Hanhart, C; Peláez, J R; Ríos, G
2008-04-18
We use the one-loop chiral perturbation theory pipi-scattering amplitude and dispersion theory in the form of the inverse amplitude method to study the quark-mass dependence of the two lightest resonances of the strong interactions, the f(0)(600) (sigma) and the rho meson. As the main results, we find that the rhopipi coupling constant is almost quark mass independent and that the rho mass shows a smooth quark-mass dependence while that of the sigma shows a strong nonanalyticity. These findings are important for studies of the meson spectrum on the lattice.
Thomas Mehen; Brian C. Tiburzi
2006-07-17
We extend the chiral Lagrangian with heavy quark-diquark symmetry to quenched and partially quenched theories. These theories are used to derive formulae for the chiral extrapolation of masses and hyperfine splittings of doubly heavy baryons in lattice QCD simulations. A quark-diquark symmetry prediction for the hyperfine splittings of heavy mesons and doubly heavy baryons is rather insensitive to chiral corrections in both quenched and partially quenched QCD. Extrapolation formulae for the doubly heavy baryon electromagnetic transition moments are also determined for the partially quenched theory.
Quark structure of chiral solitons
Dmitri Diakonov
2004-05-01
There is a prejudice that the chiral soliton model of baryons is something orthogonal to the good old constituent quark models. In fact, it is the opposite: the spontaneous chiral symmetry breaking in strong interactions explains the appearance of massive constituent quarks of small size thus justifying the constituent quark models, in the first place. Chiral symmetry ensures that constituent quarks interact very strongly with the pseudoscalar fields. The ''chiral soliton'' is another word for the chiral field binding constituent quarks. We show how the old SU(6) quark wave functions follow from the ''soliton'', however, with computable relativistic corrections and additional quark-antiquark pairs. We also find the 5-quark wave function of the exotic baryon Theta+.
Chiral perturbation theory with nucleons
Meissner, U.G.
1991-09-01
I review the constraints posed on the interactions of pions, nucleons and photons by the spontaneously broken chiral symmetry of QCD. The framework to perform these calculations, chiral perturbation theory, is briefly discussed in the meson sector. The method is a simultaneous expansion of the Greens functions in powers of external moments and quark masses around the massless case, the chiral limit. To perform this expansion, use is made of a phenomenological Lagrangian which encodes the Ward-identities and pertinent symmetries of QCD. The concept of chiral power counting is introduced. The main part of the lectures of consists in describing how to include baryons (nucleons) and how the chiral structure is modified by the fact that the nucleon mass in the chiral limit does not vanish. Particular emphasis is put on working out applications to show the strengths and limitations of the methods. Some processes which are discussed are threshold photopion production, low-energy compton scattering off nucleons, {pi}N scattering and the {sigma}-term. The implications of the broken chiral symmetry on the nuclear forces are briefly described. An alternative approach, in which the baryons are treated as very heavy fields, is touched upon.
Staggered heavy baryon chiral perturbation theory
Bailey, Jon A.
2008-03-01
Although taste violations significantly affect the results of staggered calculations of pseudoscalar and heavy-light mesonic quantities, those entering staggered calculations of baryonic quantities have not been quantified. Here I develop staggered chiral perturbation theory in the light-quark baryon sector by mapping the Symanzik action into heavy baryon chiral perturbation theory. For 2+1 dynamical quark flavors, the masses of flavor-symmetric nucleons are calculated to third order in partially quenched and fully dynamical staggered chiral perturbation theory. To this order the expansion includes the leading chiral logarithms, which come from loops with virtual decuplet-like states, as well as terms of O(m{sub {pi}}{sup 3}), which come from loops with virtual octet-like states. Taste violations enter through the meson propagators in loops and tree-level terms of O(a{sup 2}). The pattern of taste symmetry breaking and the resulting degeneracies and mixings are discussed in detail. The resulting chiral forms are appropriate to lattice results obtained with operators already in use and could be used to study the restoration of taste symmetry in the continuum limit. I assume that the fourth root of the fermion determinant can be incorporated in staggered chiral perturbation theory using the replica method.
Applications of partially quenched chiral perturbation theory
Golterman, M.F.; Leung, K.C.
1998-05-01
Partially quenched theories are theories in which the valence- and sea-quark masses are different. In this paper we calculate the nonanalytic one-loop corrections of some physical quantities: the chiral condensate, weak decay constants, Goldstone boson masses, B{sub K}, and the K{sup +}{r_arrow}{pi}{sup +}{pi}{sup 0} decay amplitude, using partially quenched chiral perturbation theory. Our results for weak decay constants and masses agree with, and generalize, results of previous work by Sharpe. We compare B{sub K} and the K{sup +} decay amplitude with their real-world values in some examples. For the latter quantity, two other systematic effects that plague lattice computations, namely, finite-volume effects and unphysical values of the quark masses and pion external momenta, are also considered. We find that typical one-loop corrections can be substantial. {copyright} {ital 1998} {ital The American Physical Society}
Chiral phases of fundamental and adjoint quarks
Natale, A. A.
2016-01-22
We consider a QCD chiral symmetry breaking model where the gap equation contains an effective confining propagator and a dressed gluon propagator with a dynamically generated mass. This model is able to explain the ratios between the chiral transition and deconfinement temperatures in the case of fundamental and adjoint quarks. It also predicts the recovery of the chiral symmetry for a large number of quarks (n{sub f} ≈ 11 – 13) in agreement with lattice data.
Chiral phases of fundamental and adjoint quarks
NASA Astrophysics Data System (ADS)
Natale, A. A.
2016-01-01
We consider a QCD chiral symmetry breaking model where the gap equation contains an effective confining propagator and a dressed gluon propagator with a dynamically generated mass. This model is able to explain the ratios between the chiral transition and deconfinement temperatures in the case of fundamental and adjoint quarks. It also predicts the recovery of the chiral symmetry for a large number of quarks (nf ≈ 11 - 13) in agreement with lattice data.
Building a non-perturbative quark-gluon vertex from a perturbative one
NASA Astrophysics Data System (ADS)
Bermudez, Rocio
2016-10-01
The quark-gluon vertex describes the electromagnetic and the strong interaction among these particles. The description of this interaction at high precision in both regimes, perturbative and non-perturbative, continues being a matter of interest in the context of QCD and Hadron Physics. There exist very helpful models in the literature that explain perturbative aspects of the theory but they fail describing non-perturbative phenomena, as confinement and dynamic chiral symmetry breaking. In this work we study the structure of the quark-gluon vertex in a non-perturbative regime examining QCD, checking results with QED, and working in the Schwinger-Dyson formalism.
Staggered chiral perturbation theory in the two-flavor case
Du Xining
2010-07-01
I study two-flavor staggered chiral perturbation theory in the light pseudoscalar sector. The pion mass and decay constant are calculated through next-to-leading order in the partially-quenched case. In the limit where the strange quark mass is large compared to the light quark masses and the taste splittings, I show that the SU(2) staggered chiral theory emerges from the SU(3) staggered chiral theory, as expected. Explicit relations between SU(2) and SU(3) low energy constants and taste-violating parameters are given. The results are useful for SU(2) chiral fits to asqtad data and allow one to incorporate effects from varying strange quark masses.
Hadronic Lorentz violation in chiral perturbation theory
NASA Astrophysics Data System (ADS)
Kamand, Rasha; Altschul, Brett; Schindler, Matthias R.
2017-03-01
Any possible Lorentz violation in the hadron sector must be tied to Lorentz violation at the underlying quark level. The relationships between the theories at these two levels are studied using chiral perturbation theory. Starting from a two-flavor quark theory that includes dimension-4 Lorentz-violation operators, the effective Lagrangians are derived for both pions and nucleons, with novel terms appearing in both sectors. Since the Lorentz-violation coefficients for nucleons and pions are all related to a single set of underlying quark coefficients, one can compare the sensitivity of different types of experiments. Our analysis shows that atomic physics experiments currently provide constraints on the quark parameters that are stronger by about 10 orders of magnitude than astrophysical experiments with relativistic pions. Alternatively, it is possible to place approximate bounds on pion Lorentz violation using only proton and neutron observations. Under the assumption that the Lorentz-violating operators considered here are the only ones contributing to the relevant observables and taking the currently unknown hadronic low-energy constants to be of natural size, the resulting estimated bounds on four pion parameters are at the 10-23 level, representing improvements of 10 orders of magnitude.
The non-perturbative unquenched quark model
NASA Astrophysics Data System (ADS)
Entern, D. R.; Ortega, P. G.; Fernández, F.
2017-03-01
In recent years states in the quarkonium spectrum not expected in the naive quark model have appeared and created a lot of interest. In the theoretical side the study of the effect of meson-meson thresholds in the spectrum have been performed in different approximations. In a quark model framework, and in the spirit of the Cornell model, when a meson-meson threshold is included, the coupling to all the quark-antiquark states have to be considered. In practice only the closest states are included perturbatively. In this contribution we will present a framework in which we couple quark-antiquark states with meson-meson states non-perturbatively, taking into account effectively the coupling to all quark-antiquark states. The method will be applied to the study of the X(3872) and a comparison with the perturbative calculation will be performed.
B{sub K} in staggered chiral perturbation theory
Water, Ruth S. van de; Sharpe, Stephen R.
2006-01-01
We calculate the kaon B parameter, B{sub K}, to next-to-leading order in staggered chiral perturbation theory. We find expressions for partially quenched QCD with three sea quarks, quenched QCD, and full QCD with m{sub u}=m{sub d}{ne}m{sub s}. We extend the usual power counting to include the effects of using perturbative (rather than nonperturbative) matching factors. Taste breaking enters through the O(a{sup 2}) terms in the effective action, through O(a{sup 2}) terms from the discretization of operators, and through the truncation of matching factors. These effects cause mixing with several additional operators, complicating the chiral and continuum extrapolations. In addition to the staggered expressions, we present B{sub K} at next-to-leading order in continuum PQ{chi}PT for N{sub f}=3 sea quarks with m{sub u}=m{sub d}{ne}m{sub s}.
Mixing kaons with mixed action chiral perturbation theory
NASA Astrophysics Data System (ADS)
Aubin, Christopher
2006-12-01
We calculate the neutral kaon mixing parameter, BK , to next-to-leading order in mixed action (domain-wall valence with staggered sea quarks) chiral perturbation theory. We find the expres- sion for BK in this mixed-action case only differs from the continuum partially quenched expres- sion by an additional analytic term. Additionally, in preparation for a lattice calculation of BK with a mixed action, we discuss quantitatively the effects of the taste violations as well as finite volume effects.
Chiral solitons in the spectral quark model
NASA Astrophysics Data System (ADS)
Arriola, Enrique Ruiz; Broniowski, Wojciech; Golli, Bojan
2007-07-01
Chiral solitons with baryon number one are investigated in the spectral quark model. In this model the quark propagator is a superposition of complex-mass propagators weighted with a suitable spectral function. This technique is a method of regularizing the effective quark theory in a way preserving many desired features crucial in analysis of solitons. We review the model in the vacuum sector, stressing the feature of the absence of poles in the quark propagator. We also investigate in detail the analytic structure of meson two-point functions. We provide an appropriate prescription for constructing valence states in the spectral approach. The valence state in the baryonic soliton is identified with a saddle point of the Dirac eigenvalue treated as a function of the spectral mass. Because of this feature the valence quarks never become unbound nor dive into the negative spectrum, hence providing stable solitons as absolute minima of the action. This is a manifestation of the absence of poles in the quark propagator. Self-consistent mean-field hedgehog solutions are found numerically and some of their properties are determined and compared to previous chiral soliton models. Our analysis constitutes an involved example of a treatment of a relativistic complex-mass system.
Chiral dynamics with (non)strange quarks
NASA Astrophysics Data System (ADS)
Kubis, Bastian; Meißner, Ulf-G.
2017-01-01
We review the results and achievements of the project B.3. Topics addressed include pion photoproduction off the proton and off deuterium, three-flavor chiral perturbation theory studies, chiral symmetry tests in Goldstone boson decays, the development of unitarized chiral perturbation theory to next-to-leading order, the two-pole structure of the Λ(1405), the dynamical generation of the lowest S11 resonances, the theory of hadronic atoms and its application to various systems, precision studies in light-meson decays based on dispersion theory, the Roy-Steiner analysis of pion-nucleon scattering, a high-precision extraction of the elusive pion-nucleon σ-term, and aspects of chiral dynamics in few-nucleon systems.
QCD phase transition with chiral quarks and physical quark masses.
Bhattacharya, Tanmoy; Buchoff, Michael I; Christ, Norman H; Ding, H-T; Gupta, Rajan; Jung, Chulwoo; Karsch, F; Lin, Zhongjie; Mawhinney, R D; McGlynn, Greg; Mukherjee, Swagato; Murphy, David; Petreczky, P; Renfrew, Dwight; Schroeder, Chris; Soltz, R A; Vranas, P M; Yin, Hantao
2014-08-22
We report on the first lattice calculation of the QCD phase transition using chiral fermions with physical quark masses. This calculation uses 2+1 quark flavors, spatial volumes between (4 fm)(3) and (11 fm)(3) and temperatures between 139 and 196 MeV. Each temperature is calculated at a single lattice spacing corresponding to a temporal Euclidean extent of N(t) = 8. The disconnected chiral susceptibility, χ(disc) shows a pronounced peak whose position and height depend sensitively on the quark mass. We find no metastability near the peak and a peak height which does not change when a 5 fm spatial extent is increased to 10 fm. Each result is strong evidence that the QCD "phase transition" is not first order but a continuous crossover for m(π) = 135 MeV. The peak location determines a pseudocritical temperature T(c) = 155(1)(8) MeV, in agreement with earlier staggered fermion results. However, the peak height is 50% greater than that suggested by previous staggered results. Chiral SU(2)(L) × SU(2)(R) symmetry is fully restored above 164 MeV, but anomalous U(1)(A) symmetry breaking is nonzero above T(c) and vanishes as T is increased to 196 MeV.
Sea quark transverse momentum distributions and dynamical chiral symmetry breaking
Schweitzer, Peter; Strikman, Mark; Weiss, Christian
2014-01-01
Recent theoretical studies have provided new insight into the intrinsic transverse momentum distributions of valence and sea quarks in the nucleon at a low scale. The valence quark transverse momentum distributions (q - qbar) are governed by the nucleon's inverse hadronic size R{sup -1} ~ 0.2 GeV and drop steeply at large p{sub T}. The sea quark distributions (qbar) are in large part generated by non-perturbative chiral-symmetry breaking interactions and extend up to the scale rho{sup -1} ~ 0.6 GeV. These findings have many implications for modeling the initial conditions of perturbative QCD evolution of TMD distributions (starting scale, shape of p{sub T}. distributions, coordinate-space correlation functions). The qualitative difference between valence and sea quark intrinsic p{sub T}. distributions could be observed experimentally, by comparing the transverse momentum distributions of selected hadrons in semi-inclusive deep-inelastic scattering, or those of dileptons produced in pp and pbar-p scattering.
Staggered chiral perturbation theory and the fourth-root trick
Bernard, C.
2006-06-01
Staggered chiral perturbation theory (S{chi}PT) takes into account the 'fourth-root trick' for reducing unwanted (taste) degrees of freedom with staggered quarks by multiplying the contribution of each sea quark loop by a factor of 1/4. In the special case of four staggered fields (four flavors, n{sub F}=4), I show here that certain assumptions about analyticity and phase structure imply the validity of this procedure for representing the rooting trick in the chiral sector. I start from the observation that, when the four flavors are degenerate, the fourth root simply reduces n{sub F}=4 to n{sub F}=1. One can then treat nondegenerate quark masses by expanding around the degenerate limit. With additional assumptions on decoupling, the result can be extended to the more interesting cases of n{sub F}=3, 2, or 1. An apparent paradox associated with the one-flavor case is resolved. Coupled with some expected features of unrooted staggered quarks in the continuum limit, in particular, the restoration of taste symmetry, S{chi}PT then implies that the fourth-root trick induces no problems (for example, a violation of unitarity that persists in the continuum limit) in the lowest energy sector of staggered lattice QCD. It also says that the theory with staggered valence quarks and rooted staggered sea quarks behaves like a simple, partially-quenched theory, not like a mixed theory in which sea and valence quarks have different lattice actions. In most cases, the assumptions made in this paper are not only sufficient but also necessary for the validity of S{chi}PT, so that a variety of possible new routes for testing this validity are opened.
The Chiral Quark Soliton Model for the Nucleon
NASA Astrophysics Data System (ADS)
Watabe, T.; Toki, H.
1992-03-01
We study the chiral invariant quark model lagrangians under the Hartree approximation for construction of a hedgehog solution with the baryon number B = 1. We take into account the Dirac sea contributions to the energy and various densities in terms of the heat-kernel method. With the parameters of the Nambu-Jona-Lasinio model lagrangian fixed by the meson properties, we do not find any B = 1 hedgehog solutions except for one case, even which is, however, unstable against small perturbation. We study then the Diakonov-Petrov model lagrangian, which is introduced by investigating the properties of the quark field in the instanton background in QCD. We find in this case stable hedgehog solutions under the heat-kernel regularization method in some parameter region. We study also the isoscalar-vector type (omega-meson type) correlations among quarks for the nucleon properties. The hedgehog energy, the baryon root mean square radius and the axial vector coupling constant g_{A} are calculated as a function of the omega-quark coupling strength.
Chiral nontopological solitons with perturbative quantum pions
NASA Astrophysics Data System (ADS)
Williams, A. G.; Dodd, L. R.
1988-04-01
We investigate chiral extensions of a broad class of nontopological soliton bag models. Chiral symmetry is restored in a nonlinear realization through the introduction of an elementary pion field. We show in particular that it is consistent to treat the pions as a perturbative quantum field, as is done in the cloudy-bag model. The cloudy-bag model is recovered as a limiting case. A careful comparison is made between predictions of chiral extensions of the Friedberg-Lee and the Nielsen-Patkos color-dielectric nontopological soliton models and the cloudy-bag model. Once the overall distance scale is fixed we find relative insensitivity to the detailed choice of nontopological soliton parameters. We investigate two versions of chiral nontopological solitons, analogous to the surface- and volume-coupled cloudy-bag model, and discuss their relation to current algebra.
Quark-gluon vertex: A perturbation theory primer and beyond
NASA Astrophysics Data System (ADS)
Bermudez, R.; Albino, L.; Gutiérrez-Guerrero, L. X.; Tejeda-Yeomans, M. E.; Bashir, A.
2017-02-01
There has been growing evidence that the infrared enhancement of the form factors defining the full quark-gluon vertex plays an important role in realizing a dynamical breakdown of chiral symmetry in quantum chromodynamics, leading to the observed spectrum and properties of hadrons. Both the lattice and the Schwinger-Dyson communities have begun to calculate these form factors in various kinematical regimes of momenta involved. A natural consistency check for these studies is that they should match onto the perturbative predictions in the ultraviolet, where nonperturbative effects mellow down. In this article, we carry out a numerical analysis of the one-loop result for all the form factors of the quark-gluon vertex. Interestingly, even the one-loop results qualitatively encode most of the infrared enhancement features expected of their nonperturbative counter parts. We analyze various kinematical configurations of momenta: symmetric, on shell, and asymptotic. The on-shell limit enables us to compute anomalous chromomagnetic moment of quarks. The asymptotic results have implications for the multiplicative renormalizability of the quark propagator and its connection with the Landau-Khalatnikov-Fradkin transformations, allowing us to analyze and compare various Ansätze proposed so far.
Staggered chiral perturbation theory for heavy-light mesons
Aubin, C.; Bernard, C.
2006-01-01
We incorporate heavy-light mesons into staggered chiral perturbation theory (S{chi}PT), working to leading order in 1/m{sub Q}, where m{sub Q} is the heavy-quark mass. At first nontrivial order in the chiral expansion, staggered taste violations affect the chiral logarithms for heavy-light quantities only through the light-meson propagators in loops. There are also new analytic contributions coming from additional terms in the Lagrangian involving heavy-light and light mesons. Using this heavy-light S{chi}PT, we perform the one-loop calculation of the B (or D) meson leptonic decay constant in the partially quenched and full QCD cases. In our treatment, we assume the validity both of the 'fourth root trick' to reduce four staggered tastes to one, and of the S{chi}PT prescription to represent this trick by insertions of factors of 1/4 for each sea-quark loop.
Chiral extrapolations on the lattice with strange sea quarks
NASA Astrophysics Data System (ADS)
Descotes-Genon, Sébastien
2005-06-01
The (light but not-so-light) strange quark may play a special role in the low-energy dynamics of QCD. Strange sea-quark pairs may induce significant differences in the pattern of chiral symmetry breaking in the chiral limits of two and three massless flavours, in relation with the violation of the Zweig rule in the scalar sector. This effect could affect chiral extrapolations of unquenched lattice simulations with three dynamical flavours, and it could be detected through the quark-mass dependence of hadron observables [S. Descotes-Genon, hep-ph/0410233].
Quark mass correction to chiral separation effect and pseudoscalar condensate
NASA Astrophysics Data System (ADS)
Guo, Er-dong; Lin, Shu
2017-01-01
We derived an analytic structure of the quark mass correction to chiral separation effect (CSE) in small mass regime. We confirmed this structure by a D3/D7 holographic model study in a finite density, finite magnetic field background. The quark mass correction to CSE can be related to correlators of pseudo-scalar condensate, quark number density and quark condensate in static limit. We found scaling relations of these correlators with spatial momentum in the small momentum regime. They characterize medium responses to electric field, inhomogeneous quark mass and chiral shift. Beyond the small momentum regime, we found existence of normalizable mode, which possibly leads to formation of spiral phase. The normalizable mode exists beyond a critical magnetic field, whose magnitude decreases with quark chemical potential.
Matrix elements of Δ B =0 operators in heavy hadron chiral perturbation theory
NASA Astrophysics Data System (ADS)
Lee, Jong-Wan
2015-05-01
We study the light-quark mass and spatial volume dependence of the matrix elements of Δ B =0 four-quark operators relevant for the determination of Vu b and the lifetime ratios of single-b hadrons. To this end, one-loop diagrams are computed in the framework of heavy hadron chiral perturbation theory with partially quenched formalism for three light-quark flavors in the isospin limit; flavor-connected and -disconnected diagrams are carefully analyzed. These calculations include the leading light-quark flavor and heavy-quark spin symmetry breaking effects in the heavy hadron spectrum. Our results can be used in the chiral extrapolation of lattice calculations of the matrix elements to the physical light-quark masses and to infinite volume. To provide insight on such chiral extrapolation, we evaluate the one-loop contributions to the matrix elements containing external Bd, Bs mesons and Λb baryon in the QCD limit, where sea and valence quark masses become equal. In particular, we find that the matrix elements of the λ3 flavor-octet operators with an external Bd meson receive the contributions solely from connected diagrams in which current lattice techniques are capable of precise determination of the matrix elements. Finite volume effects are at most a few percent for typical lattice sizes and pion masses.
NASA Astrophysics Data System (ADS)
Barik, N.; Mishra, R. N.; Mohanty, D. K.; Panda, P. K.; Frederico, T.
2013-07-01
We have calculated the properties of nuclear matter in a self-consistent manner with a quark-meson coupling mechanism incorporating the structure of nucleons in vacuum through a relativistic potential model; where the dominant confining interaction for the free independent quarks inside a nucleon is represented by a phenomenologically average potential in equally mixed scalar-vector harmonic form. Corrections due to spurious center of mass motion as well as those due to other residual interactions, such as the one gluon exchange at short distances and quark-pion coupling arising out of chiral symmetry restoration, have been considered in a perturbative manner to obtain the nucleon mass in vacuum. The nucleon-nucleon interaction in nuclear matter is then realized by introducing additional quark couplings to σ and ω mesons through mean field approximations. The relevant parameters of the interaction are obtained self-consistently while realizing the saturation properties such as the binding energy, pressure, and compressibility of the nuclear matter. We also discuss some implications of chiral symmetry in nuclear matter along with the nucleon and nuclear σ term and the sensitivity of nuclear matter binding energy with variations in the light quark mass.
Axial couplings in heavy-hadron chiral perturbation theory at the next-to-leading order
Detmold, William; Lin, C.-J. David; Meinel, Stefan
2011-11-01
We present calculations of axial-current matrix elements between various heavy-meson and heavy-baryon states to the next-to-leading order in heavy-hadron chiral perturbation theory in the p-regime. When compared with data from lattice computations or experiments, these results can be used to determine the axial couplings in the chiral Lagrangian. Our calculation is performed in partially quenched chiral perturbation theory for both SU(4|2) and SU(6|3). We incorporate finite-size effects arising from a single Goldstone meson wrapping around the spatial volume. Results for full QCD with two and three flavors can be obtained straightforwardly by taking the sea-quark masses to be equal to the valence-quark masses. To illustrate the impact of our chiral perturbation theory calculation on lattice computations, we analyze the SU(2) full-QCD results in detail. We also study one-loop contributions relevant to the heavy-hadron strong-decay amplitudes involving final-state Goldstone bosons, and demonstrate that the quark-mass dependence of these amplitudes can be significantly different from that of the axial-current matrix elements containing only single-hadron external states.
Isospin symmetry breaking in the chiral quark model
NASA Astrophysics Data System (ADS)
Song, Huiying; Zhang, Xinyu; Ma, Bo-Qiang
2010-12-01
We discuss the isospin symmetry breaking (ISB) of the valence- and sea-quark distributions between the proton and the neutron in the framework of the chiral quark model. We assume that isospin symmetry breaking is the result of mass differences between isospin multiplets and then analyze the effects of isospin symmetry breaking on the Gottfried sum rule and the NuTeV anomaly. We show that, although both flavor asymmetry in the nucleon sea and the ISB between the proton and the neutron can lead to the violation of the Gottfried sum rule, the main contribution is from the flavor asymmetry in the framework of the chiral quark model. We also find that the correction to the NuTeV anomaly is in an opposite direction, so the NuTeV anomaly cannot be removed by isospin symmetry breaking in the chiral quark model. It is remarkable that our results of ISB for both valence- and sea-quark distributions are consistent with the Martin-Roberts-Stirling-Thorne parametrization of quark distributions.
NASA Astrophysics Data System (ADS)
Ruggieri, M.; Peng, G. X.
2016-12-01
In this article we study the restoration of chiral symmetry at a finite temperature for quark matter with a chiral chemical potential, {μ }5, by means of a nonlocal Nambu-Jona-Lasinio model. This model allows the introduction of, in the simplest way possible, a Euclidean momentum, p E , dependent quark mass function which decays (neglecting logarithms) as 1/{p}{E}2 for large p E , in agreement with the asymptotic behaviour expected in quantum chromodynamics in the presence of a nonperturbative quark condensate. We focus on the critical temperature for chiral symmetry restoration in the chiral limit, T c, versus {μ }5, as well as on the order of the phase transition. We find that T c increases with {μ }5, and that the transition remains of the second order for the whole range of {μ }5 considered.
Staggered chiral perturbation theory at next-to-leading order
Sharpe, Stephen R.; Van de Water, Ruth S.
2005-06-01
We study taste and Euclidean rotational symmetry violation for staggered fermions at nonzero lattice spacing using staggered chiral perturbation theory. We extend the staggered chiral Lagrangian to O(a{sup 2}p{sup 2}), O(a{sup 4}), and O(a{sup 2}m), the orders necessary for a full next-to-leading order calculation of pseudo-Goldstone boson masses and decay constants including analytic terms. We then calculate a number of SO(4) taste-breaking quantities, which involve only a small subset of these next-to-leading order operators. We predict relationships between SO(4) taste-breaking splittings in masses, pseudoscalar decay constants, and dispersion relations. We also find predictions for a few quantities that are not SO(4) breaking. All these results hold also for theories in which the fourth root of the fermionic determinant is taken to reduce the number of quark tastes; testing them will therefore provide evidence for or against the validity of this trick.
Kaon B-parameter in mixed action chiral perturbation theory
Aubin, C.; Laiho, Jack; Water, Ruth S. van de
2007-02-01
We calculate the kaon B-parameter, B{sub K}, in chiral perturbation theory for a partially quenched, mixed-action theory with Ginsparg-Wilson valence quarks and staggered sea quarks. We find that the resulting expression is similar to that in the continuum, and in fact has only two additional unknown parameters. At 1-loop order, taste-symmetry violations in the staggered sea sector only contribute to flavor-disconnected diagrams by generating an O(a{sup 2}) shift to the masses of taste-singlet sea-sea mesons. Lattice discretization errors also give rise to an analytic term which shifts the tree-level value of B{sub K} by an amount of O(a{sup 2}). This term, however, is not strictly due to taste breaking, and is therefore also present in the expression for B{sub K} for pure Ginsparg-Wilson lattice fermions. We also present a numerical study of the mixed B{sub K} expression in order to demonstrate that both discretization errors and finite volume effects are small and under control on the MILC improved staggered lattices.
SU(2) and SU(3) chiral perturbation theory analyses on baryon masses in 2+1 flavor lattice QCD
Ishikawa, K.-I.; Okawa, M.; Ishizuka, N.; Kuramashi, Y.; Taniguchi, Y.; Ukawa, A.; Yoshie, T.; Izubuchi, T.; Kadoh, D.; Namekawa, Y.; Ukita, N.; Kanaya, K.
2009-09-01
We investigate the quark mass dependence of baryon masses in 2+1 flavor lattice QCD using SU(3) heavy baryon chiral perturbation theory up to one-loop order. The baryon mass data used for the analyses are obtained for the degenerate up-down quark mass of 3 to 24 MeV and two choices of the strange quark mass around the physical value. We find that the SU(3) chiral expansion fails to describe both the octet and the decuplet baryon data if phenomenological values are employed for the meson-baryon couplings. The SU(2) case is also examined for the nucleon. We observe that higher order terms are controlled only around the physical point. We also evaluate finite size effects using SU(3) heavy baryon chiral perturbation theory, finding small values of order 1% even at the physical point.
Nucleon-to-{delta} axial transition form factors in relativistic baryon chiral perturbation theory
Geng, L. S.; Camalich, J. Martin; Alvarez-Ruso, L.; Vacas, M. J. Vicente
2008-07-01
We report a theoretical study of the axial nucleon-to-delta (1232) (N{yields}{delta}) transition form factors up to one-loop order in relativistic baryon chiral perturbation theory. We adopt a formalism in which the {delta} couplings obey the spin-3/2 gauge symmetry and, therefore, decouple the unphysical spin-1/2 fields. We compare the results with phenomenological form factors obtained from neutrino bubble-chamber data and in quark models.
Quark dynamics and spin structure in the chiral chromodielectric model
NASA Astrophysics Data System (ADS)
Barone, V.; Drago, A.; Fiolhais, M.
1994-11-01
The dynamical structure of the nucleon is studied in the chiral version of the chromodielectric model. The color-dielectric field and the meson clouds are described by hedgehog coherent states. Standard projection techniques are used to construct zero-linear-momentum eigenstates with the nucleon quantum numbers of angular momentum and isospin. Both the unpolarized and the polarized quark distribution functions are computed. Results are in good agreement with the data and a noticeable improvement with respect to the predictions of the non-chiral model is observed.
Chiral Lagrangian with Heavy Quark-Diquark Symmetry
Jie Hu; Thomas Mehen
2005-11-29
We construct a chiral Lagrangian for doubly heavy baryons and heavy mesons that is invariant under heavy quark-diquark symmetry at leading order and includes the leading O(1/m{sub Q}) symmetry violating operators. The theory is used to predict the electromagnetic decay width of the J=3/2 member of the ground state doubly heavy baryon doublet. Numerical estimates are provided for doubly charm baryons. We also calculate chiral corrections to doubly heavy baryon masses and strong decay widths of low lying excited doubly heavy baryons.
Quark Matter Equation of State from Perturbative QCD
NASA Astrophysics Data System (ADS)
Vuorinen, Aleksi
2017-03-01
In this proceedings contribution, we discuss recent developments in the perturbative determination of the Equation of State of dense quark matter, relevant for the microscopic description of neutron star cores. First, we introduce the current state of the art in the problem, both at zero and small temperatures, and then present results from two recent perturbative studies that pave the way towards extending the EoS to higher orders in perturbation theory.
CHIRAL LIMIT AND LIGHT QUARK MASSES IN 2+1 FLAVOR DOMAIN WALL QCD.
SCHOLZ,E.; LIN, M.
2007-07-30
We present results for meson masses and decay constants measured on 24{sup 3} x 64 lattices using the domain wall fermion formulation with an extension of the fifth dimension of L{sub s} = 16 for N{sub f} 2 + 1 dynamical quark flavors. The lightest dynamical meson mass in our set-up is around 331MeV. while partially quenched mesons reach masses as low as 250MeV. The applicability of SU(3) x SU(3) and SU(2) x SU(2) (partially quenched) chiral perturbation theory will be compared and we quote values for the low-energy constants from both approaches. We will extract the average light quark and strange quark masses and use a non-perturbative renormalization technique (RI/MOM) to quote their physical values. The pion and kaon decay constants are determined at those values from our chiral fits and their ratio is used to obtain the CKM-matrix element |V{sub us}|. The results presented here include statistical errors only.
Consistency between SU(3) and SU(2) covariant baryon chiral perturbation theory for the nucleon mass
NASA Astrophysics Data System (ADS)
Ren, Xiu-Lei; Alvarez-Ruso, L.; Geng, Li-Sheng; Ledwig, Tim; Meng, Jie; Vicente Vacas, M. J.
2017-03-01
Treating the strange quark mass as a heavy scale compared to the light quark mass, we perform a matching of the nucleon mass in the SU(3) sector to the two-flavor case in covariant baryon chiral perturbation theory. The validity of the 19 low-energy constants appearing in the octet baryon masses up to next-to-next-to-next-to-leading order [1] is supported by comparing the effective parameters (the combinations of the 19 couplings) with the corresponding low-energy constants in the SU(2) sector [2]. In addition, it is shown that the dependence of the effective parameters and the pion-nucleon sigma term on the strange quark mass is relatively weak around its physical value, thus providing support to the assumption made in Ref. [2] that the SU(2) baryon chiral perturbation theory can be applied to study nf = 2 + 1 lattice QCD simulations as long as the strange quark mass is close to its physical value.
Chiral-scale perturbation theory about an infrared fixed point
NASA Astrophysics Data System (ADS)
Crewther, R. J.; Tunstall, Lewis C.
2014-06-01
We review the failure of lowest order chiral SU(3)L ×SU(3)R perturbation theory χPT3 to account for amplitudes involving the f0(500) resonance and O(mK) extrapolations in momenta. We summarize our proposal to replace χPT3 with a new effective theory χPTσ based on a low-energy expansion about an infrared fixed point in 3-flavour QCD. At the fixed point, the quark condensate ⟨q̅q⟩vac ≠ 0 induces nine Nambu-Goldstone bosons: π,K,η and a QCD dilaton σ which we identify with the f0(500) resonance. We discuss the construction of the χPTσ Lagrangian and its implications for meson phenomenology at low-energies. Our main results include a simple explanation for the ΔI = 1/2 rule in K-decays and an estimate for the Drell-Yan ratio in the infrared limit.
Quark matter under strong magnetic fields in chiral models
Rabhi, Aziz; Providencia, Constanca
2011-05-15
The chiral model is used to describe quark matter under strong magnetic fields and is compared to other models, the MIT bag model and the two-flavor Nambu-Jona-Lasinio model. The effect of vacuum corrections due to the magnetic field is discussed. It is shown that if the magnetic-field vacuum corrections are not taken into account explicitly, the parameters of the models should be fitted to low-density meson properties in the presence of the magnetic field.
Disoriented chiral condensate formation from tubes of hot quark plasma
Abada, A.; Birse, M.C.
1998-01-01
We investigate the time evolution of a system of quarks interacting with {sigma} and pion fields starting from an initial configuration consisting of a tube of hot quark plasma undergoing a boost-invariant longitudinal expansion. We work within the framework of the linear sigma model using classical transport equations for the quarks coupled to the mean-field equations for the meson fields. In certain cases we find strong amplifications of any initial pion fields. For large-radius tubes, starting from quark densities that are very close to critical, we find that a disoriented chiral condensate can form in the center of the tube. Eventually the collapse of the tube drives this state back to the true vacuum. This process converts the disoriented condensate, dominated by long-wavelength pion modes, into a coherent excitation of the pion field that includes significant components with transverse momenta of around 400 MeV. In contrast, for narrow tubes or larger initial temperatures, amplification occurs only via the pion-laser-like mechanism found previously for spherical systems. In addition, we find that explicit chiral symmetry breaking significantly suppresses the formation of disoriented condensates. {copyright} {ital 1997} {ital The American Physical Society}
Structure of pentaquarks Pc+ in the chiral quark model
NASA Astrophysics Data System (ADS)
Yang, Gang; Ping, Jialun; Wang, Fan
2017-01-01
The recent experimental results of the LHCb Collaboration suggested the existence of pentaquark states with a charmonium. To understand the structure of the states, a dynamical calculation of 5-quark systems with quantum numbers I JP=1/2 (1/2 )±,1/2 (3/2 )±and1/2 (5/2 )±is performed in the framework of the chiral quark model with the help of the Gaussian expansion method. The results show that there are several negative parity resonance states while all of the positive parity states are the scattering states. The Pc(4380 ) state is suggested to be the pentaquark state of Σc*D ¯. Although the energy of ΣcD ¯* is very close to the mass of Pc(4450 ), the inconsistent parity prevents the assignment. The calculated distances between quarks confirm the molecular nature of the states.
Baryon chiral perturbation theory extended beyond the low-energy region
NASA Astrophysics Data System (ADS)
Epelbaum, E.; Gegelia, J.; Meißner, Ulf-G.; Yao, De-Liang
2015-10-01
We consider an extension of the one-nucleon sector of baryon chiral perturbation theory beyond the low-energy region. The applicability of this approach for higher energies is restricted to small scattering angles, i.e. the kinematical region, where the quark structure of hadrons cannot be resolved. The main idea is to re-arrange the low-energy effective Lagrangian according to a new power counting and to exploit the freedom of the choice of the renormalization condition for loop diagrams. We generalize the extended on-mass-shell scheme for the one-nucleon sector of baryon chiral perturbation theory by choosing a sliding scale, that is, we expand the physical amplitudes around kinematical points beyond the threshold. This requires the introduction of complex-valued renormalized coupling constants, which can be either extracted from experimental data, or calculated using the renormalization group evolution of coupling constants fixed in threshold region.
Low-energy ππ and πK scatterings revisited in three-flavour resummed chiral perturbation theory
NASA Astrophysics Data System (ADS)
Descotes-Genon, S.
2007-09-01
Chiral symmetry breaking may exhibit significantly different patterns in two chiral limits: Nf=2 massless flavours (mu=md=0, ms physical) and Nf=3 massless flavours (mu=md=ms=0). Such a difference may arise due to vacuum fluctuations of ss¯ pairs related to the violation of the Zweig rule in the scalar sector, and it could yield numerical competition between contributions counted as leading and next-to-leading order in the chiral expansions of the observables. We recall and extend resummed chiral perturbation theory (ReχPT), a framework that we introduced previously to deal with such instabilities: it requires a more careful definition of the relevant observables and their one-loop chiral expansions. We analyse the amplitudes for low-energy ππ and πK scatterings within ReχPT, which we match in subthreshold regions with dispersive representations obtained from the solutions of the Roy and Roy-Steiner equations. Using a frequentist approach, we constrain the quark mass ratio as well as the quark condensate and the pseudoscalar decay constant in the Nf=3 chiral limit. The results mildly favour significant contributions of vacuum fluctuations suppressing the Nf=3 quark condensate compared to its Nf=2 counterpart.
Petreczky P.; Bazavov, A.
2011-10-11
We report preliminary results on the chiral and deconfinement aspects of the QCD transition at finite temperature using the Highly Improved Staggered Quark (HISQ) action on lattices with temporal extent of N{sub {tau}} = 6 and 8. The chiral aspects of the transition are studied in terms of quark condensates and the disconnected chiral susceptibility. We study the deconfinement transition in terms of the strange quark number susceptibility and the renormalized Polyakov loop. We made continuum estimates for some quantities and find reasonably good agreement between our results and the recent continuum extrapolated results obtained with the stout staggered quark action.
NASA Astrophysics Data System (ADS)
Girdhar, Aarti; Dahiya, Harleen; Randhawa, Monika
2015-08-01
The magnetic moments of JP=3/2+ decuplet baryons have been calculated in the chiral constituent quark model (χ CQM ) with explicit results for the contribution coming from the valence quark polarizations, sea quark polarizations, and their orbital angular momentum. Since the JP=3/2+ decuplet baryons have short lifetimes, the experimental information about them is limited. The χ CQM has important implications for chiral symmetry breaking as well as SU(3) symmetry breaking since it works in the region between the QCD confinement scale and the chiral symmetry breaking scale. The predictions in the model not only give a satisfactory fit when compared with the experimental data but also show improvement over the other models. The effect of the confinement on quark masses has also been discussed in detail and the results of χ CQM are found to improve further with the inclusion of effective quark masses.
Finite-temperature corrections in the dilated chiral quark model
Kim, Y.; Lee, Hyun Kyu |; Rho, M. |
1995-03-01
We calculate the finite-temperature corrections in the dilated chiral quark model using the effective potential formalism. Assuming that the dilaton limit is applicable at some short length scale, we interpret the results to represent the behavior of hadrons in dense and hot matter. We obtain the scaling law, f{sub {pi}}(T)/f{sub {pi}} = m{sub Q}(T)/m{sub Q} {approx_equal} m{sub {sigma}}(T)/m{sub {sigma}}while we argue, using PCAC, that pion mass does not scale within the temperature range involved in our Lagrangian. It is found that the hadron masses and the pion decay constant drop faster with temperature in the dilated chiral quark model than in the conventional linear sigma model that does not take into account the QCD scale anomaly. We attribute the difference in scaling in heat bath to the effect of baryonic medium on thermal properties of the hadrons. Our finding would imply that the AGS experiments (dense and hot matter) and the RHIC experiments (hot and dilute matter) will ``see`` different hadron properties in the hadronization exit phase.
Proton spin problem and chiral constituent quark model
Rana, J. M. S.; Dahiya, H.; Gupta, M.
2008-10-13
Some of the non-relativistic quark model (NRQM) predictions of some spin and flavor parameters are in sharp conflict with the observations made from deep inelastic scattering experiments. Besides this there are other spin and flavor dependent quantities which could not be explained by NRQM. These contradictions are referred to as Proton spin problem. These issues get resolved, to some extent, in Chiral Constituent Quark Model (CQM) which incorporates the basic features of NRQM and chiral symmetry. The implications of the latest data pertaining to u-bar-d-bar asymmetry and the spin polarization functions on the contributions of singlet Goldstone Boson {eta}' within CQM with configuration mixing for explaining the proton spin problem have been investigated. It is found that the present data favors smaller values of the coupling of singlet Goldstone Boson as compared to the corresponding contributions from {pi}, K and {eta}' Goldstone bosons. It seems that a small non-zero value of the coupling of {eta}'({zeta}{ne}0)({zeta}{ne}0) is preferred over {zeta} = -0.10 phenomenologically.
SU(4) chiral quark model with configuration mixing
NASA Astrophysics Data System (ADS)
Dahiya, Harleen; Gupta, Manmohan
2003-04-01
The chiral quark model with configuration mixing and broken SU(3)×U(1) symmetry is extended to include the contribution from cc¯ fluctuations by considering broken SU(4) instead of SU(3). The implications of such a model are studied for quark flavor and spin distribution functions corresponding to E866 and the NMC data. The predicted parameters regarding the charm spin distribution functions, for example, Δc, Δc/ΔΣ, Δc/c as well as the charm quark distribution functions, for example, c¯, 2c¯/(ū+d¯), 2c¯/(u+d) and (c+c¯)/∑(q+q¯) are in agreement with other similar calculations. Specifically, we find Δc=-0.009, Δc/ΔΣ=-0.02, c¯=0.03 and (c+c¯)/∑(q+q¯)=0.02 for the χQM parameters a=0.1, α=0.4, β=0.7, ζE866=-1-2β, ζNMC=-2-2β and γ=0.3; the latter appears due to the extension of SU(3) to SU(4).
Resumming QCD vacuum fluctuations in three-flavor Chiral Perturbation Theory
NASA Astrophysics Data System (ADS)
Descotes-Genon, S.; Fuchs, N. H.; Girlanda, L.; Stern, J.
2004-05-01
Due to its light mass, of order Λ_{QCD}, the strange quark can play a special role in chiral symmetry breaking (χSB): differences in the pattern of χSB in the limits N f = 2 (m_u,m_dto 0, m s physical) and N f = 3 (m_u,m_d,m_sto 0) may arise due to vacuum fluctuations of sbar{s} pairs, related to the violation of the Zweig rule in the scalar sector and encoded in particular in the O( p 4) low-energy constants L 4 and L 6. In case of large fluctuations, we show that the customary treatment of SU(3) x SU(3) chiral expansions generates instabilities upsetting their convergence. We develop a systematic program to cure these instabilities by resumming non-perturbatively vacuum fluctuations of sbar{s} pairs, in order to extract information about χSB from experimental observations even in the presence of large fluctuations. We advocate a Bayesian framework for treating the uncertainties due to the higher orders. As an application, we present a three-flavor analysis of the low-energy ππ scattering and show that the recent experimental data imply a lower bound on the quark mass ratio 2m_s/(m_u + m_d)≥ 14 at 95% confidence level. We outline how additional information may be incorporated to further constrain the pattern of χSB in the N f = 3 chiral limit.
One-loop chiral perturbation theory with two fermion representations
DeGrand, Thomas; Golterman, Maarten; Neil, Ethan T.; ...
2016-07-11
In this study, we develop chiral perturbation theory for chirally broken theories with fermions in two different representations of the gauge group. Any such theory has a nonanomalous singlet U(1)A symmetry, yielding an additional Nambu-Goldstone boson when spontaneously broken. We calculate the next-to-leading order corrections for the pseudoscalar masses and decay constants, which include the singlet Nambu-Goldstone boson, as well as for the two condensates. The results can be generalized to more than two representations.
One-loop chiral perturbation theory with two fermion representations
DeGrand, Thomas; Golterman, Maarten; Neil, Ethan T.; Shamir, Yigal
2016-07-11
In this study, we develop chiral perturbation theory for chirally broken theories with fermions in two different representations of the gauge group. Any such theory has a nonanomalous singlet U(1)_{A} symmetry, yielding an additional Nambu-Goldstone boson when spontaneously broken. We calculate the next-to-leading order corrections for the pseudoscalar masses and decay constants, which include the singlet Nambu-Goldstone boson, as well as for the two condensates. The results can be generalized to more than two representations.
Electroproduction of pions at threshold in chiral perturbation theory
Lee, T.S.H.; Bernard, V.; Kaiser, N.; Meissner, U.G.
1995-08-01
The electroproduction of pions off protons close to threshold is studied within the framework of baryon chiral perturbation theory. The approach is based on the fundamental QCD property that at low energies the strong interactions are dictated by the spontaneously broken chiral symmetry. The calculation was done up to the 1-loop level by carrying out order-by-order renormalization procedures. A thorough study of the low-energy theorems related to electroproduction of pions was carried out. Our study showed how the axial radius of the nucleon can be related to the S-wave multipoles E{sub 0+}{sup (-)} and L{sub 0+}{sup (-)}.
A chiral perturbation expansion for gravity
NASA Astrophysics Data System (ADS)
Abou-Zeid, Mohab; Hull, Christopher M.
2006-02-01
A formulation of Einstein gravity, analogous to that for gauge theory arising from the Chalmers-Siegel action, leads to a perturbation theory about an asymmetric weak coupling limit that treats positive and negative helicities differently. We find power counting rules for amplitudes that suggest the theory could find a natural interpretation in terms of a twistor-string theory for gravity with amplitudes supported on holomorphic curves in twistor space.
K{yields}{pi} and K{yields}0 in 2+1 flavor partially quenched chiral perturbation theory
Aubin, C.; Laiho, J.; Li, S.; Lin, M. F.
2008-11-01
We calculate results for K{yields}{pi} and K{yields}0 matrix elements to next-to-leading order in 2+1 flavor partially quenched chiral perturbation theory. Results are presented for both the {delta}I=1/2 and 3/2 channels, for chiral operators corresponding to current-current, gluonic penguin, and electroweak penguin 4-quark operators. These formulas are useful for studying the chiral behavior of currently available 2+1 flavor lattice QCD results, from which the low-energy constants of the chiral effective theory can be determined. The low-energy constants of these matrix elements are necessary for an understanding of the {delta}I=1/2 rule, and for calculations of {epsilon}{sup '}/{epsilon} using current lattice QCD simulations.
Topological susceptibility in staggered fermion chiral perturbation theory
Billeter, Brian; DeTar, Carleton; Osborn, James
2004-10-01
The topological susceptibility of the vacuum in quantum chromodynamics has been simulated numerically using the Asqtad improved staggered fermion formalism. At nonzero lattice spacing, the residual fermion doublers (fermion tastes) in the staggered fermion formalism give contributions to the susceptibility that deviate from conventional continuum chiral perturbation theory. In this brief report, we estimate the taste-breaking artifact and compare it with results of recent simulations, finding that it accounts for roughly half of the scaling violation.
Multi-Dimensional Structure of Crystalline Chiral Condensates in Quark Matter
NASA Astrophysics Data System (ADS)
Lee, Tong-Gyu; Nishiyama, Kazuya; Yasutake, Nobutoshi; Maruyama, Toshiki; Tatsumi, Toshitaka
We explore the multi-dimensional structure of inhomogeneous chiral condensates in quark matter. For a one-dimensional structure, the system becomes unstable at finite temperature due to the Nambu-Goldstone excitations. However, inhomogeneous chiral condensates with multi-dimensional modulations may be realized as a true long-range order at any temperature, as inferred from the Landau-Peierls theorem. We here present some possible strategies for searching the multi-dimensional structure of chiral crystals.
Generalized polarizabilities of the nucleon in baryon chiral perturbation theory
NASA Astrophysics Data System (ADS)
Lensky, Vadim; Pascalutsa, Vladimir; Vanderhaeghen, Marc
2017-02-01
The nucleon generalized polarizabilities (GPs), probed in virtual Compton scattering (VCS), describe the spatial distribution of the polarization density in a nucleon. They are accessed experimentally via the process of electron-proton bremsstrahlung (ep→ epγ ) at electron-beam facilities, such as MIT-Bates, CEBAF (Jefferson Lab), and MAMI (Mainz). We present the calculation of the nucleon GPs and VCS observables at next-to-leading order in baryon chiral perturbation theory (Bχ PT), and confront the results with the empirical information. At this order our results are predictions, in the sense that all the parameters are well known from elsewhere. Within the relatively large uncertainties of our calculation we find good agreement with the experimental observations of VCS and the empirical extractions of the GPs. We find large discrepancies with previous chiral calculations - all done in heavy-baryon χ PT (HBχ PT) - and discuss the differences between Bχ PT and HBχ PT responsible for these discrepancies.
Including the {delta}(1232) resonance in baryon chiral perturbation theory
Hacker, C.; Wies, N.; Scherer, S.; Gegelia, J.
2005-11-01
Baryon chiral perturbation theory with explicit {delta}(1232) degrees of freedom is considered. The most general interactions of pions, nucleons, and {delta} consistent with all underlying symmetries as well as with the constraint structure of higher-spin fields are constructed. By use of the extended on-mass-shell renormalization scheme, a manifestly Lorentz-invariant effective-field theory with a systematic power counting is obtained. As applications, we discuss the mass of the nucleon, the pion-nucleon {sigma} term, and the pole of the {delta} propagator.
Chiral electric separation effect in the quark-gluon plasma
Jiang, Yin; Liao, Jinfeng; Huang, Xu-Guang
2015-02-02
In this paper we introduce and compute a new transport coefficient for the quark-gluon plasma (QGP) at very high temperature. This new coefficient σ_{χe}, the CESE (Chiral Electric Separation Effect) conductivity, quantifies the amount of axial current J_{A} that is generated in response to an externally applied electric field eE: J_{A}=σ_{χe}(eE). Starting with a rather general argument in the kinetic theory framework, we show how a characteristic structure σ_{χe}∝μμ5 emerges, which also indicates the CESE as an anomalous transport effect occurring only in a parity-odd environment with nonzero axial charge density μ5 ≠ 0. Using the Hard-Thermal-Loop framework, the CESE conductivity for the QGP is found to be σ_{χe} = (#)TT_{rf}Q_{e}Q_{A}/g⁴ln(1/g) μμ5/T² to the leading-log accuracy with the numerical constant (#) depending on favor content, e.g., (#)=14.5163 for u, d light flavors.
Chiral electric separation effect in the quark-gluon plasma
Jiang, Yin; Liao, Jinfeng; Huang, Xu-Guang
2015-02-02
In this paper we introduce and compute a new transport coefficient for the quark-gluon plasma (QGP) at very high temperature. This new coefficient σχe, the CESE (Chiral Electric Separation Effect) conductivity, quantifies the amount of axial current JA that is generated in response to an externally applied electric field eE: JA=σχe(eE). Starting with a rather general argument in the kinetic theory framework, we show how a characteristic structure σχe∝μμ5 emerges, which also indicates the CESE as an anomalous transport effect occurring only in a parity-odd environment with nonzero axial charge density μ5 ≠ 0. Using the Hard-Thermal-Loop framework, the CESEmore » conductivity for the QGP is found to be σχe = (#)TTrfQeQA/g⁴ln(1/g) μμ5/T² to the leading-log accuracy with the numerical constant (#) depending on favor content, e.g., (#)=14.5163 for u, d light flavors.« less
NASA Astrophysics Data System (ADS)
Ananthanarayan, B.; Das, Diganta; Sentitemsu Imsong, I.
2012-10-01
Ampcalculator (AMPC) is a Mathematica © based program that was made publicly available some time ago by Unterdorfer and Ecker. It enables the user to compute several processes at one loop (upto O( p 4) in SU(3) chiral perturbation theory. They include computing matrix elements and form factors for strong and non-leptonic weak processes with at most six external states. It was used to compute some novel processes and was tested against well-known results by the original authors. Here we present the results of several thorough checks of the package. Exhaustive checks performed by the original authors are not publicly available, and hence the present effort. Some new results are obtained from the software especially in the kaon odd-intrinsic parity non-leptonic decay sector involving the coupling G 27. Another illustrative set of amplitudes at tree level we provide is in the context of τ-decays with several mesons including quark mass effects, of use to the BELLE experiment. All eight meson-meson scattering amplitudes have been checked. The Kaon-Compton amplitude has been checked and a minor error in the published results has been pointed out. This exercise is a tutorial-based one, wherein several input and output notebooks are also being made available as ancillary files on the arXiv. Some of the additional notebooks we provide contain explicit expressions that we have used for comparison with established results. The purpose is to encourage users to apply the software to suit their specific needs. An automatic amplitude generator of this type can provide error-free outputs that could be used as inputs for further simplification, and in varied scenarios such as applications of chiral perturbation theory at finite temperature, density and volume. This can also be used by students as a learning aid in low-energy hadron dynamics.
Strong decays of charmed baryons in heavy hadron chiral perturbation theory: An update
NASA Astrophysics Data System (ADS)
Cheng, Hai-Yang; Chua, Chun-Khiang
2015-10-01
We first give a brief overview of the charmed baryon spectroscopy and discuss their possible structure and spin-parity assignments in the quark model. With the new Belle measurement of the widths of Σc(2455 ) and Σc(2520 ) and the recent CDF measurement of the strong decays of Λc(2595 ) and Λc(2625 ), we give updated coupling constants in heavy hadron chiral perturbation theory. We find g2=0.56 5-0.024+0.011 for P -wave transitions between s -wave and s -wave baryons, and h2, one of the couplings responsible for S -wave transitions between s -wave and p -wave baryons, is extracted from Λc(2595 )+→Λc+π π to be 0.63 ±0.07 . It is substantially enhanced compared to the old value of order 0.437. With the help from the quark model, two of the couplings h10 and h11 responsible for D -wave transitions between s -wave and p -wave baryons are determined from Σc(2880 ) decays. There is a tension for the coupling h2 as its value extracted from Λc(2595 )+→Λc+ππ will imply Ξc(2790 )0→Ξc'π and Ξc(2815 )+→Ξc*π rates slightly above the current limits. It is conceivable that SU(3) flavor symmetry breaking can help account for the discrepancy.
The Kaon B-parameter in mixed action chiral perturbation theory
Aubin, C.; Laiho, Jack; Van de Water, Ruth S.; /Fermilab
2006-09-01
We calculate the kaon B-parameter, B{sub K}, in chiral perturbation theory for a partially quenched, mixed action theory with Ginsparg-Wilson valence quarks and staggered sea quarks. We find that the resulting expression is similar to that in the continuum, and in fact has only two additional unknown parameters. At one-loop order, taste-symmetry violations in the staggered sea sector only contribute to flavor-disconnected diagrams by generating an {Omicron}(a{sup 2}) shift to the masses of taste-singlet sea-sea mesons. Lattice discretization errors also give rise to an analytic term which shifts the tree-level value of B{sub K} by an amount of {Omicron}(a{sup 2}). This term, however, is not strictly due to taste-breaking, and is therefore also present in the expression for B{sub K} for pure G-W lattice fermions. We also present a numerical study of the mixed B{sub K} expression in order to demonstrate that both discretization errors and finite volume effects are small and under control on the MILC improved staggered lattices.
NASA Astrophysics Data System (ADS)
Ruggieri, M.; Peng, G. X.
2016-05-01
In this article, we study spontaneous chiral symmetry breaking for quark matter in the background of static and homogeneous parallel electric field E and magnetic field B . We use a Nambu-Jona-Lasinio model with a local kernel interaction to compute the relevant quantities to describe chiral symmetry breaking at a finite temperature for a wide range of E and B . We study the effect of this background on the inverse catalysis of chiral symmetry breaking for E and B of the same order of magnitude. We then focus on the effect of the equilibration of chiral density n5 , produced dynamically by an axial anomaly on the critical temperature. The equilibration of n5 , a consequence of chirality-flipping processes in the thermal bath, allows for the introduction of the chiral chemical potential μ5, which is computed self-consistently as a function of the temperature and field strength by coupling the number equation to the gap equation and solving the two within an expansion in E /T2 , B /T2 , and μ52/T2 . We find that even if chirality is produced and equilibrates within a relaxation time τM , it does not change drastically the thermodynamics, with particular reference to the inverse catalysis induced by the external fields, as long as the average μ5 at equilibrium is not too large.
The role of strange sea quarks in chiral extrapolations on the lattice
NASA Astrophysics Data System (ADS)
Descotes-Genon, S.
2005-03-01
Since the strange quark has a light mass of order O(Λ_{{QCD}}), fluctuations of sea sbar{s} pairs may play a special role in the low-energy dynamics of QCD by inducing significantly different patterns of chiral symmetry breaking in the chiral limits N f = 2 ( m u = m d = 0, m s physical) and N f = 3 ( m u = m d = m s = 0). This effect of vacuum fluctuations of sbar{s} pairs is related to the violation of the Zweig rule in the scalar sector, described through the two O( p 4) low-energy constants L 4 and L 6 of the three-flavour strong chiral lagrangian. In the case of significant vacuum fluctuations, three-flavour chiral expansions might exhibit numerical competition between leading- and next-to-leading-order terms according to the chiral counting, and chiral extrapolations should be handled with special care. We investigate the impact of the fluctuations of sbar{s} pairs on chiral extrapolations in the case of lattice simulations with three dynamical flavours in the isospin limit. Information on the size of the vacuum fluctuations can be obtained from the dependence of the masses and decay constants of pions and kaons on the light quark masses. Even in the case of large fluctuations, corrections due to the finite size of spatial dimensions can be kept under control for large enough boxes (L˜ 2.5 fm).
From chiral quark dynamics with Polyakov loop to the hadron resonance gas model
Arriola, E. R.; Salcedo, L. L.; Megias, E.
2013-03-25
Chiral quark models with Polyakov loop at finite temperature have been often used to describe the phase transition. We show how the transition to a hadron resonance gas is realized based on the quantum and local nature of the Polyakov loop.
Octet magnetic moments and the Coleman-Glashow sum rule violation in the chiral quark model
NASA Astrophysics Data System (ADS)
Dahiya, Harleen; Gupta, Manmohan
2002-09-01
Baryon octet magnetic moments when calculated within the chiral quark model, incorporating the orbital angular momentum as well as the quark sea contribution through the Cheng-Li mechanism, not only show improvement over the nonrelativistic quark model results but also give a nonzero value for the right-hand side of the Coleman-Glashow sum rule. When effects due to spin-spin forces between constituent quarks as well as ``mass adjustments'' due to confinement are added, it leads to an excellent fit for the case of p,Σ+, Ξo and violation of the Coleman-Glashow sum rule, whereas in almost all the other cases the results are within 5% of the data.
Instability of the hedgehog shape for the octet baryon in the chiral quark soliton model
NASA Astrophysics Data System (ADS)
Akiyama, Satoru; Futami, Yasuhiko
2003-04-01
In this paper the stability of the hedgehog shape of the chiral soliton is studied for the octet baryon with the SU(3) chiral quark soliton model. The strangeness degrees of freedom are treated by a simplified bound-state approach, which omits the locality of the kaon wave function. The mean field approximation for the flavor rotation is applied to the model. The classical soliton changes shape according to the strangeness. The baryon appears as a rotational band of the combined system of the deformed soliton and the kaon.
Magnetic catalysis and inverse magnetic catalysis in nonlocal chiral quark models
NASA Astrophysics Data System (ADS)
Pagura, V. P.; Gómez Dumm, D.; Noguera, S.; Scoccola, N. N.
2017-02-01
We study the behavior of strongly interacting matter under an external constant magnetic field in the context of nonlocal chiral quark models within the mean field approximation. We find that at zero temperature the behavior of the quark condensates shows the expected magnetic catalysis effect, our predictions being in good quantitative agreement with lattice QCD results. On the other hand, in contrast to what happens in the standard local Nambu-Jona-Lasinio model, when the analysis is extended to the case of finite temperature, our results show that nonlocal models naturally lead to the inverse magnetic catalysis effect.
From gluon topology to chiral anomaly: Emergent phenomena in quark-gluon plasma
NASA Astrophysics Data System (ADS)
Liao, Jinfeng
2017-01-01
Heavy-ion collision experiments at RHIC and the LHC have found a new emergent phase of QCD, a strongly coupled quark-gluon plasma (sQGP) that is distinctively different from either the low temperature hadron phase or the very high temperature weakly coupled plasma phase. Highly nontrivial emergent phenomena occur in such sQGP and two examples will be discussed in this contribution: the magnetic component of sQGP that stems from topologically nontrivial configurations in the gluon sector; and the anomalous chiral transport that arises as macroscopic manifestation of microscopic chiral anomaly in the quark sector. For both examples, their important roles in explaining pertinent heavy-ion data will be emphasized.
Quark model with chiral-symmetry breaking and confinement in the Covariant Spectator Theory
Biernat, Elmer P.; Pena, Maria Teresa; Ribiero, Jose' Emilio F.; Stadler, Alfred; Gross, Franz L.
2016-03-01
We propose a model for the quark-antiquark interaction in Minkowski space using the Covariant Spectator Theory. We show that with an equal-weighted scalar-pseudoscalar structure for the confining part of our interaction kernel the axial-vector Ward-Takahashi identity is preserved and our model complies with the Adler-zero constraint for pi-pi-scattering imposed by chiral symmetry.
Non-perturbative effects for the Quark-Gluon Plasma equation of state
NASA Astrophysics Data System (ADS)
Begun, V. V.; Gorenstein, M. I.; Mogilevsky, O. A.
2012-07-01
The non-perturbative effects for the Quark-Gluon Plasma (QGP) equation of state (EoS) are considered. The modifications of the bag model EoS are constructed to satisfy the main qualitative features observed for the QGP EoS in the lattice QCD calculations. A quantitative comparison with the lattice results is done for the SU(3) gluon plasma and for the QGP with dynamical quarks. Our analysis advocates a negative value of the bag constant B.
Born term for high-energy meson-hadron collisions from QCD and chiral quark model
NASA Astrophysics Data System (ADS)
Ochs, Wolfgang; Shimada, Tokuzo
1988-12-01
Various experimental observations reveal a sizeable hard component in the high-energy ``soft'' hadronic collisions. For primary meson beams we propose a QCD Born term which describes the dissociation of the primary meson into a quark-antiquark pair in the gluon field of the target. A pointlike effective pion-quark coupling is assumed as in the chiral quark model by Manohar and Georgi. We derive the total cross sections which for pion beams, for example, are given in terms of ƒ;-2π and some properties of the hadronic final states. In particular, we stress the importance of studying three-jet events in meson-nucleon scattering and discuss the seagull effect. On leave of absence from Meiji University, Izumi Campus, Eifuku 1-9-1, Suginami, Tokyo 168, Japan.
Controlling quark mass determinations non-perturbatively in three-flavour QCD
NASA Astrophysics Data System (ADS)
Campos, Isabel; Fritzsch, Patrick; Pena, Carlos; Preti, David; Ramos, Alberto; Vladikas, Anastassios
2017-03-01
The determination of quark masses from lattice QCD simulations requires a non-perturbative renormalization procedure and subsequent scale evolution to high energies, where a conversion to the commonly used \\overline {{{MS}}} scheme can be safely established. We present our results for the non-perturbative running of renormalized quark masses in Nf = 3 QCD between the electroweak and a hadronic energy scale, where lattice simulations are at our disposal. Recent theoretical advances in combination with well-established techniques allows to follow the scale evolution to very high statistical accuracy, and full control of systematic effects.
Extending chiral perturbation theory with an isosinglet scalar
NASA Astrophysics Data System (ADS)
Hansen, Martin; Langæble, Kasper; Sannino, Francesco
2017-02-01
We augment the chiral Lagrangian by an isosinglet scalar and compute the one-loop radiative corrections to the pion mass and decay constant, as well as the scalar mass. The calculations are carried out for different patterns of chiral symmetry breaking of immediate relevance for phenomenology and lattice investigations. By construction our results encompass several interesting limits, ranging from the dilaton to the linear sigma model.
Convergence of the self-energy in a relativistic chiral quark model: excited nucleon and Δ sector
NASA Astrophysics Data System (ADS)
Tursunov, E. M.
2010-10-01
A convergence of the valence quark self-energies in the 1S, 2S, 1P1/2, 1P3/2 orbits induced by pion- and gluon-field configurations is shown in the frame of a relativistic chiral quark model. It is shown that in order to reach a convergence, one needs to include the contribution of the intermediate quark and anti-quark states with the total momentum up to j = 25/2. It is argued that a restriction to the lowest mode when estimating the self-energy is not a good approximation.
Fukugita, M.; Ukawa, A.
1986-08-04
Finite-temperature behavior of quantum chromodynamics is investigated with the Langevin technique including the dynamical quark loops. The deconfining and chiral transitions occur at the same temperature. The strength of transition weakens initially as the quark mass decreases from infinity, but at small quark masses it strengthens again and shows the characteristic of a first-order transition. We estimate the inverse coupling constant at zero quark mass to be beta/sub c/ = 6/g/sub c//sup 2/approx. =4.9--5.0 for four flavors on an 8/sup 3/ x 4 lattice.
Pion-nucleon scattering: from chiral perturbation theory to Roy-Steiner equations
NASA Astrophysics Data System (ADS)
Kubis, Bastian; Hoferichter, Martin; de Elvira, Jacobo Ruiz; Meißner, Ulf-G.
2016-11-01
Ever since Weinberg's seminal predictions of the pion-nucleon scattering amplitudes at threshold, this process has been of central interest for the study of chiral dynamics involving nucleons. The scattering lengths or the pion-nucleon σ-term are fundamental quantities characterizing the explicit breaking of chiral symmetry by means of the light quark masses. On the other hand, pion-nucleon dynamics also strongly affects the long-range part of nucleon-nucleon potentials, and hence has a far-reaching impact on nuclear physics. We discuss the fruitful combination of dispersion-theoretical methods, in the form of Roy-Steiner equations, with chiral dynamics to determine pion-nucleon scattering amplitudes at low energies with high precision.
Pion-to-Photon Transition Distribution Amplitudes in the Non-Local Chiral Quark Model
NASA Astrophysics Data System (ADS)
Kotko, P.; Praszałowicz, M.
2009-01-01
We apply the non-local chiral quark model to study vector and axial pion-to-photon transition amplitudes that are needed as a nonperturbative input to estimate the cross-section of pion annihilation into the real and virtual photon. We use a simple form of the non-locality that allows to perform all calculations in the Minkowski space and guaranties polynomiality of the TDAs. We note only residual dependence on the precise form of the cut-off function, however vector TDA that is symmetric in skewedness parameter in the local quark model is no longer symmetric in the non-local case. We calculate also the transition form-factors and compare them with existing experimental parametrizations.
Generalized Ginzburg-Landau approach to inhomogeneous phases in nonlocal chiral quark models
NASA Astrophysics Data System (ADS)
Carlomagno, J. P.; Gómez Dumm, D.; Scoccola, N. N.
2015-05-01
We analyze the presence of inhomogeneous phases in the QCD phase diagram within the framework of nonlocal chiral quark models. We concentrate in particular in the positions of the tricritical (TCP) and Lifshitz (LP) points, which are studied in a general context using a generalized Ginzburg-Landau approach. We find that for all the phenomenologically acceptable model parametrizations considered the TCP is located at a higher temperature and a lower chemical potential in comparison with the LP. Consequently, these models seem to favor a scenario in which the onset of the first order transition between homogeneous phases is not covered by an inhomogeneous, energetically favored phase.
Matching Pion-Nucleon Roy-Steiner Equations to Chiral Perturbation Theory
NASA Astrophysics Data System (ADS)
Hoferichter, Martin; Ruiz de Elvira, Jacobo; Kubis, Bastian; Meißner, Ulf-G.
2015-11-01
We match the results for the subthreshold parameters of pion-nucleon scattering obtained from a solution of Roy-Steiner equations to chiral perturbation theory up to next-to-next-to-next-to-leading order, to extract the pertinent low-energy constants including a comprehensive analysis of systematic uncertainties and correlations. We study the convergence of the chiral series by investigating the chiral expansion of threshold parameters up to the same order and discuss the role of the Δ (1232 ) resonance in this context. Results for the low-energy constants are also presented in the counting scheme usually applied in chiral nuclear effective field theory, where they serve as crucial input to determine the long-range part of the nucleon-nucleon potential as well as three-nucleon forces.
ππ scattering, pion form factors and chiral perturbation theory
NASA Astrophysics Data System (ADS)
Colangelo, Gilberto
2005-04-01
I discuss recent progress in our understanding of the ππ scattering amplitude at low energy thanks to the combined use of chiral perturbation theory and dispersion relations. I also comment on the criticism raised by Peláez and Ynduráin on this work.
Perturbative and nonperturbative contributions to the strange quark asymmetry in the nucleon
NASA Astrophysics Data System (ADS)
Feng, Guan-Qiu; Cao, Fu-Guang; Guo, Xin-Heng; Signal, A. I.
2012-12-01
There are two mechanisms for the generation of an asymmetry between the strange and anti-strange quark distributions in the nucleon: nonperturbative contributions originating from nucleons fluctuating into virtual baryon-meson pairs such as ΛK and ΣK, and perturbative contributions arising from gluons splitting into strange and anti-strange quark pairs. While the nonperturbative contributions are dominant in the large- x region, the perturbative contributions are more significant in the small- x region. We calculate this asymmetry taking into account both nonperturbative and perturbative contributions, thus giving a more accurate evaluation of this asymmetry over the whole domain of x. We find that the perturbative contributions are generally a few times larger in magnitude than the nonperturbative contributions, which suggests that the best region to detect this asymmetry experimentally is in the region 0.02< x<0.03. We find that the asymmetry may have more than one node, which is an effect that should be taken into account, e.g. for parameterizations of the strange and anti-strange quark distributions used in global analysis of parton distributions.
Gonzalez-Lopez, Jennifer; Jansen, Karl; Renner, Dru B.; Shindler, Andrea
2013-02-01
The use of chirally rotated boundary conditions provides a formulation of the Schroedinger functional that is compatible with automatic O(a) improvement of Wilson fermions up to O(a) boundary contributions. The elimination of bulk O(a) effects requires the non-perturbative tuning of the critical mass and one additional boundary counterterm. We present the results of such a tuning in a quenched setup for several values of the renormalized gauge coupling, from perturbative to non-perturbative regimes, and for a range of lattice spacings. We also check that the correct boundary conditions and symmetries are restored in the continuum limit.
Lattice QCD analysis for relation between quark confinement and chiral symmetry breaking
Doi, Takahiro M.; Suganuma, Hideo; Iritani, Takumi
2016-01-22
The Polyakov loop and the Dirac modes are connected via a simple analytical relation on the temporally odd-number lattice, where the temporal lattice size is odd with the normal (nontwisted) periodic boundary condition. Using this relation, we investigate the relation between quark confinement and chiral symmetry breaking in QCD. In this paper, we discuss the properties of this analytical relation and numerically investigate each Dirac-mode contribution to the Polyakov loop in both confinement and deconfinement phases at the quenched level. This relation indicates that low-lying Dirac modes have little contribution to the Polyakov loop, and we numerically confirmed this fact. From our analysis, it is suggested that there is no direct one-to-one corresponding between quark confinement and chiral symmetry breaking in QCD. Also, in the confinement phase, we numerically find that there is a new “positive/negative symmetry” in the Dirac-mode matrix elements of link-variable operator which appear in the relation and the Polyakov loop becomes zero because of this symmetry. In the deconfinement phase, this symmetry is broken and the Polyakov loop is non-zero.
Strange-quark asymmetry in the proton in chiral effective theory
Wang, X. G.; Ji, Chueng -Ryong; Melnitchouk, W.; ...
2016-11-29
We perform a comprehensive analysis of the strange-antistrange parton distribution function (PDF) asymmetry in the proton in the framework of chiral effective theory, including the full set of lowest-order kaon loop diagrams with off-shell and contact interactions, in addition to the usual on-shell contributions previously discussed in the literature. We identify the presence of δ-function contributions to the s¯ PDF at x = 0, with a corresponding valencelike component of the s-quark PDF at larger x, which allows greater flexibility for the shape of s–s¯. Expanding the moments of the PDFs in terms of the pseudoscalar kaon mass, we computemore » the leading nonanalytic behavior of the number and momentum integrals of the s and s¯ distributions, consistent with the chiral symmetry of QCD. Lastly, we discuss the implications of our results for the understanding of the NuTeV anomaly and for the phenomenology of strange-quark PDFs in global QCD analysis.« less
Strange-quark asymmetry in the proton in chiral effective theory
Wang, X. G.; Ji, Chueng -Ryong; Melnitchouk, W.; Salamu, Y.; Thomas, A. W.; Wang, P.
2016-11-29
We perform a comprehensive analysis of the strange-antistrange parton distribution function (PDF) asymmetry in the proton in the framework of chiral effective theory, including the full set of lowest-order kaon loop diagrams with off-shell and contact interactions, in addition to the usual on-shell contributions previously discussed in the literature. We identify the presence of δ-function contributions to the s¯ PDF at x = 0, with a corresponding valencelike component of the s-quark PDF at larger x, which allows greater flexibility for the shape of s–s¯. Expanding the moments of the PDFs in terms of the pseudoscalar kaon mass, we compute the leading nonanalytic behavior of the number and momentum integrals of the s and s¯ distributions, consistent with the chiral symmetry of QCD. Lastly, we discuss the implications of our results for the understanding of the NuTeV anomaly and for the phenomenology of strange-quark PDFs in global QCD analysis.
Strange-quark asymmetry in the proton in chiral effective theory
NASA Astrophysics Data System (ADS)
Wang, X. G.; Ji, Chueng-Ryong; Melnitchouk, W.; Salamu, Y.; Thomas, A. W.; Wang, P.
2016-11-01
We perform a comprehensive analysis of the strange-antistrange parton distribution function (PDF) asymmetry in the proton in the framework of chiral effective theory, including the full set of lowest-order kaon loop diagrams with off-shell and contact interactions, in addition to the usual on-shell contributions previously discussed in the literature. We identify the presence of δ -function contributions to the s ¯ PDF at x =0 , with a corresponding valencelike component of the s -quark PDF at larger x , which allows greater flexibility for the shape of s -s ¯. Expanding the moments of the PDFs in terms of the pseudoscalar kaon mass, we compute the leading nonanalytic behavior of the number and momentum integrals of the s and s ¯ distributions, consistent with the chiral symmetry of QCD. We discuss the implications of our results for the understanding of the NuTeV anomaly and for the phenomenology of strange-quark PDFs in global QCD analysis.
Heavy-quark fragmentation functions at next-to-leading perturbative QCD
NASA Astrophysics Data System (ADS)
Moosavi Nejad, S. M.; Sartipi Yarahmadi, P.
2016-10-01
It is well known that the dominant mechanism to produce hadronic bound states with large transverse momentum is fragmentation. This mechanism is described by the fragmentation functions (FFs) which are the universal and process-independent functions. Here, we review the perturbative FFs formalism as an appropriate tool for studying these hadronization processes and detail the extension of this formalism at next-to-leading order (NLO). Using Suzuki's model, we calculate the perturbative QCD FF for a heavy quark to fragment into a S-wave heavy meson at NLO. As an example, we study the LO and NLO FFs for a charm quark to split into the S-wave D-meson and compare our analytic results both with experimental data and well-known phenomenological models.
Electroweak reactions on light nuclei in chiral perturbation theory
Phillips, D. R.
2010-08-04
I discuss the calculation of electromagnetic and weak reactions in few-nucleon systems using potentials and current operators derived within chiral effective theory ({chi}ET). Computations up to O(P{sup 3}) relative to leading are considered. I first present results that show that at this order {chi}ET gives a good description of extant data on the deuteron's charge and quadrupole form factors for momentum transfers |q|<0.6 GeV. These predictions will be challenged by forthcoming data from BLAST and JLab. I then review calculations pertaining to the {chi}ET expansion for weak currents, which has reached unprecedentedaccuracy. When used to anlayze data on the weak-capture process, {sup 3}He({mu}{sup -},{upsilon}{sub {mu}}){sup 3}H, it yields a tight constraint on the conserved vector-current hypothesis.
Even- and Odd-Parity Charmed Meson Masses in Heavy Hadron Chiral Perturbation Theory
Thomas Mehen; Roxanne Springer
2005-03-01
We derive mass formulae for the ground state, J{sup P} = 0{sup -} and 1{sup -}, and first excited even-parity, J{sup P} = 0{sup +} and 1{sup +}, charmed mesons including one loop chiral corrections and {Omicron}(1/m{sub c}) counterterms in heavy hadron chiral perturbation theory. We show a variety of fits to the current data. We find that certain parameter relations in the parity doubling model are not renormalized at one loop, providing a natural explanation for the equality of the hyperfine splittings of ground state and excited doublets.
NASA Astrophysics Data System (ADS)
Taher Ghahramani, Farhad; Tirandaz, Arash
2017-01-01
We examine the dynamics of the chiral states of chiral molecules with high tunneling rates in dilute and condensed phases in the context of time-dependent perturbation theory. The chiral molecule is effectively described by an asymmetric double-well potential, whose asymmetry is a measure of chiral interactions. The dilute and condensed phases are conjointly described by a collection of harmonic oscillators but with temperature-dependent sub-ohmic and temperature-independent ohmic spectral densities, respectively. We examine our method quantitatively by applying the dynamics to an isotopic ammonia molecule, NHDT, in an inert background gas (as the dilute phase) and in water (as the condensed phase). As the different spectral densities imply, the extension of the dynamics from the dilute phase to the condensed phase is not trivial. While the dynamics in the dilute phase leads to racemization, the chiral interactions in the condensed phase induce the quantum Zeno effect. Moreover, contrary to the condensed phase, the short-time dynamics in the dilute phase is sensitive to the initial state of the chiral molecule and to the strength of the coupling between the molecule and the environment.
Strange baryons in a chiral quark-meson model (II). broken SU(3)
NASA Astrophysics Data System (ADS)
McGovern, Judith A.; Birse, Michael C.
1990-01-01
The chiral-quark meson model is used to study baryon properties with realistic breaking of SU(3). The symmetry breaking is assumed to be strong, so that a random phase approximation (RPA) can be used. In this the strange baryons are described as excitations built on the hedgehog soliton and have an excitation energy of 315 MeV. Other properties of strange baryons are obtained by an approximate spin-isospin projection from the RPA wave function. The magnetic moments agree reasonably well with experiment, but the deviations from the experimental values suggest that the method is valid for the case of rather stronger symmetry breaking than is realistic. The dependence of the RPA energy on the magnitude of the symmetry breaking is examined, and found to be strongly nonlinear for realistic values. This supports the idea that a large πN sigma commutator need not imply a large strange-quark content in the proton. For reasonable values of the scalar meson masses the strange-quark condensate is found to be less than 5% of the total, at the mean-field level. We also estimate the contribution to the condensate from RPA correlations. Within a one-mode approximation we find these to be very small, ˜2%.
Octet and decuplet baryon magnetic moments in the chiral quark model
NASA Astrophysics Data System (ADS)
Dahiya, Harleen; Gupta, Manmohan
2003-06-01
Octet and decuplet baryon magnetic moments have been formulated within the chiral quark model (χ QM) with configuration mixing incorporating the sea quark polarizations and their orbital angular momentum through a generalization of the Cheng-Li mechanism. When the parameters of the χ QM without configuration mixing are fixed by incorporating the latest data pertaining to ū-d¯ asymmetry (E866) and the spin polarization functions, in the case of octet magnetic moments the results not only show improvement over the nonrelativistic quark model results but also give a nonzero value for the right hand side of the Coleman-Glashow sum rule, usually zero in most of the models. In the case of decuplet magnetic moments, we obtain a good overlap for Δ++, Ω-, and the transition magnetic moment ΔN for which data are available. In the case of the octet, the predictions of the χ QM with the generalized Cheng-Li mechanism show remarkable improvements in general when the effects of configuration mixing and “mass adjustments” due to confinement are included, specifically in the case of p, Σ+, Ξ0, and the ΣΛ transition magnetic moment and in the violation of the Coleman-Glashow sum rule an almost perfect agreement with data is obtained. When the above analysis is repeated with the earlier NMC data, a similar level of agreement is obtained; however, the results in the case of E866 look to be better. In this case, we incorporate in our analysis the gluon polarization Δg, found phenomenologically through the relation ΔΣ(Q2)=ΔΣ-[3αs(Q2)/2π]Δg(Q2); not only do we obtain an improvement in the quark spin distribution functions and magnetic moments, but also the value of Δg comes out in good agreement with certain recent measurements as well as theoretical estimates.
Golterman, M.F.; Leung, K.C.
1997-09-01
In this paper we use one-loop chiral perturbation theory in order to compare lattice computations of the K{sup +}{r_arrow}{pi}{sup +}{pi}{sup 0} decay amplitude with the experimental value. This makes it possible to investigate three systematic effects that plague lattice computations: quenching, finite-volume effects, and the fact that lattice computations have been done at unphysical values of the quark masses and pion external momenta (only this latter effect shows up at the tree level). We apply our results to the most recent lattice computation and find that all three effects are substantial. We conclude that one-loop corrections in chiral perturbation theory help in explaining the discrepancy between lattice results and the real-world value. We also reexamine B{sub K}, which is closely related to the K{sup +}{r_arrow}{pi}{sup +}{pi}{sup 0} decay amplitude by chiral symmetry. {copyright} {ital 1997} {ital The American Physical Society}
Correlators of left charges and weak operators in finite volume chiral perturbation theory
NASA Astrophysics Data System (ADS)
Hernández, Pilar; Laine, Mikko
2003-01-01
We compute the two-point correlator between left-handed flavour charges, and the three-point correlator between two left-handed charges and one strangeness violating DeltaI = 3/2 weak operator, at next-to-leading order in finite volume SU(3)L × SU(3)R chiral perturbation theory, in the so-called epsilon-regime. Matching these results with the corresponding lattice measurements would in principle allow to extract the pion decay constant F, and the effective chiral theory parameter g27, which determines the Delta I = 3/2 amplitude of the weak decays K to pipi as well as the kaon mixing parameter BK in the chiral limit. We repeat the calculations in the replica formulation of quenched chiral perturbation theory, finding only mild modifications. In particular, a properly chosen ratio of the three-point and two-point functions is shown to be identical in the full and quenched theories at this order.
Proton radius from electron-proton scattering and chiral perturbation theory
NASA Astrophysics Data System (ADS)
Horbatsch, Marko; Hessels, Eric A.; Pineda, Antonio
2017-03-01
We determine the root-mean-square proton charge radius, Rp, from a fit to low-Q2 electron-proton elastic-scattering cross-section data with the higher moments fixed (within uncertainties) to the values predicted by chiral perturbation theory. We obtain Rp=0.855 (11 ) fm. This number falls between the value obtained from muonic hydrogen analyses and the CODATA value (based upon atomic hydrogen spectroscopy and electron-proton scattering determinations).
Light-by-Light Hadronic Corrections to the Muon G-2 Problem Within the Nonlocal Chiral Quark Model
NASA Astrophysics Data System (ADS)
Dorokhov, A. E.; Radzhabov, A. E.; Zhevlakov, A. S.
2017-03-01
Results of calculation of the light-by-light contribution from the lightest neutral pseudoscalar and scalar mesons and the dynamical quark loop to the muon anomalous magnetic moment are discussed in the framework of the nonlocal SU(3) × SU(3) chiral quark model. The model is based on four-quark interaction of the Nambu-Jona-Lasinio type and Kobayashi-Maskawa-`t Hooft six-quark interaction. The full kinematic dependence of vertices with off-shell mesons and photons in intermediate states in the light-by-light scattering amplitude is taken into account. All calculations are elaborated in explicitly gauge-invariant manner. These results complete calculations of all hadronic light-by-light scattering contributions to aμ in the leading order in the 1/Nc expansion. The final result does not allow the discrepancy between the experiment and the Standard Model to be explained.
Hydrodynamics with a chiral hadronic equation of state including quark degrees of freedom
Steinheimer, J.; Bleicher, M.; Petersen, H.; Dexheimer, V.; Schramm, S.; Stoecker, H.
2010-04-15
We investigate the influence of a deconfinement phase transition on the dynamics of hot and dense nuclear matter. To this aim a hybrid model with an intermediate hydrodynamic stage for the hot and dense phase of the system is employed for collisions of Pb+Pb/Au+Au at beam energies of E{sub lab}=2-160 A GeV, while initial and final interactions are performed by a microscopic transport approach (UrQMD). In the hydrodynamic stage an equation of state that incorporates a critical end point in line with lattice data is used. It follows from coupling the Polyakov loop (as an order parameter for deconfinement) to a chiral hadronic SU(3){sub f} model. In this configuration the equation of state describes chiral restoration as well as the deconfinement phase transition. We compare the results from this new equation of state to results obtained, by applying a hadron resonance gas equation of state, focusing on bulk observables deemed to be sensitive to the phase transition to a quark-gluon plasma.
NASA Astrophysics Data System (ADS)
Yao, De-Liang; Siemens, D.; Bernard, V.; Epelbaum, E.; Gasparyan, A. M.; Gegelia, J.; Krebs, H.; Meißner, Ulf-G.
2016-05-01
We present the results of a third order calculation of the pion-nucleon scattering amplitude in a chiral effective field theory with pions, nucleons and delta resonances as explicit degrees of freedom. We work in a manifestly Lorentz invariant formulation of baryon chiral perturbation theory using dimensional regularization and the extended on-mass-shell renormalization scheme. In the delta resonance sector, the on mass-shell renormalization is realized as a complex-mass scheme. By fitting the low-energy constants of the effective Lagrangian to the S- and P -partial waves a satisfactory description of the phase shifts from the analysis of the Roy-Steiner equations is obtained. We predict the phase shifts for the D and F waves and compare them with the results of the analysis of the George Washington University group. The threshold parameters are calculated both in the delta-less and delta-full cases. Based on the determined low-energy constants, we discuss the pion-nucleon sigma term. Additionally, in order to determine the strangeness content of the nucleon, we calculate the octet baryon masses in the presence of decuplet resonances up to next-to-next-to-leading order in SU(3) baryon chiral perturbation theory. The octet baryon sigma terms are predicted as a byproduct of this calculation.
Forward virtual Compton scattering and the Lamb shift in chiral perturbation theory
Nevado, David; Pineda, Antonio
2008-03-15
We compute the spin-independent structure functions of the forward virtual-photon Compton tensor of the proton at one loop using heavy baryon chiral perturbation theory and dispersion relations. We study the relation between both approaches. We use these results to generalize some sum rules to virtual photon transfer momentum and relate them with sum rules in deep inelastic scattering. We then compute the leading chiral term of the polarizability correction to the Lamb shift of hydrogen and muonic hydrogen. We obtain -87.05/n{sup 3}Hz and -0.148/n{sup 3}meV for the correction to the hydrogen and muonic hydrogen Lamb shift, respectively.
Perturbative and nonperturbative aspects of jet quenching in near-critical quark-gluon plasmas
NASA Astrophysics Data System (ADS)
Xu, Jiechen
In this thesis, we construct two QCD based energy loss models to perform quantitative analysis of jet quenching observables in ultra-relativistic nucleus-nucleus collisions at RHIC and the LHC. We first build up a perturbative QCD based CUJET2.0 jet flavor tomography model that couples the dynamical running coupling DGLV opacity series to bulk data constrained relativistic viscous hydrodynamic backgrounds. It solves the strong heavy quark energy loss puzzle at RHIC and explains the surprising transparency of the quark-gluon plasma (QGP) at the LHC. The observed azimuthal anisotropy of hard leading hadrons requires a path dependent jet-medium coupling in CUJET2.0 that implies physics of nonperturbative origin. To explore the nonperturbative chromo-electric and chromo-magnetic structure of the strongly-coupled QGP through jet probes, we build up a new CUJET3.0 framework that includes in CUJET2.0 both Polyakov loop suppressed semi-QGP chromo-electric charges and emergent chromo-magnetic monopoles in the critical transition regime. CUJET3.0 quantitatively describes the anisotropic hadron suppression at RHIC and the LHC. More significantly, it provides a robust connection between the long wavelength ``perfect fluidity'' of the QGP and the short distance jet transport in the QGP. This framework paves the way for ``measuring'' both perturbative and nonperturbative properties of the QGP, and more importantly for probing color confinement through jet quenching.
An analytic approach to sunset diagrams in chiral perturbation theory: Theory and practice
NASA Astrophysics Data System (ADS)
Ananthanarayan, B.; Bijnens, Johan; Ghosh, Shayan; Hebbar, Aditya
2016-12-01
We demonstrate the use of several code implementations of the Mellin-Barnes method available in the public domain to derive analytic expressions for the sunset diagrams that arise in the two-loop contribution to the pion mass and decay constant in three-flavoured chiral perturbation theory. We also provide results for all possible two mass configurations of the sunset integral, and derive a new one-dimensional integral representation for the one mass sunset integral with arbitrary external momentum. Thoroughly annotated Mathematica notebooks are provided as ancillary files in the Electronic Supplementary Material to this paper, which may serve as pedagogical supplements to the methods described in this paper.
Alexandru, Andrei; Horváth, Ivan
2016-01-22
The validity of recently proposed equivalence between valence spontaneous chiral symmetry breaking (vSChSB) and chiral polarization of low energy Dirac spectrum (ChP) in SU(3) gauge theory, is examined for the case of twelve mass–degenerate fundamental quark flavors. We find that the vSChSB–ChP correspondence holds for regularized systems studied. Moreover, our results suggest that vSChSB occurs in two qualitatively different circumstances: there is a quark mass m{sub c} such that for m > m{sub c} the mode condensing Dirac spectrum exhibits standard monotonically increasing density, while for m{sub ch} < m < m{sub c} the peak around zero separates from the bulk of the spectrum, with density showing a pronounced depletion at intermediate scales. Valence chiral symmetry restoration may occur at yet smaller masses m < m{sub ch}, but this has not yet been seen by overlap valence probe, leaving the m{sub ch} = 0 possibility open. The latter option could place massless N{sub f}=12 theory outside of conformal window. Anomalous behavior of overlap Dirac spectrum for m{sub ch} < m < m{sub c} is qualitatively similar to one observed previously in zero and few–flavor theories as an effect of thermal agitation.
Baryons with Ginsparg-Wilson quarks in a staggered sea
Tiburzi, Brian C.
2005-11-01
We determine the masses and magnetic moments of the octet baryons in chiral perturbation theory formulated for a mixed lattice action of Ginsparg-Wilson valence quarks and staggered sea quarks. Taste-symmetry breaking does not occur at next-to-leading order in the combined lattice spacing and chiral expansion. Expressions derived for masses and magnetic moments are required for addressing lattice artifacts in mixed-action simulations of these observables.
Baryon-Baryon Interaction in a Chiral-Quark Mean - Model
NASA Astrophysics Data System (ADS)
Pineda, Fernando Javier
The nontopological soliton solution of a chirally invariant Lagrangian which incorporates the linear (sigma) -model BB84,KR84 is used as a model for Baryons. The nucleon-nucleon interaction is modeled by the interaction of two such solitons. The soliton-soliton interaction is calculated adiabatically by extremizing the energy of the two-soliton system subject to the constraint that the inter-soliton separation is fixed. The fields and wavefunctions are expanded in a two-center harmonic oscillator basis thus permitting essentially arbitrary tri-axial deformations. The hedgehog form is imposed on the spin-isospin wavefunction of the solitons. The isospin (or spin) of the two solitons may be quantized along different directions thus introducing a dependence in the energy on the relative orientation of the quantization axes. This permits the extraction of a low energy effective NN potential by an approximate method. An OBE calculation between identical undeformed solitons shows that the pion form factor is quite soft. It also suggests that the mass ((TURN)550 MeV) of the (sigma) -meson, responsible for intermediate range attraction in the central potential of phenomenological meson-exchange models, is a consequence of the coupling of a heavier (sigma) -meson with lighter pions. The Euler-Lagrange equations for the six-quark system are solved approximately using a variational method. The solutions exhibit a dynamical boundary which divides the NN interaction into two domains, an exterior domain where the solitons maintain their identity and the six-quark system is appropriately described as two distinct solitons, and an interior domain where the system is more appropriately described as a single highly deformed soliton. The boundary occurs sharply for critical inter-soliton separations in the range 0.8 - 0.1 fm. The even parity interior solution and the critical separation are shown to be consistent with the energy independence of the F-matrix at low energy in the
NASA Astrophysics Data System (ADS)
Albaladejo, M.; Fernandez-Soler, P.; Nieves, J.; Ortega, P. G.
2017-03-01
The discovery of the D^*_{s0}(2317) and D_{s1}(2460) resonances in the charmed-strange meson spectra revealed that formerly successful constituent quark models lose predictability in the vicinity of two-meson thresholds. The emergence of non-negligible effects due to meson loops requires an explicit evaluation of the interplay between Q{\\bar{q}} and (Q{\\bar{q}})(q{\\bar{q}}) Fock components. In contrast to the c{\\bar{s}} sector, there is no experimental evidence of J^P=0^+,1^+ bottom-strange states yet. Motivated by recent lattice studies, in this work the heavy-quark partners of the D_{s0}^*(2317) and D_{s1}(2460) states are analyzed within a heavy meson chiral unitary scheme. As a novelty, the coupling between the constituent quark-model P-wave {\\bar{B}}_s scalar and axial mesons and the {\\bar{B}}^{(*)}K channels is incorporated employing an effective interaction, consistent with heavy-quark spin symmetry, constrained by the lattice energy levels.
The chirally rotated Schrödinger functional: theoretical expectations and perturbative tests
NASA Astrophysics Data System (ADS)
Brida, Mattia Dalla; Sint, Stefan; Vilaseca, Pol
2016-08-01
The chirally rotated Schrödinger functional (χSF) with massless Wilson-type fermions provides an alternative lattice regularization of the Schrödinger functional (SF), with different lattice symmetries and a common continuum limit expected from universality. The explicit breaking of flavour and parity symmetries needs to be repaired by tuning the bare fermion mass and the coefficient of a dimension 3 boundary counterterm. Once this is achieved one expects the mechanism of automatic O( a) improvement to be operational in the χSF, in contrast to the standard formulation of the SF. This is expected to significantly improve the attainable precision for step-scaling functions of some composite operators. Furthermore, the χSF offers new strategies to determine finite renormalization constants which are traditionally obtained from chiral Ward identities. In this paper we consider a complete set of fermion bilinear operators, define corresponding correlation functions and explain the relation to their standard SF counterparts. We discuss renormalization and O( a) improvement and then use this set-up to formulate the theoretical expectations which follow from universality. Expanding the correlation functions to one-loop order of perturbation theory we then perform a number of non-trivial checks. In the process we obtain the action counterterm coefficients to one-loop order and reproduce some known perturbative results for renormalization constants of fermion bilinears. By confirming the theoretical expectations, this perturbative study lends further support to the soundness of the χSF framework and prepares the ground for non-perturbative applications.
Elastic pion-nucleon scattering in chiral perturbation theory: A fresh look
NASA Astrophysics Data System (ADS)
Siemens, D.; Bernard, V.; Epelbaum, E.; Gasparyan, A.; Krebs, H.; Meißner, Ulf-G.
2016-07-01
Elastic pion-nucleon scattering is analyzed in the framework of chiral perturbation theory up to fourth order within the heavy-baryon expansion and a covariant approach based on an extended on-mass-shell renormalization scheme. We discuss in detail the renormalization of the various low-energy constants and provide explicit expressions for the relevant β functions and the finite subtractions of the power-counting breaking terms within the covariant formulation. To estimate the theoretical uncertainty from the truncation of the chiral expansion, we employ an approach which has been successfully applied in the most recent analysis of the nuclear forces. This allows us to reliably extract the relevant low-energy constants from the available scattering data at low energy. The obtained results provide clear evidence that the breakdown scale of the chiral expansion for this reaction is related to the Δ resonance. The explicit inclusion of the leading contributions of the Δ isobar is demonstrated to substantially increase the range of applicability of the effective field theory. The resulting predictions for the phase shifts are in an excellent agreement with the predictions from the recent Roy-Steiner-equation analysis of pion-nucleon scattering.
Spectral properties of a Dirac operator in the chiral quark soliton model
Arai, Asao; Hayashi, Kunimitsu; Sasaki, Itaru
2005-05-01
We consider a Dirac operator H acting in the Hilbert space L{sup 2}(R{sup 3};C{sup 4})xC{sup 2}, which describes a Hamiltonian of the chiral quark soliton model in nuclear physics. The mass term of H is a matrix-valued function formed out of a function F:R{sup 3}{yields}R, called a profile function, and a vector field n on R{sup 3}, which fixes pointwise a direction in the isospin space of the pion. We first show that, under suitable conditions, H may be regarded as a generator of a supersymmetry. In this case, the spectra of H are symmetric with respect to the origin of R. We then identify the essential spectrum of H under some condition for F. For a class of profile functions F, we derive an upper bound for the number of discrete eigenvalues of H. Under suitable conditions, we show the existence of a positive energy ground state or a negative energy ground state for a family of scaled deformations of H. A symmetry reduction of H is also discussed. Finally a unitary transformation of H is given, which may have a physical interpretation.
Perturbative aspects of the phase diagram of QCD with heavy quarks
NASA Astrophysics Data System (ADS)
Serreau, Julien; Reinosa, Urko
2017-03-01
We report on recent progress in the description of the phase diagram of QCD with heavy quarks at nonzero temperature and chemical potential in the context of a modified perturbative approach. The latter is based on a simple massive extension of the QCD Lagrangian in the Landau-DeWitt gauge, the background field generalization of the Landau gauge. Here, the background field plays the role of an order parameter for the center symmetry, relevant for confinement-deconfinement transition. One-loop results in this approach give a fairly accurate description of the phase diagram both at real and imaginary chemical potential. We comment on issues related to the sign problem in continuum approaches. Based on works in collaboration with Matthieu Tissier and Nicolás Wschebor.
Strong decays of heavy-light mesons in a chiral quark model
NASA Astrophysics Data System (ADS)
Zhong, Xian-Hui; Zhao, Qiang
2008-07-01
We carry out a systematic study of the heavy-light meson strong decays in a chiral quark model. For the S-wave vectors [D*(2007), D*±(2010)], P-wave scalars [D0*(2400), B0*(5730)], and tensors [D2*(2460), Ds2*(2573)], we obtain results in good agreement with the experimental data. For the axial vectors D1(2420) and D1'(2430), a state mixing scheme between 1P11 and 1P13 is favored with a mixing angle ϕ≃-(55±5)°, which is consistent with previous theoretical predictions. The same mixing scheme also applies to Ds1(2460) and Ds1(2536) that accounts for the narrow width of the Ds1(2536) and its dominant decay into D*K. For B1(5725) and B1'(5732), such a mixing explains well the decay width of the former but leads to an even broader B1'(5732). Predictions for the strange-bottom axial vectors are also made. For the undetermined meson D*(2640), we find that they fit well in the radially excited state 2S13 according to its decay mode. The newly observed DsJ*(2860) strongly favors the D-wave excited state 1D33. For DsJ*(2632) and DsJ*(2690), we find they are difficult to fit in any Ds excitations in that mass region, if the experimental data are accurate. Theoretical predictions for decay modes of those unobserved states as multiplets of 2S and 1D waves are also presented, which should be useful for the further experimental search for those states.
Meson properties in a nonlocal SU(3) chiral quark model at finite temperature
Contrera, G. A.; Gomez Dumm, D.; Scoccola, N. N.
2010-11-12
Finite temperature meson properties are studied in the context of a nonlocal SU(3) quark model which includes flavor mixing and the coupling of quarks to the Polyakov loop (PL). We analyze the behavior of scalar and pseudoscalar meson masses and mixing angles, as well as quark-meson couplings and pseudoscalar meson decay constants.
NASA Astrophysics Data System (ADS)
Schleif, M.; Wünsch, R.; Maissner, T.
We study translational and spin-isospin symmetry restoration for the two-flavor chiral quark-loop soliton. Instead of a static soliton at rest we consider a boosted and rotating hedgehog soliton. Corrected classical meson fields are obtained by minimizing a corrected energy functional which has been derived by semi-classical methods (variation after projection). We evaluate corrected meson fields in the region 300 MeV ≤ M≤ 600 MeV of constituent quark masses M and compare them with the uncorrected fields. We study the effect of the corrections on various expectation values of nuclear observables such as the root-mean square radius, the axial-vector coupling constant, magnetic moments and the delta-nucleon mass splitting.
τ - →K - η ( ') ν τ decays in Chiral Perturbation Theory with resonances
NASA Astrophysics Data System (ADS)
Escribano, R.; González-Solís, S.; Roig, P.
2013-10-01
We have studied the τ - → K - η ( ') ν τ decays within Chiral Perturbation Theory including resonances as explicit degrees of freedom. We have considered three different form factors according to treatment of final-state interactions. In increasing degree of soundness: Breit-Wigner, exponential resummation and dispersive representation. We find that although the first one fails in accounting for the data on the Kη mode, the other two approaches provide good fits to them which are sensitive to the K ⋆ (1410) pole parameters, that are determined to be MeV and MeV. These values are competitive with the standard determination from τ - → ( Kπ)- ν τ decays. The corresponding predictions for the τ - → K - η ' ν τ channel respect the current upper bound and hint to the discovery of this decay mode in the near future.
Heavy-baryon chiral perturbation theory approach to thermal neutron capture on {sup 3}He
Lazauskas, Rimantas; Park, Tae-Sun
2011-03-15
The cross section for radiative thermal neutron capture on {sup 3}He ({sup 3}He+n{yields}{sup 4}He+{gamma}; known as the hen reaction) is calculated based on heavy-baryon chiral perturbation theory. The relevant M1 operators are derived up to next-to-next-to-next-to-leading order (N{sup 3}LO). The initial and final nuclear wave functions are obtained from the rigorous Faddeev-Yakubovski equations for five sets of realistic nuclear interactions. Up to N{sup 3}LO, the M1 operators contain two low-energy constants, which appear as the coefficients of nonderivative two-nucleon contact terms. After determining these two constants using the experimental values of the magnetic moments of the triton and {sup 3}He, we carry out a parameter-free calculation of the hen cross section. The results are in good agreement with the data.
New predictions for generalized spin polarizabilities from heavy baryon chiral perturbation theory
Chung-Wen Kao; Barbara Pasquini; Marc Vanderhaeghen
2004-08-01
We extract the next-to-next-to-leading order results for spin-flip generalized polarizabilities (GPs) of the nucleon from the spin-dependent amplitudes for virtual Compton scattering (VCS) at {Omicron}(p{sup 4}) in heavy baryon chiral perturbation theory. At this order, no unknown low energy constants enter the theory, allowing us to make absolute predictions for all spin-flip GPs. Furthermore, by using constraint equations between the GPs due to nucleon crossing combined with charge conjugation symmetry of the VCS amplitudes, we get a next-to-next-to-next-to-leading order prediction for one of the GPs. We provide estimates for forthcoming double polarization experiments which allow to access these spin-flip GPs of the nucleon.
New predictions for generalized spin polarizabilities from heavy baryon chiral perturbation theory
Kao, C.-W.; Pasquini, Barbara; Vanderhaeghen, Marc
2004-12-01
We extract the next-to-next-to-leading order results for spin-flip generalized polarizabilities (GPs) of the nucleon from the spin-dependent amplitudes for virtual Compton scattering at O(p{sup 4}) in heavy baryon chiral perturbation theory. At this order, no unknown low-energy constants enter the theory, allowing us to make absolute predictions for all spin-flip GPs. Furthermore, by using constraint equations between the GPs due to nucleon crossing combined with charge conjugation symmetry of the virtual Compton scattering amplitudes, we get a next-to-next-to-next-to-leading order prediction for one of the GPs. We provide estimates for forthcoming double-polarization experiments which allow one to access these spin-flip GPs of the nucleon.
Convergence properties of η → 3π decays in chiral perturbation theory
NASA Astrophysics Data System (ADS)
Kolesár, Marián; Novotný, Jiří
2017-01-01
The convergence of the decay widths and some of the Dalitz plot parameters of the decay η → 3π seems problematic in low energy QCD. In the framework of resummed chiral perturbation theory, we explore the question of compatibility of experimental data with a reasonable convergence of a carefully defined chiral series. By treating the uncertainties in the higher orders statistically, we numerically generate a large set of theoretical predictions, which are then confronted with experimental information. In the case of the decay widths, the experimental values can be reconstructed for a reasonable range of the free parameters and thus no tension is observed, in spite of what some of the traditional calculations suggest. The Dalitz plot parameters a and d can be described very well too. When the parameters b and α are concerned, we find a mild tension for the whole range of the free parameters, at less than 2σ C.L. This can be interpreted in two ways - either some of the higher order corrections are indeed unexpectedly large or there is a specific configuration of the remainders, which is, however, not completely improbable.
Baryon mass splittings and strong CP violation in SU(3) chiral perturbation theory
de Vries, Jordy; Mereghetti, Emanuele; Walker-Loud, Andre P.
2015-10-08
We study SU(3) flavor breaking corrections to the relation between the octet baryon masses and the nucleon-meson CP-violating interactions induced by the QCD theta term. We also work within the framework of SU(3) chiral perturbation theory and work through next-to-next-to-leading order in the SU(3) chiral expansion, which is O(m2q). At lowest order, the CP-odd couplings induced by the QCD θ- term are determined by mass splittings of the baryon octet, the classic result of Crewther et al. We show that for each isospin-invariant CP-violating nucleon-meson interaction there exists one relation which is respected by loop corrections up to the ordermore » we work, while other leading-order relations are violated. With these relations we extract a precise value of the pion-nucleon coupling g-0 by using recent lattice QCD evaluations of the proton-neutron mass splitting. Additionally, we derive semi-precise values for CP-violating coupling constants between heavier mesons and nucleons and discuss their phenomenological impact on electric dipole moments of nucleons and nuclei.« less
NASA Astrophysics Data System (ADS)
Lemler, Paul M.; Vaccaro, Patrick
2016-06-01
The non-resonant interaction of electromagnetic radiation with an isotropic ensemble of chiral molecules, which causes the incident state of linear polarization to undergo a signed rotation, long has served as a metric for gauging the enantiomeric purity of asymmetric syntheses. While the underlying phenomenon of circular birefringence (CB) typically is probed in the condensed phase, recent advances in ultrasensitive circular-differential detection schemes, as exemplified by the techniques of Cavity Ring-Down Polarimetry (CRDP), have permitted the first quantitative analyses of such processes to be performed in rarefied media. Efforts to extend vapor-phase investigations of CB to new families of chiral substrates will be discussed, with particular emphasis directed towards the elucidation of intrinsic (e.g., solvent-free) properties and their mediation by environmental perturbations (e.g., solvation). Specific species targeted by this work will include the stereoselective building blocks phenylpropylene oxide and α-methylbenzyl amine, both of which exhibit pronounced solvent-dependent changes in measured optical activity. The nature of chiroptical response in different environments will be highlighted, with quantum-chemical calculations serving to unravel the structural and electronic provenance of observed behavior.
Pasquini, B.; Drechsel, D.; Scherer, S.
2010-02-15
We show that the alleged discrepancies between chiral perturbation theory (ChPT) and dispersion theory, reported for the polarizability of the pion by Fil'kov and Kashevarov [Phys. Rev. C 72, 035211 (2005)], result from applying dispersion theory to nonanalytic functions.
Bonanno, Luca; Drago, Alessandro; Lavagno, Andrea
2007-12-14
We discuss two models in which a softening of the equation of state takes place due to the appearance of new degrees of freedom. The first is a hadronic model in which the softening is due to chiral symmetry restoration. In the second model the softening is associated with the formation of clusters of quarks in the mixed phase. We show that in the first case the bulk modulus is mainly dependent on the density, while in the mixed-phase model the bulk modulus strongly depends on the temperature and it is not vanishing due to the presence of two conserved charges, the baryon and the isospin one.
NASA Astrophysics Data System (ADS)
Gell-Mann, M.
In these lectures I want to speak about at least two interpretations of the concept of quarks for hadrons and the possible relations between them. First I want to talk about quarks as "constituent quarks". These were used especially by G. Zweig (1964) who referred to them as aces. One has a sort of a simple model by which one gets elementary results about the low-lying bound and resonant states of mesons and baryons, and certain crude symmetry properties of these states, by saying that the hadrons act as if they were made up of subunits, the constituent quarks q. These quarks are arranged in an isotopic spin doublet u, d and an isotopic spin singlet s, which has the same charge as d and acts as if it had a slightly higher mass…
Laiho, Jack; Soni, Amarjit
2005-01-01
We show that it is possible to construct {epsilon}{sup '}/{epsilon} to next-to-leading order (NLO) using partially quenched chiral perturbation theory (PQChPT) from amplitudes that are computable on the lattice. We demonstrate that none of the needed amplitudes require 3-momentum on the lattice for either the full theory or the partially quenched theory; nondegenerate quark masses suffice. Furthermore, we find that the electro-weak penguin ({delta}I=3/2 and 1/2) contributions to {epsilon}{sup '}/{epsilon} in PQChPT can be determined to NLO using only degenerate (m{sub K}=m{sub {pi}}) K{yields}{pi} computations without momentum insertion. Issues pertaining to power divergent contributions, originating from mixing with lower dimensional operators, are addressed. Direct calculations of K{yields}{pi}{pi} at unphysical kinematics are plagued with enhanced finite volume effects in the (partially) quenched theory, but in simulations when the sea quark mass is equal to the up and down quark mass the enhanced finite volume effects vanish to NLO in PQChPT. In embedding the QCD penguin left-right operator onto PQChPT an ambiguity arises, as first emphasized by Golterman and Pallante. With one version [the 'PQS' (patially quenched singlet)] of the QCD penguin, the inputs needed from the lattice for constructing K{yields}{pi}{pi} at NLO in PQChPT coincide with those needed for the full theory. Explicit expressions for the finite logarithms emerging from our NLO analysis to the above amplitudes also are given.
Nonlinear realization of chiral symmetry on the lattice
NASA Astrophysics Data System (ADS)
Chandrasekharan, Shailesh; Pepe, Michele; Steffen, Frank Daniel; Wiese, Uwe-Jens
2003-12-01
We formulate lattice theories in which chiral symmetry is realized nonlinearly on the fermion fields. In this framework the fermion mass term does not break chiral symmetry. This property allows us to use the Wilson term to remove the doubler fermions while maintaining exact chiral symmetry on the lattice. Our lattice formulation enables us to address non-perturbative questions in effective field theories of baryons interacting with pions and in models involving constituent quarks interacting with pions and gluons. We show that a system containing a non-zero density of static baryons interacting with pions can be studied on the lattice without encountering complex action problems. In our formulation one can also decide non-perturbatively if the chiral quark model of Georgi and Manohar provides an appropriate low-energy description of QCD. If so, one could understand why the non-relativistic quark model works.
Zhou, Hui; Wang, Xiaojun; Zhou, Ying; Yao, Hongzhou; Ahmad, Farooq
2014-06-01
The toxicity of ZnO nanoparticles (NPs) has been widely investigated because of their extensive use in consumer products. The mechanism of the toxicity of ZnO NPs to algae is unclear, however, and it is difficult to differentiate between particle-induced toxicity and the effect of dissolved Zn(2+). In the work discussed in this paper we investigated particle-induced toxicity and the effects of dissolved Zn(2+) by using the chiral perturbation approach with dichlorprop (DCPP) as chiral perturbation factor. The results indicated that intracellular zinc is important in the toxicity of ZnO NPs, and that ZnO NPs cause oxidative damage. According to dose-response curves for DCPP and the combination of ZnO NPs with (R)-DCPP or (S)-DCPP, the toxicity of DCPP was too low to perturb the toxicity of ZnO NPs, so DCPP was suitable for use as chiral perturbation factor. The different glutathione (GSH) content of algal cells exposed to (R)-DCPP or (S)-DCPP correlated well with different production of reactive oxygen species (ROS) after exposure to the two enantiomers. Treatment of algae with ZnO NPs and (R)-DCPP resulted in reduced levels of GSH and the glutathione/oxidized glutathione (GSH/GSSG) ratio in the cells compared with the control. Treatment of algae with ZnO NPs and (S)-DCPP, however, resulted in no significant changes in GSH and GSH/GSSG. Moreover, trends of variation of GSH and GSH/GSSG were different when algae were treated with ZnSO4·7H2O and the two enantiomers. Overall, the chiral perturbation approach revealed that NPs aggravated generation of ROS and that released Zn(2+) and NPs both contribute to the toxicity of ZnO NPs.
Determination of the chiral condensate from QCD Dirac spectrum on the lattice
Fukaya, H.; Onogi, T.; Aoki, S.; Chiu, T. W.; Hashimoto, S.; Kaneko, T.; Yamada, N.; Noaki, J.
2011-04-01
We calculate the chiral condensate of QCD with 2, 2+1, and 3 flavors of sea quarks. Lattice QCD simulations are performed employing dynamical overlap fermions with up- and down-quark masses covering a range between 3 and 100 MeV. On L{approx}1.8-1.9 fm lattices at a lattice spacing {approx}0.11 fm, we calculate the eigenvalue spectrum of the overlap-Dirac operator. By matching the lattice data with the analytical prediction from chiral perturbation theory at the next-to-leading order, the chiral condensate in the massless limit of up and down quarks is determined.
Pelaez, J. R.; Michael R. Pennington; de Elvira, J. Ruiz; Wilson, D. J.
2011-11-01
The leading 1/N{sub c} behavior of Unitarized Chiral Perturbation Theory distinguishes the nature of the {rho} and the {sigma}. At one loop order the {rho} is a {bar q}q meson, while the {sigma} is not. However, semi-local duality between resonances and Regge behaviour cannot be satisfied for larger N{sub c}, if such a distinction holds. While the {sigma} at N{sub c}= 3 is inevitably dominated by its di-pion component, Unitarised Chiral Perturbation Theory beyond one loop order reveals that as N{sub c} increases above 6-8, the {sigma} has a sub-dominant {bar q}q fraction up at 1.2 GeV. Remarkably this ensures semi-local duality is fulfilled for the range of N{sub c} {approx}< 15-30, where the unitarization procedure adopted applies.
Navratil, P; Caurier, E
2003-10-14
The authors calculate properties of A = 6 system using the accurate charge-dependent nucleon-nucleon (NN) potential at fourth order of chiral perturbation theory. By application of the ab initio no-core shell model (NCSM) and a variational calculation in the harmonic oscillator basis with basis size up to 16 {h_bar}{Omega} they obtain the {sup 6}Li binding energy of 28.5(5) MeV and a converged excitation spectrum. Also, they calculate properties of {sup 10}B using the same NN potential in a basis space of up to 8 {h_bar}{Omega}. The results are consistent with results obtained by standard accurate NN potentials and demonstrate a deficiency of Hamiltonians consisting of only two-body terms. At this order of chiral perturbation theory three-body terms appear. It is expected that inclusion of such terms in the Hamiltonian will improve agreement with experiment.
NASA Astrophysics Data System (ADS)
Thacker, H. B.; Xiong, Chi; Kamat, Ajinkya S.
2011-11-01
The Witten-Sakai-Sugimoto construction of holographic QCD in terms of D4 color branes and D8 flavor branes in type IIA string theory is used to investigate the role of topological charge in the chiral dynamics of quarks in QCD. The QCD theta term arises from a compactified five-dimensional Chern-Simons term on the D4 branes. This term couples the QCD topological charge to the Ramond-Ramond (RR) U(1) gauge field of type IIA string theory. For large Nc the contribution of instantons (D0 branes) is suppressed, and the nonzero topological susceptibility of pure-glue QCD is attributed to the presence of D6 branes, which constitute magnetic sources of the RR gauge field. The topological charge of QCD is required, by an anomaly inflow argument, to coincide in space-time with the intersection of the D6 branes and the D4 color branes. This clarifies the relation between D6 branes and the coherent, codimension-one topological charge membranes observed in QCD Monte Carlo calculations. Using open-string/closed-string duality, we interpret a quark loop (represented by a D4-D8 open-string loop) in terms of closed-string exchange between color and flavor branes. The role of the RR gauge field in quark-antiquark annihilation processes is discussed. RR exchange in the s-channel generates a 4-quark contact term which produces an η' mass insertion and provides an explanation for the observed spin-parity structure of the Okubo-Zweig-Iizuka rule. The (logDetU)2 form of the U(1) anomaly emerges naturally. RR exchange in the t-channel of the qq¯ scattering amplitude produces a Nambu-Jona-Lasinio interaction which may provide a mechanism for spontaneous breaking of SU(Nf)×SU(Nf).
Fate of pion condensation in quark matter: From the chiral limit to the physical pion mass
Abuki, H.; Anglani, R.; Pellicoro, M.; Ruggieri, M.; Gatto, R.
2009-02-01
We study aspects of the pion condensation in two-flavor neutral quark matter using the Nambu-Jona-Lasinio model of QCD at finite density. We investigate the role of electric charge neutrality, and explicit symmetry breaking via quark mass, both of which control the onset of the charged pion ({pi}{sup c}) condensation. We show that the equality between the electric chemical potential and the in-medium pion mass, {mu}{sub e}=M{sub {pi}{sup -}}, as a threshold, persists even for a composite pion system in the medium, provided the transition to the pion condensed phase is of the second order. Moreover, we find that the pion condensate in neutral quark matter is extremely fragile with respect to the symmetry breaking effect via a current quark mass m, and is ruled out for m larger than the order of 10 keV.
Quark mass relations to four-loop order in perturbative QCD.
Marquard, Peter; Smirnov, Alexander V; Smirnov, Vladimir A; Steinhauser, Matthias
2015-04-10
We present results for the relation between a heavy quark mass defined in the on-shell and minimal subtraction (MS[over ¯]) scheme to four-loop order. The method to compute the four-loop on-shell integral is briefly described and the new results are used to establish relations between various short-distance masses and the MS[over ¯] quark mass to next-to-next-to-next-to-leading order accuracy. These relations play an important role in the accurate determination of the MS[over ¯] heavy quark masses.
NASA Astrophysics Data System (ADS)
Itaco, N.; Coraggio, L.; Covello, A.; Gargano, A.; Entem, D. R.; Kuo, T. T. S.; Machleidt, R.
2008-04-01
Recently a new low-momentum nucleon-nucleon potential (N3LOW) has been derived from chiral perturbation theory at next-to-next-to-next-to-Ieading order with a sharp low-momentum cutoff at 2.1 fm-1. In this work we compare its perturbative properties with those of a Vlow-k potential constructed from a realistic NN potential with high-momentum components. We have performed shell-model calculations for 18O using effective hamiltonians derived from both types of low-momentum potential. The results show that the N3LOW potential is suitable to be applied perturbatively in microscopic nuclear structure calculations yielding results quite close to those obtained from Vlow-k.
Analyzing chiral condensate dependence on temperature and density
NASA Astrophysics Data System (ADS)
Rockcliffe, Keighley
2016-09-01
Determining the thermodynamic properties of the chiral condensate, the order parameter for chiral symmetry restoration, gives insight into whether there are phase transitions in dense astrophysical objects, such as young neutron stars. The chiral condensate is the scalar density of quarks in the ground state, and its presence violates chiral symmetry. Chiral effective field theory is used to study the behavior of the scalar quark condensate with changing temperature and density of neutron matter. Two-body and three-body chiral nuclear forces were employed to find the free energy and its dependence on the pion mass at lower temperatures. With increasing temperature (up to 100 MeV), the chiral condensate is strongly reduced, indicating a fast approach to chiral symmetry restoration. Chiral restoration seems to be hindered, however, at higher densities (around 0.2 fm-3). The role of the different perturbative contributions and their change with temperature and density was extracted. Although the dominant contribution is the noninteracting term in the perturbation series expansion, nuclear interactions are important particularly at high densities where they delay chiral symmetry restoration.
Fukugita, M. ); Mino, H. ); Okawa, M. , Ibaraki 305 ); Ukawa, A. )
1990-10-15
A previous finite-size study for the chiral phase transition of two-flavor QCD is extended to a smaller quark mass of {ital m}{sub {ital q}}=0.0125 in lattice units. The characteristics of the system for lattice sizes (6{sup 3}--12{sup 3}){times}4 are found to be quite similar to those for {ital m}{sub {ital q}}=0.025. The increase of susceptibilities over this range of the spatial size is still too mild to discriminate among the order of the transition also at this small quark mass.
Non-perturbative QCD Modeling and Meson Physics
Nguyen, T.; Souchlas, N. A.; Tandy, P. C.
2009-04-20
Using a ladder-rainbow kernel previously established for light quark hadron physics, we explore the extension to masses and electroweak decay constants of ground state pseudoscalar and vector quarkonia and heavy-light mesons in the c- and b-quark regions. We make a systematic study of the effectiveness of a constituent mass concept as a replacement for a heavy quark dressed propagator for such states. The difference between vector and axial vector current correlators is explored within the same model to provide an estimate of the four quark chiral condensate and the leading distance scale for the onset of non-perturbative phenomena in QCD.
Intrinsic transverse momentum and dynamical chiral symmetry breaking
Christian Weiss, Peter Schweitzer, Mark Strikman
2013-01-01
We study the effect of QCD vacuum structure on the intrinsic transverse momentum distribution of partons in the nucleon at a low scale. The dynamical breaking of chiral symmetry is caused by non-perturbative interactions at distances of the order rho ~ 0.2 - 0.3 fm, much smaller than the typical nucleon size R ~ 1 fm, resulting in a two-scale picture of nucleon structure. Using an effective dynamical model based on chiral constituent quark degrees of freedom and the 1/N_c expansion (chiral quark-soliton model), we calculate the transverse momentum distribution of quarks and antiquarks at a low scale. The distribution of valence quarks is localized at p_T ~ 1/R. The distribution of flavor-singlet unpolarized sea quarks exhibits a power-like tail extending up to the chiral-symmetry-breaking scale 1/{rho}. A similar tail is present in the flavor-nonsinglet polarized sea. These features are model-independent and represent the imprint of the QCD vacuum on the nucleon's partonic structure. At the level of the nucleon's light-cone wave function, we show that sea quarks partly exist in correlated pairs of transverse size {rho} << R, analogous to short-range NN correlations in nuclei. We discuss the implications of our findings for the transverse momentum distributions in hard scattering processes (semi-inclusive DIS, Drell-Yan pair production) and possible experimental tests of the non-perturbative parton correlations induced by QCD vacuum structure.
Violation of quark-hadron duality and spectral chiral moments in QCD
Gonzalez-Alonso, Martin; Pich, Antonio; Prades, Joaquim
2010-04-01
We analyze the spectral moments of the V-A two-point correlation function. Using all known short-distance constraints and the most recent experimental data from tau decays, we determine the lowest spectral moments, trying to assess the uncertainties associated with the so-called violations of quark-hadron duality. We have generated a large number of acceptable spectral functions, satisfying all conditions, and have used them to extract the wanted hadronic parameters through a careful statistical analysis. We obtain accurate values for the {chi}PT couplings L{sub 10} and C{sub 87}, and a realistic determination of the dimension six and eight contributions in the operator product expansion, O{sub 6}=(-5.4{sub -1.6}{sup +3.6}){center_dot}10{sup -3} GeV{sup 6} and O{sub 8}=(-8.9{sub -7.4}{sup +12.6}){center_dot}10{sup -3} GeV{sup 8}, showing that the duality-violation effects have been underestimated in previous literature.
Boyle, P. A.; Christ, N. H.; Garron, N.; ...
2016-03-09
Here, we have performed fits of the pseudoscalar masses and decay constants, from a variety of the RBC-UKQCD Collaboration’s domain wall fermion ensembles, to SU(2) partially quenched chiral perturbation theory at next-to-leading order (NLO) and next-to-next-to-leading order (NNLO). We report values for 9 NLO and 8 linearly independent combinations of NNLO partially quenched low-energy constants, which we compare to other lattice and phenomenological determinations. We discuss the size of successive terms in the chiral expansion and use our large set of low-energy constants to make predictions for mass splittings due to QCD isospin-breaking effects and the S-wave ππ scattering lengths.more » Lastly, we conclude that, for the range of pseudoscalar masses explored in this work, 115 MeV≲mPS≲430 MeV, the NNLO SU(2) expansion is quite robust and can fit lattice data with percent-scale accuracy.« less
Chiral corrections to the Adler-Weisberger sum rule
NASA Astrophysics Data System (ADS)
Beane, Silas R.; Klco, Natalie
2016-12-01
The Adler-Weisberger sum rule for the nucleon axial-vector charge, gA , offers a unique signature of chiral symmetry and its breaking in QCD. Its derivation relies on both algebraic aspects of chiral symmetry, which guarantee the convergence of the sum rule, and dynamical aspects of chiral symmetry breaking—as exploited using chiral perturbation theory—which allow the rigorous inclusion of explicit chiral symmetry breaking effects due to light-quark masses. The original derivations obtained the sum rule in the chiral limit and, without the benefit of chiral perturbation theory, made various attempts at extrapolating to nonvanishing pion masses. In this paper, the leading, universal, chiral corrections to the chiral-limit sum rule are obtained. Using PDG data, a recent parametrization of the pion-nucleon total cross sections in the resonance region given by the SAID group, as well as recent Roy-Steiner equation determinations of subthreshold amplitudes, threshold parameters, and correlated low-energy constants, the Adler-Weisberger sum rule is confronted with experimental data. With uncertainty estimates associated with the cross-section parametrization, the Goldberger-Treimann discrepancy, and the truncation of the sum rule at O (Mπ4) in the chiral expansion, this work finds gA=1.248 ±0.010 ±0.007 ±0.013 .
Chiral Extrapolation of Lattice Data for Heavy Meson Hyperfine Splittings
X.-H. Guo; P.C. Tandy; A.W. Thomas
2006-03-01
We investigate the chiral extrapolation of the lattice data for the light-heavy meson hyperfine splittings D*-D and B*-B to the physical region for the light quark mass. The chiral loop corrections providing non-analytic behavior in m{sub {pi}} are consistent with chiral perturbation theory for heavy mesons. Since chiral loop corrections tend to decrease the already too low splittings obtained from linear extrapolation, we investigate two models to guide the form of the analytic background behavior: the constituent quark potential model, and the covariant model of QCD based on the ladder-rainbow truncation of the Dyson-Schwinger equations. The extrapolated hyperfine splittings remain clearly below the experimental values even allowing for the model dependence in the description of the analytic background.
Peripheral nucleon-nucleon scattering at fifth order of chiral perturbation theory
NASA Astrophysics Data System (ADS)
Entem, D. R.; Kaiser, N.; Machleidt, R.; Nosyk, Y.
2015-01-01
We present the two- and three-pion-exchange contributions to the nucleon-nucleon interaction which occur at next-to-next-to-next-to-next-to-leading order (N4LO , fifth order) of chiral effective field theory and calculate nucleon-nucleon scattering in peripheral partial waves with L ≥3 by using low-energy constants that were extracted from π N analysis at fourth order. While the net three-pion-exchange contribution is moderate, the two-pion exchanges turn out to be sizable and prevailingly repulsive, thus compensating the excessive attraction characteristic for next-to-next-to-leading order and N3LO . As a result, the N4LO predictions for the phase shifts of peripheral partial waves are in very good agreement with the data (with the only exception being the 1F3 wave). We also discuss the issue of the order-by-order convergence of the chiral expansion for the N N interaction.
Determination of the chiral condensate from (2+1)-flavor lattice QCD.
Fukaya, H; Aoki, S; Hashimoto, S; Kaneko, T; Noaki, J; Onogi, T; Yamada, N
2010-03-26
We perform a precise calculation of the chiral condensate in QCD using lattice QCD with 2+1 flavors of dynamical overlap quarks. Up and down quark masses cover a range between 3 and 100 MeV on a 16{3}x48 lattice at a lattice spacing approximately 0.11 fm. At the lightest sea quark mass, the finite volume system on the lattice is in the regime. By matching the low-lying eigenvalue spectrum of the Dirac operator with the prediction of chiral perturbation theory at the next-to-leading order, we determine the chiral condensate in (2+1)-flavor QCD with strange quark mass fixed at its physical value as Sigma;{MS[over ]}(2 GeV)=[242(04)(+19/-18) MeV]{3} where the errors are statistical and systematic, respectively.
Quark interchange model of baryon interactions
Maslow, J.N.
1983-01-01
The strong interactions at low energy are traditionally described by meson field theories treating hadrons as point-like particles. Here a mesonic quark interchange model (QIM) is presented which takes into account the finite size of the baryons and the internal quark structure of hadrons. The model incorporates the basic quark-gluon coupling of quantum chromodynamics (QCD) and the MIT bag model for color confinement. Because the quark-gluon coupling constant is large and it is assumed that confinement excludes overlap of hadronic quark bags except at high momenta, a non-perturbative method of nuclear interactions is presented. The QIM allows for exchange of quark quantum numbers at the bag boundary between colliding hadrons mediated at short distances by a gluon exchange between two quarks within the hadronic interior. This generates, via a Fierz transformation, an effective space-like t channel exchange of color singlet (q anti-q) states that can be identified with the low lying meson multiplets. Thus, a one boson exchange (OBE) model is obtained that allows for comparison with traditional phenomenological models of nuclear scattering. Inclusion of strange quarks enables calculation of YN scattering. The NN and YN coupling constants and the nucleon form factors show good agreement with experimental values as do the deuteron low energy data and the NN low energy phase shifts. Thus, the QIM provides a simple model of strong interactions that is chirally invariant, includes confinement and allows for an OBE form of hadronic interaction at low energies and momentum transfers.
Forsén, Patrik; Lindholm, Johan; Fornstedt, Torgny
2003-03-28
The perturbation peak theory was recently developed for acquiring binary isotherm data using the perturbation method (PM) and it was applied for some chiral systems. However, the binary plateaus of these systems were only weakly to moderately nonlinear. In this article the perturbation theory for LC, is developed for both retention times and peak areas and is verified by systematic experiments over the whole range of non-linearity. Attention is focused on non-linear effects that complicate the proper use of the PM method under moderately to strongly non-linear conditions. A serious complication was that the second perturbation peak vanished already at moderate plateau concentrations. A solution to this problem based on a firm theoretical basis and verified experimentally is presented. We also investigated a peculiar retention dependence on the binary plateau concentration, as the retentions of the two perturbation peaks of the binary plateau was compared with the single plateau peak of the more retained enantiomer.
Light hadron spectroscopy in two-flavor QCD with small sea quark masses
Namekawa, Y.; Aoki, S.; Iwasaki, Y.; Kanaya, K.; Fukugita, M.; Ishikawa, K.-I.; Ishizuka, N.; Ukawa, A.; Yoshie, T.; Kaneko, T.; Kuramashi, Y.; Lesk, V. I.; Umeda, T.; Okawa, M.
2004-10-01
We extend the study of the light hadron spectrum and the quark mass in two-flavor QCD to smaller sea quark mass, corresponding to m{sub PS}/m{sub V}=0.60-0.35. Numerical simulations are carried out using the RG-improved gauge action and the meanfield-improved clover quark action at {beta}=1.8 (a=0.2 fm from {rho} meson mass). We observe that the light hadron spectrum for small sea quark mass does not follow the expectation from chiral extrapolations with quadratic functions made from the region of m{sub PS}/m{sub V}=0.80-0.55. Whereas fits with either polynomial or continuum chiral perturbation theory (ChPT) fail, the Wilson ChPT (WChPT) that includes a{sup 2} effects associated with explicit chiral symmetry breaking successfully fits the whole data: In particular, WChPT correctly predicts the light quark mass spectrum from simulations for medium heavy quark mass, such as m{sub PS}/m{sub V} > or approx. 0.5. Reanalyzing the previous data with the use of WChPT, we find the mean up and down quark mass being smaller than the previous result from quadratic chiral extrapolation by approximately 10%, m{sub ud}{sup MS-bar}({mu}=2 GeV)=3.11(17) [MeV] in the continuum limit.
NASA Astrophysics Data System (ADS)
Liu, Keh-Fei
The relevance of chiral symmetry in baryons is highlighted in three examples in the nucleon spectroscopy and structure. The first one is the importance of chiral dynamics in understanding the Roper resonance. The second one is the role of chiral symmetry in the lattice calculation of πNσ term and strangeness. The third one is the role of chiral U(1) anomaly in the anomalous Ward identity in evaluating the quark spin and the quark orbital angular momentum. Finally, the chiral effective theory for baryons is discussed.
NASA Technical Reports Server (NTRS)
Takahashi, Y.; Eby, P. B.
1985-01-01
Possibilities of observing abundances of phi mesons and narrow hadronic pairs, as results of QGP and Chiral transitions, are considered for nucleus-nucleus interactions. Kinematical requirements in forming close pairs are satisfied in K+K decays of S(975) and delta (980) mesons with small phi, and phi (91020) mesons with large PT, and in pi-pi decays of familiar resonance mesons only in a partially restored chiral symmetry. Gluon-gluon dominance in QGP can enhance phi meson production. High hadronization rates of primordial resonance mesons which form narrow hadronic pairs are not implausible. Past cosmic ray evidences of anomalous phi production and narrow pair abundances are considered.
Moments of Isovector Quark Distributions in Lattice QCD
W. Detmold; Wally Melnitchouk; A.W. Thomas
2002-06-01
We investigate the connection of lattice calculations of moments of isovector parton distributions to the physical regime through extrapolations in the quark mass. We consider the one pion loop renormalization of the nucleon matrix elements of the corresponding operators and thereby develop formulae with which to extrapolate the moments of the unpolarized, helicity and transversity distributions. There formulae are consistent with chiral perturbation theory in the chiral limit and incorporate the correct heavy quark limits. In the polarized cases, the inclusion of intermediate states involving the Delta isobar is found to be very important. The results of our extrapolations are in general agreement with the phenomenological values of these moments where they are known, and for the first time we perform an extrapolation of the low moments of the isovector transversity distribution which is consistent with chiral symmetry.
Kohno, M.
2010-01-15
Hyperon-nucleons interactions constructed by two frameworks, the Kyoto-Niigata SU{sub 6} quark model and the chiral effective field theory, are compared by investigating equivalent interactions in a low-momentum space and, in addition, by calculating hyperon single-particle potentials in the lowest-order Brueckner theory in symmetric nuclear matter. Two descriptions are shown to give similar matrix elements in most channels after renormalizing high momentum components. Although the range of the {Lambda}N interaction is different in two potentials, the {Lambda} single-particle potential in nuclear matter is very similar. The {Sigma}-nucleus and XI-nucleus potentials are also found to be similar. These predictions are to be confronted with forthcoming experimental data.
Gupta, R.
1994-12-31
This talk contains an analysis of quenched chiral perturbation theory and its consequences. The chiral behavior of a number of quantities such as the pion mass m{sub pi}{sup 2}, the Bernard-Golterman ratios R and {sub X}, the masses of nucleons, and the kaon B-parameter are examined to see if the singular terms induced by the additional Goldstone boson, {eta}{prime}, are visible in present data. The overall conclusion (different from that presented at the lattice meeting) of this analysis is that even though there are some caveats attached to the indications of the extra terms induced by {eta}{prime} loops, the standard expressions break down when extrapolating the quenched data with m{sub q} < m{sub s}/2 to physical light quarks. I then show that due to the single and double poles in the quenched {eta}{prime}, the axial charge of the proton cannot be calculated using the Adler-Bell-Jackiw anomaly condition. I conclude with a review of the status of the calculation of light quark masses from lattice QCD.
Compton scattering on the proton, neutron, and deuteron in chiral perturbation theory to O(Q{sup 4})
S.R. Beane; M. Malheiro; J.A. McGovern; D.R. Phillips; U. van Kolck
2004-03-01
We study Compton scattering in systems with A=1 and 2 using chiral perturbation theory up to fourth order. For the proton we fit the two undetermined parameters in the O(Q{sup 4}) {gamma}p amplitude of McGovern to experimental data in the region {omega}, {radical}|t| {le} 180 MeV, obtaining a {chi}{sup 2}/d.o.f. of 133/113. This yields a model-independent extraction of proton polarizabilities based solely on low-energy data: {alpha}{sub p} = (12.1 {+-} 1.1 (stat.)){sub -0.5}{sup +0.5} (theory) and {beta}{sub p} = (3.4 {+-} 1.1 (stat.)){sub -0.1}{sup +0.1} (theory), both in units of 10{sup -4} fm{sup 3}. We also compute Compton scattering on deuterium to O(Q{sup 4}). The {gamma}d amplitude is a sum of one- and two-nucleon mechanisms, and contains two undetermined parameters, which are related to the isoscalar nucleon polarizabilities. We fit data points from three recent {gamma}d scattering experiments with a {chi}{sup 2}/d.o.f. = 26.3/20, and find {alpha}{sub N} = 8.9 {+-} 1.5 (stat.){sub -0.9}{sup +4.7} (theory) and {beta}{sub N} = 2.2 {+-} 1.5 (stat.){sub -0.9}{sup +1.2} (theory), again in units of 10{sup -4} fm{sup 3}.
The topological structures in strongly coupled QGP with chiral fermions on the lattice
NASA Astrophysics Data System (ADS)
Sharma, Sayantan; Dick, Viktor; Karsch, Frithjof; Laermann, Edwin; Mukherjee, Swagato
2016-12-01
The nature of chiral phase transition for two flavor QCD is an interesting but unresolved problem. One of the most intriguing issues is whether or not the anomalous U(1) symmetry in the flavor sector is effectively restored along with the chiral symmetry. This may determine the universality class of the chiral phase transition. Since the physics near the chiral phase transition is essentially non-perturbative, we employ first principles lattice techniques to address this issue. We use overlap fermions, which have exact chiral symmetry on the lattice, to probe the anomalous U(1) symmetry violation of 2+1 flavor dynamical QCD configurations with domain wall fermions. The latter also optimally preserves chiral and flavor symmetries on the lattice, since it is known that the remnant chiral symmetry of the light quarks influences the scaling of the chiral condensate in the crossover transition region. We observe that the anomalous U(1) is not effectively restored in the chiral crossover region. We perform a systematic study of the finite size and cut-off effects since the signals of U(1) violation are sensitive to it. We also provide a glimpse of the microscopic topological structures of the QCD medium that are responsible for the strongly interacting nature of the quark gluon plasma phase. We study the effect of these microscopic constituents through our first calculations for the topological susceptibility of QCD at finite temperature, which could be a crucial input for the equation of state for anomalous hydrodynamics.
Song, Young-Ho; Lazauskas, Rimantas; Park, Tae-Sun
2009-06-15
M1 properties, comprising magnetic moments and radiative capture of thermal neutron observables, are studied in two- and three-nucleon systems. We use meson exchange current derived up to N{sup 3}LO using heavy baryon chiral perturbation theory a la Weinberg. Calculations have been performed for several qualitatively different realistic nuclear Hamiltonians, which permits us to analyze model dependence of our results. Our results are found to be strongly correlated with the effective range parameters such as binding energies and the scattering lengths. Taking into account such correlations, the results are in good agreement with the experimental data with small model dependence.
Quark masses, the Dashen phase, and gauge field topology
Creutz, Michael
2013-12-15
The CP violating Dashen phase in QCD is predicted by chiral perturbation theory to occur when the up–down quark mass difference becomes sufficiently large at fixed down-quark mass. Before reaching this phase, all physical hadronic masses and scattering amplitudes are expected to behave smoothly with the up-quark mass, even as this mass passes through zero. In Euclidean space, the topological susceptibility of the gauge fields is positive at positive quark masses but diverges to negative infinity as the Dashen phase is approached. A zero in this susceptibility provides a tentative signal for the point where the mass of the up quark vanishes. I discuss potential ambiguities with this determination. -- Highlights: •The CP violating Dashen phase in QCD occurs when the up quark mass becomes sufficiently negative. •Before reaching this phase, all physical hadronic masses and scattering amplitudes behave smoothly with the up-quark mass. •The topological susceptibility of the gauge fields diverges to negative infinity as the Dashen phase is approached. •A zero in the topological susceptibility provides a tentative signal for the point where the mass of the up quark vanishes. •The universality of this definition remains unproven. Potential ambiguities are discussed.
NASA Astrophysics Data System (ADS)
Ahmed, Mohammad W.; Gao, Haiyan; Weller, Henry R.; Holstein, Barry
2007-10-01
effects in hyperon semileptonic decays from lattice QCD / S. Simula. Uncertainty bands for chiral extrapolations / B.U. Musch. Update of the nucleon electromagnetic form factors / C. B. Crawford. N and N to ? transition from factors from lattice QCD / C. Alexandrou. The [equation] transition at low Q2 and the pionic contribution / S. Stave. Strange Quark CoNtributions to the form factors of the nucleon / F. Benmokhtar. Dynamical polarizabilities of the nucleon / B. Pasquini. Hadron magnetic moments and polarizabilities in lattice QCD / F.X. Lee. Spin-dependent compton scattering from 3He and the neutron spin polarizabilities / H. Gao. Chiral dynamics from Dyson-Schwinger equations / C.D. Roberts. Radiative neutron [Beta symbol]-decay in effective field theory / S. Gardner. Comparison between different renormalization schemes for co-variant BChPT / T.A. Gail. Non-perturbative study of the light pseudoscalar masses in chiral dynamics / José Antonio Oller. Masses and widths of hadrons in nuclear matter / M. Kotulla. Chiral effective field theory at finite density / R.J. Furnstahl. The K-nuclear interaction: a search fro deeply bound K-nuclear clusters / P. Camerini. Moments of GPDs from lattice QCD / D.G. Richards. Generalized parton distributions in effective field theory / J.W. Chen. Near-threshold pion production: experimental update / M.W. Ahmed. Pion photoproduction near threshold theory update / L. Tiator.
Baryon mass splittings and strong $\mathit{CP}$ violation in SU(3) chiral perturbation theory
de Vries, Jordy; Mereghetti, Emanuele; Walker-Loud, Andre P.
2015-10-08
We study SU(3) flavor breaking corrections to the relation between the octet baryon masses and the nucleon-meson CP-violating interactions induced by the QCD theta term. We also work within the framework of SU(3) chiral perturbation theory and work through next-to-next-to-leading order in the SU(3) chiral expansion, which is O(m^{2}_{q}). At lowest order, the CP-odd couplings induced by the QCD θ^{-} term are determined by mass splittings of the baryon octet, the classic result of Crewther et al. We show that for each isospin-invariant CP-violating nucleon-meson interaction there exists one relation which is respected by loop corrections up to the order we work, while other leading-order relations are violated. With these relations we extract a precise value of the pion-nucleon coupling g^{-}_{0} by using recent lattice QCD evaluations of the proton-neutron mass splitting. Additionally, we derive semi-precise values for CP-violating coupling constants between heavier mesons and nucleons and discuss their phenomenological impact on electric dipole moments of nucleons and nuclei.
Nucleon and Delta axial-vector couplings in 1/N{sub c}-Baryon Chiral Perturbation Theory
Goity, Jose Luis; Calle Cordon, Alvaro
2013-08-01
In this contribution, baryon axial-vector couplings are studied in the framework of the combined 1/N{sub c} and chiral expansions. This framework is implemented on the basis of the emergent spin-flavor symmetry in baryons at large N{sub c} and HBChPT, and linking both expansions ({xi}-expansion), where 1/N{sub c} is taken to be a quantity order p. The study is carried out including one-loop contributions, which corresponds to order xi to the third for baryon masses and order {xi} square for the axial couplings.
Chiral effective theory of dark matter direct detection
NASA Astrophysics Data System (ADS)
Bishara, Fady; Brod, Joachim; Grinstein, Benjamin; Zupan, Jure
2017-02-01
We present the effective field theory for dark matter interactions with the visible sector that is valid at scales of Script O(1 GeV). Starting with an effective theory describing the interactions of fermionic and scalar dark matter with quarks, gluons and photons via higher dimension operators that would arise from dimension-five and dimension-six operators above electroweak scale, we perform a nonperturbative matching onto a heavy baryon chiral perturbation theory that describes dark matter interactions with light mesons and nucleons. This is then used to obtain the coefficients of the nuclear response functions using a chiral effective theory description of nuclear forces. Our results consistently keep the leading contributions in chiral counting for each of the initial Wilson coefficients.
Influence of broken flavor and C and P symmetry on the quark propagator
NASA Astrophysics Data System (ADS)
Maas, Axel; Mian, Walid Ahmed
2017-02-01
Embedding QCD into the standard model breaks various symmetries of QCD explicitly, especially C and P . While these effects are usually perturbatively small, they can be amplified in extreme environments like merging neutron stars or by the interplay with new physics. To correctly treat these cases requires fully backcoupled calculations. To pave the way for later investigations of hadronic physics, we study the QCD quark propagator coupled to an explicit breaking. This substantially increases the tensor structure even for this simplest correlation function. To cope with the symmetry structure, and covering all possible quark masses, from the top quark mass to the chiral limit, we employ Dyson-Schwinger equations. While at weak breaking the qualitative effects have similar trends as in perturbation theory, even moderately strong breakings lead to qualitatively different effects, non-linearly amplified by the strong interactions.
Mean field theory of the linear sigma-model: Chiral solitons
NASA Astrophysics Data System (ADS)
Kahana, S.; Ripka, G.
The mean field theory of the chiral invariant sigma-model is outlined. Bound states (solitons) of valence quarks are obtained self-consistently using a hedgehog shape for the pion field. A schematic model for the coupled fermion-boson fields is presented. Renormalization is worked out for the fermion one-loop corrections and numerical results presented for the purely scalar-field case. The interpretation of the baryon number of the perturbed vacuum is considered.
Mean field theory of the linear sigma-model: chiral solitons
Kahana, S.; Ripka, G.
1983-01-01
The mean field theory of the chiral invariant sigma-model is outlined. bound states (solitons) of valence quarks are obtained self-consistently using a hedgehog shape for the pion field. A schematic model for the coupled fermion-boson fields is presented. Renormalization is worked out for the fermion one-loop corrections and numerical results presented for the purely scalar-field case. The interpretation of the baryon number of the perturbed vacuum is considered.
Bethe-Salpeter dynamics and the constituent mass concept for heavy quark mesons
Souchlas, N.; Stratakis, D.
2010-06-01
The definition of a quark as heavy requires a comparison of its mass with the nonperturbative chiral symmetry breaking scale which is about 1 GeV ({Lambda}{sub {chi}{approx}1} GeV) or with the scale {Lambda}{sub QCD{approx}}0.2 GeV that characterizes the distinction between perturbative and nonperturbative QCD. For quark masses significantly larger than these scales, nonperturbative dressing effects, or equivalently nonperturbative self-energy contributions, and relativistic effects are believed to be less important for physical observables. We explore the concept of a constituent mass for heavy quarks in the Dyson-Schwinger equations formalism, for light-heavy and heavy-heavy quark mesons by studying their masses and electroweak decay constants.
SPONTANEOUS CP VIOLATION AND QUARK MASS AMBIGUITIES.
CREUTZ,M.
2004-09-21
I explore the regions of quark masses where CP will be spontaneously broken in the strong interactions. The boundaries of these regions are controlled by the chiral anomaly, which manifests itself in ambiguities in the definition of non-degenerate quark masses. In particular, the concept of a single massless quark is ill defined.
LATTICE QCD THERMODYNAMICS WITH WILSON QUARKS.
EJIRI,S.
2007-11-20
We review studies of QCD thermodynamics by lattice QCD simulations with dynamical Wilson quarks. After explaining the basic properties of QCD with Wilson quarks at finite temperature including the phase structure and the scaling properties around the chiral phase transition, we discuss the critical temperature, the equation of state and heavy-quark free energies.
Study of Chiral Confining Model with Vector Mesons
NASA Astrophysics Data System (ADS)
Ren, Ching-Yun
1991-02-01
This dissertation consists of two parts, the study of the chiral confining model and the investigation of vacuum instability. In the first part we present a chiral confining model in which a bag is formed dynamically. The major topics addressed are: construction of the model, mean-field solution, anomalously large rho nucleon tensor coupling, and a projection method including the quantum effects of mesons. Two features of QCD, namely, chiral invariance and vacuum condensates, are crucial ingredients of our chiral confining model. The interaction of the valence quarks with the quark condensate is described via the sigma field. It generates the quark dynamical mass. The interaction of the quarks with the gluon condensate is described in our model through the color dielectric function, epsilon. This interaction generates the bag within which quarks are absolutely confined. The introduction of the color dielectric function epsilon modifies the quark-meson interaction by multiplying a factor epsilon ^{-1/2}. Thus the quark part of the rho meson source current is structurally different from the isovector part of the electromagnetic current. Thus the chiral confining model provides a natural explanation why the tensor coupling of the rho meson, kappa_rho, is larger than the isovector part of the anomalous magnetic moment of the nucleon, kappa_upsilon . We have improved a simple method of calculating expectation values of operators in states of good angular momentum projected from a hedgehog baryon state. We have included the contributions of quantum mesons. The symmetry of the hedgehog state under grand-reversal introduces remarkable simplification in the calculation of matrix elements of operators which do not contain time derivatives of meson fields. The quantum meson contributions turn out to be (3/2)/< B|{bf J }^2| B> times the classical meson fields contributions, with | B> being the hedgehog state. In the second part we show that the perturbative vacuum of model
Taste changing in staggered quarks
Quentin Mason et al.
2004-01-05
The authors present results from a systematic perturbative investigation of taste-changing in improved staggered quarks. They show one-loop taste-changing interactions can be removed perturbatively by an effective four-quark term and calculate the necessary coefficients.
Connected, disconnected and strange quark contributions to HVP
NASA Astrophysics Data System (ADS)
Bijnens, Johan; Relefors, Johan
2016-11-01
We calculate all neutral vector two-point functions in Chiral Perturbation Theory (ChPT) to two-loop order and use these to estimate the ratio of disconnected to connected contributions as well as contributions involving the strange quark. We extend the ratio of -1/10 derived earlier in two flavour ChPT at one-loop order to a large part of the higher order contributions and discuss corrections to it. Our final estimate of the ratio disconnected to connected is negative and a few % in magnitude.
NASA Technical Reports Server (NTRS)
Jaggard, Dwight L.; Engheta, Nader; Pelet, Philippe; Liu, John C.; Kowarz, Marek W.; Kim, Yunjin
1989-01-01
The electromagnetic properties of a structure that is both chiral and periodic are investigated using coupled-mode equations. The periodicity is described by a sinusoidal perturbation of the permittivity, permeability, and chiral admittance. The coupled-mode equations are derived from physical considerations and used to examine bandgap structure and reflected and transmitted fields. Chirality is observed predominantly in transmission, whereas periodicity is present in both reflection and transmission.
Chiral symmetry in quarkyonic matter
Kojo, T.
2012-05-15
The 1/N{sub c} expansion classifies nuclear matter, deconfined quark matter, and Quarkyonic matter in low temperature region. We investigate the realization of chiral symmetry in Quarkyonic matter by taking into account condensations of chiral particle-hole pairs. It is argued that chiral symmetry and parity are locally violated by the formation of chiral spirals, <{psi}-bar exp (2i{mu}{sub q} z{gamma}{sup 0} {gamma}{sup z}){psi}> . An extension to multiple chiral spirals is also briefly discussed.
Chiral symmetry and pentaquarks
Dmitri Diakonov
2004-07-01
Spontaneous chiral symmetry breaking, mesons and baryons are illustrated in the language of the Dirac theory. Various forces acting between quarks inside baryons are discussed. I explain why the naive quark models typically overestimate pentaquark masses by some 500 MeV and why in the fully relativistic approach to baryons pentaquarks turn out to be light. I discuss briefly why it can be easier to produce pentaquarks at low than at high energies.
NASA Astrophysics Data System (ADS)
Li, Shiyong; Mamo, Kiminad A.; Yee, Ho-Ung
2016-10-01
We compute the jet quenching parameter q ^ of a quark-gluon plasma in the presence of a strong magnetic field using perturbative QCD (pQCD) in the weakly coupled regime, and AdS /CFT correspondence in the strongly coupled regime of N =4 super Yang-Mills. In the weakly coupled regime, we compute q ^ in pQCD at complete leading order (that is, leading log as well as the constant under the log) in the QCD coupling constant αs, assuming the hierarchy of scales αse B ≪T2≪e B . We consider two cases of jet orientations with respect to the magnetic field: 1) the case of a jet moving parallel to the magnetic field; 2) the case of a jet moving perpendicular to the magnetic field. In the former case, we find q ^ ˜αs2(e B )T log (1 /αs) , while in the latter we have q ^ ˜αs2(e B )T log (T2/αse B ) . In both cases, this leading-order result arises from the scatterings with thermally populated lowest-Landau-level quarks. In the strongly coupled regime described by the AdS /CFT correspondence, we find q ^ ˜√{λ }(e B )T or q ^ ˜√{λ }√{e B }T2 in the same hierarchy of T2≪e B depending on whether the jet is moving parallel or perpendicular to the magnetic field, respectively, which indicates a universal dependence of q ^ on (e B )T in both regimes for the parallel case, the origin of which should be the transverse density of lowest-Landau-level states proportional to e B . Finally, the asymmetric transverse momentum diffusion in the case of a jet moving perpendicular to the magnetic field may give an interesting azimuthal asymmetry of the gluon bremsstrahlung spectrum in the Baier-Dokshitzer-Mueller-Peigne-Schiff and Zakharov (BDMPS-Z) formalism.
ISOSPIN BREAKING AND THE CHIRAL CONDENSATE.
CREUTZ, M.
2005-07-25
With two degenerate quarks, the chiral condensate exhibits a jump as the quark masses pass through zero. I discuss how this single transition splits into two Ising like transitions when the quarks are made non-degenerate. The order parameter is the expectation of the neutral pion field. The transitions represent long distance coherent phenomena occurring without the Dirac operator having vanishingly small eigenvalues.
Min Li; Huey-Wen Lin
2007-10-01
We present a preliminary calculation of the charmonium spectrum using the dynamical 2+1 flavor $24^3\\times 64$ domain wall fermion lattice configurations generated by the RBC and UKQCD collaborations. We use the relativistic heavy quark action with 3 parameters non-perturbatively determined by matching to experimental quantities. Chiral extrapolation is done on four light sea quark masses from 0.005 to 0.03, with $m_s=0.04$ and $m_{res}=0.003$. We can either predict meson masses assuming the lattice spacing is known from other methods, or calculate the lattice spacing using those quantities.
η →3 π : Study of the Dalitz Plot and Extraction of the Quark Mass Ratio Q
NASA Astrophysics Data System (ADS)
Colangelo, Gilberto; Lanz, Stefan; Leutwyler, Heinrich; Passemar, Emilie
2017-01-01
The η →3 π amplitude is sensitive to the quark mass difference mu-md and offers a unique way to determine the quark mass ratio Q2≡(ms2-mud 2)/(md2-mu2) from experiment. We calculate the amplitude dispersively and fit the KLOE Collaboration data on the charged mode, varying the subtraction constants in the range allowed by chiral perturbation theory. The parameter-free predictions obtained for the neutral Dalitz plot and the neutral-to-charged branching ratio are in excellent agreement with experiment. Our representation of the transition amplitude implies Q =22.0 ±0.7 .
NASA Astrophysics Data System (ADS)
Cossu, Guido; Fukaya, Hidenori; Hashimoto, Shoji; Kaneko, Takashi; Noaki, Jun-Ichi
2016-09-01
We compute the chiral condensate in 2 + 1-flavor QCD through the spectrum of low-lying eigenmodes of the Dirac operator. The number of eigenvalues of the Dirac operator is evaluated using a stochastic method with an eigenvalue filtering technique on the background gauge configurations generated by lattice QCD simulations including the effects of dynamical up, down, and strange quarks described by the Möbius domain-wall fermion formulation. The low-lying spectrum is related to the chiral condensate, which is one of the leading-order low-energy constants in chiral effective theory, as dictated by the Banks-Casher relation. The spectrum shape and its dependence on the sea quark masses calculated in numerical simulations are consistent with the expectation from one-loop chiral perturbation theory. After taking the chiral limit as well as the continuum limit using the data at three lattice spacings in the range 0.080-0.045 fm, we obtain Σ(2 GeV) = 270.0(4.9) MeV, with the error combining those from statistical and various sources of systematic error. The finite volume effect is confirmed to be under control by a direct comparison of the results from two different volumes at the lightest available sea quarks corresponding to 230 MeV pions.
Role of the strange quark in the ρ(770) meson
NASA Astrophysics Data System (ADS)
Molina, R.; Guo, D.; Hu, B.; Alexandru, A.; Doering, M.
2017-03-01
Recently, the GWU lattice group has evaluated high-precision phase-shift data for ππ scattering in the I = 1, J = 1 channel. Unitary Chiral Perturbation Theory describes these data well around the resonance region and for different pion masses. Moreover, it allows to extrapolate to the physical point and estimate the effect of the missing KK¯ channel in the two-flavor lattice calculation. The absence of the strange quark in the lattice data leads to a lower ρ mass, and the analysis with UχPT shows that the KK¯ channel indeed pushes the ππ-scattering phase shift upward, having a surprisingly large effect on the ρ-mass. The inelasticity is shown to be compatible with the experimental data. The analysis is then extended to all available two-flavor lattice simulations and similar mass shifts are observed. Chiral extrapolations of Nf = 2 + 1 lattice simulations for the ρ(770) are also reported.
Tests of quark-hadron duality in τ-decays
NASA Astrophysics Data System (ADS)
Dominguez, C. A.; Hernandez, L. A.; Schilcher, K.; Spiesberger, H.
2016-09-01
An exhaustive number of QCD finite energy sum rules for τ-decay together with the latest updated ALEPH data is used to test the assumption of global duality. Typical checks are the absence of the dimension d = 2 condensate, the equality of the gluon condensate extracted from vector or axial vector spectral functions, the Weinberg sum rules, the chiral condensates of dimensions d = 6 and d = 8, as well as the extraction of some low-energy parameters of chiral perturbation theory. Suitable pinched linear integration kernels are introduced in the sum rules in order to suppress potential quark-hadron duality violations and experimental errors. We find no compelling indications of duality violations in hadronic τ-decay in the kinematic region above s ≃ 2.2 GeV2 for these kernels.
Thermodynamics of lattice QCD with 2 sextet quarks on N{sub t}=8 lattices
Kogut, J. B.; Sinclair, D. K.
2011-10-01
We continue our lattice simulations of QCD with 2 flavors of color-sextet quarks as a model for conformal or walking technicolor. A 2-loop perturbative calculation of the {beta} function which describes the evolution of this theory's running coupling constant predicts that it has a second zero at a finite coupling. This nontrivial zero would be an infrared stable fixed point, in which case the theory with massless quarks would be a conformal field theory. However, if the interaction between quarks and antiquarks becomes strong enough that a chiral condensate forms before this IR fixed point is reached, the theory is QCD-like with spontaneously broken chiral symmetry and confinement. However, the presence of the nearby IR fixed point means that there is a range of couplings for which the running coupling evolves very slowly, i.e. it ''walks.'' We are simulating the lattice version of this theory with staggered quarks at finite temperature, studying the changes in couplings at the deconfinement and chiral-symmetry restoring transitions as the temporal extent (N{sub t}) of the lattice, measured in lattice units, is increased. Our earlier results on lattices with N{sub t}=4, 6 show both transitions move to weaker couplings as N{sub t} increases consistent with walking behavior. In this paper we extend these calculations to N{sub t}=8. Although both transitions again move to weaker couplings, the change in the coupling at the chiral transition from N{sub t}=6 to N{sub t}=8 is appreciably smaller than that from N{sub t}=4 to N{sub t}=6. This indicates that at N{sub t}=4, 6 we are seeing strong-coupling effects and that we will need results from N{sub t}>8 to determine if the chiral-transition coupling approaches zero as N{sub t}{yields}{infinity}, as needed for the theory to walk.
Chiral Lagrangian from Duality and Monopole Operators in Compactified QCD.
Cherman, Aleksey; Schäfer, Thomas; Ünsal, Mithat
2016-08-19
We show that there exists a special compactification of QCD on R^{3}×S^{1} in which the theory has a domain where continuous chiral symmetry breaking is analytically calculable. We give a microscopic derivation of the chiral Lagrangian, the chiral condensate, and the Gell-Mann-Oakes-Renner relation m_{π}^{2}f_{π}^{2}=-m_{q}⟨q[over ¯]q⟩. Abelian duality, monopole operators, and flavor-twisted boundary conditions play the main roles. The flavor twisting leads to the new effect of fractional jumping of fermion zero modes among monopole instantons. Chiral symmetry breaking is induced by monopole-instanton operators, and the Nambu-Goldstone pions arise by color-flavor transmutation from gapless "dual photons." We also give a microscopic picture of the "constituent quark" masses. Our results are consistent with expectations from chiral perturbation theory at large S^{1}, and yield strong support for adiabatic continuity between the small-S^{1} and large-S^{1} regimes. We also find concrete microscopic connections between N=1 and N=2 supersymmetric gauge theory dynamics and nonsupersymmetric QCD dynamics.
Universality of spontaneous chiral symmetry breaking in gauge theories
NASA Astrophysics Data System (ADS)
Gies, Holger; Wetterich, Christof
2004-01-01
We investigate one-flavor QCD with an additional chiral scalar field. For a large domain in the space of coupling constants, this model belongs to the same universality class as QCD, and the effects of the scalar become unobservable. This is connected to a “bound-state fixed point” of the renormalization flow for which all memory of the microscopic scalar interactions is lost. The QCD domain includes a microscopic scalar potential with minima at a nonzero field. On the other hand, for a scalar mass term m2 below a critical value m2c, the universality class is characterized by perturbative spontaneous chiral symmetry breaking which renders the quarks massive. Our renormalization group analysis shows how this universality class is continuously connected with the QCD universality class.
Unexpected manifestation of quark condensation
Zinovjev, G. M.; Molodtsov, S. V.
2015-05-15
A comparative analysis of some quark ensembles governed by a four-fermion interaction is performed. Arguments in support of the statement that the presence of a gas-liquid phase transition is a feature peculiar to them are adduced. The instability of small quark droplets is discussed and is attributed to the formation of a chiral soliton. The stability of baryon matter is due to a mixed phase of the vacuum and baryon matter.
B*Bπ coupling using relativistic heavy quarks
Flynn, J. M.; Fritzsch, P.; Kawanai, T.; Lehner, C.; Samways, B.; Sachrajda, C. T.; Van de Water, R. S.; Witzel, O.
2016-01-27
We report on a calculation of the B*Bπ coupling in lattice QCD. The strong matrix element (Bπ|B*) is directly related to the leading order low-energy constant in heavy meson chiral perturbation theory (HM_{Χ}PT) for B mesons. We carry out our calculation directly at the b-quark mass using a non-perturbatively tuned clover action that controls discretization effects of order |p^{→}a| and (ma)^{n} for all n. Our analysis is performed on RBC/UKQCD gauge configurations using domain-wall fermions and the Iwasaki gauge action at two lattice spacings of a^{–1} = 1.729(25) GeV, a^{–1} = 2.281 (28) GeV, and unitary pion masses down to 290 MeV. We achieve good statistical precision and control all systematic uncertainties, giving a final result for the HM_{Χ}PT coupling g_{b} = 0.56(3)_{stat}(7)_{sys} in the continuum and at the physical light-quark masses. Furthermore, this is the first calculation performed directly at the physical b-quark mass and lies in the region one would expect from carrying out an interpolation between previous results at the charm mass and at the static point.
B*Bπ coupling using relativistic heavy quarks
Flynn, J. M.; Fritzsch, P.; Kawanai, T.; ...
2016-01-27
We report on a calculation of the B*Bπ coupling in lattice QCD. The strong matrix element (Bπ|B*) is directly related to the leading order low-energy constant in heavy meson chiral perturbation theory (HMΧPT) for B mesons. We carry out our calculation directly at the b-quark mass using a non-perturbatively tuned clover action that controls discretization effects of order |p→a| and (ma)n for all n. Our analysis is performed on RBC/UKQCD gauge configurations using domain-wall fermions and the Iwasaki gauge action at two lattice spacings of a–1 = 1.729(25) GeV, a–1 = 2.281 (28) GeV, and unitary pion masses down tomore » 290 MeV. We achieve good statistical precision and control all systematic uncertainties, giving a final result for the HMΧPT coupling gb = 0.56(3)stat(7)sys in the continuum and at the physical light-quark masses. Furthermore, this is the first calculation performed directly at the physical b-quark mass and lies in the region one would expect from carrying out an interpolation between previous results at the charm mass and at the static point.« less
Personal recollections on chiral symmetry breaking
NASA Astrophysics Data System (ADS)
Kobayashi, Makoto
2016-07-01
The author's work on the mass of pseudoscalar mesons is briefly reviewed. The emergence of the study of CP violation in the renormalizable gauge theory from consideration of chiral symmetry in the quark model is discussed.
Off-equilibrium photon production during the chiral phase transition
Michler, Frank; Hees, Hendrik van; Dietrich, Dennis D.; Leupold, Stefan; Greiner, Carsten
2013-09-15
In the early stage of ultrarelativistic heavy-ion collisions chiral symmetry is restored temporarily. During this so-called chiral phase transition, the quark masses change from their constituent to their bare values. This mass shift leads to the spontaneous non-perturbative creation of quark–antiquark pairs, which effectively contributes to the formation of the quark–gluon plasma. We investigate the photon production induced by this creation process. We provide an approach that eliminates possible unphysical contributions from the vacuum polarization and renders the resulting photon spectra integrable in the ultraviolet domain. The off-equilibrium photon numbers are of quadratic order in the perturbative coupling constants while a thermal production is only of quartic order. Quantitatively, we find, however, that for the most physical mass-shift scenarios and for photon momenta larger than 1 GeV the off-equilibrium processes contribute less photons than the thermal processes. -- Highlights: •We investigate first-order photon emission arising from the chiral mass shift. •We provide an ansatz eliminating possible unphysical vacuum contributions. •Our ansatz leads to photon spectra being integrable in the ultraviolet domain.
Chiral magnetic effect in condensed matter systems
Li, Qiang; Kharzeev, Dmitri E.
2016-12-01
The chiral magnetic effect is the generation of electrical current induced by chirality imbalance in the presence of magnetic field. It is a macroscopic manifestation of the quantum anomaly in relativistic field theory of chiral fermions. In the quark-gluon plasma, the axial anomaly induces topological charge changing transition that results in the generation of electrical current along the magnetic field. In condensed matter systems, the chiral magnetic effect was first predicted in the gapless semiconductors with tow energy bands having pointlike degeneracies. In addition, thirty years later after this prediction, the chiral magnetic effect was finally observed in the 3D Dirac/Weyl semimetals.
Chiral phase transition of QCD with N f = 2 + 1 flavors from holography
NASA Astrophysics Data System (ADS)
Li, Danning; Huang, Mei
2017-02-01
Chiral phase transition for three-flavor N f = 2 + 1 QCD with m u = m d ≠ m s is investigated in a modified soft-wall holographic QCD model. Solving temperature dependent chiral condensates from equations of motion of the modified soft-wall model, we extract the quark mass dependence of the order of chiral phase transition in the case of N f = 2 + 1, and the result is in agreement with the "Columbia Plot", which is summarized from lattice simulations and other non-perturbative methods. First order phase transition is observed around the three flavor chiral limit m u/ d = 0, m s = 0, while at sufficient large quark masses it turns to be a crossover phase transition. The first order and crossover regions are separated by a second order phase transition line. The second order line is divided into two parts by the m u/ d = m s line, and the m s dependence of the transition temperature in these two parts are totally contrast, which might indicate that the two parts are governed by different universality classes.
Valence quark spin distribution functions
Nathan Isgur
1998-09-01
The hyperfine interactions of the constituent quark model provide a natural explanation for many nucleon properties, including the {Delta} - N splitting, the charge radius of the neutron, and the observation that the proton's quark distribution function ratio d(x)/u(x) {r_arrow} 0 as x {r_arrow} 1. The hyperfine-perturbed quark model also makes predictions for the nucleon spin-dependent distribution functions. Precision measurements of the resulting asymmetries A{sub 1}{sup p}(x) and A{sub 1}{sup n}(x) in the valence region can test this model and thereby the hypothesis that the valence quark spin distributions are ''normal''.
Phase diagram of chirally imbalanced QCD matter
Chernodub, M. N.; Nedelin, A. S.
2011-05-15
We compute the QCD phase diagram in the plane of the chiral chemical potential and temperature using the linear sigma model coupled to quarks and to the Polyakov loop. The chiral chemical potential accounts for effects of imbalanced chirality due to QCD sphaleron transitions which may emerge in heavy-ion collisions. We found three effects caused by the chiral chemical potential: the imbalanced chirality (i) tightens the link between deconfinement and chiral phase transitions; (ii) lowers the common critical temperature; (iii) strengthens the order of the phase transition by converting the crossover into the strong first order phase transition passing via the second order end point. Since the fermionic determinant with the chiral chemical potential has no sign problem, the chirally imbalanced QCD matter can be studied in numerical lattice simulations.
NASA Astrophysics Data System (ADS)
Dvornikov, Maxim
2016-12-01
We study the generation of strong large scale magnetic fields in dense quark matter. The magnetic field growth is owing to the magnetic field instability driven by the electroweak interaction of quarks. We discuss the situation when the chiral symmetry is unbroken in the degenerate quark matter. In this case we predict the amplification of the seed magnetic field 1012G to the strengths (1014 -1015)G. In our analysis we use the typical parameters of the quark matter in the core of a hybrid star or in a quark star. We also discuss the application of the obtained results to describe the magnetic fields generation in magnetars.
Christ, Norman H.; Flynn, Jonathan M.; Izubuchi, Taku; Kawanai, Taichi; Lehner, Christoph; Soni, Amarjit; Van de Water, Ruth S.; Witzel, Oliver
2015-03-10
We calculate the B-meson decay constants f_{B}, f_{B}s, and their ratio in unquenched lattice QCD using domain-wall light quarks and relativistic b-quarks. We use gauge-field ensembles generated by the RBC and UKQCD collaborations using the domain-wall fermion action and Iwasaki gauge action with three flavors of light dynamical quarks. We analyze data at two lattice spacings of a ≈ 0.11, 0.086 fm with unitary pion masses as light as M_{π} ≈ 290 MeV; this enables us to control the extrapolation to the physical light-quark masses and continuum. For the b-quarks we use the anisotropic clover action with the relativistic heavy-quark interpretation, such that discretization errors from the heavy-quark action are of the same size as from the light-quark sector. We renormalize the lattice heavy-light axial-vector current using a mostly nonperturbative method in which we compute the bulk of the matching factor nonperturbatively, with a small correction, that is close to unity, in lattice perturbation theory. We also improve the lattice heavy-light current through O(α_{s}a). We extrapolate our results to the physical light-quark masses and continuum using SU(2) heavy-meson chiral perturbation theory, and provide a complete systematic error budget. We obtain f_{B0} = 196.2(15.7) MeV, f_{B+} = 195.4(15.8) MeV, f_{Bs} = 235.4(12.2) MeV, f_{Bs}/f_{B0} = 1.193(59), and f_{Bs}/f_{B+} = 1.220(82), where the errors are statistical and total systematic added in quadrature. In addition, these results are in good agreement with other published results and provide an important independent cross check of other three-flavor determinations of B-meson decay constants using staggered light quarks.
Partial restoration of chiral symmetry inside hadrons
Iritani, Takumi; Cossu, Guido; Hashimoto, Shoji
2016-01-22
We investigate the spatial distribution of the chiral condensate around static color sources for both quark-antiquark and three-quark systems. In the QCD vacuum a tube-like structure of chromo fields appears between color sources, which leads to a linearly confining potential. We show that the magnitude of the condensate is reduced inside the flux-tube, which suggests that chiral symmetry is partially restored inside the hadrons. By using a static baryon source in a periodic box as a model of the nuclear matter, we estimate the restoration of chiral symmetry with finite baryon number density.
Nebreda, J.; Pelaez, J. R.
2011-10-24
We study the dependence of the {pi}{pi} scattering phase shifts on the light quark mass in both standard and unitarized SU(2) Chiral Perturbation Theory (ChPT) to one and two loops. We then use unitarized SU(3) ChPT to study the elastic f{sub 0}(600),{kappa}(800), {rho}(770) and K{sup *}(892) resonances. The quark masses are varied up to values of interest for lattice studies. We find a very soft dependence on the light quark mass of the {pi}{pi} phase shifts at one loop and lightly stronger at two loops and a good agreement with lattice results. The SU(3) analysis shows that the properties of the {rho}(770) and K{sup *}(892) depend smoothly on the quark mass whereas the scalar resonances present a non-analyticity at high quark masses. We also confirm the lattice assumption of quark mass independence of the vector two-meson coupling that, however, is violated for scalars.
Quark propagator in a truncation scheme beyond the rainbow approximation
NASA Astrophysics Data System (ADS)
Fu, Hui-Feng; Wang, Qing
2016-01-01
The quark propagator is studied under a truncation scheme beyond the rainbow approximation by dressing the quark-gluon vertex nonperturbatively. It is found that, in the chiral limit with dynamical symmetry breaking, the dynamical quark mass and the quark condensate are significantly enhanced due to the non-Abelian contribution arising from the three-gluon interaction compared to those under the rainbow approximation, and the critical strength of the dynamical chiral symmetry breaking is much lowered. The Abelian contribution is much smaller than the non-Abelian contribution. A technical issue on removing the ultraviolet divergences, including the overlapping divergences, is discussed.
Color-flavor locked phase of high density QCD at nonzero strange quark mass
Kryjevski, Andrei; Yamada, Daisuke
2005-01-01
We compute free energy of quark matter at asymptotically high baryon number density in the presence of nonzero strange quark mass including dynamics of pseudo Nambu-Goldstone bosons due to chiral symmetry breaking, extending previously existing analysis based on perturbative expansion in m{sub s}{sup 2}/4{mu}{delta}. We demonstrate that the CFLK{sup 0} state has lower free energy than the symmetric CFL state for 0
Gurarie, V.
1995-08-01
When heavy nuclei collide, a quark-gluon plasma is formed. The plasma is subject to a strong electric field due to the charge of the colliding nuclei. The electric field can influence the behavior of the quark-gluon plasma. In particular, we might observe an increased number of quarks moving in the direction of that field, as we do in the standard electron-ion plasma. In this paper we show that this phenomenon, called the runaway quarks, does not exist.
Sinclair, D. K.; Kogut, J. B.; High Energy Physics; Univ. of Maryland
2010-06-30
QCD with two flavors of massless color-sextet quarks is considered as a model for conformal/walking technicolor. If this theory possesses an infrared fixed point, as indicated by 2-loop perturbation theory, it is a conformal (unparticle) field theory. If, on the other hand, a chiral condensate forms on the weak-coupling side of this would-be fixed point, the theory remains confining. The only difference between such a theory and regular QCD is that there is a range of momentum scales over which the coupling constant runs very slowly (walks). In this first analysis, we simulate the lattice version of QCD with two flavors of staggered quarks at finite temperatures on lattices of temporal extent N{sub t} = 4 and 6. The deconfinement and chiral-symmetry restoration couplings give us a measure of the scales associated with confinement and chiral-symmetry breaking. We find that, in contrast to what is seen with fundamental quarks, these transition couplings are very different. {beta} = 6/g{sup 2} for each of these transitions increases significantly from N{sub t} = 4 and N{sub t} = 6 as expected for the finite-temperature transitions of an asymptotically free theory. This suggests a walking rather than a conformal behavior, in contrast to what is observed with Wilson quarks. In contrast to what is found for fundamental quarks, the deconfined phase exhibits states in which the Polyakov loop is oriented in the directions of all three cube roots of unity. At very weak coupling the states with complex Polyakov loops undergo a transition to a state with a real, negative Polyakov loop.
Kogut, J. B.; Sinclair, D. K.
2010-06-01
QCD with two flavors of massless color-sextet quarks is considered as a model for conformal/walking technicolor. If this theory possesses an infrared fixed point, as indicated by 2-loop perturbation theory, it is a conformal (unparticle) field theory. If, on the other hand, a chiral condensate forms on the weak-coupling side of this would-be fixed point, the theory remains confining. The only difference between such a theory and regular QCD is that there is a range of momentum scales over which the coupling constant runs very slowly (walks). In this first analysis, we simulate the lattice version of QCD with two flavors of staggered quarks at finite temperatures on lattices of temporal extent N{sub t}=4 and 6. The deconfinement and chiral-symmetry restoration couplings give us a measure of the scales associated with confinement and chiral-symmetry breaking. We find that, in contrast to what is seen with fundamental quarks, these transition couplings are very different. {beta}=6/g{sup 2} for each of these transitions increases significantly from N{sub t}=4 and N{sub t}=6 as expected for the finite-temperature transitions of an asymptotically free theory. This suggests a walking rather than a conformal behavior, in contrast to what is observed with Wilson quarks. In contrast to what is found for fundamental quarks, the deconfined phase exhibits states in which the Polyakov loop is oriented in the directions of all three cube roots of unity. At very weak coupling the states with complex Polyakov loops undergo a transition to a state with a real, negative Polyakov loop.
NASA Astrophysics Data System (ADS)
Hosaka, A.; Toki, H.; Weise, W.
1990-01-01
We investigate nucleon structure in a (non-linear) chiral bag model with vector mesons. The model incorporates two different degrees of freedom: mesons outside the bag at long and intermediate ranges, and quarks inside the bag at short distances. The ρ, a 1 and ω mesons outside the bag are included in a chiral effective lagrangian based on the non-linear sigma model. The classical solution is obtained using the hedgehog ansatz, and the cranking method is applied to construct the physical nucleon states. Static properties of the nucleon such as its mass, axial vector coupling constant, magnetic moments and charge radii are studied in detail as functions of the bag radius. Quark and meson contributions to these quantities are calculated separately. In particular, we discuss the extent to which the vector-meson dominance picture holds in the chiral bag.
K-->pipi amplitudes from lattice QCD with a light charm quark.
Giusti, L; Hernández, P; Laine, M; Pena, C; Wennekers, J; Wittig, H
2007-02-23
We compute the leading-order low-energy constants of the DeltaS=1 effective weak Hamiltonian in the quenched approximation of QCD with up, down, strange, and charm quarks degenerate and light. They are extracted by comparing the predictions of finite-volume chiral perturbation theory with lattice QCD computations of suitable correlation functions carried out with quark masses ranging from a few MeV up to half of the physical strange mass. We observe a DeltaI=1/2 enhancement in this corner of the parameter space of the theory. Although matching with the experimental result is not observed for the DeltaI=1/2 amplitude, our computation suggests large QCD contributions to the physical DeltaI=1/2 rule in the GIM limit, and represents the first step to quantify the role of the charm-quark mass in K-->pipi amplitudes. The use of fermions with an exact chiral symmetry is an essential ingredient in our computation.
J. L. Goity; Longzhe Zhang
1997-02-01
The decays K{sub L}{r_arrow}{gamma}{gamma} and K{sub L}{r_arrow}l{sup +}l{sup {minus}}{gamma} are studied at the leading order p{sup 6} in Chiral Perturbation Theory. One-loop contributions stemming from the odd intrinsic parity {vert_bar}{Delta}S{vert_bar}=1 effective Lagrangian of order p{sup 4} are included and shown to be of possible relevance. They affect the decay K{sub L}{r_arrow}{gamma}{gamma} adding to the usual pole terms a piece free of counterterm uncertainties. In the case of the K{sub L}{r_arrow}l{sup +}l{sup {minus}}{gamma} decays the dependence of the form factor on the dilepton invariant mass requires a counterterm. The form factor may receive a sizeable contribution from chiral logarithms. Including considerations from the K{sub L}{r_arrow}{pi}{sup +}{pi}{sup {minus}}{gamma} direct emission amplitude, the authors obtain two consistent scenarios. In one scenario the long distance contributions from the one-loop terms are important, while in the other they are marginal. In both cases the counterterm is shown to be significant.
Chiral medium produced by parallel electric and magnetic fields
NASA Astrophysics Data System (ADS)
Ruggieri, Marco; Peng, Guang Xiong; Chernodub, Maxim
2016-11-01
We compute (pseudo)critical temperature, Tc, of chiral symmetry restoration for quark matter in the background of parallel electric and magnetic fields. This field configuration leads to the production of a chiral medium on a time scale τ, characterized by a nonvanishing value of the chiral density that equilibrates due to microscopic processes in the thermal bath. We estimate the relaxation time τ to be about ≈ 0:1 - 1 fm/c around the chiral crossover; then we compute the effect of the fields and of the chiral medium on Tc. We find Tc to be lowered by the external fields in the chiral medium.
NASA Astrophysics Data System (ADS)
Stalcup, A. M.
2010-07-01
The main goal of this review is to provide a brief overview of chiral separations to researchers who are versed in the area of analytical separations but unfamiliar with chiral separations. To researchers who are not familiar with this area, there is currently a bewildering array of commercially available chiral columns, chiral derivatizing reagents, and chiral selectors for approaches that span the range of analytical separation platforms (e.g., high-performance liquid chromatography, gas chromatography, supercritical-fluid chromatography, and capillary electrophoresis). This review begins with a brief discussion of chirality before examining the general strategies and commonalities among all of the chiral separation techniques. Rather than exhaustively listing all the chiral selectors and applications, this review highlights significant issues and differences between chiral and achiral separations, providing salient examples from specific classes of chiral selectors where appropriate.
Heavy quark production and spectroscopy
Appel, J.A.
1993-11-01
This review covers many new experimental results on heavy flavor production and spectroscopy. It also shows some of the increasingly improved theoretical understanding of results in light of basic perturbative QCD and heavy quark symmetry. At the same time, there are some remaining discrepancies among experiments as well as significant missing information on some of the anticipated lowest lying heavy quark states. Most interesting, perhaps, are some clearly measured production effects awaiting full explanation.
Power counting regime of chiral effective field theory and beyond
Hall, J. M. M.; Leinweber, D. B.; Young, R. D.
2010-08-01
Chiral effective field theory ({chi}EFT) complements numerical simulations of quantum chromodynamics (QCD) on a space-time lattice. It provides a model-independent formalism for connecting lattice simulation results at finite volume and a variety of quark masses to the physical world. The asymptotic nature of the chiral expansion places the focus on the first few terms of the expansion. Thus, knowledge of the power-counting regime (PCR) of {chi}EFT, where higher-order terms of the expansion may be regarded as negligible, is as important as knowledge of the expansion itself. Through the consideration of a variety of renormalization schemes and associated parameters, techniques to identify the PCR where results are independent of the renormalization scheme are established. The nucleon mass is considered as a benchmark for illustrating this general approach. Because the PCR is small, the numerical simulation results are also examined to search for the possible presence of an intrinsic scale which may be used in a nonperturbative manner to describe lattice simulation results outside of the PCR. Positive results that improve on the current optimistic application of chiral perturbation theory ({chi}PT) beyond the PCR are reported.
Power counting regime of chiral effective field theory and beyond.
Hall, J. M.M.; Leinweber, D. B.; Young, R. D.; Physics; Univ. of Adelaide
2010-08-10
Chiral effective field theory ({chi}EFT) complements numerical simulations of quantum chromodynamics (QCD) on a space-time lattice. It provides a model-independent formalism for connecting lattice simulation results at finite volume and a variety of quark masses to the physical world. The asymptotic nature of the chiral expansion places the focus on the first few terms of the expansion. Thus, knowledge of the power-counting regime (PCR) of {chi}EFT, where higher-order terms of the expansion may be regarded as negligible, is as important as knowledge of the expansion itself. Through the consideration of a variety of renormalization schemes and associated parameters, techniques to identify the PCR where results are independent of the renormalization scheme are established. The nucleon mass is considered as a benchmark for illustrating this general approach. Because the PCR is small, the numerical simulation results are also examined to search for the possible presence of an intrinsic scale which may be used in a nonperturbative manner to describe lattice simulation results outside of the PCR. Positive results that improve on the current optimistic application of chiral perturbation theory ({chi}PT) beyond the PCR are reported.
Prompt quark production by exploding sphalerons
NASA Astrophysics Data System (ADS)
Shuryak, Edward; Zahed, Ismail
2003-01-01
Following recent works on the production and subsequent explosive decay of QCD sphaleronlike clusters, we discuss the mechanism of quark pair production in this process. We first show how the gauge field explosive solution of Luscher and Schechter can be achieved by noncentral conformal mapping from the O(4)-symmetric solution. Our main result is a new solution to the Dirac equation in real time in this configuration, obtained by the same inversion of the fermion O(4) zero mode. It explicitly shows how the quark acceleration occurs, starting from the spherically O(3)-symmetric zero energy chiral quark state to the final spectrum of nonzero energies. The sphaleronlike clusters with any Chern-Simons number always produce NFL¯R quarks, and the antisphaleron-like clusters the opposite chirality. The result are relevant for hadron-hadron and nucleus-nucleus collisions at large (s), wherein such clusters can be produced.
NASA Astrophysics Data System (ADS)
Garron, Nicolas; Hudspith, Renwick J.; Lytle, Andrew T.
2016-11-01
We compute the hadronic matrix elements of the four-quark operators relevant for {K}^0-{overline{K}}^0 mixing beyond the Standard Model. Our results are from lattice QCD simulations with n f = 2 + 1 flavours of domain-wall fermion, which exhibit continuum-like chiral-flavour symmetry. The simulations are performed at two different values of the lattice spacing ( a ˜ 0 .08 and a ˜ 0 .11 fm) and with lightest unitary pion mass ˜ 300 MeV. For the first time, the full set of relevant four-quark operators is renormalised non-perturbatively through RI-SMOM schemes; a detailed description of the renormalisation procedure is presented in a companion paper. We argue that the intermediate renormalisation scheme is responsible for the discrepancies found by different collaborations. We also study different normalisations and determine the matrix elements of the relevant four-quark operators with a precision of ˜ 5% or better.
Physics of the nucleon sea quark distributions
Vogt, R.
2000-03-10
Sea quark distributions in the nucleon have naively been expected to be generated perturbatively by gluon splitting. In this case, there is no reason for the light quark and anti-quark sea distributions to be different. No asymmetries in the strange or heavy quark sea distributions are predicted in the improved parton model. However,recent experiments have called these naive expectations into question. A violation of the Gottfried sum rule has been measured in several experiments, suggesting that (bar u) < (bar d) in the proton. Additionally, other measurements, while not definitive, show that there may be an asymmetry in the strange and anti-strange quark sea distributions. These effects may require nonperturbative explanations. In this review we first discuss the perturbative aspects of the sea quark distributions. We then describe the experiments that could point to nonperturbative contributions to the nucleon sea. Current phenomenological models that could explain some of these effects are reviewed.
The emergence of a heavy quark family on a lattice
NASA Astrophysics Data System (ADS)
Preparata, Giuliano; Xue, She-Sheng
1996-02-01
Within the framework of the “Rome approach” for a lattice chiral gauge theory, the four-quark interaction with flavour symmetry is included. We analyse spontaneous symmetry breaking and compute composite modes and their contributions to the ground state energy. As a result, it is shown that the emergence of a heavy quark family is the energetically favoured solution.
The Emergence of a Heavy Quark Family on a Lattice
NASA Astrophysics Data System (ADS)
Xue, She-Sheng
1996-03-01
Within the framework of the "Rome approach" for a lattice chiral gauge theory, the four-quark interaction with flavour symmetry is included. We analyse spontaneous symmetry breaking and compute composite modes and their contributions to the ground state energy. As a result, it is shown that the emergence of a heavy quark family is the energetically favoured solution.
Dressed Quarks and PROTON’S Spin
NASA Astrophysics Data System (ADS)
Yang, Xin-Hua; Wong, Chun Wa; Chu, Keh-Cheng
The effect on the proton spin of mixing gluon and sea quark configurations is studied in a perturbative treatment based on the MIT bag model. As little as 29% of the proton spin is found to remain as the intrinsic spin of quarks when they are “dressed” by gluons.
Hadron-quark phase transition in asymmetric matter with dynamical quark masses
Shao, G. Y.; Colonna, M.; Di Toro, M.; Greco, V.; Plumari, S.; Liu, B.; Liu, Y. X.
2011-05-01
The two-equation-of-state model is used to describe the hadron-quark phase transition in asymmetric matter formed at high density in heavy-ion collisions. For the quark phase, the three-flavor Nambu-Jona-Lasinio effective theory is used to investigate the influence of dynamical quark mass effects on the phase transition. At variance to the MIT-Bag results, with fixed-current quark masses, the main important effect of the chiral dynamics is the appearance of an end point for the coexistence zone. We show that a first-order hadron-quark phase transition may take place in the region T subset of (50-80) MeV and {rho}{sub B} subset of (2-4){rho}{sub 0}, which is possible to be probed in the new planned facilities, such as FAIR at GSI-Darmstadt and NICA at JINR-Dubna. From the isospin properties of the mixed phase, some possible signals are suggested. The importance of chiral symmetry and dynamical quark mass on the hadron-quark phase transition is stressed. The difficulty of an exact location of a critical end point comes from its appearance in a region of competition between chiral symmetry breaking and confinement, where our knowledge of effective QCD theories is still rather uncertain.
The quark propagator in QCD and G2 QCD
NASA Astrophysics Data System (ADS)
Contant, Romain; Huber, Markus Q.
2017-03-01
QCD-like theories provide testing grounds for truncations of functional equations at non-zero density, since comparisons with lattice results are possible due to the absence of the sign problem. As a first step towards such a comparison, we determine for QCD and G2 QCD the chiral and confinement/deconfinement transitions from the quark propagator Dyson-Schwinger equation at zero chemical potential by calculating the chiral and dual chiral condensates, respectively.
Colangelo, Gilberto; Lanz, Stefan; Leutwyler, Heinrich; ...
2017-01-09
Themore » $$\\eta\\to 3\\pi$$ amplitude is sensitive to the quark mass difference $$m_u-m_d$$ and offers a unique way to determine the quark mass ratio $$Q^2\\equiv (m_s^2-m_{ud}^2)/(m_d^2-m_u^2)$$ from experiment. We calculate the amplitude dispersively and fit the KLOE data on the charged mode, varying the subtraction constants in the range allowed by chiral perturbation theory. parameter-free predictions obtained for the neutral Dalitz plot and the neutral-to-charged branching ratio are in excellent agreement with experiment. Lastly, our representation of the transition amplitude implies $$Q = 22.0 \\pm 0.7$$.« less
Quark-Hadron Duality in Electron Scattering
W. Melnitchouk
2000-09-01
Quark-hadron duality addresses some of the most fundamental issues in strong interaction physics, in particular the nature of the transition from the perturbative to non-perturbative regions of QCD. I summarize recent developments in quark-hadron duality in lepton-hadron scattering, and outline how duality can be studied at future high-luminosity facilities such as Jefferson Lab at 12 GeV, or an electron-hadron collider such as EPIC.
Solitary waves in a Skyrmion-quark Lagrangian
NASA Astrophysics Data System (ADS)
Kälbermann, G.
1986-04-01
We investigate nontopological solitary wave solutions of a Skyrmion-quark Lagrangian. The quark wave functions are of the hedgehog type and the chiral angle corresponding to the classical pionic field goes to zero both at the origin and infinity. The Skyrme parameter is varied and nontopological solutions are found in a restricted range of values. The mass of the system is calculated and explicit solutions are shown for nodeless quark wave functions. The properties of the states are investigated.
Quark-hadron phase transition in massive gravity
NASA Astrophysics Data System (ADS)
Atazadeh, K.
2016-11-01
We study the quark-hadron phase transition in the framework of massive gravity. We show that the modification of the FRW cosmological equations leads to the quark-hadron phase transition in the early massive Universe. Using numerical analysis, we consider that a phase transition based on the chiral symmetry breaking after the electroweak transition, occurred at approximately 10 μs after the Big Bang to convert a plasma of free quarks and gluons into hadrons.
NASA Astrophysics Data System (ADS)
Price, C. E.; Shepard, J. R.
1991-04-01
We compute properties of the nucleon in a hybrid chiral model based on the linear σ-model with quark degrees of freedom treated explicity. In contrast to previous calculations, we do not use the hedgehog ansatz. Instead we solve self-consistently for a state with well defined spin and isospin projections. We allow this state to be deformed and find that, although d- and g-state admixtures in the predominantly s-state single quark wave functions are not large, they have profound effects on many nucleon properties including magnetic moments and gA. Our best fit parameters provide excellent agreement with experiment but are much different from those determined in hedgehog calculations.
η→3π: Study of the Dalitz Plot and Extraction of the Quark Mass Ratio Q.
Colangelo, Gilberto; Lanz, Stefan; Leutwyler, Heinrich; Passemar, Emilie
2017-01-13
The η→3π amplitude is sensitive to the quark mass difference m_{u}-m_{d} and offers a unique way to determine the quark mass ratio Q^{2}≡(m_{s}^{2}-m_{ud}^{2})/(m_{d}^{2}-m_{u}^{2}) from experiment. We calculate the amplitude dispersively and fit the KLOE Collaboration data on the charged mode, varying the subtraction constants in the range allowed by chiral perturbation theory. The parameter-free predictions obtained for the neutral Dalitz plot and the neutral-to-charged branching ratio are in excellent agreement with experiment. Our representation of the transition amplitude implies Q=22.0±0.7.
Chiral magnetic effect in condensed matter systems
NASA Astrophysics Data System (ADS)
Li, Qiang; Kharzeev, Dmitri E.
2016-12-01
The chiral magnetic effect (CME) is the generation of electrical current induced by chirality imbalance in the presence of magnetic field. It is a macroscopic manifestation of the quantum chiral anomaly [S. L. Adler. Axial-vector vertex in spinor electrodynamics. Physical Review, 177, 2426 (1969), J. S. Bell and R. Jackiw. A PCAC puzzle: π 0 γγin the σ-model. Il Nuovo Cimento A, 60, 47-61 (1969)] in systems possessing charged chiral fermions. In quark-gluon plasma containing nearly massless quarks, the chirality imbalance is sourced by the topological transitions. In condensed matter systems, the chiral quasiparticles emerge in gapless semiconductors with two energy bands having pointlike degeneracies opening the path to the study of chiral anomaly [H. B. Nielsen and M. Ninomiya. The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal. Physics Letters B, 130, 389-396 (1983)]. Recently, these novel materials - so-called Dirac and Weyl semimetals have been discovered experimentally, are suitable for the investigation of the CME in condensed matter experiments. Here we report on the first experimental observation of the CME in a 3D Dirac semimetal ZrTe5 [Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosić, A. V. Fedorov, R. D. Zhong, J. A. Schneeloch, G. D. Gu, and T. Valla. Chiral magnetic effect in ZrTe5. Nature Physics (2016) doi:10.1038/nphys3648].
NASA Astrophysics Data System (ADS)
Jimenez-Alba, Amadeo; Yee, Ho-Ung
2015-07-01
We compute one of the second order transport coefficients arising from the chiral anomaly in a high-temperature weakly coupled regime of quark-gluon plasma. This transport coefficient is responsible for the C P -odd current that is proportional to the time derivative of the magnetic field, and can be considered as a first correction to the chiral magnetic conductivity at finite, small frequency. We observe that this transport coefficient has a nonanalytic dependence on the coupling as ˜1 /(g4log (1 /g )) at the weak coupling regime, which necessitates a resummation of infinite ladder diagrams with leading pinch singularities to get a correct leading log result, a feature quite similar to what one finds in the computation of electric conductivity. We formulate and solve the relevant C P -odd Schwinger-Dyson equation in real-time perturbation theory that reduces to a coupled set of second order differential equations at leading log order. Our result for this second order transport coefficient indicates that chiral magnetic current has some resistance to the time change of the magnetic field; this shall be called the "chiral induction effect." We also discuss the case of color current induced by a color magnetic field.
Chiral symmetry aspects in the open charm sector
NASA Astrophysics Data System (ADS)
Buchheim, T.; Hilger, T.; Kämpfer, B.
2016-01-01
QCD sum rules serve as tools to investigate changing hadronic properties in a hot and/or dense nuclear medium. The role of chiral symmetry breaking and restoration effects in a medium can be addressed also in the heavy-light meson sector. Thus, we consider Weinberg sum rules which refer to chiral partner mesons composed of a light and a heavy quark.
ERIC Educational Resources Information Center
Young, Robert D.
1973-01-01
Discusses the charge independence, wavefunctions, magnetic moments, and high-energy scattering of hadrons on the basis of group theory and nonrelativistic quark model with mass spectrum calculated by first-order perturbation theory. The presentation is explainable to advanced undergraduate students. (CC)
Phase structure of the Polyakov-quark-meson model
NASA Astrophysics Data System (ADS)
Schaefer, B.-J.; Pawlowski, J. M.; Wambach, J.
2007-10-01
The relation between the deconfinement and chiral phase transition is explored in the framework of a Polyakov-loop-extended two-flavor quark-meson (PQM) model. In this model the Polyakov loop dynamics is represented by a background temporal gauge field which also couples to the quarks. As a novelty an explicit quark chemical potential and Nf-dependence in the Polyakov loop potential is proposed by using renormalization group arguments. The behavior of the Polyakov loop as well as the chiral condensate as function of temperature and quark chemical potential is obtained by minimizing the grand canonical thermodynamic potential of the system. The effect of the Polyakov loop dynamics on the chiral phase diagram and on several thermodynamic bulk quantities is presented.
NASA Astrophysics Data System (ADS)
Bordes, J.; Dominguez, C. A.; Moodley, P.; Peñarrocha, J.; Schilcher, K.
2012-10-01
Next to leading order corrections to the SU(3) × SU(3) Gell-Mann-Oakes-Renner relation (GMOR) are obtained using weighted QCD Finite Energy Sum Rules (FESR) involving the pseudoscalar current correlator. Two types of integration kernels in the FESR are used to suppress the contribution of the kaon radial excitations to the hadronic spectral function, one with local and the other with global constraints. The result for the pseudoscalar current correlator at zero momentum is ψ 5(0) = (2.8 ± 0.3) ×10-3 GeV4, leading to the chiral corrections to GMOR: δ K = (55 ± 5)%. The resulting uncertainties are mostly due to variations in the upper limit of integration in the FESR, within the stability regions, and to a much lesser extent due to the uncertainties in the strong coupling and the strange quark mass. Higher order quark mass corrections, vacuum condensates, and the hadronic resonance sector play a negligible role in this determination. These results confirm an independent determination from chiral perturbation theory giving also very large corrections, i.e. roughly an order of magnitude larger than the corresponding corrections in chiral SU(2) × SU(2). Combining these results with our previous determination of the corrections to GMOR in chiral SU(2) × SU(2), δ π , we are able to determine two low energy constants of chiral perturbation theory, i.e. L_8^r=( {1.0± 0.3} )× {10^{-3 }} , and H_2^r=-( {4.7± 0.6} )× {10^{-3 }} , both atthe scaleof the ρ-meson mass.
pion Kaon Scattering in full QCD with domain wall valence quarks
Silas Beane; Paulo Bedaque; Thomas Luu; Konstantinos Orginos; Elisabetta Pallante; Assumpta Parreno; Martin Savage
2006-07-24
We calculate the {pi}{sup +}K{sup +} scattering length at pion masses of m{sub {pi}} {approx} 290, 350, 490 and 600 MeV in fully-dynamical lattice QCD with domain-wall valence quarks and rooted staggered sea quarks. The lattice data, analyzed at next-to-leading order in chiral perturbation theory, allows an extraction of the full piK scattering amplitude at threshold. Extrapolating to the physical point gives m{sub {pi}} {alpha}{sub 3/2} = -0.0574 {+-} 0.0016{sub -0.0058}{sup +0.0024} and m{sub {pi}} {alpha}{sub 1/2} = 0.1725 {+-} 0.0017{sub -0.0156}{sup +0.0023} for the I = 3/2 and I = 1/2 scattering lengths, respectively, where the first error is statistical and the second error is an estimate of the systematic error due to truncation of the chiral expansion.
Broken chiral symmetry on a null plane
Beane, Silas R.
2013-10-15
On a null-plane (light-front), all effects of spontaneous chiral symmetry breaking are contained in the three Hamiltonians (dynamical Poincaré generators), while the vacuum state is a chiral invariant. This property is used to give a general proof of Goldstone’s theorem on a null-plane. Focusing on null-plane QCD with N degenerate flavors of light quarks, the chiral-symmetry breaking Hamiltonians are obtained, and the role of vacuum condensates is clarified. In particular, the null-plane Gell-Mann–Oakes–Renner formula is derived, and a general prescription is given for mapping all chiral-symmetry breaking QCD condensates to chiral-symmetry conserving null-plane QCD condensates. The utility of the null-plane description lies in the operator algebra that mixes the null-plane Hamiltonians and the chiral symmetry charges. It is demonstrated that in a certain non-trivial limit, the null-plane operator algebra reduces to the symmetry group SU(2N) of the constituent quark model. -- Highlights: •A proof (the first) of Goldstone’s theorem on a null-plane is given. •The puzzle of chiral-symmetry breaking condensates on a null-plane is solved. •The emergence of spin-flavor symmetries in null-plane QCD is demonstrated.
Chiral magnetic effect in condensed matter systems
Li, Qiang; Kharzeev, Dmitri E.
2016-12-01
The chiral magnetic effect is the generation of electrical current induced by chirality imbalance in the presence of magnetic field. It is a macroscopic manifestation of the quantum anomaly in relativistic field theory of chiral fermions. In the quark-gluon plasma, the axial anomaly induces topological charge changing transition that results in the generation of electrical current along the magnetic field. In condensed matter systems, the chiral magnetic effect was first predicted in the gapless semiconductors with tow energy bands having pointlike degeneracies. In addition, thirty years later after this prediction, the chiral magnetic effect was finally observed in the 3Dmore » Dirac/Weyl semimetals.« less
Complex singularities in the quark propagator
Roberts, C.D.; Frank, M.R.
1995-08-01
The Dyson-Schwinger equation for the quark propagator is being studied in the rainbow approximation using a gluon propagator that incorporates asymptotic freedom and is an entire function. The gluon propagator has a number of parameters that may be varied in order to obtain a good description of low-energy pion observables; such as f{sub {pi}} and the {pi}-{pi} scattering lengths. This provides a direct means of relating hadronic observables to the form of the quark-quark interaction in the infrared and serves as an adjunct and extension of the separable Ansatz approach discussed above. It also provides a means of examining the pole structure of the quark propagator, which may hold the key to understanding quark confinement. The preliminary results are encouraging. It was demonstrated that it is possible to obtain a good description of pion observables in this approach. Further, when the strength of the quark-quark interaction in the infrared becomes larger than a given critical value, the pole in the quark propagator bifurcates into a pair of complex conjugate poles: m{sub q} = m{sub q}{sup R} {plus_minus} im{sub q}{sup I}, which is a signal of confinement. The interpretation in this case is of 1/m{sub q}{sup I} as the distance over which a quark may propagate before fragmenting. Further, there are indications from these studies that T{sub c}{sup D} < T{sub c}{sup {chi}}, where T{sub c}{sup D} is the critical temperature for deconfinement and T{sub c}{sup {chi}} is the critical temperature for chiral symmetry restoration; i.e., indications that deconfinement occurs at a lower temperature than chiral symmetry restoration. Available results from this work will be presented at the Washington meeting of the APS.
Kurkela, Aleksi; Vuorinen, Aleksi
2016-07-22
We generalize the state-of-the-art perturbative equation of state of cold quark matter to nonzero temperatures, needed in the description of neutron star mergers and core collapse processes. The new result is accurate to O(g^{5}) in the gauge coupling, and is based on a novel framework for dealing with the infrared sensitive soft field modes of the theory. The zero Matsubara mode sector is treated via a dimensionally reduced effective theory, while the soft nonzero modes are resummed using the hard thermal loop approximation. This combination of known effective descriptions offers unprecedented access to small but nonzero temperatures, both in and out of beta equilibrium.
Chiral relaxation time at the crossover of quantum chromodynamics
NASA Astrophysics Data System (ADS)
Ruggieri, M.; Peng, G. X.; Chernodub, M.
2016-09-01
We study microscopic processes responsible for chirality flips in the thermal bath of quantum chromodynamics at finite temperature and zero baryon chemical potential. We focus on the temperature range where the crossover from chirally broken phase to quark-gluon plasma takes place, namely, T ≃(150 ,200 ) MeV . The processes we consider are quark-quark scatterings mediated by collective excitations with the quantum number of pions and σ meson; hence we refer to these processes simply as one-pion (one-σ ) exchanges. We use a Nambu-Jona-Lasinio model to compute equilibrium properties of the thermal bath, as well as the relevant scattering kernel to be used in the collision integral to estimate the chiral relaxation time τ . We find τ ≃0.1 ÷1 fm /c around the chiral crossover.
How tetraquarks can generate a second chiral phase transition
Pisarski, Robert D.; Skokov, Vladimir V.
2016-09-09
We consider how tetraquarks can affect the chiral phase transition in theories like QCD, with light quarks coupled to three colors. For two flavors the tetraquark field is an isosinglet, and its effect is minimal. For three flavors, however, the tetraquark field transforms in the same representation of the chiral symmetry group as the usual chiral order parameter, and so for very light quarks there may be two chiral phase transitions, which are both of first order. In QCD, results from the lattice indicate that any transition from the tetraquark condensate is a smooth crossover. In the plane of temperature, T, and quark chemical potential, μ, though, a crossover line for the tetraquark condensate is naturally related to the transition line for color superconductivity. For four flavors we suggest that a triquark field, antisymmetric in both flavor and color, combine to form hexaquarks.
How tetraquarks can generate a second chiral phase transition
Pisarski, Robert D.; Skokov, Vladimir V.
2016-09-09
We consider how tetraquarks can affect the chiral phase transition in theories like QCD, with light quarks coupled to three colors. For two flavors the tetraquark field is an isosinglet, and its effect is minimal. For three flavors, however, the tetraquark field transforms in the same representation of the chiral symmetry group as the usual chiral order parameter, and so for very light quarks there may be two chiral phase transitions, which are both of first order. In QCD, results from the lattice indicate that any transition from the tetraquark condensate is a smooth crossover. In the plane of temperature,more » T, and quark chemical potential, μ, though, a crossover line for the tetraquark condensate is naturally related to the transition line for color superconductivity. For four flavors we suggest that a triquark field, antisymmetric in both flavor and color, combine to form hexaquarks.« less
Distinguishing standard model extensions using monotop chirality at the LHC
NASA Astrophysics Data System (ADS)
Allahverdi, Rouzbeh; Dalchenko, Mykhailo; Dutta, Bhaskar; Flórez, Andrés; Gao, Yu; Kamon, Teruki; Kolev, Nikolay; Mueller, Ryan; Segura, Manuel
2016-12-01
We present two minimal extensions of the standard model, each giving rise to baryogenesis. They include heavy color-triplet scalars interacting with a light Majorana fermion that can be the dark matter (DM) candidate. The electroweak charges of the new scalars govern their couplings to quarks of different chirality, which leads to different collider signals. These models predict monotop events at the LHC and the energy spectrum of decay products of highly polarized top quarks can be used to establish the chiral nature of the interactions involving the heavy scalars and the DM. Detailed simulation of signal and standard model background events is performed, showing that top quark chirality can be distinguished in hadronic and leptonic decays of the top quarks.
Hache, F
2010-09-23
Quantum calculation of the hyperpolarizabilty tensor is carried out for chiral molecules displaying a "one-electron" chirality. Calculation is made possible by introducing a chiral perturbation term in the potential energy surface. We show that a one-electron chiral molecule is intrinsically nonlinear and diplays a nonzero electric chiral hyperpolarizability. Existence of magnetic contributions is discussed, and it is shown that higher-order perturbation terms are necessary to introduce such magnetic effects in the second-order hyperpolarizability.
Aspects of Chiral Symmetry Breaking in Lattice QCD
NASA Astrophysics Data System (ADS)
Horkel, Derek P.
In this thesis we describe two studies concerting lattice quantum chromodynamics (LQCD): first, an analysis of the phase structure of Wilson and twisted-mass fermions with isospin breaking effects, second a computational study measuring non-perturbative Greens functions. We open with a brief overview of the formalism of QCD and LQCD, focusing on the aspects necessary for understanding how a lattice computation is performed and how discretization effects can be understood. Our work in Wilson and twisted-mass fermions investigates an increasingly relevant regime where lattice simulations are performed with quarks at or near their physical masses and both the mass difference of the up and down quarks and their differing electric charges are included. Our computation of a non-perturbative Greens functions on the lattice serves as a first attempt to validate recent work by Dine et. al. [24] in which they calculate Greens functions which vanish in perturbation theory, yet have a contribution from the one instanton background. In chapter 2, we determine the phase diagram and pion spectrum for Wilson and twisted-mass fermions in the presence of non-degeneracy between the up and down quark and discretization errors, using Wilson and twisted-mass chiral perturbation theory. We find that the CP-violating phase of the continuum theory (which occurs for sufficiently large non-degeneracy) is continuously connected to the Aoki phase of the lattice theory with degenerate quarks. We show that discretization effects can, in some cases, push simulations with physical masses closer to either the CP-violating phase or another phase not present in the continuum, so that at sufficiently large lattice spacings physical-point simulations could lie in one of these phases. In chapter 3, we extend the work in chapter 2 to include the effects of electromagnetism, so that it is applicable to recent simulations incorporating all sources of isospin breaking. For Wilson fermions, we find that the
Kallin, Catherine; Berlinsky, John
2016-05-01
Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed.
Equilibration in quark gluon plasma
NASA Astrophysics Data System (ADS)
Das, S. K.; Alam, J.; Mohanty, P.
2011-07-01
The hydrodynamic expansion rate of quark gluon plasma (QGP) is evaluated and compared with the scattering rate of quarks and gluons within the system. Partonic scattering rates evaluated within the ambit of perturbative Quantum Choromodynamics (pQCD) are found to be smaller than the expansion rate evaluated with ideal equation of state (EoS) for the QGP. This indicate that during the space-time evolution the system remains out of equilibrium. Enhancement of pQCD cross sections and a more realistic EoS keep the partons closer to the equilibrium.
Exploring the role of the charm quark in the Δ I =1 /2 rule
NASA Astrophysics Data System (ADS)
Endress, E.; Pena, C.
2014-11-01
We study the dependence on the charm quark mass of the leading-order low-energy constants of the Δ S =1 effective Hamiltonian, with the aim of elucidating the role of the charm mass scale in the Δ I =1 /2 rule for K →π π decay. To that purpose, finite-volume chiral perturbation theory predictions are matched to QCD simulations, performed in the quenched approximation with overlap fermions and mu=md=ms . Light quark masses range between a few MeV up to around one third of the physical strange mass, while charm masses range between mu and a few hundred MeV. Novel variance reduction techniques are used to obtain a signal for penguin contractions in correlation functions involving four-fermion operators. The important role played by the subtractions required to construct renormalized amplitudes for mc≠mu is discussed in detail. We find evidence that the moderate enhancement of the Δ I =1 /2 amplitude previously found in the GIM limit mc=mu increases only slightly as mc abandons the light quark regime. Hints of a stronger enhancement for even higher values of mc are also found, but their confirmation requires a better understanding of the subtraction terms.
Chiral spiral induced by a strong magnetic field
NASA Astrophysics Data System (ADS)
Abuki, Hiroaki
2016-11-01
We study the modification of the chiral phase structure of QCD due to an external magnetic field. We first demonstrate how the effect of magnetic field can systematically be incorporated into a generalized Ginzburg-Landau framework. We then analyze the phase structure in the vicinity of the chiral critical point. In the chiral limit, the effect is found to be so drastic that it brings a "continent" of chiral spiral in the phase diagram, by which the chiral tricritical point is totally washed out. This is the case no matter how small the intensity of magnetic field is. On the other hand, the current quark mass protects the chiral critical point from a weak magnetic field. However, the critical point will eventually be covered by the chiral spiral phase as the magnetic field grows.
Hadron spectrum, quark masses, and decay constants from light overlap fermions on large lattices
Galletly, D.; Horsley, R.; Guertler, M.; Perlt, H.; Schiller, A.; Rakow, P. E. L.; Schierholz, G.; Streuer, T.
2007-04-01
We present results from a simulation of quenched overlap fermions with Luescher-Weisz gauge field action on lattices up to 24{sup 3}48 and for pion masses down to {approx_equal}250 MeV. Among the quantities we study are the pion, rho, and nucleon masses; the light and strange quark masses; and the pion decay constant. The renormalization of the scalar and axial vector currents is done nonperturbatively in the RI-MOM scheme. The simulations are performed at two different lattice spacings, a{approx_equal}0.1 fm and {approx_equal}0.15 fm, and on two different physical volumes, to test the scaling properties of our action and to study finite volume effects. We compare our results with the predictions of chiral perturbation theory and compute several of its low-energy constants. The pion mass is computed in sectors of fixed topology as well.
Non-degenerate light quark masses from 2+1f lattice QCD+QED
Drury, Shane; Blum, Thomas; Hayakawa, Masashi; Izubuchi, Taku; Sachrajda, Chris; Zhou, Ran
2014-01-01
We report on a calculation of the effects of isospin breaking in Lattice QCD+QED. This involves using Chiral Perturbation Theory with Electromagnetic corrections to find the renormalized, non-degenerate, light quark masses. The calculations are carried out on QCD ensembles generated by the RBC and UKQCD collaborations using Domain Wall Fermions and the Iwasaki and Iwasaki+DSDR Gauge Actions with unitary pion masses down to 170 MeV. Non-compact QED is treated in the quenched approximation. The simulations use a $32^3$ lattice size with $a^{-1}=2.28(3)$ GeV (Iwasaki) and 1.37(1) (Iwasaki+DSDR). This builds on previous work from the RBC/UKQCD collaboration with lattice spacing $a^{-1}=1.78(4)$ GeV.
Precision Measurements of Top Quark Production with the ATLAS Detector
NASA Astrophysics Data System (ADS)
Stolte, Philipp
2017-03-01
The top quark is the heaviest known fundamental particle. It is the only quark that decays before it hadronises which gives us the unique opportunity to probe the properties of bare quarks and to test perturbative QCD. This overview will focus on a few recent precision top quark measurements by the ATLAS Collaboration at the LHC: Fiducial top pair and single top production cross-sections including differential distributions will be presented and compared with QCD predictions. The results include the first top quark measurements at 13 TeV using data from LHC Run 2.
Floss, H.G.
1994-12-01
This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.
1984-10-01
Oxazoline or 1,3-Dioxane Groups. Two other chiral monomers containing polymerizable methacrylate functions were synthesized. The 2- methyl -5-phenyl-4...BOTTOM) MONOMERS the quaternary carbon of poly( methyl methacrylate ). 10 If this peak assignment for the triads in poly( a-methylene-y- 1 butyrolactone...Imd entify by block number) Vinyl oxazolines, ’Chiral Monomers * cx~-Methylene-4- methyl -’V-butyrolactone HPChia ooynr Chromatography Cia ooyes
Quark mass functions and pion structure in Minkowski space
Biernat, Elmer P.; Gross, Franz L.; Pena, Maria Teresa; Stadler, Alfred
2014-03-01
We present a study of the dressed quark mass function and the pion structure in Minkowski space using the Covariant Spectator Theory (CST). The quark propagators are dressed with the same kernel that describes the interaction between different quarks. We use an interaction kernel in momentum space that is a relativistic generalization of the linear confining q-qbar potential and a constant potential shift that defines the energy scale. The confining interaction has a Lorentz scalar part that is not chirally invariant by itself but decouples from the equations in the chiral limit and therefore allows the Nambu--Jona-Lasinio (NJL) mechanism to work. We adjust the parameters of our quark mass function calculated in Minkowski-space to agree with LQCD data obtained in Euclidean space. Results of a calculation of the pion electromagnetic form factor in the relativistic impulse approximation using the same mass function are presented and compared with experimental data.
Chiral Magnetic Effect in Heavy Ion Collisions
Liao, Jinfeng
2016-12-01
The Chiral Magnetic Effect (CME) is a remarkable phenomenon that stems from highly nontrivial interplay of QCD chiral symmetry, axial anomaly, and gluonic topology. We show it is of fundamental importance to search for the CME in experiments. The heavy ion collisions provide a unique environment where a hot chiral-symmetric quark-gluon plasma is created, gluonic topological fluctuations generate chirality imbalance, and very strong magnetic fields |Β^{→}|~m^{2}_{π} are present during the early stage of such collisions. Significant efforts have been made to look for CME signals in heavy ion collision experiments. Lastly, in this contribution we give a brief overview on the status of such efforts.
Chiral Magnetic Effect in Heavy Ion Collisions
Liao, Jinfeng
2016-12-01
The Chiral Magnetic Effect (CME) is a remarkable phenomenon that stems from highly nontrivial interplay of QCD chiral symmetry, axial anomaly, and gluonic topology. We show it is of fundamental importance to search for the CME in experiments. The heavy ion collisions provide a unique environment where a hot chiral-symmetric quark-gluon plasma is created, gluonic topological fluctuations generate chirality imbalance, and very strong magnetic fields |Β→|~m2π are present during the early stage of such collisions. Significant efforts have been made to look for CME signals in heavy ion collision experiments. Lastly, in this contribution we give a brief overview onmore » the status of such efforts.« less
Harnessing the Power of Chiral Perturbation Theory
NASA Astrophysics Data System (ADS)
Isgur, Nathan
2001-12-01
I have enjoyed noticing the puzzled looks around the conference this week as some participants carefully labelled themselves High Energy Physicists, taking some offense if they are called Nuclear Physicists, and vice versa. This is partly a trivial issue associated with US funding sources, but it also reflects some very deeply-held feelings about Quantum Chromodynamics (QCD): a High Energy Physicist finds the strong interactions a nuisance and is studying QCD to be able to eliminate them, while a Nuclear Physicist believes that the nature and origin of the strong interactions is one of the most important unsolved problems in the Standard Model and studies QCD to be able to explain them...
Gonzalez-Lopez, Jennifer; Jansen, Karl; Renner, Dru B.; Shindler, Andrea
2013-02-01
In a previous paper (González López, et al., 2013) [1], we have discussed the non-perturbative tuning of the chirally rotated Schrödinger functional (χSFχSF). This tuning is required to eliminate bulk O(a) cutoff effects in physical correlation functions. Using our tuning results obtained in González López et al. (2013) [1] we perform scaling and universality tests analyzing the residual O(a) cutoff effects of several step-scaling functions and we compute renormalization factors at the matching scale. As an example of possible application of the χSFχSF we compute the renormalized strange quark mass using large volume data obtained from Wilson twisted mass fermions at maximal twist.
Quark matter symmetry energy and quark stars
Chu, Peng-Cheng; Chen, Lie-Wen
2014-01-10
We extend the confined-density-dependent-mass (CDDM) model to include isospin dependence of the equivalent quark mass. Within the confined-isospin-density-dependent-mass (CIDDM) model, we study the quark matter symmetry energy, the stability of strange quark matter, and the properties of quark stars. We find that including isospin dependence of the equivalent quark mass can significantly influence the quark matter symmetry energy as well as the properties of strange quark matter and quark stars. While the recently discovered large mass pulsars PSR J1614–2230 and PSR J0348+0432 with masses around 2 M {sub ☉} cannot be quark stars within the CDDM model, they can be well described by quark stars in the CIDDM model. In particular, our results indicate that the two-flavor u-d quark matter symmetry energy should be at least about twice that of a free quark gas or normal quark matter within the conventional Nambu-Jona-Lasinio model in order to describe PSR J1614–2230 and PSR J0348+0432 as quark stars.
The Top Quark, QCD, And New Physics.
DOE R&D Accomplishments Database
Dawson, S.
2002-06-01
The role of the top quark in completing the Standard Model quark sector is reviewed, along with a discussion of production, decay, and theoretical restrictions on the top quark properties. Particular attention is paid to the top quark as a laboratory for perturbative QCD. As examples of the relevance of QCD corrections in the top quark sector, the calculation of e{sup+}e{sup -}+ t{bar t} at next-to-leading-order QCD using the phase space slicing algorithm and the implications of a precision measurement of the top quark mass are discussed in detail. The associated production of a t{bar t} pair and a Higgs boson in either e{sup+}e{sup -} or hadronic collisions is presented at next-to-leading-order QCD and its importance for a measurement of the top quark Yulrawa coupling emphasized. Implications of the heavy top quark mass for model builders are briefly examined, with the minimal supersymmetric Standard Model and topcolor discussed as specific examples.
Neutrino emissivities and bulk viscosity in neutral two-flavor quark matter
NASA Astrophysics Data System (ADS)
Berdermann, J.; Blaschke, D.; Fischer, T.; Kachanovich, A.
2016-12-01
We study thermodynamic and transport properties for the isotropic color-spin-locking (iso-CSL) phase of two-flavor superconducting quark matter under compact star constraints within a Nambu-Jona-Lasinio-type chiral quark model. Chiral symmetry breaking and the phase transition to superconducting quark matter leads to a density dependent change of quark masses, chemical potentials, and diquark gap. A self-consistent treatment of these physical quantities influences the microscopic calculations of transport properties. We present results for the iso-CSL direct URCA emissivities and bulk viscosities, which fulfil the constraints on quark matter derived from cooling and rotational evolution of compact stars. We compare our results with the phenomenologically successful, but yet heuristic 2 SC +X phase. We show that the microscopically founded iso-CSL phase can replace the purely phenomenological 2 SC +X phase in modern simulations of the cooling evolution for compact stars with color-superconducting quark matter interior.
NASA Astrophysics Data System (ADS)
Constantinou, M.; Horsley, R.; Panagopoulos, H.; Perlt, H.; Rakow, P. E. L.; Schierholz, G.; Schiller, A.; Zanotti, J. M.
2015-01-01
The renormalization factors of local quark-bilinear operators are computed nonperturbatively for Nf=3 flavors of stout link nonperturbative clover (SLiNC) fermions, with emphasis on the various procedures for the chiral and continuum extrapolations. The simulations are performed at a lattice spacing a =0.074 fm , and for five values of the pion mass in the range of 290-465 MeV, allowing a safe and stable chiral extrapolation. Emphasis is given in the subtraction of the well-known pion pole which affects the renormalization factor of the pseudoscalar current. We also compute the inverse propagator and the Green's functions of the local bilinears to one loop in perturbation theory. We investigate lattice artifacts by computing them perturbatively to second order as well as to all orders in the lattice spacing. The renormalization conditions are defined in the RI'-MOM scheme, for both the perturbative and nonperturbative results. The renormalization factors, obtained at different values of the renormalization scale, are translated to the MS ¯ scheme and are evolved perturbatively to 2 GeV. Any residual dependence on the initial renormalization scale is eliminated by an extrapolation to the continuum limit. We also study the various sources of systematic errors. Particular care is taken in correcting the nonperturbative estimates by subtracting lattice artifacts computed to one-loop perturbation theory using the same action. We test two different methods, by subtracting either the O (g2a2) contributions, or the complete (all orders in a ) one-loop lattice artifacts.
NASA Astrophysics Data System (ADS)
Mekki-Berrada, Ali
Bringing closer phospholipids each other on a bilayer of liposome, causes their rotation around their fatty acids axis, generating a force which brings closer the two sheets of the bilayer. In this theoretical study I show that for getting the greater cohesion of the liposome, by these forces, the serine in the hydrophilic head must have a L chirality. In the case where the hydrophilic head is absent amino acids with L chirality could contribute to this cohesion by taking the place of L-serine. Some coenzymes having a configuration similar to ethanolamine may also contribute. This is the case of pyridoxamine, thiamine and tetrahydrofolic acid. The grouping of amino acids of L chirality and pyridoxamine on the wall could initialize the prebiotic metabolism of these L amino acids only. This would explain the origin of the homo-chirality of amino acids in living world. Furthermore I show that in the hydrophilic head, the esterification of glycerol-phosphate by two fatty acids go through the positioning of dihydroxyacetone-phosphate and L-glyceraldehyde-3-phosphate, but not of D-glyceraldehyde-3-phosphate, prior their hydrogenation to glycerol-3- phosphate. The accumulation of D-glyceraldehyde-3-phosphate in the cytoplasm displace the thermodynamic equilibria towards the synthesis of D-dATP from D-glyceraldehyde-3-phosphate, acetaldehyde and prebiotic adenine, a reaction which does not require a coenzyme in the biotic metabolism. D-dATP and thiamine, more prebiotic metabolism of L-amino acids on the wall, would initialize D-pentoses phosphate and D-nucleotides pathways from the reaction of D-glyceraldehyde-3-phosphate + dihydroxyacetone-phosphate + prebiotic nucleic bases. The exhaustion of the prebiotic glyceraldehyde (racemic) and the nascent biotic metabolism dominated by D-glyceraldehyde-3-phosphate, would explain the origin of homo-chirality of sugars in living world. References: http://en.wikiversity.org/wiki/Prebiotic_chirality
Heavy Quarks, QCD, and Effective Field Theory
Thomas Mehen
2012-10-09
The research supported by this OJI award is in the area of heavy quark and quarkonium production, especially the application Soft-Collinear E ective Theory (SCET) to the hadronic production of quarkonia. SCET is an e ffective theory which allows one to derive factorization theorems and perform all order resummations for QCD processes. Factorization theorems allow one to separate the various scales entering a QCD process, and in particular, separate perturbative scales from nonperturbative scales. The perturbative physics can then be calculated using QCD perturbation theory. Universal functions with precise fi eld theoretic de nitions describe the nonperturbative physics. In addition, higher order perturbative QCD corrections that are enhanced by large logarithms can be resummed using the renormalization group equations of SCET. The applies SCET to the physics of heavy quarks, heavy quarkonium, and similar particles.
Hadron-Hadron Interactions in the Constituent Quark Model: Results and Extensions
Eric S. Swanson
2001-01-01
Hadronic interactions are discussed within the context of the constituent quark model. The ''Quark Born Diagram'' methodology is outlined, extensive applications to meson-meson and meson-baryon interactions are discussed, and general features of these interactions are highlighted. The second half of this document deals with shortcomings of the quark model approach and methods to overcome them. These include relativistic kinematics, unitarity, nonlocal potentials, coupled channel effects, and the chiral nature of the pion.
Two-flavor QCD simulation with exact chiral symmetry
Aoki, S.; Fukaya, H.; Hashimoto, S.; Kaneko, T.; Yamada, N.; Ishikawa, K-I.; Okawa, M.; Kanaya, K.; Matsufuru, H.; Okamoto, M.; Onogi, T.; Ukawa, A; Yoshie, T.
2008-07-01
We perform numerical simulations of lattice QCD with two flavors of dynamical overlap quarks, which have exact chiral symmetry on the lattice. While this fermion discretization is computationally demanding, we demonstrate the feasibility to simulate reasonably large and fine lattices by a careful choice of the lattice action and algorithmic improvements. Our production runs are carried out on a 16{sup 3}x32 lattice at a single lattice spacing around 0.12 fm. We explore the sea quark mass region down to m{sub s}/6, where m{sub s} is the physical strange quark mass, for a good control of the chiral extrapolation in future calculations of physical observables. We describe in detail our setup and algorithmic properties of the production simulations and present results for the static quark potential to fix the lattice scale and the locality of the overlap operator.
Future of Lattice Calculations with Staggered Sea Quarks
Gottlieb, Steven
2011-05-23
The MILC collaboration for some years has been creating gauge ensembles with 2+1 flavors of asqtad or improved staggered quarks. There are some 40 ensembles covering a wide range of quark mass and lattice spacing, thus allowing control of the chiral and continuum limits. An extensive review of that program has been published in Reviews of Modern Physics. Recently, MILC has begun a new program using HPQCD's highly improved staggered quark (HISQ) action. This action has smaller taste symmetry breaking than asqtad and improved scaling properties. We also include a dynamical charm quark in these calculations. We summarize the achievements of the asqtad program, what has been done so far with HISQ quarks, and then consider what future ensembles will be created and their impact.
Stability and size of a chiral soliton immersed in nuclear matter
Kahana, S.
1985-01-01
The alteration in nucleon substructure when nucleons are placed in nuclear matter is addressed in a Wigner-Seitz approximation by treating nuclei as a collection of chiral solitons. In the limit of strong coupling between quarks and the binding chiral fields, and for low density nuclear matter, it is found the solitons decrease slightly in size. 19 refs., 3 figs.
Renormalization of NN Interaction with Relativistic Chiral Two Pion Exchange
Higa, R; Valderrama, M Pavon; Arriola, E Ruiz
2007-06-14
The renormalization of the NN interaction with the Chiral Two Pion Exchange Potential computed using relativistic baryon chiral perturbation theory is considered. The short distance singularity reduces the number of counter-terms to about a half as those in the heavy-baryon expansion. Phase shifts and deuteron properties are evaluated and a general overall agreement is observed.
Why the proton spin is not due to quarks
Karliner, M.
1988-07-01
Recent EMC data on the spin-dependent proton structure function suggest that very little of the proton spin is due to the helicity of the quarks inside it. We argue that, at leading order in the 1/N/sub c/ expansion, none of the proton spin would be carried by quarks in the chiral limit where m/sub q/ = 0. This model-independent result is based on a physical picture of the nucleon as a soliton solution of the effective chiral Lagrangian of large-N/sub c/ QCD. The Skyrme model is then used to estimate quark contribution to the proton spin when chiral symmetry and flavor SU(3) are broken: this contribution turns out to be small, as suggested by the EMC. Next, we discuss the other possible contributions to the proton helicity in the infinite-momentum frame---polarized gluons (..delta..G), and orbital angular momentum (L/sub z/). We argue on general grounds and by explicit example the ..delta..G = 0 and that if the parameters of the chiral Lagrangian are adjusted so that gluons carry /approximately/50% of the proton momentum, most of the orbital angular momentum L/sub z/ is carried by quarks. We mention several experiments to test the EMC results and their interpretation. 43 refs., 3 figs.
Nuclear electromagnetic charge and current operators in Chiral EFT
Girlanda, Luca; Marcucci, Laura Elisa; Pastore, Saori; Piarulli, Maria; Schiavilla, Rocco; Viviani, Michele
2013-08-01
We describe our method for deriving the nuclear electromagnetic charge and current operators in chiral perturbation theory, based on time-ordered perturbation theory. We then discuss possible strategies for fixing the relevant low-energy constants, from the magnetic moments of the deuteron and of the trinucleons, and from the radiative np capture cross sections, and identify a scheme which, partly relying on {Delta} resonance saturation, leads to a reasonable pattern of convergence of the chiral expansion.
Measurements and searches with top quarks
Peters, Reinhild Yvonne
2008-08-01
channels to search for charged or neutral Higgs bosons. Depending on its mass, the charged Higgs boson is expected to decay either into top quarks or be the decay product of a top quark. For masses below the top quark mass, the top decay into a charged Higgs boson and a b quark can occur at a certain rate, additionally to the decays into W bosons and a b quark. The different decays of W and charged Higgs bosons can lead to deviations of the observed final number of events in certain final states with respect to the Standard Model expectation. A global search for charged Higgs bosons in top quark pair events is presented in this thesis, resulting in the most stringent limits to-date. Besides the decay of top quarks into charged Higgs or W bosons, new physics can also show up in the quark part of the decay. While in the Standard Model the top quark decays with a rate of about 100% into a W boson and a b quark, there are models where the top quark can decay into a W boson and a non-b quark. The ratio of branching fractions in which the top quark decays into a b quark over the branching fractions in which the top quark decays into all quarks is measured as part of this thesis, yielding the most precise measurement today. Furthermore, the Standard Model top quark pair production cross section is essential to be known precisely since the top quark pair production is the main background for t$\\bar{t}$H production and many other Higgs and beyond the Standard Model searches. However, not only the search or the test of the Standard Model itself make the precise measurement of the top quark pair production cross section interesting. As the cross section is calculated with high accuracy in perturbative QCD, a comparison of the measurement to the theory expectation yields the possibility to extract the top quark mass from the cross section measurement. Although many dedicated techniques exist to measure the top quark mass, the extraction from the cross section represents an important
Chiral Symmetry restoration from the hadronic regime
NASA Astrophysics Data System (ADS)
Gómez Nicola, Angel; Cortés, Santiago; Morales, John; Ruiz de Elvira, Jacobo; Andrés, Ricardo Torres
2017-03-01
We discuss recent advances on QCD chiral symmetry restoration at finite temperature, within the theoretical framework of Effective Theories. U(3) Ward Identities are derived between pseudoscalar susceptibilities and quark condensates, allowing to explain the behaviour of lattice meson screening masses. Unitarized interactions and the generated f0(500) thermal state are showed to play an essential role in the description of the transition through the scalar susceptibility.
Thermal production of charm quarks in heavy ion collisions at the Future Circular Collider
NASA Astrophysics Data System (ADS)
Liu, Yunpeng; Ko, Che Ming
2016-12-01
By solving the rate equation in an expanding quark-gluon plasma (QGP), we study thermal production of charm quarks in central Pb + Pb collisions at the Future Circular Collider. With the charm quark production cross section taken from the perturbative QCD at the next-to-leading order, we find that charm quark production from the QGP can be appreciable compared to that due to initial hard scattering between colliding nucleons.
Instanton-dyon ensembles with quarks with modified boundary conditions
NASA Astrophysics Data System (ADS)
Larsen, Rasmus; Shuryak, Edward
2016-11-01
We modify the quark periodicity condition on the thermal circle by the introduction of some phases—known also as "flavor holonomies"— different quark flavors. These phases provide a valuable tool, to be used for better understanding of deconfinement and chiral restoration phase transitions: by changing them, one can dramatically modify both phase transitions. In the language of instanton constituents—instanton-dyons or monopoles—changing the quark periodicity condition has a very direct explanation: the interplay of flavor and color holonomies can switch topological zero modes between various dyon types. The model we will study in detail, the so-called ZN c-symmetric QCD model with equal number of colors and flavors Nc=Nf=2 and special arrangement of flavor and color holonomies, ensures the "most democratic" setting, in which each quark flavor and each dyon type are in one-to-one correspondence. The usual QCD has the opposite "most exclusive" arrangement: all quarks are antiperiodic and, thus, all zero modes fall on only one—twisted or L —dyon type. As we show by ensemble simulation, deconfinement and chiral restoration phase transitions in these two models are dramatically different. In the usual QCD, both are smooth crossovers: but in the case of the Z2-symmetric model, deconfinement becomes a strong first-order transition, while chiral symmetry remains broken for all dyon densities studied. These results are in good correspondence with those from recent lattice simulations.
Scalar K{pi} form factor and light-quark masses
Jamin, Matthias; Oller, Jose Antonio; Pich, Antonio
2006-10-01
Recent experimental improvements on K-decay data allow for a precise extraction of the strangeness-changing scalar K{pi} form factor and the related strange scalar spectral function. On the basis of this scalar as well as the corresponding pseudoscalar spectral function, the strange quark mass is determined to be m{sub s}(2 GeV)=92{+-}9 MeV. Further taking into account chiral perturbation theory mass ratios, the light up and down quark masses turn out to be m{sub u}(2 GeV)=2.7{+-}0.4 MeV as well as m{sub d}(2 GeV)=4.8{+-}0.5 MeV. As a by-product, we also find a value for the Cabibbo angle |V{sub us}|=0.2236(29) and the ratio of meson decay constants F{sub K}/F{sub {pi}}=1.203(16). Performing a global average of the strange mass by including extractions from other channels as well as lattice QCD results yields m{sub s}(2 GeV)=94{+-}6 MeV.
No-Drag Frame for Anomalous Chiral Fluid
Stephanov, Mikhail A.; Yee, Ho-Ung
2016-03-24
For an anomalous fluid carrying dissipationless chiral magnetic and/or vortical currents we show that there is a frame in which a stationary obstacle experiences no drag, but energy and charge currents do not vanish, resembling superfluidity. Unlike ordinary superfluid flow, the anomalous chiral currents can transport entropy in this frame. Moreover, we show that the second law of thermodynamics completely determines the amounts of these anomalous nondissipative currents in the “no-drag frame” as polynomials in temperature and chemical potential with known anomaly coefficients. These general results are illustrated and confirmed by a calculation in the chiral kinetic theory and in the quark-gluon plasma at high temperature.
New results with colour-sextet quarks.
Sinclair, D. K.; Kogut, J. B.
2010-01-01
We study QCD with 2 and 3 flavours of colour-sextet quarks. The 2-flavour theory is a candidate Walking Technicolor theory. Since we are attempting to distinguish whether this theory is walking or conformal, we also study the 3-flavour theory, which is believed to be conformal, for comparison. We simulate lattice QCD with 2 and 3 flavours of colour-sextet staggered quarks at finite temperatures to determine the scales of confinement and chiral-symmetry breaking from the positions of the deconfinement and chiral-symmetry restoration transitions. Unlike the case with fundamental quarks, these transitions are far apart. For 2 flavours the values of {beta} = 6/g{sup 2} for both transitions increase as Ta is decreased from 1/4 to 1/6 to 1/8, as expected for a theory whose coupling runs to smaller values as the lattice spacing is decreased. However, for the chiral transition, the increase in {beta} between Ta = 1/4 and Ta = 1/6 is much larger than the increase between Ta = 1/6 and Ta = 1/8. This suggests that between Ta = 1/4 and Ta = 1/6 we are at strong coupling where the theory is effectively quenched, while between Ta = 1/6 and Ta = 1/8 we are emerging into the weak coupling regime. It will require even smaller Ta values to determine whether the running of the chiral-transition coupling is controlled by asymptotic freedom and the theory walks, or if it reaches a non-zero limit when the transition becomes a bulk transition and the theory is conformal. The 3 flavour case at Ta = 1/4 and Ta = 1/6 behaves similarly to the 2 flavour case. Since this theory is expected to be conformal, the interpretation that we are seeing strong-coupling behaviour, inaccessible from the weak-coupling limit (continuum) is the most likely interpretation.
Renormalization group flow equations for chiral nuclear models
NASA Astrophysics Data System (ADS)
Johnson, Andrew Sheriden
1997-10-01
The renormalization group (RG) is a tool for the qualitative and quantitative nonperturbative understanding of physical systems. There are many examples of physical systems that defy any perturbative approach, e.g. strongly correlated statistical systems and strongly coupled quantum field theories. The currently accepted theory of the strong interactions, Quantum Chromodynamics (QCD), is an example of the latter. Unlike the case of its gauge theory counterpart, Quantum Electrodynamics (QED), many consequences of QCD cannot be computed using perturbation theory. Instead, closed form perturbative solutions of QCD are possible only for a limited subset of phenomena such as high momentum-transfer scattering processes. These solutions afford little insight into the most ubiquitous and experimentally accessible consequences of QCD: the bound states of the theory, e.g. nucleons and nuclei. In this thesis we present a nonperturbative solution of the σ-model which was originally proposed in the late 50s as a phenomenological description of the dynamics of nucleons and mesons. In our version of the model the fermions are interpreted as quarks which interact via the sigma and pi mesons. The model exhibits an approximate SU(2) × SU(2) chiral symmetry which is understood as a low energy consequence of QCD. We use the Renormalization Group to study the behavior of the model as we evolve from a high to a low momentum scale and as chiral symmetry is both spontaneously and explicitly broken. The results show a marked improvement over the perturbative calculation and are consistent with experiment and other nonperturbative calculations such as chiral perturbation theory and lattice gauge theory. We next review the Renormalization Group idea first with a heuristic example drawing from the contrast between the hydrodynamic and the statistical continuum limit. For physical systems in which the microscopic behavior does not sufficiently decouple from the macroscopic behavior, the de
Chiral matrix model of the semi-QGP in QCD
Pisarski, Robert D.; Skokov, Vladimir V.
2016-08-08
Previously, a matrix model of the region near the transition temperature, in the “semi”quark gluon plasma, was developed for the theory of SU(3) gluons without quarks. In this paper we develop a chiral matrix model applicable to QCD by including dynamical quarks with 2+1 flavors. This requires adding a nonet of scalar fields, with both parities, and coupling these to quarks through a Yukawa coupling, y. Treating the scalar fields in mean field approximation, the effective Lagrangian is computed by integrating out quarks to one loop order. As is standard, the potential for the scalar fields is chosen to be symmetric under the flavor symmetry of SU (3)_{L} × SU(3)_{R} × Z (3) _{A} , except for a term linear in the current quark mass, m_{qk} . In addition, at a nonzero temperature T it is necessary to add a new term, ~ m_{qk} T^{2} . The parameters of the gluon part of the matrix model are identical to those for the pure glue theory without quarks. The parameters in the chiral matrix model are fixed by the values, at zero temperature, of the pion decay constant and the masses of the pions, kaons, η , and η' . The temperature for the chiral crossover at T$χ$ = 155 MeV is determined by adjusting the Yukawa coupling y . We find reasonable agreement with the results of numerical simulations on the lattice for the pressure and related quantities. In the chiral limit, besides the divergence in the chiral susceptibility there is also a milder divergence in the susceptibility between the Polyakov loop and the chiral order parameter, with critical exponent β $-$ 1 . We compute derivatives with respect to a quark chemical potential to determine the susceptibilities for baryon number, the $χ$_{2n} . Especially sensitive tests are provided by $χ$_{4} $-$ $χ$_{2} and by $χ$_{6} , which changes in sign about T$χ$ . In conclusion, the behavior of the susceptibilities in the chiral matrix
Chiral matrix model of the semi-QGP in QCD
Pisarski, Robert D.; Skokov, Vladimir V.
2016-08-08
Previously, a matrix model of the region near the transition temperature, in the “semi”quark gluon plasma, was developed for the theory of SU(3) gluons without quarks. In this paper we develop a chiral matrix model applicable to QCD by including dynamical quarks with 2+1 flavors. This requires adding a nonet of scalar fields, with both parities, and coupling these to quarks through a Yukawa coupling, y. Treating the scalar fields in mean field approximation, the effective Lagrangian is computed by integrating out quarks to one loop order. As is standard, the potential for the scalar fields is chosen to bemore » symmetric under the flavor symmetry of SU (3)L × SU(3)R × Z (3) A , except for a term linear in the current quark mass, mqk . In addition, at a nonzero temperature T it is necessary to add a new term, ~ mqk T2 . The parameters of the gluon part of the matrix model are identical to those for the pure glue theory without quarks. The parameters in the chiral matrix model are fixed by the values, at zero temperature, of the pion decay constant and the masses of the pions, kaons, η , and η' . The temperature for the chiral crossover at T$χ$ = 155 MeV is determined by adjusting the Yukawa coupling y . We find reasonable agreement with the results of numerical simulations on the lattice for the pressure and related quantities. In the chiral limit, besides the divergence in the chiral susceptibility there is also a milder divergence in the susceptibility between the Polyakov loop and the chiral order parameter, with critical exponent β $-$ 1 . We compute derivatives with respect to a quark chemical potential to determine the susceptibilities for baryon number, the $χ$2n . Especially sensitive tests are provided by $χ$4 $-$ $χ$2 and by $χ$6 , which changes in sign about T$χ$ . In conclusion, the behavior of the susceptibilities in the chiral matrix model strongly suggests that as the temperature increases from T$χ$ , that the transition to
Chiral matrix model of the semi-QGP in QCD
NASA Astrophysics Data System (ADS)
Pisarski, Robert D.; Skokov, Vladimir V.
2016-08-01
Previously, a matrix model of the region near the transition temperature, in the "semi"quark gluon plasma, was developed for the theory of S U (3 ) gluons without quarks. In this paper we develop a chiral matrix model applicable to QCD by including dynamical quarks with 2 +1 flavors. This requires adding a nonet of scalar fields, with both parities, and coupling these to quarks through a Yukawa coupling, y . Treating the scalar fields in mean field approximation, the effective Lagrangian is computed by integrating out quarks to one loop order. As is standard, the potential for the scalar fields is chosen to be symmetric under the flavor symmetry of S U (3 )L×S U (3 )R×Z (3 )A, except for a term linear in the current quark mass, mqk. In addition, at a nonzero temperature T it is necessary to add a new term, ˜mqkT2. The parameters of the gluon part of the matrix model are identical to those for the pure glue theory without quarks. The parameters in the chiral matrix model are fixed by the values, at zero temperature, of the pion decay constant and the masses of the pions, kaons, η , and η'. The temperature for the chiral crossover at Tχ=155 MeV is determined by adjusting the Yukawa coupling y . We find reasonable agreement with the results of numerical simulations on the lattice for the pressure and related quantities. In the chiral limit, besides the divergence in the chiral susceptibility there is also a milder divergence in the susceptibility between the Polyakov loop and the chiral order parameter, with critical exponent β -1 . We compute derivatives with respect to a quark chemical potential to determine the susceptibilities for baryon number, the χ2 n. Especially sensitive tests are provided by χ4-χ2 and by χ6, which changes in sign about Tχ. The behavior of the susceptibilities in the chiral matrix model strongly suggests that as the temperature increases from Tχ, that the transition to deconfinement is significantly quicker than indicated by the
Quarks, Symmetries and Strings - a Symposium in Honor of Bunji Sakita's 60th Birthday
NASA Astrophysics Data System (ADS)
Kaku, M.; Jevicki, A.; Kikkawa, K.
1991-04-01
The Table of Contents for the full book PDF is as follows: * Preface * Evening Banquet Speech * I. Quarks and Phenomenology * From the SU(6) Model to Uniqueness in the Standard Model * A Model for Higgs Mechanism in the Standard Model * Quark Mass Generation in QCD * Neutrino Masses in the Standard Model * Solar Neutrino Puzzle, Horizontal Symmetry of Electroweak Interactions and Fermion Mass Hierarchies * State of Chiral Symmetry Breaking at High Temperatures * Approximate |ΔI| = 1/2 Rule from a Perspective of Light-Cone Frame Physics * Positronium (and Some Other Systems) in a Strong Magnetic Field * Bosonic Technicolor and the Flavor Problem * II. Strings * Supersymmetry in String Theory * Collective Field Theory and Schwinger-Dyson Equations in Matrix Models * Non-Perturbative String Theory * The Structure of Non-Perturbative Quantum Gravity in One and Two Dimensions * Noncritical Virasoro Algebra of d < 1 Matrix Model and Quantized String Field * Chaos in Matrix Models ? * On the Non-Commutative Symmetry of Quantum Gravity in Two Dimensions * Matrix Model Formulation of String Field Theory in One Dimension * Geometry of the N = 2 String Theory * Modular Invariance form Gauge Invariance in the Non-Polynomial String Field Theory * Stringy Symmetry and Off-Shell Ward Identities * q-Virasoro Algebra and q-Strings * Self-Tuning Fields and Resonant Correlations in 2d-Gravity * III. Field Theory Methods * Linear Momentum and Angular Momentum in Quaternionic Quantum Mechanics * Some Comments on Real Clifford Algebras * On the Quantum Group p-adics Connection * Gravitational Instantons Revisited * A Generalized BBGKY Hierarchy from the Classical Path-Integral * A Quantum Generated Symmetry: Group-Level Duality in Conformal and Topological Field Theory * Gauge Symmetries in Extended Objects * Hidden BRST Symmetry and Collective Coordinates * Towards Stochastically Quantizing Topological Actions * IV. Statistical Methods * A Brief Summary of the s-Channel Theory of
Nucleating quark droplets in the core of magnetars
NASA Astrophysics Data System (ADS)
Kroff, D.; Fraga, E. S.
2015-01-01
To assess the possibility of homogeneous nucleation of quark matter in magnetars, we investigate the formation of chirally symmetric droplets in a cold and dense environment in the presence of an external magnetic field. As a framework, we use the one-loop effective potential of the two-flavor quark-meson model. Within the thin-wall approximation, we extract all relevant nucleation parameters and provide an estimate for the typical time scales for the chiral phase conversion in magnetized compact star matter. We show how the critical chemical potential, critical radius, correlation length and surface tension are affected, and how their combination to define the nucleation time seems to allow for nucleation of quark droplets in magnetar matter even for not so small values of the surface tension.
Zou, Dandan; Cao, Xin; Lu, Xinpei; Ostrikov, Kostya
2015-10-15
The interaction of time-varying electromagnetic fields and solid, liquid, and gaseous matter may lead to electrical breakdown phenomena through the excitation of ionization waves or streamers that control the dynamics of localized plasma propagation through the media. The streamers usually propagate along straight lines, either between random points in space or along a certain direction in a guided mode. Here, we report on a new type of plasma discharges with the regular helical propagation pattern driven by a pulsed dc voltage in nitrogen at sub-atmospheric-pressure conditions. The helical guided streamers, named chiral streamers or chi-streamers, are excited without any external magnetic fields, which commonly cause helical plasma motions. We also demonstrate a hybrid propagation mode involving the interchangeable chiral streamers and the straight-line propagating plasmas. High-speed, time-resolved optical imaging reveals that the chiral streamers and the hybrid patterns are made of spatially localized discrete plasma bullets, similar to the straight-line guided streamers. These results may enable effective control of propagation of confined plasmas and electromagnetic energy along pre-determined, potentially deterministic paths, which have important implications for the development of next-generation plasma-based radiation sources, communication devices, and medical treatments.
Perturbative thermodynamics at nonzero isospin density for cold QCD
NASA Astrophysics Data System (ADS)
Graf, Thorben; Schaffner-Bielich, Juergen; Fraga, Eduardo S.
2016-04-01
We use next-to-leading order in perturbation theory to investigate the effects of a finite isospin density on the thermodynamics of cold strongly interacting matter. Our results include nonzero quark masses and are compared to lattice data.
Determination of the temperature dependence of the up- and down-quark masses in QCD
NASA Astrophysics Data System (ADS)
Dominguez, C. A.; Hernandez, L. A.
2016-10-01
The temperature dependence of the sum of the QCD up- and down-quark masses, (mu+md) and the pion decay constant, fπ, are determined from two thermal finite energy QCD sum rules for the pseudoscalar-current correlator. This quark mass remains mostly constant for temperatures well below the critical temperature for deconfinement/chiral-symmetry restoration. As this critical temperature is approached, the quark mass increases sharply with increasing temperature. This increase is far more pronounced if the temperature dependence of the pion mass (determined independently from other methods) is taken into account. The behavior of fπ(T) is consistent with the expectation from chiral symmetry, i.e. that it should follow the thermal dependence of the quark condensate, independently of the quark mass.
Spin polarization in high density quark matter under a strong external magnetic field
NASA Astrophysics Data System (ADS)
Tsue, Yasuhiko; da Providência, João; Providência, Constança; Yamamura, Masatoshi; Bohr, Henrik
In high density quark matter under a strong external magnetic field, possible phases are investigated by using the two-flavor Nambu-Jona-Lasinio (NJL) model with tensor-type four-point interaction between quarks, as well as the axial-vector-type four-point interaction. In the tensor-type interaction under the strong external magnetic field, it is shown that a quark spin polarized phase is realized in all regions of the quark chemical potential under consideration within the lowest Landau level approximation. In the axial-vector-type interaction, it is also shown that the quark spin polarized phase appears in the wide range of the quark chemical potential. In both the interactions, the quark mass in zero and small chemical potential regions increases which indicates that the chiral symmetry breaking is enhanced, namely the magnetic catalysis occurs.
An S(3) symmetry of nonrelative quark models and a top- quark seesaw model
NASA Astrophysics Data System (ADS)
Collins, Hael Switzer
1999-12-01
This work explores problems in three areas of particle physics: electroweak symmetry breaking, the spectrum of the L = 1 baryons and the theory of large N baryons. The first chapter investigates the phenomenological consequences of the top quark seesaw mechanism for breaking electroweak symmetry. We first establish some criteria for a sound top quark seesaw model and then study two models that emerge from these requirements. Both models contain a heavy weak- inert fermion with the same hypercharge as the top quark but the second model contains an additional heavy weak- inert partner for the bottom quark. The low energy spectra of these theories have respectively one and two Higgs doublets. We then show that the current measurements of the rho-parameter require that the heavy fermion in the one doublet model have a mass of 5-7 TeV while in the two doublet model, the heavy partner of the bottom quark must have a mass of at least 10 TeV to agree with the measured decay width of the Z0. The second chapter presents a study of the L = 1 baryons in the quark model and the chiral quark model using an S3 symmetry, which corresponds to permuting the positions of the quarks within a baryon. Given a set of operators with known transformation properties under S3 and the spin-flavor group, the masses of the L = 1 baryons are determined in terms of a small number of unknown parameters. These parameters are fit to the observed mass spectrum for both the quark model and the chiral quark model. The latter model leads to a more satisfactory fit with the measured baryon masses. We also make predictions for the unobserved L = 1 baryons. The final chapter examines the large N limit of the generators of the completely symmetric N index representation of SU(m). In this limit, the group generators behave essentially like classical variables. We use this observation to derive an integral formula for the matrix elements of an arbitrary polynomial of the group generators between low-spin, s
Heavy-quark physics in quantum chromodynamics
Brodsky, S.J.
1991-04-01
Heavy quarks can expose new symmetries and novel phenomena in QCD not apparent in ordinary hadronic systems. In these lectures I discuss the use of effective-Lagrangian and light-cone Fock methods to analyze exclusive heavy hadron decays such as {Upsilon} {yields} p{bar p} and B {yields} {pi}{pi}, and also to derive effective Schroedinger and Dirac equations for heavy quark systems. Two contributions to the heavy quark structure functions of the proton and other light hadrons are identified: an extrinsic'' contribution associated with leading twist QCD evolution of the gluon distribution, and a higher twist intrinsic'' contribution due to the hardness of high-mass fluctuations of multi-gluon correlations in hadronic wavefunctions. A non-perturbative calculation of the heavy quark distribution of a meson in QCD in one space and one time is presented. The intrinsic higher twist contributions to the pion and proton structure functions can dominate the hadronic production of heavy quark systems at large longitudinal momentum fraction x{sub F} and give anomalous contributions to the quark structure functions of ordinary hadrons at large x{sub bj}. I also discuss a number of ways in which heavy quark production in nuclear targets can test fundamental QCD phenomena and provide constraints on hadronic wavefunctions. The topics include color transparency, finite formation time, and predictions for charm production at threshold, including nuclear-bound quarkonium. I also discuss a number of QCD mechanisms for the suppression of J/{psi} and {Upsilon} production in nuclear collisions, including gluon shadowing, the peripheral excitation of intrinsic heavy quark components at large x{sub F}, and the coalescence of heavy quarks with co-moving spectators at low x{sub F}.
Quark confinement in a constituent quark model
Langfeld, K.; Rho, M.
1995-07-01
On the level of an effective quark theory, we define confinement by the absence of quark anti-quark thresholds in correlation function. We then propose a confining Nambu-Jona-Lasinio-type model. The confinement is implemented in analogy to Anderson localization in condensed matter systems. We study the model`s phase structure as well as its behavior under extreme conditions, i.e. high temperature and/or high density.
Domain wall QCD with physical quark masses
NASA Astrophysics Data System (ADS)
Blum, T.; Boyle, P. A.; Christ, N. H.; Frison, J.; Garron, N.; Hudspith, R. J.; Izubuchi, T.; Janowski, T.; Jung, C.; Jüttner, A.; Kelly, C.; Kenway, R. D.; Lehner, C.; Marinkovic, M.; Mawhinney, R. D.; McGlynn, G.; Murphy, D. J.; Ohta, S.; Portelli, A.; Sachrajda, C. T.; Soni, A.; Rbc; Ukqcd Collaborations
2016-04-01
We present results for several light hadronic quantities (fπ , fK, BK, mu d, ms, t01 /2, w0) obtained from simulations of 2 +1 flavor domain wall lattice QCD with large physical volumes and nearly physical pion masses at two lattice spacings. We perform a short, O (3 )%, extrapolation in pion mass to the physical values by combining our new data in a simultaneous chiral/continuum "global fit" with a number of other ensembles with heavier pion masses. We use the physical values of mπ, mK and mΩ to determine the two quark masses and the scale—all other quantities are outputs from our simulations. We obtain results with subpercent statistical errors and negligible chiral and finite-volume systematics for these light hadronic quantities, including fπ=130.2 (9 ) MeV ; fK=155.5 (8 ) MeV ; the average up/down quark mass and strange quark mass in the MS ¯ scheme at 3 GeV, 2.997(49) and 81.64(1.17) MeV respectively; and the neutral kaon mixing parameter, BK, in the renormalization group invariant scheme, 0.750(15) and the MS ¯ scheme at 3 GeV, 0.530(11).
Spontaneous Planar Chiral Symmetry Breaking in Cells
NASA Astrophysics Data System (ADS)
Hadidjojo, Jeremy; Lubensky, David
Recent progress in animal development has highlighted the central role played by planar cell polarity (PCP) in epithelial tissue morphogenesis. Through PCP, cells have the ability to collectively polarize in the plane of the epithelium by localizing morphogenetic proteins along a certain axis. This allows direction-dependent modulation of tissue mechanical properties that can translate into the formation of complex, non-rotationally invariant shapes. Recent experimental observations[1] show that cells, in addition to being planar-polarized, can also spontaneously develop planar chirality, perhaps in the effort of making yet more complex shapes that are reflection non-invariant. In this talk we will present our work in characterizing general mechanisms that can lead to spontaneous chiral symmetry breaking in cells. We decompose interfacial concentration of polarity proteins in a hexagonal cell packing into irreducible representations. We find that in the case of polar concentration distributions, a chiral state can only be reached from a secondary instability after the cells are polarized. However in the case of nematic distributions, we show that a finite-amplitude (subcritical, or ``first-order'') nematic transition can send the system from disorder directly to a chiral state. In addition, we find that perturbing the system by stretching the hexagonal packing enables direct (supercritical, or ``second-order'') chiral transition in the nematic case. Finally, we do a Landau expansion to study competition between stretch-induced chirality and the tendency towards a non-chiral state in packings that have retained the full 6-fold symmetry.
Vacuum polarization corrections to low energy quark effective couplings
NASA Astrophysics Data System (ADS)
Paulo, Ademar; Braghin, Fabio L.
2014-07-01
In this work corrections to low energy punctual effective quark couplings up to the eighth order are calculated by considering vacuum polarization effects with the scalar quark-antiquark condensate. The departing point is a QCD-based Nambu-Jona-Lasinio model. By separating the quark field into two components, one that condenses and another one for interacting quarks, the former is integrated out with the help of usual auxiliary fields and an effective action in terms of interacting quark fields is found. The scalar auxiliary field reduces to the quark-antiquark condensate in the vacuum and the determinant is expanded in powers of the quark-antiquark bilinears generating chiral invariant effective 2N-quark interactions (N =2,3…). The corresponding coupling constants and effective masses are estimated, and the general trend is that for increasing the effective gluon mass the values of the effective coupling constants decrease. All the values are in good agreement with phenomenological fits.
Chiral Imbalance in QCD and its consequences
NASA Astrophysics Data System (ADS)
Andrianov, Alexander; Andrianov, Vladimir; Espriu, Domenec
2016-10-01
Under extreme conditions of high temperature and/or large quark (baryon) density, the vacuum of QCD changes its properties, and deconfinement, chiral symmetry restoration as well as chiral symmetry breaking take place. These transitions (phases) are accompanied by the rapid change in the rate and nature of topological transitions connecting different topological sectors. The heavy ion collisions (HIC) program opens a possibility to study these phenomena in so-called non-Abelian Quark-gluon plasma (QGP). In these phases the currents of light quarks (vector and axial-vector) can be independently examined for right-handed (RH) and left-handed (LH) quarks. To describe such a quark matter chiral chemical potential can be introduced to quantify the presence of chirality imbalance (ChI) i.e. the difference between the average numbers of RH and LH quarks in the fireball after HIC. In this review talk we will focus our attention on the discussion of the ChI related developments in heavy ion physics at central collisions and the plans for the future experiments aimed at establishing (or falsifying) the presence of Local spacial Parity Breaking (LPB) in heavy ion data. We describe some of experimental observables in detecting the signal of LPB. A number of measurements is proposed that allow to reach a definite conclusion on the occurrence of LPB effects in non-Abelian QGP produced in central heavy ion collisions and its simulation within a number of QCD-inspired models is outlined. Based on the effective meson theory in the presence of Chern-Simons interaction it is found that the spectrum of massive vector mesons splits into three polarization components with different effective masses. Moreover a resonance broadening occurs that leads to an increase of spectral contribution to the dilepton production as compared to the vacuum state. The asymmetry in production of longitudinally and transversely polarized states of ρ and ω mesons for various values of the dilepton
Hyperfine meson splittings: chiral symmetry versus transverse gluon exchange
Felipe J. Llanes-Estrada; Stephen R. Cotanch; Adam P. Szczepaniak; Eric S. Swanson
2004-02-01
Meson spin splittings are examined within an effective Coulomb gauge QCD Hamiltonian incorporating chiral symmetry and a transverse hyperfine interaction necessary for heavy quarks. For light and heavy quarkonium systems the pseudoscalar-vector meson spectrum is generated by approximate BCS-RPA diagonalizations. This relativistic formulation includes both S and D waves for the vector mesons which generates a set of coupled integral equations. A smooth transition from the heavy to the light quark regime is found with chiral symmetry dominating the /pi-/rho mass difference. A good, consistent description of the observed meson spin splittings and chiral quantities, such as the quark condensate and the /pi mass, is obtained. Similar comparisons with TDA diagonalizations, which violate chiral symmetry, are deficient for light pseudoscalar mesons indicating the need to simultaneously include both chiral symmetry and a hyperfine interaction. The /eta{sub b} mass is predicted to be around 9400 MeV consistent with other theoretical expectations and above the unconfirmed 9300 MeV candidate. Finally, for comparison with lattice results, the J reliability parameter is also evaluated.
Quark Hadron Duality - Recent Jefferson Lab Results
Niculescu, Maria Ioana
2016-08-01
The duality between the partonic and hadronic descriptions of electron--nucleon scattering is a remarkable feature of nuclear interactions. When averaged over appropriate energy intervals the cross section at low energy which is dominated by nucleon resonances resembles the smooth behavior expected from perturbative QCD. Recent Jefferson Lab results indicate that quark-hadron duality is present in a variety of observables, not just the proton F2 structure function. An overview of recent results, especially local quark-hadron duality on the neutron, are presented here.
Chiral Loops and Ghost States in the Quenched Scalar Propagator
W. Bardeen; A. Duncan; E. Eichten; N. Isgur; H. Thacker
2001-06-01
The scalar, isovector meson propagator is analyzed in quenched QCD, using the MQA pole-shifting ansatz to study the chiral limit. In addition to the expected short-range exponential falloff characteristic of a heavy scalar meson, the propagator also exhibits a longer-range, negative metric contribution which becomes pronounced for smaller quark masses. We show that this is a quenched chiral loop effect associated with the anomalous structure of the eta' propagator in quenched QCD. Both the time dependence and the quark mass dependence of this effect are well-described by a chiral loop diagram corresponding to an eta'-pi intermediate state, which is light and effectively of negative norm in the quenched approximation. The relevant parameters of the effective Lagrangian describing the scalar sector of the quenched theory are determined.
Quark ACM with topologically generated gluon mass
NASA Astrophysics Data System (ADS)
Choudhury, Ishita Dutta; Lahiri, Amitabha
2016-03-01
We investigate the effect of a small, gauge-invariant mass of the gluon on the anomalous chromomagnetic moment (ACM) of quarks by perturbative calculations at one-loop level. The mass of the gluon is taken to have been generated via a topological mass generation mechanism, in which the gluon acquires a mass through its interaction with an antisymmetric tensor field Bμν. For a small gluon mass ( < 10 MeV), we calculate the ACM at momentum transfer q2 = -M Z2. We compare those with the ACM calculated for the gluon mass arising from a Proca mass term. We find that the ACM of up, down, strange and charm quarks vary significantly with the gluon mass, while the ACM of top and bottom quarks show negligible gluon mass dependence. The mechanism of gluon mass generation is most important for the strange quarks ACM, but not so much for the other quarks. We also show the results at q2 = -m t2. We find that the dependence on gluon mass at q2 = -m t2 is much less than at q2 = -M Z2 for all quarks.
Nonperturbative heavy-quark diffusion in the quark-gluon plasma.
van Hees, H; Mannarelli, M; Greco, V; Rapp, R
2008-05-16
We evaluate heavy-quark (HQ) transport properties in a quark-gluon plasma (QGP) within a Brueckner many-body scheme employing interaction potentials extracted from thermal lattice QCD. The in-medium T matrices for elastic charm- and bottom-quark scattering off light quarks in the QGP are dominated by attractive meson and diquark channels which support resonance states up to temperatures of ~1.5T(c). The resulting drag coefficient increases with decreasing temperature, contrary to expectations based on perturbative QCD scattering. Employing relativistic Langevin simulations we compute HQ spectra and elliptic flow in sqrt[s(NN)]=200 GeV Au-Au collisions. A good agreement with electron decay data supports our nonperturbative computation of HQ diffusion, indicative for a strongly coupled QGP.
Determination of the top-quark mass from hadro-production of single top-quarks
NASA Astrophysics Data System (ADS)
Alekhin, S.; Moch, S.; Thier, S.
2016-12-01
We present a new determination of the top-quark mass mt based on the experimental data from the Tevatron and the LHC for single-top hadro-production. We use the inclusive cross sections of s- and t-channel top-quark production to extract mt and to minimize the dependence on the strong coupling constant and the gluon distribution in the proton compared to the hadro-production of top-quark pairs. As part of our analysis we compute the next-to-next-to-leading order approximation for the s-channel cross section in perturbative QCD based on the known soft-gluon corrections and implement it in the program HATHOR for the numerical evaluation of the hadronic cross section. Results for the top-quark mass are reported in the MS ‾ and in the on-shell renormalization scheme.
Santopinto, E.; Bijker, R.
2008-10-13
We present a new generation of unquenched quark models for baryons in which the effects of quark-antiquark pairs are taken into account in an explicit form via a microscopic, QCD-inspired, pair creation mechanism. As an application, we study the effect of quark-antiquark pairs on the spin of the proton.
Bjorken, J.D.
1985-12-01
Even if stable hadrons with fractional charge do not exist, most of the criteria of observability used for ordinary elementary particles apply in principle to quarks as well. This is especially true in a simplified world containing only hadrons made of top quarks and gluons. In the real world containing light quarks, essential complications do occur, but most of the conclusions survive.
Plum, Eric; Zheludev, Nikolay I.
2015-06-01
Mirrors are used in telescopes, microscopes, photo cameras, lasers, satellite dishes, and everywhere else, where redirection of electromagnetic radiation is required making them arguably the most important optical component. While conventional isotropic mirrors will reflect linear polarizations without change, the handedness of circularly polarized waves is reversed upon reflection. Here, we demonstrate a type of mirror reflecting one circular polarization without changing its handedness, while absorbing the other. The polarization-preserving mirror consists of a planar metasurface with a subwavelength pattern that cannot be superimposed with its mirror image without being lifted out of its plane, and a conventional mirror spaced by a fraction of the wavelength from the metasurface. Such mirrors enable circularly polarized lasers and Fabry-Pérot cavities with enhanced tunability, gyroscopic applications, polarization-sensitive detectors of electromagnetic waves, and can be used to enhance spectroscopies of chiral media.
NASA Astrophysics Data System (ADS)
Li, Hua; Luo, Xin-Lian; Jiang, Yu; Zong, Hong-Shi
2011-01-01
In this paper we apply the equation of state (EOS) of QCD at finite chemical potential and zero temperature proposed in H. S. Zong and W. M. Sun [Int. J. Mod. Phys. A 23, 3591 (2008)IMPAEF0217-751X10.1142/S0217751X08040457] to the study of properties of quark star. This EOS contains only one adjustable parameter mD which sets the scale of chiral symmetry breaking (in our calculation we have chosen two values of mD: mD=244MeV and mD=239MeV, which is fitted from the value of fπ and determined by e+e- annihilation experiment, respectively). From this EOS a model of quark star is established by applying the Tolman-Oppenheimer-Volkoff equation under two conditions: with the P(μ=0) term and without the P(μ=0) term. Our results show clearly that the P(μ=0) term is an important quantity in the study of quark star. A comparison between our model and other models of quark star is made. In particular, we have compared our results with the most recent observational data measured using Shapiro delay reported in P. B. Demorest [Nature (London)NATUAS0028-0836 467, 1081 (2010)10.1038/nature09466].
Understanding complex chiral plasmonics.
Duan, Xiaoyang; Yue, Song; Liu, Na
2015-11-07
Chiral nanoplasmonics exhibits great potential for novel nanooptical devices due to the generation of a strong chiroptical response within nanoscale metallic structures. Recently, a number of different approaches have been utilized to create chiral nanoplasmonic structures. However, particularly for tailoring nanooptical chiral sensing devices, the understanding of the resulting chiroptical response when coupling chiral and achiral structures together is crucial and has not been completely understood to date. Here, we present a thorough and step-by-step experimental study to understand the intriguing chiral-achiral coupling scheme. We set up a hybrid plasmonic system, which bears resemblance to the 'host-guest' system in supramolecular chemistry to analyze and explain the complex chiral response both at the chiral and achiral plasmonic resonances. We also provide an elegant and simple analytical model, which can describe, predict, and comprehend the chiroptical spectra in detail. Our study will shed light on designing well-controlled chiral-achiral coupling platforms for reliable chiral sensing.
Status of chiral meson physics
Bijnens, Johan
2016-01-22
This talk includes a short introduction to Chiral Perturbation Theory in the meson sector concentrating on a number of recent developments. I discuss the latest fit of the low-energy constants. Finite volume corrections are discussed for the case with twisted boundary conditions for form-factors and first results at two-loops for three flavours for masses. The last part discusses the extension to other symmetry breaking patterns relevant for technicolour and related theories as well as the calculation of leading logarithms to high loop orders.
Long-range interactions between chiral molecules
Salam, A.
2015-01-22
Results of molecular quantum electrodynamics calculations of discriminatory interactions between two chiral molecules undergoing resonance energy transfer, van der Waals dispersion, and optical binding are presented. A characteristic feature of the theory is that the radiation field is quantized with signals consequently propagating between centres at the speed of light. In order to correctly describe optically active chromophores, it is necessary to include magnetic as well as electric dipole coupling terms in the time-dependent perturbation theory computations. Recent work investigating the effect of an absorptive and dispersive chiral medium on the rate of migration of energy will also be discussed.
QCD with Chiral Imbalance: models vs. lattice
NASA Astrophysics Data System (ADS)
Andrianov, Alexander; Andrianov, Vladimir; Espriu, Domenec
2017-03-01
In heavy ion collisions (HIC) at high energies there may appear new phases of matter which must be described by QCD. These phases may have different color and flavour symmetries associated with the constituents involved in collisions as well as various space-time symmetries of hadron matter. Properties of the QCD medium in such a matter can be approximately described, in particular, by a number of right-handed (RH) and left-handed (LH) light quarks. The chiral imbalance (ChI) is characterized by the difference between the numbers of RH and LH quarks and supposedly occurs in the fireball after HIC. Accordingly we have to introduce a quark chiral (axial) chemical potential which simulates a ChI emerging in such a phase. In this report we discuss the possibility of a phase with Local spatial Parity Breaking (LPB) in such an environment and outline conceivable signatures for the registration of LPB as well as the appearance of new states in the spectra of scalar, pseudoscalar and vector particles as a consequence of local ChI. The comparison of the results obtained in the effective QCD- motivated models with lattice data is also performed.
Transverse parton distribution functions at next-to-next-to-leading order: the quark-to-quark case.
Gehrmann, Thomas; Lübbert, Thomas; Yang, Li Lin
2012-12-14
We present a calculation of the perturbative quark-to-quark transverse parton distribution function at next-to-next-to-leading order based on a gauge invariant operator definition. We demonstrate for the first time that such a definition works beyond the first nontrivial order. We extract from our calculation the coefficient functions relevant for a next-to-next-to-next-to-leading logarithmic Q(T) resummation in a large class of processes at hadron colliders.
Chiral-symmetry breaking and confinement in Minkowski space
Biernat, Elmer P.; Pena, M. T.; Ribiero, J. E.; Stadler, Alfred; Gross, Franz
2016-01-01
We present a model for the quark-antiquark interaction formulated in Minkowski space using the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. By applying the axial-vector Ward-Takahashi identity we show that our model satisfies the Adler-zero constraint imposed by chiral symmetry. For this model, our Minkowski-space results of the dressed quark mass function are compared to lattice QCD data obtained in Euclidean space. The mass function is then used in the calculation of the electromagnetic pion form factor in relativistic impulse approximation, and the results are presented and compared with the experimental data from JLab.
Chiral-symmetry breaking and confinement in Minkowski space
Biernat, Elmar P.; Peña, M. T.; Ribeiro, J. E.; Stadler, Alfred; Gross, Franz
2016-01-22
We present a model for the quark-antiquark interaction formulated in Minkowski space using the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. By applying the axial-vector Ward-Takahashi identity we show that our model satisfies the Adler-zero constraint imposed by chiral symmetry. For this model, our Minkowski-space results of the dressed quark mass function are compared to lattice QCD data obtained in Euclidean space. The mass function is then used in the calculation of the electromagnetic pion form factor in relativistic impulse approximation, and the results are presented and compared with the experimental data from JLab.
Nieves, J.; Pich, A.; Ruiz Arriola, E.
2011-11-01
We construct {pi}{pi} amplitudes that fulfill exact elastic unitarity, account for one-loop chiral perturbation theory contributions and include all 1/N{sub C} leading terms, with the only limitation of considering just the lowest-lying nonet of exchanged resonances. Within such a scheme, the N{sub C} dependence of {sigma} and {rho} masses and widths is discussed. Robust conclusions are drawn in the case of the {rho} resonance, confirming that it is a stable meson in the limit of a large number of QCD colors, N{sub C}. Less definitive conclusions are reached in the scalar-isoscalar sector. With the present quality of data, we cannot firmly conclude whether or not the N{sub C}=3 f{sub 0}(600) resonance completely disappears at large N{sub C} or if it has a subdominant component in its structure, which would become dominant for a number of quark colors sufficiently large.
Ahmadov, A.; Azuelos, G.; Bauer, U.; Belyaev, A.; Berger, E. L.; Sullivan, Z.; Tait, T. M. P.
2000-03-24
The top quark, when it was finally discovered at Fermilab in 1995 completed the three-generation structure of the Standard Model (SM) and opened up the new field of top quark physics. Viewed as just another SM quark, the top quark appears to be a rather uninteresting species. Produced predominantly, in hadron-hadron collisions, through strong interactions, it decays rapidly without forming hadrons, and almost exclusively through the single mode t {r_arrow} Wb. The relevant CKM coupling V{sub tb} is already determined by the (three-generation) unitarity of the CKM matrix. Rare decays and CP violation are unmeasurable small in the SM. Yet the top quark is distinguished by its large mass, about 35 times larger than the mass of the next heavy quark, and intriguingly close to the scale of electroweak (EW) symmetry breaking. This unique property raises a number of interesting questions. Is the top quark mass generated by the Higgs mechanism as the SM predicts and is its mass related to the top-Higgs-Yukawa coupling? Or does it play an even more fundamental role in the EW symmetry breaking mechanism? If there are new particles lighter than the top quark, does the top quark decay into them? Could non-SM physics first manifest itself in non-standard couplings of the top quark which show up as anomalies in top quark production and decays? Top quark physics tries to answer these questions. Several properties of the top quark have already been examined at the Tevatron. These include studies of the kinematical properties of top production, the measurements of the top mass, of the top production cross-section, the reconstruction of t{bar t}pairs in the fully hadronic final states, the study of {tau} decays of the top quark, the reconstruction of hadronic decays of the W boson from top decays, the search for flavor changing neutral current decays, the measurement of the W helicity in top decays, and bounds on t{bar t} spin correlations. Most of these measurements are limited by
Quark models of dibaryon resonances in nucleon-nucleon scattering
Ping, J. L.; Huang, H. X.; Pang, H. R.; Wang Fan; Wong, C. W.
2009-02-15
We look for {delta}{delta} and N{delta} resonances by calculating NN scattering phase shifts of two interacting baryon clusters of quarks with explicit coupling to these dibaryon channels. Two phenomenological nonrelativistic chiral quark models giving similar low-energy NN properties are found to give significantly different dibaryon resonance structures. In the chiral quark model (ChQM), the dibaryon system does not resonate in the NNS waves, in agreement with the experimental SP07 NN partial-wave scattering amplitudes. In the quark delocalization and color screening model (QDCSM), the S-wave NN resonances disappear when the nucleon size b falls below 0.53 fm. Both quark models give an IJ{sup P}=03{sup +}{delta}{delta} resonance. At b=0.52 fm, the value favored by the baryon spectrum, the resonance mass is 2390 (2420) MeV for the ChQM with quadratic (linear) confinement, and 2360 MeV for the QDCSM. Accessible from the {sup 3}D{sub 3}{sup NN} channel, this resonance is a promising candidate for the known isoscalar ABC structure seen more clearly in the pn{yields}d{pi}{pi} production cross section at 2410 MeV in the recent preliminary data reported by the CELSIUS-WASA Collaboration. In the isovector dibaryon sector, our quark models give a bound or almost bound {sup 5}S{sub 2}{sup {delta}}{sup {delta}} state that can give rise to a {sup 1}D{sub 2}{sup NN} resonance. None of the quark models used have bound N{delta}P states that might generate odd-parity resonances.
NASA Astrophysics Data System (ADS)
Dharmavaram, Sanjay; Xie, Fangming; Bruinsma, Robijn; Klug, William; Rudnick, Joseph
Most icosahedral viruses are classified by their T-number which identifies their capsid in terms of the number of capsomers and their relative arrangement. Certain T-numbers (T = 7 for instance) are inherently chiral (with no reflection planes) while others (e.g. T = 1) are achiral. We present a Landau-Brazovskii (LB) theory for weak crystallization in which a scalar order parameter that measures density of capsid proteins successfully predicts the various observed T-numbers and their respective chiralities. We find that chiral capsids gain stability by spontaneously breaking symmetry from an unstable chiral state. The inherently achiral LB-free energy does not preferentially select a particular chiral state from its mirror reflection. Based on the physical observation that proteins are inherently chiral molecules with directional interactions, we propose a new chiral term to the LB energy as a possible selection mechanism for chirality.
NASA Technical Reports Server (NTRS)
Testa, Massimo
1990-01-01
In the large quark mass limit, an argument which identifies the mass of the heavy-light pseudoscalar or scalar bound state with the renormalized mass of the heavy quark is given. The following equation is discussed: m(sub Q) = m(sub B), where m(sub Q) and m(sub B) are respectively the mass of the heavy quark and the mass of the pseudoscalar bound state.
Hybrid simulations with dynamical quarks: Spectra, screening and thermodynamics
Sinclair, D.K.
1987-11-18
We summarize simulations made by the Argonne/University of Illinois group using the Hybrid algorithm to include dynamical staggered fermions. Recent work on the mass spectrum and screening effects due to the inclusion of four light flavors of dynamical quarks is presented. We also present a brief overview of what we have learned about the finite temperature chiral phase transition. 5 refs., 4 figs., 1 tab.
Chiral bag model for the nucleon
NASA Astrophysics Data System (ADS)
Hosaka, Atsushi; Toki, Hiroshi
1996-12-01
We review the chiral bag model for the nucleon at low energy. The model is a hybrid model of quark and meson degrees of freedom, interpolating the two limits of the Skyrme model at R → 0 and the MIT bag model at R → ∞, where R is the bag radius. Baryon number one ( B = 1) solutions are obtained in the semiclassical method, where the nucleon is regarded as a slowly rotating hedgehog. We investigate static properties of the nucleon such as masses and magnetic moments as functions of R, first in the original chiral bag model and second in the models with vector mesons. We find a reasonably good description for the nucleon in both cases at an intermediate bag radius R ~ 0.6 fm. Results of the model calculations are then re-derived using a group theoretical method in the large- Nc limit.
ERIC Educational Resources Information Center
Dakin, James T.
1974-01-01
Reviews theoretical principles underlying the quark model. Indicates that the agreement with experimental results and the understanding of the quark-quark force are two hurdles for the model to survive in the future. (CC)
Chiral symmetry breaking in QCD with two light flavors.
Engel, Georg P; Giusti, Leonardo; Lottini, Stefano; Sommer, Rainer
2015-03-20
A distinctive feature of the presence of spontaneous chiral symmetry breaking in QCD is the condensation of low modes of the Dirac operator near the origin. The rate of condensation must be equal to the slope of M(π)(2)F(π)(2)/2 with respect to the quark mass m in the chiral limit, where M(π) and F(π) are the mass and the decay constant of the Nambu-Goldstone bosons. We compute the spectral density of the (Hermitian) Dirac operator, the quark mass, the pseudoscalar meson mass, and decay constant by numerical simulations of lattice QCD with two light degenerate Wilson quarks. We use lattices generated by the Coordinated Lattice Simulation (CLS) group at three values of the lattice spacing in the range 0.05-0.08 fm, and for several quark masses corresponding to pseudoscalar mesons masses down to 190 MeV. Thanks to this coverage of parameters space, we can extrapolate all quantities to the chiral and continuum limits with confidence. The results show that the low quark modes do condense in the continuum as expected by the Banks-Casher mechanism, and the rate of condensation agrees with the Gell-Mann-Oakes-Renner relation. For the renormalization-group-invariant ratios we obtain [Σ(RGI)](1/3)/F=2.77(2)(4) and Λ(M̅S)/F=3.6(2), which correspond to [Σ(M̅S)(2 GeV)](1/3)=263(3)(4) MeV and F=85.8(7)(20) MeV if F(K) is used to set the scale by supplementing the theory with a quenched strange quark.
Valence-quark distribution functions in the kaon and pion
Chen, Chen; Chang, Lei; Roberts, Craig D.; Wan, Shaolong; Zong, Hong-Shi
2016-04-18
We describe expressions for pion and kaon dressed-quark distribution functions that incorporate contributions from gluons which bind quarks into these mesons and hence overcome a flaw of the commonly used handbag approximation. The distributions therewith obtained are purely valence in character, ensuring that dressed quarks carry all the meson’s momentum at a characteristic hadronic scale and vanish as ( 1 - x ) ^{2} when Bjorken- x → 1 . Comparing such distributions within the pion and kaon, it is apparent that the size of S U ( 3 ) -flavor symmetry breaking in meson parton distribution functions is modulated by the flavor dependence of dynamical chiral symmetry breaking. Corrections to these leading-order formulas may be divided into two classes, responsible for shifting dressed-quark momentum into glue and sea quarks. Working with available empirical information, we build an algebraic framework that is capable of expressing the principal impact of both classes of corrections. This enables a realistic comparison with experiment which allows us to identify and highlight basic features of measurable pion and kaon valence-quark distributions. We find that whereas roughly two thirds of the pion’s light-front momentum is carried by valence dressed quarks at a characteristic hadronic scale; this fraction rises to 95% in the kaon; evolving distributions with these features to a scale typical of available Drell-Yan data produces a kaon-to-pion ratio of u -quark distributions that is in agreement with the single existing data set, and predicts a u -quark distribution within the pion that agrees with a modern reappraisal of π N Drell-Yan data. Precise new data are essential in order to validate this reappraisal and because a single modest-quality measurement of the kaon-to-pion ratio cannot be considered definitive.
Chiral logarithms in quenched QCD
Y. Chen; S. J. Dong; T. Draper; I. Horvath; F. X. Lee; K. F. Liu; N. Mathur; and J. B. Zhang
2004-08-01
The quenched chiral logarithms are examined on a 163x28 lattice with Iwasaki gauge action and overlap fermions. The pion decay constant fpi is used to set the lattice spacing, a = 0.200(3) fm. With pion mass as low as {approx}180 MeV, we see the quenched chiral logarithms clearly in mpi2/m and fP, the pseudoscalar decay constant. The authors analyze the data to determine how low the pion mass needs to be in order for the quenched one-loop chiral perturbation theory (chiPT) to apply. With the constrained curve-fitting method, they are able to extract the quenched chiral logarithmic parameter delta together with other low-energy parameters. Only for mpi<=300 MeV do we obtain a consistent and stable fit with a constant delta which they determine to be 0.24(3)(4) (at the chiral scale Lambdachi = 0.8 GeV). By comparing to the 123x28 lattice, they estimate the finite volume effect to be about 2.7% for the smallest pion mass. They also fitted the pion mass to the form for the re-summed cactus diagrams and found that its applicable region is extended farther than the range for the one-loop formula, perhaps up to mpi {approx}500-600 MeV. The scale independent delta is determined to be 0.20(3) in this case. The authors study the quenched non-analytic terms in the nucleon mass and find that the coefficient C1/2 in the nucleon mass is consistent with the prediction of one-loop chiPT. They also obtain the low energy constant L5 from fpi. They conclude from this study that it is imperative to cover only the range of data with the pion mass less than {approx}300 MeV in order to examine the chiral behavior of the hadron masses and decay constants in quenched QCD and match them with quenched one-loop chiPT.
Quark and gluon form factors to four-loop order in QCD: The Nf3 contributions
NASA Astrophysics Data System (ADS)
von Manteuffel, Andreas; Schabinger, Robert M.
2017-02-01
We calculate the four-loop massless QCD corrections with three closed quark lines to quark and gluon form factors. We apply a novel integration by parts algorithm based on modular arithmetic and compute all relevant master integrals for arbitrary values of the space-time dimension. This is the first calculation of a gluon form factor at this perturbative order in QCD.
Chiral matrix model for the phase transition in QCD
NASA Astrophysics Data System (ADS)
Pisarski, Robert D.; Skokov, Vladimir
2016-12-01
We discuss how to model chiral symmetry restoration with an effective theory of deconfinement. The model includes fluctuations in the quarks to one loop order, while the mesons of the sigma model are treated in mean field approximation. We note that a new counterterm is required at T = 0, and a novel form of symmetry breaking at T ≠ 0. We discuss how to incorporate tetraquark states, representing JP =0+ scalar mesons, into a linear sigma model. We suggest that their effect upon the chiral phase transition is small.
NN potentials from IR chiral EFT
NASA Astrophysics Data System (ADS)
Higa, R.
Chiral perturbation theory is nowadays a well-established approach to incorporate the chiral constraints from QCD. Nevertheless, for systems involving one baryon, the power counting which dictates the chiral order of observables is not as simple and consensual as in the purely mesonic case. The heavy baryon approach, which relies on a non-relativistic expansion around the limit of infinitely heavy baryon, recovers the usual power counting but destroys some analytic properties of the scattering amplitude. Some years ago, Becher and Leutwyler proposed a Lorentz-invariant formulation of chiral perturbation theory that maintains the required analytic properties, but at the expense of a less intuitive power counting. Aware of the shortcomings of the heavy baryon formalism, the S\\~ao Paulo group derived the two-pion exchange component of the nucleon-nucleon potential in line with the works of Becher and Leutwyler. A striking result was that the long distance properties of the potential is determined by the specific low energy region of the pion-nucleon scattering amplitude where the heavy baryon expansion fails. In this talk I will discuss the origin of such failure and how it reflects in the asymptotics of the nucleon-nucleon interaction. Some results for phase shifts and deuteron properties will be shown, followed by a comparison with the heavy baryon predictions.
NASA Astrophysics Data System (ADS)
Goeke, K.; Urbano, J. N.; Fiolhais, M.; Harvey, M.
1985-12-01
We prove that the hedgehog baryon arises as a variational solution of the linear σ-model, if this is restricted to the chiral circle and if the boson Fock-states are described by coherent states and the valence quarks by a product of three identical wave functions each consisting of an orbital s-state multiplied with the most general one-quark spin-flavour configuration in the ud-sector. The opposite is shown to be not true, i.e., the assumption of a hedgehog state in the linear σ-model does not lead to fields which obey the requirements of the chiral circle.
Intrinsic transverse momentum and parton correlations from dynamical chiral symmetry breaking
Peter Schweitzer, Mark Strikman, Christian Weiss
2013-01-01
The dynamical breaking of chiral symmetry in QCD is caused by nonperturbative interactions on a distance scale rho ~ 0.3 fm, much smaller than the typical hadronic size R ~ 1 fm. These short-distance interactions influence the intrinsic transverse momentum distributions of partons and their correlations at a low normalization point. We study this phenomenon in an effective description of the low-energy dynamics in terms of chiral constituent quark degrees of freedom, which refers to the large-N_c limit of QCD. The nucleon is obtained as a system of constituent quarks and antiquarks moving in a self-consistent classical chiral field (relativistic mean-field approximation, or chiral quark-soliton model). The calculated transverse momentum distributions of constituent quarks and antiquarks are matched with QCD quarks, antiquarks and gluons at the chiral symmetry--breaking scale rho^{-2}. We find that the transverse momentum distribution of valence quarks is localized at p_T^2 ~ R^{-2} and roughly of Gaussian shape. The distribution of unpolarized sea quarks exhibits a would-be power-like tail ~1/p_T^2 extending up to the chiral symmetry-breaking scale. Similar behavior is observed in the flavor-nonsinglet polarized sea. The high-momentum tails are the result of short-range correlations between sea quarks in the nucleon's light-cone wave function, which are analogous to short-range NN correlations in nuclei. We show that the nucleon's light-cone wave function contains correlated pairs of transverse size rho << R with scalar-isoscalar (Sigma) and pseudoscalar-isovector (Pi) quantum numbers, whose internal wave functions have a distinctive spin structure and become identical at p_T^2 ~ rho^{-2} (restoration of chiral symmetry). These features are model-independent and represent an effect of dynamical chiral symmetry breaking on the nucleon's partonic structure. Our results have numerous implications for the transverse momentum distributions of particles produced in hard
Finite-temperature phase structure of lattice QCD with Wilson quark action
Aoki, S.; Ukawa, A.; Umemura, T.
1996-02-01
The long-standing issue of the nature of the critical line of lattice QCD with the Wilson quark action at finite temperatures, defined to be the line of vanishing pion screening mass, and its relation to the line of finite-temperature chiral transition is examined. Presented are both analytical and numerical evidence that the critical line forms a cusp at a finite gauge coupling, and that the line of chiral transition runs past the tip of the cusp without touching the critical line. Implications on the continuum limit and the flavor dependence of chiral transition are discussed. {copyright} {ital 1996 The American Physical Society.}
Beauty-quark and charm-quark pair production asymmetries at LHCb
NASA Astrophysics Data System (ADS)
Gauld, Rhorry; Haisch, Ulrich; Pecjak, Ben D.; Re, Emanuele
2015-08-01
The LHCb Collaboration has recently performed a first measurement of the angular production asymmetry in the distribution of beauty quarks and antiquarks at a hadron collider. We calculate the corresponding standard model prediction for this asymmetry at fixed order in perturbation theory. Our results show good agreement with the data, which are provided differentially for three bins in the invariant mass of the b b ¯ system. We also present similar predictions for both beauty-quark and charm-quark final states within the LHCb acceptance for a collision energy of √{s }=13 TeV . We finally point out that a measurement of the ratio of the b b ¯ and c c ¯ cross sections may be useful for experimentally validating charm-tagging efficiencies.
Chiral symmetry and chiral-symmetry breaking
Peskin, M.E.
1982-12-01
These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)
Semiclassical projection of hedgehog models with quarks
NASA Astrophysics Data System (ADS)
Cohen, Thomas D.; Broniowski, Wojciech
1986-12-01
A simple semiclassical method is presented for calculating physical observables in states with good angular momentum and isospin for models whose mean-field solutions are hedgehogs. The method is applicable for theories which have both quark and meson degrees of freedom. The basic approach is to find slowly rotating solutions to the time-dependent mean-field equations. A nontrivial set of differential equations must be solved to find the quark configuration for these rotating hedgehogs. The parameters which specify the rotating solutions are treated as the collective degrees of freedom. They are requantized by imposing a set of commutation relations which ensures the correct algebra for the SU(2)×SU(2) group of angular momentum and isospin. Collective wave functions can then be found and with these wave functions all matrix elements can be calculated. The method is applied to a simple version of the chiral quark-meson model. A number of physical quantities such as magnetic moments, charge distributions, gA, gπNN, N-Δ mass splitting, properties of the N-Δ transition, etc., are calculated.
Semiclassical projection of hedgehog models with quarks
Cohen, T.D.; Broniowski, W.
1986-12-01
A simple semiclassical method is presented for calculating physical observables in states with good angular momentum and isospin for models whose mean-field solutions are hedgehogs. The method is applicable for theories which have both quark and meson degrees of freedom. The basic approach is to find slowly rotating solutions to the time-dependent mean-field equations. A nontrivial set of differential equations must be solved to find the quark configuration for these rotating hedgehogs. The parameters which specify the rotating solutions are treated as the collective degrees of freedom. They are requantized by imposing a set of commutation relations which ensures the correct algebra for the SU(2) x SU(2) group of angular momentum and isospin. Collective wave functions can then be found and with these wave functions all matrix elements can be calculated. The method is applied to a simple version of the chiral quark-meson model. A number of physical quantities such as magnetic moments, charge distributions, g/sub A/, g/sub ..pi..//sub N//sub N/, N-..delta.. mass splitting, properties of the N-..delta.. transition, etc., are calculated.
Chiral and UA(1) Symmetry in Correlation Functions in Medium
NASA Astrophysics Data System (ADS)
Lee, Su Houng; Cho, Sungtae
2013-03-01
In this review, we will discuss how the chiral symmetry and UA(1) breaking effects are reflected in the correlation functions. Using the Banks-Casher formula, one can identify the density of zero eigenvalues to be the common ingredient that governs the chiral symmetry breaking in correlation functions between currents composed of light quarks with or without a heavy quark. Similarly, the presence of the UA(1) breaking effect is determined through the contribution of the topologically nontrivial configurations that depends on the number of flavors. We also discuss how the symmetry breaking effects are reflected in the gluon correlation functions. Finally, we review the Witten-Veneziano (WV) formula for the η' mass in medium.
Scalar-quark systems and chimera hadrons in SU(3){sub c} lattice QCD
Iida, H.; Takahashi, T. T.; Suganuma, H.
2007-06-01
In terms of mass generation in the strong interaction without chiral symmetry breaking, we perform the first study for light scalar-quarks {phi} (colored scalar particles with 3{sub c} or idealized diquarks) and their color-singlet hadronic states using quenched SU(3){sub c} lattice QCD with {beta}=5.70 (i.e., a{approx_equal}0.18 fm) and lattice size 16{sup 3}x32. We investigate ''scalar-quark mesons'' {phi}{sup {dagger}}{phi} and ''scalar-quark baryons'' {phi}{phi}{phi} as the bound states of scalar-quarks {phi}. We also investigate the color-singlet bound states of scalar-quarks {phi} and quarks {psi}, i.e., {phi}{sup {dagger}}{psi}, {psi}{psi}{phi}, and {phi}{phi}{psi}, which we name ''chimera hadrons.'' All the new-type hadrons including {phi} are found to have a large mass even for zero bare scalar-quark mass m{sub {phi}}=0 at a{sup -1}{approx_equal}1 GeV. We find a ''constituent scalar-quark/quark picture'' for both scalar-quark hadrons and chimera hadrons. Namely, the mass of the new-type hadron composed of m {phi}'s and n {psi}'s, M{sub m{phi}}{sub +n{psi}}, approximately satisfies M{sub m{phi}}{sub +n{psi}}{approx_equal}mM{sub {phi}}+nM{sub {psi}}, where M{sub {phi}} and M{sub {psi}} are the constituent scalar-quark and quark masses, respectively. We estimate the constituent scalar-quark mass M{sub {phi}} for m{sub {phi}}=0 at a{sup -1}{approx_equal}1 GeV as M{sub {phi}}{approx_equal}1.5-1.6 GeV, which is much larger than the constituent quark mass M{sub {psi}}{approx_equal}400 MeV in the chiral limit. Thus, scalar quarks acquire a large mass due to large quantum corrections by gluons in the systems including scalar quarks. Together with other evidences of mass generation of glueballs and charmonia, we conjecture that all colored particles generally acquire a large effective mass due to dressed gluon effects. In addition, the large mass generation of pointlike colored scalar particles indicates that plausible diquarks used in effective hadron models cannot
Understanding complex chiral plasmonics
NASA Astrophysics Data System (ADS)
Duan, Xiaoyang; Yue, Song; Liu, Na
2015-10-01
Chiral nanoplasmonics exhibits great potential for novel nanooptical devices due to the generation of a strong chiroptical response within nanoscale metallic structures. Recently, a number of different approaches have been utilized to create chiral nanoplasmonic structures. However, particularly for tailoring nanooptical chiral sensing devices, the understanding of the resulting chiroptical response when coupling chiral and achiral structures together is crucial and has not been completely understood to date. Here, we present a thorough and step-by-step experimental study to understand the intriguing chiral-achiral coupling scheme. We set up a hybrid plasmonic system, which bears resemblance to the `host-guest' system in supramolecular chemistry to analyze and explain the complex chiral response both at the chiral and achiral plasmonic resonances. We also provide an elegant and simple analytical model, which can describe, predict, and comprehend the chiroptical spectra in detail. Our study will shed light on designing well-controlled chiral-achiral coupling platforms for reliable chiral sensing.Chiral nanoplasmonics exhibits great potential for novel nanooptical devices due to the generation of a strong chiroptical response within nanoscale metallic structures. Recently, a number of different approaches have been utilized to create chiral nanoplasmonic structures. However, particularly for tailoring nanooptical chiral sensing devices, the understanding of the resulting chiroptical response when coupling chiral and achiral structures together is crucial and has not been completely understood to date. Here, we present a thorough and step-by-step experimental study to understand the intriguing chiral-achiral coupling scheme. We set up a hybrid plasmonic system, which bears resemblance to the `host-guest' system in supramolecular chemistry to analyze and explain the complex chiral response both at the chiral and achiral plasmonic resonances. We also provide an elegant
Minkowski space pion model inspired by lattice QCD running quark mass
NASA Astrophysics Data System (ADS)
Mello, Clayton S.; de Melo, J. P. B. C.; Frederico, T.
2017-03-01
The pion structure in Minkowski space is described in terms of an analytic model of the Bethe-Salpeter amplitude combined with Euclidean Lattice QCD results. The model is physically motivated to take into account the running quark mass, which is fitted to Lattice QCD data. The pion pseudoscalar vertex is associated to the quark mass function, as dictated by dynamical chiral symmetry breaking requirements in the limit of vanishing current quark mass. The quark propagator is analyzed in terms of a spectral representation, and it shows a violation of the positivity constraints. The integral representation of the pion Bethe-Salpeter amplitude is also built. The pion space-like electromagnetic form factor is calculated with a quark electromagnetic current, which satisfies the Ward-Takahashi identity to ensure current conservation. The results for the form factor and weak decay constant are found to be consistent with the experimental data.
Equation of state and transition temperatures in the quark-hadron hybrid model
NASA Astrophysics Data System (ADS)
Miyahara, Akihisa; Torigoe, Yuhei; Kouno, Hiroaki; Yahiro, Masanobu
2016-07-01
We analyze the equation of state of 2 +1 flavor lattice QCD at zero baryon density by constructing a simple quark-hadron hybrid model that has both quark and hadron components simultaneously. We calculate the hadron and quark contributions separately and parameterize those to match with lattice QCD data. Lattice data on the equation of state are decomposed into hadron and quark components by using the model. The transition temperature is defined by the temperature at which the hadron component is equal to the quark one in the equation of state. The transition temperature thus obtained is about 215 MeV; this is somewhat higher than the chiral and the deconfinement pseudocritical temperatures defined by the temperature at which the susceptibility or the absolute value of the derivative of the order parameter with respect to temperature becomes maximum.
Gelation induced supramolecular chirality: chirality transfer, amplification and application.
Duan, Pengfei; Cao, Hai; Zhang, Li; Liu, Minghua
2014-08-14
Supramolecular chirality defines chirality at the supramolecular level, and is generated from the spatial arrangement of component molecules assembling through non-covalent interactions such as hydrogen bonding, van der Waals interactions, π-π stacking, hydrophobic interactions and so on. During the formation of low molecular weight gels (LMWGs), one kind of fascinating soft material, one frequently encounters the phenomenon of chirality as well as chiral nanostructures, either from chiral gelators or even achiral gelators. A view of gelation-induced supramolecular chirality will be very helpful to understand the self-assembly process of the gelator molecules as well as the chiral structures, the regulation of the chirality in the gels and the development of the "smart" chiral materials such as chiroptical devices, catalysts and chiral sensors. It necessitates fundamental understanding of chirality transfer and amplification in these supramolecular systems. In this review, recent progress in gelation-induced supramolecular chirality is discussed.
U(1) axial charge in the chiral limit
NASA Astrophysics Data System (ADS)
Ji, Xiangdong
1990-07-01
The U(1) axial-vector form factor is studied using an unsubtracted dispersion relation. The associated axial charge is shown to be analytic in quark masses in the chiral limit although individual terms in the Cheng-Li separation exhibit large isospin and flavor-SU(3) symmetry breaking. A new separation of the U(1) axial charge is proposed, based on the wave functions of the physical states entering in the spectral density.
Ultrasoft Quark Damping in High-T QCD
Abada, Abdessamad; Daira-Aifa, Nacera; Bouakaz, Karima
2007-02-27
We determine the ultrasoft quark damping rates in the context of next-to-leading order hard-thermal-loop summed perturbation of high-temperature QCD. Three types of divergences are encountered: infrared, light-cone and at specific points determined by the gluon energies. The infrared divergence persists and is logarithmic whereas the two others are circumvented.
Quark Helicity Distributions at Large Longitudinal Momentum Fraction
Harutyun Avakian; Stanley Brodsky; Alexandre Deur; Feng Yuan
2007-08-01
We study the quark helicity distributions at large $x$ in perturbative QCD, taking into account contributions from the valence Fock states of the nucleon which have nonzero orbital angular momentum. These states are necessary to have a nonzero anomalous magnetic moment. We find that the quark orbital angular momentum contributes a large logarithm to the negative helicity quark distribution in addition to its power behavior, scaling as $(1-x)^5\\log^2(1-x)$ in the limit of $x\\to 1$. Our analysis show that the ratio of the polarized over unpolarized down quark distributions, $\\Delta d/d$, will still approach 1 in this limit. By comparing with the current experimental data, we find that this ratio will cross zero at $x\\approx 0.75$.
Emerging chirality in nanoscience.
Wang, Yong; Xu, Jun; Wang, Yawen; Chen, Hongyu
2013-04-07
Chirality in nanoscience may offer new opportunities for applications beyond the traditional fields of chirality, such as the asymmetric catalysts in the molecular world and the chiral propellers in the macroscopic world. In the last two decades, there has been an amazing array of chiral nanostructures reported in the literature. This review aims to explore and categorize the common mechanisms underlying these systems. We start by analyzing the origin of chirality in simple systems such as the helical spring and hair vortex. Then, the chiral nanostructures in the literature were categorized according to their material composition and underlying mechanism. Special attention is paid to highlight systems with original discoveries, exceptional structural characteristics, or unique mechanisms.
Chiral rotational spectroscopy
NASA Astrophysics Data System (ADS)
Cameron, Robert P.; Götte, Jörg B.; Barnett, Stephen M.
2016-09-01
We introduce chiral rotational spectroscopy, a technique that enables the determination of the orientated optical activity pseudotensor components BX X, BY Y, and BZ Z of chiral molecules, in a manner that reveals the enantiomeric constitution of a sample and provides an incisive signal even for a racemate. Chiral rotational spectroscopy could find particular use in the analysis of molecules that are chiral solely by virtue of their isotopic constitution and molecules with multiple chiral centers. A basic design for a chiral rotational spectrometer together with a model of its functionality is given. Our proposed technique offers the more familiar polarizability components αX X, αY Y, and αZ Z as by-products, which could see it find use even for achiral molecules.
Planar plasmonic chiral nanostructures
NASA Astrophysics Data System (ADS)
Zu, Shuai; Bao, Yanjun; Fang, Zheyu
2016-02-01
A strong chiral optical response induced at a plasmonic Fano resonance in a planar Au heptamer nanostructure was experimentally and theoretically demonstrated. The scattering spectra show the characteristic narrow-band feature of Fano resonances for both left and right circular polarized lights, with a chiral response reaching 30% at the Fano resonance. Specifically, we systematically investigate the chiral response of planar heptamers with gradually changing the inter-particle rotation angles and separation distance. The chiral spectral characteristics clearly depend on the strength of Fano resonances and the associated near-field optical distributions. Finite element method simulations together with a multipole expansion method demonstrate that the enhanced chirality is caused by the excitation of magnetic quadrupolar and electric toroidal dipolar modes. Our work provides an effective method for the design of 2D nanostructures with a strong chiral response.A strong chiral optical response induced at a plasmonic Fano resonance in a planar Au heptamer nanostructure was experimentally and theoretically demonstrated. The scattering spectra show the characteristic narrow-band feature of Fano resonances for both left and right circular polarized lights, with a chiral response reaching 30% at the Fano resonance. Specifically, we systematically investigate the chiral response of planar heptamers with gradually changing the inter-particle rotation angles and separation distance. The chiral spectral characteristics clearly depend on the strength of Fano resonances and the associated near-field optical distributions. Finite element method simulations together with a multipole expansion method demonstrate that the enhanced chirality is caused by the excitation of magnetic quadrupolar and electric toroidal dipolar modes. Our work provides an effective method for the design of 2D nanostructures with a strong chiral response. Electronic supplementary information (ESI) available
Finite-size test for the finite-temperature chiral phase transition in lattice QCD
Fukugita, M.; Mino, H.; Okawa, M.; Ukawa, A. Faculty of Engineering, Yamanashi University, Kofu National Laboratory for High Energy Physics , Ibaraki Institute of Physics, University of Tsukuba, Ibaraki )
1990-08-13
A finite-size test was carried out for the finite-temperature chiral phase transition in QCD for flavor number {ital N}{sub {ital f}}=4 and 2 on a lattice with four time slices using the Kogut-Susskind quark action at quark mass of 0.025 in lattice units. All the evidence supports a first-order transition for {ital N}{sub {ital f}}=4. For {ital N}{sub {ital f}}=2, however, the data on spatial lattice up to 12{sup 3} fail to yield convincing finite-size signatures for a first-order transition at this quark mass.
The diagonal and off-diagonal quark number susceptibility of high temperature and finite density QCD
NASA Astrophysics Data System (ADS)
Hietanen, A.; Rummukainen, K.
2008-04-01
We study the quark number susceptibility of the hot quark-gluon plasma at zero and non-zero quark number density, using lattice Monte Carlo simulations of an effective theory of QCD, electrostatic QCD (EQCD). Analytic continuation is used to obtain results at non-zero quark chemical potential μ. We measure both flavor singlet (diagonal) and non-singlet (off-diagonal) quark number susceptibilities. The diagonal susceptibility approaches the perturbative result above ~ 20Tc, but below that temperature we observe significant deviations. The results agree well with 4d lattice data down to temperatures ~ 2Tc. The off-diagonal susceptibility is more prone to statistical and systematic errors, but the results are consistent with perturbation theory already at 10Tc.
Vortices and other topological solitons in dense quark matter
NASA Astrophysics Data System (ADS)
Eto, Minoru; Hirono, Yuji; Nitta, Muneto; Yasui, Shigehiro
2014-01-01
Dense quantum chromodynamic matter accommodates various kind of topological solitons such as vortices, domain walls, monopoles, kinks, boojums, and so on. In this review, we discuss various properties of topological solitons in dense quantum chromodynamics (QCD) and their phenomenological implications. Particular emphasis is placed on the topological solitons in the color-flavor-locked (CFL) phase, which exhibits both superfluidity and superconductivity. The properties of topological solitons are discussed in terms of effective field theories such as the Ginzburg-Landau theory, the chiral Lagrangian, or the Bogoliubov-de Gennes equation. The most fundamental string-like topological excitations in the CFL phase are non-Abelian vortices, which are 1/3 quantized superfluid vortices and color magnetic flux tubes. These vortices are created at a phase transition by the Kibble-Zurek mechanism or when the CFL phase is realized in compact stars, which rotate rapidly. The interaction between vortices is found to be repulsive and consequently a vortex lattice is formed in rotating CFL matter. Bosonic and fermionic zero-energy modes are trapped in the core of a non-Abelian vortex and propagate along it as gapless excitations. The former consists of translational zero modes (a Kelvin mode) with a quadratic dispersion and {mathbb {C}}P^2 Nambu-Goldstone gapless modes with a linear dispersion, associated with the CFL symmetry spontaneously broken in the core of a vortex, while the latter is Majorana fermion zero modes belonging to the triplet of the symmetry remaining in the core of a vortex. The low-energy effective theory of the bosonic zero modes is constructed as a non-relativistic free complex scalar field and a relativistic {mathbb {C}}P^2 model in 1+1 dimensions. The effects of strange quark mass, electromagnetic interactions, and non-perturbative quantum corrections are taken into account in the {mathbb {C}}P^2 effective theory. Various topological objects associated
Death to perturbative QCD in exclusive processes?
Eckardt, R.; Hansper, J.; Gari, M.F.
1994-04-01
The authors discuss the question of whether perturbative QCD is applicable in calculations of exclusive processes at available momentum transfers. They show that the currently used method of determining hadronic quark distribution amplitudes from QCD sum rules yields wave functions which are completely undetermined because the polynomial expansion diverges. Because of the indeterminacy of the wave functions no statement can be made at present as to whether perturbative QCD is valid. The authors emphasize the necessity of a rigorous discussion of the subject and the importance of experimental data in the range of interest.
Kim, Cheol-Joo; Sánchez-Castillo, A; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong
2016-06-01
Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm(-1)) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.
NASA Astrophysics Data System (ADS)
Kim, Cheol-Joo; Sánchez-Castillo, A.; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong
2016-06-01
Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm-1) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.
Chiral Phase Transition in Soft-Wall AdS/QCD
NASA Astrophysics Data System (ADS)
Jacobson, Theodore
2016-09-01
We investigate the chiral phase transition, which describes the shift from broken to restored chiral symmetry at high temperatures and densities, within a soft-wall model of AdS/QCD. Extending previous work in this approach to strongly-coupled quantum chromodynamics, we obtain independent sources of explicit and spontaneous symmetry breaking at finite baryon chemical potential. Using black hole thermodynamics, we explore the effects of temperature and chemical potential on the chiral condensate, in the case of zero and finite quark mass. In the chiral limit, the transition is second-order, with a critical temperature of 155 MeV and critical density of 566 MeV, consistent with lattice calculations. For a physical value of the light quark mass, the transition is a rapid crossover, with a pseudo-transition temperature and density of 151 MeV and 559 MeV, respectively. The mass-splitting between the vector and axial-vector mesons indicates clear chiral symmetry breaking, and is expected to vanish as chiral symmetry is restored. Quantitative analysis of the mass spectra as temperature and density increase reveals that the meson bound states melt before the chiral phase transition occurs.
Measurement of parity violation in electron-quark scattering.
2014-02-06
Symmetry permeates nature and is fundamental to all laws of physics. One example is parity (mirror) symmetry, which implies that flipping left and right does not change the laws of physics. Laws for electromagnetism, gravity and the subatomic strong force respect parity symmetry, but the subatomic weak force does not. Historically, parity violation in electron scattering has been important in establishing (and now testing) the standard model of particle physics. One particular set of quantities accessible through measurements of parity-violating electron scattering are the effective weak couplings C2q, sensitive to the quarks' chirality preference when participating in the weak force, which have been measured directly only once in the past 40 years. Here we report a measurement of the parity-violating asymmetry in electron-quark scattering, which yields a determination of 2C2u - C2d (where u and d denote up and down quarks, respectively) with a precision increased by a factor of five relative to the earlier result. These results provide evidence with greater than 95 per cent confidence that the C2q couplings are non-zero, as predicted by the electroweak theory. They lead to constraints on new parity-violating interactions beyond the standard model, particularly those due to quark chirality. Whereas contemporary particle physics research is focused on high-energy colliders such as the Large Hadron Collider, our results provide specific chirality information on electroweak theory that is difficult to obtain at high energies. Our measurement is relatively free of ambiguity in its interpretation, and opens the door to even more precise measurements in the future.
Measurement of parity violation in electron–quark scattering
Wang, D.; Pan, K.; Subedi, R.; Deng, X.; Ahmed, Z.; Allada, K.; Aniol, K. A.; Armstrong, D. S.; Arrington, J.; Bellini, V.; Beminiwattha, R.; Benesch, J.; Benmokhtar, F.; Bertozzi, W.; Camsonne, A.; Canan, M.; Cates, G. D.; Chen, J.-P.; Chudakov, E.; Cisbani, E.; Dalton, M. M.; de Jager, C. W.; De Leo, R.; Deconinck, W.; Deur, A.; Dutta, C.; El Fassi, L.; Erler, J.; Flay, D.; Franklin, G. B.; Friend, M.; Frullani, S.; Garibaldi, F.; Gilad, S.; Giusa, A.; Glamazdin, A.; Golge, S.; Grimm, K.; Hafidi, K.; Hansen, J.-O.; Higinbotham, D. W.; Holmes, R.; Holmstrom, T.; Holt, R. J.; Huang, J.; Hyde, C. E.; Jen, C. M.; Jones, D.; Kang, Hoyoung; King, P. M.; Kowalski, S.; Kumar, K. S.; Lee, J. H.; LeRose, J. J.; Liyanage, N.; Long, E.; McNulty, D.; Margaziotis, D. J.; Meddi, F.; Meekins, D. G.; Mercado, L.; Meziani, Z.-E.; Michaels, R.; Mihovilovic, M.; Muangma, N.; Myers, K. E.; Nanda, S.; Narayan, A.; Nelyubin, V.; Nuruzzaman,; Oh, Y.; Parno, D.; Paschke, K. D.; Phillips, S. K.; Qian, X.; Qiang, Y.; Quinn, B.; Rakhman, A.; Reimer, P. E.; Rider, K.; Riordan, S.; Roche, J.; Rubin, J.; Russo, G.; Saenboonruang, K.; Saha, A.; Sawatzky, B.; Shahinyan, A.; Silwal, R.; Sirca, S.; Souder, P. A.; Suleiman, R.; Sulkosky, V.; Sutera, C. M.; Tobias, W. A.; Urciuoli, G. M.; Waidyawansa, B.; Wojtsekhowski, B.; Ye, L.; Zhao, B.; Zheng, X.
2014-02-05
Symmetry permeates nature and is fundamental to all laws of physics. One example is parity (mirror) symmetry, which implies that flipping left and right does not change the laws of physics. Laws for electromagnetism, gravity and the subatomic strong force respect parity symmetry, but the subatomic weak force does not. Historically, parity violation in electron scattering has been important in establishing (and now testing) the standard model of particle physics. One particular set of quantities accessible through measurements of parity-violating electron scattering are the effective weak couplings C2q, sensitive to the quarks chirality preference when participating in the weak force, which have been measured directly3, 4 only once in the past 40?years. Here we report a measurement of the parity-violating asymmetry in electron-quark scattering, which yields a determination of 2C2u???C2d (where u and d denote up and down quarks, respectively) with a precision increased by a factor of five relative to the earlier result. These results provide evidence with greater than 95 per cent confidence that the C2q couplings are non-zero, as predicted by the electroweak theory. They lead to constraints on new parity-violating interactions beyond the standard model, particularly those due to quark chirality. Whereas contemporary particle physics research is focused on high-energy colliders such as the Large Hadron Collider, our results provide specific chirality information on electroweak theory that is difficult to obtain at high energies. Our measurement is relatively free of ambiguity in its interpretation, and opens the door to even more precise measurements in the future.
Low energy chiral lagrangian parameters for scalar and pseudoscalar mesons
NASA Astrophysics Data System (ADS)
Bardeen, W.; Eichten, E.; Thacker, H.
2003-05-01
We present results of a high-statistics study of scalar and pseudoscalar meson propagators in quenched QCD at two values of lattice spacing,β = 5.7 and 5.9, with clover-improved Wilson fermions. The study of the chiral limit is facilitated by the pole-shifting ansatz of the modified quenched approximation. Pseudoscalar masses and decay constants are determined as a function of quark mass and quenched chiral log effects are estimated. A study of the flavor singlet ν' hairpin diagram yields a precise determination of the ν' mass insertion. The corresponding value of the quenched chiral log parameter b is compared with the observed QCL effects. Removal of QCL effects from the scalar propagator allows a determination of the mass of the lowest lying isovector scalar qq meson.
No-Drag Frame for Anomalous Chiral Fluid
Stephanov, Mikhail A.; Yee, Ho-Ung
2016-03-24
For an anomalous fluid carrying dissipationless chiral magnetic and/or vortical currents we show that there is a frame in which a stationary obstacle experiences no drag, but energy and charge currents do not vanish, resembling superfluidity. Unlike ordinary superfluid flow, the anomalous chiral currents can transport entropy in this frame. Moreover, we show that the second law of thermodynamics completely determines the amounts of these anomalous nondissipative currents in the “no-drag frame” as polynomials in temperature and chemical potential with known anomaly coefficients. These general results are illustrated and confirmed by a calculation in the chiral kinetic theory and inmore » the quark-gluon plasma at high temperature.« less
Hill, Christopher S.; /UC, Santa Barbara
2004-12-01
The top quark, with its extraordinarily large mass (nearly that of a gold atom), plays a significant role in the phenomenology of EWSB in the Standard Model. In particular, the top quark mass when combined with the W mass constrains the mass of the as yet unobserved Higgs boson. Thus, a precise determination of the mass of the top quark is a principal goal of the CDF and D0 experiments. With the data collected thus far in Runs 1 and 2 of the Tevatron, CDF and D0 have measured the top quark mass in both the lepton+jets and dilepton decay channels using a variety of complementary experimental techniques. The author presents an overview of the most recent of the measurements.
A search for inverse magnetic catalysis in thermal quark-meson models
NASA Astrophysics Data System (ADS)
Fraga, E. S.; Mintz, B. W.; Schaffner-Bielich, J.
2014-04-01
We explore the parameter space of the two-flavor thermal quark-meson model and its Polyakov loop-extended version under the influence of a constant external magnetic field B. We investigate the behavior of the pseudo critical temperature for chiral symmetry breaking taking into account the likely dependence of two parameters on the magnetic field: the Yukawa quark-meson coupling and the parameter T0 of the Polyakov loop potential. Under the constraints that magnetic catalysis is realized at zero temperature and the chiral transition at B=0 is a crossover, we find that the quark-meson model leads to thermal magnetic catalysis for the whole allowed parameter space, in contrast to the present picture stemming from lattice QCD.
Partial restoration of chiral symmetry in a confining string
Kharzeev, Dmitri E.; Loshaj, F.
2014-08-01
Here, we attempt to describe the interplay of confinement and chiral symmetry breaking in QCD by using the string model. We argue that in the quasi-Abelian picture of confinement based on the condensation of magnetic monopoles and the dual Meissner effect, the world sheet dynamics of the confining string can be effectively described by the 1+1 dimensional massless electrodynamics, which is exactly soluble. The transverse plane distribution of the chromoelectric field stretched between the quark and antiquark sources can then be attributed to the fluctuations in the position of the string. The dependence of the chiral condensate in the string on the (chromo-)electric field can be evaluated analytically, and is determined by the chiral anomaly and the θ-vacuum structure. Moreover, our picture allows us to predict the distribution of the chiral condensate in the plane transverse to the axis connecting the quark and antiquark. This prediction is compared to the lattice QCD results; a good agreement is found.
Chiral vortical and magnetic effects in the anomalous transport model
NASA Astrophysics Data System (ADS)
Sun, Yifeng; Ko, Che Ming
2017-03-01
We extend our recent study of chiral magnetic effect in relativistic heavy ion collisions based on an anomalous transport model by including also the chiral vortical effect. We find that although vorticities in the chirally restored quark matter, which result from the large angular momentum in noncentral collisions, can generate an axial charge dipole moment in the transverse plane of a heavy ion collision, it does not produce a difference in the eccentricities of negatively and positively charged particles. As a result, including the chiral vortical effect alone cannot lead to a splitting between the elliptic flows of negatively and positively charged particles. On the other hand, negatively and positively charged particles do develop a splitting in their elliptic flows if the effect due to a strong and long-lived magnetic field is also included. However, to have a positive slope in the dependence of the elliptic flow splitting on the charge asymmetry of the quark matter, as seen in experiments, requires the neglect of the effect of the Lorentz force. In this case, an elliptic flow splitting appears even at vanishing charge asymmetry.
Hong, Ziqing
2014-10-31
The top quark physics has entered the precision era. The CDF and D0 collaborations are finalizing their legacy results of the properties of the top quark after the shutdown of the Fermilab Tevatron three years ago. The ATLAS and CMS collaborations have been publishing results from the LHC Run I with 7 TeV and 8 TeV proton-proton collisions, with many more forthcoming. We present a selection of recent results produced by the Tevatron and LHC experiments.
Scalar meson in dynamical and partially quenched two-flavor QCD: Lattice results and chiral loops
Prelovsek, S.; Dawson, C.; Izubuchi, T.; Orginos, K.; Soni, A.
2004-11-01
This is an exploratory study of the lightest nonsinglet scalar qq state on the lattice with two dynamical quarks. Domain wall fermions are used for both sea and valence quarks on a 16{sup 3}x32 lattice with an inverse lattice spacing of 1.7 GeV. We extract the scalar meson mass 1.58{+-}0.34 GeV from the exponential time dependence of the dynamical correlators with m{sub val}=m{sub sea} and N{sub f}=2. Since this statistical error bar from dynamical correlators is rather large, we analyze also the partially quenched lattice correlators with m{sub val}{ne}m{sub sea}. They are positive for m{sub val}{>=}m{sub sea} and negative for m{sub val}
Chiral magnetic and vortical effects in higher dimensions at weak coupling
NASA Astrophysics Data System (ADS)
Yee, Ho-Ung
2014-09-01
Chiral magnetic effect and chiral vortical effect are parity odd transport phenomena originating from chiral anomaly, and have generalizations to all even dimensional space-time higher than four dimensions. We attempt to compute the associated P-odd retarded response functions in the weak coupling limit of chiral fermion theory in all even dimensions, using the diagrammatic technique of real-time perturbation theory. We also clarify the necessary Kubo formula relating the computed P-odd retarded correlation functions and the associated anomalous transport coefficients. We speculate on the 8-fold classification of topological phases.
MAEZAWA,Y.; AOKI, S.; EJIRI, S.; HATSUDA, T.; ISHII, N.; KANAYA, K.; UKITA, N.
2006-11-14
The authors report the current status of the systematic studies of the QCD thermodynamics by lattice QCD simulations with two flavors of improved Wilson quarks. They evaluate the critical temperature of two flavor QCD in the chiral limit at zero chemical potential and show the preliminary result. Also they discuss fluctuations at none-zero temperature and density by calculating the quark number and isospin susceptibilities and their derivatives with respect to chemical potential.
Quantum Monte Carlo calculations with chiral effective field theory interactions.
Gezerlis, A; Tews, I; Epelbaum, E; Gandolfi, S; Hebeler, K; Nogga, A; Schwenk, A
2013-07-19
We present the first quantum Monte Carlo (QMC) calculations with chiral effective field theory (EFT) interactions. To achieve this, we remove all sources of nonlocality, which hamper the inclusion in QMC calculations, in nuclear forces to next-to-next-to-leading order. We perform auxiliary-field diffusion Monte Carlo (AFDMC) calculations for the neutron matter energy up to saturation density based on local leading-order, next-to-leading order, and next-to-next-to-leading order nucleon-nucleon interactions. Our results exhibit a systematic order-by-order convergence in chiral EFT and provide nonperturbative benchmarks with theoretical uncertainties. For the softer interactions, perturbative calculations are in excellent agreement with the AFDMC results. This work paves the way for QMC calculations with systematic chiral EFT interactions for nuclei and nuclear matter, for testing the perturbativeness of different orders, and allows for matching to lattice QCD results by varying the pion mass.
Peturbative gluon exchange in a covariant quark model of the pion
Ito, Hiroshi; Buck, W.W. . Dept. of Physics); Gross, F. . Dept. of Physics Continuous Electron Beam Accelerator Facility, Newport News, VA )
1990-01-01
A covariant pion wave function, which reproduces the low energy data, is used to calculate the perturbative gluon exchange contributions to the pion charge form factor. It is found that the perturbative process dominates at q > 3.5 GeV/c. The dependence on the quark mass and the asymptotic behavior of the form factor are explicitly displayed.
Embedded monopoles in quark eigenmodes in SU(2) Yang-Mills theory
NASA Astrophysics Data System (ADS)
Chernodub, M. N.; Morozov, S. M.
2006-09-01
We study the embedded QCD monopoles (“quark monopoles”) using low-lying eigenmodes of the overlap Dirac operator in zero- and finite-temperature SU(2) Yang-Mills theory on the lattice. These monopoles correspond to the gauge-invariant hedgehogs in the quark-antiquark condensates. The monopoles were suggested to be agents of the chiral symmetry restoration since their cores should suppress the chiral condensate. We study numerically the scalar, axial, and chirally invariant definitions of the embedded monopoles and show that the monopole densities are in fact globally anticorrelated with the density of the Dirac eigenmodes. We observe that the embedded monopoles corresponding to low-lying Dirac eigenvalues are dense in the chirally invariant (high temperature) phase and dilute in the chirally broken (low-temperature) phase. We find that the scaling of the scalar and axial monopole densities towards the continuum limit is similar to the scaling of the stringlike objects while the chirally invariant monopoles scale as membranes. The excess of gluon energy at monopole positions reveals that the embedded QCD monopole possesses a gluonic core which is, however, empty at the very center of the monopole.
Embedded monopoles in quark eigenmodes in SU(2) Yang-Mills theory
Chernodub, M. N.; Morozov, S. M.
2006-09-01
We study the embedded QCD monopoles ('quark monopoles') using low-lying eigenmodes of the overlap Dirac operator in zero- and finite-temperature SU(2) Yang-Mills theory on the lattice. These monopoles correspond to the gauge-invariant hedgehogs in the quark-antiquark condensates. The monopoles were suggested to be agents of the chiral symmetry restoration since their cores should suppress the chiral condensate. We study numerically the scalar, axial, and chirally invariant definitions of the embedded monopoles and show that the monopole densities are in fact globally anticorrelated with the density of the Dirac eigenmodes. We observe that the embedded monopoles corresponding to low-lying Dirac eigenvalues are dense in the chirally invariant (high temperature) phase and dilute in the chirally broken (low-temperature) phase. We find that the scaling of the scalar and axial monopole densities towards the continuum limit is similar to the scaling of the stringlike objects while the chirally invariant monopoles scale as membranes. The excess of gluon energy at monopole positions reveals that the embedded QCD monopole possesses a gluonic core which is, however, empty at the very center of the monopole.
Quark masses, chiral symmetry, and the U(1) anomaly
Creutz, M.
1996-09-17
The author discusses the mass parameters appearing in the gauge theory of the strong interactions, concentrating on the two flavor case. He shows how the effect of the CP violating parameter {theta} is simply interpreted in terms of the state of the aether via an effective potential for meson fields. For degenerate flavors he shows that a first order phase transition is expected at {theta} = {pi}. The author speculates on the implications of this structure for Wilson`s lattice fermions.
Baryon resonances without quarks: A chiral soliton perspective
Karliner, M.
1987-03-01
In many processes involving low momentum transfer it is fruitful to regard the nucleon as a soliton or ''monopole-like'' configuration of the pion field. In particular, within this framework it is possible to obtain detailed predictions for pion-nucleon scattering amplitudes and for properties of baryon resonances. One can also derive model-independent linear relations between scattering amplitudes, such as ..pi..N and anti KN. A short survey of some recent results is given, including comparison with experimental data.
Chiral Lagrangian for baryons in the 1/Nc expansion
NASA Astrophysics Data System (ADS)
Jenkins, Elizabeth
1996-03-01
A 1/Nc expansion of the chiral Lagrangian for baryons is formulated and used to study the low-energy dynamics of baryons interacting with the pion nonet π, K, η, and η' in a combined expansion in chiral symmetry breaking and 1/Nc. Strong CP violation is included. The chiral Lagrangian correctly implements nonet symmetry and contracted spin-flavor symmetry for baryons in the large Nc limit. The implications of nonet symmetry for low-energy baryon-pion interactions are described in detail. The procedure for calculating nonanalytic pion-loop corrections to baryon amplitudes in the 1/Nc expansion for finite Nc is explained. Flavor-27 baryon mass splittings are calculated at leading order in chiral perturbation theory as an example.
Final Report for Project. Quark matter under extreme conditions
Incera, Vivian; Ferrer, Efrain
2015-12-31
The results obtained in the two years of the grant have served to shine new light on several important questions about the phases of quantum chromodynamics (QCD) under extreme conditions that include quark matter at high density, as well quark-gluon plasma at high temperatures, both in the presence of strong magnetic fields. The interest in including an external magnetic field on these studies is motivated by the generation of large magnetic fields in off-central heavy-ion collisions and by their common presence in astrophysical compact objects, the two scenarios where the physics of quark matter becomes relevant. The tasks carried out in this DOE project led us, among other things, to discover the first connection between the physics of very dense quark matter and novel materials as for instance topological insulators and Weyl semimetals; they allowed us to find a physical explanation for and a solution to a standing puzzle in the apparent effect of a magnetic field on the critical temperature of the QCD chiral transition; and they led us to establish by the first time that the core of the observed two-solar-mass neutron stars could be made up of quark matter in certain inhomogeneous chiral phases in a magnetic field and that this was consistent with current astrophysical observations. A major goal established by the Nuclear Science Advisory committee in its most recent report “Reaching for the Horizon” has been “to truly understand how nuclei and strongly interacting matter in all its forms behave and can predict their behavior in new settings.” The results found in this DOE project have all contributed to address this goal, and thus they are important for advancing fundamental knowledge in the area of nuclear physics and for enhancing our understanding of the role of strong magnetic fields in the two settings where they are most relevant, neutron stars and heavy-ion collisions.
Chiral magnetic superconductivity
NASA Astrophysics Data System (ADS)
Kharzeev, Dmitri E.
2017-03-01
Materials with charged chiral quasiparticles in external parallel electric and magnetic fields can support an electric current that grows linearly in time, corresponding to diverging DC conductivity. From experimental viewpoint, this "Chiral Magnetic Superconductivity" (CMS) is thus analogous to conventional superconductivity. However the underlying physics is entirely different - the CMS does not require a condensate of Cooper pairs breaking the gauge degeneracy, and is thus not accompanied by Meissner effect. Instead, it owes its existence to the (temperature-independent) quantum chiral anomaly and the conservation of chirality. As a result, this phenomenon can be expected to survive to much higher temperatures. Even though the chirality of quasiparticles is not strictly conserved in real materials, the chiral magnetic superconductivity should still exhibit itself in AC measurements at frequencies larger than the chirality-flipping rate, and in microstructures of Dirac and Weyl semimetals with thickness below the mean chirality-flipping length that is about 1 - 100 μm. In nuclear physics, the CMS should contribute to the charge-dependent elliptic flow in heavy ion collisions.
Superenantioselective chiral surface explosions.
Gellman, Andrew J; Huang, Ye; Feng, Xu; Pushkarev, Vladimir V; Holsclaw, Brian; Mhatre, Bharat S
2013-12-26
Chiral inorganic materials predated life on Earth, and their enantiospecific surface chemistry may have played a role in the origins of biomolecular homochirality. However, enantiospecific differences in the interaction energies of chiral molecules with chiral surfaces are small and typically lead to modest enantioselectivities in adsorption, catalysis, and chemistry on chiral surfaces. To yield high enantioselectivities, small energy differences must be amplified by reaction mechanisms such as autocatalytic surface explosions which have nonlinear kinetics. Herein, we report the first observations of superenantiospecificity resulting from an autocatalytic surface explosion reaction of a chiral molecule on a naturally chiral surface. R,R- and S,S-tartaric acid decompose via a vacancy-mediated surface explosion mechanism on Cu single crystal surfaces. When coupled with surface chirality, this leads to decomposition rates that exhibit extraordinarily high enantiospecificity. On the enantiomorphs of naturally chiral Cu(643)(R&S), Cu(17,5,1)(R&S), Cu(531)(R&S) and Cu(651)(R&S) single crystal surfaces, R,R- and S,S-tartaric acid exhibit enantiospecific decomposition rates that differ by as much as 2 orders of magnitude, despite the fact that the effective rates constants for decomposition differ by less than a factor of 2.
Top quark forward-backward asymmetry from the 3-3-1 model
NASA Astrophysics Data System (ADS)
Barreto, E. Ramirez; Coutinho, Y. A.; Sá Borges, J.
2011-03-01
The forward-backward asymmetry AFB in top quark pair production, measured at the Tevatron, is probably related to the contribution of new particles. The Tevatron result is more than a 2σ deviation from the standard model prediction and motivates the application of alternative models introducing new states. However, as the standard model predictions for the total cross section σtt and invariant mass distribution Mtt for this process are in good agreement with experiments, any alternative model must reproduce these predictions. These models can be placed into two categories: One introduces the s-channel exchange of new vector bosons with chiral couplings to the light quarks and to the top quark, and another relies on the t-channel exchange of particles with large flavor-violating couplings in the quark sector. In this work, we employ a model which introduces both s- and t-channel nonstandard contributions for the top quark pair production in proton-antiproton collisions. We use the minimal version of the SU(3)C⊗SU(3)L⊗U(1)X model (3-3-1 model) that predicts the existence of a new neutral gauge boson, called Z'. This gauge boson has both flavor-changing couplings to up and top quarks and chiral coupling to the light quarks and to the top quark. This very peculiar model coupling can correct the AFB for top quark pair production for two ranges of Z' mass while leading to a cross section and invariant mass distribution quite similar to the standard model ones. This result reinforces the role of the 3-3-1 model for any new physics effect.
Mulligan, Andrew; Lane, Ian; Rousseau, Gilles B D; Johnston, Shona M; Lennon, David; Kadodwala, Malcolm
2006-01-19
Naturally occurring metal surfaces possess planes of mirror symmetry on the nanometer-length scale. This mirror symmetry can be lifted and chirality "physically" conveyed onto a surface by adsorbing a chiral molecule. Until now, it has not been known whether the conveying of chirality is limited to just the physical structure or whether it goes deeper and permeates the electronic structure of the underlying surface. By using optically active second harmonic generation (OA-SHG), it is demonstrated that the adsorption of some, but not all, chiral molecules can reversibly, and without significant structural rearrangement, measurably lift the mirror symmetry of the surface electronic structure of a metal. It is proposed that the ability of a chiral molecule to place a significant "chiral perturbation" on the electronic structure of a surface is correlated to its adsorption geometry. The microscopic origins of the observed optical activity are also discussed in terms of classical models of chirality. The results of the study challenge current models of how chiral adsorbates induce enantioselectivity in the chemical/physical behavior of heterogeneous systems, which are based on geometric/stereochemical arguments, by suggesting that chiral electronic perturbations could play a role.
Pion scattering poles and chiral symmetry restoration
Fernandez-Fraile, D.; Nicola, A. Gomez; Herruzo, E. T.
2007-10-15
Using unitarized chiral perturbation theory methods, we perform a detailed analysis of the {pi}{pi} scattering poles f{sub 0}(600) and {rho}(770) behavior when medium effects such as temperature or density drive the system towards chiral symmetry restoration. In the analysis of real poles below threshold, we show that it is crucial to extend properly the unitarized amplitudes so that they match the perturbative Adler zeros. Our results do not show threshold enhancement effects at finite temperature in the f{sub 0}(600) channel, which remains as a pole of broad nature. We also implement T=0 finite-density effects related to chiral symmetry restoration, by varying the pole position with the pion decay constant. Although this approach takes into account only a limited class of contributions, we reproduce the expected finite-density restoration behavior, which drives the poles towards the real axis, producing threshold enhancement and {pi}{pi} bound states. We compare our results with several model approaches and discuss the experimental consequences, both in relativistic heavy ion collisions and in {pi}{yields}{pi}{pi} and {gamma}{yields}{pi}{pi} reactions in nuclei.
Boyle, P. A.; Christ, N. H.; Garron, N.; Jung, C.; Jüttner, A.; Kelly, C.; Mawhinney, R. D.; McGlynn, G.; Murphy, D. J.; Ohta, S.; Portelli, A.; Sachrajda, C. T.
2016-03-09
Here, we have performed fits of the pseudoscalar masses and decay constants, from a variety of the RBC-UKQCD Collaboration’s domain wall fermion ensembles, to SU(2) partially quenched chiral perturbation theory at next-to-leading order (NLO) and next-to-next-to-leading order (NNLO). We report values for 9 NLO and 8 linearly independent combinations of NNLO partially quenched low-energy constants, which we compare to other lattice and phenomenological determinations. We discuss the size of successive terms in the chiral expansion and use our large set of low-energy constants to make predictions for mass splittings due to QCD isospin-breaking effects and the S-wave ππ scattering lengths. Lastly, we conclude that, for the range of pseudoscalar masses explored in this work, 115 MeV≲mPS≲430 MeV, the NNLO SU(2) expansion is quite robust and can fit lattice data with percent-scale accuracy.
NASA Astrophysics Data System (ADS)
Friedman, J. I.
2001-01-01
In the period following World War II, there was a rapid development of particle physics. With the construction of synchrotrons and the development of detector technology, many new particles were discovered and the systematics of their interactions investigated. The invention of the bubble chamber played an especially important role in uncovering the rich array of hadrons that were discovered in this period.In 1961 Murray Gell-Mann [1] and Yuval Ne'eman [2] independently introduced a classification scheme, based on SU(3) symmetry, which placed hadrons into families on the basis of spin and parity. Like the periodic table for the elements, this scheme was predictive as well as descriptive, and various hadrons, such as the - , were predicted within this framework and were later discovered.In 1964 Gell-Mann [3] and George Zweig [4] independently proposed quarks as the building blocks of hadrons as a way of generating the SU(3) classification scheme. When the quark model was first proposed, it postulated three types of quarks: up (u), down (d), and strange (s), with charges 2/3, - 1/3, and - 1/3 respectively. Each of these was hypothesized to be a spin1/2 particle. In this model the nucleon (and all other baryons) is made up of three quarks, and each meson consists of a quark and an antiquark. For example, as the proton and neutron both have ero strangeness, they are (u,u,d) and (d,d,u) systems respectively.
Chiral symmetry and π-π scattering in the Covariant Spectator Theory
Biernat, Elmar P.; Peña, M. T.; Ribeiro, J. E.; ...
2014-11-14
The π-π scattering amplitude calculated with a model for the quark-antiquark interaction in the framework of the Covariant Spectator Theory (CST) is shown to satisfy the Adler zero constraint imposed by chiral symmetry. The CST formalism is established in Minkowski space and our calculations are performed in momentum space. We prove that the axial-vector Ward-Takahashi identity is satisfied by our model. Then we show that, similarly to what happens within the Bethe-Salpeter formalism, application of the axial-vector Ward Takahashi identity to the CST π-π scattering amplitude allows us to sum the intermediate quark-quark interactions to all orders. Thus, the Adlermore » self-consistency zero for π-π scattering in the chiral limit emerges as the result for this sum.« less
Molecular model for chirality phenomena.
Latinwo, Folarin; Stillinger, Frank H; Debenedetti, Pablo G
2016-10-21
Chirality is a hallmark feature for molecular recognition in biology and chemical physics. We present a three-dimensional continuum model for studying chirality phenomena in condensed phases using molecular simulations. Our model system is based upon a simple four-site molecule and incorporates non-trivial kinetic behavior, including the ability to switch chirality or racemize, as well as thermodynamics arising from an energetic preference for specific chiral interactions. In particular, we introduce a chiral renormalization parameter that can locally favor either homochiral or heterochiral configurations. Using this model, we explore a range of chirality-specific phenomena, including the kinetics of chiral inversion, the mechanism of spontaneous chiral symmetry breaking in the liquid, chirally driven liquid-liquid phase separation, and chiral crystal structures.
The quark-hadron phase transition and primordial nucleosynthesis
NASA Astrophysics Data System (ADS)
Hogan, Craig J.
After presenting the current view of the processes taking place during the cosmological transition from 'quark soup' to normal hadron matter, attention is given to what happens to cosmological nucleosynthesis in the presence of small-scale baryon inhomogeneities. The QCD phase transition is among the plausible sources of this inhomogeneity. It is concluded that the formation of primordial 'quark nuggets' and other cold exotica requires very low entropy regions at the outset, and that even the more modest nonlinearities perturbing nucleosynthesis probably require some ingredient in addition to a quiescent, mildly supercooled transition.
The quark-hadron phase transition and primordial nucleosynthesis
NASA Technical Reports Server (NTRS)
Hogan, Craig J.
1987-01-01
After presenting the current view of the processes taking place during the cosmological transition from 'quark soup' to normal hadron matter, attention is given to what happens to cosmological nucleosynthesis in the presence of small-scale baryon inhomogeneities. The QCD phase transition is among the plausible sources of this inhomogeneity. It is concluded that the formation of primordial 'quark nuggets' and other cold exotica requires very low entropy regions at the outset, and that even the more modest nonlinearities perturbing nucleosynthesis probably require some ingredient in addition to a quiescent, mildly supercooled transition.
Heavy quark potential from QCD-related effective coupling
NASA Astrophysics Data System (ADS)
Ayala, César; González, Pedro; Vento, Vicente
2016-12-01
We implement our past investigations of quark-antiquark interaction through a non-perturbative running coupling defined in terms of a gluon mass function, similar to that used in some Schwinger-Dyson approaches. This coupling leads to a quark-antiquark potential, which satisfies not only asymptotic freedom but also describes linear confinement correctly. From this potential, we calculate the bottomonium and charmonium spectra below the first open flavor meson-meson thresholds and show that for a small range of values of the free parameter determining the gluon mass function an excellent agreement with data is attained.
NASA Astrophysics Data System (ADS)
Maezawa, Y.; Umeda, T.; Aoki, S.; Ejiri, S.; Hatsuda, T.; Kanaya, K.; Ohno, H.; WHOT-QCD Collaboration
2012-11-01
The free energies of static quarks and the Debye screening masses in the quark gluon plasma are studied using Polyakov-line correlation functions in lattice QCD adopting the fixed-scale approach in which temperature is varied without changing the spatial volume and the renormalization factors. We calculate static-quark free energies in various color channels in the high temperature phase up to about 3.5 times the (pseudo-)critical temperature, performing lattice simulations both in quenched and 2 + 1 flavor QCD. For the quenched simulations, we adopt the plaquette gauge action on anisotropic 20^3 × N_t lattices with N_t = 8-26 at the renormalized anisotropy a_s / a_t ≃ 4. For 2 + 1 flavor QCD, we adopt the renormalization-group improved Iwasaki gluon action and the non-perturbatively O(a)-improved Wilson quark action on isotropic 32^3 × N_t lattices with N_t = 4-12 at m_{PS}/m_{V} = 0.63 (0.74) for the light (strange) flavors. We find that the color-singlet free energies at high temperatures converge to the zero-temperature static-quark potential evaluated from the Wilson-loop at short distances. This is in accordance with the theoretical expectation that the short distance physics is insensitive to the temperature. At long distances, the free energies approach twice the single-quark free energies, implying that the interaction between static quarks is fully screened. We find that the static-quark free energies for various color channels turn out to be well described by the screened Coulomb form, and the color-channel dependence of the inter-quark interaction can be described by the kinetic Casimir factor inspired from the lowest order perturbation theory. We also discuss comparison with a prediction of the thermal perturbation theory and flavor dependence of the screening masses.
The Quark's Model and Confinement
ERIC Educational Resources Information Center
Novozhilov, Yuri V.
1977-01-01
Quarks are elementary particles considered to be components of the proton, the neutron, and others. This article presents the quark model as a mathematical concept. Also discussed are gluons and bag models. A bibliography is included. (MA)
Andreas S. Kronfeld
2003-11-05
This paper is a review of heavy quarks in lattice gauge theory, focusing on methodology. It includes a status report on some of the calculations that are relevant to heavy-quark spectroscopy and to flavor physics.
Quark mean field model with pion and gluon corrections
NASA Astrophysics Data System (ADS)
Xing, Xueyong; Hu, Jinniu; Shen, Hong
2016-10-01
The properties of nuclear matter and finite nuclei are studied within the quark mean field (QMF) model by taking the effects of pions and gluons into account at the quark level. The nucleon is described as the combination of three constituent quarks confined by a harmonic oscillator potential. To satisfy the spirit of QCD theory, the contributions of pions and gluons on the nucleon structure are treated in second-order perturbation theory. In a nuclear many-body system, nucleons interact with each other by exchanging mesons between quarks. With different constituent quark mass, mq, we determine three parameter sets for the coupling constants between mesons and quarks, named QMF-NK1, QMF-NK2, and QMF-NK3, by fitting the ground-state properties of several closed-shell nuclei. It is found that all of the three parameter sets can give a satisfactory description of properties of nuclear matter and finite nuclei, moreover they also predict a larger neutron star mass around 2.3 M⊙ without hyperon degrees of freedom.
Transport coefficients of heavy quarks around Tc at finite quark chemical potential
NASA Astrophysics Data System (ADS)
Berrehrah, H.; Gossiaux, P. B.; Aichelin, J.; Cassing, W.; Torres-Rincon, J. M.; Bratkovskaya, E.
2014-11-01
The interactions of heavy quarks with the partonic environment at finite temperature T and finite quark chemical potential μq are investigated in terms of transport coefficients within the dynamical quasiparticle model (DQPM) designed to reproduce the lattice-QCD (lQCD) results (including the partonic equation of state) in thermodynamic equilibrium. These results are confronted with those of nuclear many-body calculations close to the critical temperature Tc. The hadronic and partonic spatial diffusion coefficients join smoothly and show a pronounced minimum around Tc at μq=0 as well as at finite μq. Close to and above Tc its absolute value matches the lQCD calculations for μq=0 . The smooth transition of the heavy-quark transport coefficients from the hadronic to the partonic medium corresponds to a crossover in line with lattice calculations, and differs substantially from perturbative-QCD calculations which show a large discontinuity at Tc. This indicates that in the vicinity of Tc dynamically dressed massive partons should be the effective degrees of freedom in the quark-gluon plasma.
Benenson, G.; Chau, L.L.; Ludlam, T.; Paige, F.E.; Platner, E.D.; Protopopescu, S.D.; Rehak, P.
1983-01-01
In this exercise we examine the performance of a detector specifically configured to tag heavy quark (HQ) jets through direct observations of D-meson decays with a high resolution vertex detector. To optimize the performance of such a detector, we assume the small diamond beam crossing configuration as described in the 1978 ISABELLE proposal, giving a luminosity of 10/sup 32/ cm/sup -2/ sec/sup -1/. Because of the very large backgrounds from light quark (LQ) jets, most triggering schemes at this luminosity require high P/sub perpendicular to/ leptons and inevitably give missing neutrinos. If alternative triggering schemes could be found, then one can hope to find and calculate the mass of objects decaying to heavy quarks. A scheme using the high resolution detector will also be discussed in detail. The study was carried out with events generated by the ISAJET Monte Carlo and a computer simulation of the described detector system. (WHK)
Applications of chiral symmetry
Pisarski, R.D.
1995-03-01
The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature T{sub {chi}} implies that the {rho} and a{sub 1} vector mesons are degenerate in mass. In a gauged linear sigma model the {rho} mass increases with temperature, m{sub {rho}}(T{sub {chi}}) > m{sub {rho}}(0). The author conjectures that at T{sub {chi}} the thermal {rho} - a{sub 1}, peak is relatively high, at about {approximately}1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The {omega} meson also increases in mass, nearly degenerate with the {rho}, but its width grows dramatically with temperature, increasing to at least {approximately}100 MeV by T{sub {chi}}. The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from {open_quotes}quenched{close_quotes} heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates.
Criteria of backscattering in chiral one-way photonic crystals
NASA Astrophysics Data System (ADS)
Cheng, Pi-Ju; Chang, Shu-Wei
2016-03-01
Optical isolators are important devices in photonic circuits. To reduce the unwanted reflection in a robust manner, several setups have been realized using nonreciprocal schemes. In this study, we show that the propagating modes in a strongly-guided chiral photonic crystal (no breaking of the reciprocity) are not backscattering-immune even though they are indeed insensitive to many types of scatters. Without the protection from the nonreciprocity, the backscattering occurs under certain circumstances. We present a perturbative method to calculate the backscattering of chiral photonic crystals in the presence of chiral/achiral scatters. The model is, essentially, a simplified analogy to the first-order Born approximation. Under reasonable assumptions based on the behaviors of chiral photonic modes, we obtained the expression of reflection coefficients which provides criteria for the prominent backscattering in such chiral structures. Numerical examinations using the finite-element method were also performed and the results agree well with the theoretical prediction. From both our theory and numerical calculations, we find that the amount of backscattering critically depends on the symmetry of scatter cross sections. Strong reflection takes place when the azimuthal Fourier components of scatter cross sections have an order l of 2. Chiral scatters without these Fourier components would not efficiently reflect the chiral photonic modes. In addition, for these chiral propagating modes, disturbances at the most significant parts of field profiles do not necessarily result in the most effective backscattering. The observation also reveals what types of scatters or defects should be avoided in one-way applications of chiral structures in order to minimize the backscattering.
Allen, T.J.; Olsson, M.G.; Veseli, S.; Williams, K. |
1997-05-01
Starting from Buchm{umlt u}ller{close_quote}s observation that a chromoelectric flux tube meson will exhibit only the Thomas-type spin-orbit interaction, we show that a model built upon the related assumption that a quark feels only a constant radial chromoelectric field in its rest frame implies a complete relativistic effective Hamiltonian that can be written explicitly in terms of quark canonical variables. The model yields linear Regge trajectories and exhibits some similarities to scalar confinement, but with the advantage of being more closely linked to QCD. {copyright} {ital 1997} {ital The American Physical Society}
On-shell parameter fixing in the quark-meson model
NASA Astrophysics Data System (ADS)
Adhikari, Prabal; Andersen, Jens O.; Kneschke, Patrick
2017-02-01
The quark-meson model is often used as an effective low-energy model for QCD to study the chiral transition at finite temperature T and baryon chemical potential μB. The parameters in the quark-meson model can be found by expressing them in terms of the sigma mass mσ, the pion mass mπ, the constituent quark mass mq and the pion decay constant fπ. In practice, this matching is done at tree level, which is inconsistent once loop effects of the effective potential are taken into account. We show how to properly perform the matching in the quark-meson model by using the on-shell and the minimal subtraction renormalization schemes relating the physical masses and the pion decay constant to the running mass parameter and couplings. We map out the phase diagram in the μB- T plane and compare our results with other approximations.
Top quark physics: Future measurements
Frey, R.; Vejcik, S.; Berger, E.L.
1997-04-04
The authors discuss the study of the top quark at future experiments and machines. Top`s large mass makes it a unique probe of physics at the natural electroweak scale. They emphasize measurements of the top quark`s mass, width, and couplings, as well as searches for rare or nonstandard decays, and discuss the complementary roles played by hadron and lepton colliders.
QCD in heavy quark production and decay
Wiss, J.
1997-06-01
The author discusses how QCD is used to understand the physics of heavy quark production and decay dynamics. His discussion of production dynamics primarily concentrates on charm photoproduction data which are compared to perturbative QCD calculations which incorporate fragmentation effects. He begins his discussion of heavy quark decay by reviewing data on charm and beauty lifetimes. Present data on fully leptonic and semileptonic charm decay are then reviewed. Measurements of the hadronic weak current form factors are compared to the nonperturbative QCD-based predictions of Lattice Gauge Theories. He next discusses polarization phenomena present in charmed baryon decay. Heavy Quark Effective Theory predicts that the daughter baryon will recoil from the charmed parent with nearly 100% left-handed polarization, which is in excellent agreement with present data. He concludes by discussing nonleptonic charm decay which is traditionally analyzed in a factorization framework applicable to two-body and quasi-two-body nonleptonic decays. This discussion emphasizes the important role of final state interactions in influencing both the observed decay width of various two-body final states as well as modifying the interference between interfering resonance channels which contribute to specific multibody decays. 50 refs., 77 figs.
Quark lepton universality and large leptonic mixing
NASA Astrophysics Data System (ADS)
Joshipura, Anjan S.; Smirnov, A. Yu.
2006-08-01
A unified description of fermionic mixing is proposed which assumes that in certain basis (i) a single complex unitary matrix V diagonalizes mass matrices of all fermions to the leading order, (ii) the SU(5) relation M=MlT exists between the mass matrices of the down quarks and the charged leptons, and (iii) Md†=M. These assumptions automatically lead to different mixing patterns for quarks and leptons: Quarks remain unmixed to leading order (i.e. V=1) while leptons have non-trivial mixing given by a symmetric unitary matrix VPMNS0=VV. V depends on two physical mixing angles and for values of these angles ˜20°-25° it reproduces the observed mixing patterns rather well. We identify conditions under which the universal mixing V follows from the universal mass matrices of fermions. Relatively small perturbations to the leading order structure lead to the CKM mixing and corrections to VPMNS0. We find that if the correction matrix equals the CKM matrix, the resulting lepton mixing agrees well with data and predicts ()e3>0.08.
Strange quark matter in the presence of explicit symmetry breaking interactions
NASA Astrophysics Data System (ADS)
Moreira, J.; Morais, J.; Hiller, B.; Osipov, A. A.; Blin, A. H.
2015-06-01
It is shown that a first-order transition associated with a jump in the strange-quark mass appears in a generalized three-flavor Nambu-Jona-Lasinio treatment of quark matter. The generalization of the Lagrangian displays the complete set of spin-0 interactions at leading and subleading orders (LO and NLO) in 1/Nc counting, including the recently derived NLO explicit chiral symmetry breaking interactions which are of the same order as the 't Hooft flavor determinant. The parameters of the model are tightly constrained by the low-energy characteristics in both the pseudoscalar and scalar meson sectors. The transition occurs in a moderate chemical potential region (μ ≃400 MeV for zero temperature) in addition to the usual chiral transition associated with the light-quark sector. This feature has at its root the inclusion of the explicit chiral symmetry breaking interactions, which therefore can be seen to act as a catalyst in the production of strange-quark matter when compared to the conventional version of the model that takes only into account the 't Hooft interaction in the NLO. It can be traced back to the effect of the interactions which do not violate the Okubo-Zweig-Iizuka rule, without which the empirical ordering of the scalars (mK⋆
Chirality Differentiation by Diffusion in Chiral Nematic Liquid Crystals
NASA Astrophysics Data System (ADS)
Jiang, Jinghua; Yang, Deng-Ke
2017-01-01
Chirality is of great importance in the living world. It helps differentiate biochemical reactions such as those that take place during digestion. It may also help differentiate physical processes such as diffusion. Aiming to study the latter effect, we investigate the diffusion of guest chiral molecules in chiral nematic (cholesteric) liquid-crystal hosts. We discover that the diffusion dramatically depends on the handedness of the guest and host molecules and the chiral differentiation is greatly enhanced by the proper alignment of the liquid-crystal host. The diffusion of a guest chiral molecule in a chiral host with the same handedness is much faster than in a chiral host with opposite handedness. We also observe that the differentiation of chirality depends on the diffusion direction with respect to the twisting direction (helical axis). These results might be important in understanding effects of chirality on physical processes that take place in biological organisms. In addition, this effect could be utilized for enantiomer separation.
Catalysis of dynamical chiral symmetry breaking by chiral chemical potential
NASA Astrophysics Data System (ADS)
Braguta, V. V.; Kotov, A. Yu.
2016-05-01
In this paper, we study the properties of media with chiral imbalance parametrized by chiral chemical potential. It is shown that depending on the strength of interaction between constituents in the media the chiral chemical potential either creates or enhances dynamical chiral symmetry breaking. Thus, the chiral chemical potential plays the role of the catalyst of dynamical chiral symmetry breaking. Physically, this effect results from the appearance of the Fermi surface and additional fermion states on this surface, which take part in dynamical chiral symmetry breaking. An interesting conclusion which can be drawn is that at sufficiently small temperature chiral plasma is unstable with respect to condensation of Cooper pairs and dynamical chiral symmetry breaking even for vanishingly small interactions between constituents.
Static quark-antiquark potential in the quark-gluon plasma from lattice QCD.
Burnier, Yannis; Kaczmarek, Olaf; Rothkopf, Alexander
2015-02-27
We present a state-of-the-art determination of the complex valued static quark-antiquark potential at phenomenologically relevant temperatures around the deconfinement phase transition. Its values are obtained from nonperturbative lattice QCD simulations using spectral functions extracted via a novel Bayesian inference prescription. We find that the real part, both in a gluonic medium, as well as in realistic QCD with light u, d, and s quarks, lies close to the color singlet free energies in Coulomb gauge and shows Debye screening above the (pseudo)critical temperature T_{c}. The imaginary part is estimated in the gluonic medium, where we find that it is of the same order of magnitude as in hard-thermal loop resummed perturbation theory in the deconfined phase.
Phase diagram for the Nambu-Jona-Lasinio model with 't Hooft and eight-quark interactions
NASA Astrophysics Data System (ADS)
Hiller, B.; Moreira, J.; Osipov, A. A.; Blin, A. H.
2010-06-01
It is shown that the end point of the first-order transition line, which merges into a crossover regime in the phase diagram of the Nambu-Jona-Lasinio model, extended to include the six-quark ’t Hooft and eight-quark interaction Lagrangians, is pushed toward vanishing chemical potential and higher temperatures with increasing strength of the Okubo-Zweig-Iizuka-violating eight-quark interactions. We clarify the connection between the location of the end point in the phase diagram and the mechanism of chiral symmetry breaking at the quark level. We show how the 8q interactions affect the number of effective quark degrees of freedom. We are able to obtain the correct asymptotics for this number at large temperatures by using the Pauli-Villars regularization.
Chiral Hypervalent, Pentacoordinated Phosphoranes.
Krasowska, Dorota; Chrzanowski, Jacek; Kiełbasiński, Piotr; Drabowicz, Józef
2016-11-21
This review presents synthetic procedures applied to the preparation of chiral (mainly optically active) pentacoordinated, hypervalent mono and bicyclic phosphoranes. The mechanisms of their stereoisomerization and their selected interconversions are also presented.
Relativistic Chiral Kinetic Theory
NASA Astrophysics Data System (ADS)
Stephanov, Mikhail
2016-12-01
This very brief review of the recent progress in chiral kinetic theory is based on the results of Refs. [J.-Y. Chen, D. T. Son, M. A. Stephanov, H.-U. Yee, Y. Yin, Lorentz Invariance in Chiral Kinetic Theory, Phys. Rev. Lett. 113 (18) (2014) 182302. doi:10.1103/PhysRevLett.113.182302; J.-Y. Chen, D. T. Son, M. A. Stephanov, Collisions in Chiral Kinetic Theory, Phys. Rev. Lett. 115 (2) (2015) 021601. doi: 10.1103/PhysRevLett.115.021601; M. A. Stephanov, H.-U. Yee, The no-drag frame for anomalous chiral fluid, Phys. Rev. Lett. 116 (12) (2016) 122302. doi: 10.1103/PhysRevLett.116.122302].
Kim, Kyoung-Whan; Lee, Hyun-Woo
2016-01-01
The analysis of the magnetic domain wall motion in a nanostructured magnetic system with strong spin-orbit coupling shows that the energy dissipation can be chiral when the inversion symmetry is broken. PMID:26906956
Transverse force on transversely polarized quarks in longitudinally polarized nucleons
NASA Astrophysics Data System (ADS)
Abdallah, Manal; Burkardt, Matthias
2016-11-01
We study the semiclassical interpretation of the x3 and x4 moments of twist-3 parton distribution functions (PDFs). While no semiclassical interpretation for the higher moments of gT(x ) and e (x ) was found, the x3 moment of the chirally odd spin-dependent twist-3 PDF hL3(x ) can be related to the longitudinal gradient of the transverse force on transversely polarized quarks in longitudinally polarized nucleons in a deep-inelastic scattering experiment. We discuss how this result relates to the torque acting on a quark in the same experiment. This has further implications for comparisons between the Jaffe-Manohar and the Ji decompositions of the nucleon spin.
Quark mass variations of nuclear forces, BBN, and all that
NASA Astrophysics Data System (ADS)
Meissner, Ulf-G.
2014-03-01
In this talk, I discuss the modifications of the nuclear forces due to variations of the light quark masses and of the fine structure constant. This is based on the chiral nuclear effective field theory, that successfully describes a large body of data. The generation of the light elements in the Big Bang Nucleosynthesis provides important constraints on these modifications. In addition, I discuss the role of the anthropic principle in the triple-alpha process that underlies carbon and oxygen generation in hot stars. It appears that a fine-tuning of the quark masses and the fine structure constant within 2 to 3 per cent is required to make life on Earth viable. Supported in part by DFG, HGF and the BMBF.
Maki, Tuula
2008-03-18
The top quark is the heaviest elementary particle. Its mass is one of the fundamental parameters of the standard model of particle physics, and an important input to precision electroweak tests. This thesis describes three measurements of the top-quark mass in the dilepton decay channel. The dilepton events have two neutrinos in the final state; neutrinos are weakly interacting particles that cannot be detected with a multipurpose experiment. Therefore, the signal of dilepton events consists of a large amount of missing energy and momentum carried off by the neutrinos. The top-quark mass is reconstructed for each event by assuming an additional constraint from a top mass independent distribution. Template distributions are constructed from simulated samples of signal and background events, and parametrized to form continuous probability density functions. The final top-quark mass is derived using a likelihood fit to compare the reconstructed top mass distribution from data to the parametrized templates. One of the analyses uses a novel technique to add top mass information from the observed number of events by including a cross-section-constraint in the likelihood function. All measurements use data samples collected by the CDF II detector.
Nielsen, Jason
2004-04-30
The existence of the top quark, discovered by CDF and D0 in 1995, has been re-established in the burgeoning dataset being collected in Run 2 of the Tevatron at Fermilab. Results from CDF on the top quark production cross section and top quark mass are consistent with the Standard Model expectations. The well-characterized top data samples will make it possible in the future to probe further for new physics in the top quark sector. This report summarizes recent CDF top quark physics results.
Bonner, W.A.
1996-07-01
The indispensable role played by homochirality and chiral homogeneity in the self-replication of crucial biomolecules is stressed, with the conclusion that life could neither exist nor originate without these chiral molecular attributes. Hypotheses historically proposed for the origin of chiral molecules on Earth are reviewed, including biogenic theories as well as abiotic theories embracing both indeterminate and determinate mechanisms. Indeterminate mechanisms, including autocatalytic symmetry breaking, asymmetric adsorption on quartz and clay minerals, and asymmetric syntheses in chiral crystals, are discussed and evaluated in the context of the prebiotic environment. Abiotic determinate mechanisms based on electric, magnetic and gravitational fields, on circularly polarized light (CPL), and on parity violation effects are summarized, with the emphasis that only CPL has proved practicable experimentally, but that it would be implausible on the primitive Earth. Mechanisms for the amplification of small, indigenous enantiomeric excesses are discussed, with one involving the partial polymerization of amino acids and the partial hydrolysis of polypeptides suggested as potentially viable prebiotically. Aspects of the turbulent, chirality-destructive primeval environment are described, with the conclusion that all of the above mechanisms for the {ital terrestrial} prebiotic origin of chirality would be non-viable, and that an alternative extraterrestrial source for the accumulation of chiral molecules on primitive Earth must have been operative. A scenario for this is outlined, in which we postulate that asymmetric photolysis of the organic mantles on interstellar grains in molecular clouds by circularly polarized ultraviolet synchrotron radiation from the neutron star remnants of supernovae produces chiral molecules in the grain mantles. (Abstract Truncated)
Electrodynamics of chiral matter
NASA Astrophysics Data System (ADS)
Qiu, Zebin; Cao, Gaoqing; Huang, Xu-Guang
2017-02-01
Many-body systems with chiral fermions can exhibit novel transport phenomena that violate parity and time-reversal symmetries, such as the chiral magnetic effect, the anomalous Hall effect, and the anomalous generation of charge. Based on the Maxwell-Chern-Simons electrodynamics, we examine some electromagnetic and optical properties of such systems including the electrostatics, the magnetostatics, the propagation of electromagnetic waves, the novel optical effects, etc.
Chirality and protein biosynthesis.
Banik, Sindrila Dutta; Nandi, Nilashis
2013-01-01
Chirality is present at all levels of structural hierarchy of protein and plays a significant role in protein biosynthesis. The macromolecules involved in protein biosynthesis such as aminoacyl tRNA synthetase and ribosome have chiral subunits. Despite the omnipresence of chirality in the biosynthetic pathway, its origin, role in current pathway, and importance is far from understood. In this review we first present an introduction to biochirality and its relevance to protein biosynthesis. Major propositions about the prebiotic origin of biomolecules are presented with particular reference to proteins and nucleic acids. The problem of the origin of homochirality is unresolved at present. The chiral discrimination by enzymes involved in protein synthesis is essential for keeping the life process going. However, questions remained pertaining to the mechanism of chiral discrimination and concomitant retention of biochirality. We discuss the experimental evidence which shows that it is virtually impossible to incorporate D-amino acids in protein structures in present biosynthetic pathways via any of the two major steps of protein synthesis, namely aminoacylation and peptide bond formation reactions. Molecular level explanations of the stringent chiral specificity in each step are extended based on computational analysis. A detailed account of the current state of understanding of the mechanism of chiral discrimination during aminoacylation in the active site of aminoacyl tRNA synthetase and peptide bond formation in ribosomal peptidyl transferase center is presented. Finally, it is pointed out that the understanding of the mechanism of retention of enantiopurity has implications in developing novel enzyme mimetic systems and biocatalysts and might be useful in chiral drug design.
Quark Spectral Function above T{sub c}
Qin Sixue; Chang Lei; Liu Yuxin; Roberts, Craig D.
2011-05-24
The maximum entropy method is used to calculate the dressed-quark spectral density from the self-consistent solution of the rainbow-truncated gap equation of QCD at temperatures above T{sub c}, the critical temperature for chiral symmetry restoration. We find that, besides the normal and plasmino modes, the spectral function exhibits an essentially nonperturbative zero mode at the temperatures above but near T{sub c}. In the vicinity of T{sub c}, this long-wavelength mode contains the bulk of the spectral strength. So long as this mode persists, the system may reasonably be described as a strongly-coupled state of matter.
High temperature meson propagators with domain-wall quarks.
Lagae, J.-F.; Sinclair, D. K.
1999-09-23
We study the chiral properties of domain-wall quarks at high temperatures on an ensemble of quenched configurations. Low lying eigenmodes of the Dirac operator are calculated and used to check the extent to which the Atiyah-Singer index theorem is obeyed on lattices with finite N{sub 5}. We calculate the connected and disconnected screening propagators for the lowest mass scalar and pseudoscalar mesons in the sectors of different topological charge and note that they behave as expected. Separating out the would-be zero eigenmodes enables us to accurately estimate the disconnected propagators with far less effort than would be needed otherwise.
Penguins with charm and quark-hadron duality
NASA Astrophysics Data System (ADS)
Beneke, M.; Buchalla, G.; Neubert, M.; Sachrajda, C. T.
2009-06-01
The integrated branching fraction of the process B→ X s l + l - is dominated by resonance background from narrow charmonium states, such as B→ X s ψ→ X s l + l -, which exceeds the non-resonant charm-loop contribution by two orders of magnitude. The origin of this fact is discussed in view of the general expectation of quark-hadron duality. The situation in B→ X s l + l - is contrasted with charm-penguin amplitudes in two-body hadronic B decays of the type B→ π π, for which it is demonstrated that resonance effects and the potentially non-perturbative cbar{c} threshold region do not invalidate the standard picture of QCD factorization. This holds irrespective of whether the charm quark is treated as a light or a heavy quark.
Interacting Quark Matter Equation of State for Compact Stars
NASA Astrophysics Data System (ADS)
Fraga, Eduardo S.; Kurkela, Aleksi; Vuorinen, Aleksi
2014-02-01
Lattice quantum chromodynamics (QCD) studies of the thermodynamics of hot quark-gluon plasma demonstrate the importance of accounting for the interactions of quarks and gluons if one wants to investigate the phase structure of strongly interacting matter. Motivated by this observation and using state-of-the-art results from perturbative QCD, we construct a simple, effective equation of state (EOS) for cold quark matter that consistently incorporates the effects of interactions and furthermore includes a built-in estimate of the inherent systematic uncertainties. This goes beyond the MIT bag model description in a crucial way, yet leads to an EOS that is equally straightforward to use. We also demonstrate that, at moderate densities, our EOS can be made to smoothly connect to hadronic EOSs, with the two exhibiting very similar behavior near the matching region. The resulting hybrid stars are seen to have masses similar to those predicted by the purely nucleonic EOSs.
Circular Dichroism in the Photoionization of Nanoparticles from Chiral Compounds
Paul, J.; Doerzbach, A.; Siegmann, K.
1997-10-01
The dichroism in photoemission from chiral molecules is observed for the first time. Particles consisting of chiral molecules are suspended in air and irradiated alternately with right and left circularly polarized uv light. We found a polarization dependence in the total photoelectric current. The asymmetries observed are of the order of 10{sup {minus}2} to 10{sup {minus}3} , as expected from perturbation theory, and reverse their sign when the handedness of the molecules is changed. {copyright} {ital 1997} {ital The American Physical Society}
Nuclear axial currents in chiral effective field theory
Baroni, Alessandro; Girlanda, Luca; Pastore, Saori; ...
2016-01-11
Two-nucleon axial charge and current operators are derived in chiral effective field theory up to one loop. The derivation is based on time-ordered perturbation theory and accounts for cancellations between the contributions of irreducible diagrams and the contributions owing to nonstatic corrections from energy denominators of reducible diagrams. Ultraviolet divergencies associated with the loop corrections are isolated in dimensional regularization. The resulting axial current is finite and conserved in the chiral limit, while the axial charge requires renormalization. As a result, a complete set of contact terms for the axial charge up to the relevant order in the power countingmore » is constructed.« less
Nuclear axial currents in chiral effective field theory
Baroni, Alessandro; Girlanda, Luca; Pastore, Saori; Schiavilla, Rocco; Viviani, Michele
2016-01-11
Two-nucleon axial charge and current operators are derived in chiral effective field theory up to one loop. The derivation is based on time-ordered perturbation theory and accounts for cancellations between the contributions of irreducible diagrams and the contributions owing to nonstatic corrections from energy denominators of reducible diagrams. Ultraviolet divergencies associated with the loop corrections are isolated in dimensional regularization. The resulting axial current is finite and conserved in the chiral limit, while the axial charge requires renormalization. As a result, a complete set of contact terms for the axial charge up to the relevant order in the power counting is constructed.
The Soliton-Soliton Interaction in the Chiral Dilaton Model
NASA Astrophysics Data System (ADS)
Mantovani-Sarti, Valentina; Park, Byung-Yoon; Vento, Vicente
2013-10-01
We study the interaction between two B = 1 states in the Chiral Dilaton Model where baryons are described as nontopological solitons arising from the interaction of chiral mesons and quarks. By using the hedgehog solution for B = 1 states we construct, via a product ansatz, three possible B = 2 configurations to analyse the role of the relative orientation of the hedgehog quills in the dynamics of the soliton-soliton interaction and investigate the behavior of these solutions in the range of long/intermediate distance. One of the solutions is quite binding due to the dynamics of the π and σ fields at intermediate distance and should be used for nuclear matter studies. Since the product ansatz break down as the two solitons get close, we explore the short range distance regime with a model that describes the interaction via a six-quark bag ansatz. We calculate the interaction energy as a function of the inter-soliton distance and show that for small separations the six quarks bag, assuming a hedgehog structure, provides a stable bound state that at large separations connects with a special configuration coming from the product ansatz.
Probing the hadron-quark mixed phase at high isospin and baryon density. Sensitive observables
NASA Astrophysics Data System (ADS)
Di Toro, Massimo; Colonna, Maria; Greco, Vincenzo; Shao, Guo-Yun
2016-08-01
We discuss the isospin effect on the possible phase transition from hadronic to quark matter at high baryon density and finite temperatures. The two-Equation of State (Two-EoS) model is adopted to describe the hadron-quark phase transition in dense matter formed in heavy-ion collisions. For the hadron sector we use Relativistic Mean-Field (RMF) effective models, already tested on heavy-ion collision (HIC). For the quark phase we consider various effective models, the MIT-Bag static picture, the Nambu-Jona-Lasinio (NJL) approach with chiral dynamics and finally the NJL coupled to the Polyakov-loop field (PNJL), which includes both chiral and (de)confinement dynamics. The idea is to extract mixed phase properties which appear robust with respect to the model differences. In particular we focus on the phase transitions of isospin asymmetric matter, with two main results: i) an earlier transition to a mixed hadron-quark phase, at lower baryon density/chemical potential with respect to symmetric matter; ii) an "Isospin Distillation" to the quark component of the mixed phase, with predicted effects on the final hadron production. Possible observation signals are suggested to probe in heavy-ion collision experiments at intermediate energies, in the range of the NICA program.
Strange quark matter and quark stars with the Dyson-Schwinger quark model
NASA Astrophysics Data System (ADS)
Chen, H.; Wei, J.-B.; Schulze, H.-J.
2016-09-01
We calculate the equation of state of strange quark matter and the interior structure of strange quark stars in a Dyson-Schwinger quark model within rainbow or Ball-Chiu vertex approximation. We emphasize constraints on the parameter space of the model due to stability conditions of ordinary nuclear matter. Respecting these constraints, we find that the maximum mass of strange quark stars is about 1.9 solar masses, and typical radii are 9-11km. We obtain an energy release as large as 3.6 × 10^{53} erg from conversion of neutron stars into strange quark stars.
Simulating Chiral Magnetic and Separation Effects with Spin-Orbit Coupled Atomic Gases
Huang, Xu-Guang
2016-01-01
The chiral magnetic and chiral separation effects—quantum-anomaly-induced electric current and chiral current along an external magnetic field in parity-odd quark-gluon plasma—have received intense studies in the community of heavy-ion collision physics. We show that analogous effects occur in rotating trapped Fermi gases with Weyl-Zeeman spin-orbit coupling where the rotation plays the role of an external magnetic field. These effects can induce a mass quadrupole in the atomic cloud along the rotation axis which may be tested in future experiments. Our results suggest that the spin-orbit coupled atomic gases are potential simulators of the chiral magnetic and separation effects. PMID:26868084
Effective field theories of baryons and mesons, or, what do quarks do?
Keaton, G.L.
1995-06-26
This thesis is an attempt to understand the properties of the protons, pions and other hadrons in terms of their fundamental building blocks. In the first chapter the author reviews several of the approaches that have already been developed. The Nambu-Jona-Lasinio model offers the classic example of a derivation of meson properties from a quark Lagrangian. The chiral quark model encodes much of the intuition acquired in recent decades. The author also discusses the non-linear sigma model, the Skyrme model, and the constituent quark model, which is one of the oldest and most successful models. In the constituent quark model, the constituent quark appears to be different from the current quark that appears in the fundamental QCD Lagrangian. Recently it was proposed that the constituent quark is a topological soliton. In chapter 2 the author investigates this soliton, calculating its mass, radius, magnetic moment, color magnetic moment, and spin structure function. Within the approximations used, the magnetic moments and spin structure function cannot simultaneously be made to agree with the constituent quark model. In chapter 3 the author uses a different plan of attack. Rather than trying to model the constituents of the baryon, he begins with an effective field theory of baryons and mesons, with couplings and masses that are simply determined phenomenologically. Meson loop corrections to baryon axial currents are then computed in the 1/N expansion. It is already known that the one-loop corrections are suppressed by a factor 1/N; here it is shown that the two-loop corrections are suppressed by 1/N{sup 2}. To leading order, these corrections are exactly the same as would be calculated in the constituent quark model. This method therefore offers a different approach to the constituent quark.
Charm and strange quark masses and fD s from overlap fermions
NASA Astrophysics Data System (ADS)
Yang, Yi-Bo; Chen, Ying; Alexandru, Andrei; Dong, Shao-Jing; Draper, Terrence; Gong, Ming; Lee, Frank X.; Li, Anyi; Liu, Keh-Fei; Liu, Zhaofeng; Lujan, Michael
2015-08-01
We use overlap fermions as valence quarks to calculate meson masses in a wide quark mass range on the 2 +1 -flavor domain-wall fermion gauge configurations generated by the RBC and UKQCD Collaborations. The well-defined quark masses in the overlap fermion formalism and the clear valence quark mass dependence of meson masses observed from the calculation facilitate a direct derivation of physical current quark masses through a global fit to the lattice data, which incorporates O (a2) and O (mc4a4) corrections, chiral extrapolation, and quark mass interpolation. Using the physical masses of Ds, Ds* and J /ψ as inputs, Sommer's scale parameter r0 and the masses of charm quark and strange quark in the MS ¯ scheme are determined to be r0=0.465 (4 )(9 ) fm , mcMS ¯(2 GeV )=1.118 (6 )(24 ) GeV (or mcMS ¯(mc)=1.304 (5 )(20 ) GeV ), and msMS ¯(2 GeV )=0.101 (3 )(6 ) GeV , respectively. Furthermore, we observe that the mass difference of the vector meson and the pseudoscalar meson with the same valence quark content is proportional to the reciprocal of the square root of the valence quark masses. The hyperfine splitting of charmonium, MJ /ψ-Mηc , is determined to be 119(2)(7) MeV, which is in good agreement with the experimental value. We also predict the decay constant of Ds to be fDs=254 (2 )(4 ) MeV . The masses of charmonium P -wave states χc 0 , χc 1 and hc are also in good agreement with experiments.
V+jets Background and Systematic Uncertainties in Top Quark Analyses
Adomeit, Stefanie; Peters, Reinhild Yvonne
2014-12-01
Vector boson production in association with jets is an important process to test perturbative quantum chromodynamics and also a background process in top quark analyses. Measurements on vector boson production in association with light and heavy flavour jets are presented, performed by the D0 and CDF collaborations at the Tevatron as well as the ATLAS and CMS experiments at LHC. Techniques applied in top quark analyses to estimate the vector boson+jets background are also discussed.
Variational perturbation theory and nonperturbative calculations in QCD
Solovtsova, O. P.
2013-10-15
A nonperturbative approach based on the variational perturbation theory in quantum chromodynamics is developed. The variational series is different from the conventional perturbative expansion and can be used to go beyond the weak-coupling regime. The approach suggested takes into account the summation of threshold singularities and the involvement of nonperturbative light quark masses. Phenomenological applications of this approach to describe physical quantities connected with the hadronic {tau}-decay data: the R{sub {tau}} ratio, the light-quark Adler function, and the smeared R{sub {Delta}} function are presented. The description of examined quantities includes an infrared region and, therefore, they cannot be directly calculated within the standard perturbation theory. It is shown that in spite of this fact the approach suggested gives a rather good result for these quantities down to the lowest energy scale.
Chiral nihility effects on energy flow in chiral materials.
Qiu, Cheng-Wei; Burokur, Nawaz; Zouhd, Saïd; Li, Le-Wei
2008-01-01
The propagation of electromagnetic plane waves in an isotropic chiral medium is characterized, and a special interest is shown in chiral nihility and the effects of chirality on energy transmission. In particular, the wave impedance is matched to that of free space. Moreover, the refractive index n is also matched in impedance to that of free space when an appropriate value of the chirality is chosen. A "chiral nihility" medium is explored in which both the permittivity and the permeability tend to zero. Some specific case studies of chiral nihility are presented, and Brewster angles are found to cover an extremely wide range. The E-field distributions in these different cases where the chiral slab is placed in free space are analyzed by using the appropriate constitutive relations. It is shown from numerical calculations that one can obtain some critical characteristics of the effects of chirality on energy transmission and reflection, such as transparency and power tunneling.
Search for Quark-Lepton Compositeness in the Dimuon Final State at DØ
Xuan, Nguyen Phuoc
2005-04-01
We used the upgraded DØ detector at the Tevatron at √s = 1.96 TeV to collect data in a search for a compositeness signature of quarks and leptons. This analysis uses an integrated luminosity of 400 pb^{-1}. The high-mass dimuon mass spectrum is compared with that predicted by Drell-Yan (DY) scattering, modified by a contact interaction. This interaction is parameterized by a compositeness energy scale factor Λ. Preliminary limits on Λ are set at the 95% confidence level for constructive and destructive interference between the DY amplitude and the contact interaction for various quark and lepton chiralities.
Quark spectral density and a strongly-coupled quark-gluon plasma.
Qin, S.; Chang, L.; Liu, Y.; Roberts, C. D.
2011-07-13
The maximum entropy method is used to compute the dressed-quark spectral density from the self-consistent numerical solution of a rainbow truncation of QCD's gap equation at temperatures above that for which chiral symmetry is restored. In addition to the normal and plasmino modes, the spectral function also exhibits an essentially nonperturbative zero mode for temperatures extending to 1.4-1.8 times the critical temperature, T{sub c}. In the neighborhood of T{sub c}, this long-wavelength mode contains the bulk of the spectral strength and as long as this mode persists, the system may fairly be described as a strongly-coupled state of matter.
Calculation of the cross section for top quark production
Berger, E.L.; Contopanagos, H.
1996-06-21
The authors summarize calculations of the cross section for top quark production at hadron colliders within the context of perturbative quantum chromodynamics, including resummation of the effects of initial-state soft gluon radiation to all orders in the strong coupling strength. In their approach they resume the universal leading-logarithm contributions, and they restrict the calculation to the region of phase space that is demonstrably perturbative. They compare the approach with other methods. They present predictions of the physical cross section as a function of the top quark mass in proton-antiproton reactions at center-of-mass energies of 1.8 and 2.0 TeV, and they discuss estimated uncertainties.
The effective chiral Lagrangian from dimension-six parity and time-reversal violation
Vries, J. de; Mereghetti, E.; Timmermans, R.G.E.; Kolck, U. van
2013-11-15
We classify the parity- and time-reversal-violating operators involving quark and gluon fields that have effective dimension six: the quark electric dipole moment, the quark and gluon chromo-electric dipole moments, and four four-quark operators. We construct the effective chiral Lagrangian with hadronic and electromagnetic interactions that originate from them, which serves as the basis for calculations of low-energy observables. The form of the effective interactions depends on the chiral properties of these operators. We develop a power-counting scheme and calculate within this scheme, as an example, the parity- and time-reversal-violating pion–nucleon form factor. We also discuss the electric dipole moments of the nucleon and light nuclei. -- Highlights: •Classification of T-odd dimension-six sources based on impact on observables. •Building of the chiral Lagrangian for each dimension-six source. •Calculation of the PT-odd pion–nucleon form factor for each source. •Discussion of hadronic EDMs for each source and comparison with the theta term.
Suzuki, Nozomu; Wang, Yichun; Elvati, Paolo; Qu, Zhi-Bei; Kim, Kyoungwon; Jiang, Shuang; Baumeister, Elizabeth; Lee, Jaewook; Yeom, Bongjun; Bahng, Joong Hwan; Lee, Jaebeom; Violi, Angela; Kotov, Nicholas A
2016-02-23
Chiral nanostructures from metals and semiconductors attract wide interest as components for polarization-enabled optoelectronic devices. Similarly to other fields of nanotechnology, graphene-based materials can greatly enrich physical and chemical phenomena associated with optical and electronic properties of chiral nanostructures and facilitate their applications in biology as well as other areas. Here, we report that covalent attachment of l/d-cysteine moieties to the edges of graphene quantum dots (GQDs) leads to their helical buckling due to chiral interactions at the "crowded" edges. Circular dichroism (CD) spectra of the GQDs revealed bands at ca. 210-220 and 250-265 nm that changed their signs for different chirality of the cysteine edge ligands. The high-energy chiroptical peaks at 210-220 nm correspond to the hybridized molecular orbitals involving the chiral center of amino acids and atoms of graphene edges. Diverse experimental and modeling data, including density functional theory calculations of CD spectra with probabilistic distribution of GQD isomers, indicate that the band at 250-265 nm originates from the three-dimensional twisting of the graphene sheet and can be attributed to the chiral excitonic transitions. The positive and negative low-energy CD bands correspond to the left and right helicity of GQDs, respectively. Exposure of liver HepG2 cells to L/D-GQDs reveals their general biocompatibility and a noticeable difference in the toxicity of the stereoisomers. Molecular dynamics simulations demonstrated that d-GQDs have a stronger tendency to accumulate within the cellular membrane than L-GQDs. Emergence of nanoscale chirality in GQDs decorated with biomolecules is expected to be a general stereochemical phenomenon for flexible sheets of nanomaterials.
Next-to-Leading Order QCD Corrections to Three-Jet Cross Sections with Massive Quarks
Bernreuther, W.; Brandenburg, A.; Uwer, P.
1997-07-01
We calculate the cross section for e{sup +}e{sup {minus}} annihilation into three jets for massive quarks at next-to-leading order in perturbative QCD, both on and off the Z resonance. Our computation allows the implementation of any jet clustering algorithm. We give results for the three-jet cross section involving b quarks for the JADE and Durham algorithms at c.m.energies {radical}(s)=m{sub Z} . We also discuss a three-jet observable that is sensitive to the mass of the b quark. {copyright} {ital 1997} {ital The American Physical Society}
Superconductivity in a chiral nanotube
Qin, F.; Shi, W.; Ideue, T.; Yoshida, M.; Zak, A.; Tenne, R.; Kikitsu, T.; Inoue, D.; Hashizume, D.; Iwasa, Y.
2017-01-01
Chirality of materials are known to affect optical, magnetic and electric properties, causing a variety of nontrivial phenomena such as circular dichiroism for chiral molecules, magnetic Skyrmions in chiral magnets and nonreciprocal carrier transport in chiral conductors. On the other hand, effect of chirality on superconducting transport has not been known. Here we report the nonreciprocity of superconductivity—unambiguous evidence of superconductivity reflecting chiral structure in which the forward and backward supercurrent flows are not equivalent because of inversion symmetry breaking. Such superconductivity is realized via ionic gating in individual chiral nanotubes of tungsten disulfide. The nonreciprocal signal is significantly enhanced in the superconducting state, being associated with unprecedented quantum Little-Parks oscillations originating from the interference of supercurrent along the circumference of the nanotube. The present results indicate that the nonreciprocity is a viable approach toward the superconductors with chiral or noncentrosymmetric structures. PMID:28205518
Superconductivity in a chiral nanotube
NASA Astrophysics Data System (ADS)
Qin, F.; Shi, W.; Ideue, T.; Yoshida, M.; Zak, A.; Tenne, R.; Kikitsu, T.; Inoue, D.; Hashizume, D.; Iwasa, Y.
2017-02-01
Chirality of materials are known to affect optical, magnetic and electric properties, causing a variety of nontrivial phenomena such as circular dichiroism for chiral molecules, magnetic Skyrmions in chiral magnets and nonreciprocal carrier transport in chiral conductors. On the other hand, effect of chirality on superconducting transport has not been known. Here we report the nonreciprocity of superconductivity--unambiguous evidence of superconductivity reflecting chiral structure in which the forward and backward supercurrent flows are not equivalent because of inversion symmetry breaking. Such superconductivity is realized via ionic gating in individual chiral nanotubes of tungsten disulfide. The nonreciprocal signal is significantly enhanced in the superconducting state, being associated with unprecedented quantum Little-Parks oscillations originating from the interference of supercurrent along the circumference of the nanotube. The present results indicate that the nonreciprocity is a viable approach toward the superconductors with chiral or noncentrosymmetric structures.
Superconductivity in a chiral nanotube.
Qin, F; Shi, W; Ideue, T; Yoshida, M; Zak, A; Tenne, R; Kikitsu, T; Inoue, D; Hashizume, D; Iwasa, Y
2017-02-16
Chirality of materials are known to affect optical, magnetic and electric properties, causing a variety of nontrivial phenomena such as circular dichiroism for chiral molecules, magnetic Skyrmions in chiral magnets and nonreciprocal carrier transport in chiral conductors. On the other hand, effect of chirality on superconducting transport has not been known. Here we report the nonreciprocity of superconductivity-unambiguous evidence of superconductivity reflecting chiral structure in which the forward and backward supercurrent flows are not equivalent because of inversion symmetry breaking. Such superconductivity is realized via ionic gating in individual chiral nanotubes of tungsten disulfide. The nonreciprocal signal is significantly enhanced in the superconducting state, being associated with unprecedented quantum Little-Parks oscillations originating from the interference of supercurrent along the circumference of the nanotube. The present results indicate that the nonreciprocity is a viable approach toward the superconductors with chiral or noncentrosymmetric structures.
Chiral anomalies and differential geometry
Zumino, B.
1983-10-01
Some properties of chiral anomalies are described from a geometric point of view. Topics include chiral anomalies and differential forms, transformation properties of the anomalies, identification and use of the anomalies, and normalization of the anomalies. 22 references. (WHK)
Nucleon quark distributions in a covariant quark-diquark model
Ian Cloet; W. Bentz; Anthony Thomas
2005-04-01
Spin-dependent and spin-independent quark light-cone momentum distributions and structure functions are calculated for the nucleon. We utilize a modified Nambu-Jona-Lasinio model in which confinement is simulated by eliminating unphysical thresholds for nucleon decay into quarks. The nucleon bound state is obtained by solving the Faddeev equation in the quark-diquark approximation, where both scalar and axial-vector diquarks channels are included. We find excellent agreement between our model results and empirical data.
NASA Astrophysics Data System (ADS)
Zhong, Yang; Yang, Chun-Bin; Cai, Xu; Feng, Sheng-Qin
2016-08-01
It has been proposed that electric fields may lead to chiral separation in quark-gluon plasma (QGP). This is called the chiral electric separation effect. The strong electromagnetic field and the QCD vacuum can both be completely produced in off-central nuclear-nuclear collision. We use the Woods-Saxon nucleon distribution to calculate the electric field distributions of off-central collisions. The chiral electric field spatial distribution at Relativistic Heavy-Ion Collider (RHIC) and Large Hadron Collider (LHC) energy regions are systematically studied in this paper. The dependence of the electric field produced by the thermal quark in the central position with different impact parameters on the proper time with different collision energies in the RHIC and LHC energy regions are studied in this paper. Supported by National Natural Science Foundation of China (11375069, 11435054, 11075061, 11221504) and Key Laboratory Foundation of Quark and Lepton Physics (Hua-Zhong Normal University)(QLPL2014P01)
Top quark pair production and top quark properties at CDF
Moon, Chang-Seong
2016-06-02
We present the most recent measurements of top quark pairs production and top quark properties in proton-antiproton collisions with center-of-mass energy of 1.96 TeV using CDF II detector at the Tevatron. The combination of top pair production cross section measurements and the direct measurement of top quark width are reported. The test of Standard Model predictions for top quark decaying into $b$-quarks, performed by measuring the ratio $R$ between the top quark branching fraction to $b$-quark and the branching fraction to any type of down quark is shown. The extraction of the CKM matrix element $|V_{tb}|$ from the ratio $R$ is discussed. We also present the latest measurements on the forward-backward asymmetry ($A_{FB}$) in top anti-top quark production. With the full CDF Run II data set, the measurements are performed in top anti-top decaying to final states that contain one or two charged leptons (electrons or muons). In addition, we combine the results of the leptonic forward-backward asymmetry in $t\\bar t$ system between the two final states. All the results show deviations from the next-to-leading order (NLO) standard model (SM) calculation.
Chiral electroweak currents in nuclei
Riska, D. O.; Schiavilla, R.
2017-01-10
Here, the development of the chiral dynamics based description of nuclear electroweak currents is reviewed. Gerald E. (Gerry) Brown’s role in basing theoretical nuclear physics on chiral Lagrangians is emphasized. Illustrative examples of the successful description of electroweak observables of light nuclei obtained from chiral effective field theory are presented.
Recent progress in understanding deconfinement and chiral restoration phase transitions
NASA Astrophysics Data System (ADS)
Shuryak, Edward
2017-03-01
Paradigme shift in gauge topology, from instantons to their constituents - instanton-dyons - has recently lead to very significant advances. Like instantons, they have fermionic zero modes, and their collectivization at sufficiently high density explains the chiral symmetry breaking. Unlike instantons, these objects have electric and magnetic charges. Their back reaction on the mean value of the Polyakov line (holonomy) allows to explain the deconfinement transition. The talk summarizes recent works on the dyon ensemble, done in the mean field approximation (MFA), and also by direct numerical statistical simulation. Introduction of non-trivial quark periodicity conditions leads to drastic changes in both deconfinement and chiral transitions. In particulaly, in the so called Z(Nc) - QCD model the former gets much stronger, while the latter does not seem to occur at all.
Chiral magnetic and vortical effects in high-energy nuclear collisions-A status report
NASA Astrophysics Data System (ADS)
Kharzeev, D. E.; Liao, J.; Voloshin, S. A.; Wang, G.
2016-05-01
The interplay of quantum anomalies with magnetic field and vorticity results in a variety of novel non-dissipative transport phenomena in systems with chiral fermions, including the quark-gluon plasma. Among them is the Chiral Magnetic Effect (CME)-the generation of electric current along an external magnetic field induced by chirality imbalance. Because the chirality imbalance is related to the global topology of gauge fields, the CME current is topologically protected and hence non-dissipative even in the presence of strong interactions. As a result, the CME and related quantum phenomena affect the hydrodynamical and transport behavior of strongly coupled quark-gluon plasma, and can be studied in relativistic heavy ion collisions where strong magnetic fields are created by the colliding ions. Evidence for the CME and related phenomena has been reported by the STAR Collaboration at Relativistic Heavy Ion Collider at BNL, and by the ALICE Collaboration at the Large Hadron Collider at CERN. The goal of the present review is to provide an elementary introduction into the physics of anomalous chiral effects, to describe the current status of experimental studies in heavy ion physics, and to outline the future work, both in experiment and theory, needed to eliminate the existing uncertainties in the interpretation of the data.
Zhang, Li; Qin, Long; Wang, Xiufeng; Cao, Hai; Liu, Minghua
2014-10-29
Supramolecular chirality, which arises from the nonsymmetric spatial arrangement of components in the self-assembly systems, has gained great attention owing to its relation to the natural biological structures and the possible new functions in advanced materials. During the self-assembling process, both chiral and achiral components are possible to form chiral nanostructures. Therefore, it becomes an important issue how to fabricate these molecular components into chiral nanostructures. Furthermore, once the chiral nanostructure is obtained, will it show new functions that simple component molecule could not? In this research news, we report our recent development in the regulation of chiral nanostructures in soft gels or vesicle materials. We have further developed several new functions pertaining to the soft gel materials, which single chiral molecules could not perform, such as the chiroptical switch, chiral recognition and the asymmetry catalysis.
Quark matter or new particles?
NASA Technical Reports Server (NTRS)
Michel, F. Curtis
1988-01-01
It has been argued that compression of nuclear matter to somewhat higher densities may lead to the formation of stable quark matter. A plausible alternative, which leads to radically new astrophysical scenarios, is that the stability of quark matter simply represents the stability of new particles compounded of quarks. A specific example is the SU(3)-symmetric version of the alpha particle, composed of spin-zero pairs of each of the baryon octet (an 'octet' particle).
Phenomenology of heavy quark systems
Gilman, F.J.
1987-03-01
The spectroscopy of heavy quark systems is examined with regards to spin independent and spin dependent potentials. It is shown that a qualitative picture exists of the spin-independent forces, and that a semi-quantitative understanding exists for the spin-dependent effects. A brief review is then given of the subject of the decays of hadrons containing heavy quarks, including weak decays at the quark level, and describing corrections to the spectator model. (LEW)
Exotic Signals of Vectorlike Quarks
Dobrescu, Bogdan A.; Yu, Felix
2016-12-06
Vectorlike fermions are an important target for hadron collider searches. We show that the vectorlike quarks may predominantly decay via higher-dimensional operators into a quark plus a couple of other Standard Model fermions. Pair production of vectorlike quarks of charge 2/3 at the LHC would then lead to a variety of possible final states, including $t\\bar t + 4\\tau$, $t\\bar b\
NASA Astrophysics Data System (ADS)
Bradlyn, Barry; Cano, Jennifer; Wang, Zhijun; Hirschberger, Max; Ong, N. Phuan; Bernevig, B. Andrei
Materials with intrinsic Weyl points should present exotic magnetotransport phenomena due to spectral flow between Weyl nodes of opposite chirality - the so-called ``chiral anomaly''. However, to date, the most definitive transport data showing the presence of a chiral anomaly comes from Dirac (not Weyl) materials. These semimetals develop Weyl fermions only in the presence of an externally applied magnetic field, when the four-fold degeneracy is lifted. In this talk we examine Berry phase effects on transport due to the emergence of these field-induced Weyl point and (in some cases) line nodes. We pay particular attention to the differences between intrinsic and field-induced Weyl fermions, from the point of view of kinetic theory. Finally, we apply our analysis to a particular material relevant to current experiments performed at Princeton.
Testa, B; Reist, M; Carrupt, P A
2000-07-01
The two enantiomers of a chiral drug may have vastly different pharmacodynamic and pharmacokinetic properties. As a result, the research and development of chiral drugs raises specific problems some of which are discussed here. Thus, various pharmacokinetic interactions may involve two enantiomers, as seen for example when one enantiomer inhibits the metabolism of the other and modifies its effects. A different situation occurs when a third compound stereoselectively inhibits the metabolism of one of the two enantiomers. Another problem examined here results from the lack of configurational stability of some chiral drugs, a little known phenomenon whose consequences can be of pharmacological or pharmaceutical significance depending on the rate of the reaction of racemization or epimerisation. In-depth investigations are needed before choosing between a eutomer or a racemate.
Doped Chiral Polymer Metamaterials
NASA Technical Reports Server (NTRS)
Park, Cheol (Inventor); Kang, Jin Ho (Inventor); Gordon, Keith L. (Inventor); Sauti, Godfrey (Inventor); Lowther, Sharon E. (Inventor); Bryant, Robert G. (Inventor)
2017-01-01
Some implementations provide a composite material that includes a first material and a second material. In some implementations, the composite material is a metamaterial. The first material includes a chiral polymer (e.g., crystalline chiral helical polymer, poly-.gamma.-benzyl-L-glutamate (PBLG), poly-L-lactic acid (PLA), polypeptide, and/or polyacetylene). The second material is within the chiral polymer. The first material and the second material are configured to provide an effective index of refraction value for the composite material of 1 or less. In some implementations, the effective index of refraction value for the composite material is negative. In some implementations, the effective index of refraction value for the composite material of 1 or less is at least in a wavelength of one of at least a visible spectrum, an infrared spectrum, a microwave spectrum, and/or an ultraviolet spectrum.
NASA Astrophysics Data System (ADS)
Antinori, Federico; Bass, Steffen A.; Bellwied, Rene; Ullrich, Thomas; Velkovska, Julia; Wiedemann, Urs
2005-04-01
Why another conference devoted to ultra-relativistic heavy-ion physics? As we looked around the landscape of the existing international conferences and workshops, we realized that there was not a single one tailored to the people who are most directly involved with the actual research work: students, post-docs, and junior faculty/research scientists. Of course there are schools, but that was not what we had in mind. We wanted a meeting where young researchers could come together to discuss in depth the physics that they are working on without any hindrance. The major conferences have very limited time for discussions which is often shared amongst the most established. This leaves little room for young people to ask their questions and to get the detailed feedback which they deserve and which satisfies their curiosity. A discussion-driven workshop, centering on those without whom there will be no future—that seemed like what was needed. And thus the Hot Quarks workshop was born. The aim of Hot Quarks was to enhance the direct exchange of scientific information among the younger members of the community, from both experiment and theory. Participation was by invitation only in order to emphasize the contributions from junior researchers. This approach makes the workshop unique among the many forums in the field. For young scientists it represented an opportunity for exposure that they would not have had in one of the major conferences. The hope is that this meeting has helped to stimulate the next generation of scientists in our field and, at the same time, strengthened their sense of community. It all came together from 18 24 July 2004, when the 77 participants met at The Inn at Snakedance in the Taos Ski Valley, New Mexico, USA, for the first Hot Quarks workshop. Photograph Participants gather in the sunshine at the foot of the Taos Ski Valley chairlift. By all accounts, Hot Quarks 2004 was a great success. Every participant had the opportunity to present her or
Maxwell-Chern-Simons hydrodynamics for the chiral magnetic effect
Oezoender, Sener
2010-06-15
The rate of vacuum-changing topological solutions of the gluon field, sphalerons, is estimated to be large at the typical temperatures of heavy-ion collisions, particularly at the Relativistic Heavy Ion Collider. Such windings in the gluon field are expected to produce parity-odd bubbles, which cause separation of positively and negatively charged quarks along the axis of the external magnetic field. This chiral magnetic effect can be mimicked by Chern-Simons modified electromagnetism. Here we present a model of relativistic hydrodynamics including the effects of axial anomalies via the Chern-Simons term.
Quark forces from hadronic spectroscopy.
Pirjol, Dan; Schat, Carlos
2009-04-17
We consider the implications of the most general two-body quark-quark interaction Hamiltonian for the spin-flavor structure of the negative parity L = 1 excited baryons. Assuming the most general two-body quark interaction Hamiltonian, we derive two correlations among the masses and mixing angles of these states, which constrain the mixing angles, and can be used to test for the presence of three-body quark interactions. We find that the pure gluon-exchange model is disfavored by data, independently of any assumptions about hadronic wave functions.
Influence of the nonperturbative quark-gluon vertex on the meson and baryon spectrum
Williams, Richard; Sanchis-Alepuz, Hèlios
2016-01-22
We present a calculation of the Hadron spectrum in the Dyson-Schwinger/Bethe-Salpeter approach to continuum QCD. A sophisticated truncation featuring all covariant structures of the quark-gluon vertex, with its inherent flavour dependence, is employed in a framework that preserves the dynamics of chiral symmetry breaking. The study is suggestive as to the relevance of additional resonant and non-resonant two- and three-body contributions.
Chiral symmetry breaking and confinement effects on dilepton and photon production around Tc
NASA Astrophysics Data System (ADS)
Satow, Daisuke; Weise, Wolfram
2015-09-01
Production rates of dileptons and photons from the quark-gluon (QGP) phase are calculated taking into account effects of confinement and spontaneous chiral symmetry breaking (χ SB ) not far from the transition temperature Tc. We find that the production rates of dileptons with large momenta and of photons originating from the QGP around Tc are suppressed by the χ SB effect. We also discuss to what extent information about details of the chiral transition, such as its characteristic temperature range and the steepness of the crossover, are reflected in these quantities.
Differences between heavy and light quarks.
Maris, P.; Roberts, C. D.
1997-11-10
The quark Dyson-Schwinger equation shows that there are distinct differences between light and heavy quarks. The dynamical mass function of the light quarks is characterized by a sharp increase below 1 GeV, whereas the mass function of the heavy quarks is approximately constant in this infrared region. As a consequence, the heavy meson masses increase linearly with the current quark masses, whereas the light pseudoscalar meson masses are proportional to the square root of the current quark masses.
The Discovery of the Top Quark
DOE R&D Accomplishments Database
Sinervo, P.K.
1995-12-01
The top quark and the Higgs boson are the heaviest elementary particles predicted by the standard model. The four lightest quark flavours, the up, down, strange and charm quarks, were well-established by the mid-1970's. The discovery in 1977 of the {Tau} resonances, a new family of massive hadrons, required the introduction of the fifth quark flavour. Experimental and theoretical studies have indicated that this quark also has a heavier partner, the top quark.
Quark and Gluon Relaxation in Quark-Gluon Plasmas
NASA Technical Reports Server (NTRS)
Heiselberg, H.; Pethick, C. J.
1993-01-01
The quasiparticle decay rates for quarks and gluons in quark-gluon plasmas are calculated by solving the kinetic equation. Introducing an infrared cutoff to allow for nonperturbative effects, we evaluate the quasiparticle lifetime at momenta greater than the inverse Debye screening length to leading order in the coupling constant.
On chiral magnetic effect in Weyl superfluid 3He-A
NASA Astrophysics Data System (ADS)
Volovik, G. E.
2017-01-01
In the theory of the chiral anomaly in relativistic quantum field theories (RQFT) some results depend on regularization scheme at ultraviolet. In the chiral superfluid 3He-A, which contains two Weyl points and also experiences the effects of chiral anomaly, the "trans-Planckian" physics is known and the results can be obtained without regularization. We discuss this on example of the chiral magnetic effect (CME), which has been observed in 3He-A in 90's [1]. There are two forms of the contribution of the CME to the Chern-Simons term in free energy, perturbative and non-perturbative. The perturbative term comes from the fermions living in the vicinity of the Weyl point, where the fermions are "relativistic" and obey the Weyl equation. The non-perturbative term originates from the deep vacuum, being determined by the separation of the two Weyl points in momentum space. Both terms are obtained using the Adler-Bell-Jackiw equation for chiral anomaly, and both agree with the results of the microscopic calculations in the "trans-Planckian" region. Existence of the two nonequivalent forms of the Chern-Simons term demonstrates that the results obtained within the RQFT depend on the specific properties of the underlying quantum vacuum and may reflect different physical phenomena in the same vacuum.
The nucleon-nucleon system in chiral effective theory
Phillips, Daniel R.
2011-10-24
I discuss the conditions under which the application of chiral perturbation theory to the NN potential gives reliable results for NN scattering phase shifts. {sub {chi}P}T also yields a convergent expansion for the deuteron charge operator. For cutoffs <1 GeV, this produces precise predictions for deuterium's quadrupole and charge form factors in the range Q{sup 2}<0.25 GeV{sup 2}.
NASA Astrophysics Data System (ADS)
Kopp, Victor I.; Churikov, Victor M.; Singer, Jonathan; Neugroschl, Daniel; Genack, Azriel Z.
2010-04-01
We have fabricated a variety of chiral fiber sensors by twisting one or more standard or custom optical fibers with noncircular or nonconcentric core as they pass though a miniature oven. The resulting structures are as stable as the glass material and can be produced with helical pitch ranging from microns to hundreds of microns. The polarization selectivity of the chiral gratings is determined by the geometry of the fiber cross section. Single helix structures are polarization insensitive, while double helix gratings interact only with a single optical polarization component. Both single and double helix gratings may function as a fiber long period grating, coupling core and cladding modes or as a diffraction grating scattering light from the fiber core out of the fiber. The resulting dips in the transmission spectrum are sensitive to fiber elongation, twist and temperature, and (in the case of the long period gratings) to the refractive index of the surrounding medium. The suitability of chiral gratings for sensing temperature, elongation, twist and liquid levels will be discussed. Gratings made of radiation sensitive glass can be used to measure the cumulative radiation dose, while gratings made of radiation-hardened glass are suitable for stable sensing of the environment in nuclear power plants. Excellent temperature stability up to 900°C is found in pure silica chiral diffraction grating sensors.
Revisiting the boiling of primordial quark nuggets at nonzero chemical potential
NASA Astrophysics Data System (ADS)
Li, Ang; Liu, Tong; Gubler, Philipp; Xu, Ren-Xin
2015-03-01
The boiling of possible quark nuggets during the quark-hadron phase transition of the Universe at nonzero chemical potential is revisited within the microscopic Brueckner-Hartree-Fock approach employed for the hadron phase, using two kinds of baryon interactions as fundamental inputs. To describe the deconfined phase of quark matter, we use a recently developed quark mass density-dependent model with a fully self-consistent thermodynamic treatment of confinement. We study the baryon number limit Aboil (above which boiling may be important) with three typical values for the confinement parameter D. It is firstly found that the baryon interaction with a softer equation of state for the hadron phase would only lead to a small increase of Aboil . However, results depend sensitively on the confinement parameter in the quark model. Specifically, boiling might be important during the Universe cooling for a limited parameter range around D 1 / 2 = 170 MeV, a value satisfying recent lattice QCD calculations of the vacuum chiral condensate, while for other choices of this parameter, boiling might not happen and cosmological quark nuggets of 102 < A <1050 could survive.
Lincoln, Don
2015-05-07
Matter is malleable and can change its properties with temperature. This is most familiar when comparing ice, liquid water and steam, which are all different forms of the same thing. However beyond the usual states of matter, physicists can explore other states, both much colder and hotter. In this video, Fermilab’s Dr. Don Lincoln explains the hottest known state of matter – a state that is so hot that protons and neutrons from the center of atoms can literally melt. This form of matter is called a quark gluon plasma and it is an important research topic being pursued at the LHC.
Lincoln, Don
2016-07-12
Matter is malleable and can change its properties with temperature. This is most familiar when comparing ice, liquid water and steam, which are all different forms of the same thing. However beyond the usual states of matter, physicists can explore other states, both much colder and hotter. In this video, Fermilabâs Dr. Don Lincoln explains the hottest known state of matter â a state that is so hot that protons and neutrons from the center of atoms can literally melt. This form of matter is called a quark gluon plasma and it is an important research topic being pursued at the LHC.
Chiral EFT based nuclear forces: achievements and challenges
NASA Astrophysics Data System (ADS)
Machleidt, R.; Sammarruca, F.
2016-08-01
During the past two decades, chiral effective field theory has become a popular tool to derive nuclear forces from first principles. Two-nucleon interactions have been worked out up to sixth order of chiral perturbation theory and three-nucleon forces up to fifth order. Applications of some of these forces have been conducted in nuclear few- and many-body systems—with a certain degree of success. But in spite of these achievements, we are still faced with great challenges. Among them is the issue of a proper uncertainty quantification of predictions obtained when applying these forces in ab initio calculations of nuclear structure and reactions. A related problem is the order by order convergence of the chiral expansion. We start this review with a pedagogical introduction and then present the current status of the field of chiral nuclear forces. This is followed by a discussion of representative examples for the application of chiral two- and three-body forces in the nuclear many-body system including convergence issues.
Tuning spontaneous radiation of chiral molecules by asymmetric chiral nanoparticles.
Guzatov, Dmitry V; Klimov, Vasily V; Chan, Hsun-Chi; Guo, Guang-Yu
2017-03-20
We have obtained analytical expressions for the radiative decay rate of the spontaneous emission of a chiral molecule located near a dielectric spherical particle with a chiral nonconcentric spherical shell made of a bi-isotropic material. Our numerical and graphical analyses show that material composition, thickness and degree of non-concentricity of the shell can influence significantly the spontaneous radiation of the chiral molecule. In particular, the radiative decay rates can differ in orders of magnitude for a chiral molecule located near the thin and thick parts of a nonconcentric shell as well as near a concentric shell made of chiral metamaterial. We also find that the radiative decay rates of the "right" and "left" chiral molecule enantiomers located near a nanoparticle with a chiral metamaterial shell can differ pronouncedly from each other. Our findings therefore suggest a way to tune the spontaneous emission of chiral molecules by varying the material composition, thickness and degree of non-concentricity of the shell in the nearby composite nanoparticle and also to enhance the chirality selection of chiral molecules in racemic mixtures.
Theory of hadronic production of heavy quarks
Peterson, C.
1981-07-01
Conventional theoretical predictions for hadronic production of heavy quarks (Q anti Q) are reviewed and confronted with data. Perturbative hard scattering predictions agree qualitatively well with hidden Q anti Q production (e.g., psi, chi, T) whereas for open Q anti Q-production (e.g., pp ..-->.. ..lambda../sub c//sup +/X) additional mechanisms or inputs are needed to explain the forwardly produced ..lambda../sub c//sup +/ at ISR. It is suggested that the presence of c anti c-pairs on the 1 to 2% level in the hadron Fock state decomposition (intrinsic charm) gives a natural description of the ISR data. The theoretical foundations of the intrinsic charm hypotheses together with its consequences for lepton-induced reactions is discussed in some detail.
Charm quark mass with calibrated uncertainty
NASA Astrophysics Data System (ADS)
Erler, Jens; Masjuan, Pere; Spiesberger, Hubert
2017-02-01
We determine the charm quark mass hat{m}_c from QCD sum rules of the moments of the vector current correlator calculated in perturbative QCD at O (hat{α }_s^3). Only experimental data for the charm resonances below the continuum threshold are needed in our approach, while the continuum contribution is determined by requiring self-consistency between various sum rules, including the one for the zeroth moment. Existing data from the continuum region can then be used to bound the theoretic uncertainty. Our result is hat{m}_c(hat{m}_c) = 1272 ± 8 MeV for hat{α }_s(M_Z) = 0.1182, where the central value is in very good agreement with other recent determinations based on the relativistic sum rule approach. On the other hand, there is considerably less agreement regarding the theory dominated uncertainty and we pay special attention to the question how to quantify and justify it.
Quark-Hadron Duality in Electron Scattering
Wally Melnitchouk; Rolf Ent; Cynthia Keppel
2004-08-01
The duality between partonic and hadronic descriptions of physical phenomena is one of the most remarkable features of strong interaction physics. A classic example of this is in electron-nucleon scattering, in which low-energy cross sections, when averaged over appropriate energy intervals, are found to exhibit the scaling behavior expected from perturbative QCD. We present a comprehensive review of data on structure functions in the resonance region, from which the global and local aspects of duality are quantified, including its flavor, spin and nuclear medium dependence. To interpret the experimental findings, we discuss various theoretical approaches which have been developed to understand the microscopic origins of quark-hadron duality in QCD. Examples from other reactions are used to place duality in a broader context, and future experimental and theoretical challenges are identified.
Top quark physics: Future Measurements
Frey, Raymond; Gerdes, David; Jaros, John; Vejcik, Steve; Berger, Edmond L.; Chivukula, R. Sekhar; Cuypers, Frank; Drell, Persis S.; Fero, Michael; Hadley, Nicholas; Han, Tao; Heinson, Ann P.; Knuteson, Bruce; Larios, Francisco; Miettinen, Hannu; Orr, Lynne H.; Peskin, Michael E.; Rizzo, Thomas; Sarid, Uri; Schmidt, Carl; Stelzer, Tim; Sullivan, Zack
1996-12-31
We discuss the study of the top quark at future experiments and machines. Top's large mass makes it a unique probe of physics at the natural electroweak scale. We emphasize measurements of the top quark's mass, width, and couplings, as well as searches for rare or nonstandard decays, and discuss the complementary roles played by hadron and lepton colliders.
Déliot, Frédéric; Hadley, Nicholas; Parke, Stephen; Schwarz, Tom
2014-10-01
The top quark is the heaviest known elementary particle, and it is often seen as a window to search for new physics processes in particle physics. A large program to study the top-quark properties has been performed both at the Tevatron and LHC colliders by the D0, CDF, ATLAS and CMS experiments. The most recent results are discussed in this article.
Coherent amplification of classical pion fields during the cooling of droplets of quark plasma
Abada, A.; Birse, M.C.
1997-06-01
In the framework of the linear {sigma} model, we study the time evolution of a system of classical {sigma} and pion fields coupled to quarks. For this purpose we solve numerically the classical transport equation for relativistic quarks coupled to the nonlinear Klein-Gordon equations for the meson fields. We examine evolution starting from variety of initial conditions corresponding to spherical droplets of hot quark matter, which might mimic the behavior of a quark plasma produced in high-energy nucleus-nucleus collisions. For large droplets we find a strong amplification of the pion field that oscillates in time. This leads to a coherent production of pions with a particular isospin and so would have similar observable effects to a disoriented chiral condensate which various authors have suggested might be a signal of the chiral phase transition. The mechanism for amplification of the pion field found here does not rely on this phase transition and is better thought of as a {open_quotes}pion laser{close_quotes} which is driven by large oscillations of the {sigma} field. {copyright} {ital 1997} {ital The American Physical Society}
The impact of dissipation and noise on fluctuations in chiral fluid dynamics
NASA Astrophysics Data System (ADS)
Nahrgang, Marlene; Herold, Christoph; Leupold, Stefan; Mishustin, Igor; Bleicher, Marcus
2013-05-01
We investigate the nonequilibrium evolution of the sigma field coupled to a fluid dynamic expansion of a hot fireball to model the chiral phase transition in heavy-ion collisions. The dissipative processes and fluctuations are allowed under the assumption that the total energy of the coupled system is conserved. We use the linear sigma model with constituent quarks to investigate the effects of the chiral phase transition on the equilibration and excitation of the sigma modes. The quark fluid acts as a heat bath in local thermal equilibrium and the sigma field evolves according to a semiclassical stochastic Langevin equation of motion. The effects of supercooling and reheating of the fluid in a first order phase transition are observed via the delayed relaxation of the sigma field to a new equilibrium state. At the first order phase transition the nonequilibrium fluctuations are strongly enhanced. Communicated by Steffen Bass
Simultaneous Chiral Symmetry Restoration and Deconfinement Consequences for the QCD Phase Diagram
NASA Astrophysics Data System (ADS)
Klähn, Thomas; Fischer, Tobias; Hempel, Matthias
2017-02-01
For studies of quark matter in astrophysical scenarios, the thermodynamic bag model is commonly employed. Although successful, it does not account for dynamical chiral symmetry breaking and repulsions due to the vector interaction which is crucial to explain recent observations of massive, two solar mass neutron stars. In Klähn & Fischer we developed the novel vBag quark matter model which takes these effects into account. This article extends vBag to finite temperatures and isospin asymmetry. Another particular feature of vBag is the determination of the deconfinement bag constant {B}{dc} from a given hadronic equation of state in order to ensure that chiral and deconfinement transitions coincide. We discuss consequences of this novel approach for the phase transition construction, the phase diagram, and implications for protoneutron stars.
Palenik, Mark C.; Dunlap, Brett I.
2015-07-28
Despite the fundamental importance of electron density in density functional theory, perturbations are still usually dealt with using Hartree-Fock-like orbital equations known as coupled-perturbed Kohn-Sham (CPKS). As an alternative, we develop a perturbation theory that solves for the perturbed density directly, removing the need for CPKS. This replaces CPKS with a true Hohenberg-Kohn density perturbation theory. In CPKS, the perturbed density is found in the basis of products of occupied and virtual orbitals, which becomes ever more over-complete as the size of the orbital basis set increases. In our method, the perturbation to the density is expanded in terms of a series of density basis functions and found directly. It is possible to solve for the density in such a way that it makes the total energy stationary even if the density basis is incomplete.
Dynamical quark mass generation in a strong external magnetic field
NASA Astrophysics Data System (ADS)
Mueller, Niklas; Bonnet, Jacqueline A.; Fischer, Christian S.
2014-05-01
We investigate the effect of a strong magnetic field on dynamical chiral symmetry breaking in quenched and unquenched QCD. To this end we apply the Ritus formalism to the coupled set of (truncated) Dyson-Schwinger equations for the quark and gluon propagator under the presence of an external constant Abelian magnetic field. We work with an approximation that is trustworthy for large fields eH >ΛQCD2 but is not restricted to the lowest Landau level. We confirm the linear rise of the quark condensate with a large external field previously found in other studies and observe the transition to the asymptotic power law at extremely large fields. We furthermore quantify the validity of the lowest Landau level approximation and find substantial quantitative differences to the full calculation even at very large fields. We discuss unquenching effects in the strong field propagators, condensate and the magnetic polarization of the vacuum. We find a significant weakening of magnetic catalysis caused by the backreaction of quarks on the Yang-Mills sector. Our results support explanations of the inverse magnetic catalysis found in recent lattice studies due to unquenching effects.
NASA Astrophysics Data System (ADS)
't Hooft, Gerardus
QCD was proposed as a theory for the strong interactions long before we had any idea as to how it could be that its fundamental constituents, the quarks, are never seen as physical particles. Massless gluons also do not exist as free particles. How can this be explained? The first indication that this question had to be considered in connection with the topological structure of a gauge theory came when Nielsen and Olesen observed the occurrence of stable magnetic vortex structures [1] in the Abelian Higgs model. Expanding on such ideas, the magnetic monopole solution was found [2]. Other roundabout attempts to understand confinement involve instantons. Today, we have better interpretations of these topological structures, including a general picture of the way they do lead to unbound potentials confining quarks. It is clear that these unbound potentials can be ascribed to a string-like structure of the vortices formed by the QCD field lines. Can string theory be used to analyze QCD? Many researchers think so. The leading expert on this is Sacha Polyakov. In his instructive account he adds how he experienced the course of events in Gauge Theory, emphasizing the fact that quite a few discoveries often ascribed to researchers from the West, actually were made independently by scientists from the Soviet Union…
L. Cerrito
2004-07-16
Preliminary results on the measurement of the top quark mass at the Tevatron Collider are presented. In the dilepton decay channel, the CDF Collaboration measures m{sub t} = 175.0{sub -16.9}{sup +17.4}(stat.){+-}8.4(syst.) GeV/c{sup 2}, using a sample of {approx} 126 pb{sup -1} of proton-antiproton collision data at {radical}s = 1.96 TeV (Run II). In the lepton plus jets channel, the CDF Collaboration measures 177.5{sub -9.4}{sup +12.7}(stat.) {+-} 7.1(syst.) GeV/c{sup 2}, using a sample of {approx} 102 pb{sup -1} at {radical}s = 1.96 TeV. The D0 Collaboration has newly applied a likelihood technique to improve the analysis of {approx} 125 pb{sup -1} of proton-antiproton collisions at {radical}s = 1.8 TeV (Run I), with the result: m{sub t} = 180.1 {+-} 3.6(stat.) {+-}3.9(syst.) GeV/c{sup 2}. The latter is combined with all the measurements based on the data collected in Run I to yield the most recent and comprehensive experimental determination of the top quark mass: m{sub t} = 178.0 {+-} 2.7(stat.) {+-} 3.3(syst.) GeV/c{sup 2}.
NASA Astrophysics Data System (ADS)
Jan-e~Alam; Subhasis~Chattopadhyay; Tapan~Nayak
2008-10-01
Quark Matter 2008—the 20th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions was held in Jaipur, the Pink City of India, from 4-10 February, 2008. Organizing Quark Matter 2008 in India itself indicates the international recognition of the Indian contribution to the field of heavy-ion physics, which was initiated and nurtured by Bikash Sinha, Chair of the conference. The conference was inaugurated by the Honourable Chief Minister of Rajasthan, Smt. Vasundhara Raje followed by the key note address by Professor Carlo Rubbia. The scientific programme started with the theoretical overview, `SPS to RHIC and onwards to LHC' by Larry McLerran followed by several theoretical and experimental overview talks on the ongoing experiments at SPS and RHIC. The future experiments at the LHC, FAIR and J-PARC, along with the theoretical predictions, were discussed in great depth. Lattice QCD predictions on the nature of the phase transition and critical point were vigorously debated during several plenary and parallel session presentations. The conference was enriched by the presence of an unprecedented number of participants; about 600 participants representing 31 countries across the globe. This issue contains papers based on plenary talks and oral presentations presented at the conference. Besides invited and contributed talks, there were also a large number of poster presentations. Members of the International Advisory Committee played a pivotal role in the selection of speakers, both for plenary and parallel session talks. The contributions of the Organizing Committee in all aspects, from helping to prepare the academic programme down to arranging local hospitality, were much appreciated. We thank the members of both the committees for making Quark Matter 2008 a very effective and interesting platform for scientific deliberations. Quark Matter 2008 was financially supported by: Air Liquide (New Delhi) Board of Research Nuclear Sciences (Mumbai) Bose
QCD diffraction: a critical phenomenon reflecting both confinement and chiral-symmetry breaking
White, A.R.
1982-07-01
Arguments are presented for studying soft diffractive physics at anti p-p colliders in terms of Critical Pomeron Reggeon Field Theory. It is emphasized that both confinement and chiral-symmetry breaking play a vital role in the occurrence of the Critical Pomeron in QCD. SU(3) is the unique strong-interaction gauge group giving the Critical Pomeron and the maximum number of quarks allowed by asymptotic freedom is required for criticality.
``Heavy-water Lattice and Heavy-Quark''
NASA Astrophysics Data System (ADS)
Maksoed, Ssi, Wh-
Refer to Birgitt Roettger-Roessler: ``Feelings at the Margins'', 2014 retrieved the Vienna, 2006 UNIDO Research Programme: Combating Marginalization and Poverty through Industrial Development/COMPID. Also from Vienna, on Feb 18-22, 1963 reported Technical Report Series 20 about ``Heavy Water Lattice''. Failed to relates scale-invariant properties of public-Debt growth to convergence in perturbation theory, sought JH Field: ``Convergence & Gauge Dependence Properties:..''. Furthers, in GP Lepage: ``On the Viabilities of Lattice Perturbation Theory'', 1992 stated: ``in terms of physical quantities, like the heavy-quark potential, greatly enhanced the predictive power of lattice perturbation theory''. Acknowledgements to HE. Mr. H. TUK SETYOHADI, Jl. Sriwijaya Raya 3, South-Jakarta, INDONESIA.
Color superconductivity in dense quark matter
Alford, Mark G.; Schmitt, Andreas; Rajagopal, Krishna; Schaefer, Thomas
2008-10-15
Matter at high density and low temperature is expected to be a color superconductor, which is a degenerate Fermi gas of quarks with a condensate of Cooper pairs near the Fermi surface that induces color Meissner effects. At the highest densities, where the QCD coupling is weak, rigorous calculations are possible, and the ground state is a particularly symmetric state, the color-flavor locked (CFL) phase. The CFL phase is a superfluid, an electromagnetic insulator, and breaks chiral symmetry. The effective theory of the low-energy excitations in the CFL phase is known and can be used, even at more moderate densities, to describe its physical properties. At lower densities the CFL phase may be disfavored by stresses that seek to separate the Fermi surfaces of the different flavors, and comparison with the competing alternative phases, which may break translation and/or rotation invariance, is done using phenomenological models. We review the calculations that underlie these results and then discuss transport properties of several color-superconducting phases and their consequences for signatures of color superconductivity in neutron stars.
ENANTIOMER-SPECIFIC EFFECTS OF CHIRAL POLLUTANTS
Enantiomers, the mirror image isomers of chiral pollutants, are known to be selective in their interaction with other chiral molecules, including enzymes and other biochemicals. Considerable research has shown, for example, that chiral pesticides are degraded selectively by micr...
Optical properties of chiral nanotubes
NASA Astrophysics Data System (ADS)
Cecilia, Noguez; Román-Velázquez Carlos, E.; Ariadna, Sánchez; Montes Lilia, Meza
2004-03-01
A recent theoretical model [1] is applied to study the optical properties chiral nanostructures like carbon nanotubes. We calculate the Circular Dichroism (CD) spectra for carbon nanotubes with different chirality. The calculated CD spectra show features that allow us to distinguish between nanotubes with different indexes of chirality. Other nanostructures, like chiral fullerenes are also investigated.These results provide theoretical support for the quantification of chirality and its measurement, using the CD lineshapes of chiral. This work has been partly financed by CONACyT grant No. 36651-E and by DGAPA-UNAM grants No. IN104201. [1] C. E. Roman-Velazquez, et al., J. of Phys. Chem. B (Letter) 107, 12035 (2003)
Modes of structurally chiral lasers
NASA Astrophysics Data System (ADS)
Topf, René D. M.; McCall, Martin W.
2014-11-01
We employ coupled wave theory to enumerate the lasing modes of structurally chiral lasers. The elliptical modes are shown to be fundamentally distinct from those of a scalar distributed feedback laser. High threshold modes are shown to lase with the opposite chirality as the active medium, in contrast to their low-threshold counterparts that lase with the same chirality as the active medium. The lasing mode structure suggests the intriguing possibility of dynamically changing the polarization handedness of a chiral laser, as well as the possibility of lasing within the forbidden band-gap region. These observations arise from the fundamental interplay between the distributed chirality-preserving reflections within the active medium and the localized chirality-reversing reflections at the medium's boundaries.
On high-order perturbative calculations at finite density
NASA Astrophysics Data System (ADS)
Ghişoiu, Ioan; Gorda, Tyler; Kurkela, Aleksi; Romatschke, Paul; Säppi, Matias; Vuorinen, Aleksi
2017-02-01
We discuss the prospects of performing high-order perturbative calculations in systems characterized by a vanishing temperature but finite density. In particular, we show that the determination of generic Feynman integrals containing fermionic chemical potentials can be reduced to the evaluation of three-dimensional phase space integrals over vacuum on-shell amplitudes - a result reminiscent of a previously proposed "naive real-time formalism" for vacuum diagrams. Applications of these rules are discussed in the context of the thermodynamics of cold and dense QCD, where it is argued that they facilitate an extension of the Equation of State of cold quark matter to higher perturbative orders.
Wigner Distributions of Quarks for Different Polarizations
NASA Astrophysics Data System (ADS)
More, Jai; Mukherjee, Asmita; Nair, Sreeraj
2017-03-01
We calculate quark Wigner distributions using the light-front wave functions in a dressed quark model. In this model, a proton target is replaced by a simplified spin-1/2 state, namely a quark dressed with a gluon. We calculate the Wigner distributions for different polarization configuration of quark and the target state in this model.
Multiplicity difference between heavy- and light-quark jets revisited
NASA Astrophysics Data System (ADS)
Dokshitzer, Yu L.; Fabbri, F.; Khoze, V. A.; Ochs, W.
2006-02-01
The perturbative QCD approach to multiparticle production predicts a characteristic suppression of particle multiplicity in a heavy-quark jet as compared to a light-quark jet. In the modified leading logarithmic approximation (MLLA) the multiplicity difference δ_{Qell} between heavy- and light-quark jets is derived in terms of a few other experimentally measured quantities. The earlier prediction for b-quarks needs revision in the light of new experimental results and the improvement in the understanding of the experimental data. We now find δ_{bell} = 4.4±0.4. The updated MLLA results on δ_{bell} and δ_{cell} are compared with the present data from e + e - annihilation. Their expected energy independence is confirmed within the energy range between 29 and 200 GeV; the absolute values are now in better agreement with experiment than in the previous analysis, and the remaining difference can be attributed largely to next-to-MLLA contributions, an important subset of which are identified and evaluated.
Quark-hadron phase transition and strangeness conservation constraints
NASA Astrophysics Data System (ADS)
Saeed-Uddin
1999-01-01
The implications of the strangeness conservation in a hadronic resonance gas (HRG) on the expected phase transition to the quark gluon plasma (QGP) are investigated. It is assumed that under favourable conditions a first order hadron-quark matter phase transition may occur in the hot hadronic matter such as those produced in the ultra-relativistic heavy-ion collisions at CERN and BNL. It is however shown that the criteria of strict strangeness conservation in the HRG may not permit the occurrence of a strict first order equilibrium quark-hadron phase transition unlike a previous study. This emerges as a consequence of the application of a realistic equation of state (EOS) for the HRG and QGP phases, which account for the finite-size effect arising from the short range hard-core hadronic repulsion in the HRG phase and the perturbative QCD interactions in the QGP phase. For a first order hadron-quark matter phase transition to occur one will therefore require large fluctuations in the critical thermal parameters, which might arise due to superheating, supercooling or other nonequlibrium effects. We also discuss a scenario proposed earlier, leading to a possible strangeness separation process during hadronization.
Infrared behavior of real-time quark dispersion relations in hot QCD
Bouakaz, K.; Abada, A.
2012-06-27
We determine the analytic contributions to the complex self energy of slow-moving quarks in the context of hard-thermal-loop summed perturbation of massless quantum chromodynamics (QCD) at high temperature. The calculation is done using the real time formalism.
Exploiting Third Generation Quarks for New Physics Discoveries at the Energy Frontier
Ivanov, Andrew G.
2013-10-15
The K-State group's effort is top quark physics and searches for beyond-standard-model physics in t{anti }t final states. The KSU team performed the most precise measurement of the t {anti t} cross section in the lepton + jets channel, and for the first time excluded the fourth generation of the standard model in the perturbative regime.
Revisiting the quark-lepton complementarity and triminimal parametrization of neutrino mixing matrix
Kang, Sin Kyu
2011-05-01
We examine how a parametrization of neutrino mixing matrix reflecting quark-lepton complementarity can be probed by considering phase-averaged oscillation probabilities, flavor composition of neutrino fluxes coming from atmospheric and astrophysical neutrinos and lepton flavor violating radiative decays. We discuss some distinct features of the parametrization by comparing the triminimal parametrization of perturbations to the tribimaximal neutrino mixing matrix.
Top-quark decay at next-to-next-to-leading order in QCD.
Gao, Jun; Li, Chong Sheng; Zhu, Hua Xing
2013-01-25
We present the complete calculation of the top-quark decay width at next-to-next-to-leading order in QCD, including next-to-leading electroweak corrections as well as finite bottom quark mass and W boson width effects. In particular, we also show the first results of the fully differential decay rates for the top-quark semileptonic decay t → W(+)(l(+)ν)b at next-to-next-to-leading order in QCD. Our method is based on the understanding of the invariant mass distribution of the final-state jet in the singular limit from effective field theory. Our result can be used to study arbitrary infrared-safe observables of top-quark decay with the highest perturbative accuracy.
Quarkonium Suppression in a Strongly-Coupled Quark-Gluon Plasma
NASA Astrophysics Data System (ADS)
Vairo, Antonio
2017-03-01
We compute the quarkonium nuclear modification factor in a strongly coupled quark-gluon plasma for quarkonia that are S-wave Coulombic bound states. We perform the analysis in a non-relativistic effective field theory framework that is accurate at leading-order in the heavy-quark density expansion and at next-to-leading order in the multipole expansion. We write and solve the Lindblad equation for the heavy quark-antiquark density. Thermal mass shift, width and the Lindblad equation depend on only two non-perturbative parameters: the heavy-quark momentum diffusion coefficient and its dispersive counterpart. Finally, we provide preliminary numerical results for the nuclear modification factors of the 1 S and 2 S bottomonium states.
Effect of Orbital Angular Momentum on Valence-Quark Helicity Distributions
Harut Avakian; Stanley J. Brodsky; Alexandre Deur; Feng Yuan
2007-08-01
We study the quark helicity distributions at large x in perturbative QCD, taking into account contributions from the valence Fock states of the nucleon which have nonzero orbital angular momentum. These states are necessary to have a nonzero anomalous magnetic moment. We find that the quark orbital angular momentum contributes a large logarithm to the negative helicity quark distributions in addition to its power behavior, scaling as (1-x)^5\\log^2(1-x) in the limit of x\\to 1. Our analysis shows that the ratio of the polarized over unpolarized down quark distributions, \\Delta d/d, will still approach 1 in this limit. By comparing with the experimental data, we find that this ratio should cross zero at x\\approx 0.75.
Top quark studies at hadron colliders
Sinervo, P.K.
1997-01-01
The techniques used to study top quarks at hadron colliders are presented. The analyses that discovered the top quark are described, with emphasis on the techniques used to tag b quark jets in candidate events. The most recent measurements of top quark properties by the CDF and DO Collaborations are reviewed, including the top quark cross section, mass, branching fractions, and production properties. Future top quark studies at hadron colliders are discussed, and predictions for event yields and uncertainties in the measurements of top quark properties are presented.
Menzione, A.
1995-10-01
Most of the material presented in this report, comes from contributions to the parallel session PL20 of this conference. We summarise the experimental results of direct production of Top quarks, coming from the CDF and C0 Collaborations at Fermilab, and compare these results to what one expects within current theoretical understanding. Particular attention is given to new results such as all hadronic modes of t{bar t} decay. As far as the mass is concerned, a comparison is made with precision measurements of related quantities, coming from LEP and other experiments. An attempt is made to look at the medium-term future and understand which variables and with what accuracy one can measure them with increased integrated luminosity.
Chiral Biomarkers in Meteorites
NASA Technical Reports Server (NTRS)
Hoover, Richard B.
2010-01-01
The chirality of organic molecules with the asymmetric location of group radicals was discovered in 1848 by Louis Pasteur during his investigations of the rotation of the plane of polarization of light by crystals of sodium ammonium paratartrate. It is well established that the amino acids in proteins are exclusively Levorotary (L-aminos) and the sugars in DNA and RNA are Dextrorotary (D-sugars). This phenomenon of homochirality of biological polymers is a fundamental property of all life known on Earth. Furthermore, abiotic production mechanisms typically yield recemic mixtures (i.e. equal amounts of the two enantiomers). When amino acids were first detected in carbonaceous meteorites, it was concluded that they were racemates. This conclusion was taken as evidence that they were extraterrestrial and produced by abiologically. Subsequent studies by numerous researchers have revealed that many of the amino acids in carbonaceous meteorites exhibit a significant L-excess. The observed chirality is much greater than that produced by any currently known abiotic processes (e.g. Linearly polarized light from neutron stars; Circularly polarized ultraviolet light from faint stars; optically active quartz powders; inclusion polymerization in clay minerals; Vester-Ulbricht hypothesis of parity violations, etc.). This paper compares the measured chirality detected in the amino acids of carbonaceous meteorites with the effect of these diverse abiotic processes. IT is concluded that the levels observed are inconsistent with post-arrival biological contamination or with any of the currently known abiotic production mechanisms. However, they are consistent with ancient biological processes on the meteorite parent body. This paper will consider these chiral biomarkers in view of the detection of possible microfossils found in the Orgueil and Murchison carbonaceous meteorites. Energy dispersive x-ray spectroscopy (EDS) data obtained on these morphological biomarkers will be
Husson, H P
1997-01-01
Following a brief historical review of the notion of chirality, the importance of the relationship between pharmacological activity and the enantiomeric forms of drugs is indicated. Different approaches for the preparation of optically-pure molecules are discussed, and an original strategy, known as the "CN(R,S) method", is described. To conclude, an application of this method in the synthesis of a pharmacologically-active molecule is presented.
Automated Lattice Perturbation Theory
Monahan, Christopher
2014-11-01
I review recent developments in automated lattice perturbation theory. Starting with an overview of lattice perturbation theory, I focus on the three automation packages currently "on the market": HiPPy/HPsrc, Pastor and PhySyCAl. I highlight some recent applications of these methods, particularly in B physics. In the final section I briefly discuss the related, but distinct, approach of numerical stochastic perturbation theory.
NASA Astrophysics Data System (ADS)
Thorndike, Edward H.; Poling, Ronald A.
1988-01-01
Recent experimental results on the decay of b-flavored hadrons are reviewed. Substantial progress has been made in the study of exclusive and inclusive B-meson decays, as well as in the theoretical understanding of these processes. The two most prominent developments are the continuing failure to observe evidence of decays of the b quark to a u quark rather than a c quark, and the surprisingly high level of B 0- overlineB0 mi xing which has recently been reported by the ARGUS collaboration. Notwithstanding these results, we conclude that the health of the Standard Model is excellent.
NASA Astrophysics Data System (ADS)
Holdaway, David I. H.; Collini, Elisabetta; Olaya-Castro, Alexandra
2017-03-01
The full development of mono- or multi-dimensional time-resolved spectroscopy techniques incorporating optical activity signals has been strongly hampered by the challenge of identifying the small chiral signals over the large achiral background. Here we propose a new methodology to isolate chiral signals removing the achiral background from two commonly used configurations for performing two dimensional optical spectroscopy, known as BOXCARS and GRadient Assisted Photon Echo Spectroscopy (GRAPES). It is found that in both cases an achiral signal from an isotropic system can be completely eliminated by small manipulations of the relative angles between the linear polarizations of the four input laser pulses. Starting from the formulation of a perturbative expansion of the signal in the angle between the beams and the propagation axis, we derive analytic expressions that can be used to estimate how to change the polarization angles of the four pulses to minimize achiral contributions in the studied configurations. The generalization to any other possible experimental configurations has also been discussed. %We derive analytic expressions to changes required to the polarizations in terms of a perturbative expansion in the angle between the beams and the colinear axis. We also numerically estimate higher order coefficients which cover arbitrarily large angles and thus any experimental configuration.