ibm.com/ibm-q) with limited connectivity, and the other is a fully connected trapped-ion system. Even though the two systems have different native quantum interactions, both can be programed in a way that is blind to the underlying hardware, thus allowing a comparison of identical quantum algorithms between different physical systems. We show that quantum algorithms and circuits that use more connectivity clearly benefit from a better-connected system of qubits. Although the quantum systems here are not yet large enough to eclipse classical computers, this experiment exposes critical factors of scaling quantum computers, such as qubit connectivity and gate expressivity. In addition, the results suggest that codesigning particular quantum applications with the hardware itself will be paramount in successfully using quantum computers in the future.

  1. Multicore Challenges and Benefits for High Performance Scientific Computing

    DOE PAGES

    Nielsen, Ida M. B.; Janssen, Curtis L.

    2008-01-01

    Until recently, performance gains in processors were achieved largely by improvements in clock speeds and instruction level parallelism. Thus, applications could obtain performance increases with relatively minor changes by upgrading to the latest generation of computing hardware. Currently, however, processor performance improvements are realized by using multicore technology and hardware support for multiple threads within each core, and taking full advantage of this technology to improve the performance of applications requires exposure of extreme levels of software parallelism. We will here discuss the architecture of parallel computers constructed from many multicore chips as well as techniques for managing the complexitymore » of programming such computers, including the hybrid message-passing/multi-threading programming model. We will illustrate these ideas with a hybrid distributed memory matrix multiply and a quantum chemistry algorithm for energy computation using Møller–Plesset perturbation theory.« less

  2. The NASA computer aided design and test system

    NASA Technical Reports Server (NTRS)

    Gould, J. M.; Juergensen, K.

    1973-01-01

    A family of computer programs facilitating the design, layout, evaluation, and testing of digital electronic circuitry is described. CADAT (computer aided design and test system) is intended for use by NASA and its contractors and is aimed predominantly at providing cost effective microelectronic subsystems based on custom designed metal oxide semiconductor (MOS) large scale integrated circuits (LSIC's). CADAT software can be easily adopted by installations with a wide variety of computer hardware configurations. Its structure permits ease of update to more powerful component programs and to newly emerging LSIC technologies. The components of the CADAT system are described stressing the interaction of programs rather than detail of coding or algorithms. The CADAT system provides computer aids to derive and document the design intent, includes powerful automatic layout software, permits detailed geometry checks and performance simulation based on mask data, and furnishes test pattern sequences for hardware testing.

  3. Class network routing

    DOEpatents

    Bhanot, Gyan [Princeton, NJ; Blumrich, Matthias A [Ridgefield, CT; Chen, Dong [Croton On Hudson, NY; Coteus, Paul W [Yorktown Heights, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Steinmacher-Burow, Burkhard D [Mount Kisco, NY; Takken, Todd E [Mount Kisco, NY; Vranas, Pavlos M [Bedford Hills, NY

    2009-09-08

    Class network routing is implemented in a network such as a computer network comprising a plurality of parallel compute processors at nodes thereof. Class network routing allows a compute processor to broadcast a message to a range (one or more) of other compute processors in the computer network, such as processors in a column or a row. Normally this type of operation requires a separate message to be sent to each processor. With class network routing pursuant to the invention, a single message is sufficient, which generally reduces the total number of messages in the network as well as the latency to do a broadcast. Class network routing is also applied to dense matrix inversion algorithms on distributed memory parallel supercomputers with hardware class function (multicast) capability. This is achieved by exploiting the fact that the communication patterns of dense matrix inversion can be served by hardware class functions, which results in faster execution times.

  4. Computer Games as Therapy for Persons with Stroke.

    PubMed

    Lauterbach, Sarah A; Foreman, Matt H; Engsberg, Jack R

    2013-02-01

    Stroke affects approximately 800,000 individuals each year, with 65% having residual impairments. Studies have demonstrated that mass practice leads to regaining motor function in affected extremities; however, traditional therapy does not include the repetitions needed for this recovery. Videogames have been shown to be good motivators to complete repetitions. Advances in technology and low-cost hardware bring new opportunities to use computer games during stroke therapy. This study examined the use of the Microsoft (Redmond, WA) Kinect™ and Flexible Action and Articulated Skeleton Toolkit (FAAST) software as a therapy tool to play existing free computer games on the Internet. Three participants attended a 1-hour session where they played two games with upper extremity movements as game controls. Video was taken for analysis of movement repetitions, and questions were answered about participant history and their perceptions of the games. Participants remained engaged through both games; regardless of previous computer use all participants successfully played two games. Five minutes of game play averaged 34 repetitions of the affected extremity. The Intrinsic Motivation Inventory showed a high level of satisfaction in two of the three participants. The Kinect Sensor with the FAAST software has the potential to be an economical tool to be used alongside traditional therapy to increase the number of repetitions completed in a motivating and engaging way for clients.

  5. [A survey of the best bibliographic searching system in occupational medicine and discussion of its implementation].

    PubMed

    Inoue, J

    1991-12-01

    When occupational health personnel, especially occupational physicians search bibliographies, they usually have to search bibliographies by themselves. Also, if a library is not available because of the location of their work place, they might have to rely on online databases. Although there are many commercial databases in the world, people who seldom use them, will have problems with on-line searching, such as user-computer interface, keywords, and so on. The present study surveyed the best bibliographic searching system in the field of occupational medicine by questionnaire through the use of DIALOG OnDisc MEDLINE as a commercial database. In order to ascertain the problems involved in determining the best bibliographic searching system, a prototype bibliographic searching system was constructed and then evaluated. Finally, solutions for the problems were discussed. These led to the following conclusions: to construct the best bibliographic searching system at the present time, 1) a concept of micro-to-mainframe links (MML) is needed for the computer hardware network; 2) multi-lingual font standards and an excellent common user-computer interface are needed for the computer software; 3) a short course and education of database management systems, and support of personal information processing for retrieved data are necessary for the practical use of the system.

  6. The reported preparedness and disposition by students in a Nigerian university towards the use of information technology for medical education.

    PubMed

    Fadeyi, A; Desalu, O O; Ameen, A; Adeboye, A N Muhammed

    2010-01-01

    The computer and information technology (IT) revolution have transformed modern health care systems in the areas of communication, storage, retrieval of medical information and teaching, but little is known about IT skill and use in most developing nations. The aim of this study has been to evaluate the reported preparedness and disposition by medical students in a Nigerian university toward the use of IT for medical education. A self-administered structured questionnaire containing 24 items was used to obtain information from medical students in the University of Ilorin, Nigeria on their level of computer usage, knowledge of computer software and hardware, availability and access to computer, possession of personal computer and e-mail address, preferred method of medical education and the use of computer as a supplement to medical education. Out of 479 medical students, 179 (37.4%) had basic computer skills, 209 (43.6%) had intermediate skills and 58(12.1%) had advanced computer skills. Three hundred and thirty (68.9%) have access to computer and 451(94.2%) have e-mail addresses. For medical teaching, majority (83.09%), preferred live lecture, 56.78% lecture videos, 35.1% lecture handout on web site and 410 (85.6%) wants computer as a supplement to live lectures. Less than half (39.5%) wants laptop acquisition to be mandatory. Students with advanced computer skills were well prepared and disposed to IT than those with basic computer skill. The findings revealed that the medical students with advanced computer skills were well prepared and disposed to IT based medical education. Therefore, high level of computer skill is required for them to be prepared and favorably disposed to IT based medical education.

  7. Current state and future direction of computer systems at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Rogers, James L. (Editor); Tucker, Jerry H. (Editor)

    1992-01-01

    Computer systems have advanced at a rate unmatched by any other area of technology. As performance has dramatically increased there has been an equally dramatic reduction in cost. This constant cost performance improvement has precipitated the pervasiveness of computer systems into virtually all areas of technology. This improvement is due primarily to advances in microelectronics. Most people are now convinced that the new generation of supercomputers will be built using a large number (possibly thousands) of high performance microprocessors. Although the spectacular improvements in computer systems have come about because of these hardware advances, there has also been a steady improvement in software techniques. In an effort to understand how these hardware and software advances will effect research at NASA LaRC, the Computer Systems Technical Committee drafted this white paper to examine the current state and possible future directions of computer systems at the Center. This paper discusses selected important areas of computer systems including real-time systems, embedded systems, high performance computing, distributed computing networks, data acquisition systems, artificial intelligence, and visualization.

  8. Guidance and Control System for an Autonomous Vehicle

    DTIC Science & Technology

    1990-06-01

    implementing an appropriate computer architecture in support of these goals is also discussed and detailed, along with the choice of associated computer hardware and real - time operating system software. (rh)

  9. NASA Tech Briefs, August 1994. Volume 18, No. 8

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Topics covered include: Computer Hardware; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences; Books and Reports.

  10. NASA Tech Briefs, June 1997. Volume 21, No. 6

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Topics include: Computer Hardware and Peripherals; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Books and Reports.

  11. Hardware for Accelerating N-Modular Redundant Systems for High-Reliability Computing

    NASA Technical Reports Server (NTRS)

    Dobbs, Carl, Sr.

    2012-01-01

    A hardware unit has been designed that reduces the cost, in terms of performance and power consumption, for implementing N-modular redundancy (NMR) in a multiprocessor device. The innovation monitors transactions to memory, and calculates a form of sumcheck on-the-fly, thereby relieving the processors of calculating the sumcheck in software

  12. Multi-Sensor Systems Development for UXO Detection and Discrimination: Hand-Held Dual Magnetic/Electromagnetic Induction Sensor

    DTIC Science & Technology

    2008-04-01

    5 Fluxgate magnetometer ... magnetometer into digital format, and transmitted as a single serial data string to log the Cs and fluxgate magnetometer data. After procurement...Hardware The system hardware comprises an EMI sensor, Cs vapor magnetometer , fluxgate magnetometer , hand-held data acquisition computer, integrated

  13. Cardiopulmonary data acquisition system. Version 2.0, volume 2: Detailed software/hardware documentation

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Detailed software and hardware documentation for the Cardiopulmonary Data Acquisition System is presented. General wiring and timing diagrams are given including those for the LSI-11 computer control panel and interface cables. Flowcharts and complete listings of system programs are provided along with the format of the floppy disk file.

  14. Interface Circuits for Self-Checking Microprocessors

    NASA Technical Reports Server (NTRS)

    Rennels, D. A.; Chandramouli, R.

    1986-01-01

    Fault-tolerant-microcomputer concept based on enhancing "simple" computer with redundancy and self-checking logic circuits detect hardware faults. Interface and checking logic and redundant processors confer on 16-bit microcomputer ability to check itself for hardware faults. Checking circuitry also checks itself. Concept of self-checking complementary pairs (SCCP's) employed throughout ICL unit.

  15. Delivery of Hardware for Syracuse University Faculty Loaner Program.

    ERIC Educational Resources Information Center

    Jares, Terry

    This paper describes the Faculty Assistance and Computing Education Services (FACES) loaner program at Syracuse University and the method used by FACES staff to deliver and keep track of hardware, software, and documentation. The roles of the various people involved in the program are briefly discussed, i.e., the administrator, who handles the…

  16. Generalized Maintenance Trainer Simulator: Development of Hardware and Software. Final Report.

    ERIC Educational Resources Information Center

    Towne, Douglas M.; Munro, Allen

    A general purpose maintenance trainer, which has the potential to simulate a wide variety of electronic equipments without hardware changes or new computer programs, has been developed and field tested by the Navy. Based on a previous laboratory model, the Generalized Maintenance Trainer Simulator (GMTS) is a relatively low cost trainer that…

  17. Recent Trends in Minicomputer-Based Integrated Learning Systems for Reading and Language Arts Instruction.

    ERIC Educational Resources Information Center

    Balajthy, Ernest

    This paper discusses minicomputer-based ILSs (integrated learning systems), i.e., computer-based systems of hardware and software. An example of a minicomputer-based system in a school district (a composite of several actual districts) considers hardware, staffing, scheduling, reactions, problems, and training for a subskill-oriented reading…

  18. RFA Guardian: Comprehensive Simulation of Radiofrequency Ablation Treatment of Liver Tumors.

    PubMed

    Voglreiter, Philip; Mariappan, Panchatcharam; Pollari, Mika; Flanagan, Ronan; Blanco Sequeiros, Roberto; Portugaller, Rupert Horst; Fütterer, Jurgen; Schmalstieg, Dieter; Kolesnik, Marina; Moche, Michael

    2018-01-15

    The RFA Guardian is a comprehensive application for high-performance patient-specific simulation of radiofrequency ablation of liver tumors. We address a wide range of usage scenarios. These include pre-interventional planning, sampling of the parameter space for uncertainty estimation, treatment evaluation and, in the worst case, failure analysis. The RFA Guardian is the first of its kind that exhibits sufficient performance for simulating treatment outcomes during the intervention. We achieve this by combining a large number of high-performance image processing, biomechanical simulation and visualization techniques into a generalized technical workflow. Further, we wrap the feature set into a single, integrated application, which exploits all available resources of standard consumer hardware, including massively parallel computing on graphics processing units. This allows us to predict or reproduce treatment outcomes on a single personal computer with high computational performance and high accuracy. The resulting low demand for infrastructure enables easy and cost-efficient integration into the clinical routine. We present a number of evaluation cases from the clinical practice where users performed the whole technical workflow from patient-specific modeling to final validation and highlight the opportunities arising from our fast, accurate prediction techniques.

  19. Enhanced Graphics for Extended Scale Range

    NASA Technical Reports Server (NTRS)

    Hanson, Andrew J.; Chi-Wing Fu, Philip

    2012-01-01

    Enhanced Graphics for Extended Scale Range is a computer program for rendering fly-through views of scene models that include visible objects differing in size by large orders of magnitude. An example would be a scene showing a person in a park at night with the moon, stars, and galaxies in the background sky. Prior graphical computer programs exhibit arithmetic and other anomalies when rendering scenes containing objects that differ enormously in scale and distance from the viewer. The present program dynamically repartitions distance scales of objects in a scene during rendering to eliminate almost all such anomalies in a way compatible with implementation in other software and in hardware accelerators. By assigning depth ranges correspond ing to rendering precision requirements, either automatically or under program control, this program spaces out object scales to match the precision requirements of the rendering arithmetic. This action includes an intelligent partition of the depth buffer ranges to avoid known anomalies from this source. The program is written in C++, using OpenGL, GLUT, and GLUI standard libraries, and nVidia GEForce Vertex Shader extensions. The program has been shown to work on several computers running UNIX and Windows operating systems.

  20. Competency Reference for Computer Assisted Drafting.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Education, Salem. Div. of Vocational Technical Education.

    This guide, developed in Oregon, lists competencies essential for students in computer-assisted drafting (CAD). Competencies are organized in eight categories: computer hardware, file usage and manipulation, basic drafting techniques, mechanical drafting, specialty disciplines, three dimensional drawing/design, plotting/printing, and advanced CAD.…

  1. Data intensive computing at Sandia.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Andrew T.

    2010-09-01

    Data-Intensive Computing is parallel computing where you design your algorithms and your software around efficient access and traversal of a data set; where hardware requirements are dictated by data size as much as by desired run times usually distilling compact results from massive data.

  2. Computer-Based Training and Education: An Australian Perspective.

    ERIC Educational Resources Information Center

    Sims, Roderick C. H.

    1993-01-01

    Provides an overview of computer-based training and education in Australia. Highlights include elementary and secondary schools; computer hardware; learning tools, including educational games and CD-ROMs; tertiary education, including Institutes of Technical and Further Education (TAFE) and universities; the Australian workforce, including…

  3. VLSI neuroprocessors

    NASA Technical Reports Server (NTRS)

    Kemeny, Sabrina E.

    1994-01-01

    Electronic and optoelectronic hardware implementations of highly parallel computing architectures address several ill-defined and/or computation-intensive problems not easily solved by conventional computing techniques. The concurrent processing architectures developed are derived from a variety of advanced computing paradigms including neural network models, fuzzy logic, and cellular automata. Hardware implementation technologies range from state-of-the-art digital/analog custom-VLSI to advanced optoelectronic devices such as computer-generated holograms and e-beam fabricated Dammann gratings. JPL's concurrent processing devices group has developed a broad technology base in hardware implementable parallel algorithms, low-power and high-speed VLSI designs and building block VLSI chips, leading to application-specific high-performance embeddable processors. Application areas include high throughput map-data classification using feedforward neural networks, terrain based tactical movement planner using cellular automata, resource optimization (weapon-target assignment) using a multidimensional feedback network with lateral inhibition, and classification of rocks using an inner-product scheme on thematic mapper data. In addition to addressing specific functional needs of DOD and NASA, the JPL-developed concurrent processing device technology is also being customized for a variety of commercial applications (in collaboration with industrial partners), and is being transferred to U.S. industries. This viewgraph p resentation focuses on two application-specific processors which solve the computation intensive tasks of resource allocation (weapon-target assignment) and terrain based tactical movement planning using two extremely different topologies. Resource allocation is implemented as an asynchronous analog competitive assignment architecture inspired by the Hopfield network. Hardware realization leads to a two to four order of magnitude speed-up over conventional techniques and enables multiple assignments, (many to many), not achievable with standard statistical approaches. Tactical movement planning (finding the best path from A to B) is accomplished with a digital two-dimensional concurrent processor array. By exploiting the natural parallel decomposition of the problem in silicon, a four order of magnitude speed-up over optimized software approaches has been demonstrated.

  4. A neuromorphic network for generic multivariate data classification

    PubMed Central

    Schmuker, Michael; Pfeil, Thomas; Nawrot, Martin Paul

    2014-01-01

    Computational neuroscience has uncovered a number of computational principles used by nervous systems. At the same time, neuromorphic hardware has matured to a state where fast silicon implementations of complex neural networks have become feasible. En route to future technical applications of neuromorphic computing the current challenge lies in the identification and implementation of functional brain algorithms. Taking inspiration from the olfactory system of insects, we constructed a spiking neural network for the classification of multivariate data, a common problem in signal and data analysis. In this model, real-valued multivariate data are converted into spike trains using “virtual receptors” (VRs). Their output is processed by lateral inhibition and drives a winner-take-all circuit that supports supervised learning. VRs are conveniently implemented in software, whereas the lateral inhibition and classification stages run on accelerated neuromorphic hardware. When trained and tested on real-world datasets, we find that the classification performance is on par with a naïve Bayes classifier. An analysis of the network dynamics shows that stable decisions in output neuron populations are reached within less than 100 ms of biological time, matching the time-to-decision reported for the insect nervous system. Through leveraging a population code, the network tolerates the variability of neuronal transfer functions and trial-to-trial variation that is inevitably present on the hardware system. Our work provides a proof of principle for the successful implementation of a functional spiking neural network on a configurable neuromorphic hardware system that can readily be applied to real-world computing problems. PMID:24469794

  5. Measuring the Pain Area: An Intra- and Inter-Rater Reliability Study Using Image Analysis Software.

    PubMed

    Dos Reis, Felipe Jose Jandre; de Barros E Silva, Veronica; de Lucena, Raphaela Nunes; Mendes Cardoso, Bruno Alexandre; Nogueira, Leandro Calazans

    2016-01-01

    Pain drawings have frequently been used for clinical information and research. The aim of this study was to investigate intra- and inter-rater reliability of area measurements performed on pain drawings. Our secondary objective was to verify the reliability when using computers with different screen sizes, both with and without mouse hardware. Pain drawings were completed by patients with chronic neck pain or neck-shoulder-arm pain. Four independent examiners participated in the study. Examiners A and B used the same computer with a 16-inch screen and wired mouse hardware. Examiner C used a notebook with a 16-inch screen and no mouse hardware, and Examiner D used a computer with an 11.6-inch screen and a wireless mouse. Image measurements were obtained using GIMP and NIH ImageJ computer programs. The length of all the images was measured using GIMP software to a set scale in ImageJ. Thus, each marked area was encircled and the total surface area (cm(2) ) was calculated for each pain drawing measurement. A total of 117 areas were identified and 52 pain drawings were analyzed. The intrarater reliability between all examiners was high (ICC = 0.989). The inter-rater reliability was also high. No significant differences were observed when using different screen sizes or when using or not using the mouse hardware. This suggests that the precision of these measurements is acceptable for the use of this method as a measurement tool in clinical practice and research. © 2014 World Institute of Pain.

  6. Computers and Young Children: New Frontiers in Computer Hardware and Software or What Computer Should I Buy?

    ERIC Educational Resources Information Center

    Shade, Daniel D.

    1994-01-01

    Provides advice and suggestions for educators or parents who are trying to decide what type of computer to buy to run the latest computer software for children. Suggests that purchasers should buy a computer with as large a hard drive as possible, at least 10 megabytes of RAM, and a CD-ROM drive. (MDM)

  7. 24 CFR 908.108 - Cost.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... computer hardware or software, or both, the cost of contracting for those services, or the cost of... operating budget. At the HA's option, the cost of the computer software may include service contracts to...

  8. On an LAS-integrated soft PLC system based on WorldFIP fieldbus.

    PubMed

    Liang, Geng; Li, Zhijun; Li, Wen; Bai, Yan

    2012-01-01

    Communication efficiency is lowered and real-time performance is not good enough in discrete control based on traditional WorldFIP field intelligent nodes in case that the scale of control in field is large. A soft PLC system based on WorldFIP fieldbus was designed and implemented. Link Activity Scheduler (LAS) was integrated into the system and field intelligent I/O modules acted as networked basic nodes. Discrete control logic was implemented with the LAS-integrated soft PLC system. The proposed system was composed of configuration and supervisory sub-systems and running sub-systems. The configuration and supervisory sub-system was implemented with a personal computer or an industrial personal computer; running subsystems were designed and implemented based on embedded hardware and software systems. Communication and schedule in the running subsystem was implemented with an embedded sub-module; discrete control and system self-diagnosis were implemented with another embedded sub-module. Structure of the proposed system was presented. Methodology for the design of the sub-systems was expounded. Experiments were carried out to evaluate the performance of the proposed system both in discrete and process control by investigating the effect of network data transmission delay induced by the soft PLC in WorldFIP network and CPU workload on resulting control performances. The experimental observations indicated that the proposed system is practically applicable. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  9. A new approach for data acquisition at the JPL space simulators

    NASA Technical Reports Server (NTRS)

    Fisher, Terry C.

    1992-01-01

    In 1990, a personal computer based data acquisition system was put into service for the Space Simulators and Environmental Test Laboratory at the Jet Propulsion Laboratory (JPL) in Pasadena, California. The new system replaced an outdated minicomputer system which had been in use since 1980. This new data acquisition system was designed and built by JPL for the specific task of acquiring thermal test data in support of space simulation and thermal vacuum testing at JPL. The data acquisition system was designed using powerful personal computers and local-area-network (LAN) technology. Reliability, expandability, and maintainability were some of the most important criteria in the design of the data system and in the selection of hardware and software components. The data acquisition system is used to record both test chamber operational data and thermal data from the unit under test. Tests are conducted in numerous small thermal vacuum chambers and in the large solar simulator and range in size from individual components using only 2 or 3 thermocouples to entire planetary spacecraft requiring in excess of 1200 channels of test data. The system supports several of these tests running concurrently. The previous data system is described along with reasons for its replacement, the types of data acquired, the new data system, and the benefits obtained from the new system including information on tests performed to date.

  10. Development of a computer-assisted personal interview software system for collection of tribal fish consumption data.

    PubMed

    Kissinger, Lon; Lorenzana, Roseanne; Mittl, Beth; Lasrado, Merwyn; Iwenofu, Samuel; Olivo, Vanessa; Helba, Cynthia; Capoeman, Pauline; Williams, Ann H

    2010-12-01

    The authors developed a computer-assisted personal interviewing (CAPI) seafood consumption survey tool from existing Pacific NW Native American seafood consumption survey methodology. The software runs on readily available hardware and software, and is easily configured for different cultures and seafood resources. The CAPI is used with a booklet of harvest location maps and species and portion size images. The use of a CAPI facilitates tribal administration of seafood consumption surveys, allowing cost-effective collection of scientifically defensible data and tribal management of data and data interpretation. Use of tribal interviewers reduces potential bias and discomfort that may be associated with nontribal interviewers. The CAPI contains a 24-hour recall and food frequency questionnaire, and assesses seasonal seafood consumption and temporal changes in consumption. EPA's methodology for developing ambient water quality criteria for tribes assigns a high priority to local data. The CAPI will satisfy this guidance objective. Survey results will support development of tribal water quality standards on their lands and assessment of seafood consumption-related contaminant risks and nutritional benefits. CAPI advantages over paper surveys include complex question branching without raising respondent burden, more complete interviews due to answer error and range checking, data transcription error elimination, printing and mailing cost elimination, and improved data storage. The survey instrument was pilot tested among the Quinault Nation in 2006. © 2010 Society for Risk Analysis.

  11. Human Motion Tracking and Glove-Based User Interfaces for Virtual Environments in ANVIL

    NASA Technical Reports Server (NTRS)

    Dumas, Joseph D., II

    2002-01-01

    The Army/NASA Virtual Innovations Laboratory (ANVIL) at Marshall Space Flight Center (MSFC) provides an environment where engineers and other personnel can investigate novel applications of computer simulation and Virtual Reality (VR) technologies. Among the many hardware and software resources in ANVIL are several high-performance Silicon Graphics computer systems and a number of commercial software packages, such as Division MockUp by Parametric Technology Corporation (PTC) and Jack by Unigraphics Solutions, Inc. These hardware and software platforms are used in conjunction with various VR peripheral I/O (input / output) devices, CAD (computer aided design) models, etc. to support the objectives of the MSFC Engineering Systems Department/Systems Engineering Support Group (ED42) by studying engineering designs, chiefly from the standpoint of human factors and ergonomics. One of the more time-consuming tasks facing ANVIL personnel involves the testing and evaluation of peripheral I/O devices and the integration of new devices with existing hardware and software platforms. Another important challenge is the development of innovative user interfaces to allow efficient, intuitive interaction between simulation users and the virtual environments they are investigating. As part of his Summer Faculty Fellowship, the author was tasked with verifying the operation of some recently acquired peripheral interface devices and developing new, easy-to-use interfaces that could be used with existing VR hardware and software to better support ANVIL projects.

  12. Computer Music

    NASA Astrophysics Data System (ADS)

    Cook, Perry R.

    This chapter covers algorithms, technologies, computer languages, and systems for computer music. Computer music involves the application of computers and other digital/electronic technologies to music composition, performance, theory, history, and the study of perception. The field combines digital signal processing, computational algorithms, computer languages, hardware and software systems, acoustics, psychoacoustics (low-level perception of sounds from the raw acoustic signal), and music cognition (higher-level perception of musical style, form, emotion, etc.).

  13. LABORATORY PROCESS CONTROLLER USING NATURAL LANGUAGE COMMANDS FROM A PERSONAL COMPUTER

    NASA Technical Reports Server (NTRS)

    Will, H.

    1994-01-01

    The complex environment of the typical research laboratory requires flexible process control. This program provides natural language process control from an IBM PC or compatible machine. Sometimes process control schedules require changes frequently, even several times per day. These changes may include adding, deleting, and rearranging steps in a process. This program sets up a process control system that can either run without an operator, or be run by workers with limited programming skills. The software system includes three programs. Two of the programs, written in FORTRAN77, record data and control research processes. The third program, written in Pascal, generates the FORTRAN subroutines used by the other two programs to identify the user commands with the user-written device drivers. The software system also includes an input data set which allows the user to define the user commands which are to be executed by the computer. To set the system up the operator writes device driver routines for all of the controlled devices. Once set up, this system requires only an input file containing natural language command lines which tell the system what to do and when to do it. The operator can make up custom commands for operating and taking data from external research equipment at any time of the day or night without the operator in attendance. This process control system requires a personal computer operating under MS-DOS with suitable hardware interfaces to all controlled devices. The program requires a FORTRAN77 compiler and user-written device drivers. This program was developed in 1989 and has a memory requirement of about 62 Kbytes.

  14. A hardware/software environment to support R D in intelligent machines and mobile robotic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, R.C.

    1990-01-01

    The Center for Engineering Systems Advanced Research (CESAR) serves as a focal point at the Oak Ridge National Laboratory (ORNL) for basic and applied research in intelligent machines. R D at CESAR addresses issues related to autonomous systems, unstructured (i.e. incompletely known) operational environments, and multiple performing agents. Two mobile robot prototypes (HERMIES-IIB and HERMIES-III) are being used to test new developments in several robot component technologies. This paper briefly introduces the computing environment at CESAR which includes three hypercube concurrent computers (two on-board the mobile robots), a graphics workstation, VAX, and multiple VME-based systems (several on-board the mobile robots).more » The current software environment at CESAR is intended to satisfy several goals, e.g.: code portability, re-usability in different experimental scenarios, modularity, concurrent computer hardware transparent to applications programmer, future support for multiple mobile robots, support human-machine interface modules, and support for integration of software from other, geographically disparate laboratories with different hardware set-ups. 6 refs., 1 fig.« less

  15. Optimization Model for Web Based Multimodal Interactive Simulations.

    PubMed

    Halic, Tansel; Ahn, Woojin; De, Suvranu

    2015-07-15

    This paper presents a technique for optimizing the performance of web based multimodal interactive simulations. For such applications where visual quality and the performance of simulations directly influence user experience, overloading of hardware resources may result in unsatisfactory reduction in the quality of the simulation and user satisfaction. However, optimization of simulation performance on individual hardware platforms is not practical. Hence, we present a mixed integer programming model to optimize the performance of graphical rendering and simulation performance while satisfying application specific constraints. Our approach includes three distinct phases: identification, optimization and update . In the identification phase, the computing and rendering capabilities of the client device are evaluated using an exploratory proxy code. This data is utilized in conjunction with user specified design requirements in the optimization phase to ensure best possible computational resource allocation. The optimum solution is used for rendering (e.g. texture size, canvas resolution) and simulation parameters (e.g. simulation domain) in the update phase. Test results are presented on multiple hardware platforms with diverse computing and graphics capabilities to demonstrate the effectiveness of our approach.

  16. Computer programming for generating visual stimuli.

    PubMed

    Bukhari, Farhan; Kurylo, Daniel D

    2008-02-01

    Critical to vision research is the generation of visual displays with precise control over stimulus metrics. Generating stimuli often requires adapting commercial software or developing specialized software for specific research applications. In order to facilitate this process, we give here an overview that allows nonexpert users to generate and customize stimuli for vision research. We first give a review of relevant hardware and software considerations, to allow the selection of display hardware, operating system, programming language, and graphics packages most appropriate for specific research applications. We then describe the framework of a generic computer program that can be adapted for use with a broad range of experimental applications. Stimuli are generated in the context of trial events, allowing the display of text messages, the monitoring of subject responses and reaction times, and the inclusion of contingency algorithms. This approach allows direct control and management of computer-generated visual stimuli while utilizing the full capabilities of modern hardware and software systems. The flowchart and source code for the stimulus-generating program may be downloaded from www.psychonomic.org/archive.

  17. Optimization Model for Web Based Multimodal Interactive Simulations

    PubMed Central

    Halic, Tansel; Ahn, Woojin; De, Suvranu

    2015-01-01

    This paper presents a technique for optimizing the performance of web based multimodal interactive simulations. For such applications where visual quality and the performance of simulations directly influence user experience, overloading of hardware resources may result in unsatisfactory reduction in the quality of the simulation and user satisfaction. However, optimization of simulation performance on individual hardware platforms is not practical. Hence, we present a mixed integer programming model to optimize the performance of graphical rendering and simulation performance while satisfying application specific constraints. Our approach includes three distinct phases: identification, optimization and update. In the identification phase, the computing and rendering capabilities of the client device are evaluated using an exploratory proxy code. This data is utilized in conjunction with user specified design requirements in the optimization phase to ensure best possible computational resource allocation. The optimum solution is used for rendering (e.g. texture size, canvas resolution) and simulation parameters (e.g. simulation domain) in the update phase. Test results are presented on multiple hardware platforms with diverse computing and graphics capabilities to demonstrate the effectiveness of our approach. PMID:26085713

  18. Feature extraction using first and second derivative extrema (FSDE) for real-time and hardware-efficient spike sorting.

    PubMed

    Paraskevopoulou, Sivylla E; Barsakcioglu, Deren Y; Saberi, Mohammed R; Eftekhar, Amir; Constandinou, Timothy G

    2013-04-30

    Next generation neural interfaces aspire to achieve real-time multi-channel systems by integrating spike sorting on chip to overcome limitations in communication channel capacity. The feasibility of this approach relies on developing highly efficient algorithms for feature extraction and clustering with the potential of low-power hardware implementation. We are proposing a feature extraction method, not requiring any calibration, based on first and second derivative features of the spike waveform. The accuracy and computational complexity of the proposed method are quantified and compared against commonly used feature extraction methods, through simulation across four datasets (with different single units) at multiple noise levels (ranging from 5 to 20% of the signal amplitude). The average classification error is shown to be below 7% with a computational complexity of 2N-3, where N is the number of sample points of each spike. Overall, this method presents a good trade-off between accuracy and computational complexity and is thus particularly well-suited for hardware-efficient implementation. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Classroom Laboratory Report: Using an Image Database System in Engineering Education.

    ERIC Educational Resources Information Center

    Alam, Javed; And Others

    1991-01-01

    Describes an image database system assembled using separate computer components that was developed to overcome text-only computer hardware storage and retrieval limitations for a pavement design class. (JJK)

  20. Flight code validation simulator

    NASA Astrophysics Data System (ADS)

    Sims, Brent A.

    1996-05-01

    An End-To-End Simulation capability for software development and validation of missile flight software on the actual embedded computer has been developed utilizing a 486 PC, i860 DSP coprocessor, embedded flight computer and custom dual port memory interface hardware. This system allows real-time interrupt driven embedded flight software development and checkout. The flight software runs in a Sandia Digital Airborne Computer and reads and writes actual hardware sensor locations in which Inertial Measurement Unit data resides. The simulator provides six degree of freedom real-time dynamic simulation, accurate real-time discrete sensor data and acts on commands and discretes from the flight computer. This system was utilized in the development and validation of the successful premier flight of the Digital Miniature Attitude Reference System in January of 1995 at the White Sands Missile Range on a two stage attitude controlled sounding rocket.

Top