Electrokinetic delivery of persulfate to remediate PCBs polluted soils: effect of injection spot.
Fan, Guangping; Cang, Long; Fang, Guodong; Qin, Wenxiu; Ge, Liqiang; Zhou, Dongmei
2014-12-01
Persulfate-based in situ chemical oxidation (ISCO) is a promising technique for the remediation of organic compounds contaminated soils. Electrokinetics (EK) provides an alternative method to deliver oxidants into the target zones especially in low permeable-soil. In this study, the flexibility of delivering persulfate by EK to remediate polychlorinated biphenyls (PCBs) polluted soil was investigated. 20% (w/w) of persulfate was injected at the anode, cathode and both electrodes to examine its transport behaviors under electrical field, and the effect of field inversion process was also evaluated. The results showed that high dosage of persulfate could be delivered into S4 section (near cathode) by electroosmosis when persulfate was injected from anode, 30.8% of PCBs was removed from the soil, and the formed hydroxyl precipitation near the cathode during EK process impeded the transportation of persulfate. In contrast, only 18.9% of PCBs was removed with the injection of persulfate from cathode, although the breakthrough of persulfate into the anode reservoir was observed. These results indicated that the electroosmotic flow is more effective for the transportation of persulfate into soil. The addition of persulfate from both electrodes did not significantly facilitate the PCBs oxidation as well as the treatment of electrical field reversion, the reinforced negative depolarization function occurring in the cathode at high current consumed most of the oxidant. Furthermore, it was found that strong acid condition near the anode favored the oxidation of PCBs by persulfate and the degradation of PCBs was in consistent with the oxidation of Soil TOC in EK/persulfate system. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Quig, L.; Johnson, G. R.
2015-12-01
Persulfate ISCO has been shown to treat a wide range of contaminants. While persulfate ISCO can be tailored to site and pollutant specific characteristics (e.g., activation via energy or catalysis), thermal activation of persulfate is particularly promising as it can be easily controlled and requires no additional reagents. A mechanistic study of the physical and chemical processes controlling the effectiveness of this remedial approach is not well documented in the literature with much therein focused on reactions in batch systems. The purpose of this research was twofold. Initial studies characterized the overall transport behavior of unactivated and thermally-activated persulfate (20, 60, and 90°C) in one-dimensional soil column systems. Finally, experiments were conducted to investigate persulfate ISCO as a remedial approach for residual-phase trichloroethylene (TCE). At all activation temperatures investigated, persulfate exhibited ideal transport behavior in miscible displacement experiments. Moment analysis of persulfate ion breakthrough curves indicated negligible interaction of persulfate with the natural sandy material. Persulfate ISCO for residual-phase TCE was characterized at two flow rates, 0.2 mL/min and 0.5 mL/min, resulting in two degrees of persulfate activation, 39.5% and 24.6%, respectively. Both ISCO soil column systems showed an initial, long-term plateau in effluent TCE concentrations indicating steady-state dissolution of pure phase TCE. Observed effluent concentrations decreased after 75 and 100 pore volumes (normalized for the measured residual NAPL fraction) compared to 110 pore volumes in the control study. Pseudo first-order reaction rate constants for the decreasing TCE concentrations equaled 0.063/hr and 0.083/hr, respectively, compared to 0.041/hr for the control. Moment analysis of the complete dissolution of TCE in the persulfate/activated persulfate remediation systems indicated approximately 33% oxidation of TCE mass present. By characterizing the overall transport behavior and application of persulfate/heat-activated persulfate in a natural porous media for the ISCO of residual nonaqueous phase liquid, this work aids in improving the implementation of persulfate ISCO systems.
Degradation of landfill leachate compounds by persulfate for groundwater remediation
Zhong, Hua; Tian, Yaling; Yang, Qi; Brusseau, Mark L; Yang, Lei; Zeng, Guangming
2016-01-01
In this study, batch and column experiments were conducted to evaluate the feasibility of using persulfate oxidation to treat groundwater contaminated by landfill leachate (CGW). In batch experiments, persulfate was compared with H2O2, and permanganate for oxidation of organic compounds in CGW. It was also compared with the potential of biodegradation for contaminant removal from CGW. Persulfate was observed to be superior to H2O2 and permanganate for degradation of total organic carbon (TOC) in the CGW. Conversely, biodegradation caused only partial removal of TOC in CGW. In contrast, persulfate caused complete degradation of the TOC in the CGW or aged CGW, showing no selectivity limitation to the contaminants. Magnetite (Fe3O4) enhanced degradation of leachate compounds in both CGW and aged CGW with limited increase in persulfate consumption and sulfate production. Under dynamic flow condition in 1-D column experiments, both biodegradation and persulfate oxidation of TOC were enhanced by Fe3O4. The enhancement, however, was significantly greater for persulfate oxidation. In both batch and column experiments, Fe3O4 by itself caused minimal consumption of persulfate and production of sulfate, indicating that magnetite is a good persulfate activator for treating CGW in heterogeneous systems The results of the study show that the persulfate-based in-situ chemical oxidation (ISCO) method has great potential to treat the groundwater contaminated by landfill leachate. PMID:28584519
UV-activated persulfate oxidation and regeneration of NOM-Saturated granular activated carbon.
An, Dong; Westerhoff, Paul; Zheng, Mengxin; Wu, Mengyuan; Yang, Yu; Chiu, Chao-An
2015-04-15
A new method of ultraviolet light (UV) activated persulfate (PS) oxidation was investigated to regenerate granular activated carbon (GAC) in drinking water applications. The improvements in iodine and methylene blue numbers measured in the GAC after ultraviolet- (UV) activated persulfate suggested that the GAC preloaded with natural organic matter (NOM) was chemically regenerated. An experimental matrix for UV-activated persulfate regeneration included a range of persulfate doses and different UV wavelengths. Over 87% of the initial iodine number for GAC was restored under the optimum conditions, perfulfate dosage 60 g/L and UV exposure 1.75 × 10(4) mJ/cm(2). The persulfate dosages had little effect on the recovery of the methylene blue number, which was approximately 65%. Persulfate activation at 185 nm was superior to activation at 254 nm. UV activation of persulfate in the presence of GAC produced acid, lowering the solution pH. Higher persulfate concentrations and UV exposure resulted in greater GAC regeneration. Typical organic and inorganic byproducts (e.g., benzene compounds and sulfate ions) were measured as a component of treated water quality safety. This study provides a proof-of-concept that can be used to optimize pilot-scale and full-scale UV-activated persulfate for regeneration of NOM-saturated GAC. Copyright © 2015 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-08
..., potassium, and sodium persulfates. The chemical formula for these persulfates are, respectively, (NH 4 ) 2 S 2 O 8 , K 2 S 2 O 8 , and Na 2 S 2 O 8 . Potassium persulfates are currently classifiable under...
Persulfate Oxidation of MTBE- and Chloroform-Spent Granular Activated Carbon
Activated persulfate (Na2S2O8) regeneration of methyl tert-butyl ether (MTBE) and chloroform-spent GAC was evaluated in this study. Thermal-activation of persulfate was effective and resulted in greater MTBE removal than either alkaline-activation or H2O2–persulfate binary mixtur...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-17
... ammonium, potassium, and sodium persulfates. The chemical formula for these persulfates are, respectively, (NH 4 ) 2 S 2 O 8 , K 2 S 2 O 8 , and Na 2 S 2 O 8 . Potassium persulfates are currently classifiable...
Kim, Cheolyong; Ahn, Jun-Young; Kim, Tae Yoo; Shin, Won Sik; Hwang, Inseong
2018-03-20
The mechanisms involved in the activation of persulfate by nanosized zero-valent iron (NZVI) were elucidated and the NZVI transformation products identified. Two distinct reaction stages, in terms of the kinetics and radical formation mechanism, were found when phenol was oxidized by the persulfate/NZVI system. In the initial stage, lasting 10 min, Fe 0 (s) was consumed rapidly and sulfate radicals were produced through activation by aqueous Fe 2+ . The second stage was governed by Fe catalyzed activation in the presence of aqueous Fe 3+ and iron (oxyhydr)oxides in the NZVI shells. The second stage was 3 orders of magnitude slower than the initial stage. An electron balance showed that the sulfate radical yield per mole of persulfate was more than two times higher in the persulfate/NZVI system than in the persulfate/Fe 2+ system. Radicals were believed to be produced more efficiently in the persulfate/NZVI system because aqueous Fe 2+ was supplied slowly, preventing sulfate radicals being scavenged by excess aqueous Fe 2+ . In the second stage, the multilayered shell conducted electrons, and magnetite in the shell provided electrons for the activation of persulfate. Iron speciation analysis (including X-ray absorption spectroscopy) results indicated that a shrinking core/growing shell model explained NZVI transformation during the persulfate/NZVI process.
Chen, Xiao; Li, Hongbing; Liu, Xiaoyan; Zhang, Xinying; Liang, Xia; He, Chiquan; Cao, Liya
2016-10-01
The in situ chemical oxidation technology (ISCO) and phytoremediation for PAHs have been studied respectively, but few focus on the feasibility of combining persulfate with ryegrass. This literature revealed the effect of persulfate oxidation on the growth of ryegrass and the removal ratios of pyrene in the couple system of persulfate oxidation and phytoremediation. The results demonstrated that half of pyrene in test soil was oxidized by persulfate in 7 days and then the residual pyrene concentration was decreased to a lower level by ryegrass in the following 2 months in oxidation treatment and drip washing and plants (OWP) and oxidation treatment and drip washing and plants and fertilization (OWFP) treatment. Ryegrass could grow well after persulfate oxidation with the oxidized soil washed by water. Ryegrass in OWP and OWFP treatments had higher ratios of overground and underground biomass. However, the seeds of ryegrass cannot germinate when drip washing was omitted. Pyrene together with residual persulfate changed soil enzyme activities. Drip washing and the growth of ryegrass made soil enzyme activities tend to returned to normal levels. Persulfate oxidation and phytoremediation were compatible to make contributions to the dissipation of pyrene. Persulfate oxidation activated by heat had higher removal efficiency of PAHs and phytoremediation could further decrease the pyrene concentration in spiked soil.
NASA Astrophysics Data System (ADS)
Chowdhury, A. I.; Gerhard, J.; Reynolds, D. A.; OCarroll, D.
2016-12-01
Remediation of low permeability soils is challenging because delivering remediants into these formations is difficult. Electrokinetics (EK) has been proposed as a new approach to overcome this difficulty, for example, to deliver oxidants such as persulfate into silts and clays. However, activation of the persulfate in such scenarios remains a challenge. The current study proposes a novel approach of combining (i) EK-assisted persulfate delivery with (ii) low temperature electrical resistance heating (ERH) to activate the persulfate. The advantage of this new approach that a single set of electrodes can be used for both oxidant delivery and oxidant activation in low permeability, contaminated soil. Proof-of-concept experiments were conducted in a two-dimensional sandbox packed with silt exhibiting high concentrations of aqueous phase tetrachloroethene (PCE). Results showed that (1) EK delivered the non-activated persulfate throughout the silt, (2) ERH was able to achieve and sustain the targeted temperatures to activate the persulfate, and (3) these resulted in complete PCE degradation at all locations. Activating persulfate at a temperature around 36 °C was better than at 42 °C (or higher), because the former more slowly generated the reactive SO4ˉ● radical which ensured more complete reaction with the contaminant. This study proved the concept of this novel, coupled approach for delivering and activating persulfate for remediating chlorinated solvents in low permeability soils.
Bajagain, Rishikesh; Lee, Sojin; Jeong, Seung-Woo
2018-09-01
This study investigated a persulfate-bioaugmentation serial foam spraying technique to remove total petroleum hydrocarbons (TPHs) present in diesel-contaminated unsaturated soil. Feeding of remedial agents by foam spraying increased the infiltration/unsaturated hydraulic conductivity of reagents into the unsaturated soil. Persulfate mixed with a surfactant solution infiltrated the soil faster than peroxide, resulting in relatively even soil moisture content. Persulfate had a higher soil infiltration tendency, which would facilitate its distribution over a wide soil area, thereby enhancing subsequent biodegradation efficiency. Nearly 80% of soil-TPHs were degraded by combined persulfate-bioaugmentation foam spraying, while bioaugmentation foam spraying alone removed 52%. TPH fraction analysis revealed that the removal rate for the biodegradation recalcitrant fraction (C 18 to C 22 ) in deeper soil regions was higher for persulfate-bioaugmentation serial foam application than for peroxide-bioaugmentation foam application. Persulfate-foam spraying may be superior to peroxide for TPH removal even at a low concentration (50 mN) because persulfate-foam is more permeable, persistent, and does not change soil pH in the subsurface. Although the number of soil microbes declines by oxidation pretreatment, bioaugmentation-foam alters the microbial population exponentially. Copyright © 2018 Elsevier Ltd. All rights reserved.
Activated persulfate for organic chemical degradation: A review.
Matzek, Laura W; Carter, Kimberly E
2016-05-01
Activated persulfate reactions have widespread application for groundwater and environmental remediation, as many of these reactions involve destruction of environmental contaminants. Within the last five years, knowledge of activated persulfate degradation reactions has grown to include novel means of activating persulfate for enhanced removal of organic species. These current studies cover a long list of organic analytes, including pharmaceuticals, pesticides, halogenated compounds and dyes. An extensive review of recently published experimental parameters and results for the destruction of organic compounds via activated persulfate is presented. Focus is placed on emerging methodologies and manipulation of traditional activation techniques. Knowledge gaps are identified and discussed, as despite the number of publications on this subject, more broad-reaching guidelines are needed for optimizing applications of activated persulfate in water treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Final report on the safety assessment of Ammonium, Potassium, and Sodium Persulfate.
Pang, S; Fiume, M Z
2001-01-01
Ammonium, Potassium, and Sodium Persulfate are inorganic salts used as oxidizing agents in hair bleaches and hair-coloring preparations. Persulfates are contained in hair lighteners at concentrations up to 60%, in bleaches and lighteners at up to 22% and 16%, respectively, and in off-the-scalp products used to highlight hair strands at up to 25%. They are used in professional product bleaches and lighteners at similar concentrations. Much of the available safety test data are for Ammonium Persulfate, but these data are considered applicable to the other salts as well. Acute dermal, oral, and inhalation toxicity studies are available, but only the latter are remarkable, with gross lesions observed in the lungs, liver, stomach, and spleen. In short-term and subchronic feeding studies the results were mixed; some studies found no evidence of toxicity and others found local damage to the mucous membrane in the gastrointestinal tract, but no other systemic effects. Short-term inhalation toxicity was observed when rats were exposed to aerosolized Ammonium Persulfate at concentrations of 4 mg/m3 and greater. Ammonium Persulfate (as a moistened powder) was not an irritant to intact rabbit skin, but was sensitizing (in a saline solution) to the guinea pig. It was slightly irritating to rabbit eyes. Ammonium Persulfate was negative in the Ames test and the chromosomal aberration test. No significant evidence of tumor promotion or carcinogenicity was observed in studies of rats receiving topical applications of Ammonium Persulfate. The persulfates were reported to cause both delayed-type and immediate skin reactions, including irritant dermatitis, allergic eczematous dermatitis, localized contact urticaria, generalized urticaria, rhinitis, asthma, and syncope. The most common causes of allergic dermatitis in hairdressers are the active ingredients in hair dyes, and Ammonium Persulfate has been identified as a frequent allergen. A sensitization study that also examined the incidence of urticarial reactions was performed with 17.5% Ammonium, Potassium, and Sodium Persulfate under occlusive patches. At this concentration and exposure conditions, a mixture of these Persulfates was not sensitizing, and application of Ammonium, Potassium, and Sodium Persulfate did not result in an urticarial reaction. In normal use (i.e., not occluded and rinsed off), it was expected that a concentration greater than 17.5% would also be safe. Given the clinical reports of urticarial reactions, however, manufacturers and formulators should be aware of the potential for urticarial reactions at concentrations of Persulfates greater than 17.5%. Based on the available data, the Cosmetic Ingredient Review (CIR) Expert Panel concluded that Ammonium, Potassium, and Sodium Persulfate are safe as used as oxidizing agents in hair colorants and lighteners designed for brief discontinuous use followed by thorough rinsing from the hair and skin.
Trimethoprim degradation by Fenton and Fe(II)-activated persulfate processes.
Wang, Shizong; Wang, Jianlong
2018-01-01
Trimethoprim is a pollutant ubiquitous in the environment due to its extensive application, and it cannot be effectively removed by conventional wastewater treatment processes. In this study, the Fenton and the Fe(II)-activated persulfate processes were employed to degrade trimethoprim in an aqueous solution. The results showed that the concentration of persulfate, H 2 O 2 and Fe(II) a had significant influence on the degradation of trimethoprim in both processes. De-ionized water spiked with trimethoprim resulted in the complete degradation of trimethoprim (0.05 mM) by the mineralization of 54.9% of Fenton's reagent when the concentrations of H 2 O 2 and Fe(II) were 1 mM and 0.05 mM, respectively. In contrast, 73.4% of trimethoprim was degraded by the mineralization of 40.5% of the Fe(II)-activated persulfate process when the concentration of persulfate and Fe(II) were each 4 mM. Intermediate compounds with different m/z were detected for the Fenton and the Fe(II)-activated persulfate processes, indicating alternative degradation pathways. In the actual wastewater spiked with trimethoprim, the removal efficiency of trimethoprim decreased to 35.8% and 43.6%, respectively, for the Fenton and the Fe(II)-activated persulfate processes. In addition, the decomposition efficiencies for hydrogen peroxide and persulfate were 43.8% and 92.5%, respectively, which was lower than those in the de-ionized water system. These results demonstrated that wastewater components had a negative influence on trimethoprim degradation and the decomposition of the oxidants (persulfate and H 2 O 2 ). In summary, the Fe(II)-activated persulfate process could be used as an alternative technology for treating trimethoprim-containing wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liu, Haizhou; Bruton, Thomas A; Doyle, Fiona M; Sedlak, David L
2014-09-02
Persulfate (S2O8(2-)) is being used increasingly for in situ chemical oxidation (ISCO) of organic contaminants in groundwater, despite an incomplete understanding of the mechanism through which it is converted into reactive species. In particular, the decomposition of persulfate by naturally occurring mineral surfaces has not been studied in detail. To gain insight into the reaction rates and mechanism of persulfate decomposition in the subsurface, and to identify possible approaches for improving its efficacy, the decomposition of persulfate was investigated in the presence of pure metal oxides, clays, and representative aquifer solids collected from field sites in the presence and absence of benzene. Under conditions typical of groundwater, Fe(III)- and Mn(IV)-oxides catalytically converted persulfate into sulfate radical (SO4(•-)) and hydroxyl radical (HO(•)) over time scales of several weeks at rates that were 2-20 times faster than those observed in metal-free systems. Amorphous ferrihydrite was the most reactive iron mineral with respect to persulfate decomposition, with reaction rates proportional to solid mass and surface area. As a result of radical chain reactions, the rate of persulfate decomposition increased by as much as 100 times when benzene concentrations exceeded 0.1 mM. Due to its relatively slow rate of decomposition in the subsurface, it can be advantageous to inject persulfate into groundwater, allowing it to migrate to zones of low hydraulic conductivity where clays, metal oxides, and contaminants will accelerate its conversion into reactive oxidants.
2015-01-01
Persulfate (S2O82–) is being used increasingly for in situ chemical oxidation (ISCO) of organic contaminants in groundwater, despite an incomplete understanding of the mechanism through which it is converted into reactive species. In particular, the decomposition of persulfate by naturally occurring mineral surfaces has not been studied in detail. To gain insight into the reaction rates and mechanism of persulfate decomposition in the subsurface, and to identify possible approaches for improving its efficacy, the decomposition of persulfate was investigated in the presence of pure metal oxides, clays, and representative aquifer solids collected from field sites in the presence and absence of benzene. Under conditions typical of groundwater, Fe(III)- and Mn(IV)-oxides catalytically converted persulfate into sulfate radical (SO4•–) and hydroxyl radical (HO•) over time scales of several weeks at rates that were 2–20 times faster than those observed in metal-free systems. Amorphous ferrihydrite was the most reactive iron mineral with respect to persulfate decomposition, with reaction rates proportional to solid mass and surface area. As a result of radical chain reactions, the rate of persulfate decomposition increased by as much as 100 times when benzene concentrations exceeded 0.1 mM. Due to its relatively slow rate of decomposition in the subsurface, it can be advantageous to inject persulfate into groundwater, allowing it to migrate to zones of low hydraulic conductivity where clays, metal oxides, and contaminants will accelerate its conversion into reactive oxidants. PMID:25133603
Songlin, Wang; Ning, Zhou; Si, Wu; Qi, Zhang; Zhi, Yang
2015-03-01
Ultrasound degradation of humic acid has been investigated in the presence of persulfate anions at ultrasonic frequency of 40 kHz. The effects of persulfate anion concentration, ultrasonic power input, humic acid concentration, reaction time, solution pH and temperature on humic acid removal efficiency were studied. It is found that up to 90% humic acid removal efficiency was achieved after 2 h reaction. In this system, sulfate radicals (SO₄⁻·) were considered to be the mainly oxidant to mineralize humic acid while persulfate anion can hardly react with humic acid directly. A novel kinetic model based on sulfate radicals (SO₄⁻·) oxidation was established to describe the humic acid mineralization process mathematically and chemically in sono-activated persulfate system. According to the new model, ultrasound power, persulfate dosage, solution pH and reaction temperature have great influence on humic acid degradation. Different initial concentration of persulfate anions and humic acid, ultrasonic power, initial pH and reaction temperature have been discussed to valid the effectiveness of the model, and the simulated data showed new model had good agreement with the experiments data.
Cai, Jingju; Zhou, Minghua; Liu, Ye; Savall, André; Groenen Serrano, Karine
2018-08-01
This research investigated persulfate electrosynthesis using a boron-doped diamond anode and a chemical reaction of persulfate in its activated form with an herbicide, 2,4-Dichlorophenoxyacetic acid (2,4-D). The first part of this research is dedicated to the influence of the applied current density on the electrosynthesis of persulfate. The first part shows that for a 2 M sulfuric acid, the current efficiency reached 96% for 5 mA/cm 2 and dropped to 52% for a higher current density (100 mA cm -2 ). This fall cannot be explained by mass transfer limitations: an increase in temperature (from 9 to 30 °C) during electrolysis leads to the decomposition of 23% of the persulfate. The second part of this research shows that a quasi-complete degradation of the target herbicide can be reached under controlled operating conditions: (i) a high ratio of initial concentrations [Persulfate]/[2,4-D], (ii) a minimum temperature of 60 °C that produces sulfate radicals by heat decomposition of persulfate, and (iii) a sufficient contact time between reactants is required under dynamic conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Yin, Penghua; Hu, Zhihao; Song, Xin; Liu, Jianguo; Lin, Na
2016-01-01
Perfluorooctanoic acid (PFOA) is an emerging contaminant of concern due to its toxicity for human health and ecosystems. However, successful degradation of PFOA in aqueous solutions with a cost-effective method remains a challenge, especially for groundwater. In this study, the degradation of PFOA using activated persulfate under mild conditions was investigated. The impact of different factors on persulfate activity, including pH, temperature (25 °C–50 °C), persulfate dosage and reaction time, was evaluated under different experimental conditions. Contrary to the traditional alkaline-activated persulfate oxidation, it was found that PFOA can be effectively degraded using activated persulfate under acidic conditions, with the degradation kinetics following the pseudo-first-order decay model. Higher temperature, higher persulfate dosage and increased reaction time generally result in higher PFOA degradation efficiency. Experimental results show that a PFOA degradation efficiency of 89.9% can be achieved by activated persulfate at pH of 2.0, with the reaction temperature of 50 °C, molar ratio of PFOA to persulfate as 1:100, and a reaction time of 100 h. The corresponding defluorination ratio under these conditions was 23.9%, indicating that not all PFOA decomposed via fluorine removal. The electron paramagnetic resonance spectrometer analysis results indicate that both SO4−• and •OH contribute to the decomposition of PFOA. It is proposed that PFOA degradation occurs via a decarboxylation reaction triggered by SO4−•, followed by a HF elimination process aided by •OH, which produces one-CF2-unit-shortened perfluoroalkyl carboxylic acids (PFCAs, Cn−1F2n−1COOH). The decarboxylation and HF elimination processes would repeat and eventually lead to the complete mineralization all PFCAs. PMID:27322298
Effect and mechanism of persulfate activated by different methods for PAHs removal in soil
The influence of persulfate activation methods on polycyclic aromatic hydrocarbons (PAHs) degradation was investigated and included thermal, citrate chelated iron, and alkaline, and a hydrogen peroxide(H2O2)-persulfate binary mixture. Thermal activation (60◦C) resulted in t...
Persulfate activation by subsurface minerals.
Ahmad, Mushtaque; Teel, Amy L; Watts, Richard J
2010-06-25
Persulfate dynamics in the presence of subsurface minerals was investigated as a basis for understanding persulfate activation for in situ chemical oxidation (ISCO). The mineral-mediated decomposition of persulfate and generation of oxidants and reductants was investigated with four iron and manganese oxides and two clay minerals at both low pH (<7) and high pH (>12). The manganese oxide birnessite was the most effective initiator of persulfate for degrading the oxidant probe nitrobenzene, indicating that oxidants are generated at both low and high pH regimes. The iron oxide goethite was the most effective mineral for degrading the reductant probe hexachloroethane. A natural soil and two soil fractions were used to confirm persulfate activation by synthetic minerals. The soil and soil fractions did not effectively promote the generation of oxidants or reductants. However, soil organic matter was found to promote reductant generation at high pH. The results of this research demonstrate that synthetic iron and manganese oxides can activate persulfate to generate reductants and oxidants; however, iron and manganese oxides in the natural soil studied do not show the same reactivity, most likely due to the lower masses of the metal oxides in the soil relative to the masses studied in isolated mineral systems. 2010. Published by Elsevier B.V.
Hyk, Wojciech; Kitka, Konrad
2017-02-01
A system composed of persulfate salt and ammonia in highly alkaline aqueous solution is developed and examined for leaching metallic silver from elements of the electronic waste materials (e-scrap). Strong base activates persulfate ions providing in situ generation of highly reactive oxygen molecules. The oxidized metal forms then well soluble complex ions with ammonia ligands. The kinetic studies of the leaching process were performed for pure metallic silver. They revealed that the efficiency of the process is affected by the type of the persulfate salt. By employing potassium persulfate one obtains significantly (more than 50% for silver plates and more than 100% for silver powder) increased efficiency of silver dissolution compared to the solution composed of either sodium or ammonium persulfates. In the range of persulfate concentrations between 0.02 and 0.23mol/L the apparent reaction order with respect to the persulfate concentration was similar for all persulfate salts and was estimated to be around 0.5. The room temperature (22±2°C) seems to be an optimal temperature for the leaching process. An increase in the temperature resulted in the significant drop in the silver dissolution rate due to the decreased solubility of oxygen. Based on these results a possible mechanism of dissolving silver is discussed and the optimal composition of the leaching solution is formulated. The obtained formulation of the leaching solution was applied for the extraction of silver coatings of Cu-based e-waste scrap and the obtained results revealed an important effect of copper in the mechanism of the leaching process. The regression analysis of the leaching curve indicated that each gram of base-activated potassium persulfate under the specified conditions may leach almost 100mg of silver coatings in a form of well soluble diamminesilver (I) complex. The silver complex can be relatively easy reduced to metallic silver. The method developed is relatively cheap, low toxic and does not produce harmful by-products. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
O'Carrol, D. M.; Head, N.; Chowdhury, A. I.; Inglis, A.; Garcia, A. N.; Reynolds, D. A.; Hayman, J.; Hogberg, D.; Austrins, L. M.; Sidebottom, A.; Auger, M.; Eimers, J.; Gerhard, J.
2017-12-01
Remediation of low-permeability soils that are contaminated with chlorinated solvents is challenging. In-situ chemical oxidation (ISCO) with persulfate is promising, however, the delivery of the oxidant by hydraulic gradient is limited in low-permeability soils. Electrokinetic (EK) enhanced transport of amendments has shown the potential to overcome these limitations. In particular, the combined technology of EK-delivered and thermally activated persulfate (EKTAP) has been recently demonstrated in the laboratory as promising in these challenging environments (Chowdhury A. I. (2016) Hydraulic and Electrokinetic Delivery of Remediants for In-situ Remediation. Electronic Thesis and Dissertation Repository, Paper 4135). This study presents the first pilot field test to evaluate EKTAP to enhance the distribution and effectiveness of persulfate in clayey soil. The pilot field test was conducted at a contaminated site formerly occupied by a chlorinated solvent production facility. In the EK transport phase, 925 L of 40 g/L persulfate was injected over 57 days, during which 9A of direct current (DC) was applied between two electrodes spaced 3 m apart. In the subsequent heating phase, 10A of alternate current (AC) was applied across the same electrodes for an additional 70 days. Extensive sampling of soil and groundwater in this EKTAP cell were compared to those from two parallel control cells, one with EK only and one with no electrodes. Results indicated that EK can significantly increase transport rates of persulfate in clayey soil. Persulfate activation primarily occurred in the period of DC application, indicating that the natural reduction capacity of the clay soil had a significant impact on persulfate decomposition. Temperature mapping indicated that AC current was able to increase soil temperatures, validating the EKTAP concept. Degradation of chlorinated compounds, in particular, 1-2, dichloroethane (1,2- DCA), was observed to be substantial in areas of persulfate delivery. Studies are ongoing to evaluate the mineral oxidation of the persulfate and how to optimize the system for both EK and ERH applications. This study nevertheless demonstrates for the first time at the field scale that EKTAP can result in enhanced amendment transport and remediation of low permeability strata.
Richardson, Stephen D.; Lebron, Benjamin L.; Miller, Cass T.; Aitken, Michael D.
2010-01-01
A continuous-flow column study was conducted to investigate the long-term effects of persulfate oxidation on the abundance and activity of the indigenous microbial community and phenanthrene-degrading bacteria in contaminated soil from a former manufactured gas plant (MGP) site. Approximately six pore volumes of a 20 g/L persulfate solution were introduced into the column, followed by simulated groundwater for 500 d. Soil samples were collected from the surface of the soil bed and along the column length immediately before and after persulfate injection and up to 500 d following injection. Exposure to persulfate led to a two- to three-log reduction in total bacterial 16S rRNA genes, severe inhibition of 14C-acetate mineralization (as a measure of general microbial activity), and a decrease in community diversity. However, relatively rapid recovery of both bacterial gene abundance and activity was observed within 30 d after persulfate exposure. Mineralization of 14C-phenanthrene was also inhibited but did not recover until 100 d post-oxidation. Known phenanthrene-degrading bacterial groups decreased to below detection limits throughout the column, with recovery times from 100 d to 500 d after persulfate injection. These findings suggest that coupling biological processes with persulfate oxidation is possible, although recovery of specific contaminant degraders may occur much later than the general microbial community recovers. Furthermore, the use of total bacterial quantity or non-specific measures of activity as a surrogate for the recovery of contaminant degraders may be inappropriate for evaluating the compatibility of chemical treatment with subsequent bioremediation. PMID:21162560
Intensification of sonochemical degradation of ammonium perfluorooctanoate by persulfate oxidant.
Hao, Feifei; Guo, Weilin; Wang, Anqi; Leng, Yanqiu; Li, Helian
2014-03-01
Ammonium perfluorooctanoate (APFO) is an emerging environmental pollutant attracting significant attention due to its global distribution, high persistence, and bioaccumulation properties. The decomposition of APFO in aqueous solution with a combination of persulfate oxidant and ultrasonic irradiation was investigated. The effects of operating parameters, such as ultrasonic power, persulfate concentration, APFO concentration, and initial media pH on APFO degradation were discussed. In the absence of persulfate, 35.5% of initial APFO in 46.4 μmol/L solution under ultrasound irradiation, was decomposed rapidly after 120 min with the defluorination ratio reaching 6.73%. In contrast, when 10 mmol/L persulfate was used, 51.2% of initial APFO (46.4 μmol/L) was decomposed and the defluorination ratio reached 11.15% within 120 min reaction time. Enhancement of the decomposition of APFO can be explained by acceleration of substrate decarboxylation, induced by sulfate radical anions formed from the persulfate during ultrasonic irradiation. The SO4(-•)/APFO reactions at the bubble-water interface appear to be the primary pathway for the sonochemical degradation of the perfluorinated surfactants. Copyright © 2013 Elsevier B.V. All rights reserved.
Mineralization of aniline in aqueous solution by electrochemical activation of persulfate.
Chen, Wen-Shing; Huang, Chi-Pin
2015-04-01
Oxidative degradation of aniline in aqueous solution was carried out by coupling electrolysis with persulfate oxidation, in which a synergistic effect occurred. Experiments were performed under a batch-wise mode to evaluate the influence of various operation parameters on the electrolytic behavior, such as acidity of aqueous solution, temperature, electrode potential, persulfate anion concentration and nitrogen/oxygen gas dosage. The aniline pollutants could be almost entirely mineralized by means of electro-activated persulfate oxidation, wherein sulfate radicals were presumed to be principal oxidizing agents. Besides, electrogenerated hydrogen peroxide originated from cathodic reduction of oxygen, supplied chiefly by anodic oxidation of water, would contribute partially for decomposition of aniline. On the whole, the electro-activated persulfate process is a very promising method for treatment of aniline in wastewater. Copyright © 2014 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-17
... DEPARTMENT OF COMMERCE International Trade Administration [A-570-847] Persulfates From the People.... Department of Commerce, 14th Street and Constitution Avenue, NW., Washington, DC 20230; telephone: (202) 482... antidumping duty order on persulfates from the People's Republic of China (``PRC'').\\1\\ The period of review...
The goal of this study was to assess the oxidation of NAPL in soil, 30% of which were composed of chlorinated ethanes and ethenes, using catalyzed hydrogen peroxide (CHP), activated persulfate (AP), and H2O2–persulfate (HP) co-amendment systems. Citrate, a buffer and iron ligand,...
2006-08-01
Persulfate S2O82- + 2 e- 2 SO42- 2.1 V (persulfate) (9) ·SO4- + e- SO42- 2.6 V ( sulfate radical) (10) 1 Persistence...E = susceptible Notes: 1 Persulfate/ sulfate radical reactivity studies with 66 organic compounds and isomers under various conditions have been...may produce reac- tion byproducts that include dichloroacetaldehyde and dichloroacetic acid , compounds with lower toxicity. Similarly, oxidation of
Patton, Charles J.; Kryskalla, Jennifer R.
2003-01-01
Alkaline persulfate digestion was evaluated and validated as a more sensitive, accurate, and less toxic alternative to Kjeldahl digestion for routine determination of nitrogen and phosphorus in surface- and ground-water samples in a large-scale and geographically diverse study conducted by U.S. Geological Survey (USGS) between October 1, 2001, and September 30, 2002. Data for this study were obtained from about 2,100 surface- and ground-water samples that were analyzed for Kjeldahl nitrogen and Kjeldahl phosphorus in the course of routine operations at the USGS National Water Quality Laboratory (NWQL). These samples were analyzed independently for total nitrogen and total phosphorus using an alkaline persulfate digestion method developed by the NWQL Methods Research and Development Program. About half of these samples were collected during nominally high-flow (April-June) conditions and the other half were collected during nominally low-flow (August-September) conditions. The number of filtered and whole-water samples analyzed from each flow regime was about equal.By operational definition, Kjeldahl nitrogen (ammonium + organic nitrogen) and alkaline persulfate digestion total nitrogen (ammonium + nitrite + nitrate + organic nitrogen) are not equivalent. It was necessary, therefore, to reconcile this operational difference by subtracting nitrate + nitrite concentra-tions from alkaline persulfate dissolved and total nitrogen concentrations prior to graphical and statistical comparisons with dissolved and total Kjeldahl nitrogen concentrations. On the basis of two-population paired t-test statistics, the means of all nitrate-corrected alkaline persulfate nitrogen and Kjeldahl nitrogen concentrations (2,066 paired results) were significantly different from zero at the p = 0.05 level. Statistically, the means of Kjeldahl nitrogen concentrations were greater than those of nitrate-corrected alkaline persulfate nitrogen concentrations. Experimental evidence strongly suggests, however, that this apparent low bias resulted from nitrate interference in the Kjeldahl digestion method rather than low nitrogen recovery by the alkaline persulfate digestion method. Typically, differences between means of Kjeldahl nitrogen and nitrate-corrected alkaline persulfate nitrogen in low-nitrate concentration (< 0.1 milligram nitrate nitrogen per liter) subsets of filtered surface- and ground-water samples were statistically equivalent to zero at the p =level.Paired analytical results for dissolved and total phosphorus in Kjeldahl and alkaline persulfate digests were directly comparable because both digestion methods convert all forms of phosphorus in water samples to orthophosphate. On the basis of two-population paired t-test statistics, the means of all Kjeldahl phosphorus and alkaline persulfate phosphorus concentrations (2,093 paired results) were not significantly different from zero at the p = 0.05 level. For some subsets of these data, which were grouped according to water type and flow conditions at the time of sample collection, differences between means of Kjeldahl phosphorus and alkaline persulfate phosphorus concentrations were not equivalent to zero at the p = 0.05 level. Differences between means of these subsets, however, were less than the method detection limit for phosphorus (0.007 milligram phosphorus per liter) by the alkaline persulfate digestion method, and were therefore analytically insignificant.This report provides details of the alkaline persulfate digestion procedure, interference studies, recovery of various nitrogen- and phosphorus-containing compounds, and other analytical figures of merit. The automated air-segmented continuous flow methods developed to determine nitrate and orthophosphate in the alkaline persulfate digests also are described. About 125 microliters of digested sample are required to determine nitrogen and phosphorus in parallel at a rate of about 100 samples per hour with less than 1-percent sample in
How ISCO Can Interfere in Soil Pore Distribution and Solute Transport
NASA Astrophysics Data System (ADS)
Favero, M.; Freitas, J. G.; Furquim, S. A. C.; Thomson, N. R.; Cooper, M.
2016-12-01
Recently in situ chemical oxidation (ISCO) has been a remedy of choice for sites contaminated with organic compounds. However, the impact of the chemical oxidant on soil properties and, therefore, on solute transport and remediation efficiency still lacks understanding. This research effort sought to evaluate the changes in soil physical properties and solute transport behavior in a typical tropical soil (Oxisol) resulting from exposure to persulfate. The Oxisol used had a microaggregate structure, resulting in a relatively high hydraulic conductivity despite the high clay content (67%). One-dimensional laboratory experiments were performed using a saturated undisturbed column. The injection of an ideal tracer (bromide), a reactive tracer (phenol) and persulfate (12 ± 1 gL-1 for 30 d) were performed consecutively. The tracer tests were repeated following persulfate injection. Transport parameters (longitudinal dispersivity: αL and retardation factor: R) and the effective porosity (ne) were obtained by fitting the breakthrough curves with an analytical solution for one-dimensional transport. Micromorphological analyses of porosity were conducted on impregnated soil blocks from control and oxidized systems. The bromide and phenol tracer test data yielded αL of 2.431 ± 0.002 cm, ne of 41.99 ± 1.52 %, R of 1.10, and a first-order decay rate coefficient of 6.5x10-5 min-1 prior to persulfate exposure. The effluent persulfate concentration stabilized at C/Co of 0.8 after 4 d of injection and the breakthrough was delayed relative to bromide. Concurrent with the breakthrough of persulfate, the pH decreased and a progressive release of Al (III) over the first 4 d with subsequent stabilization were observed. Following persulfate exposures the hydraulic conductivity increased about one-order of magnitude. Micromorphological analysis showed that persulfate produced alterations in poroids types, with an increase of complex packing voids. It was verified that persulfate promotes the dissolution of soil minerals, and likely affects the microaggregates structure of the Oxisol, resulting in formation of preferential paths and changing the flux patterns within the soil column.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hovanec, J.W.; Albizo, J.M.; Henderson, V.D.
1994-06-01
Aqueous solutions of persulfate salts are frequently used to mineralize organic substrates in the course of total organic carbon analyses. A study has been conducted at the U.S. Army Edgewood Research, Development and Engineering Center to determine whether this approach may be useful to neutralize the nerve agent VX. VX was reacted with aqueous ammonium persulfate at 90 deg C and 70 deg C. The concentration of agent and the acidity of the mixture were varied. 31P-NMR was used to monitor the destruction of VX as well as the formation and degradation of the phosphorus-containing products. A titration procedure usingmore » ferrous sulfate and ceric ammonium nitrate was used to monitor the consumption of persulfate. The products formed and their stabilities were found to vary significantly with the acidity of the solution. Nuclear magnetic resonance, Oxidation, VX, Ammonium persulfate, Mineralization, Temperature effects, Chemical agent disposal.« less
Yan, Jingchun; Han, Lu; Gao, Weiguo; Xue, Song; Chen, Mengfang
2015-01-01
Biochar (BC) supported nanoscale zerovalent iron (nZVI) composite was synthesized and used as an activator for persulfate to enhance the trichloroethylene (TCE) removal in aqueous solutions. The degradation efficiency of TCE (0.15mmolL(-1)) was 99.4% in the presence of nZVI/BC (4.5mmolL(-1), nZVI to BC mass ratio was 1:5) and persulfate (4.5mmolL(-1)) within 5min, which was significantly higher than that (56.6%) in nZVI-persulfate system under the same conditions. Owing to large specific surface area and oxygen-containing functional groups of BC, nZVI/BC enhanced the SO4(-) generation and accelerated TCE degradation. On the basis of the characterization and analysis data, possible activation mechanisms of the Fe(2+)/Fe(3+) (Fe(II)/Fe(III)) redox action and the electron-transfer mediator of the BC oxygen functional groups promoting the generation of SO4(-) in nZVI/BC-persulfate system were clarified. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zrinyi, Nick; Pham, Anh Le-Tuan
2017-09-01
Heat activates persulfate (S 2 O 8 2- ) into sulfate radical (SO 4 - ), a powerful oxidant capable of transforming a wide variety of contaminants. Previous studies have shown that an increase in temperature accelerates the rates of persulfate activation and contaminant transformation. However, few studies have considered the effect of temperature on contaminant transformation pathway. The objective of this study was to determine how temperature (T = 22-70 °C) influences the activation of persulfate, the transformation of benzoic acid (i.e., a model compound), and the distribution of benzoic acid oxidation products. The time-concentration profiles of the products suggest that benzoic acid was transformed via decarboxylation and hydroxylation mechanisms, with the former becoming increasingly important at elevated temperatures. The pathway through which the products were further oxidized was also influenced by the temperature of persulfate activation. Our findings suggest that the role of temperature in the persulfate-based treatment systems is not limited only to controlling the rates of sulfate and hydroxyl radical generation. The ability of sulfate radical to initiate decarboxylation reactions and, more broadly, fragmentation reactions, as well as the effect of temperature on these transformation pathways could be important to the transformation of a number of organic contaminants. Copyright © 2017 Elsevier Ltd. All rights reserved.
Preliminary screening oxidative degradation methyl orange using ozone/ persulfate
NASA Astrophysics Data System (ADS)
Aqilah Razali, Nur; Zulzikrami Azner Abidin, Che; An, Ong Soon; Ridwan, Fahmi Muhammad; Haqi Ibrahim, Abdul; Nasuha Sabri, Siti; Huan Kow, Su
2018-03-01
The present study focusing on the performances of advanced oxidation process by using ozonation method towards Methyl Orange based on the efficiency of colour removal and Chemical Oxygen Demand (COD) removal. Factorial design with response surface methodology (RSM) was used to evaluate the interaction between operational conditions, such as pH, initial concentration, contact time and persulfate dosage to obtain the optimum range conditions using a semi-batch reactor. The range of independent variables investigated were pH (3-11), initial concentration (100-500mg/L), contact time (10-50min) and persulfate dosage (20-100mM) while the response variables were colour removal and COD removal of Methyl Orange. The experimental results and statistical analysis showed all the parameters were significant. Thus, from this findings, optimization of operational conditions that had been suggested from the ozone/persulfate RSM analysis were (pH 3, 100 mg/L, 50min, 60mM) that would be produced 99% Colour Removal and 80% COD Removal and help in promoting an efficient ozonation process. The effect list data that showed the most contributed effects to increase the percentages of colour removal were pH and persulfate dosage whereas the contact time and initial concentration had the highest positive effects on the COD removal. Other than that, the interaction between pH, contact time and persulfate dosage were found to be the most influencing interaction. Therefore the least influencing interaction was interaction between persulfate dosage and pH. In this study, the correlation coefficient value R2 for colour removal and COD removal of Methyl Orange were R2= 0.9976 and R2= 0.9924 which suggested a good fit of the first-order regression model with the experimental data.
Electrolysis cell for the manufacture of persulfates
NASA Technical Reports Server (NTRS)
Cueto, J. M.
1986-01-01
A cell for the electrolytic generation of persulfates, characterized by the fact that a housing acts as cathode, is made of metal, and consists of a lower electrolytically active section and an upper electrolytically inactive section. It is designed so that there is produced the greatest possible current density suited to produce the desired electrolysis effect. This invention, compared to the devices used until now, exhibits considerable advantages whereby it is particularly suited for the production of potassium persulfate.
Cassidy, Daniel P; Srivastava, Vipul J; Dombrowski, Frank J; Lingle, James W
2015-10-30
Laboratory batch reactors were maintained for 32 weeks to test the potential for an in situ remedy that combines chemical oxidation, stabilization, and anaerobic bioremediation in a single application to treat soil from a manufactured gas plant, contaminated with polycyclic aromatic hydrocarbons (PAH) and benzene, toluene, ethylbenzene, and xylenes (BTEX). Portland cement and slaked lime were used to activate the persulfate and to stabilize/encapsulate the contaminants that were not chemically oxidized. Native sulfate-reducing bacteria degraded residual contaminants using the sulfate left after persulfate activation. The ability of the combined remedy to reduce contaminant mass and leachability was compared with NaOH-activated persulfate, stabilization, and sulfate-reducing bioremediation as stand-alone technologies. The stabilization amendments increased pH and temperature sufficiently to activate the persulfate within 1 week. Activation with both stabilization amendments and NaOH removed between 55% and 70% of PAH and BTEX. However, combined persulfate and stabilization significantly reduced the leachability of residual BTEX and PAH compared with NaOH activation. Sulfide, 2-naphthoic acid, and the abundance of subunit A of the dissimilatory sulfite reductase gene (dsrA) were used to monitor native sulfate-reducing bacteria, which were negatively impacted by activated persulfate, but recovered completely within weeks. Copyright © 2015 Elsevier B.V. All rights reserved.
Yuan, Songhu; Liao, Peng; Alshawabkeh, Akram N.
2014-01-01
Activated persulfate oxidation is an effective in situ chemical oxidation process for groundwater remediation. However, reactivity of persulfate is difficult to manipulate or control in the subsurface causing activation before reaching the contaminated zone and leading to a loss of chemicals. Furthermore, mobilization of heavy metals by the process is a potential risk. An effective approach using iron electrodes is thus developed to manipulate the reactivity of persulfate in situ for trichloroethylene (TCE) degradation in groundwater, and to limit heavy metals mobilization. TCE degradation is quantitatively accelerated or inhibited by adjusting the current applied to the iron electrode, following k1 = 0.00053•Iv + 0.059 (−122 A/m3 ≤ Iv ≤ 244 A/m3) where k1 and Iv are the pseudo first-order rate constant (min−1) and volume normalized current (A/m3), respectively. Persulfate is mainly decomposed by Fe2+ produced from the electrochemical and chemical corrosion of iron followed by the regeneration via Fe3+ reduction on the cathode. SO4•− and •OH co-contribute to TCE degradation, but •OH contribution is more significant. Groundwater pH and oxidation-reduction potential can be restored to natural levels by the continuation of electrolysis after the disappearance of contaminants and persulfate, thus decreasing adverse impacts such as the mobility of heavy metals in the subsurface. PMID:24328192
Zhou, Xu; Wang, Qilin; Jiang, Guangming; Liu, Peng; Yuan, Zhiguo
2015-06-01
Improvement of sludge dewaterability is crucial for reducing the costs of sludge disposal in wastewater treatment plants. This study presents a novel conditioning method for improving waste activated sludge dewaterability by combination of persulfate and zero-valent iron. The combination of zero-valent iron (0-30g/L) and persulfate (0-6g/L) under neutral pH substantially enhanced the sludge dewaterability due to the advanced oxidization reactions. The highest enhancement of sludge dewaterability was achieved at 4g persulfate/L and 15g zero-valent iron/L, with which the capillary suction time was reduced by over 50%. The release of soluble chemical oxygen demand during the conditioning process implied the decomposition of sludge structure and microorganisms, which facilitated the improvement of dewaterability due to the release of bound water that was included in sludge structure and microorganism. Economic analysis showed that the proposed conditioning process with persulfate and ZVI is more economically favorable for improving WAS dewaterability than classical Fenton reagent. Copyright © 2015 Elsevier Ltd. All rights reserved.
Degradation of trimethoprim by gamma irradiation in the presence of persulfate
NASA Astrophysics Data System (ADS)
Zhang, Zhonglei; Yang, Qi; Wang, Jianlong
2016-10-01
The degradation and mineralization of trimethoprim (TMP) by gamma irradiation was investigated in the presence of persulfate (PS). The TMP was degraded at initial concentration of 20 mg/L in aqueous solution with addition of 0, 0.5, 1, 1.5, 2 mM persulfate respectively. The effect of pH values (6.5, 7.5 and 8.5) on TMP degradation was also determined. The experimental results showed that the degradation and mineralization of TMP could be significantly enhanced by persulfate at acidic condition (pH=6.5). Several intermediate products generated during gamma irradiation process through hydroxylation, demethylation and cleavage were identified using liquid chromatography with tandem mass spectrometry (HPLC-MS). The degradation pathway of TMP was tentatively proposed based on the identification of intermediate products.
Ma, Jie; Li, Haiyan; Chi, Liping; Chen, Hongkun; Chen, Changzhao
2017-12-01
Persulfate (peroxydisulfate, S 2 O 8 2- ) is the newest oxidant used for the in situ chemical oxidation (ISCO) remediation of soil and groundwater. The present study investigated impacts of solution pH, temperature, and persulfate concentration on the reaction rate constant (k 1 ), activation energy (E a ), and reaction order of the heat-activated persulfate process. Phenol was chosen as the model organic contaminant. As temperature increased from 30 °C to 70 °C, k 1 exhibited a significant increase from 0.003 h -1 ∼0.962 h -1 (pH 1.3-13.9) to 1.184 h -1 ∼9.91 h -1 (pH 1.3-13.9), which corroborated with the activation of persulfate using heat. As pH increased from 1.3 to 13.9, k 1 exhibited a 4.3-fold increase at 70 °C and a 320-fold increase at 30 °C, thereby suggesting that: 1) the phenol oxidation rate increased under alkaline conditions, and 2) the enhancement of reaction rate due to alkaline activation was more pronounced at a lower temperature. Increasing pH significantly reduced E a from 139.7 ± 1.3 kJ/mol at pH 1.3 to 52.0 ± 3.3 kJ/mol at pH 13.9. In contrast to changing pH, increasing persulfate concentration from 20 to 320 mM significantly increased k 1 but did not affect E a . Changes in E a suggest that persulfate oxidation of phenol experienced different reaction pathways or elementary reaction sequences as the pH changed from 1.3 to 13.9. In addition, the k 1 and E a data also suggest that a minimal pH threshold of ∼11 was required for the effective alkaline activation of persulfate. Copyright © 2017 Elsevier Ltd. All rights reserved.
Microwave-enhanced persulfate oxidation to treat mature landfill leachate.
Chou, Yu-Chieh; Lo, Shang-Lien; Kuo, Jeff; Yeh, Chih-Jung
2015-03-02
Microwave oxidation process (MOP) was evaluated for treatment of landfill leachate. Kinetics of persulfate oxidation in MOP, effects of pH and persulfate doses on fates of derivative organic acids, and the energy cost of MOP were evaluated. The results showed that total organic carbon (TOC) removal of 79.4%, color removal of 88.4%, and UV254 removal of 77.1% were reached at MOP 550 W/85 °C within 30 min. The kinetics of oxidation by MOP followed the first-order reaction. For a given persulfate dose, the reaction rate increased with the microwave power setting (775 W>550 W>325 W>128 W) with reaction rate constants ranging from 10(-5) to 10(-2) min(-1). The adverse effects on reaction rates under higher microwave power settings and high persulfate doses are plausibly caused by excessive persulfate oxidation and self-scavenging termination of free radicals. During the MOP treatment, TOC/COD ratio dropped with time and an 86.7% reduction in TOC/COD ratio after 120 min at pH 7. Oxalic acid was the major derivative and its concentrations were higher under acidic conditions. Malic, lactic, and acetic acids were formed and soon degraded, and the solution pH has an insignificant effect on their fates. The energy cost of MOP (USD$6.03/m(3)) is essentially similar to that of conventional heating oxidation (CHO) (USD$6.10/m(3)). Published by Elsevier B.V.
Song, Kang; Zhou, Xu; Liu, Yiqi; Gong, Yanyan; Zhou, Beibei; Wang, Dongbo; Wang, Qilin
2016-01-01
Improving dewaterability of sludge is important for the disposal of sludge in wastewater treatment plants (WWTPs). This study, for the first time, investigated the Fe(II) activated oxidization processes in improving anaerobically digested sludge (ADS) dewaterability. The combination of Fe(II) (0–100 mg/g total solids (TS)) and persulfate (0–1,000 mg/g TS) under neutral pH as well as the combination of Fe(II) (0–100 mg/g TS) and hydrogen peroxide (HP) (0–1,000 mg/g TS) under pH 3.0 were used to examine and compare their effect on the ADS dewaterability enhancement. The highest ADS dewaterability enhancement was attained at 25 mg Fe(II)/g TS and 50 mg HP/g TS, when the CST (CST: the capillary suction time, a sludge dewaterability indicator) was reduced by 95%. In contrast, the highest CST reduction in Fe(II)-persulfate conditioning was 90%, which was obtained at 50 mg Fe(II)/g TS and 250 mg persulfate/g TS. The results showed that Fe(II)-HP conditioning was comparable with Fe(II)-persulfate conditioning in terms of highest CST reduction. Economic analysis suggested that the Fe(II)-HP conditioning was more promising for improving ADS dewaterability compared with Fe(II)-persulfate conditioning, with the saving being up to $65,000 per year in a WWTP with a population equivalent of 100,000. PMID:27109500
2017-01-01
Poly- and perfluoroalkyl substances (PFASs) have been detected in an increasing number of water supplies. In many instances, the contamination is associated with the use of PFAS-containing aqueous film-forming foams (AFFF) in firefighting activities. To investigate the potential for remediating AFFF contamination in groundwater with heat-activated persulfate, PFAS oxidation and the generation of transformation products was evaluated under well-controlled conditions. Fluorotelomer- and perfluoroalkyl sulfonamide-based polyfluorinated compounds were transformed to perfluorinated carboxylic acids, which underwent further degradation under acidic conditions produced after persulfate decomposed. The presence of aquifer sediments decreased the efficiency of the remedial process but did not alter the transformation pathways. At high concentrations, the presence of organic solvents, such as those present in AFFF formulations, inhibited transformation of a representative perfluorinated compound, perfluorooctanoic acid. Heat-activated persulfate did not transform perfluorooctanesulfonic acid or perfluorohexanesulfonic acid under any conditions. Despite challenges associated with the creation of acidic conditions in the subsurface, the potential for generation of undesirable transformation products, and the release of toxic metals, heat-activated persulfate may be a useful in situ treatment for sites contaminated with polyfluoroalkyl substances and perfluorocarboxylic acids. PMID:29164864
NASA Astrophysics Data System (ADS)
Li, Xianghui; Guo, Weilin; Liu, Zhonghua; Wang, Ruiqin; Liu, Hua
2016-04-01
Fe-based metal-organic frameworks (MOFs) including MIL-101(Fe), MIL-100(Fe), MIL-53(Fe), and MIL-88B(Fe) prepared via a facile solvothermal process were introduced as both adsorbents and catalysts to generate powerful radicals from persulfate for acid orange 7 (AO7) removal in aqueous solution. Various catalysts were described and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and X-ray photoelectron spectra. Because of the high specific surface area of the materials, we studied the adsorption isotherms of the four MILs by the fitting of Langmuir adsorption isotherm. Meanwhile, the catalytic activities in persulfate oxidation system were investigated. The results showed that the sequence of the materials ability in the combination of adsorption and degradation was MIL-101(Fe) > MIL-100(Fe) > MIL-53(Fe) > MIL-88B(Fe), which had a close connection with the activity of metal ion in active site of the catalysts and their different cages in size. Moreover, the reactive species in MILs/persulfate system were identified as sulfate radicals and hydroxyl radicals. The reaction mechanism for persulfate activation over MILs was also studied.
Monteagudo, J M; El-Taliawy, H; Durán, A; Caro, G; Bester, K
2018-06-20
Degradation of a diclofenac aqueous solution was performed using persulfate anions activated by ultrasound. The objective of this study was to analyze different parameters affecting the diclofenac (DCF) removal reaction by the ultrasonic persulfate (US/PS) process and to evaluate the role played by various intermediate oxidative species such as hydroxyl- and sulfate radicals, superoxide radical anion or singlet oxygen in the removal process as well as to determine a possible reaction pathway. The effects of pH, initial persulfate anion concentration, ultrasonic amplitude and temperature on DCF degradation were examined. Sulfate and hydroxyl radicals were involved in the main reaction pathway of diclofenac. Diclofenac amide and three hydroxy-diclofenac isomers (3´-hydroxy diclofenac, 4´-hydroxy diclofenac and 5-hydroxy diclofenac) were identified as reaction intermediates. Copyright © 2018 Elsevier B.V. All rights reserved.
Fenton- and Persulfate-driven Regeneration of Contaminant-spent Granular Activated Carbon
Fenton- or persulfate-driven chemical oxidation regeneration of spent granular activated carbon (GAC) involves the combined, synergistic use of two treatment technologies: adsorption of organic chemicals onto GAC and chemical oxidation regeneration of the spent-GAC. Environmental...
Persulfate injection into a gasoline source zone
NASA Astrophysics Data System (ADS)
Sra, Kanwartej S.; Thomson, Neil R.; Barker, Jim F.
2013-07-01
One pore volume of unactivated sodium persulfate was delivered into an emplaced gasoline residual source zone at CFB Borden. Concentrations of inorganic species (S2O82 -, SO42 -, Na+, dissolved inorganic carbon (DIC)) and selected gasoline compounds (benzene, toluene, ethylbenzene, xylenes, trimethylbenzenes and naphthalene) were monitored across a transect equipped with 90 multilevel sampling points for > 10 months post-injection. Mass loading (M˙) of compounds constructed from the transect data was used for assessment purposes. Breakthrough of inorganic species was observed when the injection slug crossed the monitoring transect. An increase in M indicated persulfate consumption during oxidation of gasoline compounds or degradation due to the interaction with aquifer materials. M increased by > 100% suggesting some mineralization of gasoline compounds during treatment. Mass loading for all the monitored gasoline compounds reduced by 46 to 86% as the inorganic slug crossed the monitoring transect. The cumulative mass discharge across the monitoring transect was 19 to 58% lower than that expected without persulfate injection. After the inorganic injection slug was flushed from the source zone a partial rebound (40 to 80% of baseline levels) of mass discharge of the monitored gasoline compounds was observed. The ensemble of data collected provides insight into the fate and transport of the injected persulfate solution, and the accompanying treatment of a gasoline the source zone.
Field Application of a Rapid Spectrophotometric Method for Determination of Persulfate in Soil
Cunningham, Colin J.; Pitschi, Vanessa; Anderson, Peter; Barry, D. A.; Patterson, Colin; Peshkur, Tanya A.
2013-01-01
Remediation of hydrocarbon contaminated soils can be performed both in situ and ex situ using chemical oxidants such as sodium persulfate. Standard methods for quantifying persulfate require either centrifugation or prolonged settling times. An optimized soil extraction procedure was developed for persulfate involving simple water extraction using a modified disposable syringe. This allows considerable saving of time and removes the need for centrifugation. The extraction time was reduced to only 5 min compared to 15 min for the standard approach. A comparison of the two approaches demonstrated that each provides comparable results. Comparisons were made using high (93 g kg−1 soil) and low (9.3 g kg−1 soil) additions of sodium persulfate to a petroleum hydrocarbon-contaminated soil, as well as sand spiked with diesel. Recoveries of 95±1% and 96±10% were observed with the higher application rate in the contaminated soil and spiked sand, respectively. Corresponding recoveries of 86±5% and 117±19% were measured for the lower application rate. Results were obtained in only 25 min and the method is well suited to batch analyses. In addition, it is suitable for application in a small field laboratory or even a mobile, vehicle-based system, as it requires minimal equipment and reagents. PMID:23776446
Yan, Jingchun; Gao, Weiguo; Qian, Linbo; Han, Lu; Chen, Yun; Chen, Mengfang
2015-01-01
The combination of surfactant enhanced soil washing and degradation of nitrobenzene (NB) in effluent with persulfate was investigated to remediate NB contaminated soil. Aqueous solution of sodium dodecylbenzenesulfonate (SDBS, 24.0 mmol L-1) was used at a given mass ratio of solution to soil (20:1) to extract NB contaminated soil (47.3 mg kg-1), resulting in NB desorption removal efficient of 76.8%. The washing effluent was treated in Fe2+/persulfate and Fe2+/H2O2 systems successively. The degradation removal of NB was 97.9%, being much higher than that of SDBS (51.6%) with addition of 40.0 mmol L-1 Fe2+ and 40.0 mmol L-1 persulfate after 15 min reaction. The preferential degradation was related to the lone pair electron of generated SO4•−, which preferably removes electrons from aromatic parts of NB over long alkyl chains of SDBS through hydrogen abstraction reactions. No preferential degradation was observed in •OH based oxidation because of its hydrogen abstraction or addition mechanism. The sustained SDBS could be reused for washing the contaminated soil. The combination of the effective surfactant-enhanced washing and the preferential degradation of NB with Fe2+/persulfate provide a useful option to remediate NB contaminated soil. PMID:26266532
Chemical oxidation regeneration of granular activated carbon (GAC) is a developing technology that can be carried out utilizing thermally-activated persulfate. During chemical regeneration of GAC, aggressive oxidative conditions lead to high acidity (pH < 2) and the accumulation ...
The extent of PAH transformation, the formation and transformation of reaction byproducts during persulfate oxidation of polycyclic aromatic hydrocarbons (PAHs) in coking plant soil was investigated. Pre-oxidation analyses indicated that oxygen-containing PAHs (oxy-PAHs) existed ...
Hilles, Ahmed H; Abu Amr, Salem S; Hussein, Rim A; El-Sebaie, Olfat D; Arafa, Anwaar I
2016-01-15
A combination of persulfate and hydrogen peroxide (S2O8(2-)/H2O2) was used to oxidizelandfill leachate. The reaction was performed under varying S2O8(2-)/H2O2 ratio (g/g), S2O8(2-)/H2O2 dosages (g/g), pH, and reaction time (minutes), so as to determine the optimum operational conditions. Results indicated that under optimum operational conditions (i.e. 120 min of oxidation using a S2O8(2-)/H2O2 ratio of 1 g/1.47 g at a persulfate and hydrogen peroxide dosage of 5.88 g/50 ml and8.63 g/50 ml respectively, at pH 11) removal of 81% COD and 83% NH3-N was achieved. In addition, the biodegradability (BOD5/COD ratio) of the leachate was improved from 0.09 to 0.17. The results obtained from the combined use of (S2O8(2-)/H2O2) were compared with those obtained with sodium persulfate only, hydrogen peroxide only and sodium persulfate followed by hydrogen peroxide. The combined method (S2O8(2-)/H2O2) achieved higher removal efficiencies for COD and NH3-N compared with the other methods using a single oxidizing agent. Additionally, the study has proved that the combination of S2O8(2-)/H2O2 is more efficient than the sequential use of sodium persulfate followed by hydrogen peroxide in advanced oxidation processes aiming at treatingstabilizedlandfill leachate. Copyright © 2015 Elsevier Ltd. All rights reserved.
Compatibility of Surfactants and Thermally Activated Persulfate for Enhanced Subsurface Remediation.
Wang, Li; Peng, Libin; Xie, Liling; Deng, Peiyan; Deng, Dayi
2017-06-20
Limited aqueous availability of hydrophobic organic contaminants and nonaqueous phase liquids in subsurface environment may seriously impair the effectiveness of traditional in situ chemical oxidation (ISCO). To tackle the issue, a combination of surfactants and thermally activated persulfate was proposed to enhance the aqueous availability and consequent oxidation of organic contaminants. The compatibility of eight representative nonionic, monovalent anionic, and divalent anionic surfactants with persulfate at various temperatures was first studied, to identify suitable surfactants that have high aqueous stability and low oxidant demands to couple with thermally activated persulfate. C 12 -MADS (sodium dodecyl diphenyl ether disulfonate, a representative divalent anionic surfactant) stands out as the most compatible surfactant. Batch treatability study with coal tar, an example of challenging scenarios for traditional ISCO, was then conducted. The results show that C 12 -MADS can significantly enhance not only the oxidation of polyaromatic hydrocarbons contained in coal tar but also oxidant utilization efficiency, indicating the potential of the proposed coupling process for the treatment of organic contaminants with low aqueous availability.
Poltronieri, Anna; Patrini, L; Pigatto, P; Riboldi, L; Marsili, Chiara; Previdi, M; Margonari, M; Marraccini, P
2010-01-01
Hairdressers are exposed to irritants and allergenic compounds that may cause contact dermatitis, rhinitis and asthma. In this paper we describe the case of a female, age 33 years, who developed contact dermatitis after 10 years of exposure to ammonium persulfate. After 7 months of progressively extensive and persistent skin lesions, respiratory symptoms appeared that were related to the occupational exposure (on-off test). SIDAPA and specific occupational patch test for hairdressers and occupational challenge with ammonium persulfate were performed. Clinical parameters of inflammation, ECP (eosinophil cationic protein) and exhaled nitric oxide (FeNO) were detected before and after the specific bronchial challenge. The patch test was positive to ammonium persulfate (++), and bronchial challenge for ammonium persulfate showed a significant late response (FEV1 decrease--33%). Both FeNO and ECP showed a significant increase after 24 hours. Dermatitis, urticaria and angioedema occurred on the uncovered skin due to airborne contact. Topic steroids and anti-histaminic drugs resolved the clinical symptoms. Bronchial challenge is, in fact, considered to be the gold standard for the diagnosis of occupational asthma, although new inflammatory parameters can contribute to the diagnosis and can be useful for monitoring after a specific inhalation test with occupational agents. The described case summarizes the evolution from contact dermatitis to inhalation allergy, suggesting the occurrence of an allergic "march" for occupational allergy.
Pilo, Alice L; Bu, Jiexun; McLuckey, Scott A
2015-07-01
The gas-phase oxidation of doubly protonated peptides is demonstrated here using ion/ion reactions with a suite of reagents derived from persulfate. Intact persulfate anion (HS2O8(-)), peroxymonosulfate anion (HSO5(-)), and sulfate radical anion (SO4(-•)) are all either observed directly upon negative nanoelectrospray ionization (nESI) or easily obtained via beam-type collisional activation of persulfate into the mass spectrometer. Ion/ion reactions between each of these reagents and doubly protonated peptides result in the formation of a long-lived complex. Collisional activation of the complex containing a peroxymonosulfate anion results in oxygen transfer from the reagent to the peptide to generate the [M + H + O](+) species. Activation of the complex containing intact persulfate anion either results in oxygen transfer to generate the [M + H + O](+) species or abstraction of two hydrogen atoms and a proton to generate the [M - H](+) species. Activation of the complex containing sulfate radical anion results in abstraction of one hydrogen atom and a proton to form the peptide radical cation, [M](+•). This suite of reagents allows for the facile transformation of the multiply protonated peptides obtained via nESI into a variety of oxidized species capable of providing complementary information about the sequence and structure of the peptide.
Persulfate injection into a gasoline source zone.
Sra, Kanwartej S; Thomson, Neil R; Barker, Jim F
2013-07-01
One pore volume of unactivated sodium persulfate was delivered into an emplaced gasoline residual source zone at CFB Borden. Concentrations of inorganic species (S2O8(2-), SO4(2-), Na(+), dissolved inorganic carbon (DIC)) and selected gasoline compounds (benzene, toluene, ethylbenzene, xylenes, trimethylbenzenes and naphthalene) were monitored across a transect equipped with 90 multilevel sampling points for >10months post-injection. Mass loading (M˙) of compounds constructed from the transect data was used for assessment purposes. Breakthrough of inorganic species was observed when the injection slug crossed the monitoring transect. An increase in [Formula: see text] indicated persulfate consumption during oxidation of gasoline compounds or degradation due to the interaction with aquifer materials. M˙DIC increased by >100% suggesting some mineralization of gasoline compounds during treatment. Mass loading for all the monitored gasoline compounds reduced by 46 to 86% as the inorganic slug crossed the monitoring transect. The cumulative mass discharge across the monitoring transect was 19 to 58% lower than that expected without persulfate injection. After the inorganic injection slug was flushed from the source zone a partial rebound (40 to 80% of baseline levels) of mass discharge of the monitored gasoline compounds was observed. The ensemble of data collected provides insight into the fate and transport of the injected persulfate solution, and the accompanying treatment of a gasoline the source zone. Copyright © 2013 Elsevier B.V. All rights reserved.
Bu, Lingjun; Zhou, Shiqing; Shi, Zhou; Deng, Lin; Li, Guangchao; Yi, Qihang; Gao, Naiyun
2016-02-01
The degradation kinetics and mechanism of the antiepileptic drug oxcarbazepine (OXC) by UV-activated persulfate oxidation were investigated in this study. Results showed that UV/persulfate (UV/PS) process appeared to be more effective in degrading OXC than UV or PS alone. The OXC degradation exhibited a pseudo-first order kinetics pattern and the degradation rate constants (k obs) were affected by initial OXC concentration, PS dosage, initial pH, and humic acid concentration to different degrees. It was found that low initial OXC concentration, high persulfate dosage, and initial pH enhanced the OXC degradation. Additionally, the presence of humic acid in the solution could greatly inhibit the degradation of OXC. Moreover, hydroxyl radical (OH•) and sulfate radical (SO4 (-)••) were identified to be responsible for OXC degradation and SO4 (-)• made the predominant contribution in this study. Finally, major intermediate products were identified and a preliminary degradation pathway was proposed. Results demonstrated that UV/PS system is a potential technology to control the water pollution caused by emerging contaminants such as OXC.
Li, Wei; Orozco, Ruben; Camargos, Natalia; Liu, Haizhou
2017-04-04
Persulfate (S 2 O 8 2- )-based in situ chemical oxidation (ISCO) has gained more attention in recent years due to the generation of highly reactive and selective sulfate radical (SO 4 •- ). This study examined the effects of important groundwater chemical parameters, i.e., alkalinity, pH, and chloride on benzene degradation via heterogeneous persulfate activation by three Fe(III)- and Mn(IV)-containing aquifer minerals: ferrihydrite, goethite, and pyrolusite. A comprehensive kinetic model was established to elucidate the mechanisms of radical generation and mineral surface complexation. Results showed that an increase of alkalinity up to 10 meq/L decreased the rates of persulfate decomposition and benzene degradation, which was associated with the formation of unreactive surface carbonato complexes. An increase in pH generally accelerated persulfate decomposition due to enhanced formation of reactive surface hydroxo complexation. A change in the chloride level up to 5 mM had a negligibly effect on the reaction kinetics. Kinetics modeling also suggested that SO 4 •- was transformed to hydroxyl radical (HO • ) and carbonate radical (CO 3 •- ) at higher pHs. Furthermore, the yields of two major products of benzene oxidation, i.e., phenol and aldehyde, were positively correlated with the branching ratio of SO 4 •- reacting with benzene, but inversely correlated with that of HO • or CO 3 •- , indicating that SO 4 •- preferentially oxidized benzene via pathways involving fewer hydroxylation steps compared to HO • or CO 3 •- .
Fakhri, Ali; Naji, Mahsa; Tahami, Shiva
2017-05-01
In this study, wet chemical method used for ZnSe quantum dots (QDs) and characterized by, UV-vis, photoluminescence spectroscopy, X-ray diffraction and transmission electron microscopy. The crystallites size of ZnSe QDs was 4.0nm. The average diameters of ZnSe QDs were 3.0-5.3nm. Ritalin was degraded using the UV/ZnSe QDs/persulfate process. The several parameters investigated for the influence of Rtialin degradation were the temperature, the persulfate concentration, and the initial Ritalin concentration. The values of optimum parameters ware room temperature, concentration persulfate 5mmol/L and initial Ritalin concentration 0.09mmol/L. Comparative analyses showed the maximum degradation of Ritalin was found for ZnSe/persulfate under ultra-visible and ultra-sonic irradiation process. Comparative analysis showed the maximum degradation of Ritalin was found for ZnSe/persulfate under ultra-visible and ultra-sonic irradiation process. The values of first-order rate constants from degradation of Ritalin at 25°C were 0.96×10 -2 , 1.09×10 -2 , 1.59×10 -2 and 2.19×10 -2 for US/PS, UV/PS, ZnSe/US/PS and ZnSe/UV/PS system, respectively. The antibacterial activity evaluation against two bacterials, including Gram-positive bacteria Staphylococcus aureus (ATCC 43300), Bacillus megaterium (ATCC 14581) and Gram-negative bacteria Pseudomonas aeruginosa (ATCC 27853), Micrococcus luteus (ATCC 4698) was considered. It was found that the MIC values for the antibacterial assay in the presence of ZnSe QDs were around 0.30mM with 64.0, 66.0, 79.2, and 83.5% inhibition for the S. aureus, B. megaterium, P. aeruginosa and M. luteus bacterial strains, respectively. Then, results show that the ZnSe QDs have antibacterial activity. Copyright © 2017 Elsevier B.V. All rights reserved.
Performance of combined persulfate/aluminum sulfate for landfill leachate treatment.
Abu Amr, Salem S; Alkarkhi, Abbas F M; Alslaibi, Tamer M; Abujazar, Mohammed Shadi S
2018-08-01
Although landfilling is still the most suitable method for solid waste disposal, generation of large quantity of leachate is still considered as one of the main environmental problem. Efficient treatment of leachate is required prior to final discharge. Persulfate (S 2 O 8 2- ) recently used for leachate oxidation, the oxidation potential of persulfate can be improved by activate and initiate sulfate radical. The current data aimed to evaluate the performance of utilizing Al 2 SO4 reagent for activation of persulfate to treat landfill leachate. The data on chemical oxygen demand (COD), color, and NH 3 -H removals at different setting of the persulfate, Al 2 SO 4 dosages, pH, and reaction time were collected using a central composite design (CCD) were measured to identify the optimum operating conditions. A total of 30 experiments were performed, the optimum conditions for S 2 O 8 2- /Al 2 SO 4 oxidation process was obtained. Quadratic models for chemical oxygen demand (COD), color, and NH 3 -H removals were significant with p-value < 0.0001. The experimental results were in agreement with the optimum results for COD and NH 3 -N removal rates to be 67%, 81%, and 48%, respectively). The results obtained in leachate treatment were compared with those from other treatment processes, such as S 2 O 8 2- only and Al 2 SO 4 only, to evaluate its effectiveness. The combined method (i.e., /S 2 O 8 2- /Al 2 SO 4 ) showed higher removal efficiency for COD, color, and NH 3 -N compared with other studied applications.
Sutton, Nora B; Kalisz, Mariusz; Krupanek, Janusz; Marek, Jan; Grotenhuis, Tim; Smidt, Hauke; de Weert, Jasperien; Rijnaarts, Huub H M; van Gaans, Pauline; Keijzer, Thomas
2014-02-18
While in situ chemical oxidation with persulfate has seen wide commercial application, investigations into the impacts on groundwater characteristics, microbial communities and soil structure are limited. To better understand the interactions of persulfate with the subsurface and to determine the compatibility with further bioremediation, a pilot scale treatment at a diesel-contaminated location was performed consisting of two persulfate injection events followed by a single nutrient amendment. Groundwater parameters measured throughout the 225 day experiment showed a significant decrease in pH and an increase in dissolved diesel and organic carbon within the treatment area. Molecular analysis of the microbial community size (16S rRNA gene) and alkane degradation capacity (alkB gene) by qPCR indicated a significant, yet temporary impact; while gene copy numbers initially decreased 1-2 orders of magnitude, they returned to baseline levels within 3 months of the first injection for both targets. Analysis of soil samples with sequential extraction showed irreversible oxidation of metal sulfides, thereby changing subsurface mineralogy and potentially mobilizing Fe, Cu, Pb, and Zn. Together, these results give insight into persulfate application in terms of risks and effective coupling with bioremediation.
Remediation of aged diesel contaminated soil by alkaline activated persulfate.
Lominchar, M A; Santos, A; de Miguel, E; Romero, A
2018-05-01
The present work studies the efficiency of alkaline activated persulfate (PS) to remediate an aged diesel fuel contaminated soil from a train maintenance facility. The Total Petroleum Hydrocarbon (TPH) concentration in soil was approximately 5000mgkg -1 with a ratio of aliphatic:aromatic compounds of 70:30. Aromatic compounds were mainly naphtalenes and phenanthrenes. The experiments were performed in batch mode where different initial concentrations of persulfate (105mM, 210mM and 420mM) and activator:persulfate ratios (2 and 4) were evaluated, with NaOH used as activator. Runs were carried out during 56days. Complete TPH conversion was obtained with the highest concentration of PS and activator, whereas in the other runs the elimination of fuel ranged between 60 and 77%. Besides, the abatement of napthalenes and phenantrenes was faster than aliphatic reduction (i. e. after 4days of treatment, the conversions of the aromatic compounds were around 0.8 meanwhile the aliphatic abatements were 0.55) and no aromatic oxidation intermediates from naphtalenes or phenantrenes were detected. These results show that this technology is effective for the remediation of aged diesel in soil with alkaline pH. Copyright © 2017 Elsevier B.V. All rights reserved.
Ultrasound assisted, thermally activated persulfate oxidation of coal tar DNAPLs.
Peng, Libin; Wang, Li; Hu, Xingting; Wu, Peihui; Wang, Xueqing; Huang, Chumei; Wang, Xiangyang; Deng, Dayi
2016-11-15
The feasibility of ultrasound assisted, thermally activated persulfate for effective oxidation of twenty 2-6 ringed coal tar PAHs in a biphasic tar/water system and a triphasic tar/soil/water system were investigated and established. The results indicate that ultrasonic assistance, persulfate and elevated reaction temperature are all required to achieve effective oxidation of coal tar PAHs, while the heating needed can be provided by ultrasonic induced heating as well. Further kinetic analysis reveals that the oxidation of individual PAH in the biphasic tar/water system follows the first-order kinetics, and individual PAH oxidation rate is primary determined by the mass transfer coefficients, tar/water interfacial areas, the aqueous solubility of individual PAH and its concentration in coal tar. Based on the kinetic analysis and experimental results, the contributions of ultrasound, persulfate and elevated reaction temperature to PAHs oxidation were characterized, and the effects of ultrasonic intensity and oxidant dosage on PAHs oxidation efficiency were investigated. In addition, the results indicate that individual PAH degradability is closely related to its reactivity as well, and the high reactivity of 4-6 ringed PAHs substantially improves their degradability. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abu Amr, Salem S.; Aziz, Hamidi Abdul, E-mail: cehamidi@eng.usm.my; Adlan, Mohd Nordin
Highlights: ► Ozone and persulfate reagent (O{sub 3}/S{sub 2}O{sub 8}{sup 2-}) was used to treat stabilized leachate. ► Central composite design (CCD) with response surface methodology (RSM) was applied. ► Operating variables including ozone and persulfate dosage, pH variance, and reaction time. ► Optimum removal of COD, color, and NH{sub 3}–N was 72%, 96%, and 76%, respectively. ► A good value of ozone consumption (OC) obtained with 0.60 (kg O{sub 3}/kg COD). - Abstract: The objective of this study was to investigate the performance of employing persulfate reagent in the advanced oxidation of ozone to treat stabilized landfill leachate inmore » an ozone reactor. A central composite design (CCD) with response surface methodology (RSM) was applied to evaluate the relationships between operating variables, such as ozone and persulfate dosages, pH, and reaction time, to identify the optimum operating conditions. Quadratic models for the following four responses proved to be significant with very low probabilities (<0.0001): COD, color, NH{sub 3}–N, and ozone consumption (OC). The obtained optimum conditions included a reaction time of 210 min, 30 g/m{sup 3} ozone, 1 g/1 g COD{sub 0}/S{sub 2}O{sub 8}{sup 2-} ratio, and pH 10. The experimental results were corresponded well with predicted models (COD, color, and NH{sub 3}–N removal rates of 72%, 96%, and 76%, respectively, and 0.60 (kg O{sub 3}/kg COD OC). The results obtained in the stabilized leachate treatment were compared with those from other treatment processes, such as ozone only and persulfate S{sub 2}O{sub 8}{sup 2-} only, to evaluate its effectiveness. The combined method (i.e., O{sub 3}/S{sub 2}O{sub 8}{sup 2-}) achieved higher removal efficiencies for COD, color, and NH{sub 3}–N compared with other studied applications. Furthermore, the new method is more efficient than ozone/Fenton in advanced oxidation process in the treatment of the same studied leachate.« less
Liu, Haizhou; Bruton, Thomas A; Li, Wei; Buren, Jean Van; Prasse, Carsten; Doyle, Fiona M; Sedlak, David L
2016-01-19
Sulfate radical (SO4(•-)) is a strong, short-lived oxidant that is produced when persulfate (S2O8(2-)) reacts with transition metal oxides during in situ chemical oxidation (ISCO) of contaminated groundwater. Although engineers are aware of the ability of transition metal oxides to activate persulfate, the operation of ISCO remediation systems is hampered by an inadequate understanding of the factors that control SO4(•-) production and the overall efficiency of the process. To address these shortcomings, we assessed the stoichiometric efficiency and products of transition metal-catalyzed persulfate oxidation of benzene with pure iron- and manganese-containing minerals, clays, and aquifer solids. For most metal-containing solids, the stoichiometric efficiency, as determined by the loss of benzene relative to the loss of persulfate, approached the theoretical maximum. Rates of production of SO4(•-) or hydroxyl radical (HO(•)) generated from radical chain reactions were affected by the concentration of benzene, with rates of S2O8(2-) decomposition increasing as the benzene concentration increased. Under conditions selected to minimize the loss of initial transformation products through reaction with radicals, the production of phenol only accounted for 30%-60% of the benzene lost in the presence of O2. The remaining products included a ring-cleavage product that appeared to contain an α,β-unsaturated aldehyde functional group. In the absence of O2, the concentration of the ring-cleavage product increased relative to phenol. The formation of the ring-cleavage product warrants further studies of its toxicity and persistence in the subsurface.
Hilles, Ahmed H; Abu Amr, Salem S; Hussein, Rim A; Arafa, Anwar I; El-Sebaie, Olfat D
2016-01-01
The objective of this study was to investigate the performance of employing H2O2 reagent in persulfate activation to treat stabilized landfill leachate. A central composite design (CCD) with response surface methodology (RSM) was applied to evaluate the relationships between operating variables, such as persulfate and H2O2 dosages, pH, and reaction time, to identify the optimum operating conditions. Quadratic models for the following two responses proved to be significant with very low probabilities (<0.0001): chemical oxygen demand (COD) and NH3-N removal. The obtained optimum conditions included a reaction time of 116 min, 4.97 g S2O8(2-), 7.29 g H2O2 dosage and pH 11. The experimental results were corresponding well with predicted models (COD and NH3-N removal rates of 81% and 83%, respectively). The results obtained in the stabilized leachate treatment were compared with those from other treatment processes, such as persulfate only and H2O2 only, to evaluate its effectiveness. The combined method (i.e., /S2O8(2-)/H2O2) achieved higher removal efficiencies for COD and NH3-N compared with other studied applications.
Oxidation of chlorinated ethenes by heat-activated persulfate: kinetics and products.
Waldemer, Rachel H; Tratnyek, Paul G; Johnson, Richard L; Nurmi, James T
2007-02-01
In situ chemical oxidation (ISCO) and in situ thermal remediation (ISTR) are applicable to treatment of groundwater contaminated with chlorinated ethenes. ISCO with persulfate (S2O8(2-)) requires activation, and this can be achieved with the heat from ISTR, so there may be advantages to combining these technologies. To explore this possibility, we determined the kinetics and products of chlorinated ethene oxidation with heat-activated persulfate and compared them to the temperature dependence of other degradation pathways. The kinetics of chlorinated ethene disappearance were pseudo-first-order for 1-2 half-lives, and the resulting rate constants-measured from 30 to 70 degrees C--fit the Arrhenius equation, yielding apparent activation energies of 101 +/- 4 kJ mol(-1) for tetrachloroethene (PCE), 108 +/- 3 kJ mol(-1) for trichloroethene (TCE), 144 +/- 5 kJ mol(-1) for cis-1,2-dichloroethene (cis-DCE), and 141 +/- 2 kJ mol(-1) for trans-1,2-dichloroethene (trans-DCE). Chlorinated byproducts were observed, but most of the parent material was completely dechlorinated. Arrhenius parameters for hydrolysis and oxidation by persulfate or permanganate were used to calculate rates of chlorinated ethene degradation by these processes over the range of temperatures relevant to ISTR and the range of oxidant concentrations and pH relevant to ISCO.
Liu, Bin; Qu, Fangshu; Chen, Wei; Liang, Heng; Wang, Tianyu; Cheng, Xiaoxiang; Yu, Huarong; Li, Guibai; Van der Bruggen, Bart
2017-11-15
In this study, the application of enhanced coagulation with persulfate/Fe(II), permanganate and ozone for Microcystis-laden water treatment was investigated. Two oxidant dosage strategies were compared in terms of the organic removal performance: a simultaneous dosing strategy (SiDS) and a successive dosing strategy (SuDS). To optimize the oxidant species, oxidant doses and oxidant dosage strategy, the zeta potential, floc size and dimension fraction, potassium release and organic removal efficiency during the coagulation of algae-laden water were systematically investigated and comprehensively discussed. Ozonation causes most severe cell lysis and reduces organic removal efficiency because it releases intracellular organics. Moreover, ozonation can cause the release of odor compounds such as 2-methylisoborneol (2-MIB) and geosmin (GSM). With increasing doses, the performance of pollutant removal by coagulation enhanced by persulfate/Fe(II) or permanganate did not noticeably improve, which suggests that a low dosage of persulfate/Fe(II) and permanganate is the optimal strategy to enhance coagulation of Microcystis-laden water. The SiDS performs better than the SuDS because more Microcystis cell lysis occurs and less DOC is removed when oxidants are added before the coagulants. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bruton, Thomas A; Sedlak, David L
2018-04-21
Perfluoroalkyl acids (PFAAs) are a class of organic contaminants notable for their extreme persistence. The unique chemical properties of these compounds make them difficult to remove from water using most standard water treatment techniques. To gain insight into the possibility of remediating contaminated groundwater by in situ chemical oxidation with heat-activated persulfate, PFAA removal and the generation of transformation products were evaluated under laboratory conditions. Solution pH had a strong influence on the removal of perfluorooctanoic acid (PFOA), resulting in its transformation into shorter-chain perfluorocarboxylic acids (PFCAs) at pH values below 3. The presence of chloride and aquifer sediments decreased the efficiency of the process by less than 25% under conditions likely to be encountered in drinking water aquifers. Perfluorooctane sulfonic acid (PFOS) was not transformed by heat-activated persulfate under any of the conditions tested. Despite challenges related to the need to manipulate aquifer pH, the possible generation of undesirable short-chain PFCAs and chlorate, and metals mobilization, heat-activated persulfate may be a useful treatment technology for sites contaminated with PFCAs and fluorotelomer-based compounds, including those used in current-generation aqueous film-forming foams. Copyright © 2018 Elsevier Ltd. All rights reserved.
Drug Discovery, Design and Delivery
2012-06-28
of SDS as surfactant, and 2 weight % of potassium persulfate as radical initiator. For the procedure to work, we had to use methylene chloride to...isopiopylidme-a-D- ghicofuranose( In 1 niLofDCM) 200 ms 90.90 SDS 15 m- 6.81 Potassium persulfate 5 nig ■> -> - Water 2mL The particle sizes of the... of the N-acyl side chain. Finally, surface-glycosylated polyacrylate nanoparticles derived from a protected glycosylated acrylate monomer were
Al-Shamsi, Mohammed Ahmad; Thomson, Neil R
2013-10-01
It has been suggested in the literature that aquifer materials can compete with the target organic compounds in an activated peroxygen system. In this study, we employed a rapid treatment method using persulfate activated with bimetallic nanoparticles to investigate the competition between aquifer materials and the dissolved phase of a target organic compound. The concentration of dissolved trichloroethylene (TCE) remaining after using the activated persulfate system was two- to three-fold higher in a soil slurry batch system than in an aqueous batch system. For all five aquifer materials investigated, an increase in the mass of the aquifer solids significantly decreased the degradation of TCE. A linear relationship was observed between the mass of aquifer materials and the initial TCE degradation rate, suggesting that the organic carbon and/or aquifer material constituents (e.g., carbonates and bicarbonates) compete with the oxidation of TCE.
Park, Saerom; Lee, Linda S; Medina, Victor F; Zull, Aaron; Waisner, Scott
2016-02-01
PFOA (perfluorooctanoic acid) oxidation (0.121-6.04 μM) by heat-activated persulfate was evaluated at 20-60 °C with 4.2-84 mM [Formula: see text] and in the presence of soluble fuel components to assess feasibility for in-situ remediation of groundwater. 6:2 fluorotelomer sulfonic acid/sulfonate (6:2 FTSA) and PFOS (perfluorooctanesulfonic acid) persulfate oxidation was also evaluated in a subset of conditions given their co-occurrence at many sites. High performance liquid chromatography electron spray tandem mass spectrometry was used for organic analysis and fluoride was measured using a fluoride-specific electrode. PFOA pseudo-1st order transformation rates (k1,PFOA) increased with increasing temperature (half-lives from 0.1 to 7 d for 60 to 30 °C) sequentially removing CF2 groups ('unzipping') to shorter chain perfluoroalkyl carboxylic acids (PFCAs) and F(-). At 50 °C, a 5-fold increase in [Formula: see text] led to a 5-fold increase in k1,PFOA after which self-scavenging by sulfate radicals decreased the relative rate of increase with more [Formula: see text] . Benzene, toluene, ethylbenzene and xylene did not affect k1,PFOA even at 40 times higher molar concentrations than PFOA. A modeling approach to explore pathways strongly supported that for 6:2 FTSA, both the ethyl linkage and CF2-CH2 bond of 6:2 FTSA oxidize simultaneously, resulting in a ratio of ∼25/75 PFHpA/PFHxA. The effectiveness of heat-activated [Formula: see text] on PFOA oxidation was reduced in a soil slurry; therefore, repeated persulfate injections are required to efficiently achieve complete oxidation in the field. However, PFOS remained unaltered even at higher activation temperatures, thus limiting the sole use of heat-activated persulfate for perfluoroalkyl substances removal in the field. Copyright © 2015 Elsevier Ltd. All rights reserved.
Manz, Katherine E; Carter, Kimberly E
2018-09-01
Changes in fluid composition during hydraulic fracturing (HF) for natural gas production can impact well productivity and the water quality of the fluids returning to the surface during productivity. Shale formation conditions can influence the extent of fluid transformation. Oxidizers, such as sodium persulfate, likely play a strong role in fluid transformation. This study investigates the oxidation of 2-butoxyethanol (2-BE), a surfactant used in HF, by sodium persulfate in the presence of heat, pH changes, Fe(II), and shale rock. Increasing temperature and Fe(II) concentrations sped up 2-BE oxidation, while pH played little to no role in 2-BE degradation. The presence of shale rock impeded 2-BE oxidation with increasing shale concentrations causing decreasing pseudo-first-order reaction rate constant to be observed. Over the course of reactions containing shales, dissolved solids were tracked to better understand how reactions with minerals in the shale impact water quality. Copyright © 2018 Elsevier Ltd. All rights reserved.
Recovery of gold from waste electrical and electronic equipment (WEEE) using ammonium persulfate.
Alzate, Andrea; López, Maria Esperanza; Serna, Claudia
2016-11-01
This paper presents a novel methodology to recover gold from waste electrical and electronic equipment (WEEE) using ammonium persulfate ((NH 4 ) 2 S 2 O 8 ). Gold was recovered as a fine coating using substrate oxidation without shredding or grinding process. The WEEE sample was characterized giving values of Au: 1.05g/kg, Fe: 86.00g/kg, Ni: 73.64g/kg, Cu: 26.65g/kg. The effect of (NH 4 ) 2 S 2 O 8 concentration (0.22-1.10M), oxygen (0.0-1.4L/min) and L/S ratio (10-30mL/g) on the main responses (substrate oxidation and Au recovery) was investigated implementing response surface methodology with numerical optimization. A quadratic model was developed and quantities greater than 98% of Au were recovered. The findings presented suggest that, optimized quantities of ammonium persulfate in aqueous highly oxygenated media could be used to extract superficial gold from WEEE. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ranc, Bérénice; Faure, Pierre; Croze, Véronique; Lorgeoux, Catherine; Simonnot, Marie-Odile
2017-04-01
Thermal treatments prior or during chemical oxidation of aged polycyclic aromatic hydrocarbon (PAH)-contaminated soils have already shown their ability to increase oxidation effectiveness. However, they were never compared on the same soil. Furthermore, oxygenated polycyclic aromatic hydrocarbons (O-PACs), by-products of PAH oxidation which may be more toxic and mobile than the parent PAHs, were very little monitored. In this study, two aged PAH-contaminated soils were heated prior (60 or 90 °C under Ar for 1 week) or during oxidation (60 °C for 1 week) with permanganate and persulfate, and 11 O-PACs were monitored in addition to the 16 US Environmental Protection Agency (US EPA) PAHs. Oxidant doses were based on the stoichiometric oxidant demand of the extractable organic fraction of soils by using organic solvents, which is more representative of the actual contamination than only the 16 US EPA PAHs. Higher temperatures actually resulted in more pollutant degradation. Two treatments were about three times more effective than the others: soil heating to 60 °C during persulfate oxidation and soil preheating to 90 °C followed by permanganate oxidation. The results of this study showed that persulfate effectiveness was largely due to its thermal activation, whereas permanganate was more sensitive to PAH availability than persulfate. The technical feasibility of these two treatments will soon be field-tested in the unsaturated zone of one of the studied aged PAH-contaminated soils.
Silveira, Jefferson E; Cardoso, Tais O; Barreto-Rodrigues, Marcio; Zazo, Juan A; Casas, José A
2018-05-01
This work assesses the role of the operational conditions upon the electro-activation of persulfate (PS) using sacrificed iron electrode as a continuous low-cost Fe 2+ source. An aqueous phenol solution (100 mg L -1 ) was selected as model effluent. The studied variables include current density (1-10 mA cm -2 ), persulfate concentration (0.7-2.85 g L -1 ), temperature (30-90°C) and the solution conductivity (2.7-20.7 mS cm -1 ) using Na 2 SO 4 and NaCl as supporting electrolyte. A mineralization degree of around 80% with Na 2 SO 4 and 92% in presence of NaCl was achieved at 30°C using 2.15 g L -1 PS at the lowest current density tested (1 mA cm -2 ). Besides PS concentration, temperature was the main variable affecting the process. In the range of 30-70°C, it showed a positive effect, achieving TOC conversion above 95% (using Na 2 SO 4 under the previous conditions) along with a significant increase in iron sludge, which adversely affects the economy of the process. A lumped and simplified kinetic model based on persulfate consumption and TOC mineralization is suggested. The activation energy obtained for the TOC decay was 29 kJ mol -1 . An estimated operating cost of US$ 3.00 per m 3 was obtained, demonstrating the economic feasibility of this process.
Metheniti, Maria Evangelia; Frontistis, Zacharias; Ribeiro, Rui S; Silva, Adrián M T; Faria, Joaquim L; Gomes, Helder T; Mantzavinos, Dionissios
2017-10-06
An advanced oxidation process comprising an iron-containing magnetic carbon xerogel (CX/Fe) and persulfate was tested for the degradation of propyl paraben (PP), a contaminant of emerging concern, in various water matrices. Moreover, the effect of 20 kHz ultrasound or light irradiation on process performance was evaluated. The pseudo-first order degradation rate of PP was found to increase with increasing SPS concentration (25-500 mg/L) and decreasing PP concentration (1690-420 μg/L) and solution pH (9-3). Furthermore, the effect of water matrix on kinetics was detrimental depending on the complexity (i.e., wastewater, river water, bottled water) and the concentration of matrix constituents (i.e., humic acid, chloride, bicarbonate). The simultaneous use of CX/Fe and ultrasound as persulfate activators resulted in a synergistic effect, with the level of synergy (between 35 and 50%) depending on the water matrix. Conversely, coupling CX/Fe with simulated solar or UVA irradiation resulted in a cumulative effect in experiments performed in ultrapure water.
Carbon isotope fractionation of 1,1,1-trichloroethane during base-catalyzed persulfate treatment.
Marchesi, Massimo; Thomson, Neil R; Aravena, Ramon; Sra, Kanwartej S; Otero, Neus; Soler, Albert
2013-09-15
The extent of carbon isotope fractionation during degradation of 1,1,1-trichloroethane (1,1,1-TCA) by a base-catalyzed persulfate (S₂O₈(2-)) treatment system was investigated. Significant destruction of 1,1,1-TCA was observed at a pH of ∼12. An increase in the NaOH:S₂O₈(2-) molar ratio from 0.2:1 to 8:1 enhanced the reaction rate of 1,1,1-TCA by a factor of ∼5 to yield complete (>99.9%) destruction. An average carbon isotope enrichment fractionation factor which was independent of the NaOH:S₂O₈(2-) molar ratio of -7.0 ± 0.2‰ was obtained. This significant carbon isotope fractionation and the lack of dependence on changes in the NaOH:S₂O₈(2-) molar ratio demonstrates that carbon isotope analysis can potentially be used in situ as a performance assessment tool to estimate the degradation effectiveness of 1,1,1-TCA by a base-catalyzed persulfate system. Copyright © 2013 Elsevier B.V. All rights reserved.
Decolorization of Methylene Blue by Persulfate Activated with FeO Magnetic Particles.
Hung, Chang-Mao; Chen, Chiu-Wen; Liu, Yi-Yuan; Dong, Cheng-Di
2016-08-01
In this study, the degradation of methylene blue (MB) was conducted to evaluate the feasibility of using persulfate oxidation activated with iron oxide (FeO) magnetic particles. The results demonstrated that the decolorization rate of MB increased with increasing FeO concentration, exhibiting maximum efficiency at pH0 3.0. The kinetics of MB was studied in the binary FeO catalyst and persulfate oxidation system. The surface properties of FeO before and after reaction was analyzed using cyclic voltammogram (CV), three-dimensional excitation-emission fluorescence matrix (EEFM) spectroscopy, zeta potential, particle size distribution measurements, X-ray diffraction (XRD) and environmental scanning electron microscopy-energy dispersive X-ray spectrometry (ESEM-EDS). The CV data indicated that a reversible redox reaction holds the key to explaining the significant activity of the catalyst. EEFM was used to evaluate the catalyst yield of FeO by fluorescence intensity plots with excitation/emission at 220/300 nm and 260/300 nm. The XRD and ESEM-EDS results confirmed the presence of FeO in the catalyst.
Liu, Bochuan; Qiao, Meng; Wang, Yanbin; Wang, Lijuan; Gong, Yan; Guo, Tao; Zhao, Xu
2017-12-01
The enhancement of g-C 3 N 4 photocatalytic degradation of bisphenol A (BPA) via persulfate (PS) addition was investigated under visible light irradiation. The effects of various parameters on the BPA degradation were investigated, such as catalysts dosage, PS concentrations, initial pH value and BPA concentration. The results showed that g-C 3 N 4 nanosheets exhibited superior photocatalytic activity toward BPA degradation as compared with bulk g-C 3 N 4 . The addition of PS can further improve the g-C 3 N 4 photocatalytic performance for BPA degradation. With 5 mM PS, the degradation rate of BPA was increased from 72.5% to 100% at 90 min, and the corresponding first-order kinetic constants were increased from 0.0028 to 0.0140 min -1 . The removal efficiency of BPA increased with the decrease of solution pH value. The active radicals in the reaction system were tested by electron spin resonance (ESR) and radicals quenching experiments. Instead of persulfate radicals' oxidation, it was proposed that the main active radicals for BPA degradation were superoxide radicals and the photogenerated holes. Copyright © 2017. Published by Elsevier Ltd.
Khandarkhaeva, Marina; Batoeva, Agniya; Aseev, Denis; Sizykh, Marina; Tsydenova, Oyuna
2017-03-01
The oxidation of s-triazines (using atrazine (ATZ) as a model compound) by a solar-enhanced Fenton-like process involving persulfate and ferrous ion was studied. A flow-through tubular photoreactor was employed for the experiments. The solar-enhanced oxidative system involving ferrous ion and persulfate (Solar/S 2 O 8 2- /Fe 2+ ) showed the highest ATZ degradation efficiency when compared with other treatments (unactivated S 2 O 8 2- , Solar - sunlight only, S 2 O 8 2- /Fe 2+ , Solar/S 2 O 8 2- ). Complete degradation of ATZ and 20% reduction in total organic carbon (TOC) content were observed after 30min of the treatment. The in situ generated • ОН and SO 4 -• radicals were shown to be involved in ATZ oxidation using the radical scavengers methanol and tert-butyl alcohol. Furthermore, iron compounds were shown to act not only as catalysts but also as photo-sensitizers, as the introduction of ferrous ion into the reaction mixture led to an increased absorbance of the solution and expansion of the absorption spectrum into the longer wavelength spectral region. Copyright © 2016 Elsevier Inc. All rights reserved.
Nonenzymic spectrophotometric determination of potential poison ivy cross-reactors.
Quattrone, A J
1977-03-01
I describe an inexpensive, nonenzymic analytical system for prescreening substances that might cross-react as Rhus toxing (e.g., poison ivy, poison oak, and sumac allergens) on human skin. By spectrophotometric assay after incubation with an oxidizing mixture of Cu(II)ammine complex and ammonium persulfate, I could accurately and reproducibly determine o-quinoidal products of several potential synthetic cross-reactors and native poison ivy allergen, and could distinguish these from catecholamines, resorcinol, p-hydroquinone, and a closely related phenol. A good correlation was obtained between this nonenzymic technique and an enzymic assay. This Cu(II)ammine/persulfate oxidative assay, however, is inexpensive and obviates any spectral interference from enzymic proteins.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-27
...The Commission hereby gives notice of the scheduling of a full review pursuant to section 751(c)(5) of the Tariff Act of 1930 (19 U.S.C. 1675(c)(5)) (the Act) to determine whether revocation of the antidumping duty order on persulfates from China would be likely to lead to continuation or recurrence of material injury within a reasonably foreseeable time. For further information concerning the conduct of this review and rules of general application, consult the Commission's Rules of Practice and Procedure, part 201, subparts A through E (19 CFR part 201), and part 207, subparts A, D, E, and F (19 CFR part 207).
Santos, A; Fernandez, J; Rodriguez, S; Dominguez, C M; Lominchar, M A; Lorenzo, D; Romero, A
2018-02-15
In this work, in situ chemical oxidation (ISCO) with alkali activated persulfate has been tested for the elimination of HCH isomers and other chlorinated compounds in groundwater from Sabiñanigo (Sardas landfill), which was contaminated by solid and liquid wastes illegally dumped in the area by a company producing lindane. Due to the site lithology and the type of pollutants found in groundwater (HCHs and chlorobenzenes) alkali (NaOH) activated persulfate (PS) was selected as oxidant. The influence of variables such as PS concentration (42-200mM) and NaOH:PS molar ratio (2:1 to 4:1) on chlorinated compound abatement has been studied and a kinetic model to predict the composition of all chlorinated organic compounds (COCs) in the aqueous phase with time was obtained. It was found that a fast initial hydrodechlorination reaction took place in which HCH isomers reacted to trichlorobenzenes (mainly 1,2,4 TCB) at pH≥12. Mono-, di-, tri and tetrachlorobenzenes remaining were oxidized without producing aromatic intermediates. At the condition tested a first order kinetic model for COCs and PS concentration was obtained. Zero order alkali concentration was obtained while pH was being kept at 12 for the whole reaction time. Copyright © 2017 Elsevier B.V. All rights reserved.
Dimiev, Ayrat M; Bachilo, Sergei M; Saito, Riichiro; Tour, James M
2012-09-25
Graphite intercalation compounds (GICs) can be considered stacks of individual doped graphene layers. Here we demonstrate a reversible formation of sulfuric acid-based GICs using ammonium persulfate as the chemical oxidizing agent. No covalent chemical oxidation leading to the formation of graphite oxide occurs, which inevitably happens when other compounds such as potassium permanganate are used to charge carbon layers. The resulting acid/persulfate-induced stage-1 and stage-2 GICs are characterized by suppression of the 2D band in the Raman spectra and by unusually strong enhancement of the G band. The G band is selectively enhanced at different doping levels with different excitations. These observations are in line with recent reports for chemically doped and gate-modulated graphene and support newly proposed theories of Raman processes. At the same time GICs have some advantageous differences over graphene, which are demonstrated in this report. Our experimental observations, along with earlier reported data, suggest that at high doping levels the G band cannot be used as the reference peak for normalizing Raman spectra, which is a commonly used practice today. A Fermi energy shift of 1.20-1.25 eV and ∼1.0 eV was estimated for the stage-1 and stage-2 GICs, respectively, from the Raman and optical spectroscopy data.
Salazar, Luis Miguel; Grisales, Claudia Mildred; Garcia, Dorian Prato
2018-05-31
This study evaluates the technical, economical, and environmental impact of sodium persulfate (Na 2 S 2 O 8 ) as an enhancing agent in a photo-Fenton process within a solar-pond type reactor (SPR). Photo-Fenton (PF) and photo-Fenton intensified with the addition of persulfate (PFPS) processes decolorize 97% the azo dye direct blue 71 (DB71) and allow producing a highly biodegradable effluent. Intensification with persulfate allowed reducing treatment time in 33% (from 120 to 80 min) and the consumption of chemical auxiliaries needed for pH adjustment. Energy, reagents, and chemical auxiliaries are still and environmental hotspot for PF and PFPS; however, it is worth mentioning that their environmental footprint is lower than that observed for compound parabolic concentrator (CPC)-type reactors. A life-cycle assessment (LCA) confirms that H 2 O 2 , NaOH, and energy consumption are the variables with the highest impact from an environmental standpoint. The use of persulfate reduced the relative impact in 1.2 to 12% in 12 of the 18 environmental categories studied using the ReCiPe method. The PFPS process emits 1.23 kg CO 2 (CO 2 -Eqv/m 3 treated water). On the other hand, the PF process emits 1.28 kg CO 2 (CO 2 -Eqv/m 3 treated water). Process intensification, chemometric techniques, and the use of SPRs minimize the impact of some barriers (reagent and energy consumption, technical complexity of reactors, pressure drops, dirt on the reflecting surfaces, fragility of reactor materials), limiting the application of advanced oxidation systems at an industrial level, and decrease treatment cost as well as potential environmental impacts associated with energy and reagents consumption. Treatment costs for PF processes (US$0.78/m 3 ) and PFPS processes (US$0.63/m 3 ) were 20 times lower than those reported for photo-Fenton processes in CPC-type reactors.
Zhen, Guangyin; Lu, Xueqin; Su, Lianghu; Kobayashi, Takuro; Kumar, Gopalakrishnan; Zhou, Tao; Xu, Kaiqin; Li, Yu-You; Zhu, Xuefeng; Zhao, Youcai
2018-05-01
Dewatering of waste activated sludge (WAS) is of major interest in its volume reduction, transportation and ultimate disposal. Persulfate-based oxidation process is a newly developed option for enhancing WAS dewaterability through the generation of powerful sulfate radicals (SO 4 - ·). However, the enhancement in WAS dewaterability by persulfate differs with the species of iron catalysts used. In this study, two types of iron catalysts (i.e. Fe 2+ vs. Fe 0 ) were employed to initiate the persulfate (S 2 O 8 2- ), and the catalyzing behaviors and the underlying principles in enhancing WAS dewaterability were investigated and compared. The Fe 2+ exhibited the high effectiveness in catalyzing the decomposition of persulfate to sulfate radicals (SO 4 - ·), inducing the greater improvement in WAS dewatering. The WAS dewaterability (indicated by dry solids content after filtration) increased with the added S 2 O 8 2- /Fe 2+ dosages, with the dry solids content reaching up to 5.1 ± 0.8 wt% at S 2 O 8 2- /Fe 2+ dosages of 1.2/1.5 mmol/g-VS after only 30 s' filtration, roughly 1.8-fold increase than raw WAS (1.8 ± 0.1 wt%). In contrast, the influence of the persulfate oxidation when activated with Fe 0 on WAS dewaterability was statistically insignificant. The WAS dewaterability remained nearly unchanged (i.e. dry solids content of 2.0 ± 0.0 wt%), irrespective of the employed S 2 O 8 2- /Fe 0 dosages. Further analysis demonstrated that the WAS dewaterability negatively corresponded to loosely bound extracellular polymeric substances (LB-EPS) and tightly bound EPS (TB-EPS). The abundant SO 4 - · from S 2 O 8 2- /Fe 2+ system could effectively disrupt the gel-like EPS matrix, break apart the cells and subsequently arouse the release of the water inside EPS and cells, facilitating water-solid separation. In the case of S 2 O 8 2- /Fe 0 , the dissolution of Fe 0 particles was the rate-limiting step, due to the formation of oxide iron layer near Fe 0 metallic surface, which resulted in the slow SO 4 - · production and thus hardly promoted WAS dewaterability. The pH adjustment could accelerate Fe 0 dissolution and enhance the dewatering performance of S 2 O 8 2- /Fe 0 process to a certain degree, but the effect was unsatisfactory. Additionally, the observations regarding the dissolved organic matters and ammonium collectively revealed that except for enhancing WAS dewatering, S 2 O 8 2- /Fe 2+ oxidation could concurrently degrade COD and ammonia from WAS filtrate, lighten the burden of the subsequent sewage treatment facilities and reduce operational expense. Hence, from an environmental and economic perspective, the S 2 O 8 2- /Fe 2+ system possesses much greater promise for WAS dewatering. Copyright © 2018 Elsevier Ltd. All rights reserved.
Murillo Pulgarín, José A; García Bermejo, Luisa F; Sánchez García, M Nieves
2011-01-01
A sensitive chemiluminescence method for vitamin B(12) using a charge-coupled device (CCD) photodetector combined with on-line UV-persulfate oxidation in a simple continuous flow system has been developed. The principle for the determination of vitamin B(12) is based on the enhancive effect of cobalt (II) on the chemiluminescence reaction between luminol and percarbonate in alkaline medium. In addition, percarbonate has been investigated and proposed as a powerful source of hydrogen peroxide as oxidant agent in this chemiluminescence reaction. The digestion of vitamin B(12) to release the cobalt (II) is reached by UV irradiation treatment in a persulfate medium. The CCD detector, directly connected to the flow cell, is used with the continuous flow manifold to obtain the full spectral characteristics of cobalt (II) catalyzed luminol-percarbonate reaction. The vitamin B(12) oxidation process and chemical conditions for the chemiluminescence reaction were investigated and optimized. The increment of the emission intensity was proportional to the concentration of vitamin B(12) , giving a second-order calibration graph over the cobalt (II) concentration range from 10 to 5000 μg L(-1)(r(2) = 0.9985) with a detection limit of 9.3 μg L(-1). The proposed method was applied to the determination of vitamin B(12) in different kinds of pharmaceuticals. Copyright © 2011 John Wiley & Sons, Ltd.
Li, Peng; Liu, Zhipeng; Wang, Xuegang; Guo, Yadan; Wang, Lizhang
2017-08-01
Reactivity of sodium persulfate (PS) in the decolorization of methyl orange (MO) in aqueous solution using an iron-carbon micro-electrolysis (ICE) method was investigated. The effects of sodium persulfate doses, pH, Fe-to-C mass ratios, initial MO concentration as well as the reaction temperature were comprehensively studied in batch experiments. The ICE-PS coupled process was more suitable for wide ranges of pH, initial MO concentration and reaction temperature, accompanied by the reduction of Fe compared ICE. The MO removal efficiency improved substantially by ICE-PS technique, 76.03% for ICE and 91.27% for ICE-PS at experimental conditions of pH 3.0, Fe-to-C mass ratio 3:1, PS addition 10 mM and initial MO concentration 0.61 mM. Furthermore, the biodegradability index (BI) dramatically increased from 0.26 to 0.65. The binary hydroxyl and sulfate radicals that non-selectively degrade MO to the derivatives with small molecules are ascribed to ICE-PS method as detected by the UV-vis spectra. The PS activation resource was Fe 2+ through the hydroxyl radical quenching reaction by the additive tert-butanol (TBA). This study provides an in-depth theoretical understanding of the development and wide commercial application of the ICE technology to refractory industrial dye wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Aher, Ashish; Papp, Joseph; Colburn, Andrew; Wan, Hongyi; Hatakeyama, Evan; Prakash, Prakhar; Weaver, Ben; Bhattacharyya, Dibakar
2017-11-01
Oil industries generate large amounts of produced water containing organic contaminants, such as naphthenic acids (NA) and very high concentrations of inorganic salts. Recovery of potable water from produced water can be highly energy intensive is some cases due to its high salt concentration, and safe discharge is more suitable. Here, we explored catalytic properties of iron oxide (Fe x O y nanoparticles) functionalized membranes in oxidizing NA from water containing high concentrations of total dissolved solids (TDS) using persulfate as an oxidizing agent. Catalytic decomposition of persulfate by Fe x O y functionalized membranes followed pseudo-first order kinetics with an apparent activation energy of 18 Kcal/mol. Fe x O y functionalized membranes were capable of lowering the NA concentrations to less than discharge limits of 10 ppm at 40 °C. Oxidation state of iron during reaction was quantified. Membrane performance was investigated for extended period of time. A coupled process of advanced oxidation catalyzed by membrane and nanofiltration was also evaluated. Commercially available nanofiltration membranes were found capable of retaining NA from water containing high concentrations of dissolved salts. Commercial NF membranes, Dow NF270 (Dow), and NF8 (Nanostone) had NA rejection of 79% and 82%, respectively. Retentate for the nanofiltration was further treated with advanced oxidation catalyzed by Fe x O y functionalized membrane for removal of NA.
Antifouling potential of Nature-inspired sulfated compounds
NASA Astrophysics Data System (ADS)
Almeida, Joana R.; Correia-da-Silva, Marta; Sousa, Emília; Antunes, Jorge; Pinto, Madalena; Vasconcelos, Vitor; Cunha, Isabel
2017-02-01
Natural products with a sulfated scaffold have emerged as antifouling agents with low or nontoxic effects to the environment. In this study 13 sulfated polyphenols were synthesized and tested for antifouling potential using the anti-settlement activity of mussel (Mytilus galloprovincialis) plantigrade post-larvae and bacterial growth inhibition towards four biofilm-forming bacterial strains. Results show that some of these Nature-inspired compounds were bioactive, particularly rutin persulfate (2), 3,6-bis(β-D-glucopyranosyl) xanthone persulfate (6), and gallic acid persulfate (12) against the settlement of plantigrades. The chemical precursors of sulfated compounds 2 and 12 were also tested for anti-settlement activity and it was possible to conclude that bioactivity is associated with sulfation. While compound 12 showed the most promising anti-settlement activity (EC50 = 8.95 μg.mL-1), compound 2 also caused the higher level of growth inhibition in bacteria Vibrio harveyi (EC20 = 12.5 μg.mL-1). All the three bioactive compounds 2, 6, and 12 were also found to be nontoxic to the non target species Artemia salina (<10% mortality at 250 μM) and Vibrio fischeri (LC50 > 1000 μg.mL-1). This study put forward the relevance of synthesizing non-natural sulfated small molecules to generate new nontoxic antifouling agents.
Chen, Fu; Luo, Zhanbin; Liu, Gangjun; Yang, Yongjun; Zhang, Shaoliang; Ma, Jing
2017-12-15
Laboratory experiments were conducted to investigate the efficiency of a simultaneous chemical extraction and oxidation for removing persistent organic pollutants (POPs) and toxic metals from an actual soil polluted by the recycling activity of electronic waste. Various chemicals, including hydroxypropyl-β-cyclodextrin (HPCD), citric acid (CA) and sodium persulfate (SP) were applied synchronously with Fe 2+ activated oxidation to enhance the co-removal of both types of pollutants. It is found that the addition of HPCD can enhance POPs removal through solubilization of POPs and iron chelation; while the CA-chelated Fe 2+ activation process is effective for extracting metals and degrading residual POPs. Under the optimized reagent conditions, 69.4% Cu, 78.1% Pb, 74.6% Ni, 97.1% polychlorinated biphenyls, 93.8% polycyclic aromatic hydrocarbons, and 96.4% polybrominated diphenylethers were removed after the sequential application of SP-HPCD-Fe 2+ and SP-CA-Fe 2+ processes with a duration of 180 and 240 min, respectively. A high dehalogenation efficiency (84.8% bromine and 86.2% chlorine) is observed, suggesting the low accumulation of halogen-containing organic intermediates. The remediated soil can satisfy the national soil quality standard of China. Collectively, co-contaminated soil can be remediated with reasonable time and capital costs through simultaneous application of persulfate oxidation and chemical extraction. Copyright © 2017 Elsevier Ltd. All rights reserved.
Antifouling potential of Nature-inspired sulfated compounds
Almeida, Joana R.; Correia-da-Silva, Marta; Sousa, Emília; Antunes, Jorge; Pinto, Madalena; Vasconcelos, Vitor; Cunha, Isabel
2017-01-01
Natural products with a sulfated scaffold have emerged as antifouling agents with low or nontoxic effects to the environment. In this study 13 sulfated polyphenols were synthesized and tested for antifouling potential using the anti-settlement activity of mussel (Mytilus galloprovincialis) plantigrade post-larvae and bacterial growth inhibition towards four biofilm-forming bacterial strains. Results show that some of these Nature-inspired compounds were bioactive, particularly rutin persulfate (2), 3,6-bis(β-D-glucopyranosyl) xanthone persulfate (6), and gallic acid persulfate (12) against the settlement of plantigrades. The chemical precursors of sulfated compounds 2 and 12 were also tested for anti-settlement activity and it was possible to conclude that bioactivity is associated with sulfation. While compound 12 showed the most promising anti-settlement activity (EC50 = 8.95 μg.mL−1), compound 2 also caused the higher level of growth inhibition in bacteria Vibrio harveyi (EC20 = 12.5 μg.mL−1). All the three bioactive compounds 2, 6, and 12 were also found to be nontoxic to the non target species Artemia salina (<10% mortality at 250 μM) and Vibrio fischeri (LC50 > 1000 μg.mL−1). This study put forward the relevance of synthesizing non-natural sulfated small molecules to generate new nontoxic antifouling agents. PMID:28205590
Yun, Eun-Tae; Lee, Jeong Hoon; Kim, Jaesung; Park, Hee-Deung; Lee, Jaesang
2018-06-01
Select persulfate activation processes were demonstrated to initiate oxidation not reliant on sulfate radicals, although the underlying mechanism has yet to be identified. This study explored singlet oxygenation and mediated electron transfer as plausible nonradical mechanisms for organic degradation by carbon nanotube (CNT)-activated peroxymonosulfate (PMS). The degradation of furfuryl alcohol (FFA) as a singlet oxygen ( 1 O 2 ) indicator and the kinetic retardation of FFA oxidation in the presence of l-histidine and azide as 1 O 2 quenchers apparently supported a role of 1 O 2 in the CNT/PMS system. However, the 1 O 2 scavenging effect was ascribed to a rapid PMS depletion by l-histidine and azide. A comparison of CNT/PMS and photoexcited Rose Bengal (RB) excluded the possibility of singlet oxygenation during heterogeneous persulfate activation. In contrast to the case of excited RB, solvent exchange (H 2 O to D 2 O) did not enhance FFA degradation by CNT/PMS and the pH- and substrate-dependent reactivity of CNT/PMS did not reflect the selective nature of 1 O 2 . Alternatively, concomitant PMS reduction and trichlorophenol oxidation were achieved when PMS and trichlorophenol were physically separated in two chambers using a conductive vertically aligned CNT membrane. This result suggested that CNT-mediated electron transfer from organics to persulfate was primarily responsible for the nonradical degradative route.
Luo, Congwei; Jiang, Jin; Ma, Jun; Pang, Suyan; Liu, Yongze; Song, Yang; Guan, Chaoting; Li, Juan; Jin, Yixin; Wu, Daoji
2016-06-01
The transformation efficiency and products of an odorous compound 2,4,6-trichloroanisole (TCA) at the wavelength of 254 nm in the presence of persulfate were investigated for the first time. The effects of water matrix (i.e., natural organic matter (NOM), pH, carbonate/bicarbonate (HCO3(-)/CO3(2-)), and chloride ions (Cl(-))) were evaluated. The second order rate constant of TCA reacting with sulfate radical (SO4(-)) was determined to be (3.72 ± 0.10) × 10(9) M(-1) s(-1). Increasing dosage of persulfate increased the observed pseudo-first-order rate constant for TCA degradation (kobs), and the contribution of SO4(-) to TCA degradation was much higher than that of HO at each experimental condition. Degradation rate of TCA decreased with pH increasing from 4.0 to 9.0, which could be explained by the lower radical scavenging effect of dihydrogen phosphate than hydrogen phosphate in acidic condition (pH < 6). NOM significantly decreased kobs due to the effects of radical scavenging and UV absorption with the former one being dominant. kobs decreased from 2.32 × 10(-3) s(-1) to 0.92 × 10(-3) s(-1) with the CO3(2-)/HCO3(-) concentration increased from 0.5 mM to 10 mM in the UV/persulfate process, while kobs slightly decreased from 2.54 × 10(-3) s(-1) in the absence of Cl(-) to 2.10 × 10(-3) s(-1) in the presence of 10 mM Cl(-). Most of these kinetic results could be described by a steady-state kinetic model. Furthermore, liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry at powerful precursor ion scan approach was used to selectively detect oxidation products of TCA. It was found that 2,4,6-trichorophenol (TCP) was the major oxidation product (i.e., the initial yield of TCP was above 90%). The second order rate constant between TCP and SO4(-) was estimated to be (4.16 ± 0.20) × 10(9) M(-1) s(-1). In addition, three products (i.e., 2,6-dichloro-1,4-benzoquinone and two aromatic ring-opening products) were detected in the reaction of TCP with SO4(-), which also appeared in the oxidation of TCA in the UV/persulfate process. A tentative pathway was proposed, where the initial one-electron oxidation of TCA by SO4(-) and further reactions (e.g., ipso-hydroxylation and aromatic ring-cleavage) of the formed cation intermediate TCA were involved. Copyright © 2016. Published by Elsevier Ltd.
Li, Wei; Patton, Samuel; Gleason, Jamie M; Mezyk, Stephen P; Ishida, Kenneth P; Liu, Haizhou
2018-06-05
A sequential combination of membrane treatment and UV-based advanced oxidation processes (UV/AOP) has become the industry standard for potable water reuse. Chloramines are used as membrane antifouling agents and therefore carried over into the UV/AOP. In addition, persulfate (S 2 O 8 2- ) is an emerging oxidant that can be added into a UV/AOP, thus creating radicals generated from both chloramines and persulfate for water treatment. This study investigated the simultaneous photolysis of S 2 O 8 2- and monochloramine (NH 2 Cl) on the removal of 1,4-dioxane (1,4-D) for potable-water reuse. The dual oxidant effects of NH 2 Cl and S 2 O 8 2- on 1,4-D degradation were examined at various levels of oxidant dosage, chloride, and solution pH. Results showed that a NH 2 Cl-to-S 2 O 8 2- molar ratio of 0.1 was optimal, beyond which the scavenging by NH 2 Cl of HO • , SO 4 •- , and Cl 2 •- radicals decreased the 1,4-D degradation rate. At the optimal ratio, the degradation rate of 1,4-D increased linearly with the total oxidant dose up to 6 mM. The combined photolysis of NH 2 Cl and S 2 O 8 2- was sensitive to the solution pH due to a disproportionation of NH 2 Cl at pH lower than 6 into less-photoreactive dichloramine (NHCl 2 ) and radical scavenging by NH 4 + . The presence of chloride transformed HO • and SO 4 •- to Cl 2 •- that is less-reactive with 1,4-D, while the presence of dissolved O 2 promoted gaseous nitrogen production. Results from this study suggest that the presence of chloramines can be beneficial to persulfate photolysis in the removal of 1,4-D; however, the treatment efficiency depends on a careful control of an optimal NH 2 Cl dosage and a minimal chloride residue.
Halstead, J A; Edwards, J; Soracco, R J; Armstrong, R W
1999-10-01
Determination of total nitrogen in aqueous samples after thermal potassium peroxydisulfate (persulfate) digestion is a commonly used alternative to the tedious Kjeldahl procedure. When ion chromatography is used to quantify the nitrate formed during digestion, there is a potential for interference from a chlorate peak if the digested sample initially contained chloride in concentrations close to or greater than the concentration of nitrogen. It was determined that this interference can be avoided either by using chromatographic conditions which cleanly resolve the nitrate and chlorate peaks (e.g., the Dionex AG9-HG column) or by using digestion reagent concentrations chosen to maintain a high pH throughout the digestion. The second alternative is not a viable option for investigators using a single digestion for both total nitrogen (TN) and total phosphorus (TP) analysis.
Lominchar, Miguel A; Rodríguez, Sergio; Lorenzo, David; Santos, Noelia; Romero, Arturo; Santos, Aurora
2018-01-01
Three persulfate (PS) activation methods (nanoparticles of zero-valent iron (nZVI), hydrogen peroxide and alkali) were compared using phenol as target pollutant. Firstly, four experiments were conducted at 25°C in a batch way using the same initial phenol and oxidant concentrations (10 mM and 420 mM, respectively), being the molar ratio activator/PS fixed to 0.005 with nZVI (mass ratio 0.0011 nZVI/PS), to 2 using hydrogen peroxide and to 2 and 4 with NaOH. Phenol and PS conversions and aromatic byproducts profiles during 168 h reaction time were measured and compared, as well as mineralization and ecotoxicity of the samples. It was found that both phenol and aromatic byproducts (catechol and hydroquinone) totally disappeared using PS activated by alkali before 24 h, while a significant amount of aromatic intermediates was obtained with nZVI and H 2 O 2 . Additional runs were carried out using shorter times (0-2 h) to discriminate the oxidation route and the kinetic model of phenol abatement by using PS activated by alkali. Different initial concentrations of phenol (5-15 mM), PS (210 and 420 mM) and molar ratio NaOH/PS (2 and 4) were employed. The kinetic model obtained predicts accurately the evolution of phenol, persulfate, hydroquinone and catechol.
Shih, Yu-Jen; Binh, Nguyen Thanh; Chen, Chiu-Wen; Chen, Chih-Feng; Dong, Cheng-Di
2016-05-01
Various chemical oxidation techniques, such as potassium permanganate (KMnO4), sodium persulfate (Na2S2O8), Fenton (H2O2/Fe(2+)), and the modified persulfate and Fenton reagents (activated by ferrous complexes), were carried out to treat marine sediments that were contaminated with polycyclic aromatic hydrocarbons (PAHs) and dredged from Kaohsiung Harbor in Taiwan. Experimental results revealed that KMnO4 was the most effective of the tested oxidants in PAH degradation. Owing to the high organic matter content in the sediment that reduced the efficiencies of Na2S2O8 and regular Fenton reactions, a large excess of oxidant was required. Nevertheless, KH2PO4, Na4P2O7 and four chelating agents (EDTA, sodium citrate, oxalic acid, and sodium oxalate) were utilized to stabilize Fe(II) in activating the Na2S2O8 and Fenton oxidations, while Fe(II)-citrate remarkably promoted the PAH degradation. Increasing the molecular weight and number of rings of PAH did not affect the overall removal efficiencies. The correlation between the effectiveness of the oxidation processes and the physicochemical properties of individual PAH was statistically analyzed. The data implied that the reactivity of PAH (electron affinity and ionization potential) affected its treatability more than did its hydrophobicity (Kow, Koc and Sw), particularly using experimental conditions under which PAHs could be effectively oxidized. Copyright © 2016 Elsevier Ltd. All rights reserved.
Leaching of a copper flotation concentrate with ammonium persulfate in an autoclave system
NASA Astrophysics Data System (ADS)
Deniz Turan, M.; Soner Altundoğan, H.
2014-09-01
The leaching behavior of a copper flotation concentrate was investigated using ammonium persulfate (APS) in an autoclave system. The decomposition products of APS, active oxygen, and acidic medium were used to extract metals from the concentrate. Leaching experiments were performed to compare the availability of APS as an oxidizing agent for leaching of the concentrate under atmospheric conditions and in an autoclave system. Leaching temperature and APS concentration were found to be important parameters in both leaching systems. Atmospheric leaching studies showed that the metal extractions increased with the increase in APS concentration and temperature (up to 333 K). A similar tendency was determined in the autoclave studies up to 423 K. It was also determined that the metal extractions decreased at temperatures above 423 K due to the passivation of the particle surface by molten elemental sulfur. The results showed that higher copper extractions could be achieved using an autoclave system.
Grafting of vinyl acetate-ethylacrylate binary monomer mixture onto guar gum.
Singh, Vandana; Singh, Angela; Joshi, Sneha; Malviya, Tulika
2016-03-01
Present article reports on guar gum (GG) functionalization through graftcopolymerization of vinylacetate (VAC) and ethylacrylate (EA) from their binary mixtures. The potassium persulfate/ascorbic acid (KPS/AA) redox initiator system has been used for the binary grafting under the previously optimized conditions for VAC grafting at guar gum. The concentration of ascorbic acid (AA), persulfate (KPS), and grafting temperature were varied to optimize the binary grafting. A preliminary investigation revealed that the copolymer has excellent ability to capture Hg(II) from aqueous solution. It was observed that the optimum % grafting sample (CP3) was best at Hg(II) adsorption. CP3 and mercury loaded CP3 (CP3-Hg) have been extensively characterized using Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), and Thermo gravimetric analysis (TGA) and a plausible mechanism for the grafting has been proposed. Copyright © 2015 Elsevier B.V. All rights reserved.
Su-Huan, Kow; Fahmi, Muhammad Ridwan; Abidin, Che Zulzikrami Azner; Soon-An, Ong
2016-11-01
Advanced oxidation processes (AOPs) are of special interest in treating landfill leachate as they are the most promising procedures to degrade recalcitrant compounds and improve the biodegradability of wastewater. This paper aims to refresh the information base of AOPs and to discover the research gaps of AOPs in landfill leachate treatment. A brief overview of mechanisms involving in AOPs including ozone-based AOPs, hydrogen peroxide-based AOPs and persulfate-based AOPs are presented, and the parameters affecting AOPs are elaborated. Particularly, the advancement of AOPs in landfill leachate treatment is compared and discussed. Landfill leachate characterization prior to method selection and method optimization prior to treatment are necessary, as the performance and practicability of AOPs are influenced by leachate matrixes and treatment cost. More studies concerning the scavenging effects of leachate matrixes towards AOPs, as well as the persulfate-based AOPs in landfill leachate treatment, are necessary in the future.
Photochemical oxidation of persistent cyanide-related compounds
NASA Astrophysics Data System (ADS)
Budaev, S. L.; Batoeva, A. A.; Khandarkhaeva, M. S.; Aseev, D. G.
2017-03-01
Kinetic regularities of the photolysis of thiocyanate solutions using of mono- and polychromatic UV radiation sources with different spectral ranges are studied. Comparative experiments aimed at investigating the role of photochemical action during the oxidation of thiocyanates with persulfates and additional catalytic activation with iron(III) ions are performed. The rate of conversion and the initial rate of thiocyanate oxidation are found to change in the order UV < UV/S2O 8 2- < S2O 8 2- /Fe3+ < UV/S2O 8 2- /Fe3+. A synergistic effect is detected when using the combined catalytic method for the destruction of thiocyanates by the UV/S2O 8 2- /Fe3+ oxidation system. This effect is due to the formation of reactive oxygen species, as a result of both the decomposition of persulfate and the reduction of inactive Fe3+ intermediates into Fe3+.
Wenhai, Chu; Tengfei, Chu; Erdeng, Du; Deng, Yang; Yingqing, Guo; Naiyun, Gao
2016-02-01
Ultraviolet/persulfate (UV/PS) has been widely used to generate sulfate radicals for degradation of water organic pollutants in previous studies. However, its impacts on disinfection byproduct formation during post-chlorination of degraded compounds is unclear. The objective of this study was to evaluate the impacts of UV irradiation, PS oxidation, and the combined UV/PS advanced oxidation process (AOP) pre-treatments on halomethane formation during the following chlorination of chloramphenicol (CAP), a model antibiotic commonly found in wastewater-impacted water. Results showed that CAP could be transformed to more trichloromethane (TCM) than monochloromethane (MCM) and dichloromethane (DCM) in the presence of excess chlorine. UV photolysis, PS oxidation and UV/PS AOP all directly decomposed CAP to produce halomethanes (HMs) before post-chlorination. Moreover, UV and UV/PS pre-treatments both enhanced the formation of all the HMs in the subsequent chlorination. PS pre-oxidation decreased the TCM formation during post-chlorination, but increased the yields of MCM, DCM and total HMs. UV pre-irradiation significantly increased the bromide utilization of HMs, whereas UV/PS pre-oxidation decreased the bromine incorporation and utilization of HMs from the chlorination of CAP in a low-bromide water. UV irradiation, PS oxidation, and UV/PS AOP can inactivate pathogens and degrade organic pollutants, but this benefit should be weighed against a potential risk of the increased halomethane formation from degraded organic pollutants with and without post-chlorination. Copyright © 2015 Elsevier Inc. All rights reserved.
Degradation of Penicillin G by heat activated persulfate in aqueous solution.
Norzaee, Samira; Taghavi, Mahmoud; Djahed, Babak; Kord Mostafapour, Ferdos
2018-06-01
We used Heat Activated of Persulfate (HAP) to decompose Penicillin G (PEN G) in aqueous solution. The effect of pH (3-11), temperature (313-353 K), and initial concentration of Sodium Persulfate (SPS) (0.05-0.5 mM) on the decomposition level of PEN G were investigated. The residue of PEN G was determined by spectrophotometry at the wavelength of 290 nm. Also, the Chemical Oxygen Demand (COD) was measured in each experiment. The Total Organic Carbon (TOC) analysis was utilized for surveying the mineralization of PEN G. In addition, based on Arrhenius equation, the activation energy of PEN G decomposition was calculated. The results indicated that the maximum PEN G removal rate was obtained at pH 5 and by increasing the doses of SPS from 0.05 to 0.5 mM, the PEN G decomposition was enhanced. It was found that an increase in temperature is accompanied by an increase in removal efficiency of PEN G. The activation energy of the studied process was determined to be 94.8 kJ mol -1 , suggesting that a moderate activation energy is required for PEN G decomposition. The TOC measurements indicate that the HAP can efficiently mineralize PEN G. Besides, the presence of the scavengers significantly suppressed the HAP process to remove the PEN G. Overall, the results of this study demonstrate that using HAP process can be a suitable method for decomposing of PEN G in aqueous solutions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ahmad, Ayyaz; Gu, Xiaogang; Li, Li; Lv, Shuguang; Xu, Yisheng; Guo, Xuhong
2015-11-01
Graphene oxide (GO) and nano-sized zero-valent iron-reduced graphene oxide (nZVI-rGO) composite were prepared. The GO and nZVI-rGO composite were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR), energy-dispersive spectroscopy (EDS), and Raman spectroscopy. The size of nZVI was about 6 nm as observed by TEM. The system of nZVI-rGO and persulfate (PS) was used for the degradation of trichloroethylene (TCE) in water, and showed 26.5% more efficiency as compared to nZVI/PS system. The different parameters were studied to determine the efficiency of nZVI-rGO to activate the PS system for the TCE degradation. By increasing the PS amount, TCE removal was also improved while no obvious effect was observed by varying the catalyst loading. Degradation was decreased as the TCE initial concentration was increased from 20 to 100 mg/L. Moreover, when initial solution pH was increased, efficiency deteriorated to 80%. Bicarbonate showed more negative effect on TCE removal among the solution matrix. To better understand the effects of radical species in the system, the scavenger tests were performed. The •SO4(-) and •O2(-) were predominant species responsible for TCE removal. The nZVI-rGO-activated PS process shows potential applications in remediation of highly toxic organic contaminants such as TCE present in the groundwater. Graphical abstract Persulfate activated by reduced graphene oxide and nano-sized zero-valent iron composite can be used for efficient degradation of trichloroethylene (TCE) in water.
Ahmadi, Mehdi; Ghanbari, Farshid
2016-10-01
Greywater (GW) is a potential source for water reuse in various applications. However, GW treatment is still a vital issue in water reuse in cases of environmental standards and risk to public health. This study investigates optimization and modeling of a hybrid process for COD removal from GW. Persulfate (PS) was simultaneously activated by electrogenerated ferrous ion (EC) and UV to generate sulfate radical. Photoelectro-persulfate (PEPS) was optimized by Box-Behnken design and the effects of four variables (pH, PS dosage, current density, and electrolysis time) were evaluated on COD removal. The results and several coefficients showed that the obtained model was acceptable for predicting the COD removal. Moreover, under optimum conditions (pH = 6.9, PS = 8.8 mM, current density = 2.0 mA/cm(2), and 49.3 min electrolysis time), BOD5, turbidity, TSS, phosphate, and UV254 were effectively removed and COD and BOD5 values reached to discharge standards. Different configurations of the processes were assessed for COD removal. The order of COD removal efficiency followed: PS < Fe(II) < UV/PS ≤ Fe(II)/PS < Fe(II)/PS/UV < electrocoagulation ≤ electrocoagulation/UV < electro-PS < PEPS. The monitoring PS concentration during 60 min reaction time in the aforesaid processes indicated that PEPS could remarkably activate PS. The solution pH was also monitored and related results revealed that the presence of PS during the 10 min first time decreased pH value while production of hydroxide ion at cathode increased pH significantly. Finally, the contribution of electrochemical process in the electrical energy consumption was far less than that of photolysis process in hybrid PEPS process.
De Borba, Brian M; Jack, Richard F; Rohrer, Jeffrey S; Wirt, Joan; Wang, Dongmei
2014-11-21
An ion chromatography (IC) method was developed for the simultaneous determination of total nitrogen and total phosphorus after alkaline persulfate digestion. This study takes advantage of advances in construction of high-resolution, high-capacity anion-exchange columns that can better tolerate the matrices typically encountered when a determination of total nitrogen and total phosphorous is required. Here, we used an electrolytically generated hydroxide eluent combined with a high-capacity, hydroxide-selective, anion-exchange column for the determination of total nitrogen (as nitrate-N) and total phosphorus (as phosphate-P) in environmental samples by IC. This method yielded LODs for nitrate-N and phosphate-P of 1.0 and 1.3 μg/L, respectively. The LOQs determined for these analytes were 3.4 and 4.2 μg/L, respectively. Due to the dilution factor required and the blank nitrate-N concentration after the persulfate digestion, the quantification limits increased for nitrate-N and phosphate-P to 171 and 63 μg/L, respectively. The suitability of the method was evaluated by determining the nitrogen and phosphorus concentrations from known concentrations of organic-containing nitrogen and phosphorus compounds. In addition, environmental samples consisting of six different wastewaters and 48 reservoir samples were evaluated for total nitrogen and phosphorus. The recoveries of nitrogen and phosphorus from the organic-containing compounds ranged from 93.1 to 100.1% and 85.2 to 97.1%, respectively. In addition, good correlation between results obtained by the colorimetric method and IC was also observed. The linearity, accuracy, and evaluation of potential interferences for determining TN and TP will be discussed. Copyright © 2014 Elsevier B.V. All rights reserved.
Chemical oxidation is a developing technology used to regenerate contaminant-spent GAC. Chemical regeneration of GAC represents a viable option to thermal regeneration methods that are energy intensive resulting in significant consumption of fossil fuels and production of greenho...
The Feasibility Study of Persulfate Oxidation to Regenerating of Spent Granular Activated Carbon
Chemical oxidation is a developing technology used to regenerate contaminant-spent GAC. Chemical regeneration of GAC represents a viable option to thermal regeneration methods that are energy intensive resulting in significant consumption of fossil fuels and production of greenho...
Wu, Yao; Guo, Jing; Han, Yijie; Zhu, Junyi; Zhou, Lixiang; Lan, Yeqing
2018-06-01
This study investigated the degradation of aniline by persulfate (PS) activated with rice straw biochar (RSBC). The results demonstrate that aniline could be rapidly decomposed by a combination of PS and RSBC. The degradation efficiency of aniline was up to 94.1% within 80 min, and meanwhile 52% of the total organic carbon was removed. In the initial pH range of 3-9, aniline could be efficiently removed. Reactive species resulting in the rapid degradation of aniline were investigated via radical and hole quenching experiments with various scavengers (e.g., methanol, tert-butyl alcohol and EDTA) and electron paramagnetic resonance technique. Based on the analysis and observation made here, it is speculated that the predominant reactive species responsible for the degradation of aniline may be holes instead of SO 4 - and OH radicals. It is concluded that RSBC could be used as an effective catalyst to activate PS for the degradation of aniline. Copyright © 2018 Elsevier Ltd. All rights reserved.
Nanoscale Fe/Ag particles activated persulfate: optimization using response surface methodology.
Silveira, Jefferson E; Barreto-Rodrigues, Marcio; Cardoso, Tais O; Pliego, Gema; Munoz, Macarena; Zazo, Juan A; Casas, José A
2017-05-01
This work studied the bimetallic nanoparticles Fe-Ag (nZVI-Ag) activated persulfate (PS) in aqueous solution using response surface methodology. The Box-Behnken design (BBD) was employed to optimize three parameters (nZVI-Ag dose, reaction temperature, and PS concentration) using 4-chlorophenol (4-CP) as the target pollutant. The synthesis of nZVI-Ag particles was carried out through a reduction of FeCl 2 with NaBH 4 followed by reductive deposition of Ag. The catalyst was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) surface area. The BBD was considered a satisfactory model to optimize the process. Confirmatory tests were carried out using predicted and experimental values under the optimal conditions (50 mg L -1 nZVI-Ag, 21 mM PS at 57 °C) and the complete removal of 4-CP achieved experimentally was successfully predicted by the model, whereas the mineralization degree predicted (90%) was slightly overestimated against the measured data (83%).
Groundwater Sampling at ISCO Sites: Binary Mixtures of Volatile Organic Compounds and Persulfate
In-situ chemical oxidation involves the introduction of a chemical oxidant into the subsurface for the purpose of transforming ground-water contaminants into less harmful byproducts. Due to oxidant persistence, ground water samples collected at hazardous waste sites may contain o...
1991-03-01
gram of —> Triton X-405 (70%) and 0.5 gram sodium lauryl sulfate . After a nitrogen -3- /- „, y-iu/iouitj Cod*s Avail and/oh ’t , • Special...period of several hours and d) using a redox system comprising of additional persulfate and a reducing agent such as sodium bisulfite or sodium
The Preparation and Simple Analysis of a Clay Nanoparticle Composite Hydrogel
ERIC Educational Resources Information Center
Warren, David S.; Sutherland, Sam P. H.; Kao, Jacqueline Y.; Weal, Geoffrey R.; Mackay, Sean M.
2017-01-01
Samples of a composite hydrogel incorporating clay (Laponite XLG and S-482) nanoparticles were prepared using N-isopropylacrylamide. The hydrogels were formed via a radical-initiated addition polymerization using potassium persulfate and N,N,N',N'-tetramethylethylenediamine. Students then measured the force required to stretch the gels and…
Oxidation of Aromatic Aldehydes Using Oxone
ERIC Educational Resources Information Center
Gandhari, Rajani; Maddukuri, Padma P.; Thottumkara, Vinod K.
2007-01-01
The experiment demonstrating the feasibility of using water as a solvent for organic reactions which highlights the cost and environmental benefits of its use is presented. The experiment encourages students to think in terms of the reaction mechanism of the oxidation of aldehydes knowing that potassium persulfate is the active oxidant in Oxone…
Abstract: With increasing worldwide incidence of toxic cyanobacterial blooms in bodies of water, cylindrospermopsin (CYN) has become a significant concern to public health and water management officials. In this study, the removal of CYN by UV-254 nm-mediated advanced oxidation ...
In-Situ Chemical Reduction and Oxidation of VOCs in Groundwater: Groundwater Treatability Studies
NASA Technical Reports Server (NTRS)
Keith, Amy; Glasgow, Jason; McCaleh, Rececca C. (Technical Monitor)
2001-01-01
This paper presents NASA Marshall Space Flight Center's treatability studies for volatile organic compounds in groundwater. In-Situ groundwater treatment technologies include: 1) Chemical Reduction(Ferox); 2) Chemical Oxidation (Fenton Reagents, Permanganate, and Persulfate); and 3) Thermal (Dynamic Underground Stripping, Six-Phase Heating). This paper is presented in viewgraph form.
Manganese Analysis in Water Samples. Training Module 5.211.2.77.
ERIC Educational Resources Information Center
Bonte, John L.; Davidson, Arnold C.
This document is an instructional module package prepared in objective form for use by an instructor familiar with the spectrophotometric analysis of manganese in water using the persulfate method. Included are objectives, an instructor guide, student handouts, and transparency masters. A video tape is also available from the author. This module…
Zhen, Guang-Yin; Lu, Xue-Qin; Li, Yu-You; Zhao, You-Cai
2013-05-01
The feasibility of electrolysis integrated with Fe(II)-activated persulfate (S2O8(2-)) oxidation to improve waste activated sludge (WAS) dewaterability was evaluated. The physicochemical properties (sludge volume (SV), total suspended solids (TSS) and volatile suspended solids (VSS)) and extracellular polymeric substances (EPS), including slime EPS, loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) were characterized to identify their exact roles in sludge dewatering. While dewaterability negatively corresponded to LB-EPS, TB-EPS, protein (PN) and polysaccharide (PS) in LB-EPS and TB-EPS, it was independent of SV, TSS, VSS, slime EPS and PN/PS. Further study through scanning electron microscope (SEM) verified the entrapment of bacterial cells by TB-EPS, protecting them against electrolysis disruption. Comparatively, electrolysis integrated with S2O8(2-)/Fe(II) oxidation was able to effectively disrupt the protective barrier and crack the entrapped cells, releasing the water inside EPS and cells. Therefore, the destruction of both TB-EPS and cells is the fundamental reason for the enhanced dewaterability. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lee, Shu-Mei; Chen, Yi-Shyan; Lin, Chih-Chien; Chen, Kuan-Hung
2015-01-01
Hair coloring products are one of the most important cosmetics for modern people; there are three major types of hair dyes, including the temporary, semi-permanent and permanent hair dyes. The selected hair dyes (such as ammonium persulfate, sodium persulfate, resorcinol and lawsone) are the important components for hair coloring products. Therefore, we analyzed the effects of these compounds on melanogenesis in B16-F10 melanoma cells. The results proved that hair dyes resorcinol and lawsone can reduce the production of melanin. The results also confirmed that resorcinol and lawsone inhibit mushroom and cellular tyrosinase activities in vitro. Resorcinol and lawsone can also downregulate the protein levels of tyrosinase and microphthalmia-associated transcription factor (MITF) in B16-F10 cells. Thus, we suggest that frequent use of hair dyes may have the risk of reducing natural melanin production in hair follicles. Moreover, resorcinol and lawsone may also be used as hypopigmenting agents to food, agricultural and cosmetic industry in the future. PMID:25584612
Gold, Gittel T; Varma, Devika M; Taub, Peter J; Nicoll, Steven B
2015-12-10
Hydrogels composed of methylcellulose are candidate materials for soft tissue reconstruction. Although photocrosslinked methylcellulose hydrogels have shown promise for such applications, gels crosslinked using reduction-oxidation (redox) initiators may be more clinically viable. In this study, methylcellulose modified with functional methacrylate groups was polymerized using an ammonium persulfate (APS)-ascorbic acid (AA) redox initiation system to produce injectable hydrogels with tunable properties. By varying macromer concentration from 2% to 4% (w/v), the equilibrium moduli of the hydrogels ranged from 1.47 ± 0.33 to 5.31 ± 0.71 kPa, on par with human adipose tissue. Gelation time was found to conform to the ISO standard for injectable materials. Cellulase treatment resulted in complete degradation of the hydrogels within 24h, providing a reversible corrective feature. Co-culture with human dermal fibroblasts confirmed the cytocompatibility of the gels based on DNA measurements and Live/Dead imaging. Taken together, this evidence indicates that APS-AA redox-polymerized methylcellulose hydrogels possess properties beneficial for use as soft tissue fillers. Copyright © 2015 Elsevier Ltd. All rights reserved.
Adewuyi, Yusuf G; Sakyi, Nana Y; Arif Khan, M
2018-02-01
The use of advanced oxidation processes (AOPs) to integrate flue gas treatments for SO 2 , NO x and Hg 0 into a single process unit is rapidly gaining research attention. AOPs are processes that rely on the generation of mainly the hydroxyl radical. This work evaluates the effectiveness of the simultaneous removal of NO and SO 2 from flue gas utilizing AOP induced by the combined heat and Fe 2+ activation of aqueous persulfate, and elucidates the reaction pathways. The results indicated that both SO 2 in the flue gas and Fe 2+ in solution improved NO removal, while the SO 2 is almost completely removed. Increased temperature led to increase in NO removal in the absence and presence of both Fe 2+ and SO 2 , and in the absence of either SO 2 or Fe 2+ , but the enhanced NO removal due to the presence of SO 2 alone dominated at all temperatures. The removal of NO increased from 77.5% at 30 °C to 80.5% and 82.3% at 50 °C and 70 °C in the presence of SO 2 alone, and from 35.3% to 62.7% and 81.2%, respectively, in the presence of Fe 2+ alone. However, in the presence of both SO 2 and Fe 2+ , NO conversion is 46.2% at 30 °C, increased only slightly to 48.2% at 50 °C; but sharply increased to 78.7% at 70 °C compared to 63.9% for persulfate-only activation. Results suggest NO removal in the presence of SO 2 is equally effective by heat-only or heat-Fe 2+ activation as the temperature increases. The results should be useful for future developments of advanced oxidation processes for flue gas treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Determination of an Effective Perfluorinated Compounds (PFCs) Oxidation Method
NASA Astrophysics Data System (ADS)
Siriwardena, D. P.; Crimi, M.; Holsen, T.; Bellona, C.
2014-12-01
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are a stable synthetic class of chemicals ubiquitously spread in environmental media (i.e. air, soil, biota, surface water and groundwater). The substances' strong polar carbon-fluorine bonds and their high thermal and chemical stability make them resistant to biological, chemical, and physical degradation. The purpose of this research is to identify the most effective oxidation method to treat perfluorinated compounds (PFCs) and their by-products that is suitable for in situ application. The laboratory oxidation study focuses on the more commonly detected and studied long-chain (C-8) PFAS; perfluorooctanoic acids (PFOA) and perfluorooctane sulfonic acid (PFOS). Existing research evaluating oxidizing treatment effectiveness on perfluoroalkyl sulfoinoic acids (PFSAs) is limited. A review of the literature and results from preliminary studies indicate that activated persulfate and catalyzed hydrogen peroxide propagation (CHP) reactions appear to be promising oxidants for PFOA. It has been demonstrated that the reactivity of superoxide in water increases in the presence of hydrogen peroxide (H2O2) and solids. Superoxide generated in CHP reactions degrades PFOA seemingly similar to superoxide-mediated destruction of the perhalogenated compounds.The goal of this study is to look at conditions that promote generation of superoxide and look at PFASs treatment effectiveness and byproduct generation. CHP reactions are conducted with varying amount of H2O2 and Fe(III) to determine the optimum conditions for PFC degradation. Results will be compared to those of another experiment using manganese dioxide as a CHP catalyst with varied H2O2 concentration to generate superoxide to degrade PFASs. Activated persulfate conditions to be compared include alkaline pH activation, heat activation, and dual oxidation (combined H2O2 and persulfate ). This presentation will focus on a comparison of oxidation effectiveness under the varied reaction conditions as well as on the oxidation intermediates and byproducts generated toward improved understanding of the potential for and limitations of in situ chemical oxidation (ISCO) for treatment of PFCs.
Liu, Na; Ding, Feng; Weng, Chih-Huang; Hwang, Chi-Chin; Lin, Yao-Tung
2018-01-15
The present study examined the oxidation power of a Fe 0 aggregates/persulfate (PS/Fe 0 ) system for the degradation of the wastewater containing mixed primary direct dyes (i.e., Sirius ® Gelb S-2G, Sirius ® Red F3B, and Sirius ® Turkis GL01). Results indicated that decolorization efficiency was determined by operating parameters of the PS/Fe 0 system and the structural complexity of dye molecules. System efficiency increased with increasing persulfate and Fe 0 dosages. Faster decolorization was observed in experiments conducted at pH < 10. The process obeyed a first-order kinetics. Slow heterogeneous reactions were observed at high initial pH (>10.5) and low PS concentration (<2 × 10 -3 M). Inhibitory effect occurred in systems containing salts Na 2 SO 4 , NaCl, Na 2 CO 3 , and Na 2 HPO 4 at 1 × 10 -2 M. The effect was suppressed when reaction temperature was raised to 55 °C. Heat enhanced not only decolorization efficiency, but also COD removal. Complete decolorization of a mixed dye containing ADMI (the American Dye Manufacture Institute) 15105 was achieved within10 min in the PS/Fe 0 /55 °C system with an initial pH of 6.0 and dosages of 5 × 10 -3 M Na 2 S 2 O 8 and 0.5 g/L Fe 0 . Low molecular weight intermediates including organic acids were identified. Due to a relatively low activation energy (4.68 kcaL/mol), the PS/Fe 0 system exhibited higher efficiency at higher temperature. This study demonstrated that Fe 0 -activated PS is a promising process for the treatment of textile wastewaters containing mixed azo direct dyes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-11
... Administration, International Trade Administration, U.S. Department of Commerce, 14th Street and Constitution... the hearing to be held at the U.S. Department of Commerce, 14th Street and Constitution Avenue, NW...'s Republic of China: Preliminary Results of the 2009-2010 Antidumping Duty Administrative Review...
78 FR 64244 - Persulfates From China; Revised Schedule for the Subject Investigation
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-28
... M. W. Newell (202-708-5409), Office of Investigations, U.S. International Trade Commission, 500 E... Commission's Rules of Practice and Procedure, part 201, subparts A through E (19 CFR part 201), and part 207... Commission's rules. Issued: October 23, 2013. By order of the Commission. Lisa R. Barton, Acting Secretary to...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-01
... conditions or business cycle for the Domestic Like Product that have occurred in the United States or in the... Carol McCue Verratti, Deputy Agency Ethics Official, at 202- 205-3088. Limited disclosure of business..., a U.S. or foreign trade or business association, or another interested party (including an...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-12
... Procedure, part 201, subparts A through E (19 CFR part 201), and part 207, subparts A, D, E, and F (19 CFR... (202-708-5408), Office of Investigations, U.S. International Trade Commission, 500 E Street SW....62 of the Commission's rules. By order of the Commission. Issued: June 6, 2013. Lisa R. Barton...
NASA Astrophysics Data System (ADS)
Zhang, Yuanchun; Zhang, Qian; Hong, Junming
2017-11-01
A novel iron coupled copper oxidate (Fe2O3@Cu2O) catalyst was synthesized to activate persulfate (PS) for acetaminophen (APAP) degradation. The catalysts were characterized via field-emission scanning electron microscopy and energy-dispersive X-ray spectrometry. The effects of the catalyst, PS concentration, catalyst dosage, initial pH, dissolved oxygen were analyzed for treatment optimization. Results indicated that Fe2O3@Cu2O achieved higher efficiency in APAP degradation than Fe2O3/PS and Cu2O/PS systems. The optimal removal efficiency of APAP (90%) was achieved within 40 min with 0.6 g/L PS and 0.3 g/L catalyst. To clarify the mechanism for APAP degradation, intermediates were analyzed with gas chromatography-mass spectrometry. Three possible degradation pathways were identified. During reaction, Cu(I) was found to react with Fe(III) to generate Fe(II), which is the most active phase for PS activation. Through the use of methanol and tert-butyl alcohol (TBA) as radical trappers, SO4rad - was identified as the main radical species that is generated during oxidation.
Application of AOPs for Removal of Stable Cyanide Compounds
NASA Astrophysics Data System (ADS)
Tsybikova, B.
2017-11-01
The main kinetic regularities of the photochemical oxidation of stable cyanide compounds (exemplified by hexacyanoferrates) by combined treatments involving direct photolysis and persulfate (oxidative system UV/S2O8 2-) and direct photolysis and hydrogen peroxide (oxidative system UV/H2O2) were studied. The possibility to perform oxidation processes within a wide pH range was shown. Based on to the energy efficiency, the rate of reaction and duration of the treatment, the considered oxidative systems can be arranged in the following order: {UV/S2O8 2-}>{UV/H2O2}>{UV}. The enhanced efficiency of hexacyanoferrates’ degradation by the combined system {UV/S2O8 2-} is due to the high oxidative capacity of sulfate anion radicals SO4 -· formed as a result of persulfate photolysis and its further disproportionation by Fe3+ and Fe2+ released through the decomposition of [Fe(CN)6]3-. Furthermore, the formation of ·OH radicals as a result of SO4 -· reacting with water also contributes to the enhanced oxidation efficiency. The combined method of {UV/S2O8 2-} treatment could be applied for the treatment of cyanide-containing wastewater and recycled water of different industries.
Glenn E. Woerndle; Martin Tsz-Ki Tsui; Stephen D. Sebestyen; Joel D. Blum; Xiangping Nie; Randall K. Kolka
2018-01-01
Stable isotope compositions of mercury (Hg) were measured in the outlet stream and in soil cores at different landscape positions in a 9.7-ha boreal upland-peatland catchment. An acidic permanganate/persulfate digestion procedure was validated for water samples with high dissolved organic matter (DOM) concentrations through Hg spike addition analysis. We report a...
High performance positive electrode for a lead-acid battery
NASA Technical Reports Server (NTRS)
Kao, Wen-Hong (Inventor); Bullock, Norma K. (Inventor); Petersen, Ralph A. (Inventor)
1994-01-01
An electrode suitable for use as a lead-acid battery plate is formed of a paste composition which enhances the performance of the plate. The paste composition includes a basic lead sulfate, a persulfate and water. The paste may also include lead oxide and fibers. An electrode according to the invention is characterized by good strength in combination with high power density, porosity and surface area.
Sharma, Jyoti; Mishra, I M; Kumar, Vineet
2015-06-01
This work reports on the removal and mineralization of an endocrine disrupting chemical, Bisphenol A (BPA) at a concentration of 0.22 mM in aqueous solution using inorganic oxidants (hydrogen peroxide, H2O2 and sodium persulfate, Na2S2O8;S2O8(2-)) under UV irradiation at a wavelength of 254 nm and 40 W power (Io = 1.26 × 10(-6) E s(-1)) at its natural pH and a temperature of 29 ± 3 °C. With an optimum persulfate concentration of 1.26 mM, the UV/S2O8(2-) process resulted in ∼95% BPA removal after 240 min of irradiation. The optimum BPA removal was found to be ∼85% with a H2O2 concentration of 11.76 mM. At higher concentrations, either of the oxidants showed an adverse effect because of the quenching of the hydroxyl or sulfate radicals in the BPA solution. The sulfate-based oxidation process could be used over a wider initial pH range of 3-12, but the hydroxyl radical-based oxidation of BPA should be carried out in the acidic pH range only. The water matrix components (bicarbonate, chloride and humic acid) showed higher scavenging effect in hydroxyl radical-based oxidation than that in the sulfate radical-based oxidation of BPA. UV/S2O8(2-) oxidation system utilized less energy (307 kWh/m(3)) EE/O in comparison to UV/H2O2 system (509 kWh/m(3)) under optimum operating conditions. The cost of UV irradiation far outweighed the cost of the oxidants in the process. However, the total cost of treatment of persulfate-based system was much lower than that of H2O2-based oxidation system. Copyright © 2015 Elsevier Ltd. All rights reserved.
Activated Persulfate Treatment of 1,4-Dioxane in the Presence of Chlorinated Solvent Co-contaminants
NASA Astrophysics Data System (ADS)
Boving, T. T.; Eberle, D. E. H.; Ball, R.
2014-12-01
1,4-dioxane is an emerging groundwater contaminant and a likely human carcinogen. Due to its history as a stabilizer in chlorinated solvents, 1,4-dioxane is often found as a co-contaminant at solvent releases sites such as landfills, solvent recycling facilities, vapor decreasing operations, and fire-training areas. Historically, 1,4-dioxane was not routinely analyzed for at solvent release sites. The lack of analyses and the limitations of the analyses that were performed (i.e. high reporting limits) means that the scale of 1,4-dioxane subsurface contamination is still emerging. With the number of known 1,4-dioxane sites increasing, the need for cost effective 1,4-dioxane remediation technologies is rising as well. Remediation strategies that are capable of treating both 1,4-dioxane as well as chlorinated co-contaminants are of particular importance, especially when treating mixed-waste source zones. In the present study, we examined the fate of 1,4-dioxane during the targeted remediation of aqueous phase volatile organic compounds (VOC) using an activated persulfate based ISCO method (OxyZone®). Bench scale laboratory experiments are used to evaluate the treatability of 1,4-dioxane both as a single compound and in the presence of trichloroethene (TCE) and 1,1,1-trichloroethane (1,1,1-TCA). Possible dependencies on oxidant concentration and reaction kinetics were studied. Preliminary results are promising and show that OxyZone® is persistent and long lived, with oxidation of 1,4-dioxane continuing more than 12 days after initial dosage, even at dilute oxidant concentrations. The oxidative destruction of 1,4-dioxane, TCE and 1,1,1-TCA in single compound batch systems followed pseudo first order reaction kinetics. The rate of oxidation for each contaminant increased linearly with increasing persulfate concentration over the range of oxidant concentrations tested. The rate of oxidative destruction, from most easily degraded to least was: TCE > 1,4-Dioxane > 1,1,1-TCA. Experiments examining the destruction of 1,4-dioxane in the presence of TCE and 1,1,1-TCA are ongoing. The final results of this study will be presented.
Zhang, Heng; Xiong, Zhaokun; Ji, Fangzhou; Lai, Bo; Yang, Ping
2017-06-01
Shale gas drilling flowback fluid (SGDF) generated during shale gas extraction is of great concern due to its high total dissolved solid, radioactive elements and organic matter. To remove the toxic and refractory pollutants in SGDF and improve its biodegradability, a microsacle Fe 0 /Persulfate/O 3 process (mFe 0 /PS/O 3 ) was developed to pretreat this wastewater obtained from a shale gas well in southwestern China. First, effects of mFe 0 dosage, O 3 flow rate, PS dosage, pH values on the treatment efficiency of mFe 0 /PS/O 3 process were investigated through single-factor experiments. Afterward, the optimal conditions (i.e., pH = 6.7, mFe 0 dosage = 6.74 g/L, PS = 16.89 mmol/L, O 3 flow rate = 0.73 L/min) were obtained by using response surface methodology (RSM). Under the optimal conditions, high COD removal (75.3%) and BOD 5 /COD ratio (0.49) were obtained after 120 min treatment. Moreover, compared with control experiments (i.e., mFe 0 , O 3 , PS, mFe 0 /O 3 , mFe 0 /PS, O 3 /PS), mFe 0 /PS/O 3 system exerted better performance for pollutants removal in SGDF due to strong synergistic effect between mFe 0 , PS and O 3 . In addition, the decomposition or transformation of the organic pollutants in SGDF was analyzed by using GC-MS. Finally, the reaction mechanism of the mFe 0 /PS/O 3 process was proposed according to the analysis results of SEM-EDS and XRD. It can be concluded that high-efficient mFe 0 /PS/O 3 process was mainly resulted from the combination effect of direct oxidation by ozone and persulfate, heterogeneous and homogeneous catalytic oxidation, Fenton-like reaction and adsorption. Therefore, mFe 0 /PS/O 3 process was proven to be an effective method for pretreatment of SGDF prior to biological treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
2008-12-01
glucosamine hydrochloride was dissolved in 100 mL of de- ionized water and placed in an ice bath at >5oC and purged with N2 gas for 20 minutes; 3.25...Temperature sensitive hydrogels based on N-isopropyl acrylamide (NIPA) and acryloyl glucosamine (AG) were synthesized using ammonium persulfate (APS) as...hydrogels by copolymerization of poly (N-isopropylacrylamide) (NIPA), and acryloyl glucosamine (AG) a derivative of chi- tosan, a biopolymer from
European Scientific Notes. Volume 37, Number 2,
1983-02-28
potassium persulfate the initiator. ethylene. The method is to immerse the Particle nucleation, flocculation, and films in an aqueous solution of acrylic... polyacrylic acid in the aqueous solu- causing flocculation and coalescence. tion, water soluble inhibitors were The process of aggregation of ...AD-A127 548 EUROPEAN SCIENTIFIC 140TES VOLUME 37 NUMBER 2(U) OFFICE / OF NAVAL RESEARCH LONDON (ERGLAND) V TSTANNET ET AL 28 FER 83 ESN-37-2 UNCLAAS
Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes.
Cheng, Xin; Guo, Hongguang; Zhang, Yongli; Wu, Xiao; Liu, Yang
2017-04-15
The reaction between persulfate (PS) and carbon nanotubes (CNTs) for the degradation of 2,4-dichlorophenol (2,4-DCP) was investigated. It was demonstrated that CNTs could efficiently activate PS for the degradation of 2,4-DCP. Results suggested that the neither hydroxyl radical (OH) nor sulfate radical (SO 4 - ) was produced therein. For the first time, the generation of singlet oxygen ( 1 O 2 ) was proved by several methods including electron paramagnetic resonance spectrometry (EPR) and liquid chromatography mass spectrometry measurements. Moreover, the generation of the superoxide radical as a precursor of the singlet oxygen was also confirmed by using certain scavengers and EPR measurement, in which the presence of molecular oxygen was not required as a precursor of 1 O 2 . The efficient generation of 1 O 2 using the PS/CNTs system without any light irradiation can be employed for the selective oxidation of aqueous organic compounds under neutral conditions with the mineralization and toxicity evaluated. A kinetic model was developed to theoretically evaluate the adsorption and oxidation of 2,4-DCP on the CNTs. Accordingly, a catalytic mechanism was proposed involving the formation of a dioxirane intermediate between PS and CNTs, and the subsequent decomposition of this intermediate into 1 O 2 . Copyright © 2017 Elsevier Ltd. All rights reserved.
Peng, Hongjiang; Xu, Liya; Zhang, Wei; Liu, Fuwen; Lu, Xin; Lu, Wei; Danish, Muhammad; Lin, Kuangfei
2017-01-01
The feasibility of using base persulfate (PS) and coupled with other activation methods (heat, ultrasonic and Fe 2+ gluconate) was first explored for the removal of decabromodiphenyl ether (BDE209) in a soil system, and various factors were also investigated. The results showed that the removal of BDE209 followed a pseudo-first-order model. Interestingly, the rate constant (k 1 ) indicated a good power exponential relationship with initial PS (k 1 =0.018×[PS] 0 0.437 , R 2 =0.983, [PS] 0 =0.02-0.5M) or BDE209 (k 1 =0.029×e -0.038×[BDE209] 0 , R 2 =0.999, [BDE209] 0 =10-50mgkg -1 ) concentration, respectively. Additionally, k 1 well fitted the Arrhenius equation at the temperature range of 25 to 55°C, and the calculated activation energy (E a ) approximately was 41.2kJmol -1 . The removal efficiency could be enhanced in the presence of ultrasound due to increasing the amount of BDE209 molecules desorbed from soil and organic matters. Finally, nine intermediate products were identified during the heat and base co-activated PS oxidation process, and the possible reaction pathways were further proposed. Copyright © 2016 Elsevier B.V. All rights reserved.
Liang, Chenju; He, Boyu
2018-05-01
The use of a dual oxidation system, which combines sodium persulfate (Na 2 S 2 O 8 , SPS) and hydrogen peroxide (H 2 O 2 , HP) is increasing as an in-situ chemical oxidation (ISCO) process for soil and groundwater remediation. An analytical method was assessed in this study for determining individual oxidant concentration in order to understand the interactions, and variations in the concentrations, of SPS and HP in aqueous systems containing both SPS and HP. The iodometric titration method was demonstrated to be capable of measuring total oxidant (SPS + HP) concentration; while the ceric sulfate titration method can be used specifically for measuring HP in the dual oxidation system without interfering with the iodometric titration. Therefore, SPS concentration can be deduced by subtraction of the HP concentration from the total oxidant concentration. Direct iodometric titration for determination of total oxidant at concentration above 20 mM exhibited <8% concentration. Based on the results of indirect determination of SPS in the dual oxidation system, an approximate 10% concentration variation was expected. This research may serve as a reference for measuring oxidant variations in this ISCO dual oxidant application. Copyright © 2018. Published by Elsevier Ltd.
Jo, Young-Hoon; Do, Si-Hyun; Kong, Sung-Ho
2014-01-01
Iron oxide-immobilized manganese oxide (MnO2) composite was prepared and the reactivity of persulfate (PS) with the composite as activator was investigated for degradation of carbon tetrachloride and benzene at various pH levels. Brunauer-Emmett-Teller (BET) surface area of the composite was similar to that of pure MnO2 while the pore volume and diameter of composite was larger than those of MnO2. Scanning electron microscopy couples with energy dispersive spectroscopy (SEM-EDS) showed that Fe and Mn were detected on the surface of the composite, and X-ray diffraction (XRD) analysis indicated the possibilities of the existence of various iron oxides on the composite surface. Furthermore, the analyses of X-ray photoelectron (XPS) spectra revealed that the oxidation state of iron was identified as 1.74. In PS/composite system, the same pH for the highest degradation rates of both carbon tetrachloride and benzene were observed and the value of pH was 9. Scavenger test was suggested that both oxidants (i.e. hydroxyl radical, sulfate radical) and reductant (i.e. superoxide anion) were effectively produced when PS was activated with the iron-immobilized MnO2. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhou, Lei; Zhang, Ya; Ying, Rongrong; Wang, Guoqing; Long, Tao; Li, Jianhua; Lin, Yusuo
2017-04-01
The widespread occurrence of organophosphorus pesticides (OPPs) in the environment poses risks to both ecologic system as well as human health. This study investigated the oxidation kinetics of chlorpyrifos (CP), one of the typical OPPs, by thermoactivated persulfate (PS) oxidation process, and evaluated the influence of key kinetic factors, such as PS concentrations, pH, temperature, bicarbonate, and chloride ions. The reaction pathways and mechanisms were also proposed based on products identification by LC-MS techniques. Our results revealed that increasing initial PS concentration and temperature favored the decomposition of CP, whereas the oxidation efficiency was not affected by pH change ranging from 3 to 11. Bicarbonate was found to play a detrimental role on CP removal rates, while chloride showed no effect. The oxidation pathways including initial oxidation of P=S bond to P=O, dechlorination, dealkylation, and the dechlorination-hydroxylation were proposed, and the detailed underlying mechanisms were also discussed. Molecular orbital (MO) calculations indicated that P=S bond was the most favored oxidation site of the molecule. The toxicity of reaction solution was believed to increase due to the formation of products with P=O structures. This work demonstrates that OPPs can readily react with SO 4 ·- and provides important information for further research on the oxidation of these contaminants.
Qian, Yajie; Xue, Gang; Chen, Jiabin; Luo, Jinming; Zhou, Xuefei; Gao, Pin; Wang, Qi
2018-05-03
While the widely used β-lactam antibiotics, such as cephalosporins, are known to be susceptible to oxidation by sulfate radical (SO 4 - ), comprehensive study about SO 4 - -induced oxidation of cephalosporins is still limited, such as the impact of water matrices, and the structure and antibacterial activity of transformation products. Herein, the oxidation of cefalexin (CFX), a most frequently detected cephalosporin, was systematically investigated by thermally activated persulfate (PS). CFX oxidation followed pseudo-first-order kinetics, and SO 4 - dominantly contributed to the overall oxidation of CFX. The impact of water matrices, such as Cl - , HCO 3 - and natural organic matter, on CFX degradation was predicted using a pseudo-steady-state kinetic model. The secondary reactive species, such as chlorine and carbonate radicals, were found to contribute to CFX degradation. Product analysis indicated oxidation of CFX to six products (molecular weight of 363), with two stereoisomeric sulfoxides as the primary oxidation products. It was thus suggested that the primary amine on the side chain, and the thioether sulfur and double bond on the six-membered ring were the reactive sites of CFX towards SO 4 - oxidation. Antibacterial activity assessment showed that the biological activity of CFX solution was significantly diminished after treatment by the thermally activated PS. Copyright © 2018 Elsevier B.V. All rights reserved.
Self-assembly of silica nanoparticles into hollow spheres via a microwave-assisted aerosol process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Shan; Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164; Wang, Fei
2016-02-15
Highlights: • The silica hollow spheres were fabricated via a microwave-assisted aerosol process. • The formation of the hollow spheres was obtained through a one-step process. • The spheres indicated the remarkable sustained release of potassium persulfate. - Abstract: In this work, a simple and efficient strategy for fabrication of silica hollow spheres (SHSs) has been successfully introduced with a one-step microwave-assisted aerosol process using silica nanoparticles (SiO{sub 2}, 12–50 nm) and NH{sub 4}HCO{sub 3} as precursor materials. This approach combines the merits of microwave radiation and the aerosol technique. And the formation of SHSs is ascribed to solvent evaporationmore » and the as-generated gas from NH{sub 4}HCO{sub 3} decomposition in the microwave reactor. The morphology of the SHSs can be easily tuned by varying the residence time, amount of NH{sub 4}HCO{sub 3} and silica sources. The formation mechanism of SHSs was also investigated by structure analysis. In addition, the hollow spheres exhibited remarkable sustained release of potassium persulfate, by loading it into the porous structures. The results provide new sights into the fabrication of inorganic hollow spheres via a one-step process.« less
1976-08-01
115 (General Mills Chemical Company, Inc. ) from the required amine value (the weight of potassium hydroxide in mg that is equiva- lent to the amine...amount of emulsifier to add to the pigment dispersion is about 3.33 times the FP value (33). Since the Acrysol GS is essentially polyacrylic acid, an...containing 500 gm of deoxygen- ated (boiled)-deionized water in which were dissolved 4. 0 gm potassium persulfate, 4. 0 gm sodium bicarbonate, and 2
Comparison of residual NAPL source removal techniques in 3D metric scale experiments
NASA Astrophysics Data System (ADS)
Atteia, O.; Jousse, F.; Cohen, G.; Höhener, P.
2017-07-01
This study compared four treatment techniques for the removal of a toluene/n-decane as NAPL (Non Aqueous Phase Liquid) phase mixture in identical 1 cubic meter tanks filled with different kind of sand. These four treatment techniques were: oxidation with persulfate, surfactant washing with Tween80®, sparging with air followed by ozone, and thermal treatment at 80 °C. The sources were made with three lenses of 26 × 26 × 6.5 cm, one having a hydraulic conductivity similar to the whole tank and the two others a value 10 times smaller. The four techniques were studied after conditioning the tanks with tap water during approximately 80 days. The persulfate treatment tests showed average removal of the contaminants but significant flux decrease if density effects are considered. Surfactant flushing did not show a highly significant increase of the flux of toluene but allowed an increased removal rate that could lead to an almost complete removal with longer treatment time. Sparging removed a significant amount but suggests that air was passing through localized gas channels and that the removal was stagnating after removing half of the contamination. Thermal treatment reached 100% removal after the target temperature of 80 °C was kept during more than 10 d. The experiments emphasized the generation of a high-spatial heterogeneity in NAPL content. For all the treatments the overall removal was similar for both n-decane and toluene, suggesting that toluene was removed rapidly and n-decane more slowly in some zones, while no removal existed in other zones. The oxidation and surfactant results were also analyzed for the relation between contaminant fluxes at the outlet and mass removal. For the first time, this approach clearly allowed the differentiation of the treatments. As a conclusion, experiments showed that the most important differences between the tested treatment techniques were not the global mass removal rates but the time required to reach 99% decrease in the contaminant fluxes, which were different for each technique. This paper presents the first comparison of four remediation techniques at the scale of 1 m3 tanks including heterogeneities. Sparging, persulfate and surfactant only remove 50% of the mass, while it is more than 99% for thermal. In terms of flux removal oxidant addition performs better when density effects are used.
2009-05-01
methyl tert butyl ether NAPL non-aqueous phase liquid NOD natural oxidant demand •OH hydroxide radical Ox oxidant O3 ozone PCE...and persulfate; and Technical Objective 2, assess how soil properties (e.g., soil mineralogy , natural carbon content) affect oxidant mobility and...to develop a general description of kobs vs. T because there are many reactions that can contribute to the concentration of the reactive intermediate
Activation of persulfate/copper by hydroxylamine via accelerating the cupric/cuprous redox couple.
Zhou, Peng; Zhang, Jing; Liang, Juan; Zhang, Yongli; Liu, Ya; Liu, Bei
2016-01-01
Cuprous copper [Cu(I)] reacts with sodium persulfate (PDS) to generate sulfate radical SO4(-)•, but it has been seldom investigated owing to its instability and difficulty in dissolving it. This study proposes a new method to regenerate Cu(I) from cupric copper [Cu(II)] by addition of hydroxylamine (HA) to induce the continuous production of radicals through active PDS, and investigates the resulting enhanced methyl orange (MO) degradation efficiency and mechanism in the new system. HA accelerated the degradation of MO markedly in the pH range from 6.0 to 8.0 in the HA/Cu(II)/PDS process. Both SO4(-)• and hydroxyl radicals (•OH) were considered as the primary reactive radicals in the process. The MO degradation in the HA/Cu(II)/PDS process can be divided into three stages: the fast stage, the transitory stage, and the low stage. MO degradation was enhanced with increased dosage of PDS. Although high dosage of HA could accelerate the transformation of the Cu(II)/Cu(I) cycle to produce more reactive radicals, excess HA can quench the reactive radicals. This study indicates that through a copper-redox cycling mechanism by HA, the production of SO4(-)• and •OH can be strongly enhanced, and the effective pH range can be expanded to neutral conditions.
Pan, Fei; Zhong, Xiaohan; Xia, Dongsheng; Yin, Xianze; Li, Fan; Zhao, Dongye; Ji, Haodong; Liu, Wen
2017-01-01
This study investigated the efficiency of nanoscale zero-valent iron combined with persulfate (NZVI/PS) for enhanced degradation of brilliant red X-3B in an upflow anaerobic sludge blanket (UASB) reactor, and examined the effects of NZVI/PS on anaerobic microbial communities during the treatment process. The addition of NZVI (0.5 g/L) greatly enhanced the decolourization rate of X-3B from 63.8% to 98.4%. The Biolog EcoPlateTM technique was utilized to examine microbial metabolism in the reactor, and the Illumina MiSeq high-throughput sequencing revealed 22 phyla and 88 genera of the bacteria. The largest genera (Lactococcus) decreased from 33.03% to 7.94%, while the Akkermansia genera increased from 1.69% to 20.23% according to the abundance in the presence of 0.2 g/L NZVI during the biological treatment process. Meanwhile, three strains were isolated from the sludge in the UASB reactors and identified by 16 S rRNA analysis. The distribution of three strains was consistent with the results from the Illumina MiSeq high throughput sequencing. The X-ray photoelectron spectroscopy results indicated that Fe(0) was transformed into Fe(II)/Fe(III) during the treatment process, which are beneficial for the microorganism growth, and thus promoting their metabolic processes and microbial community. PMID:28300176
[Degradation of Acid Orange 7 with Persulfate Activated by Silver Loaded Granular Activated Carbon].
Wang, Zhong-ming; Huang, Tian-yin; Chen, Jia-bin; Li, Wen-wei; Zhang, Li-ming
2015-11-01
Granular activated carbon with silver loaded as activator (Ag/GAC) was prepared using impregnation method. N2 adsorption, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) were adopted to characterize the Ag/GAC, showing that silver was successfully loaded on granular activated carbon. The oxidation degradation of acid orange 7 (AO7) by the Ag/GAC activated by persulfate (PS) was investigated at ambient temperature. The influences of factors such as Ag loading, PS or Ag/GAC dosages and initial pH on the degradation of AO7 were evaluated. The results demonstrated that the degradation rate of AO7 could reach more than 95.0% after 180 min when the Ag loading content, PS/AO7 molar ratio, the Ag/GAC dosage were 12.7 mg x g(-1), 120: 1, 1.0 g x L(-1), respectively. The initial pH had significant effect on the AO7 degradation, with pH 5.0 as the optimal pH for the degradation of AO7. The possible degradation pathway was proposed for the AO7 degradation by using UV-visible spectroscopy and gas chromatography-mass spectrometry (GG/MS). The azo bond and naphthalene ring in the AO7 were destroyed during the degradation, with phthalic acid and acetophenone as the main degradation products.
Fan, Yan; Ji, Yuefei; Kong, Deyang; Lu, Junhe; Zhou, Quansuo
2015-12-30
Sulfamethazine (SMZ) is widely used in livestock feeding and aquaculture as an antibiotic agent and growth promoter. Widespread occurrence of SMZ in surface water, groundwater, soil and sediment has been reported. In this study, degradation of SMZ by heat-activated persulfate (PS) oxidation was investigated in aqueous solution. Experimental results demonstrated that SMZ degradation followed pseudo-first-order reaction kinetics. The pseudo-first-order rate constant (kobs) was increased markedly with increasing concentration of PS and temperature. Radical scavenging tests revealed that the predominant oxidizing species was SO4·(-) with HO playing a less important role. Aniline moiety in SMZ molecule was confirmed to be the reactive site for SO4·(-) attack by comparison with substructural analogs. Nontarget natural water constituents affected SMZ removal significantly, e.g., Cl(-) and HCO3(-) improved the degradation while fulvic acid reduced it. Reaction products were enriched by solid phase extraction (SPE) and analyzed by liquid chromatography-electrospray ionization-triple quadrupole mass spectrometry (LC-ESI-MS/MS). 6 products derived from sulfonamide S--N bond cleavage, aniline moiety oxidation and Smiles-type rearrangement were identified, and transformation pathways of SMZ oxidation were proposed. Results reveal that heat-activated PS oxidation could be an efficient approach for remediation of water contaminated by SMZ and related sulfonamides. Copyright © 2015 Elsevier B.V. All rights reserved.
Wang, Lu; Ji, Yuefei; Lu, Junhe; Kong, Deyang; Yin, Xiaoming; Zhou, Quansuo
2017-10-01
The objective of this research was to compare the transformation of Br - and formation of brominated byproducts in UV/persulfate (PS) and UV/H 2 O 2 processes. It was revealed that Br - was efficiently transformed to free bromine which reacted with humic acid (HA) or dihydroxybenzoic acid resulting in the formation of brominated byproducts such as bromoacetic acids (BAAs) in UV/PS system. In contrast, no free bromine and brominated byproducts could be detected in UV/H 2 O 2 system, although the oxidization of Br - was evident. We presumed that the oxidation of Br - by hydroxyl radicals led to the formation of bromine radicals. However, the bromine radical species could be immediately reduced back to Br - by H 2 O 2 before coupling to each other to form free bromine, which explains the undetection of free bromine and BAAs in UV/H 2 O 2 . In addition to free bromine, we found that the phenolic functionalities in HA molecules, which served as the principal reactive sites for free chlorine attack, could be in situ generated when HA was exposed to free radicals. This study demonstrates that UV/H 2 O 2 is more suitable than UV/PS for the treatment of environmental matrices containing Br - . Graphical abstract Graphical abstract.
Liu, Yiqing; He, Xuexiang; Fu, Yongsheng; Dionysiou, Dionysios D
2016-03-15
Oxytetracycline (OTC), an important broad-spectrum antibiotic, has been detected extensively in various environmental systems, which may have a detrimental impact on ecosystem and human health through the development of drug resistant bacteria and pathogens. In this study, the degradation of OTC was evaluated by UV-254nm activated persulfate (PS). The observed UV fluence based pseudo first-order rate constant (kobs) was found to be the highest at near neutral pH conditions (pH 5.5-8.5). Presence of various natural water constituents had different effects on OTC degradation, with a significant enhancement in the presence of bicarbonate or Cu(2+). Limited elimination of total organic carbon (TOC) and PS was observed during the mineralization of OTC. Transformation byproducts in the presence and absence of hydroxyl radical scavenging agent tert-butanol (t-BuOH) were identified using ultra-high definition accurate-mass quadrupole time-of-flight liquid chromatography/mass spectrometer (LC-QTOF/MS). Potential OTC degradation mechanism was subsequently proposed revealing four different reaction pathways by SO4(-) reaction including hydroxylation (+16Da), demethylation (-14Da), decarbonylation (-28Da) and dehydration (-18Da). This study suggests that UV-254nm/PS is a promising treatment technology for the control of water pollution caused by emerging contaminants such as OTC. Copyright © 2015 Elsevier B.V. All rights reserved.
Lu, Xian; Shao, Yisheng; Gao, Naiyun; Chen, Juxiang; Zhang, Yansen; Xiang, Huiming; Guo, Youluo
2017-07-01
Diclofenac (DCF) is the frequently detected non-steroidal pharmaceuticals in the aquatic environment. In this study, the degradation of DCF was evaluated by UV-254nm activated persulfate (UV/PS). The degradation of DCF followed the pseudo first-order kinetics pattern. The degradation rate constant (k obs ) was accelerated by UV/PS compared to UV alone and PS alone. Increasing the initial PS dosage or solution pH significantly enhanced the degradation efficiency. Presence of various natural water constituents had different effects on DCF degradation, with an enhancement or inhibition in the presence of inorganic anions (HCO 3 - or Cl - ) and a significant inhibition in the presence of NOM. In addition, preliminary degradation mechanisms and major products were elucidated using LC-MS/MS. Hydroxylation, decarbonylation, ring-opening and cyclation reaction involving the attack of SO 4 • - or other substances, were the main degradation mechanism. TOC analyzer and Microtox bioassay were employed to evaluate the mineralization and cytotoxicity of solutions treated by UV/PS at different times, respectively. Limited elimination of TOC (32%) was observed during the mineralization of DCF. More toxic degradation products and their related intermediate species were formed, and the UV/PS process was suitable for removing the toxicity. Of note, longer degradation time may be considered for the final toxicity removal. Copyright © 2017. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Pan, Fei; Zhong, Xiaohan; Xia, Dongsheng; Yin, Xianze; Li, Fan; Zhao, Dongye; Ji, Haodong; Liu, Wen
2017-03-01
This study investigated the efficiency of nanoscale zero-valent iron combined with persulfate (NZVI/PS) for enhanced degradation of brilliant red X-3B in an upflow anaerobic sludge blanket (UASB) reactor, and examined the effects of NZVI/PS on anaerobic microbial communities during the treatment process. The addition of NZVI (0.5 g/L) greatly enhanced the decolourization rate of X-3B from 63.8% to 98.4%. The Biolog EcoPlateTM technique was utilized to examine microbial metabolism in the reactor, and the Illumina MiSeq high-throughput sequencing revealed 22 phyla and 88 genera of the bacteria. The largest genera (Lactococcus) decreased from 33.03% to 7.94%, while the Akkermansia genera increased from 1.69% to 20.23% according to the abundance in the presence of 0.2 g/L NZVI during the biological treatment process. Meanwhile, three strains were isolated from the sludge in the UASB reactors and identified by 16 S rRNA analysis. The distribution of three strains was consistent with the results from the Illumina MiSeq high throughput sequencing. The X-ray photoelectron spectroscopy results indicated that Fe(0) was transformed into Fe(II)/Fe(III) during the treatment process, which are beneficial for the microorganism growth, and thus promoting their metabolic processes and microbial community.
2007-09-01
sulfuric acid , and analyzed according to USEPA Method 8082 (1996) using a Hewlett Packard Series II 5890 Gas Chromatograph equipped with dual electron... sulfuric acid to reduce the slurry pH to approximately 4, and • 30 percent H2O2 to create a 100-mg/L final aqueous concentration. Cobble treatment...Wastes: Physical/Chemical Methods (USEPA SW 846). 1996. Method 3665A. Sulfuric acid /permanganate cleanup. Washington, DC. United States
Liu, Yangxian; Wang, Qian
2014-10-21
In this article, a novel technique on removal of elemental mercury (Hg(0)) from flue gas by thermally activated ammonium persulfate ((NH4)(2)S(2)O(8)) has been developed for the first time. Some experiments were carried out in a bubble column reactor to evaluate the effects of process parameters on Hg(0) removal. The mechanism and kinetics of Hg(0) removal are also studied. The results show that the parameters, (NH4)(2)S(2)O(8) concentration, activation temperature and solution pH, have significant impacts on Hg(0) removal. The parameters, Hg(0), SO2 and NO concentration, only have small effects on Hg(0) removal. Hg(0) is removed by oxidations of (NH4)(2)S(2)O(8), sulfate and hydroxyl free radicals. When (NH4)(2)S(2)O(8) concentration is more than 0.1 mol/L and solution pH is lower than 9.71, Hg(0) removal by thermally activated (NH4)(2)S(2)O(8) meets a pseudo-first-order fast reaction with respect to Hg(0). However, when (NH4)(2)S(2)O(8) concentration is less than 0.1 mol/L or solution pH is higher than 9.71, the removal process meets a moderate speed reaction with respect to Hg(0). The above results indicate that this technique is a feasible method for emission control of Hg(0) from flue gas.
Feng, Yong; Liao, Changzhong; Kong, Lingjun; Wu, Deli; Liu, Yiming; Lee, Po-Heng; Shih, Kaimin
2018-07-15
Ferrous ions (Fe 2+ ) are environmentally friendly materials but show extremely inefficient persulfate activation. Polymeric graphitic carbon nitride (g-C 3 N 4 ) has recently shown potential to activate persulfates, but the process requires intense light irradiation. To overcome these drawbacks, we designed an innovative heterogeneous iron catalyst by doping Fe into g-C 3 N 4 (Fe-g-C 3 N 4 ) and used it to activate peroxymonosulfate (PMS) for degradation of pollutant phenol. The catalysts synthesized were fully characterized with various techniques, such as X-ray diffraction, Mössbauer spectroscopy, and X-ray photoelectron spectroscopy. Fe was found to be coordinated with the framework of g-C 3 N 4 . Approximately 100% degradation of phenol was achieved with Fe-g-C 3 N 4 after 20 min of reaction, whereas less than 5% degradation of phenol was achieved with Fe 2+ . Fe-g-C 3 N 4 -PMS had a wide effective pH range, and its reactivity was nearly independent of natural illumination. In contrast to the previously proposed radical mechanisms, quenching experiments revealed that nonradical oxidation contributed to the observed degradation. The OO bond in the activated PMS likely underwent heterolysis, producing high-valence iron species (Fe IV O) as the primary active species. These findings have important implications for the development of a selective heterogeneous nonradical-oxidation process. Copyright © 2018 Elsevier B.V. All rights reserved.
Pan, Xiaoxue; Yan, Liqing; Qu, Ruijuan; Wang, Zunyao
2018-04-01
The goals of this study were to bring forward new data and insights into the effect of activation methods, operational variables and reaction pathways during sulfate radicals-based oxidation of benzophenone-3 (BP-3) in aqueous solution. Heat, transition metal ions (Fe 2+ , Cu 2+ , Co 2+ ), UV and visible light irradiation were used to activate persulfate (PS) to degrade BP-3. The results showed that these three activation methods can remarkably enhance BP-3 removal efficiency. Under the conditions of [BP-3] 0 : [PS] 0 = 1: 500, pH = 7.0, and 40 °C, complete removal of BP-3 (1.31 μM) was observed in 3 h. In the pH range of 3.0-9.0, the degradation of BP-3 decreased with increasing pH. Increasing the PS dosage accelerated the reaction, while the presence of humic acid (HA) significantly inhibited the efficiency of BP-3 removal. Based on electron paramagnetic resonance (EPR) and radical quenching studies, sulfate and hydroxyl radicals contributed to the oxidation process. According to the evolution of BP-3 and its 7 by-products, as well as frontier electron densities (FED) calculation, two routes were proposed involving hydroxylation, demethylation and direct oxidation. On the whole, this work is a unique contribution to the systematic elucidation of BP-3 removal by PS. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ren, Xiaohua; Guo, Huanhuan; Feng, Jinkui; Si, Pengchao; Zhang, Lin; Ci, Lijie
2018-01-01
3D porous N-doped reduced graphene oxide (N-rGO) aerogels were synthesized by a hydrothermal reduction of graphene oxide (GO) with urea and following freeze-drying process. N-rGO aerogels have a high BET surface of 499.70 m 2 /g and a high N doping content (5.93-7.46 at%) including three kinds of N (graphitic, pyridinic and pyrrolic). Their high catalytic performance for phenol oxidation in aqueous solution was investigated by catalytic activation of persulfate (PS). We have demonstrated that N-rGO aerogels are promising metal-free catalysts for phenol removal. Kinetics studies indicate that phenol degradation follows first-order reaction kinetics with the reaction rate constant of 0.16799 min -1 for N-rGO-A(1:30). Interestingly, the comparison of direct catalytic oxidation with adsorption-catalytic oxidation experiments indicates that adsorption plays an important role in the catalytic oxidation of phenol by decreasing the phenol degradation time. Spin density and adsorption modeling demonstrates that graphitic N in N-rGO plays the most important role for the catalytic performance by inducing high positive charge densities to adjacent carbon atoms and facilitating phenol adsorption on these carbon sites. Furthermore, the activation mechanism of persulfate (PS) on N-rGO was first investigated by DFT method and PS can be activated to generate strongly oxidative radical (SO 4 · - ) by transferring electrons to N-rGO. Copyright © 2017 Elsevier Ltd. All rights reserved.
Feng, Yiping; Song, Qingyun; Lv, Wenying; Liu, Guoguang
2017-12-01
Ketoprofen (KET) is a mostly used nonsteroidal anti-inflammatory drug that has been frequently detected in wastewater effluents and surface waters. In this study, we investigated the degradation of KET by sulfate radical (SO 4 - ) based advanced oxidation processes (SR-AOPs) in aqueous solution. The degradation kinetics, mechanisms, and effects of natural water matrices on thermally activated persulfate (TAP) oxidation of KET were systematically investigated. Increasing the temperature and persulfate (PS) concentrations greatly enhanced the degradation of KET. KET degradation is pH-dependent with an optimum pH of 5.0. Reactions in the presence of radical quenchers revealed the dominant role of SO 4 - in oxidizing KET. Water matrix significantly influenced the degradation of KET. The common inorganic anions present in natural waters exhibited inhibitory effect on KET degradation, and the inhibition followed the order of Cl - > CO 3 2- > HCO 3 - > NO 3 - ; however, no significant inhibition of KET degradation was observed in the presence of Ca 2+ and Mg 2+ cations. The presence of natural organic matter (NOM) suppressed KET degradation, and the suppression increased as NOM concentration increase. Products identification and mineralization experiments revealed that KET and its degradation intermediates were finally transformed into CO 2 and H 2 O. The results of this study indicated that applying SR-AOPs for the remediation of KET contaminated water matrix is technically possible. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shi, H U; Stroshine, Richard L; Ileleji, Klein
2017-01-01
The food additives sodium bisulfite, sodium hypochlorite, citric acid, and ammonium persulfate were evaluated for their effectiveness in degrading aflatoxin in samples of distillers wet grains (DWG) and condensed distillers solubles (CDS) obtained from an industrial ethanol plant. Aqueous food additive solutions, 0.5% by weight, were added to DWG or CDS at the level of 0.5 ml/g of sample, and the materials were heated at 90°C for 1 h. Sodium bisulfite was not effective in degrading aflatoxin in either DWG or CDS. Among the four food additives tested, sodium hypochlorite was the most effective. However, it bleached the substrate and left an off-odor. Citric acid and ammonium persulfate reduced aflatoxin levels by 31 to 51%. Citric acid is the most promising additive for degrading aflatoxin because it has been classified as generally recognized as safe by the U.S. Food and Drug Administration. Aflatoxin reduction was enhanced by increasing the citric acid addition level and prolonging the heating time. Reductions of 65 and 80% in DWG and CDS, respectively, were obtained by the addition of 2.5% (by weight) citric acid and heating at 90°C for 1 h. Aflatoxin levels in DWG and CDS were gradually reduced with prolonged heating at 90°C, even without the addition of food additives. Aflatoxin reductions of 53 and 73% were achieved in DWG and CDS as a result of heating at 90°C for 5 h.
Huang, Jingting; Wang, Kai-Sung; Liang, Chenju
2017-07-29
Tetramethylammonium hydroxide (TMAH) is widely used in high-tech industries as a developing agent. Ultraviolet (UV) light-activated persulfate (PS, S 2 O 8 2- ) can be used to generate strongly oxidative sulfate radicals, and it also exhibits the potential to treat TMAH-containing wastewater. This study initially investigated the effect of S 2 O 8 2- concentration and UV strength on the UV/S 2 O 8 2- process for the degradation of TMAH in a batch reactor. The results suggested that 15 watts (W) of UV-activated S 2 O 8 2- at concentrations of 10 or 50 mM resulted in pseudo-first-order TMAH degradation rate constants of 3.1-4.2 × 10 -2 min -1 , which was adopted for determining the hydraulic retention time (HRT) in a continuous stirred tank reactor (CSTR). The operating conditions (15 W UV/10 mM S 2 O 8 2- ) with a HRT of 129 min resulted in stable residual concentrations of S 2 O 8 2- and TMAH at approximately 2.6 mM and 20 mg L -1 in effluent, respectively. Several TMAH degradation intermediates including trimethylamine, dimethylamine, and methylamine were also detected. The effluent was adjusted to a neutral pH and evaluated for its biological acute toxicity using Cyprinus carpio as a bioassay organism. The "bio-acute toxicity unit" (TU a ) was determined to be 1.41, which indicated that the effluent was acceptable for being discharged into an aquatic ecosystem.
Mineralization of aniline using hydroxyl/sulfate radical-based technology in a waterfall reactor.
Durán, A; Monteagudo, J M; San Martín, I; Amunategui, F J; Patterson, D A
2017-11-01
The aim of this work is to study the applicability of a UV/H 2 O 2 process intensified with persulfate (PS) as a source of SO 4 - radicals to efficiently mineralize a synthetic effluent containing aniline in a glass reactor arranged in a cascade configuration. pH conditions were studied and the concentration of PS was optimized. The synergism for aniline mineralization between the UV/H 2 O 2 process and the combined UV/H 2 O 2 /PS process was quantified in 10.1%. Aniline degradation reached 100% under the UV/H2O2/PS process after 20 min. Its mineralization is favored under acidic conditions and with the presence of persulfate (optimal conditions: 49% in 90 min; pH = 4; [PS] = 250 ppm). On the contrary, the worst conditions were found at pH = 11, since hydrogen peroxide decomposes and carbonates were formed increasing the scavenging effect. The different mechanisms involved (formulated from intermediates identified by mass spectrometry) confirm these results. Aniline was found to follow a degradation pathway where phenol is the main intermediate. The presence of sulfate radicals increases phenol degradation rate leading to a higher mineralization extent. Benzoquinone was identified as the main aromatic oxidation product of phenol, whereas succinic, 4-oxo-pentanoic, fumaric and oxalic acids were detected as aliphatic oxidation products for both UV/H2O2 and UV/H2O2/PS oxidation processes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Physicochemical Approaches for the Remediation of Former Manufactured Gas Plant Tars
NASA Astrophysics Data System (ADS)
Hauswirth, S.; Miller, C. T.
2014-12-01
Former manufactured gas plant (FMGP) tars are one of the most challenging non-aqueous phase liquid (NAPL) contaminants to remediate due to their complex chemical composition, high viscosities, and ability to alter wettability. In this work, we investigate several in situ remediation techniques for the removal of tar from porous media. Batch and column experiments were conducted to test the effectiveness of mobilization, solubilization, and chemical oxidation remediation approaches. Alkaline (NaOH), surfactant (Triton X-100), and polymer (xanthan gum) agents were used in various combinations to reduce tar-water interfacial tension, increase flushing solution viscosity, and increase the solubilities of tar components. Base-activated sodium persulfate was used alone and in combination with surfactant to chemically oxidized tar components. The effectiveness of each method was assessed in terms of both removal of PAHs from the system and reduction of dissolved-phase effluent polycyclic aromatic hydrocarbon (PAH) concentrations. In column studies, alkaline-polymer (AP) and alkaline-surfactant-polymer (ASP) solutions efficiently mobilized 81-93% and 95-96% of residual PAHs, respectively, within two pore volumes. The impact of AP flushing on dissolved-phase PAH concentrations was relatively low; however, the concentrations of several low molar mass PAHs were significantly reduced after ASP flushing. Surfactant-polymer (SP) solutions removed over 99% of residual PAHs through a combination of mobilization and solubilization, and reduced the post-remediation, dissolved-phase total PAH concentration by 98.4-99.1%. Degradation of residual PAHs by base-activated sodium persulfate was relatively low (30-50%), and had little impact on dissolved-phase PAH concentrations.
Li, Xiang; Zhou, Minghua; Pan, Yuwei
2018-07-05
2,4-dichlorophenoxyacetic acid (2,4-D) is one of the most applicable herbicides in the world, its residue in aquatic environment threatens the human health and ecosystems. In this study, for the first time, inexpensive Fe-C after pre-magnetization (Pre-Fe-C) was used as the heterogeneous catalyst to activate persulfate (PS) for 2,4-D degradation, proving that Pre-Fe-C could significantly improve the degradation and dechlorination. The results indicated the stability and reusability of Pre-Fe-C were much better than pre-magnetization Fe 0 (Pre-Fe 0 ), while the leaching iron ion was lower, indicating that using Pre-Fe-C not only reduced the post-treatment cost, but also enhanced the removal and dechlorination efficiency of 2,4-D. Several important parameters including initial pH, Fe-C dosage, PS concentration affecting 2,4-D degradation and dechlorination by Pre-Fe-C/PS were investigated and compared with that of Fe-C/PS, observing a 1.2-2.7 fold enhancement in the degradation rate of 2,4-D. The Fe-C and Pre-Fe-C were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and SEM-EDX-mapping, suggesting that the content of Fe and O changed more obviously after magnetization. The degradation intermediates, such as chloroquinol, 2-chlorophenol, were identified by a gas chromatography mass spectrometry (GC/MS) and an ion chromatography (IC), and a possible degradation pathway was proposed. Copyright © 2018 Elsevier B.V. All rights reserved.
Shi, Yahong; Chen, Hongche; Wu, Yanlin; Dong, Wenbo
2018-01-01
Efficient oxidative degradation of pharmaceutical pollutants in aquatic environments is of great importance. This study used magnetic BiOCl@Fe 3 O 4 catalyst to activate persulfate (PS) under simulated solar light irradiation. This degradation system was evaluated using atenolol (ATL) as target pollutant. Four reactive species were identified in the sunlight/BiOCl@Fe 3 O 4 /PS system. The decreasing order of the contribution of each reactive species on ATL degradation was as follows: h + ≈ HO · > O 2 ·- > SO 4 ·- . pH significantly influenced ATL degradation, and an acidic condition favored the reaction. High degradation efficiencies were obtained at pH 2.3-5.5. ATL degradation rate increased with increased catalyst and PS contents. Moreover, ATL mineralization was higher in the sunlight/BiOCl@Fe 3 O 4 /PS system than in the sunlight/BiOCl@Fe 3 O 4 or sunlight/PS system. Nine possible intermediate products were identified through LC-MS analysis, and a degradation pathway for ATL was proposed. The BiOCl@Fe 3 O 4 nanomagnetic composite catalyst was synthesized in this work. This catalyst was easily separated and recovered from a treated solution by using a magnet, and it demonstrated a high catalytic activity. Increased amount of the BiOCl@Fe 3 O 4 catalyst obviously accelerated the efficiency of ATL degradation, and the reusability of the catalyst allowed the addition of a large dosage of BiOCl@Fe 3 O 4 to improve the degradation efficiency.
Donor free radical explosive composition
Walker, Franklin E. [15 Way Points Rd., Danville, CA 94526; Wasley, Richard J. [4290 Colgate Way, Livermore, CA 94550
1980-04-01
An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a donor additive comprising an organic compound or mixture of organic compounds capable of releasing low molecular weight free radicals or ions under mechanical or electrical shock conditions and which is not an explosive, or an inorganic compound or mixture of inorganic compounds capable of releasing low molecular weight free radicals or ions under mechanical or electrical shock conditions and selected from ammonium or alkali metal persulfates.
1993-07-21
1,2,5)oxadiazolyl]-5H- [1,2,3]triazolo[4,5-c] [1,2,5]oxadiazole 1. The azide 5 was con- verted to a phosphinimine 9 in a reaction with triphenylphosphine ...and led instead to an intractable mixture in which neither a primary amine nor triphenylphosphine oxide were de- tected. ACKNOWLEDGEMENTS Financial...coi-responding amine 13 was obtained from the azide 5 by reduction with stannous chloride and was oxidized by ammonium persulfate to 5-[4- nitro
2010-01-01
MWNT was conducted in ammonium persulfate (APS)/1 M aqueous hydrochloric acid (HCl) to yield PANi-g-MWNT. The resultant composites showed improved...poured into water. The precipitates were collected by suction filtra- tion and Soxhlet extracted with distilled water for 3 days and methanol for 3 days...and finally freeze-dried for 48 h to yield 9.82 g (71.7% yield ) of dark black powder. Anal. Calcd. for C12.71H6O1N1: C, 80.89%; H, 3.21%; N, 7.42
Miao, Dong; Peng, Jianbiao; Zhou, Xiaohuan; Qian, Li; Wang, Mengjie; Zhai, Li; Gao, Shixiang
2018-05-17
Atenolol (ATL) has been widely detected in wastewater and aquatic environment. Although satisfactory removal of ATL from wastewater could be achieved, the mineralization ratio is usually low, which may result in the accumulation of its transformation products in the effluent and cause additional ecological risk to the environment. The aim of this study is to explore the effectiveness of heat activated persulfate (PS) in the removal of ATL from wastewater. Influencing factors including temperature, PS dosage, solution pH, existence of NO 3 - , Cl - , HCO 3 - and Suwannee river fulvic acid (SRFA) were examined. Complete removal of ATL was achieved within 40 min at pH 7.0 and 70 °C by using 0.5 mM PS. Inhibitive effects of HCO 3 - and FA had been observed on ATL oxidation, which was increased with the increase of their concentration. Sulfate radical (SO 4 - ) was determined as the main reactive species by quenching experiment. Eight intermediates produced in ATL degradation were identified, and four degradation pathways were proposed based on the analysis of mass spectrum and frontier electron densities. The distribution of major intermediates was influenced by reaction temperature. Hydroxylation intermediates and deamidation intermediate were the most prominent at 50 °C and 60 °C, respectively. All intermediates were completely degraded in 40 min except P134 at 70 °C. Effective removal of TOC (74.12%) was achieved with 0.5 mM PS, pH 7.0 and 70 °C after 240 min. The results proved that heat activation of PS is a promising method to remove organic pollutants in wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bicarbonate-activated persulfate oxidation of acetaminophen.
Jiang, Mengdi; Lu, Junhe; Ji, Yuefei; Kong, Deyang
2017-06-01
Persulfate (PS) is widely used as an oxidant for in situ chemical remediation of contaminated groundwater. In this study we demonstrated for the first time that PS could be activated by bicarbonate. Acetaminophen was used as the probe compound to examine the reactivity of PS/bicarbonate system. It was found that acetaminophen could be effectively transformed and the reaction rate appeared pseudo-first-order to the concentrations of both acetaminophen and PS. Radical scavenger tests indicated that neither free radicals (SO 4 - and HO) nor superoxide (O 2 - ) was responsible for acetaminophen transformation. Generation of singlet oxygen ( 1 O 2 ) was verified using furfuryl alcohol (FFA) as a probe. Formation of 1 O 2 was further quantified in D 2 O fortified solution based on kinetic solvent isotopic effect (KSIE) but it was found that 1 O 2 contributed only 51.4% of the total FFA transformation. The other 48.6% was presumed to be ascribed to the reaction with peroxymonocarbonate (HCO 4 - ). However, the transformation of acetaminophen was mostly due to the reaction with HCO 4 - but not 1 O 2 . Instead of degradation, HCO 4 - oxidized acetaminophen via a one-electron abstraction mechanism resulting in the generation of acetaminophen radicals which coupled to each other to form dimers and trimers. HCO 4 - also hydrolyzed rapidly to form hydrogen peroxide (H 2 O 2 ) which led to the formation of 1 O 2 , during which O 2 - was a key intermediates. Because bicarbonate is ubiquitously presented in groundwater, the findings of this research provide important insights into the fundamental processes involved in PS oxidation in subsurface. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Ziying; Shao, Yisheng; Gao, Naiyun; Lu, Xian; An, Na
2018-02-01
Degradation of diethyl phthalate (DEP) by ultraviolet/persulfate (UV/PS) process at different reaction conditions was evaluated. DEP can be degraded effectively via this process. Both tert-butyl (TBA) and methanol (MeOH) inhibited the degradation of DEP with MeOH having a stronger impact than TBA, suggesting sulfate radical () and hydroxyl radical (HO) both existed in the reaction systems studied. The second-order rate constants of DEP reacting with and HO were calculated to be (6.4±0.3)×10 7 M -1 s -1 and (3.7±0.1)×10 9 M -1 s -1 , respectively. To further access the potential degradation mechanism in this system, the pseudo-first-order rate constants (k o ) and the radical contributions were modeled using a simple steady-state kinetic model involving and HO. Generally, HO had a greater contribution to DEP degradation than . The k o of DEP increased as PS dosages increased when PS dosages were below 1.9 mM. However, it decreased with increasing initial DEP concentrations, which might be due to the radical scavenging effect of DEP. The k o values in acidic conditions were higher than those in alkaline solutions, which was probably caused by the increasing concentration of hydrogen phosphate (with higher scavenging effects than dihydrogen phosphate) from the phosphate buffer as pH values rose. Natural organic matter and bicarbonate dramatically suppressed the degradation of DEP by scavenging and HO. Additionally, the presence of chloride ion (Cl - ) promoted the degradation of DEP at low Cl - concentrations (0.25-1 mM). Finally, the proposed degradation pathways were illustrated. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hauswirth, Scott C.; Miller, Cass T.
2014-10-01
The remediation of former manufactured gas plant (FMGP) sites contaminated with tar DNAPLs (dense non-aqueous phase liquids) presents a significant challenge. The tars are viscous mixtures of thousands of individual compounds, including known and suspected carcinogens. This work investigates the use of combinations of mobilization, solubilization, and chemical oxidation approaches to remove and degrade tars and tar components in porous medium systems. Column experiments were conducted using several flushing solutions, including an alkaline-polymer (AP) solution containing NaOH and xanthan gum (XG), a surfactant-polymer (SP) solution containing Triton X-100 surfactant (TX100) and XG, an alkaline-surfactant-polymer (ASP) solution containing NaOH, TX100, and XG, and base-activated sodium persulfate both with and without added TX100. The effectiveness of the flushing solutions was assessed based on both removal of polycyclic aromatic hydrocarbon (PAH) mass and on the reduction of dissolved-phase PAH concentrations. SP flushes of 6.6 to 20.9 PV removed over 99% of residual PAH mass and reduced dissolved-phase concentrations by up to two orders of magnitude. ASP flushing efficiently removed 95-96% of residual PAH mass within about 2 PV, and significantly reduced dissolved-phase concentrations of several low molar mass compounds, including naphthalene, acenaphthene, fluorene, and phenanthrene. AP flushing removed a large portion of the residual tar (77%), but was considerably less effective than SP and ASP in terms of the effect on dissolved PAH concentrations. Persulfate was shown to oxidize tar components, primarily those with low molar mass, however, the overall degradation was relatively low (30-50% in columns with low initial tar saturations), and the impact on dissolved-phase concentrations was minimal.
NASA Astrophysics Data System (ADS)
Kermani, Majid; Mohammadi, Farzad; Kakavandi, Babak; Esrafili, Ali; Rostamifasih, Zeinab
2018-06-01
Herein, a sulfate radical (SO4rad -)-based oxidation process was utilized for simultaneous degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid (MCPA) herbicides using mesoporous hematite-based natural semi-conductor minerals (HM-NSMs) as efficient activators of persulfate (PS). The features of the catalyst were characterized using field emission scanning electron microscopy (FESEM); Brunauer, Emmett and Teller (BET) analysis; X-ray diffraction (XRD); and energy-dispersive X-ray spectroscopy (EDS). The effect of some operational parameters, including solution pH, catalyst loading, PS dosage and temperature, on the performance system of PS/HM-NSMs was examined. A plausible oxidation mechanism for degradation of both pollutants was also proposed. Increasing the removal efficiency of herbicides follows the order of PS/HM-NSM > HM-NSM > PS. In all experiments, the 2,4-D removal rates were slightly lower than those for MCPA, indicating that 2,4-D has a more recalcitrant nature than MCPA. Under optimized conditions, degradation rates of 68.1% and 74.5% were achieved for 2,4-D and MCPA, respectively, during a 120-min reaction. HM-NSM displays a highly synergistic effect on the degradation of herbicides in the presence of PS. The trapping experiments demonstrated that both OHrad and SO4rad - radicals contribute significantly during the degradation of 2,4-D and MCPA and that sulfate radicals were the dominant species. A mineralization degree of 36% was obtained under optimum conditions. In conclusion, the coupling of PS and HM-NSM is a promising and effective technique to degrade organic matter for the treatment of herbicide-contaminated waters and wastewaters under real conditions.
Xia, Dehua; Li, Yan; Huang, Guocheng; Yin, Ran; An, Taicheng; Li, Guiying; Zhao, Huijun; Lu, Anhuai; Wong, Po Keung
2017-04-01
This study introduces natural occurring magnetic pyrrhotite (NP) as an environmentally friendly, easy available, and cost-effective alternative catalyst to activate persulfate (PS) of controlling microbial water contaminants. The E. coli K-12 inactivation kinetics observed in batch experiments was well described with first-order reaction. The optimum inactivation rate (k = 0.47 log/min) attained at a NP dose of 1 g/L and a PS dose of 1 mM, corresponding to total inactivation of 7 log 10 cfu/mL cells within 15 min. Measured k increased > 2-fold when temperature increased from 20 to 50 °C; and > 4-fold when pH decreased from 9 to 3. Aerobic conditions were more beneficial to cell inactivation than anaerobic conditions due to more reactive oxygen species (ROS) generated. ROS responsible for the inactivation were identified to be SO 4 - > OH > H 2 O 2 based on a positive scavenging test and in situ ROS determination. In situ characterization suggested that PS effectively bind to NP surface was likely to form charge transfer complex (≡Fe(II)⋯O 3 SOOSO 3 - ), which mediated ROS generation and E. coli K-12 oxidation. The increased cell-envelope lesions consequently aggravated intracellular protein depletion and genome damage to cause definite bacterial death. The NP still maintained good physiochemical structure and stable activity even after 4 cycle. Moreover, NP/PS system also exhibited good E. coli K-12 inactivation efficiency in authentic water matrices like surface water and effluents of secondary wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liang, Chenju; Lee, I-Ling
2008-09-10
In situ chemical oxidation (ISCO) is considered a reliable technology to treat groundwater contaminated with high concentrations of organic contaminants. An ISCO oxidant, persulfate anion (S(2)O(8)(2-)) can be activated by ferrous ion (Fe(2+)) to generate sulfate radicals (E(o)=2.6 V), which are capable of destroying trichloroethylene (TCE). The property of polarity inhibits S(2)O(8)(2-) or sulfate radical (SO(4)(-)) from effectively oxidizing separate phase TCE, a dense non-aqueous phase liquid (DNAPL). Thus the oxidation primarily takes place in the aqueous phase where TCE is dissolved. A bench column study was conducted to demonstrate a conceptual remediation method by flushing either S(2)O(8)(2-) or Fe(2+) through a soil column, where the TCE DNAPL was present, and passing the dissolved mixture through either a Fe(2+) or S(2)O(8)(2-) fluid sparging curtain. Also, the effect of a solubility enhancing chemical, hydroxypropyl-beta-cyclodextrin (HPCD), was tested to evaluate its ability to increase the aqueous TCE concentration. Both flushing arrangements may result in similar TCE degradation efficiencies of 35% to 42% estimated by the ratio of TCE degraded/(TCE degraded+TCE remained in effluent) and degradation byproduct chloride generation rates of 4.9 to 7.6 mg Cl(-) per soil column pore volume. The addition of HPCD did greatly increase the aqueous TCE concentration. However, the TCE degradation efficiency decreased because the TCE degradation was a lower percentage of the relatively greater amount of dissolved TCE by HPCD. This conceptual treatment may serve as a reference for potential on-site application.
Ma, Jie; Yang, Yongqi; Jiang, Xianchenghao; Xie, Zhuoting; Li, Xiaoxuan; Chen, Changzhao; Chen, Hongkun
2018-01-01
The present study investigated the impacts of water matrix constituents (CO 3 2- , HCO 3 - , Cl - , Br - , PO 4 3- , HPO 4 2- , H 2 PO 4 - , NO 3 - , SO 4 2- and natural organic matters (NOM) on the oxidation of a mixture of benzene, toluene, ethylbenzene, and xylenes (BTEX) by thermally activated persulfate (PS). In the absence of matrix constituents, the BTEX oxidation rates decreased in the following order: xylenes > toluene ≈ ethylbenzene > benzene. HCO 3 - /CO 3 2- and NOM inhibited the BTEX oxidation and the inhibiting effects became more pronounced as the HCO 3 - /CO 3 2- /NOM concentration increased. SO 4 2- , NO 3 - , PO 4 3- and H 2 PO 4 - did not affect the BTEX oxidation while HPO 4 2- slightly inhibited the reaction. The impacts of Cl - and Br - were complex. Cl - inhibited the benzene oxidation while 100 mM and 500 mM of Cl - promoted the oxidation of m-xylene and p-xylene. Br - completely suppressed the benzene oxidation while 500 mM of Br - strongly promoted the oxidation of xylenes. Detailed explanations on the influence of each matrix constituent were discussed. In addition, various halogenated degradation byproducts were detected in the treatments containing Cl - and Br - . Overall, this study indicates that some matrix constituents such as NOM, HCO 3 - , CO 3 2- , H 2 PO 4 - , Cl - and Br - may reduce the BTEX removal efficiency of sulfate radical-based advanced oxidation process (SR-AOP) and the presence of Cl - and Br - may even lead to the formation of toxic halogenated byproducts. Copyright © 2017 Elsevier Ltd. All rights reserved.
GHANIZADEH, Ghader; NASERI ARA, Ali; ESMAILI, Davoud; MASOUMBEIGI, Hossein
2015-01-01
Background: Tremendous amount of researches have investigated the issue of water photodisnfection. The aim of this research is to illustrate the influences of bacterial density, turbidity, exposure time and potassium persulfate (KPS) dosage on the efficacy of associated solar disinfection (SODIS) with KPS for E. coli (ATCC: 25922) eradication as an efficient and inexpensive process. Methods: Desired bacterial density and turbidity was achieved by spiking of 0.5 Mc Farland (1.5×108 cell/ml) and sterile soil slurry in 1 liter of the commercially bottled water. Results: The highest value of UVA solar irradiation measured at 13.30 p.m was 5510 μW/Cm2. Increase of bacterial density from 1000 to 1500 cell/ml led to an increase in disinfection lapse time, except in 2 mMol/l KPS. Spiking of 0.1 mMol/l of KPS was not effective; however, increase of KPS dosage from 0.1 mMol/l to 0.7, 1.5 and 2 mMol/l led to the enhancement of disinfection time from 4 h to 3 h and 1 h, respectively. For bacterial density of 1000 cell/ml, increasing KPS dosage up to 0.7 mMol/l had no improved effect; however, beyond this dosage the disinfection time decreased to 1 h. Without KPS and up to 150 NTU within 4 h exposure time, E. coli disinfection was completed. In 2 mMol/l KPS and 1000 and 1500 cell/ml, the 2 h contact time was sufficient up to 150 and 100 NTU, respectively; moreover, complete disinfection was not achieved at higher turbidity. Conclusion: Association of KPS with SODIS can lead to decreasing of water disinfection time. PMID:26576351
Use of Fenton reagent combined with humic acids for the removal of PFOA from contaminated water.
Santos, Aurora; Rodríguez, Sergio; Pardo, Fernando; Romero, Arturo
2016-09-01
Perfluorinated compounds (PFCs) are receiving significant attention due to its global distribution, high persistence, and bioaccumulation properties. Among them, perfluorooctanoic acid (PFOA) is one of the most commonly found in the environment. The strong bond C-F in PFOA is extremely difficult to degrade, therefore advanced oxidation processes (AOPs) at room temperature and pressure are not able to oxidize them, as was noticed here using Fenton like reagent (FR) or persulfate (PS) at 25°C. On the contrary, by using persulfate activated by heat (100mM and T=70°C) a complete defluorination of PFOA 0.1mM was noticed after 18h, with a sequential degradation mechanism of losing one CF2 unit from PFOA and its intermediates (perfluoroheptanoic acid (PFHpA), perfluorohexanoic acid (PFHxA), perfluoropentanoic acid (PFPA) and perfluorobutanoic acid (PFBA)). Since this thermal treatment is not usually desirable from an economical point of view, alternative process has been tested. For this scope, a hybrid process is proposed in this work, by adding humic acid, HA, (600mgL(-1)) and FR, (165mM in H2O2 and 3mM in Fe(3+)) to the 0.1mM PFOA solution. It was found that the HA was oxidized by FR. PFOA was entrapped quantitatively and irreversibly during HA oxidation, resulting PFOA non-available to the aqueous phase. Oxidized HA with PFOA entrapped precipitates. Both, the leftover Fe(III) acting as a coagulant and neutral pH enhance the separation of this solid phase. The precipitation noticed by adding HA to the PFOA solution in absence of FR was negligible. Copyright © 2015 Elsevier B.V. All rights reserved.
Fishman, M.
1977-01-01
An automated method to determine both inorganic and organic forms of arsenic In water, water-suspended mixtures, and streambed materials Is described. Organic arsenic-containing compounds are decomposed by either ultraviolet radiation or by suHurlc acid-potassium persulfate digestion. The arsenic liberated, with Inorganic arsenic originally present, is reduced to arsine with sodium borohydrlde. The arable Is stripped from the solution with the aid of nitrogen and Is then decomposed In a tube furnace heated to 800 ??C which Is placed in the optical path of an atomic absorption spectrometer. Thirty samples per hour can be analyzed to levels of 1 ??g arsenic per liter.
Ribeiro, T; Depres, S; Couteau, G; Pauss, A
2003-01-01
An alternative method for the estimation of nitrate and nitrogen forms in vegetables is proposed. Nitrate can be directly estimated by UV-spectrophotometry after an extraction step with water. The other nitrogen compounds are photo-oxidized into nitrate, and then estimated by UV-spectrophotometry. An oxidative solution of sodium persulfate and a Hg-UV lamp is used. Preliminary assays were realized with vegetables like salade, spinachs, artichokes, small peas, broccolis, carrots, watercress; acceptable correlations between expected and experimental values of nitrate amounts were obtained, while the detection limit needs to be lowered. The optimization of the method is underway.
2011-02-01
cuprite [Cu2O], hematite [Fe2O3], ilmenite [FeTiO3], magnesite [MgCO3], malachite [Cu2(CO3)(OH)2], pyrite [FeS2], pyrolusite [MnO2], siderite [FeCO3...0.3 m2/g], malachite [3.65 ± 0.03 m2/g], pyrite [2.12 ± 0.01 m2/g], pyrolusite [1.39 ± 0.04 m2/g], siderite [6.8 ± 0.4 m2/g], willemite [1.8 ± 0.02 m2...0.4 0.6 0.8 1 0 10 20 30 40 50 60 Anatase Bauxite Calcite Cobaltite Control Cuprite Hematite Ilmenite Magnesite Malachite Pyrite Pyrolusite Siderite
NASA Astrophysics Data System (ADS)
Zhou, Yun; Liu, Boyang; Shao, Yingfeng; Fan, Chunhua; Fan, Runhua; Wen, Bosheng
A highly efficient and convenient strategy is developed for the one-step in-situ synthesis of carbon encapsulated Cr2O3 nanocrystals with core-shell structure (Cr2O3@C). The explosive reaction of chromocene with ammonium persulfate in an autoclave at 200∘C is crucial for the formation of this nanostructure. The Cr2O3 nanocrystals have a diameter of 5 to 20nm, which are entirely encapsulated by the amorphous carbon shell. The Cr2O3@C anode can retain a stable reversible capacity of 397mAhg-1 after 50 cycles at a current density of 119mA g-1.
Reddy, G. Suresh Kumar; Greenhalgh, Kerriann; Ramaraju, Praveen; Abeylath, Sampath C.; Jang, Seyoung; Dickey, Sonja; Lim, Daniel V.
2007-01-01
This report describes the preparation of antibacterially-active emulsified polyacrylate nanoparticles in which a penicillin antibiotic is covalently conjugated onto the polymeric framework. These nanoparticles were prepared in water by emulsion polymerization of an acrylated penicillin analogue pre-dissolved in a 7:3 (w:w) mixture of butyl acrylate and styrene in the presence of sodium dodecyl sulfate (surfactant) and potassium persulfate (radical initiator). Dynamic light scattering analysis and atomic force microscopy images show that the emulsions contain nanoparticles of approximately 40 nm in diameter. The nanoparticles have equipotent in vitro antibacterial properties against methicillin-susceptible and methicillin-resistant forms of Staphylococcus aureus and indefinite stability towards β-lactamase. PMID:17420125
Varanasi, Lathika; Coscarelli, Erica; Khaksari, Maryam; Mazzoleni, Lynn R; Minakata, Daisuke
2018-05-15
Considering the increasing identification of trace organic contaminants in natural aquatic environments, the removal of trace organic contaminants from water or wastewater discharge is an urgent task. Ultraviolet (UV) and UV-based advanced oxidation processes (AOPs), such as UV/hydrogen peroxide (UV/H 2 O 2 ), UV/free chlorine and UV/persulfate, are attractive and promising approaches for the removal of these contaminants due to the high reactivity of active radical species produced in these UV-AOPs with a wide variety of organic contaminants. However, the removal efficiency of trace contaminants is greatly affected by the presence of background dissolved organic matter (DOM). In this study, we use ultrahigh resolution mass spectrometry to evaluate the transformation of a standard Suwanee River fulvic acid DOM isolate in UV photolysis and UV-AOPs. The use of probe compounds allows for the determination of the steady-state concentrations of active radical species in each UV-AOP. The changes in the H/C and O/C elemental ratios, double bond equivalents, and the low-molecular-weight transformation product concentrations of organic acids reveal that different DOM transformation patterns are induced by each UV-AOP. By comparison with the known reactivities of each radical species with specific organic compounds, we mechanistically and systematically elucidate the molecular-level DOM transformation pathways induced by hydroxyl, chlorine, and sulfate radicals in UV-AOPs. We find that there is a distinct transformation in the aliphatic components of DOM due to HO• in UV/H 2 O 2 and UV/free chlorine. Cl• induced transformation of olefinic species is also observed in the UV/free chlorine system. Transformation of aromatic and olefinic moieties by SO 4 •- are the predominant pathways in the UV/persulfate system. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Xiangwen; Lin, Zhixing; Zheng, Jingxu; Huang, Yingjuan; Chen, Bin; Mai, Yiyong; Feng, Xinliang
2016-04-01
This paper reports a novel and remarkably facile approach towards vertically aligned nanosheets on three-dimensional (3D) Ni foams. Conducting polypyrrole (PPy) sheets were grown on Ni foam through the volatilization of the environmentally friendly solvent from an ethanol-water solution of pyrrole (Py), followed by the polymerization of the coated Py in ammonium persulfate (APS) solution. The PPy-decorated Ni foams and commercial activated carbon (AC) modified Ni foams were employed as the two electrodes for the assembly of flexible all-solid-state asymmetric supercapacitors. The sheet-like structure of PPy and the macroporous feature of the Ni foam, which render large electrode-electrolyte interfaces, resulted in good capacitive performance of the supercapacitors. Moreover, a high energy density of ca. 14 Wh kg-1 and a high power density of 6.2 kW kg-1 were achieved for the all-solid-state asymmetric supercapacitors due to the wide cell voltage window.This paper reports a novel and remarkably facile approach towards vertically aligned nanosheets on three-dimensional (3D) Ni foams. Conducting polypyrrole (PPy) sheets were grown on Ni foam through the volatilization of the environmentally friendly solvent from an ethanol-water solution of pyrrole (Py), followed by the polymerization of the coated Py in ammonium persulfate (APS) solution. The PPy-decorated Ni foams and commercial activated carbon (AC) modified Ni foams were employed as the two electrodes for the assembly of flexible all-solid-state asymmetric supercapacitors. The sheet-like structure of PPy and the macroporous feature of the Ni foam, which render large electrode-electrolyte interfaces, resulted in good capacitive performance of the supercapacitors. Moreover, a high energy density of ca. 14 Wh kg-1 and a high power density of 6.2 kW kg-1 were achieved for the all-solid-state asymmetric supercapacitors due to the wide cell voltage window. Electronic supplementary information (ESI) available: ESI figures. See DOI: 10.1039/c6nr00468g
Sharma, Jyoti; Mishra, I M; Kumar, Vineet
2016-01-15
The removal of Bisphenol-A (BPA) from contaminated water using advanced oxidation methods such as UV-C assisted oxidation by hydrogen peroxide (H2O2) and sodium persulfate (SPS) has been reported by the authors earlier (Sharma et al., 2015a). In the present study, the authors report the removal of BPA from aqueous solution by the above two methods and its degradation mechanism. UV-C light (254 nm wavelength, 40 W power) was applied to BPA contaminated water at natural pH (pHN) under room temperature conditions. Experiments were carried out with the initial BPA concentration in the range of 0.04 mM-0.31 mM and the oxidant/BPA molar ratio in the range of 294:1-38:1 for UV-C/H2O2 and 31.5-4.06:1 for UV-C/SPS systems. The removal of BPA enhanced with decreasing BPA concentration. The total organic carbon also decreased with the UV-C irradiation time under optimum conditions ([H2O2]0 = 11.76 mM; [SPS]0 = 1.26 mM; temperature (29 ± 3 °C). Competition of BPA for reaction with HO or [Formula: see text] radicals at its higher concentrations results in a decrease in the removal of BPA. The intermediates with smaller and higher molecular weights than that of BPA were found in the treated water. Based on GC-MS and FTIR spectra of the reaction mixture, the formation of hydroxylated by-products testified the HO mediated oxidation pathway in the BPA degradation, while the formation of quinones and phenoxy phenols pointed to the [Formula: see text] dominating pathway through the formation of hydroxycyclohexadienyl (HCHD) and BPA phenoxyl radicals. The main route of BPA degradation is the hydroxylation followed by dehydration, coupling and ring opening reactions. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Carroll, K. C.; Chen, H.
2016-12-01
We evaluated three types of functionalized, graphene-based materials for activating persulfate (PS) and removing (i.e., sorption and oxidation) sulfamethoxazole (SMX) as a model emerging contaminant. Although advanced oxidative water treatment requires PS activation, activation requires energy or chemical inputs, and toxic substances are contained in many catalysts. Graphene-based materials were examined herein as an alternative to metal-based catalysts. Results show that nitrogen-doped graphene (N-GP) and aminated graphene (NH2-GP) can effectively activate PS. Overall, PS activation by graphene oxide was not observed in this study. N-GP (50 mg L-1) can rapidly activate PS (1 mM) to remove >99.9% SMX within 3 hours, and NH2-GP (50 mg L-1) activated PS (1 mM) can also remove 50% SMX within 10 hours. SMX sorption and total removal was greater for N-GP, which suggests oxidation was enhanced by increasing proximity to PS activation sites. Increasing pH enhanced the N-GP catalytic ability, and >99.9% SMX removal time decreased from 3 hours to 1 hour when pH increased from 3 to 9. However, the PS catalytic ability was inhibited at pH 9 for NH2-GP. Increases in ionic strength (100 mM NaCl or Na2SO4) and addition of radical scavengers (500 mM ethanol) both had negligible impacts on SMX removal. With bicarbonate addition (100 mM), while the catalytic ability of N-GP remained unaltered, NH2-GP catalytic ability was inhibited completely. Humic acid (250 mg L-1) was partially effective in inhibiting SMX removal in both N-GP and NH2-GP systems. These results have implications for elucidating oxidant catalysis mechanisms, and they quantify the ability of functionalization of graphene with hetero-atom doping to effectively catalyze PS for water treatment of organic pollutants including emerging contaminants.
Sung, Da-Young; Gunjakar, Jayavant L; Kim, Tae Woo; Kim, In Young; Lee, Yu Ri; Hwang, Seong-Ju
2013-05-27
A new prompt room temperature synthetic route to 2D nanostructured metal oxide-graphene-hybrid electrode materials can be developed by the application of colloidal reduced graphene oxide (RGO) nanosheets as an efficient reaction accelerator for the synthesis of δ-MnO2 2D nanoplates. Whereas the synthesis of the 2D nanostructured δ-MnO2 at room temperature requires treating divalent manganese compounds with persulfate ions for at least 24 h, the addition of RGO nanosheet causes a dramatic shortening of synthesis time to 1 h, underscoring its effectiveness for the promotion of the formation of 2D nanostructured metal oxide. To the best of our knowledge, this is the first example of the accelerated synthesis of 2D nanostructured hybrid material induced by the RGO nanosheets. The observed acceleration of nanoplate formation upon the addition of RGO nanosheets is attributable to the enhancement of the oxidizing power of persulfate ions, the increase of the solubility of precursor MnCO3, and the promoted crystal growth of δ-MnO2 2D nanoplates. The resulting hybridization between RGO nanosheets and δ-MnO2 nanoplates is quite powerful not only in increasing the surface area of manganese oxide nanoplate but also in enhancing its electrochemical activity. Of prime importance is that the present δ-MnO2 -RGO nanocomposites show much superior electrode performance over most of 2D nanostructured manganate systems including a similar porous assembly of RGO and layered MnO2 nanosheets. This result underscores that the present RGO-assisted solution-based synthesis can provide a prompt and scalable method to produce nanostructured hybrid electrode materials. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Le Moual, Nicole; Zock, Jan-Paul; Dumas, Orianne; Lytras, Theodore; Andersson, Eva; Lillienberg, Linnéa; Schlünssen, Vivi; Benke, Geza; Kromhout, Hans
2018-07-01
We aimed to update an asthmagen job exposure matrix (JEM) developed in the late 1990s. Main reasons were: the number of suspected and recognised asthmagens has since tripled; understanding of the aetiological role of irritants in asthma and methodological insights in application of JEMs have emerged in the period. For each agent of the new occupational asthma-specific JEM (OAsJEM), a working group of three experts out of eight evaluated exposure for each International Standard Classification of Occupations, 1988 (ISCO-88) job code into three categories: 'high' (high probability of exposure and moderate-to-high intensity), 'medium' (low-to-moderate probability or low intensity) and 'unexposed'. Within a working group, experts evaluated exposures independently from each other. If expert assessments were inconsistent the final decision was taken by consensus. Specificity was favoured over sensitivity, that is, jobs were classified with high exposure only if the probability of exposure was high and the intensity moderate-to-high. In the final review, all experts checked assigned exposures and proposed/improved recommendations for expert re-evaluation after default application of the JEM. The OAsJEM covers exposures to 30 sensitisers/irritants, including 12 newly recognised, classified into seven broad groups. Initial agreement between the three experts was mostly fair to moderate (κ values 0.2-0.5). Out of 506 ISCO-88 codes, the majority was classified as unexposed (from 82.6% (organic solvents) to 99.8% (persulfates)) and a minority as 'high-exposed' (0.2% (persulfates) to 2.6% (organic solvents)). The OAsJEM developed to improve occupational exposure assessment may improve evaluations of associations with asthma in epidemiological studies and contribute to assessment of the burden of work-related asthma. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Hilles, Ahmed H; Abu Amr, Salem S; Hussein, Rim A; Arafa, Anwar I; El-Sebaie, Olfat D
2015-10-01
The current study investigated the effects of S2O8(2-) and S2O8(2-)/H2O2 oxidation processes on the biodegradable characteristics of an anaerobic stabilized leachate. Total COD removal efficiency was found to be 46% after S2O8(2-) oxidation (using 4.2 g S2O8(2-)/1g COD0, at pH 7, for 60 min reaction time and at 350 rpm shaking speed), and improved to 81% following S2O8(2-)/H2O2 oxidation process (using 5.88 g S2O8(2-) dosage, 8.63 g H2O2 dosage, at pH 11 and for 120 min reaction time at 350 rpm). Biodegradability in terms of BOD5/COD ratio of the leachate enhanced from 0.09 to 0.1 and to 0.17 following S2O8(2-) and S2O8(2-)/H2O2 oxidation processes, respectively. The fractions of COD were determined before and after each oxidation processes (S2O8(2-) and S2O8(2-)/H2O2). The fraction of biodegradable COD(bi) increased from 36% in raw leachate to 57% and 68% after applying S2O8(2-) and S2O8(2-)/H2O2 oxidation, respectively. As for soluble COD(s), its removal efficiency was 39% and 78% following S2O8(2-) and S2O8(2-)/H2O2 oxidation, respectively. The maximum removal for particulate COD was 94% and was obtained after 120 min of S2O8(2-)/H2O2 oxidation. As a conclusion, S2O8(2-)/H2O2 oxidation could be an efficient method for improving the biodegradability of anaerobic stabilized leachate. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ji, Qingqing; Li, Jun; Xiong, Zhaokun; Lai, Bo
2017-04-01
In this study, batch experiments were conducted to examine the enhanced reactivity of microscale Fe/Cu bimetallic particles (mFe/Cu) with persulfate (PS) for p-nitrophenol (PNP) removal in aqueous solution. The key operating parameters (i.e., theoretical Cu mass loadings (TML Cu ), mFe/Cu dosage, PS dose, initial pH and temperature) were optimized by the batch experiments, respectively. The experimental data were followed well the pseudo-first-order kinetic model. Result reveals that refractory PNP (500 mg L -1 ) was effectively degraded by mFe/Cu-PS system with removal of 98.4% and k obs of 1.91 min -1 after only 3 min treatment under the optimal operating conditions. Moreover, compared with control experiments (i.e., mFe/Cu, microscale Fe 0 with PS (mFe 0 -PS), and PS alone), mFe/Cu-PS system exerted better performance for PNP removal due to the strong synergistic effect between PS and mFe/Cu. According to the analysis results of degradation kinetics of PNP, COD (chemical oxygen demand) removal, UV-vis absorption spectra and the intermediates formed, the results reveal that the PNP removal by mFe/Cu-PS system was mainly attributed to reduction accompanied slight oxidation. And based on the analysis of surface characteristics of mFe/Cu particles, it is further demonstrated that PS could enhance the reactivity of mFe/Cu through rapid corrosion of iron surface and decrease of surface passivation of mFe/Cu surface when the low molar ratio of PS to mFe/Cu (i.e., 1:43) was used in this study. These results also illustrates mFe/Cu-PS can be as a high efficient pretreatment technology for the removal of toxic refractory PNP from wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.
Poly(ortho-phenylenediamine-co-aniline) based copolymer with improved capacitance
NASA Astrophysics Data System (ADS)
Olmedo-Martínez, Jorge L.; Farías-Mancilla, Bárbara I.; Vega-Rios, Alejandro; Zaragoza-Contreras, E. Armando
2017-10-01
A poly(ortho-phenylenediamine-co-aniline) copolymer is synthesized via the oxidative route, using a 1:1 M ratio of aniline to ortho-phenylenediamine (oPDA) and ammonium persulfate as the oxidizing agent. Infrared spectroscopy indicates that the copolymer contains the functional groups typically present in polyaniline and poly(ortho-phenylenediamine); whereas UV-vis-NIR spectroscopy shows that the copolymer adopts a phenazine-type structure. Cyclic voltammetry evidences the copolymer synthesis, as a redox peak at -65 mV, different from those exhibited by polyaniline (160 mV and 600 mV) or poly(o-phenylenediamine) (-240 mV) is observed. Finally, electrochemical impedance spectroscopy and the charge/discharge test provide support to propose the copolymer application in electrodes for supercapacitors.
Vaysse, C; Guerlou-Demourgues, L; Duguet, E; Delmas, C
2003-07-28
A chimie douce route based on successive redox and exchange reactions has allowed us to prepare new hybrid organic-inorganic materials, composed of polyacrylate macromolecules intercalated into layered double hydroxides (LDHs), deriving from Ni(OH)(2). Monomer intercalation and in situ polymerization mechanisms have appeared to be strongly dependent upon the nature of the substituting cation in the slabs. In the case of iron-based LDHs, a phase containing acrylate monomeric intercalates has been isolated and identified by X-ray diffraction and infrared spectroscopy. Second, interslab free-radical polymerization of acrylate anions has been successfully initiated using potassium persulfate. In cobalt- or manganese-based LDHs, one-step polymerization has been observed, leading directly to a material containing polyacrylate intercalate.
Duan, Wengui; Chen, Chunhong; Jiang, Linbin; Li, Guang Hua
2008-09-05
Graft copolymerization of rosin-(2-acryloyloxy)ethyl ester (RAEE) onto chitosan (Cts) was carried out under microwave irradiation using potassium persulfate as an initiator. The structures, morphology, and thermal properties of the Cts graft copolymer (Cts-g-PRAEE) were characterized by means of FT-IR, XRD, SEM, and TG. Also, Cts and Cts-g-PRAEE copolymer were used as carriers of fenoprofen calcium (FC), and their controlled release behavior in artificial intestinal juice were studied. The results show that the rate of release of fenoprofen calcium from the carrier of Cts-g-PRAEE copolymer becomes very slower than that of Cts in artificial intestinal juice. Copyright © 2008. Published by Elsevier Ltd.
Fabrication of Aligned Polyaniline Nanofiber Array via a Facile Wet Chemical Process.
Sun, Qunhui; Bi, Wu; Fuller, Thomas F; Ding, Yong; Deng, Yulin
2009-06-17
In this work, we demonstrate for the first time a template free approach to synthesize aligned polyaniline nanofiber (PN) array on a passivated gold (Au) substrate via a facile wet chemical process. The Au surface was first modified using 4-aminothiophenol (4-ATP) to afford the surface functionality, followed subsequently by an oxidation polymerization of aniline (AN) monomer in an aqueous medium using ammonium persulfate as the oxidant and tartaric acid as the doping agent. The results show that a vertically aligned PANI nanofiber array with individual fiber diameters of ca. 100 nm, heights of ca. 600 nm and a packing density of ca. 40 pieces·µm(-2) , was synthesized. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Microtitration of various anions with quaternary ammonium halides using solid-state electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selig, W.
1980-01-01
Many solid-state electrodes were found to respond as endpoint detectors in the potentiometric titration of large inorganic and organic anions with quaternary ammonium halides. The best response was obtained with the iodide and cyanide electrodes although practically any electrode can function as endpoint sensor. The titrants were hexadecylpyridinium chloride and hexadecyltrimethylammonium chloride; hexadecyltrimethylammonium bromide and Hyamine 1622 may also be used. Some inorganic anions thus titratable are perrhenate, persulfate, ferricyanide, hexafluorophosphate, and hexachloroplatinate. Examples of organic anions titratable are nitroform, tetraphenylborate, cyanotriphenylborate, picrate, long-chain sulfates and sulfonates, and some soaps. The reverse titration of quaternary ammonium halides vs dodecylsulfate ismore » also feasible. Some titrations are feasible in a partially nonaqueous medium.« less
Detection of creatinine enriched on a surface imprinted polystyrene film using FT-ATR-IR.
Sreenivasan, K
2006-01-01
The surface of polystyrene (PS) was chemically modified by coating a thin layer of polyaniline (PANI) by oxidizing aniline using ammonium persulfate. Affinity sites for creatinine, a clinically relevant molecule, were created in the coated layer by adding creatinine as print molecules during the oxidation. The imprinted layer adsorbed creatinine was compared to non-imprinted surface reflecting the creation of creatinine-specific sites on the surface. The equilibrium was attained rapidly, indicating that a material of this kind is suitable for sensing applications. The adsorbed creatinine on the surface was detected using the technique of Fourier transform attenuated total internal reflection infra red spectroscopy (FT-ATR-IR). The results show that molecularly imprinted surface can enrich molecules of interest and the enriched molecules can be detected using FT-IR.
Green Synthesis of Novel Polyaniline Nanofibers: Application in pH Sensing.
Tanwar, Shivani; Ho, Ja-an Annie
2015-10-13
An optically active polyaniline nanomaterial (PANI-Nap), doped with (S)-naproxen, was developed and evaluated as a potent pH sensor. We synthesized the material in one pot by the addition of the dopant, (S)-naproxen, prior to polymerization, followed by the addition of the oxidizing agent (ammonium persulfate) that causes polymerization of the aniline. This green chemistry approach allowed us to take only 1 h to produce a water-soluble and stable nanomaterial. UV-visible spectroscopy, fluorescence spectroscopy, FT-IR spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) were used to characterize the designed nanomaterial. This nanomaterial exhibited excellent pH sensing properties and showed long term stability (up to one month) without loss of sensor performance.
Li, Hua; Li, Fei; Zhang, Biaobiao; Zhou, Xu; Yu, Fengshou; Sun, Licheng
2015-04-08
A highly active supramolecular system for visible light-driven water oxidation was developed with cyclodextrin-modified ruthenium complex as the photosensitizer, phenyl-modified ruthenium complexes as the catalysts, and sodium persulfate as the sacrificial electron acceptor. The catalysts were found to form 1:1 host-guest adducts with the photosensitizer. Stopped-flow measurement revealed the host-guest interaction is essential to facilitate the electron transfer from catalyst to sensitizer. As a result, a remarkable quantum efficiency of 84% was determined under visible light irradiation in neutral aqueous phosphate buffer. This value is nearly 1 order of magnitude higher than that of noninteraction system, indicating that the noncovalent incorporation of sensitizer and catalyst is an appealing approach for efficient conversion of solar energy into fuels.
Burguera, J L; Quintana, I A; Salager, J L; Burguera, M; Rondón, C; Carrero, P; Anton de Salager, R; Petit de Peña, Y
1999-04-01
An on-line time based injection system used in conjunction with cold vapor generation atomic absorption spectrometry and microwave-aided oxidation with potassium persulfate has been developed for the determination of the different mercury species in fish-eggs oil samples. A three-phase surfactant-oil-water emulsion produced an advantageous flow when a peristaltic pump was used to introduce the highly viscous sample into the system. The optimum proportion of the oil-water mixture ratio was 2:3 v/v with a Tween 20 surfactant concentration in the emulsion of 0.008% v/v. Inorganic mercury was determined after reduction with sodium borohydride while total mercury was determined after an oxidation step with persulfate prior to the reduction step to elemental mercury with the same reducing agent. The difference between total and inorganic mercury determined the organomercury content in samples. A linear calibration graph was obtained in the range 0.1-20 micrograms l-1 of Hg2+ by injecting 0.7 ml of samples. The detection limits based on 3 sigma of the blank signals were 0.11 and 0.12 microgram l-1 for total and inorganic mercury, respectively. The relative standard deviation of ten independent measurements were 2.8 and 2.2% for 10 micrograms l-1 and 8.8 and 9.0% for 0.1 microgram l-1 amounts of total and inorganic mercury, respectively. The recoveries of 0.3, 0.6 and 8 micrograms l-1 of inorganic and organic mercury added to fish-eggs oil samples ranged from 93.0 to 94.8% and from 100 to 106%, respectively. Good agreement with those values obtained for total mercury content in real samples by electrothermal atomic absorption spectrometry was also obtained, differences between mean values were < 7%. With the proposed procedure, 22 proteropterous catfish-eggs oil samples from the northwestern coast of Venezuela were measured; while the organic mercury lay in the range 2.0 and 3.3 micrograms l-1, inorganic mercury was not detected.
Yang, Yi; Lu, Xinglin; Jiang, Jin; Ma, Jun; Liu, Guanqi; Cao, Ying; Liu, Weili; Li, Juan; Pang, Suyan; Kong, Xiujuan; Luo, Congwei
2017-07-01
The frequent detection of sulfamethoxazole (SMX) in wastewater and surface waters gives rise of concerns about their ecotoxicological effects and potential risks to induce antibacterial resistant genes. UV/hydrogen peroxide (UV/H 2 O 2 ) and UV/persulfate (UV/PDS) advanced oxidation processes have been demonstrated to be effective for the elimination of SMX, but there is still a need for a deeper understanding of product formations. In this study, we identified and compared the transformation products of SMX in UV, UV/H 2 O 2 and UV/PDS processes. Because of the electrophilic nature of SO 4 - , the second-order rate constant for the reaction of sulfate radical (SO 4 - ) with the anionic form of SMX was higher than that with the neutral form, while hydroxyl radical (OH) exhibited comparable reactivity to both forms. The direct photolysis of SMX predominately occurred through cleavage of the NS bond, rearrangement of the isoxazole ring, and hydroxylation mechanisms. Hydroxylation was the dominant pathway for the reaction of OH with SMX. SO 4 - favored attack on NH 2 group of SMX to generate a nitro derivative and dimeric products. The presence of bicarbonate in UV/H 2 O 2 inhibited the formation of hydroxylated products, but promoted the formation of the nitro derivative and the dimeric products. In UV/PDS, bicarbonate increased the formation of the nitro derivative and the dimeric products, but decreased the formation of the hydroxylated dimeric products. The different effect of bicarbonate on transformation products in UV/H 2 O 2 vs. UV/PDS suggested that carbonate radical (CO 3 - ) oxidized SMX through the electron transfer mechanism similar to SO 4 - but with less oxidation capacity. Additionally, SO 4 - and CO 3 - exhibited higher reactivity to the oxazole ring than the isoxazole ring of SMX. Ecotoxicity of transformation products was estimated by ECOSAR program based on the quantitative structure-activity relationship analysis as well as by experiments using Vibrio fischeri, and these results indicated that the oxidation of SO 4 - or CO 3 - with SMX generated more toxic products than those of OH. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rybnikova, V; Usman, M; Hanna, K
2016-09-01
Although the chemical reduction and advanced oxidation processes have been widely used individually, very few studies have assessed the combined reduction/oxidation approach for soil remediation. In the present study, experiments were performed in spiked sand and historically contaminated soil by using four synthetic nanoparticles (Fe(0), Fe/Ni, Fe3O4, Fe3 - x Ni x O4). These nanoparticles were tested firstly for reductive transformation of polychlorinated biphenyls (PCBs) and then employed as catalysts to promote chemical oxidation reactions (H2O2 or persulfate). Obtained results indicated that bimetallic nanoparticles Fe/Ni showed the highest efficiency in reduction of PCB28 and PCB118 in spiked sand (97 and 79 %, respectively), whereas magnetite (Fe3O4) exhibited a high catalytic stability during the combined reduction/oxidation approach. In chemical oxidation, persulfate showed higher PCB degradation extent than hydrogen peroxide. As expected, the degradation efficiency was found to be limited in historically contaminated soil, where only Fe(0) and Fe/Ni particles exhibited reductive capability towards PCBs (13 and 18 %). In oxidation step, the highest degradation extents were obtained in presence of Fe(0) and Fe/Ni (18-19 %). The increase in particle and oxidant doses improved the efficiency of treatment, but overall degradation extents did not exceed 30 %, suggesting that only a small part of PCBs in soil was available for reaction with catalyst and/or oxidant. The use of organic solvent or cyclodextrin to improve the PCB availability in soil did not enhance degradation efficiency, underscoring the strong impact of soil matrix. Moreover, a better PCB degradation was observed in sand spiked with extractable organic matter separated from contaminated soil. In contrast to fractions with higher particle size (250-500 and <500 μm), no PCB degradation was observed in the finest fraction (≤250 μm) having higher organic matter content. These findings may have important practical implications to promote successively reduction and oxidation reactions in soils and understand the impact of soil properties on remediation performance.
Chen, Hao; Carroll, Kenneth C
2016-08-01
We evaluated three types of functionalized, graphene-based materials for activating persulfate (PS) and removing (i.e., sorption and oxidation) sulfamethoxazole (SMX) as a model emerging contaminant. Although advanced oxidative water treatment requires PS activation, activation requires energy or chemical inputs, and toxic substances are contained in many catalysts. Graphene-based materials were examined herein as an alternative to metal-based catalysts. Results show that nitrogen-doped graphene (N-GP) and aminated graphene (NH2-GP) can effectively activate PS. Overall, PS activation by graphene oxide was not observed in this study. N-GP (50 mg L(-1)) can rapidly activate PS (1 mM) to remove >99.9% SMX within 3 h, and NH2-GP (50 mg L(-1)) activated PS (1 mM) can also remove 50% SMX within 10 h. SMX sorption and total removal was greater for N-GP, which suggests oxidation was enhanced by increasing proximity to PS activation sites. Increasing pH enhanced the N-GP catalytic ability, and >99.9% SMX removal time decreased from 3 h to 1 h when pH increased from 3 to 9. However, the PS catalytic ability was inhibited at pH 9 for NH2-GP. Increases in ionic strength (100 mM NaCl or Na2SO4) and addition of radical scavengers (500 mM ethanol) both had negligible impacts on SMX removal. With bicarbonate addition (100 mM), while the catalytic ability of N-GP remained unaltered, NH2-GP catalytic ability was inhibited completely. Humic acid (250 mg L(-1)) was partially effective in inhibiting SMX removal in both N-GP and NH2-GP systems. These results have implications for elucidating oxidant catalysis mechanisms, and they quantify the ability of functionalization of graphene with hetero-atom doping to effectively catalyze PS for water treatment of organic pollutants including emerging contaminants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Garkusheva, Natalya; Matafonova, Galina; Tsenter, Irina; Beck, Sara; Batoev, Valeriy; Linden, Karl
2017-07-29
This work evaluated the feasibility of a photo-Fenton-like process using persulfate (PS) and ferrous iron (Fe 2+ ) under simulated solar radiation for degrading the herbicide atrazine (ATZ, 6-Chloro-N-ethyl-N'-isopropyl-1,3,5-triazine-2,4-diamine) and inactivating E. coli. Milli Q water, lake water, and diluted wastewater effluents were spiked both simultaneously and separately with ATZ (4 mg/L) and E. coli (10 5 CFU/mL), and exposed to treatment. A method for determining the average irradiance throughout the water media in the UV(A+B) range of the Xe lamp emission was developed for bench-scale experiments. These values were used to calculate the UV(A+B) fluences and the solar UV(A+B) energy doses per unit of volume (Q UV(A+B) , kJ/L). The obtained kinetic data were presented versus energy dose. Treatment of lake water at near-neutral pH was ineffective via the photo-Fenton-like process, attaining only 20% ATZ removal and 1-log reduction of E. coli. In Milli Q water and wastewater, the complete degradation of ATZ in the absence of bacteria was observed at an average energy dose of 1.5 kJ/L (60 min), while in the presence of cells the degradation efficiency was ∼60%. When ATZ was present, E. coli inactivation was also affected in Milli Q water, with 1.4-log reduction (93%) at a dose of 1.6 kJ/L (60 min), whereas in wastewater complete inactivation was achieved at a lower dose of 1.3 kJ/L (45 min). The energy requirements on a Q UV(A+B) basis for simultaneous 90% ATZ removal and 99.99% E. coli inactivation in Milli Q water and wastewater were shown to be less than 10 kJ/L. This suggests the solar/PS/Fe 2+ system is promising for simultaneous treatment and disinfection of wastewater effluents.
Graft polymerization of acrylic acid onto chitin nanofiber to improve dispersibility in basic water.
Ifuku, Shinsuke; Iwasaki, Masayoshi; Morimoto, Minoru; Saimoto, Hiroyuki
2012-09-01
Graft copolymerization of acrylic acid (AA) on chitin nanofibers was carried out with potassium persulfate as a free radical initiator in an aqueous medium. The molar ratio of grafted AA increased with the AA concentration. The grafted chitin nanofibers were characterized by FT-IR, FE-SEM, UV-vis, XRD, and TGA. After polymerization, the characteristic morphology of chitin nanofibers was maintained. Chitin nanofibers grafted with AA were efficiently dissociated and dispersed homogeneously in basic water because of the electrostatic repulsion effect between nanofibers. AA was grafted on the surface and amorphous part of chitin nanofibers, and the original crystalline structure of α-chitin was maintained. At 330 °C, the weight residue of the graft copolymer increased with the grafted AA content. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Minmin; Xue, Junying; Zhang, Fangming; Ma, Wenle; Cui, Hongtao
2015-02-01
In this work, nickel-cobalt double hydroxide nanosheets with high rate capability are prepared by a facile epoxide precipitation route. The synthetic procedure includes an oxidization step using ammonium persulfate as oxidant and a precipitation step using propylene oxide as precipitation agent. As shown in the results of electrochemical characterization, high specific capacitance of 2548 F g-1 for this material can be obtained at current density of 0.9 A g-1 in aqueous solution of 3 mol L-1 KOH. It is surprising to notice that the capacitance of material still remains 1587 F g-1 at high current density of 35.7 A g-1. These results demonstrate that the as-prepared nickel-cobalt double hydroxide nanosheets are promising electrode material for supercapacitor application as a primary power source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This interim notice covers the following: extractable organic halides in solids, total organic halides, analysis by gas chromatography/Fourier transform-infrared spectroscopy, hexadecane extracts for volatile organic compounds, GC/MS analysis of VOCs, GC/MS analysis of methanol extracts of cryogenic vapor samples, screening of semivolatile organic extracts, GPC cleanup for semivolatiles, sample preparation for GC/MS for semi-VOCs, analysis for pesticides/PCBs by GC with electron capture detection, sample preparation for pesticides/PCBs in water and soil sediment, report preparation, Florisil column cleanup for pesticide/PCBs, silica gel and acid-base partition cleanup of samples for semi-VOCs, concentrate acid wash cleanup, carbon determination in solids using Coulometrics` CO{submore » 2} coulometer, determination of total carbon/total organic carbon/total inorganic carbon in radioactive liquids/soils/sludges by hot persulfate method, analysis of solids for carbonates using Coulometrics` Model 5011 coulometer, and soxhlet extraction.« less
Preparation of cashew gum-based flocculants by microwave- and ultrasound-assisted methods.
Klein, Jalma Maria; de Lima, Vanessa Silva; da Feira, José Manoel Couto; Camassola, Marli; Brandalise, Rosmary Nichele; Forte, Maria Madalena de Camargo
2018-02-01
In this work, copolymers based on cashew gum (CG) grafted with polyacrylamide (PAM) were synthesized by microwave- and ultrasound-assisted methods, using potassium persulfate as an initiator in aqueous medium. The graft copolymers were characterized by Fourier-transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, and thermogravimetric analysis. The efficiency of the graft copolymers (CG-g-PAM) in flocculation of a kaolin suspension was studied. Results indicated that the graft copolymers synthesized by ultrasound energy had better flocculation properties than the ones synthesized by the microwave-assisted method. The biodegradability of the graft copolymers was tested by inoculation with the basidiomycete Trametes villosa in liquid medium. The higher formation of biomass than that observed with the commercial flocculant Flonex-9045 indicated that the graft copolymer was accessible to enzymatic attack. Copyright © 2017 Elsevier B.V. All rights reserved.
Pettes, Michael Thompson; Ji, Hengxing; Ruoff, Rodney S; Shi, Li
2012-06-13
At a very low solid concentration of 0.45 ± 0.09 vol %, the room-temperature thermal conductivity (κ(GF)) of freestanding graphene-based foams (GF), comprised of few-layer graphene (FLG) and ultrathin graphite (UG) synthesized through the use of methane chemical vapor deposition on reticulated nickel foams, was increased from 0.26 to 1.7 W m(-1) K(-1) after the etchant for the sacrificial nickel support was changed from an aggressive hydrochloric acid solution to a slow ammonium persulfate etchant. In addition, κ(GF) showed a quadratic dependence on temperature between 11 and 75 K and peaked at about 150 K, where the solid thermal conductivity (κ(G)) of the FLG and UG constituents reached about 1600 W m(-1) K(-1), revealing the benefit of eliminating internal contact thermal resistance in the continuous GF structure.
Cocklebur-shaped colloidal dispersions.
Lestage, David J; Urban, Marek W
2005-11-08
Unique cocklebur-shaped colloidal dispersions were prepared using a combination of a nanoextruder applied to the aqueous solution containing methyl methacrylate (MMA) and n-butyl acrylate (n-BA) with azo-bis-isobutyronitrile (AIBN) or potassium persulfate (KPS) initiators and stabilized by a mixture of sodium dioctyl sulfosuccinate (SDOSS) and 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DCPC) phospholipid. Upon extrusion and heating to 75 degrees C, methyl methacrylate/n-butyl acrylate (MMA/nBA) colloidal particles containing tubules pointing outward were obtained as a result of DCPC phospholipids present at the particle surfaces. The same cocklebur-shaped particles were obtained when classical polymerization was used without a nanoextruder under similar compositional and thermal conditions, giving a particle size of 159 nm. However, when Ca(2+) ions are present during polymerization, cocklebur morphologies are disrupted. Because DCPC tubules undergo a transition at 38 degrees C, such cocklebur morphologies may offer numerous opportunities for devices with stimuli-responsive characteristics.
NASA Astrophysics Data System (ADS)
Zhou, Haiou; Shi, Tiejun; Zhou, Xun
2013-02-01
In this paper, polystyrene (PS)/SiO2 microspheres were successfully prepared via Pickering emulsion polymerization stabilized solely by ethacryloxypropyltrimethoxysilane (MPTMS) modified SiO2 nanoparticles. The formation mechanisms of PS/SiO2 microspheres with different morphology were investigated under various Pickering emulsion polymerization conditions. The results showed that SiO2 concentrations and initiator sorts would synergistically impact on the morphology of products corresponding to distinct formation mechanisms. When SiO2 concentrations was low and water-solute initiator potassium persulfate (KPS) was used, aqueous nucleation was dominant, which was deduced to the formation of dispersive microspheres sparsely anchored by SiO2 particles. When SiO2 concentrations was increased and oil-solute initiator azobisisobutyronitrile (AIBN) was applied, nucleation in oil phase prevailed which lead to the formation of microspheres densely packed by SiO2 particles.
Spontaneous deswelling of pNIPAM microgels at high concentrations
NASA Astrophysics Data System (ADS)
Gasser, Urs; Scotti, Andrea; Herman, Emily S.; Pelaez-Fernandez, Miguel; Han, Jun; Menzel, Andreas; Lyon, L. Andrew; Fernandez-Nieves, Alberto
Polydisperse suspensions of pNIPAM microgel particles show a unique, spontaneous particle deswelling behavior. Beyond a critical concentration, the largest microgels deswell and thereby reduce the polydispersity of the suspension. We have recently unraveled the mechanism of this spontaneous, selective deswelling. pNIPAM microgels carry charged sulfate groups originating from the ammonium persulfate starter used in particle synthesis. Most of the ammonium counterions are trapped close to the microgel surface, but a fraction of them escapes the electrostatic attraction and contributes to the osmotic pressure of the suspension. The counterion clouds of neighboring particles progressively overlap with increasing volume fraction, leading to an increase of free counterions and the osmotic pressure outside but not inside the microgel particles. We find particles to deswell when the resulting osmotic pressure difference between the inside and the outside becomes larger their bulk modulus. For pNIPAM microgels synthesized with the same protocol, the largest particles are the softest and deswell first.
Ionic strength and DOC determinations from various freshwater sources to the San Francisco Bay
Hunter, Y.R.; Kuwabara, J.S.
1994-01-01
An exact estimation of dissolved organic carbon (DOC) within the salinity gradient of zinc and copper metals is significant in understanding the limit to which DOC could influence metal speciation. A low-temperature persulfate/oxygen/ultraviolet wet oxidation procedure was utilized for analyzing DOC samples adapted for ionic strength from major freshwater sources of the northern and southern regions of San Francisco Bay. The ionic strength of samples was modified with a chemically defined seawater medium up to 0.7M. Based on the results, a minimum effect of ionic strength on oxidation proficiency for DOC sources to the Bay over an ionic strength gradient of 0.0 to 0.7 M was observed. There was no major impacts of ionic strength on two Suwanee River fulvic acids. In general, the noted effects associated with ionic strength were smaller than the variances seen in the aquatic environment between high- and low-temperature methods.
Biopolymer stabilized water dispersible polyaniline for supercapacitor electrodes
NASA Astrophysics Data System (ADS)
Anbalagan, Amarnath Chellachamy; Sawant, Shilpa Nandkishor
2018-04-01
Polyaniline colloidal nanoparticles (PANI CNs) were synthesized, employing biopolymer pectin (Pec) as a stabilizer along with hydrochloric acid dopant and ammonium persulfate oxidant. Chemical nature and electronic structure was studied by FT-IR and UV-visible spectroscopy respectively. FE-SEM revealed spindle like morphology of PANI CNs and displayed the nearly discrete particles without aggregation, showing stabilizing capacity of the Pec. Cyclic voltammetry and galvanostatic charge-discharge measurements demonstrated the electroactivity and supercapacitive property of the PANI CNs in 1 M HCl. The specific capacitance of PANI CNs in 1 M HCl at 1.5 A/g was found to be 197 F/g, where 70% of specific capacitance was retained even after 1000 cycles. These findings establish the feasibility of using the PANI CNs as a potential material for energy storage in aqueous acidic medium. Furthermore, this colloidal dispersion can find potential application in electrodes of flexible supercapacitor device and printable electronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adib, F.; Bagreev, A.; Bandosz, T.J.
The H{sub 2}S breakthrough capacity was measured on two series of activated carbons of a coconut shell and a bituminous coal origins. To broaden the spectrum of surface features the samples were oxidized using nitric acid or ammonium persulfate under conditions chosen to preserve their pore structures. Then the carbons were characterized using Boehm titration, potentiometric titration, thermal analysis, temperature programmed desorption, sorption of nitrogen, and sorption of water. It was found that the choice of unimpregnated carbon for application as H{sub 2}S adsorbent should be made based on parameters of its acidity such as number of acidic groups, pHmore » of surface, amount of surface groups oxygen, or weight loss associated to decomposition of surface oxygen species. The results obtained from the analyses of six unimpregnated carbon samples suggest that there are certain threshold values of these quantities which, when exceeded, have a dramatic effect on the H{sub 2}S breakthrough capacity.« less
NASA Astrophysics Data System (ADS)
Gilevska, Tetyana; Gehre, Matthias; Richnow, Hans
2014-05-01
Compound Specific Isotope Analysis (CSIA) has been an important step for the assessment of the origin and fate of compounds in environmental science.[1] Biologically or pharmaceutically important compounds often are not amenable for gas chromatographic separation because of high polarity and lacking volatility, thermostability. In 2004 liquid chromatography isotope ratio mass spectrometry (LC-IRMS) became commercially available. LC-IRMS system intent a quantitative conversion of analytes separation into CO2 via wet oxidation with sodium persulfate in the presence of phosphoric acid while analytes are still dissolved in the aqueous liquid phase.[2] The aim of this study is to analyze the oxidation capacity of the interface of the LC-IRMS system and determine which parameters could improve oxidation of compounds which are resistant to persulfate oxidation. Oxidation capacity of the liquid chromatography isotope ratio mass spectrometry system was tested with halogenated acetic acid and a set of aromatic compounds with different substitutes. Acetic acid (AA) was taken as a model compound for complete oxidation and compared to the oxidation of other analytes on a molar basis. Correct values were obtained for di- and mono chlorinated and fluorinated and also for tribrominated acetic acid and for all studied aromatic compounds. Incomplete oxidation for trichloroacetic (TCAA) and trifluoroacetic (TFAA) acid was revealed with lower recovery compared to acetic acid and isotope fractionation leading to depleted carbon isotope composition compared to values obtained with an elementary analyzer connected to an isotope mass spectrometer Several optimization steps were tried in order to improve the oxidation of TCAA and TFAA: (i) increasing the concentration of the oxidizing agent, (ii) variation of flow rate of the oxidizing and acid solution, (iii) variation of flow rate of liquid chromatography pump (iv) addition of a catalyzer. These modifications lead to longer reaction time in the coil and increase in the concentration of radical but complete combustion of highly chlorinated or fluorinated compounds was not achieved. Due to these findings the limit for a LC-IRMS system for similar structure compounds can be predicted. 1. Elsner, M., et al., Current challenges in compound-specific stable isotope analysis of environmental organic contaminants. Analytical and Bioanalytical Chemistry, 2012. 403(9): p. 2471-2491. 2. Krummen, M., et al., A new concept for isotope ratio monitoring liquid chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry, 2004. 18(19): p. 2260-2266.
Hair highlights and severe acute irritant dermatitis ("burn") of the scalp.
Chan, Heidi P; Maibach, Howard I
2010-12-01
These days, most celebrities--young and old--have their hair highlighted. That is why it is not surprising that even the youth have their hair highlighted as they emulate their favorite actors, unaware of the harmful consequences of this unsafe procedure. Hair highlighting involves decolorizing melanin pigments of select hair strands through an oxidation reaction under alkaline conditions by the active ingredients of the highlighting mixture--hydrogen peroxide, persulfates, and metasilicate. Hydrogen peroxide and the persulfates are flammable, necessitating that regulatory bodies (namely, the U.S. Food and Drug Administration [FDA] and the Cosmetic Ingredient Review [CIR] Expert Panel, the European Union's (EU), European Economic Community [EEC] directives, the Australian government's National Industrial Chemicals Notification and Assessment Scheme [NICNAS], and the Association of Southeast Asian Nations [ASEAN]) to regulate the permissible amounts of these chemicals in hair highlighting products. To review published case reports of resulting in severe acute irritant dermatitis ("burns") of the scalp caused by hair highlighting, to explain why these scalp burns happen, to identify preventive measures to avoid such occurrences, and to discuss the implications for society. We searched medical and scientific search engines and used keywords such as hair highlights, scalp burn, and other related terms.. Six articles were obtained, yielding 8 reported cases (2 of the 6 articles had 2 cases each) of hair highlighting resulting in scalp burns; these 8 cases were reviewed and analyzed. Five of the 8 patients belonged to the pediatric age group. The causes of scalp burn were classified into 2 categories: chemical (caustic nature of the highlighting mixture, spillage of the hot mixture, toxic reaction to the dyes) and thermal (by contact of the scalp with overheated aluminum foil and by the blow dryer). The 5 pediatric patients in the group unnecessarily suffered pain and embarrassment caused by this procedure, as well as the risk of developing malignancy in the future. Hairstylists play a large role in the occurrence of scalp burns. Thus, they need to be careful and knowledgeable of the caustic nature of the highlighting mixture and the potential harm these chemicals may cause. The authors strongly propose that the relevant regulatory bodies review the permissible levels of the caustic chemicals, and that this unsafe procedure should be performed only on adults.
Liu, Wangta; Shiue, Yow-Ling; Lin, Yi-Reng; Lin, Hugo You-Hsien; Liang, Shih-Shin
2015-01-01
In this study, we demonstrated an oxidative method with free radical to generate 3,5,4′-trihydroxy-trans-stilbene (trans-resveratrol) metabolites and detect sequentially by an autosampler coupling with liquid chromatography electrospray ionization tandem mass spectrometer (LC-ESI–MS/MS). In this oxidative method, the free radical initiator, ammonium persulfate (APS), was placed in a sample bottle containing resveratrol to produce oxidative derivatives, and the reaction progress was tracked by autosampler sequencing. Resveratrol, a natural product with purported cancer preventative qualities, produces metabolites including dihydroresveratrol, 3,4′-dihydroxy-trans-stilbene, lunularin, resveratrol monosulfate, and dihydroresveratrol monosulfate by free radical oxidation. Using APS free radical, the concentrations of resveratrol derivatives differ as a function of time. Besides simple, convenient and time- and labor saving, the advantages of free radical oxidative method of its in situ generation of oxidative derivatives followed by LC-ESI–MS/MS can be utilized to evaluate different metabolites in various conditions. PMID:27594817
Physical and structural properties of polyaniline/microcrystalline cellulose nanocomposite
NASA Astrophysics Data System (ADS)
Abdi, Mahnaz M.; Liyana, Rawaida; Tahir, Paridah Md; Heng, Lee Yook; Sulaiman, Yusran; Waheeda, Nur Farhana; Hassan, Nabihah Abu
2017-12-01
A composite of Polyaniline/Microcrystalline Cellulose (PAni/MCC) was prepared via a chemical polymerization method in the presence of ammonium persulfate (NH4)2S2O8 as oxidant and cetyltrimethylammonium bromide (CTAB) as a cationic surfactant. The results of FESEM showed that the morphology of nanocomposite depends on the monomer concentration. Wire-like and porous nanostructure was observed for PAni/MCC/CTAB composite that could be suitable for enzyme immobilization and sensor applications. The electrochemical properties of the composites were studied using Cyclic Voltammetry (CV) and it was shown that PAni/MCC/CTAB composite generated a higher current response compared to the pure PAni. The synergy effect of MCC and CTAB on the physical and electrochemical properties of composite resulted in higher electron transferring in PAni/MCC/CTAB. The presence of significant peaks of PAni and MCC in FT-IR spectrum of nanocomposite indicating polymerization of aniline on the surface of MCC. Characteristic peaks of crystalline cellulose were observed at 22.8 and 14.7 2theta in XRD pattern.
Liu, Wangta; Shiue, Yow-Ling; Lin, Yi-Reng; Lin, Hugo You-Hsien; Liang, Shih-Shin
2015-10-01
In this study, we demonstrated an oxidative method with free radical to generate 3,5,4'-trihydroxy- trans -stilbene ( trans -resveratrol) metabolites and detect sequentially by an autosampler coupling with liquid chromatography electrospray ionization tandem mass spectrometer (LC-ESI-MS/MS). In this oxidative method, the free radical initiator, ammonium persulfate (APS), was placed in a sample bottle containing resveratrol to produce oxidative derivatives, and the reaction progress was tracked by autosampler sequencing. Resveratrol, a natural product with purported cancer preventative qualities, produces metabolites including dihydroresveratrol, 3,4'-dihydroxy- trans -stilbene, lunularin, resveratrol monosulfate, and dihydroresveratrol monosulfate by free radical oxidation. Using APS free radical, the concentrations of resveratrol derivatives differ as a function of time. Besides simple, convenient and time- and labor saving, the advantages of free radical oxidative method of its in situ generation of oxidative derivatives followed by LC-ESI-MS/MS can be utilized to evaluate different metabolites in various conditions.
Zhao, Qingxia; Mao, Qiming; Zhou, Yaoyu; Wei, Jianhong; Liu, Xiaocheng; Yang, Junying; Luo, Lin; Zhang, Jiachao; Chen, Hong; Chen, Hongbo; Tang, Lin
2017-12-01
In recent years, advanced oxidation processes (AOPs), especially sulfate radical based AOPs have been widely used in various fields of wastewater treatment due to their capability and adaptability in decontamination. Recently, metal-free carbon materials catalysts in sulfate radical production has been more and more concerned because these materials have been demonstrated to be promising alternatives to conventional metal-based catalysts, but the review of metal-free catalysts is rare. The present review outlines the current state of knowledge on the generation of sulfate radical using metal-free catalysts including carbon nanotubes, graphene, mesoporous carbon, activated carbon, activated carbon fiber, nanodiamond. The mechanism such as the radical pathway and non-radical pathway, and factors influencing of the activation of sulfate radical was also be revealed. Knowledge gaps and research needs have been identified, which include the perspectives on challenges related to metal-free catalyst, heterogeneous metal-free catalyst/persulfate systems and their potential in practical environmental remediation. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ashri, Airul; Lazim, Azwan
2014-09-01
The research investigated the effects of acrylic acid (monomer) and N,N,-methylenebisacrylamide, MBA (crosslinker) toward the percentage of gel content, swelling ratio and ionic strength of a starch-based hydrogel. Starch grafted on poly (sodium acrylate), St-g-PAANa hydrogel was prepared by incorporating starch extracted from Dioscorea hispida in NaOH/aqueous solution using different composition of acrylic acid (AA) and N,N-methylenebisacrylamide (MBA) in the presence of potassium persulfate (KPS) as chemical initiator. The highest gel content was observed at 1:30 ratio of starch to AA and 0.10 M of MBA. Results showed the highest swelling ratio was observed at 1:15 ratio of starch to acrylic acid and 0.02 M of MBA solution. The same results also gave the highest swelling ratio for the ionic strength study. The FTIR analysis was also conducted in order to confirm the grafting of AA onto starch backbone.
Hernández, Sebastián; Papp, Joseph K.; Bhattacharyya, Dibakar
2014-01-01
Functionalized polymer materials with ion exchange groups and integration of nano-structured materials is an emerging area for catalytic and water pollution control applications. The polymerization of materials such as acrylic acid often requires persulfate initiator and a high temperature start. However, is generally known that metal ions accelerate such polymerizations starting from room temperature. If the metal is properly selected, it can be used in environmental applications adding two advantages simultaneously. This paper deals with this by polymerizing acrylic acid using iron as accelerant and its subsequent use for nanoparticle synthesis in hydrogel and PVDF membranes. Characterizations of hydrogel, membranes and nanoparticles were carried out with different techniques. Nanoparticles sizes of 30–60 nm were synthesized. Permeability and swelling measurements demonstrate an inverse relationship between hydrogel mesh size (6.30 to 8.34 nm) and membrane pores (222 to 110 nm). Quantitative reduction of trichloroethylene/chloride generation by Fe/Pd nanoparticles in hydrogel/membrane platforms was also performed. PMID:24954975
Turos, Edward; Shim, Jeung-Yeop; Wang, Yang; Greenhalgh, Kerriann; Reddy, G Suresh Kumar; Dickey, Sonja; Lim, Daniel V
2007-01-01
This report describes the preparation of polyacrylate nanoparticles in which an N-thiolated beta-lactam antibiotic is covalently conjugated onto the polymer framework. These nanoparticles are formed in water by emulsion polymerization of an acrylated antibiotic pre-dissolved in a liquid acrylate monomer (or mixture of co-monomers) in the presence of sodium dodecyl sulfate as a surfactant and potassium persulfate as a radical initiator. Dynamic light scattering analysis and electron microscopy images of these emulsions show that the nanoparticles are approximately 40 nm in diameter. The emulsions have potent in vitro antibacterial properties against methicillin-resistant Staphylococcus aureus and have improved bioactivity relative to the non-polymerized form of the antibiotic. A unique feature of this methodology is the ability to incorporate water-insoluble drugs directly into the nanoparticle framework without the need for post-synthetic modification. Additionally, the antibiotic properties of the nanoparticles can be modulated by changing the length or location of the acrylate linker on the drug monomer.
Garay-Jimenez, Julio C; Turos, Edward
2011-08-01
We describe a method to obtain purified, polyacrylate nanoparticles in a homogeneous powdered form that can be readily reconstituted in aqueous media for in vivo applications. Polyacrylate-based nanoparticles can be easily prepared by emulsion polymerization using a 7:3 mixture of butyl acrylate and styrene in water containing sodium dodecyl sulfate as a surfactant and potassium persulfate as a water-soluble radical initiator. The resulting emulsions contain nanoparticles measuring 40-50 nm in diameter with uniform morphology, and can be purified by centrifugation and dialysis to remove larger coagulants as well as residual surfactant and monomers associated with toxicity. These purified emulsions can be lyophilized in the presence of maltose (a non-toxic cryoprotectant) to provide a homogeneous dried powder, which can be reconstituted as an emulsion by addition of an aqueous diluent. Dynamic light scattering and microbiological experiments were carried out on the reconstituted nanoparticles. This procedure allows for ready preparation of nanoparticle emulsions for drug delivery applications. Copyright © 2011 Elsevier Ltd. All rights reserved.
Hydrogels Synthesized by Electron Beam Irradiation for Heavy Metal Adsorption
Manaila, Elena; Craciun, Gabriela; Ighigeanu, Daniel; Cimpeanu, Catalina; Barna, Catalina; Fugaru, Viorel
2017-01-01
Poly(acrylamide co-acrylic acid) hydrogels were prepared by free-radical copolymerization of acrylamide and acrylic acid in aqueous solutions using electron beam irradiation in the dose range of 2.5 kGy to 6 kGy in atmospheric conditions and at room temperature. The influence of the absorbed dose, the amount of cross-linker (trimethylolpropane trimethacrylate) and initiator (potassium persulfate) on the swelling properties and the diffusion coefficient and network parameters of hydrogels were investigated. The structure and morphology of hydrogels were characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The use of the obtained hydrogels by the removal of Cu2+ and Cr6+ from aqueous solutions was investigated at room temperature. During the adsorption of metal ions on hydrogels, the residual metal ion concentration in the solution was measured by an atomic absorption spectrophotometer (AAS). It has been established that the use of a relatively small amount of trimethylolpropane trimethacrylate for hydrogel preparation has led to the increasing of swelling up to 8500%. PMID:28772904
Sajjadi, Shahriar
2015-05-01
Conventional batch and semicontinuous emulsion copolymerizations often produce large particles whose size cannot be easily correlated with the comonomer feed compositions, and are to some degree susceptible to composition drift. In contrast, we found that copolymer nanolatexes made via semicontinuous monomer-starved emulsion copolymerizations are featured with an average nanoparticle size being controlled by the feed composition, a high conversion achieved, and a high degree of particle composition uniformity. This was achieved because the rate of particle growth, during nucleation, was controlled by the rate of comonomer addition, and the copolymer composition, surfactant parking area on the particles, and nucleation efficiency determined by the comonomer feed composition. Two model systems, methyl methacrylate/styrene and vinyl acetate/butyl acrylate, with significant differences in water solubility were studied. Monomers were added to the aqueous solution of sodium dodecylsulfate and potassium persulfate at a low rate to achieve high instantaneous conversions. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Helmiyati; Abbas, G. H.; Kurniawan, S.
2017-04-01
Superabsorbent nanocomposite synthesis of cellulose rice husk as the backbone with free radical polymerization method in copolymerization grafted with acrylic acid and acrylamide monomer. The cellulose was isolated from rice husk with mixture of toluene and ethanol and then hemicellulose and lignin were removed by using potassium hydroxide 4% and hydrogen peroxide 2%. The obtained cellulose rendement was 37.85%. The functional group of lignin analyzed by FTIR spectra was disappeared at wavenumber 1724 cm-1. Crystal size of the obtained isolated cellulose analyzed by XRD diffraction pattern was 34.6 nm, indicated the nanocrystal structure. Copolymerization was performed at temperature of 70°C with flow nitrogen gas. Initiator and crosslinking agent used were potassium persulfate and N‧N-methylene-bis-acrylamide. The swelling capacity of water and urea showed the results was quite satisfactory, the maximum swelling capacity in urea and water were 611.700 g/g and 451.303 g/g, respectively, and can be applied in agriculture to absorb water and urea fertilizer.
Hydrogels Synthesized by Electron Beam Irradiation for Heavy Metal Adsorption.
Manaila, Elena; Craciun, Gabriela; Ighigeanu, Daniel; Cimpeanu, Catalina; Barna, Catalina; Fugaru, Viorel
2017-05-18
Poly(acrylamide co-acrylic acid) hydrogels were prepared by free-radical copolymerization of acrylamide and acrylic acid in aqueous solutions using electron beam irradiation in the dose range of 2.5 kGy to 6 kGy in atmospheric conditions and at room temperature. The influence of the absorbed dose, the amount of cross-linker (trimethylolpropane trimethacrylate) and initiator (potassium persulfate) on the swelling properties and the diffusion coefficient and network parameters of hydrogels were investigated. The structure and morphology of hydrogels were characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The use of the obtained hydrogels by the removal of Cu 2+ and Cr 6+ from aqueous solutions was investigated at room temperature. During the adsorption of metal ions on hydrogels, the residual metal ion concentration in the solution was measured by an atomic absorption spectrophotometer (AAS). It has been established that the use of a relatively small amount of trimethylolpropane trimethacrylate for hydrogel preparation has led to the increasing of swelling up to 8500%.
Novel diffusive gradients in thin films technique to assess labile sulfate in soil.
Hanousek, Ondrej; Mason, Sean; Santner, Jakob; Chowdhury, Md Mobaroqul Ahsan; Berger, Torsten W; Prohaska, Thomas
2016-09-01
A novel diffusive gradients in thin films (DGT) technique for sampling labile soil sulfate was developed, based on a strong basic anion exchange resin (Amberlite IRA-400) for sulfate immobilization on the binding gel. For reducing the sulfate background on the resin gels, photopolymerization was applied instead of ammonium persulfate-induced polymerization. Agarose cross-linked polyacrylamide (APA) hydrogels were used as diffusive layer. The sulfate diffusion coefficient in APA gel was determined as 9.83 × 10(-6) ± 0.35 × 10(-6) cm(2) s(-1) at 25 °C. The accumulated sulfate was eluted in 1 mol L(-1) HNO3 with a recovery of 90.9 ± 1.6 %. The developed method was tested against two standard extraction methods for soil sulfate measurement. The obtained low correlation coefficients indicate that DGT and conventional soil test methods assess differential soil sulfate pools, rendering DGT a potentially important tool for measuring labile soil sulfate.
Dielectric loss property of strong acids doped polyaniline (PANi)
NASA Astrophysics Data System (ADS)
Amalia, Rianti; Hafizah, Mas Ayu Elita; Andreas, Manaf, Azwar
2018-04-01
In this study, strong acid doped polyaniline (PANi) has been successfully fabricated through the chemical oxidative polymerization process with various polymerization times. Nonconducting PANi resulting from the polymerization process at various polymerization times were then doped by a strong acid HClO4 to generate dielectric properties. Ammonium Persulfate (APS) as an initiator was used during Polymerization process to develop dark green precipitates which then called Emeraldine Base Polyaniline (PANi-EB). The PANi-EB was successively doped by strong acid HClO4 with dopant and PANi ratio 10:1 to enhance the electrical conductivity. The conductivity of doped PANi was evaluated by Four Point Probe. Results of evaluation showed that the conductivity values of HClO4 doped PANi were in the range 337-363 mS/cm. The dielectric properties of doped PANi were evaluated by Vector Network Analyzer (VNA) which suggested that an increase in the permittivity value in the conducting PANi. It is concluded that PANi could be a potential candidate for electromagnetic waves absorbing materials.
One-pot synthesis of fluorescent polysaccharides: adenine grafted agarose and carrageenan.
Oza, Mihir D; Prasad, Kamalesh; Siddhanta, A K
2012-08-01
New fluorescent polysaccharides were synthesized by grafting the nucleobase adenine on to the backbones of agarose and κ-carrageenan, which were characterized by FT-IR, (13)C NMR, TGA, XRD, UV, and fluorescence properties. The synthesis involved a rapid water based potassium persulfate (KPS) initiated method under microwave irradiation. The emission spectra of adenine grafted agarose and κ-carrageenan were recorded in aqueous (5×10(-5) M) solution, exhibiting λ(em,max) 347 nm by excitation at 261 nm, affording ca. 30% and 40% enhanced emission intensities, respectively compared to that of pure adenine solution in the same concentration. Similar emission intensity was recorded in the pure adenine solution at its molar equivalent concentrations present in the 5×10(-5) M solution of the agarose and carrageenan grafted products, that is, 3.28×10(-5) M and 4.5×10(-5) M respectively. These fluorescent adenine grafted products may have potential utility in various sensor applications. Copyright © 2012. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Nekouei, Farzin; Nekouei, Shahram; Noorizadeh, Hossein
2018-03-01
In this study, we synthesized a new nanocomposite catalyst comprising Ag/AgCl@N-doped activated carbon (Ag/AgCl@N-AC) and demonstrated its high efficiency during the enhanced adsorptive removal and catalytic oxidation of ciprofloxacin (CIP) with peroxymonosulfate (PMS) and persulfate (PS) as oxidants in aqueous solution. The efficiency of the new nanocomposite was compared with those of both pristine AC and N-AC under the same conditions. Furthermore, the effects of oxidants on the catalytic oxidation of CIP were assessed using PMS and PS. We found that the degradation efficiency of CIP with Ag/AgCl@N-AC was higher when using PS as an oxidant, whereas the use of PMS obtained relatively better results with both AC and N-AC. The adsorption processes for AC, N-AC, and Ag/AgCl@N-AC were dominated not only by electrostatic attraction but also by π-π interactions, which had higher impacts on the adsorption processes than the specific surface area.
Biodegradability and swelling capacity of kaolin based chitosan-g-PHEMA nanocomposite hydrogel.
Pradhan, Arun Kumar; Rana, Pradeep Kumar; Sahoo, Prafulla Kumar
2015-03-01
Chitosan, a natural biopolymer, obtained by alkaline deacetylation of chitin, exhibits excellent biological properties such as biodegradability, immunological and antibacterial activity. Recently, there has been a growing interest in the chemical modification of chitosan in order to widen its applications. The chemical modification of chitosan has been achieved via grafting of monomer, 2-hydroxyethyl methacrylate (HEMA) in the presence of the initiator, ammonium persulfate (APS) and kaolin was added to improve the mechanical strength of the newly developed nanocomposites hydrogel. The so prepared grafted nanocomposites hydrogel was characterized by FTIR, XRD, SEM, TEM and TGA. The equilibrium water content (EWC) of the samples were measured at different pH ranges 6.5-8.0 and found optimum at pH 7.5 for biomedical applications. Further, the biodegradability of the samples was studied at different time intervals from 15 days to 1 year but, the kaolin based nanohydrogels exhibited good biodegradability. Copyright © 2015 Elsevier B.V. All rights reserved.
Guar gum based biodegradable, antibacterial and electrically conductive hydrogels.
Kaith, Balbir S; Sharma, Reena; Kalia, Susheel
2015-04-01
Guar gum-polyacrylic acid-polyaniline based biodegradable electrically conductive interpenetrating network (IPN) structures were prepared through a two-step aqueous polymerization. Hexamine and ammonium persulfate (APS) were used as a cross linker-initiator system to crosslink the poly(AA) chains on Guar gum (Ggum) backbone. Optimum reaction conditions for maximum percentage swelling (7470.23%) were time (min) = 60; vacuum (mmHg) = 450; pH = 7.0; solvent (mL) = 27.5; [APS] (mol L(-1)) = 0.306 × 10(-1); [AA] (mol L(-1)) = 0.291 × 10(-3) and [hexamine] (mol L(-1))=0.356 × 10(-1). The semi-interpenetrating networks (semi-IPNs) were converted into IPNs through impregnation of polyaniline chains under acidic and neutral conditions. Fourier transform infra-red spectroscopy (FTIR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) techniques were used to characterize the semi-IPNs and IPNs. Synthesized semi-IPNs and IPNs were further evaluated for moisture retention in different soils, antibacterial and biodegradation behavior. Copyright © 2015 Elsevier B.V. All rights reserved.
Synthesis and electrical properties of polyaniline/iota-carrageenan biocomposites.
Vega-Rios, Alejandro; Olmedo-Martínez, Jorge L; Farías-Mancilla, Bárbara; Hernández-Escobar, Claudia A; Zaragoza-Contreras, E Armando
2014-09-22
Polyaniline/iota-carrageenan (ι-CGN) biocomposites were synthesized via in situ methodology using ammonium persulfate as the oxidizing agent. Both ionic (band at 1131 cm(-1)) and hydrogen bond (bands at 2500 and 3500 cm(-1)) interactions between polyaniline and ι-CGN were determined by infrared spectroscopy. Such intermolecular interactions provided the biocomposites with a cross-linked structure that provided the materials with hydrogel behavior. Biocomposite electro-conductivity, determined by the 4-probe technique, was in the range of semiconductors (10(-3) to 10(-2) S cm(-1)); whereas electro-activity, assessed by cyclic voltammetry, showed the oxidation-reduction transitions typical of polyaniline. Based on the properties of polyaniline and ι-CGN, some applications for the new materials in the field of biosensor design, electrochemical capacitors, or tissue engineering scaffolds are possible. It is worth saying that both electro-conductive and electro-active properties of polyaniline/ι-CGN biocomposites are reported here for the first time. Copyright © 2014 Elsevier Ltd. All rights reserved.
Printable and Rewritable Full Block Copolymer Structural Color.
Kang, Han Sol; Lee, Jinseong; Cho, Suk Man; Park, Tae Hyun; Kim, Min Ju; Park, Chanho; Lee, Seung Won; Kim, Kang Lib; Ryu, Du Yeol; Huh, June; Thomas, Edwin L; Park, Cheolmin
2017-08-01
Structural colors (SCs) of photonic crystals (PCs) arise from selective constructive interference of incident light. Here, an ink-jet printable and rewritable block copolymer (BCP) SC display is demonstrated, which can be quickly written and erased over 50 times with resolution nearly equivalent to that obtained with a commercial office ink-jet printer. Moreover, the writing process employs an easily modified printer for position- and concentration-controlled deposition of a single, colorless, water-based ink containing a reversible crosslinking agent, ammonium persulfate. Deposition of the ink onto a self-assembled BCP PC film comprising a 1D stack of alternating layers enables differential swelling of the written BCP film and produces a full-colored SC display of characters and images. Furthermore, the information can be readily erased and the system can be reset by application of hydrogen bromide. Subsequently, new information can be rewritten, resulting in a chemically rewritable BCP SC display. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lu, Yongshang; Larock, Richard C
2007-10-01
A series of new waterborne polyurethane (PU)/acrylic hybrid latexes have been successfully synthesized by the emulsion polymerization of acrylic monomers (butyl acrylate and methyl methacrylate) in the presence of a soybean oil-based waterborne PU dispersion using potassium persulfate as an initiator. The waterborne PU dispersion has been synthesized by a polyaddition reaction of toluene 2,4-diisocyanate and a soybean oil-based polyol (SOL). The resulting hybrid latexes, containing 15-60 wt % SOL as a renewable resource, are very stable and exhibit uniform particle sizes of 125 +/- 20 nm as determined by transmittance electronic microscopy. The structure, thermal, and mechanical properties of the resulting hybrid latex films have been investigated by Fourier transform infrared spectroscopy, solid state 13C NMR spectroscopy, dynamic mechanical analysis, extraction, and mechanical testing. Grafting copolymerization of the acrylic monomers onto the PU network occurs during the emulsion polymerization, leading to a significant increase in the thermal and mechanical properties of the resulting hybrid latexes. This work provides a new way of utilizing renewable resources to prepare environmentally friendly hybrid latexes with high performance for coating applications.
Selective crystallization of calcium salts by poly(acrylate)-grafted chitosan.
Neira-Carrillo, Andrónico; Yazdani-Pedram, Mehrdad; Retuert, Jaime; Diaz-Dosque, Mario; Gallois, Sebastien; Arias, José L
2005-06-01
The biopolymer chitosan was chemically modified by grafting polyacrylamide or polyacrylic acid in a homogeneous aqueous phase using potassium persulfate (KPS) as redox initiator system in the presence of N,N-methylene-bis-acrylamide as a crosslinking agent. The influence of the grafted chitosan on calcium salts crystallization in vitro was studied using the sitting-drop method. By using polyacrylamide grafted chitosan as substrate, rosette-like CaSO4 crystals were observed. This was originated by the presence of sulfate coming from the initiator KPS. By comparing crystallization on pure chitosan and on grafted chitosan, a dramatic influence of the grafted polymer on the crystalline habit of both salts was observed. Substrates prepared by combining sulfate with chitosan or sulfate with polyacrylamide did not produce similar CaSO4 morphologies. Moreover, small spheres or donut-shaped CaCO3 crystals on polyacrylic acid grafted chitosan were generated. The particular morphology of CaCO3 crystals depends also on other synthetic parameters such as the molecular weight of the chitosan sample and the KPS concentration.
Ortiz, J Andrés; Matsuhiro, Betty; Zapata, Paula A; Corrales, Teresa; Catalina, Fernando
2018-02-15
A water soluble derivative in 98% yield with 23.1% incorporation of maleoyl groups was obtained by esterification of agarose with maleic anhydride. Graft copolymers were synthesized through vinyl groups of maleoylagarose with N-isopropylacrylamide using ceric ammonium nitrate or ammonium persulfate as initiator, by conventional method or microwave irradiation. High nitrogen content (4.6%) was obtained in the grafting process using ceric ammonium nitrate as initiator without microwave irradiation. Copolymers were characterized by FT-IR and NMR spectroscopies, TGA, DSC and morphological analysis by AFM and SEM microscopy, confirming the grafting of PNIPAAm onto polysaccharide backbone. Hydrogel films were obtained by ionic complexation between opposite charged groups of maleoylagarose-g-poly(N-isopropylacrylamide) and chitosan. The swelling of 1:1w/v maleoylagarose-g-PNIPAAm:chitosan film was higher than 2:1w/v film at 25 and 37°C. 53% release in vitro of diclofenac sodium from 1:1w/v maleoylagarose-g-PNIPAAm:chitosan was obtained at 37°C and pH 6.0 with <0.5 diffusional constant values. Copyright © 2017 Elsevier Ltd. All rights reserved.
Youssef, Ahmed M; El-Samahy, Magda Ali; Abdel Rehim, Mona H
2012-08-01
Conducting paper based on natural cellulosic fibers and conductive polymers was prepared using unbleached bagasse and/or rice straw fibers (as cellulosic raw materials) and polyaniline (PANi) as conducting polymer. These composites were synthesized by in situ emulsion polymerization using ammonium persulfate (APS) as oxidant in the presence of dodecylbenzene sulfonic acid (DBSA) as emulsifier. The prepared composites were characterized using Fourier transform infrared (FTIR), thermal gravimetric analysis (TGA), differential scanning calorimeter (DSC), and their morphology was investigated using scanning electron microscope (SEM). Electrical conductivity measurements showed that the conductivity of the paper sheets increases by increasing the ratio of PANi in the composite. Mechanical properties of the paper sheets were also investigated, the results revealed that the values of breaking length, burst factor, and tear factor are decreased with increasing ratio of added PANi, and this effect is more pronounced in bagasse-based composites. The new conductive composites can have potential use as anti-static packaging material or anti-bacterial paper for packaging applications. Copyright © 2012 Elsevier Ltd. All rights reserved.
Doping optimization of polypyrrole with toluenesulfonic acid using Box-Behnken design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syed Draman, Sarifah Fauziah; Daik, Rusli; El-Sheikh, Said M.
A three-level Box-Behnken design was employed in doping optimization of polypyrrole with toluenesulfonic acid (TSA-doped PPy). The material was synthesized via chemical oxidative polymerization using pyrrole, toluenesulfonic acid (TSA) and ammonium persulfate (APS) as monomer, dopant and oxidant, respectively. The critical factors selected for this study were concentration of dopant, molar ratio between dopant to monomer (pyrrole) and concentration of oxidant. Obtaining adequate doping level of TSA-doped PPy is crucial because it affects the charge carriers for doped PPy and usually be responsible for electronic mobility along polymeric chain. Furthermore, the doping level also affects other properties such as electricalmore » and thermal conductivity. Doping level was calculated using elemental analysis. SEM images shows that the prepared TSA-doped PPy particles are spherical in shape with the diameters of about. The range of nanoparticles size is around 80-100 nm. The statistical analysis based on a Box–Behnken design showed that 0.01 mol of TSA, 1:1 mole ratio TSA to pyrrole and 0.25 M APS were the optimum conditions for sufficient doping level.« less
NASA Astrophysics Data System (ADS)
Tang, Xiaoning; Tian, Mingwei; Qu, Lijun; Zhu, Shifeng; Guo, Xiaoqing; Han, Guangting; Sun, Kaikai; Hu, Xili; Wang, Yujiao; Xu, Xiaoqi
2014-10-01
Knit polyester fabric was successively modified and decorated with chitosan layer and polyaniline polymer nanocomposite layer in this paper. The fabric was firstly treated with chitosan to form a stable layer through the pad-dry-cure process, and then the polyaniline polymer nanocomposite layer was established on the outer layer by in situ chemical polymerization method using ammonium persulfate as oxidant and chlorhydric acid as dopant. The surface morphology of coated fabric was characterized by scanning electron microscopy (SEM), and the co-existence of chitosan layer and granular polyaniline polymer nanocomposite was confirmed and well dispersed on the fabric surface. The resultant fabric was endowed with remarkable electrical conductivity properties and efficient water-repellent capability, which also have been found stable after water laundering. In addition, the photocatalytic decomposition activity for reactive red dye was observed when the multifunctional knit polyester fabric was exposed to the illumination of ultraviolet lamp. These results indicated that chitosan and polyaniline polymer nanocomposite could form ideal multifunctional coatings on the surface of knit polyester fabric.
NASA Technical Reports Server (NTRS)
Sudol, E. D.; El-Aasser, M. S.; Vanderhoff, J. W.
1986-01-01
The polymerization kinetics of monodisperse polystyrene latexes with diameters of 1 micron are studied. The monodisperse latexes were prepared by the successive seeding method using 1 mM K2S2O8 with an 8 percent emulsifier surface coverage and 0.5 mM K2S2O8 with a 4 percent emulsifier surface coverage, and the kinetics were measured in a piston/cylinder dialometer. The data reveal that the polymerization rate decreases with increasing particle size; and the surface charge decreases with increasing particle size. The effects of initiators (AIBN and AMBN) and inhibitors (NH24SCN, NaNO2, and hydroquinone) on the product monodispersity and polymerization kinetics of latexes with diameters greater than 1 micron are investigated in a second experiment. It is observed that hydroquinone combined with AMBN are most effective in reducing nucleation without causing flocculation. It is noted that the kinetic transition from emulsion to bulk is complete for a particle size exceeding 1 micron in which the polymerization rate is independent of the particle size.
Catalytic determination of vanadium in water
Fishman, M. J.; Skougstad, M.W.
1964-01-01
A rapid, accurate, and sensitive spectrophotometric method for the quantitative determination of trace amounts of vanadium in water is based on the catalytic effect of vanadium on the rate of oxidation of gallic acid by persulfate in acid solution. Under given conditions of concentrations of reactants, temperature, and reaction time, the extent of oxidation of gallic acid is proportional to the concentration of vanadium present. Vanadium is determined by measuring the absorbance of the sample at 415 m?? and comparison with standard solutions treated in an identical manner. Concentrations in the range of from 0.1 to 8.0 ??g. per liter may be determined with a standard deviation of 0.2 or less. By reducing the reaction time, the method may be extended to cover the range from 1 to 100 ??g. with a standard deviation of 0.8 or less. Several substances interfere, including chloride above 100 p.p.m., and bromide and iodide in much lower concentrations. Interference from the halides is eliminated or minimized by the addition of mercuric nitrate solution. Most other substances do not interfere at the concentration levels at which they commonly occur in natural waters.
Devia-Orjuela, John Steven; Betancourt-Buitrago, Luis Andrés; Machuca-Martinez, Fiderman
2018-06-02
The use of ultraviolet light in photoreactors for wastewater treatment has become popular as an alternative of known chemical oxidative substances. UV LED light represents cheaper, robust, and versatile alternative to traditional UV lamps. In this study, it was designed and evaluated a photoreactor with an approach of chemical fluid dynamics (CFD) and experimental validation. The evaluation consisted of (1) CFD velocity profile analysis, (2) characterization of the average light distribution with potassium ferrioxalate actinometry, (3) degradation of a typical recalcitrant metallic cyanocomplex Fe(CN) 6 3- , and (4) scavenger effect analysis in the photodegradation using potassium persulfate. Actinometrical essay concluded that the system was able to receive 1.93 μE/s. The reactor operated under turbulent regime and best result for Fe(CN) 6 3- degradation was obtained at 4 h of operation, using 5-W UV-A LEDs, with pH ~ 7 and 10 mM de S 2 O 8 2- . Baffled photoreactor demonstrated to be useful for this type of illumination and wastewater treatment.
Shevela, Dmitriy; Koroidov, Sergey; Najafpour, M Mahdi; Messinger, Johannes; Kurz, Philipp
2011-05-02
Oxygen evolution catalysed by calcium manganese and manganese-only oxides was studied in (18)O-enriched water. Using membrane-inlet mass spectrometry, we monitored the formation of the different O(2) isotopologues (16)O(2), (16)O(18)O and (18)O(2) in such reactions simultaneously with good time resolution. From the analysis of the data, we conclude that entirely different pathways of dioxygen formation catalysis exist for reactions involving hydrogen peroxide (H(2)O(2)), hydrogen persulfate (HSO(5)(-)) or single-electron oxidants such as Ce(IV) and [Ru(III) (bipy)(3)](3+) . Like the studied oxide catalysts, the active sites of manganese catalase and the oxygen-evolving complex (OEC) of photosystem II (PSII) consist of μ-oxido manganese or μ-oxido calcium manganese sites. The studied processes show very similar (18)O-labelling behaviour to the natural enzymes and are therefore interesting model systems for in vivo oxygen formation by manganese metalloenzymes such as PSII. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chokradjaroen, Chayanaphat; Rujiravanit, Ratana; Watthanaphanit, Anyarat; Theeramunkong, Sewan; Saito, Nagahiro; Yamashita, Kazuko; Arakawa, Ryuichi
2017-07-01
Solution plasma (SP) treatment in combination with oxidizing agents, i.e., hydrogen peroxide (H 2 O 2 ), potassium persulfate (K 2 S 2 O 8 ) and sodium nitrite (NaNO 2 ) were adopted to chitosan degradation in order to achieve fast degradation rate, low chemicals used and high yield of low-molecular-weight chitosan and chitooligosaccharide (COS). Among the studied oxidizing agents, H 2 O 2 was found to be the best choice in terms of appreciable molecular weight reduction without major change in chemical structure of the degraded products of chitosan. By the combination with SP treatment, dilute solution of H 2 O 2 (4-60mM) was required for effective degradation of chitosan. The combination of SP treatment and dilute solution of H 2 O 2 (60mM) resulted in the great reduction of molecular weight of chitosan and water-soluble chitosan was obtained as a major product. The resulting water-soluble chitosan was precipitated to obtain COS. An inhibitory effect against cervical cancer cell line (HeLa cells) of COS was also examined. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pizza makers' contact dermatitis.
Lembo, Serena; Lembo, Claudio; Patruno, Cataldo; Balato, Anna; Balato, Nicola; Ayala, Fabio
2014-01-01
Contact eczema to foods, spices, and food additives can occur in occupational and nonoccupational settings in those who grow, handle, prepare, or cook food. Pizza is one of the most eaten foods in every continent, and pizza making is a common work in many countries. We aimed to evaluate the occurrence and the causes of contact dermatitis in pizza makers in Naples. We performed an observational study in 45 pizza makers: all the enrolled subjects had to answer a questionnaire designed to detect personal history of respiratory or cutaneous allergy, atopy; work characteristics and timing were also investigated. Every subject attended the dermatology clinic for a complete skin examination, and when needed, patients were patch tested using the Italian baseline series of haptens integrated with an arbitrary pizza makers series. Our results reported that 13.3% of the enrolled pizza makers (6/45) presented hand eczema, and that 8.9% (4/45) were affected by occupational allergic contact dermatitis. Diallyl disulfide and ammonium persulfate were the responsible substances. Performing patch tests in pizza makers and food handlers affected by hand contact dermatitis is useful. We propose a specific series of haptens for this wide working category.
NASA Astrophysics Data System (ADS)
Liu, Boyang; Shao, Yingfeng; Xiang, Xin; Zhang, Fuhua; Yan, Shengchang; Li, Wenge
2017-08-01
Various carbon encapsulated nanocrystals, including MnS and MnO, Cr2O3, MoO2, Fe7S8 and Fe3O4, and ZrO2, are prepared in one step and in situ by a simple and highly efficient synthesis approach. The nanocrystals have an equiaxed morphology and a median size smaller than 30 nm. Tens and hundreds of these nanocrystals are entirely encapsulated by a wormlike amorphous carbon shell. The formation of a core-shell structure depends on the strongly exothermic reaction of metal π-complexes with ammonium persulfate in an autoclave at below 200 °C. During the oxidation process, the generated significant amounts of heat will destroy the molecular structure of the metal π-complex and cleave the ligands into small carbon fragments, which further transform into an amorphous carbon shell. The central metal atoms are oxidized to metal oxide/sulfide nanocrystals. The formation of a core-shell structure is independent of the numbers of ligands and carbon atoms as well as the metal types, implying that any metal π-complex can serve as a precursor and that various carbon encapsulated nanocrystals can be synthesized by this method.
Badalians Gholikandi, Gagik; Zakizadeh, Nazanin; Masihi, Hamidreza
2018-01-15
In this study, the efficiency of the Peroxymonosulfate-ozone (PMS+O 3 ) advanced oxidation process in lab scale by the aim of stabilization and dewatering the biological excess sludge was investigated and the results were compared with persulfate-ozone (PS+O 3 ), hydrogen peroxide-ozone (H 2 O 2 +O 3 ) and ozonation (O 3 ) processes. The results show that the PMS+O 3 is more effective than other mentioned procedures. Therefore, under optimized conditions (pH = 11, PMS/O 3 = 0.06 and Dose O 3 = 12.5 mmol), VS (Volatile solids) and fecal coliforms reduced respectively 42% and 89% after 60 min and the stabilized sludge in term of pathogen reduction requirements was class B. Furthermore, time to filter (TTF) of sludge decreased 70% relative to the raw sludge. In order to demonstrate the dewatering conditions' improvement, the variations of particle size distribution, extracellular polymeric substances (EPS) and zeta potential were evaluated. Overall, the results show that the PMS+O 3 has the capability of stabilizing and dewatering the sludge simultaneously. Copyright © 2017 Elsevier Ltd. All rights reserved.
pH- and Temperature-Sensitive Hydrogel Nanoparticles with Dual Photoluminescence for Bioprobes.
Zhao, Yue; Shi, Ce; Yang, Xudong; Shen, Bowen; Sun, Yuanqing; Chen, Yang; Xu, Xiaowei; Sun, Hongchen; Yu, Kui; Yang, Bai; Lin, Quan
2016-06-28
This study demonstrates high contrast and sensitivity by designing a dual-emissive hydrogel particle system, whose two emissions respond to pH and temperature strongly and independently. It describes the photoluminescence (PL) response of poly(N-isopropylacrylamide) (PNIPAM)-based core/shell hydrogel nanoparticles with dual emission, which is obtained by emulsion polymerization with potassium persulfate, consisting of the thermo- and pH-responsive copolymers of PNIPAM and poly(acrylic acid) (PAA). A red-emission rare-earth complex and a blue-emission quaternary ammonium tetraphenylethylene derivative (d-TPE) with similar excitation wavelengths are inserted into the core and shell of the hydrogel nanoparticles, respectively. The PL intensities of the nanoparticles exhibit a linear temperature response in the range from 10 to 80 °C with a change as large as a factor of 5. In addition, the blue emission from the shell exhibits a linear pH response between pH 6.5 and 7.6 with a resolution of 0.1 unit, while the red emission from the core is pH-independent. These stimuli-responsive PL nanoparticles have potential applications in biology and chemistry, including bio- and chemosensors, biological imaging, cancer diagnosis, and externally activated release of anticancer drugs.
Synthesis and characterization of fluorinated polyacrylate latex emulsified with novel surfactants.
Zhang, Cuifeng; Xu, Tingting; Bao, Zhongbin; Chen, Lijun
2017-01-01
The fluorinated polyacrylate latex were successfully prepared with semi- continuous seeded emulsion polymerization of butyl acrylate (BA), methyl methacrylate (MMA) and hexafluorobutyl methacrylate (HFMA) which was initiated with potassium persulfate (KPS) initiator and emulsified with the novel mixed surfactants of sodium lauryl glutamate (SLG) and alkylphenol ethoxylates (OP-10). The structure of the resultant latex was confirmed by Fourier transform infrared spectroscopy (FTIR). The particle size of the latex was measured by Zetatrac dynamic light scattering detector. The film of latex was tested by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and contact angle (CA). The optimum conditions of preparing the novel fluorinated polyacrylate latex are optimized and the results are as follows: the amount of emulsifiers is 4.0%; mass ratio of SLG to OP-10 is 1:1, the amount of the initiator is 0.6%. The mass ratio of MMA to BA is 1:1 and the amount of HFMA is 7.0%. In this case, the conversion is high and the polymerization stability is good. In addition, the water resistance and thermal properties of the latex films were improved significantly in comparison with the film of the latex prepared without the fluorinated monomer.
Electroless silver plating on PET fabric initiated by in situ reduction of polyaniline
NASA Astrophysics Data System (ADS)
Mu, Shipeng; Xie, Huayang; Wang, Wei; Yu, Dan
2015-10-01
Novel electroless silver plating poly(ethylene terephthalate) (PET) fabric was prepared by a two-step procedure. In the first step, the in situ polymerized polyaniline (PANI) occurred on the fabric surface in the presence of ammonium persulfate (APS). Then, Ag(0) species reduced from silver nitrate (AgNO3) by in situ reduction of PANI were used as catalyst to initiate electroless silver plating. Hence, this composite material was prepared by conductive polymer combined with electroless plating. The silver layer on PET fabric surface was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDX) as well as X-ray photoelectron spectroscopy (XPS). The results showed that the silver layer was plated uniformly and compactly with surface resistance about 0.1 Ω/sq on average. The shielding effectiveness (SE) of silver-plated PET fabric was around 50-90 dB, which was considered to have potential applications in electromagnetic shielding materials. Thermogravimetric (TG) analysis was carried out to study thermal stability. The antibacterial tests demonstrated that the silver-plated fabric exhibited excellent antibacterial activity against Staphylococcus aureus and Escherichia coli both with 100%.
NASA Astrophysics Data System (ADS)
Cai, Zhi-Jiang; Zhang, Qin; Song, Xian-You
2016-09-01
Polyindole/carbon nanotubes (PIN/CNTs) composite was prepared by an in-situ chemical oxidative polymerization of indole monomer with CNTs using ammonium persulfate as oxidant. The obtained composite material was characterized by SEM, TEM, FT-IR, Raman spectroscopy, XPS, XRD and BET surface areas measurements. It was found that the CNTs were incorporated into the PIN matrix and nanoporous structure was formed. Spectroscopy results showed that interfacial interaction bonds might be formed between the polyindole chains and CNTs during the in-situ polymerization. PIN/CNTs composite was evaluated by electrochemical impedance spectroscopy, cyclic voltammetry and charge/discharge tests to determine electrode performances in relation to supercapacitors properties in both aqueous and non-aqueous system. A maximum specific capacitance and specific volumetric capacitance of 555.6 F/g and 222.2 F/cm3 can be achieved at 0.5 A/g in non-aqueous system. It also displayed good rate performance and cycling stability. The specific capacitance retention is over 60% at 10 A/g and 91.3% after 5000 cycles at 2 A/g, respectively. These characteristics point to its promising applications in the electrode material for supercapacitors.
Green natural rubber-g-modified starch for controlling urea release.
Riyajan, Sa-Ad; Sasithornsonti, Yodsathorn; Phinyocheep, Pranee
2012-06-05
The hydrophilicity of natural rubber (NR) was improved by grafting with modified cassava starch (ST) (NR-g-ST) by using potassium persulfate (K2S2O8) as a catalyst. The modified ST was added to NR latex in the presence of Terric16A16 as a non-ionic surfactant at 60 °C for 3 h and cast film on a glass plate to obtain NR-g-ST. The chemical structure of NR-g-ST was confirmed by FTIR. The swelling ratio of NR-g-ST was investigated in water and results showed that the swelling ratio of the modified NR decreased as function of ST. In addition, the tensile strength of the modified NR in the presence of modified ST at 50 phr was the highest value. Also, the thermal stability modified NR-g-ST was higher than of NR/ST blend confirmed by TGA. Finally, the NR-g-ST was used a polymer membrane for controlling urea fertilizer and it easily degraded in soil. This product with good controlled-release and water-retention could be especially useful in agricultural and horticultural applications. Published by Elsevier Ltd.
Ni(OH)2 Aerogels Incorporated with Polypyrrole as Electrodes for Supercapacitors
NASA Astrophysics Data System (ADS)
Scarabelot, Letícia T.; Muller, Daliana; de Souza, Luciana V.; Hotza, Dachamir; Rambo, Carlos R.
2017-08-01
This work reports the synthesis of Ni(OH)2 aerogels incorporated in situ with polypyrrole (PPy) for application as electrodes in high-capacity energy storage devices. Ni(OH)2 gels were prepared by the sol-gel method from NiCl2 as precursor and propylene oxide as gelling agent in ethanol. Pyrrole monomer was added prior to gelling of the sol and in situ polymerized using ammonium persulfate as oxidant agent. After solvent exchanges from ethanol to acetone, the gels were dried in a CO2 supercritical point drier. Powdered aerogels were deposited onto both sides of a poly(vinyl alcohol)/H3PO4 film (electrolyte/separator) and the contacts were closed with copper foils, resulting in a complete device. Through cyclic voltammetry and charge/discharge curves, the performance of the supercapacitors was evaluated by the specific capacitance, power and energy densities and series resistance. The specific capacitance was increased by 43% with the incorporation of 0.2 mol/L PPy (276 F/g) and the series resistance obtained decreased by 79% (46.5 Ω/cm2), which reflects the enhanced performance and electrochemical properties of Ni(OH)2 aerogel- based devices incorporated with PPy.
Synthesis and characterization of fluorinated polyacrylate latex emulsified with novel surfactants
Zhang, Cuifeng; Xu, Tingting; Bao, Zhongbin; Chen, Lijun
2017-01-01
Abstract The fluorinated polyacrylate latex were successfully prepared with semi- continuous seeded emulsion polymerization of butyl acrylate (BA), methyl methacrylate (MMA) and hexafluorobutyl methacrylate (HFMA) which was initiated with potassium persulfate (KPS) initiator and emulsified with the novel mixed surfactants of sodium lauryl glutamate (SLG) and alkylphenol ethoxylates (OP-10). The structure of the resultant latex was confirmed by Fourier transform infrared spectroscopy (FTIR). The particle size of the latex was measured by Zetatrac dynamic light scattering detector. The film of latex was tested by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and contact angle (CA). The optimum conditions of preparing the novel fluorinated polyacrylate latex are optimized and the results are as follows: the amount of emulsifiers is 4.0%; mass ratio of SLG to OP-10 is 1:1, the amount of the initiator is 0.6%. The mass ratio of MMA to BA is 1:1 and the amount of HFMA is 7.0%. In this case, the conversion is high and the polymerization stability is good. In addition, the water resistance and thermal properties of the latex films were improved significantly in comparison with the film of the latex prepared without the fluorinated monomer. PMID:29491785
Creation of wettability contrast patterns on metallic surfaces via pen drawn masks
NASA Astrophysics Data System (ADS)
Choi, Won Tae; Yang, Xiaolong; Breedveld, Victor; Hess, Dennis W.
2017-12-01
Micropatterned surfaces with wettability contrast have attracted considerable attention due to potential applications in 2D microfluidics, bioassays, and water harvesting. A simple method to develop wettability contrast patterns on metallic surfaces by using a commercial marker is described. A marker-drawn ink pattern on a copper surface displays chemical resistance to an aqueous solution of sodium bicarbonate and ammonium persulfate, thereby enabling selective nanowire growth in areas where ink is absent. Subsequent ink removal by an organic solvent followed by fluorocarbon film deposition yields a stable hydrophobic/super-hydrophobic patterned copper surface. Using this approach, hydrophobic dot and line patterns were constructed. The adhesion force of water droplets to the dots was controlled by adjusting pattern size, thus enabling controlled droplet transfer between two surfaces. Anisotropy of water droplet adhesion to line patterns can serve as a basis for directional control of water droplet motion. This general approach has also been employed to generate wettability contrast on aluminum surfaces, thereby demonstrating versatility. Due to its simplicity, low cost, and virtual independence of solid surface material, ink marker pens can be employed to create wettability patterns for a variety of applications, in fields as diverse as biomedicine and energy.
NASA Astrophysics Data System (ADS)
Zhang, Wenyang; Yuan, Zhiwei; Huang, Lulu; Kang, Jie; Jiang, Ruowei; Zhong, Hongying
2016-02-01
Polyacrylamide gel electrophoresis (PAGE) coupled with mass spectrometry has been well established for separating, identifying and quantifying protein mixtures from cell lines, tissues or other biological samples. The copolymerization process of acrylamide and bis-acrylamide is the key to mastering this powerful technique. In general, this is a vinyl addition reaction initiated by free radical-generating reagents such as ammonium persulfate (APS) and tetramethylethylenediamine (TEMED) under basic pH and degassing experimental condition. We report herein a photocatalytic polymerization approach that is based on photo-generated hydroxyl radicals with nanoparticles of titanium dioxide. It was shown that the polymerization process is greatly accelerated in acidic condition when ultraviolet light shots on the gel solution containing TiO2 nanoparticles without degassing. This feature makes it very useful in preparing Triton X-100 acid urea (TAU) gel that has been developed for separating basic proteins such as histones and variants in acidic experimental condition. Additionally, the presence of titanium dioxide in the gel not only improves mechanistic property of gels but also changes the migration pattern of different proteins that have different affinities to titanium dioxide.
NASA Astrophysics Data System (ADS)
Mu, Jingjing; Ma, Guofu; Peng, Hui; Li, Jiajia; Sun, Kanjun; Lei, Ziqiang
2013-11-01
Polyaniline (PANI) nanotubes with outstanding electrochemical properties have been successfully synthesized via a simple chemical template-free method in the presence of D-tartaric acid (D-TA) as the dopant, and ammonium persulfate ((NH4)2S2O8) as the oxidant. The morphologies and structures of PANI-(D-TA) with different [D-TA]/[aniline] molar ratios are characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) and X-ray diffraction (XRD). To assess the electrochemical properties of PANI-(D-TA) materials, cyclic voltammetry (CV) and galvanostatic charging-discharging measurements are performed. The PANI-(D-TA) nanotubes electrode, with [D-TA]/[aniline] molar ratio of 1:1, exhibits larger specific capacitance (as high as 625 F g-1 at 1 A g-1) and higher capacitance retention (77% of its initial capacitance after 500 cycles) in 1 M H2SO4 aqueous solution. The remarkable electrochemical characteristics of PANI-(D-TA) are mainly attributed to their unique nanotubular structures, which provide a high electrode/electrolyte contact area and short ions diffusion path. These novel PANI-(D-TA) nanotubes will be promising electrode materials for high-performance supercapacitors.
Removal of chromium (VI) using poly(methylacrylate) functionalized guar gum.
Singh, Vandana; Kumari, Premlata; Pandey, Sadanand; Narayan, Tripti
2009-03-01
Using persulfate/ascorbic acid redox pair, poly(methylacrylate) was grafted on to guar gum and the conditions for the grafting were optimized. The copolymer sample having maximum %G was evaluated for the removal of Cr(VI) and the sorption conditions were optimized. The sorption was found pH dependent, pH 1.0 being the optimum value. Sorption data at pH 1.0 were modeled using both the Langmuir and Freundlich isotherms where the data fitted better to Freundlich isotherm. The equilibrium sorption capacity of 29.67mg/g was determined from the Langmuir isotherm. The sorption followed a pseudo-second-order kinetics with a rate constant 2.5x10(-4)gmg(-1) min(-1). The grafted product was also evaluated for Cr(VI) removal from local electroplating industrial waste water. The regeneration experiments revealed that the guar-graft-poly(methylacrylate) could be successfully reused for five cycles. In the present study conductivity measurements were used instead of conventional photometric method for determining Cr(VI) concentration in the equilibrium solutions and the results obtained have been compared with photometric method. Optimum Cr(VI) binding under highly acidic conditions indicated significant contribution of non electrostatic forces in the adsorption process.
Regenerable antioxidants-introduction of chalcogen substituents into tocopherols.
Poon, Jia-Fei; Singh, Vijay P; Yan, Jiajie; Engman, Lars
2015-02-02
To improve the radical-trapping capacity of the natural antioxidants, alkylthio-, alkylseleno-, and alkyltelluro groups were introduced into all vacant aromatic positions in β-, γ- and δ-tocopherol. Reaction of the tocopherols with electrophilic chalcogen reagents generated by persulfate oxidation of dialkyl dichalcogenides provided convenient but low-yielding access to many sulfur and selenium derivatives, but failed in the case of tellurium. An approach based on lithiation of the appropriate bromo-tocopherol, insertion of chalcogen into the carbon-lithium bond, air-oxidation to a dichalcogenide, and final borohydride reduction/alkylation turned out to be generally applicable to the synthesis of all chalcogen derivatives. Whereas alkylthio- and alkylseleno analogues were generally poorer quenchers of lipid peroxyl radicals than the corresponding parents, all tellurium compounds showed a substantially improved radical-trapping activity. Introduction of alkyltelluro groups into the tocopherol scaffold also caused a dramatic increase in the regenerability of the antioxidant. In a two-phase lipid peroxidation system containing N-acetylcysteine as a water-soluble co-antioxidant the inhibition time was up to six-fold higher than that recorded for the natural antioxidants. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sakai, Shinji; Ohi, Hiromi; Hotta, Tomoki; Kamei, Hidenori; Taya, Masahito
2018-02-01
Bioprinting has a great potential to fabricate three-dimensional (3D) functional tissues and organs. In particular, the technique enables fabrication of 3D constructs containing stem cells while maintaining cell proliferation and differentiation abilities, which is believed to be promising in the fields of tissue engineering and regenerative medicine. We aimed to demonstrate the utility of the bioprinting technique to create hydrogel constructs consisting of hyaluronic acid (HA) and gelatin derivatives through irradiation by visible light to fabricate 3D constructs containing human adipose stem cells (hADSCs). The hydrogel was obtained from a solution of HA and gelatin derivatives possessing phenolic hydroxyl moieties in the presence of ruthenium(II) tris-bipyridyl dication and sodium ammonium persulfate. hADSCs enclosed in the bioprinted hydrogel construct elongated and proliferated in the hydrogel. In addition, their differentiation potential was confirmed by examining the expression of pluripotency marker genes and cell surface marker proteins, and differentiation to adipocytes in adipogenic differentiation medium. Our results demonstrate the great potential of the bioprinting method and the resultant hADSC-laden HA/gelatin constructs for applications in tissue engineering and regenerative medicine. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Meri, N. H.; Alias, A. B.; Talib, N.; Rashid, Z. A.; Ghani, W. A. W. A. K.
2018-03-01
This study are covered the adsorption performance of two adsorbent Empty Fruit Bunch Hydrogel Biochar Composite (EFB-HBC) and Coal Fly Ash Hydrogel Composite (CFA-HC) on hydrogen sulphide. The EFB biochar were produce by pyrolysed and heated from room temperature to 550˚C at 10˚C/min under the Nitrogen flow. Meanwhile, coal fly ash collected from a power plant located in Selangor, Malaysia. Both of the materials is a waste from different industries and became the precursor to our adsorbents. EFB biochar and coal fly ash has been synthesized to become hydrogel by polymerization process with acrylamide (AAm) as monomer, N,N’-methylene bisacry lamide (MBA) as cross linker and ammonium persulfate (APS) as initiator. In addition, because of the speciality of hydrogel itself, which is has high ability in storing water, the effect of H2O wetness on EFB-HBC and CFA-HC were investigate in adsorption of H2S. EFB-HBC gave a longest breakthrough time and highest adsorption capacity compared with CFA-HC in both condition (dry/wet). The result also indicated that, the increased the bed height, increased the adsorption capacity.
NASA Astrophysics Data System (ADS)
Mobin, M.; Alam, R.; Aslam, J.
2016-07-01
A copolymer of aniline (AN) and o-anisidine (OA), Poly(AN-co-OA) and its nanocomposite with ZnO nanoparticles, Poly(AN-co-OA)/ZnO were synthesized by chemical oxidative polymerization using ammonium persulfate as an oxidant in hydrochloric acid medium. The synthesized compounds were characterized using FTIR, XRD, SEM-EDS, TEM, and electrical conductivity techniques. The copolymer and nanocomposite were separately dissolved in N-methyl-2-pyrrolidone and were casted on low-carbon steel specimens using 10% epoxy resin as a binder. The anticorrosive properties of the coatings were studied in different corrosive environments such as 0.1 M HCl, 5% NaCl solution, and distilled water at a temperature of 30 °C by conducting corrosion tests which include immersion test, open circuit potential measurements, potentiodynamic polarization measurements, and atmospheric exposure test. The surface morphology of the coatings prior to and after one-month immersion in corrosive solution was evaluated using SEM. It was observed that the nanocomposite coating exhibited higher corrosion resistance and provided better barrier properties in comparison with copolymer coating. The presence of ZnO nanoparticles improved the anticorrosion properties of copolymer coating in all corrosive media subjected to investigation.
Zhang, Wenyang; Yuan, Zhiwei; Huang, Lulu; Kang, Jie; Jiang, Ruowei; Zhong, Hongying
2016-02-11
Polyacrylamide gel electrophoresis (PAGE) coupled with mass spectrometry has been well established for separating, identifying and quantifying protein mixtures from cell lines, tissues or other biological samples. The copolymerization process of acrylamide and bis-acrylamide is the key to mastering this powerful technique. In general, this is a vinyl addition reaction initiated by free radical-generating reagents such as ammonium persulfate (APS) and tetramethylethylenediamine (TEMED) under basic pH and degassing experimental condition. We report herein a photocatalytic polymerization approach that is based on photo-generated hydroxyl radicals with nanoparticles of titanium dioxide. It was shown that the polymerization process is greatly accelerated in acidic condition when ultraviolet light shots on the gel solution containing TiO2 nanoparticles without degassing. This feature makes it very useful in preparing Triton X-100 acid urea (TAU) gel that has been developed for separating basic proteins such as histones and variants in acidic experimental condition. Additionally, the presence of titanium dioxide in the gel not only improves mechanistic property of gels but also changes the migration pattern of different proteins that have different affinities to titanium dioxide.
Zhang, Wenyang; Yuan, Zhiwei; Huang, Lulu; Kang, Jie; Jiang, Ruowei; Zhong, Hongying
2016-01-01
Polyacrylamide gel electrophoresis (PAGE) coupled with mass spectrometry has been well established for separating, identifying and quantifying protein mixtures from cell lines, tissues or other biological samples. The copolymerization process of acrylamide and bis-acrylamide is the key to mastering this powerful technique. In general, this is a vinyl addition reaction initiated by free radical-generating reagents such as ammonium persulfate (APS) and tetramethylethylenediamine (TEMED) under basic pH and degassing experimental condition. We report herein a photocatalytic polymerization approach that is based on photo-generated hydroxyl radicals with nanoparticles of titanium dioxide. It was shown that the polymerization process is greatly accelerated in acidic condition when ultraviolet light shots on the gel solution containing TiO2 nanoparticles without degassing. This feature makes it very useful in preparing Triton X-100 acid urea (TAU) gel that has been developed for separating basic proteins such as histones and variants in acidic experimental condition. Additionally, the presence of titanium dioxide in the gel not only improves mechanistic property of gels but also changes the migration pattern of different proteins that have different affinities to titanium dioxide. PMID:26865351
Destruction of amphetamine in aqueous solution using gamma irradiation
NASA Astrophysics Data System (ADS)
Alkhuraiji, Turki S.; Ajlouni, Abdul-Wali
2017-10-01
Amphetamine-type stimulants are among the most prevalent and widespread commonly abused drugs. Amphetamine and its derivatives were detected in aquatic environment. This study aimed to demonstrate experimentally the ability of γ-irradiation combined with persulfate anions (S2O82-) to degrade and mineralize the amphetamine in aqueous solution. An initial amphetamine concentration of 125 μM in distilled water was completely degraded by a γ-ray dose of 2.8 kGy. Generation of the sulfate radical (SO4•-) from the fast reaction of added S2O82- with hydrated electrons (eaq-; keaq-/S2O82- = 1.1×1010 M-1 s-1) improved the efficiency of amphetamine degradation and mineralization. A γ-ray dose of 0.667 and 0.350 kGy in the absence and presence of S2O82- anions degraded 90% of the amphetamine, respectively. For γ-ray/free O2 and γ-ray/S2O82- systems, 11.5 and 7 kGy was required for 50% amphetamine mineralization, respectively. Addition of HCO3- anions lowered the amphetamine degradation yield, whereas N2 gas, SO42-, and Cl- anions had a negligible effect.
Burkhardt, Mark R.; Brenton, Ronald W.; Kammer, James A.; Jha, Virenda K.; O'Mara-Lopez, Peggy G.; Woodworth, Mark T.
1999-01-01
Precision and accuracy are reported for the first time for the analysis of nonpurgeable suspended organic carbon by silver membrane filtration followed by wet chemical oxidation. A water sample is pressure filtered through a 0.45‐μm‐pore‐size, 47‐mm‐diameter silver membrane filter. The silver membrane filter then is cut into ribbons and placed in a flame‐sealable glass ampule. The organic material trapped on the membrane filter strips is acidified, purged with oxygen to remove inorganic carbonates and volatile organic compounds, and oxidized to carbon dioxide (CO2) using phosphoric acid and potassium persulfate in the sealed glass ampule. The resulting CO2 is measured by a nondispersive infrared CO2 detector. The amount of CO2 is proportional to the concentration of chemically oxidizable nonpurgeable organic carbon in the environmental water sample. The quantitation and method detection limit for routine analysis is 0.2 mg/L. The average percent recovery in five representative matrices was 97 ± 11%. The errors associated with sampling and sample preparation of nonpurgeable suspended organic carbon are also described.
NASA Astrophysics Data System (ADS)
Wen, Soh Jing; Rabat, Nurul Ekmi; Osman, Noridah
2017-12-01
Oil palm empty fruit bunch (OPEFB) fiber is a natural polymer which is potentially used as efficient adsorbents for heavy metal cations. The main objective of this research is to synthesize OPEFB grafted polyvinyl alcohol (PVA) hydrogel by using ammonium persulfate (APS) as initiator and gelatin as crosslinking agent. The grafting temperature, amounts of cross linking agent, initiator and concentration of OPEFB were manipulated in order to optimize the swelling capability of the hydrogel. Comparison of heavy metal adsorption performance between pure PVA hydrogel and optimized OPEFB-g-PVA hydrogel was evaluated by using copper ions solution. The characteristics and structure of the optimized OPEFB-g-PVA hydrogel was studied by using Fourier Transform Infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM) while Thermogravimetric Analysis (TGA) was used to study its thermal stability. The presence of band at 1088 and 1047cm-1 corresponds to C-O was observed as strong evidence of grafting. Water uptake capacity was evaluated and the maximum water absorption capacity was obtained at 180.67 g/g. PVA hydrogel with OPEFB proved to have better copper ion absorbency and thermal properties compared to pure PVA hydrogel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibing, G.
Organic compounds which contain one or more double carbon bonds per molecule frequently display the ability of polymerizing with each other and with other compounds. It is mainly compounds containing peroxide that serve as catalysts for such operations. Examples of recommended substances are hydrogen peroxide, ozone, perbenzoic acid, benzoin peroxide, peroxide-containing ethers, persulfates, etc. It was found that a catalyst of much greater effectiveness in the polymerization of unsaturated compounds can be obtained from one of the previously-known catalysts if the hydrocarbons are processed with lateral-chain substances (e.g., toluene, xylene, ethyl benzene, propyl benzene, diethyl benzene, etc.) in boiling heatmore » with damp air. In this process there develops a small measure of peroxide of previously unknown make-up, which possess outstanding catalytic effectiveness. For production of the catalyst, the aromatics are heated by return-flow cooler and conducted for several hours through an air stream which has been saturated with steam. Oxidation can be undertaken with other substances also; for example, oxygen, ozone, or compounds which give off oxygen. Activation with air, however, is the simplest way and yields the most effective catalyst. Examples of the process are provided.« less
Water-soluble resist for environmentally friendly lithography
NASA Astrophysics Data System (ADS)
Lin, Qinghuang; Simpson, Logan L.; Steinhaeusler, Thomas; Wilder, Michelle; Willson, C. Grant; Havard, Jennifer M.; Frechet, Jean M. J.
1996-05-01
This paper describes an 'environmentally friendly,' water castable, water developable photoresist system. The chemically amplified negative-tone resist system consists of three water-soluble components: a polymer, poly(methyl acrylamidoglycolate methyl ether), [poly(MAGME)]; a photoacid generator, dimethyl dihydroxyphenylsulfonium triflate and a crosslinker, butanediol. Poly(MAGME) was synthesized by solution free radical polymerization. In the three-component resist system, the acid generated by photolysis of the photoacid generator catalyzes the crosslinking of poly(MAGME) in the exposed regions during post-exposure baking, thus rendering the exposed regions insoluble in water. Negative tone relief images are obtained by developing with pure water. The resist is able to resolve 1 micrometer line/space features (1:1 aspect ratio) with an exposure dose of 100 mJ/cm2 at 248 nm. The resist can be used to generate etched copper relief images on printed circuit boards using aqueous sodium persulfate as the etchant. The crosslinking mechanism has been investigated by model compound studies using 13C NMR. These studies have revealed that the acid catalyzed reaction of the poly(MAGME) with butanediol proceeds via both transesterification and transacetalization (transaminalization) reactions at low temperatures, and also via transamidation at high temperatures.
Luek, Jenna L; Schmitt-Kopplin, Philippe; Mouser, Paula J; Petty, William Tyler; Richardson, Susan D; Gonsior, Michael
2017-05-16
Large volumes of water return to the surface following hydraulic fracturing of deep shale formations to retrieve oil and natural gas. Current understanding of the specific organic constituents in these hydraulic fracturing wastewaters is limited to hydrocarbons and a fraction of known chemical additives. In this study, we analyzed hydraulic fracturing wastewater samples using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) as a nontargeted technique to assign unambiguous molecular formulas to singly charged molecular ions. Halogenated molecular formulas were identified and confirmed using isotopic simulation and MS-MS fragmentation spectra. The abundance of halogenated organic compounds in flowback fluids rather than older wastewaters suggested that the observed molecular ions might have been related to hydraulic fracturing additives and related subsurface reactions, such as through the reaction of shale-extracted chloride, bromide, and iodide with strong oxidant additives (e.g., hypochlorite, persulfate, hydrogen peroxide) and subsequently with diverse dissolved organic matter. Some molecular ions matched the exact masses of known disinfection byproducts including diiodoacetic acid, dibromobenzoic acid, and diiodobenzoic acid. The identified halogenated organic compounds, particularly iodinated organic molecules, are absent from inland natural systems and these compounds could therefore play an important role as environmental tracers.
Element mobilization from Bakken shales as a function of water chemistry.
Wang, Lin; Burns, Scott; Giammar, Daniel E; Fortner, John D
2016-04-01
Waters that return to the surface after injection of a hydraulic fracturing fluid for gas and oil production contain elements, including regulated metals and metalloids, which are mobilized through interactions between the fracturing fluid and the shale formation. The rate and extent of mobilization depends on the geochemistry of the formation and the chemical characteristics of the fracturing fluid. In this work, laboratory scale experiments investigated the influence of water chemistry on element mobilization from core samples taken from the Bakken formation, one of the most productive shale oil plays in the US. Fluid properties were systematically varied and evaluated with regard to pH, oxidant level, solid:water ratio, temperature, and chemical additives. Element mobilization strongly depended on solution pH and redox conditions and to a lesser extent on the temperature and solid:water ratio. The presence of oxygen and addition of hydrogen peroxide or ammonium persulfate led to pyrite oxidation, resulting in elevated sulfate concentrations. Further, depending on the mineral carbonates available to buffer the system pH, pyrite oxidation could lower the system pH and enhance the mobility of several metals and metalloids. Copyright © 2016 Elsevier Ltd. All rights reserved.
IN VITRO MEASUREMENT OF TOTAL ANTIOXIDANT CAPACITY OF CRATAEGUS MACRACANTHA LODD LEAVES.
Miftode, Alina Monica; Stefanache, Alina; Spac, A F; Miftode, R F; Miron, Anca; Dorneanu, V
2016-01-01
Crataegus macracantha Lodd, family Rosaceae, is a very rare species in Europe, and unlike Crataegus monogyna is less investigated for pharmacologic activity. To analyze the ability of the lyophilisate of extract obtained from leaves of Crataegus macracantha Lodd (single plant at the Iaşi Botanical Garden) to capture free radicals in vitro. The lyophilisate obtained in Department of Pharmacognosy, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy Iaşi. The decreased absorbance of chromophore chlorpromazine radical cation in the presence of the lyophilized solutions was studied spectrophotometrically. The indicator radical cation, obtained by oxidation of chlorpromazine by potassium persulfate, has the maximum absorbance at 525 nm. Ascorbic acid was used as a standard antioxidant. The absorbance of radical solution was determined after the addition of a certain amount of lyophilisate at different time intervals. The antioxidant activity was calculated using the calibration curve obtained by plotting the variation in radical solution absorbance depending on ascorbic acid concentration. For each ascorbic acid concentration the area under the curve was calculated from plotting the percentage inhibition of the absorbance at two pre-established time intervals. The results confirm the antioxidant activity of the leaves of Crataegus Macracantha Lodd and by optimizing the proposed analytical methods the antiradical activity can be quickly evaluated with minimal reagent consumption.
Cloning and Characterization of Cold-Adapted α-Amylase from Antarctic Arthrobacter agilis.
Kim, Su-Mi; Park, Hyun; Choi, Jong-Il
2017-03-01
In this study, the gene encoding an α-amylase from a psychrophilic Arthrobacter agilis PAMC 27388 strain was cloned into a pET-28a(+) vector and heterologously expressed in Escherichia coli BL21(DE3). The recombinant α-amylase with a molecular mass of about 80 kDa was purified by using Ni 2+ -NTA affinity chromatography. This recombinant α-amylase exhibited optimal activity at pH 3.0 and 30 °C and was highly stable at varying temperatures (30-60 °C) and within the pH range of 4.0-8.0. Furthermore, α-amylase activity was enhanced in the presence of FeCl 3 (1 mM) and β-mercaptoethanol (5 mM), while CoCl 2 (1 mM), ammonium persulfate (5 mM), SDS (10 %), Triton X-100 (10 %), and urea (1 %) inhibited the enzymatic activity. Importantly, the presence of Ca 2+ ions and phenylmethylsulfonyl fluoride (PMSF) did not affect enzymatic activity. Thin layer chromatography (TLC) analysis showed that recombinant A. agilis α-amylase hydrolyzed starch, maltotetraose, and maltotriose, producing maltose as the major end product. These results make recombinant A. agilis α-amylase an attractive potential candidate for industrial applications in the textile, paper, detergent, and pharmaceutical industries.
Yang, Cai-xia; Lei, Lei; Zhou, Peng-xin; Zhang, Zhe; Lei, Zi-qiang
2015-04-01
Poly (AA co PVP)/PGS (PAPP) composite adsorbent was prepared by radical polymerization from Acrylic acid (AA), Polyvinylpyrrolidone (PVP) and Palygorskite (PGS), using N,N-methylenebisacrylamide (MBA) as cross-linker and potassium persulfate (KPS) as initiator. The PAPP was characterized with Fourier transform infrared (FT-IR), thermogravimetric analysis (TG), scanning electron microscope (SEM) and transmission electron microscopy (TEM). PAPP was used as adsorbent for the removal of methylene blue from aqueous solutions. The influences of pH, adsorption temperature and adsorption time on the adsorption properties of the composite to the dye were also investigated. Meanwhile, the adsorption rate data and adsorption equilibrium date were analyzed based on the pseudo-first-order and pseudo-second-order kinetic model, Langmuir and Freundlich isotherm models, respectively. The results indicating that the kinetic behavior better fit with the pseudo-second-order kinetic model. The maximum equilibrium adsorption capacity (q(m)) is 1815 mg/g at 289 K. The isotherm behavior can be explained by the Langmuir isotherm models. The activation energy was also evaluated for the removal of methylene blue onto PAPP. These results demonstrate that this composite material could be used as a good adsorbent for the removal of cationic dyes from wastewater. Copyright © 2014 Elsevier Inc. All rights reserved.
Shawket, Abliz; Abdiryim, Supahun; Wang, Ji-De; Ismayil, Nurulla
2011-06-01
With lead ion template, acrylic acid as functional monomer, potassium persulfate as initiator, strytrene as framework monomer, lead ion imprinted polymers (Pb(II)-IIPs) were prepared using free emulsion polymerization method. The structure and morphology of the polymers were analyzed by UV-spectra, FTIR and scanning electron microscopy. The adsorption/ desorption and selectivity for Pb2+ were investigated by flame atomic absorption spectrometry (FAAS) as the detection means. The results show that compared with non-imprinted polymers(NIPs), the Pb(II)-IIPs had higher specific adsorption properties and selective recognition ability for Pb(II). The relative selectivity coefficient of Pb(II)-IIPs for Pb(II) was 6.25, 6.18, 6.25 and 6.38 in the presence of Cd(II), Cu(II), Mn(II) and Zn(II) interferences, respectively. The absorption rate was the best at the pH of adsorbent solution of 6, Adsorption rate reached 96% during the 2.5 h static adsorption time. Using 3.0 mol x L(-1) HCI as the best desorption solvent to desorb the adsorbents, the desorbtion rate reached 98%. Under the best adsorption conditions, the adsorption capacity of Pb(II)-IIPs for Pb(II) was found to be 40. mg x g(-1).
Ray, Debajyoti; Mohapatra, Dillip K; Mohapatra, Ranjit K; Mohanta, Guru P; Sahoo, Prafulla K
2008-01-01
Intravenous administration of 5-fluorouracil (5-FU) for colon cancer therapy produces severe systemic side-effects due to its cytotoxic effect on normal cells. The main objective of the present study was to develop novel oral site-specific delivery of 5-FU to the colon with less drug being released in the stomach or small intestine using biodegradable hydrogel, hydrogel nanoparticles and comparing the targeting efficiency of 5-FU to colon from both. Poly(acrylic acid-co-acrylamide) (P(AA-co-Am)) normal hydrogel and hydrogel nanoparticles (HN) were synthesized by free radical polymerization using N,N-methylene-bis-acrylamide (MBA) as cross-linker, potassium persulfate as reaction initiator and 5-FU was loaded. HN were found to be degradable in physiological medium and showed comparatively higher swelling in rat caecal medium (RCM). 5-FU entrapment was increased by increasing Am (wt%) monomer feed. In vitro release of 5-FU from normal hydrogel and HN in pH progressive medium, it was found that a AA/Am ratio of 25:75 showed higher release in RCM. The Higuchi model yielded good adjustment of in vitro release kinetics. A higher amount of 5-FU reached the colon in HN (61 +/- 2.1%) than normal hydrogel (40 +/- 3.6%) by organ biodistribution studies in albino rats.
Zheng, Xue-Fang; Lian, Qi; Yang, Hua; Wang, Xiuping
2016-01-01
The molecular surface imprinted graft copolymer of chitosan with methyl methacrylate (MIP-CS-g-PMMA) were prepared by free radical polymerization with 5-fluorouracil (5-FU) as the template molecule using initiator of ammonium persulfate as adsorption system. MIPs were characterized by FTIR, X-ray diffraction, thermo-gravimetric analysis, 1H NMR and SEM. The mechanism of graft copolymerization and factors affected graft reaction were studied in details, and the optimum reaction conditions (to the highest %G and %E as the standard) were obtained at [MMA] 1.2 mol/L, [Chitosan] 16.67 mol/L, [initiator] 0.0062 mol/L, temperature 60 °C and reaction time 7 h. MIPs exhibited high recognition selectivity and excellent combining affinity to template molecular. The in vitro release of the 5-FU was highly pH-dependent and time delayed. The release behavior showed that the drugs did not release in simulated gastric fluid (pH = 1.0), and the drug release was small in the simulated small intestinal fluid (pH = 6.8), and drug abrupt release will be produced in the simulated colon fluid (pH = 7.4), indicating excellent colon-specific drug delivery behavior. PMID:26892676
NASA Astrophysics Data System (ADS)
Yan, N.; Brusseau, M. L. L.; Liu, F.
2017-12-01
The influence of groundwater and soil constituents on oxidant activation and 1,4-dioxane (dioxane) degradation by hydrogen peroxide coupled with persulfate was investigated through a series of batch experiments. The degradation of dioxane was considerably slower in groundwater compared to the tests conducted with ultrapure water. Additional tests were conducted to examine potential inhibitory effects of selected ions in isolation. The inhibition effect of anions on dioxane degradation, from strongest inhibition to weakest, was bicarbonate (HCO3-) > sulfate (SO42-) > chloride (Cl-). The inhibition effect of cations on dioxane degradation, from strongest inhibition to weakest, was calcium (Ca2+) > potassium (K+) > magnesium (Mg2+). Bicarbonate and calcium ions, which are the most abundant ions in the groundwater used herein, resulted in the greatest decrease in dioxane degradation rate compared to the other constituents. The impact of soil constituents was investigated by comparing dioxane degradation for bulk soil (soil without treatment), soil treated to remove organic matter (mineral fraction), and soil treated to remove organic matter and manganese oxides (iron fraction). Radical generation was measured by electron paramagnetic resonance (EPR) spectroscopy. The results of this study reveal potential inhibitory and synergistic effects caused by groundwater and soil constituents during the application of in-situ chemical oxidation.
Intumescent flame retardant properties of graft copolymerized vinyl monomers onto cotton fabric
NASA Astrophysics Data System (ADS)
Rosace, G.; Colleoni, C.; Trovato, V.; Iacono, G.; Malucelli, G.
2017-10-01
In this paper, an intumescent flame retardant treatment, obtained by a combination of vinylphosphonic acid (VPA) and methacrylamide (MAA), was applied to cotton fabrics. In order to improve the cross-linking degree onto cellulose polymers, potassium persulfate was used as initiator of a radical polymerization technique. The application on cotton was carried out by padding, followed by drying and a curing treatment. The treated samples were characterized by SEM, TGA and FTIR-ATR analyses and tested in terms of flammability and washing fastness. The thermal and fire behavior of the treated fabrics was thoroughly investigated. The results clearly showed that the VPA/MAA coating was able to exert a protective action, giving rise to the formation of a stable char on the surface of textile fibers upon heating, hence improving the flame retardant performance of cotton. Horizontal flame spread tests confirmed that the coated fabrics achieved self-extinction, and the residues well preserved the original weave structure and fiber morphology; at variance, the uncoated fabric left only ashes. A remarkable weight loss was observed only after the first washing cycle, then the samples did not show any significant weight loss, hence confirming the durability of the self-extinguishing treatment, even after five laundering cycles.
NASA Astrophysics Data System (ADS)
Watts, Richard J.; Yu, Miao; Teel, Amy L.
2017-10-01
The activation of peroxymonosulfate by iron (II), iron (III), and iron (III)-EDTA for in situ chemical oxidation (ISCO) was compared using nitrobenzene as a hydroxyl radical probe, anisole as a hydroxyl radical + sulfate radical probe, and hexachloroethane as a reductant + nucleophile probe. In addition, activated peroxymonosulfate was investigated for the treatment of the model groundwater contaminants perchloroethylene (PCE) and trichloroethylene (TCE). The relative activities of hydroxyl radical and sulfate radical in the degradation of the probe compounds and PCE and TCE were isolated using the radical scavengers tert-butanol and isopropanol. Iron (II), iron (III), and iron (III)-EDTA effectively activated peroxymonosulfate to generate hydroxyl radical and sulfate radical, but only a minimal flux of reductants or nucleophiles. Iron (III)-EDTA was a more effective activator than iron (II) and iron (III), and also provided a non-hydroxyl radical, non-sulfate radical degradation pathway. The contribution of sulfate radical relative to hydroxyl radical followed the order of anisole > > TCE > PCE > > nitrobenzene; i.e., sulfate radical was less dominant in the oxidation of more oxidized target compounds. Sulfate radical is often assumed to be the primary oxidant in activated peroxymonosulfate and persulfate systems, but the results of this research demonstrate that the reactivity of sulfate radical with the target compound must be considered before drawing such a conclusion.
Degradation of florfenicol in water by UV/Na2S 2O 8 process.
Gao, Yu-Qiong; Gao, Nai-Yun; Deng, Yang; Yin, Da-Qiang; Zhang, Yan-Sen
2015-06-01
UV irradiation-activated sodium persulfate (UV/PS) was studied to degrade florfenicol (FLO), a phenicol antibiotic commonly used in aquaculture, in water. Compared with UV/H2O2 process, UV/PS process achieves a higher FLO degradation efficiency, greater mineralization, and less cost. The quantum yield for direct photolysis of FLO and the second-order rate constant of FLO with sulfate radicals were determined. The effects of various factors, namely PS concentration, anions (NO3 (-), Cl(-), and HCO3 (-)), ferrous ion, and humic acid (HA), on FLO degradation were investigated. The results showed that the pseudo-first-order rate constant increased linearly with increased PS concentration. The tested anions all adversely affected FLO degradation performance with the order of HCO3 (-) > Cl(-) > NO3 (-). Coexisting ferrous ions enhanced FLO degradation at a Fe(2+)/PS molar ratio under 1:1. HA significantly inhibited FLO degradation due to radical scavenging and light-screening effect. Toxicity assessment showed that it is capable of controlling the toxicity for FLO degradation. These findings indicated that UV/PS is a promising technology for water polluted by antibiotics, and the treatment is optimized only after the impacts of water characteristics are carefully considered.
Biodegradation of polystyrene-graft-starch copolymers in three different types of soil.
Nikolic, Vladimir; Velickovic, Sava; Popovic, Aleksandar
2014-01-01
Materials based on polystyrene and starch copolymers are used in food packaging, water pollution treatment, and textile industry, and their biodegradability is a desired characteristic. In order to examine the degradation patterns of modified, biodegradable derivates of polystyrene, which may keep its excellent technical features but be more environmentally friendly at the same time, polystyrene-graft-starch biomaterials obtained by emulsion polymerization in the presence of new type of initiator/activator pair (potassium persulfate/different amines) were subjected to 6-month biodegradation by burial method in three different types of commercially available soils: soil rich in humus and soil for cactus and orchid growing. Biodegradation was monitored by mass decrease, and the highest degradation rate was achieved in soil for cactus growing (81.30%). Statistical analysis proved that microorganisms in different soil samples have different ability of biodegradation, and there is a significant negative correlation between the share of polystyrene in copolymer and degree of biodegradation. Grafting of polystyrene on starch on one hand prevents complete degradation of starch that is present (with maximal percentage of degraded starch ranging from 55 to 93%), while on the other hand there is an upper limit of share of polystyrene in the copolymer (ranging from 37 to 77%) that is preventing biodegradation of degradable part of copolymers.
NASA Astrophysics Data System (ADS)
Pargoletti, E.; Cappelletti, G.; Minguzzi, A.; Rondinini, S.; Leoni, M.; Marelli, M.; Vertova, A.
2016-09-01
Nanostructured MnO2 has unique electrocatalytic properties towards the Oxygen Reduction Reaction (ORR, the main cathodic reaction in metal-air devices), representing an excellent alternative to the expensive platinum. Herein, we report the hydrothermal synthesis of bare and 5% Ti-doped α-MnO2 nanoparticles using two different oxidizing agents, namely ammonium persulfate for MH_N samples and potassium permanganate for MH_K ones. The physico-chemical characterizations show that oxidant cations induce different structural, morphological and surface properties of the final powders. Hence, correlations between the different α-MnO2 characteristics and their electrocatalytic performances towards the ORR are drawn, highlighting the diverse effect even on the kinetic point of view. The ORR activity in alkaline media is examined by means of Staircase - Linear Sweep Voltammetry (S-LSV), using Gas Diffusion Electrode (GDE) as the air-cathode. The presence of these nanoparticles in the GDEs leads to a significant shift of the ORR onset potential (∼100 mV) towards less cathodic values, underlining the electrocatalytic efficiency of all the nanopowders. Furthermore, high exchange current densities (j0) are determined for GDEs with Ti-doped MnO2, comparable to the well-performing Pd45Pt5Sn50, and making it a promising material for the ORR.
Enhanced visible light photocatalytic activity of sulfated CuO-Bi2O3 photocatalyst
NASA Astrophysics Data System (ADS)
Liu, Xinlu; Zeng, Jun; Zhong, Junbo; Li, Jianzhang
2015-09-01
Sulfate (SO4 2-)-modified CuO-Bi2O3 composite photocatalysts with different loadings of SO4 2- were prepared by a facile pore impregnating method using ammonium persulfate (NH4)2S2O8 solution. The surface parameters, structure, morphology, the response ability to light, the binding energy of Bi 4 f and O 1 s, the hydroxyl content on the surface and the separation rate of photoinduced hole-electron pairs were characterized by Brunauer-Emmett-Teller method, X-ray diffraction, scanning electron microscopy, UV-Vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy and surface photovoltage spectroscopy, respectively. The results reveal that sulfating of CuO-Bi2O3 decreases the band gap, increases the hydroxyl content on the surface, the separation rate of photoinduced hole-electron pairs and the adsorption of Rhodamine B on the sulfated photocatalysts. The photocatalytic activity of SO4 2-/CuO-Bi2O3 for decolorization of Rhodamine B aqueous solution was evaluated. The result shows that when the molar ratio of S/Bi is 5 %, SO4 2-/CuO-Bi2O3 exhibits the best photocatalytic activity under visible light irradiation and the possible reason is discussed.
Sorption of DNA by diatomite-Zn(II) embedded supermacroporous monolithic p(HEMA) cryogels.
Tozak, Kabil Özcan; Erzengin, Mahmut; Sargin, Idris; Ünlü, Nuri
2013-01-01
In this study, the DNA sorption performance of diatomite-Zn(II) embedded supermacroporous monolithic p(HEMA) cryogels were investigated for the purpose of designing a novel adsorbent that can be utilized for DNA purification, separation and immunoadsorption studies such as removal of anti-dsDNA antibodies from systemic lupus erythematosus (SLE) patient plasma. Poly(2-hydroxyethyl methacrylate) [p(HEMA)]-based monolithic cryogel column embedded with Zn(2+)-diatomite particles was prepared by free radical cryo-copolymerization of 2-hydroxyethyl methacrylate (HEMA) with N,N'-methylene-bis-acrylamide (MBAAm). The polymerization reaction was initiated by N,N,N',N'-tetramethylene diamine (TEMED) and ammonium persulfate (APS) pair in an ice bath. After thawing, the monolithic composite cryogels were used for affinity sorption and then subsequent desorption of DNA molecules from aqueous solutions. Diatomite (DA) particles were characterized by XRF and BET method. The characterization of composite cryogel was done through SEM imaging. The effects of pH of the solution, initial DNA concentration, ionic strength, temperature and flow rates on adsorption were investigated to determine the optimum conditions for adsorption/desorption experiments. The particle embedding procedure was shown to yield significantly enhanced adsorption of DNA on the adsorbent. Furthermore, considering its excellent bio-compatibility, p(HEMA) cryogels are promising a candidate for further DNA sorption studies.
NASA Astrophysics Data System (ADS)
Alam, Ruman; Mobin, Mohammad; Aslam, Jeenat
2016-04-01
A soluble terpolymer of aniline (AN), 2-pyridylamine (PA) and 2,3-xylidine (XY), poly(AN-co-PA-co-XY) and its nanocomposite with ZnO nanoparticles namely, poly(AN-co-PA-co-XY)/ZnO were synthesized by chemical oxidative polymerization employing ammonium persulfate as an oxidant. Nanocomposites of homopolymers, polyaniline/ZnO, poly(XY)/ZnO and poly(PA)/ZnO were also synthesized by following similar synthesis route. FTIR, XRD and SEM techniques were used to characterize the synthesized compounds. The synthesized compounds were chemically deposited on mild steel specimens by solvent evaporation method using N-methyl-2-pyrrolidone (NMP) as solvent and 10% epoxy resin (by weight) as binder. Anticorrosive properties of homopolymer nanocomposites, terpolymer and its nanocomposite coatings were studied in 0.1 M HCl by subjecting them to various corrosion tests which includes: free corrosion potential measurement (OCP), weight loss measurements, potentiodynamic polarization, and AC impedance technique. The surface morphology of the corroded and uncorroded coated steel specimens was evaluated using SEM. The corrosion protection performance of terpolymer nanocomposite coating was compared to the terpolymer and individual homopolymers nanocomposites coatings after 30 days immersion in corrosive medium.
Photo Degradation of Methyl Orange by Persulfate Activated with Zero Valent Iron
NASA Astrophysics Data System (ADS)
Munkoeva, V. A.; Sizykh, M. R.; Batoeva, A. A.
2017-11-01
The oxidative degradation of Methyl Orange (MO) subjected to direct photolysis (Solar) and various oxidative systems was studied. The comparative experiments have shown that MO conversion and mineralization increases in the following order: Solar ∼ Solar/Fe0 ∼ Solar/S2O82- < S2O82-/Fe0 < Solar/S2O82-/Fe0. The influence of the main factors (duration of exposure, the ratio of initial concentrations of MO:S2O82-:Fe0, pH and temperature of the reaction medium) on the degree of MO conversion and mineralization was studied. The optimal pH and temperature of the reaction medium were 5.8 and 25°C, respectively. The rate of MO decomposition and mineralization increased proportionally to the initial concentration of the oxidant at the molar ratios [S2O82-] :[MO] ≤ 12. Judging by the nature of the kinetic curves, a further increase of this ratio is impractical. However, an increase in the oxidant concentration had a positive effect on the degrees of conversion and mineralization of total organic carbon (TOC). Thus, at the ratios of 12:1 and 48:1, the conversion efficiency of TOC was 23 and 60 %, respectively. The optimal concentration of Fe0 was 100 mg/l.
Degradation of MDEA in aqueous solution in the thermally activated persulfate system.
Li, Yong-Tao; Yue, Dong; Wang, Bing; Ren, Hong-Yang
2017-03-01
The feasibility of methyldiethanolamine (MDEA) degradation in thermally activated PS system was evaluated. Effects of the PS concentration, pH, activation temperature and reaction time on MDEA degradation were investigated. Simultaneity, the thermodynamic analysis and degradation process were also performed. Several findings were made in this study including the following: the degradation rates of MDEA in thermally activated PS systems were higher than other systems. MDEA could be readily degraded at 40°C with a PS concentration of 25.2 mM, the process of MDEA degradation was accelerated by higher PS dose and reaction temperature, and MDEA degradation and PS consumption followed the pseudo-first-order kinetic model. The thermodynamic analysis showed that the activation process followed an endothermic path of the positive value of [Formula: see text] and spontaneous with the negative value of [Formula: see text], high temperature was favorable to the degradation of MDEA with the apparent activation energy of 87.11 KJ/mol. Combined FT-IR with GC-MS analysis techniques, MDEA could be oxidative degraded after the C-N bond broken to small molecules of organic acids, alcohols or nitro compounds until oxidized to CO 2 and H 2 O. In conclusion, the thermally activated PS process is a promising option for degrading MDEA effluent liquor.
Sorption of DNA by diatomite-Zn(II) embedded supermacroporous monolithic p(HEMA) cryogels
Tozak, Kabil Özcan; Erzengin, Mahmut; Sargin, Idris; Ünlü, Nuri
2013-01-01
In this study, the DNA sorption performance of diatomite-Zn(II) embedded supermacroporous monolithic p(HEMA) cryogels were investigated for the purpose of designing a novel adsorbent that can be utilized for DNA purification, separation and immunoadsorption studies such as removal of anti-dsDNA antibodies from systemic lupus erythematosus (SLE) patient plasma. Poly(2-hydroxyethyl methacrylate) [p(HEMA)]-based monolithic cryogel column embedded with Zn2+-diatomite particles was prepared by free radical cryo-copolymerization of 2-hydroxyethyl methacrylate (HEMA) with N,N'-methylene-bis-acrylamide (MBAAm). The polymerization reaction was initiated by N,N,N',N'-tetramethylene diamine (TEMED) and ammonium persulfate (APS) pair in an ice bath. After thawing, the monolithic composite cryogels were used for affinity sorption and then subsequent desorption of DNA molecules from aqueous solutions. Diatomite (DA) particles were characterized by XRF and BET method. The characterization of composite cryogel was done through SEM imaging. The effects of pH of the solution, initial DNA concentration, ionic strength, temperature and flow rates on adsorption were investigated to determine the optimum conditions for adsorption/desorption experiments. The particle embedding procedure was shown to yield significantly enhanced adsorption of DNA on the adsorbent. Furthermore, considering its excellent bio-compatibility, p(HEMA) cryogels are promising a candidate for further DNA sorption studies. PMID:26600734
Hammed, W. A.; Rahman, M. S.; Mahmud, H. N. M. E.; Yahya, R.; Sulaiman, K.
2017-01-01
Abstract A soluble poly (n-vinyl carbazole)–polypyrrole (PNVC–Ppy) copolymer was prepared through oxidative chemical polymerization wherein dodecyl benzene sulfonic acid (DBSA) was used as a dopant to facilitate polymer-organic solvent interaction and ammonium persulfate (APS) was used as an oxidant. Compared with undoped PNVC–Ppy, the DBSA-doped PNVC–Ppy copolymer showed higher solubility in some selected organic solvents. The composition and structural characteristics of the DBSA-doped PNVC–Ppy were determined by Fourier transform infrared, ultraviolet–visible, and X-ray diffraction spectroscopic methods. Field emission scanning electron microscopic method was employed to observe the morphology of the DBSA-doped PNVC–Ppy copolymer. The electrical conductivity of the DBSA-doped PNVC–Ppy copolymer was measured at room temperature. The conductivity increased with increasing concentration of APS oxidant, and the highest conductivity was recorded at 0.004 mol/dm3 APS at a polymerization temperature of −5 °C. The increased conductivity can be explained by the extended half-life of pyrrole free radical at a lower temperature and a gradual increase in chain length over a prolonged time due to the slow addition of APS. Furthermore, the obtained soluble copolymer exhibits unique optical and thermal properties different from those of PNVC and Ppy. PMID:29491808
Zero-valent aluminum-mediated degradation of Bisphenol A in the presence of common oxidants.
Arslan-Alaton, I; Olmez-Hanci, T; Dogan, M; Ozturk, T
2017-11-01
The use of a commercial, nano-scale zero-valent aluminum (ZVA) powder was explored for the treatment of aqueous Bisphenol A (BPA). The study focused on the (i) activation of hydrogen peroxide (HP) and persulfate (PS) oxidants with ZVA to accelerate BPA degradation, (ii) comparison of the treatment performance in pure and real surface water (SW) samples, (iii) effects on toxicity and (iv) reuse potential of ZVA nanoparticles after ZVA/HP and ZVA/PS treatments. In pure water, ZVA coupled with HP or PS provided an effective means of BPA treatment particularly when PS was employed as the oxidant. On the other hand, in BPA-spiked SW, the ZVA/HP treatment combination outperformed ZVA/PS oxidation in terms of BPA removal, whereas ZVA/PS oxidation was superior in terms of organic carbon removal. According to the bioassays conducted in pure and real SW samples with the marine photobacteria Vibrio fischeri and the freshwater microalgae Pseudokirchneriella subcapitata, the toxicity response of BPA and its oxidation products was sensitive to the test organism and water matrix. The inhibitory effect of the reaction solution increased at the early stages of ZVA/PS treatment. The reuse potential of the ZVA/HP treatment system was higher than that of the ZVA/PS treatment system.
A simple micro-photometric method for urinary iodine determination.
Grimm, Gabriele; Lindorfer, Heidelinde; Kieweg, Heidi; Marculescu, Rodrig; Hoffmann, Martha; Gessl, Alois; Sager, Manfred; Bieglmayer, Christian
2011-10-01
Urinary iodide concentration (UIC) is useful to evaluate nutritional iodine status. In clinical settings UIC helps to exclude blocking of the thyroid gland by excessive endogenous iodine, if diagnostic or therapeutic administration of radio-iodine is indicated. Therefore, this study established a simple test for the measurement of UIC. UIC was analyzed in urine samples of 200 patients. Samples were pre-treated at 95°C for 45 min with ammonium persulfate in a thermal cycler, followed by a photometric Sandell-Kolthoff reaction (SK) carried out in microtiter plates. For method comparison, UIC was analyzed in 30 samples by inductivity coupled plasma mass spectro-metry (ICP-MS) as a reference method. Incubation conditions were optimized concerning recovery. The photometric test correlated well to the reference method (SK=0.91*ICP-MS+1, r=0.962) and presented with a functional sensitivity of 20 μg/L. UIC of patient samples ranged from <20 to 750 μg/L (median 110 μg/L); 90% of the urine samples had iodide concentrations below 210 μg/L. The modified SK-test takes approximately 90 min for analyses of 20 urine samples compared with 27 h for ICP-MS. The photometric test provides satisfactory results and can be performed with the basic equipment of a clinical laboratory.
Wang, Yanying; Han, Miao; Liu, Guishen; Hou, Xiaodong; Huang, Yina; Wu, Kangbing; Li, Chunya
2015-12-15
A molecularly imprinted polymer film was in situ polymerized on a carboxyl functionalized multi-walled carbon nanotubes modified glassy carbon electrode surface under room temperature. This technique provides a promising imprinting approach for protein in an aqueous solution using 3-(3-aminopropyl)-1-vinylimidazolium tetrafluoroborate ionic liquid as functional monomer, N, N'-methylenebisacrylamide as crossing linker, ammonium persulfate and N,N,N',N'-tetramethylethylenediamine as initiator, and bovine serum albumin (BSA) as template. The molecularly imprinted polymerized ionic liquid film shows enhanced accessibility, high specificity and sensitivity towards BSA. Electrochemical sensing performance of the imprinted sensor was thoroughly investigated using K3Fe[CN]6/K4Fe[CN]6 as electroactive probes. Under optimal conditions, the current difference before and after specific recognition of BSA was found linearly related to its concentration in the range from 1.50×10(-9) to 1.50×10(-6) mol L(-1). The detection limit was calculated to be 3.91×10(-10) mol L(-1) (S/N=3). The practical application of the imprinted sensor was demonstrated by determining BSA in liquid milk samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Uter, Wolfgang; Gefeller, Olaf; John, Swen Malte; Schnuch, Axel; Geier, Johannes
2014-07-01
Cosmetics for bleaching, waving/relaxing and dyeing hair contain well-known allergens, leading to a substantial number of cases of allergic contact dermatitis. To compare the frequency of important contact allergens (i) between two distinct groups of exposed patients, and (ii) with previous surveillance data. On the basis of data collected by the Information Network of Departments of Dermatology (IVDK; www.ivkd.org) between 2007 and 2012 in 824 female hairdressers and 2067 female clients, the current spectrum of contact sensitization to ingredients of hair cosmetics, as contained in different pertinent series, is described. A similar burden of sensitization as in previous analyses was observed, but with some increase in sensitization to oxidative hair dye components in clients. Some allergens mainly affected hairdressers, such as ammonium persulfate (18.7% positive) and glyceryl monothioglycolate (GMTG; still 4.7% positive, with a few cases also in young hairdressers, despite removal from the German market). Hair dyes remain important contact allergens, despite various attempts by the cosmetic industry to introduce hair dyes with lower allergenic potential. The re-emergence of GMTG as an occupational allergen should be considered as a warning signal ('sentinel event') prompting close monitoring. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Shahid, Muhammad; Xue, Xinkai; Fan, Chao; Ninham, Barry W; Pashley, Richard M
2015-06-25
An enhanced thermal decomposition of chemical compounds in aqueous solution has been achieved at reduced solution temperatures. The technique exploits hitherto unrecognized properties of a bubble column evaporator (BCE). It offers better heat transfer efficiency than conventional heat transfer equipment. This is obtained via a continuous flow of hot, dry air bubbles of optimal (1-3 mm) size. Optimal bubble size is maintained by using the bubble coalescence inhibition property of some salts. This novel method is illustrated by a study of thermal decomposition of ammonium bicarbonate (NH4HCO3) and potassium persulfate (K2S2O8) in aqueous solutions. The decomposition occurs at significantly lower temperatures than those needed in bulk solution. The process appears to work via the continuous production of hot (e.g., 150 °C) dry air bubbles, which do not heat the solution significantly but produce a transient hot surface layer around each rising bubble. This causes the thermal decomposition of the solute. The decomposition occurs due to the effective collision of the solute with the surface of the hot bubbles. The new process could, for example, be applied to the regeneration of the ammonium bicarbonate draw solution used in forward osmosis.
Paukert Vankeuren, Amelia N; Hakala, J Alexandra; Jarvis, Karl; Moore, Johnathan E
2017-08-15
Hydraulic fracturing for gas production is now ubiquitous in shale plays, but relatively little is known about shale-hydraulic fracturing fluid (HFF) reactions within the reservoir. To investigate reactions during the shut-in period of hydraulic fracturing, experiments were conducted flowing different HFFs through fractured Marcellus shale cores at reservoir temperature and pressure (66 °C, 20 MPa) for one week. Results indicate HFFs with hydrochloric acid cause substantial dissolution of carbonate minerals, as expected, increasing effective fracture volume (fracture volume + near-fracture matrix porosity) by 56-65%. HFFs with reused produced water composition cause precipitation of secondary minerals, particularly barite, decreasing effective fracture volume by 1-3%. Barite precipitation occurs despite the presence of antiscalants in experiments with and without shale contact and is driven in part by addition of dissolved sulfate from the decomposition of persulfate breakers in HFF at reservoir conditions. The overall effect of mineral changes on the reservoir has yet to be quantified, but the significant amount of barite scale formed by HFFs with reused produced water composition could reduce effective fracture volume. Further study is required to extrapolate experimental results to reservoir-scale and to explore the effect that mineral changes from HFF interaction with shale might have on gas production.
NASA Astrophysics Data System (ADS)
Meri, N. H.; Alias, A. B.; Talib, N.; Rashid, Z. A.; Wan, W. A.; Ghani, Ab Karim
2018-05-01
Hydrogel biochar composite (HBC) is a recent interest among researchers because of the hydrophilic characteristic which can adsorb chemical fluid and showed a versatile potential as adsorbent in removing hazardous material in wastewater and gas stream. In this study, the effect of chemical washing pre-treatment by using two different type of chemical agent Hydrochloric Acid (HCL) and Hydrogen Peroxide (H2O2) was analysed and investigated. The raw EFB biochar was prepared using microwave assisted pyrolysis under 1000W for 30 min under N2 flow with 150 mL/min. To improve the adsoprtion ability, the EFB biochar has been chemical washed pre-treatment with Hydrochloric Acid (HCl) and Hydrogen Peroxide (H2O2) before polymerization process with acrylamide (AAm) as monomer, N,N’-methylenebisacrylamide (MBA) as crosslinker and ammonium persulfate (APS) as initiator. The characterization has studied by using Fourier transform infrared spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC). FTIR result shows that, the formation of Raw EFB to Hydrogel Biochar Composite (Raw EFB > EFB Biochar > Treated Biochars (HCl & H2O2) > Hydrogel Biochar Composite) have changed in functional group. For DSC result it shows that the thermal behaviour of all samples is endothermic process and have high thermal resistance.
Study of Photosensitive Dry Films Absorption for Printed Circuit Boards by Photoacoustic Technique
NASA Astrophysics Data System (ADS)
Hernández, R.; Zaragoza, J. A. Barrientos; Jiménez-Pérez, J. L.; Orea, A. Cruz; Correa-Pacheco, Z. N.
2017-08-01
In this work, the study of photosensitive dry-type films by photoacoustic technique is proposed. The dry film photoresist is resistant to chemical etching for printed circuit boards such as ferric chloride, sodium persulfate or ammonium, hydrochloric acid. It is capable of faithfully reproducing circuit pattern exposed to ultraviolet light (UV) through a negative. Once recorded, the uncured portion is removed with alkaline solution. It is possible to obtain good results in surface mount circuits with tracks of 5 mm. Furthermore, the solid resin films are formed by three layers, two protective layers and a UV-sensitive optical absorption layer in the range of 325 nm to 405 nm. By means of optical absorption of UV-visible rays emitted by a low-power Xe lamp, the films transform this energy into thermal waves generated by the absorption of optical radiation and subsequently no-radiative de-excitation occurs. The photoacoustic spectroscopy is a useful technique to measure the transmittance and absorption directly. In this study, the optical absorption spectra of the three layers of photosensitive dry-type films were obtained as a function of the wavelength, in order to have a knowledge of the absorber layer and the protective layers. These analyses will give us the physical properties of the photosensitive film, which are very important in curing the dry film for applications in printed circuit boards.
Sutton, Nora B; Langenhoff, Alette A M; Lasso, Daniel Hidalgo; van der Zaan, Bas; van Gaans, Pauline; Maphosa, Farai; Smidt, Hauke; Grotenhuis, Tim; Rijnaarts, Huub H M
2014-03-01
To improve the coupling of in situ chemical oxidation and in situ bioremediation, a systematic analysis was performed of the effect of chemical oxidation with Fenton's reagent, modified Fenton's reagent, permanganate, or persulfate, on microbial diversity and activity during 8 weeks of incubation in two diesel-contaminated soils (peat and fill). Chemical oxidant and soil type affected the microbial community diversity and biodegradation activity; however, this was only observed following treatment with Fenton's reagent and modified Fenton's reagent, and in the biotic control without oxidation. Differences in the highest overall removal efficiencies of 69 % for peat (biotic control) and 59 % for fill (Fenton's reagent) were partially explained by changes in contaminant soil properties upon oxidation. Molecular analysis of 16S rRNA and alkane monooxygenase (alkB) gene abundances indicated that oxidation with Fenton's reagent and modified Fenton's reagent negatively affected microbial abundance. However, regeneration occurred, and final relative alkB abundances were 1-2 orders of magnitude higher in chemically treated microcosms than in the biotic control. 16S rRNA gene fragment fingerprinting with DGGE and prominent band sequencing illuminated microbial community composition and diversity differences between treatments and identified a variety of phylotypes within Alpha-, Beta-, and Gammaproteobacteria. Understanding microbial community dynamics during coupled chemical oxidation and bioremediation is integral to improved biphasic field application.
NASA Astrophysics Data System (ADS)
Puthirath, Anand B.; Methattel Raman, Shijeesh; Varma, Sreekanth J.; Jayalekshmi, S.
2016-04-01
Emeraldine salt form of polyaniline (PANI) was synthesized by chemical oxidative polymerisation method using ammonium persulfate as oxidant. Resultant emeraldine salt form of PANI was dedoped using ammonia solution and then re-doped with camphor sulphonic acid (CSA), naphthaline sulphonic acid (NSA), hydrochloric acid (HCl), and m-cresol. Thin films of these doped PANI samples were deposited on glass substrates using solution casting method with m-cresol as solvent. A level surface was employed to get homogeneous thin films of uniform thickness. Detailed X-ray diffraction studies have shown that the films are exceptionally crystalline. The crystalline peaks observed in the XRD spectra can be indexed to simple monoclinic structure. FTIR and Raman spectroscopy studies provide convincing explanation for the exceptional crystallinity observed in these polymer films. FESEM and AFM images give better details of surface morphology of doped PANI films. The DC electrical conductivity of the samples was measured using four point probe technique. It is seen that the samples also exhibit quite high DC electrical conductivity, about 287 S/cm for CSA doped PANI, 67 S/cm for NSA doped PANI 65 S/cm for HCl doped PANI, and just below 1 S/cm for m-cresol doped PANI. Effect of using the level surface for solution casting is studied and correlated with the observed crystallinity.
Xu, Kun; Tan, Ying; Chen, Qiang; An, Huiyong; Li, Wenbo; Dong, Lisong; Wang, Pixin
2010-05-15
Series of hydrophilic core-shell microgels with cross-linked poly(N-isopropylacrylamide) (PNIPAAm) as core and poly(vinyl amine) (PVAm) as shell are synthesized via surfactant-free emulsion polymerization. Then, the microgels are treated with a small amount of potassium persulfate (KPS) to generate free radicals on the amine nitrogens of PVAm, which subsequently initiate the graft copolymerization of acrylic acid (AA), acryloyloxyethyl trimethyl ammonium chloride (DAC), and acrylamide (AAm) onto microgels to prepare multi-responsive composite hydrogels. The composite hydrogels consist of cross-linked ungrafted polyampholyte chains as the first network and microgels with grafted polyampholyte chains as graft point and second network and show surprising mechanical strength and rapid response rate. The investigation shows the compress strength of composite hydrogels is up to 17-30 MPa, which is 60-100 times higher than that of the hydrogel matrix. The composite hydrogel shows reversible switch of transmittance when traveling the lowest critical temperature (LCST) of microgels. When the composite hydrogel swollen in pH 2.86 solution at ambient condition is immersed into the pH 7.00 solution at 45 °C, a rapid dynamic shrinking can be observed. And the character time (τ) of shrinking dynamic of composite hydrogel is 251.9 min, which is less than that of hydrogel matrix (τ=2273.7 min). Copyright © 2010 Elsevier Inc. All rights reserved.
Glyconanobiotics: Novel carbohydrated nanoparticle antibiotics for MRSA and Bacillus anthracis.
Abeylath, Sampath C; Turos, Edward; Dickey, Sonja; Lim, Daniel V
2008-03-01
This report describes the synthesis and evaluation of glycosylated polyacrylate nanoparticles that have covalently-bound antibiotics within their framework. The requisite glycosylated drug monomers were prepared from one of three known antibiotics, an N-sec-butylthio beta-lactam, ciprofloxacin, and a penicillin, by acylation with 3-O-acryloyl-1,2-O-isopropylidene-5,6 bis((chlorosuccinyl)oxy)-d-glucofuranose (7) or 6-O-acetyl-3-O-acryloyl-1,2-O-isopropylidene-5-(chlorosuccinyl)oxy-alpha-d-glucofuranose (10). These acrylated monomers were subjected to emulsion polymerization in a 7:3 (w:w) mixture of butyl acrylate-styrene in the presence of sodium dodecyl sulfate as surfactant (3 weight %) and potassium persulfate as a radical initiator (1 weight %). The resulting nanoparticle emulsions were characterized by dynamic light scattering and found to have similar diameters ( approximately 40 nm) and size distributions to those of our previously studied systems. Microbiological testing showed that the N-sec-butylthio beta-lactam and ciprofloxacin nanoparticles both have powerful in vitro activities against methicillin-resistant Staphylococcus aureus and Bacillus anthracis, while the penicillin-bound nanoparticles have no antimicrobial activity. This indicates the need for matching a suitable antibiotic with the nanoparticle carrier. Overall, the study shows that even relatively large, polar acrylate monomers (MW>1000 amu) can be efficiently incorporated into the nanoparticle matrix by emulsion polymerization, providing opportunities for further advances in nanomedicine.
Zhou, Tao; Wang, Yan; Huang, Sheng; Zhao, Youcai
2018-02-15
Nearly 1.3 billion tons of food are discarded annually in the production process. In this study, a novel slow-release nitrogen fertilizer with water absorbency was developed using leftover rice and crosslinking methods. Urea was incorporated as the nitrogen source in a leftover rice-g-poly(acrylic acid)/montmorillonite (LR-g-PAA/MMT) network, and then the leftover rice-g-poly(acrylic acid)/montmorillonite/Urea (LR-g-PAA/MMT/Urea) retained in the soil, and used as the loss control agent for water and nutrients. Variables including concentrations of acrylic acid, montmorillonite, N,N´-methylenebis acrylamide (MBA), and potassium persulfate (KPS) were investigated. Samples were with a water absorbency of 102.6g/g in distilled water and 25.1g/g in 1.0wt% NaCl solution under optimized conditions. Swelling measurements and water-retention indicated that higher-covalent cations would aggregate the hydrogels and decrease swelling. Investigating leaching behavior showed that these samples have the potential to carry the necessary nitrogen (N). The results demonstrated that the LR-g-PAA/MMT/Urea had a low leaching losses of N (19.7%) compared with pure urea (52.3%). Therefore, the developed fertilizer may be widely applicable in agriculture and horticulture, and could provide a new platform for reusing leftover rice. Copyright © 2017 Elsevier B.V. All rights reserved.
Zheng, Ruijuan; Zhong, Jianhai; Zhao, Chenhao; Lang, Xiaoling; Hu, Zhibiao; Luo, Jiangshui
2017-08-01
In this paper, a novel and ultrasensitive electrochemiluminescent sensor employing a solvothermal-synthesized CdS nanorod-modified pencil graphite electrode (CdS/PGE) for the determination of chlorogenic acid (CA) is fabricated. In the first step, the PGE surface is modified using CdS nanorods. In the next step, the developed electrode is used to detect CA using a electrochemiluminescent (ECL) technique, in which potassium persulfate (K 2 S 2 O 8 ) served as a co-reactant. The possible ECL mechanism is investigated, and the influences of pH and cyclic voltammetric scanning rate on the signal response are studied. The ECL intensity decreases quantitatively in relation to the concentration of the target molecule. Under optimized conditions, the linear correlation between the quenched ECL intensity and the logarithm of CA concentration is observed in the range from 2 × 10 -9 to 8 × 10 -7 mol L -1 with a limit of detection of 1 × 10 -9 mol L -1 . This proposed method is applied to the analysis of CA in honeysuckle flower, giving recoveries of 99-107%. The experimental results demonstrate that this ECL sensor shows good stability and reproducibility. Copyright © 2016 John Wiley & Sons, Ltd.
Glyconanobiotics: Novel carbohydrated nanoparticle antibiotics for MRSA and Bacillus anthracis
Abeylath, Sampath C.; Turos, Edward; Dickey, Sonja; Limb, Daniel V.
2008-01-01
This report describes the synthesis and evaluation of glycosylated polyacrylate nanoparticles that have covalently-bound antibiotics within their framework. The requisite glycosylated drug monomers were prepared from one of three known antibiotics, an N-sec-butylthio β-lactam, ciprofloxacin, and a penicillin, by acylation with 3-O-acryloyl-1,2-O-isopropylidene-5,6 bis((chlorosuccinyl)oxy)-D-glucofuranose (7) or 6-O-acetyl-3-O-acryloyl-1,2-O-isopropylidene-5-(chlorosuccinyl)oxy-α-D-glucofuranose (10). These acrylated monomers were subjected to emulsion polymerization in a 7:3 (w:w) mixture of butyl acrylate-styrene in the presence of sodium dodecyl sulfate as surfactant (3 weight %) and potassium persulfate as a radical initiator (1 weight %). The resulting nanoparticle emulsions were characterized by dynamic light scattering and found to have similar diameters (~40 nm) and size distributions to those of our previously studied systems. Microbiological testing showed that the N-sec-butylthio β-lactam and ciprofloxacin nanoparticles both have powerful in vitro activities against methicillin-resistant Staphylococcus aureus and Bacillus anthracis, while the penicillin-bound nanoparticles have no antimicrobial activity. This indicates the need for matching a suitable antibiotic with the nanoparticle carrier. Overall, the study shows that even relatively large, polar acrylate monomers (MW>1000 amu) can be efficiently incorporated into the nanoparticle matrix by emulsion polymerization, providing opportunities for further advances in nanomedicine. PMID:18063370
Kolomiĭtsev, A K; Chaikovskiĭ, Iu B; Tereshchenko, T L
1981-08-01
According to the method of neural elements impregnation in the authors' modification, the object is fixed for 6-12 h in Lillie fluid cooled to 4 degrees C. Then the object is kept under tap water for 2-6 h. Frozen sections are prepared and kept in pure pyridine for 1-6 h. When the sections are embedded into paraffin or celloidin, they are put into alcohol solutions gradually decreasing their concentration until water is reached, then put into pyridine. In order to remove cellulose, the celloidin sections are treated in 3 portions of pyridine (in the 1st and 2nd-for 10 min, and in the 3d-for 6 h). Then they are washed under tap water for 2-4 h and in distilled water for 30-40 min. Further treatment is performed according to the methods by Bielschowsky - Gros, Kampos or Rasskazova. Excess silver is removed by treating the sections in 2% ammonium persulfate under the microscope control (the process is stopped by putting the sections into 7% sodium hyposulfate for 10 min). Then the sections are treated in 0.1% aurum chloride, in 5% hyposulfite to reveale the tissue background [corrected] and by means of routine histological techniques either after Brashet, Hale, PAS-positive reaction or other methods applied after fixation in Lillie fluid.
Zhang, J D; Yang, Q
2015-03-13
The aim of this study was to develop a protocol for the production of fungal bio-pesticides with high efficiency, low cost, and non-polluting fermentation, while also increasing their survival rate under field conditions. This is the first study to develop biocontrol Trichoderma harzianum transformants TS1 that are resistant to benzimidazole fungicides. Agricultural corn stover and wheat bran waste were used as a medium and inducing carbon source for solid fermentation. Spore production was observed, and the method was optimized using single-factor tests with 4 factors at 3 levels in an orthogonal experimental design to determine the optimal culture conditions for T. harzianum TS1. In this step, we determined the best conditions for fermenting the biocontrol fungi. The optimal culture conditions for T. harzianum TS1 were cultivated for 8 days, a ratio of straw to wheat bran of 1:3, ammonium persulfate as the nitrogen source, and a water content of 30 mL. Under optimal culture conditions, the sporulation of T. harzianum TS1 reached 1.49 x 10(10) CFU/g, which was 1.46-fold higher than that achieved before optimization. Increased sporulation of T. harzianum TS1 results in better utilization of space and nutrients to achieve control of plant pathogens. This method allows for the recycling of agricultural waste straw.
Babaei, Ali Akbar; Ghanbari, Farshid; Yengejeh, Reza Jalilzadeh
2017-04-01
Photoelectro-Fenton (PEF) was carried out for concurrent removals of inorganic and organic pollutants with simultaneous applications of two different anodes (iron and copper). Cadmium and Direct Orange 26 (DO26) were selected as samples of the contaminants of textile wastewater and influential parameters (pH, current density, H 2 O 2 dosage and electrolysis time) of PEF were evaluated on Cd and DO26 removals. Both mechanisms of coagulation and oxidation affected the removal of both pollutants. Optimal conditions were achieved with pH = 4.0, current density of 5 mA/cm 2 , 3 mM H 2 O 2 and 40 min electrolysis time, and under these conditions, the dye was completely removed and the Cd removal efficiency was about 80%. Unlike H 2 O 2 , persulfate had no scavenging effect in high dosages. The effects of different anions and two matrixes (tap water and wastewater) on Cd and dye removals were investigated. The results showed that decolorization was reduced by the phosphate and nitrate ions while chloride ion accelerated the decolorization rate. In terms of Cd removal, no significant change was observed in the presence of the anions except for phosphate ion. The sludge of PEF was assessed by Fourier transform infrared, field emission scanning electron microscope and energy-dispersive X-ray spectroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puthirath, Anand B.; Varma, Sreekanth J.; Jayalekshmi, S., E-mail: jayalekshmi@cusat.ac.in
2016-04-18
Emeraldine salt form of polyaniline (PANI) was synthesized by chemical oxidative polymerisation method using ammonium persulfate as oxidant. Resultant emeraldine salt form of PANI was dedoped using ammonia solution and then re-doped with camphor sulphonic acid (CSA), naphthaline sulphonic acid (NSA), hydrochloric acid (HCl), and m-cresol. Thin films of these doped PANI samples were deposited on glass substrates using solution casting method with m-cresol as solvent. A level surface was employed to get homogeneous thin films of uniform thickness. Detailed X-ray diffraction studies have shown that the films are exceptionally crystalline. The crystalline peaks observed in the XRD spectra canmore » be indexed to simple monoclinic structure. FTIR and Raman spectroscopy studies provide convincing explanation for the exceptional crystallinity observed in these polymer films. FESEM and AFM images give better details of surface morphology of doped PANI films. The DC electrical conductivity of the samples was measured using four point probe technique. It is seen that the samples also exhibit quite high DC electrical conductivity, about 287 S/cm for CSA doped PANI, 67 S/cm for NSA doped PANI 65 S/cm for HCl doped PANI, and just below 1 S/cm for m-cresol doped PANI. Effect of using the level surface for solution casting is studied and correlated with the observed crystallinity.« less
Gas-Phase Oxidation via Ion/Ion Reactions: Pathways and Applications
NASA Astrophysics Data System (ADS)
Pilo, Alice L.; Zhao, Feifei; McLuckey, Scott A.
2017-06-01
Here, we provide an overview of pathways available upon the gas-phase oxidation of peptides and DNA via ion/ion reactions and explore potential applications of these chemistries. The oxidation of thioethers (i.e., methionine residues and S-alkyl cysteine residues), disulfide bonds, S-nitrosylated cysteine residues, and DNA to the [M+H+O]+ derivative via ion/ion reactions with periodate and peroxymono-sulfate anions is demonstrated. The oxidation of neutral basic sites to various oxidized structures, including the [M+H+O]+, [M-H]+, and [M-H-NH3]+ species, via ion/ion reactions is illustrated and the oxidation characteristics of two different oxidizing reagents, periodate and persulfate anions, are compared. Lastly, the highly efficient generation of molecular radical cations via ion/ion reactions with sulfate radical anion is summarized. Activation of the newly generated molecular radical peptide cations results in losses of various neutral side chains, several of which generate dehydroalanine residues that can be used to localize the amino acid from which the dehydroalanine was generated. The chemistries presented herein result in a diverse range of structures that can be used for a variety of applications, including the identification and localization of S-alkyl cysteine residues, the oxidative cleavage of disulfide bonds, and the generation of molecular radical cations from even-electron doubly protonated peptides. [Figure not available: see fulltext.
Oh, Junsik; Salcedo, Dennis Espineli; Medriano, Carl Angelo; Kim, Sungpyo
2014-06-01
This study compared three different disinfection processes (chlorination, E-beam, and ozone) and the efficacy of three oxidants (H2O2, S2O(-)8, and peroxymonosulfate (MPS)) in removing antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in a synthetic wastewater. More than 30 mg/L of chlorine was needed to remove over 90% of ARB and ARG. For the E-beam method, only 1 dose (kGy) was needed to remove ARB and ARG, and ozone could reduce ARB and ARG by more than 90% even at 3 mg/L ozone concentration. In the ozone process, CT values (concentration × time) were compared for ozone alone and combined with different catalysts based on the 2-log removal of ARB and ARG. Ozone treatment yielded a value of 31 and 33 (mg·min)/L for ARB and ARGs respectively. On the other hand, ozone with persulfate yielded 15.9 and 18.5 (mg·min)/L while ozone with monopersulfate yielded a value of 12 and 14.5 (mg·min)/L. This implies that the addition of these catalysts significantly reduces the contact time to achieve a 2-log removal, thus enhancing the process in terms of its kinetics. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Watts, Richard J; Yu, Miao; Teel, Amy L
2017-10-01
The activation of peroxymonosulfate by iron (II), iron (III), and iron (III)-EDTA for in situ chemical oxidation (ISCO) was compared using nitrobenzene as a hydroxyl radical probe, anisole as a hydroxyl radical+sulfate radical probe, and hexachloroethane as a reductant+nucleophile probe. In addition, activated peroxymonosulfate was investigated for the treatment of the model groundwater contaminants perchloroethylene (PCE) and trichloroethylene (TCE). The relative activities of hydroxyl radical and sulfate radical in the degradation of the probe compounds and PCE and TCE were isolated using the radical scavengers tert-butanol and isopropanol. Iron (II), iron (III), and iron (III)-EDTA effectively activated peroxymonosulfate to generate hydroxyl radical and sulfate radical, but only a minimal flux of reductants or nucleophiles. Iron (III)-EDTA was a more effective activator than iron (II) and iron (III), and also provided a non-hydroxyl radical, non-sulfate radical degradation pathway. The contribution of sulfate radical relative to hydroxyl radical followed the order of anisole>TCE>PCE >nitrobenzene; i.e., sulfate radical was less dominant in the oxidation of more oxidized target compounds. Sulfate radical is often assumed to be the primary oxidant in activated peroxymonosulfate and persulfate systems, but the results of this research demonstrate that the reactivity of sulfate radical with the target compound must be considered before drawing such a conclusion. Published by Elsevier B.V.
Ma, Jiachen; Zhang, Luqing; Geng, Bing; Azhar, Umair; Xu, Anhou; Zhang, Shuxiang
2017-01-25
In this work, a thermo-responsive and cross-linked fluoropolymer poly(2,2,2-Trifluoroethyl) methacrylate (PTFEMA) was successfully prepared by reversible addition-fragmentation chain transfer (RAFT) mediated aqueous polymerization with a thermo-responsive diblock poly(dimethylacrylamide- b - N -isopropylacrylamide) (PDMA- b -PNIPAM) that performed a dual function as both a nanoreactor and macro-RAFT agent. The cross-linked polymer particles proved to be in a spherical-like structure of about 50 nm in diameter and with a relatively narrow particle size distribution. ¹H-NMR and 19 F-NMR spectra showed that thermo-responsive diblock P(DMA- b -NIPAM) and cross-linked PTFEMA particles were successfully synthesized. Influence of the amount of ammonium persulfate (APS), the molar ratio of monomers to RAFT agent, influence of the amount of cross-linker on aqueous polymerization and thermo-responsive characterization of the particles are investigated. Monomer conversion increased from 44% to 94% with increasing the molar ratio of APS and P(DMA- b -NIPAM) from 1:9 to1:3. As the reaction proceeded, the particle size increased from 29 to 49 nm due to the consumption of TFEMA monomer. The size of cross-linked nanoparticles sharply decreased from 50.3 to 40.5 nm over the temperature range 14-44 °C, suggesting good temperature sensitivity for these nanoparticles.
Remediation of TCE-contaminated groundwater using acid/BOF slag enhanced chemical oxidation.
Tsai, T T; Kao, C M; Wang, J Y
2011-04-01
The objective of this study was to evaluate the potential of applying acid/H(2)O(2)/basic oxygen furnace slag (BOF slag) and acid/S(2)O(8)(2-)/BOF slag systems to enhance the chemical oxidation of trichloroethylene (TCE)-contaminated groundwater. Results from the bench-scale study indicate that TCE oxidation via the Fenton-like oxidation process can be enhanced with the addition of BOF slag at low pH (pH=2-5.2) and neutral (pH=7.1) conditions. Because the BOF slag has iron abundant properties (14% of FeO and 6% of Fe(2)O(3)), it can be sustainably reused for the supplement of iron minerals during the Fenton-like or persulfate oxidation processes. Results indicate that higher TCE removal efficiency (84%) was obtained with the addition of inorganic acid for the activation of Fenton-like reaction compared with the experiments with organic acids addition (with efficiency of 10-15% lower) (BOF slag=10gL(-1); initial pH=5.2). This could be due to the fact that organic acids would compete with TCE for available oxidants. Results also indicate that the pH value had a linear correlation with the observed first-order decay constant of TCE, and thus, lower pH caused a higher TCE oxidation rate. Copyright © 2011 Elsevier Ltd. All rights reserved.
Wang, Zhaohui; Sun, Linyan; Lou, Xiaoyi; Yang, Fei; Feng, Min; Liu, Jianshe
2017-12-01
The rapidly increasing and widespread use of graphene oxide (GO) as catalyst supports, requires further understanding of its chemical stability in advanced oxidation processes (AOPs). In this study, UV/H 2 O 2 and UV/persulfate (UV/PS) processes were selected to test the chemical instability of GO in terms of their performance in producing highly reactive hydroxyl radicals (OH) and sulfate radicals (SO 4 - ), respectively. The degradation intermediates were characterized using UV-visible absorption spectra (UV-vis), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Raman spectroscopy, and matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Experimental data indicate that UV/PS process was more effective in enhancing GO degradation than the UV/H 2 O 2 system. The overall oxygen-containing functionalities (e.g. CO, CO and OCO groups) dramatically declined. After radical attack, sheet-like GO was destructed into lots of flakes and some low-molecular-weight molecules were detected. The results suggest GO is most vulnerable against SO 4 - radical attack, which deserves special attention while GO acts as a catalyst support or even as a catalyst itself. Therefore, stability of GO and its derivatives should be carefully assessed before they are applied to SO 4 - -based AOPs. Copyright © 2017 Elsevier Inc. All rights reserved.
Woerndle, Glenn E; Tsz-Ki Tsui, Martin; Sebestyen, Stephen D; Blum, Joel D; Nie, Xiangping; Kolka, Randall K
2018-02-20
Stable isotope compositions of mercury (Hg) were measured in the outlet stream and in soil cores at different landscape positions in a 9.7-ha boreal upland-peatland catchment. An acidic permanganate/persulfate digestion procedure was validated for water samples with high dissolved organic matter (DOM) concentrations through Hg spike addition analysis. We report a relatively large variation in mass-dependent fractionation (δ 202 Hg; from -2.12 to -1.32‰) and a smaller, but significant, variation of mass-independent fractionation (Δ 199 Hg; from -0.35 to -0.12‰) during two years of sampling with streamflow varying from 0.003 to 7.8 L s -1 . Large variations in δ 202 Hg occurred only during low streamflow (<0.6 L s -1 ), which suggest that under high streamflow conditions a peatland lagg zone between the bog (3.0 ha) and uplands (6.7 ha) becomes the dominant source of Hg in downstream waters. Further, a binary mixing model showed that except for the spring snowmelt period, Hg in streamwater from the catchment was mainly derived from dry deposition of gaseous elemental Hg (73-95%). This study demonstrates the usefulness of Hg isotopes for tracing sources of Hg deposition, which can lead to a better understanding of the biogeochemical cycling and hydrological transport of Hg in headwater catchments.
Tamboli, Mohaseen S; Kulkarni, Milind V; Patil, Rajendra H; Gade, Wasudev N; Navale, Shalaka C; Kale, Bharat B
2012-04-01
Silver-polyaniline (Ag-PANI) nanocomposite was synthesized by in situ polymerization method using ammonium persulfate (APS) as an oxidizing agent in the presence of dodecylbenzene sulfonic acid (DBSA) and silver nitrate (AgNO(3)). The as synthesized Ag-PANI nanocomposite was characterized by using different analytical techniques such as UV-visible (UV-vis) and Fourier transform Infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), thermo gravimetric analysis (TGA), X-ray diffraction (XRD), and transmission electron microscopy (TEM). UV-visible spectra of the synthesized nanocomposite showed a sharp peak at ~420 nm corresponding to the surface plasmon resonance (SPR) of the silver nanoparticles (AgNPs) embedded in the polymer matrix which is overlapped by the polaronic peak of polyaniline appearing at that wavelength. Nanowires of Ag-PANI nanocomposite with diameter 50-70 nm were observed in FE-SEM and TEM. TGA has indicated an enhanced thermal stability of nanocomposite as compared to that of pure polymer. The Ag-PANI nanocomposite has shown an antibacterial activity against model organisms, a gram positive Bacillus subtilis NCIM 6633 in Mueller-Hinton (MH) medium, which is hitherto unattempted. The Ag-PANI nanocomposite with monodispersed AgNPs is considered to have potential applications in sensors, catalysis, batteries and electronic devices. Copyright © 2011 Elsevier B.V. All rights reserved.
Ceylan, Şeyda; Odabaşı, Mehmet
2013-12-01
The aim of this study is to prepare supermacroporous cryogels embedded with Fe(3+)-attached sporopollenin particles (Fe(3++)-ASPs) having large surface area for high DNA adsorption capacity. Supermacroporous poly(2-hydroxyethyl methacrylate) (PHEMA)-based monolithic cryogel column embedded with Fe3+(+)-ASPs was prepared by radical cryo-copolymerization of 2-hydroxyethyl methacrylate (HEMA) with N,N´-methylene- bis-acrylamide (MBAAm) as cross-linker directly in a plastic syringe for DNA adsorption studies. Firstly, Fe3+(+) ions were attached to the sporopollenin particles (SPs), then the supermacroporous PHEMA cryogel with embedded Fe(3++)-ASPs was produced by free radical polymerization using N,N,N´, N´-Tetramethylethylenediamine (TEMED) and ammonium persulfate (APS) as initiator/activator pair in an ice bath. Optimum conditions of adsorption experiments were performed at pH 6.0 (0.02 M Tris buffer containing 0.2 M NaCl), with flow rate of 0.5 mL/min, and at 5°C. The maximum amount of DNA adsorption from aqueous solution was very high (109 mg/g SPs) with initial concentration of 3 mg/mL. It was observed that DNA could be repeatedly adsorbed and desorbed with this composite cryogel without significant loss of adsorption capacity. As a result, higher amounts of DNA adsorbed these composite cryogels are expected to be good candidate for achieving higher removal of anti-DNA antibodies from systemic lupus erythematosus (SLE) patients plasma.
Baggiani, Claudio; Baravalle, Patrizia; Giovannoli, Cristina; Anfossi, Laura; Giraudi, Gianfranco
2010-05-01
Superporous monolithic hydrogels (cryogel monoliths) are elastic, sponge-like materials that can be prepared in an aqueous medium through a cryotropic gelation technique. These monoliths show interesting properties for the development of high-throughput solid-phase extraction supports to treat large volumes of aqueous samples. In this work, a cryogel-supported molecularly imprinted solid-phase extraction approach for the endocrine disruptor bisphenol A (BPA) from river water and wine samples is presented. An imprinted polymer with molecular recognition properties for BPA was prepared in acetonitrile by thermal polymerization of a mixture of 4,4'-dihydroxy-2,2-diphenyl-1,1,1,3,3,3-trifluoropropane as a mimic template of BPA, 4-vinylpyridine and trimethylolpropane trimethacrylate in a molar ratio of 1 + 6 + 6. Fine imprinted particles (<10 microm) were embedded in a poly-acrylamide-co-N,N'-methylenbisacrylamide cryogel obtained by ammonium persulfate-induced cryopolymerization at -18 degrees C. The resulting monolithic gel was evaluated for its use as a sorbent support in an off-line solid-phase extraction approach to recover BPA from dilute aqueous samples with minimum pre-loading work-up. The optimized extraction protocol resulted in a reliable MISPE method suitable to selectively extract and preconcentrate BPA from river water and red wine samples, demonstrating the practical feasibility of cryogel-trapped imprinted polymers as solid-phase extraction materials.
NASA Astrophysics Data System (ADS)
Avagyan, Armine; Runkle, Benjamin; Kutzbach, Lars
2013-04-01
An accurate quantification of dissolved organic carbon (DOC) is crucial for understanding changes in water resources under the influence of climate, land use and urbanization. However, the conventionally used methods do not allow high frequency in situ analyses in remote or hostile environments (e.g., industrial wastewater or during environmental high-flow events, such as snowmelt or floods). In particular, missing measurements during the snowmelt period in landscapes of the boreal region can lead to significant miscalculations in regional carbon budgets. Therefore, the aim of the study was to test the performance of a portable, submersible UV-Vis spectrophotometer (spectro::lyser, s::can Messtechnik GmbH, Austria) during the snowmelt period in a boreal mire-forest catchment, and to provide a conceptual understanding of the spatial and temporal dynamics of DOC concentrations during and after snowmelt. During 2011, water samples were collected from the near-pristine Ust-Pojeg mire complex in northwestern Russia (61° 56'N, 50° 13'E). Sampling started during the spring snowmelt period and continued until late fall. The mire presented a mosaic of different landscape units. The mire consisted of minerogeous (fen), ombrogenous (bog), and transitional forest-mire (lagg) zones. Water samples were taken from the surface across the mire (22 points at 50-m intervals). DOC concentrations were analyzed directly at the study site using a portable, submersible UV-Vis spectrophotometer, which uses high-resolution absorbance measurements over the wavelength range 200-742.5 nm at 2.5-nm intervals as a proxy for DOC content. Because the DOC composition of fluids varies by site, a local calibration replaced the default settings of the spectro::lyser (Global Calibration) to enhance the accuracy of the measurements. To evaluate the local calibration and correct for drift, the same samples (n = 157) were additionally analyzed using the wet persulfate oxidation method (O-I-Analytica, Aurora Model 1030, USA). Based on ordinary least squares regression, the local calibration showed good agreement between the results obtained from the high-resolution absorption measurements and the wet persulfate oxidation method (r2= 0.99, root-mean-square error = 1.7 mg L-1). The measurement campaign revealed spatial and temporal variability of DOC concentrations, and demonstrated that at the beginning of the snowmelt period, surface carbon was flushed away by meltwater, whereas deeper layers remained frozen. During this time, the surface DOC concentrations fluctuated within the range of 8-15 mg L-1 (April 07) across the entire mire complex. After April 18, the concentrations diverged between the sites; the DOC concentration reached 30 mg L-1in the surface water at the lagg zone but was 15 mg L-1 at the bog site (April 25). The DOC surface water concentration continued to increase during summer and fall, ranging from 19 to 74 mg L-1 across the mire, with an average of 45 ± 14 mg L-1. The study indicates that high-resolution spectroscopic measurements provide a simple, fast, robust and non-destructive method for measuring DOC contents, with a short duration (17-20 seconds) and portability of the sample analysis rendering this method particularly advantageous for in-situ measurements at remote field locations.
Treating soil-washing fluids polluted with oxyfluorfen by sono-electrolysis with diamond anodes.
Vieira Dos Santos, E; Sáez, C; Cañizares, P; Martínez-Huitle, C A; Rodrigo, M A
2017-01-01
This works is focused on the treatment by sono-electrolysis of the liquid effluents produced during the Surfactant-Aided Soil-Washing (SASW) of soils spiked with herbicide oxyfluorfen. Results show that this combined technology is very efficient and attains the complete mineralization of the waste, regardless of the surfactant/soil radio applied in the SASW process (which is the main parameter of the soil remediation process and leads to very different wastes). Both the surfactant and the herbicide are completely degraded, even when single electrolysis is used; and only two intermediates are detected by HPLC in very low concentrations. Conversely, the efficiency of single sonolysis approach, for the oxidation of pollutant, is very low and just small changes in the herbicides and surfactant concentrations are observed during the tests carried out. Sono-electrolysis with diamond electrodes achieved higher degradation rates than those obtained by single sonolysis and/or single electrolysis with diamond anodes. A key role of sulfate is developed, when it is released after the electrochemical degradation of surfactant. The efficient catalytic effect observed which can be explained by the anodic formation of persulfate and the later, a sono-activation is attained to produce highly efficient sulfate radicals. The effect of irradiating US is more importantly observed in the pesticide than in the surfactant, in agreement with the well-known behavior of these radicals which are known to oxidize more efficiently aromatic compounds than aliphatic species. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Li; Ni, Qing-Qing; Natsuki, Toshiaki; Fu, Yaqin
2009-07-01
In this paper, a facile synthesis process is proposed to prepare multiwalled carbon nanotubes/magnetite (MWCNTs/Fe 3O 4) hybrids. The process involves two steps: (1) water-soluble CNTs are synthesized by one-pot modification using potassium persulfate (KPS) as oxidant. (2) Fe 3O 4 is assembled along the treated CNTs by employing a facile hydrothermal process with the presence of hydrazine hydrate as the mineralizer. The treated CNTs can be easily dispersed in aqueous solvent. Moreover, X-ray photoelectron spectroscopy (XPS) analysis reveals that several functional groups such as potassium carboxylate (-COOK), carbonyl (-C dbnd O) and hydroxyl (-C-OH) groups are formed on the nanotube surfaces. The MWCNTs/Fe 3O 4 hybrids are characterized with respect to crystal structure, morphology, element composition and magnetic property by X-ray diffraction (XRD), transmission electron microscopy (TEM), XPS and superconducting quantum interference device (SQUID) magnetometer. XRD and TEM results show that the Fe 3O 4 nanoparticles with diameter in the range of 20-60 nm were firmly assembled on the nanotube surface. The magnetic property investigation indicated that the CNTs/Fe 3O 4 hybrids exhibit a ferromagnetic behavior and possess a saturation magnetization of 32.2 emu/g. Further investigation indicates that the size of assembled Fe 3O 4 nanoparticles can be turned by varying experiment factors. Moreover, a probable growth mechanism for the preparation of CNTs/Fe 3O 4 hybrids was discussed.
METHOD 415.3 - MEASUREMENT OF TOTAL ORGANIC ...
2.0 SUMMARY OF METHOD2.1 In both TOC and DOC determinations, organic carbon in the water sample is oxidized to form carbon dioxide (CO2), which is then measured by a detection system. There are two different approaches for the oxidation of organic carbon in water samples to carbon dioxide gas: (a) combustion in an oxidizing gas and (b) UV promoted or heat catalized chemical oxidation with a persulfate solution. Carbon dioxide, which is released from the oxidized sample, is detected by a conductivity detector or by a nondispersive infrared (NDIR) detector. Instruments using any combination of the above technologies may be used in this method.2.2. Setteable solids and floating matter may cause plugging of valves, tubing, and the injection needle port. The TOC procedure allows the removal of settleable solids and floating matter. The suspended matter is considered part of the sample. The resulting water sample is then considered a close approximation of the original whole water sample for the purpose of TOC measurement.2.3. The DOC procedure requires that the sample be passed through a 0.45 um filter prior to analysis.2.4. The TOC and DOC procedures require that all inorganic carbon be removed from the sample before the sample is analyzed for organic carbon content. If the inorganic carbon (IC) is not completely removed, significant error will occur. The inorganic carbon interference is removed by converting the mineralized IC to CO2 by acidification and
de Noronha, Bárbara Viero; Bergamini, Márcio Fernando; Marcolino Junior, Luiz Humberto; da Silva, Bruno José Gonçalves
2018-05-21
In this study, a simple, efficient, and reusable device based on cellulose membranes modified with polypyrrole was developed to extract 14 emerging contaminants from aqueous matrices. For chemical polymerization, a low-cost cellulose membrane was immersed in 0.1 mol L -1 pyrrole and 0.5 mol L -1 ammonium persulfate for 40 min in an ice/water bath. The cellulose membranes modified with polypyrrole were accommodated in a polycarbonate holder suitable for solid-phase extraction disks. Solid-phase extraction parameters that affect extraction efficiency, such as sample volume, pH, flow-rate, and desorption were optimized. Subsequently, determination of target compounds was performed by gas chromatography with mass spectrometry. The linear range for analytes ranged from 0.05 to 500 μg L -1 , with coefficients of determination above 0.990. The limits of quantification varied between 0.05 and 10 μg L -1 , with relative standard deviations lower than 17%. The performance of the proposed cellulose membranes modified with polypyrrole device for real samples was evaluated after extraction of emerging contaminants from a river water sample from the city of Curitiba-Brazil. Bisphenol A (6.39 μg L -1 ), caffeine (17.83 μg L -1 ), and paracetamol (19.28 μg L -1 ) were found in these samples. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Shabir, Farya; Erum, Alia; Tulain, Ume Ruqia; Hussain, Muhammad Ajaz; Ahmad, Mahmood; Akhter, Faiza
2017-01-01
Some pH responsive polymeric matrix of Linseed ( Linum usitatissimum ), L. hydrogel (LSH) was prepared by free radical polymerization using potassium persulfate (KPS) as an initiator, N,N -methylene bisacrylamide (MBA) as a crosslinker, acrylic acid (AA) and methacrylic acid (MAA) as monomers; while ketoprofen was used as a model drug. Different formulations of LSH-co-AA and LSH-co-MAA were formulated by varying the concentration of crosslinker and monomers. Structures obtained were thoroughly characterized using Fourier transforms infrared (FTIR) spectroscopy, XRD analysis and Scanning electron microscopy. Sol-gel fractions, porosity of the materials and ketoprofen loading capacity were also measured. Swelling and in vitro drug release studies were conducted at simulated gastric fluids, i.e., pH 1.2 and 7.4. FTIR evaluation confirmed successful grafting of AA and MAA to LSH backbone. XRD studies showed retention of crystalline structure of ketoprofen in LSH-co-AA and its amorphous dispersion in LSH-co-MAA. Gel content was increased by increasing MBA and monomer content; whereas porosity of hydrogel was increased by increasing monomer concentration and decreased by increasing MBA content. Swelling of copolymer hydrogels was high at pH 7.4 and low at pH 1.2. Ketoprofen release showed an increasing trend by increasing monomer content; however it was decreased with increasing MBA content. Sustained release of ketoprofen was noted from copolymers and release followed Korsmeyer-Peppas model.
Kawashima, Hiroto; Suto, Momoka; Suto, Nana
2018-05-20
Liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) has been used to authenticate and trace products such as honey, wine, and lemon juice, and compounds such as caffeine and pesticides. However, LC/IRMS has several disadvantages, including the high cost of the CO 2 membrane and blocking by solidified sodium persulfate. Here, we developed an improved system for determining carbon isotope ratios by LC/IRMS. The main improvement was the use of a post-column pump. Using the improved system, we determined δ 13 C values for glucose with high accuracy and precision (0.1‰ and 0.1‰, respectively; n = 3). The glucose, fructose, disaccharide, trisaccharide, and organic acid constituents of the honey samples were analyzed by LC/IRMS. The δ 13 C values for glucose, fructose, disaccharides, trisaccharides, and organic acids ranged from -27.0 to -24.2‰, -26.8 to -24.0‰, -28.8 to -24.0‰, -27.8 to -22.8‰, and -30.6 to -27.4‰, respectively. The analysis time was 1/3-1/2 the times required for analysis by previously reported methods. The column flow rate could be arbitrarily adjusted with the post-column pump. We applied the improved method to 26 commercial honey samples. Our results can be expected to be useful for other researchers who use LC/IRMS. This article is protected by copyright. All rights reserved.
Gao, Mingxia; Zhang, Peng; Hong, Guangfeng; Guan, Xia; Yan, Guoquan; Deng, Chunhui; Zhang, Xiangmin
2009-10-30
In this work, a novel and facile monolithic enzymatic microreactor was prepared in the fused-silica capillary via a two-step procedure including surface acryloylation and in situ aqueous polymerization/immobilization to encapsulate a single enzyme, and its application to fast protein digestion through a direct matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-TOF-MS) analysis was demonstrated. At first, vinyl groups on the protein surface were generated by a mild acryloylation with N-acryloxysuccinimide in alkali buffer. Then, acryloylated enzyme was encapsulated into polyacrylates by free-radical copolymerization with acrylamide as the monomer, N,N'-methylenebisacrylamide as the cross-linker, and N,N,N',N'-tetramethylethylenediamine/ammonium persulfate as the initiator. Finally, polymers were immobilized onto the activated inner wall of capillaries via the reaction of vinyl groups. Capability of the enzyme-immobilized monolithic microreactor was demonstrated by myoglobin and bovine serum albumin as model proteins. The digestion products were characterized using MALDI-TOF-MS with sequence coverage of 94% and 29% observed. This microreactor was also applied to the analysis of fractions through two-dimensional separation of weak anion exchange/reversed-phase liquid chromatography of human liver extract. After a database search, 16 unique peptides corresponding to 3 proteins were identified when two RPLC fractions of human liver extract were digested by the microreactor. This opens a route for its future application in top-down proteomic analysis.
Achieving synergy between chemical oxidation and stabilization in a contaminated soil.
Srivastava, Vipul J; Hudson, Jeffrey Michael; Cassidy, Daniel P
2016-07-01
Eight in situ solidification/stabilization (ISS) amendments were tested to promote in situ chemical oxidation (ISCO) with activated persulfate (PS) in a contaminated soil. A 3% (by weight) dose of all ISS amendments selected for this study completely activated a 1.5% dose of PS within 3 h by raising temperatures above 30 °C (heat activation) and/or increasing pH above 10.5 (alkaline activation). Heat is released by the reaction of CaO with water, and pH increases because this reaction produces Ca(OH)2. Heat activation is preferred because it generates 2 mol of oxidizing radicals per mole of PS, whereas alkaline activation releases only 1. The relative contribution of heat vs. alkaline activation increased with CaO content of the ISS amendment, which was reflected by enhanced contaminant oxidation with increasing CaO content, and was confirmed by comparing to controls promoting purely heat or alkaline (NaOH) activation. The test soil was contaminated with benzene, toluene, ethylbenzene, and xylenes (BTEX) and polycyclic aromatic hydrocarbons (PAH), particularly naphthalene (NAP). ISS-activated PS oxidized between 47% and 84% of the BTEX & NAP, and between 13% and 33% of the higher molecular weight PAH. ISS-activated PS reduced the leachability of BTEX & NAP by 76%-91% and of the 17 PAH by 83%-96%. Combined ISCO/ISS reduced contaminant leachability far than ISCO or ISS treatments alone, demonstrating the synergy that is possible with combined remedies. Copyright © 2016 Elsevier Ltd. All rights reserved.
A comparative study of HO•- and SO4•--based AOPs for the degradation of non-ionic surfactant Brij30.
Kabdaşlı, Işık; Ecer, Çisem; Olmez-Hanci, Tugba; Tünay, Olcay
2015-01-01
In the present study aqueous solutions of Brij30, an alcohol ethoxylate surfactant, were photocatalytically and photochemically treated by employing the TiO2/UV-A, H2O2/UV-C and persulfate (PS)/UV-C processes. During TiO2/UV-A treatment, even in short reaction periods (10 minutes), high rates of Brij30 removals were achieved; however, longer experiment periods (240-480 minutes) were needed in order to obtain notable total organic carbon (TOC) removals. Increasing the TiO2 dosage exhibited a positive effect on treatment efficiencies. For initial pH value of 3.0, increasing the TiO2 dosage from 1.0 to 1.5 g/L resulted in an improvement in Brij30 removal from 64% to 79% after 10 minutes whereas 68 and 88% TOC removals were observed after 480 minutes, respectively. Brij30 removal was very fast and complete via both H2O2/UV-C and PS/UV-C treatments, accompanied with significant mineralization rates ranging between 74 and 80%. Toxicity assessed by Vibrio fischeri, was found to be similar to that of the original Brij30 solution during H2O2/UV-C treatment, while in the PS/UV-C process, the relative inhibition of Brij30 towards V. fischeri fluctuated throughout the treatment and eventually non-toxic products were formed by the oxidation of SO4•- radicals.
Activation of Peroxymonosulfate by Subsurface Minerals.
Yu, Miao; Teel, Amy L; Watts, Richard J
2016-08-01
In situ chemical oxidation (ISCO) has become a widely used technology for the remediation of soil and groundwater. Although peroxymonosulfate is not a common oxidant source for ISCO, its chemical structure is similar to the ISCO reagents hydrogen peroxide and persulfate, suggesting that peroxymonosulfate may have the beneficial properties of each of these oxidants. Peroxymonosulfate activation in the presence of subsurface minerals was examined as a basis for ISCO, and possible reactive species (hydroxyl radical, sulfate radical, and reductants+nucleophiles) generated in the mineral-activated peroxymonosulfate systems were investigated. Rates of peroxymonosulfate decomposition and generation rates of reactive species were studied in the presence of three iron oxides, one manganese oxide, and three soil fractions. The iron oxide hematite-activated peroxymonosulfate system most effectively degraded the hydroxyl radical probe nitrobenzene. Reductants+nucleophiles were not generated in mineral-activated peroxymonosulfate systems. Use of the probe compound anisole in conjunction with scavengers demonstrated that both sulfate radical and hydroxyl radical are generated in mineral-activated peroxymonosulfate systems. In order to confirm the activation of peroxymonosulfate by subsurface minerals, one natural soil and associated two soil fractions were evaluated as peroxymonosulfate catalysts. The natural soil did not effectively promote the generation of oxidants; however, the soil organic matter was found to promote the generation of reductants + nucleophiles. The results of this research show that peroxymonosulfate has potential as an oxidant source for ISCO applications, and would be most effective in treating halogenated contaminants when soil organic matter is present in the subsurface. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Liu, H. Z.; Wang, M. H.; Wang, Z. F.; Bian, J. M.
2018-01-01
Due to using gaseous fluorine monomer with toxicity, waterborne fluoropolymers are synthesized by semi-continuous high-pressure emulsion polymerization method which differs from free-pressure emulsion polymerization. To dates, the research on preparing process and kinetics for high-pressure emulsion polymerization is reported relatively less, which hinders researchers from understanding of mechanisms for monomer-fluorinated emulsion polymerization. The paper also provides a new method by element auxiliary analysis to calculate kinetics parameters of high-pressure emulsion polymerization. Based on aforementioned consideration, waterborne fluoropolymers were prepared by copolymerization of chlorotrifluoroethylene (CTFE), vinyl acetate (VAc), butyl acrylate (BA) and vinyl ester of versatic acid (Veova 10) using potassium persulfate as initiator and mixed surfactants. The kinetics of emulsion polymerization of waterborne fluoropolymers was then investigated. Effects of emulsifier concentration, initiator concentration, and polymerization temperature on polymerization rate (Rp) were evaluated, and relationship was described as Rp∝[I]0.10 and Rp∝[E]0.12. The apparent activation energy was determined to be 33.61 kJ·mol-1. Moreover, the relative conversion rate of CTFE with the other monomers was observed, and results indicated that CTFE monomer more uniformly copolymerized with the other monomers. The resulting emulsion properties and pressure change in an autoclave were evaluated at different stirring rates. The initial reaction time, defined as the beginning time of dropwise addition, was determined by the change in solid content and particle size of emulsion.
Matafonova, Galina; Batoev, Valeriy
2018-04-01
Over the last decade, ultraviolet light-emitting diodes (UV LEDs) have attracted considerable attention as alternative mercury-free UV sources for water treatment purposes. This review is a comprehensive analysis of data reported in recent years (mostly, post 2014) on the application of UV LED-induced advanced oxidation processes (AOPs) to degrade organic pollutants, primarily dyes, phenols, pharmaceuticals, insecticides, estrogens and cyanotoxins, in aqueous media. Heterogeneous TiO 2 -based photocatalysis in lab grade water using UVA LEDs is the most frequently applied method for treating organic contaminants. The effects of controlled periodic illumination, different TiO 2 -based nanostructures and reactor types on degradation kinetics and mineralization are discussed. UVB and UVC LEDs have been used for photo-Fenton, photo-Fenton-like and UV/H 2 O 2 treatment of pollutants, primarily, in model aqueous solutions. Notably, UV LED-activated persulfate/peroxymonosulfate processes were capable of providing degradation in DOC-containing waters. Wall-plug efficiency, energy-efficiency of UV LEDs and the energy requirements in terms of Electrical Energy per Order (E EO ) are discussed and compared. Despite the overall high degradation efficiency of the UV LED-based AOPs, practical implementation is still limited and at lab scale. More research on real water matrices at more environmentally relevant concentrations, as well as an estimation of energy requirements providing fluence-based kinetic data are required. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bensalah, Nasr; Dbira, Sondos; Bedoui, Ahmed
2016-07-01
In this work, the contribution of mediated oxidation mechanisms in the electrolytic degradation of cyanuric acid using boron-doped diamond (BDD) anodes was investigated in different electrolytes. A complete mineralization of cyanuric acid was obtained in NaCl; however lower degrees of mineralization of 70% and 40% were obtained in Na2SO4 and NaClO4, respectively. This can be explained by the nature of the oxidants electrogenerated in each electrolyte. It is clear that the contribution of active chlorine (Cl2, HClO, ClO(-)) electrogenerated from oxidation of chlorides on BDD is much more important in the electrolytic degradation of cyanuric acid than the persulfate and hydroxyl radicals produced by electro-oxidation of sulfate and water on BDD anodes. This could be explained by the high affinity of active chlorine towards nitrogen compounds. No organic intermediates were detected during the electrolytic degradation of cyanuric acid in any the electrolytes, which can be explained by their immediate depletion by hydroxyl radicals produced on the BDD surface. Nitrates and ammonium were the final products of electrolytic degradation of cyanuric acid on BDD anodes in all electrolytes. In addition, small amounts of chloramines were formed in the chloride medium. Low current density (≤10mA/cm(2)) and neutral medium (pH in the range 6-9) should be used for high efficiency electrolytic degradation and negligible formation of hazardous chlorate and perchlorate. Copyright © 2016. Published by Elsevier B.V.
Amoli-Diva, Mitra; Sadighi-Bonabi, Rasoul; Pourghazi, Kamyar
2017-07-01
A switchable dual light- and temperature-responsive drug carrier using gold nanoparticles (Au NPs)-grafted poly(dimethylacrylamide-co-acrylamide)/poly acrylic acid [P(DMA-co-AAm)/PAAc] hydrogel was prepared by free radical polymerization procedure using N,N-methylenebisacrylamide as cross-linker and ammonium persulfate as initiator. Initial P(DMA-co-AAm) hydrogel and uniformly-distributed stable Au NPs, prepared by reduction of hydrogen tetrachloroaureate (III) hydrate in the presence of trisodium citrate, were synthesized separately. Then, the prepared P(DMA-co-AAm) and Au NPs were added to an acrylic acid solution along with the cross-linker and initiator to prepare PAAc hydrogel within the mixture. This improves the swelling ratio and stabilizes Au NPs in networks. Furthermore, a cross-linked P(DMA-co-AAm-co-AAc) random hydrogel was also prepared with the same monomer compositions as the above hydrogel for comparison of their properties. Then, swelling, thermal sensitivity and thermal and optical switching properties of the prepared hydrogels were investigated in two acidic (pH=1.2) and neutral (pH=7.4) buffered solutions to simulate stomach and intestine body conditions. Finally, loading and cumulative release (%) of ofloxacin antibiotic as model drug were considered in both thermal and optical switching conditions. Based on these results, pulsatile release vehicle was obtained which have the "on" state at higher temperatures and the "off" state at lower temperatures. Copyright © 2017 Elsevier B.V. All rights reserved.
Increase in exhaled nitric oxide is associated with bronchial hyperresponsiveness among apprentices.
Tossa, Paul; Paris, Christophe; Zmirou-Navier, Denis; Demange, Valérie; Acouetey, Dovi-Stéphanie; Michaely, Jean-Pierre; Bohadana, Abraham
2010-09-15
Airway inflammation is a hallmark of asthma. Several studies have validated the use of the fractional concentration of exhaled nitric oxide (Fe(NO)) as a surrogate marker of airway inflammation in asthma. We examined how the change in Fe(NO) levels, since the beginning of occupational exposure, could be associated with the incidence of bronchial hyperresponsiveness (BHR) among baker, pastry maker, and hairdresser apprentices during their 2-year training. A standardized questionnaire was administered; skin prick tests for common and specific occupational allergens were done; methacholine challenge and measurement of Fe(NO) were performed 6, 12, and 15 months after the first examination. Of 441 apprentices initially included, 351 completed the study. The increase in Fe(NO), since the beginning of exposure, was associated with the incidence of BHR (odds ratio, 2.00 [95% confidence interval, 1.21-3.32] per unit increase in log parts per billion) both in atopic and nonatopic subjects. The average increase in Fe(NO) was similar in atopic and nonatopic subjects and was unrelated to past or current smoking habits, sex, or training track. Atopy in bakers/pastry makers and sensitization to alkaline persulfates in hairdressers were also independently associated with the incidence of BHR. BHR occurred sooner among bakers/pastry makers than among hairdressers, but its incidence leveled off later. Our results suggest that measurement of Fe(NO), a simple and reproducible test, could be useful in the screening of BHR in workers newly exposed to agents known to cause occupational asthma.
Rodríguez-Chueca, J; García-Cañibano, C; Lepistö, R-J; Encinas, Á; Pellinen, J; Marugán, J
2018-04-21
This study explores the enhancement of UV-C tertiary treatment by sulfate radical based Advanced Oxidation Processes (SR-AOPs), including photolytic activation of peroxymonosulfate (PMS) and persulfate (PS) and their photocatalytic activation using Fe(II). Their efficiency was assessed both for the inactivation of microorganisms and the removal or micropollutants (MPs) in real wastewater treatment plant effluents. Under the studied experimental range (UV-C dose 5.7-57 J/L; UV-C contact time 3 to 28 s), the photolysis of PMS and PS (0.01 mM) increased up to 25% the bacterial removal regarding to UV-C system. The photolytic activation of PMS led to the total inactivation of bacteria (≈ 5.70 log) with the highest UV-C dose (57 J/L). However, these conditions were insufficient to remove the MPs, being required oxidant's dosages of 5 mM to remove above 90% of carbamazepine, diclofenac, atenolol and triclosan. The best efficiencies were achieved by the combination of PMS or PS with Fe(II), leading to the total removal of the MPs using a low UV-C dosage (19 J/L), UV-C contact time (9 s) and reagent's dosages (0.5 mM). Finally, high mineralization was reached (>50%) with photocatalytic activation of PMS and PS even with low reagent's dosages. Copyright © 2018 Elsevier B.V. All rights reserved.
Mourier, Pierre A J; Guichard, Olivier Y; Herman, Fréderic; Viskov, Christian
2011-01-25
Heparin is a highly sulfated hetero polysaccharide mixture found and extracted from mammalian tissues. It has been widely used as an anticoagulant drug during the past decades. In the new proposed USP heparin monograph, the ¹H NMR acceptance criteria to prevent contamination by over sulfated chondroitin sulfate (OSCS), or other persulfated glycosaminoglycans, specifies that no unidentified signals greater than 4% of the mean of signal height of 1 and 2 should be present in the following ranges: 0.10-2.00, 2.10-3.20, and 5.70-8.00 ppm. However, those criteria do not take into account the impact of potential structural modifications generated by the heparin manufacturing processes. In fact, starting from pig mucosa, heparin purification involves oxidizing reagents such as sodium peroxide, potassium permanganate and peracetic acid. In the present work, we demonstrate that potassium permanganate treated heparins show a small but characteristic extra signal at 2.10 ppm. Controlled heparinase I depolymerisation is used to target and excise the oligosaccharide responsible for this extra signal from the polysaccharide backbone. By using orthogonal chromatographic techniques, the fingerprint oligosaccharide was isolated and its structure elucidated. Without the identification of this structural moiety, such purified heparins may have been considered as non-compliant drug substance and not suitable for pharmaceutical use. Copyright © 2010 Elsevier B.V. All rights reserved.
Cueto Díaz, Sergio; Ruiz Encinar, Jorge; García Alonso, J Ignacio
2014-09-24
We present a novel method for the purity assessment of peptide standards which is applicable to any water soluble peptide. The method is based on the online (13)C isotope dilution approach in which the peptide is separated from its related impurities by liquid chromatography (LC) and the eluent is mixed post-column with a continuous flow of (13)C-enriched sodium bicarbonate. An online oxidation step using sodium persulfate in acidic media at 99°C provides quantitative oxidation to (12)CO2 and (13)CO2 respectively which is extracted to a gaseous phase with the help of a gas permeable membrane. The measurement of the isotope ratio 44/45 in the mass spectrometer allows the construction of the mass flow chromatogram. As the only species that is finally measured in the mass spectrometer is CO2, the peptide content in the standard can be quantified, on the base of its carbon content, using a generic primary standard such as potassium hydrogen phthalate. The approach was validated by the analysis of a reference material (NIST 8327), and applied to the quantification of two commercial synthetic peptide standards. In that case, the results obtained were compared with those obtained using alternative methods, such as amino acid analysis and ICP-MS. The results obtained proved the value of the method for the fast, accurate and precise mass purity assignment of synthetic peptide standards. Copyright © 2014 Elsevier B.V. All rights reserved.
Investigation of reductive dechlorination supported by natural organic carbon
Rectanus, H.V.; Widdowson, M.A.; Chapelle, F.H.; Kelly, C.A.; Novak, J.T.
2007-01-01
Because remediation timeframes using monitored natural attenuation may span decades or even centuries at chlorinated solvent sites, new approaches are needed to assess the long-term sustainability of reductive dechlorination in ground water systems. In this study, extraction procedures were used to investigate the mass of indigenous organic carbon in aquifer sediment, and experiments were conducted to determine if the extracted carbon could support reductive dechlorination of chloroethenes. Aquifer sediment cores were collected from a site without an anthropogenic source of organic carbon where organic carbon varied from 0.02% to 0.12%. Single extraction results showed that 1% to 28% of sediment-associated organic carbon and 2% to 36% of the soft carbon were removed depending on nature and concentration of the extracting solution (Nanopure water; 0.1%, 0.5%, and 1.0% sodium pyrophosphate; and 0.5 N sodium hydroxide). Soft carbon is defined as organic carbon oxidized with potassium persulfate and is assumed to serve as a source of biodegradable carbon within the aquifer. Biodegradability studies demonstrated that 20% to 40% of extracted organic carbon was biodegraded aerobically and anaerobically by soil microorganisms in relatively brief tests (45 d). A five-step extraction procedure consisting of 0.1% pyrophosphate and base solutions was investigated to quantify bioavailable organic carbon. Using the extracted carbon as the sole electron donor source, tetrachloroethene was transformed to cis-1,2- dichloroethene and vinyl chloride in anaerobic enrichment culture experiments. Hydrogen gas was produced at levels necessary to sustain reductive dechlorination (>1 nM). ?? 2007 National Ground Water Association.
Das, Dipankar; Rameshbabu, Arun Prabhu; Ghosh, Paulomi; Patra, Priyapratim; Dhara, Santanu; Pal, Sagar
2017-09-01
The present article demonstrates the targeted delivery of doxorubicin hydrochloride to human osteosarcoma cancer cell lines (MG 63) using functionalized dextrin based crosslinked, pH responsive and biocompatible nanogel. The nanogel has been prepared through Michael-type addition reaction using dextrin (Dxt), N, N'-methylene bisacrylamide (MBA, as crosslinker), acrylic acid (AA, as monomer) and potassium persulfate (KPS, as initiator). The structure, composition, morphology of the nanogel have been explored using FTIR and 1 H NMR spectroscopy, XRD, TGA, DSC, CHN and AFM analyses. The TEM analysis confirmed that the size of nanogel appeared within 100nm, while DLS study indicates that the diameter of the nanogel remained between 113 and 126nm. The AFM study implied the porous morphology of the synthesized nanogel. The rheological study suggests the gel behaviour of the synthesized nanogel at 37±0.1°C. Difference in% swelling at pH 5.5 and 7.4 indicates pH-responsiveness of the nanogel. The in vitro cytocompatibility results ascertained that the nanogel is non-toxic to human mesenchymal stem cells (hMSCs). In vitro cellular uptake study confirmed that FITC-loaded nanogel can cross the cellular membrane and be well uptake by the cell cytoplasm. The nanogel could efficiently encapsulate doxorubicin hydrochloride (Dox) with the loading efficiency of 27±0.2% after 72h. The Dox-loaded nanogel demonstrates anti-cancer activity towards MG 63 cancer cells and release the encapsulated drug in a controlled way. Copyright © 2017 Elsevier Ltd. All rights reserved.
Furqan Muhammad, Iqbal; Mahmood, Ahmad; Aysha, Rashid
2016-01-01
A super-absorbent hydrogel was developed by crosslinking of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and acrylic acid with hydroxypropyl methylcellulose (HPMC) for controlled release drug delivery of captopril, a well known antihypertensive drug. Acrylic acid and AMPS were polymerized and crosslinked with HPMC by free radical polymerization, a widely used chemical crosslinking method. N,N'-methylenebisacrylamide (MBA) and potassium persulfate (KPS) were added as cross-linker and initiator, respectively. The hydrogel formulation was loaded with captopril (as model drug). The concentration of captopril was monitored at 205 nm using UV spectrophotometer. Equilibrium swelling ratio was determined at pH 2, 4.5 and 7.4 to evaluate the pH responsiveness of the formed hydrogel. The super-absorbent hydrogels were evaluated by FTIR, SEM, XRD, and thermal analysis (DSC and TGA). The formation of new copolymeric network was determined by FTIR, XRD, TGA and DSC analysis. The hydrogel formulations with acrylic acid and AMPS ratio of 4: 1 and lower amounts of crosslinker had shown maximum swelling. Moreover, higher release rate of captopril was observed at pH 7.4 than at pH 2, because of more swelling capacity of copolymer with increasing pH of the aqueous medium. The present research work confirms the development of a stable hydrogel comprising of HPMC with acrylic acid and AMPS. The prepared hydrogels exhibited pH sensitive behav-ior. This superabsorbent composite prepared could be a successful drug carrier for treating hypertension.
Characterization of upgraded hydrogel biochar from blended rice husk with coal fly ash
NASA Astrophysics Data System (ADS)
Ahmad, Nurul Farhana; Alias, Azil Bahari; Talib, Norhayati; Rashid, Zulkifli Abd; Ghani, Wan Azlina Wan Ab Karim
2017-12-01
Rice husk biochar (RB) blended with coal fly ash (CFA) is used as a material to develop hydrogel for heavy metal removal. This combination, namely hydrogel rice husk biochar-coal fly ash (HRB-CFA) composite is synthesized by embedding the biochar into acrylamide (AAM) as monomer, with N,N'-Methylenebisacrylamide (MBA) as crosslinker and ammonium persulfate (APS) as initiator. While activated carbon (AC) remains an expensive material, HRB-CFA is attracting great interest for its use in the absorption of organic contaminants due to its low material cost and importance as renewable source for securing future energy supply in the environmental system. Although the CFA does not have the surface area as high as AC, certain metallic components that are naturally present in the CFA can play the catalytic role in the removal of heavy metal from wastewater. The percentage of heavy metal removal is depends on the parameters that influence the sorption process; the effect of pH solution, dosage of adsorbent, initial concentration of solution, and contact time. The aim of this study is to characterize HRB-CFA by performing several analyses such as the Brunauer-Emmett-Teller (BET), thermogravimetric (TGA) and field emission scanning electron microscopy (FESEM) methods. The results obtained revealed that the best hydrogel ratio is 0.5:0.5 of blended RB and CFA, as proven by BET surface area, pore volume and pore size of 3.5392 m2/g, 0.00849 cm3/g and 90.566 Å, and the surface morphology showed an increase in porosity size.
Lin, Kun-Yi Andrew; Lin, Jyun-Ting; Yang, Hongta
2017-10-01
While ferrocene (Fc) is a promising heterogeneous catalyst for activating persulfate (PS) to degrade organic contaminants, chemical reagent-grade Fc is nanoscale and direct usage of Fc leads to operational and recovery issues. In this study, chitosan (CS) is selected as a support to immobilize Fc as CS is abundant, and environmental benign fishery waste. The amine group of CS also allows the formation of covalent bond between Fc-based reagent (i.e., Fc-CHO) and CS to form Fc-modified CS (Fc-CS). This Fc-CS can be more advantageous than Fc because of its easier recovery by precipitation and filtration. To evaluate Fc-CS for PS activation, degradation of Amaranth (AMR) dye by PS is selected as a model test. The resulting Fc-CS exhibits a higher catalytic activity than pristine Fc possibly because Fc can be evenly dispersed on CS and CS can also exhibit affinity toward AMR. AMR can be also fully decomposed by Fc-CS activated PS. Through the Electron paramagnetic resonance (EPR) spectroscopic analysis, the AMR degradation can be attributed to both sulfate and hydroxyl radicals. Fc-CS had been also proven to activate PS for AMR degradation over multiple times without loss of catalytic activity. These features indicate that Fc-CS can be a promising catalyst and CS appears to be a naturally available and environmentally friendly waste-derived support for immobilizing Fc. The results and findings in this study are essential for CS-supported metal catalysts in environmental applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Adair, Ajaman; Klinpituksa, Pairote; Kaesaman, Azizon
2017-08-01
In this research, superabsorbent hydrogels were synthesized by graft copolymerization of hydroxyethyl cellulose (HEC) and polyacrylamide (PAM) under the initiation of potassium persulfate (KPS). The polymer networks were constructed using N,N'-methylenebisacrylamide (MBA), and the reaction was performed in an aqueous solution. The extent of grafting products was evaluated form grafting efficiency (%GE) and percentage of add-ons at HEC/AM ratios of 1: 10. The water swelling capacities, in terms of swelling capacity and weight loss, of resultant superabsorbent polymers (SAPs) after solvent extraction were determined for swelling behaviors. The result showed that the SAP had poor water absorption of approximately up to 23 g/g. To enhance swelling capacity of SAPs, an alkaline hydrolysis was done by using two types of alkaline bases, i.e., 2 M NaOH and 2 M KOH solution. The obtained treatment SAPs were neutralized by washing with distilled water and 0.5 M HCl until the liquors pH was nearly 7. They were found that the treatment SAPs showed the highest water absorption up to 317 g/g. Influences of various fluids pH values ranging between 4 and 10, on water swelling capacities of SAPs were also investigated. Under optimal pH value, the highest water absorptions of SAP was 382 g/g. To confirm the grafting reaction of PAM onto HEC backbone, FT-IR analysis was used. The results revealed absorption bands of the HEC backbone and new absorption bands from the grafted copolymer. Furthermore, the FT-IR spectrum was proved that washing with distilled water can alter the chemical functional group of SAPs.
Shi, Kaiyuan; Zhitomirsky, Igor
2013-12-26
A conceptually new approach to the fabrication of polypyrrole (PPy)-coated multiwalled carbon nanotubes (MWCNT) for application in electrodes of electrochemical supercapacitors (ES) is proposed. Cetrimonium persulfate (CTA)2S2O8 in the form of nanocrystals is used as an oxidant for the chemical polymerization of PPy. Ponceau S (PS) dye is investigated as a new anionic dopant. Testing results show that PS allows reduced PPy particle size and improved electrochemical performance, whereas (CTA)2S2O8 nanocrystals promote the formation of PPy nanofibers. We demonstrate for the first time that MWCNT can be efficiently dispersed using (CTA)2S2O8 nanocrystals. The analysis of the dispersion mechanism indicates that (CTA)2S2O8 dissociation is catalyzed by MWCNT. This new finding opens a new and promising strategy in MWCNT dispersion for colloidal processing of nanomaterials and electrophoretic nanotechnology. Uniformly coated MWCNT are obtained using (CTA)2S2O8 as a dispersant for MWCNT and oxidant for PPy polymerization and utilizing advantages of PS as an efficient dopant and nanostructure controlling agent. The analysis of the testing results provides an insight into the influence of PS molecular structure on PPy nanostructure and electrochemical properties. The PPy-coated MWCNT show superior electrochemical performance compared to PPy nanoparticles. The proof-of-principle is demonstrated by the fabrication of ES electrodes with excellent electrochemical performance at high active material loadings, good capacitance retention at high charge-discharge rates, and excellent cycling stability.
Zhou, Yang; Wang, Xiaolei; Zhu, Changyin; Dionysiou, Dionysios D; Zhao, Guangchao; Fang, Guodong; Zhou, Dongmei
2018-06-04
Peroxymonosulfate (PMS) or persulfate activation by sulfur-containing minerals has been applied extensively for the degradation of contaminants; however, the role of sulfur conversion in this process has not been fully explored. In this study, pyrite (FeS 2 )-based PMS activation process was developed for diethyl phthalate (DEP) degradation, and its underlying mechanisms were elucidated. PMS was found to be efficiently activated by FeS 2 for DEP degradation and mineralization, achieving 58.9% total organic carbon removal using 0.5 g/L FeS 2 and 2.0 mM PMS. Sulfides were the dominant electron donor for PMS activation, and mediated Fe(II) regeneration to activate PMS on the surface of FeS 2 particles. Meanwhile, different sulfur conversion intermediates, such as S 5 2- , S 8 0 , S 2 O 3 2- , and SO 3 2- , were formed from the oxidation of sulfides by Fe(III) and PMS, and determined by X-ray photoelectron spectroscopy and in-situ attenuated total reflectance Fourier transform infrared spectroscopy analysis. SO 3 2- was the dominant sulfur species responsible for sulfate radicals (SO 4 - ) generation by activating PMS directly or activating Fe(III) to initiate a radical chain reaction, which was supported by the electron paramagnetic resonance results. This study highlights the important role of sulfur conversion in PMS activation by pyrite and provides new insights into the mechanism of oxidant activation by sulfur-containing minerals. Copyright © 2018. Published by Elsevier Ltd.
Synthesis of novel grafted hyaluronic acid with antitumor activity.
Abu Elella, Mahmoud H; Mohamed, Riham R; Sabaa, Magdy W
2018-06-01
In our study, we aimed to synthesize novel grafted hyaluronic acid with cationic biodegradable polymer, poly (N-vinyl imidazole) (PVI), through free radical polymerization using potassium persulfate as initiator. The effect of various grafting factors including initiator and monomer concentrations, reaction time and temperature was studied on the percentage of grafting parameters such as; graft yield (% GY), grafting efficiency (% GE) and amount of homopolymer formation (% H). Maximum grafted HA was% GY = 235% and%GE = 83% obtained on optimum conditions at [I n ] = 17.5 mmol L -1 , [M] = 1.25 mol L -1 , Temp. = 50 °C, time = 1.5 h and [HA] = 0.025 mol L -1 . The structure of grafted HA (HA-g-PVI) was elucidated via various analysis tools such as; elemental analyses, FTIR, 1 H NMR, XRD, TGA and Field emission scanning electron microscopy (FE-SEM). Hepatic and breast cancers are two common cancer types threatening people worldwide, so, the antitumor activity of two grafted HA samples (% GY = 155% and 235%) was studied against hepatic cancer (HepG-2) and breast cancer cell lines (MCF-7) compared to unmodified HA and PVI. The results showed that antitumor activity of grafted samples was more than unmodified HA and increased with increasing the grafting percentage of PVI onto HA chains, also, the antitumor activity of tested samples against HepG-2 cell lines was higher than MCF-7 cell lines. Copyright © 2018 Elsevier Ltd. All rights reserved.
Zeng, Huabin; Liu, Shanshan; Chai, Buyu; Cao, Di; Wang, Yan; Zhao, Xu
2016-06-21
In order to enhance Cu-EDTA decomplexation and copper cathodic recovery via the photoelectrocatalytic (PEC) process, S2O8(2-) was introduced into the PEC system with a TiO2/Ti photoanode. At a current density of 0.2 mA/cm(2) and initial solution pH of 3.0, the decomplexation ratio of Cu complexes was increased from 47.5% in the PEC process to 98.4% with 5 mM S2O8(2-) addition into the PEC process (PEC/S2O8(2-)). Correspondently, recovery percentage of Cu was increased to 98.3% from 47.4% within 60 min. It was observed that nearly no copper recovery occurred within the initial reaction period of 10 min. Combined with the analysis of ESR and electrochemical LSV curves, it was concluded that activation of S2O8(2-) into SO4(·-) radicals by cathodic reduction occurred, which was prior to the reduction of liberated Cu(2+) ions. UV irradiation of S2O8(2-) also led to the production of SO4(·-). The generated SO4(·-) radicals enhanced the oxidation of Cu-EDTA. After the consumption of S2O8(2-), the Cu recovery via cathodic reduction proceeded quickly. Acidification induced by the transformation of SO4(·-) to OH· favored the copper cathodic recovery. The combined PEC/S2O8(2-) process was also efficient for the TOC removal from a real electroplating wastewater with the Cu recovery efficiency higher than 80%.
Rahman, Md Mahbubor; Chehimi, Mohamed M; Fessi, Hatem; Elaissari, Abdelhamid
2011-08-15
Temperature responsive magnetic polymer submicron particles were prepared by two step seed emulsion polymerization process. First, magnetic seed polymer particles were obtained by emulsion polymerization of styrene using potassium persulfate (KPS) as an initiator and divinylbenzne (DVB) as a cross-linker in the presence of oil-in-water magnetic emulsion (organic ferrofluid droplets). Thereafter, DVB cross-linked magnetic polymer particles were used as seed in the precipitation polymerization of N-isopropylacrylamide (NIPAM) to induce thermosensitive PNIPAM shell onto the hydrophobic polymer surface of the cross-linked magnetic polymer particles. To impart cationic functional groups in the thermosensitive PNIPAM backbone, the functional monomer aminoethylmethacrylate hydrochloride (AEMH) was used to polymerize with NIPAM while N,N'-methylenebisacrylamide (MBA) and 2, 2'-azobis (2-methylpropionamidine) dihydrochloride (V-50) were used as a cross-linker and as an initiator respectively. The effect of seed to monomer (w/w) ratio along with seed nature on the final particle morphology was investigated. Dynamic light scattering (DLS) results demonstrated particles swelling at below volume phase transition temperature (VPTT) and deswelling above the VPTT. The perfect core (magnetic) shell (polymer) structure of the particles prepared was confirmed by Transmission Electron Microscopy (TEM). The chemical composition of the particles were determined by thermogravimetric analysis (TGA). The effect of temperature, pH, ionic strength on the colloidal properties such as size and zeta potential of the micron sized thermo-sensitive magnetic particles were also studied. In addition, a short mechanistic discussion on the formation of core-shell morphology of magnetic polymer particles has also been discussed. Copyright © 2011 Elsevier Inc. All rights reserved.
Characteristics and fate of natural organic matter during UV oxidation processes.
Ahn, Yongtae; Lee, Doorae; Kwon, Minhwan; Choi, Il-Hwan; Nam, Seong-Nam; Kang, Joon-Wun
2017-10-01
Advanced oxidation processes (AOPs) are widely used in water treatments. During oxidation processes, natural organic matter (NOM) is modified and broken down into smaller compounds that affect the characteristics of the oxidized NOM by AOPs. In this study, NOM was characterized and monitored in the UV/hydrogen peroxide (H 2 O 2 ) and UV/persulfate (PS) processes using a liquid chromatography-organic carbon detector (LC-OCD) technique, and a combination of excitation-emission matrices (EEM) and parallel factor analysis (PARAFAC). The percentages of mineralization of NOM in the UV/H 2 O 2 and UV/PS processes were 20.5 and 83.3%, respectively, with a 10 mM oxidant dose and a contact time of 174 s (UV dose: approximately 30,000 mJ). Low-pressure, Hg UV lamp (254 nm) was applied in this experiment. The steady-state concentration of SO 4 - was 38-fold higher than that of OH at an oxidant dose of 10 mM. With para-chlorobenzoic acid (pCBA) as a radical probe compound, we experimentally determined the rate constants of Suwannee River NOM (SRNOM) with OH (k OH/NOM = 3.3 × 10 8 M -1 s -1 ) and SO 4 - (k SO4-/NOM = 4.55 × 10 6 M -1 s -1 ). The hydroxyl radical and sulfate radical showed different mineralization pathways of NOM, which have been verified by the use of LC-OCD and EEM/PARAFAC. Consequently, higher steady-state concentrations of SO 4 - , and different reaction preferences of OH and SO 4 - with the NOM constituent had an effect on the mineralization efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ni, Qing-Qing; Zhu, Yao-Feng; Yu, Lu-Jun; Fu, Ya-Qin
2015-04-01
Multiple-phase nanocomposites filled with carbon nanotubes (CNTs) have been developed for their significant potential in microwave attenuation. The introduction of other phases onto the CNTs to achieve CNT-based heterostructures has been proposed to obtain absorbing materials with enhanced microwave absorption properties and broadband frequency due to their different loss mechanisms. The existence of polyaniline (PANI) as a coating with controllable electrical conductivity can lead to well-matched impedance. In this work, a one-dimensional CNT@BaTiO3@PANI heterostructure composite was fabricated. The fabrication processes involved coating of an acid-modified CNT with BaTiO3 (CNT@BaTiO3) through a sol-gel technique followed by combustion and the formation of CNT@BaTiO3@PANI nanohybrids by in situ polymerization of an aniline monomer in the presence of CNT@BaTiO3, using ammonium persulfate as an oxidant and HCl as a dopant. The as-synthesized CNT@BaTiO3@PANI composites with heterostructures were confirmed by various morphological and structural characterization techniques, as well as conductivity and microwave absorption properties. The measured electromagnetic parameters showed that the CNT@BaTiO3@PANI composites exhibited excellent microwave absorption properties. The minimum reflection loss of the CNT@BaTiO3@PANI composites with 20 wt % loadings in paraffin wax reached -28.9 dB (approximately 99.87% absorption) at 10.7 GHz with a thickness of 3 mm, and a frequency bandwidth less than -20 dB was achieved from 10 to 15 GHz. This work demonstrated that the CNT@BaTiO3@PANI heterostructure composite can be potentially useful in electromagnetic stealth materials, sensors, and electronic devices.
NASA Astrophysics Data System (ADS)
Kim, Inhwan; Cho, Gilsoo
2018-07-01
Strain sensors made of intrinsically conductive polymers (ICPs) and nanofibers were fabricated and tested for suitability for use in wearable technology. The sensors were fabricated and evaluated based on their surface appearances, and electrical, tensile, and chemical/thermal properties. Polypyrrole (PPy) was in situ polymerized onto polyurethane (PU) nanofiber substrates by exposing pyrrole monomers to ammonium persulfate as oxidant and 2,6-naphthalenedisulfonic acid disodium salt as doping agents in an aqueous bath. The PPy treated PU nanofibers were then coated with polydimethylsiloxane (PDMS). Both pyrrole concentrations and layer numbers were significantly related to change in electrical conductivity. Specimen treated with 0.1 M of PPy and having three layered structure showed the best electrical conductivity. Regarding tensile strength, the in situ polymerization process decreased tensile strength because the oxidant chemically degraded the PU fibers. Adding layers and PDMS treatment generally improved tensile properties while adding layers created fracture parts in the stress–strain curves. The treatment condition of 0.1 M of PPy, two layered, and PDMS treated specimen showed the best tensile properties as a strain sensor. The chemical property evaluation with Fourier transform infrared and x-ray photoelectron spectroscopy tests showed successful PPy polymerization and PDMS treatments. The functional groups and chemical bonds in polyol, urethane linkage, backbone ring structure in PPy, silicon-based functional groups in PDMS, and elemental content changes by treatment at each stage were characterized. The real-time data acquired from the dummy and five human subjects with repetition of motion at three different speeds of 0.16, 0.25 and 0.5 Hz generated similar trends and tendencies. The PU nanofiber sensors based on PPy and PDMS treatments in this study point to the possibility of developing textiles based wearable strain sensors developed using ICPs.
Cheng, Dongdong; Liu, Yan; Yang, Guiting; Zhang, Aiping
2018-05-31
To reduce the preparation cost of superabsorbent and improve the N release rate at the same time, a novel low-cost superabsorbent (SA) with the function of N slow release was prepared by chemical synthesis with neutralized acrylic acid (AA), urea, potassium persulfate (KPS), and N, N'-methylenebis(acrylamide) (MBA). The order of influence factors on the water absorbency property was determined by an orthogonal L 18 (3) 7 experiment. On the basis of the optimization results of the orthogonal experiment, the effects of a single factor on the water absorption were investigated, and the highest water absorbency (909 g/g) was achieved for the conditions of 1.0 mol urea/mol AA ratio, 100% of AA neutralized, K + , 1.5% KPS to AA mass fraction, 0.02% MBA to AA mass fraction, 45 °C reaction temperature, and 4.0 h reaction time. The optimal sample was characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Swelling behaviors of the superabsorbent were investigated in distilled water and various soil and salt solutions. The water-release kinetics of SA in different negative pressures and soils were systematically investigated. Additionally, the maize seed germination in various types of soil with different amounts of SA was proposed, and the N could release 3.71% after being incubated in distilled water for 40 days. After 192 h, the relative water content of SA-treated sandy loam, loam, and paddy soil were 42, 56, and 45%, respectively. All of the results in this work showed that SA had good water retention and slow N-release properties, which are expected to have potential applications in sustainable modern agriculture.
Musial, Witold; Gasztych, Monika; Kokol, Vanja; Mucha, Igor; Makanis, Aleksandra; Kolodziejczyk, Woiciech; Gola, Agnieszka
2017-01-01
For modem drug delivery, new drug carriers sensitive to various factors and with size in the range of micro- and nanometers are required. The aim of this work was to evaluate the influence of hydrophilic and hydrophobic co-monomers on the hydrodynamic diameter of three co-polymers of N-isopropylacrylamide (NIPA) nanogels synthesized at 70*C in the presence of potassium persulfate (KPS) as the initiator and N.N'-methylene bis-acrylamide (MBA) as the cross-linker. The first batch of nanoparticles was synthesized without co-monomer, whereas poly(ethylene glycol) methyl ether acrylate (PEG-MEA), and N-teii-butylacrylamide (NTB), were implemented as co-monomers for the second and third batch. Hydrodynamic diameter of nanoparticles was in the range 550-800 rn. The compositions of the synthesized co-polymer nanoparticles were con- firmed via IR and NMR analyses. The SFPP conditions resulted in hydrodynamic diameters ranging from approximately 550 to 800 nm at temperatures lower than the volume phase transition temperature (VPTT) and diameters ranging from 250 to 600 nm at temperatures above the VPTT, where the VPTT was between 26 and 41'C. The polydispersity index (PDI) showed a maximum or a minimum value at the VPTT, which was an important indicator of the volume phase transition. According to the PDI observation during thermal cycling, the addition of NTB into the polymeric chain resulted in maximal values of the PDI at the VPIT, similar to the case of nanoparticles without any additional co-monomers. In contrast, in the case of PEG-MEA, the PDI presented a minimal value. Dynamic light scattering (DLS) volume measurements, performed simultaneously with spectral methods, may lead to a fast evaluation of nanoparticles prepared by SFPP.
NASA Astrophysics Data System (ADS)
Marin, I. S.; Molson, J. W.
2013-05-01
Petroleum hydrocarbons (PHCs) are a major source of groundwater contamination, being a worldwide and well-known problem. Formed by a complex mixture of hundreds of organic compounds (including BTEX - benzene, toluene, ethylbenzene and xylenes), many of which are toxic and persistent in the subsurface and are capable of creating a serious risk to human health. Several remediation technologies can be used to clean-up PHC contamination. In-situ chemical oxidation (ISCO) and intrinsic bioremediation (IBR) are two promising techniques that can be applied in this case. However, the interaction of these processes with the background aquifer geochemistry and the design of an efficient treatment presents a challenge. Here we show the development and application of BIONAPL/Phreeqc, a modeling tool capable of simulating groundwater flow, contaminant transport with coupled biological and geochemical processes in porous or fractured porous media. BIONAPL/Phreeqc is based on the well-tested BIONAPL/3D model, using a powerful finite element simulation engine, capable of simulating non-aqueous phase liquid (NAPL) dissolution, density-dependent advective-dispersive transport, and solving the geochemical and kinetic processes with the library Phreeqc. To validate the model, we compared BIONAPL/Phreeqc with results from the literature for different biodegradation processes and different geometries, with good agreement. We then used the model to simulate the behavior of sodium persulfate (NaS2O8) as an oxidant for BTEX degradation, coupled with sequential biodegradation in a 2D case and to evaluate the effect of inorganic geochemistry reactions. The results show the advantages of a treatment train remediation scheme based on ISCO and IBR. The numerical performance and stability of the integrated BIONAPL/Phreeqc model was also verified.
Sethi, Bijay Kumar; Nanda, Prativa Kumari; Sahoo, Santilata
2016-06-01
Aspergillus terreus NCFT4269.10 was implemented in solid-state (SSF) and liquid static surface fermentation (LSSF) for biosynthesis of pectinase. Amongst various substrates, like, mustard oil cake, neem oil cake, groundnut oil cake, black gram peels, green gram peels, chickling vetch peels/grass pea peels wheat bran, pearl millet residues, finger millet waste, broken rice, banana peels (BP), apple pomace (AP) and orange peels, banana peel (Musa paradisiaca L.; Family: Musaceae) was most suitable for pectinase biosynthesis (LSSF: 400 ± 21.45 Uml -1 ; SSF: 6500 ± 1116.21 Ug -1 ). Optimization of process parameters using one-variable-at-a-time method revealed that an initial medium pH of 5.0 at 30 °C and 96 h of incubation along with mannitol, urea, ammonium persulfate and isoleucine have positive influence on pectinase production. Further, K + (1 mM), Riboflavin (10 mg 100 ml -1 ) and gibberellic acid (0.025 %, w/v) supported in enhanced pectinase production. Banana peels and AP at a ratio of 9:1, moisture content of 90 % with 2 % inoculum size were suitable combinations for production of pectinase. Similarly, 96 h of soaking time with 0.1 M phosphate buffer (pH 6.5) is essential for pectinase recovery. Purification to electrophoretic homogeneity revealed 1.42 fold purification with 8.08 % yield and a molecular weight of 24.6 kDa. Scaling up of various fermentation parameters and supplementing BP as the substrate for pectinase production with better recovery could make it promising for different industrial exploitation.
A method for quantifying bioavailable organic carbon in aquifer sediments
Rectanus, H.V.; Widdowson, M.; Novak, J.; Chapelle, F.
2005-01-01
The fact that naturally occurring microorganisms can biodegrade PCE and TCE allows the use of monitored natural attenuation (MNA) as a remediation strategy at chlorinated solvent-contaminated sites. Research at numerous chlorinated solvent sites indicates an active dechlorinating microbial population coupled with an ample supply of organic carbon are conditions needed to sustain reductive dechlorination. A series of extraction experiments was used to compare the ability of the different extractants to remove organic carbon from aquifer sediments. The different extractants included pyrophosphate, sodium hydroxide, and polished water. Pyrophosphate served as a mild extractant that minimally alters the organic structure of the extracted material. Three concentrations (0.1, 0.5, and 1%) of pyrophosphate extracted 18.8, 24.9, and 30.8% of sediment organic carbon, respectively. Under alkali conditions (0.5 N NaOH), which provided the harshest extractant, 30.7% of the sediment organic carbon was recovered. Amorphous organic carbon, measured by potassium persulfate oxidization, consisted of 44.6% of the sediment organic carbon and served as a baseline control for maximum carbon removal. Conversely, highly purified water provided a minimal extraction control and extracted 5.7% of the sediment organic carbon. The removal of organic carbon was quantified by aqueous TOC in the extract and residual sediment organic carbon content. Characterization of the organic carbon extracts by compositional analysis prior and after exposure to the mixed culture might indicate the type organic carbon and functional groups used and/or generated by the organisms. This is an abstract of a paper presented at the 8th International In Situ and On-Site Bioremediation Symposium (Baltimore, MD 6/6-9/2005).
Yang, Zhihui; Su, Rongkui; Luo, Shuang; Spinney, Richard; Cai, Meiqiang; Xiao, Ruiyang; Wei, Zongsu
2017-07-15
Hydroxyl radical ( • OH) and sulfate radical anion (SO 4 •- ) based advanced oxidation technologies (AOTs) are effective methods to treat trace organic contaminants (TrOCs) in engineered waters. Although both technologies result in the same overall removal of TrOCs, the mechanistic differences between these two radicals involved in the oxidation of TrOCs remain unclear. In this study, we experimentally examined the degradation kinetics of neutral ibuprofen (IBU), a representative TrOC, by • OH and SO 4 •- at pH3 in UV/H 2 O 2 and UV/persulfate systems, respectively. The second-order rate constants (k) of IBU with • OH and SO 4 •- were determined to be 3.43±0.06×10 9 and 1.66±0.12×10 9 M -1 s -1 , respectively. We also theoretically calculated the thermodynamic and kinetic behaviors for reactions of IBU with • OH and SO 4 •- using the density functional theory (DFT) M06-2X method with 6-311++G** basis set. The results revealed that H-atom abstraction is the most favorable pathway for both • OH and SO 4 •- , but due to the steric hindrance SO 4 •- exhibits significantly higher energy barriers than • OH. The theoretical calculations corroborate our experimental observation that SO 4 •- has a smaller k value than • OH in reacting with IBU. These comparative results are of fundamental and practical importance in understanding the electrophilic interactions between radicals and IBU molecules, and to help select preferred radical oxidation processes for optimal TrOCs removal in engineered waters. Copyright © 2017 Elsevier B.V. All rights reserved.
Bagal, Manisha V; Lele, Bhagyashree J; Gogate, Parag R
2013-09-01
Sonochemical removal of 2,4-dinitrophenol (DNP) has been investigated using ultrasonic bath, with an operating capacity of 7 L, fitted with a large transducer with longitudinal vibrations having a 1 kW rated power output and operating frequency of 25 kHz. It has been revealed from calorimetric studies that maximum power is dissipated at a capacity of 7 L. The concentration of DNP has been monitored with an objective of evaluation of the efficacy of ultrasonic reactor in combination with process intensifying approaches for the removal of DNP. The effect of operating pH and additives such as hydrogen peroxide and ferrous iron activated persulfate on the extent of removal of DNP has been investigated. It has been observed that the extent of removal is greater at lower pH (pH 2.5 and 4) than at higher pH (pH 10). The combined treatment strategies such as ultrasound (US)/Fenton, US/advanced Fenton and US/CuO/H2O2 have also been investigated with an objective of obtaining complete removal of DNP using hybrid treatment strategies. The extent of removal has been found to increase significantly in US/Fenton process (98.7%) as compared to that using US alone (5.8%) which demonstrates the efficacy of the combined process. First order kinetics has been fitted for all the approaches investigated in the work. Calculations of cavitational yield indicated the superiority of the reactor design as compared to the conventional ultrasonic horn type reactors. The main intermediates formed during the process of removal of DNP have been identified. Copyright © 2013 Elsevier B.V. All rights reserved.
Removal of lead from aqueous solutions using Cassia grandis seed gum-graft-poly(methylmethacrylate).
Singh, Vandana; Tiwari, Stuti; Sharma, Ajit Kumar; Sanghi, Rashmi
2007-12-15
Using persulfate/ascorbic acid redox system, a series of Cassia grandis seed gum-graft-poly(methylmethacrylate) samples were synthesized. The copolymer samples were evaluated for lead(II) removal from the aqueous solutions where the sorption capacities were found proportional to the grafting extent. The conditions for the sorption were optimized using copolymer sample of highest percent grafting. The sorption was found pH and concentration dependent, pH 2.0 being the optimum value. Adsorption of lead by the grafted seed gum followed a pseudo-second-order kinetics with a rate constant of 4.64 x 10(-5) g/mg/min. The equilibrium data followed the Langmuir isotherm model with maximum sorption capacity of 126.58 mg/g. The influence of electrolytes NaCl, Na(2)SO(4) on lead uptake was also studied. Desorption with 2 N HCl could elute 76% of the lead ions from the lead-loaded copolymer. The regeneration experiments revealed that the copolymer could be successfully reused for at least four cycles though there was a successive loss in lead sorption capacity with every cycle. The adsorbent was also evaluated for Pb(II) removal from battery waste-water containing 2166 mg/L Pb(II). From 1000 times diluted waste water, 86.1% Pb(II) could be removed using 0.05 g/20 ml adsorbent dose, while 0.5 g/20 ml adsorbent dose was capable of removing 60.29% Pb from 10 times diluted waste water. Optimum Pb(II) binding under highly acidic conditions indicated that there was a significant contribution of nonelectrostatic interactions in the adsorption process. A possible mechanism for the adsorption has been discussed.
Ni, Qing-Qing; Zhu, Yao-Feng; Yu, Lu-Jun; Fu, Ya-Qin
2015-01-01
Multiple-phase nanocomposites filled with carbon nanotubes (CNTs) have been developed for their significant potential in microwave attenuation. The introduction of other phases onto the CNTs to achieve CNT-based heterostructures has been proposed to obtain absorbing materials with enhanced microwave absorption properties and broadband frequency due to their different loss mechanisms. The existence of polyaniline (PANI) as a coating with controllable electrical conductivity can lead to well-matched impedance. In this work, a one-dimensional CNT@BaTiO3@PANI heterostructure composite was fabricated. The fabrication processes involved coating of an acid-modified CNT with BaTiO3 (CNT@BaTiO3) through a sol-gel technique followed by combustion and the formation of CNT@BaTiO3@PANI nanohybrids by in situ polymerization of an aniline monomer in the presence of CNT@BaTiO3, using ammonium persulfate as an oxidant and HCl as a dopant. The as-synthesized CNT@BaTiO3@PANI composites with heterostructures were confirmed by various morphological and structural characterization techniques, as well as conductivity and microwave absorption properties. The measured electromagnetic parameters showed that the CNT@BaTiO3@PANI composites exhibited excellent microwave absorption properties. The minimum reflection loss of the CNT@BaTiO3@PANI composites with 20 wt % loadings in paraffin wax reached -28.9 dB (approximately 99.87% absorption) at 10.7 GHz with a thickness of 3 mm, and a frequency bandwidth less than -20 dB was achieved from 10 to 15 GHz. This work demonstrated that the CNT@BaTiO3@PANI heterostructure composite can be potentially useful in electromagnetic stealth materials, sensors, and electronic devices.
Gosecka, Monika; Chehimi, Mohamed M; Basinska, Teresa; Slomkowski, Stanislaw; Makowski, Tomasz
2017-12-01
We investigated the distribution of polyglycidol and polystyrene on the surface of poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol) microspheres (random distribution or segregated into hydrophilic and hydrophobic patches), using fibrinogen (Fb) as a macromolecular probe. The fibrinogen was adsorbed or covalently attached to the surface of the poly(styrene-co-α-tert-butoxy-ω-vinylbenzyl-polyglycidol) (P(S/PGLy)) microspheres. The P(S/PGLy) particles were prepared by emulsion copolymerization of styrene and α-tert-butoxy-ω-vinylbenzyl-polyglycidol (PGLy) macromonomer initiated with potassium persulfate. The polymerizations yielded P(S/PGLy) particles with various surface fractions of polyglycidol, depending on the amount of added macromonomer and the addition process. In some syntheses, the entire macromonomer amount was added once at the beginning of the polymerization, while in others, the macromonomer was added gradually after the formation of particle seeds from pure polystyrene. XPS studies revealed that the fraction of polyglycidol in the interfacial layer of the microspheres was larger when the entire amount of macromonomer was added at the beginning of the polymerization than when it was added after formation of the polystyrene seeds. Studies of fibrinogen adsorption provided the first evidence of segregation of the hydrophobic (polystyrene) and hydrophilic (polyglycidol) components at the surface of the composite P(S/PGLy) microspheres into patches. The hydrophobic patches are composed mainly of polystyrene. However, they also contain a small amount of polyglycidol chains, making the adsorption of fibrinogen weaker than the adsorption onto the pure polystyrene. Studies of covalent immobilization of fibrinogen on the microspheres via 1,3,5-trichlorotriazine confirmed these findings. Copyright © 2017 Elsevier B.V. All rights reserved.
Shome, Debraj; Kalita, Dhrubajyoti; Jain, Viral; Sarin, Rajiv; Maru, Girish B.; Bellare, Jayesh R.
2014-01-01
Purpose: The purpose of the study is to compare the intra-vitreal concentrations of carboplatin, post peri-ocular injections of commercially available carboplatin (CAC) and a novel carboplatin loaded polymethylmethacrylate nanoparticulate carboplatin (NPC), in either eye, as a model system for treatment of advanced intra-ocular retinoblastoma (RB). Design: Experimental, comparative, animal study. Materials and Methods: Polymethylmethacrylate nanoparticles were prepared by free radical emulsion polymerization of methyl methacrylate in aqueous solution of carboplatin in the presence of surfactant sodium dodecyl sulfate and thermal initiator ammonium persulfate. 21 Sprague-Dawley rats, aged between 6 weeks and 3 months were enrolled. The right eye of each rat was injected peri-ocularly with CAC formulation (1 ml of 10 mg/ml) and the left eye with NPC (1 ml of 10 mg/ml), post-anesthesia, by an ophthalmologist trained in ocular oncology. Three rats each were euthanized on days 1, 3, 5, 7, 14, 28 and 42, post-injection and both eyes were carefully enucleated. Intra-vitreal concentrations of CAC and NPC were determined with Inductively Coupled Plasma Atomic Emission Spectroscopy. Analysis of data was done with paired t-test. Results: The intra-vitreal concentration of carboplatin with NPC was ~3-4 times higher than with CAC in all animals, on all the days (P < 0.05). Conclusion: A higher trans-scleral permeability gradient is obtained with the novel nanoparticles than with the commercial drug, leading to sustained higher levels of carboplatin in the vitreous. Peri-ocular injection of NPC could thus have an adjuvant efficacy in the treatment for advanced clinical RB, specifically those with vitreous seeds. PMID:24881606
Fernández, Paula V.; Quintana, Irene; Cerezo, Alberto S.; Caramelo, Julio J.; Pol-Fachin, Laercio; Verli, Hugo; Estevez, José M.; Ciancia, Marina
2013-01-01
A highly sulfated 3-linked β-arabinan (Ab1) with arabinose in the pyranose form was obtained from green seaweed Codium vermilara (Bryopsidales). It comprised major amounts of units sulfated on C-2 and C-4 and constitutes the first polysaccharide of this type isolated in the pure form and fully characterized. Ab1 showed anticoagulant activity by global coagulation tests. Less sulfated arabinans obtained from the same seaweed have less or no activity. Ab1 exerts its activity through direct and indirect (antithrombin- and heparin cofactor II-mediated) inhibition of thrombin. Direct thrombin inhibition was studied in detail. By native PAGE, it was possible to detect formation of a complex between Ab1 and human thrombin (HT). Ab1 binding to HT was measured by fluorescence spectroscopy. CD spectra of the Ab1 complex suggested that ligand binding induced a small conformational change on HT. Ab1-thrombin interactions were studied by molecular dynamic simulations using the persulfated octasaccharide as model compound. Most carbohydrate-protein contacts would occur by interaction of sulfate groups with basic amino acid residues on the surface of the enzyme, more than 60% of them being performed by the exosite 2-composing residues. In these interactions, the sulfate groups on C-2 were shown to interact more intensely with the thrombin structure. In contrast, the disulfated oligosaccharide does not promote major conformational modifications at the catalytic site when complexed to exosite 1. These results show that this novel pyranosic sulfated arabinan Ab1 exerts its anticoagulant activity by a mechanism different from those found previously for other sulfated polysaccharides and glycosaminoglycans. PMID:23161548
Chen, Zhiqiang; Li, Mo; Wen, Qinxue; Ren, Nanqi
2017-11-01
Effluent organic matter (EfOM) is an emerging concern to receiving aquatic environment due to its refractory property. The degradation of EfOM in ozonation and other two advanced oxidation processes (AOPs), UV/H 2 O 2 and UV/persulfate (PS), was investigated in this study. Fluorescence spectra coupled with parallel factor analysis (PARAFAC) and two-dimensional correlation gel permeation chromatography (2D-GPC) were used to track the evolution of EfOM during each oxidation process. Results showed that the degradation of EfOM indicated by dissolved organic carbon (DOC), UV 254 and fluorescence components, fitted well with pseudo-first-order kinetic model during the oxidation processes. Ozonation showed higher degradation efficiency than AOPs, while UV/PS was more effective than UV/H 2 O 2 with equimolar oxidants dosage. Ozone and SO· 4 - were more reactive with terrestrial humic-like substances, while hydroxyl radical preferentially reacted with protein-like substances. Organic molecules with higher molecular weight (MW) were susceptible to ozone or radicals. Ozonation could transform higher MW (MW of 3510 and 575) organic matters into lower MW organic matters (MW of 294), while reductions of all the organics were observed in both AOPs. Due to the higher reaction rates between ozone and EfOM, ozonation maybe serve as a pre-treatment for AOPs to reduce the radical and energy consumption and improve mineralization of EfOM by AOPs. The decline in DOC, UV 254 , fluorescence and reduction in oxidants increased with the increase of oxidants dosage, and linear correlations among them were found during the ozonation and AOPs. Copyright © 2017. Published by Elsevier Ltd.
Jaafarzadeh, Nematollah; Ghanbari, Farshid; Ahmadi, Mehdi
2017-02-01
2,4-Dichlorophenoxyacetic acid (2,4-D) is one of the most applicable herbicides in the world. Therefore, its residue in aquatic environment threatens the human health and ecosystems. In this study, Fe 2 O 3 (hematite) nanoparticles (HNPs) were synthesized, and the characteristics of the obtained HNPs were determined using X-ray powder diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) technique, and particle size analyzer (PSA). The catalytic activity of HNPs was evaluated for the activation of peroxymonosulfate (PMS) for the degradation of 2,4-D. The effects of the operating parameters were studied for the PMS/HNPs system. The results showed that the acidic condition provided higher efficiency, while overdosing of PMS had a scavenging effect. The PMS/HNPs showed high efficiency in comparison with the homogeneous forms of iron (Fe 2+ and Fe 3+ ). Reusability of HNPs was studied in five consequent usages. The presence of the anions (chloride, nitrate, and hydrogen phosphate) reduced the 2,4-D degradation. Moreover, the catalytic activity of HNPs was also investigated in the presence of other oxidants. UV irradiation increased the function of PMS/HNPs and its mechanism was described. The order of 2,4-D removal for the oxidants was PMS > persulfate > H 2 O 2 > percarbonate. A total of 29.7% of 2,4-D chlorine content was released during the destruction of 2,4-D. The quenching study showed that sulfate radical was the major agent in the degradation of 2,4-D. Copyright © 2016 Elsevier Ltd. All rights reserved.
Enzyme immobilization on ultrafine cellulose fibers via poly(acrylic acid) electrolyte grafts.
Chen, Hong; Hsieh, You-Lo
2005-05-20
Ultrafine cellulose fiber (diameter 200-400 nm) surfaces were grafted with polyacrylic acid (PAA) via either ceric ion initiated polymerization or methacrylation of cellulose with methacrylate chloride (MACl) and subsequent free-radical polymerization of acrylic acid. PAA grafts by ceric ion initiated polymerization increased with increasing reaction time (2-24 h), monomer (0.3-2.4 M), and initiator (1-10 mM) concentrations, and spanned a broad range from 5.5-850%. PAA grafts on the methacrylated cellulose fibers also increased with increasing molar ratios of MACl to cellulosic hydroxyl groups (MACl/OH, 2-6.4) and monomer acrylic acid (AA) to initiator potassium persulfate (KPS) ratios ([AA]/[KPS], 1.5-6), and were in a much narrower range between 12.8% and 29.4%. The adsorption of lipase (at 1 mg/ml lipase and pH 7) and the activity of adsorbed lipase (pH 8.5, 30 degrees C), in both cases decreased with increasing PAA grafts. The highest adsorption and activity of the lipase on the ceric ion initiated grafted fibers were 1.28 g/g PAA and 4.3 U/mg lipase, respectively, at the lowest grafting level of 5.5% PAA, whereas they were 0.33 g/g PAA and 7.1 U/mg lipase, respectively, at 12.8% PAA grafts on the methacrylated and grafted fibers. The properties of the grafted fibers and the absorption behavior and activity of lipase suggest that the PAA grafts are gel-like by ceric-initiated reaction and brush-like by methacrylation and polymerization. The adsorbed lipase on the ceric ion-initiated grafted surface possessed greatly improved organic solvent stability over the crude lipase. The adsorbed lipases exhibited 0.5 and 0.3 of the initial activity in the second and third assay cycles, respectively. (c) 2004 Wiley Periodicals, Inc.
Bagal, Manisha V; Gogate, Parag R
2013-09-01
In the present work, degradation of 2,4-dinitrophenol (DNP), a persistent organic contaminant with high toxicity and very low biodegradability has been investigated using combination of hydrodynamic cavitation (HC) and chemical/advanced oxidation. The cavitating conditions have been generated using orifice plate as a cavitating device. Initially, the optimization of basic operating parameters have been done by performing experiments over varying inlet pressure (over the range of 3-6 bar), temperature (30 °C, 35 °C and 40 °C) and solution pH (over the range of 3-11). Subsequently, combined treatment strategies have been investigated for process intensification of the degradation process. The effect of HC combined with chemical oxidation processes such as hydrogen peroxide (HC/H2O2), ferrous activated persulfate (HC/Na2S2O8/FeSO4) and HC coupled with advanced oxidation processes such as conventional Fenton (HC/FeSO4/H2O2), advanced Fenton (HC/Fe/H2O2) and Fenton-like process (HC/CuO/H2O2) on the extent of degradation of DNP have also been investigated at optimized conditions of pH 4, temperature of 35 °C and inlet pressure of 4 bar. Kinetic study revealed that degradation of DNP fitted first order kinetics for all the approaches under investigation. Complete degradation with maximum rate of DNP degradation has been observed for the combined HC/Fenton process. The energy consumption analysis for hydrodynamic cavitation based process has been done on the basis of cavitational yield. Degradation intermediates have also been identified and quantified in the current work. The synergistic index calculated for all the combined processes indicates HC/Fenton process is more feasible than the combination of HC with other Fenton like processes. Copyright © 2013 Elsevier B.V. All rights reserved.
δ13C Analysis of Dissolved Organic Carbon in Eastern Canadian Coastal Waters
NASA Astrophysics Data System (ADS)
Gelinas, Y.; Barber, A.
2016-12-01
The application of carbon stable isotope analysis on dissolved organic carbon (δ13C-DOC) from natural seawater samples has been limited owing to the difficulty of such analysis, with order of magnitude differences between interfering ions and analyte concentrations. High temperature catalytic oxidation allows for the separation of interferences from the organic carbon by precipitation on quartz chips upstream from the oxidation catalyst. Unlike wet chemical oxidation, where salts inhibit the oxidation of organic matter to CO2 via side reactions between the salt anions and the persulfate oxidizing agent, high temperature combustion ensures complete organic matter oxidation in a stream of O2. Using a programmable chemical trap to switch carrier gasses from O2 to He, the OI 1030C combustion unit can be coupled to and IRMS, allowing for the analysis of low DOC content saline waters with relatively high throughput. The analytical limitations and large water volumes traditionally required for these types of analyses have prevented any large-scale δ13C-DOC studies. Here we present DOC concentrations and δ13C-DOC signatures for surface and bottom waters obtained along Canada's East Coast. Included in the study are samples from the Esquiman channel (between Newfoundland and Labrador), Lake Melville, the Saglek and Nachvak Fjords, the Hudson Strait and finally covering the salinity gradient across the Gulf of the St. Lawrence, the St. Lawrence Estuary and the Saguenay Fjord. Measured δ13C-DOC signatures ranged from predominantly marine values of -21.3 ± 0.6 ‰ (vs. VPDB) off the coast of Newfoundland to predominantly terrestrial signatures of -25.8 ± 0.1‰ in Lake Melville. Overall, proper blank subtraction using the isotope mass balance equation and four replicate injections are crucial for the collection of meaningful high quality δ13C-DOC signatures on natural abundance, seawater samples.
Zhang, Xiaowen; Li, Chenyan; Mao, Jinyuan; Wang, Weiwei; Xie, Xiaochen; Peng, Shiqiao; Wang, Zhaojun; Han, Cheng; Zhang, Xiaomei; Wang, Danyang; Fan, Chenling; Shan, Zhongyan; Teng, Weiping
2017-02-01
To describe the changes in thyroglobulin (Tg) based upon gestational and postpartum concentrations in healthy pregnant women from an iodine-sufficient region in China, and to evaluate the use of Tg as a biomarker for iodine-sufficient pregnant women. A longitudinal study of Tg change in normal pregnant women from an iodine-sufficient region. Blood and urine samples were obtained from 133 pregnant women. Urinary iodine concentration (UIC) was measured using an ammonium persulfate method. Serum iodine concentration was required by inductively coupled plasma mass spectrometry (ICP-MS). Serum thyroid-stimulating hormone (TSH), free thyroxine (FT4), free triiodothyronine (FT3), total thyroxine (TT4), total triiodothyronine (TT3), antithyroid peroxidase antibody (TPOAb), antithyroglobulin antibody (TgAb) and Tg were measured using an electrochemiluminescence immunoassay. Thyroglobulin concentrations were higher in early pregnancy (pregnancy at 8 weeks vs nonpregnancy: 11·42 ng/ml vs 8·8 ng/ml, P < 0·01) and maintained a stable level, and then increased greatly at the 36th week. After delivery, Tg decreased to nonpregnant levels. During pregnancy, maternal Tg was not correlated with thyroid function, UIC or urine iodine-creatinine ratio (UI/Cr). Cord blood Tg was much higher compared to maternal Tg levels at the 36w (57·34 vs 14·86 ng/ml, P < 0·001) and correlated positively with cord FT4 (r = 0·256, P < 0·05), cord TT4 (r = 0·263, P < 0·05) and maternal UI/Cr at 36w (r = -0·214, P < 0·05). Our work demonstrates that Tg is elevated during pregnancy, and the effect of pregnancy should be taken into consideration when Tg is used as a biomarker for the iodine status. Cord blood Tg is much higher than maternal Tg levels at the 36w and is correlated with maternal iodine status. © 2016 John Wiley & Sons Ltd.
A study of chemical remediation on 1,2,4-Trichlorobenzene in groundwater
NASA Astrophysics Data System (ADS)
Ye, S.
2015-12-01
Shujun Ye, Guanqun Wang, and Jichun WuKey Laboratory of Surficial Geochemistry, Ministry of Education; School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, China, Nanjing, 210093, China; sjye@nju.edu.cn The ground water is contaminated by 1,2,4 Trichlorobenzene (TCB) in a former chemical plant in Nanjing, China. So 1,2,4-TCB is the contaminant of concern in this study. As chemical oxidation technology is a common in-site remediation technique, hydrogen peroxide, sodium sulfate and the two-mixed oxidants under the catalytic condition are used to remove 1,2,4-TCB from groundwater. By changing the values of temperature and pH in the experiments, the best conditions for chemical oxidation with oxidants mentioned above were determined. The fluorescent brightener of PF, manufactured by the former chemical plant, was added to groundwater to evaluate whether its existence made an impact on the chemical oxidation. 1-D sand column tests were conducted to study the degradation effect by using the chemical oxidation technology. The experiment results showed that single oxidant and mixed both oxidants can remove 1,2,4-TCB completely. The oxidation efficiency of both oxidants is influenced by temperature and pH. For hydrogen peroxide, the oxidation efficiency decreases with the increase of pH, while, for sodium sulfate, the efficiency is high under the mild acidic condition. The fluorescent brightener PF has an impact on the oxidation efficiency, with negative effect on the oxidation with hydrogen peroxide but positive effect with sodium sulfate. 1-D sand column tests testified the degradation of 1,2,4-TCB by the chemical oxidation with hydrogen peroxide and sodium sulfate. KEY WORDS: 1,2,4-trichlorobenzene hydrogen peroxide sodium persulfate optical brightener PF chemical oxidation AcknowledgementsFunding for this research from DuPont Company and NSFC Project No. 41472212.
Smart polyaniline nanoparticles with thermal and photothermal sensitivity
NASA Astrophysics Data System (ADS)
Bongiovanni Abel, Silvestre; Molina, María A.; Rivarola, Claudia R.; Kogan, Marcelo J.; Barbero, Cesar A.
2014-12-01
Conductive polyaniline nanoparticles (PANI NPs) are synthesized by oxidation of aniline with persulfate in acid media, in the presence of polymeric stabilizers: polyvinilpyrrolidone (PVP), poly(N-isopropylacrylamide) (PNIPAM), and hydroxylpropylcellulose (HPC). It is observed that the size of the nanoparticles obtained depends on the polymeric stabilizer used, suggesting a mechanism where the aggregation of polyaniline molecules is arrested by adsorption of the polymeric stabilizer. Indeed, polymerization in the presence of a mixture of two polymers having different stabilizing capacity (PVP and PNIPAM) allows tuning of the size of the nanoparticles. Stabilization with biocompatible PVP, HPC and PNIPAM allows use of the nanoparticle dispersions in biological applications. The nanoparticles stabilized by thermosensitive polymers (PNIPAM and HPC) aggregate when the temperature exceeds the phase transition (coil to globule) temperature of each stabilizer (Tpt = 32 °C for PNIPAM or Tpt = 42 °C for HPC). This result suggests that an extended coil form of the polymeric stabilizer is necessary to avoid aggregation. The dispersions are reversibly restored when the temperature is lowered below Tpt. In that way, the effect could be used to separate the nanoparticles from soluble contaminants. On the other hand, the PANI NPs stabilized with PVP are unaffected by the temperature change. UV-visible spectroscopy measurements show that the nanoparticle dispersion changes their spectra with the pH of the external solution, suggesting that small molecules can easily penetrate the stabilizer shell. Near infrared radiation is absorbed by PANI NPs causing an increase of their temperature which induces the collapse of the thermosensitive polymer shell and aggregation of the NPs. The effect reveals that it is possible to locally heat the nanoparticles, a phenomenon that can be used to destroy tumor cells in cancer therapy or to dissolve protein aggregates of neurodegenerative diseases (e.g. Alzheimer). Moreover, the long range control of aggregation can be used to modulate the nanoparticle residence inside biological tissues.
Liu, Yiqing; He, Xuexiang; Duan, Xiaodi; Fu, Yongsheng; Fatta-Kassinos, Despo; Dionysiou, Dionysios D
2016-05-15
Carbonate radical (CO3(•-)), a selective oxidant, reacts readily with electron-rich compounds through electron transfer and/or hydrogen abstraction. In this study, the role of CO3(•-) in degrading oxytetracycline (OTC) by UV only, UV/H2O2 and UV/persulfate (UV/PS) advanced oxidation processes (AOPs) in the presence of HCO3(-) or CO3(2-) was investigated. For UV only process, the presence of photosensitizers, i.e., nitrate (NO3(-)) and natural organic matter (NOM), had different impacts on OTC degradation, i.e., an enhancing effect by NO3(-) due to the generation of HO(•) and a slight inhibiting effect by NOM possibly due to a light scattering effect. Differently for UV/H2O2 and UV/PS processes, the presence of NO3(-) hardly influenced the destruction of OTC. Generation of CO3(•-) presented a positive role on OTC degradation by UV/NO3(-)/HCO3(-). Such influence was also observed in the two studied AOPs in the presence of both bicarbonate and other natural water constituents. When various natural water samples from different sources were used as reaction matrices, UV only and UV/H2O2 showed an inhibiting effect while UV/PS demonstrated a comparable or even promoting effect in OTC decomposition. After elucidating the potential contribution of UV direct photolysis via excited state OTC* at an elevated reaction pH condition, putative OTC transformation byproducts via CO3(•-) reaction were identified by ultra-high definition accurate-mass quadrupole time-of-flight tandem mass spectrometry (QTOF/MS). Five different reaction pathways were subsequently proposed, including hydroxylation (+16 Da), quinonization (+14 Da), demethylation (-14 Da), decarbonylation (-28 Da) and dehydration (-18 Da). The significant role of UV at high pH and CO3(•-) on OTC removal from contaminated water was therefore demonstrated both kinetically and mechanistically. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kshirasagar, Krushna J.; Markad, Uddhav S.; Saha, Abhijit; Sharma, Kiran Kumar K.; Sharma, Geeta K.
2017-02-01
Palladium nanoparticles doped polyaniline (Pd-PANI) nanocomposite (NCs) is synthesized in surfactant based liquid crystalline mesophase by chemical oxidation followed by radiolysis. The confinement of the liquid crystalline mesophase facilitates polymerization of aniline monomers and their 1D growth into polyaniline (PANI) nanowires by using ammonium persulfate. The PANI nanowires have an average diameter of 30-40 nm. The in situ radiolytic reduction of palladium ions ensures uniform size distribution of the palladium (Pd) nanoparticles on the surface of the PANI nanowires. The synthesized Pd-PANI nanocomposites show wire like structures of PANI (diameter ~30-40 nm) on which Pd nanoparticles of the size 10 nm are decorated. The identical average diameter of the PANI nanowires before and post gamma irradiation suggest high stability of the PANI nanowires in liquid crystalline mesophase. Surface characterization of the NCs were carried out using BET and XPS. The catalytic activity of Pd-PANI NCs are investigated in the reduction of methylene blue (MB) and 4-nitro phenol (4-NP) by sodium borohydride (NaBH4). The kinetics of the Pd-PANI NCs catalysed reactions are analysed using the Langmuir-Hinshelwood model. The apparent rate constant (k app) for the MB and 4-NP reduction reactions is 29 × 10-3 s-1 and 20 × 10-3 s-1 respectively with an actual Pd catalyst loading of 2.665 × 10-4 ppm. Further, the recyclability of the Pd-PANI NCs catalyst in both the reduction reactions shows the stability of the catalyst up to four reaction cycles tested in this investigation and the multifunctional nature of the catalyst. The study provides a new approach for the directional synthesis of conducting polymer-metal nanocomposites and their possible application as a nanocatalyst in environmental remediation.
Iodine deficiency during pregnancy: a national cross-sectional survey in Latvia.
Konrade, Ilze; Kalere, Ieva; Strele, Ieva; Makrecka-Kuka, Marina; Jekabsone, Anna; Tetere, Elina; Veisa, Vija; Gavars, Didzis; Rezeberga, Dace; Pīrāgs, Valdis; Lejnieks, Aivars; Dambrova, Maija
2015-11-01
Low iodine intake during pregnancy may cause thyroid dysfunction, which results in inadequate fetal brain development. In the absence of a universal salt iodization programme, we conducted a nationwide survey of iodine deficiency in pregnant women in Latvia. A countrywide twenty-cluster survey, with at least twenty women per cluster. Participants completed a questionnaire on dietary habits concerning iodine intake (n 739). Thyroid function (thyroid-stimulating hormone, free thyroxine and thyroperoxidase antibodies) was measured (n 550). Urinary iodine was measured using the ammonium persulfate method (n 696). The survey was performed in all regions of Latvia during the spring and autumn seasons in 2013. Pregnant women (n 829). The median creatinine (Cr)-standardized urinary iodine concentration (UIC) was 80·8 (interquartile range (IQR) 46·1-130·6) µg/g Cr or 69·4 (IQR 53·9-92·6) µg/l during pregnancy, and 81% of pregnant women had UIC levels below the WHO recommended range of 150-250 µg/g Cr. The UIC was lowest during the first trimester of pregnancy, 56·0 (IQR 36·4-100·6) µg/g Cr, reaching higher concentrations of 87·5 (IQR 46·4-141·7) µg/g Cr and 86·9 (IQR 53·8-140·6) µg/g Cr in the second and third trimesters, respectively. Women taking supplements containing ≥150 µg iodine (6·8% of respondents) had non-significantly higher UIC than did women without supplementation (96·2 v. 80·3 µg/g Cr, respectively, P=NS). Thyroperoxidase antibody concentration did not correlate significantly with UIC: Spearman's ρ=-0·012, P=0·78. The median UIC indicates iodine deficiency in pregnant women in Latvia. Iodine supplementation (150 µg daily) and regular UIC monitoring should be suggested to overcome iodine deficiency and to reach the recommended levels without inducing autoimmune processes.
Evaluation of advanced oxidation processes for water and wastewater treatment - A critical review.
Miklos, David B; Remy, Christian; Jekel, Martin; Linden, Karl G; Drewes, Jörg E; Hübner, Uwe
2018-03-22
This study provides an overview of established processes as well as recent progress in emerging technologies for advanced oxidation processes (AOPs). In addition to a discussion of major reaction mechanisms and formation of by-products, data on energy efficiency were collected in an extensive analysis of studies reported in the peer-reviewed literature enabling a critical comparison of various established and emerging AOPs based on electrical energy per order (E EO ) values. Despite strong variations within reviewed E EO values, significant differences could be observed between three groups of AOPs: (1) O 3 (often considered as AOP-like process), O 3 /H 2 O 2 , O 3 /UV, UV/H 2 O 2 , UV/persulfate, UV/chlorine, and electron beam represent median E EO values of <1 kWh/m 3 , while median energy consumption by (2) photo-Fenton, plasma, and electrolytic AOPs were significantly higher (E EO values in the range of 1-100 kWh/m 3 ). (3) UV-based photocatalysis, ultrasound, and microwave-based AOPs are characterized by median values of >100 kWh/m 3 and were therefore considered as not (yet) energy efficient AOPs. Specific evaluation of 147 data points for the UV/H 2 O 2 process revealed strong effects of operational conditions on reported E EO values. Besides water type and quality, a major influence was observed for process capacity (lab-vs. pilot-vs. full-scale applications) and, in case of UV-based processes, of the lamp type. However, due to the contribution of other factors, correlation of E EO values with specific water quality parameters such as UV absorbance and dissolved organic carbon were not substantial. Also, correlations between E EO and compound reactivity with OH-radicals were not significant (photolytically active compounds were not considered). Based on these findings, recommendations regarding the use of the E EO concept, including the upscaling of laboratory results, were derived. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Aribowo, Slamet; Hafizah, Mas Ayu Elita; Manaf, Azwar; Andreas
2018-04-01
In the present paper, we reported particle size kinetic studies on the conducting polyaniline (PANI) which synthesized through a chemical oxidative polymerization technique from aniline monomer. PANI was prepared using ammonium persulfate (APS) as oxidizing agent which carried out in acidic and neutral medium at various batch temperatures of respectively 20, 30 and 50 °C. From the studies, it was noticed that the complete polymerization reaction progressed within 480 minutes duration time. The pH of the solution during reaction kinetic reached values 0.8 - to 1.2 in acidic media, while in the neutral media the pH value reached values 3.8 - 4.9. The batch temperature controlled the polymerization reaction in which the reaction progressing, which followed by the temperature rise of solution above the batch temperature before settled down to the initial temperature. An increment in the batch temperature gave highest rise in the solution temperature for the two media which cannot be more than 50 °C. The final product of polymerization reaction was PANI confirmed by Fourier Transform Infra-Red (FTIR) spectrophotometer for molecule structure identification. The averages particle size of PANI which carried out in the two different media is evidently similar in the range 30 - 40 μm and insensitive to the batch temperature. However, the particle size of PANI which obtained from the polymerization reaction at a batch temperature of 50 °C under acidic condition reached ˜53.1 μm at the tip of the propagation stage which started in the first 5 minutes. The size is obviously being the largest among the batch temperatures. Whereas, under neutral condition the particle size is much larger which reached the size 135 μm at the batch temperature of 20 °C. It is concluded that the particle size formation during the polymerization reaction being one of the important parameter to determine particle growing of polymer which indicated the reaction kinetics mechanism of synthesize polyaniline.
Sulfate-mediated electrooxidation of X-ray contrast media on boron-doped diamond anode.
Radjenovic, Jelena; Petrovic, Mira
2016-05-01
Recently, electrochemical activation of sulfate ions to sulfate radical species and nonradically activated persulfate has been demonstrated at boron-doped diamond (BDD) anode, which enhanced the electrooxidation kinetics of several persistent contaminants. In this study, we investigated the transformation pathways of two X-ray contrast media (ICM), diatrizoate and iopromide, in electrooxidation at BDD anode using sulfate and inert nitrate anolyte. Sulfate anolyte yielded a seven-fold increase in apparent rate constants for ICM oxidation compared to inert nitrate anolyte, and a two-fold increase for the removal of organic carbon. Higher iodine release was observed in electrooxidation of diatrizoate compared to iopromide. In the case of diatrizoate, around 80% of deiodination efficiency was achieved in both anolytes. Deiodination efficiency of iopromide was somewhat lower in nitrate anolyte (≤75%) and significantly reduced in sulfate anolyte (≤46%) due to a larger steric hindrance of alkyl side chains. Moreover, a considerable lag phase of iopromide deiodination was observed in sulfate anolyte, indicating that initial oxidation reactions took place almost exclusively at the alkyl side chains. Several transformation products (TPs) of ICM were identified in electrooxidation in sulfate anolyte, and only three TPs in the case of nitrate anolyte. The main mechanistic steps in the oxidation of iopromide were H-abstraction and bond cleavage in the alkyl side chains. Diatrizoate was mainly transformed through oxidative cleavage of iodine substituent and inter-molecular cyclization. Two hydroxylamine derivatives of iopromide and a nitro-derivative of diatrizoate were observed in sulfate anolyte. These products have not been reported previously for hydroxyl radical-mediated oxidation of ICM. Given that electron-transfer mechanism is more typical for sulfate than for hydroxyl radicals, formation of hydroxylamine and nitro-derivatives of ICM was assigned to one-electron charge transfer to sulfate radical species and formation of N-centered radicals. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cáceres, C; Canfarotta, F; Chianella, I; Pereira, E; Moczko, E; Esen, C; Guerreiro, A; Piletska, E; Whitcombe, M J; Piletsky, S A
2016-02-21
The aim of this work is to evaluate whether the size of the analyte used as template for the synthesis of molecularly imprinted polymer nanoparticles (nanoMIPs) can affect their performance in pseudo-enzyme linked immunosorbent assays (pseudo-ELISAs). Successful demonstration of a nanoMIPs-based pseudo-ELISA for vancomycin (1449.3 g mol(-1)) was demonstrated earlier. In the present investigation, the following analytes were selected: horseradish peroxidase (HRP, 44 kDa), cytochrome C (Cyt C, 12 kDa) biotin (244.31 g mol(-1)) and melamine (126.12 g mol(-1)). NanoMIPs with a similar composition for all analytes were synthesised by persulfate-initiated polymerisation in water. In addition, core-shell nanoMIPs coated with polyethylene glycol (PEG) and imprinted for melamine were produced in organics and tested. The polymerisation of the nanoparticles was done using a solid-phase approach with the correspondent template immobilised on glass beads. The performance of the nanoMIPs used as replacement for antibodies in direct pseudo-ELISA (for the enzymes) and competitive pseudo-ELISA for the smaller analytes was investigated. For the competitive mode we rely on competition for the binding to the nanoparticles between free analyte and corresponding analyte-HRP conjugate. The results revealed that the best performances were obtained for nanoMIPs synthesised in aqueous media for the larger analytes. In addition, this approach was successful for biotin but completely failed for the smallest template melamine. This problem was solved using nanoMIP prepared by UV polymerisation in an organic media with a PEG shell. This study demonstrates that the preparation of nanoMIP by solid-phase approach can produce material with high affinity and potential to replace antibodies in ELISA tests for both large and small analytes. This makes this technology versatile and applicable to practically any target analyte and diagnostic field.
Effects of oxidizing adulterants on detection of 11-nor-delta9-THC-9-carboxylic acid in urine.
Paul, Buddha D; Jacobs, Aaron
2002-10-01
Bleach, nitrite, chromate, and hydrogen peroxide-peroxidase are effective urine adulterants used by the illicit drug users to conceal marijuana-positive results. Methods for detecting nitrite and chromate are available. Effects of other oxidizing agents that could possibly be used as adulterants and are difficult to detect or measure are presented in this report. Urine samples containing 40 ng/mL of 11-nor-delta9-THC-9-carboxylic acid (THC-acid) were treated with 10 mmol/L of commonly available oxidizing agents. Effects of horseradish peroxidase of activity 10 unit/mL and extracts from 2.5 g of red radish (Raphanus sativus, Radicula group), horseradish (Armoracia rusticana), Japanese radish (Raphanus sativus, Daikon group), and black mustard seeds (Brassica nigra), all with 10 mmol/L of hydrogen peroxide, were also examined. After 5 min, 16 h and 48 h of exposure at room temperature (23 degrees C) the specimens were tested by a gas chromatographic-mass spectrometric method for THC-acid. A control group treated with sodium hydrosulfite to reduce the oxidants, was also tested to investigate the effect of oxidizing agents on THC-acid in the extraction method. THC-acid was lost completely in the extraction method when treated with chromate, nitrite, oxone, and hydrogen peroxide/ferrous ammonium sulfate (Fenton's reagent). Some losses were also observed with persulfate and periodate (up to 25%). These oxidants, and other oxidizing agents like permanganate, periodate, peroxidase, and extracts from red radish, horseradish, Japanese radish and black mustard seeds destroyed most of the THC-acid (> 94%) within 48 h of exposure. Chlorate, perchlorate, iodate, and oxychloride under these conditions showed little or no effect. Complete loss was observed when THC-acid was exposed to 50 mmol/L of oxychloride for 48 h. Several oxidizing adulterants that are difficult to test by the present urine adulterant testing methods showed considerable effects on the destruction of THC-acid. The time and temperature for these effects were similar to those used by most laboratories to collect and test specimens. In several cases, the loss of THC-acid was > 94%.
Tanzania national survey on iodine deficiency: impact after twelve years of salt iodation.
Assey, Vincent D; Peterson, Stefan; Kimboka, Sabas; Ngemera, Daniel; Mgoba, Celestin; Ruhiye, Deusdedit M; Ndossi, Godwin D; Greiner, Ted; Tylleskär, Thorkild
2009-09-03
In many low-income countries, children are at high risk of iodine deficiency disorders, including brain damage. In the early 1990s, Tanzania, a country that previously suffered from moderate to severe iodine deficiency, adopted universal salt iodation (USI) as an intervention strategy, but its impact remained unknown. We report on the first national survey in mainland Tanzania, conducted in 2004 to assess the extent to which iodated salt was used and its apparent impact on the total goitre prevalence (TGP) and urinary iodine concentrations (UIC) among the schoolchildren after USI was initiated. In 2004, a cross-sectional goitre survey was conducted; covering 140,758 schoolchildren aged 6 - 18 years were graded for goitre according to new WHO goitre classification system. Comparisons were made with district surveys conducted throughout most of the country during the 1980s and 90s. 131,941 salt samples from households were tested for iodine using rapid field test kits. UIC was determined spectrophotometrically using the ammonium persulfate digestion method in 4523 sub-sampled children. 83.6% (95% CI: 83.4 - 83.8) of salt samples tested positive for iodine. Whereas the TGP was about 25% on average in the earlier surveys, it was 6.9% (95%CI: 6.8-7.0) in 2004. The TGP for the younger children, 6-9 years old, was 4.2% (95%CI: 4.0-4.4), n = 41,965. In the 27 goitre-endemic districts, TGP decreased from 61% (1980s) to 12.3% (2004). The median UIC was 204 (95% CF: 192-215) microg/L. Only 25% of children had UIC <100 microg/L and 35% were > or = 300 microg/L, indicating low and excess iodine intake, respectively. Our study demonstrates a marked improvement in iodine nutrition in Tanzania, twelve years after the initiation of salt iodation programme. The challenge in sustaining IDD elimination in Tanzania is now two-fold: to better reach the areas with low coverage of iodated salt, and to reduce iodine intake in areas where it is excessive. Particular attention is needed in improving quality control at production level and perhaps the national salt iodation regulations may need to be reviewed.
Wu, De-Qun; Zhu, Jie; Han, Hua; Zhang, Jun-Zhi; Wu, Fei-Fei; Qin, Xiao-Hong; Yu, Jian-Yong
2018-01-01
A multi-functional hybrid hydrogel P(M-Arg/NIPAAm) with temperature response, anti-protein adsorption and antibacterial properties was prepared and applied as wound dressing. The hydrogel was carried out by free radical copolymerization of methacrylate arginine (M-Arg) and N-isopropyl acrylamide (NIPAAm) monomers using N,N'-methylene bisacrylamide as a crosslinker, and ammonium persulfate/N,N,N', N'-tetramethylethylenediamine as the redox initiator. To endow the antimicrobial property, chlorhexidine diacetate (CHX) was preloaded into the hydrogel and polyhexamethylene guanidine phosphate (PHMG) was grafted on the hydrogel surface, respectively. The antimicrobial property of two series of hydrogels was evaluated and compared. The successful synthesis of M-Arg, PHMG and hydrogels was proved by 13 C NMR, 1 H NMR and FTIR spectroscopy. The hydrogel morphology characterized by scanning electron microscopy confirmed that the homogeneous porous and interconnected structures of the hydrogels. The swelling, protein adsorption property, in vitro release of CHX, antimicrobial assessment, cell viability as well as in vivo wound healing in a mouse model were studied. The results showed the nontoxicity and antimicrobial P(M-Arg/NIPAAm) hydrogel accelerated the full-thickness wound healing process and had the potential application in wound dressing. Despite the zwitterionic characteristic and biocompatible property of arginine based hydrogels, the brittle behavior and non-transparency still remain as a significant problem for wound dressing. Furthermore promoting the antibacterial property of the zwitterionic hydrogel is also necessary to prevent the bacterial colonization and subsequent wound infection. Therefore, we created a hybrid hydrogel combined methacrylate arginine (M-Arg) and N-isopropyl acrylamide (NIPAAm). NIPAAm improves transparency and mechanical property as well as acts as a temperature-response drug release system. Additionally, chlorhexidine (CHX) was preloaded into the hydrogels and polyhexamethylene guanidine phosphate (PHMG) was grafted on the hydrogel surface, respectively, which make the hydrogel useful as a favorable antibacterial dressing. The hybrid hydrogel has a combination effect of biocompatibility, environmentally responsive transformation behavior, biodegradability, anti-protein adsorption and antimicrobial properties. This report proposes the preparation of P(M-Arg/NIPAAm) hydrogel that has a great potential for wound healing. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Banza, Bienvenue Ilunga; Lumbu, Jean Baptiste Simbi; Donnen, Philippe; Twite, Eugène Kabange; Kwete, Daniel Mikobi; Kazadi, Costa Mwadianvita; Ozoza, Jean Okolonken; Habimana, Laurence; Kalenga, Prosper Muenze Kayamba; Robert, Annie
2016-01-01
Introduction La consommation du sel faiblement iodé peut engendrer des troubles divers liés à la carence iodée Ce travail a pour objectif d’évaluer la teneur en iode du sel consommé à Lubumbashi et de déterminer le statut iodé des femmes enceintes, cible privilégiée de la carence iodée. Méthodes Une étude transversale descriptive a été consacrée à une analyse iodométrique d'iode dans 739 échantillons de sel collectés dans les ménages et marchés de Lubumbashi en 2014. Précédemment, l'iode urinaire a été déterminé par la technique de minéralisation au persulfate d'ammonium chez 225 femmes enceintes reçues en consultation du 15 mars 2009 au 25 avril 2011. Résultats Notre enquête a révélé 47,5% des échantillons de sels de cuisine adéquatement iodés (15 à 40 ppm), 36,9% d’échantillons faiblement iodés, 7,4% d’échantillons trop riches en iode et 8,1% des échantillons non iodés. La disponibilité en iode du sel de cuisine analysé était globalement de 54,9%, se trouvant nettement en dessous des normes OMS (90%). En mesurant l'iode urinaire chez la femme enceinte, la carence iodée (iode urinaire <150 µg/l) a été observée dans une proportion de 52%. Conclusion La faible disponibilité en iode du sel consommé à Lubumbashi pourrait être responsable d'une grande proportion de la carence iodée observée chez la femme enceinte, ce qui expose celle-ci aux risques majeurs des troubles dus à la carence en iode. PMID:27279956
Saxena, Vishal; Kim, Minwook; Keah, Niobra M.; Neuwirth, Alexander L.; Stoeckl, Brendan D.; Bickard, Kevin; Restle, David J.; Salowe, Rebecca; Wang, Margaret Ye; Steinberg, David R.
2016-01-01
Cartilage has a poor healing response, and few viable options exist for repair of extensive damage. Hyaluronic acid (HA) hydrogels seeded with mesenchymal stem cells (MSCs) polymerized through UV crosslinking can generate functional tissue, but this crosslinking is not compatible with indirect rapid prototyping utilizing opaque anatomic molds. Methacrylate-modified polymers can also be chemically crosslinked in a cytocompatible manner using ammonium persulfate (APS) and N,N,N′,N′-tetramethylethylenediamine (TEMED). The objectives of this study were to (1) compare APS/TEMED crosslinking with UV crosslinking in terms of functional maturation of MSC-seeded HA hydrogels; (2) generate an anatomic mold of a complex joint surface through rapid prototyping; and (3) grow anatomic MSC-seeded HA hydrogel constructs using this alternative crosslinking method. Juvenile bovine MSCs were suspended in methacrylated HA (MeHA) and crosslinked either through UV polymerization or chemically with APS/TEMED to generate cylindrical constructs. Minipig porcine femoral heads were imaged using microCT, and anatomic negative molds were generated by three-dimensional printing using fused deposition modeling. Molded HA constructs were produced using the APS/TEMED method. All constructs were cultured for up to 12 weeks in a chemically defined medium supplemented with TGF-β3 and characterized by mechanical testing, biochemical assays, and histologic analysis. Both UV- and APS/TEMED-polymerized constructs showed increasing mechanical properties and robust proteoglycan and collagen deposition over time. At 12 weeks, APS/TEMED-polymerized constructs had higher equilibrium and dynamic moduli than UV-polymerized constructs, with no differences in proteoglycan or collagen content. Molded HA constructs retained their hemispherical shape in culture and demonstrated increasing mechanical properties and proteoglycan and collagen deposition, especially at the edges compared to the center of these larger constructs. Immunohistochemistry showed abundant collagen type II staining and little collagen type I staining. APS/TEMED crosslinking can be used to produce MSC-seeded HA-based neocartilage and can be used in combination with rapid prototyping techniques to generate anatomic MSC-seeded HA constructs for use in filling large and anatomically complex chondral defects or for biologic joint replacement. PMID:26871863
Hou, Shaodong; Ling, Li; Dionysiou, Dionysios D; Wang, Yuru; Huang, Jiajia; Guo, Kaiheng; Li, Xuchun; Fang, Jingyun
2018-06-05
Halides and natural organic matter (NOM) are inevitable in aquatic environment and influence the degradation of contaminants in sulfate radical (SO 4 •- )-based advanced oxidation processes. This study investigated the formation of chlorate in the coexposure of SO 4 •- , chloride (Cl - ), bromide (Br - ) and/or NOM in UV/persulfate (UV/PDS) and cobalt(II)/peroxymonosulfate (Co/PMS) systems. The formation of chlorate increased with increasing Cl - concentration in the UV/PDS system, however, in the Co/PMS system, it initially increased and then decreased. The chlorate formation involved the formation of hypochlorous acid/hypochlorite (HOCl/OCl - ) as an intermediate in both systems. The formation was primarily attributable to SO 4 •- in the UV/PDS system, whereas Co(III) played a significant role in the oxidation of Cl - to HOCl/OCl - and SO 4 •- was important for the oxidation of HOCl/OCl - to chlorate in the Co/PMS system. The pseudo-first-order rate constants ( k') of the transformation from Cl - to HOCl/OCl - were 3.32 × 10 -6 s -1 and 9.23 × 10 -3 s -1 in UV/PDS and Co/PMS, respectively. Meanwhile, k' of HOCl/OCl - to chlorate in UV/PDS and Co/PMS were 2.43 × 10 -3 s -1 and 2.70 × 10 -4 s -1 , respectively. Br - completely inhibited the chlorate formation in UV/PDS, but inhibited it by 45.2% in Co/PMS. The k' of SO 4 •- reacting with Br - to form hypobromous acid/hypobromite (HOBr/OBr - ) was calculated to be 378 times higher than that of Cl - to HOCl/OCl - , but the k' of Co(III) reacting with Br - to form HOBr/OBr - was comparable to that of Cl - to HOCl/OCl - . NOM also significantly inhibited the chlorate formation, due to the consumption of SO 4 •- and reactive chlorine species (RCS, such as Cl·, ClO· and HOCl/OCl - ). This study demonstrated the formation of chlorate in SO 4 •- -based AOPs, which should to be considered in their application in water treatment.
Palau, Jordi; Jamin, Pierre; Badin, Alice; Vanhecke, Nicolas; Haerens, Bruno; Brouyère, Serge; Hunkeler, Daniel
2016-04-01
Compound-specific isotope analysis (CSIA) is a powerful tool to track contaminant fate in groundwater. However, the application of CSIA to chlorinated ethanes has received little attention so far. These compounds are toxic and prevalent groundwater contaminants of environmental concern. The high susceptibility of chlorinated ethanes like 1,1,1-trichloroethane (1,1,1-TCA) to be transformed via different competing pathways (biotic and abiotic) complicates the assessment of their fate in the subsurface. In this study, the use of a dual C-Cl isotope approach to identify the active degradation pathways of 1,1,1-TCA is evaluated for the first time in an aerobic aquifer impacted by 1,1,1-TCA and trichloroethylene (TCE) with concentrations of up to 20 mg/L and 3.4 mg/L, respectively. The reaction-specific dual carbon-chlorine (C-Cl) isotope trends determined in a recent laboratory study illustrated the potential of a dual isotope approach to identify contaminant degradation pathways of 1,1,1-TCA. Compared to the dual isotope slopes (Δδ(13)C/Δδ(37)Cl) previously determined in the laboratory for dehydrohalogenation/hydrolysis (DH/HY, 0.33 ± 0.04) and oxidation by persulfate (∞), the slope determined from field samples (0.6 ± 0.2, r(2) = 0.75) is closer to the one observed for DH/HY, pointing to DH/HY as the predominant degradation pathway of 1,1,1-TCA in the aquifer. The observed deviation could be explained by a minor contribution of additional degradation processes. This result, along with the little degradation of TCE determined from isotope measurements, confirmed that 1,1,1-TCA is the main source of the 1,1-dichlorethylene (1,1-DCE) detected in the aquifer with concentrations of up to 10 mg/L. This study demonstrates that a dual C-Cl isotope approach can strongly improve the qualitative and quantitative assessment of 1,1,1-TCA degradation processes in the field. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ehama, Makoto; Hashihama, Fuminori; Kinouchi, Shinko; Kanda, Jota; Saito, Hiroaki
2016-06-01
Determining the total particulate phosphorus (TPP) and particulate inorganic phosphorus (PIP) in oligotrophic oceanic water generally requires the filtration of a large amount of water sample. This paper describes methods that require small filtration volumes for determining the TPP and PIP concentrations. The methods were devised by validating or improving conventional sample processing and by applying highly sensitive liquid waveguide spectrophotometry to the measurements of oxidized or acid-extracted phosphate from TPP and PIP, respectively. The oxidation of TPP was performed by a chemical wet oxidation method using 3% potassium persulfate. The acid extraction of PIP was initially carried out based on the conventional extraction methodology, which requires 1M HCl, followed by the procedure for decreasing acidity. While the conventional procedure for acid removal requires a ten-fold dilution of the 1M HCl extract with purified water, the improved procedure proposed in this study uses 8M NaOH solution for neutralizing 1M HCl extract in order to reduce the dilution effect. An experiment for comparing the absorbances of the phosphate standard dissolved in 0.1M HCl and of that dissolved in a neutralized solution [1M HCl: 8M NaOH=8:1 (v:v)] exhibited a higher absorbance in the neutralized solution. This indicated that the improved procedure completely removed the acid effect, which reduces the sensitivity of the phosphate measurement. Application to an ultraoligotrophic water sample showed that the TPP concentration in a 1075mL-filtered sample was 8.4nM with a coefficient of variation (CV) of 4.3% and the PIP concentration in a 2300mL-filtered sample was 1.3nM with a CV of 6.1%. Based on the detection limit (3nM) of the sensitive phosphate measurement and the ambient TPP and PIP concentrations of the ultraoligotrophic water, the minimum filtration volumes required for the detection of TPP and PIP were estimated to be 15 and 52mL, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Micropollutants removal by full-scale UV-C/sulfate radical based Advanced Oxidation Processes.
Rodríguez-Chueca, J; Laski, E; García-Cañibano, C; Martín de Vidales, M J; Encinas, Á; Kuch, B; Marugán, J
2018-07-15
The high chemical stability and the low biodegradability of a vast number of micropollutants (MPs) impede their correct treatment in urban wastewater treatment plants. In most cases, the chemical oxidation is the only way to abate them. Advanced Oxidation Processes (AOPs) have been experimentally proved as efficient in the removal of different micropollutants at lab-scale. However, there is not enough information about their application at full-scale. This manuscript reports the application of three different AOPs based on the addition of homogeneous oxidants [hydrogen peroxide, peroxymonosulfate (PMS) and persulfate anions (PS)], in the UV-C tertiary treatment of Estiviel wastewater treatment plant (Toledo, Spain) previously designed and installed in the facility for disinfection. AOPs based on the photolytic decomposition of oxidants have been demonstrated as more efficient than UV-C radiation alone on the removal of 25 different MPs using low dosages (0.05-0.5 mM) and very low UV-C contact time (4-18 s). Photolysis of PMS and H 2 O 2 reached similar average MPs removal in all the range of oxidant dosages, obtaining the highest efficiency with 0.5 mM and 18 s of contact time (48 and 55% respectively). Nevertheless, PMS/UV-C reached slightly higher removal than H 2 O 2 /UV-C at low dosages. So, these treatments are selective to degrade the target compounds, obtaining different removal efficiencies for each compound regarding the oxidizing agent, dosages and UV-C contact time. In all the cases, H 2 O 2 /UV-C is more efficient than PMS/UV-C, comparing the ratio cost:efficiency (€/m 3 ·order). Even H 2 O 2 /UV-C treatments are more efficient than UV-C alone. Thus, the addition of 0.5 mM of H 2 O 2 compensates the increased of UV-C contact time and therefore the increase of electrical consumption, that it should be need to increase the removal of MPs by UV-C treatments alone. Copyright © 2018 Elsevier B.V. All rights reserved.
Tanzania national survey on iodine deficiency: impact after twelve years of salt iodation
Assey, Vincent D; Peterson, Stefan; Kimboka, Sabas; Ngemera, Daniel; Mgoba, Celestin; Ruhiye, Deusdedit M; Ndossi, Godwin D; Greiner, Ted; Tylleskär, Thorkild
2009-01-01
Background In many low-income countries, children are at high risk of iodine deficiency disorders, including brain damage. In the early 1990s, Tanzania, a country that previously suffered from moderate to severe iodine deficiency, adopted universal salt iodation (USI) as an intervention strategy, but its impact remained unknown. Methods We report on the first national survey in mainland Tanzania, conducted in 2004 to assess the extent to which iodated salt was used and its apparent impact on the total goitre prevalence (TGP) and urinary iodine concentrations (UIC) among the schoolchildren after USI was initiated. In 2004, a cross-sectional goitre survey was conducted; covering 140,758 schoolchildren aged 6 - 18 years were graded for goitre according to new WHO goitre classification system. Comparisons were made with district surveys conducted throughout most of the country during the 1980s and 90s. 131,941 salt samples from households were tested for iodine using rapid field test kits. UIC was determined spectrophotometrically using the ammonium persulfate digestion method in 4523 sub-sampled children. Results 83.6% (95% CI: 83.4 - 83.8) of salt samples tested positive for iodine. Whereas the TGP was about 25% on average in the earlier surveys, it was 6.9% (95%CI: 6.8-7.0) in 2004. The TGP for the younger children, 6-9 years old, was 4.2% (95%CI: 4.0-4.4), n = 41,965. In the 27 goitre-endemic districts, TGP decreased from 61% (1980s) to 12.3% (2004). The median UIC was 204 (95% CF: 192-215) μg/L. Only 25% of children had UIC <100 μg/L and 35% were ≥ 300 μg/L, indicating low and excess iodine intake, respectively. Conclusion Our study demonstrates a marked improvement in iodine nutrition in Tanzania, twelve years after the initiation of salt iodation programme. The challenge in sustaining IDD elimination in Tanzania is now two-fold: to better reach the areas with low coverage of iodated salt, and to reduce iodine intake in areas where it is excessive. Particular attention is needed in improving quality control at production level and perhaps the national salt iodation regulations may need to be reviewed. PMID:19728863
Joffe, Avrum; Mock, Steven; Yun, Byeong Hwa; Kolbanovskiy, Alexander; Geacintov, Nicholas E; Shafirovich, Vladimir
2003-08-01
A simple photochemical approach is described for synthesizing site specific, stable 5-guanidino-4-nitroimidazole (NIm) adducts in single- and double-stranded oligodeoxynucleotides containing single and multiple guanine residues. The DNA sequences employed, 5'-d(ACC CG(1)C G(2)TC CG(3)C G(4)CC) and 5'-d(ACC CG(1)C G(2)TC C), were a portion of exon 5 of the p53 tumor suppressor gene, including the codons 157 (G(2)) and 158 (G(3)) mutation hot spots in the former sequence with four Gs and the codon 157 (G(2)) mutation hot spot in the latter sequence with two Gs. The nitration of oligodeoxynucleotides was initiated by the selective photodissociation of persulfate anions to sulfate radicals induced by UV laser pulses (308 nm). In aqueous solutions, of bicarbonate and nitrite anions, the sulfate radicals generate carbonate anion radicals and nitrogen dioxide radicals by one electron oxidation of the respective anions. The guanine residue in the oligodeoxynucleotide is oxidized by the carbonate anion radical to form the neutral guanine radical. While the nitrogen dioxide radicals do not react with any of the intact DNA bases, they readily combine with the guanine radicals at either the C8 or the C5 positions. The C8 addition generates the well-known 8-nitroguanine (8-nitro-G) lesions, whereas the C5 attack produces unstable adducts, which rapidly decompose to NIm lesions. The maximum yields of the nitro products (NIm + 8-nitro-G) were typically in the range of 20-40%, depending on the number of guanine residues in the sequence. The ratio of the NIm to 8-nitro-G lesions gradually decreases from 3.4 in the model compound, 2',3',5'-tri-O-acetylguanosine, to 2.1-2.6 in the single-stranded oligodeoxynucleotides and to 0.8-1.1 in the duplexes. The adduct of the 5'-d(ACC CG(1)C G(2)TC C) oligodeoxynucleotide containing the NIm lesion in codon 157 (G(2)) was isolated in HPLC-pure form. The integrity of this adduct was established by a detailed analysis of exonuclease digestion ladders by matrix-assisted laser desorption ionization with time-of-flight detection MS techniques.
Labib, Rola M.; Handoussa, Heba; Swilam, Noha; El-Khatib, Ahmed H.; Sharapov, Farukh; Mohamed, Tamer; Krstin, Sonja; Linscheid, Michael W.; Singab, Abdel Nasser; Wink, Michael
2016-01-01
Background Schotia brachypetala Sond. (Fabaceae) is an endemic tree of Southern Africa whose phytochemistry and pharmacology were slightly studied. The present work aimed at profiling the major phenolics compounds present in the hydro-alcohol extract from S. brachypetala leaves (SBE) using LC/HRESI/MS/MS and NMR and prove their antioxidant capabilities using novel methods. Methods In vitro assays; DPPH, TEAC persulfate decolorizing kinetic and FRAP assays, and in vivo assays: Caenorhabditis elegans strains maintenance, Intracellular ROS in C. elegans, Survival assay, GFP expression and Subcellular DAF-16 localization were employed to evaluate the antioxidant activity. Results More than forty polyphenols, including flavonoid glycosides, galloylated flavonoid glycosides, isoflavones, dihydrochalcones, procyanidins, anthocyanins, hydroxy benzoic acid derivatives, hydrolysable tannins, and traces of methylated and acetylated flavonoid derivatives were identified. Three compounds were isolated and identified from the genus Schotia for the first time, namely gallic acid, myricetin-3-O-α-L-1C4-rhamnoside and quercetin-3-O-L-1C4-rhamnoside. The total phenolics content of SBE was (376 mg CAE/g), followed by flavonoids (67.87 QE/g). In vitro antioxidant activity of SBE was evidenced by DPPH radical scavenging activity (IC50 of 9 µg/mL), FRAP ferric reducing activity (5,000 mol Fe2+ E/mg) and ABTS peroxide inhibiting activity (1,054 mM Trolox E/mg). The tested extract was able to protect the worms against juglone induced oxidative stress, an increased survival rate (up to 41%) was recorded, when compared with the control group (11%) and attenuate the reactive oxygen species (ROS) accumulation in dose-dependent and reached up to 72% for the highest tested concentration. SBE was also able to attenuate the levels of heat shock protein (HSP) expression in dose-dependent up to 60% in the 150 µg SBE/mL group. In DAF-16 Subcellular localization SBE treated worms showed nuclear localization pattern up to 78%, while it was only 5% in the untreated control group. Discussion A pronounced antioxidant activity in vivo, which can be attributed to its ability to promote the nuclear translocation of DAF-16/FOXO, the main transcription factor regulating the expression of stress response genes. The remarkable antioxidant activity in vitro and in vivo correlates to SBE rich phenolic profile. PMID:27896020
Luo, Congwei; Ma, Jun; Jiang, Jin; Liu, Yongze; Song, Yang; Yang, Yi; Guan, Yinghong; Wu, Daoji
2015-09-01
This study comparatively investigated atrazine (ATZ) degradation by irradiation at the wavelength of 254 nm in the presence of peroxides including hydrogen peroxide (H2O2), peroxymonosulfate (HSO5(-)), and persulfate (S2O8(2-)) at various initial ATZ concentrations and oxidant dosages. The effects of water matrix, such as carbonate/bicarbonate (HCO3(-)/CO3(2-)), chloride ions (Cl(-)), and natural organic matter (NOM), were evaluated on these three advanced oxidation processes. A simple steady-state kinetic model was developed based on the initial rates of ATZ destruction, which could well describe the apparent pseudo-first-order rate constants (k(app), s(-1)) of ATZ degradation in these three processes. The specific roles of reactive species (i.e., HO·, SO4(-·), CO3(-·), and Cl2(-·)) under various experimental conditions were quantitatively evaluated based on their steady-state concentrations obtained from this model. Modeling results showed that the steady-state concentrations of HO· and SO4(-·) decreased with the increase of CO3(2-)/HCO3(-) concentration, and the relative contribution of HO· to ATZ degradation significantly decreased in UV/H2O2 and UV/HSO5(-) systems. On the other hand, the scavenging effect of HCO3(-)/CO3(2-) on the relative contribution of SO4(-·) to ATZ degradation was lower than that on HO·. The presence of Cl(-) (0.5-10 mM) significantly scavenged SO4(-·) but had slightly scavenging effect on HO· at the present experimental pH, resulting in greater decrease of k(app) in the UV/S2O8(2-) than UV/H2O2 and UV/HSO5(-) systems. Higher levels of Cl2(-·) were generated in the UV/S2O8(2-) than those in the UV/H2O2 and UV/HSO5(-) systems at the same Cl(-) concentrations. NOM significantly decreased k(app) due to its effects of competitive UV absorption and radical scavenging with the latter one being dominant. These results improve the understanding of the effects of water constituents for ATZ degradation in the UV-based oxidation processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Révész, Kinga M.; Doctor, Daniel H.
2014-01-01
The purposes of the Reston Stable Isotope Laboratory (RSIL) lab codes 1851 and 1852 are to determine the total carbon mass and the ratio of the stable isotopes of carbon (δ13C) for total dissolved inorganic carbon (DIC, lab code 1851) and total nonpurgeable dissolved organic carbon (DOC, lab code 1852) in aqueous samples. The analysis procedure is automated according to a method that utilizes a total carbon analyzer as a peripheral sample preparation device for analysis of carbon dioxide (CO2) gas by a continuous-flow isotope ratio mass spectrometer (CF-IRMS). The carbon analyzer produces CO2 and determines the carbon mass in parts per million (ppm) of DIC and DOC in each sample separately, and the CF-IRMS determines the carbon isotope ratio of the produced CO2. This configuration provides a fully automated analysis of total carbon mass and δ13C with no operator intervention, additional sample preparation, or other manual analysis. To determine the DIC, the carbon analyzer transfers a specified sample volume to a heated (70 °C) reaction vessel with a preprogrammed volume of 10% phosphoric acid (H3PO4), which allows the carbonate and bicarbonate species in the sample to dissociate to CO2. The CO2 from the reacted sample is subsequently purged with a flow of helium gas that sweeps the CO2 through an infrared CO2 detector and quantifies the CO2. The CO2 is then carried through a high-temperature (650 °C) scrubber reactor, a series of water traps, and ultimately to the inlet of the mass spectrometer. For the analysis of total dissolved organic carbon, the carbon analyzer performs a second step on the sample in the heated reaction vessel during which a preprogrammed volume of sodium persulfate (Na2S2O8) is added, and the hydroxyl radicals oxidize the organics to CO2. Samples containing 2 ppm to 30,000 ppm of carbon are analyzed. The precision of the carbon isotope analysis is within 0.3 per mill for DIC, and within 0.5 per mill for DOC.
NASA Astrophysics Data System (ADS)
Li, Qiyuan; Zheng, Cheng; Mesgari, Sara; Hewakuruppu, Yasitha L.; Hjerrild, Natasha; Crisostomo, Felipe; Morrison, Karl; Woffenden, Albert; Rosengarten, Gary; Scott, Jason A.; Taylor, Robert A.
2015-12-01
Recent studies [1-3] have demonstrated that nanotechnology, in the form of nanoparticles suspended in water and organic liquids, can be employed to enhance solar collection via direct volumetric absorbers. However, current nanofluid solar collector experimental studies are either relevant to low-temperature flat plate solar collectors (<100 °C) [4] or higher temperature (>100 °C) indoor laboratory-scale concentrating solar collectors [1, 5]. Moreover, many of these studies involve in thermal properties of nanofluid (such as thermal conductivity) enhancement in solar collectors by using conventional selective coated steel/copper tube receivers [6], and no full-scale concentrating collector has been tested at outdoor condition by employing nanofluid absorber [2, 6]. Thus, there is a need of experimental researches to evaluate the exact performance of full-scale concentrating solar collector by employing nanofluids absorber at outdoor condition. As reported previously [7-9], a low profile (<10 cm height) solar thermal concentrating collector was designed and analysed which can potentially supply thermal energy in the 100-250 °C range (an application currently met by gas and electricity). The present study focuses on the design and experimental investigation of a nanofluid absorber employed in this newly designed collector. The nanofluid absorber consists of glass tubes used to contain chemically functionalized multi-walled carbon nanotubes (MWCNTs) dispersed in DI water. MWCNTs (average diameter of 6-13 nm and average length of 2.5-20 μm) were functionalized by potassium persulfate as an oxidant. The nanofluids were prepared with a MCWNT concentration of 50 +/- 0.1 mg/L to form a balance between solar absorption depth and viscosity (e.g. pumping power). Moreover, experimentally comparison of the thermal efficiency between two receivers (a black chrome-coated copper tube versus a MWCNT nanofluid contained within a glass tubetube) is investigated. Thermal experimentation reveals that while the collector efficiency reduced from 73% to 54% when operating temperature increased from ambient to 80 °C by employing a MWCNT nanofluid receiver, the efficiency decreased from 85% to 68% with same operating temperature range by employing black chrome-coated copper tube receiver. This difference can mainly be explained by the reflection optical loss off and higher thermal emission heat loss the front surface of the glass tube, yielding a 90% of transmittance to the MWCNT fluid and a 0.9 emissivity of glass pipe. Overall, an experimental investigation of the performance of a low profile solar collector with a direct volumetric absorber and conventional surface absorber is presented. In order to bring nanotechnology into industrial and commercial heating applications,
Nitrogen isotopic analysis of carbonate-bound organic matter in modern and fossil fish otoliths
NASA Astrophysics Data System (ADS)
Lueders-Dumont, Jessica A.; Wang, Xingchen T.; Jensen, Olaf P.; Sigman, Daniel M.; Ward, Bess B.
2018-03-01
The nitrogen isotopic composition (δ15N) of otolith-bound organic matter (OM) is a potential source of information on dietary history of bony fishes. In contrast to the δ15N of white muscle tissue, the most commonly used tissue for ecological studies, the δ15N of otolith-bound OM (δ15Noto) provides a record of whole life history. More importantly, δ15Noto can be measured in contexts where tissue is not available, for example, in otolith archives and sedimentary deposits. The utility and robustness of otolith δ15N analysis was heretofore limited by the low N content of otoliths, which precluded the routine measurement of individual otoliths as well as the thorough cleaning of otolith material prior to analysis. Here, we introduce a new method based on oxidation to nitrate followed by bacterial conversion to N2O. The method requires 200-fold less N compared to traditional combustion approaches, allowing for thorough pre-cleaning and replicated analysis of individual otoliths of nearly any size. Long term precision of δ15Noto is 0.3‰. Using an internal standard of Atlantic cod (Gadus morhua) otoliths, we examine the parameters of the oxidative cleaning step with regard to oxidant (potassium persulfate and sodium hypochlorite), temperature, and time. We also report initial results that verify the usefulness of δ15Noto for ecological studies. For three salmonid species, left and right otoliths from the same fish are indistinguishable. We find that the δ15Noto of pink salmon (Oncorhynchus gorbuscha) is related to the size of the fish for this species. We find that intra-cohort δ15Noto standard deviation for wild pink salmon, farmed brown trout (Salmo trutta), and farmed rainbow trout (Oncorhynchus mykiss) are all 0.4‰ or less, suggesting that δ15Noto will be valuable for population-level studies. Lastly, our protocol yields reproducible data for both δ15Noto and otolith N content in 17th century Atlantic cod otoliths. We find that 17th century cod are approximately 2 ‰ higher than modern cod, arguably consistent with either the larger size of the otoliths (and thus inferred for the fish) or with changes in baseline (primary producer) δ15N in the modern coastal ocean compared to the past. All told, the results of this study bode well for the utility of otolith-bound δ15N for investigating the environment and ecology of modern and past fish.
Yang, Yi; Pignatello, Joseph J; Ma, Jun; Mitch, William A
2016-02-01
When reverse osmosis brines from potable wastewater reuse plants are discharged to poorly-flushed estuaries, the concentrated organic contaminants are a concern for receiving water ecosystems. UV/hydrogen peroxide (UV/H2O2) and UV/persulfate (UV/S2O8(2-)) advanced oxidation processes (AOPs) may reduce contaminant burdens prior to discharge, but the effects of the high levels of halide, carbonate and effluent organic matter (EfOM) normally present in these brines are unclear. On the one hand, these substances may reduce process efficiency by scavenging reactive oxygen species (ROS), hydroxyl (OH) and sulfate (SO4(-) radicals. On the other, the daughter radicals generated by halide and carbonate scavenging may themselves degrade organics, offsetting the effect of ROS scavenging. UV/H2O2 and UV/S2O8(2-) AOPs were compared for degradation of five pharmaceuticals spiked into brines obtained from two reuse facilities and the RO influent from one of them. For UV/H2O2, EfOM scavenged ∼75% of the OH, reducing the degradation efficiency of the target contaminants to a similar extent; halide and carbonate scavenging and the reactivities of associated daughter radicals were less important. For UV/S2O8(2-), anions (mostly Cl(-)) scavenged ∼93% of the SO4(-). Because daughter radicals of Cl(-) contributed to contaminant degradation, the reduction in contaminant degradation efficiency was only ∼75-80%, with the reduction driven by daughter radical scavenging by EfOM. Conversion of SO4(-) to more selective halogen and carbonate radicals resulted in a wider range of degradation efficiencies among the contaminants. For both AOPs, 250 mJ/cm(2) average fluence achieved significant removal of four pharmaceuticals, with significantly better performance by UV/S2O8(2-) treatment for some constituents. Accounting for the lower brine flowrates, the energy output to achieve this fluence in brines is comparable to that often applied to RO permeates. However, much higher fluence was required for the least reactive pharmaceutical. Comparing AOP application to the RO influent or brine, equal or greater removal was achieved for brine treatment for comparable energy input. AOP treatment of brines could be applied to reduce, but not eliminate, contaminant burdens prior to discharge. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rus, David L.; Patton, Charles J.; Mueller, David K.; Crawford, Charles G.
2013-01-01
The characterization of total-nitrogen (TN) concentrations is an important component of many surface-water-quality programs. However, three widely used methods for the determination of total nitrogen—(1) derived from the alkaline-persulfate digestion of whole-water samples (TN-A); (2) calculated as the sum of total Kjeldahl nitrogen and dissolved nitrate plus nitrite (TN-K); and (3) calculated as the sum of dissolved nitrogen and particulate nitrogen (TN-C)—all include inherent limitations. A digestion process is intended to convert multiple species of nitrogen that are present in the sample into one measureable species, but this process may introduce bias. TN-A results can be negatively biased in the presence of suspended sediment, and TN-K data can be positively biased in the presence of elevated nitrate because some nitrate is reduced to ammonia and is therefore counted twice in the computation of total nitrogen. Furthermore, TN-C may not be subject to bias but is comparatively imprecise. In this study, the effects of suspended-sediment and nitrate concentrations on the performance of these TN methods were assessed using synthetic samples developed in a laboratory as well as a series of stream samples. A 2007 laboratory experiment measured TN-A and TN-K in nutrient-fortified solutions that had been mixed with varying amounts of sediment-reference materials. This experiment identified a connection between suspended sediment and negative bias in TN-A and detected positive bias in TN-K in the presence of elevated nitrate. A 2009–10 synoptic-field study used samples from 77 stream-sampling sites to confirm that these biases were present in the field samples and evaluated the precision and bias of TN methods. The precision of TN-C and TN-K depended on the precision and relative amounts of the TN-component species used in their respective TN computations. Particulate nitrogen had an average variability (as determined by the relative standard deviation) of 13 percent. However, because particulate nitrogen constituted only 14 percent, on average, of TN-C, the precision of the TN-C method approached that of the method for dissolved nitrogen (2.3 percent). On the other hand, total Kjeldahl nitrogen (having a variability of 7.6 percent) constituted an average of 40 percent of TN-K, suggesting that the reduced precision of the Kjeldahl digestion may affect precision of the TN-K estimates. For most samples, the precision of TN computed as TN-C would be better (lower variability) than the precision of TN-K. In general, TN-A precision (having a variability of 2.1 percent) was superior to TN-C and TN-K methods. The laboratory experiment indicated that negative bias in TN-A was present across the entire range of sediment concentration and increased as sediment concentration increased. This suggested that reagent limitation was not the predominant cause of observed bias in TN-A. Furthermore, analyses of particulate nitrogen present in digest residues provided an almost complete accounting for the nitrogen that was underestimated by alkaline-persulfate digestion. This experiment established that, for the reference materials at least, negative bias in TN-A was caused primarily by the sequestration of some particulate nitrogen that was refractory to the digestion process. TN-K biases varied between positive and negative values in the laboratory experiment. Positive bias in TN-K is likely the result of the unintended reduction of a small and variable amount of nitrate to ammonia during the Kjeldahl digestion process. Negative TN-K bias may be the result of the sequestration of a portion of particulate nitrogen during the digestion process. Negative bias in TN-A was present across the entire range of suspended-sediment concentration (1 to 14,700 milligrams per liter [mg/L]) in the synoptic-field study, with relative bias being nearly as great at sediment concentrations below 10 mg/L (median of -3.5 percent) as that observed at sediment concentrations up to 750 mg/L (median of -4.4 percent). This lent support to the laboratory-experiment finding that some particulate nitrogen is sequestered during the digestion process, and demonstrated that negative TN-A bias was present in samples with very low suspended-sediment concentrations. At sediment concentrations above 750 mg/L, the negative TN-A bias became more likely and larger (median of -13.2 percent), suggesting a secondary mechanism of bias, such as reagent limitation. From a geospatial perspective, trends in TN-A bias were not explained by selected basin characteristics. Though variable, TN-K bias generally was positive in the synoptic-field study (median of 3.1 percent), probably as a result of the reduction of nitrate. Three alternative approaches for assessing TN in surface water were evaluated for their impacts on existing and future sampling programs. Replacing TN-A with TN-C would remove the bias from subsequent data, but this approach also would introduce discontinuity in historical records. Replacing TN-K with TN-C would lead to the removal of positive bias in TN-K in the presence of elevated nitrate. However, in addition to the issues that may arise from a discontinuity in the data record, this approach may not be applicable to regulatory programs that require the use of total Kjeldahl nitrogen for stream assessment. By adding TN-C to existing TN-A or TN-K analyses, historical-data continuity would be preserved and the transitional period could be used to minimize the impact of bias on data analyses. This approach, however, imposes the greatest burdens on field operations and in terms of analytical costs. The variation in these impacts on different sampling programs will challenge U.S. Geological Survey scientists attempting to establish uniform standards for TN sample collection and analytical determinations.
Ball, James W.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Holloway, JoAnn M.; Verplanck, Philip L.; Sturtevant, Sabin A.
2002-01-01
Sixty-seven water analyses are reported for samples collected from 44 hot springs and their overflow drainages and two ambient-temperature acid streams in Yellowstone National Park (YNP) during 1990-2000. Thirty-seven analyses are reported for 1999, 18 for June of 2000, and 12 for September of 2000. These water samples were collected and analyzed as part of research investigations in YNP on microbially mediated sulfur oxidation in stream water, arsenic and sulfur redox speciation in hot springs, and chemical changes in overflow drainages that affect major ions, redox species, and trace elements. Most samples were collected from sources in the Norris Geyser Basin. Two ambient-temperature acidic stream systems, Alluvium and Columbine Creeks and their tributaries in Brimstone Basin, were studied in detail. Analyses were performed at or near the sampling site, in an on-site mobile laboratory truck, or later in a USGS laboratory, depending on stability of the constituent and whether or not it could be preserved effectively. Water temperature, specific conductance, pH, Eh, dissolved oxygen (D.O.), and dissolved H2S were determined on-site at the time of sampling. Alkalinity, acidity, and F were determined within a few days of sample collection by titration with acid, titration with base, and ion-selective electrode or ion chromatography (IC), respectively. Concentrations of S2O3 and SxO6 were determined as soon as possible (minutes to hours later) by IC. Concentrations of Br, Cl, NH4, NO2, NO3, SO4, Fe(II), and Fe(total) were determined within a few days of sample collection. Densities were determined later in the USGS laboratory. Concentrations of Li and K were determined by flame atomic absorption spectrometry. Concentrations of Al, As(total), B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe(total), K, Li, Mg, Mn, Na, Ni, Pb, Se, Si, Sr, V, and Zn were determined by inductively-coupled plasma-optical emission spectrometry. Trace concentrations of Cd, Cr, Cu, Pb, and Sb were determined by Zeeman-corrected graphitefurnace atomic-absorption spectrometry. Trace concentrations of As(total) and As(III) were determined by hydride generation atomic-absorption spectrometry using a flow-injection analysis system. Concentrations of Cl, NO3, Br, and SO4 were determined by IC. Concentrations of Fe(II) and Fe(total) were determined by the ferrozine colorimetric method. Concentrations of NO2 were determined by colorimetry using matrix-matched standards. Concentrations of NH4 were determined by IC, with reanalysis by colorimetry where separation of Na and NH4 peaks was poor. Dissolved organic carbon (DOC) concentrations were determined by the wet persulfate oxidation method.
NASA Astrophysics Data System (ADS)
Wang, X. T.; Sigman, D. M.; Cohen, A. L.; Sinclair, D. J.; Sherrell, R. M.; Weigand, M. A.; Erler, D. V.; Ren, H.
2015-01-01
The skeleton-bound organic nitrogen in reef-building symbiotic corals may be a high-resolution archive of ocean nitrogen cycle dynamics and a tool for understanding coral biogeochemistry and physiological processes. However, the existing methods for measuring the isotopic composition of coral skeleton-bound organic nitrogen (hereafter, CS-δ15N) either require too much skeleton material or have low precision, limiting the applications of this relatively new proxy. In addition, the controlling factors on CS-δ15N remain poorly understood: the δ15N of source nitrogen and the internal nitrogen cycle of the coral/zooxanthellae symbiosis may both be important. Here, we describe a new ("persulfate/denitrifier"-based) method for measuring CS-δ15N, requiring only 5 mg of skeleton material and yielding a long-term precision better than 0.2‰ (1σ). Using this new method, we investigate CS-δ15N at Bermuda. Ten modern Diploria labyrinthiformis coral cores/colonies from 4 sampling sites were measured for CS-δ15N. Nitrogen concentrations (nitrate + nitrite, ammonium, and dissolved organic nitrogen) and δ15N of plankton were also measured at these coral sites. Among the 4 sampling sites, CS-δ15N shows an increase with proximity to the island, from ∼3.8‰ to ∼6.8‰ vs. atmospheric N2, with the northern offshore site having a CS-δ15N 1-2‰ higher than the δ15N of thermocline nitrate in the surrounding Sargasso Sea. Two annually resolved CS-δ15N time series suggest that the offshore-inshore CS-δ15N gradient has persisted since at least the 1970s. Plankton δ15N among these 4 sites also has an inshore increase, but of only ∼1‰. Coral physiological change must explain the remaining (∼2‰) inshore increase in CS-δ15N, and previous work points to the coral/zooxanthellae N cycle as a control on host tissue (and thus carbonate skeletal) δ15N. The CS-δ15N gradient is hypothesized to result mainly from varying efficiency in the internal nitrogen recycling of the coral/zooxanthellae symbiosis. It is proposed that, in more productive inshore waters, greater food uptake by the coral causes a greater fraction of its low-δ15N regenerated ammonium to be excreted rather than assimilated by zooxanthellae, raising the δ15N of the inshore corals. If so, coral tissue- and CS-δ15N may prove of use to reconstruct and monitor the state of the coral/zooxanthellae symbiosis over space and time.
Controlling Particle Morphologies at Fluid Interfaces: Macro- and Micro- approaches
NASA Astrophysics Data System (ADS)
Beesabathuni, Shilpa Naidu
The controlled generation of varying shaped particles is important for many applications: consumer goods, biomedical diagnostics, food processing, adsorbents and pharmaceuticals which can benefit from the availability of geometrically complex and chemically inhomogeneous particles. This thesis presents two approaches to spherical and non-spherical particle synthesis using macro and microfluidics. In the first approach, a droplet microfluidic technique is explored to fabricate spherical conducting polymer, polyaniline, particles with precise control over morphology and functionality. Microfluidics has recently emerged as an important alternate to the synthesis of complex particles. The conducting polymer, polyaniline, is widely used and known for its stability, high conductivity, and favorable redox properties. In this approach, monodisperse micron-sized polyaniline spherical particles were synthesized using two-phase droplet microfluidics from Aniline and Ammonium persulfate oxidative polymerization in an oil-based continuous phase. The morphology of the polymerized particles is porous in nature which can be used for encapsulation as well as controlled release applications. Encapsulation of an enzyme, glucose oxidase, was also performed using the technique to synthesize microspheres for glucose sensing. The polymer microspheres were characterized using SEM, UV-Vis and EDX to understand the relationship between their microstructure and stability. In the second approach, molten drop impact in a cooling aqueous medium to generate non-spherical particles was explored. Viscoelastic wax based materials are widely used in many applications and their performance and application depends on the particle morphology and size. The deformation of millimeter size molten wax drops as they impacted an immiscible liquid interface was investigated. Spherical molten wax drops impinged on a cooling water bath, then deformed and as a result of solidification were arrested into various shapes such as ellipsoids, mushrooms, spherulites and discs. The final morphology of the wax particles is governed by the interfacial, inertial, viscous and thermal effects, which can be studied over a range of Weber, Capillary, Reynolds and Stefan numbers. A simplified Stefan problem for a spherical drop was solved. The time required to initiate a phase transition at the interface of the molten wax and water after impact was estimated and correlated with the drop deformation history and final wax particle shape to develop a capability to predict the shape. While the microfluidic synthesis approach offers precise control over morphology and functionality, large particle throughput is a limitation. The drop impact in a liquid medium emulsion approach is limited to crosslinking or heat sensitive materials but can be extended to large scale production for industrial applications. Both approaches are simple, robust and cost effective making them viable and attractive solutions for complex particle synthesis. The choice of the approach is dependent on considerations such as particle material, size, shape, throughput and end application.
Ball, James W.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Holloway, JoAnn M.
2008-01-01
Water analyses are reported for 157 samples collected from numerous hot springs, their overflow drainages, and Lemonade Creek in Yellowstone National Park (YNP) during 2003-2005. Water samples were collected and analyzed for major and trace constituents from ten areas of YNP including Terrace and Beryl Springs in the Gibbon Canyon area, Norris Geyser Basin, the West Nymph Creek thermal area, the area near Nymph Lake, Hazle Lake, and Frying Pan Spring, Lower Geyser Basin, Washburn Hot Springs, Mammoth Hot Springs, Potts Hot Spring Basin, the Sulphur Caldron area, and Lemonade Creek near the Solfatara Trail. These water samples were collected and analyzed as part of research investigations in YNP on arsenic, antimony, and sulfur redox distribution in hot springs and overflow drainages, and the occurrence and distribution of dissolved mercury. Most samples were analyzed for major cations and anions, trace metals, redox species of antimony, arsenic, iron, nitrogen, and sulfur, and isotopes of hydrogen and oxygen. Analyses were performed at the sampling site, in an on-site mobile laboratory vehicle, or later in a U.S. Geological Survey laboratory, depending on stability of the constituent and whether it could be preserved effectively. Water samples were filtered and preserved onsite. Water temperature, specific conductance, pH, Eh (redox potential relative to the Standard Hydrogen Electrode), and dissolved hydrogen sulfide were measured onsite at the time of sampling. Acidity was determined by titration, usually within a few days of sample collection. Alkalinity was determined by titration within 1 to 2 weeks of sample collection. Concentrations of thiosulfate and polythionate were determined as soon as possible (generally minutes to hours after sample collection) by ion chromatography in an on-site mobile laboratory vehicle. Total dissolved-iron and ferrous-iron concentrations often were measured onsite in the mobile laboratory vehicle. Concentrations of dissolved aluminum, arsenic, boron, barium, beryllium, calcium, cadmium, cobalt, chromium, copper, iron, potassium, lithium, magnesium, manganese, molybdenum, sodium, nickel, lead, selenium, silica, strontium, vanadium, and zinc were determined by inductively-coupled plasma-optical emission spectrometry. Trace concentrations of dissolved antimony, cadmium, cobalt, chromium, copper, lead, and selenium were determined by Zeeman-corrected graphite-furnace atomic-absorption spectrometry. Dissolved concentrations of total arsenic, arsenite, total antimony, and antimonite were determined by hydride-generation atomic-absorption spectrometry using a flow-injection analysis system. Dissolved concentrations of total mercury and methyl mercury were determined by cold-vapor atomic-fluorescence spectrometry. Concentrations of dissolved chloride, fluoride, nitrate, bromide, and sulfate were determined by ion chromatography. Concentrations of dissolved ferrous and total iron were determined by the FerroZine colorimetric method. Concentrations of dissolved nitrite were determined by colorimetry or chemiluminescence. Concentrations of dissolved ammonium were determined by ion chromatography, with reanalysis by colorimetry when separation of sodium and ammonia peaks was poor. Dissolved organic carbon concentrations were determined by the wet persulfate oxidation method. Hydrogen and oxygen isotope ratios were determined using the hydrogen and CO2 equilibration techniques, respectively.
NASA Astrophysics Data System (ADS)
Pisipati, Padmapriya
Polyacrylonitrile (PAN) and its copolymers are used in a wide variety of applications ranging from textiles to purification membranes, packaging material and carbon fiber precursors. High performance polyacrylonitrile copolymer fiber is the most dominant precursor for carbon fibers. Synthesis of very high molecular weight poly(acrylonitrile-co-methyl acrylate) copolymers with weight average molecular weights of at least 1.7 million g/mole were synthesized on a laboratory scale using low temperature, emulsion copolymerization in a closed pressure reactor. Single filaments were spun via hybrid dry-jet gel solution spinning. These very high molecular weight copolymers produced precursor fibers with tensile strengths averaging 954 MPa with an elastic modulus of 15.9 GPa (N = 296). The small filament diameters were approximately 5 im. Results indicated that the low filament diameter that was achieved with a high draw ratio, combined with the hybrid dry-jet gel spinning process lead to an exponential enhancement of the tensile properties of these fibers. Carbon fibers for polymer matrix composites are currently derived from polyacrylonitrile copolymer fiber precursors where solution spinning accounts for ˜40 % of the total fiber production cost. To expand carbon fiber applications into the automotive industry, the cost of the carbon fiber needs to be reduced from 8 to ˜3-5. In order to develop an alternative melt processing route several benign plasticizers have been investigated. A low temperature, persulfate-metabisulfite initiated emulsion copolymerization was developed to synthesize poly(acrylonitrile-co-methyl acrylate) copolymers with acrylonitrile contents between 91-96 wt% with a molecular weight range of 100-200 kg/mol. This method was designed for a potential industrial scale up. Furthermore, water was investigated as a potential melting point depressant for these copolymers. Twenty-five wt% water lead to a decrease in the Tm of a 93/7 wt/wt % poly(acrylonitrile-co-methyl acrylate) of Mw = 200 kg/mol to 160 0C as measured via DSC. Glycerin, ethylene glycol and glycerin/water combinations were investigated as potential plasticizers for high molecular weight (˜200,000 g/mol), high acrylonitrile (93-96 mole:mole %) content poly(acrylonitrile-co-methyl acrylate) statistical copolymers. Pure glycerin (25 wt %) induced crystallization followed by a reduced "Tm" of about 213 0C via DSC. However this composition did not melt process well. A lower M W (˜35 kg/mol) copolymer did extrude with no apparent degradation. Our hypothesis is that the hydroxyl groups in glycerin (or water) disrupt the strong dipole-dipole interactions between the chains enabling the copolymer endothermic transition (Tm) to be reduced and enable melting before the onset of degradation. Additionally high molecular weight (Mw = 200-230 kg/mol) poly(acrylonitrile-co-methyl acrylate) copolymers with lower acrylonitrile content (82-85 wt %) were synthesized via emulsion copolymerization and successfully melt pressed. These materials will be further investigated for their utility in packaging applications.
Ball, James W.; McMleskey, R. Blaine; Nordstrom, D. Kirk
2010-01-01
Water analyses are reported for 104 samples collected from numerous thermal and non-thermal features in Yellowstone National Park (YNP) during 2006-2008. Water samples were collected and analyzed for major and trace constituents from 10 areas of YNP including Apollinaris Spring and Nymphy Creek along the Norris-Mammoth corridor, Beryl Spring in Gibbon Canyon, Norris Geyser Basin, Lower Geyser Basin, Crater Hills, the Geyser Springs Group, Nez Perce Creek, Rabbit Creek, the Mud Volcano area, and Washburn Hot Springs. These water samples were collected and analyzed as part of research investigations in YNP on arsenic, antimony, iron, nitrogen, and sulfur redox species in hot springs and overflow drainages, and the occurrence and distribution of dissolved mercury. Most samples were analyzed for major cations and anions, trace metals, redox species of antimony, arsenic, iron, nitrogen, and sulfur, and isotopes of hydrogen and oxygen. Analyses were performed at the sampling site, in an on-site mobile laboratory vehicle, or later in a U.S. Geological Survey laboratory, depending on stability of the constituent and whether it could be preserved effectively. Water samples were filtered and preserved on-site. Water temperature, specific conductance, pH, emf (electromotive force or electrical potential), and dissolved hydrogen sulfide were measured on-site at the time of sampling. Dissolved hydrogen sulfide was measured a few to several hours after sample collection by ion-specific electrode on samples preserved on-site. Acidity was determined by titration, usually within a few days of sample collection. Alkalinity was determined by titration within 1 to 2 weeks of sample collection. Concentrations of thiosulfate and polythionate were determined as soon as possible (generally a few to several hours after sample collection) by ion chromatography in an on-site mobile laboratory vehicle. Total dissolved iron and ferrous iron concentrations often were measured on-site in the mobile laboratory vehicle. Concentrations of dissolved aluminum, arsenic, boron, barium, beryllium, calcium, cadmium, cobalt, chromium, copper, iron, potassium, lithium, magnesium, manganese, molybdenum, sodium, nickel, lead, selenium, silica, strontium, vanadium, and zinc were determined by inductively coupled plasma-optical emission spectrometry. Trace concentrations of dissolved antimony, cadmium, cobalt, chromium, copper, lead, and selenium were determined by Zeeman-corrected graphite-furnace atomic-absorption spectrometry. Dissolved concentrations of total arsenic, arsenite, total antimony, and antimonite were determined by hydride generation atomic-absorption spectrometry using a flow-injection analysis system. Dissolved concentrations of total mercury and methylmercury were determined by cold-vapor atomic fluorescence spectrometry. Concentrations of dissolved chloride, fluoride, nitrate, bromide, and sulfate were determined by ion chromatography. For many samples, concentrations of dissolved fluoride also were determined by ion-specific electrode. Concentrations of dissolved ferrous and total iron were determined by the FerroZine colorimetric method. Concentrations of dissolved ammonium were determined by ion chromatography, with reanalysis by colorimetry when separation of sodium and ammonia peaks was poor. Dissolved organic carbon concentrations were determined by the wet persulfate oxidation method. Hydrogen and oxygen isotope ratios were determined using the hydrogen and CO2 equilibration techniques, respectively.
Development of Inorganic Nanomaterials as Photocatalysts for the Water Splitting Reaction
NASA Astrophysics Data System (ADS)
Frame, Fredrick Andrew
The photochemical water splitting reaction is of great interest for converting solar energy into usable fuels. This dissertation focuses on the development of inorganic nanoparticle catalysts for solar energy driven conversion of water into hydrogen and oxygen. The results from these selected studies have allowed greater insight into nanoparticle chemistry and the role of nanoparticles in photochemical conversion of water in to hydrogen and oxygen. Chapter 2 shows that CdSe nanoribbons have photocatalytic activity for hydrogen production from water in the presence of Na2S/Na2SO 3 as sacrificial electron donors in both UV and visible light. Quantum confinement of this material leads to an extended bandgap of 2.7 eV and enables the photocatalytic activity of this material. We report on the photocatalytic H2 evolution, and its dependence on platinum co-catalysts, the concentration of the electron donor, and the wavelength of incident radiation. Transient absorption measurements reveal decay of the excited state on multiple timescales, and an increase of lifetimes of trapped electrons due to the sacrificial electron donors. In chapter 3, we explore the catalytic activity of citrate-capped CdSe quantum dots. We show that the process is indeed catalytic for these dots in aqueous 0.1 M Na2S:Na2SO3, but not in pure water. Furthermore, optical spectroscopy was used to report electronic transitions in the dots and electron microscopy was used to obtain morphology of the catalyst. Interestingly, an increasing catalytic rate is noted for undialyzed catalyst. Dynamic light scattering experiments show an increased hydrodynamic radius in the case of undialyzed CdSe dots in donor solution. In chapter 4 we show that CdSe:MoS2 nanoparticle composites with improved catalytic activity can be assembled from CdSe and MoS2 nanoparticle building units. We report on the photocatalytic H 2 evolution, quantum efficiency using LED irriadiation, and its dependence on the co-catalyst loading. Furthermore, optical spectroscopy, cyclic voltammetry, and electron microscopy were used to obtain morphology, optical properties, and electronic structure of the catalysts. In chapter 5, illumination with visible light (lambda > 400 nm) photoconverts a red V2O5 gel in aqueous methanol solution into a green VO2 gel. The presence of V(4+) in the green VO2 gel is supported by Electron Energy Loss Spectra. High-resolution electron micrographs, powder X-ray diffraction, and selective area electron diffraction (SAED) data show that the crystalline structure of the V2O5 gel is retained upon reduction. After attachment of colloidal Pt nanoparticles, H2 evolution proceeds catalytically on the VO2 gel. The Pt nanoparticles reduce the H2 evolution overpotential. However, the activity of the new photocatalyst remains limited by the VO2 conduction band edge just below the proton reduction potential. Chapter 6 studies the ability of IrO2 to evolve oxygen from aqueous solutions under UV irradiation. We show that visible illumination (lambda > 400 nm) of iridium dioxide (IrO2) nanocrystals capped in succinic acid in aqueous sodium persulfate solution leads to catalytic oxygen evolution. While the majority of catalytic hydrogen evolution comes from UV light, the process can still be driven with visible light. Morphology, optical properties, surface photovoltage measurements, and oxygen evolution rates are discussed.
Self-Propagating Frontal Polymerization in Water at Ambient Pressure
NASA Technical Reports Server (NTRS)
Olten, Nesrin; Kraigsley, Alison; Ronney, Paul D.
2003-01-01
Advances in polymer chemistry have led to the development of monomers and initiation agents that enable propagating free-radical polymerization fronts to exist. These fronts are driven by the exothermicity of the polymerization reaction and the transport of heat from the polymerized product to the reactant monomer/solvent/initiator solution. The thermal energy transported to the reactant solution causes the initiator to decompose, yielding free radicals, which start the free radical polymerization process as discussed in recent reviews. The use of polymerization processes based on propagating fronts has numerous applications. Perhaps the most important of these is that it enables rapid curing of polymers without external heating since the polymerization process itself provides the high temperatures necessary to initiate and sustain polymerization. This process also enables more uniform curing of arbitrarily thick samples since it does not rely on heat transfer from an external source, which will necessarily cause the temperature history of the sample to vary with distance from the surface according to a diffusion-like process. Frontal polymerization also enables filling and sealing of structures having cavities of arbitrary shape without having to externally heat the structure. Water at atmospheric pressure is most convenient solvent to employ and the most important for practical applications (because of the cost and environmental issues associated with DMSO and other solvents). Nevertheless, to our knowledge, steady, self-propagating polymerization fronts have not been reported in water at atmospheric pressure. Currently, polymerization fronts require a high boiling point solvent (either water at high pressures or an alternative solvent such as dimethyl sulfoxide (DMSO) (boiling point 189 C at atmospheric pressure.) Early work on frontal polymerization, employed pressures up to 5000 atm in order to avoid boiling of the monomer/solvent/initiator solution. High boiling point solutions are needed because in order to produce a propagating front, a high front temperature is needed to produce sufficiently rapid decomposition of the free radical initiator and subsequent free radical polymerization and heat release at a rate faster than heat losses remove thermal energy from the system. (While the conduction heat loss rate increases linearly with temperature, the free radical initiator decomposition is a high activation energy process whose rate increases much more rapidly than linearly with temperature, thus as the temperature decreases, the ratio of heat loss to heat generation increases, eventually leading to extinction of the front if the temperature is too low.) In order to obtain atmospheric pressure frontal polymerization in water, it is necessary to identify a monomer/initiator combination that is water soluble and will not extinguish even when the peak temperature (T*) is less than 100 C. In this work acrylic acid (AA) was chosen as the monomer because is it one of the most reactive monomers and can polymerize readily at low temperatures even without initiators. Ammonium persulfate (AP) was chosen as the initiator because it decomposes readily at low temperatures, produces relatively few bubbles and is commercially available. The propagation rates and extinction conditions of the fronts are studied for a range of AA and AP concentrations. Small amounts of fumed silica powder (Cab-o-sil, Cabot Corporation) were added to the solutions to inhibit buoyancy induced convection in the solutions; future studies will investigate the effects of buoyant convection within the solutions.
Novel catalysts and photoelectrochemical system for solar fuel production
NASA Astrophysics Data System (ADS)
Zhang, Yan
Solar fuel production from abundant raw chemicals such as CO2 and water is highly desired as a clean renewable energy solution for the future. Developing photoelectrochemical cells is viewed as a promising approach to realize this energy conversion and storage process. Efficient and robust oxygen evolution catalyst made from non-precious materials remains a major challenge for such a system. This thesis basically consists of three parts of work, including studies on enhancing the photocatalytic oxygen evolution activity of cobalt-based spinel nanoparticles by manganese3+ substitution, in situ formation of cobalt oxide nanocubanes as highly active catalyst for photocatalytic oxygen evolution reaction, and development of a photoanode-driven photoelectrochemical cell for CO2 reduction with water. The first part of this thesis work devotes efforts in the development and study on cobalt and other transition metal oxide based oxygen evolution catalyst. Photocatalytic oxygen evolution is a critical step for solar fuel production from abundant sources. It poses a significant challenge because it requires an efficient catalyst to bridge the one-electron photon capture process with the four-electron oxygen reaction. Among all the metal oxides, Co3O4 spinel exhibits a high activity as an oxygen evolution catalyst. The results of this work demonstrate that the photocatalytic oxygen evolution activity of Co3O4 spinel can be further enhanced by substituting Co with Mn in the spinel structure. Using a facile hydrothermal approach, Co3O4 spinel nanoparticles as well as Mn-substituted and Ni-substituted Co3O4 spinel nanoparticles with a typical particle size of 5-7 nm were successfully synthesized. The morphology and crystal structures of the as-synthesized nanoparticle catalysts have been carefully examined using various structural characterization techniques, including powder x-ray diffraction (PXRD), transmission electron microscope (TEM), gas adsorption, and x-ray absorption spectroscopy (XAS). The photocatalytic activities of as-made nanoparticles were investigated using a well-studied visible light driven [Ru(bpy)3]2+-persulfate system. In both Clark electrode and reactor/gas chromatography (GC) systems, Mn-substituted Co3O 4 nanoparticles exhibited the highest turnover frequency (TOF) among all the three kinds of catalysts. The data presented in this paper suggest that the photocatalytic oxygen evolution activity of Co3O 4 spinel catalyst can be further enhanced by Mn3+ substitution at the octahedral sites. The second part of this piece of work was carried out to further investigate cobalt oxide based photocatalytic oxygen evolution catalyst. A new strategy was developed to synthesize nonsupported cobalt oxide nanocubanes through an in situ phase transformation mechanism using a layered Co(OH)(OCH3) precursor. Under sonication, the precursor was exfoliated and transformed into cobalt oxide nanocubanes in the presence of NaHCO 3-Na2SiF6 buffer solution. The resulting cobalt catalyst with an average particle size less than 2 nm exhibited a turnover frequency of 0.0023 per second per cobalt in photocatalytic oxygen evolution reaction. X-ray absorption results suggested that a unique nanocubane structure, where 13 cobalt atoms fully coordinated with oxygen atoms and hydroxide groups in an octahedral arrangement to form 8 Co4O4 cubanes, may be responsible for the exceptionally high oxygen evolution catalysis activity. This thesis work is completed with the development of a photoanode-driven photoelectrochemical cell for CO2 reduction. A NiOx decorated Si photoanode and nanoporous Ag cathode were employed. With an external bias of 2.0 V, a current density at cathode of 10 mA/cm2 and Faradaic efficiency of 70% for CO2 to CO was achieved. Compared to a normal electrochemical cell, the photoelectrochemical cell saves 0.4 V electrical energy by absorbing photo-energy. In addition, post-test photoanodes were carefully characterized by SEM, XAS, and XPS analysis.
Interactions of Plutonium and Lanthanides with Ordered Mesoporous Materials
NASA Astrophysics Data System (ADS)
Parsons-Moss, Tashi
Ordered mesoporous materials are porous solids with a regular, patterned structure composed of pores between 2 and 50 nm wide. Such materials have attracted much attention in the past twenty years because the chemistry of their synthesis allows control of their unique physicochemical properties, which can be tuned for a variety of applications. Generally, ordered mesoporous materials have very high specific surface areas and pore volumes, and offer unique structures that are neither crystalline nor amorphous. The large tunable interface provided by ordered mesoporous solids may be advantageous in applications involving sequestration, separation, or detection of actinides and lanthanides in solution. However, the fundamental chemical interactions of actinides and lanthanides must be understood before applications can be implemented. This dissertation focuses primarily on the fundamental interactions of plutonium with organically modified mesoporous silica, as well as several different porous carbon materials, both untreated and chemically oxidized. A method for functionalizing mesoporous silica by self assembly and molecular grafting of functional organosilane ligands was optimized for the 2D-hexagonal ordered mesoporous silica known as SBA-15 (Santa Barbara amorphous silica). Four different organically-modified silica materials were synthesized and characterized with several techniques. To confirm that covalent bonds were formed between the silane anchor of the ligand and the silica substrate, functionalized silica samples were analyzed with 29Si nuclear magnetic resonance spectroscopy. Infrared spectroscopy was used in combination with 13C and 31P nuclear magnetic resonance spectroscopy to verify the molecular structures of the ligands after they were synthesized and grafted to the silica. The densities of the functional silane ligands on the silica surface were estimated using thermogravimetric analysis. Batch sorption experiments were conducted with solutions of Pu(IV), Pu(VI), Eu(III), Ce(III), and Zr(IV). The acetamide phosphonate functionalized silica called Ac-Phos-SBA-15 required more extensive synthesis than the other three functionalized silica materials. Development of functionalized mesoporous silica extractants for actinides is contingent on their synthesis and hydrolytic stability, and these two aspects of the Ac-Phos-SBA-15 material are discussed. This material showed the highest binding affinity for all of the target ions, and the sorption and desorption of Pu(VI) to Ac-Phos-SBA-15 was extensively investigated. Ordered mesoporous carbons are attractive as sorbents because of their extremely high surface areas and large pore volumes, and could be suitable substrates for the development of actinide sensors based on their electrochemical properties. Three different mesoporous carbon materials were synthesized by collaborators to test their application as radionuclide sorbent materials. The first is called CMK (carbons mesostructured by Korea Advanced Institute of Science and Technology), and was synthesized using a hard silica template with 3D-bicontinuous ordered mesostructure. Highly ordered body-centered cubic mesoporous carbon was synthesized by self-assembly of a phenol resin around a soft polymer template, and this material is known as FDU-16 (Fudan University). Etching of the silica portion of mesoporous carbon-silica composites created the 2D-hexagonal mesoporous carbon called C-CS (carbon from carbon-silica nanocomposites) with a bimodal pore size distribution. The as-synthesized nanocast mesoporous carbon in this work is called UN CMK, and the same material after oxidation treatment with nitric acid is called OX CMK. A portion of both FDU-16-type and C-CS-type ordered mesoporous carbons were oxidized with acidic ammonium persulfate, which created the oxidized carbon materials called FDU-16-COOH and C-CS-COOH, respectively. The mesoporous carbons were characterized by scanning electron microscopy to view their particle sizes and morphologies. Their porosities and structures on the meso-scale were analyzed using transmission electron microscopy, nitrogen adsorption isotherms, and small-angle X-ray scattering. The identity and density of functional groups on the different carbon surfaces were investigated using infrared spectroscopy, elemental analysis, thermogravimetric analysis, and determination of the point-of-zero-charge with the powder addition technique. The porous carbon materials studied present a wide range of particle morphologies, mesostructures, surface areas, pore volumes, and surface chemistries. (Abstract shortened by UMI.)